Synthesis of Transformerless Active
N-Port Networks

By 1. W. SANDBERG
(Manuseript received August 16, 1960)

The following theorem s proved:

Theorem: An arbitrary symmetric N X N matrix of real rational func-
tions in the complex-frequency variable (a) can be realized as the immat-
tance matriz of an N-port network containing only resistors, capacitors,
and N negative-RC impedances, and (b) cannot, in general, be realized as
the immillance matrixc of an N-port network containing resistors, capaci-
tors, tnductors, ideal transformers, and M negative-RC impedances if M <
N.

The neeessary and sufficient condilions for the immitlance-matriz reali-
zation of transformerless networks of capacitors, self-inductors, resistors,
and negalive resistors follow as a special case of the theorem. I'n addition,
an earlier resull is extended by presenting a procedure for the realization
of an arbitrary N X N short-circuil admittance malriz as an unbalanced
transformerless active RC metwerk requiring no more than N controlled
sources. The passive RC structure has the interesting property that it can
always be realized as a (3N + 1)-terminal network of two-terminal imped-
ances with common reference node and no internal ncdes. The active sub-
network can always be realized with N negative-impedance converlers.

I. INTRODUCTION

The development of the transistor has provided the network synthesist
with an efficient low-cost active element and has stimulated considerable
interest in the theory of active RC' networks during the last decade.

Several techniques have been proposed for the transformerless active
RC realization of transfer and driving-point functions.'™ It has, in fact,
been established that any real rational fraction (in the complex fre-
queney variable) can be realized as the transfer or driving-point fune-
tion of a transformerless active RC' network containing one active ele-
ment. In particular, Linvill’s technique® has heen the basis for much of
the later work.
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Fig. 1 — Realization of an arbitrary N X N symmetric immittance matrix.

It has recently been shown™ that an arbitrary N X N matrix of real
rational functions can be realized as the short-cireuit admittance matrix
of a transformerless N-port active RC network containing N controlled
sources, and that in general all N controlled sources are required. These
results have suggested the possibility of establishing the theorem stated
in the abstract to this paper. The proof, presented in the next section,
is based on a technique developed in an earlier paper for factoring a
class of matrix-coefficient polynomials in a scalar variable. For the spe-
cial case N = 1, our result reduces to that of Sipress.'s *

We also present in Section II a procedure for the realization of an
arbitrary N X N short-circuit admittance matrix as an unbalanced
active RC' network requiring no more than N controlled sources. The
required passive RC' network has the interesting property that it can
always be realized as a (3N + 1)-terminal network of two-terminal im-
pedances with common reference node and no internal nodes. This
result not only displaces the balanced network assumption implicit in
the proof given in Ref. 19, but is of considerable interest in its own right.

1I. REALIZATION OF A SYMMETRIC IMMITTANCE MATRIX AS AN ACTIVE RC
NETWORK CONTAINING NEGATIVE-RC IMPEDANCES

Consider a 2N-port network of resistors and capacitors characterized
by the short-circuit admittance matrix Y and suppose that a negative-
RC admittance —yy is connected to port N 4+ &k (k = 1,2,---,N), as
shown in Fig. 1. Tt is convenient to partition ¥ as follows:

* This case was first considered in detail by Kinariwala,'¥ who showed that a
broad class of driving-point functions could be realized.
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The short-circuit admittance matrix Y relating the voltages and cur-
rents at ports k(k = 1,2,---,N) can readily be shown to be

Y = Yy — Yo[Ye — diag (y1,0 - yn)] Yo', (:

b
S

where the superscript ¢ indicates matrix transposition.

We assume that Y = (1/D)[N,;] is an arbitrary prescribed symmetric
N X N matrix of real rational functions, where [N ;] is a matrix of poly-
nomials and P is a common denominator polynomial. The synthesis
technique requires that the three submatrices in (2) be determined so
that Y is realizable as a transformerless RC network and that the ele-
ments in diag (y1,y2,- - -, yx) be RC driving-point admittances.

The matrix Y can be expressed as

M

s .

Y= SKw+ZKnA_’ (3)

m=0 S + 'Ym

where K., and K,, are real symmetric coefficient matrices and the v,
are real and satisfy

OD=v<m <72 <7m. (4)

It is well known that, if the coefficient matrices in (3) are “dominant-

diagonal” matrices,* Y can be realized as a transformerless balanced RC

network.” Our objective is to determine the submatrices in (1) so that

Y satisfies the dominant-diagonal condition. To simplify the discussion
it is assumed that Y is to be regular at infinity.

