Analysis of the Phase-Controlled Loop
with a Sawtooth Comparator

By A. JAY GOLDSTEIN
(Manuseript received October 18, 1961)

Because of the recent inlerest in phase-controlled oscillators, a discussion
of the phase-controlled loop with a sawtooth comparator is presented. The
main emphasis is on finding the pull-in range of the loop. A companion
paper in this vssue (Ref. 4) deals with applications and shows how design
parameters can be obtained from resulls developed here.

I. INTRODUCTION

The phase-controlled oscillator has evoked much interest in recent
years. Some of its applications are to synchronism in television,'* syn-
chronization to a harmonic of a crystal oscillator,’ elimination of jitter
in pulse code modulation,® tracking filters, ete.

The general phase-controlled oscillator loop is given in Fig. 1. The
incoming signal and the variable oscillator have the same free-running
frequency w, . The phase comparator has as its output some function f
of the phase difference ¢, = ¢; — ¢o. As examples of f(¢.) we have

the linear case: fle.) = o,
the sinusoidal case: fle.) = sin ¢,
d d
the sawtoothed case flee) = e for —5<e <3
(see Tig. 2): fle. + nd) = flg.) for n= --- =101, ---.

The output of the phase comparator passes through a filter whose im-
pulse response is k(¢). The output of the filter »(¢) controls the variable
oscillator according to the equation

d‘Po

P — = ( \
P av(t). (1)
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Fig. 1 — The general phase-controlled loop.
Thus, the frequency of the controlled oscillator is
we + %} = w, + av(t).

In a companion paper in this issue, C. J. Byrne® discusses the engineer-
ing origins and applications of the sawtoothed comparator and shows
how design parameters can be obtained from the results of this article.

This article is primarily concerned with finding the pull-in range of
the loop. This is defined precisely in Section III. Briefly it is the maximum
asymplotic (in time) value of the mistuning de/dt for which the slave
oscillator eventually synchronizes or locks to the input frequency. All of the
literature cited in the references deals with this problem for the case of
a sinusoidal or linear phase comparator. The linear case is easily solved
since the resulting differential equation is linear. (See in particular
Labin® for a detailed discussion.) In the sinusoidal case the differential
equation of the system is nonlinear. Only in the cases of no filter and an
ideal integrator has the equation, up to the present, been solved in closed
form. See Labin® for an excellent discussion of the no-filter case. In order
to handle the nontrivial filter, many authors have used methods of
phase plane analysis.®”® Phase plane analysis is restricted to the prob-
lem of capture range in which the mistuning and phase error are zero
for negative time, and the mistuning is constant for positive time, This
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Fig. 2 — The sawtoothed phase comparator characteristic. The phase error
. is difference between the input and output phases of the loop.
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kind of analysis gives only upper and lower bounds for the capture
range and is restricted to a lag filter (Iig. 3). For an RC filter (R, = 0),
Barnard® shows how phase plane analysis can give exact results.

To obviate the mathematical complexities, people have resorted to
making various hypotheses about the nature of the solution of the non-
linear differential equation. These assumptions are based upon physical
intuition and gross behavior observed in the laboratory. Different as-
sumptions have led to different approximate solutions for the capture
range. Moreover, they deal primarily with the lag filter, since it leads
to a second-order differential equation while a more general filter gives
a higher-order differential equation.

The loop equation when expressed as an integral equation is

de.
dit

= —a [ eIt = ) dt' + % — an (o).

It is surprisingly tractable for the sawtooth comparator, and the pull-in
range can be computed for any filter. I'ig. 4 shows the excellent agree-
ment between theory and experiment for the lag filter, These experi-
mental results were obtained by C. J. Byrne.

To obtain our results, we too must make an assumption, While the
assumptions other authors have made deal with the behavior (in steady
state) when far outside the pull-in range, ours deals with the behavior
just outside of the pull-in range (see Section 4.4). This hypothesis is
easily verified experimentally and has been so verified by C. J. Byrne
for a representative selection of RC filters.

A brief deseription of each section follows.

Section II gives the basic integro-differential equation of the loop.

Section 111 defines the lock and pull-in range. The former is called by
some the pull-out range. The lock range is the maximum frequency
difference that the loop can lock to. It is given by

wp = a’fmuxH(O)

Fig. 3 — The integral compensating or lag filter. The normalized time con-
stants are 1y = a(R, + R.)C and 72 = aR.C'. For an RC filter ro = 0.a = (V. F. 0.
output frequency shift )/(V. F. O. input voltage).
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Tig. 4 — The relative pull-in range. For critical damping (r2 + 1)*/4 = = and
for the RC filter R. = 0.

where H(0) is the de gain of the filter and fuax is d/2 for the sawtooth
comparator.

Section 4.1 gives the solution of the basic loop equation. This solution
is the sum of (1) the solution of the linear phase comparator problem,
(2) a series of step functions, and (3) a series of damped exponentials.
The solution is obtained by representing the phase comparator function
as the sum of the phase difference [giving (1)] and a series of translated
unit step functions [giving (2) and (3)].

