Variable-Length Binary Encodings

By E. N. GILBERT and E. F. MOORE

(Manuseript received September 9, 1958)

This paper gives a theoretical treatment of several properties which de-
seribe certain variable-length binary encodings of the sort which could be
used for the storage or lransmission of information. Some of these, such as
the prefix and finite delay propertics, deal with the time delay with which
eircuils can be built to decipher the encodings. The self-synchronizing prop-
erly deals with the ability of the deciphering civcuils o gel in phase
automatically with the enciphering circuils. Exhaustive encodings have the
properly that all possible sequences of binary digits can occur as messages.
Alphabetical-order encodings are those for which the alphabetical order of
the letters is preserved as the numerical order of the binary codes, and would
be of possible value for sorting of dala or consultation of files or dictionaries.
Various theorems are proved aboul the relationships belween these properties,
and also aboul their relationship to the average number of binary digits used
to encode each letter of the original message.

I. INTRODUCTION

Table T gives three different encodings for representing the letters of
the alphabet and the space symbol in binary form. These encodings
have several special properties which are of some interest. First, each
is a variable-length encoding; that is, the code for each letter is a sequence
of binary digits, but the codes assigned to different letters are not all
required to consist of the same number of binary digits. The first two
of these encodings have the prefix property; that is, no one of the codes
is a prefix of any other code of the same encoding. This property makes
it easy to decipher a message, since it is only necessary to look at enough
binary digits of the message until it agrees with one of the codes if it is
desired to find the first letter of the deciphered message.

The first of these encodings, called the Huffman encoding, is con-
structed by the method given by Huffman,' and has the property of
being a minimum-redundancy encoding; that is, among all variable-
length binary encodings having the prefix property, this is an encoding

933

934 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

TasLe I

Letter Probability Huffiman Code Alphabetical Code Special Code
Space 0.1859 000 00 00

A 0.0642 0100 0100 0100

B 0.0127 011111 010100 010100

C 0.0218 11111 010101 010101

D 0.0317 01011 01011 01011

1)) 0.1031 101 0110 0110

F 0.0208 001100 011100 011100

G 0.0152 011101 011101 011101

H 0.0467 1110 01111 01111

1 0.0575 1000 1000 1000

J 0.0008 0111001110 1001000 10001111111

K 0.0049 01110010 1001001 100100

L 0.0321 01010 100101 100101

M 0.0198 001101 10011 10011

N 0.0574 1001 1010 1010

(8] 0.0632 0110 1011 | 1011

P 0.0152 011110 110000 11000

0.0008 0111001101 110001 110001111111

R 0.0484 1101 11001 11001

S 0.0514 1100 1101 1101

T 0.0796 0010 1110 1110

u 0.0228 11110 111100 111100

\4 0.0083 0111000 111101 111101

W 0.0175 001110 111110 111110

p.¢ 0.0013 0111001100 1111110 1111101111111

Y 0.0164 001111 11111110 1111110

Z 0.0005 0111001111 11111111 11111101111111
Cost 4.1195 4.1978

having the lowest possible cost (where the cost is defined as the average
number of binary digits used per letter of the original message, assuming
that the message is made up of letters independently chosen, each with
the probability given).

The second of these encodings, called the alphabetical encoding, has
the property that the alphabetical order of the letters corresponds to
the numerical binary order of the codes. Among all such alphabetical-
order-preserving binary encodings that are of variable length and have
the prefix property, the one given has been constructed to have the
lowest possible cost. It can be seen that the cost 4.1978 of the alpha-
betical encoding is quite close to the cost 4.1195 of the Huffman encoding,
as compared to the cost 5 of the more conventional fixed-length encoding
for the same alphabet, so that the alphabetical restrietion adds surpris-
ingly little expense to a variable-length encoding.

Part of this paper deals with the methods of constructing such best
alphabetical encodings, and gives some theorems concerning their cost
and their structure. However, this paper also includes theoretical results

VARIABLE-LENGTH BINARY ENCODINGS 935

about various properties of variable-length binary encodings in general.
The cost, the prefix property and unique decipherability have already
been mentioned. The exhaustive property (roughly speaking, this
permits all infinite binary sequences to occur as encoded messages) is
also shown to be relevant, as is the finite delay property, which has to do
with the amount of delay which must take place between receiving and
deciphering the enciphered message. Various theorems are proved con-
cerning the relationships of these properties to each other and to other
properties. Some of these properties have also been considered by other
authors.!2.3.4.5.6

One property of special interest is the ability of certain variable-length
encodings (but not of fixed-length encodings) to automatically syn-
chronize the deeiphering circuit with the enciphering circuit. This self-
synchronizing property, while it has been previously mentioned,® is a
little-known property which might have practical significance in that it
would permit binary deciphering machines using variable-length encod-
ings to be built without requiring any special synchronizing circuits or
synchronizing pulses, such as are needed for fixed-length encodings.
Thus, there may be cases where (despite some present opinions to the
contrary) variable-length encodings lend themselves to simpler instru-
mentation than fixed-length encodings.

Since the probabilities given in Table I are derived from one of the
tables of frequencies of letters in English text,” the encoding given
should be reasonably efficient for encoding English words or phrases.
The alphabetical property, together with the prefix property, implies
that two such words or phrases could be compared for alphabetical
order merely by putting the two entire phrases into a simple comparison
circuit of the kind which would be used to compare hinary numbers, It
the two phrases begin with the same sequence of letters, the correspond-
ing parts of their enciphered form would agree, and the outcome of the
hinary comparison would bhe determined by the comparison between
the two binary codes corresponding to the first pair of letters which
disagree.

Placing the space symbol before the letter A of the alphabet corre-
sponds to the usual convention governing the filing of multiple-word
entries in alphabetieal order, although if it were desired also to include
punctuation marks or numerals in the alphabet, the conventions are not
so universal, and might not be of the sort which can easily be expressed
in a binary encoding.

An alphabetical encoding might be used as a means of saving memory
space needed for names or other alphabetical data that are to be sorted

936 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

into alphabetical order on a data-processing machine or are to be stored
in a file in alphabetical order. Similarly, it might be used for the words of
a dictionary as o part of a language-translating machine, if it were
desired to preserve the conventional alphabetical order of dictionaries.
In addition to possible savings of memory space, it might be used to find
entries in such a dictionary more quickly. Since the low redundancy of
this encoding causes the digits 0 and 1 to be used with more nearly equal
frequency and more nearly independently than in a fixed-length encod-
ing, the binary numerical value associated with each word would increase
more nearly as a linear function of distance progressed through the
dictionary; hence, instead of searching for a given word by the method
of successively halving the interval in which it is known to lie, linear
interpolation (or some rough approximation to it which might be done
by a simpler eireuit) could be used to speed up convergence. However,
for uses such as mentioned here, the particular alphabetical encoding
given in Table I is not necessarily the optimum, since the frequencies of
oceurrence of letters in names or in dictionary entries are undoubtedly
different. than they are in connected English text. However, the methods
given in this paper would enable such an encoding to be obtained for
any given probability distribution.

II. TERMINOLOGY

We will use the word letter to refer to any symbol of some designated
list, including even the space symbol of Table I. By an alphabet we will
mean a set of letters. We will usually require each member of an alphabet
to have associated with it a probability of oceurrence, and we will also
usually require that some linear ordering relationship (which we will
call alphabetical order) be defined for the letters of this alphabet. So that
we may call any subset of the letters of an alphabet a subalphabet, and
may keep the same ordering and the same probabilities, we will require
only that the sum of the probabilities be less than or equal to one. All
of the alphabets considered in this paper have only a finite number n
of letters, but it might be advisable to allow countably infinite alphabets
in certain further theoretical extensions of this subject.

A message is a finite sequence of letters, or an infinite sequence LyLoL;

- which extends infinitely only into the future, not into the past. We
will consider a source which generates messages in which successive
letters occur independently and with the given probabilities. However,
in case the sum of the probabilities is less than one, we may imagine that
the probabilities are proportionately increased just enough that their
sum becomes one, so that the associated source is more realistic.

VARIABLE-LENGTH BINARY ENCODINGS 937

We distinguish between code and encoding, both of which are often
called codes by other writers. A code is a finite sequence of binary digits.
An encoding is a way of associating (or more formally, a function C
which associates) a code C'; with each letter L; of an alphabet.

The operation of enciphering (elsewhere often called encoding) con-
structs a sequence of binary digits which is made up of the code for the
first letter of the message, followed immediately by the code for the
second letter of the message, ete. Any message then produces a sequence
of binary digits called the enciphered message. Any machine or circuit
which does the operation of enciphering is called an enciphering machine
or an enciphering circuil. The enciphered message of a finite message is
obviously always finite.

An encoding will be said to be uniquely decipherable if, for each finite
enciphered message, there exists exactly one original message which
could have produced it. If an encoding is uniquely decipherable, then
there is obviously a procedure for deciphering any finite enciphered
message (by enumeration, for instance), and any machine or circuit
capable of doing this will be called a deciphering machine or a deciphering
cireut.

