A New Technique for Increasing the
Flexibility ot Recursive Least
Squares Data Smoothing

By N. LEVINE
(Manuseript received October 19, 1960)

A method of performing recursive least squares data smoothing is de-
scribed in which optimum (or arbitrary) weights can be assigned to the
observations. The usual restriction of a constant data interval can be re-
moved without affecting the optimum weighting or recursive features. The
method also provides an instantaneous (1.e. real time) estimate of the statis-
tical accuracy in the smoothed coordinates for a set of arbitrary date intervals.
Optimum gate sizes for arbitrary predictions can be determined. These
Seatures greatly increase the flexibilily of recursive least squares data smooth-
ing, and several applications are discussed.

I. INTRODUCTION

During the past few years, a need has arisen for data smoothing tech-
niques which can be applied, in real time, to radar observations of hodies
traveling along highly predictable trajectories. The observations are
usually processed in digital computers, so that much effort has been
expended in devising techniques suited to the advantages and limitations
of computers. This paper is coneerned with one such technique, recursive
least squares smoothing, whose theoretical foundation was established
several years ago.' It is our purpose to show how this technique can be
made considerably more flexible so0 as to encompass a wide variety of
practical situations while maintaining its suitability for computer use.

By the term “recursive,” we mean that a smoothed coordinate is deter-
mined from a previously computed average of past data (one number)
and a new observation. Thus the storage requirements are independent
of the number of observations and are actually quite modest. We will
also use the term “optimum smoothing,” which is to be interpreted in the
least squares sense, i.e., the weighting of data inversely proportional to
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their error variances. The ability to perform optimum smoothing in real
time where the variations {not necessarily the magnitudes) in observa-
tional error are determinable (e.g., trajectory-dependent errors) is one
of the advantages of the method described here. Over long periods of
observation, a significant increase in the accuracy of the smoothed co-
ordinates may be achieved by properly weighting the data. In the actual
derivation, however, no restrictions are placed on the weighting factors,
thus allowing an arbitrary sequence of weights to be placed on the data.

Sections II and III are devoted to the estimation of position and
velocity assuming the body under observation is traveling along a straight
line with no acceleration. In Section II we consider the case of constant
data intervals where some emphasis has been placed on the ability to
compensate properly for missing observations. We have also included
formulas for determining optimum gate sizes for predicted observations,
which are of considerable importance in some tracking systems. In Sec-
tion III the method is extended to handle the case of arbitrary data
intervals.

That the restriction to linear flight does not limit the applicability of
this method to many practical cases is shown in Section IV, where meth-
ods for including the effects of known accelerations are discussed. In Ap-
pendix A we show that the sum of square deviations from the least
squares line of regression may be obtained recursively. This result may
be useful asa means of real-time error detection or as a way of providing
an instantaneous estimate for the average observational error during
tracking. Appendix B describes the changes necessary in performing least
squares recursive smoothing over a fixed number of prior observations
—in contrast to the method in the main text, where the smoothing is
effective over all observations. Finally, in Appendix C, the extension of
the method to include estimation of acceleration is outlined.

The derivation and discussion of this method of data smoothing are
presented in the context of radar observations of moving bodies. How-
ever, this technique can be applied to any observable quantity which can
be expressed as a linear combination of functions where the expansion co-
efficients are to be estimated.

II. CONSTANT DATA INTERVALS

The derivation of this method of performing recursive least squares
smoothing is based on a technique employed by Kaplan.” For simplicity,
we initially consider the case of straight-line unaccelerated flight. A se-
quence of observations &; ,7 = 1,2, - - - , n, 7 seconds apart, are made by
an instrument whose measurement errors are taken to be uncorrelated
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and normally distributed with mean zero and variance ¢;*. We wish to
obtain the least squares estimate of the position (&,) and velocity (7,)
as of the nth observation* by suitably combining the latest observation
(x,) with a linear combination of the n — 1 previous observations. To do
this, we will first minimize the sum of squared deviations from the least
squares line of regression, R,*, assuming n observations have been made.
We may write this sum as follows:

