Mode Conversion at the Junction of

Helix Waveguide and Copper Pipe

By J. W. LECHLEIDER
(Manuseript received April 23, 1959)

Scattering coefficients for a junction of helix waveguide and copper pipe
are calculated. Fields exterior to the helix in the helix waveguide are neg-
lected, but no other approximations are made.

I. INTRODUCTION

The circular electric wave in eircular waveguide has an attenuation

which theoretically decreases monotonically with increasing frequency.
This fact suggests its use as the information carrier in a high-frequency
waveguide communication system. However, as the frequency in any ‘
circular waveguide is increased, a greater number of the normal modes
become propagating modes. Mode conversion at variations from ideal
circular cylinder geometry (such as in bends) thus leads to the presence
of energy in propagating modes other than the circular electric mode.
This eventually leads to rather severe variation of attenuation with
frequency for the circular electric mode.
, To reduce this variation of attenuation with frequency, mode filter
sections, which attenuate unwanted modes much more rapidly than the
circular electric mode is attenuated, may be inserted into the line. Short
sections of helix waveguide may be used for this purpose.! This technique
has proven to be effective in smoothing out the attenuation-frequency
characteristic of the circular electric mode.

Using mode filters to effect equalization as discussed above suggests
the problem of the caleulation of mode conversion at the joint between
the mode filter and the propagating guide. The problem of ealculating
the mode conversion at the intersection of the helix waveguide mode
filter sections and solid copper wall waveguide has been attacked by
others? by the use of approximate methods. These methods generally
neglect the reflected modes at the junction of the two guides. In this
paper, the reflected modes are included, but any currents excited in a
shoulder that exists at the junction are neglected. In Section IT of this
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paper the representations of the fields associated with the natural modes
of propagation in helix waveguide and copper pipe are given. Useful
properties of these representations are also given. In Section IIT the
equations relating mode voltages and currents imposed by boundary
conditions at the helix-waveguide-copper-pipe junction are derived. In
Section IV these equations are solved.

The author is indebted to H. G. Unger and J. A. Young of Bell
Telephone Laboratories for their patient assistance in the preparation
of this paper. The criticism of Z. Szekely is also appreciated.

GLOSSARY OF SYMBOLS USED

E; = transverse electric field,

ey, ez = scale factors associated with the cylindrical coordinates u, and
Usg ,

h = propagation constant, of a mode

H, = transverse magnetic field,

i;,is = transverse unit vectors associated with u; and us,

I = current associated with a mode,

. 1/2

J = (=1,

k2 = UJz.UE,

l = a scattering coefficient for a helix waveguide and copper pipe
junction,

T = a solution of the scalar wave equation,

uy, s = generalized cylindrical coordinates,

v = voltage associated with a mode,

Y = wave admittance of a mode,

Zy = unit vector pointed in axial direction of a cylindrical coor-

dinate system,
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= a separation constant for the scalar wave equation,
= angular temporal frequency,

= permeability,

= permittivity,

Kronecker delta.
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II. PRELIMINARIES

Before delving into the formulation of the problem at hand, it is
necessary to make a few preliminary remarks. In the problem considered
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herein, it will be necessary to represent the fields associated with the
normal modes of propagation in helix waveguide and in copper pipe.
The copper pipe is assumed to have perfectly conducting walls and,
hence, its normal modes are transverse magnetic and transverse electric
modes.

The transverse electric and magnetic fields associated with a transverse
magnetic mode in the copper pipe may be represented as

Eww = Vi (2)V.Twm(p), (1)
Hiw = Iw(2)Ve X [20T i (0)]. (2)

In (1) and (2) the temporal dependence of the fields (¢’*) is under-
stood, as it is in all equations in this paper. The dependence of the
fields upon the distance along the waveguide axis is (z) absorbed in
the voltage Vy(z) and current 7¢,(z). The function 7', (g) vanishes
for p on the guide wall and is a solution of the scalar wave equation:

1 d aT" a 6Tn
e [ £ )] ire

eey | duy \ep 0uy dus \ ez Ous

In this equation, x¢,° is a separation constant related to the propaga-
tion constant of the mode being discussed by