Following Huffman,' we define a prefix of any sequence ® of binary
digits to be any finite sequence which is either & itself or is obtainable
by deleting all of the digits after a given point of ®. For example, the
prefixes of 10110 are 10110, 1011, 101, 10, 1, and the null sequence,
which has no digits. We will say that an encoding C has the prefix
property if no code of C is a prefix of any other code of C.

By a presumed message we will mean a finite or infinite sequence &
of binary digits such that every prefix of ® is a prefix of the enciphered
form of some message. Then, at any given time while a presumed message
is being sent into a deciphering machine, it is indistinguishable from a
message, so it makes sense to allow presumed messages as well as mes-
sages to be the class of sequences which can be sent into a deciphering
machine,

III. THE ENCODING THEOREM FOR ALPHABETICAL ENCODINGS

Consider a discrete source S which uses the alphabet: space, A, B,

-, Z (any other linearly ordered alphabet will also serve). An encoding
of blocks of N letters into binary sequences will be called an alphabetical
encoding if it is uniquely decipherable and the codes for the blocks in
alphabetical (dictionary) order are themselves in numerical order. Here
the codes are imagined to be prefixed by binary points to convert them
into numbers in binary form. The alphabetical encoding of Table I is a

938 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

case with N = 1. It is a natural question to ask if a restrietion to alpha-
betical encodings may not be severe for some sources S. In particular,
are the results of Shannon’s encoding theorem (Ref. 8, Theorem 9)
still obtainable with alphabetical encodings?

Shannon proved that the output of a discrete source having entropy
H bits per character can be enciphered in a uniquely decipherable manner
into a sequence of binary digits so that the average number of digits
used per character exceeds H by an arbitrarily small amount. Shannon’s
construction encodes blocks of N source characters into binary sequences,
using a cost (average number of binary digits per character) Hy which
satisfies

NGy < NHy < NGy + 1. (1)

Here, NGy is Shannon’s notation for the information contained in a
block of N characters produced by the source; i.e.,

NGy = —2_ pilog pi, @)
in which the p; are the N-gram probabilities of the source. Then, since
hm GN = H,

Shannon’s theorem N7
lim Hy = H (3)
N—w

follows from (1). Since NGy must be a lower bound on the average
number of digits used to encode a block of N characters by any means
whatever, (1) shows that Shannon’s construction is not far from the
best possible one for block encoding. We now give a similar theorem
for alphabetical encoding.

Theorem 1: Let S be a source producing messages which may be ordered
(alphabetically). Let Gy be computed from the N-gram probabilities p; of
S by (2). There exists o uniquely decipherable alphabetical encoding of
blocks of N characters of S into sequences of binary digils for which the
cost, Hy , satisfies

NGy = NHy = NGx + 2. (4)

By picking N large enough, H y may be made arbitrarily close lo the entropy
H of S in bils per character.

Proof: The proof is adapted from Shannon’s® proof of his Theorem 9.
Let all possible blocks of N source characters be listed in alphabetical
order, and let p; denote the probability of the 7th block in the list (recall

VARIABLE-LENGTH BINARY ENCODINGS 939

that Shannon lists his blocks in order of probability rather than alpha-
betically). Let m; be the integer for which

9Mi < P < 21—1:1;_

Also, let numbers 4, , 45, Ay, - -+ be defined by

4’11 =

w|®

Az:p]'i'%g, (5)

11;:(p1+...+pi_1)+%.
Note that
0 é 4-'11 é ;‘12 é PR é 1.

We now construet an alphabetical encoding. The code for the ith block
will be the first m; + 1 digits of the binary expansion of the number 4, .
In Shannon’s encoding this same block has a code formed by expanding
a (different) number to m; places. Then our scheme uses only one more
digit than does Shannon’s for each block, NHy = NHy + 1, and (4)
follows from (1). It remains now to show that our encoding is uniquely
decipherable; i.c., that the sequence of letters generated by S may be
reconstructed from the binary digits.

It suffices to prove that our construction produces a list of codes which
have the prefix property. Then the enciphered message produced by
each block of N letters may be deciphered as soon as all its digits have
heen received.

To prove that our list has the prefix property, consider any two blocks
of letters, say the ¢th and the jth with ¢ < 7. By (5),

Az A+ 2

and
;l_, ;)‘1,‘ _Ji— 2*17":\1' + 271-":"- (6)

If p: = p;, then m; = m;; but, by (6), the jth code cannot be identically
the same as the first 1 4+ m; places of the 7th code. Similarly, if p; = p;
the 7th code cannot be a prefix of the jth code. Thus, the prefix property,

and the theorem, follow.

940 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

Except in the case of an alphabet having only one letter, the prefix
property is sufficient to insure unique decipherability, but it is not
necessary. For example, the list 0, 01, 11 does not have the prefix prop-
erty; still it could be used. In a received message 00001111 - - - there
would be no doubt about the first three 0’s, and the fourth 0 would be
recognized as 01 or not according to whether an odd or even number of
1’s followed it.

However, by a best alphabelical encoding we will mean an encoding
which has the lowest cost among all alphabetical encodings which have
the prefix property. This insistence upon the prefix property will make
it possible for us to prove Theorems 2 through 5 and give constructive
methods for finding these best alphabetical encodings.

If we use the construction just described to design an alphabetical
encoding of English with N = 1, we obtain a cost of 5.75 digits per
character. As guaranteed by the theorem, this cost is less than G, 4+
2 = 6.08. However, we could have done better by simply assigning a
five-digit code to each letter. The encoding can be much improved by

TasLe 1T
Letter Code Shortened Code
Space 0001 000
A 00110 001
B 01000001 010000
C 0100011 010001

deleting some digits which are obviously not needed. For example, the
first few codes are those listed in Table II. Clearly the code 00110 for A
is too long. As soon as the prefix 001 is received, A is the only possibility.
The final digits 10 may be deleted. Similarly, the other codes may be
shortened, as indicated in Table II, until no code can lose a final digit
without becoming a prefix for some other code. The cost is thereby
reduced to 4.44 digits per character.

A different encoding is obtainable using the same sort of construction
but with

i—1

.Ai — Z 2—m,‘ + 2—m|'71‘
i=1
The same proof can be used, since (6) still holds. Since the code lengths
are again the numbers m; + 1, the new encoding will have the same cost.
The numbers A ; can now be computed with ease directly in the binary
system, and much of the arithmetic needed for the first construction
may be avoided. However, the kind of shortening used in Table II does

VARIABLE-LENGTH BINARY ENCODINGS 941

not work as well with the new encoding. All codes (as numbers) are now
less than

>,

1

This number need not be near 1 (typically it is about). The codes are
then cramped together in a range smaller than (0,1) and cannot be
shortened as much. For the case of the English source with N = 1, the
new encoding can only be shortened to cost 5.02 digits per letter.

1V. ENCODING TRICKS

The simple construction just given does not produce the best encoding,
i.e., the one with least cost. The best encoding can always be found by
a systematie, although long, calculation which is deseribed in the next
section. Here we list a few tricks whereby the problem of finding the
best encoding may be simplified and, in some cases, solved.

We will describe these results in terms of encoding single letters into
binary form; however, it is to be understood that blocks of N letters
may always be considered the single letters of a larger alphabet. By a
prefiz set of an encoding we will mean the set of all letters which have
codes beginning with a given prefix. For example, in the Huffman encod-
ing of Table I the prefix 011 has the prefix set consisting of letters B, G,
J, K, P,Q, V, X and Z. In an alphabetical encoding every prefix set
must consist of all letters lying between some two fixed letters in the
alphabet.

The tricks to be described enable one to prove that certain collections
of letters must be prefix sets in any best alphabetical encoding. Whenever
a prefix set is known the encoding problem can then be reduced as follows
to one for a smaller alphabet.

Theorem 2: In a best alphabetical encoding let S be a prefix set for a
prefiv «. Construct a shorter alphabet by replacing the letlers of S by a
single new letter, L', occupying their place in alphabetical order and having
as its probability the sum of their probabilities. A best encoding of the new
alphabet gives L' the code = and gives every other letler its old code.

Proof: Let C(L) denote the code for letter L in the original best
encoding. Suppose, contrary to the theorem, that the new problem had
a better solution in which 7, L! had codes C'(L) and C'(L'). One would
then obtain a better solution of the original problem by encoding L into
CY(L). The code for a letter M in the prefix class would be C'(M) with
the prefix = changed to C'(L').

Huffman’s encoding scheme uses a result similar to Theorem II for

942 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

nonalphabetical encodings. The two letters of lowest probability must
form a prefix set, and his result is used again and again, until there are
only two letters left and the problem is solved. When the encoding must
be alphabetical one cannot always find a prefix set easily. Some results
in this direction are given by the following theorems. The symbols
Ly, Ly, -+ - are used to represent the letters of the alphabet in order;
P, P2, -+ will be their probabilities; C(Ly), C'(Ls), -+ will be their
codes in the encoding €' and Ny, Na, - - will be the numbers of binary
digits in their codes. Also, if ® is any code or any prefix, N(®) will be
used to represent the number of binary digits in &.

An encoding will be said to be exhaustive if it encodes an alphabet of
two or more letters in a uniquely decipherable manner and, for every
infinite sequence x = s, - - - of binary digits, there is some message
which can be enciphered as x; or if it encodes an alphabet of one letter
by using the null sequence.

