Helix Waveguide Theory and Application

By HANS-GEORG UNGER
(Manuseript received March 31, 1958)

(Generalized lelegraphist’s equations have been derived for curved helix
waveguide and coefficients obtained for conversion from normal modes
of the heliz waveguide to normal modes of the metallic waveguide. A radial
wave tmpedance al the heliz interface s used to calculate the effect of
composite jacket structures. Three different applications of the helix
waveguide for circular electric wave transmission are discussed: As a mode
Jilter, the heliz waveguide should have a lossy jacket which causes a high
transmission loss for all unwanted modes. For sharp intentional bends with
tapered curvature, the helix waveguide should have a jacket of low-loss di-
electric material swrrounded by a highly conducting coaxial shield. For an
all-heliz waveguide, in order lo reduce both mode conversion-reconversion
effects at imperfections and loss in curvature the jacket should be medium
lossy and also surrounded by a metallic shield. The distance between helix
and shield should tn all applications be about a quarter of the radial wave-
length in the material. Measurements on unwanted mode transmission and
TEq curvature loss confirm the analysts.

I. INTRODUCTION

Helix waveguide consisting of closely wound insulated copper wire
covered with a jacket of dielectric material and surrounded by a coaxial
metallic shield has been shown to be useful as a communication medium.’
The low-pitch helix gives to this structure the low-loss characteristics
of solid copper-wall waveguide for circular-electric waves. All other
modes of propagation, however, suffer a change of their field configura-
tion and propagation constants, depending on the properties of the
outside jacket and shield.”

There are two distinctive applications of the helix waveguide for
circular electric wave transmission, requiring different but definite prop-
erties of jacket and shield. One is the use of helix waveguide in short
sections inserted as mode filters in an otherwise conventional waveguide,
to reduce the mode conversion-reconversion distortion of TE,, propaga-
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tion. For this application the attenuation constant of all unwanted modes
should be made as high as possible by choosing a material with a certain
loss factor for the jacket. The other application is to transmit the cir-
cular-electric wave around sharp intentional bends.” In this case the
jacket of the helix waveguide should be as low in loss as possible and the
distance between helix and outer metallic shield should be chosen so as
to minimize mode conversion and dissipation loss in bends.

Beyond this, a third and probably the most important application is
the all-helix waveguide as transmission medium. In this case, high un-
wanted mode attenuation as well as low TEy loss in bends is desired.
A compromise between the helix waveguide for mode filters and the
helix waveguide for sharp bends has to be met by choosing a medium
lossy jacket and the proper distance between jacket and shield. This
compromise will be made on the basis of tolerances. While the manufac-
turing tolerances call for a mode-filtering helix waveguide, the laying
tolerances call for low TEy; loss in random curvature.

In order to design these different types of helix waveguide, we must
analyze the propagation characteristics of both the circular electric mode
and the unwanted modes in the general structure of helix surrounded
by lossy jacket and metallic shield with both a straight and a curved
axis. In the following two sections two different approaches to this
problem will be presented. Both of them make use of Schelkunoff’s
generalized telegraphist’s equations for waveguides.” The propagation
in the curved helix waveguide is represented by a set of coupled modes
of propagation. But the set of modes used in the first approach is differ-
ent from the one used in the second approach. In Sections IT and IIT the
generalized telegraphist’s equations are derived. In Section IV the prob-
lem of a composite jacket structure is reduced to a radial transmission
line problem. The theory is applied to practical helix waveguide prob-
lems in Section V, and conclusions are actually given there. The reader
interested only in design and application of helix waveguide is therefore
referred immediately to Sections IV and V.

