Nonuniformities in Laminated
Transmission Lines

By GORDON RAISBECK

(Manuseript received April 4, 1958)

The cffect on transmission propertics of certain nonuniformities in
laminated transmission lines has been caleulated by a perturbation method.
Particular cases have been caleulated, including the effect of varying radius
of eurvature in a eylindrical Clogston line, the effect of systematic variation
in effective dielectric constant and the effect of random variation in layer
thickness where the nonuniformities are known only through statistical
properties. In one Clogston line where measurements of nonuniformity
have been made the method predicts a transmission impairment in sub-
stantial agreement with observations.

I. INTRODUCTION

The remainder of this paper is divided into seven parts. Section 11
contains an outline of the notation used and then a discussion of a new
formula for the losses in a parallel-plane laminated transmission line*
due to irregularities in the laminations. The section concludes with an
outline of a procedure for caleulating losses in a given line due to known
irregularities.

Section ITT shows the derivation of the formula by the application
of a perturbation procedure to a differential equation derived by Mor-
gan.*t The procedure leads to an expansion of the attenuation in a

* The fundamental notions about laminated conductors, often ealled “Clogston
conductors™ or “Clogston lines’’, are given in a paper by Clogston.! Further de-
tails and embodiments are also shown in U. 8. Patents 2,769,147 (A. M. Clogston
and H. 8. Black), 2,769,148 (A. M. Clogston), 2,769,149 (J. ;. IKreer) and 2,769,150
(H. 8. Black and 8. P. Morgan). Experimental results were deseribed in a report
by Black, Mallinckrodt and Morgan.? The most thorough mathematical treat-
ment published to date is an exhaustive and detailed analysis by Morgan.? Vaage*
has reduced some of the results to terms mare familiar to transmission engineers.
King and Morgan® give a lueid retrospective glance over the whole subject, and
present a series of charts and formulas which enable one easily to make quantita-
tive estimates of transmission parameters of interest. This paper is probably the
easiest place to start a study of laminated conductors, and provides more than
enough background for reading the present paper.

t Ref. 3 is referred to hereafter simply as Morgan.
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power series whose argument is the magnitude of the irregularities in
the laminations and whose coefficients depend on the distribution of the
irregularities. The expansion is carried as far as the first nonvanishing
term.

Section IV compares the magnitude of allowable irregularities com-
puted with the new formula to values computed by an exaet method
for the two extreme cases deseribed by Morgan. The results correspond
within five per cent.

Section V shows that the effect of finite lamination thickness can be
correctly computed by considering the finite laminae as perturbations
of a uniform medium. It is proved heuristically that the effects of non-
uniformity and of finite lamination thickness are independent and
additive.

Section VI applies the formula of Section III to random irregularities.
It is shown that the formula is directly applicable when the irregularities
are specified by the absolute value of their Fourier spectra (i.e., by their
autocorrelation), and two special cases are worked out in detail.

Section VII applies the formula to the measured irregularities in an
experimental cylindrical laminated line. The correspondence between
predicted and measured losses is satisfactory, and demonstrates that
the method described, despite drastic simplifying assumptions, gives
results agreeing quantitatively with experiment.

Section VIII shows how to compute the effect of curvature of laminae
in a coaxial Clogston line. The results are precisely those predicted by
Morgan. They give independent support to his formulas, which are
based on certain plausible physical assumptions and approximations.

II. DESCRIPTION OF RESULTS

The notation used by Morgan will be adopted throughout. In particu-
lar, we shall deal repeatedly with thin laminae of a conductor and of an
insulating dielectric, with physical properties identified as follows:

conductor thickness =

conductor magnetic permeability = u, ,

conductor conductivity = g, )
insulator thickness = i, ,

insulator dielectric permittivity = e,

insulator magnetic permeability = p, .

Sometimes the properties of all layers of one material will be assumed
identical, but at other times, as shown by the context, we shall assume
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Fig. 1 — A schematic section of a parallel-plane Clogston 2 laminated trans-
mission line between two bounding surfaces, showing the orientation of a eoordi-
nate system.

that the properties vary from layer to layer about their nominal values.
In general, we shall assume

M1 = M2 = Mo (2)

because this seems to he sufficiently general to include most cases of
interest.

Counsider a parallel-plane Clogston 2 transmission line bounded by
infinite-impedance sheets at y = =3a (see Flig. 1). Near any given point
the average electrical constants of the stack are* (see Fig. 2)

=2
1—46’
3
i=0u+ (1 — 0u, (3)
g=ggll

where the subseript “1”’ refers to the conductor material, the subseript
“2 to the dielectric material and

2]
g =1
b+ b2

is the fraction of the cross section of the line made up of the conducting
material.

Assume that & @ and § are not quite constant, but vary about aver-
age values thus:

(4)

* Morgan,® Kquation 90,
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Fig. 2 l) t I d schematic section showing the individual layers in a lami-
ated tra n line. :
§ = & + Ag
A=+ AL ()
g = go+ Af,

where the average values are characterized by a subseript “0”, and
Ag, Ag and A§ have average value zero.
Following Morgan, let

g=24

2w

(6)

D) =

This normalizes the thickness, so that in terms of £ the line is bounded
by the planes £ = 0, § = 1. Then let

w(E) = Hi(y), (7)
the z-component of the magnetic field of a wave traveling down the line

in the z-direction. Also let

C
= _|_ = =
o € wﬂogoﬂ

s o(y)

(8)
- .

wﬁugna
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The new function f(£) is a dimensionless function which is a measure of
the deviation of g and & from their average values f, and & . The con-
stant ' is a dimensionless parameter. (It is convenient to assume that
f(&) has fixed magnitude in some sense but a variable shape, and that
all variation in the magnitude of the irregularities of the line is due to
(. Actually, all that is specified is the product Cf(¢), which may be fac-
tored in any way you please.) It is shown by Morgan that

% + [A = iCf(E)w(§) = 0, (9)
with the boundary conditions
w(0) = w(l) = 0, (10)
and also that
y = o+ j8 = iwvVEe(l + Aiwmga’)"”, (11)
or approximately
A

a = Re Y = Re 2‘\/[]_?@;][70“2 s

g=1 Vi + Im s
=1my = w ,ﬁuéu m ; S ]
ngua ’
where A is an eigenvalue of the differential equation. If the stack is
perfectly uniform, A and Ae are zero, and the eigenvalues are

A =1 40, 0, - (13)
corresponding to the eigenfunctions
w = /2 sin 7, /2 sin 2rf, /2 sin 3xf, - (14)

These eigenfunctions show that (as is well known from Morgan) the
magnetic field strengths in the various modes in a uniform line vary
sinusoidally across the stack, the variation going through one, two,
three, --- half sine waves and always vanishing at the surfaces.

