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The adjacency matriz of a graph of n points is the square matrix of order
n, tn which the 7,7 element is one if and only if the ith point and the jth
point are adjacent, or © = j; and is zero otherwise. Let A be the adjacency
matrixz of graph G considered as a boolean matrix sothat 1 + 1 = 1. Then
G*, the square of G, is the graph whose adjacency matrix is A*. We obtain
a necessary and sufficient econdition for a graph to be the square of a tree by
providing an algorithm for determining a tree that is the square root of any
graph known to be the square of some tree. This algorithm eannot be carried
through when a graph is not the square of a tree. It 7s shown that, if a graph
ts the square of a tree, then it has a wnique tree square root. The method
wlilizes a previous result for determining all the cliques in a given graph,
where a cliqgue is a maximal complete subgraph. This result was obtained
while attempting the more general problem of characterizing boolean matrices
having a square root, or, in general, an nth rool.

I. INTRODUCTION

The correspondence between graphs, matrices and relations is well
known and presents an interesting field of investigation. With any graph
( there is associated a symmetric square matrix of 0’s and 1’s, called its
“adjacency matrix”. Forming the boolean square of this matrix, we may
call the corresponding graph “the square of . It is an open problem
(communicated to us by N. J. Fine) to characterize those graphs that
have at least one square root graph, and in general those graphs that
have an nth root for any positive integer n. This paper presents a par-
tial solution to the general problem by characterizing those graphs with
a tree for a square root. It is also shown that, if the graphs obtained on
squaring two trees are isomorphie, then the trees themselves are iso-
morphic.

In the course of the development of this paper, an algorithm is given

* Princeton University and Institute for Advanced Study (presently at Uni-
versity of Michigan); work supported by a grant from the Office of Naval Research
to the Princeton University Logistics Project.

641




642 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960

for construeting a tree from a given graph known (or found by the char-
acterization) tobethesquare of a tree. This is based on a previous method
for determining all the cliques in any graph.'

A graph @ consists of a finite collection of points together with certain
lines joining pairs of distinct points. Two points of G are adjacent if
theyare joined byaline. A complete graph is one in which every twodistinet
points are adjacent. A clique is a maximal complete subgraph of G contain-
ing at least three points. A point of G is eligual if it is inat least one clique;
it is undeliqual if it is in exactly one clique and multicliqual if it isin more
than one clique. Two points are cocliqual if there is a clique containing
both of them. The neighborhood of a point b of G consists of b together
with all points adjacent to b. A point is nezghborly if it is cocliqual with
. each point in its neighborhood. Thus, every neighborly point is cliqual.

A path is a collection of lines of the form biby , bebs , - - -, beab: , Where
these ¢ points are distinet. A cycle consists of a path together with the line
b, joining its end points. A graph is connected if there is a path be-
tween any two points. A free is a connected graph with no cycles. An
endpoint of a graph is one which is incident to exactly one line. It is
well known® that every tree containing more than one point has an end-
point. A next-point is one which is adjacent to an endpoint. An articula-
tion point or cut point of a connected graph is one whose removal results
in a disconnected graph. A block is a connected graph with no articula-
tion points.

Let the points of G be by, -+, b, . The adjacency matriz of G is the
matrix A = (a:;), where a;; = 1 if points b; and b; are adjacent and
a;; = 0 otherwise, except that we take (arbitrarily) the diagonal of A4
to contain only 1’s. By the boolean product of two matrices of 0’s and
1’s is meant their ordinary product with the stipulation that 1 4+ 1 = 1.
The square of G, written G*, is that graph whose adjacency matrix is
A* (all matrix products will be regarded as boolean).

II. LEMMAS

It is convenient to derive the following sequence of lemmas. In this
section, we have as the hypothesis that @ is a given graph known to be
the square of some tree 7. The tree T itself is not given; only the graph
G is available and it is assumed that @ has at least three points.

Lemma 1: G is complete if and only if T has exactly one next-point.

