General Stochastic Processes in
Traffic Systems with One Server

By V. E. BENES

(Manuscript received September 1, 1959)

Congestion in systems with one server, evemplified by simple queues, in-
dividual telephone trunks and particle counters, is considered without any
restrictions on the statistical character of the incoming load. Elementary
methods establish formulas and equations describing probabilities of delay and
loss. These methods deemphasize special statistical models and yield a gen-
eral theory. In spite of this generality, it is altempted to give intuitive proofs
and extensive explanations of the physical significance of formulas, as well
as rigorous derivations. The theory is applied to specific models to oblain
tllustrative new results.

I. INTRODUCTION AND SUMMARY

Congestion theory is the study of mathematical models of service
systems such as telephone central offices, waiting lines and trunk groups.
It has two practical uses: to provide engineers with specific mathemati-
cal results — curves and tables — for designing actual systems, and to
provide a general framework of concepts into which new problems can
be fitted and in which current problems can be solved. Corresponding
to these two uses are two kinds of results: specific results pertaining to
special models and general theorems valid for many models.

Most of the present literature of congestion theory consists of specifie
results resting on particular statistical assumptions about the traffic in
the service system under study. Indeed, few results are known in con-
gestion theory that do not depend on special statistical assumptions,
such as negative exponential distributions or independent random vari-
ables. In this paper we obtain some mathematical results that are free
of statistical restrictions, but which apply only to a limited class of sys-
tems. These results concern general stochastic processes in traffic sys-
tems, such as counters and simple queues, that have only one server.

The limitation to a single server is severe, and may be difficult to
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overcome. We hope that appropriate analogs of the methods used here,
applied to stochastic processes in several dimensions, will yield statisti-
cally general theories for systems with many servers. Some systems, for
example, queues with many servers in parallel, cannot be given a theory
free of special assumptions without the use of multidimensional proc-
esses; other systems have a structure that permits us, in principle, to
treat them by “iterating” results for one server. In Section VIII we
suggest, as a conjecture, how the general theory we give for one tele-
phone trunk might be applied several times to give a general loss formula
for a group of trunks.

The classical problems of telephone traffic engineering usually involve
many servers, and so theories dealing with single servers have been of
peripheral interest to traffic engineering in the past. However, modern
increases in the speed of components have made possible electronic tele-
phone exchanges, now under study and development. By dint of their
speed, some of these systems either have a single active server (the
“gommon control’), or may reasonably be viewed as a set of (relatively
independent) single servers. Therefore, the case of one server is in fact
of immediate and practical interest.

The aims of this paper are three: (a) to describe a new general ap-
proach to certain congestion problems; (b) to show that this approach,
although general, can nevertheless be presented in a relatively elemen-
tary way that makes it available to many persons; (¢) to illustrate how
the new approach yields specific results, both new and known. What
follows is written only partly as a contribution to the mathematical
analysis of congestion. It is also a frankly tutorial account, aimed at
increasing the public understanding of congestion by first steering atten-
tion away from special statistical models and then obtaining a general
theory. Such a point of view, it is hoped, will yield new methods in prob-
lems other than congestion.

When a general theory can be given, it should be useful in several
ways: in increasing our understanding of complex systems; in obtaining
new specific results, curves, tables, ete; in extending theory to cover
interesting cases that are known to be inadequately deseribed by exist-
ing results. At first acquaintance, the theorems of such a general theory
may not resemble “results’” at all; that is, they may not seem to be
facts that one could obviously and easily use to solve a real problem. A
general theory is really a tool or principle expressing the essence or
structure of a system; properly explained and used, this tool will yield
formulas and other specifies with which problems can be treated.

Let us give examples of questions we shall be able to answer and re-
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sults we shall obtain. As a first example of increased understanding, we
shall be able to answer, affirmatively, the question

Is there a small number of specific features of the incoming
traffic which suffices, quite generally, to determine delay dis-
tributions and loss probabilities?

We shall exhibit these features, and give delay and loss probabilities in
terms of them.

As a second example, of both increased understanding and a new case,
let us consider the matter of Markov stochastic processes. A Markov
process has a particularly simple probabilistic structure, in that all in-
formation about the past history of the randomly moving point is irrele-
vant to its future development, if its present position is known. Such
processes have been very useful in congestion theory, because of the
convenient funetional equations (such as “statistical equilibrium” equa-
tions, continuity equations, renewal equations) that are associated with
them. However, it is also true that congestion theory has occupied itself
almost exclusively with Markov processes, or with the generalizations of
these called regenerative, and semi-Markov, processes. Thus the follow-
ing question has doubtless been asked:

What functional equations can be derived for non-Markov
problems in delay, or in loss?

In answer, we show that the probability that a queue be empty at ¢
satisfies, quite generally, a Volterra equation of the first kind. This
equation coincides with a known equation in the Markov case, as it
should; similar results hold for loss.

By way of specific results, we prove that, in many cases of practical
interest described by Markov processes, the solution of the Volterra
equation has the intuitive form

Pr{queue is empty at #} =

__ total load in [0,t)
i

average of the greater of 0 and (1

+ 1Mn1t1ai load (chance that total load in [0,¢) is at most ¢).

In these cases, it is no longer necessary to solve the Volterra equation;
one merely computes the quantities on the right-hand side of the for-
mula just given. The “initial load” is the time the queue would take to
empty if no customers arrived after time zero; the “total load in [0,t)”
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is the initial load plus the sum of all the service-times of customers
arriving in (0,f).

This result is illustrated by Fig. 1, which shows the probability that
a queue is empty as a function of time for two well-known cases, nega-
tive exponential service times and constant service times. In each case,
arrivals are in a Poisson process at the rate A\, and the mean service
time is b. The curves suggest that the approach to equilibrium is con-
siderably faster with constant service times than with exponential serv-
ice times. The “‘exponential” curve was computed from (48), and the
“constant’” curve from the formula given above. Both curves approach
the same limiting value, 0.750.

The physical background of intended applications is discussed briefly
in Section II, while Section ITI deseribes the cumulative load or traffic.
Sections IV and V are devoted, respectively, to equations characterizing
delay and loss operation in terms of the offered load; these sections are
purely descriptive, and no probability is involved. Probability first enters
in Section VI, where we discuss the general nature of the problems we
try to solve, the methods we use and the results we obtain. Formulas
and equations are stated and explained for probabilities of delay in
Section VII, and for probabilities arising in loss operation in Section
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VIII. Proofs of, and additional comments on, the results for delay appear
in Section IX, and a number of specific formulas are deduced in Section
X. Precise derivations of the results for loss are in Section XI, with an
additional limit theorem being presented in Section XII.