Sinee ' varies continuously, we expect the eigenvalues and eigen-
funections to vary continuously in a manner depending on f(¢). If C' is
small, i.e., if the irregularity of the stack is small, the eigenvalues can
be expanded in a power series in C'. The analysis is in Section IIT of this
paper. The first three terms of the series for the lowest eigenvalue are

2
ay,

o= 4 iCay + CF D St o(ch, (15)

m=2 172771-2
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where

o1

G = 2 L Fx) sin w2 sin mm du; (16)

that is, the coeflicients a,, are the coefficients of the I'ourier sine series
for

o0

()2 sin 72 = 2 au\/2 sin mma. (17)

1
From the above expression one can conclude that
Cz o0 amz
a=aﬂ(1+_22—7ﬁ)a (18)
w2 mmet — 7

where oy is the attenuation which the line would have if it had no irregu-
larities.

An alternative approach is derived from the theory of operators. The
result is

1
A =7 + 'in Ff(2)A/2 sin 7z /2 sin mmrz dz
(i}

(19)
1 .1
+ j j k(x, 1) f(2) /2 sin 72 £ (y) v/2 sin my de dy + O(C?),
0 J0
where &(z, y) is the reduced resolvent kernel:
(e B i /2 sin maz A/2 sin mry
'(-'LJ y) - = mimt — 7t
1., . .
= ~ [sin mx sin 7y — 2w cos mx sin 7y (20)
ot
— 27y cos my sin w4+ 27 sin wx cos 1y, T =y,

k(y, 2) = k(z, y).
In this particular case it is not hard to show that the results are identi-

cal.
For practical results, it is convenient to let

A€ AR
T+ TE = Aely) = AS(E) (21)
€0 2]

and to assume

[ Fea =1 (22)

<0
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Note that

A | Ap\ .
=\z + =/, (23)
€0 Mo/
where the angular brackets denote the root mean square value. As a
convenience, we make the definition
o0 a 2 1 5l
T=2 _—" =2 [ f Lz, ) f(z) f(y) sin me sin =y de dy, (24)
2 TMT — w* J0 Jo
where a,, and & are defined as above.
The expression for attenuation can be written

& = (1 + ff—;) y (2-3)
where
. 1 .
= BT
,.’1 1 g 2: . (.4(])

In a line having finite laminations,

(see Fig. 3), except for very low or very high frecquencies, where

fo = 4_}_/_3’_1 (28)
2mgih Th
Heuristic reasoning and experimental evidenece are given in a later sec-
tion to show that the effects of finite laminations and of nonuniformity
are additive, at least if both are small. Hence we can write

o f*
a = un|:1+ +(f)]

00 b 29
[ + T ] (29)
f?

- |:1 + (fiz)l]’
where
=T (30)
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Tig. 3 — Attenuation in a plane Clogston 2 laminated transmission line, and
in an infinite laminated medium, on a log-log scale as a function of frequency.

and ag is the low-frequency attenuation of the uniform line. The particu-
lar reason for this choice of variable is the simplification of various
formulae. If we assume

wo= e =0, (31)

as is ordinarily the case when no ferromagnetic materials are involved,

h = \/3?’!;1‘\/5, (32)

where 7 is the number of layers in the stack. This expression is simple,
and separates the various parameters that enter into the problem: n
and 6 depend only on the geometry of the line, A on the magnitude of
the irregularities and = on the distribution of the irregularities. The whole
effect of the irregularities can be summed up by saying that the effec-
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tive bandwidth of the line is reduced by a factor

Jo_ 1
S Viee (33)

It is clear that such quantities as conductivity, dielectric constant,
dimensions and so on do not appear in the expression for b. Hence,
although the cutoff frequency of the line is a complex function of all
these quantities, the relative bandwidth of the line compared with that
of a similar line having no irregularities depends only on =, 6, the mag-
nitude of the irregularities 4 and the quantity Z derived from the
distribution of the irregularities.

If it is assumed that p; = p., then it is logical to assume that Ag =
0. In this case

Af(e) = ‘l (34)

If it is further assumed* that the local variations are due to variation
in thickness 4 and & , it is easy to show from the formula for & that

‘E:g(%_"\‘_ﬁ), (35)

€ 4 ts

where {; and £y are nominal values, and Af; and Als are deviations of the
actual from the nominal values, of the thicknesses of conductor material
and dielectric material, and

i

6= T (36)

As o practical matter, the eomputation of the loss of bandwidth due
to irregularities can be carried out as follows, I'irst, determine the frac-
tional irregularities in the line

ah (37)
b

and
At—t"’ (38)

* At present, it seems likely that the effect of irregularity in e will be small
compared to the effect of thickness irregularities in practical cases.



486 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1959

as functions of £ = y/a + 1/2. Then determine

4 = (A8
‘ \Eo/
Lian o ALY T (39)
_ 1 _ Ak
_g[fu (Tl tz) d‘f]
and
o) = 4 (8 - &Y. (10)
Now,
[ rwa =1 (41)
and
AJ(E) = ‘”"‘— . (42)

Then, using either the Fourier coefficients a, (16) or the reduced re-
solvent & (20), find the sum Z defined in (24). Iinally, form the
quantity b (32). Then the reduction in bandwidth of the line compared
to a similar line with no irregularities is given by (33).

The perturbation method can also be applied to finding the effect of
finite lamination thickness. When applied to the above case, it gives
Morgan’s result

(43)

2 2 ? 'L _62ﬂ2
7'_-—0:‘#&[14—.”_,,-* b-‘ﬂ‘gqil.
twuga’ 12n?

