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An analysis of transistor blocking oscillators is presented which differs
significantly from previous approaches in that the nonlinear dependence of
collector current and base voltage wpon base current is considered. First, the
nonlinear differential equations governing circuil performance are derived
considering the effects of alpha cutoff, eollector capacitance and leakage and
magnetizing inductance. The relative importance of the various terms in this
equation during transition, relaxation and recovery intervals is discussed
from a physieal viewpoint.

Analog and digital computer solutions of the nonlinear differential equa-
tion yield pulse responses which give excellent agreement with experimental
resulls for various signals, transistor characleristics and values of passive
circuit elements. The paper concludes with a design example in which the
analysis is confirmed by experiment.

I. INTRODUCTION

Transistor blocking oscillators are finding application in digital com-
puters' and transmission systems? where it is necessary to reconstruct a
pulse train that has been dispersed in a noisy medium. In fact, several
papers® 45 have been published concerning the design and analysis of
such circuits. All of the previous analytical approaches have been based
on the use of a piecewise linear analysis. Linear circuit approximants
have been used which are approximately valid during portions of the
circuit operation, and formulas have been derived for the rise time and
pulse width of the output pulse. The piecewise linear approach does not
deal with the inherent nonlinear character of the circuit, and the ap-
proximations involved in linearization are often difficult to justify. The
most serious shortcoming of the linearization technique is the fact that
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it does not give information concerning trigger requirements for reliable
operation.

In view of the inherent restrictions of the approximate analysis, a
more detailed analysis which deals directly with the nonlinear nature of
the circuit has been undertaken. The following sections of this paper will
be concerned with the development of this procedure. First, the equiv-
alent circuit, including the nonlinear dependencies, will be displayed and
the assumptions on which the analysis is based will be discussed. The
nonlinear integro-differential equations governing the performance of
the eircuit throughout its entire cycle of operation will be derived. A clear
qualitative picture of the ecircuit operation is achieved with the non-
linearities included. Physical reasoning permits the dissection of the
nonlinear equations into equations governing the circuit operation during
the transition intervals (“off and on”), “on” interval and ‘“recovery”
interval. Trigger requirements for reliable regenerative action are de-
rived. These are, of course, dependent on the nonlinear characteristics
of the transistor as well as on other circuit parameters. Requirements
on the circuit parameters to minimize ringing, achieve fast rise time,
and recover quickly for repetitive operation are developed. Application
of the results of the analysis to a specifiec example is given and confirmed
by experiment.

Both analog and digital computers have been used as adjunets to the
strictly analytic approach to search out relationships between circuit
parameters to achieve desired performance. It is believed that the com-
bined analytical and computer approach used in this paper is more
general and more easily applied than the piecewise linear analysis and,
furthermore, that it is a valuable design philosophy for exploring other
nonlinear circuits. Further work on other nonlinear transistor circuits
using this approach is being pursued.

II. THE EQUIVALENT CIRCUIT

In selecting the equivalent circuit for an active device one is usually
confronted with two conflicting requirements. On the one hand, the
equivalent circuit must accurately exhibit the same properties as the
physical device, so that computations based on the equivalent ecircuit
give substantial agreement with experiment. On the other hand, there
is a twofold requirement for simplicity. First, the number of parameters
involved should be minimized to make the analysis tractable. Second,
it should be possible to draw qualitative conclusions regarding the circuit
operations from the equivalent eircuit. In the case of the transistor
blocking oscillator, these requirements are particularly important. Since
the oscillator is highly nonlinear in its operation the number of coupled
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equations involved is closely related to the complexity of the equivalent
circuit.

With these factors in mind, the equivalent eircuit shown in Fig. 1(a)
was chosen to represent the transistor in the grounded emitter blocking
oscillator. It takes into account the following properties of the transistor:
(a) the nonlinear relationship between base voltage and base current;
(b) the nonlinear dependence of collector current on base eurrent and
frequency; (c) partially, the effect of minority carrier storage during
“turnoff”” and (d) the combined effect of collector and stray capacitance.

However, the circuit neglects, among other things, the effect of cou-
pling between the base and the collector circuit, emitter junction capaci-
tance, base spread resistance and recombination. In the following we will
discuss the quantities listed above, and how they can be obtained from
measurements on the transistor. The surface barrier transistor 2N128
will be used throughout this paper to exemplify the procedure; the re-
sults are applicable to other types of junction transistors with broadly
cimilar characteristics. Modifications in the analysis to accommodate
drastic differences from this model can be made, with an attendant in-
crease in the complexity of the analysis.

2.1 Nonlinear Relationship Between Base Voltage and Base Current

In the equivalent circuit of Fig. 1(a) the nonlinear relationship be-
tween base voltage and current is denoted by;

v = Vilis). (1)

The dependence on collector current has been neglected since, as shown
later, the terms involving », in the equations governing the blocking
oscillator are negligible during the “turn-on” and “on” intervals. Thus,
s, may be obtained by measuring the base voltage as a function of base
current, with the collector circuit connected to the load and bias with
which it will normally operate. The result of such a measurement is
shown in Fig. 1(b). It is seen that this result is almost a straight line
above a certain value of 4, (saturation) and almost vertically straight
when 4, < 0. Thus, it can sometimes be approximated by two straight-
line segments through the origin with different slopes.” Another way of
approximating it is to use the relationship between current and voltage
of p-n junction diodes:’

I =T1("" —1), (2)

where £7/¢ = 0.026 volt at room temperature (25°C) and I, is the re-
verse saturation current.
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2.2 Nonlinear Dependence of Collector Current on Base Current and Fre-
quency

The dependence of the collector current upon base current and fre-
quency is assumed in the equivalent circuit to be of the form

(1 1d

Wy dt
where /.(4,) represents the static collector-current-base-current charac-
teristic, 7. the actual collector current, and w, the “large-signal” eutoff
frequeney or inverse time constant of the transistor. This expression is
the “large-signal” equivalent of the linear relationship

)zc - LG, (3)

dfl.
{3(3) — ﬂn — diy - (:1:)
1+ wa(l — ap) 1+ wall — ap)

The derivative of (3) with respect to 7 reduces to (4) when the circuit
operation is linear. The function [I.(z) may be determined experi-
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Fig. 1 — (a) The grounded emitter configuration and its large-signal equiva-

lent eircuit:
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mentally by measuring the collector direet current for various values of
base current, with the collector connected to the load and bias with which
it will normally operate. Such a characteristie is shown in Fig. 1(e¢). It
is seen that I.(7) saturates very sharply, the saturation value being ap-
proximately #../R. . In some cases in the subsequent analysis it will be
convenient to approximate this function with an analytic expression.
From (4) it is seen that, when the circuit operation is linear, the effec-
tive cutoff frequency, wy , for the grounded emitter configuration is

1]

14+ 8’

wo = we(l —a) =

and therefore is dependent upon w, and 8. Thus, as the operating point
is changed, wo will vary, having a minimum when g (or @) is & maximum
and becoming equal to w, when 8 = 0 as, for example, at cutoft or satura-
tion. When a large signal is applied to the transistor, wp will, therefore,
change continuously as the various points of the 7./7, characteristics are
traversed and the “effective cutoff frequency’ will then be some kind
of average of (5). Although w, is also dependent on the location of the
operating point,” it has been found that the w, determined at standard
bias (V,..) vields transient results which agree closely with experiment.
These results are shown in Table I and discussed further below.

Moll® has suggested the following ealeulation of the large-signal cutoff
frequency, wy : If an average 3 is defined as the ratio of the total excur-
sion of the collector and base currents; that is,

= Jrc max Ic min v
B B Ib max Ibmin ’ (())
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then the large-signal cutoff frequency is given by:

4]
= 7
@ =115 (7)
Accordingly, in a circuit like the blocking oscillator, in which the opera-
tion extends from cutoff to saturation, wy will be given by (neglecting
1)

= wa
R P (8)
Iba - Ibc

The large-signal cutoff frequency may also be determined experi-
mentally by applying a current step function of magnitude f3 to the
base and then measuring the 10 to 90 per cent rise time of the voltage
across the load resistance. Since the output response can be described by
a single exponential, provided the load resistance, R, , is selected to be
so small that the effect of the collector capacitance may be neglected,
wy 18 given by:

w =22, (9)
where T’ is the 10 to 90 per cent rise time. In Fig. 2(a) the output
response is shown for steps of various magnitudes in base current. It is
seen that the rise time continually decreases as the size of the step in-
ereases, and that the response is very nearly exponential in shape, thereby
justifying the above approximation.

With two ways of calculating wy, the natural question that arises is
how well these two methods agree. To provide a partial answer to this
question, the ealculated and measured rise times of six transistors were
compared. The rise time was computed by use of (8) and (9) and meas-
ured across a 100-ohm load when a current step function of magnitude
I, was applied to the base. The results are shown in Table I, from which
it is seen that the calculated and measured values agree within 310
per cent and the average values agree within 2 per cent. Taking into
account the error involved in measuring rise times from the face of an
oscilloscope, the agreement is indeed quite good.

2.3 Effect of Minority Carrier Storage During Turnoff

The effect of minority carrier storage in the collector-base region is not
very easily related to any of the commonly measured transistor parame-
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ters, The most convenient way to take it into account is to determine its
effective time-constant experimentally. Fig. 2(b) shows the voltage
across a 400-ohm load resistor in series with the collector of a junction
surface barrier transistor (2N128) when various square current pulses
are applied to the base. The rise time, fall time and width of the applied
current pulse were 1, 7 and 100 milimicroseconds, respectively, and its
magnitude was varied in steps from 0.2 to 10 ma. The base saturation
current for that particular transistor (Unit 151) was 1 ma. From the

lpIN RISE TIME lpIN FALL TIME
MILLI- IN MILLI- MILLI- IN MILLI-

AMPERES MICROSECONDS AMPERES MICROSECONDS

10.0

825

Fig. 2 — Collector current in response to (a) a step of base current, 4 ; (b) a
pulse in base current of magnitude 7, , with rise time of 1 mp sec, fall time of 7
my sec and width of 100 mu see. Time scales: (a) 25 my sec/division; (b) first four
curves, 50 my sec/division; next two curves, 100 myu sec/division; bottom curve,
250 mu see/division,
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figures it is seen that, in contrast to the rising edge of the output pulse,
the falling part becomes slower as the magnitude of the input pulse is
increased. Also, the 10 to 90 per cent fall time is almost constant up to
saturation, after which it increases rapidly. Again, since the falling re-
sponse has roughly an exponential shape the fall time can be used to
estimate the equivalent wy during turnoff by the relationship:
2.2
~ 10

wo1 Tf ( )
Columns 8 and 9 of Table T list the fall times and the corresponding
wa’s for the six transistors.

2.4 Combined Effect of Collector and Stray Capacitance
In the small-signal case the output impedance of the grounded emitter
configuration is:
Erb+azc+zg, (11)
Ty + Te + Zg

where Z, is the impedance of the generator driving it. Sinece, in the
blocking oscillator, Z, is large and r, is very small, the output impedance
consists essentially of a capacitance of magnitude

Cc

1l —«

Zy =21 —a)+r

Co = = C.(1 + B). (12)

Under large-signal operation, both 8 and €', will vary over the range,
the collector capacitance varying with the collector voltage as

Cc = ,T]';V_r, (13)

where the exponent » is § for step junctions and § for uniformly graded
junctions. Measurements made on a dozen 2N128 transistors yield an
average value for r very close to 3.