1I. PHYSICAL BACKGROUND

We shall discuss results applicable to the following type of system:
there is given a machine that is either idle or busy; every so often, at
random instants, someone tries to use the machine; and the machine can
be operated in two ways, called loss and delay. In delay operation, people
who find the machine busy wait for their turns in order of arrival, and
then make it busy (by using it) for the originally intended length of
time; in loss operation, people who find the machine busy are sent away
or “lost,” while those who find the machine idle seize it and use it for
a random time, the service time.

The system to be studied has been described in terms of people who
try to use a machine, but the same structure appears in other applica-
tions. In telephony, for example, the machine to be used may be a
marker, and the “people” arriving may be registers filled with dialed
digits; telephone engineers usually refer to the service time as the hold-
ing time. In the study of radioactivity, the machine is an ionization
counter, the “people” are impinging particles, and the service time
(called the dead time of the counter) is a length of time after the register-
ing of a particle during which the counter cannot count, so that it misses
particles arriving during this interval.

The quantities of engineering interest in these models vary with the
application, but the following ones seem to be of general importance: for
loss operation, the chance of loss, i.e., the probability that an arriving
customer find the machine busy, and the probability distribution of the
busy period, i.e., the amount of time that must elapse until the machine
next becomes idle; for delay operation, the distribution of waiting time.

III. THE CUMULATIVE LOAD, K(f)

Before we can study the two modes of operation, loss and delay, we
must deseribe the offered load of work, or the arriving traffic. This is
done most easily by using a step function, K(t), which is nondecreasing
and left-continuous. The locations of the jumps are the epochs of arrival
of customers, and the magnitudes of the jumps are the service times or
the lengths of time the machine is made busy. Equivalently, the offered
load is completely determined by the arrival epoch # and the service-
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time S; of the kth arriving unit, & = 1, 2, - - -. This situation is depicted
in Fig. 2. We shall use K (t) to deseribe the load for both loss and delay
operation.

IV. INTEGRAL EQUATION DESCRIBING DELAY OPERATION

As a mathematical description of the delays to be encountered under
delay operation, we use the virtual waiting time, W (¢), which can be
defined as the time a unit would have to wait for “service” if it arrived
at time ¢. At the epoch ¢, of arrival of the nth unit, W(¢) jumps upward
discontinuously an amount equal to S, , the work or service time of the
unit. Otherwise, W(¢) has slope —1 if it is positive; if it reaches zero,
it stays equal to zero until the next jump of the load funetion K(t).
Corresponding graphs of K(¢) and W (¢) appear in Fig. 3.

If K(t) is interpreted as the work offered in the interval (0,t), then
W(t) can be thought of as the amount of work remaining to be done
at time £. In terms of this interpretation, it can be seen that

work remaining at ¢ = total work load offered up to ¢ — elapsed time
+ total time during which machine was idle in (0,t).

The machine is idle when, and only when, W(u) = 0. Then, formally,
W(t) is defined in terms of K(t) by the integral equation

t
W(t) =K(t)—t+fn Ul-W()ldu, t=0, (1)
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Fig. 2 — Cumulative load.
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Fig. 3 — (a) Graph of K(t) vs. t; (b) graph of W(¢) vs. t.

where U(t) is the unit step function; ie., U(z) = 1 for x = 0, and
U(x) = 0 otherwise. For simplicity, we have set W(0) = K(0).

It has been shown by Reich' that the solution of (1) is, if K(z) — 2
has a zero in (0,t),

W) = max [K(t) — K(z) — t + x].

This fact may be interpreted physically as follows: the quantity in
brackets, [K(t) — K(x) — t 4+ z], is, if positive, the excess of arriving
load in the interval (z,f) over the elapsed time ¢ — a; it is therefore the
overload in (a,t). Reich’s formula then says essentially that

delay at t = max [overload in (x,t)].
szt
The relationship between the waiting time W(¢) and the offered
traffic K(¢) can be further elucidated graphically by reference to Fig. 4.
The light solid line shows K (¢) — ¢, the traffic offered up to time ¢ minus
the traffic that could have been served if the server had been kept busy
throughout the interval (0,t). It is supposed in Fig. 4 that the server
starts busy at { = 0. It is busy until { = a. At this point, the server be-
comes idle and K(¢) — ¢ turns negative, and its negative value is the
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Fig. 4 — Relationship between waiting time and offered traffic.

negative of the idle time. At ¢ = b, more traffic is offered and K(¢) — ¢
jumps up.

The heavy dashed line represents the waiting time at ¢, W(t); W(¢)
can also be thought of as the traffic in hand and yet to be served. It
can never go negative. It is equal to K(¢) — ¢ before a, and is zero from
a to b. At b, it jumps up, remaining above and parallel to K(f) — ¢
until ¢ = d, when the server goes idle again. At b, W(¢) is above K(t) —
t by exactly the amount by which K({) — ¢ was most negative. At d,
when W(t) reaches zero, K(¢) — tis just reaching its previous minimum,
and K(d) — d = K(b) —

During the interval (d,e), W(t) remains at zero, while K(¢) — £ be-
comes more negative, establishing new minima as it goes and building
up more idle time. At { = e, K(¢) — t and W (¢) both jump up; W(¢)
is again parallel to K(¢) — , but it is now above it by an amount equal
to the negative of the last minimum, K(e) — e.

In Fig. 4,

min [K(z) — z], ¢t = q,

agz<t
is shown as a light dashed line. It is 2 monotone, noninereasing function
of ¢, and is the negative of the total idle time up to time ¢ To account
for the period ¢t < a, when K(¢) — ¢ has not yet become negative and
the server has not yet been idle, we write

W(t) = K({) —t — min {O,Omin (K(x) — z]},
Zz=<t
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and thus obtain another representation for the delay, i.e., a solution of
(1).

In a manner similar to that of Fig. 4, Fig. 5 depicts, simultaneously,
the offered load K(¢) in a light solid line; the waiting-time W (¢) in a
heavy solid line; the negative of the accumulated idle time in a heavy
dashed line; and the “load-time excess’” K(t) — ¢, when it does not
coincide with the negative of the idle time, in a light dashed line. The
terminology in Fig. 5 has been purposely chosen to suggest an interpre-
tation in terms of inventory or storage theory: W(¢) is the real backlog
(of orders, say,), K(t) is the cumulative amount ordered and K(t) — t
might be termed the load time excess or the virtual backlog. Then

real backlog = virtual backlog 4+ accumulated idle time.

