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A variational formulation for deriving bounds on the capture (pull-out)
range of phase-controlled oscillators is developed. This lechnique is applied
to the more common types of systems, viz., those involving symmelric com-
parators and simple lag-RC filters. Exact asymptotic caplure expressions
relating to the simple RC filters with small bandwidth are oblained.

I. INTRODUCTION

The synchronization behavior of phase-controlled oscillators has been
for many years the subject of extensive analytic studies. Although yield-
ing significant and experimentally consistent results, these studies have
been based primarily on laborious graphieal procedures and linearizing
approximations. In this paper we discuss and apply a variational formu-
lation with which to analyze the synchronization phenomena of phase-
controlled systems more directly and somewhat more generally.

The phase-controlled oscillator is represented by the block diagram
of Fig. 1(a). The basic function of such a system is to establish and main-
tain, within certain limits, an approximately zero difference in frequency
between the input and local carriers;i.e., the local oscillator is constrained
so as to follow variations in the frequency of the input carrier. As indi-
cated, this control is effected by applying the two carriers to a phase
comparator and linear filter in cascade, and utilizing the resultant output
to appropriately control the frequency of the local oscillator, The com-
parator output in most cases is a simple function of the phase difference
@i — @ between the carriers, the type of function depending to a large
extent on the particular physical operation by which the phase difference
is measured. For example, if the frequency spectrum of ¢; — ¢, is base-
band, then multiplying the two carriers and filtering out the resultant
high-frequency component yield an output which approximates that of
anideal “cosine” comparator, viz., f(¢: — @) ~ cos(¢: — ¢,). Ingeneral,
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Fig. 1 — (a) Block diagram of the phase-controlled oscillator; (b) RC and lag
filters.

f(@: — @) is not a baseband function; however, the filter depicted in Fig.
1(a) is usually a low-pass lag or RC type, serving to eliminate any high-
frequency deviations in the control branch.

As applied here, the term synchronization relates to the difference in
frequency between the input and output carriers; specifically, we consider
the system to be in a synchronous state provided this frequency differ-
ence is either identically or asymptotically zero, i.e.,

(de:;/dt) — (dgo/dt) =0 or — 0 (l— =).

Despite the fact that these conditions are realized in special cases only,
near-synchronous states are readily established by most practical sys-
tems. Whether an exact, near, or nonsynchronous state prevails in a given
situation depends largely on the particular form of input de;/dt and the
related initial conditions. If completely general, the analysis of such
phenomena necessarily involves both arbitrary inputs and arbitrary
initial conditions. Owing to the intractable nonlinear formulation en-
countered, however, a broad treatment of synchronization does not ap-
pear possible at present except for trivial systems.

To establish effective criteria for evaluating system performance yet
obviate the mathematical difficulties associated with a more detailed
analysis, we consider special classes of input functions that in cases of
interest characterize actual inputs and lead to exact or approximate solu-
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tions. The most acceptable as well as convenient input is perhaps the
step function, a single “jump” in frequency of magnitude Ci(t = 0),
normally applied with the phase difference initially zero and the system
initially in a synchronous state. Such functions represent the more ex-
treme or sudden type of input deviation, and yield in the simple lag-RC
filter cases (cf. Fig. 1(b)) autonomous formulations to which phase
plane descriptions and techniques are applicable. We often find it possi-
ble to consider inputs with less restrictive initial conditions, namely those
satisfying the asymptotic relation

(dei/dt) — (w.) — C> = const ({ — =),

(Here, w, represents the “free-running” frequency of the local oscillator
and (; , an asymptotic frequency jump.*) The maximum positive values
of ('; and (; for which the related funections restore the system to a
synchronous state are defined as the positive “pull-out” (capture) and
“pull-in” ranges, respectively. As measures of performance, these defini-
tions have been used extensively, especially in cases involving sine com-
parators and lag-RC filters.

One essential purpose of this paper is to formulate a variational pro-
cedure whereby one can obtain analytically bounds on the eapture range.
The method applies specifically to the second order, autonomous, non-

linear equation,
d*x dx
er _ g &
= ()

which for ¥ ~ ¢; — ¢, describes phase-controlled systems with lag-RC
filters and step function inputs. Relative to the phase plane representa-
tion given in I'ig. 2, solution trajectories of the above equation for lag-
RC systems are of two principal types: a nonsynchronous form running
on indefinitely, and a synchronous or capture form satisfying the con-
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Fig. 2 — Phase plane representation of solution trajectories.

* See list of symbols, Appendix D.
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dition (de:/dt) — (de./dt) — 0. As discussed previously, the basic prob-
lem is determining values of C; for which only the latter form results.
To find these values by phase plane methods requires fairly accurate
graphical plots of a large number of solution trajectories. Of main con-
cern, however, is the relationship between C; and the resultant solution
type, not detailed knowledge of the trajectory. Utilizing this principle,
we show below that subintervals of C; can be identified as corresponding
to either capture or noncapture trajectories by means of “test” trajec-
tories, preseribed functions exhibiting the essential features of the actual
solutions. The more closely the test contours fit those of the solutions, the
more closely the derived subintervals bound the capture and noncapture
ranges. I'or obtaining optimal bounds, we normally construet a class of
appropriate test functions and vary over that class, the procedure simu-
lating to some extent that of linear vector-space theory where variational
formulations based on trial eigenfunctions furnish bounds on eigenvalues.
Although the development is restricted to the second-order, autonomous
equation given above, straightforward generalizations enable one to deal
with higher-order, nonautonomous equations.