Bashkow® has shown that, as far as transient analysis is concerned,
this nonlinear eapacitance may be replaced by an average capacity C,. .
The average capacity is defined as that which displaces the same charge
as the nonlinear capacity for the same voltage change. A minor generali-
zation of Bashkow’s results yields

1 — (T_rl )l—r
V. V.
o GV LT (1)
1 —7 1 — I’l
Vee

where V. is the collector voltage at cutoff and V,/V,, is the ratio of the
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voltage swing on the collector. For a swing from V., to 0, and r = 1,
(12) becomes
Co = 1.5C.(1 + B), (15)
where, as in the case of «, 8 has been replaced by B. In a physical eir-
cuit, stray capacity from collector to ground should be added to (.
With the transistor characterized in this manner it is readily shown

that the Laplace transform of the collector current of the resistively
loaded (R.) common emitter stage is given by

I(‘S
s (ﬁ + 1)(&(;'03 + 1)
wo

I.(s) = (16)

for a step funetion in base current sufficient to saturate the transistor.
To check the validity of the equivalent eircuit, the 10 to 90 per cent rise
time was computed for six transistors from the inverse transform of (16),
using (7) and (15).* The rise time was also determined experimentally
and the ratio of observed rise time to computed rise time is given in the
last column of Table I. It can be seen that agreement within =15 per
cent has been achieved on individual units, and that the average is within
2 per cent. These figures are within both the experimental error in read-
ing a scope face and the error inherent in determining €', , w, and g.

In passing, it should be noted that a good approximation to the 10 to
90 per cent rise time is given by

TH = -ij \/l + w(;gR¢EC'02- “7}
0

The above expression results from (16) by an application of the rise time
definition given by Elmore." This will be mentioned again in the section
devoted to the rise time of the blocking oscillator. Tt can also be shown
by using Elmore’s expression that the delay time (time to traverse from
zero to 50 per cent of the final output) is given by

_ 1 "l‘ CIJORrC"O

wo

T, (18)
Over a wide range of parameters, two times the time delay, as given
above, is a very close approximation to the actual rise time. In this case,
the rise time [two times (18)] is similar in form to that given by Easley’
and can be justified by other considerations.""{ Equation (18) will be

* 5 micromicrofarads were added to €y to account for stray socket and wiring
capacity.

t Several definitions of rise time are given in Ref. 11, one of which, when applied
to the grounded emitter stage, yields (18).



794 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1959

useful in the following sections in indicating how the factors in the design
of the transistor blocking oscillator can be related to the rise time or
delay time of the resistively loaded transistor alone.

Before proceeding to the blocking oscillator, it should be mentioned
that the equivalent circuit of Fig. 1(a) may be used for the grounded
base configuration. In this case, wy = w, and Cy = 1.5C; . Therefore,
the following discussion is also applicable to the grounded-base case.

III. THE GROUNDED EMITTER TRANSISTOR BLOCKING OSCILLATOR

Fig. 3 shows the circuit diagram as well as the equivalent circuit for
the grounded emitter blocking oscillator with series feedback. The pri-
mary of the transformer is connected in series with the collector and the
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Fig. 3 — (a) Grounded emitter transistor blocking oscillator; (b) nonlinear
equivalent circuit.
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load resistance, R, , and its secondary is connected between the base and
the bias source Ey . The polarity of the coupling is such that positive
feedback exists around the loop when the transistor is conducting. The
current generator 7, represents the trigger source and R, the total ex-
ternal load in the base eircuit.* As discussed in the previous section, wg
represents the large-signal cutoff frequency of the transistor and is re-
lated to w. through (8). The capacitance (o, is the sum of the total
stray capacity of the circuit and that of the transistor given by (15).
Finally, L, , L. and Cr represent, respectively, the leakage and magnetiz-
ing inductances and the parasitic capacity of the transformer.

Briefly, the circuit operation is as follows. For monostable operation
the bias F is selected in such a way that the transistor is cut off at its
stable operating point. If a trigger signal of sufficient magnitude and
width to bring the circuit into its regenerative region is applied, the
collector and base currents will build up until a point in the saturation
region is reached. (This point will hereafter be referred to as the “quasi-
stable operating point.”) Then the magnetizing inductance becomes
charged slowly, shorting out more and more of the current fed back to
the base. This process will go on until the gain around the loop again
becomes equal to unity, at which point the circuit regenerates back into
a state of cutoff. Then the energy stored in the transformer slowly
dissipates and the circuit recovers to its stable operating point.

The equation governing this complete eyele of operation is derived in
Appendix A and normalized in Appendix B.

One point is immediately obvious from these equations: they are ex-
tremely long, complicated and relatively useless as they stand. In order
to restore the physical feel for the circuit, it will be shown in the re-
mainder of the paper that the equations can be simplified, depending on
the region of operation. The primary basis for reducing the more exact
equations will be whether or not the base emitter junction is forward- or
back-biased. In prineiple, this approach is similar to that used in piece-
wise linear analysis. There are several important advantages, however,
in starting with the more exact description of the cireuit given here. First,
retention of the nonlinear terms enables one to determine the operating
points of the circuit, which, in turn, give a clear definition of the trigger
requirements for reliable operation. Second, the approximations involved
in taking the general equations apart can be easily drawn. I'inally, the
simulation of the blocking oscillator from the exaet equations on an
analog or digital computer can be readily achieved for purposes of com-

* For convenience, R has been placed between base and Ey; rather than from

base to ground. This approximation serves to eliminate a few small constant terms
from the governing equation in Appendix A, and in no way restricts the analysis.
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plete analysis or evaluation of the approximations that are made in tear-
ing the more complete deseription apart. The computer approach also
permits the investigation of the effects of the various parameters of the
circuit on its response under conditions that can be more closely con-
trolled than can be those in the experimental circuit.

The equations can be broken down in accordance with the importance
of the various terms during the following four intervals: (a) “Transition
On”, (b) “On”, (e¢) “Transition Off” and (d) “Recovery.” These will
be discussed separately in the following sections.*

IV. THE ‘“TRANSITION ON’’ INTERVAL

This interval is defined as the time from the initiation of the “On”
trigger pulse to the time at which the circuit has apparently come to
rest at its quasistable operating point, that is, the time when all transients
associated with switching have ceased. Specificially,

I 4% < Il (19)

By the time triggering oceurs, the input impedance to the transistor is
low compared to Ry and

Vi(dy) — L
Ry

where [Vi(#) — Iw|/n represents the voltage drop that must be main-
tained across the primary of the feedback transformer to overcome the
bias and forward drop. This voltage is unavailable in series with the
load and should be made as small as possible, implying the use of a
transistor with a low forward drop. Fig. 1(b) shows that this voltage is
essentially constant during the on interval; therefore very little feedback
current, will be diverted by the transformer capacity Cr. Subject to
condition (20) and the constancy of [Vis(4) — Ew/n, this term and
derivatives thereof may be neglected. During the switching interval, the
contribution from the integral

i
Rz. Uy — I bb
i P'2]-:'1;1 0 R b

K 1, (20)

dt
will be negligible, since the magnetizing inductance is usually large in

* The equations in Appendix A can be readily modified to deal with the block-
ing oscillator with shunt feedback. For example, R. = 0 and the load resistance is
reflected through the transformer in parallel with R, .
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comparison with the other parameters of the circuit.* Finally, the mag-
netizing current is equal to n/,. . Therefore, in this interval, (109) of
Appendix A simplifies to

v g3 " 2. .
LCoddy | (LeCo +& “("') iy (L + Rcc'o)@ — (IG@) — i+ o)
wy dif wo /] di? wo dt (21)
1 d RCN\d | LC, d“] B
- — ¢ ! —_ Le = 22 .
[1+(wu+RCu)(]t+( ot wo)dt2+ e J0

The equation governing the equilibrium points (or the ‘“steady-state
equation,” as it has been called) for this interval is obtained by setting
I,(t) and all the derivatives of 7, equal to zero; that is, we obtain:

I(i) — i+ Ioe = 0, (22)
where
16y = L) [1 + D (i + Rncn)] Vi) = B (g
n N2 \ o Ry

represents the nonlinear or active part of this equation. In this expres-
sion, the term [,(7,)/n represents the contribution to {(d) by the cal-
lector eurrent and the term [Vi(é) — #u]/ R , as noted, is the amount of
current flowing down through the resistance Ry to overcome the bias.

The term
Ry (1 Vili) — Ew
HE—L,,, (;n + RcCu)) T—

represents the modification in /(z,) due to finite magnetizing inductance,
or the equivalent drain of this inductance. In other words, the mag-
netizing inductance may, as far as the steady-state equation is concerned,
be thought of as modifying the resistance R, to:

R
14 fo (51 + Rfco)
0

R, = (24)

N2l

It is instructive to study the graphical solution of the steady-state
equation, since this reveals the locations of the operating points and
gives o qualitative idea of the magnitude of the trigger signal needed to
trigger the circuit. In Iig. 4 the various components of /(z) and the
graphical solution of the steady-state equation are shown. I'or the sake

* The principal effects of neglecting this term are: (a) the trigger current re-
quired for reliable triggering will be somewhat larger than indicated in the follow-
ing for slow trigger signals; (b) the rise time will also increase slightly above that
computed in the following, due again to diversion of feedback current through L,, .
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of clarity the contribution due to the term containing V(%) has been
somewhat exaggerated.

In this figure the long-dashed curve represents the dynamic 7.()/n
characteristie for the transistor and the short-dashed curve the contribu-
tion due to the [V (i) — Ey)/Rs term. The solid curve constitutes the
combined effect of these two curves, while the three intersections with
the straight line 7, — I, represent the three operating (or equilibrium)
points of the blocking oscillator. Since the loop gain of the circuit

_dI(4)
T= i (25)

is obviously less than unity at the two extreme points (s and @.s.), these
are operating points of the stable kind. In the following, these two points
will be referred to as the “stable’” and the “quasistable’ operating points,
respectively. The circuit cannot stay for an indefinite period of time at
the @.s. point, due to the accumulation of current in the magnetizing

. I, (L Rb 1 Vp (Le) -E
I(Lb): C( b)'—'I:I‘FnELm ?D+Rcc0):] —_Rb—bb

n

Ic(Lb)/_—_7
n / /I(LbJ=Hn*Ibc

Lp

Fig. 4 — Graphical solution of *steady-state equation”’,
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inductance. Finally, the point U is unstable (saddle-point) since the
loop gain here is larger than unity, giving rise to responses in the neigh-
borhood of this point directed away from it.

In general, the location of the operating points will depend upon 7, ,
the shape and magnitude of 7(z,) and the turns ratio n. However, since
the contribution to I (%) of the term containing V (4) is very small when
iy > 0 and the backward input resistance dV (%) /di, is very large, the
bias current I,. or the bias voltage Ey will not significantly affect the
location of any of the operating points, provided the magnetizing induc-
tance is relatively large. In addition, this means that the stable operating
point is more or less fixed to a position just to the left of the origin on the
iy axis. Hence, only the locations of the unstable and the quasistable
operating points are subject to change; such changes can only be ef-
fected by varying I.(%) and n. The magnitudes or saturating values,
I, of I.(4y) and n affect the location of these two points in an
opposite manner. For example, as {., increases or n decreases, the un-
stable point moves closer to the stable one and the quasistable operating
point is displaced further out, provided the value of % at which I.(z)
saturates remains unchanged. Finally, if 7.(7) is made steeper close to
the origin, this will also result in a smaller distance between the unstable
and the stable operating points.

On the other hand, if the magnetizing inductance, or n, is made very

small such that
|:1 + R, (_1_+ RCCO)] Vi(in) — Ew (26)

N2l \wo Ry

is significant with respect to [{.(7;)]/n, the term containing V() will
also affect the location of the unstable and the quasistable operating
points. For instance, by reducing L,, (but letting n remain fixed) the
1(i4y) eurve is moved downward, causing the unstable operating point to
move further away and the quasistable one to move closer to the stable
operating point, thereby reducing the range that 7, and /() traverse in
going from one operating point to the other.