V. INTEGRAL EQUATION DESCRIBING LOSS OPERATION

Tor loss operation, we use A(t), the service time remaining at ¢, as
an indicator of the condition of the machine. We may define A(¢) as

/,—K(t)= OFFERED LOAD
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Fig. 5 — Relationships among offered load, waiting time, negative of accumu-
lated idle time and “load time excess’.
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the amount of time remaining until the machine next becomes idle,
with the convention that A(¢) = 0 means that the machine is idle at
t. At epochs of arrivals, A (¢) jumps upward discontinuously if the arrival
in question finds the machine idle, the amount of jump being the service
time of the arriving eustomer. Arrivals that find the machine busy do
not affect A (¢). While A (¢) is positive, it has slope —1; when it reaches
zero, it stays equal to zero until the next jump. A graph of A(#) consists
of isosceles “right triangles” laid on their sides; corresponding graphs
of K(t) and A(¢) appear in Tig. 6. For the study of A(¢), it is more
convenient to define K(¢) to be right-continuous.

In terms of the interpretation of K(t) as cumulative work load it is
easy to see that

work remaining to be done at { = total work load offered up to ¢
— load missed in (0,t) because machine was busy
— elapsed time + total time during which machine was idle in (0,¢).

This means that 4 (¢) is defined in terms of K (¢) by the equation

A() = K(t) — fﬂ: (1 — Ul—A(w)]} dK(u) — ¢
t (2)
+ fo Ul—A(w)] du,

where, as before, U(t) is the unit step function, and wehaveset 4(0) =
K(0).

VI. CHARACTER OF THE GENERAL RESULTS

Models of waiting lines and telephone traffic usually contain explicit
assumptions about the statistical nature of the offered load K(t). For
instance, Erlang’s original models’ amount to assuming that the inter-
arrival times (f, — f,—1) are all independent with the same negative
exponential distribution; and similarly for the service times. These as-
sumptions give a class of models whose parameters are the means of
the negative exponential distributions.

A broader class of models is specified by retaining the assumptions
that the interarrival times be independent and identically distributed
(and similarly for service times), but allowing any distribution, not
just the negative exponential. The interarrival and service time distri-
butions may still be said to “parametrize’ this broader class of models,
since their choice determines a model in the class.
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As more general assumptions even than those of the last paragraph
are considered, it becomes extremely laborious first to specify the model
and then to compute interesting quantities such as distributions of delay,
probabilities of loss, ete. So, instead of looking for ways of exactly char-
acterizing the model, we can try to search directly for simple ways of
expressing the quantities of interest in terms of the model. Since the

probabilities

Priw(t) = w},
Prid(t) < w)

(3)
(4)

are what we actually wish to compute from the model, the question
arises whether this calculation can be made without first specifying the
entire probabilistic structure of K(t). The following intuitive argument
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can be adduced for answering “yes”’. Both W {t) and A (¢) are defined
in terms of the load by very special relationships that are expressed in
the integral equations we have given. Hence, no matter what are the
statistical features of K(t), it is likely that the distributions of W(¢) and
A(?) depend only on some very particular, physically interpretable
statistical functions associated with K(t). It is not obvious that such
an economy can be made in the generality we desire.

Two principal results, described in the next sections, state that the
probabilities (3) and (4) can in fact be given fairly simple expressions
that are generally valid for any load process. These expressions depend
only on certain special functions obtainable from the statistical structure
of the load K (t). Each function has a definite intuitive or physical signifi-
cance, to be given later. These statistical functions achieve the desired
economy of description, because we can state that the desired probabili-
ties depend only on the features of K(t¢) expressed in the functions. For
the purposes of calculating (3) and (4), we do not need the entire proba-
bilistic structure of K(t), but only the small relevant part.

Another way of putting the problem that we have attempted to
solve is: for general load processes K(¢), what small amount of informa-
tion about the statistical nature of K () will determine Pr{W (¢) = w}
for all ¢t and w, and how is this computation to be made? [A similar
question arises for A (¢).] The statistical functions are then the informa-
tion about K(t); the formulas for the probabilities (3) and (4) indicate
the method of computation. Specifically, (1) defines a transformation of
a stochastic proeess, K(t), of service times and arrival epochs into an-
other stochastie process, W(t), of waiting times. For each ¢, there is an
operator or formula that gives the distribution of W(¢) in terms of suit-
able fundamental statistical functions associated with K(u) for v = &
The principal problem is to find the form of the operator and the char-
acter of the fundamental functions. The answer to this problem should
depend only on the integral equation (1) and on the fact that K(t) is a
nondecreasing step function. It should depend on no special features of
the probability measure for K(t) except those implied by this last prop-
erty. Accordingly, we shall assume at first that K(t) is a random, nonde-
creasing step function; its only statistical peculiarity is that it is a non-
decreasing step function.

There already exists an extensive literature dealing with probabilistic
models of telephone trunks, electronic counters and similar machines;
we shall attempt to relate our approach to this literature. The models
used to date have usually included strong hypotheses of independence
or else used special distribution functions, such as the negative exponen-
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tial. The results obtained depend methodologically, almost without ex-
ception, on the possibility of writing Kolmogorov equations for a Markov
process, or integral equations of renewal type for probabilities or expec-
tations associated with a regenerative process (Smith?®). The extensive
work of Takdes™*® falls entirely in this category (see also the references
therein).

Our approach is, in a sense, an inversion of the usual method described
above. The latter consists in first doing probability theory to set up
Kolmogorov or renewal equations, and then doing analysis to solve the
equations. We can, however, achieve greater generality by taking maxi-
mum advantage of the fact that the processes of interest, W(¢) and A(¢),
already satisfy (1) and (2), respectively. This we do by careful analysis
of W(t) and A(t) themselves, by in effect performing some of our analy-
sis in the domain of random variables, and taking averages only at
convenient points.