1I. REPRESENTATION IN TERMS OF NORMAL MODES OF THE METALLIC
WAVEGUIDE

To obtain generalized telegraphist’s equations the field at any cross
section of the curved helix waveguide is represented as a superposition
of the fields of a certain set of normal modes. A current and a voltage
amplitude are associated with each normal mode and the currents and
voltages, after Maxwell’s equations and the boundary conditions of the
curved helix waveguide are applied, are found to satisfy an infinite set
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of generalized telegraphist’s equations. The coupling terms in these
equations depend upon the curvature of the guide axis and the jacket
structure. The choice of normal modes may be arbitrary, but, in this
‘ase, 1t seems most appropriate to choose the normal modes of a straight
circular waveguide with perfectly conducting walls. It appears that,
with this choice of modes, the generalized telegraphist’s equations will
also solve the problem of mode conversion at an abrupt or gradual tran-
sition from metallic waveguide to helix waveguide. Also, it will be pos-
sible to analyze mode conversion at all those imperfections of the helix
waveguide, for which the mode conversion in a metallic waveguide is
known.

The natural coordinate system (r, ¢, z) for a curved circular waveguide
is toroidal (I'ig. 1), where z is the distance measured along the curved
axis of the guide and » and ¢ are polar coordinates in a plane normal
to the axis of the guide, with origin at the guide axis. The lines ¢ = 0
and ¢ = = lie in the plane of the bend. The inner radius of the guide is
denoted by a and the radius of the bend by R.

TFor the moment, (r, ¢, z) are regarded as general orthogonal curvi-
linear coordinates (u, », w) by letting

U =r V= w = z. (1)

The element of length in this system is

ds’ = e’de’ + e"dv® + eldud, (2)
where
e = 1; ey = 7, e =1+ ¢ (3)
and
_ 4
£ = R _cos . (4)

" ' . . jwt .
Tor a field with time dependence ¢™', Maxwell’s equations are:

1 T ‘ )
[_ (ealle) = 5, (E’E) = — Joull,, (5)
€aly av
1 [; (f]Fn) ((’,_]Fm) — jW_H.Hv , (6)
€561 Jw
1 d J ] B .
;62 |:6—u (P-:Ev) - C')_t' ((’]Lu)_ = _]pr",’ (7)
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1 )

L2 ) = et | = ok, ®
1 ] .
_ |:— (ElHu) —_— (ean) = ]weEu ’ (9)
€361 ou .

1 ] ] -

[ (e2H,) — — (e1Hy) | = jwekly . (10)

€162 dv _

The permeability x and the permittivity e are those of free space in the
waveguide interior, but between helix and shield ¢ is determined by the
choice of the jacket. If there is dissipation in the jacket it is complex.

To convert Maxwell’s equations into generalized telegraphist’s equa-
tions we introduce the field components of the normal modes of our
choice. Fach mode is described by a transverse field distribution pat-
tern T'(u, »), which satisfies

2 _ 1 € aT €1 aT _2m
vr= 3_13_2[61'5(813%&)_'_3_(82 31:)] = —xT, (11)

where y is a separation constant which has discrete values for the vari-
ous TE and TM modes. Brackets will be used for TE modes and paren-
theses for TM modes. Thus, the function corresponding to the nth TE
mode is denoted by T (u, v) and the separation constant by xp. with
the subseript in brackets. The function corresponding to the nth TM
mode is denoted by T, (u, v) and the separation constant by x , with
the subsecript in parenthesis. The normal derivative of 7', vanishes on
the boundary « = a, while T, itself vanishes at « = a.

The T functions are assumed to be so normalized that

f (grad T)(grad T) dS

(12)
= f(ﬂux TYflux T) dS = x° f T™dS = 1,
S S
where S is the cross section of the guide inside the helix.
With the definition of the gradient and flux of T
grad, T = or. grad, T = oT
10 e ea0p’
, , a3
flux, T = E, flux, T = _ 9T

es0v e0u’
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various orthogonality relations exist among the 7' functions:

f’]'(u‘)rll(m] d'S' = fq'[n]T[m] dlq =
S S

f (grad To)(grad o) dS = f (flux T'en) (Rux Tony) dS = 0, (14)
S S

Il
o

f (grad Tp,) (grad T'py) dS = f (lux T'n)(Aux Tp) dS
S S

it m # n, and

f (grad T (Aux T'pmy) dS f (grad Ty (Aux Temy) dS
8 S

(15)

f (grad T')(flux Tem) dS = 0
8

for all m and n. We now assume series expansions of the field compo-
nents in terms of the funetions 7'(u, »), with coefficients [ and V depend-
ing on w:

3 BT(R) 'd aT[,.]
Bo= 2| Voo g+ Vin oy |

aT(rl) aT[n]
]*;1, = Vv n 4 n
;l:“eav T”eldu ’
o, = z aT(,,) + 1, 3T[ﬂ]j|
€,0u

aT ATy,
H, = [I(,,, )+ T “].

elau e:00

(16)

I(n)

With the 7" functions, the field components in (16) are only defined
inside of the helix for « < a. The effects of jacket and shield (at radiusb)
are taken into account by the boundary conditions:

I, =0, (17)
E, = —ZH, (18)

at the helix. In these conditions, the low-pitch helix has been replaced
by an anisotropically conducting sheath, and jacket and shield by a
wall impedance Z. Later on in this paper we shall discuss how to calcu-
late this wall impedance and even how to take the effect of finite wire
size of the helix into account by modifying Z.
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The boundary condition (17) is satisfied by the individual terms of
the series for ¥, .

To transform Maxwell’s equations into generalized telegraphist’s
equations the series expansions (16) are substituted for the field compo-
nents in (5) through (10). Then eertain combinations of these equations
are integrated over the cross section and advantage is taken of the
orthogonality relation (14) and (15). For example, substituting from
(16) into (5) and (6), adding

e; 0T . _ es 0T
— 2T times (5) and D
e dv e

times (6)
and integrating over the cross section, we obtain:

% + jou > [I(,,) fses(grad T ) grad T o) dS

+ I[n] Lea(ﬂux T[,.])(grad T(m)) dS:I (19)

= f (grad e;E,,)(grad Ty dS.
8

The right-hand side ean be integrated by parts according to Green’s
theorem:

27
aT m
a [ faE". o)
0 ou

dv — f exll, div grad T dS.

a s *

In the first term of this expression, E, is replaced by H, through the
boundary condition (18) and, for H, in turn, the series expansion of (16)
is substituted:

2x

- AT
af et 5

0

du

ey 8T (uy 9T omy
d = - Z n f e — d
a Y @ ; I:I( "h e ou  du v

i (& c'iT[,,] aT(,,.) dl‘)]

I n ‘ -
t ”jo e v ou

In the second term of the foregoing expression, [, is replaced by H,
and H, through (10) and, for H, and H, in turn, the series expansion
of (16) is substituted:

jWEE'w = - Z I(n)x(u)ET(u) . (20)

Therefore:

o f (’3Ew le gl‘&d T(m) dS = (_%; Z- I(n)X(;.)2x(rrl)2 f eaT(u)T(m) d‘S
S n S
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where e is the permittivity of the space in between wires. The corrected
wall impedance is then obtained from

7= 3 +iea (g - 12). (84
Again, this expression must be substituted for the wall impedance in
the characteristic equation (74).

All expressions for the wall impedance [(73), (76), (77), (78), (80),
(84)] contain implicitly the axial propagation constant jh, of the particu-
lar mode under consideration, and it is only through the characteristic
equation (74) that this propagation constant will be determined.

In Section II, on the other hand, where the helix waveguide propaga-
tion is expressed in terms of normal modes of the solid wall guide, the
wall impedance as introduced in the boundary condition (18) is not
associated with a particular mode. The propagation constant jh, remains
undetermined. The boundary condition (18) ecannot exactly replace a
complex jacket structure.

IPor all eases, however, in which the modes under consideration are far
from cutoff, the propagation constants are nearly equal to that of free
space. We may then replace h, by wv/pe in all expressions for the wall
impedance and use them in (18) and the corresponding equations.