Section 4.2 gives the steady-state solution when not captured. In this
case the output of the phase comparator is a periodic function whose
period for a fixed filter depends on the asymptotic relative mistuning
(Fig. 5). By examining this non-capture situation we obtain the pull-in
range. We observe that in non-capture state the period and relative
mistuning must correspond to a point on a curve typified in Fig. 5.
Hence a relative mistuning lying below the minimum point of the curve
corresponds to a capture or synchronized situation, and the height of
the minimum gives the ratio of pull-in to lock range (the relative pull-in
Vo)

Section V gives all the explicit design formulae for the lag filter. For
the special case of the RC filter (E; = 0 in Fig. 3) an explicit formula
for relative pull-in can be given, namely
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)
).

Ha =

tanh E (aR\C — )7 (aR(C 2
Yo =

1 (aR\C =

(o

In all other cases we must find the roots of a transcendental equation by
numerical approximation methods.

Byrne' gives graphs of the results of Section V for the lag filter. These
are graphs of relative pull-in (Fig. 13), noise bandwidth (small signal)
(Fig. 7), figure of merit (relative pull-in/noise bandwidth) (Fig. 15),
and maximum loop gain (small signal) (Fig. 8).

The noise bandwidth is a measure of the ability of the loop to reject
small phase noise. More explicitly, the noise bandwidth N of a network
is defined to be the bandwidth of that ideal low-pass filter which passes
the same white noise power as the given network.

There are many possible ways of defining a single measure of the
performance of the system, depending on the particular application in
mind. We have chosen the figure of merit v,/N, ie., a large figure of merit
implies high noise rejection and large relative pull-in.

T = PERIOD —>

Fig. 5 — Relative mistuning w,,/wy in a non-synchronized steady state vs the
period T of the comparator output. (a) no filter, (a) and (b) overdamped loop and
(e) underdamped loop.
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For small phase deviations of the input, the comparator can be con-
sidered linear. We can then discuss the gain of the loop as a function of
the frequency of the phase deviation. The maximum of the loop gain is
denoted by Y. In some applications ¥ is restricted by stability considera-
tions to be less than unity.

Section VI is devoted to the derivation of several interesting asymp-
totic results for the lag filter. A simple formula is obtained for the
relative pull-in for large values of the filter time constants. It is also
shown that if the maximum loop gain is allowed to have a fixed value
greater than unity, then, by appropriate choice of the time constants,
arbitrarily large values of the figure of merit can be obtained.

This work could not have been completed without the aid of M.
Karnaugh who suggested the problem, E. G. Kimme who proved that
the sawtooth comparator is a continuous approximation to the original
discrete sample data system, C. J. Byrne whose experimental work con-
firmed the formulae derived here, D. I£. Rowlinson who constructed the
contour curves from the computer data, and R. D. Barnard with whom
many fruitful discussions were held.

II. THE BASIC LOOP EQUATION

We obtain an integro-differential equation for the loop by noting that
the output of the filter can be written as a convolution plus initial condi-
tions

o(t) = fu Fle(E)h(t — t') dt’ + vo(2)

where v¢(¢) is the filter output due to residual charges and fluxes in the
filter at time zero. vy(¢) damps out exponentially in all filters of interest.
Substituting this into (1) and replacing ¢y by ¢; — ¢. we obtain

dee _ _g f‘f[qo W — ) dt +% o
dit 0 ¢ dt
In order that the derivations which follow not be unduly complicated

by inessential parameters, we make the following normalizations

(1) = @e(t)/fmax (Smux = d/2)

C(x(t)) = fee(t))/fmax

ﬁ"(t) = ‘Pi(t)/fmnx .

The normalized form of (2) becomes

S—f _ _“fo Cle(¢)h(t — ¢ dt’ +g—‘; — at(t)/fuax . (3)

vo(t). (2)
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III. DEFINITIONS OF LOCK RANGE AND RELATIVE PULL-IN

It the input frequency w. =+ dp:/dt is increased “very slowly” to a
value which is not too large, the output frequency w. + deo/dt will
follow it (i.e., be always equal to, or locked to, the input frequency).
The maximum value of dg;/dt for which lock-in will oceur is called the
lock range and is denoted by w, . More precisely, w, will be determined
from (1) when the maximum de voltage v is obtained. This maximum
value is clearly the product of &, fmax the maximum value of the com-
parator function f and H(0) the de gain of the filter.*

wr, = ofmaxt1(0). (4)

Suppose that the input frequency is not increased slowly, but in some
sudden or erratic manner. Suppose moreover that the input frequency
approaches a limiting value, w,., the mistuning; i.e.

. dy;

lim & = w,.

]
In general, even if 0 < w, < w, (that is, we are in the lock range), the
output frequency will not asymptotically lock to the input frequency
(that is, be captured), but will be a modulated frequency. We define
the relative pull-in range v, to be that normalized maximum frequency
difference such that

. (f‘ i
—YpL < hnl __50_ = Wy < Yp@L (5)
L ([f
implies
. (’vp..
lim —- = w,. 6
t-—>o0 df © ())

Notice that we make no restriction on how dyp/dt approaches w,, , as
long as | w,, | < vpw.. .