VII. PROBABILITIES OF DELAY

It has been shown’ that Pr{W(¢) £ w} can be expressed in terms of
the two statistical functions

Pr(K(t) £ w}, (5)
R(tuw) = PriK(t) — K(u) —t 4+ u = w| W(u) = 0}. (6)

We first clarify the physical significance of the functions (5) and (6)
entering into the representation of Pr{WW(¢) < w}. The first is simply
the probability distribution of the cumulative load, K (). The second,
written as

R(tuw) = Pri[K(t) — @] — [K(u) — u] = w| W(u) = 0}

is the (conditional) probability distribution of the change in the “over-
load” that occurs in the interval (u,t), given that the server was idle at
time u. Here we have used the term ‘“overload” to mean the amount of
work that would have been left still undone even if the traffic had been
so spaced that there was no idle time. This overload is represented by
K(f) — . A negative value of the overload represents the negative of the
idle time that would have occurred if the traffic spacing had permitted
the server to finish all of the work by time ¢.

The significance of R{¢,u,w) can be made more apparent by describing
how to measure it. We look at many identical copies of the system at a
time « when the server is idle, and we measure the totaled service times
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of all customers arriving in the next interval (u,t), for ¢ > u; the fraction
of these numbers that is in the range (0, ¢ — v + w) is R({,u,w).
The delay W(t) is never negative, and so

Priw(t) = w} =0, ifw < 0. (7)
Forw > 0, Pr{W(t) < w} is given by

Pr{W(t) = w} = Pr{K({{) — t £ w}
a [t (8)
— — | R(tuw) PriW(u) = 0} du.
ow Jo
The chance, Pr{W(u) = 0}, that the server will be idle at time u satis-
fies the Volterra equation of the first kind, for —¢ = w £ 0,

average of max [0w — K(f) 4+ t] =

t+w (9)
R(tuw,) PriW(u) = 0} du,

and the left side of (9) is expressible in terms of (5) as
t+w
E{max [0w — K(t) + t]} = [ Pr{K(t) < u} du,
0

where E{u} is the expectation of u.

Once the “basic” functions (5) and (6) are known, the computation
of Pr{W(t) < w} proceeds by first solving the integral equation (9)
for the chance Pr{W (u) = 0} that the server will be idle at time . This
probability ean then be used in (8) to give Pr{W(t) = w}.

Proofs for, and extensive explanations of, these results for delay have
been deferred until Section IX, while we continue by discussing results
for loss operation. The proofs to be given are new, and much simpler
than those of Ref. 7. They also make it easier to exhibit the physical
significance of the formulas and functions arising.

VIII. FORMULAS FOR LOSS OPERATION
We shall show that Pr{A(¢) < w} can be expressed in terms of two

kernels, R(¢,u) and Q(¢,u), as follows:

Pr{A(t) = w} = Pr{4(0) =t + w}

¢ (10)
_ fo [l — R(t + wu)] dE{S(u)},

where E{S(u)] is the average number of units that arrive in (0,u] and
find the machine idle. It satisfies the integral equation
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E{S(t)} = Pr{y =t} + f; Q(tu) dE{S(u)}, (11)

where ¥, is the epoch of the first successful arrival.
The kernel R(¢,u) may be interpreted as a rigorous version of

Pr{service time of a successful unit arriving at uis <t — u | a
successful unit has arrived at u},

and Q(¢,u) may be thought of as a rigorous version of

Pr{next successful arrival after u occurs before ¢| a success-
ful unit has arrived at u}.

The first term on the right in (10) is self-explanatory. Precise definitions
of R(-,-) and Q(-,-) are given in Section XI.

To explain (10) itself, we observe that 4(0) > ¢ + w implies A(t) =
A(0) — t > w, and hence

Prid(t) = w} < Pr{d(0) = ¢ + w}.

The integral term in (10) is therefore a correction to the overestimate,
Pr{A(0) < t + w}. From the interpretation of R(¢u), and that of
dE{S(u)} as the “density” of successful arrivals at u, we see that (10)
can be rendered in words as

Pr{work time left at ¢t < w} = Pr{work time left at 0 < ¢ + w}
—Pr{some successful arrival during (0,¢] stays beyond time ¢ + w}.

It is reasonable to suspect that, if the load process K (t) has some weak
stationarity properties, and if certain “averages” exist, then

Pr{A(t) = w}

has, for each w = 0, a nonzero limit as { — o . For w = 0, one expects

intuitively that this limit will have the form

a
where a,b are constants which ean be interpreted as follows: if we watch
the process A(t), we notice that periods of time during which A(¢) = 0
alternate with those during which A(¢) > 0; then a is the average
length of a period during which 4(¢) = 0, and b is the average length
of a period during which A (f) exceeds 0.

These conjectures are justified in Section XIT, where it is shown that,
if the kernels R({,u) and Q(¢,u) used in (10) and (11) are functions of
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(¢t — u) only, and if
1 — R(x) (12)
is integrable over (0, ), then

lim Pr{A(#) = w}

=0

exists and has the form

a-i—j;w[l — R(u)] du
a-+ b ’

with

b= f: [ — R(w)]du,

a,-l—b=j:°[1 — Q(u)] du.

We have already pointed out that R(¢,u) can be interpreted as

Pr{service time of a successful unit which arrives at « is (13)
=t — w| a successful unit arrived at u}.

Then R(tu) = R(t — ) states that (13) does not depend on the first
and third occurrences of u therein; i.e., that service times have the same
distribution no matter when they begin. Thus, the dependence of R({,u1)
on (¢ — ) only is a weak sort of stationarity property, and R(z) can
be interpreted as the probability distribution of service times of success-
ful units. Then

b= f [1 — R(u)] du = {average service time of successful units},
0

since when the mean of a positive variate exists it equals the integral of
the “tail”” of its distribution.

In a similar way, the fact that Q(zu) is a difference kernel may be
interpreted as a stationarity condition, and @(z) can be thought of as
the distribution funection of the intervals between successful arrivals, so
that

a+b

[(0-ewna

{average interval between successful arrivals}
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and
a = average length of an idle period.

The preceding discussion suggests that we use

(14)

b
chance of loss = s
as a natural measure of the probability of loss for the single telephone
trunk or particle counter that we are considering. Of course, any engi-
neer would have used (14) to describe loss, justifying it by intuitive
arguments. This fact does not detract from our result, which gives some
iden of the weak assumptions that are sufficient for proving (14).

