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For Poisson input to a single server, it is shown that the stationary delay
distribution function for last-come first-served service is equal lo the dis-
tribution function for the busy period (the interval of time during which the
server is continuously busy) only for exponential distribution of service
time. A similar argument shows that the identity persists for a group of fully
accessible servers, each with exponential distribution of service times — a
result which has been a curiosity for some time. Finally, the delay distribu-
tion for last-come first-served service and a single server with constant service
lime 1s derived,

I. INTRODUCTION

Delays for last-come first-served service were first considered by
Vaulot' for a system with Poisson input to a group of fully accessible
servers, each with exponential service time. IFor this order of service,
an arrival which is not served immediately, following the biblical ediet,
goes to the head of the waiting line. Its consideration has a natural
theoretical interest, because, as the opposite of first-come first-served, it
geems to be a bound for the gamut of possible service assignments, or at
least of those with simple structure. Indeed Vaulot' has used it to find the
envelope of delay functions for all service assignments.

Very briefly, Vaulot’s formulation is as follows. Let »,(¢) be the prob-
ability that a waiting demand for service, which at a given moment has
just become n 4+ 1 in line, waits at least ¢ [v,(¢) is the complement of a
distribution funection; #y(¢) is the complement of the conditional delay
distribution funetion]. Then, if @ is the arrival rate, and b the service
rate for each of the ¢ servers, the set of differential recurrence relations
for the v»,(¢) is

v (1) = bev,(t) — (a + be)v,(t) + av, (1), n=01 .
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Vaulot’s solution of these equations will be given later. Here it is suffi-
cient to notice that the same relations had already appeared in the
formulation of the busy period, for the same traffic system, by Palm.?
The correspondent to »,(¢) is f.(f), the probability that a busy period
(all servers busy), which at a given moment has n waiting customers,
continues as a busy period at least ¢. Since the boundary conditions also
agree, v,(t) = f,(t), and in particular v(t) = fo(t); that is, the condi-
tional delay distribution function for last-come first-served service is
equal to the distribution function of the busy period, for the given sys-
tem. This is the curious and puzzling result mentioned in the abstract.

The first result of this paper is the proof that, for Poisson input to a
single server, the two distributions are alike only for exponential service.
For more than one server, it is plausible that the same thing is true,
though no easy line of proof seems open. For many servers, each with
exponential service time, proof of identity may be given in a way parallel
to the single server case. A second result is the determination of the delay
distribution for Poisson input to a single server with constant service
time; this result belongs in the book with that of Burke® on random
service for the same system.

II. LAST-COME FIRST-SERVED DELAY FOR POISSON INPUT TO A SINGLE
SERVER

Tor last-come first-served service, an arrival finding the server busy is
delayed until all subsequent arrivals finding the server busy or just com-
pleting service have been served. The waiting demands at the arrival
epoch have no effect on this delay because the new arrival goes to the
head of the line.

Following Takécs,' the delay distribution may be derived as follows.
Take the arrival rate as a, the service rate (reciprocal of the average
service time) as b, the service time distribution function as B(¢), and the
delay distribution funetion as G*(¢) — the star indicating that G*(t)
differs from G(t), the distribution function for the busy period, in the
starting epoch of the corresponding intervals.

Note first that the (stationary) distribution function between an arbi-
trary time epoch in a service interval and the epoch of next service
completion is given by f

() =b f: [t — B{w)] du, (1)

+ The earliest proof of this result known to me is in Palm?®; it may have been
proved much earlier.
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so that
() = f e dC(t) (2)
0

= (b,’s)[l — {3(8)],
with

B(s) = f: ¢ dB(Y).

Note that y(s) = B(s) if and only if 3(s) = b(b 4+ ), or what is the
same thing, B(t) = o

Now consider the interval between the arrival epoch of a delayed
demand and the epoch of the next service completion. The probability
that this interval has length (y, y + dy) is dC(y). The probability of n
arrivals in this interval, when its length is y, is the Poisson term
¢ “(ay)"/n! If n = 0, the delay of the given arrival for last-come first-
served service is simply C'({); if n = 1, the delay consists of the interval
to the first service completion plus the busy interval occasioned by this
arrival and all subsequent arrivals during subsequent service periods, the
distribution funetion for which is G(¢). Hence for n = 1 the delay is the
convolution of ('(¢) and (7). In the same way, for n = 2 the delay is
the convolution of C'(¢),G(t) and G({), and so on.

