The Z Transformation

By H. A. HELM
(Manuseript received April 15, 1958)

The Stieltjes inlegral is used to develop a rigorous derivation of the z
transform. Sufficient properties of the transformation are included to form
a reasonably complete basis for the operational solution of constant cocffi-
cient, linear, finite difference equations.

1. INTRODUCTION

The desire to use digital computers in automatie control loops created
the need for methods with which to analyze systems that are partly
continuous and partly discrete. Since the methods of network theory
could be applied to the analysis of the continuous part of such a hybrid
system, it was natural that such methods should be extended to in-
clude the discrete case. This resulted in the z transform introduced by
Raggazini and Zadeh." There is today an extensive literature devoted
to the z transform.” > * However, the fundamental assumption of the z
transform derivation is that the process of instantaneous sampling is
equivalent to the amplitude modulation of a train of unit impulses by
the “sampled” function. But the unit impulse as commonly defined has
infinite height and zero width, and the process of amplitude modulating
such a function is not intuitively clear. While it is true that such a
process may be considered as an approximation to the behavior of a
linear network with an amplifier and sampling switch, “impulse sam-
pling” bears no simple relation to the manner in which the digital com-
puter operates. The digital computer, in the type of real time operation
typical of control system applications, works with sequences of numbers
which represent a continuous funetion evaluated at particular instance
of time. Since these numbers must of necessity be finite, “impulse sam-
pling” is not an obvious mathematical model for deseribing the working
of the computer. It is the intention of this paper to define the problem
from the point of view of operations within the computer and to develop
a rigorous and appealing derivation of the z transform.

In place of impulse modulation, the alternate approach is taken
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of generalizing the definition of the Laplace transformation by means of
the Stieltjes integral. This approach has the advantage of rigor and of
more closely relating the operational solutions of continuous and dis-
crete systems. As developed below, only rational transforms are con-
sidered. Also, in general, functions involving derivatives of impulses can-
not be represented by the Stieltjes integral. Practically, these restrictions
do not limit the applications greatly. Derivation of the principal proper-
ties of the z transform, based upon the Stieltjes integral definition, are
given in the Appendix.

II. THE LAPLACE-STIELTJES TRANSFORMATION

The Stieltjes integral has the important property of including both
sums and limits of sums (integrals). IFor the reader’s convenience the
definition of the Stieltjes integral as given in Widder® is repeated.

Let an interval (a, b) be divided into sub-intervals in the following
manner:

a=x< << - <a,=b

and let A equal the largest of these subintervals. Then the Stieltjes in-
tegral of f(z) with respect to a(x) from a to b is

b n
[ @) data) = tim 3 sleta) — ala), M
where 2, = { = a5 . The left-hand side of (1) is the usual notation for
a Stieltjes integral. The integral itself is defined only when the limit on
the right exists. It can be shown’ that the integral exists if f(z) is con-
tinuous and if «(x) is monotonic but not necessarily continuous, i.e.,
nonincreasing or nondecreasing. We shall assume that both these condi-
tions apply to all funetions to be considered. However, these conditions
are quite strong and will be somewhat relaxed subsequently.

It is now possible to generalize the Laplace transformation by making
the defining integral a Stieltjes integral. Thus,

an

LIFW1 = [ F)e dato), (2)
where

§ =0+ jw.

It is assumed that (2) is subject to all the above restrictions. As defined
by (2) the Laplace-Stieltjes transformation actually defines a different
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transformation for each different selection of the function a(t). If a(f) = ¢,
(2) reduces to the usual definition of the Laplace transform. If a(f) is
continuous and has a continuous derivative, (2) reduces to the Laplace
transform of &'()f(1), which may be handled by the usual theorems of
the Laplace transform. However, if a(f) is not continuous a new class
of transformations results. For the purpose of this paper, the func-
tion a(f) will be defined as the “staircase” function which inereases by
unity at integral multiples of 7' but remains constant between such
points. This function is shown in Fig. 1. The constant 7" is equivalent
to the sampling period of modulation theory. Irom this point on, the
function a(f) will be assumed to be that of Tig. 1. Thus, (2) may be
evaluated for this a(f) by means of (1) as

[ e datt) = 2 sy = F(e™), (3)
0 n=>0

where a(t) is given by Fig. 1, s = ¢ + jw and f(nT) is the function f(()
evaluated at { = n7T. Since a(f) is monotonic, and we have restricted
f() to continuous functions, (2) clearly exists. This does not imply that
the series on the right converges or diverges. Since no part of f(t) be-
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Fig. 1 — “Staircase’” funetion a(f).
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tween multiples of T affects (3), f(¢) need only be continuous and well
defined in the neighborhood of the points { = »7'; i.e., have no discon-
tinuities or “‘jumps’ at multiples of 7'.