When applied to a cylindrical line of outer radius b and inner radius
zero, it gives, in agreement with Morgan’s equation 486,
(3.8317)" wga‘zbﬂ]
Twpgh® 12r?

¥ = —CUE,L[E [l + (44)

T'he only difference between (43) and (44) is that the first root = of

sinz =0 (45)
s replaced by the first root 3.8317 of

As a result, the low-frequency attenuation of a solid eylindrical Clogston
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line of radius b is higher than that of a flat line of thickness b by a factor
(3.8317/m)° = 1.4876, but the high-frequency attenuation is exactly the
same! The crossover frequeney f»; is shifted up by a factor 3.8317/r =
1.2197.

11I. EVALUATION OF ATTENUATION IN THE NONUNIFORM LINE

The expansion of A;, and hence of «, in terms of powers of ' is ac-
complished as follows.t The governing equation is equation 532 of
Morgan (Ref. 3, p. 131):

I .
g T = iCsE = o, (47)

subject to the boundary conditions
w0) =0, w(d) =0. (48)

Here A is the eigenvalue from which the propagation constant of the
line can be derived by (11), and w(¢) is the corresponding eigenfunction
which tells, aceording to (7), how the amplitude of the transverse com-
ponent of the magnetic field varies across the stack. Equation (47) can
be considered a perturbation of the equation
@’ + Aw =0 (49)
dE ’
subject to the same boundary conditions. Suppose this equation has as
its eigenvalues

A],Ag,"', (50)
and as its corresponding normalized eigenfunctions
’H.’l,'w?,, e, (51)
In faect,
A, = wﬂnz,
(52)
w, = 4/2 sin wn.
Now suppose the perturbed equation
d'w* " . " _
e T - JCf(®w* = 0, (53)

1 This method is given by Courant and Hilbert.® It was pointed out to the
author by S. P. Morgan.
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where f(£) is a given function of £ and € is a (small) parameter, has as
its eigenvalues

A, A, - (54)
and as eorresponding eigenfunctions

w*, w¥, - (55)
Tollowing Courant and Hilbert," suppose there exists an expansion

’w:L* = Wy + O.'B" + CEyﬂ + e

. (56)
Au* = A, + Cﬂn + Con + -
Using the notation of Courant and Hilbert, let
1
dnl = I(] Jf(f)wn(i)wr(f) dE)
an, = 0, (57)
_ dnl
ﬂ'nl—Aﬂ“"‘Ar_’ n#l.

Then, as shown in Courant and Hilbert, the series expansions to
terms of the second degree are:

ri - n C j
w,* = w, + ,E;A —-A, v;

+ CQ I:Z (Z Qnk d&) - P’-nanj) - '%'wn LZ—; aukz] (58)

JlA

An* = An + Cdun + Cz_zanjdjn + Tt
i=1

By following the same method, further terms of the power series could

be found.
An equivalent exposition in terms of linear operator is given by Kato.”
He discusses the behavior of eigenvalues of the equation

(Ho + EHY — Me = 0 (59)
and shows that, formally,
N = ho + KH, o) + Fl—(SH g, H )] + O(’), (60)

and a corresponding equation for ¢x . The relation of his notation to
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ours is given below. Note that Hy, H" and S represent operators, not
funetions, and that (,) is a functional of the variables it surrounds.

e —iC,
Ao > Ay,
A .A]_*,
Po > Wy,
Pr 'w1*,

Zu (61)
dx?’

HY = f(x)ulz),

Hyu =

(u,v) = fl u(xv(z) dz,

1
Su = f Iz, y)uly) dy,
{
where k is the resolvent kernel

E(x, y) = 2: 1_01”{{9;)_10"253") ) (62)

The resulting expression for A* is

1
A = Ay +J'Cf0 f(’b)wf(l) dx

+ C'Ef f ECx, 1) f(@) () (@)w (y) de dy + OCY)
0 ".[ (63)
= A, + BjCj f(z) sin® mv dx
0

1 1
+ ZCQIU [[. E(x, y) f(2) f(y) sin mx sin my de dy + O(CY),

as stated before.

The advantage of these expressions is that the function f(£) need not
be specified beforehand. In fact, as we shall see later, it need not even
be exactly specified. We shall presently apply these expressions to cases
where f(£) is a random funection with a specified spectrum.
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IV. NUMERICAL RESULTS — COMPARISON WITH MORGAN

As a preliminary to further numerical results, we can check the formu-
las just derived with exact numerical results derived in Morgan for
certain special cases. For example, in Fig. 22 of Ref. 3 an irregularity is
described for which

f(s)':_ls Oéfé%; .
(64)
& = +1, ;<E=1
In the case of the lowest eigenvalue
am = 0, m odd
1/2
=4 f sin wf sin wmé dE m even
0
_1”1( _ 1)(1:1/2) +1
_ =T m even,
5 = = 16m” (65)
T owi(m? — 1)
= 0.0329,
a = o I:l —+ 22- E]
m
= a1 + 0.00333C"].
For the second eigenvalue
a = a4 — 0.0019C7, (66)

where ap is still the low frequency attenuation corresponding to the
lowest eigenvalue. Fig. 4 shows a comparison of these curves with the
curves published in Ref. 3, Fig. 22. The value of ¢ which makes o twice
(2] is

C = (0.00333) """ = 17.3. (67)
This compares well with Morgan’s precise value 16.5. Similarly, if
Cf(¢§) = —C cos 6xt, (68)
as in Ref. 3, Fig. 30,
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Cf(£) sin 7§ = — % sin 7x¢ + g sin 5k,
ee _ CH 1/4 /4 \ _ €
C“_E(49—1+25—1)_ﬁ4ﬁ’ (69)

2
“=““(1+Gg,ﬁ)'

On a graph, this is indistinguishable from the curve in Ref. 3, Fig. 30.
The value of €' for which the attenuation is doubled is

C = 8r = 78.9, (70)
the same as Morgan’s result to three significant figures. These two
results, representing both extremes in the eomputation reported in

Morgan, are sufficiently close to give us a good deal of confidence in
this method.