IV. DERIVATION OF REHUL’[‘ST

4.1 Basie Equation
Let
O<bh <t - <ty <---

* We shall use capital letters to denote the Laplace transform of the function
denoted by corresponding lower-cuse letters.
T From here on we are dealing with the sawtooth comparator,
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be all the instants (called discontinuity points) at which the phase
difference x(t) crosses the discontinuity of C, ie.,

lim z(t, — A) = x(t,—) =1+ 20/

4%

where the first equality is a definition of z({,—) and where n’ is an
integer dependent on n. Let

a, = 1 if x is increasing at ¢,
a, = —1 if x is decreasing at ¢,
a, = 0 if x is stationary at £, .
Using the unit step function
_ 0 for t <0
u(t) =
1 for t=0

we can express C'(x(¢)) in the analytically useful form

Cla()) _a(t) s~
5 =y J.goa,u(t i) (7)

where n, is an integer so chosen that this equation holds at { = 0.
We note here for future reference that

-T(tu_) =ﬂﬂi%+ ia’i‘ (8)

1=0
Substituting (7) into the loop equation (3), we obtain

13 t
1(—@ -9 f (Yt — ) di’ + a-nof Rt dt’
2dt 2 Jy 0

+ a2 a,-f w(t’ — )t —t') dt’ (9)
j=0 0
1 de

+ §Cﬁ - avﬂ(t)/Qfmax .

Solving this by Laplace transform methods we obtain

sP(s) — [@o(0) 4+ aVo($)]/fmux + "o aH (s)
2(s + aH(s)) s s+ aH(s)

2 ae " aH(s)
+ E s s+ aH(s)’

1X(s) =
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Letting
1
R(s) = SFoHG) (10)
we have
_ aH(s)
1 — sR(s) = St all(5) (11)

Note that sR(s) is the transfer function between input phase ¢; and
comparator output phase ¢, for the linear comparator case. r(¢) is then
the phase response at the linear comparator output due to a step in
input phase. Since applications will require the system to synchronize
to a step in phase, we will assume that r(¢{) — 0 ast— .

Using this equation and taking inverse transforms in the equation for
X(s) we obtain

5 +no(1+Tt))-l-Za,u(t—t)—Ea_,r(t—t) (12)

where

S@(S) - [‘PO(O) + avﬂ(s)]/fmnx
Xou(s) = s + aH(s)

(1) is the solution of the loop equation in the ease of a linear com-
parator function f(x) = .
Using the final value theorem' we have

(o) = limx,({) = lim sX,(5) = lim ¢'(¢)

[ ] 50 t-»%0
0)
i ( (13)
2w, _ W
wl =) = TH0) = o
From (12) and (7) we have for the comparator output
CEW) _2elt) _ 5~ ontt — 1) + nor(e), (14)
2 2 i=0
In a steady-state condition this reduces to
Clx(t)) = Z ar(t — t;) (15)

where the ngr(t) term vanishes because of the remarks following the
definition of R(s).
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4.2 Steady-State Solution When Not Caplured

When we are not locked and in steady state, the output of the phase
comparator will be a periodic function.* We give here a simplified
heuristic derivation of the steady-state periodic solution. A rigorous
derivation is easily obtained using the heuristics as a guide. In steady
state, the normalized comparator output () = C(x(#)) will be periodic
with a period which we will call 7. In a given period there may be many
discontinuity points ¢; ; let us suppose there are k. Then assuming we
are in steady state, we can write

o . n=--—101,--- _
tuk+i - RT + T! + T {'L' — 0,1, e ,k -1 (1())
where
0= T0<T1< fee <.TT}.-71<T.
These relations are illustrated below.
1k k1 R (bnksk—1 tben + 1)k
nT + 7 AT +Ti1+7 -+ T +Tia+r (n+ T 4+ 7
o T :
The a,’s will be periodic in steady state and we let
_ ) n=---—101,"--: -
afuk+i"A1 {'l; =0,1,"',k—1 . (l‘)
It is no restriction to assume a time shift so that r = 0. Then, let
t=mT+u(0<uzgT) (18)
and combine the above three equations with (14). We obtain
y(t) = Cla(?)] = Cle(mT + )]
= mrﬂ/wl. - 2 Z ar:k+1'r(mT + uw — tuﬁ'+|')
k—1 m
= wpfor — 2 3 A; 2orl(m — )T + uw — T4
i=0 n=—=u0
(The second summation has the upper limit m because () = 0 for
t £ 0.) Letting j = m — n, we obtain
k—1 <
y(t) =" — 23 A (T + w = T0). (19)
wi, i=0 =0

* A mathematical proof is not at hand. Indications of its truth are given in
Benes® and experimental observations confirm this.
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Let us define a periodic function

°0

(1T = 2or(t+jT) (0<t=T) (20)
’ - 1= i
p(t = nT,T) (»T <t=(n+ 1)T)
or
+%e
p(LT) = 3 r(t + 5T).