The dependence upon 7 is more complicated, however, since it affects
both the saturation value of 7(z,) and #°L,. . If n is very small, #°L,,
will also be small, tending to make the distance between the stable and
unstable points large. On the other hand, a small n will also increase the
saturation value of I(4), thereby tending to decrease the distance be-
tween these two points. However, since n°L,, is proportional to the square
of m, while I, varies as 1/n, the net effect at first will be that the unstable
operating point will move closer to the stable one when n is increased
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from a small initial value. Then, as n becomes larger, the effect of the
V(%) term becomes negligible and /.(#)/n will predominate, with the
result that the distance between these two operating points will inerease.
Hence, as a function of n, this distance will go through a minimum,
Therefore, in order to make sure that the magnetizing inductance does
not affect the location of the operating points and does not become sig-
nificantly charged during the “Transition On’" interval, L,, and n should
be selected well beyond this minimum; that is,

2 I.(%) R, (1 )
S\ L — (= 4+ RCy) <0 27
" I’/Yb('ib) - Ebbn + Lm @y + ! ( )
Ry

In such cases, it is an excellent approximation to neglect the effect of the
term containing Vi(4) entirely, and use only I.(4)/n for I(#). The
graphical determination of the operating points then simplifies to that of
Fig. 5. Tt is seen that n is now simply equal to the ratio, f../ (Lo, — Inc),
which, by virtue of (8), means that wy may be expressed in terms of we
and n only; that is,

Wa ¢
w = (28)

In the following, the requirements for triggering the blocking osecillator,
the effect of trigger magnitude, the shape of the collector eurrent charac-
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Fig. 5 — Approximate location ol operating points.
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teristics and the coefficients of the differential equation upon rise time
and delay and the conditions for a nonoscillatory response will all be
discussed. It will be assumed that condition (27) is satisfied, so that the
effect of the magnetizing inductance may be neglected. Also, for most of
the following, I.(4) will be approximated by an analytic function.

These items are most easily discussed if (21) is written in normalized
form. From Appendix B, it can be shown that the normalized equation
governing the “Transition On” interval is

ad'w d’x

—+(l +b)—+(1+b)—+1 — flx)

; (29)
[1+(1+b)—+( +b) 2,,,—,3] (r),

where all symbols are defined in Appendix B. The normalized steady-
state equation is now

flz) —x =0, (30)

where both a and f(a) attain the values 0 and 1 at the stable and the
quasistable operating points, respectively. I"inally, the normalized out-
put voltage for this interval may be written

y =z —g(r). (31)

V. TRIGGER SIGNAL REQUIREMENTS

It the blocking oscillator is released from an initial position that is
different from any of its operating points, it will proceed, depending upon
the initial conditions, either to the stable or the quasistable operating
point. For instance, if the initial values of all the derivatives in (29) are
equal to zero, the circuit will simply come to rest at the operating point
that is on the same side of the unstable point as is the initial position.
In general, however, the circuit may cross the unstable operating point,
provided the initial values of some of the derivatives in (29) are large
enough. Hence, in order to make the blocking oscillator flip over from
the stable to the quasistable operating point, the applied trigger signal
must have sufficient magnitude and duration either to bring the circuit
past its unstable operating point or to impart energy into it so that the
initial values of the derivatives in (29) are large enough to make the
circuit traverse the unstable point by itself. In this section the conditions
this requirement imposes upon the trigger signal will be discussed.

The simplest possible ease is that of a trigger signal with a very large
width, In such cases, the trigger pulse will vary very slowly or be nearly
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constant during the transition interval, and the derivatives of g(7) in
(29) may therefore be neglected. Up to the point of triggering, the base
current will also vary very slowly and its derivatives will consequently
be small.* Therefore, prior to the time regenerative action takes place,
(29) reduces to:

z — f(x) = g(7). (32)

Under these conditions, the trigger signal acts mainly as a variable bias
causing the load line in Fig. 4 or Iig. 5 to be displaced to the right.
This, in turn, makes the stable and the unstable operating points move
closer and closer together until they merge into one point. At this point
(1) the load line is tangential to f(z) [or I(%)] and an infinitesimal addi-
tional displacement of the load line will cause the circuit to have only
one possible operating point. Henee, a “jump” to the quasistable operat-
ing point will take place at this point, and the minimum required trigger
magnitude is given by:

Gmin =T — f(wj)l (33)

where 2 represents the value the normalized base eurrent has at the point
of tangency, 7; that is, x; is found by solving the equation:

) _ oy (34)
d.’Ej
In terms of actual trigger current, this minimum corresponds to the
vertical distance, I, min , between the point of tangency and the load line,
as shown in Tigs. 4 or 5. The variation of I; min With n will proceed in the
same manner as for the distance between the stable and unstable operat-
ing points. This effect will be described more fully in the following.
When more rapidly varying trigger signals are applied to the blocking
oscillator, the terms containing derivatives of g(r) and x become so
large that they must be taken into account. Since (29) is both nonlinear
and inhomogeneous, no analytical solution exists, and it is therefore
impossible to derive in closed form conditions that the trigger signal
must satisfy for reliable operation. Hence, numerical methods or analog
computer solutions must be resorted to. In the particular case, where the
magnitude required to trigger the circuit for a particular fixed width of
the trigger pulse must be found, the latter method was chosen, because
repeated adjustments of parameters until the desired solution is obtained
are much more readily accomplished on an analog computer.

* The quantitative definition of “small” is, of course, dependent on the coeffi-
cients (circuit parameters) multiplying the various derivatives,
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To prevent overload of amplifiers and integrators and also to simplify
the analog computer setup, (29) was first rewritten in terms of the

normalized output voltage, y, which simplifies it to:

a

d’ d* d
Y4 @+ ) L+ A+ D) 4y =y + g(0]. (35)
dr® dr? dr

The Gaussian pulse was used as a representative trigger signal; that is,
T) — (;8—[(1‘—1’.1),’0.61'w]2 (36)

]

g(

where G is the magnitude, 7, the 50 per cent width and 7, the time at
which ¢(7) attains its maximum value, G. For f(z) = fly + ¢()],
representing the normalized relationship between collector current and

base current, the analytical function
2

x
@) = s = 37
was chosen. This choice was dictated strietly on the basis of mathe-
matical simplicity and tractability of the solution of (35) when g, a and
b are zero. This function is depicted by the solid line in Fig. 6, from

which it can be seen that it has & minimum at 2 = 0 and a maximum

z = 1, where it is equal to zero and unity, respectively. Also, f(x) has
an inflection point at @ = % around which it is symmetrical. The slope of
f(2) at this point is equal to 2. For values of x less than zero and larger
than one it is slowly asymptotic to the horizontal line 3. The normalized
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Fig. 6 — Various nonlinear characteristics.
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Fig. 7 — Relationships between magnitude and width of applied signal re-
quired to trigger the blocking oscillator with b = 0.

load line of the circuit is also shown in Fig. 6. It intersects f(x) at the
points x equal to 0, 3 and 1, and these are therefore the stable, unstable
and quasistable operating points, respectively. Although the function
f(z) differs from a real 7./, characteristic in that it is not constant beyond
the stable and the quasistable operating points, it resembles such a char-
acteristic sufficiently closely within the region of interest. Hence, solu-
tions of (35) having reasonable overshoots should be expected to ap-
proximate exact ones very closely and exhibit the main features of the
eircuit accurately.

On the analog computer the following procedure was used. The circuit
was assumed to be at rest at the stable operating point prior to the ap-
plication of the trigger pulse, and the initial value of all the derivatives
was set equal to zero. Then, for each value of the width r,, , the magni-
tude ¢ was adjusted so that the response barely flipped over to the
quasistable operating point. The resulting relationship between the
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magnitude and width of the trigger pulse is shown in Figs. 7 and 8 for
various values of the parameters a and b. It is seen that the curves are
somewhat hyperbolic in shape and that all of them are asymptotie to the
vertical line G, = 0.15 at large pulse widths. This asymptote cor-
responds exactly to the minimum trigger magnitude given by (33) and,
indeed, if the expression for f(z) from (37) is substituted into (33) and
(34), the result is G = 0.1504, which agrees quite closely with the
computed value. FFrom Figs. 7 and 8 it can be seen that, at large pulse
widths, the critical trigger magnitude is nearly independent of a and b.
As the width becomes smaller, a larger magnitude is required to trigger
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the circuit and this magnitude increases with a and b, The curves indi-
cate a stronger dependence of ¢ upon b than upon a, meaning that the
output eapacitance and the load resistance affect the trigger sensitivity
of the circuit more than the leakage inductance does.

The fact that the curves in Figs. 7 and 8 resemble hyperbolas suggests
that the produet of the pulse width and the difference between the mag-
nitude and its minimum value is nearly constant; that is,

(G —_ Glllil‘l)Tl.!’ = N(a: b): (38)

where N is a function of a, b and the nonlinear characteristie. To investi-
gate this further, the above product was formed for all the measurements
taken, and the results are shown in Table II. It is seen that the value
that N assumes for each measurement varies randomly around its mean
value with no consistent deviation in any direction, except at large pulse
widths, where it is quite small, and at short pulse widths, where it is
quite large. Taking into account the subjectiveness involved in deter-
mining the point at which the response barely flips over to the quasi-
stable operating point, the accuracy of the computer and the fact that at
large pulse widths the value of ¢ is very nearly equal to G, , it must
be concluded that (38) is indeed a good approximation over particular
regions of 7, . Since the area of the Gaussian pulse in (36) is

A= f: 9(dr = A/rGre, (39)

it can be concluded that the area of an equivalent trigger pulse of mag-
nitude (¢ — Guin), not the area of the actual trigger pulse, stays ap-
proximately constant for given values of a and b. This brings out the
fact that the blocking oscillator is not strictly an amplitude threshold
device, but an energy threshold device.

The data given in Table II can be closely approximated by a function
of the form

N(a,b) = Ko + Kia + Ksb. (40)

For 1.67 £ r, < 41.75, and b # 0, these values are: K, = 0.38, K; =
0.06, K, = 0.42. With these values in (40), the computed N (a, b) agrees
with the tabulation in Table II to within better than 30 per cent. In
addition to the inaccuracies introduced by the computer and operator
when G is close to Gmin , it is to be expected that, at the largest pulse
widths, N (a, b) will be independent of both a and b. For 7, = 167, Table
IT confirms the contention that the very slow trigger signal acts strictly to
vary the bias, When 7, is between 16.70 and 83.5, N (a, b) is independent
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of a for the range of parameters covered. Only the coefficients of the
second and third derivatives with respect to the base current are fune-
tions of a. Therefore it can be concluded that this range of 7, covers a
transition region where only the first derivative term (w, and collector
capacity) is important. At the other extreme — the very narrow trigger
pulse — the dependence on a is larger than indicated by the value of K,
derived for the region 1.67 < 7, < 41.75. Here the dependence on the
higher derivatives (leakage inductance) is more pronounced, again con-
firming our physieal reasoning.

The case b = 0 is of little practical concern, since this corresponds to
an undamped output cireuit working into a short-circuited load.

Other implications of the relationship between trigger magnitude and
width can be brought out more clearly if we examine the unnormalized
version of (40). If we substitute (40) in (38), neglect the weak de-
pendence on leakage inductance, neglect parasitic capacity from col-
lector to ground, and substitute from the normalizing equations, we get

(I, = Tiwi) T = (5"— - L]c) (1+ ) (L{} + Ko 1.50(.12(.). (41)
From this relationship it can be seen that the magnitude-width product
decreases as w, is inereased until Ky/w, can be neglected with respect to
K, 1.5C.R,. . This dependence on w, can also be viewed in an equivalent
manner. Since K, and K, are both about equal to 0.4, (41) can be writ-
ten in the following form

(Il - I.! min)Tw = (%' - Ibc) I{D(l + b) (42)

wo

It will be recalled, from the discussions on the equivalent cireuit for
the transistor, specifically (18), that (1 4+ b)/w is a good approxima-
tion to the large-signal (saturating step) delay time of the resistively
loaded common emitter stage. Therefore (42) ean be written

(It - Ir min)Tw = I(D (% - Ibc) TI}- (43)
As w, is increased, the delay time of the basic transistor stage (T,) with-
out external feedback decreases. In the blocking oscillator this is equiva-
lent to a reduction of one of the time constants in the positive feedback
loop, thereby permitting a more rapid build-up of the regenerative loop,
or, alternately, regeneration can occur for a lower trigger signal for a
given trigger width.
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The dependence of this product on n is more difficult to visualize,
since Ky, K; and K. are functions of the circuit operating points, which
in turn are dependent on n. As mentioned previously, I; nin will vary
with » in much the same way that the distance between the stable and
unstable operating point varies with n. For small n, I nin will be large
and decrease to a minimum as n increases, and then begin to increase
with n. This ean be seen from the graphical construection of Figs. 4 and 5,
and it has also been observed experimentally. It is reasonable to expect
that the product given by (42) will vary in a similar manner, though no
rigorous proof can be given here.