Theorem 3: Every best alphabetical encoding is exhaustive.

Proof: Consider an encoding of an alphabet having two or more
letters which is alphabetical and has the prefix property, but is not
exhaustive. It will be shown that it is not a best encoding. Let « be an
infinite sequence of binary digits such that no message can be encoded
as z. If any code of the encoding is a prefix of x, remove it from x, and,
after o finite number of repetitions of this process, an x will be obtained
which has no one of the codes for a prefix. Let ¢ be the greatest prefix of
2 which is also a prefix of any one of the codes. Let C; be some code of
which @ is a prefix. We will use ®0 to represent the sequence ® followed
by 0. Then either ®0 is a prefix of C'; and ®1 is a prefix of x, and ®1 is
not a prefix of any code of this encoding; or else @1 is a prefix of C'; and
#0 is a prefix of , and ®0 is not a prefix of any code of this encoding.
Without loss of generality, we assume the second one of these alterna-
tives. Then consider the new encoding which agrees with the old one
for all codes not having ® as a prefix, but which has a code #8 in place
of each code of the form ®16. The new encoding has a lower cost than
the old one, is still alphabetical and still has the prefix property. Hence
the original encoding was not a best alphabetical encoding.

Lemma 1: Let w be a prefiz. In a best alphabetical encoding, if there is a
code with prefix w0 there is one with prefix =1. Conversely, if there is a
code with prefix w1, there is one with prefiz =0.

Proof: If #0 is a prefix, then by Theorem 3 the sequence =111 - --
must have some code C; as a prefix. But by the prefix property, C;
cannot be a prefix of 70; hence, C'; has prefix =1. The converse is proved
similarly.

VARIABLE-LENGTH BINARY ENCODINGS 943

Lemma 2: Let L, be the letter of lowest probability. In a best alphabetical
encoding, La , logether with one of Layy or La_y must form a prefiz set.

Proof: Suppose ('(L,) ends in 0, say C(L,) = =0, where = stands for
some prefix. By Lemma 1, w1 is a prefix of C(Las). If C(Layy) = w1,
we have the desired result. If not, 10 must be a prefix of C(Las).
By Lemma 1 there exist codes with prefix 711. A better encoding (and
hence a contradiction) may be had by the following changes: Lengthen
C'(L,) from 70 to #00. Change all codes of the form w10y to #01y. Shorten
all codes of the form w11y to w1y. Since the last change applies to at
least one letter (of higher probability than L,), there is a net decrease
in cost.

The proof in the other case [((L,) ending in 1] is similar. If, as is the
case of the probabilities of Table I, the least probable letter is at the
end of the alphabet, then this letter has only one neighboring letter and
must form a prefix set with it. Thus, as a first step in Table I, we can
write

C(Y)

(Z)
where 7(Y,Z) is some unknown prefix. Then, using Theorem 2, the prob-
lem is reduced to an encoding for a 26-letter alphabet in which Y and Z
have been replaced by a single letter L(Y,Z) of probability 0.0169.
When this new problem is solved, =(Y,Z) will be found as the code for
L(Y,Z). The new least probable letter is J or Q, both with the same
probability 0.0008; J, for example, can be in a prefix set with either I
or K, but Lemma 2 gives no clue for deciding which one. One might
hope that one can always pick the less probable neighbor, K in this
case. However, it is easy to find counter-examples which disprove this
conjecture. A weaker, but true, theorem is the following one.

Theorem 4: Let La be the lelter of lowest probability. Suppose that

Pasr > Pa + Pa-1 . (7)

Then L. and La_y must form a prefix set in any best alphabetical encoding.
Similarly, if Par > Pa + Pat1 s La and Layy must form a prefix sel.

Proof: Suppose (7) holds but that L, and L, do not form a prefix
set. Then, by Lemma 2, L, and Lg;; form a prefix set. The codes for L,
and L,.; must be of the form

C(Ls) = =0,
C(Lar) = =l

=(Y,2)0,
(Y, Z)1,

Il

for some prefix #. The code C(L,—1) must end in 1, say C(Laa) = pl.

044 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

For, if C(L.—1) were p0, Lemma 1 would show that some code has prefix
pl and hence must stand for a letter between L,_; and L, in the alpha-
betical order, an impossibility. Lemma 1 now shows that some other
letters have prefix p0.

We consider two cases determined by the numbers N(x) and N(p) of
digits in = and p:

Case 1 — N(m) < N(p). An improved encoding can be made by changing
C(L;) from 70 to 01, C(L._;) from pl to 00 and all codes of the form
p0¢ to py. The last change, a shortening, affects some codes and so off-
sets the lengthening of the least probable code.

Case 2— N(p) = N(wv). An improvement can be made by shortening
C'(Liy1) from 7l to « while changing C'(L,) from 70 to p11 and C(La._;)
from pl to pl10. That there is a net decrease in cost follows from (7).

The other half of the theorem is proved in a similar way.

Applying Theorem 4 to our reduced problem of Table I, we obtain
further reductions, producing new letters L(J,KK) and L(P,Q) with prob-
abilities 0.0057 and 0.0160. Now the lowest-probability letter has become
X, and we need another kind of theorem.

Theorem &: If L; and L; (i < j) are two letters both of probability ex-
ceeding iy + Piyr + ...+ pi1, then the intervening letters Ly, Liys

., Lj_1 form a prefiz set in any best alphabetical encoding.

Proof: Let m denote the greatest common prefix of C(L;) and C(L;),
i.e., a prefix such that «0 is a prefix of C(L,) while 71 is a prefix of C'(L;).
The intervening letters have either 70 or =1 as prefixes. Supposing that
there are some intervening letters with prefix 0, we assert that the
intervening leiters with prefix =0 form a prefiz set. To prove this assertion,
let the intervening letters with prefix #0 be L., ... L., where C'(L.41)
has prefix 1. Let #0p denote the greatest common prefix of C(L;) and
C(L,). Then C(L.) must have prefix 70p1; otherwise, by Lemma 1, L.
would have prefix m0p, and hence 70. Also, C'(L;) has prefix #0p0; other-
wise, m0pl would be a greater common prefix than 70p. The assertion re-
quires only that we prove that C(L.;) has prefix =0pl, for then the
letters in question and no others have this prefix. If, on the contrary,
C'(Liy1) has prefix 70p0, find the greatest common prefix 70p0¢ such
that #0000 is a prefix of C(L;) and #0p0s1 is a prefix of C(L:y). Now
shorten all codes of the form 70p0s0¢ to 70p0cy and lengthen all
other codes m0py to w0ply. The shortened codes include the one for
L;, which has more probability than the total probability of all the
lengthened codes. The assertion is now proved, and likewise intervening
letters with prefiv w1 form a prefix set.

By our two assertions, each of C(L.), ..., C(L;) has one of two

VARIABLE-LENGTH BINARY ENCODINGS 945

prefixes, which we may call 70p1 and 7170, while 70p0 is a prefix of
C(L;) and =171 is a prefix of C(L;). Again, one proves the theorem by
making changes which put the intervening letters into a single prefix
set. There are two cases:

Case 1 — N(m0p) = N(rlr). Lengthen codes w0ply to m0p10¢. Change
codes 7170y to 70p11y. Shorten all codes w171y to w1ry. The intervening
letters now form a prefix set with prefix #0p1 and the new encoding has
smaller cost.

Case 2 — N(rl7) £ N(x0p). By changes similar to those of Case 1, one
may reduce the cost by making the intervening letters into a prefix set
with prefix =170

Applying Theorem 5 to Table I, we now recognize new prefix sets and
reduce the problem by introducing new letters L(F,G) and L(U,V,
W,X,Y,Z) of probabilities 0.0360 and 0.0668. Now L(J,K) becomes
the least probable letter, Theorem 4 applies, and we form a new letter
L(J,K,L) of probability 0.0378. Next, Theorem 4 applies to letter B, and
we form a new letter L(B,C) of probability 0.0345. Again we are at an
impasse.

Theorem 6: If py < ps, then Ly and Lz form a prefix set in any best
alphabetical encoding. Similarly, if L, is the last letter of the alphabet,
Ln—1 and L, must form a prefix sel if p. < Pu—z .

Proof: If p; < ps and Ly and L, are not a prefix set, then C(Ly), C'(L2)
and C'(L;) may be shown to have the forms 70, 71p0 and =1p1y. Then
one could improve the encoding by changing C(L;) to x00, C'(L2) to
701 and all codes wlply to wlpy.

This theorem provides no further reduction of our example. Note,
however, that it might have been applied following the creation of
L(Y,Z) to prove that X,Y,Z, forms a prefix set. This information is
helpful when we must add the final digits to the prefix (U, V, ..., Z)
to form the codes for U, ..., Z. Using Huffman’s encoding method, we
find, disregarding questions of alphabetical order, the best way of en-
coding four letters which have probabilities in the same ratio as our
letters U,V,W and L(X,Y,Z). The solution gives each letter two digits.
Then, an equally good alphabetical encoding gives these letters the code
00, 01, 10, 11. We now know parts of the codes sought, as summarized
in Table ITI. The unknown prefixes =(B,C), ... are to be determined
by finding a best alphabetical encoding of the 17-letter alphabet listed
in Table IV.

