Asymptotic Behavior of General
Queues with One Server

By V. E. BENES

(Manuseript received January 12, 1961)

The asymptotic behavior of the virtual delay in a single-server queue with
order of arrival service 1s studied, under no restrictions on the stochastic
nature af the arrival process and the service times, except for a weak sta-
tionarity condition. This behavior is shown fo be governed by a functional
equation closely analogous to the “fundamental equation” of branching
processes, already used in special queueing models. A generalization of the
Pollaczel-Khinchin delay formula is derived for the case in which delays
do not budld wp.

I. INTRODUCTION

There is a queue in front of one server; waiting customers are cerved
in order cf arrival, and no defections from the queue occur. The delays
incurred in such a system can be described by a stochastic process
[W (L)t = 0}, the virtual waiting time, defined as the time a customer
would have to wait for service if he arrived at time t. Stochastic processes
of this kind have been studied.!?

In the present work we examine the asymptotic behavior of the prob-
abilities PrilV(#) = w}, as t hecomes large, for a class of processes satisfy-
ing a weak condition of stationarity.

It is customary to define the process W(-) in terms of the arrival
epoch £, and the service time S, of the kth arriving customer, for
b= 1,2 ---. We can, however, describe the service times and the
arrival epochs simultaneously hy a single function K(-), defined for
t = 0, left-continuous, nondecreasing, and constant between successive
jumps. The locations of the jumps are the epochs of arrivals, and the
magnitudes are the service times. With K(0) = W(0) for conveni-
ence, K(¢) can be interpreted as the “work load” submitted to the
server during [0,¢), and T7(¢) as the work remaining to be done at f.
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Formally, W(-) is defined in terms of K(u) for0 < u < t by the equa-
tion

1

W = K0 = t+ [ U=W) du, (1)
]

where U(-) is the unit step function, ie., U(x) = 1 for x = 0, and

U(x) = 0 otherwise. Equation (1) may be interpreted as follows:

work remaining at ¢ = load offered up to ¢
— elapsed time
+ total time that server was idle
in (0,1).

(2)

The relationship of W(-) and K(-) has previously been described
and illustrated.”* A principal result of the latter paper (and the only
one needed for reading the present one) was a formula for the distribu-
tion of W(¢) in terms of the functions

PriK(t) £ u},
R(tuw) = PriK(t) — K(u) —t+u = w| W(u) = 0}.

The reference to W( -) in the condition is not eireular because, as shown,”
the events
W (u) = 0}, [sup [K(u) — K(y) —u+ y] =0}

0<y<u

I

differ by at most a set of measure zero. The formula for distr{ W(¢)} is

PriWw(t) £ w} = Pr{K(t) — 1 = w}

a [ (3)
- ——f R(tuw) Pr{iW(u) = 0} du, w > 0,
dw o
or, in an integrated form,
w t4w
j PriK(t) = u} du = f PriK(t) = u} du
0 0
(4)

t
— f R(tauw) PriW(u) = 0} du.
0

Tor —t < w = 0, the chance Pr{W(u) = 0} that the server be idle at
time wu satisfies the Volterra equation

t4w t+w
f R(tuaw) PriW(u) = 0} du = f PriK(t) < u} du,
0 0 (5)

= E{max[0,w — K(t) + {}.
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These results can be cast into a form more useful for the present en-
deavor by use of Laplace-Stieltjes transforms. Theorem 5 of the author’s
paper” implies that for Re(s) > 0

]L“{(‘-Fw“]] — E{E—-al\'(ﬂ-f'af}

¢ . (6)
— s f Efe W OR@mE 1y = 0) PriW(u) = 0} du.
0

This formula for the Laplace-Stieltjes transform of the distribution of
W(t) can be obtained directly from (4) and (5) by taking the Laplace-
Stieltjes transform with respect to w.

II. BASIC ASSUMPTIONS

Unless the input process K(-) has some asymptotic temporal uni-
formity, one cannot expect W({) to have a limiting distribution as
t — «. We shall assume that the increments of K(-) are weakly sta-
tionary in the sense? that the basic kernel R({,u,w) of (3) depends only
on (I — u) and w, i.e.,

Prik(t) — K(u) —t+u=w|Wu) =0 = R(t —uw). (7)

The word “weak” refers to the dependence of the kernel only on the
difference of its two temporal arguments.