6
f(£)
+1
]
5 — V2 i
=1
4 - 2
T~ _ReAz/7 K
IS VA
o~ N "\\ II
‘ri Mot = ReAz/T°_L__|
s’ S reny/m? = Rebe/ T
« A
7 ‘\
4 Y
//
2 /,
/ EXACT
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o [ |
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C

Fig. 4 — Eigenvalues for a nonuniform laminated stack whose average prop-
erties are constant except for a single symmetric step-discontinuity : approximate
values computed from two terms of the perturbation-method power series com-
pared with exact values derived by Morgan.
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The following relation can be used to simplify numerical computa-
tion. If f(x) is expanded in a Fourier cosine series

Ja) = l? + 2 by cos maz, (71)
= 1
then
f(x)sinmx = %sin x4+ 2 by (cos mrz sin 7x)
1
by . gy N .
= 5 sin m + le = [sin (m 4+ Drz — sin (m — 1)7wx]
: (72)
0
= ; tn SIN MmT,
where
4. = b1 — bun1 (73)

2

-

and we assume that b_; (otherwise undefined) equals zero.

If b, and b,41 are random variables with Gaussian distribution
about zero and rms values (b,_1) and (1), then a, is also a random
variable with Gaussian distribution about zero, and its rms value is

() = 3V On1)? + (Dryr) (74)

V. THE EFFECT OF FINITE LAMINATIONS

Following Morgan, equations 2 and 3 [but supposing that (g + jwe)
is a funetion of , as it is indeed if the medium has finite laminations],
we arrive at the equation

2 2
1 aH”raH,g( 1 )_(jwu_T_)Hﬁo. (75)
€

g + jwe 3y | Ay oy \g + jwe g+ jo
Now let
B +al2
= _[ N (g + jwe) dy,
v
w= 1 f (g + jwe) dy, (76)
f —al2

H.(y) = H(u).
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Then we find

Wf_;z[-?'w# __ :|H=0 (77)
du? g+ jwe (g + jwe)? ’
subject to the boundary conditions
H@O) =0, H(Q) =0. (78)

We can regard this as a perturbation of

2

Iy wem = o, (79)

du?

where

1 . 2
2 _ _ 72 Jop Y
g1 [gﬂwe (g+jme)2] du
al?

. (80)
- . ¥
= — —— | dy.
/ ar2 (Jw# g+ jwe) 4
To a very good degree of approximation,
f = aegl = ag:
2% (81)
P = —jouga’ + 129
Jouga” + Tt

The equations for f and &° provide some insight into the source of
the effective or average values & § and . Inasmuch as ¢ and g always
occur iIn the combination ¢ + jwe, it is hard to see why two different
“average” values arise. Now it is elear that & is the harmonic mean value
and § the arithmetic mean value. Because of the overwhelmingly large
ratio of g1 to jwes, the larger dominates the arithmetic mean and the
smaller the harmonic mean. If we had assumed g; and s different,
would turn out to be the arithmetic mean, but, inasmuch as they are
of the same general order of magnitude, both u; and . appear in the
resulting formula for g.

The eigenvalues of the wave equation above are (Ref. 3, equation
537)

1P = n'r (82)
and the corresponding values of y are
- w2
Y = J.‘-U’\/,U-F: 1+ 7_.,:| (83)
twuga’

in agreement with Morgan’s equation 534,
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In terms of the variable u, the funetion

2 2 2.

i 15=ﬁ2|: je :|_|_- Y OT gy
JCf(w) f TT e (g F gacp| O Gt (84)
alternates periodically between two values. It is interesting to note,
however, that the “electrical thickness” of a dielectric layer, i.e., its
thickness in terms of u, 1s

1 wotta . N
Su = - f e dy = 148 (85)

o ag
which is infinitesimal if § has any reasonable value. Hence the function
f(x) in question really has the appearance of a sequence of sharply
spaced spikes, having

Juwels

spike width =“——,
ag

2
spike height = —a’’ (M + l,;): (86)
€ we
spike spacing = 1
sp pacing = .
Using the approximation
¥ = —uwpe

and defining spike strength S as the product of spike height and spike
length, we find

gty (s )
ag € w’e (87)

_ jougbd’

T oom

Now it happens that the Fourier coefficients a, can be evaluated
explicitly in this case, and this procedure leads fairly easily to the
results in Morgan’s equations 455, 459 and 460. The computation suc-
ceeds only because f(u) is in this case a supremely simple function.
When f(x) is not quite so regular, it is easier to return to the double
integral formulation. The more general procedure will be carried out
here for two reasons. First, it shows that the effects of local variations
of layer thickness and dielectric constant are independent of the effect
of finite lamination thickness; i.e., the two effects ean be computed
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separately and added. Second, it shows that the result is not restricted
to flat lines, but is immediately applicable to other cases which can be
be set up as self-adjoint differential equations, including the cylindrical
case.

The central idea is to observe that, when f(u) is a function consisting
of a sequence of (nearly) equally spaced pulses of (nearly) equal ampli-
tudes, then

jlflf(u)f(r.')ﬂ-(u, ) (), () du de
o Jo
1.1 1.1 (88)
%f f J(u) f(v) du dvf f k(u, v)wy(u)wy () du dv.
o Jo b Jo

The expression on the left is a finite sum which approximates, by the
two-dimensional analog of the trapezoid rule, the integral on the right.
The remainder of the process consists in evaluating the difference be-
tween the two, ie., the error in the approximation. It is not surprising
that the result depends heavily on the special characteristics of the
reduced resolvent kernel %(wu, v), which depend in turn on its relation
to Green’s funection. Let

b, v)w (ww(v) = hu, v). (89)

Then we need in particular:

1 1
f f hu, v) dude = 0, (90)
b Jo
1
f h(w, v) de = 0, (91)
0
ah _ oh _ 20, 09
a_ll u=r+40 a: u=v—0 - (L), (JH)
1
j w’ () de = 1, (93)
0
R(u, v) = O(ud)
= 00
. (94)
= 00 — u)’
=0 — )

in the neighborhood of the boundaries of the unit square.
First note that, because of the pulse character of f, the integral ean
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be transformed into a sum:
[[[ €100 1, o) dudo = T 5 8w, ), (95)
T
where
w; = up + i/n,
v; = v + j/n, (96)
g = Vp .

