Recurrent Codes: Easily Mechanized,
Burst-Correcting, Binary Codes

By D. W. HAGELBARGER
(Manuseript received April 14, 1959)

A class of codes capable of correcting multiple errors is described. Some
of these codes can be implemented with considerably less hardware than was
needed for previous multiple error-correcting codes. A general method is
shown for constructing a code of redundancy 1/b that will correct error
bursts of Kb or fewer digits (K and b integers). The logical design of the en-
coder and decoder, as well as the guard space requirement of good digits be-
tween bursts of errors, s described.

I. INTRODUCTION

In adapting the existing telephone network to high-speed digital data
transmission, an error control problem arises. Most of the circuits were
designed primarily for voice-type signals and considerable attention
was given to control of thermal noise. Because of the high redundancy
of speech, impulse noise on the lines is usually not even noticed by the
telephone users, and hence has not been a serious problem. On the other
hand, high-speed digital data (especially numerical data) contain little
redundancy, and the noise pulses may resemble the signal pulses and
thus cause errors.

The deliberate introduction of redundancy to detect and correct
transmission errors has been used for some time. Early systems' used
repetition of characters and duplication of channels. There were two
schemes which sent pictures of the characters using raster scans. By the
late 1930’s a radio telegraph system? using a 3-out-of-7 code for error
detection had been patented and telephone apparatus using 2-out-of-5
codes® was being designed.

Most, if not all, of the recent work on error-detecting or error-correct-
ing codes stems from Hamming’s Systematic Parity Check codes.* These
codes will correct a single error per block of digits. Since then, much work
has been done on codes for multiple errors (see Refs. 5 through 16). The

969

970 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

assumption has usually been made that the errors are statistically in-
dependent. On many communication channels, however, the errors are
not independent but tend to come in groups. For example, a lightning
stroke may knock out several adjacent telegraph pulses. These groups
of errors are called “bursts”’. Codes for detecting and correcting bursts
have been proposed by Abramson,” Gilbert,’* Hamming' and Meyer.!
The class of codes deseribed here differs in that the block structure has
been minimized; the resulting symmetry allows very simple mech-
anization and also simplifies the synchronization problem. Since the
block size is small, the codes also fit very naturally into systems where
the data must be accepted and delivered continuously, rather than in
batches.

II. EXAMPLE

Before describing the general recurrent code we will give a particularly
simple example. Assume that we wish to correct bursts of length six or
less. The simple code has every other digit a check digit, giving a re-
dundancy of one-half. The encoder is illustrated in Fig. 1. It consists of
a shift register of length seven. The data digits enter from the left
(Position 1) and are shifted through the register before being transmitted.
Tor each shift we generate a check digit so that the parity (number of 1’s)
of the check digit and the data digits in the first and fourth positions of
the shift register is even (zero or two). This check digit is transmitted
before the data digit in the seventh position. Then a shift is made; the
data digit which was in Position 7 is transmitted, and a new check digit
is ealculated. This process is illustrated in Fig. 2; the successive lines are
one shift time apart. During this time interval one new data digit is
accepted by the encoder and two digits, one data, one check, are trans-
mitted.

The decoder is shown in Fig. 3. The received code enters the switch
where the alternating data and check digits are separated, the check
digits going to the lower shift register and the data digits to the upper

SHIFT REGISTER
MESSAGE |
SOURCE "i‘zlal‘i's\sl? 1

CHECK DIGIT i

GENERATOR

Fig. 1 — Encoder.

RECURRENT CODES 971

ENCODER SHIFT REG .
TIME DATA BITS D, + D4=C (MOD2) TRANSMITTED CODE

1 2 3 4 5 6 71C

0 c t+ 1 ofo 1 1 0o 1 O 0\(3.\
h

1 o 1 rfo o 1 1 0 1 0100
2 o t}j1 0 0 1 1 O 1100100
3 o1 1+ o0 0 1t 1 01100100
4 o 1 1 0 O ! 10011700100

Fig. 2 — Timing chart of digits moving through the encoder.

one, There are two copies of the parity circuits, R and S, each one check-
ing the parity relation imposed by the encoder. The decoding rule is:

Whenever both B and S fail, change the data digit in Position 4
(0 — 1, 1 — 0) while shifting it to Position 5. If only one parity
check fails, make no change.