A simple change of variable in (3) introduces the z transtorm. Let
z = ¢'" and substitute in (3):

LU = [ 107 da) = 3 fam)e* = 1. @)

n=0

The expression (4) emphasizes the power series nature of the z transform.
Since the functions with which we shall deal are convergent, they can
almost always be written in closed form. In fact, to allow the order of
certain limit functions to be interchanged in the development of various
theorems, absolute convergence of (4) will be assumed. That is,

20 |f(n.T)z*n | < ﬂ[, (5)

where M is finite although possibly very large. The magnitude of z is
¢ "™ and if (5) holds for some o, say o, , it will obviously hold for any
o > ao . In the following sections, the functions f(f) are now restricted to
those functions for which (5) holds. Rewriting (5) as a Stieltjes integral
leads to:

| L0 e da) < M, (50)

which holds for the Laplace transform when a(f) = t." The restriction of
absolute convergence has little practical effect upon the utility of the
transform.

1I1. THE INVERSE TRANSFORM

An inverse transform is necessary for operational completeness. The
derivation is straightforward, making use of Cauchy’s method for evalu-
ating the coefficients of a power series.” The proof proceeds from the
definition of the z transform in (4):

LIf] = Z T = F(2).

IExpanding,
1z) = 1) + ()" + -+ JaT — T)z "™ + f(nT)z"
+ f('nT + 7'),3-(“+“ + e
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which is absolutely convergent for | z| = ¢*". Since F(z) is a power
series, absolute convergence also implies uniform convergence within
the radius of convergence. Hence, (6) may be integrated term by term
along a contour such that | z| > ¢*". Multiplying by 2" and so inte-
grating gives:

LZ"“F<2> dz = fr F0)2" " dz + f (1) dz -
+ -/If(HT = T)dz + jl:_r(llT):;'_l dz + --- (D

+ j fnT 4+ mT)z "
.

where m = 1,2, 3, --- and, T' the contour of integration, is a eirele en-
. - - - - . T'
¢losing the origin of the z plane and whose radius is greater than ¢,

Tt 1s obvious that all integrals except ff(n T)z ' dz either have no singu-
.
larity within the contour of integration, and hence are zero, or else have

a pole at the origin of order greater than unity, and hence also are zero.
Therefore, (7) reduces to

jl ST (2) dz = f(nT) fl_z_l dz, (8)

sinee f(nT) is the function f(#) evaluated at £ = n7', and hence a constant-
Thus, the inversion formula becomes

sy = S [ 27 de )
2mj Jr

It is necessary to add a word of caution here. Equation (9) only gives
the value of the function at one point, { = nT. Obviously, by assigning
any given integer to n the value at any point may be obtained and,
usually, this is sufficient. However, in the case of certain summations
this will lead to a very confusing notation. To avoid this, we introduce
the notation

W)Y
to indicate the sequence
l(ﬂ}, j(T)l f(-')"’") o s.lr(“Tjs ] f{?NTJ.

Omission of the subscript m will denote an infinite sequence.
It is now possible to summarize the Laplace-Stieltjes pairs:
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LIl = [ ") dalt) = F(ET) (3)

or
LIOT = [ 07 da(v) = (), (30)
L7F(2)] = Z%J__Lz”fll"(z) dz = f(nT). (9)

A closer inspection of the above pairs indicates a very interesting prop-
erty of the Laplace-Stieltjes transformation. A continuous function f(¢)
is transformed and then the inverse operation performed. However, the
function is then only defined at integral multiples of 7', ie., at { = »T.
This is exactly equivalent to “sampling”; that is, the computer, by
means of some encoding device, evaluates instantly a continuous fune-
tion of time (commonly represented by voltages, shaft positions, ete.)
at periodic intervals. The L, transformation is a mathematical model or
abstraction which represents this process. It is very often the case that
the function which is to be sampled (a voltage, for instance) is applied
to a linear network and then sampled, and it would be very convenient
to be able to analyze the system directly from the Laplace transform.
Such results follow from the relationships between the Laplace and
Laplace-Stieltjes transforms which we develop below.