We can approximate each term of the sum by an integral thus by setting

dah ah
hlu: + z,0; + y) = hlu:,v;) + v + v, o
2" o’h o’h |yt ah -
+§@é+xy6——uav+gm+0(n )y
1 1
< - < =
el S5, lyl=g.-
Integrating directly, we get, for ¢ == j:
1/2n 1/2n
f f h(u; + 2,0, + y) dz dy
1/2n 1/2n
1 h 1 a *h (©8)
— q1s e nt —5
= n " h{up;) + 51”3 + — T + On™
and, for 7 = j:
- 1 ek ot
f = n h(u;, v;) " (au au)
(99)

- (au+ )+0( ).

Now, in performing the indicated double summation, note that
IS¥ oh ah
; EPE (Tl’u; _1) (au vt 'aT‘ u:ﬂ) + O(l) (100)
and, hence, using (92) and (93),

(]i + Z) ° (ui, ;) = —nw'(;) +0(1)

1 i+l

(101)
> L

(23]
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and, similarly,

2
Z_;Z gv]: = —n* 4+ O(n). (102)

In the terms involving ¢ = 7, using (92) and (93) again, we find

n

> w'(u) = —n + O(1). (103)
=1
Now, taking all terms and summing, we get
1+ug—1/2n 14+vg—1/2n
f f h(u, v) du dv

=ug—1/2n v=v9g—1/2n

=n " 337 hui,v;) + %n_':[—2n2 4+ 0(n)]
1 B (104)

- F)-n"B —2n + O(1)]

w2 .
=02 > hMui, ;) + ,i—; + 0(n™).

But the integral, by direct integration using (91) and (94), is o).
Hence,

> Rk, v) = — % + 0(n™"),
SEYS h(ui, ;)

ff C* f(u) f(0)h(we, v) du dv

2
= -5t 0(n™'S%), (106)
2 22,2 4
'z = wrgba + 0n ),
12n2
V= —wlu (1 + ' _ iwug’ﬂgag)
Twpga® 12n2 /7

This is the same as Morgan’s formula 455, except that, in his case, the
number of layers is 2n rather than n. In the appropriate frequency range,
(including Morgan’s “low” and ‘“high”, but not his “very low” and
“very high” frequencies)

2

_ x N wgngtlﬂ
2V/p/ega’  24v/u/e’ (107)
B = wVi/e
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as already found by Morgan (Ref. 3, equations 459 and 460). To sim-
plify the arithmetie, it has been assumed that y; = p2 = §, and the
computation has been restricted to the lowest-order mode. Generaliza-
tion to remove these restrictions alters nothing.

By this time the reader, exhausted or bored according as he has or
has not attempted to bridge the gaps in the above computation, may
reasonably ask: why compute the effect of finite lamination thickness
by such a laborious method when the matrix method of Morgan yields
the same result so simply? The answer is that the matrix method fails*
if the layers are not identical, whereas the perturbation method does
not. The exercise in this section was designed simply to show that when
both methods apply, they agree.

Two important cases arise where the layers are not identical. The
first is a eylindrical laminated line, where the radii of the layers gradually
increases from center to outside layer. This case is discussed in Section
VIII. The second is a laminated line in which the lamination are finite
but not perfeetly regular. In this case one would expect some contribu-
tion from irregularity and some from finite thickness, and may ask how
they combine. From the nature of the computation for the uniform case,
it is easy to guess that the contributions are independent and additive.
We can replace the integral to be approximated by one including the
effects of irregularity, which does not vanish identically, but the contri-
bution due to finite granularity of the approximating sum remains
unchanged. Alternatively, we can actually compute the effect of irregulari-
ties as a finite sum rather than an integral, taking one point correspond-
ing to each layer. This was what was in fact done in the experimental
case presented in Section VII. In this case, the sum computed can be
compared term-by-term with the sum for the ideal case above, and the
difference turns out to be precisely the finite analog of the integrals at
the end of Section IV. The results can be presented in several forms,
but the coneclusion is always the same: that to a first order of approxi-
mation the contribution to the quantity £ (24) due to finite layer thick-
ness is independent of the contribution due to irregularities in the layers.

VI. NUMERICAL RESULTS — RANDOM VARIATIONS

The expression for b derived in Sections II and III does not depend
explicitly on f(£), but only on the squares of the coefficients of its Fourier

* But see Hayashi and U-O.2 Here the matrix computation is carried out
by an approximation method which appears to be valid if the radius of the inner-
most layer is not too small compared to the total thickness of the stack.
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series, or on what is known to communications engineers and statisti-
cians as its power spectrum. Consequently, the expression is especially
adapted for use when f is a random function known only by its average
power spectrum. The functions of this class have been used widely in
discussions of electrical noise and other random processes, and their
introduction into this problem should not come as a surprise.

Suppose that & varies randomly from layer to layer, i.e., that

&= & + u(f), (108)

where u«(#) is a random variable whose value in every layer is independ-
ent of its value in every other layer. Then f(¢) is a random funection
having a flat spectrum, and can be represented as

1) = 3 by cos mat, (109)
m=1
where
(bn) =k, (110)

& being a constant. (The angular brackets indicate, as before, rms values.)

Inasmuch as the number of layers is finite, it seems reasonable that
the series should be terminated after a finite number of terms. Because
of the strong convergence factor 1/(m* — 1) the exact termination point
is not very important. Inasmuch as f(¢) has only n degrees of freedom,
we have terminated the series after n terms. In the practical cases worked
out, we used the formulation having a definite integral, which was inte-
grated point by point, using one data-point per layer. This was precisely
the number of measured data available (i.e., one conductor-to-conductor
capacitance measurement through each insulating layer) so there was
no choice about how many terms to use anyway.