R = i & — (& — (0 — ), (1)

where @, = 7,7 and w; is an arbitrary weighting factor. Differentiating
this equation with respect to &, and @, and setting each resulting equa-
tion equal to zero yields the normal equations:

n

mn n
To 2w — @ oo (n — Dwr = 2. a0,
i=1

i=1 i=1 ;
n n n (2)
=%, 2o (n = Dwi + @ D (n = D'wi = — 3 din — i)w;.
=1 i=l1 =1
We define the sums /', , G, , and H, as
F, = > w,
=1
G, =25 (n — dwy, (3)
i=1
H,=> (n — ),
=1
so that equations (2) take the form
Fu-i'n - Gnﬂn = Z i:iwi’; (‘l')
=1
7("n-fu + HHEIH = ‘Z -’r‘i-i(”- —_ 'L‘)T.Uj . (5)

i=1

The simultaneous solution of (4) and (5) yields the standard least
squares estimates of position and velocity; however, they explicitly
involve the presence of all observations Z; . To cast this in recursive form,

* Estimation to any other time (n 4+ p)r ean be included by replacing (1) by

n
> {2i — [Faip — (0 4+ p — Diiag,y)i?w; = min
=1
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we repeat the process of (1) through (5) omitting the last observation
%, . This yields estimates of the (n — 1)st position and velocity:
n—1 5
Rnfl2 = Z {;:'-'1 - {i’u—l - {ﬂ' -1- i)ﬂn—ll} wi . (6)

i=1

Differentiating with respect to #,_1 and #,_1 and making use of defini-
tions (3), the resulting equations may be written in the form

n—1

Iﬂn(fu—l + '21,171) - Gnﬂ'n-—] = Z &iwi + w!i(‘t-:'l—l + aﬂfl)r (7)
i=1

_Gn(jn—l + ﬁu—l} + Hnﬂu—l = _Z ii(n - i)wi- (8)
i=1
Subtracting (7) from (4) and (8) from (5), we have
P’n[-ﬁn - (-En—l + ﬂ’n—])] - Gn(au - ﬁu—l)

= 10:![5:11 - (-ﬁn—l + ﬁnfl)],

(9)
_Gu[ju - (-?nfl + ﬂu—l)] + Hn(ﬂu - ﬁ'n—l) = Oy

whose solutions are:
Tn = (-‘Engl + 'au—l) + au[ﬁ;n - (;Ell——l + ﬁn—l)]; (]0)
Uy, = WUp—1 + ﬁn[-%n - (fuf] + an—l)], (11)

where
A o
wnGH

Bﬂ - Jn b] (13)
J.=F.H, — G (14)

Equations (10) and (11) explicitly indicate that a smoothed coor-
dinate is a linear combination of “old” data with a new ohservation;
a, and 8, are the position and velocity smoothing coefficients and are
calculated for each new observation from (12) and (13) using definitions
(3) and (14).

The estimates (F._1 + %,—1) and %,_; are merely the predicted nth
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position and veloeity (times the data interval) based on n — 1 observa-
tions, so that we may define

& = Tua + W, Wy = Uy - (15)

The smoothing equations now take the form
Tn = &0 + a(t, — &) = (1 — a,)t, + ant., (16)
Uy = U + Bu(tn — £2) = (G — Bufn) + Buln, (17)

which show that the predicted nth position and velocity may be used
to represent all past data.

The .1h|lmr to optimize the smoothing for varying measurement
errors o; arises from the fact that the quantities ¥, , G, , H,, and .J,
can themselves be summed recursively:

Fo=F.\+ w.,

G, =G+ F.,
H,=H,,+20G,,+ I'._,
Jo = Jua + wd, .