Again we might try a Huffman encoding for Table IV. However, we
note in advance that M and L({P,Q) are much less probable than their
neighbors. Then a Huffman encoding will give these letters such long

946 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

TapLe I1I
Letter Code

B ~(B,C)0

> «(B,C)1

F =(F,G)0

I =({F,G)1
J = (J,K,L)00

K «(J,K,L)01

L =~ (J,K,L)1

P =~(P,Q)0

Q =(P,Q)1

U «(U, ---, Z)00
\4 (U, +-+, Z)01
W (U, -+, Z4)10
X x(U, -+, Z)110
Y ~(U, -+, Z4)1110
Z (U, -+, Z)1111

codes that there will be no alphabetical encoding which uses the same
length codes for every letter. To circumvent this difficulty we use Lemma
9, first on L(P,Q) and next on M, and conclude that L(P,Q) must form
a prefix set with O or R and M must form a prefix set with L(J,K,L) or
N. There are then four new alphabets to consider, and we have con-
structed Huffman encodings for each one. The one with smallest cost
is the one in which JJKK,LLM and P,Q,R were made into new letters.
The numbers of digits for the letters in Table IV which this Huffman
encoding required are listed. We next look for an alphabetical encoding
in which the same numbers of digits is used. Such an encoding actually

TasLe IV

Letter Probability Number of Digits
Space 0.1859 2
A 0.0642 4
L(B,C) 0.0345 5
D 0.0317 5
E 0.1031 4
L(F,G) 0.0360 5
H 0.0467 5
1 0.0575 4
L{J,K,L) 0.0378 5
M 0.0198 5
N 0.0574 4
O 0.0632 4
LPr,Q) 0.0160 5
R 0.0484 5
S 0.0514 4
T 0.0796 4
L, .- 2) 0.0668 4

VARIABLE-LENGTH BINARY ENCODINGS 0947

exists, and so we obtain the best alphabetical encoding shown in Table
L. Tt must be admitted that we were somewhat lucky to be able to reduce
the problem to one in which one of the best possible encodings, disre-
garding alphabetical order, includes an alphabetical encoding. Undoubt-
edly, minor changes in the probabilities in Table I might make the prob-
lem much harder. In the next section we give an encoding method which
will apply in all cases.

V. THE GENERAL ALPHABETIZING ALGORITHM

The method which will be used in general builds up the best alpha-
betical encoding for the entire alphabet by first making best alphabetical
encodings for certain subalphabets. In particular, the subalphabets
which will be considered will be only those which might form a prefix
set in some alphabetical binary encoding of the whole alphabet. Since
only those sets of letters consisting exactly of all those letters which lie
hetween some pair of letters ean serve as a prefix set, we will eall such a
set an allowable subalphabet.

We will denote the allowable subalphabet consisting of all of those
letters which follow L; in the alphabet (including L; itself) and which
precede L; (again including L; itself) by (Li, L;). When referring to the
ordinary English alphabet of Table T we will use the symbol # for the
space symbol. Thus, (#,B) will be the subalphabet containing the three
symbols space, A and B, and (A,A) will be used to denote the subalpha-
bet, containing only the letter A.

If it were desired to find an optimum encoding satisfying certain kinds
of restrictions other than the alphabetical one, different allowable sub-
alphabets could be used, with the rest of the algorithm remaining analo-
gous. This method of building up an encoding by combining encodings
for subalphabets is analogous to the method used by Huffman,' except
that he was able to organize his algorithms such that no subalphabets
were used except those which actually occurred as prefix sets in his
final encoding. However, we consider all allowable subalphabets, in-
cluding some which are not actually used as part of the final encoding.

The term cost of an encoding has been used to refer to the average
number of binary digits per letter of transmitted message, that is,
> piN:. Since, in the algorithm to be described, we will be construct-
ing an encoding for each allowable subalphabet, we will also use the
corresponding sum for each subalphabet. But, since the probabilities p;
do not even add up to 1 for proper subalphabets, the sum E.— piN; does
not correspond exactly to a cost of transmitting messages, and so the
corresponding sum will be called a partial cost.

948 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

The algorithm to be described takes place in n stages, where n is the
number of letters in the alphabet. At the kth stage, the best alphabetical
binary encoding for each k-letter allowable subalphabet will be con-
structed and its partial cost will be computed. For k& = 1, each subalpha-
bet of the form (L;:,L:) will be encoded by the trivial encoding which
encodes I; with the null sequence; it has cost 0, since the number of
digits in the null sequence is zero. For &k = 2, each subalphabet of the
form (L;, L;;;) will be encoded by letting the code for L; be 0 and the
code for Liy, be 1. The partial cost of this encoding is p; + pipa. In
general, the kth stage of the algorithm, in which it is desired to find the
best alphabetical binary encoding for each subalphabet of the form
(L ,Liyx-1) and its partial cost, proceeds by making use of the codes
and the partial costs computed in the previous stages.

Tor each 7 between 7 + 1 and 7 + & — 1, we can define a binary
alphabetical encoding as follows: Let C;, Ciya, .. . €1 be the codes for
Li, Liyy, ... Ly given by the (previously constructed) best alphabeti-
cal encoding for (L;,L;_1), and let €}, Ciy1, . . . ,Cise be the codes for

L;, Lit1, ..., Liyx given by the (previously constructed) best alpha-
betical encoding for (L;, L x—1). Then the new encoding for L;, L.,

v Lia, Liy Lipay oo, Ligrey will be 0C:, 0Cyy1, ..., 00, 1C5,
10541, « .., 1C%u_ . Such an encoding can be defined for each j, and

the encoding is exhaustive. It follows from Theorem 2 that the best
encoding for this subalphabet is given by one of the & — 1 such encod-
ings which can be obtained for the ¥ — 1 different values of j. The
partial cost of such an encoding made up out of two subencodings is the
sum of the partial costs of the two subencodings plus p; 4+ piyn + ... +
Pirk—1 - To perform the algorithm it will not be necessary to construct
all of these encodings, but only to compute enough to decide which one
of the & — 1 different encodings has the lowest partial cost. This is
done by taking the sums of each of the £ — 1 pairs of partial costs of
subencodings and constructing the best encoding only.

After the kth stage of this algorithm has been completed for & = 1,
2, ..., n, the final encoding obtained is the best alphabetical encoding
for the entire original alphabet, and the final partial cost obtained is the
cost of this best alphabetical encoding.

If the above algorithm were performed on a digital computer, the
length of time required to do the caleulation would be proportional to
n*. The innermost inductive loop of the computer program would per-
form the operation mentioned above of computing sums of pairs of
partial costs, and this would be done & — 1 times in the process of en-
coding each one of the subalphabets considered in the kth stage. But,

VARIABLE-LENGTH BINARY LENCODINGS 949

since there are n — (b — 1) different allowable subalphabets to be en-
coded in the kth stage, there are (K — 1) [n — (k — 1)] steps to be done
in the kth stage. To find the total number of operations done in all of
the stages, we sum, and find that

. (n' — n)

2 (k= Dl = (= D] = 2222,

which is an identity which can be verified by mathematical induction.

VI. PROPERTIES OF EXHAUSTIVE ENCODINGS

We have already shown (Theorem 3) that every best alphabetical
encoding is exhaustive. Another reason for considering exhaustive en-
codings to be of some general interest is given by the following theorem.

Theorem 7: The Huffman binary encoding of any alphabet s exhaustive.

Proof: We prove by induction that each of the encodings for prefix
sets arrived at during the steps of the algorithm of Huffman' is an ex-
haustive encoding. If this holds for the first & encodings constructed
during this algorithm, consider the prefix set L encoded at the (k 4 1)th
step. Let * = muaows ... be any infinite sequence of binary digits. It
suffices to show that there is some letter whose code is a prefix of w.
The set L was made by combining two previous prefix sets of letters,
I/ and L", and it was encoded by prefixing the codes from their previous
encodings by 0 and 1 respectively. Let L’ be the set whose codes were
prefixed by ;. Then if L’ is a single letter, z; is its code, and hence its
code is a prefix of z. But if I/ is a prefix set, then its previous encoding
is exhaustive by induetive hypothesis, and hence there is a letter L'
whose previous code is a prefix of asz; Then the new code for L'
is a prefix of .

Several of the properties of exhaustive encodings will be considered,
since both the Huffman encoding and the best alphabetical encoding
are exhaustive, and it seems likely that exhaustive encodings might
arise from other types of optimizing problems. For instance, the short-
ening procedure used in Table IT was essentially a way of making the
encoding more nearly exhaustive.

Lemma 8: Whenever an encoding C has the property that for any infinite
sequence T = Xi¥aTy . . . there is a code of C which is a prefiz of x, then

g 27 = 1, (8)

and equality holds if and only if C' has the prefix property.