The corrected data digits are available at Position 5 of the data shift
register. In a burst of length six or less, there can be at most three data
digits and three check digits wrong. The parity relation used in encoding
involves digits which are spread far enough apart so that no burst of six
or less will affect more than a single digit in any one parity group.

After any burst of length six or less, a 20-digit errorless message is
enough to completely refill the decoder shift registers. Hence, the next
burst can be corrected without interference from a previous burst, if
there is a “clean” message 19 or more digits long between bursts.

RS
DATA SHIFT ?
MESSAGE
R I
REGI]STE l
5|6 |7

IR PARITY CKT” 5 PARITY CKT

L t
l l
7 B|9||0!

||2‘3|4‘5‘5

T
CHECK SHIFT REGISTER

Fig. 3 — Decoder.

972 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

TasLE 1
Burst Length Data E‘;I}‘xiinzglegister Check IS‘ELf;tEegister Guard %p::sislletween
4 5 7 13
6 7 10 19
8 9 13 25
10 11 16 31

If the message is to be retransmitted the check digits can be corrected
at Position 10 of the check digit shift register (Fig. 3). The rule is:

Whenever parity check R holds and parity check S fails, change
the digit in Position 10 of the check digit register.

A data digit error cannot cause parity R to hold and parity S to fail,
because this would require an error in Position 7 of the data register,
and, since all data digit errors are corrected in going from Position 4 to
Position 5, this cannot happen.

This particular coding scheme fails first for a burst of length seven,
consisting of a check digit and another check digit six digits later. When
just these two check digits are wrong, the decoder assumes that a data
digit is wrong and changes it.

A demonstration device using this code has been built. It consists of a
punched tape reader, an encoder, a transmission line, a decoder and a
tape printer. The circuitry uses relays and can be operated fast, slow or
one step at a time. Digits in the encoder, transmission line and decoder
are displayed on lamps. The transmission line has switches for inserting
errors in the encoded message. Other lamps are used to indicate parity
check failures. An auxiliary circuit can be used for detecting overlong
bursts, flashing a yellow lamp whenever the decoder has a burst and
locking up a red lamp whenever a detectable overlong burst occurs.

There is an extension of this code to correct bursts of any even length.
We merely spread out the parity check so that the burst can only effect
one term in any parity group. To correct bursts of length 2K or less
requires an encoding shift register of length 2K + 1. The decoding data
digit register has the same length, 2K + 1, and the check digit register
must be 3K + 1. The parity checks involve digits K apart in the registers.
A clean message of length 6K + 1 will always be sufficient separation
between bursts. Table I shows typical values.

I11. GENERAL RECURRENT CODE

The general (binary) recurrent code is constructed as follows:
We are given a message to be transmitted consisting of dala digits.

RECURRENT CODES 973

—

® Tk * * * * * * * *
,0p C,0p C,D C,0 C,DC,D C,D C,D C,D C,D C,D C,D C,DC,
P, =Pp | 0 0 1 o 0 0
P,=Pc | © 0 o 0 0 0 1

Fig. 4 — Portion of encoded message.

We will add to this check digits to form the encoded message. The en-
coded message is divided into blocks of length b. One position in the
block is assigned to be a check digitt and the rest are data digits. Since
the block must have at least one data digit, the shortest block length is
b = 2. (This is the value used in the example of Section II.) The data
digits are loaded into the data digit positions in the order received. The
check digit is determined by a parity relation applied once for each
block. This parity relation extends over a selected set of the digits in p
consecutive blocks. (To be useful against bursts, » must be at least 2 and
usually will be larger.) Fig. 4 shows a portion of the encoded message
from the example of Section II. The data and check bits are indicated
by D’s and C’s; the blocks are marked off with commas and the parity
relation is shown by lines having *s over the digits in a given parity
group. Note that p for this example is 7; that is, any one of the parity
groups extends over seven blocks. Every parity group has three digits
in it, two data and one check; thus, each data digit is in two parity
groups and each check digit is in only one parity group.