(18)

Thus, each new observation can be arbitrarily weighted by w, and, as
can be shown by statistical analysis, optimumly weighted by choosing
= 1/e,". Since J, is defined by (14), the last recursion relation above
m‘Ly be used as a consistency check. Note that a missing observation
may be properly accounted for by choosing its weighting factor equal to
zero and cyeling the sums as usual. Equations (10) through (13) then set
the smoothed coordinates equal to their predicted values, and the future
weighting of both old and new data is now altered to compensate for the
missing observation. To illustrate this, Tables T and IT have been con-
structed to show how the weighting of data changes for the case of miss-
ing second and fifth observations. Here we have chosen w; = 1 for sim-
plicity. Note that the effect of the missing observations on the variance
ratios oz,°/oy" and ¢z, /o¢’ (see Table II) diminishes rapidly with the
addition of new observations compared to the values of these ratios
when all observations are present.
The actual weighting coefficients applied to the observations to yield
the smoothed position and velocity coordinates can be determined by
solving (4) and (5) simultancously. If we define

= Dk, . = 2 did, (19)
i=]1 i=1
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TaBLe I — ArL OBsERVATIONS PRESENT (w; = 1)

n 1 2 3 4 5 6 7 8

F 1 2 3 4 5 6 7 8

G 0 1 3 6 10 15 21 28

H 0 1 5 14 30 55 91 140

J 0 1 6 20 50 105 196 336

a (1) 1 5/6 7/10 3/5 11/21 13/28 5/12

B (0) 1 1/2 3/10 1/5 3/21 3/28 1/12
az/ao? 1 1 0.833 | 0.700 | 0.600 | 0.524 | 0.464 | 0.417
oilfog® 2 0.500 | 0.200 | 0.100 | 0.057 | 0.036 | 0.024

i Ty Ty Z4 T Tg Z Tg

I. 1

T 0 1

S —1/6 2/6 | 5/6

s —2/10 | 1710 | 4/10 | 7/10

s —1/5 0 1/5 2/5 3/

T —4/21 | =1/21 | 2/21 5/21 8/21 11/21

iy —5/28 | —2/28 | 1728 | 4/28 | 7/28 | 10/28 | 13/28

Ty —2/12 | —1/12 0 1/12 2/12 3/12 4/12 5/12

1y

s -1 1

i —1/2 0 1/2

iy —3/10 | —=1/10 1/10 3/10

g —-2/10 | —=1/10 0 1/10 | 2/10

g —5/35 | —3/35 | —1/35 1/35 | 3/35 5/35

1y —3/28 | —2/28 | —1/28 0 1/28 2/28 3/28

iig —7/84 | —5/81 | —3/84 | —1/84 | 1/84 3/84 5/84 7/84

then the solution of (4) and (5) yields:

= JL[H,, — (n — D)GJw:, (20)
d; = }[G" — (0 — ). (21)

These coefficients are tabulated in Tables T and 1I for the special cases
considered.

In digital computer applications, this method would require storage
of #., tty, Fu1, Guoyy, H.—y (and J,, if desired). Upon receipt of
%, , w, is determined; the sums are updated, (18); @, and 8, are com-
puted, (12) and (13); &, and @, are determined, (16) and (17); and
#up1 and 41 arve formed, (15), and stored with the current values of
the sums. The amount of storage and computation per eycle is inde-
pendent of the number of observations.

In situations where this type of smoothing can be employed, the
method outlined here offers several advantages over conventional



RECURSIVE LEAST SQUARES DATA SMOOTHING 827

TasLE I — OBSERVATIONS 2 AND 5 MISSED
— ‘ : : i

n 1 34 56 7 | 8
F 1 1 2 3 3 4 5 G
« 0o |1 2 1 7 10 14 19
H 0 1 4 10 21 38 62 95
J 0O 0 4 | 14 52 114 200
P L) 0 1 51 | 0 19/26  31/57 | 95/200
L) 0 12 2/7 0 5/26 | 7/57 | 19/209
a:t/ay? 1 1 0.714 | 1.500 | 0.741 @ 0.544 | 0.455
a2 /aq? L 0.500 0 0.214 | 0.214 | 0.077 | 0.044 | 0.029
T, Ty Ty T T Tg Ty Ty
f[ 1
Ta
T3 0 1
Iy —1/7 3/7 5/7 |
Ty —-1/2 1/2 1 :
T —13/26 1/26 | 9/26 | 19/26
1 —11/57 3/57 | 10/57 | 25/57 | 31/57
Ts —38/200 0 19/200 | | 57/200 | 76/200 | 95/200
iy ‘ I
s
iy —1/2 1/2
it —5/14 1/14 | 4/14
iy —5/14 /14 | 4/14
i —5/26 —1/26 | 1/26 5/26
it; —16/114 —G/114 —1/114 | 9/114 | 14/114
iis —23,/200| —11/200 —5/200 7/200 | 13/200 | 19/200