Proof: If T has exactly one next-point b, then the neighborhood of b
contains all the points of 7. Therefore G' has exactly one clique and is
complete. If @ is complete, then 7 must have a unique next-point. For
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if T has two distinet next-points, then there are two distinet points of
(¢ that are endpoints of T and are not adjacent in G.

Lemma 2: Every point of ¢ is neighborly and @ is connected.

Proof: Since G = T*, every point of @ lies on a triangle and so is cliqual.
Further, every point is neighborly since every line of & is contained in a
triangle. Obviously, the square of a connected graph contains that graph
and is defined on the same set of points; G is therefore connected.

Lemma 3: Every clique of @ is the neighborhood of a nonendpoint of
T, and conversely.

Proof: We first remark that the neighborhood of an endpoint can be a
clique only in a graph of two points that we exclude. Obviously, the
neighborhood of any nonendpoint b of T generates a complete subgraph
of G. It remains to show that this subgraph is maximal. This is immedi-
ate, since any point not in the neighborhood of b cannot be adjacent in
(i to all points of the neighborhood.

To prove the converse, let C be a clique of G. If an endpoint b of T
is in C, then the clique €' must consist of the neighborhood of the next-
point of b. For any point of & not in this neighborhood cannot be adja-
eent to b in G. If €' does not contain an endpoint of 7', let ¢ be any point
of €. If C is the neighborhood of ¢, there is nothing to prove. Otherwise,
there is a point d of € not in the neighborhood of ¢. In this case, both
points ¢ and d must have some common adjacent point e. Thus € is
the neighborhood of e.

Lemma 4: If G has more than one clique, then b is a unicliqual point
of G if and only if b is an endpoint of 7. Alternatively, we may say that
if G is not complete then b is a multicliqual point of ¢ if and only if it
is a nonendpoint of T

Proof: If b is an endpoint of T, then the only clique containing b is
given by the neighborhood of the next-point of b. If b is unicliqual in G,
then it cannot be adjacent to two distinet points of 7. For b would then
belong to more than one clique, since by hypothesis G’ contains more than
one clique.

Lemma 5: Two nonendpoints of T are adjacent in T if and only if their
neighborhoods are cliques of & that intersect in exactly two points.

Proof: If two nonendpoints of T are adjacent in T, then they are both
contained in the cliques in G given by their neighborhoods in 7" in ac-
cordance with Lemma 3. These two nonendpoints cannot both be adja-
cent in 7' to a common third point since 7' has no cycles. Hence the inter-
section of these two neighborhoods contains exactly these two points.
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Conversely, if two distinet cliques of @ intersect in exactly two points,
then the corresponding nonendpeints in T’ (in accordance with Lemma 3)
are adjacent in 7. For if these two points are not adjacent, their neigh-
borhoods in 7' can intersect in at most one point since T is a tree and has
no cycles.

Lemma 6: @ is a block.

Proof: Lemma 2 shows that @ is connected. Points that are adjacent in
T are also adjacent in . T'wo points both adjacent to any given point in
T are adjacent to each other in G. Therefore the removal of any point
of @ cannot disconnect it.

1II. CHARACTERIZATION

We now state conditions that we shall see characterize every graph
that is the square of o tree and demonstrate that, if G = T°, then G
satisfies these conditions. In the next section we shall present an al-
gorithm for finding a tree root of such a graph, and shall show that the
algorithm can be applied to graphs that meet the conditions of the pres-
ent section. Therefore, a graph will be shown to meet these conditions if
and only if it has a square root that is a tree.

The characterization has two cases. In Case 1, ¢ = K, , the complete
graph of p points; in case 2, ¢ # K, .

Case 1

Consider the tree consisting of one point joined with all the others.
When this tree is squared, the result is the complete graph. We illustrate
with Iig. 1, in which 7% = K.

Case 2

Consider the following five conditions for a graph G # K, :
i. Every point of @ is neighborly and G is connected.
ii. If two cliques meet at only one point b, then there is a third clique
with which they share b and exactly one other point.