We will denote which digits enter into the parity relation by b binary
words of p digits each. We call these the parity words and label them
Py, Py, -+, Py . Consider p consecutive blocks. We form P, by observing
the first position of each block; if the digit is in this parity group we
write 1, otherwise 0. Then P. depends on the second positions of these
p blocks, and so on. This is illustrated in Iig. 4. We have used the parity
group indicated by the arrow and written the parity words so that the
digits fall under the corresponding blocks. Thus Py has 1’s in the first
and fourth blocks and P has a 1 only in the seventh block. (The num-
bering of digits and blocks here and in Fig. 4 is from right to left. Fig.
4 can be considered a “snapshot” of the encoded message on the trans-

1 Codes with more than one check digit per block are possible, but it can be
shown that, for a given efficiency and burst-correcting capability, they always re-
quire more complicated encoding and decoding equipment than would the equiva-
lent code with one check digit per block.

974 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

mission line. This is different from the numbering method used below,
where the digits are considered to be flowing past a fixed point, and are
labeled with numbers which increase with time.) With this notation,
there is a simple correspondence between the 1’s in the parity words
and the connections to the shift registers of the encoder and decoder.

Another way to describe these codes is to think of the digits leaving
the encoder as being numbered serially; if X; is the 7th digit, then the
parity relation is given by a recurrent equation of the form:

Xowir @ Xoste @ -+ @ Xyyw = constant,

where the constant is 0 or 1, @ means sum modulo 2, & takes successive
integral values, b is the block length, and r, s, - - -, w denote which digits
enter into the parity group.
If we order the terms so that r < s < --- < w, then
w—r
b
The requirements that every position in the block must be represented
at least once implies that each of the integers 0, 1, ---, (b — 1) must

oceur at least once as a remainder upon dividing r, s, - - -, w by b.
For the example of Section 1T we have:

X1+2k ® XB+2k @ X14+2I.: = 0.

p—2< <p

IV, BURSTS

Consider an encoded message Aowing through a communication chan-
nel. A burst occurs and some of the digits of the message are changed.
We will describe the burst pattern by a binary word having a 1 for each
changed digit and a 0 for each correct digit. We require that the first
and last digits of the word both be 1’s, since there is no point in includ-
ing correct digits which are outside of the bursts. The length of the
burst is the number of digits in the word. There are 2'7* different, burst
patterns of length I and 27" different burst patterns of length I or less.
The latter are the odd binary numbers having ! or fewer digits. For
example, the eight burst patterns of length 4 or less are: 1, 11, 101, 111,
1001, 1011, 1101 and 1111.

The effect of a burst on the encoded message depends on the phase of
the burst pattern with respect to the block structure; hence, we will
have to consider h2" " different possible bursts of length I or less if the
code has a block length b. We will indicate particular bursts either by
showing a portion of the encoded message with the erroneous digits

RECURRENT CODES 975

marked with *s or by listing the erroneous digits with superseripts to
indicate which block a particular digit occupies. For example,

* % * *
... DC, DC, DC, DC, - -

M 2 A2l 0
is the same as D°C°C'D".

V. SYNDROMES

At the decoder we will always have a circuit for checking the parity
relation imposed by the encoder. This circuit gives an output once for
each block received. If the parity check fails, the output is a 1; other-
wise, it is a 0. In a practical transmission system, there are usually no
errors and the eheck circuit has an output of all 0’s. When a burst of
errors does occur, the check circuit will give a pattern of 1's and 0’s.
This pattern will be used to identify the burst, and hence we shall call
it the syndrome. Since the syndromes occur immersed in a string of 0’s,
only binary words having 1’s on both ends (odd numbers) can be used
as syndromes and, as above, there are 2" possible different syndromes
with & or fewer digits.

Our first problem is to choose the parity relation in such a fashion
that each burst of length I or less has a distinet syndrome.f A further
problem is to choose the parity relation so that, given a distinet syn-
drome, the correction of the burst which caused it is easily mechanized.
That is, we want a systematic scheme for correcting a burst, given the
corresponding syndrome, which is much better than having a table of
all possible syndromes with the corresponding bursts.