In the treatment that follows, we consider first the mathematical for-
mulation of phase-controlled systems involving lag-RC filters, then the
variational formulation, and finally the application of the latter to sym-
metric comparator functions, 1. e,

fle) = —f(—€) (€= ¢i— @)
fle) = f(e+ 2m)
fleyz20 (02 e=m).

Regarding the symmetrie comparator and RC filter case, several results
are derived: (i) bounds on the capture range under general bandwidth
conditions; (#) exact asymptotic formulae for the capture range under
small and large bandwidth conditions; (47) the fact that for capture
solutions, the steady-state phase error lies in the interval

— 7 < e=mT.

With respect to sawtooth comparator functions, i. e.,

fle) = 25 fule — 2mn)

n=—00

e (le|l <)

fn(f) =
0 (el zm)
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we determine exact capture relations for RC filters and capture bounds
for lag filters.

II. GENERAL FORMULATION

As in previous investigations,!? the mathematical representation of
the phase-controlled system shown in Fig. 1 is based primarily on three
physical constraints:

(i) With regard to the control of the local oscillator, the instantaneous
frequency wi(t) of the local carrier consists of a constant, free-running
component w, which is independent of the control signal S(¢) applied to
the local oscillator, and a component which is directly proportional to
S(1); i. e,

d
w(l) = =7 = o, 4 aS(1). (1)
dt
In general, w, is chosen so as to lie within the frequency range of the in-
put signal. Accordingly, we represent the input as the sum of two fre-
quency components, w, and a time-dependent deviation Aw(t); viz,,

mm=%=%+mm (2)
(77) Regarding synchronism, it is required that the system exhibit a
“natural” synchronous state for which w:(f) = wi(t) = w.(¢ = 0) pro-
vided only €(0) = ¢:(0) — ¢,(0) = 0 and Aw(t) = 0 (¢ = 0). If, after
being initially established, this state is to persist indefinitely, then
S(t) = 0 (¢ = 0). The latter condition requires the comparator output
to vanish for zero error input and the linear filter to be initially inert.
More explicitly, it is stipulated that

S() =0 (e(t)=0, t=0) (3)

J(0) =0 (4)
(d_) < m = const < w. (5)
de/ =0

In addition, the usual supposition of physical realizability implies the
requisite

[fle)| Efmw=rconst < © (— o <e< ). (6)

(777) Relative to boundary conditions, we assume that with the system
initially in the synchronous state outlined in (4), there is applied at
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¢ = 0 an arbitrary Aw(t) depending only on the behavior to be analyzed:
«(07) =0, Aw(t) =0 (t<0). (7)
The constitutive conditions given by (1) through (7) yield

de

& _ solt) — [ HG = Dflolar (6200 ®)

where the filter impulse response H({), Aw(f), and f(e) are regarded as
generalized functions.’ For physically realizable filters and comparators,
the convolution in the last term of this expression is bounded in a neigh-
borhood of the point ¢ = 0; hence, provided Aw(¢) is bounded, de/dt be-
haves similarly in this neighborhood and

e(07) = €(0) = ¢(0") = 0. (9)

Considering specifically the lag filter for which

+C"1

and differentiating (8) with respect to t, one obtains

kdg _ 1( +_1_dAw)

mn_g{ﬂc+“ﬂ=gmw+wrwmmﬂu;O)um

-0’1 dt afm (151 dt (11)
dcC
— C(x) — kg + (1 — B)Rrg‘ﬁ (t > 0)
d(l: _ (51 ,
@ EQ’ (12)

where
1 1
a(t) = —e(t), Clz) = —f(mz)
™ f
— afm . 7'—-11 %
stz o= ()
One notes from (1), (8), and (10) that
|wo — we| = a| S(t)| = a| H¥| = afmf H(7)dr = afu.
1]

Thus, the local oscillator cannot establish synchronism, i.e., w; = wo, if
Aw(t) = w; — w. > afw (¢ = 0). Anticipating that Aw/af, = 1 in cases
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which involve synchronism, we define the relative deviation Q(¢) by the
relation

o) = 2o (13)
afu

Equations (11), (12) and (13) can be combined to give

dg la2 . = oy AC 4
Also, by (4), (8), (9), (11), and (12),

gt kofdey  Q(0) -
a0 =5 (5, = 5 (13)
x(07) = x(0) = x(07) = 0. (16)

To render the analysis of (14) to (16) tractable, we consider only
specific classes of @(1). These deviations, although restricted, are chosen
o that the associated synchronization behavior is representative of the
more general phenomena. Accordingly, we discuss the following two
classes:

(¢) As a characterization of sudden input changes, Q(¢) is assumed to
be a step function of magnitude £, causing either a temporary or perma-
nent loss of synchronism. The maximum value of £ for which the system
returns to a synchronous state is denoted by &, ; namely,

Er=suplE|E20; g(x) =0 (t— =) (17)
where
E (tz0)
Q(t) = .
0 (t<0)

Similarly, for negative values of £,
E=inf{E|E<0;  g(x) =0 (t— =)} (18)
We define the “relative” capture range £, by the relation
=& — . (19)

(71) As a generalization of the deviation type above, Q(¢) is assumed
initially arbitrary but asymptotically such that

Q(t) —» v = const (t — o).
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In a manner similar to that of (¢), we define the relative “pull-in” range
vp by the relation

Yo =T+ — V- (20)
where
yy=suplyly 20; glx) >02(t) —v (I — =)
yo =inf {y|v <0; g(x) = 09() =7 (t— =)}

Since this latter class contains the class of (7), v, serves as a lower bound
on & .

The capture and pull-in range as well as the steady-state phase error
are significant as measures of the effectiveness of the system to correct
for input deviations. This synchronizing capability is of prime impor-
tance; however, in the treatment here solutions x(t) are not of direct
interest.

III. PHASE PLANE REPRESENTATION

The phase plane is perhaps the most natural means of describing the
behavior of the phase-controlled system. As shown in Fig. 2, the solu-
tion trajectories in the (g,x) plane assume two essential forms: Those
approaching singular or critical points zp on the abscissa represent the
capture phenomenon; those running on indefinitely, the noncapture or
nonsynchronous state. The values of 2 are determined directly from
(11) and (12)."* For Q(¢) = £ (1 = 0),

Clx) = £ g(x) = 0. (21)
Similarly, for Q(t) —v (t — =),
Clx) =7, g(xw) =0 (t— =) (22)

Since in both of these instances | C(xo) | = 1, a necessary condition for
the presence of critical points and, consequently, capture and pull-in is
that

lel =1, [vl=L (23)

As regards the nature of these points, it is shown in Appendix A that xo
is either a stable or saddle point according as (dC/dx)., is positive or
negative. Borderline cases, e.g., those involving the condition

(dC/dx)s, = 0

and the coalescence of stable and saddle points, are not of physical
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interest as infinitesimal variations of the system parameters eliminate the
borderline properties. In the event that C'(2) is discontinuous, the above
criteria are applied to a regular sequence, i.e., a sequence {C,(2)},* of
continuous and differentiable functions for which

C.(x) = C(x) (n— =),

the desired conditions obtained in the limit.

IV, TEST TRAJECTORIES — A VARIATIONAL APPROACH

At this point we describe a method with which to obtain upper and
lower bounds on the relative capture range. With reference to the gener-
alized phase plane portrait of I'ig. 3, the capture and noncapture trajec-
tories are regarded as terminating on two different sets of points M and N,
respectively, and emanating from various regions of the initial state
domain D, e.g., Dy and Dy . Terminal points in N represent points at
infinity; those in M, critical points. Saddles are included in the latter
group because a trajectory which approaches such a point involves an
infinite amount of time and therefore satisfies capture conditions (17) to
(19). Stated in the most general manner, the basic problem to be treated
here is the determination of contours T'., namely, boundaries separating
regions in D from which either capture or noncapture trajectories origi-
nate. For @(¢) = & domain D becomes the g axis and contours T'. de-
generate to points.

As a technique for locating T'., we first construct “test trajectories,”
i.e., functions h(x), which run from D to a position somewhere between
sets M and N. The test paths are selected so that if the solution paths
are known to lie entirely on either side of the former, then the latter must
terminate on points in the terminal set lying on the same side. It is then

h(x)

L —

Fig. 3 — Generalized phase plane portrait.
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possible to show by means of comparison theorems that for certain re-
gions of the initial state domain positioned on one side of a test trajec-
tory, the corresponding solution trajectories are similarly positioned.
Consequently, the regions in D so determined are identified as either
capture or noncapture domains forming bounds on T’ .

To make the above procedure precise, we utilize the following compari-
son theorem: Let g(z(t)) be a trajectory branch satisfying the autono-
mous equation

dg
where I denotes a closed interval of z(z, £ * < ) and J, a branch

interval of ¢ defined by the inverse function ¢ = t(x) (z & I). If for a
test trajectory h(zx),

= F(zg) (vel,teld)

h () Peh) (el
da
h(z.) = (2) glaa) (24)
h(x),g(x),t(x) e C (xel, teld)
then
hz) < (>)glr), @<z =. (25)

A brief proof of (24) and (25) is outlined in Appendix B. Although nor-
mally restricted to continuous functions, this theorem ean be applied to
generalized functions through the related regular sequences.