Suppose that, instead of having only one machine, we had N = 1
machines, and used them in a fixed serial order of preference. That is,
arrivals finding the first » machines busy try the (n + 1)th. Such a
situation arises in telephony, for instance: the “machines’ are telephone
trunk lines, the “arriving units” are attempts to place a call and the
work or service times are the holding times of calls. Each trunk is then
receiving the traffic overflowing the previous trunks in the ordering.
Our theory then applies to each trunk considered by itself, and if the
conditions for the validity of (14) obtain for each trunk, the chance of
loss for the whole group must have the form

ul b
El an + bn’

where
b — Javerage service time of units that find the first (n — 1)
" ltrunks busy, the nth idle ’
4 by = {average time interval between calls accommodated on
™ 1 7" |the nth trunk [

Formulas (10) and (11) have been essentially proved® by involved
arguments using the integral equation (2) defining 4 (¢). We shall give
a simple heuristic derivation in this section and a rigorous one in Sec-
tion XT.

In order to explain the results, we first recall that the process A(?)
consists of alternating intervals during which A(t) is first zero, then
positive with slope —1, then zero again, and so on. The next arrival to
find the machine idle always makes it busy again.

We are interested in expressing Pr{4(t) < w}, and so we search for
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other ways of specifying the event {A(#) = w}. We first consider those
cases in which A(0) = 0; that is, the system starts empty, as in Fig. 7.
Then it is not hard to see that A (¢) will be less than or equal to w only
if the number S(t) of suceessful arrivals during (0,¢] equals the number
of successful arrivals in (0,¢] that have left the system by time ¢ + w.
In other words, if the machine is idle at { = 0, then the work A(¢) re-
maining at time ¢ is less than or equal to w if and only if all people who
arrived to find it idle in (0,¢] are finished with it by time ¢ + w. We shall
set,

6(t,t + w) = number of successful arrivals in (0,f] who have
left the system by time ¢ + w.

Then, if A(0) = 0, the events

OJ
(A() <w)  and  {S(8) = 6(tt + w)) (15)

are the same.

If A(0) > 0, the system starts busy, and the graph of A(¢) appears
as in Fig. 8. Assume first that A(0) > ¢; then, of course, A(¢) =
—t 4+ A(0), because the machine has been busy since ¢ = 0, and is not
yet finished. If t = A(0), though, the machine became idle at ¢ = A(0).
In the first instance, S(¢) = 6(¢¢ + w) = 0, because there have not
vet been any successful arrivals, and A () = w if and only if

1< A4(0) =1+ w.

In the second instance, the argument we used for the case A(0) = 0
applies, and (15) holds. We now average these cases according to their

At)

Fig. 7 — Graph of A(¢) vs. { when system starts empty.
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;\ ,
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TIME, t —=

Alt)

x

Fig. 8 — Graph of A(¢) vs. ¢ when system starts busy.

probabilities; since either S(t) — 6(t¢ + w) = 0 or S(&) — 6(%,
t+ w) =1, we find '

PridA(t) =w) =Prit <A(0) =t+w and S(t) = (¢t 4 w))
+ Pr[A(0) = ¢ and S(t) = 84t + w)}.

Where {---} is an event, let x{---}] be its characteristic function, de-
fined as 1 if the event happens, and 0 otherwise. Then the first term on
the right in (16) is

(16)

average of (x{t < A(0) = ¢ + w}-[1 — S(t) + 8(tt + w)l),
and the second is
average of (x{A(0) = ) [l — 8(2) + 6(tt + w)]),
because
1 — S +6(tt+w) =0 i S(t) = 64+ w).
Therefore
Prid(t) = w} = Pr{4(0) <t 4w} — E{S()} + E{6(tt +w)}. (17)

Thus, we have expressed Pr{4(¢) = w} in terms of the initial distribu-
tion and the average values of S(¢) and 6(i,t + w).

To prove (10), it remains to express the average of 6(¢,t + w) as the
integral of a kernel with respect to the average of S(¢). To do this, let
w be a point in (0,f], and suppose that a suceessful arrival oceurs at u.
Such an arrival can only contribute to the average of 8(f,t 4+ w) if it
leaves before ¢ 4+ w. The proportion of such arrivals is just
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Priservice time of a successful unit which arrives at w is
t + w — u | a successful arrival occurred at u} (18)
R(t + wu).

The “density” of successful arrivals at u is dE{S(u)}; therefore,

I 1A

Elo(tt + w)} = j;l R(t + wu) dE{S(u)},

which proves (10).

We continue with a heuristic derivation of the integral equation (11)
for E{S8(t)}. First we notice that the event {A(¢) = 0} can oceur in two
ways: either some successful arrival has occurred in (0,f], or none has.
If none has, then either A(-) started idle at 0 and is still idle at ¢, or
else it started busy at 0, became idle at the point A(0) < ¢ and is still
idle at ¢. If ¢; is the first arrival in (0, « ) and y; the first sucecessful arrival,
the chance that no successful arrivals oceurred in (0,f] and A(¢) = 0 is

Pr{A(0) =0 and & >t} + Pr{0 < A(0) = ¢ and 3 > t}.

Assuming some successful arrival did oceur in (0,£], suppose it occurred
at w. Such an arrival is only relevant to the event {A(t) = 0} if it is the
last such arrival in (0,f], and if the service time of the customer then
arriving is at most (¢ — ). The proportion of such “relevant’ arrivals
18

Pr{service time of successful arrival occurringat uis £ t — u
and no more customers arrive in the time interval between
his departure and ¢|a successful arrival occurred at u}

= G(tu).

As before, we now argue that the density of successful arrivals at w is
dE{S(u)} and so, using (19) and noting that 3, = 4 if A(0) = 0, we
find

(19)

Pr{A(t) = 0} = Pr{A(0) <ty > 1} + fo G(ia) dB(S(0)].  (20)

By combining this result with (10) for w = 0, we obtain an integral
equation for E{S(u)}:

E{S({)} = Pr{n =t} + fﬂt Q(tu) dE{S(uw)}, (21)

where the kernel @(t,u) = R(t,u) — G({u). By examining the inter-
pretations (18) and (20) of R(t,u) and G(%,u), it can be seen that
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Q(t,u) = Pr{next successful arrival after u occurs before ¢ | a
successful arrival oceurred at u}.

Hence, Q(t,u) should be a distribution function in ¢. Proof of this, to-
gether with discussions of (18) and (20), appears in Section XI.