The procedure for calculating the syndrome corresponding to a given
burst is as follows:

* %k % k ¥
... D C,D C,DsC,D.C,D,C,DC,D C,D C, -
P 1.0 01000
P 000O0UO0OO0?1
Py 1001000
Py 1001000
P 000 0O0O0°1
Syndrome: 1 111110101

t If our code has a block length b which is a power of 2, then it is possible for
p2i-1 = 21, A close-packed recurrent code is one which has all possible syndromes
of k or fewer digits in a one-to-one correspondence with all possible bursts of
length I or less. Since this is of more mathematical than practical interest, ex-
amples are deferred to Appendix I

976 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

Number the blocks, starting with 0 for the first block containing an
error, and continue the numbering far enough to include all blocks having
errors in the burst under consideration. (The direction of numbering
should be such that increasing numbers represent digits received at
later times.) Write the parity word for the error in block number 0.
Under this write the parity words for any other errors in this block.
Now write the parity words for the other errors, shifting each one (in
the direction of increasing time) the number of places equal to the block
number in which the error occurs. The syndrome is the sum modulo 2
of these parity words. In the sample above we use superseripts on the
parity words to indicate in which block each error occurred. This shows
the syndrome for the indicated burst of length 6, using the code of Sec-
tion II. Note that there is never more than a single 1 in any column.
By spreading out the parity words with 0’s sufficiently to prevent any
interaction of errors (in a burst not larger than the design maximum),
we allow the use of a simple cireuit for recognizing the parity words and
correcting the errors one at a time. In other words, the decoder for our
example of Section IT is simple because we have a single cireuit for cor-
recting a data-digit error, which is time-shared by every data digit.
Each data digit is compared with four other digits, all far enough away
from each other so that not more than one of these five digits can be in
error due to an allowable burst. Under these circumstances, it is an easy
matter to decide if the particular data digit needs correcting.

VI. LOWER REDUNDANCY CODES

We can apply the same technique, spreading out the parity words
with 0’s so as to avoid interactions between errors in a burst, to make
the redundancy as low as we wish and still have a relatively simple
correcting mechanism, For instance, if we desire a code with a redun-
daney of one-quarter good for bursts of length 4, we choose the follow-
ing parity words (the digits are spaced to emphasize the method of
forming):

P, 111 000 000
Py 000 101 000
Pe 000 000 110
Py 000 000 000

[== = =]

Note that placing the code 100 to the extreme right allowed us to shorten
the parity words by dropping the last two columns, which were all 0’s.
In assigning the parity words, the groups of 1’s should be arranged to

RECURRENT CODES 977

go from upper left to lower right as shown above. That is, the order of
the groups of 1’s in the parity words should agree with the order of the
digits in the block structure. If this is not done extra columns of 0’s
must be inserted in the array of parity words, which would mean more
shift register stages in the encoder and decoder. The difficulty is illus-
trated as follows:

Code I Code IT
Pa 111 000 000 O 000 111 000 O
Pg 000 101 000 O 101 000 000 O
* *
Burst: ..« ABCDAB ---
P,* 1110000000 0001110000
Pyt 0001010000 1010000000
Syndrome: 1110101 10011
[0.K] [N.G.]

* *
(The burst - -+ ABCDAB --- is not allowed, since the above codes are
for bursts of length 4 or less.) If we wish to make a code of the same
redundancy good for bursts of length 8 or less, we form the parity words
by inserting 0’s between each of the digits of the above code, giving:

P, 10101 000000 000000 OO0
Py 00000 010001 000000 00
P 00000 000000 010100 00
Py 00000 000000 000000 01

Tig. 5(a) shows an encoder for this code. The data digits enter from the
left side and are cyclically switched to the three shift registers by the
input commutator. The buffers allow the shift registers to be stepped
together. A check digit, calculated from the parity of the indicated posi-
tions of the shift registers is transmitted with the digits from the last
positions of the registers by the output commutator. Note the corre-
spondence between the parity words and the shift registers. The top
register comes from P, , the second from Py, and so on. Each digit of
a parity word becomes a stage of shift register. The stages representing
1’s are connected to the parity circuit; those representing 0’s are not.
If P, , which has a single 1 at the right end, is assigned to the check
digit, no shift register is required at the encoder for this parity word.
(However, one is needed in the decoder.)