IV. THE RELATIONSHIP BETWEEN THE LAPLACE AND LAPLACE-STIELTJES
TRANSFORMATIONS

The transform pairs (3) or (3a) and (9) are sufficient to derive opera-
tional methods for diserete linear systems which are similar to those of
continuous linear systems. However, there are several reasons for ex-
amining the relationship between the two transforms. In the first place,
many of the most interesting problems arise from the analysis of systems
which are partly continuous and partly diserete. Also, the relationship
between the Laplace-Stieltjes and Laplace transforms may be expressed
as a convolution integral, which historically was used first in the study
of these systems and which is still a very handy computational formula.

Returning to (4), we have

o0

LIf@)] = 22 f(nT)e "™ (4)

n=0

The inverse of the normal Laplace transform, with the simple change of
variable { = n»T and using p in place of the usual s, is
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f(nT) = 2% fr F(p)e™" dp, (10)

where T, the contour of integration, encloses the poles of F(p), which is
assumed rational. Substitution of (10) into (4) gives

—nia inT
F(p)e
n—l) 2w f (p)e

%zfrwm“

-1” n=0

H

Ll f(0)]

(1)

IJ

Since the series (4) and the integral are both uniformly convergent, the
order of summation and intogmtion may be interchanged:

f(t ff'(p) Z (,(Jlfu)n’i‘ [l’p. (12}
n=I0
It | e " < 1, we may sum the geometrie series in (12) to
- 1
Nyl &nT o .
sz;lt - 1 — (;(p-‘s]:r" (15)

where the condition that this summation be valid is that Re p < Re s.
Thus, (12) becomes

— plp—aT

LU =t f . ®)  p, (14)

The contour of integration, T, is the usual one parallel to the imaginary
axis extending from —j= to +j= to include all possible poles. However,
since we do not wish to exelude functions which do not vanish as s(or p)
approaches infinity [in particular, F(p) = constant] the contour is closed
by an infinite semicircle to the left from +j= to —je. The requirement
that Re p < Re s is equivalent to stating that I' shall include the poles
to F(p) but exclude the poles of

1

1 — e’
If the inverse Laplace transform of

'
1 — "

F(s) =

be interpreted as the sum of a sequence of unit impulses, 8,(1), a distance
T apart, then the amplitude modulation of 8-(f) by some function f(¢)
may be found, from the complex convolution formula of Laplace trans-
form theory, to be:
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 Fp)
‘) J 1 — [.(,p—all"

LLf(1)s:(0)] =

which is, of course, the Laplace-Stieltjes transform of f(f) as given by
(14). Hence, the Laplace-Stieltjes transform is formally equivalent to
the results of impulse modulation in the sense that both lead to the same
transform. However, the definition of the Laplace-Stieltjes transform
is rigorous and it directly relates diserete and continuous systems. In-
tuitively, one would expect that, as the interval between samples ap-
proaches zero, the Laplace-Stieltjes transform should approach the
Laplace; i.e., the discrete system should look more like the continuous.
This follows from the definition of the Laplace-Stieltjes transform.
Note that, for the «(t) of I'ig. 1,
lim Ta(t) = ¢

70

Thus,

lim TLJf(t)] = lllllf f()e™" dTall)

-0 -0

- fﬂ T 0 dt = L),

which is the desired relation, the Laplace-Stieltjes transformation ap-
proaching the Laplace in the same manner as the staircase distribution
function T'a(f) approaches the straight line £

Equation (14) is a very useful computational tool and ean be used to
prepare a table of Laplace-Stieltjes transforms from the common tables
of Laplace transforms. Some elementary functions are given in Table I,
where a direct comparison between the two transtorms can be made,
the Laplace-Stieltjes transform being written in the ¢ form. Such a
comparison is interesting, but the relationship between the two trans-
forms can be better shown by a closer examination of the transforms of
some elementary functions. Consider first f({) = ¢ "