The stationarity condition (7) turns (5) into an equation of con-
volution type. Our strategy will be to work with (5), find conditions
under which Pr{W(w) = 0} converges as « — o, and then use Abelian
arguments on (4) and (6) to obtain the asymptotic behavior of

PriW(t) = w} ast— o,

A similar approach has been used in two prior papers by the author.**
We shall only consider the case in which

w(o) =0, (8)

with probability one. This “start empty” condition is in a sense un-
avoidable in practice, and it leads to simple, elegant results. Equations
(7) and (8) imply that for ty = 0

E{F—RK(IJ-H'!; — k‘:(' sK (1) +st | ”—(0) — 0!
ch--amr-w;-wx(«mtsu! W(y) = 0} (9)

f e "R(tdw).

0
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The condition {W(-) = 0} will therefore be omitted from now on in all
probabilities and expectations.

The following functions oceur frequently in the discussion and merit
abbreviations:

Efmax [0, — K(D]} = F(1),
PriK(t) = t} = R(1,0) = R(i),
PriW(t) = 0} = P(t).

In this notation, the Volterra equation (5) for w = 0 can be restated as
t

F(t) = f Rl — w)P(u) du. (10)
1]

The Laplace-Stieltjes transform of a function is denoted by the cor-
responding lower-case Greek letter; e.g.,

o(s) = fnw ¢ “'dF(t), Re(s) > 0.

The ordinary Laplace transform is denoted by the corresponding capital
Greek letter; e.g.,

I(r) = f: e TP(1) di.
TFrom (1) defining W{-) it is evident that the mean delay is
E{W()} = EIK(1)} —t + '/: Pr{W(u) = 0} du.
Also, we have

E[K()} = Lw PriK({) > u} du

j: (1 —Pr{K(t) = u}l du + fw PriK(t) > ul du

Il

t— F(t) + fw PriK(t) > u} du,
since
1
Bmas (0, K(0) — 1] = [ Pr(K(0) < u] du.

In addition to the stationarity condition (7) we use the following
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assumptions (since some theorems do not depend on all the assumptions
to be listed, the relevant hypotheses are repeated whena result is stated ) :
i. lim sup ¢t 'E{K(t)} < =;

[

ii. liminf ¢ log PriK() = 0} > —=;

[l
itii. There exists a neighborhood N of the positive real axisand a T > 0
such that Efe ™"} # 0fors ¢ Nandt > T.
Hypothesis iii will only be needed when the system is recurrent-null;
i.e., the service-factor is unity.

ITI. SUMMARY

Basic assumptions and preliminary lemmata occupy Sections II and
IV, respectively, the principal result being the existence of a solution
s(r) of the functional equation

r—s8(7) = a(s(7)), =0

7

where, for real s = 0,

a(s) = lim sup ¢ " log Ele ™ | W(0) = 0.
)

This funetional equation is closely analogous to the “fundamental cqua-

tion” of branching processes. In Section V it is shown that the Laplace

transform of Pr{W(-) = 0} is just 1/s(7), whence it follows (Section VI)

that the asymptotic value of Pr{W(¢) = 0} as t -— = (if any) can be de-

termined from the limit of a(s)/s as s — 0.

The existence of a limiting value Pr{W (=) = 0} is investigated in
Ffections VII and VIII, by Mercerian and Tauberian methods respec-
tively, applied to (5), for w = 0. Section IX contains limit theorems for
PriW(-) £ w}, w > 0; these are obtained readily by Abelian methods
from (4) or (6), once the convergence of Pr{W(t) = 0} as { — = has
been ascertained.

1IV. PRELIMINARY RESULTS

Let s = 0, and define a(s) to be the abscissa of convergence of the
Laplace transtorm*

\II(T,S) = f C—rlE{eush’(l)] di.

0

Obviously a(0) = 0,a(s) = 0fors = 0, and a(-) is monotone decreas-
ing in s = 0. It is not obvious that a(s) # — =, at present,

*We assume throughout that Ele *&(0} is a measurable function of ¢ for s-
values under discussion.
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Lemma 1: The abscissa a(s) of convergence of the integral

V(rs) = f I A R (11)
0

is given by the formula
a(s) = limsup ¢ ' log Ble ", s=0.
L0
Proof: Let s > 0 be fixed and set E{e "’} = (¢). The function

¥( ) is monotone decreasing, and satisfies 0 < ¢ = 1. Hence, by The-
orem 2.4d of Widder,” the abscissa of convergence of the integral

f: e " dylt) (12)

is
limsup ¢ 'log | y(t) | £ 0.