At the decoder, Fig. 5(b), the incoming digits are commutated to the
four shift registers (synchronization must be maintained so that the

978 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

digits get in the proper registers.) As each block arrives at the decoder,
the parity relation is checked; if it fails, a 1 is put in the syndrome reg-
ister at the bottom of the figure. Suppose that a digit in the top register
is wrong; it will cause parity failures as it goes through Positions 1, 3
and 5. When it is in Position 5 the syndrome register will have 1’s in
Positions R, S and 7'. This will enable the AND ecircuit, which will cor-
rect the error as it shifts from Position 5 to Position 6. In a similar man-
ner, an error in the second register is corrected between Positions 11
and 12, and an error in the third register between Positions 17 and 18,
Whenever a 1 reaches Position T of the syndrome register, any 1’s in
Positions R and S are cleared on the next shift. (If for some reason it
should be desirable to correct the check digits rather than discard them,
this ean be done by adding the extension to the bottom register shown
dotted.) Because of the way the taps for the parity circuit are spaced,

BUFFER BUFFER
DATA
IN ,)
(a)
RST RS'T RIST
BUFFER BUFFER

BRI AEEEE [[TT1 _j
= [5
>* 13| |15

(b)

Fig. 5 — (a) Fncoder; (b) decoder.

RECURRENT CODES 979

any register can correct two adjacent errors, and the system is good
against bursts of length 8 or less.

It takes 92 digits entering the deeoder to completely refill all the
registers (including the syndrome register). Thus, a guard space of 91
good digits between bursts is sufficient to assure that there is no inter-
action between bursts.

In general, a procedure for constructing a code of redundancy 1/0
(block length b) is as follows:

Take the first b binary numbers and let L be the number of digits
in the largest one. Form each of these numbers to a L-digit word
by adding zeros to the right end. Now form a square array with b
rows and b columns. The entries in the array are L-digit words. Put
the above-formed words along the main diagonal, with the word
having a single 1 going in the lower right corner. The order of the
other words on the diagonal is arbitrary. Fill in all remaining words
with zeros. Now replace the right-hand column of L-digit words with
single-digit words; 1 in the bottom row, 0 elsewhere. (Strike out the
(L — 1)-digit columns from the right.)

The rows of this array are the parity words of the desired code. The
order from top to bottom is the (“snapshot”) order of occurrence of the
corresponding digits in the block structure of the message.* This code
will correct all bursts of length b or less. To make a code good for burst
of length Kb or less, add K — 1 zeros between each adjacent pair of
digits of the above parity words.

If the odd binary numbers were not increased to L digits as above,
certain otherwise allowable bursts could cause syndromes which would
be incorrectly interpreted by the decoder. For instance, 001 and 110
might add to form 001110. The procedure given prevents this type of
difficulty.

VII. SHIFT REGISTER AND GUARD SPACE REQUIREMENTS

If we design codes by the method indicated in the previous section,
the method is regular enough to allow us to give formulas for the shift
register stages and guard space. T

Definitions:

b, I, k, L(b) are positive integers.

* The bottom row is the parity word for the digit that is transmitted first in
any bloek. See the direction of rotation of the output commutator in Fig. 5(a).

t If the block length is not a power of 2 it may be possible to save a little from
these ealeulations by taking advantage of the fact that one or more of the odd

numbers is not used. For example, the burst-length 3, redundancy one-third de-
coder shift registers can be reduced from 24 to 21 stages.

980 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

The block length is b with one check digit; hence, the redundancy is
1/b. The code is to be usable against bursts of length I or less, where
[= kb. L(b) is the smallest integer such that

L) = 1 + log, b.

Thus,
b| 2 3 4567 89 10
Lb)| 2 3344445 5

The encoder will have b — 1 registers, each of length
(f;) L) (b — 1) + 1
or
b — 1)2(£)L(b) tb—1
stages. The decoder will have
b — VL) + 26 + (é) L(b) — 1

stages.
The guard space can be shown to be

WL(b) + b — 1 — 1.

Table II shows some typical values. (Efficiency is 1-redundancy.)