_ 1
Lie ™) = = F(s), 15
() = Ta (s) (15)
Cs'r r
—al 8
L(e™) = pr e F(e™). (16)
The single pole at s = —a of F(s) is shown in Fig. 2(a) in the usual man-

ner, However, F(¢'") has an infinite number of singularities occurring at
§ = —a £ 2mn/Tn = 0,1, 2, --- ). Thus, the effect of sampling is to
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multiply the single real pole of the L transform into an infinite number of
complex poles s shown in Ilig. 2(b). The case of imaginary roots in the s

plane is even more interesting. Let f(¢) = sin 8¢

B
st 4 8
B ¢ sin BT

BT — 25T s BT + 17

Llsin pt] = F(s), (17)

Lsin gt (18)
The singularities of F(s) are shown in Fig. 3(a) and those of F(¢"") in
Fig. 3(b). Here, the sampling multiplies the original pair of poles into
an infinite number of such pairs. The center of each pair is separated from
the next by a distance of 27 /7. The distance or period 7" may be identi-
fied with a radian sampling frequency w. = 27/7T. I'rom Iig. 3(h) it is
apparent that, if 8 = «,/2, the pairs of poles overlap each other and form
a new configuration which is indistinguishable from a configuration
resulting from some function of radian frequency less than w,/2. This
result also follows from Shannon’s sampling theorem which, in effect,
states that, if the original signal is to be recovered after sampling, then
the sampling frequency must be greater than twice the highest frequency
sampled.

If the L transformation of a funetion has a singularity in the right half
of the s plane, the L, transformation will have an infinite number in the
right half plane.
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Fig. 2 — (a) Single S plane pole of F(s) = 1/(s + «); (b) infinite number of
complex 8 plane poles of F(e*T) = e*T/(e*T — ¢™oT),

Ims
Ims o A
! A
I
amT —
A
& Lo2myT
in e %
Re s y XL /ﬂ_ Res
. A -1
® -is i fzir‘/T
camr Y BY
471:'/T A
i !
v Py
A

Fig. 3 — Pair of S plane poles of F'(s) = 8/(s* 4+ 8%); (b) infinite number of 8
plane pole pairs of F(e*™) = ¢*7 sin g7/ (e®T — 2e*T cos 1" + 1).
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The change of variable, z = ¢'", which introduces the z transform,
simplifies the above mappings. It is well known that the transformation,
z = ¢, maps the imaginary axis of the complex s plane into the unit
cirele about the origin in the z plane. The left half of the s plane maps
wholely within the unit cirele, the right half maps exterior to it. Since
the z plane mapping is repetitive for multiples of 2x/7", the infinite num-
ber of roots and root-pairs in the s plane map into single roots and root-
pairs in the z plane.

V. APPLICATION OF THE L, TRANSFORMATION TO THE SOLUTION OF
FINITE DIFFERENCE EQUATIONS

Many of the concepts of sampling can be applied to the solution of
linear finile difference equations, with constant coeflicients. These equa-
tions are simply linear combinations of sequences of numbers shifted
forward and backward in time by integral multiples of some fixed inter-
val. In the case of a digital computer operating in a control loop, the
sequences are actually generated by sampling some continuous function
of time. If the assumption is made that all the sequences in a finite dif-
ference equation result from such sampling, then the L, transformation
offers a very useful method for the operational solution of such an equa-
tion. The resulting solution is the “smooth” curve which, when sampled,
will give the sequence satisfying the difference equation.

A finite difference may be defined in either of two ways. One could be
alled o backward difference, defined as

Aty = tyT)} — {y(nT — T)}. (19)

That is, the backward difference is simply the difference of two sequences,
one of which is the other shifted backward one interval in time. Since
there is no possibility of ambiguity, the braces may be omitted and (19)
written in the more usual form

AbyuT = !fn’l' — Yur—r1 - (1(‘-})
In similar fashion, the forward difference may be written as:

Arur = Yurgr — Yur (20)
Higher differences of course are formed by taking “differences of differ-
ences.”” That is,

-’-\h”,v'j..’r = --\h”_l!]»'r - Ab”_l!/u?'f?'

or

n n—1 n—1
A}' Yur = AJ' Yur4r — A,l' Ynr
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In order to eliminate possible confusion between differences, a difference
equation can always be expanded and written in the ordinate form:

n m
E bjUnT+jr + E aiYfnr—it = Tur.
=1 =0

If the assumption is made that the sequences {y(nT)}, {x(nT)] re-
sult from a sampling of some continuous function which has an L, trans-
form, then the finite difference equations of the above form are readily
solved by the L, transformation. This follows from the results of Prop-
erty I of the L, transform, which is proved in the Appendix. The property
is repeated below without proof.