For trigger signals that are nonzero over only a finite time interval,
a relationship between magnitude and width similar to that shown in
I"igs. 7 and 8 exists. The principal difference is that the curves cor-
responding to those of Fig. 7 or 8 are now asymptotic to a finite value
of width as well as of magnitude. In other words, for such trigger signals
there exists & minimum width, 7, win , below which the blocking oscillator
cannot be triggered even when the magnitude of the trigger pulse is
made infinite. That such a minimum width exists ean be easily realized
by considering (35) when a square pulse of infinite magnitude is applied
to the circuit. In such a ease, the collector current generator will saturate
immediately, making f{y + ¢(7)] = 1. Hence, the actual forcing function
is finite even if the magnitude of g(7) is infinite, and the applied trigger
pulse must therefore have a finite width in order to make the circuit flip
over to its quasistable operating point. The reason 7, win is not finite in
the case of the Gaussian pulse is the fact that this funetion is nonzero
except at infinity. Thus, the width of g(7) must be zero in order to make
the duration of the actual forcing function finite.

These considerations may be used to caleulate 7, min - As an example,
let us consider the case when a = b = 0. The solution to (33) for r <
Tw min 15 then simply

y(r) =1 —¢7, (43)

and the minimum width is now the time sufficient to bring y up to the
unstable operating point; that is, y = %. This gives 7, nin» = 0.693. In
the more general ease, when a and b are nonzero, the procedure is some-
what more complicated. It involves finding first the relationship between
y and its first and second derivatives necessary to slide the cireuit past
its unstable operating point when g(r) is zero, and then determining the
width that will make these quantities satisfy this relationship. Since this
procedure is usually quite laborious, it is more practical to estimate
Tw min from two points on the magnitude-width eurves.
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VI. DELAY AND RISE TIME

The delay and rise time of the blocking oscillator are, in general, de-
pendent upon all parameters in the circuit. The most important of
these are the magnitude and width of the trigger signal, the shape of the
i,/iy characteristic, the cutoff frequency wy (or w, and n) and, finally,
the collector capacitance in conjunction with the load resistance and the
leakage inductance. To see clearly how each particular parameter affects
the delay and rise time, these will be discussed separately, although it
may not be possible to vary some of them independently in the actual
physical cireuit. In the following, the delay time is defined as the time
difference between the maximum of the trigger pulse and the 50 per cent
point of the normalized output. The rise time is the time required for the
output to traverse 10 to 90 per cent of its final value.

6.1 The Effect of Trigger Magnitude and Width

It is instructive to consider first the transient responses when the
blocking oscillator is simply released from various initial positions. In
such cases these responses are obtained from (35) by setting g(7) = 0
and assigning initial values to y and its derivatives. In particular, if the
collector capacitance and the leakage inductance are so small that they
may be neglected, an analytical expression for these responses may be
obtained. If we limit ourselves to this particular case by setting ¢ =
b = 0 in (35) and using the analytical approximation to the 4./% charac-
teristic, the solution to this equation becomes (by simple separation of
variables)

y—05  y(0+)—05 ’
where y(0+) represents the initial value of y. The bistable nature of the
blocking oscillator is reflected in (44), because, as 7 — =, y approaches
either the stable (y = 0) or the quasistable (y = 1) operating point.
Which one it will attain in an actual case depends upon whether the
initial position is below or above the unstable operating point. In the
neighborhood of the point (y = 0.5) the output voltage becomes an ex-
ponential ascending function of time, thereby exhibiting the unstable
characteristic of this point. Fig. 9 shows the responses of (44) for six
initial values located between the unstable and the quasistable operating
points.”? It is seen that, as the initial value of y is decreased toward the
unstable operating point, the delay and rise time of the circuit become
larger, increasing rapidly as y(0+) approaches this point. To minimize

yly — 1) _ yO0H)y(0+) — 1] (44)



TRANSISTOR BLOCKING OSCILLATOR WITH NONLINEARITIES 811

y(o+)=o0.9s

[2)
/%
%‘9
0.9 Py

y(o+)=0.525
0.7 (A —
/ a=b=o0

0.6 /

N\

0.5

(e] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
7T=wot

Fig. 9 — Normalized time response of the blocking oscillator when the circuit
is released from various initial positions.

rise time, the magnitude and width of the trigger signal should at least
be such that the circuit has been brought well beyond the unstable point
when the trigger terminates.

When the coefficients @ and b (or the trigger function) are not equal
to zero, (44) eannot be solved analytically and numerical methods must
be used. In Fig. 10 the results of solving this equation by the Runge-
Kutta method on a digital computer are shown. Again, the analytical
approximation to the 4./7% characteristies was used and the Gaussian
function represented the trigger signal. To conform with values encoun-
tered in a particular cireuit, a and b were, in all of these cases, made equal
to 0.447 and 0.8, respectively. In the first of these figures, Fig. 10(a),
the normalized response of the base current, z, and the output voltage, ¥,
to a slow trigger pulse, are shown. It is seen that the output voltage does
not change appreciably until g(7) reaches the critical triggering level,
which, from Table II, is equal to 0.167 for r, = 41.75. Subsequently, the
output voltage switches rapidly in comparison to the trigger signal to
the quasistable operating point. Hence, one should expect, in the case of
a slow trigger signal, that the rise time of the blocking oscillator is more
or less independent of the trigger magnitude as long as this magnitude
is larger than the eritical value necessary to activate the eircuit. The
upper curve in Fig. 11 bears out this statement. Here, the rise time is
shown as a function of pulse magnitude, and it is seen that, except for a
trigger magnitude close to the critical triggering level, the rise time is
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virtually constant over the whole range. Thus, one may conclude that
in this case the rise time is, practically speaking, dependent only upon
the parameters of the blocking oscillator itself. The delay time, on the
othér hand, will of course vary with trigger magnitude, but only to the
extent of the time it takes the trigger signal to reach the critical triggering
level.

Figs. 10(b) through 10(d) show the response of the blocking oscillator
to a short trigger pulse of successively inereasing magnitude. Actually,
in all figures except Fig. 10(c¢) two trigger pulses were applied, one that
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I:’ig. 10 — Computed responses of the blocking oscillator to trigger pulses of
various widths and magnitudes: (a) slow trigger pulse; (b) inadequate trigger
pulse; (¢) trigger pulse having just limiting magnitude; (d) adequate trigger pulse.
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Fig. 11 — Rise time as a function of trigger pulse magnitude.

turns the blocking oscillator “on”, followed by another that turns it
“off’. This was done in order to simulate the conditions for a blocking
oscillator that might be used in a regenerative repeater. In Fig. 10(b) the
magnitude of the trigger signal was insufficient to activate the blocking
oscillator, while in I'ig. 10(¢) it was just barely large enough to make the
circuit flip over to the quasistable operating point. The rather large rise
time and the inflection point at ¥ = 0.5 should be noted in the latter
case, which, as explained previously, is due to the fact that the cireuit is
now essentially released from a position close to the unstable operating
point. As the magnitude is increased further the rise time at first decreases
rapidly and then levels off, approaching a limit for large values of G.
This is depicted by the lower curve in IFig. 11. In this case the rise time
is largely independent of trigger magnitude as long as the magnitude is
at least 50 per cent larger than the critical triggering level. It should be
pointed out, however, that the apparent leveling off of the rise time in
the fast pulse case is only true when wy, may be considered to be inde-
pendent of trigger magnitude. If a fast and large trigger pulse is applied
such that the base current significantly exceeds the value [, during
transition, the maximum value of this current should, aceording to (7),
be used to ealculate wy rather than 7, . This results in a larger w, and
therefore a smaller rise time than that indicated by Fig. 11. The correction
to be applied to wo in such cases is, by virtue of (6) and (8), equal to:
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In most practical blocking oscillators, however, the stable and unstable
operating points are located very close together, so that such correction
is rarely needed. Also, the desirability of a large power gain favors the
use of a design requiring only small trigger magnitudes. Finally, in the
case of a slow trigger signal, such correction is never needed, since here
the trigger signal does not change appreciably during the relatively fast
transition from the stable to the quasistable operating point.

6.2 The Effect of the Shape of the 1./, Characteristic

To see how the shape of the ./7 characteristic affected the delay and
the rise time of the blocking oscillator, transient responses were computed
from (35) using for f(x) the functions depicted in Fig. 6. In all cases, the
location of the stable operating point was kept fixed and the cireuit was
assumed to be initially at rest at this point. To trigger the circuit a
Giaussian pulse was used which had a 50 per cent width of 4.175 and a
magnitude in each case equal to the distance between the stable and
unstable operating points. In all cases, @ = 0.447 and b = 0.8.

In the first set of computations the location of the unstable operating
point was kept fixed while the slope of the characteristic through this
point was varied by using four different functions for f(2). These are the
cases numbered 1 through 4 in Fig. 6, the fourth one being essentially
Case 3 multiplied by ten. The slope at the unstable operating point at
each of these cases, which on an unnormalized scale represents Buma./n
of the circuit, are, respectively, 1.14, 2, 8 and 80. However, the average
value of 8/n is the same in all cases, since the quasistable operating point
is located at (1, 1) in the first three cases and at (10, 10) in the last one.
Figs. 12(a) through 12(d) give the results of computing the transient
response from (44) in each of these cases. In Fig. 13 the rise time is
plotted as a function of Bmax/n. It is seen that the delay and rise time
change only slightly over the whole range of Buax/n; the most rapid
variation being confined to the region where Bma./n is nearly equal to
unity. The slope must be greater than this value for f(2) to intersect the
load line at three points. Henee, it can be concluded that the rise time
decreases very little when Bu../n is increased, as long as this quantity is
larger than unity. In fact, Fig. 13 shows that a 70-to-1 change in loop
gain results in only a 30 per cent change in rise time, and that the bulk
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Fig. 13 — Rise time as a function of Buux/n.

of this change occurs for the first 7-to-1 increase in loop gain. The reason
for this somewhat surprising result is, of course, the fact that the average
of 8/n, and therefore the average of the loop gain, is the same in all
these cases.

Finally, it should also be noted in Figs. 12(a) through 12(d) that,
while the rise time decreases as the slope of f(x) becomes steeper, the
delay increases. This is so because the collector current starts to flow
much earlier in the case of a gentle slope than in the case where f(x) is
steep.

To investigate the effect of moving the unstable operating point, the
transient response was also computed for Case 5 and Case 6 in Fig. 6.
The unstable operating points in these two cases are, respectively, located
inax = 0.1 and x = 0.9 and both functions have slopes identical to that
of Case 3. Comparing the resulting responses of Figs. 12(e) and 12(f)
with that of Fig. 12(e), it is seen that, as far as the delay and rise time
are concerned, the location of the unstable operating point has even less
effect than the slope has. A slightly smaller rise time is obtained when
the unstable operating point is located farther away from the stable one,
since the trigger is larger in such cases.

Before concluding this section, it should again be pointed out that the
dependence of wy on the average value of 8 must be taken into account
when the above results are applied to actual circuits. The fact that
1/ and €, are nearly proportional to 8 [(7) and (15)] tends to override
the somewhat weak dependencies discussed above. Transistors should
therefore be selected for large wy and small Cy rather than a high g to
obtain the best rise time. On the other hand, a high-low current 8 is
desirable to increase the trigger sensitivity of the circuit. Finally, the



TRANSISTOR BLOCKING OSCILLATOR WITH NONLINEARITIES 817

above results for a single pair of values of @ and b and a single value of
o apply to other values of these parameters. The basic shapes of the
curves in Figs. 11 and 13 remain practically unaltered. The prineipal
effect of other values of these constants is to displace these curves both
horizontally and vertically, with the vertical displacement the most pro-
nounced effect.