2.1 The Synthesis Technique

Consider the class of matrices Yy, Yo, Yoo, and diag (y1,y,- - -, yw)
satisfying (2) such that Y. and [Y — Y] possess inverses. As a first
step in obtaining insight into the realization problem we rewrite (2) in
the following form:

— YooY — Yu] 'Y = Yoo — diag (ya,0,- - -,Yn). (5)

* A dominant-diagonal matrix M has elements m ;. which satisfy

miiz 3| mil.

k=7
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It is convenient to employ the following notation:
1 1
Yu = —[viy] ==X,
q q
P = [qlv,-j - D.l'.‘,‘], (6)
1
Yo = -Xp )
q

where X, P, and X;; are N X N matrices of polynomials and ¢ is a
common denominator polynomial.
From (5) and (6),

D
4q

x12'P41X12 = Yo — diag (yl,ye,- ' -,yN). (7)

The left-hand side of (7) can be written before cancellation of common
factors as a matrix of real rational functions with common denominator
polynomial ¢ det P. Since the poles of the right-hand side of (7) are re-
quired to be distinet and on the negative-real axis, X;» must be chosen
so that the least common denominator polynomial of the matrix of
rational funetions has only zeros that are distinet and on the negative-
real axis. To satisfy this condition, we employ a matric polynomial
factorization technique developed in an earlier paper.” Specifically, it
is shown in Appendix A that, given Y, a realizable submatrix Y,, =
(1/q) [x:j] can be chosen so that:

(a) deg x;; = deg ¢ = NLy(z = 1,2,---,N), where* L, = max
[max deg Ni;, deg DJ;

(b) the off-diagonal numerator polynomials x;;(¢ # j) are any set of
real polynomials consistent with x;; = 2;; and deg a; = deg ¢;

(¢) Yy has only coefficient matrices that satisfy the dominant-diago-
nal condition with the inequality sign;

(d) the matric polynomial P [defined in (6)], of degree* deg ¢ + L,
can be written as the product P;P; of two matric polynomials P, and P,
(with N X N matrix coeflicients) of degrees respectively deg q and L, ;

(e) det P does not vanish identically; and

(f) the matric polynomial P, has the property that det P., a poly-
nomial of degree NL,, has only distinet negative-real zeros that are
different from those of ¢.

In that which follows, we shall assume that conditions (a) through
(f) are satisfied.

* The degree requirement is merely a sufficient condition,
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In accordance with (d) and (f), note that the left-hand side of (7)
can have only distinet negative-real poles if X;s is chosen to be (1/a)Py,
where « is any nonzero real constant, for then (7) reduces to*

t . .
—_— P, = Y»—d N ).
o dot B, P, adj P, = Y — diag (yryz, - - yx) (8)
In addition, with this choice of X2, Y is regular at infinity [see (6)
and (d)]. Therefore, by choosing the magnitude of a sufficiently large
it is always possible [see (c)] to satisfy the dominant-diagonal condition
for the first N rows of Y. Hence let
1
Y12 = — P] . (9)
aq
It remains to identify Y» and the y; such that the dominant-diagonal
condition can be satisfied in the last N rows of Y.
The left-hand side of (8) also is regular at infinity since the required
condition:

deg D + deg Py + deg adj P, = deg ¢ + NLy (10)
reduces to
deg D = max [max deg N,;, deg D]. (11)
TI'rom (f),
M
gdet P, = A H (s + vm), (12)
m=1

where A is a nonzero real constant, M = deg ¢ + N Ly, and
0 <’Y] <72 R <‘YM.

In view of (10) and (12), (8) can be rewritten as

M

Yo — ding (e iiy) = 2 Ap — (13)

y
m=0 8 Y

where
O=v <7y <72 <7vw

and the A,, are real symmetric coefficient matrices. It is clear from (13)
that each off-diagonal term in Yas is equal to the corresponding sum on

*In (8), adj P. refers to the adjoint of P which is defined by P: adj P» =
U det P, , where U is the identity matrix.
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the right-hand side and that
diag (yy+1,y+].?7N+E,N+2y' e ,gﬂ.v.‘l,v) — diag (Uh!]h' ' 'aUN’)

; (14)
j‘_ﬁ‘ﬁi ding (@yimy@ozm,* * - Ayym)-
Let
diag (@uim,@oom, * *Axnm)

= diag (bum,boam, =+ ,bywm) — ding (Citm,Coom,* * = .Cxwm),
where
biimCiim = 0(2 = 1,2,--- N).

The §yyin+i and y: can be identified as follows:

diﬂ-g (3}~+1,~+1 T n+2, N4y ',ﬂw.zv)

3 (15)
= Z + y dl"»g (bllm + d]lm: b22m + d}2m; Y bNNm + dNNm);
diag (g, +5yn)

¥ (16)

8 .
= E — dlag (Cllm + dllm; Ca2m + d22m, Tty Cam + dNNm),

=0 8§ + Ym
where the matrices diag (dym,dozm,- - ,dyym) are chosen to satisfy the
dominant-diagonal condition in the last N rows of Y. Hence the matrix
Y is realizable as a transformerless balanced 2N-port RC network for
all symmetric N X N matrices Y of real rational functions.