Property I: If Lf(t)] = F(2) and a ts a nonnegative integer, then:

Llftt — aT)] = Ll fnT — aT)}]

=z" [F () + Z f(mT)zm}

m=1

(21)

and

Lft + aT)] = L[ f(nT + aT)}]
=2z |:F(z) - E j'(mi!’)z_’“:l. (

m=0

22)

Application of (21) to the backward difference equation (14) leads to

2z —

LiaYodd = 222 v — y(=1) (23)

and to the forward difference
| LAt = (2 — DY (2) — 2y(0). (24)

The terms #(0) in (23) and y(—17") in (24) are the usual initial condi-
tions, and allow the specification of arbitrary boundary conditions in a
manner completely analogous to the insertion of initial conditions in the
solution of differential equations. However, for simplicity, zero initial
conditions will be assumed in the problem below.

As an example, the above can be applied to the simultaneous difference
equations:

0'25.“1'!#71 + w, = Ty ]
— 1.0y, — 025,41 + w, + 05w,y = 0,

with T taken as unity for convenience. Letting
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Y(f) = [-‘s[yn]s
W(z) = Liw.l,
*\r(z) = Ls{In]:

and performing the indicated operation on (25) leads to:
0.25Y(z) + zW(z) = 2X(2),
(26)
—(: 4+ 025)Y(z) + (z + 0.5)W(z) = 0,
whence
z2(z 4+ 0.25)X(2)
2 4+ 0.5z + 0.125°

As a “test function” let x(n) be the wunil sample defined as unity for
n = 0 and zero elsewhere. The I, transform of x, is then LJfx,| = 1,
and it follows that

Wiz) =

(27)

. 2z 4+ 0.25) R
= — 28
W) [z + 0.25)% + .0625] (28)
By the application of (9),
w, = 4(0.35)" ™ sin (n 4+ 1) iﬂ. + (0.35)" sin n STT (29)

In a similar manner w,(or ¥,) may be determined for any function w,
which is L.-transformable.

In electrieal network theory based upon the Laplace transform, the
weighting function of a network is the tinme response of that network to a
unit smpulse. The analogy to the above response of a difference equation
to a unit sample is clear. The fact that the difference equations could
describe the operation of a digital computer performing linear operations
in real time lends physical reality to the analogy and introduces the con-
cept of a digital network. The designer of a servomechanism or feedback
amplifier is concerned that his deviee shall be stable. The designer of a
program for a digital computer is likewise concerned that his machine
hehave in a stable manner. Here, stability is defined in the sense of the
clectronic network designer that, for any bounded input, the output shall
not continually inerease. This is more elegantly and precisely stated in
terms of the complex s plane. Here, the criterion for stability is that the
characteristic equation have no roots in the right half of the s plane.
Since the defining transformation z = ¢'" of the z plane maps the right
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Fig. 4 — Nyquist plot of 22 4+ 0.5z + 0.125.

half of the s plane onto the exterior of the unit circle, the criterion for
stability of finite difference equations is that the characteristic equation
shall have no roots exterior to the unit ecirele in the z plane. Intuitively,
it. would seem that Nyquist’s eriterion could be applied in one form or
another directly in the z plane to determine stability. However, the ap-
plication is not as attractive as in the continuous case. The finite differ-
ence equations (25) will be used to illustrate the point. As above, the
roots of the denominator of (27), the L, transformation of (25), determine
the stability of the difference equations. Since all roots do indeed lie
within the unit circle, as z takes on values along the unit circle in the
positive sense, the plot of 2 + 0.5z + 0.125 will encircle the origin in
the positive sense a number of times equal to the number of zeros of the
polynomial which lie within the unit circle (two in this case). Fig. 4 is
such a plot and it is readily apparent that there are two encirclements.