X(")2 = ]'32 - h(u)z- (4)

The voltage and the current associated with the mode are related via
the wave admittance for the mode

we
Iy = £¥YwVw = £V, (5)
n
where the sign depends upon the direction in which the wave is moving.
For transverse electric modes in the copper pipe, the transverse elee-
tric and magnetic fields can be expressed in the form

Eim = Via(2)Ve X 2T (0), (6)
Him = Ia(2)VTm(e). (7)

The sealar function T'p,;(e) is a solution of (3) with separation con-
stant x(.°, and the normal derivative of T(,;(e) at the waveguide wall
vanishes. Relations similar to (4) and (5) can also be written for trans-
verse electric modes:

X[n]2 =K — h[nlz’ (8)

hn
I = £V Vi = =22 V. (9)
wp
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The transverse vector functions defining the transverse electric fields
associated with the transverse electric and transverse magnetic modes
in copper pipe form a complete orthogonal set over the internal cross
section of the copper pipe. As such, they may be used to represent any
transverse electric field in the copper pipe. The same statement can be
made of the associated modal transverse magnetic fields and the trans-
verse magnetic field in the copper pipe. The functions 7., (e) and
Tim(0) are assumed to be normalized, so that the following orthonor-
mality conditions hold:

Xy ff T T ds = Xtm ff T T ds

ff (VT ) (VT ) ds

= f (Ve X 2T () (Ve X 2T (y) ds
(10)
= f (V1) (VT ) ds

= f (Vz X Z.;]T11L})(V1 X Z()T[m]) ds

= l5:1 m

where the integration is over the internal cross section of the copper
pipe.

In addition to the relations listed in (10), the following relations will
be found useful in this paper:

ff (VT ) (Ve X 2T () ds = ff (VT ) (Ve X Tpwy) ds
(11)
= f (VITEMI)(VI X ZUT(H)) ds = 0:

which hold for all m and n.

For helix waveguide, two scalar functions are necessary for the specifi-
cation of the transverse fields since all modes but the circular electric
modes are hybrid.

The transverse electric and magnetic fields in helix waveguide may
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be written in the form

Elu = I’JI(V{T‘n + duvt X ZDT"?r)l (]‘—'))
2
an = In(_vl X zDTu + dra ]i};!_ V.!T’u) ] (13)

which are similar to Unger’s representation.”

The funetions 7', and T, are both solutions of (3) with separation
constant x.°; they are related to each other by means of the boundary
and continuity requirements on the electromagnetic field in the helix
waveguide. The constant d, in (12) and (13) is determined by the fact
that the electric field component tangential to the helix wire must
vanish at the helix. For a helix of zero pitch,

oT,
aT.
0y at helix.

dy = (14)

Expressions similar to (4) and (5) can also be written for the helix
waveguide modes:

K — k' (15)

%
I

I, = x£Y,.V, = + Va. (16)

Equation (16) is written for the region interior to the helix, which is
assumed to be empty (i.e., e = e and p = po).

Finally, for any two solutions of (3), which are designated here as
Tyand T,

ff VrTl'V|T’2 ds = ff (V{ X zﬂTl)(Vf X Z(]Tg ds

= Xﬂﬂ ff T\T,ds + f " 9T es dita (17)

816!!1

= Xl2 ff 711,]‘2 ds — f T, aTl €2 (hlg,
elaul

and hence

aT! - T aTl)(’gdllg

T, — LAY
ff T.ds = 5{ ( " eduy ey

Xt — x

(18)
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and
ff (Vg X ZoT]_)(Vth) dS = f ngﬂ dltz = —'% Tl 3_Tz d‘ldg. (19)
6‘1&!2 auz

In (17), (18) and (19) the line integrals are to be evaluated along
the waveguide wall, or along the boundary enclosing the domain of
integration of the integrals over the area.

I11I. THE BOUNDARY PROBLEM — HELIX WAVEGUIDE MODE INCIDENT

The problem under consideration is the calculation of the scattering
properties of a junction between helix waveguide and copper pipe. The
region interior to the helix in the helix waveguide and the interior of
the copper pipe are assumed to be empty. Furthermore, the helix diam-
eter and inside diameter of the copper pipe are assumed to be equal.