The realization of an arbitrary symmetric open-circuit impedance
matrix Z can be treated as follows. The elements of a matrix R =
diag (7y,re,- - -,rxy) can be chosen nonnegative and sufficiently large so
that Y/ = [Z — R]™" exists. Therefore, Z can be realized by inserting a
{(nonnegative) resistor r; in series with each port k(k = 1,2,-.-,N) of a
network characterized by Y'.*

The proof relating to the necessity of N negative-RC admittances
follows directly from a more general result developed previously.” f

* Similarly, the theorem proved in Ref. 19 remains valid if the words “‘short-
circuit admittance’ are replaced with ‘‘open-circuit impedance.”

T In connection with the analysis in Ref. 19, it is worthwhile to point out that
any controlled voltage (current) source ean be replaced with an arbitrarily chosen
finite impedance (admittance) in series (parallel) with a new controlled voltage
(current) source whose output differs from that of the original source by a term
which nullifies the effect of the impedance (admittance). With this understanding,
it is not necessary to consider further the degenerate cases which can arise if

zero and/or infinite impedance paths appear when the controlled sources are set
equal to zero.
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The techniques presented in this section bear heavily on the problem
of realizing unbalanced transformerless N-port active RC networks.

These considerations are treated in detail in the following section.

1II. UNBALANCED ACTIVE RC REALIZATION OF AN ARBITRARY SHORT-CIR-
CUIT ADMITTANCE MATRIX

We consider a (3N + 1)-terminal £C network to which is connected
at terminals N + &k (k = 1,2,---,2N) and the common reference node
a (2N + 1)-terminal active network as shown in Fig. 2. Denote by
E., E,, E., L, I, and I. the following column matrices of voltages

and currents:

Ea = .

I, =

_IN

E N+1

Eyye
Eay
1 N1

.-

s
* H

Ioy

T
HEiw

Jrm-.u
12N+2

I:M’

(17)

It is convenient to partition ¥, the short-circuit admittance matrix of

A,B
(ACTIVE)

E,, ]

1) o:— (N+1)
@ I | (N+2)

| i

| | (2n)

E (PA55J35 rRe) | |

! i (aN+1)

i |

! L

: (aN-1)
(N) o—i—

l (3N) |

(0) o=

Fig. 2 — Unbalanced realization of an arbitrary N X N short-circuit admit-

tance matrix.
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the (BN + 1)-terminal network, as follows:

N N N
Yo Yo Yu |N
T={Yn Yo Yu|N. (18)
Y3l Y32 Y33 N
The active network is assumed to impose the constraints*
I, = —AIL,
E. = —BE,,

where A and B are N X N coefficient matrices. It is not difficult to derive
the following expression for the short-circuit admittance matrix Y relat-
ing E, and I, , the voltages and cwrrents at the N accessible ports in
Fig. 2:
Y = Yll + (Ylﬂ - YIJB}

[AYyB — Y., — AYs + Yu'B] (Yo' + AYy').

(19)

(20)

We shall simplify the discussion by assuming that the matrices A and
B are given by

A=aU, B =5HU, (21)

where U is the identity matrix of order N and a and b are real constants
such that ab > 0. The synthesis technique does not further restrict the
choice of @ and b so that the (2N + 1)-terminal active network can
always be realized with N voltage-inversion or N current-inversion
negative-impedance converters by choosing respectively a = 1, 5 > 0
or b = —1, a < 0. Note therefore that the realization can always be
accomplished with N controlled sources.

We shall consider explicitly the case in which a, b > 0 and indicate
the modifications necessary to treat the remaining case.

Our objective is to prove for all prescribed matrices Y that ¥ can be
realized as a (3N + 1)-terminal network of two-terminal impedances
with common reference node and no internal nodes. Tt is well known™
that the necessary and sufficient conditions for achieving this type of
realization are that the coefficient matrices in

Y = sK. +ZK

+ Ym

* The matrices A and B should not be confused with the diagonal matrices
A, and B, introduced in Section 2.1.
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be real symmetric dominant-diagonal matrices with nonpositive off-
diagonal terms, and

0=9 <y <72 < ¥ar, vm real. (23)

It is clear that all off-diagonal terms in Y are required to be negative-RC
driving-point admittance functions. For simplicity we assume that Y
is not to have a pole at infinity (K. = 0).