t—o
However,
T T
f Thdy(t) = e TYW(T) + 'rjl-] e "y(t) dt,

so that (11) and (12) have the same abscissa of convergence.
Lemma 2: Yors,h > 0and w = 0

E{e—ﬂK(u)}E{p-hK(u)] < Egc—(a-l-h)K(u)]
Proof: Let K(u) = & Since 2°™ is convex in 2" and in 2", it follows
from Jensen’s theorem that
0 = Eje*

< Ea!(x+h)[€—(n+h) El
— y
0 < E{e—hf} < Ehl(a+h){87(s+”5}-

Multiplying these inequalities together gives the result.
Lemma 3: If

lim sup E{K(u)/u} < B,

t—>o0
then, given ¢ > 0, there exists k so small and ¢ so large that
E{e—hK(u)] z e—eu
for all u > .
Proof: Choose h so that 28 < ¢, and t so that
E{K(u)} < Bu
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for all w > t. Then, by Jensen’s theorem, for u« > {,

E{()fh.f\'(n)} g e*};E[K(:tH ; e—cu.

Lemma 4: If

lim sup K{K(w)/u} < =,

=]
then for given ¢ > 0 and any s > 0, there exist h and { so that
M log Ele ™ ™} — ¢ log Efe "R < ¢

for all u > t.

Proof: Lemmata 2 and 3.

Lemma 5: a(+) is a eontinuous function of s,8 = 0.

Proof: Set t " log Eje """} = g.(t). Let ¢ > 0 be given, and find, by
Lemma 4, an h and a ¢ so that « > { implies

0 . (13)

1A

gn(“) - g;«H;(H) é ‘S)

There exists a sequence 1, — = along which

a(s) — -EL = g.(u,),
Gornlre,) = als + h) + i,
for all » sufficiently large; this is because

a(s) = lim sup g.(t).

s

IFor such n, then, since a( -) is monotone decreasing and (13) holds,

0

IIA

als) —als + h) = glwn) — Gogn(n) + g,

0=<als) —als+h) =,

so that a(-) is right-continuous. A mirror image of this argument proves
a(+) left-continuous.

Lemma 6: a(-) is convex in s = 0.

Proof: Vor each ¢ > 0, Efe """} is a completely monotonic function
of 5, and so (Widder," p. 167) is logarithmically convex; indeed, in
s Z 0 we have

1 62 {P“x!\'(tl} — 62

= log K — =0,
[ ast B 52 048) 20
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This implies that for s,p = 0
bg(s) + dguls + ) Z gds + ).

Taking the lim sup as t — o, we find that a(-) 1s convex.
Lemma 7: For s,h > 0,

ats)  als + )

s = Tsth (1)
and
p = —lim a—(‘ﬂ >0
g0 8

exists as a finite or infinite limit.
Proof: If £is a positive variate then

Elfr= Er:

is a nondecreasing function of r. (See Lotve,” p. 156.) Choosing & =
e " we have

B O] 5 B ey,
s 'gu(s) = (s + h) 'gils + D).
But
a(s) = lirp sup g(s),
so (14) is true.
Theorem 1: 1f
lim inf £ " log Pr{K(f) = 0} > —= (16)

-0
then for each r = 0 there is at least one number s(r) such that
T — s(r) = a(s(7)),
and

— 5 = als) for s
{’ = (17

=
r— 5 = a(s) for s = s(r)
Proof: The hypothesis implies that there is a constant ¢ > 0 such that
PriK(t) =0} 2 ¢
for all sufficiently large {. However, this implies that

E{ﬂqu(t)i > (’—“
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for all ¢ large enough, and so a(s) = — ¢ forall s = 0. Since a(-) is
continuous it must intersect the line r — s at least once, and the rela-
tions (17) follow from the convexity of a(-).

This rection ends with some preliminary analytical results for F(-)
and (-).

Lemma 8: If R(-) is of bounded variation in every finite interval,
then

F'(t) = d/dt F(t)

exists almost everywhere.
Proof: The hypothesis implies that the transform

(s) = —st
pls) .[;_P dR(t)
exists in Re(s) > 0. FFrom (10) we find
el(s) = p(s) f ¢ P(L) dt = p(s)TI(s),

0

but II( - ) is the Laplace-Stieltjes transform of an absolutely continuous
funetion; hence ¢( - ) is also.