To formulate the problem under consideration analytically, assume
that a single helix waveguide mode is incident upon the junction from
the helix waveguide. This will give rise to reflected helix waveguide
modes and transmitted transverse electric and transverse magnetic
modes in the copper pipe. The requirement of continuity of the trans-
verse electric field across the plane of the junction indicates that the
total transverse electric field due to the incident and reflected helix
waveguide modes must equal the total transverse electric field due to the
transmitted transverse electric and transverse magnetic modes at the
plane of the junction. This equality is represented analytically by

ViV T + diVe X 2T) + 2 Vu(ViTo + duVe X zT))
" (20)
= (Z) Vi Vil @y + [Z; ViaVe X 2o .

Bquation (20) is true in the area interior to the helix of the helix
waveguide. In (20) the first term on the left is due to the incident mode,
the summation on the left is due to the reflected helix waveguide modes,
the first summation on the right is due to the transmitted transverse
magnetic modes and the second summation is due to the transmitted
transverse electric modes.

In a similar fashion, continuity of the transverse magnetic field across
the plane of the junction is expressed as

2
I,‘ (—Vg X ZUT{ + d;‘ ;:—; VtTi’)
h 2
+ Z In (_vu‘. X Z()Tn + dn ‘k‘%' V!Tn’) (21)

= —(Z: IV X 2Ty + E ITaViT .
n) n
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Equations (20) and (21), in addition to the specification of the
boundary conditions on the helix waveguide field in the region exterior
to the helix, would be sufficient to determine the transmitted and re-
flected mode voltages and currents. In this paper it is assumed that the
fields exterior to the helix in the helix waveguide are unimportant. This
makes (20) and (21) sufficient for the determination of the transmitted
and reflected mode voltages and currents.

Equations (20) and (21) can be converted to linear algebraic equa-
tions in the unknown voltages and currents by using some of the rela-
tionships presented in the preliminaries. For example, if (20) is multi-
plied scalarly on both sides by V.7, and the result is integrated over
the internal cross section of the copper pipe, there results

V|'x12% fpi ﬂg €9 dl{g VRXHQ ﬁ Tn aT(p) (i) d'llg
€1 iy + Z (31 aul _ V( ) (22)
2 »

2 2 2 2
Xi — X " Xn — X(»

where (10), (11), (17), (18) and (19) have been used. The integrals
in (22) are along the waveguide wall, which is assumed to be a surface
of the form u; = a constant.

In a similar fashion, the following equations can be derived:

Iixi* jg T; 6?(;(1,) ey dus Lixa" f T, Bi:;(,,) €2 dits
€1 duU
2 - 12 +Z 2 a ; —I(p)s (23)
Xi — X(p n Xn — X(p
aT;
V'in % : T[p dllg 0
a Vaxn T,
Lt T e e s = Vi, (28)
X[pl - o Xlpl — Xn
s | aT,
1Xl f_ T[p] d'llz Ian‘ [p] 2
ou o (25)
+E ) ? z = T
X[p] - Xt " Xip) — Xn hip

The voltages and currents of the transmitted transverse electric and
transverse magnetic modes can be eliminated from (22) through (25)
by use of (5) and (9). Multiplying (22) on both sides by Y, and sub-
tracting (23) from the result yields, with application of (16),

2 2 BT
ViXI' f T; GT (J du 3 Z Van % T €01 162 dllz —0 (26)
hi(hgy + hi) 916?11 " Rl — hy) '

The incident helix waveguide mode is treated as a forward-moving wave
in deriving (26); the reflected helix waveguide modes are then back-
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ward-moving waves and the transmitted copper pipe modes are forward-
moving waves.