3.1 The Realization Technique

Our notation is identical to that used in the preceding Section 2.1:

1 1
Y, = q [x,] = axn, P = [gNi; — Dyl
(24)
1 1
Y. = - Xo, Y = - X,
q q

By paralleling the development in Section 2.1* and using (20), (21),
and (24), we obtain{

% (er + ﬂxl:x')P_l(Xm — bXyy) = ab¥y — Yo — a¥y 4+ bYs,'. (25)
We again assume that Yy, is chosen so that (a) through (f) (Section

2.1) are satisfied. It is assumed in addition that the off-diagonal terms in
Y., are chosen to be negative-RC driving-point admittance functions

[see (b)].
Next let
1
Xiﬂ - bxla = E Pl:
11 (26)
Xml + ﬂxlal = — P,
B2

where 8, and . are nonzero real parameters to be chosen in accordance
with the discussion below and Py is a nonsingular matrix of N* poly-
nomials chosen so that each entry in (1/¢)P; is a negative-RC driving-
point admittance function that is nonzero at the origin and finite at
infinity. It is clear that deg P; = deg q.

We consider the matrices Yy and Yy . From (24) and (26) we find

* Tt is assumed that [Yia — bY14], [Y — Yul, and (Y12 4+ a¥15!] possess inverses.
 The writer is indebted to J. M. Sipress for suggesting a study of (25) by ex-
ploiting the essential similarities betweenit and (7).
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__ 1 b t &_@2
Yo = BT [P“ + b_ﬁlpl:|’

1 1
X CE ) [P“ o ]

Suppose that* a,b,8; > 0. Note that, since deg P; = deg P; = deggq, itis
possible to choose | 8:/8, | sufficiently small such that each element in
Y. and Yy is a negative-RC driving-point admittance function. It is
clear that this ratio can be held invariant while 8, is chosen sufficiently
large to satisfy the dominant-diagonal condition in the first N rows of Y.

At this point the synthesis problem reduces to the determination of
the submatrices Ysy , Yus, and Yo .

(27)

3.2 Determination of Y , Ya , and Yo
Substituting (26) into (25) gives
1 D ¢

— Z PP, = ab¥s — Yo — a¥s + bYa', (28)

BBz ¢
where

M
gdet Py = X[ (s + vu).

m=1

It can easily he shown that the left-hand side of (28) is regular at in-
finity. Hence it can be written as

M M
S 8
Fm Gm - Hm 29
mz + Y qu s+ Yu mz=0 s+ vm’ (29)

where the F, are real (in general nonsymmetric) coefficient matrices,
C=yvo<m <72 <7,

and the elements in G,. and H,, are nonnegative.

It is clear from (28) that the asymmetry in the F,, must be absorbed
hy the terms —a¥s + 0Y3'. By equating the antisymmetric part of (29)
to the antisymmetric part of (28), we obtain

b + a [Y.i" - YB] = ,l) Z 5 [Gm - Gmt - Hm + Hrn,]- (30)
2 2% s+ Ym

* The case in which @, b < 0 can be treated by an entirely analogous method,
which involves interchanging the properties assigned to the matrie polynomials
P, and P, in (25). The required factorization can be obtained by factoring P! and
taking the transpose of the resulting product.
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Equation (30) is satisfied® with

1 8 t
2= — G, + H,'|. 31
Yo = — 7 2575 G+ H (31)
The equation corresponding to (30) for the symmetric parts, with Y
given by (31), is

ﬂ'bY(i‘d - Y22 = b Z g [Gm + Gmt]

a + ) m S + Ym
(32)
_ (43 S ¢
a—+ b ; S+ Ym (Ho + H..
The identification of Y3 and Ya can be made as follows:
od 1 s
Y33 = _b(ﬂ + b) g s + Y [Hm + Hml]a
od b P .
Y?‘Z = _(ﬂ + b) ; P + Y [Gm + Gm ]:
d 1 (33)
YJ!:i = ﬂ((l + h} %: 3 + 'Ym [Gm + Gm] + % s + Jm!
d g 8 s
Ygﬁ:a+1)§s+7m[H”1+Hnl mS+’Ym

where “od” or “d” over an cqual sign signifies that equality holds re-
spectively only for the off-diagonal and on-diagonal elements. The
diagonal matrices J,. in (33) are chosen to satisfy the dominant-diagonal
condition for the last 2NV rows of ¥.

Tor the special case when all the F,, are symmetric matrices the strue-
ture can be simplified by setting Yz = 0. This leads to the identification:

[J([ 1 s
Y33 = - ab ;Hm m,
od
Yoo = — Z G,
m + ‘Ym
d 1 (34)
Y33=Eh%: +%:Jms+7m
d
Y'.‘.'.‘ = Hrn b m
; 8 + ! Z J + Tm'

* There are, of course, other solutions of (30).