The function f(§) was defined so that (f(¢)) is unity. It follows from
Parseval’s theorem that

1 n
[ rea-1-130 =138 (111)
and hence that
2
k= = (112)

It follows that
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(@m) = 3V (bma)* + (bn)?

—(1/2)
n .

i 1
= mn(m? — 1) (113)
(4n® + 4n?)r*
3
dnm?’

1%

and

RN
2w Eo/

=3‘\/;% %_Atl

(114)

27!' t'z t]_

From this quantity b it is easy to compute the reduction in bandwidth
(1 4 b7, as a function of » and the mean square fractional variations
of t; and & . The reduction in bandwidth is plotted as a function of the
number of layers n for several values of

Aly At1>
to 4
in Fig. 5. Notice that, if the variations in 4, and £, are independent,

/Atg AtN /Atz\ Aty

VANV ANV
However, if # and f are the thicknesses of layers suceessively formed
about the same core, one can imagine that they would not be uncorre-
lated. In fact, it is plausible to believe that when one is too small, the
other will be too large. In any case, however, the expression at the left
can be no greater than twice the expression at the right.

As an alternative to controlling the effective dielectric constant of
each layer independently, one might control the average dielectric
constant of the incomplete stack, as it is built up layer by layer. In this
case, one would expect the average dielectric constant to vary in a
random manner about its nominal value. Suppose, for example, that
the elastance per unit length of the stack is measured after each layer
is added, that the next layer is added to bring the average dielectric

(115)
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Fig. 5 — Bandwidth degradation in a laminated transmission line due to ran-
dom irregularities of a certain type plotted as a function of number of laminae for
several amounts of irregularity.

constant to its nominal value and that the error (i.e., the measure of
the amount by which we fail to bring the average dielectric constant to
its nominal value) varies randomly from layer to layer. Then, except
for a multiplicative constant,

‘g

[

ﬁ + uld),

S(E) =

Il

(116)

where S() is the elastance of a unit length measured from one side to

the mth layer, m
trum. Then

_du

—E —

dg
du

dt’

—&

I

né and w(¢) is a random function with a flat spec-

(117)

Now f(£) is proportional to — (du/df), and hence has a spectrum whose
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amplitude increases with frequency, l.e
(b)) = km. (118)

Proceeding as before,

| rwa=1n

k2 n )
=3 2m (119)
401
~ k'’
=
or
~ 6
SN w (120)
Then
(am> 2\/<b.m_1> + (bm+1>
3 (121)
=m =
n?
and
n a 2
== mZ:Q Tm? — 7w
2
2;,;3565?:?33 (122)
~ 3
- nE,JTE
Hence,
p= 5 A
w0 €
(123)
_ 3 /A _ At
™ \ tﬁ i] / :

Notice that, for the same rms deviations in {4 and & , b is smaller by a
factor 2/4/n. This is, of course, due to the fact that the variations in
successive layers are no longer uncorrelated, but are adjusted to make
the variations cancel over several layers. The variations of average
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dielectric constant having long wavelength are reduced, and the only
remaining variations left have short wavelength. However, in the ex-
pression for £ the contribution of each component is weighted with the
factor 1/(m° — 1), and hence the contribution of the components having
short wavelengths is reduced. The over-all result is that the line is not
degraded so much by this kind of variation. The relation in bandwidth
for the same values of the parameters as were used in Fig. 5 is independ-
ent of »n, and has the values 0.983, 0.995 and 0.999 for 6 = 0.20, 0.10
and 0.05, respectively.

One might ask how the way in which one aims for the nominal dimen-
sions can make a difference, if the errors in film thickness are the same
in both cases. The fact can be made plausible by the following argument:
in the first ease a layer is laid in ignorance of what has gone before,
while in the second case the layers that have gone before are studied
and an attempt is made to compensate for past errors. As an example,
one might examine the following: suppose one is making a ruler by mark-
ing off suecessive inches with a pair of dividers. First one might set the
dividers and mark off, say, 36 nominally equal spaces. As an alternative,
one might measure the result after each step, and adjust the dividers so
that the measured distance plus the distance laid down for the new step
should be as near as possible to an integral number of inches. There is
no doubt that, even if the precision of each individual inch is the same
in both cases, the latter process will make a ruler having a more uniform
scale, This example is more than an illustration; it is a good analog of
the two processes of laminated line construction which are described
above.

This conclusion is of great practical importance. In dealing with layers
with a thickness smaller than 0.001 inch, a variation of 0.05 in relative
thickness corresponds to a thickness change of one wavelength of visible
light. There is not much hope of producing laminated lines having
hundreds of layers if this kind of precision must be maintained. On the
other hand, the measurement of capacitance to a high degree of accuracy
is quite reasonable, and a feedback mechanism to translate that meas-
urement into an objective for the thickness of the next layer is quite
conceivable. With this kind of servo control in the fabrication process,
laminated lines having any number of layers could be constructed using
layers no more regular than were those in the experiment described in
Section VII, with degradation of bandwidth no more than 2 per cent.
Thus, irregularities can be conquered by feedback, and the laminated
line made of less-than-perfect materials can be rescued and brought
back to the realm of the practical.
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VII. COMPARISON WITH EXPERIMENT

In 1951 an experimental 100-layer Clogston 2 cable was fabricated.
A description of this cable and of measurements made on it has never
been published, largely because measured transmission properties could
not be reconciled quantitatively with the theory available at the time.
The unresolved differences motivated the research which culminated in
the results of the present paper. A laboratory report on the fabrication
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Fig. 6 — Computed and measured losses in a 276-foot terminated laminated
transmission line. The measurements were made with several different electrical
shielding means to exclude certain possible spurious effects.
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electrically, resulting in less scatter than in the previous figure.

and measurement of this cable is being published as a companion paper’
to the present theoretical study.

The cable was a 276-foot laminated eonduetor assembled by hand
around a Z-inch eondueting core. The laminations consisted of 100 con-
centric layers of 0.00025-inch aluminum foil separated by 99 polystyrene
eylindrieal insulators each 1.35 mils thick. After fabrication the eable
was shielded by a wrap of 0.010-inch aluminum foil.