In order to use various Tauberian theorems it will usually be neces-
sary to impose “Tauberian” conditions on the oscillations of (). We
recall (Widder,” p. 209) that a function f(-) is slowly oscillating if

lim f(y) — f(x) = 0,

y—z—0
Y0

and f(-) is slowly deereasing if

lim inf f(y) — f(x) = 0

y—z-20

asr— o,y = ylr) > r
Lemma 9: If F' is continuous uniformly in ¢ = 0, and R(-) is of
bounded total variation, with the form

R=1U+H + H

where U is the unit step at zero, H, is absolutely continuous, and
[lam)=x <1,

then P( -} is slowly oscillating.
Proof* Since I exists we may differentiate (10) to find that

* The procedure of this proof is patterned after that of Karlin.”
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F'(t) = fli Pt —uw) dR(u).
This is equivalent to the renewal equation
PW) = P + [ P ) dufU = R,
or, iterating n times,
P(t) = fui Pt —w)dJL + M} + fU:F'(i — u) dN(u),

where L is absolutely continuous,
f|(ml| <\, and [ [aN | < .
Then

| P(t +¢) — P(1) | gf (L't +¢) — L'() | dt +2\"

t4e
+ [P = w [N |
L

+ f:m’u be—w) —F( =) || dNW)].

The first term goes to zero with ¢ — 0, by a known result (‘)‘.P-I"Jebesgue
(Wiener,” p. 14). The second term vanishes as n increases. The third
term approaches zero as t — o, since F is bounded. The fourth term
goes to zero with e — 0 by the uniform continuity of 7”.* Hence

lim | P(t + ¢) — P(t) | = 0.

e—=0
[

The hypothesis that F’ is continuous can be replaced by the condition
that F’(t) approach a limit as ¢t — o . Also the uniform continuity of
F’' could be replaced by a weaker but more complicated asymptotic
condition.

v. THE TRANsFoRM II(:) or Pr{W(.) = 0}

Theorem 2: Let s be real and positive, and let

f‘” e T P(t) dt = 1(7);

 * It is assumed that F’ (t) = 0fort < 0.
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then (16) implies
sli(s + a(s)) =1, s> 0. (18)
Proof: Equation (6) implies that

f e "Bl dt = w(rs)[1 — sII(7)].
0

The left-hand side has no singularities in Re(7) > 0. But by Widder’
(p. 58, Theorem 5b), ¥(r,s) is singular at =+ = s 4 a(s), and so (18)
holds.

Theorem 3: If + > 0, and (16) holds, then

1
H(T) = m,

where s(7) satisfies (and is determined uniquely by) the equation
T — s(r) = a(s(7)). (19)
Proof: For given 7, there exists at least one s(7) > 0 satistying (19).

By Theorem 2, any such s(7) has the property

I _ {s(r) + a(s(7))),
s(7)

= TI(7),

because of (18). Since TI(7) is a strictly monotone funection of real r,
being of the form

1(r) :f TP A, P 20,
0

the solution s(7) of (19) is unique, and strietly monotone increasing
in 7.

When —a(s)/s — 1 as s — 0, we need some additional properties of
a( - ). For each ¢, there is a neighborhood N, of the positive real axis in
which

Eiesz(t)]
has no zeros. However, we shall need the condition iii of Section IT that
there exist one neighborhood N of the positive real axis in which
E;é‘_aﬁu}} ;é 0
for all ¢ sufficiently large, say ¢ > 7. Define, for z ¢ N
g-(1) =t "log | Ele ™"} .

b



1202 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1961

Then g¢.,(t) is harmonic in N for ¢ > T, and
| g:(t) | = |t log | E{e™*} ||
< 0 |log PriK(t) = 0} | < o=,

so that | g.(t) | £ ¢ for z € N, where ¢ is the constant of Theorem 1.
Theorem 4: 1f

lim inf ¢ ' log Pr{K(t) = 0} > —= (16)

t—sw
and N is a neighborhood of the positive real axis such that
E{efzf\'(-!)} = 0, z E 1V
for all sufficiently large ¢, then a(-) can be extended to be harmonic
inN.

Proof: For t > T define a class V, of funetions on N as follows: V, is
the smallest class containing all g¢., (') for ¢ > {, and closed under the
operations

(a) vy, vs — max (v1, ta),

v outside A

(b) UV —* Umod = .
Pv inside A

where A is a disc with A € N, and P is the Poisson integral operator on
the dise A. These operations preserve the property of being bounded by
the constant ¢ of Theorem 1. Now let

w(z) = sup v(z).
VeV,

By a standard argument (Ahlfors,” p. 197), the function w,(-) is har-
monic in N, and clearly

u(2) = sup g:(t).
ty >t
We prove the reverse inequality:

wl(z) = sup g-(h).