V. APPLICATIONS

Three different applications of the helix waveguide for circular electric
wave transmission have been mentioned in the introduction. The for-
mulae of the preceding sections will now be used to calculate the trans-
mission properties of helix waveguide in the different applications. The
theoretical values will be compared with results of measurements.

5.1 Helix Waveguide Mode Filter

It has been shown both theoretically and experimentally that the
transmission characteristic of the eircular waveguide can be substantially
improved by the insertion of mode filters at intervals along the wave-
guide.” Conversion of energy to unwanted modes and reconversion at
any imperfections of the waveguide seriously disturb the TE,, transmis-
sion characteristic. Mode filters, which provide low loss for the TEy
mode and high loss for all unwanted modes, greatly reduce the effects
of mode conversion-reconversion by dissipating most of the converted
power in unwanted modes before reconversion.

Helix waveguide has the desired properties of low TE,, attenuation
and high loss for all other modes. It therefore is well suited for a mode
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Similarly, by adding

% T m) times (8) and
e; ou

_ ‘:f aT(m)
€2 v

times (9),

substituting from (7) for H, and integrating over the cross section we
get:

dw

Al _ jwe 2 [Vf,.) L e; (grad T'y)(grad Tn) dS
(24)
+ V[n] f&a (grad T(m))(ﬂux T[,.]) dS:I .
S

Tinally, by adding

m] - T ..
& T tm times (8) and €3 0 m times (9),
e O e ou

again substituting from (7) for H, and integrating over the cross section
we get:

dIﬂ = —jme E V[n] ‘:f (&) (gl"ﬂ.d T[n]}(gl'ﬂd T[,,,])dS
dw n S

2 2
- M feaT[:l]T[m] dS] (25)
S8

we
— jwe 22 Vi f e (grad T')(flux T'p,) dS.
n 8

Equations (21), (23), (24) and (25) are generalized telegraphist’s equa-
tions for the curved helix waveguide. They can be written in the follow-
ing form:

d V (m)
dw

AV im
dw

dI(m)
dw

dl
dw

= *‘Z [Z(m)(uil(n) + Z{m)[n]I[n]],

— 2 ZwmwIlw + Zmml ),
(26)

Il

2 Ymmw Ve + Yam Vil

= =2 YV + YmVml
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The impedance and admittance coefficients are defined by

Z(m)(n) = j‘-’-’ﬂ [j.; C3 (g“bd T(n))(gllﬂ-d TY(m}) dS

2 2 2r

aZ ey 0 n aT "

- xcn)zx{m) f 63T(11)T(1n] dS + = f = T( ) o dv ;
w ue s Jup Jo e du  Ou

Znin] = jou I:f ey (grad Ton)(Aux Tpy) dS

N E«g‘ 2r 9’ aT(nl aT(m) dﬂ],
Jwu Jo e Jdv du
Zimi(n) = Jup [f es (grad T, (flux T'p) dS

8

Z (" e 9Ty 0T () dv
Jup do e ouw v |’

Zimn) = jop l:f e (grad T')(grad T'py) dS (27)
S

+ i 2r @ BT[,,] aT['m] dv] ,
Jup o e v v

Yiym = jwe j; es (grad T'y)(grad T'n) dS,
Yimym = Jwe j; ey (grad T ¢n)(Aux Tp,y) dS,
Yimio = jwe L ey (grad T'oy)(Alux T'pmy) dS,
Yimim) = jwe I:j; es (grad Ty ) grad Tpy) dS

2 2
X[n] X ,
— Xt Xpm feaT[,,]T[,,.l db].
S

W pe

We note the following symmetry properties of these coefficients:

Z(m)(u) = Z(u)(m) 5 Y(m)(n) = Y(n)(m) 3

r - ¢
Z[rn][u] = Z[n][m] ) 1 [mlln] = } [n][m] 3 (28)
Z[rﬂ](n) = Z(n][m] 3 Irim](ﬂ) = )’(Jl)[m] .