950 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

Proof: Consider the set P of all finite sequences 2 having length exactly
k, where k is some fixed integer longer than the longest code of €. Then
the property assumed in the hypothesis implies that each element of P
has at least one of the codes for a prefix. But P has exactly 2* elements,
and for each code of length N; there are 2% elements of P of which
it is a prefix. Hence,

IERIEEY

which is equivalent to (8), and equality holds if and only if no element
of P has two different codes for a prefix. However, the occurrence of
two different codes which are prefixes of the same sequence is exactly
equivalent to having one of the two codes be a prefix of the other.

Theorem 8: Every exhaustive binary encoding has the prefix property and
satisfies

o= 1. (9)
=1
Proof: By Lemma 3 and the definition of exhaustive, (8) holds, but,
by MeMillan,? unique decipherability implies

>l (10)
=1
Then we combine (8) and (10) to obtain (9). But, by Lemma 3, this im-
plies the prefix property.

Lemma 4: For any exhaustive encoding of an alphabet, and any prefix
® of this encoding, the new encoding of the prefiz-set subalphabel which as-
sociates the new code 8 with cach letter whose original code was @0 is an
exhaustive encoding of this subalphabet.

Proof: Given any , to find a letter whose new code is a prefix of © we
consider the letter L whose original code was a prefix of ®z. Then, by
the prefix property, the original code of L cannot be a prefix of @, and
thus the original code of L is of the form ®0. Hence, L is in the subalpha-
bet, its new code is 8, and 6 is a prefix of x. To complete the proof that
the new encoding is exhaustive, note that it has the prefix property be-
cause the original encoding does. Hence, the new encoding is either the
trivial encoding (of o one-letter alphabet) or is uniquely decipherable.

Lemma 5: For any exhaustive binary encoding of an alphabet having
n letters, the total number of prefives is 2n — 1.

Lemma 6: In any exhaustive binary encoding of an alphabet having
n letters, none of the codes consist of more than n — 1 digits.

VARIABLE-LENGTH BINARY ENCODINGS 951

Each of the last two lemmas associates a number with each exhaustive
encoding, and they can be proved by induction on the number of letters
in the alphabet. The number associated with each exhaustive encoding
is represented in terms of the number associated with each of the two
encodings that are constructed as described in Lemma 4 for the subalpha-
bet having the prefix 0 and the subalphabet having the prefix 1.

Theorem 9: The cost of the Huffman encoding of an alphabet is a con-
tinuous funetion of the probabilities of the letters.

Theorem 10: The cost of the best alphabetical encoding of an alphabet is
a continuous function of the probabilities of the letters.

The last two theorems will be proved together, enclosing in parentheses
the changes which convert the proof of Theorem 9 into a proof for Theo-
rem 10. In fact, what will be proved are the slightly stronger theorems:
For two alphabets A and A* having the same »n letters, if p; is the prob-
ability of the ith letter of A, p/* is the probability of the 7th letter of A*,
and if & and £* are the costs of the Huffman encoding (best alphabetical
encoding) for A and A* then

M‘.—k*lg(n—l);lp.-—ps*i. (11)

If we let B be the right member of inequality (11) and let &’ be the
cost. of using the Huffman (best alphabetical) encoding of 4* as an en-
coding for A, then, by Lemma 6 and the definition of cost, we can con-
clude that | ' — k*| £ B and, since from the definition of & we can
conclude that & £ &/, we can combine these to obtain k* — £ = B.
By a similar argument involving the use of k", the cost of using the Huff-
man (best alphabetical) encoding of A as an encoding for 4 *, we obtain
I — k* = B. Combining these, we obtain (11).

Theorem 11: The Huffman encoding for a given alphabet has a cost which
18 less than or equal to that of any uniquely decipherable encoding for that
alphabet.

Proaf: This proof is essentially that of McMillan.? Let us consider any
uniquely decipherable encoding . We will construet a new encoding ¢’
which has the same cost as €, and which has the prefix property. How-
ever, by its method of contruction, the Huffman encoding has a cost
which is less than or equal to that of any encoding having the prefix
property, completing the proof of the theorem. Let N; be the number of
digits in the code which € associates with the ith letter of the alphabet.
Let the letters of the alphabet be renumbered in such a way that N; =
N1 . Then, as in the encoding theorem (Theorem 1 of this paper, or
Theorem 9 of Shannon,® we let

952 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

i—1
Ai= 227,
j=1

and we define €' to be the encoding which associates with the ith letter
the code €'/ obtained by truncating A ; after N; digits. Thenit followsthat
the digits truncated were 0's, and hence that each € agrees numerically
with the corresponding A4;. By (10), each of the A; is less than 1. To
show that €’ has the prefix property, we assume that €/ is a prefix of
C,. Then i < j, by the renumbering. However, A;;; = A; + 27", and
hence A; = A; + 27" Thus, 4; cannot agree with the first N; places
of A;. Hence, the first N; digits of € are different from those of C'".

Theorem 12: If A, is the number of evhaustive binary alphabetical en-
codings for an alphabet having n letters, Ay = Ay = 1, and for n = 3 we
have

(20— 3)12

T (n—=2)Inl’ (12)

An
Theorem 13: If T, is the total number of exhaustive binary encodings for
an alphabet having n leiters, Ty = 1, Ty = 2 and, for n = 3, we have

_(2n—3)!2
Tu= (n — 2)1°

These theorems show how rapidly 4, and T, increase with increasing
n. Since, by Theorem 3, A, would be the number of encodings to con-
sider if it were desired to find the best alphabetical encoding by enumera-
tion, Theorem 12 shows that the methods already given in this paper
(even the general alphabetizing algorithm) are much faster than exhaus-
tive enumeration. Similarly, Theorem 7 and Theorem 8 show how much
slower exhaustive enumeration is than the algorithm given by Huffman.!

Each of the A, alphabetical encodings may be converted into n! of
the T, encodings by permuting its codes in all possible ways. It follows
that T, = nld, , and it suffices to prove Theorem 12. Consider for n = 2
an exhaustive alphabetical encoding of n letters. Some number & =
1, ...,n — 1 of these letters has a code with prefix 0. These & codes,
each with its leading digit 0 removed, have been shown (Lemma 4) to
form one of the A, exhaustive alphabetical encodings of & letters. Simi-
larly, the remaining n — & codes, minus their leading digits 1, form one of
the A, exhaustive alphabetical encodings of n — & letters. Thus, if
n = 2,

(13)

n—l
An = AZ AkAn—k: (14)
t=1

VARIABLE-LENGTH BINARY ENCODINGS 953

while A; = 1. To solve (14), construct the generating function a(z) =
A+ A + A 4+ By (14), a(z) = v 4+ a*(2); L.e,

a(r) = 3(1 — /1 — 4x). (15)

The negative sign of the square root is needed to make a(0) = 0. The
series for a(r) is obtained using the binomial theorem with power 1.

The coefficient of 2" (which is A,) has the expression (12).

VII. ENCODINGS WITHOUT THE PREFIX PROPERTY

So far in this paper very little has been said about encodings without
the prefix property. For instance, we restricted the best alphabetical
encoding to be the encoding having the lowest cost among all alphabetical
order-preserving encodings having the prefix property. However, in view
of the fact that the special encoding given in Table I is an alphabetical
encoding and has cost 4.1801, it appears to be advantageous to dispense
with the prefix property requirement. However, not very much is known
about the properties of encodings lacking the prefix property, and, in
faet, it is not known whether the special encoding given in Table I can
be further improved or not. In fact, it was not constructed on the basis
of any general procedure, but was found by a heuristic method. The next
few paragraphs will give a few results which we have found about en-
codings without the prefix property, but will also give some examples of
the difficulties which it is possible to get into when using such encodings.

It should be noted that a message which begins with the letter Y in
the special encoding cannot be deciphered as soon as the Y has been
received, but it is necessary to wait for further received digits in order to
distinguish it from a Z. In particular, in the case of the message enci-
phered as 11111101111110 it is necessary to wait for the 14th received
binary digit before the first letter can be deciphered.

In general, we will say that the delay of a presumed message is d if it
is necessary to wait for the receipt of the first d binary digits before the
first transmitted letter can be recognized. We will say that the delay of
an encoding is d if d is the least upper bound of the delays of all pre-
sumed messages of that encoding. We will say that an encoding has the
fintte delay property if the delay of that encoding is finite. For instance,
the special encoding of Table I has the finite delay property, and in fact
has delay 14.

Theorem 1: If an encoding C' has infinite delay, then there exists a pre-
sumed message of C which has infinile delay.

Proof: Given an encoding (' with infinite delay, there exists an infinite

954 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

sequence of presumed messages My, My, My, ... such that M; has
delay at least 7. Then either the set of those presumed messages M ; whose
first binary digit is 0 or the set whose first binary digit is 1 is an infinite
set. We thus can choose an infinite subsequence of presumed messages
My, My, My, ...such that M; has delay at least 7 and such that all of
the messages agree on the first binary digit. Proceeding by induction,
we can choose at the kth step a subsequence of presumed messages which
all agree on the first & digits. Then the infinite presumed message whose
kth binary digit is the kth binary digit of all presumed messages re-
maining after the kth inductive step is a presumed message, and has
infinite delay.