>t

It is enough to show that the operations (a) and (b) preserve this prop-
erty. I'or (a) this is obvious; for (b), we observe that

Po(z) = ‘-)1; j; vz + re”) do = lsg;? g.(t1).
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Henece for real z

a(z)

inf sup g.(4),

t ot >t

= lim u,(z).
L-»o0
The functions u,(-) are harmonic and monotone decreasing in ¢. Hence
by Harnack’s principle they either tend to — = or to a harmonic fune-
tion. The first alternative is ruled out by the inequality | g-(¢) | = e.
Hence a( - ) is harmonie in N.
Theorem 5: Under the conditions of Theorem 4, let
a(s)

p = lim — —=.

a0
If p > 1, there exists a largest root ¢ > 0 of the equation { = a({), and
s(r) > ftas T —0.If p = 1, then s(v) - 0as r — 0.

Proof: s( -) is monotone, nonnegative, and nonincreasing, so s(04+) =
0 evists. If p > 1, then a(x) < —a for some @ > 0. However, for + > 0,

a(s(7t)) =1 — s(r) > —s(r),

g0 s(04) > & > 0. Since s(-) is continuous we may let + — 0 to find
¢ =ua(f) =s(0+) > 0.
Next, if p < 1, suppose that s(0+) > 0. Then
als(04+)) _
s(0+)

which is impossible, since

-1

wﬁ—p>—1 as s — (),

in a monotone decreasing manner,
The case p = 1 requires a special argument. If s(0+) > 0, then again

a(s(0+)) _ _1
s(04)
and we must have
as)_ g 0= s < s(04)

S

However, since a(-) is harmonic in a neighborhood N of the positive
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real axis, this would imply, by the Cauchy-Riemann relations, that
a(s) = s throughout N; but a{s) = —c for real s. Hence s(04) = 0.
The hypothesis about the existence of the neighborhood N is needed
only for the case p = 1.
Theorem 6: Suppose that P( %) = lim P({) as { — = exists. Then

0 ifP = 11
P(w) = ,
1—p ifp <1, .
Proof: Since 7 — s(7) = a(s(7)), we find that
o1t . a(s(r))
TH(T) —ﬁ'— 1 —W.

Then if p = 1, the result follows from the previous theorem and a stand-
ard Abelian theorem for the Laplace transform. If p > 1 then P(-) € L,
and if P( ) exists it must be zero.

VI. ASYMPTOTIC RELATIONSHIPS

We now prove some lemmata that exhibit some of the basic asympto-
tic relationships between p, a(-), F (), R(+), ete.
Lemma 10:

1l —p=14a’(0) = limsup 1 — E{K(1)/1].
t-»o0
Proof: By Jensen’s theorem
E{()fsli(ﬂ}
t ' log Ele™™ "}y = —sE{K(4)/1}.

gt ELEW)

(\%

?

Definition:
Q1) :fw Pr{K(t) > u} du = E{max[0,K(¢) — ]}

Lemma 11: Tf Q(t) = o(t) as t — =, then

L.p=1;

ii. If d/dt E{K(t)} also exists and approaches a limit as t — o, and
if @(-) can be differentiated in the usual way, then R(t) —» 1l as{ — o.

Proof:

0=t'F() =1
and

CF() =1 = B{K()/4 + Q(1)/t,
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so that
lim inf ¢'F(t) = liminf 1 — E{K(t)/1.

t—sm t—>>
Then i follows by the previous lemma. To prove ii note that

' d - _ * 9
F =1 =% BIKO +1 = k() +f‘ 2 PriK(D) > u} du.

The last term is positive, so
RO Z1+1- %E{K(t}] — 1),

R(t) — 1.

Lemma 12: If R(t) > R(=) > 0as{— «,then p = 1.
Proaf:

E{(’_s[{(f)+ﬂf}

v

E;(’R min[D‘t—K(t)]}
- )

IV

PriK(i) = 8.

Ele™™ = R(t)e ™.