I,=-al,;
E,=-bE;
ab>o

Fig. 3 — Realization of a general driving-point function.

Note that the elements in Y3, and the off-diagonal elements in Y., and
Yi; given by (33) and (34) are, as required, negative-RC' driving-point
admittance funetions.

Hence, an arbitrary N' X N matrix of real rational functions can be
realized as the short-circuit admittance matrix of the structure shown in
Fig. 2 in which the (3N 4+ 1)-terminal network requires no internal
nodes and contains only resistors and capacitors.* A numerical example
is considered in Appendix B. The freedom implicit in the synthesis pro-
cedure can be exploited further to yield certain simplifications and other
types of structures. Some of these possibilities may already have oc-
curred to the sufficiently interested reader.

IV. DISCUSSION

In Section II it is shown that N is the sufficient and, in general,
minimum number of negative-RC driving-point immittances that must
be embedded in an N-port network of resistors and capacitors to realize
as its immittance matrix an arbitrary symmetric N X N matrix of real
rational functions in the complex-frequency variable.

Since any negative-RC driving-point admittance function which is
regular at infinity can be written as the sum of a negative constant and
an RL driving-point admittance function, it follows [recall from (16)
that the y; need not have a pole at infinity] that

Theorem:T An arbitrary symmetric N X N mairixz of real rational func-
tions can be realized as the immittance matrix of an N-port transformerless
RLC network containing N negative resistors. A canonical form is a 2N-
port network of resistors and capacitors terminated at each of N ports with
an RL driving-point impedance in parallel with a negative resistor.

* The complete structure for the special case N = 1 (and Y32 = 0) is shown in
Fig. 3.

1 Carlin has established?! some interesting related results for networks contain-
ing resistors, capacitors, inductors, gyrators, ideal transformers, and negative
resistors.
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The unbalanced realization of an N-port active RC network described
in Section IIT leads to a particularly simple structural form for the re-
quired passive subnetwork. Possibilities of determining other structures
are implicit in the method. An intriguing class of unsolved problems
relate to the determination of structures which optimize some measure
of performance such as the sensitivity funetion.
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APPENDIX A

Selection of Yy and Decomposition of P

The submatrix Yy can be made to have dominant-diagonal coefficient
matrices by choosing any realizable N X N RC admittance matrix, with
elements of suitable degree as determined subsequently, and multiplying
each diagonal entry by a sufficiently large positive real constant p.
Denote the matrix determined in this way hy

P-TuJ Typ -0 Uiy -’
Yo=11 : e : (35)

: pla : .
. N ’
U1 T PINN

The polynomial det P can be written as

R(s’l, (36)
o/

N
det P = det [qN;; — Day] = (—=p)" {D“' II = +
\ i=1
where R(s)/p" is a polynomial with all coefficients that approach zero
as p approaches infinity. We shall assume that deg x,; = deg ¢ (i =
1,2,---,N), and that the x;; are nonzero at the origin. Note that, as p
approaches infinity, Ndeg ¢ zeros of det P approach the zeros of

The zeros of this product can be chosen to be distinet and different from
those of D. Hence, for a sufficiently large value of p, condition (c¢) of
Section 2.1 is satisfied, and det P has at least N deg ¢ distinet nega-
tive-real zeros that are different from those of g.

We next consider a sufficient condition for the removal of a linear
factor of P.



774 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1961

A1 Factorization of the Matric Polynomial P*

Let L be the degree of the highest degree polynomial in P and suppose
that the zeros of

J
detP = > a8
=0
include K distinet zeros.

Consider the result of determining a nonsingular matrix Q with con-
stant elements such that every element in the ith column of PQ has a
zero at s = 8; (7 = 1,2,--+ N), where s; is a zero of det P, If indeed this
can be done, P can be written as

P = (PQ)Q' = P'(DQ), (37)

where D is the diagonal matrix diag [s — 81, 8 — 8s, - -+, s — sy], and the
degree of the highest degree polynomial in P’ is . — 1. This is equivalent
to removing a linear factor of the matric polynomial P:
L . rL—1 X ']
P=> sA =|D A/ J DQ!

j=1 L i=1
rL—1
=X sz,-’Q—I:I QDQ™ (38)
=

L—1

=12 SJAJ'”] (sU — B),

L /=1

where U is the identity matrix of order N and
B = Q diag [s1,85, - -,8] Q-l.

We first develop a sufficient condition for the existence of a nonsingu-
lar matrix of constants Q, such that every element in the kth column of
PQ, has a zero at s = s . It is then shown that Q can be constructed
as the product of N matrices of this type.