IX. PROOF AND DISCUSSION OF THE RESULTS FOR DELAY

The proof and explanation of (8) and (9) depend on two simple pre-
liminary results. The first of these is as follows: let & be any nonnegative
random variable; then, for y = 0,

ju Priz = u} du = E{max (0,y — x)}. (22)

This formula states that the area under the (cumulative) distribution of
2 to the left of y is just the average value of the greater of zero and
y — x. This is easily seen from an integration by parts:

v

v
f Priz £ u} du = w Pr{z £ uj
0

v
— f wd Priz £ u}.
0 1]

To begin the proof we note that the total idle time 7'(¢) represented by
the term

(1) = fo Ul—W(w)] du

in the integral equation (1), is always nonnegative, so that
W(t) z K(&) — ¢, (23)
and also

Pr{W(t) < w} < Pr{K(t) — t < w}.

Now in Fig. 9 the larger area represents the event [K(¢) — ¢t = w} and
the smaller one inside it represents the event {W(¢) = w}. This latter
event is included in the former because, if W(¢) < w, then

K(t) —t =w,
by (23). The difference between the two areas represents the event
{K(t) —t=w < K(t) —t+ T},
and so
Pr{W() £ w} =Pr{K() —t = w)
—Pr{K(t) —t=w < K(t) —t+ T(t)}.

1A

(24)
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We next observe that (8) is the derivative with respeet to w of

j;w Pr{w () = u} du = jl;w PriK(¢) — ¢t < u} du
, (25)
—fo R(tuw) Pr{W(u) = 0} du,

which may be written, using (24) and taking the condition inside, as
E{max[0,w — K(¢) + ¢ — T(#)] — max[0,w — K(t) + {]}

= —f; PriK(t) — K(u) —t+u <w and W(u)=0}du. (26)

Thus (8) and (9) are established if we can prove (26).

To establish (26) we need the second preliminary result, a general
property of monotone continuous functions.

Lemma: If F(t) is continuous and monotone increasing and #(0) = 0,
then, forany x = Oand ¢t = 0,

max[0,x — F(t)] = z — f: Ule — FQ)]dF(y), (27)

where U(y) = 1fory = 0,and U(y) = 0fory < 0.

Proof: We note that, as y increases, the integrand in (27) is unity until
either 2 = F(y) or y = {, whichever occurs first, and it is zero thereafter.
If # = F(y) occurs first, then the integral equals x; if ¥ = ¢ occurs first,

K(t)-t=w<K(t)-t+T({t)=w(t)

Fig. 9 — Graphical representation of events [K(t) — ¢t < w) and {W(t) — ¢ £ w}.



STOCHASTIC PROCESSES IN ONE-SERVER SYSTEMS 149
the integral equals F(¢). Hence,
[ Ve — 1 ar(y) = minka ()L (28)
For 2 = 0 it can be seen that

min[z,F(t)] = 2 — max[0,z — F(1)],

and this proves the lemma.

To use this result in proving (26) we interpret F'(¢) in the lemma as
T(t), the total idle time during (0,t), which is a continuous increasing
funetion, with 7(0) = 0. We next consider the expressions, forw = —{,

A=w—-K({) +1t— j: Ulw — K(t) + ¢t — T(u)]dT(u),

B=w—-—K@) +t+ T

— fﬂ‘ Ulw — K(8) + t + T(t) — T(w)] dT(u).

Ifw — K(t) + ¢ = 0, then, by the lemma,
A — B =max[0,w — K(t) +t — T(¢)] — max[0,w — K(¢) +t]. (29)
However, since w — K(t) + t = 0, we see that the integrand in B is
always unity, so that B equals w — K(¢) + ¢, and
t
A—-B= —f Uw — K() +t — T(w)] dT(u).
0

Hence w — K(t) + t = 0 implies
max[0,w — K(t) + ¢ — T(¢)] — max[0,w — K(&) + {]
- _f; Ul — K(t) + t — T(w)] (). 30

However, if w — K(t) + t < 0, then both sides of (30) vanish and so
(30) holds generally, for any w — K(t) + .
Trom (1) it is evident that, while W (u) is zero, then

T(u) = u— K(u);
so the integral in (30) is

dT(u)

T du, (31)

f: Uw — K1) +t + K(u) — ul
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where dT'(w)/du is one if W(u) = 0, and is zero if not; i.e.,

aT(u) _
du

We recall that, if x and y are random variables, then

Priz = M and y = N} = E{UN — 2]UM — yl}; (33)

Ul—W(u)]. (32)

i.e., the joint distribution is the average of the product
Uh, — 2]- Ul — 9l
If we now average (30) and bear in mind (31), (32) and (33), we ob-
tain (26) for all w = —{. For negative w,
Efmax[0w — K(t) +t — T({)}} = 0,
so that formula (26) takes the form, for —¢ <= w = 0,

E{max(0w — K(t) + ]} =

t+w (34)
f PriK(t) — K(u) —t+uw =w and W(u) = 0} du.
1]

This is (9), and we have completed the proof of the results stated at the

beginning of this section.
It can be seen from (8) and (24), and from Fig. 9, that

[2
E—f PriK(t) — K(u) —t+u =w and W(u) = 0} du (35)
dw Jo

is the correction term to the overestimate Pr{K(t) — t = w} for Pr{W(¢)
< w}. [See (24).] It is the probability of the event

{K(t) —t=w < K(t) —t+ T},

represented by the difference between the areas in Fig. 9. Now, the
presence of the derivative a/dw in (24) is explained by the fact that
(24) is the derivative of (25) for w = 0, and thus is due to our use of
(22). However, it is not obvious intuitively why, in (35), the rest of the
term after the 8/dw, should be a time iniegral.

An explanation of this ean be obtained from (26), which expresses
the average of the random variable

o = max[0w — K(t) + ¢ — T(#)] — max[0,w — K(t) + ¢].

It can be seen that
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—T(%) i ow> K@) —t+ T() = W(t)
a={-w+ Kl —t if K{t)—t<w<W({)
0 it w< K(t) — t.

A graph of « as a function of w is shown in Fig. 10. The point K(f) — ¢
at which « starts downward may, of course, be negative, although it is
positive in the figure.

Thus, @ is a negative quantity whose magnitude is no greater than
7(t), the total idle time prior to¢. Now, if a were in fact equal to —T'(2),
we could write its average as

—E{T()} = -ft Pr{W(u) = 0} du.

But a may be smaller in magnitude than 7'(¢); this fact explains the
presence of the conditional probability in the integrand of

Ela} = —f: Pe(K(t) — K(u)

—t+u = w| W) =0} PriW(u) = 0} du.

The kernel in this expression is a probability, so it reduces the mag-
nitude of the integrand whenever it is less than one.