VIII. DETECTION OF OVERLONG BURSTS

Any error-correcting system fails when the errors get beyond its cor-
recting capabilities. In some cases, it is desirable to detect that a burst
has occurred which the system cannot correct. In Section II we men-
tioned that the code for that example failed on a burst consisting of two
check-digit errors exactly six apart. The effect of this burst is to cause
the decoder to change the data digit which is common to the parity
groups containing these check digits. This is a fundamental difficulty of
the particular code and cannot be avoided, since such a burst converts
our encoded message to what looks like a different encoded message
with a single data-digit error. In general, we cannot correct or even
detect bursts which convert one encoded message to another encoded
message, or to another encoded message modified by an allowable burst
(assuming we still wish to correct allowable bursts). For the example
of Section II there are:

RECURRENT CODES 981

four bursts of length 9,
two bursts of length 8,
one burst of length 7,

which convert one encoded message to another encoded message mod-
ified by an allowable burst. These seven bursts are not detectable, but
all other bursts of length 9 or less are detectable and, of course, all bursts
of length 6 or less are correctable. In connection with the code demon-
strator described in Section II, a circuit which detects overlong bursts
by monitoring the sequence of failures of the two parity circuits in Fig.
3 has been built. All 512 bursts of length 9 or less have been tried on it,
and it rings the alarm on all the uncorrected bursts except the seven
listed above.

In the code of Section IT the syndrome for a single data error is the
same as the syndrome for a pair of check-digit errors six apart. To im-
prove the error-detection capabilities of our code, we can always change
the parity words so that the first occurrence of two bursts giving the
same syndrome involves bursts longer than the correctable one.

As an example, consider the code given by the parity words

P, = 1001001000000,
P = 0000000001001,

I

This particular code permits a very simple overlong-burst-detection
scheme. It corrects or detects all bursts of length 13 or less and corrects
all bursts of length 6 or less. The encoder and decoder are shown in

TasLE 1II
X Shift Register Stages
Block (;ff,l}gﬁe::,’,}) Burst Length Guard Space
Encoder Decodert

2 50 2 3 8 7
4 5 12 13

6 7 16 19

8 9 20 25

10 11 24 31

3 67 3 14 24 26
6 26 42 50

9 38 60 74

4 75 4 30 43 47
8 57 78 91

5 80 5 68 89 99
10 132 168 194

t The decoder here is different from the one for Table I; this one has a syn-
drome register.

982 THI. BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

Fig. 6. Note that, in the process of correcting an allowable burst, the
three parity-check circuits R, S and T cannot have either of the fail-
ure patterns 010 or 101. It happens that one or the other of these pat-
terns occurs for every burst of length 13 or less that is not corrected by
the decoder.

The decoder here shows an alternative arrangement compared to
Fig. 5. Instead of the syndrome shift register, we have three copies of
the parity check circuit shifted so that Position 7 of the data register
is the only one common to all three. If we were to make a circuit similar
to Fig. 5, we would save the S and T parity circuits, the last five stages
of the data register and the last six stages of the check register in ex-
change for a seven-stage syndrome register with its reset cireuit.

IX. SYNCHRONIZATION

In general, there are two synchronization problems with any binary
code, bit synchronization and block synchronization. For purposes of

DATA SHIFT REGISTER

T Tl T I L] I—k__-sm:onen
CHECK SHIFT REG MEgS;\GE
o] [[l

[_ CHECK DIGIT GENERATOR | R
(a)
RST RS'T R'ST'
PRECISTER t;ﬁ—*?ﬁ?
IRERARRL © LTI
4— T PARITY CIRCUIT ALARM
ENCODER
MESSAGE r l
M u-r S PARITY CIRCUIT 4
i }
R PARITY CIRCUIT _}-'
T T TT T fef T e[[[el []
(b) CHECK SHIFIT REGISTER

Fig. 6 — (a) Encoder; (b) decoder.