The generalized telegraphist’s equations represent an infinite set of
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mutually coupled transmission lines. For our purposes, it is more con-
venient to write the transmission-line equations not in terms of currents
and voltages but in terms of the amplitudes of forward and backward
travelling waves. Thus, let @ and b be the amplitudes of the forward
and backward waves of a typical mode at a certain cross section. The
mode current and voltages are related to the wave amplitudes a and b
by

V = 4K (a+b),
1 (29)

I = ‘\/R ([I - b),

where K is the wave impedance

- n) wu
Ko ==2, Ku-=

we Bim’
2 241/2 2 241/2 2 2
ﬁ("l) = (IB - x('l)) ] ﬁ[n] = (6 - x[ul) 3 ,@ = W ue.
The currents and voltages in the generalized telegraphist’s equations
(26) are represented in terms of the travelling-wave amplitudes. The
following equations for coupled travelling waves are obtained after some
obvious additions and subtractions:

dagn) + - + -
d: = — 2 [k e T+ Ko ey F ke @y + ke Ol
n

dbem) - + - +
sz =+ E [K{n.)(n) A(n) + K(m)(n) b(..) + K(m)[n] @[n) + K(m)[n] b[n]];
n

(30)
da, + - + —
% = - Z [K[m](n) A(n) + K[m](n) b(n) + Kim][n] @[n] + K[m][n] b[rr]])
n
dbm) 3 - + - +
dz =+ [K[ml(?a) A(n) + K[m](n) b(n) + K[m)(n] @[n) + K[m][n] bm]-
n
The «'s are coupling coefficients defined by
s M VRoR Y g Lo |
K m n | J— ", ——————————— /i
(m)(n) 2 (m)L\ (n) (m)( \/1{-("')1((”) (m)(n)_' ]
]
_ (31D

- 1
VEmKw Yimony £ VKo Z[muu)_

=+ —
Kiml(n) = T

1

1 N 1 . ]
Komyin) = 5 [\/K(m)Km Yo = VKo, Zmin)
[\/szle Yimm =+ VKK Zmin; |-

+ 1
Kimln] = )
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In these definitions the plus signs are taken together, as are the minus
signs.

To examine the coupling coefficients, we introduce field functions of
the normal modes of the circular guide with perfectly conducting walls.
We shall use the customary double-subseript notation, but shall continue
to denote TM waves with parentheses and TE waves with brackets:

T — En {J-(X(nm)r) Sin ?lio
(nm) - A.(nm)Jn—l(}l‘um) )

— (32)
T — E ']n(x[nm]r) COS Ng
[12m] T (A.[nm]2 _ ng)”z'fu(’\'nm)’
where
/"(”’”) = X(nm4d, Jll('l"(?im)) == 0,
, (33)
l’\-[;mil = X[am, J" (A"[nm]) =0
and
€, = 1, n = 0,
(34)
en = 2, n # 0.

Introducing (32) into (27) and these in turn into (31), the coupling
coefficients are calculated.

There are two different causes of coupling hetween the metallic guide
normal modes. One is the finite wall impedance Z of the helix waveguide;
we shall continue to denote the corresponding coupling coefficient with
k. The other is the curvature of the guide axis; we shall denote the
corresponding coupling coefficient with je. The coefficients of curvature
coupling je turn out to be purely imaginary.

The «’s in (31) which have equal subscripts may be regarded as
propagation constants of typical TM or TE modes which have been
modified by the finite wall impedance Z. It turns out that these modified
propagation constants do not depend on the curvature:

& Z
Y 74 ]
2(1 A(rim]

o

€ n
2a kpwm?® — 12 K

K(nm)(nm) = Y(am) — jﬁ(nm) +
(35)
Kinm)[nm] = Y[am] = Jﬁ[:uﬂ] +

IFor all other «’s we find that the wall impedance causes coupling only
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between modes of equal subscript n in (32). The corresponding coupling
coefficients are:
+ _ & Z
=5 =2
20 /K o K )

+ + €n n A
Kam)[np] — Krplam) = ~ 5 = 3
20 Vkpup* — 7 VK m Kiap)

K(nm)(np)

(36)

9
+ €n n Z
Kinmllnpl = 5~ - r .