If G,(t) is the distribution function for the sum of n variables, each
with distribution function G/(¢), and Go(t) = 1, Gi(t) = G(t), then the
conditional delay distribution function is given by

m) = [ X e @ .~ y) acty). (3)

0 n=0

It

I*(s) =f L AGH (1)

and TI'(s) has a similar significance, then the transform of (3) ist
I'*(s) = y[s + a — al'(s)], (4)

with y(s) defined by (2). Note that I' (s) is determined by Také4es’ equa-
tion

I'(s) = fBls + a — aT(s)]. (5)
_i‘ A similar and equivalent result appears in Wishart5; note that Wishart con-

siders the unconditional delay distribution funetion, w hic h is less directly com-
parable (than the conditional) with the distribution function of the busy period.
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Hence T*(s) = T'(s) when and only when y(s) = B(s). As already
noted, this implies B(¢) = 1 — ¢, the exponential service distribution.

The common distribution function for exponential service time has
been given by Takdes,' and is obtained as follows. First, since 8(s) =
b(b + s)7, the solution of (5) is

a_—l—b-{—s—\/(a—l—b—l-s)?—‘iab

2s

I'(s) =

Next, the inverse of thist is
¢ d‘l’ —(a L -
G0 = [ S @V, p=ab, (®)

with 7:(z) the Bessel function of the first kind and imaginary argument.
An equivalent expression due to V aulot,’ which seems better adapted to
numerical work, is

y (I.l; A

2 2
1—G(t)=1'—rj; A—(’.*Msin‘:v, A=1+p—2vpcosz. (6a)

1II. DELAYS FOR POISSON INPUT TO MANY EXPONENTIAL SERVERS

The modifications of the argument above for ¢ fully accessible servers,
each with exponential distribution of service time (exponential servers,
for brevity), are relatively minor. First, in the derivation of the busy-
period distribution, a service period in the single-server case is replaced
by the interval between the epoch at which the last idle server becomes
busy and the epoch at which the first of ¢ busy servers becomes idle.
The distribution function of this interval is that of the least of ¢ random
variables, each with the same exponential distribution, the service time
distribution. If this funetion is H(¢) and the service time distribution is
B(t) =1 — ¢ ", then

1 —H() =0 — B =e™ (7)

Hence the distribution funetion G,(t) is obtained from its single server
(exponential service time) correspondent G(t) simply by replacing b
by be.

The last-come first-served delay distribution is proved identical simply
by the remark that H(t) is also the distribution of the interval between
an arbitrary point in the interval for which H(t) is the distribution
funetion and its termination, because H(t) is of exponential form.

1 Ref. 7, pair 556.1, p. 59.
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Fig. 1 shows a comparison of conditional delay curves for variousorders
of service at an occupancy p = a/be of 0.9. The orders are order of ar-
rival, random, and inverse order of arrival (last-come first-served). The
abscissae are values of an auxiliary time variable v = bet. The ordinates
are values of F'(u), the probability that the delay of a delayed arrival is
at least u. The curve marked “envelope” is an upper bound for all pos-
sible orders of service; actually it is a plot of 1 — »(u) with

v(u) = (1 — p) EPHE'M(“)

and »,(u) as defined in the introduction.

A detailed study of delays for last-come first-served service and the
busy period, with and without defections from waiting, is planned for a
later paper.

1.0
0.8 >
0.6 N\ T~ B —
' \ [—]
" [ \& [—
0.4
\ | ENVELOPE
- ‘ ‘--._-r___-
1 ———
\ \ e ——
0.2\ \
X \
AN
» <\N
0.08 A\ <
0.06 Pa
i ‘\\b\
hY
5 004 ]
= L N, | 4~ | INVERSE ORDER
s N\ ~l~—._OF ARRIVAL
| ™ T~
0.02 T N o~
‘ | \\. -~ I
\\\
0.01 9
0.008 \ B
, RANDOM
0.006 e
- 4
0.004 ‘\\
- ORDER OF S
ARRIVAL N
0.002 \ M <
\ I,
~,
N
0.00!
(o]

1 20 30 40 50 60 70 80 90 100 110 120 130 140
u

Fig. 1 — Comparison of delay curves for various orders of service occupancy 0.9.
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IV. DELAY FOR SINGLE SERVER WITH CONSTANT SERVICE TIME

Although this iz a limit case of (4), both delay and busy-period dis-
tribution functions are obtained more easily, following Takécs for the
latter, from the classification of the busy period by number served.