RECURRENT CODES 983

TaBLE IIT — ImpossiBLE CODES

Number of Terms

0DD EVEN
Number of Ones ODD 00000- - - 0000 -+, 11111 - -
EVEN 11111+

bit synchronization, it is desirable to have transitions from 0 to 1 or
1 to 0 at some minimum rate. By proper choice of the number of terms
in the parity relation and also whether the parity is odd or even we can
prevent either of the codes 00000- - - or 11111--- from occurring in the
encoded message, regardless of what the input to the encoder may be.
It is probably also desirable to exclude these codes as possible encoded
messages since they are the most likely messages to be put out by an
encoder with something stuck on or off. Table III shows which codes
cannot ocecur,

TasLE IV
Redundancy Burst Syndrome
1 Al 111
Be 001
Ao 110
BA? 101
i A 1100
Be 0111
ce 1101
De 1001
AR 1011
BeCe 1010
CeDe 0100
D1A® 1111
3 AL 01100
B 10111
Co 11100
De 01101
Ko 10010
Jreo 11101
Go 11001
He 10011
ABo 11011
BeCe 01011
CoDe 10001
DoE? 11111
E°F° 01111
FoGe 00100
GOHe 01010
H'A® 10101

984 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

With the redundancy one-half code, the block synchronization prob-
lem is minimized, since there are only two phases that the decoder can
have. One possibility is to make a decoder with two equal shift registers
and two copies of the error-correcting circuit, one wired in each of the
possible phases. The faet that the wrong parity cireuits fail half of the
time can be used to tell which phase to use.

X. ACKNOWLEDGMENT

I wish to thank E. F. Moore for many helpful suggestions. R. V. Ander-
son built the demonstration device deseribed in Section II.

APPENDIX
Examples of Close-Packed Codes

All of the examples known to date are for burst length two. It is not
too hard to show that there is no close-packed code of redundancy one-
half good for burst length three (see Table IV).

REFERENCES

. Storch, P., Evolution of Long Distance Type-Printing Traffic by Wire and
Radio, Llek. Z., 65, 1934, pp. 109; 141.

. Moore, J. B. and Mathes, R. E., U. 8. Patent 2,183,147.

. Holbrook, B. D., U. 8. Patent 2,317,191.

. Hamming, R. W., Error Detecting and Error Correcting Codes, B.S.T.J., 29,
1950, p. 147.

. Plotkin, M., Binary Codes with Specified Minimum Distance, Research Div.
Rep. 51-20, Moore School of Electrical Engineering, Univ. of Pennsylvania,
1951.

6. Golay, M. J. E., Binary Coding, IL.R.E. Trans., PGIT-4, 1954, p. 23.

7. FElias, P., Error-Free Coding, IL.R.E. Trans,, PGIT-4, 1954, p. 20; Coding for

8

9

[el] —

Noisy Channels, I.R.E. Conv. Rec., 1955, Part 4, p. 37.
. Muller, D. E., Application of Boolean Algebra to Switching Circuit Design
and to Error Detection, L.R.E. Trans., EC-3, 1954, p. 6.
. Reed, I. S., A Class of Multiple-Iirror-Correcting Codes and the Decoding

Scheme, I.R.E. Trans.,, PGIT-4, 1954, p. 38.

10. Slepian, D., A Class of Binary Signalling Alphabets, B.8.T.J., 86, 1956, p.
203.

11. Lloyd, 8. P., Binary Block Coding, B.8.T.J., 36, 1957, p. 517.

12. Ulrich, W., Non-Binary Error Correction Codes, B.5.T.J., 36, 1957, p. 1341.

13. Brown, A. B. and Meyers, 8. T., Evaluation of Some Frror Correction Meth-
ods Applicable to Digital Data Transmission, IL.R.E. Conv. Ree., 1938,
Part 4, p. 37.

14. Green, J. H., Jr., and SanSoucie, R. L., An Error-Correcting Encoder and
Decoder of High Efficiency, Proc. LR.E., 46, 1958, p. 1741.

15. Kautz, W. H., A Class of Multiple-Error-Correcting Codes, Stanford Research
Institute, 1958.

16. Sacks, G. E., Multiple Error Correction by Means of Parity Checks, I.R.E.
Trans., IT-4, 1958, p. 145.

17. Abramson, N. M., A Class of Systematic Codes for Nonindependent Errors,
Stanford Electronics Labs., Tech. Rep. No. 51, 1958.

18. Gilbert, E, N., A Problem in Binary Coding, Symposium on Combinatorial
Designs and Analysis, Amer. Math. Soc., 1958 (to be published).