2a \/’c[nna]z - ?’b"' \/’f[np]2 - 71'2 \/Klrxnx]K[;:p]

The curvature of the guide axis causes coupling only between modes
which have a subscript n in (32) differing by one. The corresponding
coupling coefficients are the same as in the curved circular guide with
perfectly conducting walls.” We obtain, for example,

+_ B a
Cloyjany = —\/j—ln R’
Clo1]

+
Coam) = 0 fOI' m #= 1,

'\/é IC-[DI] k[lm]2 ('\/‘2 BQ(LE —_ ]ﬂz[m] —_ i“,g“m] (37)
VP — 1 o) — )’ a’ /2B B1m

+ \/ﬁfuu.@[m]) %

. +
Cro1] [1m] -

The curvature coupling between TEy and all other modes does not
depend on the finite wall impedance of the helix waveguide.

There is some combined curvature and wall-impedance coupling be-
tween certain higher order modes. However, for TEy tmnsmlsslon in
the helix waveguide, this is of no interest.

To apply the preceding analysis to practical problems we need con-
sider only the forward waves, since the relative power coupled from
the forward waves into the backward waves is quite small. After the
b's and « ’s have been omitted, (30) can conveniently be written in
matrix form: '

A= —MA. (38)

If we designate the amplitude of the TIy by a, and let the remaining
a’s represent the amplitudes of the modes which are coupled to TEq in
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the curved helix waveguide in order of their cut-off frequencies, then, in
a somewhat simplified notation, the matrices in (38) are defined by :

[ay | By jew Jew ]
(13} jcm K11 K2
A = A A =], M =|Jee K2 Ke ot (30)

B L

If both the ¢’s and off-diagonal «’s were small, the solution of (38)
could be written down as a perturbation of the propagation in the
straight metallic waveguide. This is usually not the case. In gentle
bends such as we are interested in here, however, the curvature coupling
is orders of magnitude smaller than the wall impedance coupling between
the modes. Therefore, it is convenient to split M into M 4+ M., where
M), is the straight helix waveguide matrix and M, takes the curvature
effects into account:

[ 0 0 -] [0 jow jow -]
U T | jew O 0
M, = 0 ke K o) M, = jew 00 oo | (40)

The effect of curvature can be ealeulated by a perturbation method,
but

A" = MA (41)
will have to be solved more rigorously. To do this, we diagonalize M,
by the transformation

A = LW, (42)
where L is the modal matrix® of M, . Since M), is symmetrical, we have

L, = L' and the transformation of 2, to the diagonal form of its latent
roots® reads:

LML = T.
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In
[0 0 0 ]
0O v 0
r=(0 0 7 - (43)

RN
the 4’s are solutions of the characteristic equation
Bo—vy 0 0
0 K — Y K12
0 K12 Kao — ¥ | = (), (44)

A typical element of the modal matrix L of M, is defined by:

S
ik (45)

CYE)HC) )

where gt-k is the cofactor of an element of the determinant in (44) for the
root v = v, . The index 7 is arbitrary as long as it is different from zero
but it must, of course, be the same for the determination of all the I’s
for a given s.

Physically, (42) means transformation to the normal modes of the
straight helix waveguide, and the v’s are the propagation constants of
the normal modes in the straight helix waveguide. The elements of L
in (42) describe the conversion of normal modes of the straight helix
waveguide into normal modes of the metallic waveguide. The TE,,
amplitude and propagation constants are, of course, not changed by
this transformation:

Wy = ap, ’Yn=j|80-

Introducing the normal modes w into (38), we get for the propagation
in the curved helix waveguide

W = —(I' + O)W, (46)
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where ¢! = L,M L represents the effect of curvature in the helix wave-
guide. The elements of ' are the coefficients of coupling between the
normal modes of the straight helix waveguide in curved sections, and '
is a symmetrical matrix with nonvanishing elements only in the first
row and first column. A typical element is given by

¢o = jleals + colos + coslsz + - +). (47)

Since T in (46) is diagonal, and since the elements of €' are small enough
to justify a perturbation caleulation, the problem of the curved helix
waveguide is formally solved.