Note first that the generating function for number of arrivals in an
interval with distribution funection C'(t) is given by

p*(x) = 2 pa*a”

=T o f (" /nl) dC(y) (8)
= v(a — ax).

The corresponding generating function for number of arrivals in a service
interval is given by

p(x) = Ba — ax) (9)
and, by (2),
o) = L2 P@ (10)
p(1 — )’

Note that
pr(1) = P a3 @y

ppf=1—po—pr— " = Pu-

Now write f,* for the probability of n services in a delay period for
last-come first-served =ervice, and

Ha) = Zz:lf,,*.r”

for its generating function; f, and f(x) are the corresponding entities for
) . . . e &) 3 4
a busy period. Then, following Takdcs,

h* = po¥
= p*h,
fi* = p*fa + P,
and
LE =¥ + p* S fifaaei + > fifalwaazi + -ey (11)

= ap¥f()] = wvla — af(2)]. (12)

““.
*

-~

N
I
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Note that the corresponding result for f(z) obtained by Takées is
fla) = vfla — af(x)]. (13)

Hence, by (2), (12), and (13),
p = a'b (14)
Note that

f'(.r) = TL — axf'(2)3'[a — af(x)].

Nofte also that (14) may be rewritten as

pf¥(x) =14 (2 — D1 — fx)]™"

(14a)
=1+ (v — L)g(x),
where
gla)[l — f(x)] =1,
. (15)
g(0) =g = 1.
Hence
Pfu* = Guna — Gu . (16)
FFor constant service time with service rate b,
B(t) =0, t<b,
=1, t>b"
and B(s) = ¢ *". Hence
flx) = we P72
whose solution is given by
(pn)nfleﬁrm R
flay =2 222 ¢ & )
=1 n!
so that
(pn)" e .
fo = (17)

n!
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Then, using (15), the coefficients g, of the generating function g(a), are
given by
go =1,
=h=c¢"
g2 = o+ 1= (L+p)e ™,
gs=fs + 2L+ £ = (1+ 20+ 3p°/21)e "

These results suggest writing

n—1 —np k
g = alo) = 2 = (18)
k=0 o
From (15) it follows that
0n = 2 Jini (18a)
=

From this and (17) and (18), it is found that

k

Gnie = Z (k) (J + 1)j¥lg"—j—1.k—f . (19)
=0 \J

From (19) it is found in succession that g, = 1, g = n — 1, g,,g =

n(n — 2), all of which are contained in the smgle formula g, = n*”

(n — k). If this is correct, substitution in (19) shows that the following

must be an identity:

nn— k) = E(;) G- n—j— D" n =k —1). (20

Equation (20) is in fact one of the forms associated with Abel’s generali-
zation of the binomial formula; it is a special case of Equation (1b) of
Salie,® which is due to Jensen® (of whom it is proper to remember here
that he was chief engineer of the Copenhagen Telephone Company as
well as a mathematician of note).

Thus, finally,t

""}: (n — k)n*"p"/k! (21)

which, with (16), determines f,*(x).
Note also that the polynomials g, = g.(p) appear also in the dual

+ An equivalent result has been found independently by Frank A. Haight, of
the University of California.
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problem of the busy period of a single server with exponential serviee
. . . 0
time and regular arrivals considered by Connolly.'

The first service has the distribution function

Si(t) =bt, t=b,

=1, tzb" (22)
and the distribution function for n services is
S.(t) = 0, t< (n— 1),
= it, (n — b <t <nb, (23)
=], nb "
So
(1) = “Z_‘,lfn*S,.(f) (24)

is the (conditional) delay distribution function for last-come first-served
service with Poisson input to a single server with constant service time.
. _— . . . . . s Ay :
I'he distribution function for the busy period (Takdces’) is

[bt]

G(t) = Z e "(pon)" " /nl, (25)
with [bf] the integral part of bt
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