Hence also

1+ {? > : lim sup ¢ log R(1).

t—>

If R(») > 0, the lim sup is zero, so that

1A
—

1+ als) > 0, »
s
Lemma 13: If

lim sup £ ' log R(t) = 0,
(]
then p = 1. If this lim sup is less than 0, then R(.) is integrable
and R{ =) = 0. Hence also P(=) = 0and p = 1.
Lemma 14: If

lim inf Q(t) = 0,
it
then p < 1.
Proaof:
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E{min [0 — K()]} = Eit — K(t)} — F(t),

50
1+ a—F—(SS) = lim sup [1 — ]w - F(t)],
t—sm0
= lim sup [—Q(()],
>0
= — lim inf Q(¢).
>0
VIL. CONVERGENCE oF Pr{W(f) = 0}: MERCERIAN METHODS

A Mercerian theorem (see Pitt,” p. 94) is one which, for example,
enables us to study the asymptotic behavior of P(-) directly from that
of the convolution

F(t) = _/:P(t — w)R(u) du,

i.e., that of F(-), without the intervention of “Tauberian’ hypotheses
on the oscillations of P(-). Tauberian methods usually require P(-)
to be a slowly decreasing funection; such methods are considered in
Section VIII.

In what follows the norm symbol (when used) refers to the total vari-
ation of a funetion of bounded total variation. The subscripts “dis’” and
“sing” (applied to a function symbol) denote the discontinuous and
singular components, respectively.

Theorem 7: If R(-) is of bounded variation in any finite interval, and
for some ¢ = 0,

inf [ p(ec — 27) | > 0, (20)
” (Rﬂ)sing ” < inf | Pdia(ﬂ' - ?’T) |= (21)
then P(-) can be represented by the inversion formula

f;ﬁ F'(t — w)e™ dG.(u), f

=)

|dG, | < o=,

provided that

L
R.(1) :f e ™ dR(u) (22)

is of bounded total variation.
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Proof: The hypotheses (20) through (22), together with Theorem 1
of Wiener and Pitt," imply that there exists a function G4( - ) of bounded
total variation whose Fourier-Stieltjes transform is

lo(a — ir)] ", o fixed.

We then solve the equation

t
UF() = f TP — we ™R () du

0

by Laplace transforms, obtaining

= —(pt+o)t _ W(IU + 0’)
f“ ¢ P(t) dt = pg-(p t o

However, by Lemma 8, F’ exists and has Laplace transform ¢( - ). There-
fore

t
e P(t) = f F'(t — w)e™ ™ d@Gs(u),

and division by ¢ completes the proof.

This result provides another way of proving that P( ) is slowly oseil-
lating, as follows:

Lemma 15: If the hypotheses of Theorem 7 are true with ¢ = 0, and if
F’(-) is uniformly continuous and bounded, then P(-) is slowly oscil-
lating.

Proof: Let b be a bound on F’. Then

|P(t+ ¢ — P)| = fw | F'(t + e —u) — F'(t — w)[ dGy(u) |

1A

2h ‘/;u1>7' | dtio(u) | + f_T |F'(t + e — u)

— F'(t — ) || dGo(u) I.

Choose first T large, then e small, using the uniform continuity of F”
tolet t — .

Theorem 8: If the hypotheses of Theorem 7 are true with ¢ = 0, if
F' is bounded below, and for some constant A

o(s) ~ sl as s — 04, (23)
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then

. A
Pt) (TJ)R%(OO) ast— =,

Proof: The hypotheses imply that P(-) can be written as
P = [ Fec— ) dGoly)

with G4( ) of bounded total variation; then also

¢ ¢ .
o f P(uw) du = &— u_)t — dGolu).
0 0o t—u t

There exists a constant & > 0 such that
F(t) + bt

is nondecreasing in ¢ = 0: hence by a known Tauberian result (Widder,
p. 197, Theorem 4.6), condition (23) implies that

F(1)

T——)Aé(} as i — w

b

’

the convergence being bounded, since 0 < F({) < t. It follows that
t
£ f P(u) du— AlGo(+ =) — Go( — = )]
]

A
e —
R(=)
The condition (20) of Theorem 7 guarantees that R( =) > 0.

Theorem 9: If the hypotheses of Theorem 7 are true with ¢ = 0, and
F' — F'( =) boundedly as t — «, then
F'()
R(=)
Proof: The hypotheses imply that

P(l) = f; F(t— ) dGa(u0),

P{t) —

ag i — .

where Gy( -) 18 of bounded total variation. The result then follows from
a known Abelian lemma, e.g., Lemma 1 of Smith."”