At any zero of det P, say at s = s;, the column rank of P is necessarily
less than N, and hence there exists a relationship of the form

N
0= ZI: 7P i(s1), (39)
£

where P;(s;) is the jth column vector of P evaluated at s = s; and the

* The discussion is more general than is required for the purposes of this pa-
per.
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constants ¢;; are not all zero. If, in addition, for some value k of the
index ! there exists a relationship of the form (39) with g # 0, a matrix
Q; having the desired properties exists and in fact is given by

— ] . - -
. oy

QA: = AQM;

qnk ’ 1

Consider
N
det P = 2 pal,
=

where the A; are the appropriate cofactors constructed from columns
12,---k — 1,k 4+ 1,---\N of det P. Denote by Ci(s) the polynomial

which is the greatest common factor of all the Ay . It follows that
N
det P = ((s) 2 padi, (40)
t=1

in which there are no factors common to all the A;'. It is evident that all
(N — 1)-rowed minors of det P constructed from columns 1,2,-- -k — 1,
E 4+ 1,--+ N cannot vanish at s = s, if s is a zero of

N
Z:l P ad ik’

that is different from those of C:(s). In such cases the following set of
equations yields only the trivial solution for the g, :

N
0= 2 gaPj(se) (41)
=k
and hence
N
0= 2 qaPi(s), (42)

=1

where g # 0.
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In other words, if det P has at least one zero which is different* from
those of Ci(s), a nonsingular matrix of constants, Q. , can be deter-
mined such that each element in the kth column of PQ, has a zero at
§ = 8.

Since the number of zeros of the polynomial C4(s) cannot exceed
(N — 1)L, it is obviously sufficient that K, the number of distinct zeros
of det P, exceed (N — 1)L. Note that the degree of the highest degree
polynomial in P and the zeros of det P are identical to the corresponding
quantities in PQ, . Note also that the elements in all columns of PQ;
except the kth remain unchanged. Hence, if K > (N — 1)L, the matrix
Q can be constructed as a product of N matrices Q. chosen so that every
element in the ¢th column of

PLI_II.QL, (i:]izl."!m)

has a zero at s = s;.

To summarize, if (N — 1)L < K, N zeros of Det. P can be removed
as a linear factor of the matric polynomial P, The remaining polynomial
is of degree L — 1.

The removal of a linear factor can be ensured under a weaker condi-
tion if A, , the leading coefficient of the matric polynomial, is singular.
This matter is discussed in the following paragraph,

Let R be a nonsingular matrix of real eonstants chosen so that A R
has N — r vanishing columns, where r is the rank of A, . Assume for the
purposes of discussion that the last N — r columns of A R vanish. It
follows that the elements in the last N — » columns of PR have degrees
not exceeding L — 1. In accordance with the discussion presented above,
it is possible to determine a nonsingular matrix of constants Q, such that
each element in column k& of PRQ; has a zero at s = s; if det P has at
least one zero that is different from those of C}/(s) [the greatest common
factor of the (N — 1)-rowed minors of PR analogous to those of P
above]. Note that if 1 = k& = r the degree of (';/(s) cannot exceed

* A suitable Q, corresponding to a multiple root of det P at s = s; can be de-
termined if the nullity of P at s = s; exceeds the number of linearly independent
nontrivial solutions for the g in (41).

t This implies that the matric polynomial P can be written as

L
P=CII (sU - By,

i=1

when det P has NI distinet zeros. When these zeros are all real the coefficient
matrices C and B; are also real.
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(N — 1)L — (N — r). Therefore, if K > (N — 1)L — (N
vonsingular matrix

r), a

o =1l

can certainly be determined such that each element in the kth column
of PRQ’ has a zero at s = s (k = 1,2,---r), while each element in the
last N — r columns of PRQ’ is of degree not exceeding L. — 1. Hence,
P can be written as follows:

P = (PRQ')(RQ")"' (43)
= p” diag [S — 81,8 — 8g,--,§ — Srylrla' : ',ll(RQf)ilr
| —
N —7r
P = P”[sF + G, (44)

where P” is of degree L — 1 and F and G are constant N X N matrices.
In particular, F is of rank r.

It should be clear that the factorization (44) is not dependent upon
which N — » columns of AR vanish.