methods. IFor example, the weighting factors w; can be arbitrarily chosen
without affecting the exactness condition; i.e., in the absence of errors,
true straight-line data are unaltered by the smoothing process. Thus,
the w;’s ean be chosen to place greater (or lesser) emphasis on new data
by increasing (or decreasing) their relative weight with respect to old
data. If the measurement errors (¢;°) vary in a known way with posi-
tion, velocity, or time, the w; can be chosen equal to 1/¢* so as to op-
timize the smoothing for these errors. It is important to note here that
optimum smoothing requires only a knowledge of the ratio of the errors,
not their magnitudes. Of course, the magnitudes must be known in order
to evaluate the statistical accuracy of the smoothed coordinates,

The presence of the sums makes it possible to determine the statistical
accuracy in the smoothed coordinates at any time (assuming uncorre-
lated Gaussian measurement errors) for two important cases:

(a) the weighting factors are chosen equal to K/g° where K is a
normalization constant;

(h) o = o (a constant for all 7) and w; = 1 or 0.
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In both cases, we may write
T n
2 2 2 2 2 2
ozl = 2 clel, o = D died, (22)
i=1 =1

which, by making use of (3) and (14), can be evaluated as

a-;,,2=K%, (23)
2 _ FTI ~ _KF?'I
oa, = K 7. (or Tin = 5 _J:) (24)

for case (a), and K replaced with oy’ for case (b).
The accuracy of an arbitrary prediction of p units (p7 seconds) into
the past or future may be determined from

ain,y = 2 (ci + pdi)’el,
i=1
X (25)
= ']_ [Hn + szn + pEFn]-

Equation (25) is of great value in certain tracking systems where the
(n 4+ 1)st observation is “captured” by making a prediction, #,;, of
Z,41 and surrounding it with a gate within which the observation must
fall. The optimum gate size is obtained by adding the variances of the
(n + 1)st observation and the prediction. Thus, using (25) with p = 1,
we find:

;

g/ vt + K case (a),
n ,‘) .

optimum 1-sigma gate = — (26)
a0 1/1 + J’—’“, case (D).

The gate size determined from (26) is automatically increased when
observations are missed, and is optimum for any sequence of observa-
tions and misses.

For completeness, we present the explicit value of all quantities after n

observations for the case of all w; = 1:
F, =n,
G = nin —1) ,

2
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nin — 1)_k(2n - 1)

Hn =

6 ’
J — n'(n — 1)
TR
2(2n — 1)
G = n(n 4+ 1)’
6
STTE
. = 2[2n — 1) — 3(n — 7)]
' n(n + 1) '
g - [)_[(_?_1 — 1) — 2(n — 7)]
T (h—= D+ 1)
e 22(2n—1) 2
Oz, = 0o m = Qn0o,
2 _ o 12
T = e+ 1)
. Yo o(n — 1)(2n — 1) -I—()'p(n—l)—l—bp
gy T 200 (n — Dn(n + 1)

optimum

e 5
1-sigma gate = aq ,‘/ (n j;(:l)(_n 1_5)_ 2) )

ITII. VARIABLE DATA INTERVALS

In many cases of interest, the time intervals between observations
may vary over wide limits. The results of the previous section can easily
be extended to include the ecase of arbitrary observation times i; by
replacing the quantity (n — ¢) by ({, — ;) and replacing u, by v, .
The sums 7, and H, are redefined as

Z ({H - wl ]
Z (tu wL,

(27)
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where F, is unchanged, (3), and the recursion relations become
F,=F.+ w,
¢, =G+ (I — o) Fa,
H, = Ho, + 2L, — L, )G + (Lo — L)'Fou (28)
=H, + (i, — LG, + Gu),
Jo = Jua + w.H,