(r(t)) = 0for ¢t £ 0 makes p({,T) a well defined function.) With this
definition, the normalized steady-state comparator output, when not
locked, can be written

k=1
y(t) =22 — 2% Ap(t — T,,T). (21)
wry, i=0

The expression for p(t,7') is familiar to those in the field of sample
data systems.* Though superficially formidable, it can be expressed in
closed form quite easily for the only important class of the filter transfer
functions H(s), namely rational functions. In that case £(s) is a rational
function too. Hence r(¢) is a linear combination of exponentials of the
form ("¢®* (real part of 8 negative). Then p(¢,T) for 0 < ¢ £ T is a
linear combination of geometric series, each of the form

2(0) = > (4 + jT)"PHm
j=0

_ ® i: (,ﬁ(H—J'T) (22)

This steady-state solution consists of a constant term 2w,,/daH(0),
which is the normalized steady-state output for a linear phase com-
parator plus a linear combination (with coefficients 1) of time trans-
lates of the funetion p(¢,7"), which is periodic of period 7. The derivation
shows that every steady-state periodie solution of the loop equation has
the form of (21).

Equation (21) hides several pitfalls. These are:

1. We must have | y(¢) | = 1. Hence only certain 7 and T, are

admissible.

+u:|
* It is the response of a filter R(s) to an input . a(t 4+ jT).
j=—u



614 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

2. Are the solutions represented by (21) physically realizable?
3. Are the solutions represented by (21) stable with respect to small
noise perturbations?
These three topics are grouped under the title Boundary Conditions
and will be discussed following a discussion of the pull-in range.

4.3 Relative Pull-in

From the definition of 7', y(T—) = =1 and by an appropriate choice
of 7in (16) (if wm > 0) we may assume y(7) = 1. Then from (21)

k—1
Om 142 Ap(T — T:,T). (23)
wr =0

Now the minimum value of w,, > 0 for which we have a non-constant
periodic steady-state stable solution is by definition y,w. , hence

k—1
vp =14 2min > Ap(T — T:, T). (24)
i=0

where the minimum is taken over all 7 and over all steady-state solu-
tions satisfying conditions 1, 2 and 3 above.

4.4 Boundary Conditions

4.4.1 Discontinuity Point Condition

(1), being the normalized phase comparator output, satisfies —1 =
y(t) £ 1. Also y('—) = =1 if and only if for some n and 7, t' = T +
nT, or y(t) is stationary at ¢’ (i.e., y'(¢') = 0 and y at ¢’ is increasing if
y(t') = —1 or decreasing if y(¢’) = 1). These are equivalent to

S Adp(t — T, T) — p(T — T:,T)) =0

if and only if ¢ = nT + T, or y(t') — y(T) is stationary at ¢. This
restriction will be called the discontinuity point condition.

To analytically determine whether this condition is satisfied, in a
general case, is clearly very difficult. For the case of the lag filter we
can solve the problem analytically but must rely on an experimental
fact. C. J. Byrne has found experimentally, in a large class of RC filters,
that there is just one discontinuity per period 7, i.e., the k in (21) is
one. We will call this the Experimental Hypothesis. Thus

y(t) =22 — 2p(,T) (25)

WL

and
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vy = 1 + 2 min p(T,T). (26)

In the section on the lag filter we show that if
p(T,7T") = min p(T,T) (27)
T

then p(t,7") satisfies the discontinuity point condition. Thus if p(¢,7")
is realizable (it is — see below) and is stable under noise (we do not
know, but have some evidence — see below) then

ve =1+ 2p(17",7T") (28)
for the lag filter.

1.4.2 Realizability Condition

Does there exist, for each of the steady-state functions represented
in (21) satisfying the discontinuity point condition, a corresponding
input function ¢(¢)? That is, are the y(¢) in (21) physically realizable?

In Appendix A we prove realizability for any filter but not in quite
the form stated above. We do the following:

(a) A particular input ¢(¢) = 2w,/d is injected.

(b) The loop is broken at the output of the phase comparator.

(¢) Into the filter, at this point, is injected a voltage which asymptot-

ically has the form (21).

(d) One shows that the output of the phase comparator has asymp-

totically the same form.

(e) In steady state the loop is closed.

4.4.3 Non-Synchronous Stability

Are the solutions stable? By this we mean: Will a steady-state solution
be thrown into synchronism by a “‘small” noise? In formal terms, we
suppose that a solution y(¢) has a discontinuity point, say {, shifted by
noise to &y + Ay . Each of the following discontinuity points ¢; ,f , - - -,
ty, - is shifted to &, + Ay, s + As, --- , 1, + A, , ---. It suffices for
our purposes that the (¢, + A,)’s be asymptotically periodic (i.e., the
noise sends us into another periodic solution and not into synchronism ).
The best we have been able to prove is that

]im[d—AJ ]=c<w.
Ap=0

-0 dAD
This has been done for the lag filter using the experimental assumption
that & = 1 and that 77" — ¢ < T < 7", for € sufficiently small, where
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7" is given in (28). Now it would suffice for stability to show that A, is
bounded for Ay sufficiently small, but the above does not imply this, for
all it says is that

A,., =] (,‘Ao + E,,A02

and we do not know that e, is bounded.
V. LAG (INTEGRAL COMPENSATING) FILTER

5.1 General Results

This section gives all the explicit formulae for design procedures in
the case of the lag filter (Fig. 3). We assume the experimental hypothesis
(see Section 4.4) throughout this section.