Fig. 1 — Graphs for Case 1.
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iii. There is a one-to-one correspondence between the cliques and the
multicliqual points b of G such that the elique C(b) corresponding to b
contains exactly as many multicliqual points as the number of cliques
which include b.

iv. No two cliques intersect in more than two points.

v. The number of pairs of eliques that meet in two points is one less
than the number of cliques.

We now prove that if there is a tree such that T* = @, then G will
either be complete or will satisfy the above five conditions. We have al-
ready settled Case 1 in Lemma 1 and Ilig. 1. We now turn to Case 2,
where G # K, .

The necessity of the first four of these conditions for a graph ¢ = K,
that is the square of a tree follows readily from the lemmas. Condition
i is a restatement of Lemma 2. Condition ii follows from Lemmas 3 and
5, for, if € N Cy = {b}, then neither C; nor C» can be the clique associ-
ated with point b in accordance with Lemma 3. Hence, there is a third
clique (3 corresponding to b, and (5 has the relationship stated in ii
with ('; and s by Lemma 5. Condition iii is a combination of Lemmas 3
and 4, while iv is implied by Lemma 5. Condition v follows immediately
from the well-known theorem that for trees the number of points ex-
ceeds the number of lines by one (see p. 51, satz 9 of Ref. 2).

1V, ALGORITHM AND THEOREM

If the graph @ is complete, we have already seen that there is a unique
tree T such that @ = 7%, and we have illustrated this with Fig. 1.

Now, let G be a graph that is not complete and satisfies the five con-
ditions of Section III. We now show how to construct a unique tree 7'
(up to isomorphism) that is a square root of G.

Step 1

Tind all the eliques of @ in accordance with the method of Ref. 1.
Step 2

Let the cliques of ¢/ be ¢y, -+, C,. Then n > 1, since (7 is not com-

plete and condition i holds, Consider a collection of multicliqual points
by, =+, b, corresponding to these cliques in accordance with condition
iii. These are to be the nonendpoints of the tree 7' being constructed. IMind
all the pairwise interseetions of the n cliques. By condition iv, no cliques
meet in more than two points. We now form a graph S by joining the
points b; and b; by a line if and only if the corresponding cliques C'; and
C; intersect in two points. By condition v, S is a tree.
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Step 3

For each clique C; of G, let n; be the number of unicliqual points. Thus
n; is a nonnegative integer. To the tree S obtained in Step 2 attach n,
endpoints to b;, obtaining a tree 7. Since the points of G are either
multicliqual or unicliqual and the points of T are either nonendpoints or
endpoints, the number of points of G and 7' is equal.

It is clear that the tree T constructed by this algorithm is a tree square
root of G. It also follows that the five conditions of the preceding section
are sufficient for an incomplete graph to be the square of a tree. Further,
the algorithm results in a unique tree 7', up to isomorphism.

We have just proved the following theorem about the relationship be-
tween trees and their squares:

Theorem: Let T, and T» be trees. If Ty" and T, are isomorphie, then
T, and T» are isomorphie.

V. EXAMPLE

We illustrate the algorithm with the graph G of Fig. 2, which meets
the conditions for being the square of a tree. In this graph we indicate
the points for convenience by the numerals 1, ..., 8.

By the method of Ref. 1 we find all the cliques of . There are four
cliques whose composition is as follows:

Ci: 1256,
Co: 1234,
Cy: 237,
Ca: 248,

In accordance with Step 2 of the algorithm, we introduce the points
by, bs, by and by . Among the four cliques there are pairwise intersections
between C: and each of the other cliques, but the other cliques have
only single point intersections with each other. We therefore obtain the
graph S shown in Fig. 3, which is a subtree of the tree 7" under con-
struetion.

We now proceed in accordance with Step 3. Let U, be the set of uni-
cliqual points of C'; ; then we have:

U]! 56,
Ug: —
U:]Z 7,
Uy;: 8.

On joining each point b; to the number of points in the set U; we obtain
the tree T' shown in Fig. 4.
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Fig. 2 — Graph @ for the example.
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Fig. 3 — Graph S for the example.
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Fig. 4 — Graph T for the example.
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