With g(x,) positioned in the initial state domain and the test tra-
jectory constructed as a family of functions involving parameters
M, -5 Aa, ie, A(2\), the inequalities of (24) can usually be reduced
to the form

g(xa) > (<) G(a\) (26)

where the inequalities are sometimes reversed. Since the  function is
known, there are obtained from (26) regions of domain D for which the
resulting trajectories lie either above or below those of the test functions;
if in the sense described above, sets M and N are isolated by h(a)\).
then these regions constitute portions of the capture and noncapture
domains to be determined. The optimal bounds on g(z,) for the given
family k(x,\) are derived by extremalizing G with respect to x and \:

> gy = inf-sup G(z\)
A z

g(xa) (27)

< gL

sup-inf G'(x,\)
l A F
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The quality of these bounds depends on that of the test function in that
the closer g(x) is approximated by h(x), the better the contours T, are
delmeated Unlike the functions assomated with Liapounoff’s second
method,"® h(x) is related dir ectly to whatever properties of the actual
trajectory are known and is constructed so as to conform as closely as
necessary to these properties.

V. GENERAL SYMMETRIC COMPARATOR — RC FILTER

In this section we apply the method of test trajectories to phase-con-
trolled systems employing RC filters and symmetric comparators, viz.,
those defined by the relations

Clx) = C(x+2n) (n=0,=*I1, ---)) (28)

C(x) = =C(—x) (29)

Clx)z0 (0=r=1) (30)

where in accordance with (3) to (5) and (6)

c0)=20 (31)

C(z) €1 0=z 1), (32)

For the RC filter oy — © (B8 = 1) in (14); therefore,

R (33)

5.1 Relative Capture Range
With (1) = & (33) reduces to

g__g_w—cun F(zg). (34)

It is noted in this expression that trajectories corresponding to inputs £
and —§¢ are symmetric about the origin of the phase plane in that the
respective solutions ge(x) and g_:(r) are related by

ge(v) = —g e —2).

Consequently, both solutions exhibit the same capture characteristics,

and

or
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As a result, only positive input deviations need be considered. Referring
to (15), one obtains for the initial state line

g(0) = % > 0. (37)

In order to establish erude noneapture intervals on this line, we employ
the following test function:

h(x) = i wmx —2n) (0 =2 < =) (38)
where
z i
%[1 —%fu C(z)dz] (—1<a<1)

1)

w(x)
0 (] 2|

ful C(z) dz.

The functional form chosen for ki (x), as well as most of those to follow,
serves two basic aims:

(7) In addition to having the general appearance of a noncapture
trajectory, hi(x) isolates the set of critical points on the x axis from the
region above the test trajectory; i.e., solution trajectories which lie
above hy(x) are bounded away from the x axis (cf. Section IV).

(i) With respect to factor m(z), a(x) relates closely to the algebraic
structure of (34).

We first verify property (7). By (28) to (32),

v

p

p = supf C(z) dz.
x 0

Thus

1 I

—f Clz)dz =1

o
and

m(z) 20
whence
h(x) 20 (0 =z = =). (39)

The comparison theorem applied to (34), (38) and (39) insures that
0 = hy(a) <glx) (x&>0)
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for all values of £ satisfying the inequalities

£§> C(L) + kb + M %
2 (40)
= (1= ) € + Bu@ = G (02 0)
2pk?
m(0) <(0) = £ (41)

Since C(0) = 0, condition (41) is contained mplicitly in (40), the
latter expression corresponding to that of (26).

Functions g(z) as trajectories bounded away from the z axis con-
stitute noncapture solutions; hence, any ¢ interval consistent with (40)
is a noncapture interval. For obtaining rough limits, we set \* = 2pk*,
Inequality (40) then becomes

£> kly(z) (xzz0).

Therefore, as indicated by (27) and (35), all values of ¢ which satisfy
the relation

£ > & = sup khy(x) = sup k() = k(2p)* (42)
rz0 S

lie in the noneapture interval with the extremes +§ and —§ represent-
ing exterior bounds on the capture range. Although directly significant,
these limits are derived primarily to provide essential information in
more general calculations.

For a refined treatment we construct a more complex test function
ha(x): Let go(x) denote the separatrix solution which runs from the
initial point (gy(0), 0) through the last saddle in the interval nearest
to the point x = 1, and let & denote the related input deviation. We
then define

ha(x) = D mo(x — 2n) (0= < =) (43)
n=0
where
[wm(z) (» = hy,—1=a<0)

ju.g(a:) = 4 go() (0 =

0 (-’Uu§il'§ 1)

A
=
[IA

In addition to assuming the existence and uniqueness of go(x), we sup-
pose further that go(x) 2 0 (0 £ & £ ay), for if go(x) = k/oy dx/dt < 0,
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then x(t) decreases as time increases, and the trajectory is depicted
receding from the point ao in opposition to the definition of go(z); thus,

m(z) 20 (-1=xz=1)

and
ho(z) 20 (0 a2 < =), (44)

Also,
ma(0) = go(0) = £. (45)

Therefore, we have the same sufficient requirements for noncapture
values of £ as those of (40) and (41):

dh;

g < Clx) + khe + h-g—(ﬂ: = G(a,he) (46)
1(0) = & = 9(0) = ¢ (47)
To determine sup G(2,hs), we first derive several conditions relative

=0
to a0, £, and go. With the selection of go as a proper solution, (34),
(46) and (47) combine to yield

Gle,g) = &8 (0 20 = a). (48)
We next let @, represent the greatest critical point value in the interval
1 < & = 1;viz,

tm = sup x| C(2:) = & ; < a; = 1.