Consideration of the nature of the 7' functions ean now be used to
simplify the set of equations represented by (26). In the coordinate
systems of practical interest here, e.g., a circular cylindrical geometry,
the T functions for all modes separate, so that

T, = T." () T2 (w), (27)
T = T ()T ™ (). (28)

The integrals in (26) will vanish unless
T, (us) = Tin'™ (u2), (29)

so that only modes for which (29) is satisfied will appear in (26). Fur-
thermore, the integrals in (26) assume the form

(1)
55 T, T eaduy = T,V T ) K, (30)

€1 Bul a’ll,]_

where K is a constant independent of n. Using this fact reduces (26) to
the form

V.Y V.t (31)
’I.-i(h(}l) + hl) n h‘n(h(p) - hn) ’
Applying reasoning similar to that used in deriving (31) to (24) and
(25) yields the following set of equations:

VT Oxd V%' _ ) (32)

hilhi F hay) S halhay — ha)

Equations (31) and (32) must be solved for the unknown reflected
mode voltages V, .

1V. SOLUTION OF THE EQUATIONS

The simultaneous set of equations indicated by (31) and (32) may
be solved by successively eliminating the V,’s. For example, multiply
the rth equation of the set (31) by

hey — ha
Ih(p) — ha

and subtract the result from the pth equation. The result obtained, after

(33)
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some manipulation, is

V:nTn(l)Xvag(hu - hu) — ViTl'(l)Xig(hi + ha) (34)
n hn(hfr) - hn)(h(p) - hn) }l‘i(hw) + hi)(h(r) + ki) ’

Similarly, multiplication of the rth equation of the set (31) by

(h(r) - h(t)
(hipy — ha)

and subtraction of the result from the pth equation of the set indicated
by (32) ultimately leads to

VrfTTn(l)XnE(hu - hn) _ Ifi'Ti(l)Xreﬁ(hi + ha) (35)

n ]l,,(ll(r) — h,,,)(h.[p] - h”) hi(h[p] + h;‘)(h-(r) + h‘.’) ’

The set of equations indicated by (34) and (35) consists of one less
equation and one less unknown (V,) than the set indicated by (31)
and (32). The process of elimination of successive V,’s can proceed in
this fashion until only one of the V,’s is left, and the system of equations
indicated by (31) and (32) is solved. The final result is

hV T8 % (h 4 h) (h( , — h) (h[ ) — h)
’7 — " i T m _B m n m n .
V. BTy, I,J R — ha H Row + R [IJ] him) + hi)- (36)

iFE N

Inspection of (36) reveals the fact that no helix modes which have a
propagation constant equal to the propagation constant of a copper
pipe mode will be reflected from a helix-waveguide-copper-pipe junc-
tion. This result is especially important in the ease of the cireular electric
modes in helix waveguide, since these modes have the same propa-
gation constant in helix waveguide and copper pipe. This is quite reason-
able, since the boundary conditions on the circular electric modes are
essentially the same in helix waveguide and copper pipe.

Having formally obtained the reflected mode voltages, the transmitted
mode voltages can be calculated by inserting the expressions for the
V.’s as given by (36) into (22) and (24). Thus, inserting (36) into (22)
yields the expression for the transmitted transverse magnetic mode volt-
ages. The result after some manipulation is

Vi = Vixi* yg T, 6{;(,,) e dits [; + 3 1

€0t (hp?* — h*) w (hgp? — hug)‘

(37)
. h‘m + h‘i h(m) - hu) (h[m] - hn)]
I?;I (hm - hu) (IHII) (h'(m) + hi [I;[] lh[m] + h';' )

mz#En
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In the Appendix it is shown that this can be simplified to

T
Vix:‘ﬂf T: 222 oy dus, _
Vi = o0 H(hm+h1)

hi(h(ll) - hiz) hom + h(p) (38)
howy + h(m) (h[m] + h(-p))
(Ivl (h(m) + hi [IJ]: hIml + h: )
(m)#(p)

Similar manipulations yield the following expression for the transmitted
transverse electric mode voltages:

1.X% % — T[;,_-,] dug
how + i
V[p] = ( + )

hi(hd — h[p} hon 4 B

. h(m) + h[r]) (h[m} + h[?])
tImIJ(hcm + hi : ][I;]IE: ] Bimy + hi /]

P

(39)

Lquations (36), (38) and (39) are the formal solution to the problem
of scattering at a junction of helix waveguide and copper pipe for a
helix waveguide mode incident.