The smoothing equations retain the same form, except that the
smoothing coefficient 8, now implicitly contains the time dependence

I‘n = i"n + Bn (i'u - -i‘u } . (29)
The predicted (n + 1)st observation, #,41, is now computed from
-ﬁn+] = ju + (zu-',-l - Zn )ﬁn (30)

where, obviously, one must either know Z,4. before receipt of the (n + 1)st
observation or defer computation of &,4, until after the (n + 1)st obszerva-
tion is made. For those systems which must predict the (n + 1)st ob-
servation in order to “capture” it, one must estimate the time of ob-
servation (f,.1) and apply an appropriate gate about &' = & +
(f.;1 — 1.)8,, large enough to account for all sources of error. No
degradation in the quality of the fit is made if only a poor estimate of
f,41 can be obtained, since this is merely a device for capturing T, .
Once the observation has been received, &, can be corrected to yield
£, as follows:

Bt = S’ + (s — fu+1)ﬁ..+1 . (31)

In the preceding section, we described how a missing observation
could be properly accounted for. In the case of variable data intervals,
only the time difference between successive observations enters the
equations. Thus, an observation that was anticipated (%, at ) but
never made (w,4; = 0) has no effect on the equation. The next observa-
tion is predicted at time 1.4, ie.,

;ﬁli+2 = -f:u+l + (zn-i-ﬂ - ?‘n-{-l)ﬁﬁﬁ-l

(32)

o

= -fn + (‘[u-}—‘.! - ?n)?_’n 3

and the only quantity entering the equations is ({42 — 1.).
The determination of the optimum gate size is now somewhat more
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complicated than before. In general, f,,, is determined from some func-
tion of present position and veloeity, T(&, , 7.}, so that
-f'n+1 = -I_ln + ',_’HT(J-‘M 3 J-‘n )

In the approximation for small estimation errors, o; an be deter-

ITntl
mined from*

. 2 _ 2 a-i‘ui—l a-i‘n+l) (a"%n‘H 2 ai""‘] * Q%
Tiny = i, (6.1',. ) + 202, (?i ) T o (33)

where, using (19) through (22) and definition (14), the covariance may
be evaluated as

5}

n
2 -
T, = Z C;’.?,-a'i =K -

i=1

=

and the gate size becomes

optimum 1-sigma gate = \/01“1 + o:

4n+1 *

For most practical purposes, an adequate approximation to the op-
timum gate size can be made by first estimating f,4, and then evaluating

HJH—I = HH + z(fﬂl-l»l - ?H)GH + ‘(fu+l - E::_)EF)I 3 (341)

which is inserted in (206).

Note that for this case of variable data intervals, the quantities H,/.J,
and F,/J, still determine the instantaneous position and velocity vari-
ances, respectively, and (25) (with p now equal to the prediction time
in seconds) determines the statistical accuracy of an arbitrary extrapola-
fion or interpolation.

IV, KNOWN ACCELERATION

The previous sections have dealt with the case of zero acceleration,
which is but a special case of motion with known acceleration. For the
:ase of known and constant aceeleration a, all the preceding results apply
if one modification of the smoothing equation is made. The predicted
(n + 1)st position and velocity should be determined as follows:

-'T"..-H = T, + Fn.(?nJrl - ?u) + gla(in+1 - 211)27
b1 = Uy + al n+] - Eu)

with ({41 — L.) = 7 for the case of constant data intervals,

* See, for example, Ref. 3, p. 51.
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If the acceleration is a known function of the position and velocity
a(zx, v), one could treat this case as above by evaluating a(x, v) at (&, Un)
and using (35). This procedure works very well if a(x, ») is not a sensi-
tive function of position and velocity and the time interval between
observations is not too large. Possible criteria for these restrictions for
the case of constant data intervals are

1"2 - -
5 la(F, =+ 03, D =+ 05,) — & T0, )] Kop,

or
T[a(.i‘ﬁ + oz, U0 = O'Es,.) — a(&,, ?_)")] < Oipyr

which express the fact that the variation in the acceleration due to the
errors in the smoothed data should not contribute significantly to the
error in predicted position or velocity. For acceleration functions or
smoothing times [i.e., (n — 1)7] which do not satisfy the above eriteria,
other methods must be employed to optimize the smoothing.