Inasmuch as 2, is required by definition to be the only saddle in the
interval @ < < 1, 2, must be a stable point; then, (dC/dx).,, > 0,

as discussed in Section III, with the result that C'(x) > C(xn) for
tm = 2 < 1. However, since C'(x) as an odd function satisfying
C(1) = 3{C(1") + C(17)} = C(0) =0
must either approach zero or jump discontinuously to zero as x — 1.
T, cannot exist; hence,
Clx) # fo(m < = 1), C(x) = &

(), <o

dz /=,

and
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These conditions imply that
Clx) = Claxy) (m=x=1)
whence

sup G(x,0) = sup C(z) = C(xy) = & . (49)

rErsl

In addition, it is noted that because of the infinite amount of time for
the gy trajectory to reach the saddle point, & lies within the capture
range and outside that defined by inequality (42);1i. e.,

b=hH = }9(29)*-

Consequently,

sup G(au) = sup ,:(1 — )E-—) C(z) + l.p.(a):|
—1<2<0 2p

= sup [ku(x)] (50)

= &.
As a result of (48), (49) and (50), the noncapture range is given by
£ > sup G(ahy) = I:»‘ll<pl G(xu) = & (51)

That values of £ less than & are in the capture range is shown by re-
versing the inequalities in (46) and (47) and invoking topological prop-
erties of the phase plane portrait: Values of £for which

E < G(.l'-,go) = Eu (0 é T é .I'g]) (52)
correspond to solutions g(x) which satisfy the relation
gla) < gola) (53)

a condition indicating that for such # the associated solution trajectories
either terminate on stable nodes or cross the x axis at a point @ = £ <
xy and proceed in the —x direction. As shown by the phase portrait of
Fig. 4, the crossover point € in the latter case must be located so that a
saddle S lies just to the right and a focus F just to the left, for the
trajectory would otherwise intersect either itself or a separatrix of S.
Using the same argument proves that g(z) must in addition spiral in
toward F. Consequently, (52) is a capture condition and 4§, are exact
exterior bounds on the capture range. By (23) and (36)

fo=25 <2 (54)
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T° A G :
: \/\

Tig. 4 — Phase portrait of trajectories.

or
Eh=h =1 (55)

Two significant results have so far been obtained:

(¢) The possibility of the system’s reaching a synchronous state in a
region outside the first domain does not exist; i.e., the steady state phase
error &,, must be such that

x,.,,e{mg = C(); (%) >0, 0= = 1}. (56)

(#) The determination of the capture range depends solely on that
of the separatrix solution go(x).

Among the set of stable points in (56) the appropriate x;, namely,
the exact value of z., , can be found by the application of the above pro-
cedure to each separatrix spanning the intervals 0 < ¢/k < &/k and
0 < z < xo0n the initial state line and x axis, respectively. For example,
the first stable point x; = inf {x;} is isolated by the separatrix which
connects the points £/k and

&= inf{;t:,-lé’ = C(x;); (gf) < 0 0= = xu},
v /s

in that the solutions for all £ < (¢ > 0) lie below this separatrix and
%s = 1. Each a; can be handled in this manner.

In general, go cannot be determined exactly; however, as regards
specific comparators, graphical methods are found to yield results as
accurate as one desires because of the relatively small distance traversed
by the associated trajectory. The use of such graphical approximations
for obtaining the capture range is prevalent in the literature in advance
of any formal justification. Tt is important to point out that even for
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the RC filter case, interior and exterior bounds are sometimes more
convenient and useful than the graphical solutions.

5.2 Asymptotic Resulls for Small and Large k

It is possible in the case of vanishing k to derive explicit relations for
both the capture range and go(x). We first consider an exterior bound
formulation based on the test funection

ha(x) = 20 mslx — 2n) (2 2 0) (57)
n=()
where
[Zp -2 C(2) dz], (-1 =2z =2
ps(x) = 0
0 (Jx| 20).
Note that
#3(]) =0

w(e) >0 (-1 <x<1)
h;;(.!') g 0 (.I' 2 0)
hs(0) = (‘-}-'P)%

in accordance with noncapture criteria (cf. (40) et seq.). Hence, as in
(40), (41) and (42), exterior bounds =+£ are given by the expression

£> & = sup G(rhy) = sup G(au)

xz0 2/ <1
x 3 '_
= sup [2,0/'\'2 - 2.’\‘2'[ C(z)d.z:l (58)
lr[=1 0
= k(2p)

which is consistent with the initial condition of (41); viz.,

hs(0) = (2p) < g(0) =

= o

To treat the interior bound calculation, we use

IIA
IA

hz z ]
hy(x) = I:F + 2\ — Qf C(z) dz] (0= (59)
= 0
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where
ha(E) =
hi(x) >0 (0=x<T=21)

and \ equals the largest positive value for which the quantity in the
above brackets has one zero in z in the interval 0 £ « < 1. Such a value

must exist since f ((z)dz (x £ x = 1) is monotonic increasing. In

addition, for this zero condition to hold independently of &, A — k(2p)"
and & — 1 as k — 0; thus,

o o[-z [ cow] 0sisa @)