Theorem 10: If the function R(-) — U(-) is absolutely continuous,
if F'( =) exists, and if p(s) has no zeros in Re(s) = 0, then

F'(=)
R(=)

as t — =,

P(t) —
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Proof: Set [R(-) — U(-)] = k(-), so that (10) implies (by differ-
entiation) that

P (0 =f Pl = w R = P + [ P(t = w) du(R — U)
0— 0

Il

P(t) + fn Pt — w)k(w) du.

Then, ast — =,

t

P + A Pt — wk(u) du — F'(=).

By Theorem XVII of Paley and Wiener,"” this, together with the con-
ditions that P(-) be bounded and p(s) # 0in Re(s) = 0, implies that,
as t — oo,

Pl(=) _ F(=)
l-}—f k(uw) du R(=)”

1]

P(t) —

since for £ > 0
it
R(t) = l—|—f E(u) du.
0

By a theorem of Pitt" (p. 115), the restriction that p(s) # 0 for
Re(s) = 0 can be weakened to p(ir) # 0 for real 7.

VIII. CONVERGENCE OF Pr{W(f) = 0}: TAUBERIAN METHODS

The addition of “Tauberian” conditions on P(-),* such as the prop-
erty of slow decrease, makes it possible to change or weaken the hy-
potheses on R(-) and F(-) necessary to ensure the convergence of P(-).
The next result shows how the convergence of F’'(-) in Theorem 9 can
be relaxed.

Theorem 11: 1f

i. Tor some integrable function &(-) with a nonvanishing I'ourier
transform K(-), and some number A,

f k(t — w)dF(uw) — A f E(w) du ast — =
{ —x

)
. P(-) is slowly decreasing;
ili. R(-) is of bounded total variation with

* Such conditions were briefly studied in Seetion IV.
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p(—ir) # 0,
” Rs'n'\: “ < inf i f-’llis( —1,-,-\ I;

then

A
[ 1 I
T(!)-%R%—(m) ast — o=,
Proof: The conditions on p(-) imply, by Theorem 1 of Wiener and
Pitt," that
K(r)
p(—1ir)
is the nonvanishing IFourier transform of an integrable function a(-)
such that

fﬂo (t —w)dF(u) = fx 2t — w)P(u) du.

The theorem to be proved then follows from Pitt’s form of Wiener’s
fundamental Tauberian theorem (see Theorem 10a, p. 211 of Widder®).

Instead of imposing conditions on F(-) and R(-), one can place them
on the Laplace-Stieltjes transforms ¢(s) and p(s). We shall use the
following Tauberian result:

Theorem 12: Let v(s) be the Laplace transform, convergent in Re(s) >
0, of a bounded function (’(-) = 0, vanishing for negative argument,
and slowly decreasing;i.e.,

lim inf C(¢{ 4+ ¢} — C(t) = 0.

€0
t—-o0

Suppose that, for some function g( - ), constant ¢, and s = o + ir,

lim y(s) — s 'c = g(r) (24)

a-=04
exists uniformly in every finite interval, —a = r £ 4. Then
() — ¢ as{ — =,

Proof: This is a variant of Ikehara’s theorem, Widder® (p. 233).
Define, for each A > 0,
= 21 — |a/2x]) |2 | = 25,

Ky(v) (25)
=0 || > 2\
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This is the Fourier transform of the function

. 2
kn(z) = 2M(27) 7 (5‘“ ”)
AT

For ¢ > 0, set

I(z) = (21r)"*f ka(z — w)[C(n) — e du

0

- 2N
= Q—J;r . [C(l() — C](J""‘ dn N K}{y)e—w(r—u) dy
2X

L K(y)e ™ dyf [C(u) — ele " at
21!' —2)\ 0

2x
= L R e + i) = (e + i) dy.
LT Y —2)\
By (24) we may take the limit under the integral as e — 0, to obtain
2

lim N(z) = (2r)7" Kx(x)e “g(y) dy
2,

€04 —

= (_21r)7*f In(z — w)[C(u) — ¢ du,
1]
the last identity following from Widder” (p. 183, Corollary 1c). The
function Ky(-)g(-) helongs to 1, , and so, by the Riemann-Lebesgue
lemma,

(27)7" f Il — wC(u) —eldu—0 asr — @,
0
Since C(+) is bounded and slowly decreasing, we conclude from Wid-
der’ (p. 209, Theorem 9), that