In order to assess the systematic error in smoothed position and
velocity due to a varying component of acceleration not compensated
for by the method outlined above, one can replace the varying component
by some average value. Then it is easy to show that, for a constant
acceleration a, the differences between true position and velocity and the
linearly smoothed values are

PO (n — 1)(n —2) (arﬂ)
Ty, — &y = ——F7  —— \ 7o/

6 2
(36)

URT -0, = n 5 ) (a'r).

Tt is obvious that this method of performing least squares smoothing
can be extended to the case of an unknown but conslant acceleration
which is a special case of motion with known “jerk” (rate of change of
acceleration). The derivation and some results for this case are given in
Appendix C, and a comparison with the estimation errors for linear
smoothing is made.
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APPENDIX A

Recursive Summation of Squared Residuals*

In connection with a study of methods to detect errors in the smooth-
ing of data by the technique described in the main text, it was found that
the sum of squared deviations from the least squares line of regression
could be determined recursively. Insofar as this may be of come interest
in certain data processing systems, we will briefly outline the derivation
and present the results in this appendix.

The sum of squared deviations from the least squares line of regression
(hereafter called squared residuals) is defined by (1), which we repeat
here:

n

RS =2 o — & + (n — Dlw: . (37)
i=1
The recursion relation may be obtained by replacing all #’s by (n 4 1)’s
in (37):
n—41

R = 2 [#i — Tt + (0 4+ 1 — DT, (38)

i=1

which ean be immediately converted to:

n

Rn+12 = Z [i.i' - -frr+1 + (n + 1 - i)ﬂll+1]2w£ + wn-}-l(-%ri+1 - :EH-H)E-

i=1
By making use of the smoothing and prediction equations, (10), (11),
and (15), we can rewrite the last result as
n

Ry = 2 (I3 — & + (n — )4,

- I(‘?‘"‘fl - ;i'u-&-l.)[an-f-l - (?L + 1 - ?‘.)Bll-i»l)”)zw'. (39}
+ u’qul‘(.;i‘n-{Ll - -1-‘n+1}2~

The evaluation of this sum is straightforward but tedious and makes

* See also Ref. 7.
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use of the defining relations for the quantities ¥, , ¢, , H, , J. , @, , and
G, (3), (12), (13), (14), and the recursion relations, {18). The result
may be written in either of two forms:

9 2 Wnt e = 2
[\,’n P = [{n + I (.1',, — Iy )
H L —app "M i (40)

2 /o A 2
= RH + wn+l(1 - anﬁ»l)(xnﬁ»I - -‘vn-l»]) -

Thus only one storage slot and a modest amount of computation need
be invested to obtain the instantaneous value of the squared residuals.

In order to use this as an error-detecting device, some assumptions
regarding the observational error must be made. If the variations in the
o are known and compensated for by choosing w, = K/e,’, and if the
errors are uncorrelated between observations, then the average value of
R’ can be shown to be

ave (R,") = K[(number of observations) — 2]. (41)
If the o;" = oo and w; = 1 or 0, then
ave (RY) = o (F. — 2) (42)

since, for this case, F, is equal to the number of observations. The fact
that the average value is proportional to two less than the number of
observations is related to the fact that two degrees of freedom have been
used up in determining &, and @, . If the variations in ;" are unknown or
too complicated to compensate for, then it is often possible, for a given
system, to determine some bounds on the average value of squared
residuals.
If we define

(number of observations) — 2

N 2

n

then, from above we have

_ K for w; = K/a/,
ave (I,) =1 (43)
o forw; = 1 or 0.
It ean be shown from a straightforward application of statistical analy-
sis* that
2K
(number of observations) — 2

var (R = (44)

with K* replaced by oo for the case of w; = 1 or 0.

* See, for example, Ref. 3, p. 103.
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If no prior knowledge of the magnitude of the measurement errors is
available, the squared residuals can be used to obtain an estimate of the
average measurement error if all w; = 1, or of the average effective meas-
urement error if an arbitrary weighting sequence is used.