Test function hy(x) is seen to satisfy the same requirements as those
discussed in connection with (52) through (55). Accordingly, interior
bounds =& are given by the relation

2 x 3
£ < & = inf G(x,hy) = inf {)\ + & |i)\ + 2\v — 2[ C(z) (iz]}

T <T 0 (61)
=A—k(2p) = &

k-0
which is also consistent with the initial condition

= g(0) = g

hq(O) ’\

= >

Inasmuch as & < £, < B and & — E(k — 0), the results of (58), (60),
and (61) yield

k(2p)* (k —0)

l\me

Er =5

N | (62)
qolx) ~ |:2,o -2 fo C(z) rlz:l (k —0)

where
1
=f C(z) dz.
0

Therefore, the choice of asymptotically equal test functions results in
coalescent bounds.
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In considering large values of k, we take
hi(z) =3¢ +N—2 (0=2x=2+A<1) (63)
where
0=Clx)<1l (D=2z<t=1)
Cg+r) —1

A0

>0 E+A>0

and A 2 0 according as (dC'/dx): 2 0. Clearly, A is employed only in
the event that C'(x) has a discontinuity at + = #. Since the values of
£ specified by

dha

E < G('l hﬁ) = hﬁ "‘}“ 2»11,35 + C(T)

also satisfy the basie initial criterion

kg(0) = £ < G(Os(0)) = —(& 4+ N) + khs(0) = khs(0)

interior bounds £ are given by

E< g = inf (r(! i) = inf [(F — 1)(2 + X —a) + C(x)]. (64)

r <t
Employing the limits
G(ahs) > = (v <&+ N)
ks

G+ N), hs(2 + N)] = C(2 + A)
yields
LimLimé& =LimC(E4+N) =0C(3) =1=Z &,

A0 ko= A0

However, according to (23), £, < 1; therefore,

] (65)

One can show in a similar manner that if the system captures for a
given £ and k, a capture condition results for all smaller values of k.
Consequently, the relative capture as a function of £~ assumes the
general form depicted in Iig. 5 with the asymptotic behavior given by
(62) and (65).
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I 2

0

K-Z -

Fig. 5 — General form of relative capture as a function of k72

VI. SAWTOOTH COMPARATOR — RC FILTER

Directly related to the formulation and results of Section V' is the RC
filter-sawtooth comparator system in which

Clx) = i Oz —2n) (—w < < »)

{:c(—l <x <)
Cu{;l;)z
0lz]z1

fo=m k= (2) g=1.
03

The relatively simple form assumed by C(x) in the first domain en-
ables one to derive exact expressions for both go(x) and & . It is shown
in Appendix C (cf. (99)) that

A - = (k< 2)
, —1 7T¢
=& = E_f _Jlk+exp |:'r—u (tzm T w)] (67)

1 (k= 2)

(66)

where 7> = (4 — k) and 0 < tan ' () < x/2. For small k, (67) can

be expressed as
2F = 2 c .Ul 3
Eo~ 2k = 2 1/; (I., == 0) (68)

which checks with (62). In addition, from (20 et seq.)
Yo = &. (69)

An exact derivation of v, valid for the sawtooth and general filter case
has been obtained by A. J. Goldstein."
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As regards steady state phase error, relations (21) and (56) give

fa = ) oz = 5. (70)

VII. SAWTOOTH COMPARATOR — LAG FILTER

The capture results as developed in Section V do not apply com-
pletely to the lag filter; however, the calculation of exterior and in-
terior bounds in this case follows closely that of (40), (41) and (52).
For Q(¢) = & B > 1, and C(x) specified by (66), (14) reduces to

dg

= C(x) + Bkg + g 5~ — 2(8 — Dk s — (2n + 1)
= C@) + By + g 2 o Tole =+ 0l
= Gl(wlg)
where
)
. o
and
B=1+2.
)

Using test funetion hy() of (38) yields the following noncapture values
of £ (cf. (40)):

£> Gi(ah)(x 2 0)

where, as required, kg(0) = & > kBM(0) > kh(0). Hence, exterior
bounds £, are given by

fr' = sup G](.l',hl_) = sup G[(.IT,_I.I.I)

z=0A20 Z|£1A20
%‘."f (4 — 81 (Bk < /2) (72)

1 (B = 4/2).

Using separatrix solution g.(x) of Appendix C as a test function yields
the following capture values of £ (ef. (52) and (98) et seq.):

E<Giege) =& (0=2x2=1) (73)



248 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962

where
k
X 2 ' 8k . n (Bk < 2)
¢ = rﬂ +[1 —%k(8— 1)f exp {;:_ [tan R w]}
! (B = 2)
nt = (4 — @)
and
0 < tan™'(:) < m
Therefore,
Evze. (79)

With regard to small k, the relations for £y and £, become
tv~ Bk (E—0) (75)
e~k (k—0). (76)

As reflected by parameter 8, the spread between £y and £, for small £
appears significant, but in most cases involving small £, o2 2> « and
8 =2 1. Under more general conditions these bounds can be refined hy
constructing more complex test functions.