The transfer function of the filter is

_ tzS + 1
H(s) = m
where
h = (Rl + R‘z)cl
tg = RQC
Hence
_ 1 o s +1
k(s) = s+ aH(s) 482+ (alz+ 1)s+ a
1 1
T + a 1 yk + 2'2 1

Pr— P2Ss— P P1— P28 — P

where p, and p. are the roots of denominator of R(s). In particular,
introducing the normalized dimensionless time constants

Ti = atg, ’L o 1,2
we have for the roots
1 i
pi =t_1(a+ (=1)'b)

where
G = (‘1'2 + l)/2 g %
b2 = a2 — T .*

* The real or imaginary part of b is non-negative.
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The denominator of R(s) can be written in the form
§ + 288 + w
where
w,' = (a/t)
and £, the damping factor, is
E=(r+ 1)/24n = a/(a® = b

In this notation we obtain
r(t) = )lb [—(a—b—1)exp(—(a— b)i/t)

+ (a4 b—1)exp(—(a+ b)t/t)]
Because r(1) is a linear combination of exponentials, we can easily sum
the infinite series for p(¢,7'), obtaining
expl—(a — b)n')
1 — exp[—(a — b)7]

1
p(L,T) = p(a')m) = %[—(“ —h—1)

—atnm) ]
expl—(a n
h—
+ato—n ek e
where ' = ¢/t and 7 = T/t are dimensionless time variables.
To obtain v, using the results of (27) we must find
min p(7T,T")
T
or fh(‘ roots ()i.
o = @lam)
dn
Differentiating the expression for f(#,n) we obtain 7 # 0 and
sinh® (a — b)n/2 _ (a — - b —
sinh” (a /2 (a—b)la—b—1) (30)

simh? (a + b)n/2  (a+b)(a+b—1)
or n = . And upon using the addition formula for the hyperholic sine,
we have

tanh an/2 b tanh bn/2 9 ad + b0 —a

] == 2 31
tanh an/2 2aq — 1 ¢ (31)

% tanh by/2

which defines ¢, or 5 = =.
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Use of the quadratic formula gives
:thﬂ/.& =c¢ 4+ \/(:2 — = cl(a’b) (32)
3 tanh by/2

or n = o.* In special cases considered it was found that the minimum
of 5(n,n) occurs at the first positive zero of its derivative (or at n = = ).
5.2 Critical Damping

From (31) we see that as b approaches zero (damping factor equals
one),

tanh an/2 ala — 1) .
=2 = ala0), if a>1
/2 2a — 1 il (33)

n=o, if }<a<]l.

Thusy, = 1forb=0and § <a < 1.

5.3 No Filter and RC Filter
The filter parameters satisfy
0=mn=En
which upon conversion to the @ and b parameters become
(=1 zb
and

a

(%
B

Equality holds in the first case, when B, = 0 or C = 0 (i.e., there is no
filter) and in the second case, when I, = 0, (i.e., a simple RC filter.)
For no filter,a + b — 1 = 0ora — b — 1 = 0, and referring to (30)
we have only 7 = . Thus min p(7,7) = Oand v, = L.
IFor the RC filter B: = 0, a = %, we obtain from (30) n # 0 and
sinhby = Qoryp = «. If bisreal, » = « and vy, = 1. If b is imaginary

ﬂ:m‘ﬂ'/b m=1,2,“‘

* If the negative sign were used in the quadratic formula then » would be nega-
tive (complex) when b was imaginary (real).
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and we easily find that p(mwx/bmr/b) is minimum at m = 1, giving
finally

-4
tanh E (1'1 - i) if T >

]. i.f T1

(34)

Yr

A
-

The results of these special cases are graphically summarized in Fig.
6. (Also see Fig. 13 of Byrne, Ref. 4.) In the shaded area of Fig. 6 the
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Fig. 6 — In part (a) the parameters a and b are restricted to lie below and/or
to the right of the polygonal curve. The heavy lines and the shaded area give
values of a and b for which the relative pull-in is unity. In part (b) the same in-
formation is given for the normalized time constants =, and 7. .
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relative pull-in is unity. This follows from the fact that the left-hand
side of (31) is bounded below by 2b* while
2 —2b=2(a—b—1)(a —b)/(2a — 1)

is negative in that region. Hence in (31) we must have o = o,

5.4 Computational Procedures

Except in the special cases of no filter (R, = 0) and the RC filter
(Rs = 0), there is no simple way of computing the relative pull-in. We
must solve (32) by an iterative procedure and substitute the result into
the equation for p(q,n). If 5 is the solution of (32) or (33) we have a
simpler equation for v, , namely

v» = [1 — D sech® an/2]/tanh an/2
where

_ (a - e — 0

D P (b= 0)

and
D=(a—-3%)/a (b=0),
An upper bound for 5 is obtained from (32) and (33). Using the fact
that tanh x < 1, we obtain

[2(tanh " b/e)) /b (b # 0)

\2/e: (b =0) (35)

A lower bound for 5 in the case b is real is obtained by using the in-
equalities

z — 33/3 < tanh z £ 2.
Using this in the equation for n we have

tanh bn/2

} Cl(a,b) b é cm/?