X. DELAY EXAMPLE: POISSON ARRIVALS, GENERAL SERVICE TIMES

For a first example, we assume that customers arrive in a Poisson
process of intensity A, and that serviee times are mutually independent,
with a general distribution function B(z). Such a system has been
treated before,”™" but few explicit formulas are known except for the

e K (1) -t -] W —

Fig. 10 — Graph of a(w).
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exponential case
1 —e™ x =0,
0 x <0,

considered by Ledermann and Reuter" and Bailey.? The author™ has
sketched a method for calculating Pr{W(¢) = 0| W(0)} for general
distributions B(x) of serviee time, but gave no explicit results. He
proved that the Laplace transform of Pr{W (&) = 0] W(0)} is given hy

*W(T)W(U)
Ca(r)
where 5(7) is the unique root in the right half-plane of the equation
T— 1+ A=2AB*(1), Re(s)>0

fm TPr{W () = 0| W(0)} dt = Re(s) >0, (36)

with
B*(s) =f e dB().
0

It was also shown that any function of #(r), analytic in the right half-
plane, eould be expanded in a Lagrange series. We shall now derive
these results (by a quite different way) directly from the general in-
tegral equation (9), and then obtain some specific new results.

Since arrivals are Poisson and service times are independent with dis-
tribution B(x), then the load process K(t) is the compound Poisson
process, and

E{e—&[KU)—K(uH} _ e?\(t—lt)[B‘(S)—H.

The kernel R(t,u,0) of (9) is

i e—;\(l—u)hﬂ(t _ u')n

— B.(t —u) = Pr{K(t) — K(u) £t —u}, (37)

n=>0

where B,(z) is the convolution of B(z) with itself n times, i.e., the dis-
tribution of the sum of n service times, and By(z) is 1 for # = 0 and
is 0 otherwise. In fact, the Poisson term in (37) is just the chance that
n eustomers arrive in (u,t), and B,({ — w) is the chance that their com-
bined service time is not more than (¢ — «). Similarly, we find that

j: PriK(t) = u} du = E{max[0¢ — K(¢)]}

e “W)"f max{0f — z — W(0)] dBu(z). (38)

n=0
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Equation (9) for this example is therefore

oG

—A\t
Z—o &f max(0 — & — W(0)) dBa(x) =

(39)
B.(t — w)Pr{W(u) = 0] W(0)} du.

t oo —A(i—=u)yn n
e At — w)
[z

n=0 n!

Since the right-hand side is a convolution, we take Laplace transforms.
That of the kernel, (37) can be written as

0 c—ioo
ds (40)
1 ctio —
S

=Tﬂ c—iw T—S+?\—RB*,

since the order of integration can be interchanged.
Let S; be the semicircle that is the right-hand half of the circle

| s — ¢| = R. Tt can be seen that on this semicircle
871
=0 (R
T— 8+ A— AB* (E7),
so that
1 s 'ds
lim L. f —0
o 2wt Jsp 7 — 8 + A — AB*

It has been shown! that, for Re(r) > 0, the function + — s + A —
AB*(s) has a unique zero, (7)), in the right half-plane. Hence,

1 ctiw S'-*l dS B

Ot i T — 8+ A — AB¥

(41)
b [residue of (r — s+ A — AB*)'at s = n(r)],
n(r)
when ¢ < Re 5(7).
The Laplace transform of E{max[0, — K(¢)]} can be written in the

form
—g W (0)

‘ f f Pl Z (M (B*)" " ds L. (42)
ZTI'?, c—i%0 !

n=0

Formula (42) simplifies to
1 ctioo 3_23_!W(D) ds

i Je—iw 7 — § + A — AB*’
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which, by arguments like those already used for (40), can be shown to
equal

()] % """ Plresidue of (r — s + A — AB*)at s = n(r)]. (43)

It follows from (39), (40) and (43) that the Laplace transform of
Pr{W(t) = 0| W(0)] is given by
—n(r) W (0)

ETORE (44)

f TP = 0| W(0)} dt =
1}
where 5(7) satisfies 7+ — n 4+ A = AB*(9).
As shown," any function F of n(7), analytic in Re(7) > 0, may be
expanded in the Lagrange series
o —A n drifl dF N
Fia()] = G2 + 3 GO ]
o1 n! ds ds s=r4\

We can use this expansion to invert the transform given by (44). In
some cases, this inversion gives an explicit expression for

Pr(W(t) = 0] W(0)}

in terms of the kernel and foreing function of the integral equation (39).
Setting F(z) = 2z 7'¢ “”” in the expansion and inverting the resulting
transform, we find

PriW(t) = 0| W(0)} = ¢ ™Ult — W(0)]
(45)

]

—Aiy nyn—1
+ > —Lﬁ {f B.lu — W(0)] du + W(0)B.[t — W(O)]}
n=1

By rearranging terms in (45), comparing with (37) and (38), and re-
calling that W(0) = K(0) by convention, we can put (45) into the
form

Pr{w(t) = 0| W(0)} =

W(O) (46)

T E{max[0¢ — K(1)]} + —— Pr{K(t) = t}.
Note that E{max[0, — K(¢)]} is the left-hand side (the forcing func-
tion) of the integral equation (39) and that, when W(0) = 0, (46) gives
an explicit representation of the solution of (39) in terms of the forcing
function alone. The intuitive meaning of (46) can be expressed as fol-
lows: the chance that the system is empty, conditional on the initial
load W(0) is equal to
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average of greater of 0 and 1 — ('K (t)

w(o)

t

(chance that W(0) plus load arriving in (0,t) is at most ¢).

It is easy to obtain new specific formulas from (46). IFor example,
suppose that service times have the fixed length b. In this case of ‘“con-
stant’’ service times, for t > W(0)

B_M(At)n
E{max[0t — K($)]} = = [t —nb — W(0)],
nb<t—w(0) n!
—\t n
Pr{K(t) £t} = O
nb<t—w(0) n!

and hence
Pr{W(t) = 0| W) =1 — b — P(T\) 4+ NP(T — 1,x),
where bT = t — W(0) and

Plea) = > en?

nze

is the cumulative term (the “tail”) of the Poisson distribution with
mean a. This formula for Pr{W{t) = 0| W(0)} for constant service
times was used to compute the curve of Fig. 1.