According to the discussion in Section IT (ef. (20) et seq.), £v serves
also as an upper bound on the pull-in range; viz.,

Yo = 2v+ S 2. (77)

VIII. SINE COMPARATOR — RC FILTER

The sine-RC system is perhaps the most important practically, having
received a great deal of attention in the literature. Several investigators
have obtained capture results based on phase plane constructions of
go(z) for large and medium values of k.!” For small k, approximate re-
sults have been derived by both analytic and experimental means, al-
though these approximations are found to differ somewhat.!* In this
section we discuss the exact asymptotic form of the relative capture
range for small k.

The normalized sine comparator is represented by

C(z) = sin (rz) (—» <z < =®) (78)
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whence
1
f Clx) de =
0
fm =1

k= ’"‘1)%
=)

Consequently, the first relation of (62) can be written as

E _ o1 - -
£ \/w\421/j (L 0) (79)

g4/ S -2 (‘“—»0). (80)

©
Il
3w

and

or

The numerical limit in (80) has been estimated by MeAleer? and Je-
lonek! to be 1.00 and 1.27, respectively. As lower bounds, these approxi-
mations differ appreciably.

IX. SUMMARY

The more significant results of the above development can be outlined
as follows:

() The variational formulation given by (27), a generalization of
which allows one to treat similar problems in n-dimensional phase space.

(72) Bounds given by (42) and (61), yielding respectively noncapture
and capture ranges for the general symmetric comparator and the sim-
ple RC filter,

(#27) The first domain phenomenon associated with the symmetrie-RC
case of (#7) (cf. (50) et seq.).

(iv) The exact asymptotic capture relations given by (62) for the sym-
metrie-RC case.

(v) The pull-in eriteria given by (20 et seq.), (42), (61), and (62) for
the symmetric-lag and RC cases.

(1) The specific capture relations given by Sections VI through VIIT
for the sawtooth-sine and lag-RC cases.

(v27) The asymptotic relation given by (80) for small k, simple RC
filters, and sine comparators.



250 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962
APPENDIX A

Critical Point Type
To determine the behavior of trajectories near a critical point
(‘1: = o, g = O)J

we linearize (11) and (12) about this point and investigate the natural
modes of the corresponding linear solutions: As shown by Liapounoff,®
these modes identify the type of eritical point in that the presence of at
least one exponentially increasing component indicates a saddle point,
and the presence of only decreasing components, a stable (nodal or focal)
point. Equations (11) and (12) are linearized by expanding the right-
hand sides in a double Taylor series in x and g about the point

(:c:rol g=0))

and dropping all terms beyond the first order. Accordingly, we obtain
from (11), (12), (21) and (22)

ai~ Y
]' (81)
ag _ oy
(_ll_f = bl.b + bzg
where
—
Tk
_ o
bl B k (d-.l')zo
d
o[- (), 1]
Equations (81) combine to yield
(iz;E dx
T b,ﬂ — abix (82)

the exponential components of the related solutions increasing or de-
creasing according as the roots of the secular equation

No— bk —aby =0 (83)
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are positive or negative. Moreover, if (dC/dx); > 0, then b < 0,
b, < 0, and
_ b

by’ !

&

Also, if dC'/dx;, < 0, then by > 0 and at least one value of X given by
(84) is positive; 1. e.,
by, [0 :

Hence, the critical point in question is stable provided (dC/dx)., > 0
and a saddle provided (dC/dx)., < 0.

APPENDIX B
Comparison Theorem

Theorem

If for a branch trajectory g(x(1)) and a test trajectory h(x),

dg Flag) (xel teld)

Il

dx
dh (>)F(xh) (vel)
du
h(x.) = (2)g(2.)
h(x), g(x), t{x)eC (vel teld), (85)

where I denotes a closed interval of x(x, £ £ a3) and J, a branch
interval of ¢ defined by the inverse function ¢ = #(x) (x & I), then

h(z) < (>)glx) (. <z = ). (86)

Proof

Assume first that h(x,) < g(x,) and dh/dx < F(x,h) (x e I). With
h and g continuous, either h(x) < g(x)(x £ I) or the two trajectories
infersect at some point # in the interval, ie., (%) = ¢(&)(z, < &
=< 1); however, an intersection implies that (dh/dx); = (dg/dx):, a
condition which contradicts the combined relation

(%) < F(ep(2) = F(zg(s)) = (?ﬁ) (87)
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Therefore, in this case,
hx) <g(x) (xel).

If
h(;Ba) = g(-’b‘n)
and
dh < F(zh) (zel)
dx
(%)xn < F(ma) h(ma)) = F(lva ) g(il;u)) - (3_‘91:)311 '

Consequently, h(x) < g(x) over some portion of I. Ruling out addi-
tional intersections by (87), we obtain the general result

hz) < g(z) (ra <z = ).

The alternative set of inequalities is shown to be valid in a similar
manner.