Tor an encoding to be useful in practice, it seems likely that it must
have the finite delay property. This would permit a deciphering machine
to be built having only a finite amount of memory, and it would permit
two-way communication (as in telephony) to be almost instantaneous.
However, in delayed communication systems (common in telegraphy)
for which a tape is used for storing messages, this tape might be used to
provide the unbounded amounts of memory needed to decipher an infi-
nite delay encoding.

To investigate further the problems of designing an optimal-cost en-
coding of any sort (such as an alphabetical-order encoding), without
requiring it to have the prefix property, it should be remarked that the
problem is finite, but not necessarily easy to attack. That is, given an
alphabet in which all of the letters have positive probability, and given a
constant K, there are only a finite number of encodings of this alphabet
which have a cost less than K. For if m is the smallest of the probabilities,
there are not more than K/m digits in the longest code of any such en-
coding, and there are only a finite number of encodings of an n-letter
alphabet in which each code has length less than K /m. However, this
number would be astronomically large for any alphabet of reasonable
size.

One particular way of generating encodings which will be used in a
few examples below is of some general interest. The reversal of an en-
coding C is a new encoding (which will be called C* for the remainder
of this paper) which is obtained by letting the code for each letter be
written in the reverse order. This interchanges the direction of increas-
ing time, and changes many of the properties of the encoding, but it
does preserve unique decipherability.

Table V demonstrates many of the properties and complications of
encodings, contrasting the one having the prefix property with three
other encodings lacking this property. Each of the four encodings shown

VARIABLE-LENGTH BINARY ENCODINGS 055

TasLE V
Letter Probability First Code Second Code Third Code Fourth Code

A 0.330 000 00 00 00
B 0.005 001 001 0011 00111
C 0.330 01 10 01 01
D 0.005 10 101 0111 01111
E 0.330 11 11 10 10

Cost 2.335 2.01 2.02 2.03

preserves alphabetical order, and each is uniquely decipherable. The
first encoding has the prefix property, and in fact is the best alphabetical
encoding in the sense used in this paper. However, it has an appreciably
higher cost than either of the other three encodings, none of which has
the prefix property. The reversals of each of the last three encodings have
the prefix property, but the reversal of the first encoding does not.

The second encoding of Table V has the lowest possible cost of any
uniquely decipherable binary encoding by Theorem 11, sinee it is the
reversal of a Huffman encoding. However, the second encoding has
infinite delay, since the presumed message 001111 . . . has infinite delay.
IFurthermore, the second encoding, although it preserves the alphabetieal
order of individual letters, does not preserve the alphabetical order of
words made up out of these letters. For instance, the enciphered form
of CE is a larger binary number than the enciphered form of DA, al-
though the latter occurs later in alphabetical order. The property of
preserving alphabetical order of all words will be called the strong alpha-
betical property, and it has already been shown that alphabetical en-
codings having the prefix property have the strong alphabetical prop-
erty. However, both the alphabetical encoding and the special encoding
of Table I have the strong alphabetical property, and all of the en-
codings of Table V except the second encoding have the strong alpha-
betical property. There would be very little to be gained by employing
an alphabetical order encoding for sorting or dictionary purposes unless
it had the strong alphabetical property.

The third encoding lacks these defects of the second encoding, but it
has a special one of its own, about which more will be said in the next
section. This defect has to do with synchronizing, and it can be explained
in this case by the observation that every code of the third encoding
has an even number of binary digits. Thus, if the deciphering cireuit
starts up while it is out of phase, it can never get back in phase. The two
phases correspond to the odd-numbered and the even-numbered binary

956 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

digits, and the deciphering machine, if it is out of phase, would never
get back in. In this case, where there are certain codes which cannot
oceur, the defect could be remedied by designing the circuit to addition-
ally change phase if it ever receives a code 1011 or 1111, but this adds
an extra complication to the circuit. However, the first and second
encodings have the property that each of them will automatically get
back in synchronism with probability 1, without the addition of any
other codes or any other special features to the circuit.

The fourth encoding has none of these defects, and since its cost is so
near to the least possible, it would undoubtedly be a reasonably good
choice as a solution, if this particular alphabet had arisen in an actual
practical problem.

So far in this paper, each example of an encoding with the finite delay
property has had a delay equal to N, where Ny, is the number of
digits of the longest code of the encoding. This result does not hold in
general, as is illustrated by Table VI. The fifth encoding has Ny« = 6,
but it has delay 8.

TasLe VI
Letter Fifth Code Sixth Code
w 00 00
X 001 01
Y 101 10
Z 110101 11

The encodings having the finite delay property but not the prefix
property, such as the special encoding of Table I and the fifth encoding
of Table VI, provide counterexamples which contradict Remark II of
Schiitzenberger (Ref. 5, page 55) and provide the example which is
asked for in the sentence following Remark I of the same paper.

As an alternative to the above method of expressing quantitatively
the finite delay property, we may make the following definitions for use
later in this paper. We will say that the excess delay of a presumed mes-
sage is e if it is necessary to wait for the receipt of e binary digits beyond
the end of the first transmitted letter of the presumed message before
this first letter can be recognized. We will say that the excess delay of an
encoding is e if e is the least upper bound of the delays of all presumed
messages of the encoding.

If d is the delay of an encoding, ¢ is its excess delay, and N in and Nnax
are, respectively, the minimum and maximum numbers of digits of any
codes of the encoding, then we obviously have ¢ + Npin = d = ¢ +
Nouax - Then an encoding has the finite delay property if and only if the

VARIABLE-LENGTH BINARY ENCODINGS 957

excess delay of that encoding is finite. Also, an encoding has the prefix
property if and only if the excess delay of that encoding is 0.

VIII. SELF-SYNCHRONIZING PROPERTIES

Problems of how to make a transmitting device and a receiving device
become and remain synchronized with each other are important in the
engineering design of many kinds of systems. Since the encodings dis-
cussed in this paper are variable-length, it might seem that the syn-
chronizing problem for enciphering and deciphering circuits would be
especially difficult. However, the synchronizing problem is very simple
for many variable-length binary encodings, because of a particularly
favorable property which they possess. These remarks can best be il-
lustrated by an example. Suppose that (using the alphabetical encoding
of Table I as an example) a message beginning 1110011110100111000 . . .
is received, and we wish to observe how a deciphering circuit would
decipher it. Since the encoding has the prefix property, the deciphering
circuit should first find a code which is a prefix of this message, and then
decode this to obtain the first letter T of this message. Proceeding with

TasLE VII

: : H : A : T HE 2
11100111101 00111000 -
: R : T H M : I :

the remaining part, it then finds the letter H, and then the rest of the
deciphered version shown in the first line of Table VII, where the sym-
bol “:” is used to mark the divisions between those sequences of binary
digits which were deciphered as individual letters.

Next suppose that the same sequence of digits had been received, but
that the deciphering circuit was not in synchronism with the enciphering
cireuit. In particular, suppose that, when the deciphering circuit was
first turned on, it was in the state that it would be in if it were partly
through the operation of deciphering some letter, and that the initial 1
of the message was interpreted as the last digit of this letter. This de-
ciphering is indicated on the third line of Table VII. Once again, the
symbol “:”” has been used to mark the divisions between letters. Then
these two decipherings are out of phase (i.e., out of synchronism) with
one another at the beginning of the message, but at the end of the re-
ceived message they are in phase with each other, as is indicated by the
fact that the ““:”” symbols align with each other at the right end of Table
VII. This means that the deciphering cireuit would have automatically
become synchronized, without any special synchronizing circuits or

958 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

synchronizing pulses being necessary. It was, of course, necessary for at
least two of the codes of the encoding to end in the same sequence of
digits, but this is very likely to happen for any variable-length encoding,
unless special efforts are made to prevent it.

However, if we had been using a fixed-length encoding, such as the
sixth encoding of Table VI, in which all of the codes have a fixed length
k, there would be exactly % different phases in which the deciphering
circuit might find itself, and the cireuit could never make a transition
between them. No pair of different codes can end in exactly the same
sequence of digits, and so no two of these phases can become synchro-
nized. Each of these phases will have all of the codes ending after j
digit times, and after k + j, 2k + j, ete., where j is the remainder ob-
tained on dividing the position of the symbol “:” by k, and hence j
can take on k different possible values.

Also, even in the case of variable-length encodings, if all of the code
lengths are divisible by some integer k, then there will be at least &
different phases. Ior if the position of one occurrence of the symbol *“:”
has remainder 7 when divided by %, the position of all other occurrences
of the symbol “:" in this phase of decipherment will have the same re-
mainder.

The above remarks apply strictly to exhaustive encodings, but may
not apply where there are certain sequences of digits which ean never
oceur. For if such a sequence of digits does oceur, this may be used by
the circuit as a special indication that it is out of phase, and hence it
may be possible to build auxiliary cireuits which can cause resynehroni-
zation, even when a fixed-length encoding is used. So a more complete
treatment of synchronization would allow such auxiliary cireuits, but
here we will consider only self-synchronization, which is carried out
inherently by the same means as is used for deciphering.