C(u) — ¢ as u — o,

The theorem just proved implies directly the following consequence:
Corollary: Suppose that
i. Tor some number £ and function g(-)
(s) L =
L*‘**Q(T) as ¢ — 0, (s = ¢ + 11) (26)
o(s) 8
uniformly in every finite interval,
ii. P(-) iz slowly decreasing,.
Then P(t) — Last— =.
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Some simple conditions on F(-) and R(-) which ensure that hy-
pothesis i of the corollary obtains are described in the next result:

Theorem 13: If

i. For some number L the function

F(t) — Lfl R(u) du (27)

(assumed to vanish for ¢ < 0) is of bounded total variation;
ii. R(-) is of bounded total variation, and

p(—ir) # 0, | Ruing || < inf | pais( —i7) [;
then there exists a u(-) such that
els) L

m ;Iﬂ(s}HH(T) as ¢ — 0

uniformly in 7, and g(7) is the Fourier-Stieltjes transform of a function
of bounded total variation,
Proof: The Laplace-Stieltjes transform of (27) is

: L
o(s) — ;p(s), Re(s) = 0.
The condition ii ensures, by the Wiener-Pitt theorem, that [p( —ir)]™"
is the Fourier-Stieltjes transform of a funection of bounded total varia-

tion. Tt follows that u( —77) is also. But g(-) is the transform of P(-) —
L, and so extends analytically into Re(s) > 0 with the representation

uls) = f G, G <

Then

lIA

[ w(s) — ulr) |

[ == q1a6a |
0

lIA

(1 — ¢ T) _/:|dG(u) | + f:|dG .

Let € > 0 be given, and pick 7 so large that the second term on the
right is less than ¢/2; then pick ¢ so small that the first term is also.
This proves the result.

The condition i of Theorem 13 iz satisfied, for example, if F'( =)
exists and both of
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ii. for each r # 0, the function E{e”™ ™™} belongs to L,(0, =)
and vanishes at « (as a funetion of u);
iii. the function

A7) = Pr{W(=) = u;-z‘Tf E{e™ 0y gy (30)
0

is continuous at = = 0, with A(0) = 1;
then there is a distribution function

L(-) =PriW(=) £ -
such that

lim Ele™™") = \(7), (31)

t-=m

iim PriW(t) = w} = L{w),
at continuity points of L( ), at least.

Proof: A direct application of Lemma 1 of Smith" to the real and
imaginary parts of (6) with s = —ir, r real, proves (31). The rest is
a consequence of the standard continuity theorem for characteristic
functions. Formula (30) is a generalization of the Pollaczek-Khinchin
formula; this may be verified by letting K(-) be a compound Poisson
process.

It PriW(w) = 0} = 0, and condition ii of Theorem 16 is fulfilled,
then a similar argument shows that

E;e'ifw(ﬂ} =0 as i — o

for all + # 0, so no limiting distribution exists.

Alternatively, one can apply similar Abelian methods directly to for-
mula (3). For convenience we shall ure, instead of (3), the w-integrated
form (w = 0)

w 4w
f Pr {W(t) = u}du = f Pr {K(t) = u}du
0 0
, (4)
— f R(t — ww) Pr [W(u) = 0} du,
0

in which R(f,u,w) has been replaced by R({ — w,w), in accordance with
the stationarity condition (7).
Theorem 17: If
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i. Foreachw > 0
" »
f [R(uw) — R(u0)) du = r(w) < =;
0

il. R(f) > lasi— =;
iii. P(t) = PriW(t) = 0} > Pr{W(=) =0} ast — =;
then, for w > 0,

lim fw Pr{w(t) < u}du =w — r(w) Pr {W(=) = 0}.

t—=2 Y0

Proof: By subtracting the case w = 0 of (4) from the case w > 0,
we find

fw Pr{W(t) £ u}du= fH—w Pr {K(t) = u} du
0 ft (32)
— f [R(t — uw) — R(t — ©,0)]P(u) du.

If w = t, then
PriK(t) £ ul = PriK(t) =}

Il

R(t).
Hence, by ii,

hmf Pr {K(t) = u}du = w.

ts
By i. and Lemma 1 of Smith,” the last term of (32) approaches
r(w) PriW (=) = 0}.

To clarify the meaning of the condition i of Theorem 17, we note
that

R(tw) — R(1,0) = Pri0 < K(t) — t = w},

r(w) = Efamount of time that 0 < K(t) — t = w}.

Other limit theorems can readily be obtained, e.g., for the nonintegrated

equation (3), as soon as suitable differentiability conditions are imposed.
Since no new principle is involved, we shall leave the matter here.
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