APPENDIX C

First Domain Trajeclories in the Sawtooth Case

For treating the sawtooth comparator-lag filter case, we seek here
solution trajectories of (71) which span the initial state line and saddle
points in the first domain, viz., 0 £ 2 = 1. As defined in (66),

r (0=w
) = v ( EI)<1)

0 (x

Hence, by (21 et seq.) the only saddle present in the first domain is that
at the point (z = 1, g = 0). We intend, therefore, to determine a solu-
tion ¢.(x) spanning the two points (0,£/k) and (1,0). It is noted that
in the simple RC case, g.(x) is identical to go(z) and £, , to & (cf. (43)
and preceding).

Restricted to the interval (x £ x = 1) and solution g.(x), (71)
becomes

(88)

dg.

T =26 = Dhgd(x —1) (0= = 1). (89)

L =ua+ Blg. + gu
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However, since g,(x) is required to vanish as x — 1, gz8(x — 1) = 0;
consequently,

d
(= + kgL + g1 ng (90)
Setting z = ¥ — &, and v = g./z reduces (90) to the form
9 dz _ 20 dv
e v 4+ By + 1
Bk W + Bl (91)

- BEY | ' o+ Bko + 1
where
= (4 — 8.

Integrating, we have
Inlg.* + Bk(z — &g + (¢ — &)’

= 2i";tan_l |:2gL + Bk(w — El)] + 4 (92)

T1 T1(-L' - Ez.)

where ('; = const. At the saddle point (g, = 0, ¢ = 1), (92) becomes

2 281k — v
In (1 — &) = —-Bl tan I(BI) + Cy. (93)

T1 T1
Therefore, g, is given implicitly by the relation

9. + Bl(x — £)gr + (v — £,)°
(1 — &)

= exp {Qf\ l:tmfl (2{“ :(fﬁi'v&_) EL'}‘) — fan™ (?f—.)]}

An explicit expression for £, is derived by inserting the initial condition
gu(0) = &/kin (94); 1. e,

5,,2[1 — k(8 — 1)]
L (10— &)

e () (8]
T1 Tk "

(94)

(95)




254 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1962

For £, < 1 (cf. 23) and gk < 2 (ef. 91), the argument of the first are-tan
function in (94) takes on an infinite value at only one point in the
interval (0 £ v £ 1);1. e,

B—k =20 (z—1)
T1
29, + Bk(v — &) _ | T (x— &)
1'1(.8 - EL) — w0 (q; — EL_)
B =2\ < (u
(*le ) s 0 (x—0).

Thus, the are-tan difference in (95) must be such that

—1 3’52 - 2 —1 Bnll. _ -1 —T1
0 < tan ( - ) — tan (;1—) = tan [(9 ﬁ)ﬁ:l < . (96)

Equation (95) can then be written as
£ll — K8 — DI _ {Bk[ ( —n )]} -
1= &) = exp - tan~ 2= ok (97)

k

£L =

n - _ ,B] T1 . l

= =t ew B o (g Z) = =]t e
(Bk < 2)

where0 < tan—'(-) < . That&, = 1forgk = 2 isshown by considering
two values of gk, say Bk; — 2 and gk. > 2, and two trajectories with re-
spective initial conditions &/ky = 1/k and &/k; = 1/k:. Since from
(98), &, — 1 = & = & as Bk — 2, the former trajectory is a capture
type. However, 1/ki > 1/ks; therefore, the latter initial point and
trajectory lie below those of the former. This implies that relations
£ = 1 and Bk, > 2 correspond to capture conditions. On the other hand,
if & > 1, noncapture trajectories result. Hence, £, = & = 1 for gk > 2.
Finally, capture criteria in the simple RC case are given by

I

T - (k< 2)
e ] 7

1 (k =z 2)
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where
o = (4 — k)
and

0 <tan™' (-) < 7/2.

APPENDIX D

List of Symbols
@; — input phase
o — output phase

€ = @; — @y — phase error

x = - — normalized phase error

50

%y — normalized steady-state phase error in the syn-
chronous state

f(€) — comparator output
fmﬁstlp |f(f) l

A normalized comparator function
m

1
p= f“ C(z) dz

w, — free-running frequency of the local oscillator
Aw(l) — input frequency deviation
Awl

afm

QL) = — normalized input frequency deviation

'y = const. — magnitude of input frequency step

v

= ’_l — relative input frequency step
f

£y, & —relative positive and negative capture ranges, re-
spectively
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£ = £, — & — relative capture range
g — relative input step corresponding to separatrix
go()
(', = const. — magnitude of asymptotic input frequency step

2

— relative asymptotie input frequency step

r= afm
v+ ,v- — relative positive and negative pull-in ranges, re-
spectively
v, = v+ — v—— relative pull-in range

H(t) — filter impulse response
S(t) — filter output
_ s
ay dt
go(i) — primary first domain separatrix, as defined by the
description prior to (43)
5(t) — Dirac delta function

. . d
a — gain constant; viz., T — w4 aS(1)

dt
¢, o2 — filter parameters (cf. Fig. 1(b))

= (T}
]]‘ (af m)

afm

mTaT2

— normalized system parameters

™
Il

* __ convolution

s — Laplace transform variable; i.e., £-f({) = F(s)
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