To speak more precisely about the self-syncrhonizing properties, we
will make some definitions. Given any encoding C' and any

finite sequences z and y such that x is not the
enciphered form (with respect to encoding (') (16)
of any message, and xy is a presumed message,

if z is a finite sequence of binary digits such that both xyz and yz are
complete enciphered messages, we will say that z is a synchronizing se-
quence for x and y. As an example, we have seen in Table VII that
011110100111000 is a synchronizing sequence for 1 and 110.

Given any uniquely decipherable encoding ' which has some codes
of length more than 1, exactly one of the three statements given below
will hold:

-

VARIABLE-LENGTH BINARY ENCODINGS 959

i. For all (16), there is no z such that z is a synchronizing sequence
for x and . The encoding C will then be said to be never-self-synchroniz-
ing.

ii. For each (16), there is a z which is a synchronizing sequence for x
and 4. The encoding € will then be said to be completely self-synchronizing.

iii. Tor some (16), there is a synchronizing sequence for x and y,
but for other (16), there is no synchronizing sequence for x and y. The
encoding ' will then be said to be partially self-synchronizing.

Furthermore, we will define a sequence z to be a universal synchronizing
sequence for the encoding € if, for all (16), this same sequence z is a
synchronizing sequence for & and y.

Theorem 15: Given an exhaustive encoding C, then C is complelely self-
synchronizing if and only if there exists a z which s a universal synchroniz-
ing sequence for C.

Proof: A universal synchronizing sequence clearly satisfies the condi-
tions of the definition of completely self-synchronizing, so it remains
only to construet a universal synchronizing sequence, given that there
is a synchronizing sequence for each finite sequences x and y. By the
exhaustive property, there is a code consisting entirely of 0’s. We will
assume that there are k& 0’s in this code. We will construct our z by
starting with N .. 0's, where Ny is the length of the longest code of
('; after this, there are only k different phases in which the cireuit could
be. Then we find a synchronizing sequence for two of these phases (for
instance, a synchronizing sequence for 00 and 0), and put this next after
our sequence. Next we put on the sequence of N 0’s again. There are
now at most & — 1 phases to synchronize, and, adding on sequences for
these one at a time, we eventually construct our desired universal
synchronizing sequence.

The alphabetical encoding of Table I can be shown by Theorem 15
to be completely self-synchronizing, since the sequence 010001011 is a
universal synchronizing sequence for this encoding. The message AD
has this sequence as its enciphered form. In addition, there are many
other short universal synchronizing sequences for this encoding, such
as the enciphered forms of # Y, AY, BD, BY, EY, HI, ID, JO, JU,
MW, NY, OW, PO, PU, TY, ete. Since just these digraphs listed here
occur as about three per cent of all digraphs in connected English text,®
it ean be seen that, if English text were transmitted by use of this
encoding, it would be quite likely to synchronize itself very quickly.

In fact, it is easy to see that any exhaustive encoding which is com-
pletely self-synchronizing will synchronize itself with probability 1 if
the messages sent have the successive letters independently chosen with

960 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

any given set of probabilities, assuming only that all of these probabilities
are positive numbers. This will occur since the probability of a universal
synchronizing sequence occurring at any given time is positive, and, if
we wait long enough, this will have happened with probability 1.

The fact that this occurs with probability 1 does not make it quite
certain to occur, and, in fact, it is possible to choose arbitrarily long
sequences of English words which do not contain a universal synchroniz-
ing sequence. An example of such a sequence for the alphabetical encod-
ing of Table I is

CHECK # SYNCHRONISM # OF ¥ LONG # FILTHY
CHUCKLE # HEH ¥ HEH # HEH ¥ HEH - - - .

But such a sequence is extremely unlikely to continue indefinitely in any
practical communication system or record-keeping system. Also, slight
complications of the encoding could permit certain sequences which are
certain to occur in English text (such as a period followed by a space
symbol) to be universal synchronizing sequences.

One quality which might be worth comparing for various proposed
encodings under consideration for possible use might be the average
speed with which they synchronize themselves, when carrying typical
traffie. This speed could be caleulated from a sufficiently good knowledge
of the statistics of the traffic, but it could more easily be measured
experimentally, either by the use of actual enciphering and deciphering
cireuits, or by simulating their behavior on a digital computer.

The synchronization problem occurs not only when the equipment
is first turned on, but also in transmission systems for which there is a
noisy channel. For if some digits of o message encoded in a variable-
length encoding are changed, the change may cause the circuits to get
out of synchronism by the change of a short code into the prefix of a
long one, or vice versa. Also, of course, temporary malfunctions of the
enciphering or deciphering circuit themselves might cause them to get
out of phase.

It may be of interest to enumerate the known results about combina-
tions of synchronizing properties and lengths of the codes of exhaustive
encodings.

If an exhaustive encoding has a fixed length (all codes having length
the same integer k), then it must be

never-self-synchronizing,. (17

If an exhaustive encoding has all the lengths of its codes divisible by

VARIABLE-LENGTH BINARY ENCODINGS 961

some integer & > 1, but these lengths are not all equal to k, then it
must be one of the following:

never-self-synchronizing, (18)
partially self-synchronizing. (19)

If an exhaustive encoding has the greatest common divisor of the
lengths of its codes equal to 1, then it must be one of the following:

completely self-synchronizing, (20)
partially self-synchronizing, (21)
never-self-synchronizing. (22)

Of the above six cases, (17), (19) and (20) occur very much more
commonly than the others. In fact, it is very difficult to construct
examples of the other three, unless you deliberately set out to do so.
The following theorems will give indications of the fact that cases (18)
and (22) are hard to obtain.

Theorem 16: Given an exhaustive encoding which 1s never-self-synchroniz-
ing, if we let

Q=2 N2, (23)

then Q will always be an integer.

It can be seen that, in the case of a fixed-length code, @ will be the
length. However, no one of the exhaustive encodings (except those
having fixed length) listed =o far in this paper has an integer value for
(). Rather than give the full details of a rigorous proof of Theorem 16,
only the main ideas involved will be explained. The sum @ is the average
length of the codes obtained by deciphering a presumed message, if the
presumed message was obtained by choosing 0’s and 1’s as successive
digits by independent choices having probability one-half. If we put
such a random presumed message into the deciphering circuit, we have
several different phases in which it may be deciphered. By the never-
self-synehronizing property no two of these phases can ever come to-
gether.

Let H be the set of all prefixes of the presumed message. Then two
of these prefixes will be said to be of the same phase if they are of the
form @ and &, where ® is the enciphered form of a complete message.
The set H is subdivided by the equivalence relation “being of the same
phase” into B distinct sets, where B is the number of phases. By sym-
metry, the probability that any two given members of H will be of the

962 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

same phase is equal, and, sinee each phase occurs with equal probability
and the sum of all of them is 1, each phase occurs with probability 1/B,
where B is the number of phases. However, was the expected difference
in length between a given member of H and its next longer member;
hence, we will have Q@ = B.

Theorem 17: Given an exhaustive encoding C, C 1s never-self-synchroniz-
ing if and only if its reversal C* has the prefix property.

Suppose that €' is not never-self-synchronizing. By the definition of
synchronizing sequence, there exist finite sequences x, y and z such that
« is not the enciphered form of a message, but yz is the enciphered form
of message m; and xyz is the enciphered form of message m, .

For some values of n the last n letters of m, may agree with the last
n letters of m. . But, by the fact that z is not the enciphered form of a
message, there is a largest value of n for which this is true. Let this
largest value be n', and let the letters which are #’ + 1 from the end of
my and m., respectively, be called L, and Ls . Then C'(11) and C(L,) are
both suffixes of the same message (the previous part of xyz), and hence
~ the reversed form of one of them is a prefix of the reversed form of the
other.

The converse follows more readily, since, if 8 and 6& are both codes
of C*, then the reversed form of § is a synchronizing sequence for the
reversed form of ® and the null sequence.

To return to the problem of which of cases (17) through (22) can oceur,
it can easily be shown by the use of Theorems 16 and 17 that, among
all exhaustive encodings in which not all codes are of the same length,
the only ones which are never-self-synchronizing and have fewer than
16 letters in their alphabet are the encoding which encodes a nine-letter
alphabet by using the list of codes (000, 0010, 0011, 01, 100, 1010, 1011,
110, 111), and the reversal of this encoding. This encoding is due to
Schiitzenberger.®

This provides an example showing that case (22) can occur. That
(21) can occur is shown by an encoding (derived from the above by
composition) using the list of codes (000000, 0000010, 0000011, 00001,
000100, 0001010, 0001011, 000110, 000111, 0010, 0011, 01, 100, 1010,
1011, 110, 111).

It is also possible to construct an example of case (18), but the one
we have found is too complicated to be worth presenting here.