6.3 The Effect of Leakage Inductance and Colleclor Capacilance upon the
Delay and Rise Time

To investigate how the leakage inductance and collector capacitance
affect the delay and rise time, the transient response of the blocking os-
cillator was computed from (35) for a large number of values of the
constants @ and b. Four different types of trigger signals were used
throughout this investigation. In the first case, the effect of a very slow
trigger signal was simulated by employing a Gaussian pulse for g(r) of
magnitude and width equal to G = 0.3 and r, = 166.7, respectively.
As pointed out in a previous section, this represents the case in which the
rise time is solely dependent upon the properties of the feedback loop of
the blocking oscillator and not upon the detailed behavior of the trigger
signal itself. In the next two cases, Gaussian pulses of medium (r, = 25)
and extremely small (7, = 4.175) widths were used, illustrating situa-
tions where both the trigger signal and the circuit properties affect the
rise time. In all three cases, however, a magnitude of the trigger signals
was selected such that the circuit operated on the flat portions of the
curves in Fig. 11. In the fourth and last case, a step function of magni-
tude sufficient to saturate the transistor immediately (¢ = 1) was
applied. Since the entire driving capability of the transistor is now em-
ployed from the very beginning, this represents the situation in which
the delay and rise time are minimized. Also, the loop gain is zero during
the entire transition, so that the degenerative effect of positive feedback
on rise time is nonexistent in this case. Finally, in all cases, the blocking
oscillator was assumed to be initially at rest at its stable operating point,
and the analytical function in (37) was used to represent the ¢./4 charac-
teristic.

Tigs. 14(a) through 14(d) give the delay time as a function of the
constants, @ and b, in the four cases. It is seen that in nearly all cases the
delay is a linear function of b when either this constant or a is consider-
ably larger than one. The only noticeable deviation from this rule is the
a = 8 curve in Fig. 14(b), which starts to bend upwards for large b. The
reason for this is that here the eritical triggering level approaches the
actual trigger magnitude as b is increased; in other words, the circuit is
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no longer operating on the flat portions of the curves in Fig. 11. From
Fig. 14(a) it should be noted that, for values of b less than 4, the delay
goes through a minimum when a is varied.

Figs. 15(a) through 15(g) show the rise time as a function of @ and b
for the four trigger functions. Comparing these figures, it is seen that the
rise time is largest in the case of a very slow trigger signal and smallest
in the case of the saturating step function. However, the variation in
rise time with b is much less in the former case than in the latter one,
while with a it is somewhat the other way around. Also, the dependence
is stronger upon b than upon a. Finally, in all cases, the rise time goes
through a minimum when a is varied and b kept fixed, this minimum
being most pronounced in the case of a moderately fast trigger pulse
[Fig. 15(d)].

Since it is usually not possible to obtain an analytical solution to
(35), an expression for the rise time that is valid under all conditions
cannot be found either. However, in two of the cases discussed above,
approximate expressions for the rise time were found to fit the computed
data over a limited range. The first of these pertains to the case of a
very slow trigger signal and was obtained by a trial-and-error procedure.
It was discovered that the expression

T8 v1+ 20+ a (46)

approximates the computed data in Fig. 15(a) within £10 per cent.
The second expression for the rise time is concerned with the case where
a unit step function is applied to the circuit. Since the transistor is
saturated immediately in this case, (35) is linear with fly + g(+)] = 1,
and the transistor can be characterized by the transfer function

(s) 1
T G+ D@2+ s+ 1) (47)

where U(s) is the Laplace transform of the unit step function. The

poles of the transfer funetion are given by s = —1, —a, —§, where
2 2 j— 2 2
_b Ve - \{)bQ e and g = b———\/b 4a . (48)
2a 2a?

It can be shown that a system with a transfer function whose only
singularities in the finite part of the comple\ plane are negative real
poles will have monotonic step response.”” For the blocking oscillator,
e and B are real when b = 2a and a monotomc step response results.
Under these conditions, Elmore’s definition®® of delay and rise time gives
results in good agreement with those obtained by the exact caleulations
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used to obtain the results of Fig. 15. Application of Elmore’s definitions
yield the normalized delay

w=1+b b =2 (49)
and the normalized rise time
=221+ b — 2a b =21 (50)
or, in unnormalized form (neglecting parasitic capacity):
7= L+ RO = (1+n) (l + 1.51&0,3), (51)
wo Wa
T, = 22 1/ 5+ R2C? — L5L.C
: (52)
=22(1 + n) 1/-— 2.25R2C.2 — 2.25 _‘:"’M

As expected, n and R,C, should be selected as small as possible to reduce
the rise time while w, should be large. Equation (52) suggests that there
exists a value of the leakage inductance that will minimize the rise time.
The exact value of the leakage inductance that accomplishes this cannot
be determined from (52), since it is strictly valid only when the re-
sponse is monotonie.

Tinally, in Figs. 16(a) through 16(c) the overshoot is shown as a
function of a, with b/2a as a parameter. It is seen that, as b/2a increases,
the overshoot decreases, becoming zero when b/2e =z 1. It should be
noted that, for fixed values of b/2a, the overshoot approaches a constant
when a is lmge. Spot checks of these analog computer results were made
on a digital computer, with excellent agreement between the two results.

6.4 Conditions for Monotonic Response

In the preceding section it has been shown that the blocking oscillator
will have monotonic or oscillatory response when it is driven by a saturat-
ing step funetion, depending on whether b is greater than or less than 2a
respectively. For example, the response will be monotonie if

b>2 o R.>2 1/(5 (53)
o

and be oscillatory if

L.

b < 2a or R, <2 o

(54)
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The condition b = 2a yields two coincident real roots and divides the
a-b plane into regions of monotonic and oscillatory responses, as shown
in Fig. 17. Two real roots can also result when either « or 8 is equal to
—1. This leads to the parabola

b=1+4d (55)

in the a-b plane. At the point (1, 2) this parabola is tangent to the
straight line b = 2a and the blocking oscillator has three coincident real
poles at s = —1.
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There is one exception to the above division in the a-b plane.
When b = 2¢° and 0 < @ < 1, a pair of complex conjugate poles whose
real part = —1 arises. The poles all lie on a line that is parallel to the
imaginary axis in the complex plane and spaced one unit to the left. In
this case, the impulse response is tangent to the zero line, so that the
step response is monotonic. It can be shown that in the region b = 2a°,
0 = a = 1 the response will be monotonic. The rise time in this ease with
b = 2a*is given by

7 = 2241 4 4a* — 2a®. (56)

The above rise time is & minimum when ¢ = 0.5; the minimum rise time
then is 1.87. Actual transient ealculations for this condition yield a
minimum rise time of 1.45 at a = 0.45. In this case, the 10 to 90 per cent
rise time is faster than it is in any of the other cases of monotonic re-
sponse. However, the response proceeds quite slowly from the 90 per
cent point to its final unit asymptote. This behavior explains the dis-
crepancy between the results of (56) and the exact transient calcula-

tions.
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Fig. 17 — Conditions for monotonic step response.
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Ideally, the blocking oscillator should have a response that has both
as small a rise time as possible and a flat, smooth top. The best physical
compromise to this requirement is to make the circuit nearly eritically
damped during this interval. In other words, the coefficients a and b
should be selected such that they lie in a region close to the straight line,
b = 2a, in Iig. 17, i.e,,

L

b = 2a or R, =2 o

(57)

Trurthermore, Ifigs. 15(f) and 15(g) show that a minimum rise time
can be achieved for small values of @ and b. In fact, a rise time faster
than the minimum rise time of the transistor itself (2.2/wy) can be ob-
tained. Some overshoot is associated with these cases. This result is
similar to that achieved with series peaking in a conventional interstage,
and confirms the conclusions of Linvill and Mattson.” However, in this
case the blocking oscillator is acting as an overdriven amplifier with zero
loop gain. The larger the drive the faster the response, since wo increases
with drive. Smallest rise time can only occur when the power gain re-
quired of the blocking oscillator is low. This requirement may be satis-
fied in some computer applications where the primary function of the
blocking oscillator is to retime a relatively sharp pulse train. In applica-
tions where the blocking oscillator must reshape as well as retime a pulse
train, such as in pulse eode modulation, considerable power gain will be
demanded from the circuit and the minimum rise time cannot be
achieved. This is the analog of the familiar gain-bandwidth produet for
linear systems.

When signals other than the saturating step function are used to
trigger the blocking oscillator, the manner in which the quasistable
operating point is approached is dependent on the parameters a and b,
the nonlinear characteristic and the trigger signal. When the transistor
saturates after suitable triggering fly + g(+)] = 1. At this point, as
noted previously, (35) is linear and the Laplace transform of the output
can be expressed as:

(s) = 1 +
YA = s + (@@ + b)st + (1 + B)s + 1] (57)

[a®’ + (o + b)s + (1 + D)yt + [@°s + (@ + D)y’ (L) + a’y” (&)
a’s® + (a2 + b)s* + (1 + b)s + 1 ’

where ¥(&,), ¥' (&) and y” (&) are, respectively, the values that y, its
first and its second derivatives attain when the transistor becomes
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saturated. The kind of response y(¢) will have is therefore dependent
upon both the initial conditions at saturation and the roots of the char-
acteristic equation

a’s + (" +b)s + (1 +b)s+ 1
=(s+ (e’ +bs+1) =0.

Relationships between the initial conditions and @ and b can be estab-
lished such that the quasistable operating point is approached mono-
tonically.” This will not be pursued here, since the values of the derivatives
at saturation are not normally measured quantities. On purely physical
grounds, it would be expected that the conditions given previously for
monotonic response in the case of the saturating step function should
also apply here. This follows when it is realized that the saturating step
funetion brings the full capability of the transistor into play immedi-
ately, thereby imparting maximum energy into the output circuit. For
other trigger signals this will not be true, so that the energy transferred
to the output circuit will be smaller than it will be in the case of the
saturating step. Since the values of the output funetion and its deriva-
tives when the transistor goes into saturation are a measure of this
energy, it would appear that, if no overshoot occurs with the saturating
step, none should oceur for other trigger signals. This heuristic argument
is bolstered by the results displayed in Figs. 18(a) and 18(b). These
figures give the analog computer solutions to (35) for various values of
a and b when either a fast or slow trigger is applied to the circuit. In both
cases the response adheres to the conditions given on Fig. 17 for mon-
otonic response.

(58)

VII. THE ‘“‘ON” INTERVAL

After the blocking oscillator has reached the quasistable operating
point the magnetizing inductance becomes charged slowly, reducing the
current fed back to the base. This causes the load line, and therefore the
quasistable operating point, to move to the left, in Fig. 4 or 5, until the
load line is tangential to the 7(4) curve. Beyond this point (3'), the
load line intersects I(4) only in the cutoff region, and the circuit now
has only one possible operating point. Hence, a rapid “jump” toward
cutoff takes place at J’, and it is therefore natural to define the “On”
interval as the time it takes the base current to decrease from the quasi-
stable operating point to the value it has at the point of tangency, 5,
that is:

Iy £ 4 £ 1Ins (59)
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In Tig. 19 the results of solving the complete equation [(116) of Ap-
pendix B] of the blocking oscillator on an analog computer are shown.
The analytical representation (37) of the 7./ characteristic was used
and V(z) was approximated by two straight-line segments. Also, the
constants a, b, d and e were kept fixed while the constant ¢, which is pro-
portional to the magnetizing inductance, was varied. It is seen that, ex-
cept when ¢ is small and the circuit oscillates, the base current and the
base voltage vary rather slowly during the “On” interval. Hence, during
this interval terms involving derivatives of x and V() may be neglected.
This also follows from the fact that, in all cases of practical interest, the
magnetizing inductance is very large compared with the other storage
elements in the circuit. For the same reason, the amount of current col-
lected by this inductance during the “Transition On” interval is also
assumed to be negligible, i.e., m(7;) = 0. Assuming the trigger signal to
have terminated by this time, the equation governing the normalized
base eurrent during this interval therefore reduces to

x — h(x) —|—%f;V(:::)d-:-=O

or (60)
dx Viz)
‘& T @
1 - 7
dx

The unnormalized version of this equation becomes

ar diy | V() — Ew _

dib

The above equation reflects the operation of the circuit during this in-
terval exactly as it was deseribed at the beginning of this section. First,
it indicates that the base current decreases rather slowly, since L., is
large and Vy(4s) — Euw small. Then, when dI(4)/di, becomes equal to
unity [which corresponds to the point of tangency (3') in Fig. 4], it
predicts that a jump takes place, by virtue of the fact that di,/dt = =
at this point. Since

v, dVi(is)
CaG Pt E 1 R dl.(3)

= 1 - - ; ,
Ry + dVs(is)  dis

i i m (62)
d&in

1
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TRANSISTOR BLOCKING OSCILLATOR WITH NONLINEARITIES 820
it can be seen that the “midband” loop gain of the cireuit is equal to
unity at the point where the jump takes place.