The Clogston 2 dominant mode was propagated. Measurements were
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Fig. 8 — Computed and measured losses in several lengths of a laminated trans-
mission line measured as a resonator.

made of the mode pattern and the attenuation as a function of frequency
up to 25 me. Measured attenuation was compared with attenuation
computed for a uniform laminated line, and exceeded the theoretical
values by a factor of two, as shown in Figs. 6, 7 and 8. At the time, the
discrepancy was attributed to lack of uniformity in the laminae. How-
ever, no quantitative theory of the effect of irregularities was available
and definite association of the discrepancy with this eause was not pos-
sible.

At the time the 100-layer Clogston line was tested, a wise decision
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was made to measure the capacitance between consecutive layers of
conductor. The thickness of the dielectric layer is easily derived by as-
suming that the eapacitance is proportional to area and inversely pro-
portional to thickness. Beecause of the fact that the conduecting layers
each consist of a single sheet of relatively firm metal, while the dielectric
layers are built up of several thicknesses of relatively soft dielectrie, it
is reasonable to assume that the principal effect of irregularity of layer
thickness can be traced to variation in dielectric thickness.

With the assumption that the principal effect of irregularity is due to
variations in dielectrie thickness, it is not difficult to show that

- —6)—|—BC’", (124)
) Cav

where

én = the effective dielectric constant at layer m,

& = the average dielectric constant,

(',, = the capacitance per unit area across the layer m, (125)

(v = the average capacitance per unit area, averaged over all
the dielectric layers.

The value ('), was derived from measurements of capacitance between
adjacent conducting layers, which were measured separately for two
different lengths of the completed cable. To simplify the computation,
the small variation in area from layer to layer was ignored. The reduc-
tion in bandwidth b was determined by (32),

VanA\/3T

b=, (126)

where

9 2 a9 2 ! n
A= 7 (y,; = 2T LI + 24, ) (127)

o
Il

n
> O, sin® (em/n),
1

n

1, = 2. mC, sin (xm/n) cos (xm/n),
1

n
>, sin (wm/n) cos (xm/n)I,, .

1

~
Il
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This is the finite analog of the integral (24)

A’z = AP fl flf(.r.)f(y)h(.t:, y) de de = ‘ 3—r fol Af(x) sin® mv du

1
0

1
_4 f Af(x) sin® 2 d f xAf(x) sin 7 cos v du (128)
mT Jo

1 T
+ 4 f Af(x) sin 7x cos wx da f Af(y) sin® wy dy,
™ Jo 1]

where h(x, ¥) is the function defined in (89). The reduction to iterated
integrals made numerical computation much simpler. In actual compu-
tation, €', was used rather than AC,, = C,, — C,., because the nature
of the eomputation is sueh that addition of a constant to the values of
AC',, does not alter the result.

The computation was carried out for two sets of data, measured on
two lengths of the original 100-layer Clogston eable. The data, shown
in graphical form in Fig. 9, are in the form of measured values of capaci-
tanee between consecutive layers of conductor. Only 98 values were
recorded in one set and 97 in the other, because the outer layers were
apparently not rigid enough to give reproducible capacitance measure-
ments. To simplify the computation, only 97 values were used (i.e.,
n = 97 was assumed). Inasmuch as the values near the surface would
have been weighted with a factor sin nw/100, the resulting error is
likely to be small. In one case, where the capacitance measurement was
indeterminate because of a short circuit, the mean of the two adjacent
measurements was used to avoid introducing an apparent gross dis-
continuity.

The computation resulted in two different values of b:

b
b

1.345 for a 145.5-foot length,

1.296 for a 103-foot length.

The corresponding reductions in bandwidth are

'_&:‘ = ;7 = 0.597 for length 145.5 feet,
VAT (129)

= 0.611 for length 103 feet.

These differ by about 2 per cent. It would be misleading to assume,
beeause of this agreement, that the result is accurate within 2 per cent:
on the basis of these two results only, there is still a chanee of one in 20
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that a large sample of similar measurements might have a standard
deviation as high as 50 per cent."

The correction was applied to results computed eatlier by Morgan,
for a perfectly uniform line. The results are shown as dashed lines on
the figures.* It is clear that the correction accounts for substantially
all of the difference between the measured data and the curve computed
for a uniform line. The corrected curves predict an attenuation somewhat
lower than that measured by resonance measurements and slightly
higher than that measured by direct transmission measurements.

In comparing the new computed results with experiment, the follow-
ing three facts must be borne in mind:

i. The theory of losses due to irregularities is not known to be accu-
rate beyond a point where loss is about twice the low frequency loss
(say 0.002 db/ft on the three figures). Hence, the calculated values are
of doubtful validity in the upper three-quarters of each graph in Figs.
6, 7 and 8.

ii. Variations in conductor thickness have been assumed to be negli-
gible.

ili. Longitudinal variations in the line have been ignored.

In view of the good correlation between measurement and theory,
we can tentatively draw the following conclusions:

i. The theory of losses in Clogston 2 lines is consistent with the ex-
periments. This also provides an experimental confirmation of the work
of 8. P. Morgan on which it was founded.

ii. We know enough about the effect of irregularities to predict in an
intelligent and sufficiently aceurate way the losses to be expected {rom
manufacturing irregularities in Clogston 2 lines, provided we can make
sufficiently accurate estimates of manufacturing tolerances.

VIII. CYLINDRICAL CLOGSTON LINES WITH LAYERS OF FINITE THICKNESS

Let us now apply the methods of Sections II, ITI, and V to a strue-
ture having finite laminations and cylindrical (rather than planar)
symmetry. We shall study the properties of a Clogston 2 line which is
completely filled with laminated layers; i.e., the radius of the inner core
is zero.

The equation to be solved, with its boundary condition, is (from Ref.

* Actually, Morgan’s curves include a linear term accounting for dielectrie
loss. The curve computed for the uniform line is approximately & = 0.00065[1 +
(£/9.372)2] 4+ 0.000076f, where « is in db/ft and f in me. The dashed curve is o =
0.00065(1 + (f/5.659)!] + 0.000076f. Thus fi/f: = 5.659/9.372, corresponding to a
value b = 1.32 in (129).
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3, equations 27, 28 and 29

d i d Y . B _
dp LWZ) dp [”Hd] + [g T jwe me] H, =0, (130)

H.(0) = H.(b) = 0,

where b is the radius of the outer sheath. The real interest in the equa-
tion is the determination of the eigenvalues .