APPENDIX B

Fixved Memory Smoothing’

In contrast to the method described in the main text, where the
smoothing is designed to include all observations (i.e., variable smooth-
ing time), we can set up a smoothing procedure which fits a least
squares line of regression to the latest r observations. The ability to
optimize for varying observational errors and missing observations is
retained, but we must provide storage for the » observations.

The two quantities to be minimized may be written as

[i‘i - .T” + (H- - i)ﬁﬁlgwl';
f=n+l—r

n—1 (_'l'-'))
o A yoa 12
Z [¥; — & 4+ (n — )i, ] w; .
I=n-—r
We define the sums /7, , &, , H, , and J, as follows:
n
F, = Z w;,
i=n+4+l—r
n
G, = 2 (n—Dwi,
i=ntl—r (46)
n
H, = Z (n — 2)w,;,
i=n+l—r
']n = ]',an - (;”2.
and their recursion relations are
1“!1 = Fu—l + w, — Wy—r,
G, =G+ F., —rw,._,,
(47)

]Iu = HRAI + I—)-(;n—l + Ffrwl - rzu!nfr 3
'[u = ‘In—l + H',,H,, - “?ufr[Hn—l - 2{] - l.)(-'?u—l -F (J' - l)ﬂanl]-



836 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1961

The smoothing equations can be shown to be

fn = -'f-u + an(-%n - -i'u) + 'Yn[-%nfr - (-i"n - r&n)];

(48)
ﬁu - ?1" + ﬁrl(i‘n - -f:n) + 611[3&"—-)" - (-f‘u - rﬁ’n)]g
where
o — w,‘H,, _ wn—r(an - Hn)
n J"_ ) Yn = J" 7
(49)
g, = W 5 = WnrrFy — G)
" Ju ’ " Ju '

and the prediction equations are the same as (15).
The quantities (r&G, — H,) and (rF, — @G,) may also be written re-
cursively, for if we define

A, =rF, — G,,
B, =G, — H,,
then
A, = A, — Fo.1 + rw,,,
B,=B,,+ A4,,— (G + F, ).

The explicit appearance of &,_. in (48) demonstrates the fact that
storage must be provided for the last » observations. As in the method
deseribed in the main text, the w; can be chosen completely arbitrarily
and if they are chosen equal to 1/¢,°, the smoothing is optimized for the
varying data error. It may be advantageous to provide storage for the r
weighting factors w; if they are computed from some function. This would
remove the necessity for recomputing w,_, when it had already been
computed at a previous ' = n — r.

In terms of computer operation, the time required to process each
new observation is independent of r. Thus significant savings in com-
putation time over other methods (stored coefficients, cascaded simple
sums) are achieved only when r is large. However, these other methods
smooth data in a predetermined manner and cannot alter the weighting
of data to compensate for an arbitrary sequence of observations and
misses or optimize for trajectory-dependent measurement errors.

IFor the case of all w; = 1, the explicit values of all quantities are
given at the end of Section II of the main text, with n replaced by r.
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APPENDIX C

Estimation of Acceleration

To distinguish between smoothing over observations of linear and
parabolic flight, we shall refer to the former as linear smoothing and the
latter as quadratic smoothing. For the latter, we want to minimize

g (& — [B0 — (0 = )i + (n — )%,]}) w; (50)

where

- o - 1~ 2
Uy = DT, 5, = 34,7 .