For our purposes it is sufficient to consider only the negative-real
zeros of det P. A moment’s reflection will show that if Ndeg ¢, the mini-
mum number of distinet negative-real zeros of det P, satisfies Ndeg ¢ >
(N — 1)L, N distinct negative-real zeros of det P can be removed as a
linear factor of P. The remaining polynomial is of degree L — 1 and the
matrix of constants B [in (38)] is real. It follows that Nk distinct nega-
tive-real zeros of det P can be removed as k linear factors if

(N —1)[L — (k—1)] < Ndegq — N(k — 1). (45)

The degree of P is L = deg ¢ + Lo, where L, = max [max deg N,
deg D). To ensure that k = L linear factors of P can be removed, we
have, from (45),

NLy — 1 < deg ¢. (46)

APPENDIX B
Synthesis of a Two-Port Network — A Numerical Example

To illustrate the main points in the synthesis technique presented in
Section 3.1, we consider in detail the synthesis of a two-port network.
Since the factorization of P is described elsewhere," we select an example
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for which it is possible to choose Yy so that the required factoring is
trivial. It is assumed that ¢ = b = 1 [see (19) and (21)]:
Let the prescribed 2 X 2 matrix be

1 ”__1 1 s+ 3
Y—D[N.,]—S—+3|:S_3 ; } (47)

The following matrix Yy obviously satisfies the dominance condition
with inequality:

Yo = Cleil = #["(s R ] p>0. (48)

s+ 3 0 pls 4+ 2)
Since ¢ = D, the factorization of P is trivial. Specifically, we have
_ oy | (1 — p — ps) s+ 3 _
P = (S+3)[ S—3 (Q—QP—PS) - P1P2v (49)

where

_ _ | (1= p — ps) s+ 3
P, = (s + 3)U, P2—|: L (2—2p_ps):|’ (50)

and U is the identity matrix of order two. It is clear from (50) that p
can be chosen so that det P, has two distinct negative-real zeros. We
choose p = 10, which yields

P, — —(10s + 9) s+ 3
P s—3 —(10s+18) )
det P, = 99s° + 270s + 171 (51)

= 99(s + 1.0000)(s + 1.7273).
Hence Y will be of the form
3
s
K. , 52
mz=:0 s + Ym ( )

where v = 0, y; = 1.0000, v, = 1.7273, and v; = 3.0000.
Since P, is a diagonal matrix, P; can be chosen to be a diagonal matrix.
Let

P, = —(s + 2)U. (53)

Note that (1/q)P; is a matrix of negative-RC driving-point admittances.
Using (27), we can determine values of §./8; for which Y;; and Yy; are
matrices of negative-RC' driving-point admittances. Accordingly, with
B:/81 = 0.5 we obtain:
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v, - L [—00833 0
27 B 0 —0.0833

i s |:-—0.166(i 0
(s + 3)8: 0 —0.1666 |’

y. = L[ —05833 0
b Eq 0 —0.5833

" 8 [—0.1666 0
(s + 3)8 0 —0.1666 |

From (48) with p = 10,

33333 0 s 166666 0
Yu [ 0 6.6066]+s+‘ 3‘_ 0 3.3333]' (55)

The choice 8, = 0.2 satisfies the dominant-diagonal condition for the
first two rows of Ko and K; . This condition is satisfied with the equality
sign in the first row of Ky, and for this reason reduces by one the number
of resistors necessary to realize Ko .

Using (998:182)" ' = (.1263, we obtain from (28), (29), (51), and (53),

0.1263(s + 2) [105 +18 s+ 3 ]
(s + 1.0000)(s + 1.7273) L s =3 10s + 9

(54)

(56)

Equation (56) can be expressed as

26316 0.4386 ]
Z Fo - om [—().4381& 13159 )

s 13889 —0.3472
T 1.0000[ 0.6944 0.17361] (57)

4 s 0.0199 0.0348
s + 17273 L —0.1296 —0.2267 |

The coefficient matrices K,. can readily be constructed with the aid
of (31), (33), (54), (55), and (57). Consider for example K. From

(57),
2.6315 0.4386 0 0 .
Go = [ 0 1.3159] H, = [0.4386 0]' (58)

Using (31), (33), and (58),
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V. — [—1.3157 —0.4386
o 0 —0.6579 |’
. 26315 4+ juw —0.2193
Yu, = | —0.2193 1.3159 + ja |’ (59)
Yo — | Jw —0.2193
o7 —0.2193 Fan
where jio and ja are the diagonal elements in Jo [see (33)].
From (54) with 8 = 0.2, (55) and (59)
3.3333 0 '—0.4166 0 1-2.0166 0
0 6.6666, 0 —0.4166 0 —2.9166
_____________ I.______._______L_._____....___.__..____._.__
- |—0.4166 0o . J —0.2193/—1.3157 0
Ko=1""% —0.4166;—0.'2"193 jao 1—0.4386 —0.6579 - (60)
_____________ R et e
—2.9166 0 1—1.3157 —0.4386 2.6315 + jip —0.2139
0 —2.9166, 0 —0.6579—0.2139 1.3159 + jz

It 1s easy to verify that the choice ju = 2.2534, jo = 2.4725 satisfies the
dominant-diagonal condition for the last four rows of K, and in particular
satisfies the condition with equality in rows five and six.