In order to transform the equation to a self-adjoint equation with no
first-order term, define a new independent variable u by

, 2 (*
= -j rlg + jwe) dr (131)
k (1]

and a new dependent variable, W, hy

f .
w=__m,. (132)
vV ’
If we choose
b ”
=2 j g + jwe) dr == 6b%, (133)
0

then the boundary conditions on W are
W) =Wl =0 (134)

and the equation is transformed to

aw [ Y jwm J 3 _ -
du® t {fl p* |:(g + we)® g + twe 41«:2} W=0. (135

This can be considered a perturbation of the equation

du®

where A is the average value

. (tf ,: *)r2 Jopo :I
A= i-'_ — - — - d . 137
o p* L(g+ jwe)* g+ jwe : (137)

Write

oy _'__'-_'E__'Yz _j‘-"#ﬂ c
Il = A =15 [(g+z'me)= g+f:we] (138)
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and the original equation becomes

AW _ 3 3 4 a — jefIW = 0. (139)
du? 4u?
Having once obtained the quantities A, , n = 1,2, --- | we can get v,

from the relation (137).
The eigenfunctions of the unperturbed equations are

Jl(\/)\_nu)
= VTS (140)

and the eigenvalues are determined from

Ji(VN) = 0:

VA = 3.8317, (141)
VA = 7.0156,
VA =nr+ %

From the technique in Courant and Hilbert,® we can write a second-
order approximation to the first eigenvalue (the one we desire) as fol-
lows:

2

142
Am - R1 ( )

A1—7\1+20(11+02

where

ot T(VAa) (V)
=2 "n ufl )Jl (Vn) T4 \/)\) “ (143)

Proceeding by either route used before, we find

s = ZLL 1‘[0' " Vanf ‘(‘/—("i)}ﬁ)‘/_” K, v) dudv. (144)

The actual value of % is not important for the present study, but is
given here as a matter of record:

kv, u) = k(u,v) = r\{(?)) [y (ul) J () V(1)

+ o) ()Y + Ji() () V()] — %x/ffv.fl(lu)n(lv) (145)

\/_J%, u = v, L=\

Now let us re-examine (138) in detail, bearing in mind (131) and (133).
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The thickness of the nth conducting layer is determined in terms of
u as follows:

o
Uy — Ui = 2 f rg dr
] Py

i

\ ) (146)
I WEV R WA
k 2 ooz b
If the layers are uniform,
pi = m — c b,
n
(147)
m — ¢+ 6
pp = ————1D,

n

where the constant ¢ is unity if the center is a conducting rod of radius
equal to a layer, 8 if the center is a dielectric rod of radius equal to a
dielectric layer and intermediate otherwise. It is arithmetically conven-
ient to choose a fractional value for e. Squaring and subtracting, we get

2
J—pf:%wmm—2u+ﬂ (148)
The total through the first n layers is

m 2
Ugm = Z Iﬁi (—2¢ 4+ 6 + 2m)

i=1 n? gb?
= ;% [(—=2¢ + &)m + 2m(m + 1)] (149)
—”_12+E(3_95+1) |
TR - :
Choosing
0+
¢=—5 (150)
we find
m
Yom = (151)

This corresponds physically to putting one-half layer of metal, ie., a
wire of radius 8b/2n at the center.

Under these conditions, the thickness of each metal layer is, in terms
of u, precisely 1/n.
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The pulse strength is

f J(u) du (152)
integrated through one dielectric layer. Recalling (151) and (133), and
assuming the unperturbed value of the propagation constant

v = —u'E, (153)

we get, after some tedious calculation

S = juwebh’g [‘_‘ (f - 1)] %’ 1 4+ Om™)]. (154)
€

€

Recalling (3), we finally get
P
§ =140 11 4 on ). (155)

Thus we see that the pulse strength is approximately the same as before
[see (87)], but is slightly altered in the neighborhood of the center.
If we now evaluate the double sum, we find

EZ SiSih(wi,v) = 2081 + 6; + 8; + 8:;)his
=SS by + & Z 5 Ej hij (156)
+ 8 ,Z 8; ; hi + 8P 200 6k,
where
%—- 1 =26 = 0(m™). (157)
Now

s:hi; = O(n™),
; hi =0+ O(n "), (158)
8:8:hi = O(n™™),
and hence

ZZ SiSih(ui,v;) = S* 23 hij + O(SR7Y). (159)

Therefore, to the order of precision attained in the plane case, the result
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is the same. However, the unperturbed eigenvalues are not the num-
bers n'r", but rather the squares of the roots of Ji(z) = 0 (141). The
first root, in particular, is 3.8317. The analogs of (106) and (107) for a
eylinder of radius b are:

O T )

O (38317)° | wugh’ (160)
RV TRV
8 = wilk

The second of these is equivalent to Morgan’s equation 486 (remem-
bering that Morgan calls the number of layers in his cable 2n rather
than n). In presenting this equation, Morgan emphasized that it de-
pended on certain physical assumptions and approximations; in view of
the present result, these assumptions and approximations seem amply
justified. The principle adopted by Morgan of assuming the current
distribution of an unperturbed mode in a system and computing losses
consequent from such currents is often the easiest to use and sometimes
the only known way to compute attenuation. It is highly gratifying to
see an application in a case quite different from the ordinary where the
result is confirmed by an alternative method. Our confidence in this
method is thus increased.

A careful analysis of the method used in the present paper would
probably show that the particular choice of physical configuration at
the origin is immaterial. We can conclude, in agreement with Morgan’s
equations 484 and 485, that the result is valid also for a Clogston 2
line bounded inside with a finite cylinder, provided that appropriate
eigenvalue of the unperturbed problem is used. As the ratio of inside to
outside diameter increases towards unity, these eigenvalues rapidly
approach the values n*r*, which are those of the plane configuration.
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