c1(a0)n/2

a—=c :1'
2(3 , 1) < 1.
a

* The left-hand side of (31) is of the form &(z 4+ 1/z). For x positive this is
bounded below by 2b.

an/2 — (an/2)’/3 < tanh an/2 =

giving the lower bound
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We note here for future reference that if b is imaginary, b = b’ then
(35) implies the inequality

0L < (36)

5.5 Discontinuity Point Condition for the Lag Filter
To prove that this condition is satisfied, it suffices to show that

%#0 for 0 <t <T. (37)

IFor, since we may suppose
y(T) = 1,
it follows that if

y(t')y =1 (0 <t <)

then Rolle’s theorem tells us that there exists a t” with ¢ < " < 7T
such that ¥'(¢”) = 0. This contradicts (37). It suffices also to prove
(37) for that T which minimizes p(7T,T').

Recall that we are assuming we have a lag filter and that & = 1 in
(21) (experimental hypothesis). Assuming (37) false, we obtain from
(29) after some caleulation

P—(ﬂHﬂlu'f? 1 — ()—(U‘Hﬂﬂﬂ

(38)

p—(a—bly'/2 T = e—ta—biw2

where » minimizes p(u,u). Note that 0 < o < n.

Case 1, b real. Then a > b and
—(a+b)y' /2
e (]—F;n'
(,—(a—b)n',‘E

—by

> e
P—(ﬂ+b?v|12
e_—(a—bh"‘ﬂ
1 — e—(u+blm’2 *
l — ef(u—bln,"!'

Hence (38) is false.

*HOo<x<y<l1,thenz/y>rxr—1/y — 1, for —x > —y implies ry — x >
ry — y; hence in factoring and dividing we obtain the desired inequality.
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Case 2, b imaginary. Let b = 0, then (38) becomes
—V'n'/2 + mxr = arg(e “T 1), (39)

Now the real part of ¢ “**’"* — 1 is negative and the imaginary part

is negative (since by (36), 0 < b'9/2 < =/2). Hence the right-hand
side is an angle in the third quadrant. But the left-hand side is an angle
which can only be in the second or fourth quadrant, since

0<by <bp<m

Hence (39) is false, proving the discontinuity point condition.

5.6 Small-Signal Properties of the Loop

In this section we give formulae for design parameters of the loop
when we are operating on the linear portion of the phase comparator.
Then the closed loop transfer function Y is

c{(tzs + 1)
S+ (ale + 1)s + a

Restricting our attention to real frequencies and normalizing the fre-
quency w by

Y(s) =

Q= w/a
and recalling that
7 = aly, T2 = aly
we obtain
e 4+ 1

YOI = e s a e

With the phase shift

(1 4+ rr25)Q
(0 — 1) + n(1 + r)22
0 if denominator positive *
= if denominator negative’

@ = —arctan

Important parameters for design are the maximum gain and the
frequency and phase shift at which it oecurs and the range of frequencies
for which the gain exceeds one. Differentiating | ¥(2) |* and solving for
its zero gives

* The arctan is an angle in the first or fourth quadrant.
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I(2T1 - 1)/21’12 if T2 = 0, T1
Qoo = UL+ (2(r — 1) — D’/ = 1) /n° if
0 if Ty, — T2 é

Solving | Y(Q) |* = 1 gives

1\%
[

o
|
-
">
v
B

[

where

v
bl

]f T — T2

IIA
e

0 lf T1L — T2
We also have the interesting inequality
\/§ 9max g 91

with equality when 7, = 0. The cases 72 = 0 and r, — 7, £ § are im-
mediate. The case 1, — 2 = } gives

an12 = {[] + 1'22912]i - 1}/722

o
[]. + 722912]% + 1

2
<

=2

proving the result in this case.
We wish to emphasize that the maximum gain is unity if and only if
1 — 72 < 4. Peak gain = constant contours are given in Fig. 8 of Ref. 4.
The 3 db point occurs at @ = Qi where

|Y(e =13
from which we obtain
Q' = B+ (B + )
where
B=(r'+2(n—mn)—1)/2n"
The noise bandwidth N is defined by

N = f | Y () I do.
0
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It can be evaluated in various ways, for example see Ref. 10. One obtains
N = ma(l + 72°/m)/2(m + 1).

In the no-filter case (72 = 7, = 0) and RC case (72 = R: = 0) we have
N = ma/2. N = constant contours are given in Ref. 4, Fig. 7.

As discussed in the introduction, the figure of merit was chosen to be
the ratio N /v, . N/v, = constant contours are given in Ref. 4, Fig. 15.

VI. ASYMPTOTIC RESULTS

In this section we obtain the asymptotic results stated in the introdue-
tion. Since the derivations are tedious, the results are first summarized.