Straightforward differentiation of this expression with respect to the
three unknowns yields the normal equations:

Flln-"ﬂ - Guﬂu + Hn§ri = Z i"iwi ]
1i=1
_'(;u;t"n + hrnﬂ‘n - IHEH = —Z 'n -1 w, f (51)

H.&, — La, + K.5, = ,Z Filn — 0)'w;
where F,, , G, , and H, are defined by (3) and
I, =2 (n — )"w:,
i=1

K, =2 (n—1":.
=1
The recursion relations for I, and K, are
]n = Iu—l + :‘;Hrafl + 3G'u;l + Fl‘i—] )
I\'ﬁ = ](ll—] + 4111—1 + GHH—I + -LGH—I + Gn—l ]

and, as before, J, is defined as the determinant of the coefficients in the
normal equations:

If‘an[\n - )(Tn[]n]u - an - F'”["E - KriGuE- (53)

Repeating the procedure for the estimates Z,_1, @,—1 , and §,; and sub-
tracting the resulting equations from the corresponding equations in
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(51), we obtain the three-variable equivalent to (9). The solution for
quadratic smoothing can be written

-fu = i‘u + au(-’;:n - fll):

Uy = ﬁn + lsn(i:n - "f:n): (54)

8, = §u + 'Yn(:‘i'n - -ﬁn))

where
. = 1w HnKu - I"'-’
n n J” y
g, = w, Dl = Ml (55)
"In
= w GI'IIH - H,,E
le - n ']“ .

The auxiliary prediction equations are
ﬂ‘}',|+1 = .?T'-H + ‘!I,,, + -;‘,, y
Uppy = Uy + 25, , (56)
§"+1 =&,

where additional terms may be added to compensate for known “jerk.”
If, in addition to the definitions (19), we define

n
Sp = Z e;ry,
=1

the weighting coefficients ¢; , d;, and ¢; applied to the observations to
yield smoothed position, velocity and aceeleration are:

e = - (K = 1Y) = (GK, = HL)(n = D)
+ (Gniu - an)(n' - i)z]wh

L [(GnKn - HHIH) - (FRI(H - [{uﬂ)(n - 1)

Ju (57)
+ (FnIn - Gn}In)(n - i)glwfs

d,‘ =

e = f] [(GnIn - Hnﬁ) - (FnIu - GuHrc)(n - 7')

vn

+ (FHHH - G);Q)(n - Z')Q]TU,',
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The variance ratios for smoothed position, velocity, and acceleration
(assuming constant observational error) can be evaluated as

oo = H.K,
E- [1] - J" ]
., » F.K,—H; .
Tu, /o0 = — 7. (58)
s, » F.H,— G}
O, /Uu =
Ju
For all w; = 1, these quantities can be explicitly evaluated as func-
tions of n:
Fri =mn,
nin — 1)
Gu - 4“2—_:
_ Dy —
. - nin — 1(2n 717),
6
n'(n — 1)°
[n = .—'";
4
_onln —1)(2n — D(3r' — 3n — 1)
I(ﬂ - 30-__ B 7’
;o 2'(n — 1)*n 4+ 1) (n —2)(n + 2)
o 2160 '

3(3n° — 3n +2)

T+ Din + 2)
5, = - 18(2n — 1)

"onn 4+ (n+2)’

B 30

YT i+ Din 4 2)°

e = 3 (3R —3n 4+ 2) —6(2n — 1)(n —7) + 10(n — z}

R nin + D(n+2)

32 — in — 1D(n —2) —2(8n — 11)(2n — 1)(n — 1)

d = 6 + 30(n — 1)(n — 7)*

(n—2)(n — Dn(n+ 1)(n + 2) -
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(n—1)(n—-2) —6{n—1)(n—14) +6(n—1)

e; = 30 (n = 2)(n — n(n + 1)(n + 2) ,
'2_02[3(3n2-—371+2)j|_ 2
gz, = 09 rnF Dn+2) ]~ a0y,

ke affl: 12(82 — 11)(2n — 1) ]
T n—2)(n— Dam + Din +2) )

g _ 4m I: 180 ]
Ca, = —f .

" ™ L{n—2)n— Dnlrn+ 1)(n+ 2)

It is interesting to compare the position and veloeity variance ratios
for linear and quadratic smoothing:

position variance (quadratic) 33 — 3n + 2) 9
— . : = — — for large n,
position variance (linear) 2n +2)(2n — 1) 4
velocity variance ( quadratif_) _ (8n —11)(2n — 1)
velocity variance (linear) ~—  (n — 2)(n + 2)

— 16 for large n..

These ratios indicate the cost in position and velocity accuracy for the
inelusion of acceleration estimation.
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