THE Z TRANSFORMATION 191

In principle, the method can be extended to a polynomial of any order.
As a practical matter, counting the number of encirclements from a poly-
nomial of high order without making a mistake would be difficult. How-
ever, this is not the most important point. One of the great attractions
of the Nyquist eriterion to the practical designer of feedback devices is
that not only does it determine stability but it also indicates at a glance
the margins against instability. To know the allowable variation in the
gain of an amplifier, as a specific example, is of great value to the de-
signer (and manufacturer) of a feedback amplifier. Unfortunately, in
the discrete case no such information is apparent and the indication is
simply one of “go” or “no go”.

If the change of variable w = z~' = ¢ " is made, the right half of the
s plane is now mapped into the interior of the unit circle, and hence the
criterion for stability becomes the more usual one of not enclosing the
origin. Ilustrating, the characteristic equation of (27) becomes;

w4+ 05w 4+ 0.125. (30)

As w takes on values on the unit circle in the positive sense, (30) has
exactly the same values as shown in Tig. 4 with the exception that the
curve now encloses the origin in the negative sense and, hence, stability
depends also upon the sense of enclosure. The difficulties above will
usually require that stability analysis still be made in the s plane. How- ‘
ever, some advantage can be taken of the angle preserving properties
of the change of variable s = 1/T In z.

VI. CONCLUSION

The Laplace-Stieltjes derivation of the z transform is straightforward
and rigorous. As 1 mathematical model of the sampling process it has
the advantage of also deseribing some of the operations possible within
the computer. In particular, since it can be used as a basis for the opera-
tional solution of linear finite difference equations it closely relates the
solution of diserete linear systems and continuous linear systems. It
is of considerable advantage to be able to apply the methods of network
analysis to this type of computer operation. The Laplace-Stieltjes trans-
formation forms the connection in a very clear manner.
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APPENDIX

PROPERTIES OF THE [; TRANSFORMATION

The utility of the L, transform is inereased by various properties per-
taining to its use. The more important of these properties are derived
below with some discussion of the area of application. Such discussion

must of necessity he brief.

Real Translation

This property is the basis upon which the operational solution of linear

finite difference equations is based.

Property I: If L[I(t)] = F(z) and a is a nonnegalive integer, then:

Lf(t —aT)] = & [F(Z) + i .f(—-mi"')z’”],

m=1

and

LI+ al) = 2 [F(z) > .f'(m.m—'"].

m=0

The proof of the first part follows:
By definition

[-'s[.f(T)] =‘/l; _,r(‘r)(f“ dal7) = F((}”I).

Dividing the range of integration into two parts:

0 0—

F(e'™) = f_ ) dalr) - f F(2)e™ dals).

—aT

We now let 7 = ¢ — a7 in the first integral on the right-hand side:

0—

™ = [ f(t — aT)e sl gt — al) —f f(0)e™™ dalzr). (31)

vl
From Fig. 1 it is apparent that
da(t — aT) = dalt).

Hence,

F(e) = ra"“_{ it — aT)e™* dalt) — f,;'f(T)C_H da(r). (3

2

&

)
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But the second integral may be evaluated as:
_u; f(r)e" da(r) = m; J(=mT)e"™, (33)
Substitution of (33) into (32) and rearrangement leads to
e [F(e”) - i f(—m.T)e'"T’] = jom f(t — aT)e™" dalt).

m=1

But the right-hand side of the above is by definition L,[f(t — aT)].
Making the usual substitution of z = ¢ now leads to the desired result:

Llft — aT)] = 2° [F(Z) + 2 f(—mT)z”']. (34)
m=1
We note in particular that, for @ = 1,

L[f(t — aD)] = 2 'F(z) + J(=T)).