From computer data, the contour curves of relative pull-in vy, =
constant with ordinate and abseissa the normalized time constants

1 — Of(R-l + Rz)c
Ty = QRQC

seem to be asymptotic to straight lines for large values of the normalized
parameters. (See Ilig. 13 in Ref. 4.) This observation led to the con-
jecture that for fixed v, and large 7,

T1 = K(Tg + 1)
In Appendix C we prove this and show that
I/K =1 — (L/vy — '7'.::')2(t"'-‘v"hil ‘Yp);'-

With respect to the figure of merit (see I'ig. 15 in Ref. 4), the following
very important results are derived in Appendix B for the lag filter. Sup-
pose the peak small-signal phase gain ¥ of the loop is restricted to be
unity (it is always unity at de). Then the maximum merit obtainable
for filters giving the unity peak loop gain is 2.27. If, however, we permit
a fixed peak gain greater than unity, we can have an arbitrarily large
merit figure. This usually results in very poor transient response. More
precisely, the following results are derived in Appendix B. Let us con-
sider those lag filters for which the peak small-signal (phase) gain is
fixed at ¥. Define M by

M=1-7V"

Then for a filter with normalized time constants =, and 7, and normalized
frequency @ = w/e, for which the loop has peak gain '} occurring at
frequency Qma.x , we have
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Qmaxg = ﬂ_[/T]_
and
n = (M7 4+ 2r + 1)/2(1 + M).

Asymptotically for 7., large we obtain for the noise bandwidth (with
a=(r.+1)/2)

N/ra = (1 20 =20 if”)/m +0(a

and for the relative pull-in range

G2 VM =L g

Yo = @ \_/_:'?; M

2 ‘r->+1§ .
= — - 0 T2/T1)%).
\/ﬁ( )+ 0

Thus the noise bandwidth decreases as a”' while the relative pull-in
1 . 1
decreases as a . Hence the figure of merit increase as a’.
The derivations of the preceding results are given in Appendices B
and C.

APPENDIX A

Realizability of Steady-State Solutions

Reeall that (assuming d = 2)

k—1 o

w
=9 oS A et =T —
y(t) “H(0) !_E:l A 'len?(t T, — aT) (40)
where [see (13)]
A wﬂl
r, = al>x) = df‘[(O) .

Since we assume y(¢) satisfies the discontinuity point condition

Wi

afH(0)

k—1
=1+2> Ap(T — T, 7).
i=0

Break the loop at the output of the phase comparator, inject y(i)

* Two funetions f(x) and g(r) satisfy f(x) = 0(g(x)) if and only if | f(z)/g(x) | =
constant < = for x sufficiently large.
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into the filter, and let the input phase be wnt + 2, — ¢ (where ¢ is
defined below). The phase output of the oscillator is given by

dtpn(ﬁ)
e f y(Uh(t — ') dt’

and upon intogra.ting once and substituting (40),

e(t) =

f Rt A" dt’

ZA Z f fn ar(t’ — T — aT)R( — ") dt” dt'.

i=0

By taking the Laplace transform of the double integral in the summa-
tion and by using the relations in (10) and (11), we find

alt) = g ff W'Y de” i’

—QZA IZ (t —T; —nT)—Z (t—Tl-—nT)}.

n=0

Now the remaining double integral is the integral of the step response
of the filter and for large ¢ is of the form H(0)¢ + ¢. Using this and the
definition of y(¢), we obtain for large ¢

k—1 0
eoll) ~wul +¢—2 2 A; 2 ult — Ti — aT) — y(b) + 22
i=0 n=0
Now using the discontinuity point condition and the representation of
the comparator in (7) we find the comparator output is asymptotically
y(t). Hence in steady state we may close the circuit without any dis-
turbance.

APPENDIX B
Figure of Merit for Constant Peal Gain and Large Time Constants (Lag
Filter)

From Section 5.6 we have for the closed loop small-signal (phase)
gain
72292 + ].

T+ (1 — @)t (1)

| Y() [
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Differentiating with respect to © and equating the result to zero gives
T12T22Q?nux + 21'1293“,( - [2(1’1 —_ T2) - 1] = 0 (-—12)

We can also represent the square of peak gain V* as the ratio of the
derivatives of the numerator and denominator of (41) evaluated at
anx '*

2

}“;2 - T2
(TE + 1)2 - 271(1 - 719121111:()

2
T2

N T‘l‘z - [2(1'1 - 1'2) - 1] + 2712931151 l

This, after using (42), gives

7= f}r?ﬂ:ﬂ— (43)
Defining M = 0 by
M =1-7Y7
we have
0<M<I1, since 1Y < o,
Also (43) gives
71 Qmax = M. (44)

Substitute (44) into (42) and solve for 7, . Then
no= (M7 4+ 20+ 1)/2(1 — M).

Using this result in the formula for the noise bandwidth (Section 5.6),
we have for Y constant and 7. large (and hence @ = (72 + 1)/2 is
large)

_ T 2(1 — M) s _
We now turn to the problem of obtaining asymptotic expressions for
the relative pull-in range for Y fixed and greater than unity.
We can rewrite the expression for r, as
2M M+ 1
= 1 I — .
1 1_MG+2( + M)a 5

* If f(z) = p(x)/q(x), then f'(xs) = 0implies f(z,) = p’(xo)/q' (x0). One obtains
this result by logarithmie differentiation of f(z).