The most important results for practical application are the expres-
sions for the transmitted voltages as given by (38) and (39). The quan-
tities on the right in (38) and (39) are the voltage transmission coefi-
cients of the junction multiplied by the incident mode voltages. These
coefficients can be converted to seattering coefficients for travelling
waves, as calculated by Unger,” by multiplying each by the square root
of the appropriate wave admittance ratios. Thus, the scattering coeffi-
cients are

T,
xi fT €101, ? o2 dus II (hm + hi)

lri =
@ (hih)'* (hp? — h) B + Bim

m#En (40)

himy + h(p)) (h[m] + h[pr)

(ImI) (h(m) + A LI;:I] him) + hi
{m)#£(p)
and
aT;

= () ST
[pli R ke (h; — h[mg) m \m + h[]’;] (41)

7 (Fem + hm) (h[m] + h[p])
<I;[) ( himy + b [ImII him) + i /-
[m]#[ p]
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Furthermore, as pointed out by Unger,” proper normalization of the 7'
functions for the helix waveguide insures that these coefficients will be
the same whether they indicate conversion from an incident helix wave-
guide mode to a transmitted copper mode or conversion from an incident
copper pipe mode to a transmitted helix waveguide mode.

V. CONCLUSIONS

Circular electric modes are transmitted through a junction of helix
waveguide with a zero-pitch helix and copper pipe without any mode
conversion or reflection at the junction. Neglecting the fields exterior to
the helix in helix waveguide permits solution of the infinite set of equa-
tions which arises from requiring continuity of the transverse fields at
the junction between helix waveguide and copper pipe.

APPENDIX

Reduction of the Formula for the Transmitted Vollages

The summation appearing in (37) is

1 hm + hi) (hfm) - hll)
S=3_ -
; (h(p)2 - h-u?) IrriI (hm - hn (Iﬂ} h(m) + hf
mEn (42)

H (h[ﬂﬂ — hn) .
il \pm) + o
Since all the h’s appearing in (42) are for forward-moving waves, they
will all lie in the fourth quadrant of the complex h plane (e ™*

¢ {5 Thus, S ean be seen to be 27 times the sum of the fourth
quadrant residues of the function

_ 1 h,,, + h.‘ h(m) —_ h
J(h) N — H (h,,. Z h) (I,;I) (h{m) F h.-)

(43)
nt=)
[m] h[m] + hi (h + h.,') :
Thus, S is simply a contour integral in the complex A plane:
_ 1 hom + hi Rmy — h)
8 271 ‘?gq (hp? — h?) I.I (h,,, — h) (ImI) (h(m) + ki
(44)

. h[m] - h) dh
LI] (h[m] + h]‘ (h + h,) ’
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A+O

COMPLEX h PLANE

(comouR C,

Fiag. 1 — Contour for (44).

A+O0L
COMPLEX h PLANE

~CONTOUR C>

Fig. 2 — Contour for (45).
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where the contour is that shown in Fig. 1. Since the contribution to
the integral along the circumference of the circle is zero, it can be seen
that the value of the integral in (44) is unchanged if the contour is
chosen to be that of the other three quarters of the circle enclosing the
i plane. Thus, the integral in (44) may be written in the form

o 1 h + h h(m) - h)
S ‘)’II'?, en (h(p) — At ImI( m - h) (I’}) (h(m) + h’i

Rimp — h) dh
[I} (h[m] + h; (h + h;) ’

where the contour is now that shown in Iig. 2
The integrand in (45) has just two poles in the first, second and third
quadrants of the complex h plane, namely, the poles at

(45)

h = —h) and h = —h;,

so that S is just 2w times the sum of the residues of the integrand at
h = —hg and b = —h;. Thus,

_ 1
(ha?® — h)

(46)
h)u + hi) (h-(m) + h‘(p)) (h[m] + h[p])
R | S i tow T A B T Miwt ) |
|: Iu]m: (hm + hp (Irl Pimy + i [Irl him) + hi

(m)#(p)

S =

Consideration of (46) in (37) yields (38).
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