As a first step toward deriving a formula for the natural pulse width
of the blocking oscillator, let us introduce the above expression into (61)
and also take advantage of the fact that Vy(z) is very nearly linear in
the saturation region, so that Vs(4) = 7 . Thus, (61) becomes:

! ib - Ebb
oy Ry + 1o dib T
i - i . — = 0. 63
nl Ryr. dt + 1 Ry dl (1) (63)

n R.@,’ ‘Jr Ths d’ib

By substituting the analytical approximation for 7.(4), the above equa-
tion may be solved exactly."" However, in cases of practical interest, the
quasistable operating point extends quite far into the saturation region
and, furthermore, most #./% characteristics bend quite sharply before
going into saturation. Therefore the jump point, 3°, is positioned very
close to the saturation level. Hence, the transistor is saturated during
almost the entire “On’’ interval with the result that dI.(4)/d% is equal
to zero except in the near vieinity of the point 1. For the purpose of
deriving an expression for the pulse width, it istherefore an excellent ap-
proximation to neglect the loop gain term in (63). Solving this equation
under these conditions, introducing 7, as equal to I and Iy; at the be-
ginning and end of the “On” interval and substituting for 2’ from (24),
the expression for the natural pulse width may be written

R+ s [1 4 f (i + Rfco)] I, — Lw

2 n2 i, \w 7
T, ~ 0L Zm A0 In 2 (64)
Rth,g I Ebb
bj — .
Tbs

In most circuits

Rb >> Ths [l + Rb ('—1_ -!_ RuC‘(})] ELlld Iha = % b (65)

nQIJm Wy

g0 the above equation reduces to

1 Ey
Tw 2 E I Ty
= 5 1 cal bs ) 66
IJMI/rbS & " _IE _ Ebb ( )
It'a Ic.urba

Iligs. 20 and 21 show the normalized pulse width as a function of » for
various values of Iy;/I.. and Fyu/T.re as computed from (66). It is seen
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Fig. 20 — Pulse width as a function of turns ratio, with Eyp/Tosree = —1.

that the pulse width goes through a maximum and is nonzero over only
a finite range of n, the limiting values of n being 0 and I../Is; . Phys-
ically, the upper limit corresponds to the coincidence of the quasistable
and the unity loop gain points, making it impossible for the cireuit to
remain in a conducting state for a finite time. It should be noted from
these figures that, for a fixed turns ratio, the natural pulse width exhibits
a strong dependence upon both Eu/I.r. and I./ls;, i.e., on both the
nonlinearities and the bias.

Before concluding this section, two things should be pointed out. First,
the quantity fs; in (66) is, strictly speaking, also a function of n, be-
cause, as n is varied, the point of tangency in Fig. 4 changes. However,
since the 7,/4, characteristic usually bends quite sharply before going into
saturation, I,; will vary only slightly with n. Second, in the above analy-
sis the effect of minority carrier storage has been neglected. The presence
of such carriers in the collector junction introduces a delay before the
transistor can leave the saturation region; as if the I(%) curve had been
temporarily moved somewhat to the left in Fig. 4, thereby causing the
pulse width to be slightly larger than that predicted by (60). However,
this effect may be partially accounted for by calculating the pulse width
from (64) rather than from (66), using, as explained in the section on the
equivalent circuit, the value of wp appropriate to turnoff.

VIII. THE “TRANSITION OFF’’ INTERVAL

In discussing the ‘“Transition Off”’ interval one must discriminate
between two cases: one in which the blocking oscillator turns off by
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itself, and the other when it is triggered off by virtue of an externally
applied signal. In the following, these two cases will be discussed sep-
arately.

8.1 Internal “Turn Off”

As explained in the previous section, when the magnetizing inductance
becomes sufficiently charged so that the load line is tangent to the ()
curve at the unity loop gain point, 3, a rapid transition toward the
other point of intersection between the load line and the characteristic
takes place. Since the input impedance to the transistor is very high in
the reverse direction, the bias current, Iy , is very small and the 7(4,)
curve is almost vertical in the cutoff region. Thus, the end point of the
transition is essentially located on the %, = 0 axis., Hence, it is natural in
this case to define the “Transition Off”” interval as the time it takes the
base current to vary between I,; and 7. = 0. The transistor is therefore
conducting over almost this entire interval and the same approxima-
tions can be made here as for the “Transition On’ interval. Accordingly,
the equations governing the responses in the two intervals will be alike,
the only differences being that the trigger signal is absent and the mag-
netizing current is

20
0
- pd
2'— / Ebb _ \
- Les rbs_o \
4 / -

osf—df —
NiAN
N

Fig. 21 — Pulse width as a funection of turns ratio, with Eu/Iers, = 0.
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Tulty) = 1(L,) — n{[l + ‘?”(l +Rcco):| Velloi) = By L,J-}
n2L,, \wo Ry (67)

= [.(I;) — nly;
or, in normalized form,

m(r;) = flx;) — (1 + lcﬂ)V(z,-) — ;= f(z;) — x;. (68)

As explained in the section on the equivalent cireuit, a different w, that
takes into account the effect of minority carrier storage must now be
used. This latter modification usually results in a fall time that is from
two to ten times that of the rise time.

The fall time in this case may be calculated in an alternate way which
permits one to use the results in Section IV. The accumulation of cur-
rent in the magnetizing inductance acts like a slowly varying bias that
slides the load line toward the point of tangency, at which point rapid
regeneration takes place. This fact suggests that the mode of operation
now is very similar to the case in which a slow trigger signal is applied
to the circuit. Hence, if one defines the fall time as the time taken for
the response to traverse 90 to 10 per cent of the interval between the
stable and quasistable operating points, one should expect that the fall
time can be obtained directly from Fig. 15(a) or (46), provided the wy
valid in this interval is used. Indeed, comparisons of rise and fall times
between Figs. 15(a) and 19 bear this out.

8.2 External “Twrn Off”

When the blocking oscillator is turned off by an external signal the
natural pulse width is always selected to be much larger than the interval
between the “Turn On’ and the “Turn Off” pulses, in order to secure
reliable operation. The magnetizing inductance will therefore not be-
come significantly charged during the time the circuit is on and condi-
tions similar to those during the “Transition On” interval exist. By using
the value wp, which takes into account the effect of minority carrier
storage, the fall time in this case may be calculated from the results in
Section IV.

IX. THE ‘“RECOVERY’’ INTERVAL

This interval is defined as the difference in time between cutoff and
the time the ecircuit comes to rest at the stable operating point. During
this interval, assuming that the recovery is overdamped or slightly
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oscillatory, it is reasonable to assume that the transistor is essentially
cut off. This means that the 8 of the transistor is zero, f(x) is essentially
zero and ' reduces to

Co=C.+ C,. (69)

In addition, the terms involving the normalized base voltage will be
considerably larger than those containing the normalized base current
in the complete equation governing the circuit operation. Since the terms
containing derivatives of the normalized base voltage are unimportant
in the preceding operating intervals, their coefficients ean be modified in
terms of the values they assume during recovery without affecting per-
formance in the other intervals. In this case, we do not operate on the
base voltage terms with the expression

(1 + l‘i) i = 1(i), (70)
wp dt

since the transistor, except for its output capacity C. , is effectively dis-

connected from the output circuit while it rings out. In addition, the

parameter e which arises from the capacity across the transformer is

lumped in with the constant d, to give a value of d modified to

dy = ‘."“Rb[(cc + ) (1 - %_) + OT] (71)

n?

Finally, derivatives of v, higher than the second were neglected. With
this reasoning, the terms that remain involving V(a) in the normalized
equation of the blocking oscillator are

(af +b) 2L + b+ dp D+ (1 + 9)V + [ var (2
d‘r' dt C C Ti
where
a = a
with Cy = C,. + C,. (73)
bhh=1=5

With this change, the equation governing the performance of the block-
ing oscillator over its complete eycle of operation was simulated on an
analog computer to verify the contention that the transistor is cut off
during recovery, and to give quantitative substance to the assumption
that only the V(x) terms need be considered. Again, the analytical func-
tion was used to represent the 7~ characteristic, while the normalized
base voltage function was approximated by two straight line segments,
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The circuit was turned on by a Gaussian trigger pulse of width r, =
4,175 and magnitude G = 0.5, and left to its own devices to turn off.
The computer results when the constant d; was varied and the remain-
ing constants fixed are shown in Fig. 22. The main effect of varying d,
is to change the response after the blocking oscillator has turned off.
Recovery is rather slow, and decreases as d is inereased. It should be
noted that, as long as d is not too large, the overshoot of the base cur-
rent is small, confirming the assumption that the transistor remains es-
sentially cut off during recovery. The undershoot of the output voltage
is rather large, becoming larger and narrower as d, is increased. This is
largely due to the fact that the transformer capacity has been assumed
negligible compared to 'y (i.e., ¢ = 0). When ¢ is greater than Cy, it
will be found that the undershoot of the output voltage is quite small.
This will be discussed more fully in a succeeding paragraph. From Fig.
19 it can be seen that recovery is very much dependent on the param-
eter ¢. This would be expected physically since ¢ is associated with the
energy stored in the magnetizing inductance.

From the above results it can be seen that the transistor is essentially
cut, off during recovery and that the base-emitter junction of the tran-
gistor is back-biased, assuring that V(x) >> x. Therefore, all the assump-
tions of the beginning of this section are valid and the equation govern-
ing recovery can be written from the Appendix and (72) as

4V

(a + ) L% +(bl+d+e)ﬁ+( b)v

(74)
L d d
+ Eff,- Vdr + m(r;) = (1 + bla-l-af(—l;z-)g(r).
If we differentiate (74) we get, after some rearranging,
e(a)’ +w)d—‘+ (bl+d+e)‘” + o+ v
(75)

( —Hnd +a2d)g()

Whether the response of (75) is monotonic or not depends upon the
initial conditions when the recovery interval is entered, as well as the
parameters a through e. In the absence of information concerning the
initial conditions, we can only determine whether or not the response
will be nonoscillatory. This can be determined by using the diseriminant
for the cubic on the homogeneous equation. Instead, we assume that
the third derivative term can be neglected and deal with the second-or-
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der equation in V. This approximation appears to be justified in practice.
In this case, it is readily shown that the recovery response will be non-
oscillatory if

2 Rt
(b+c) b=(c b) = ¢ (76)

d+e 4 4¢

W

In unnormalized form, this becomes

M2 Lim

Ry = =5 7Y
R(‘(_("c + Cfﬂ) + 2 //LHICT + Lm(('fc + (‘ra) (l + IJ_E)

n'.’. L-m 1/2
"2‘(06+C,+CT) '

During this interval, the output voltage is given by

(77)

y—t+e——+1fVdr+V+m('rJ)—g(T) (78)

When the transformer capacity (directly proportional to e) is much
larger than €, + C,, and the derivative terms of g(r) and the highest
derivative of V are neglected, (74) becomes

e%+V+%j;:Vdr+m(r,>)~g(r)ﬁO. (79)

Comparing (79) and (78), it can be seen that they are identical when
¢ = 0 = y. During recovery, z is small compared to V. The fact that
y = 0 implies that the output voltage is essentially zero during recovery
when the transformer capacity C'r 3> €, + C,. This must be so from
physical considerations, since the current through the load must of ne-
cessity be small when the output impedance of the transistor becomes
quite high.