By rewriting (46) in terms of inversion integrals, we obtain another
representation of Pr{W(¢) = 0| W(0)}. This one is more useful be-
cause, from it, we can find explicit formulas for new cases (by evaluating
the inversion integrals). From (42) we see that

—X\t ctioo
eis ae) A8
E{max [0 — K()]} = 271[ . ST OB HST’

and (45) yields

PriK(t) st} =%

Nt potiw
e f” ! T OB ) ds
27}'7/ c—ix s ’

Therefore, from (46),

ctix -
st SW(0) 41

—i%0

—\t
Pr{W (1) = 0| W(0)) =;Tuf 5. (47)

As we shall see, this result is useful because it is often easier to evaluate
the complex integral than to sum the series (37) or (38).
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For example, if service times have the negative exponential distribu-
tion with mean u, then it has essentially been shown”" that

iPr{W(t) =0|W(0) =0} = — (E)& g M].f
dt u ;

Hence
' " " da:
Pr{W(t) = 0|W(0) =0} =1 — pf P L(2l) B, (48)
0
where p = \/p = traffic intensity, and ut is the time measured in mean
holding times. This result can be obtained directly from (44) by solving

a quadratic equation, and it can be put into another form by using (47).
Thus,

6—(?«+.u)! ctp—ion it/ y
Pr{W () = 0| W(0) = 0) = [ iy — Y du,

21ri:‘. +-p—ico

Writing the integrand as e"'(u — W)™ — 1 + 1) and using Ref.
12, p. 244, no. 31, we find

Pr{w(t) = 0|W(0) = 0} =

At HE 2/ (4hpt) ‘fl2
— —v B !
e I:l + j(; e (1 4)\;4:‘,2) I(y) dy:I.

For another example, suppose that service times have the “gamma”
probability density

t_g.uge_‘l“
I'3)
whose Laplace transform is [u/(u + s)]%. Then (47), with a change of

variable, gives

—(Atu)t ctioo

Pr(W(t) = 0|W(0) =0} =2 f P L (R L 0

2wt —io

and

Pr(Ww(t) =0|W(0) =0} =t 'e™ ful e "G (u)(1 + pu) dul,

t This formula is a simplification of that of Ref. 9 obtained by using standard
Bessel function relations; I,(z) is the Bessel function of imaginary argument, of
order one.
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where

o0
G(u) = uAma_mf 2 (7)) da

0

and a = 4?\;;%.

XI. PRECISE DERIVATION OF LOSS RESULTS

The proof of (10) given in Section VIII is rigorous up to and ineclud-
ing (17), so it suffices to give a precise construction of the kernels
R(tu), G(tu) and Q(tu). Let x, be the nth epoch at which A(t) be-
comes equal to 0, and y, be the arrival time of the nth successful unit.
Tt is readily seen that

E{o(tt +w)} = 2 Priya =t and 2 =+ w}

) t
=D, f Priz,a =t + w|y. = u} d Priy. = u}.
0

n=1

Similarly,

BS()) = 3 Priy. < 1. (49)

n=1

Thus, each Pr{y, < -} measure, n = 1, 2, - .-, is absolutely continuous

with respect to (49). We can therefore express E{68(f,t + w)} as the in-
tegral of a kernel R(¢t + w,u) against E{S(-)} measure, as in

Blott+ w)) = [ R(t+ wp) dB(S@)),

where the kernel is defined in terms of the indicated Radon-Nikodym
derivatives by

d Priy, = u}

R(ye) = 2 Prizas S ylym = ) =gpecos

In a like manner, we can write

Pr{A(t) = 0 and some successful arrival occurred in (0,f]} =

e (50)
;Pr[a:n_,.l § i < yn+l}-

Introducing the kernel

d Pri{y. = u}

Glyw) = 2 Prizan = ¥ < yanrlyn = u} —eersn™
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we can render (50) as
&
fo Gltu) dE(S(u)} .

The kernel @(¢,u), finally, can be defined as E(¢,u) — G(tu) or as

ﬂE=1 Pr[yn+1 é t“fﬂ = u} dc};;‘{{%ﬂ(i;”

The sense in which @( +,u) is a “distribution funection” is given by the
following result: for almost all © with respeet to E{S( - )} measure, Q( -,u)
is a distribution function. We show first that the derivatives

_ dPriy. £ y}
en(u) = W

have the properties

S enw) = 1, (51)
05 en(u) 1, (52)

almost everywhere in E{S(-)}. Now (51) is true by definition. Suppose
(52) failed on a set B of positive measure; then either £{S(-)} is not a
positive measure, or else

Pr{y.eB} > LdE[S(u)},

both of which are impossible. It is readily seen, by an elementary de-
composition of the events, that, for eachn = 1,
Pridegy S t|yn = u) — Pr{zep S8 < Y | Y = 4} =

Priyon = t]yn = ul.

Except on a set ¢, of Pr{y, = -} measure zero, this is a distribution

function in ¢, and the result follows from

LcﬂE{S(u)} —0, i C= f_llcn.

XII. A LIMIT THEOREM

We shall prove that dependence of the kernels R(¢,u} and @({,u) on
(t — u) only and existence of the “mean service time of successful ar-
rivals’” are sufficient to guarantee that

Pr{A(f) < w}
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approaches a limit as t — . It is natural to study cases in which only
difference, kernels oceur, because of the Volterra equation derived in
Section IX. The result to be proved requires no restriction on the “ar-
rival rate” of units — an upper bound is unnecessary because of the loss
operation; i.e., if the arrival rate increases, the rate at which successful
units leave the system can only increase to a limit.

Theorem: If the kernels B({,u) and Q(t,u) only depend on (¢ — u),
if the average

b = f [1 — R(z)) dz = (average service time of a successful unit)
0

exists, and if Q(+) is not a lattice distribution, then

a+ [ 11 - Rw) du
lim Pr{A(t) £ w} = f° — , (53)

where

(a +b) = j;w[l — Q(2)] de,

the limit being one if (a + b) = .

Proof: By the remarks at the end of Section XI, both R(x) and Q(z)
may be taken to be the distribution functions of positive variates. Kqua-
tion (11) becomes a renewal equation, and E{S(u)] is essentially the
renewal function H( -) of Smith." The integrand of (10) is

1—-—Rit4+w—u),
and is nonincreasing and integrable. Also, Q(+) is not of lattice type.

Hence, by Smith’s Theorem 1:

¢ ) [1 — R(u)] du
tim [ (1= R(t+ w— )] dE[S(w)} = o (54)
e [ =)

which gives (53) upon rearrangement if (54) is taken to be zero if the
mean of Q(x) does not exist.
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