IX. ONE REALIZATION FOR ENCIPHERING AND DECIPHERING CIRCUITS

Some reluctance to use variable-length encodings has been based on
the opinion'®'' that it is hard to build ecircuits to encipher or decipher

VARIABLE-LENGTH BINARY ENCODINGS 963

RECOGNITION CIRCUIT

DIRECTION OF SHIFT l
P a— Y
UHAS JUST BEEN PO e '
? i A o o o © o o0 ©o o o o NOT I
4 [1 [A
SHIFT - \
REGISTER

GATE I"\ENABLE

| TRANSLATING
CIRCUIT
(COMBINATIONAL}

DELAY

INPUT ~~TO ADVANCE INPUT

READER

WILL NEXT BE ENCIPHERED {

| =— DIRECTION OF INPUT

Fig. 1 — Block diagram of enciphering circuit.

them. Descriptions will be given below for one circuit for doing each
of these, using principally just a shift register and a combinational
translating eircuit. Since using any eode requires having a combinational
translating eircuit, and since presumably most deviees using coded
alphabetical information are likely to cause it to pass through a shift
register, the kind of circuit deseribed below would add very little com-
plexity to such machines, and would automatically give them the self-
synchronizing property, in the case of most variable-length binary
encodings.

The enciphering circuit, shown in Fig. 1, contains a shift register
containing the words “HAS JUST BEEN ENCIPHERED” followed
by a binary digit 1 and a string of zeros as long as the longest code which
can oceur in the variable-length encoding, We will assume that it is in
such a state as to have the zeros as shown, although it can easily be seen
that it will get into this state if it starts in any other condition.

The circuit of Iig. 1 also contains an input reader (which can for
concreteness be thought of as a punched paper tape reader, although it
could be a buffer or other input device), which can read in one letter

964 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

at a time whenever it is given a pulse on the lead labelled “to advance
input’.

The recognition cireuit, which consists of a multiple-input OR ecircuit
followed by a negation circuit, gives an output whenever there are as
many binary zeros present as there are in the illustration. This sends a
signal to enable the gate, letting the code corresponding to the next
letter be read into the locations previously occupied by the 1 and all of
the zeros. However, the translating circuit, which translates the letters
into this encoding, instead of being designed to give directly the original
variable-length encoding, gives an encoding which differs from it by
having an extra “1” added to the end of each code. The output of the
recognition circuit also goes to advance the input, reading in the next
letter to be converted, after passing through a delay sufficient to be
sure that the gate is now no longer enabled. This delay prevents the
letter being translated from changing while it is being gated into the
output shift register.

As soon as the new code has been read into the shift register, it begins
to be shifted along to the left in Fig. 1. The 1 at the end of the code
serves to mark the end of the code during this shifting, but it will be
eliminated from the enciphered form of the message. The shift register
is connected so that, when it is shifted, a 0 appears at the right end.
As soon as the 1 passes beyond the end of the recognition eircuit, there
will be only zeros present, and hence the recognition circuit will again
recognize the end of a letter and repeat the cycle as given above.

Instead of having a counter or a special sequential circuit to keep
track of where the current letter ends, this has been done here by add-
ing a single binary digit to the code and adding one to the length
of the required shift register.

Similarly, an analogous scheme can be used to decipher from a variable
length code into any other representation for letters, by using one special
position in the shift register, as shown in Fig. 2. This deciphering circuit
can be built only for encodings having the finite delay property, although
the enciphering circuit of Fig. 1 can be used for any binary encoding,.

The shift register into which the digits to be deciphered are shifted
is divided into two halves, which will be called the left half and the
right half. The right half has ¢ digit positions, where e is the excess delay
of the encoding. The left half has N + 1 digit positions, with the
extra 1 being used to mark the end of those digits which already have
been deciphered.

At the beginning of the cyele we will assume that the left half of the
shift register has just been cleared to the state shown in Fig. 2, that is,

VARIABLE-LENGTH BINARY ENCODINGS 965

to contain N,.« 0’s followed by a 1. Next, the digits of the message to
be enciphered shift toward the left. Since the 1 precedes them, it marks
clearly how many of these digits have been shifted into the left half.
As soon as all of the digits of the code of the first letter of the message
have been shifted into the left half, the translating circuit will then
give its outputs. It gives the translated codes for the letter, as well as
giving another output, w, which equals 1 only when the complete first
letter is present. The translating circuit makes use of the inputs from
only the left half of the shift register, ignoring the digits in the right
half, unless the code €' present in the left half is a code which is also a
prefix of another code. It makes use only of those digits from the right
half which are necessary to distinguish between this code and the par-
tially shifted-in code of which it is a prefix. It gives the output w = 1
whenever the entire code for the first letter of the enciphered message
has been shifted over into the left half and, whenever only a prefix of
the code of the first letter is there, the output w will equal zero.

This output w will then cause the left half to clear back to its original
state, and, after a delay sufficient to allow the output to be received, it
gives the “to advance output” signal to the output punch or buffer.

INPUT TO CLEAR SHIFT REGISTER

DIRECTION OF SHIFTING
! l 1 1 I l 1 I l OF SHIFT REGISTER
-
T T T T T T T
o 0 0 0O 0O O O 0O 1

I T T I I T T
TO BE DECIPHERED
| - | |] |] | 1 | 1 L | I]

W

TRANSLATING CIRCUIT

W
[
{ DELAY
I—:
TO ADVANCE_ _ -~
QUTPUT

QUTPUT PUNCH

OR BUFFER
HAS BEEN DECIPHERED
-

Tig. 2 — Block diagram of deciphering circuit.

966 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1959

The deciphering circuit then repeats the above cycle for the next letter
of the message. :

The translating circuit of this deciphering circuit must give the ap-
propriate outputs whenever the complete code for the first letter is
present in the left half of the shift register, and must give w = 1 in these
cases. It must also be designed to give the output w = 0 whenever an
incomplete prefix of the first letter is present, but, sinee in general there
may be many states of the shift register which do not correspond to
either a letter or a prefix, there may be many “don’t cares” occurring
in the design of this translating circuit, which will permit it to be simpler
than a completely specified function having this many inputs.

The time delay between the receipt of the beginning of an N-digit
code for a letter and the actual sending of this letter to the output punch
or buffer will be N + ¢, which may sometimes be slightly longer than
the delay d of the message. However, the circuit for doing the deciphering
in the minimum time would be more complicated, in that it would not
always clear the shift register to the same state, so it is not presented
here.

However, in the enciphering circuit given in Fig. 1 there is only a
delay of one digit time, while the message is shifted through the one
extra stage at the left end of the shift register. Hence, neither of these
two circuits operates in quite the minimum possible time, since speed
has been sacrificed for simplicity of construction.

X. FURTHER PROBLEMS

There are many further problems suggested by the ideas discussed
in this paper, and which we have not been able to solve. Are there any
binary encodings which satisfy (9) other than the exhaustive encodings
and their reversals? Are there any encodings €' which satisfy (9) and
such that both ¢ and its reversal C* have the finite delay property
without both € and C* having the prefix property? Given an encoding
which is uniquely decipherable but which does not possess the finite
delay property, does the set of presumed messages having infinite delay
always form a finite set? Does it always form a set of measure zero? Is
there a simple polynomial in Nu. and # which will be an upper bound
to the delay of any encoding having the finite delay property? Are the
encodings for which the algorithm of Sardinas and Patterson® fails to
terminate precisely the same as the encodings having infinite delay?
Given any encoding having infinite delay, is there a Turing machine
(perhaps having several tapes and several reading and writing heads on

VARIABLE-LENGTH BINARY ENCODINGS 967

each) which can decipher any K-digit message in a length of time which

is

less than a constant times K?

XI. ACKNOWLEDGMENTS

We would like to express our thanks to T. H. Crowley for suggesting

Theorem 7, and to S. P. Lloyd for suggesting to us some of the complica-
tions of encodings which do not have the prefix property.

REFERENCES

1. Huffman, D. A., A Method for the Construction of Minimum-Redundancy
Codes, Proc. I.R.IE., 40, September 1952, p. 1008,

2. Sardinas, A, A, and Patterson, G. W., A Necessary and Sufficient Condition
for Unique Decomposition of Encoded Messages, I.R.E. Conv. Ree., 1953,
Part 8, p. 104.

3. MeMillan, B., Two Inequalities Implied by Unique Decipherability, I.R.I.
Trans., IT-2, December 1956, p. 115.

4. Mandelbrot, B., On Recurrent Noise Limiting Coding, Proceedings of the
Symposium on Information Networks, Polytechnic Institute of Brooklyn,
April 1954, p. 205.

5. Schiitzenberger, M. P., On an Applieation of Semi-Groups Methods to Some
Problems in Coding, I.R.E. Trans, IT-2, September 1956, p. 47.

6. Michel, W. 8., Fleckenstein, W. O. and Kretzmer, E. R., A Coded Faesimile
System, I.R.E.-Wescon Conv. Ree., 1957, Part 2, p. 84,

7. Dewey, G., Relativ Frequency of English Speech Sounds, Cambridge Univ.

8.

9.
10.
11.

Press, Cambridge, Eng., 1923, p. 185.

Shannon, C. E., A Mathematical Theory of Communication, B.8.T.J., 27,
July 1948, p. 379; October 1948, p. 623.

Pratt, F., Secret and Urgent, Doubleday & Co., Garden City, N. Y., 1939.

Brooks, I, P., Ph.D. thesis, Harvard Univ., May 1956.

Brooks, F, P., Multi-Case Binary Codes for Non-Uniform Character Dis-
tributions, [.LR.E. Conv. Rec., 1957, Part 2, p. 63.