X. MULTIPULSE RESPONSE OF THE BLOCKING OSCILLATOR

To investigate how the blocking oscillator should be designed in order
to work reliably as a regenerator in a PCM repeater, (116) of Appendix B
was solved on an analog computer with g(7) consisting of a sequence of
alternating positive and negative Gaussian pulses. Each “Turn On” and
“Turn Off” trigger pulse was spaced 15 time units apart, and the magni-
tude and width of these were G@ = 0.5 and 7, = 4.175, respectively. The
analytical expression (37) wasagain used to represent the /7 characteris-
ticand V(z) was approximated by two straight line segments. The con-
stants a and b were selected such that the rise time of the circuit was small



TRANSISTOR BLOCKING OSCILLATOR WITH NONLINEARITIES 837

TTTTI [ [ I I [

VERTICAL SCALE CHANGE
BY A FACTOR OF 2

75 100 150 200
T

Fig. 23 — Response of the blocking oscillator to a sequence of “Turn On’’ and
“Turn Off” pulses when a* = 0.2, b = 0.8, ¢ = 5 and d = 0.28. This value of ¢ cor-
responds to a natural pulse width of 7, = 10. Each “Turn On” and “Turn Off”
pulse was spuce(l 15 units apart and had a magnitude and width of ¢ = 0.5 and
1o = 4.175. The maximum of the first “On’’ pulse occurs when » = 7.5.

compared to the spacing between the trigger pulses and d was picked
such that the recovery was reasonably fast. Finally, it was assumed
that the blocking oscillator was initially at rest at the stable operating
point so that m(0) = 0.

The results are shown in Figs. 23 through 26 for various values of
the constant e¢; that is, the natural pulse width of the cireuit was altered
in these cases. In Fig. 23 the pulse width was equal to 10, and therefore
it was less than half the period of the trigger signal. It is seen that, not
only do the height and width of the output pulses vary considerably,
but the timing information contained in the trigger signal is almost
completely destroyed as well. In I'ig. 24, in which the natural width

T
VYV VY

h |
100

1111 !
o 20 50 150 200 250 300
T

5

iy

Fig. 24 — Response of the blocking oscillator to a sequence of ““Turn On” and
“Turn Off"" pulses when ¢ = 10.
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was almost doubled, conditions have improved considerably. However,
variations in width and timing are still intolerable. By increasing the
width further by almost 40 per cent, as shown in Fig. 25, the result
becomes acceptable, although the undershoot of y varies considerably.
Finally, in Fig. 26, where the natural pulse width is about 1.4 times the
period of the trigger on signal, the train of output pulses is almost com-
pletely uniform, with scarcely any change from one pulse to another.
Hence, for the blocking oscillator to perform reliably as a regenerator,
its natural pulse width should be at least equal to 1.5 times the repeti-
tion period or equivalent, three times the time interval, 7'z, between
each “Turn On” and “Turn Off”’ pulse for a 50 per cent duty cycle;

that is,

T, S 3Ty (80)
In addition, the rise time should, of course, be considerably less than
T» and the recovery should be such that it is overdamped or only slightly
oscillatory.

NORMALIZED BASE CURRENT

=

NORMALIZED OUTPUT VOLTAGE

NORMALIZED BASE VOLTAGE

V(%)

0 L | |
o 10 20 30 50 100 150
T

Fig. 25 — Response of the blocking oscillator to a sequence of “Turn On’” and
“Turn Off”” pulses when ¢ = 14.3,
P
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Fig. 26 — Response of the blocking oscillator to a sequence of 13 “Turn On”
and “Turn Ofi”” pulses when ¢ = 25. This value of ¢ corresponds to a natural pulse
width for the circuit of r, = 41.5.

Physically, the above results are what one should qualitatively expect.
When the natural width is about equal to or less than 7'z, the turnoff
mechanism in the blocking oscillator itself will interfere with the trigger
signal, while in the case of a large width the cireuit works more or less
like a bi-stable device, thus reproducing the incoming signal faithfully.

XI. DESIGN EXAMPLE

To illustrate how the results of the foregoing discussion may be used
to develop a design procedure for the blocking oscillator, let us consider
the following typical problem.

A grounded emitter blocking oscillator is to be used as a pulse regen-
erator working at a maximum repetition rate of 1.5 me. It should be
triggered “on’” and “off” by a circuit having an output impedance of
R, = 1000 ohms and it must work into a load of R, = 400 ohms. The
available bias voltages for the base and collector circuits are Ky = —0.8
volt and F.. = —6 volts, respectively, and the stray and wiring capac-
ity was estimated to be about 5 micromicrofarads. Available transformers
for this application have parameters referred to the primary in the neigh-
borhood of the following:

Leakage inductance: L, = 1 ph,
Magnetizing inductance: L,, = 100 ph,
Stray capacitance: C'r = 20 upf,
Possible turns ratios: » = 1.5, 3, 4.5.

A surface barrier transistor, 2N128, is to be used, for which typical
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I,(4) and [Vi(i) — Ew)/Ry characteristics are shown in Fig. 27(a). Its
other specifications are as follows:

Collector saturation current with R, = 400-ohm load: I, = 14.5 ma,
Minimum base current to saturate transistor: [y, min = 2 ma,

Base voltage at the point of saturation: = 0.5 volt,

Base input impedance in the conduction region: rs = 60 ohms,

« cutoff frequency: f, = 60 me,

Collector capacitance: C. = 1.6 puf,

Bmax = 37.

The “Turn On” and “Turn Off”’ trigger pulses have roughly a Gaus-
sian shape and are spaced 0.33 microsecond apart. Their 50 per cent
width is about 0.2 microsecond and their magnitude should be deter-
mined. The rise time and fall time of the blocking oscillator should be
less than 0.15 microsecond.

The first step to be taken in designing the blocking oscillator is to
determine what turns ratio should be used. However, the turns ratio
affects a number of things, such as the location of operating points,
natural pulse width, ete. in the circuit, so that no single eriterion is
sufficient to determine n. The range of values imposed upon n by the
various requirements in the circuit must be determined first, then a turns
ratio can be chosen compatible with all these requirements:

i. The first of these requirements comes from the fact that the turns
ratio must be such that the load line intersects the I(7,) curve in three
points. This restricts n to values:

-
I, L 1 _ 14.5 — 725, (81)

Iba min — Ibc Iba min 2

n <

where Tt min 1S the minimum base current that will saturate the transis-
tor.

ii. The second requirement pertains to the desirability that » is such
that the magnetizing inductance does not significantly affect the location
of the quasistable operating point. According to inequality (27), this
requires that:

2 Ir:a Rb ]-
n Vo - T n+ . (w_o + RCCO) < 0.

Ry

(82)
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Fig. 27 — Design example: (a) [Vu(is) — Ewl/Rs and I.(ip) characteristics of
2N 128 transistor; (b) range of values imposed upon n; (¢) I(is) for n = 3.

Substituting for wp and Cy from (28) and (15), respectively, this condi-
tion may also be written in the form:

I, 1 /(1 . ,
— Rb l:ln—-Ebb Lm (w—-u + 1'DRCC”):|H'

R, [ + R.(C, + 1.)0)] & 0.
IJ", Wa

(83)
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However, in most cases of practical interest,

111 1
L S , + 150, S N—
i [wa + R.(C, + 1.5C )] « Vi B (84)
Thus, inequality (83) reduces to
I,
0<n <y "7 (85)
R,

In our numerical example, condition (84) leads to 5.9 X 107° « 1.11.
So as far as this requirement is concerned, n should be selected within
the range:

0<n <ILL (86)

iii. In order to assure that the rise time is reasonably independent of
Bumax Of the transistor, n should, according to Fig. 13, be selected such
that Bmax/n is not too close to unity, say,

Bunax _ 37

n < U = = 246, (87)

iv. The fourth requirement on n concerns itself with the desirability
of a non-oscillatory recovery, which, according to (77), requires that:

ws 2R, _ _2X10° o8
1/ 1/ L. 7 10+ (88)
C. + C.+ C. Y 3% 100

v. Finally, in the section on the multipulse response of the blocking
oscillator it was found that the natural width should be equal to or
Jarger than three times the time interval, 7'z, between the “Turn On”
and “Turn Off” pulses in order for the circuit to reproduce the incoming
information faithfully. According to (80), this requires that n must be
such that:

1 Ey
nzf-fm 'H Icnrbn
In —=" = 375 89
Tha nf_bj _ Ew ! (89)
Ica Ics'rbn

From Figs. 20 or 21 it is seen that this condition will limit n to a range
of values between a minimum and a maximum. All guantities are known
in the above equation except /5; , which, if n was known, could be deter-
mined from Fig. 27(a). However, since the lower and upper limit of n
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defined by the above condition approach each other when I3; is increased,
and since 7,; increases as n is decreased, we only have to consider the
case where [3; is determined by the lowest possible value of n. Examining
the previous restrictions on n, we see that its smallest possible value is
1.05, which determines the point of tangency in I'ig. 27(a) to be I;; = 2.
Hence, condition (89) becomes

1

-+1
2 n -~ - (90)
n” In 1138 = 0.564,
which gives:
0.996 < n < 6.53. (91)

The range of values imposed upon n by the above requirements is
plotted in Fig. 27(b). It is seen that any value of n between 1.05 and
6.53 satisfies all these requirements. However, remembering that the
turns ratio should be selected small in order to reduce the rise time as
much as possible, and taking into account that, for reasons of reliabil-
ity, n should not be chosen close to the edges of the allowable range, the
value n = 3, seems to be a good compromise. With this value of n the
resulting /(4,) curve is as shown in Fig. 27(¢), from which it is seen
that the base current at the quasistable operating point is /5, = 3.42 ma.
Hence, the various circuit parameters become:

- :”r T - "’—_ﬁ_”f'f iﬁw? = 73 X 10, (02)
I, 342
Oy ~ €y + 150, (1 + f—b) — 5+ 1.5(16) (1 + %}g) — 17.6uuf,
a=w\LCy=73X104/10-5(17.8 X 10-2)
=0.31, (93)
b = wR.Co = (7.3 X 107)(1.76 X 107") = 0.52,
_;—’a = 0.84.
The normalized trigger pulse width is
o = @l = (7.3 X 107)(2 X 1077) = 14.6. (94)

I'rom I'ig. 15(e) it is seen that with these values of a and b the normalized
rise time is about 4.6, which means that the real rise time is:
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73 X 107
Also, from Fig. 16(b) it can be concluded that the overshoot is com-
pletely negligible in this case. This is, of course, to be expected, since
the ratio b/2a is close to unity.

By separate measurements on the transistor it was determined that
the equivalent w, during turnoff was equal to 3 X 107, giving, as before,
a = 0.13 and b = 0.21. According to Fig. 15(¢c), the l‘lll time is therefore

3.8
3.107

Hence, both the rise and fall times are well within the specified limit.
If this had not been the case, it would have been necessary to repeat the
above procedure with a different trigger source, transformer or load, or
with a different transistor.

From Fig. 27(c) it is seen that the minimum trigger magnitude in
the case of a very slow trigger is I, min = 0.85 and, by interpolation be-
tween Figs. 7 and 8, the normalized magnitude for a width of 7, ~ 15
is G = 0.175. Hence, the magnitude of the applied trigger should be
larger than:

Te = = 0.063pus. (95)

Tr = = 0.127ps. (96)

I.', > (Ibs - Ibc)(G - Gmin) + It min
~ 342(0.175 — 0.150) + 0.85 (97)
~ (.95 ma.