The remaining coefficient matrices K; , K , and K3 can be constructed
in a similar manner. The realization of the matrix ¥ is straightforward.

B.1 An Allernative Synthesis

Some reflection will show that a large number of elements are required
to realize ¥. This number can be reduced by choosing the elements in
P; differently. For this reason it is worth while to consider the following
alternative synthesis technique.

If P could be written as P,’Py’, where P, has the properties previously
associated with P; (here denoted by Py’), the sum in (29), with Py’ = Py,
would contain simply one term [see (28) and recall that D = ¢] while
the properties assigned to Y. and Yy; are permitted to remain invariant.

Consider the matrix P, given in (51) and repeated below for con-
venience:

: s — 3 —(10s + 18)

By adding the first row of P, to the second, and then adding the new
second row to the first, we obtain

; [=(19s +21) —(8s + 12)
= [—(93 +12)  —(9s + 15) ] (62)

P‘.=[—(IOS+9) s+ 3 :I (61)
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Note that each element in (1/¢)Py is a negative-RC driving-point ad-
mittance function. Since Py’ can he obtained from P, by successive ele-
mentary operations on rows, the relation between P, and Py’ can be
expressed by

P/ = TP,, (63)

where T is a 2 X 2 nonsingular matrix of real constants. Specifically,

T - []) }] (64)

The matrix P can be written as
P = P,T 'TP, = P/P/, (65)
where P,/ = TP, and P,/ = P,T . Using (50), (64), and (65),
p/ _[ (s +3) —(s+ 3)}
—(s+3) 2(s+3)

At this point we let Py = P, and return to the procedure demon-
strated earlier.
From (27) with 8:/8: = 1, (62), (66), and (55),

(66)

—30 —25] s —60 =25
Yoo —"3;[—2.5 _1.5_+52(S+3)[ 20]

1[—40 —1.5] s —6.0
Yo =g, [—1.5 35| T B F 3 [—2.0

2.5
0

3.3333 0 ] 6.6666
Yu =[ 4+ 2 [ ]

l\.') l\J

] (67)
0 66666 " s+ 3 0 333‘%‘%

The dominance condition is satisfied in the first and second rows of
K, and K;’ with 8, = 3.3000. The condition is satisfied with equality
in the first row of Ky'.
The left-hand side of (28) is
1 D
BiB: ¢

where U is the identity matrix of order two.
Equations (34) and (68) lead to

.. — [0:0018 + ji 0 48 Ju’ 0]
B = 0 0.0918 + o’ s+30 gnl’

Jlu 0 8 jul 0 i| .
Y. = l: 0 j%r] + sT3 l: 0 jm’ , (69)

Y32 = O

. P, = 0.0018 U, (68)
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The coefficient matrix K¢’ is

| 3.3333
0

K, = | ~0-9091

1 —1.2121
—0.4545

0 1-0.9091 —0.7576,—1.2121 —0.4545
6.6666(—0.7576 —0.4545!—0.4545 —1.0606
______ L_______,,7777777 e o o . ——————— e = — ——
—0.7576] i’ 0| 0 0
—0.4545, o' 0 0

|

____________________ R —
—0.4545, 0 0 1 0.0918 + jy/

—1.06060 0 0 | 0

0
0.0918 + 720’

The dominance condition is satisfied in the last four rows of Ky (satis-
fied with equality in the third and sixth rows) with jio’ — 1.6667, j:' =

1.4233.

The remaining coefficient matrix K,’ is given by

| 6.6666 0 —1.8182 —0.7576:—1.8182 —0.7576
3.3333:—0.6061 —0.6061:—0.6061 —0.6061

il
, | —1.8182 —0.60611 ' 0 10 0
K
1= | —0.7576  —0.6061 0 FEU 0
,,,,,,,,,,,,, S
—1.8182 —0.6061 0 [\ 0
—0.7576  —0.6061 0 0o ! o Jo'

07576 0:2525

0.6061 02020

18182 0608 o0.6061 0-2020
( 12121 04545
AATAY
07576 ©.2525 0.606/ 0-2020
0.7576 0.4545
VOLTAGE -
18182 0606! INVERSION 0.6061 0.2020
NEGATIVE-
C' IMPEDANCE
b CONVERTERS
m AN 1.0606
<« S
W G <» @f
1.5151

0.0918
0.2112

3.9394

0.5050
g

(VALUES IN MHOS AND FARADS)

Fig. 4 — Realization of two-port network example.
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For this matrix the dominance condition is satisfied with ji,' = 2.4243,

! = 1.3637.

The final network is shown in Iig. 4.
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