For proof of the second part, the range of integration is divided into
two parts:
(a—1) T+

U@ = [ foe et + [ S dato)

Letting 7 = ¢ 4+ aT in the first integral on the right-hand side, we have

(a—1) T+

F(e&™) = f ft + aT)e """ dalt + aT) + f f(D)e™™ dalr).
0— 0
Rearranging and substituting da(t 4+ aT) = da(t),

N (n—1) T+ @
e [F(c’r) — j(; J(r)e ™ da(t):l = j;_ it + aT)e " dalt). (35)

The integral on the left is obviously

(a—1) T+ a—1
f f(#)e " dalr) = 3 fnTye "™,
0 m=0
and substitution into (35) gives
a—1
" [F((,«T) -2 f(mT)C—'m} = Llf(t + aT)],
m=1{
whence
a—1
L{f(t + aT)) = & I:F(Z) -2 .f(mT)z_"']- (36)
m=0

Tor the special case of @ = 1, we have
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Lftt + T)] = 2[F(z) — f(0)] = LJf{t + T)]. (37)

Finite Differences

An immediate consequence of the real translation property is that
for finite differences. If finite differences are defined as in the text, we
have:

Property 11: If the sequence {f(nT)} resulling from the sampling of the
conlinuous function f(t) has the L, transform F(z), then:

z—1

Llalf(nT)}] = Lldufur] = F(z) — f(=1),

Li(Asfur) = (2 — D)F(2) — 2f(0).
By definition,
L Asfur) = Lfur — fur—r).
By linearity of the transform and (34),

Ly(Ayfur) = F(z2) — 2 '[F(2) + f(0)]

z(zzl)Fu>—ﬂ—T1 3

Again, by definition,
Lx(A_f_ruT) = Ls(fn?'-]—T - fuT)
and, by linearity of the transform and (37),

L(Afur) = 2[F(2) — f(0)] — F(2) = (z — IF(z) — 2(0). (39)

Finite Summaiion

As integration is the inverse operation of differentiation, summation
can be considered the inverse operation of taking differences. This is
demonstrated more clearly in the property below. The process of finite
summation is best demonstrated in the case of a computer operating
in real time. The computer samples a function which is econtinuous and
well defined at the sampling instants. At each sample the computer
adds that sample to the sum of all preceding samples. If the result of
this operation is a sequence {g(nf)}, we have as the value of g(nf) at any
time nT':

mngmm
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where [f(kT)}: is the sequence of sampled inputs. The analogy to inte-
gration with respect to time is clear. The L, transform of such a summa-
tion is given below.

Property 111: If {g(nT)} is an infinite sequence such that each value of
it is given by g(nT) = 3 izo f(kT), then G(z) = z/(z — 1)F(2), where
F(z) is the L, transform of the sequence {f(nT)}.

By definition:

o0

G(z) = E g(nT)z".

n=0

Substitution of the value for g(nT') gives
Giz) = 2 2 [Z; f(kT)].

Sinece we are dealing with uniformly convergent series, the order of
summations may be interchanged, provided a suitable change in the
limits is made in a manner equivalent to the change in limits when the
order of integration is interchanged in double integration. Thus,

Gz) = 2 fT) 20 2,
which may be written as

o0 oo
i _
G(z) = 2 f(kT)z Z z ",
k=0 n=0
However, the series in n may be summed as 1/(1 — z7"), and hence

Q) = if(f.-T)z“'[ : ]
=0 z— 1

and hence

G(z) = —=_ F(2). (40)
z 1

Complex Multiplication

The superposition property of electrical networks is a very elegant
and useful result of their linearity. For continuous linear networks, super-
position is most concisely represented as a convolution integral, which
has a particularly important Laplace transform. The same ideas also
apply in the discrete ease with the integral replaced by a summation.

Property IV : If f(t) and w(t) have the L, transforms F(z) and W (z), then:

W(EF(:) = L, [i w(kT)f(nT — ic’!’):‘.

k=0

By definition,



196 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1959

W(z) = 2 w(kT)z*,

8 LMS

W(z2)F(z) = Z w(kT)z *F(z),

but

2 'F(z) = LIf(t — k)] = L{[f(nT — KT)]}.

Hence,

o0

W(2)F(z) = ka(A L f(t — kT)] = Z LwkT) f(t — ET)]

) (41)
= L, [é w(kT) f(t — I.:T)].
At time ¢ = nT we have
W()F(z) = L, [Z w(kT)f(nT — kT)]
but f(#) = 0;¢ < 0 and therefore
WF() = L, [E w(kT) fnT — LT):I (42)
Scale Change
Property V: If L[f()] = F(z), then L,Je ()] = F(kz), where k: =
From definition,
L0 = [ 0™ de(t)
— g‘}f(nqr)[eﬁc:?e—a'r]n,
LI = 3 fuT)kel ™ = k). (43)

n={0
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