(46)
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Using the definition b* = a* — 7,, (46) and the bhinomial expansion,
we have for large a

b, 2 \'/, 1-M1 2
b2 (- o)

if M 5 }and
V' = —3(a— 1) (48)

it M = %. In the following we suppose M # 1. Recall (31) that to find
the relative pull-in we need the root of

, tanh byn/2
tanh an/2 = ¢ 77"/

b
where
e =c¢+ (32 - bz)%
and )
c= (a4 b —a)/(2a —1).
Hence
¢c=(2a"—a—rm)/(2a — 1)
= all —n/a(2a = D] =a (49)
B M -t
c = al:l — I —ﬂ[+0(ﬂ‘ ):I.
Also
2
&= = (a 2) —(a* — 1)
T2
R (50)
- 0-2)
T2 T1
giving

Finally
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o= (a - 7"-') + (" = )}
T2

o =a [1 — "la + O(CL—?):I.

Setting z = an/2, we have

tanh z = ' tanh Qz
b a

629

(52)

We will show that for large a, z is small and then obtain an approximation
to z by using a power series expansion for tanh z. I%irst note that the

derivative at zero of the right-hand side of (52) is

cr _ 1 —2

which approaches 1 from below for large a. Also

6 _a -1
5= Fow
o, 2\ .

Hence | ¢;/b | is bounded away from 1 (and greater than 1).

A sketch of the eurves of the two sides of (52) with the above two

facts shows that

limz = 0.

a—»w

Using power series expansions in (52) we obtain for large a

,_2_a ( (‘3) 1 (’_’)3)
T3 b\ \a 37 \a

or
¢ =3 llr- cl(l;:/aaa
1 + 0(a™)
=3 2?32
Tt 0(a™)
L (30— ) a4 o).

2M

(53)
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From Section 5.4 the relative pull-in is

Yo = ii— D tanh (Lﬂ)

tanh (a—;) 2

where
D= ((a— e —b)/(e' = b*).
Then
(et —a+1)
1 — =
D Cc1 — b2/61
and
1—D = a—a+tl (54)
2¢

since

o + b'/en = 2e.
Using (49) and (51) we have

1— M I ]

We now obtain the asymptotic formula for v, by substitution into
the formula for v, the approximations for D, 1 — D and the approxima-
tion tanh (an/2) ~ an/2 = z with z approximated as in (53).

2(1 — M)}

Yo = 3z]f a + 0(a™?)

5 (56)
= % ((m + 1)/71); + 0(r 7).

APPENDIX C

Relative Pull-in (Lag Filter, Large 11 and 12)
Assuming that for a large a
mn = 2Ka+ L+ 0(a™) (57)
we obtain from the definition

2
b =a2—1-1
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that
B L+ K " :r
Expanding the square root we obtain
_ . 1 L+ K - ] -
b= (a—K) [1 S o) (58)
and
b - Ko@), (59)
a a
From (57) since
a = (Tz + 1)/2
we have
no g+ R o (60)
T2 T2

From (50) we have

(-
T2 T2

and by using (60) we have

e 2 _ (mt (L+ K)(2K —1) 1
¢ =1 = (K K)[l-l— RE =T m

+ 0(72'2)] .

Using the binomial expansion

1(L+K)(2K -1 1
§ KZ"'K T2

(¢ —v®) = (K' — K)} [1 + + 0(72‘2)]. (61)

From (49)

T1

T2
and using (60), we obtain

L+ K

T2

c=a— K — + 0(r %), (62)

Then
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o =c+ (¢ — )

o ; B (63)
= (a— K) + (K= K)" 4+ 0(~ ).
Finally from (58) and (63)
a _af(a — K)
b b/(a — K) )
— 14 BB gy

Letting z = an/2, (31) becomes
tanhz = [1 + (K* — K)/a 4+ 0(a )] tanh (1 — K/a + 0(a" )z (65)
Using the addition formula for tanh (A + B)z and simplifying, we have
tanh’s tanh (K/a + 0(a *))z — [(K* — K)'/a + 0(a *)] tanh z
+ [l + (K* = K)Ya + 0(a™®)] tanh (K/a + 0(a™*))z = 0.
We show that z/a approaches zero with a and use this to simplify (66).
From (35)
<2 tanh ' [1 + (K* — K)}/a + 0(a™?)]
1 — K/a+ 0(a?)

66)

2a -1
n (M + 1+ 0(a ))
- 1 — K/a+ 0(a™?) ’

Since
lim In w/u = 0
u—>oa
we have
lim z/a = 0.
a-—+o0

Returning to (66), we now have asymptotically

tanh® z + (K _ 1). tanh z _ 1 =0.
K z
Solving for K we obtain
2
/K =1 — [— — tanh z | 2% (67)
tanh z
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Now the relative pull-in given in Section 5.4 is

1 -

tanh 2 + D tanh z

Yr =

and we easily show that [using (54)]

_Cl—a+1
l=D==———

_(K*—K'—-—K+1+0@)

- a — K + 0(a™)

= 0(a").

Henee asymptotically for fixed z,

, = tanh z + 0(a'). (68)

Thus for given relative pull-in, the above gives us z and tanh z, and

then (67) gives K from which (57) gives for large 7,

= K(m+1). (69)
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