If the blocking oscillator had only been turned “on” externally but
left to its own devices afterwards, its natural pulse width would be:

1
2 - +1
14.5

where I;; was found from Fig. 27(¢) to be equal to 1.25 ma.

The undershoot of the output voltage will be very small since the
transformer capacitance is much larger than the output capacitance of
the transistor during the recovery interval.

To check how well the above calculations and the rise times predicted
by Fig. 15 agreed with experimental results, a blocking oscillator having
the same specifications as the one above was built and measured. In the
case of the rise times, trigger pulses having magnitudes and widths cor-
responding exactly to those of Fig. 15 were applied to the circuit and
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>l > e
100MUSEC .SOM/.LSEC

(a) (b)
SLOW TRIGGER PULSE MODERATELY FAST TRIGGER PULSE
MAGNITUDE = 1.3MA MAGNITUDE = 1.9 MA
WIDTH = 2.3 4SEC WIDTH = 0.34 LLSEC

—] |
C) SOM/JSEC (d) S50MUSEC
SHORT TRIGGER PULSE SATURATING STEP FUNCTION
MAGNITUDE = 3.4MA MAGNITUDE = 3.4MA

WIDTH = 0.06 L SEC

(e)
THE COMPLETE RESPONSE

Fig. 28 — (1) through (d) output voltage of the blocking oscillator in response
to various types of trigger signals; (e) the complete response.

then compared to the values predicted by these figures, The results are
shown in Figs. 28(a) through (d) and in Table III. In all cases the over-
shoot was not observable, which is what one should expect from Fig. 16.
Also, the critical triggering level in the ease when a 0.2-microsecond pulse
was applied was found to be equal to [; min = 0.9 ma. Fig. 28(e) shows
the complete response of the blocking oscillator, from which it is seen
that its natural pulse width was about 2.5 microseconds and the under-
shoot less than 5 per cent.

XII. DISCUSSION OF RESULTS

An approach to the design of transistor blocking oscillators with em-
phasis on the nonlinearities inherent in their operation has been pre-



846 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1959

TasLe III
Actual | Actual Rise Time, Tg , in ps
Trigger Signal Magni- | Width,
tude, ma | as Calculated Measured
Slow Trigger Pulse 1.3 2.3 11.5 — 0157 0.15
G = 0.3, . = 166.7 [Fig. 14(a)] 7.3 X 107 :
Moderately Fast Trigger Pulse 1.9 |0.34 4.6 — 0.063 0.06
@ = 0.5, 7o = 25 [Fig. 14(c)] 7.3 X 107 ’
Short Trigger Pulse 3.4 |0.06 (| 4.65 — 0.064 0.06
G =1, 1, = 4.175 [Fig. 14(e)] 7.3 X 107 ’
Saturating Step Function 3.4 — 23 _ 0.031 0.03
G = 1 [Fig. 14(f)] 7.3 X 107 ’

sented. A graphical picture of the operating points of the circuit has been
drawn which gives a useful feel for the circuit behavior. In addition,
both the minimum trigger signal needed to cause the circuit to regener-
ate, and the requirements for reliable triggering can be inferred from
the static characteristic (steady-state equation). An approximate rela-
tionship between trigger magnitude and width was determined from
analog computations. This relationship, combined with other analysis,
shows that the minimum energy for reliable triggering is attained when
the transistor has a high-low current g, large w. , small collector capacity,
and low forward drop (a good switch) and the transformer is of high
quality, i.e., has large magnetizing inductance and high coupling coeffi-
cients. This is hardly surprising, but it satisfies our intuition. Most im-
portantly, an indication is given as to how these factors affect trigger
sensitivity.

The rise time of the circuit is relatively independent of the maximum
loop gain Bmas/n, and therefore also of the details of the nonlinear 7.~
characteristic for trigger signals about 50 per cent or more larger than
the minimum. On the other hand, the rise time is very much dependent
upon the rise time of the trigger pulse. Slowly varying triggers give, as
expected, the poorest rise time, while the minimum rise time is achieved
with fast trigger signals that saturate the transistor immediately. The
implications of this result are obvious: power gain and considerable pulse
reshaping, as required in a regenerative repeater for PCM, can be pur-
chased at the expense of a rise time significantly slower than that at-
tainable with a sharp trigger signal. This follows from the fact that the
positive feedback loop, which is active over a greater portion of the tran-
sition on interval with slow trigger signals, has a deleterious effect: on rise
time. The results of the rise time calculations and the conditions for
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monotonic response permit the designer to establish specifications on
the circuit to obtain the desired leading edge of the output pulse with
small overshoot. The analysis of the “On” interval shows clearly the
instabilities in pulse width that result when this width is determined by
the natural pulse width of the cireuit. It can be seen from Figs. 20 and
21 that the natural pulse width is eritically dependent upon the circuit
operating points, the nonlinearities and the bias. This is further empha-
sized by the fact that the largest discrepancy between measured and
computed results in the example oceurs in the natural pulse width. When
the pulse width must be accurately controlled, it is highly desirable to
have this accomplished by an external trigger-off pulse. This implies a
large magnetizing inductance for the feedback transformer and justifies
the initial approximations that were made in the derivation of the equa-
tion governing the transition on interval.

During recovery the energy stored in the magnetizing inductance rings
out. Quick recovery can be accomplished without retriggering if the
transformer cireuit is critically damped. This may be accomplished with
the existing circuit elements, or it may be necessary to add a damping
resistor and diode combination across the transformer.® This has the
effect of modifying the value of R, used in the recovery interval. When
the circuit is clocked off, analog computer results show that the natural
pulse width should be at least three times the desired pulse width for
reliable performance.

Several points regarding this analysis and its application should be
clarified before concluding. As pointed out, the equivalent circuit chosen
for the transistor is a necessity for a tractable analysis. Gross deviations
from the assumed configuration may partially invalidate some of the
results. In most cases, physical reasoning can be used to account for the
effects of these deviations. Furthermore, this equivalent cireuit is a good
one for transistor designs to shoot for.

Second, the design example clearly shows that the analysis presented
does not lead to a set of design equations that can be solved immediately
for the values of all the circuit elements. In particular, the parameter n,
the turns ratio, is woven into all of the normalized design parameters, as
evidenced by the design example. Furthermore, both the magnetizing
inductance of the transformer and its parasitic capacity are dependent
on 7. The fact that there is no simple, immediate means of arriving at a
unique set of parameters is due to this interdependence. This is typical
of most engineering problems. However, this analysis does bring out the
compromises recquired in the design.

Finally, we believe that the ingredients employed in the present ap-
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proach are useful in the successful execution of nonlinear circuit design.
The recipe is as follows: apply some experiment; some intuition; some
analysis, including minor deviations from superposition, and, finally, a
healthy sprinkling of planned computing.
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APPENDIX A

Derivation of the Differential Equation

From the equivalent circuit in Tig. 2(b) the equations governing
blocking oscillator behavior are:

?'.t = Il(t)l (99)
U = Vb('ib), (100)
(1 + 100 = 1), (101)
(O] dt
ip = Nl = (u N it 0. it), (102)
Ry
. . . . . 1 vy, — I,
z'=1p+2m+“:?’p+L_m./,‘.L—n—Mdt
Cod (103)
Up
+In(t) + O,
. . . . dv,
%=‘$:—3a=1’!—00%1 (104)
v, = B, — i, — T B g din (105)
n dil
Substituting for », from (105) in (104):
o= i+ CoR S C By g O (106)

ae’
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and combining 102 and 103:

=N+ n %%EM f S EM dt + I.(t;)
b m
(107)
Crdn _,
n di r
Substituting for 7; from (107) into (106) and combining terms yields:
3
= L (5'“' + CiReon ‘Lb + niy 4 LCLr Ly
n de
N !,L._c..,-n L G, du, Clin  Co Cr Ly
i n n L,n dt
CuR E (108)
+ i JF o (l’h - -Ub) _[_ T f S o dt + Im(t),)
]‘)'b L!JI}L rri

— N (1 + C'() + ('uL' (lit) T

Operating upon ( 108) in accordance with (101), grouping like terms,
dividing through by n and rewriting in terms of [vy(#) — Fu /Ry gives
the final form of the defining equation as:

L.Cy d%, ( R .Cg) d*, ( di,
= L.C E R.Cy

wy + 0 wo J d T t dt

]m(tj)} + Rln V’b(@b) - Eﬁfl dt

- [I(ih) - W — ’ IT“‘E; . Ry

e 2o ) B )
n* woht*Lim n? L

d | h(l.',) Fnh { DC’I’R Ry RbCT
T e *

d* Vi(3,) — Ew
e Olrr (e p)

+ (CUCTRJI’,, 4 LG LCCDCTR,,){ Valis) — Ew
¢ R,

+ Ln'C(I

n? N wo

(109)

'IL2LA}0 wWo n?

LOWCrRy d' Vilis) — B
nw®  dtt Ry

B N\ d R.Cy L.Cod’
ﬁ[1+( +R()]+(LCO+ dt“ dt":ll(l)

In the above, 7(#) is defined as

1(i,) = I”():"‘) [1 + Ff{ ( + RCO)] M')R:—E"” (110)
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The “steady-state equation” which determines the operating points
of the circuit is given by (109) when all derivatives and integrals are
zero. It is

1) — 3 — Iats) _ 0. (111)
n

—

From (107), the output voltage becomes:

7 (1) — ¢ nY) —
v = Ri, = nR, l}-b + Vi(is) By + Ry V() By d
Ry n2l, t; Ry (112)
C'pd Vb('t':b) — Ebb Im(tj) _ :I
+ R E d 7 + " I.(t) |.
Combining (105) and (112), the collector voltage may be written
_ _ Ve(is) — Ew _ ( L, d)
v. = E.. = B — 1+ R.dt V. (113)

APPENDIX B

Normalization

Considerable simplification and savings in space can be achieved when
the dependent and independent variables are normalized in the following
manner:

T = wut,
@ — fu, .
r = ——= = normalized base current,
Iba - Ilu:
Viz) = g%:—fj; = normalized base voltage,
_ L) _ . . ) .
g(r) = 7 = normalized trigger function, (114)
bs — dbe
_ Ir(""b)
f(T) B n(dps — Ige)

= normalized collector current base current function,
Im(tj) - nIbc
n(Ibg - Ib;)

I(4)
Iy, — Iie

m(r;) = = normalized initial current in L, ,

= normalized nonlinear characteristics.

hiz) =
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Further, we define

2 2
a = woy LBCD,

b = wlR.Ch,
. = 0 L
= w5,
a = el (1 + %) (115)
_ wDRbC':'
e = b]
n?
— Rb
k= n?k.’

Using the above definitions in (109) through (111) of Appendix A gives
the normalized deﬁning equations:

-g] + ( 2 (ll B h(:r)
+lf'V(;1-)dr +[1 +b(1+1)+d+c:|dV(x)
ME dr
+(a+b+d+e+b)dV('”) (116)
+ (a* + be + d’e) ——= dV(l) + d’e quf)
= [1+(1+b)%+( +b)-—*+a ]g(r)
and
hz) = flx) — (1 + il_’) V). (117)

The normalized “steady-state equation’ which determines the operat-
ing points of the cireuit is given by (22) in Section IV when all deriva-
tives and integrals are zero. It is

hx) — a2 —mir) = flx) — (1 + —lﬁ) Vi) —ax—m(r;) =0. (118)

In terms of the normalized base current, x, the stable operating point is
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now located at * = 0 and the quasistable one at x = 1, and f(x) attains
the same values at these two points.
If the normalized output voltage is defined as

Y = Up _ ?:,r
YT R — T~ (e — I)’
the normalized version of (112) of Appendix A becomes

y =2+ Vi) + (1-;[ Vi) dr + e ‘"§ D) 4 omle) — (=), (119)

In a similar way, the normalized collector voltage is defined as

— Erz: — U
nR (L — i)’

and (113) of Appendix A becomes
— k() + (1 + o i) v (120)
b dr
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