The perturbation calculation for the curved guide assumes, as usual,
that the coupling from TEy to all other modes w is small. Then it is
sufficient to consider only coupling between TEqy and one of the other
modes at a time and to add up all these coupling effects. The TEq
propagation in a helix waveguide, even of nonuniform curvature, may
be caleulated this way.’

For a helix waveguide of uniform curvature our matrix notation may
be used. As before with the straight helix waveguide, we now transform
to the normal modes of the curved helix waveguide. The propagation
constants of these curved-guide normal modes are the solution of the
characteristic equation:

Y — Yo 8] Ca
€1 Yy —m 0

ca 0 Y=y | =0, (48)

Approximate solutions of this equation for

Cs

— K
Yn — Vs

are perturbations of the propagation constants v, of normal modes of
the straight helix waveguide. In particular, we get for the perturbed
propagation constant of the TEq mode:

=+ D (49)
s Yo — Vs

The modal matrix of (I' 4 () transforms from the normal modes of
the curved guide to those of the straight guide. Its elements give the



1614 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1958

mode conversion at the junction from curved to straight guide. A typical
element of this modal matrix is given by an expression like (45) or to a
sufficient approximation:

o = ——. (50)
Yo — Vs

The propagation constants v, in (49) and (50) are those of the normal
modes in the helix waveguide. To obtain them, the characteristic equa-
tion (44), a polynomial of infinite degree in v, has to be solved.

For a low wall-impedance jacket, approximate solutions of (44) may
be used which, like (49), are perturbations of the metallic waveguide
propagation constants. In general, (44) may be reduced to a polynomial
of finite degree by omitting modes of higher order which have little effect
on the lower order modes. Even so, we are usually left with the for-
midable problem of solving a polynomial of high degree.

To avoid the problem associated with the transformation from metallic
guide normal modes to helix guide normal modes we must start with
the helix waveguide normal modes and write the generalized telegraph-
ist’s equations in terms of normal modes of the helix waveguide.

II1. REPRESENTATION IN TERMS OF NORMAL MODES OF THE HELIX WAVE-
GUIDE

Normal modes of the straight helix waveguide have been analyzed
elsewhere.’ To adapt this analysis to our representation we shall repeat
and generalize the boundary value problem here. The waveguide struc-
ture we consider is shown in Fig. 1. The anisotropic conducting sheath,

—_ _pn
//Ee—fo(f JE)

Fig. 1 — Coordinates used in bend in shielded helix waveguide.
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which represents the closely wound helix, is surrounded by a dielectric
jacket and a coaxial metallic shield.
The electromagnetic field in the helix waveguide can be derived from
two sets of scalar functions 7, and 7', given by
T, = NuJp(xwr) sin pe
for0 <r < a, (5la)
Tu’ = -"\rn'lp(xﬂ') COs Py

and

H,%(x.r) — cH, " (x:.1) .
Hp(‘_’)(kne) —_ CH,,“’(’\,,‘)

T‘rz = Nra _x"_g Jp(kn) sin Py

x’l'
fora < r < b (51h)

i’)(x"c .) _ C’II (l)(x"er)
(")(A ) — C'H (lJ(Ane)

T, = N..’i Ik
xn”

Cos Pg

Being solutions of the wave equation, the 7" functions satisfy (11). The
field components are written in terms of these field functions, using the
coordinates (u, v, w) of (1):

at, aT,
Eu = n |
Z I [ 16'”. (326 ]
aT oT
) — 7 in _ ; n
E. ; Va [626?} d elau:l ’
T, ] T, (62)
a [
H. = Z.: —1In [8 av — s elﬂu]
aT, hy aT,
ZI"[I(H + dn = eé‘v:l

Substituting from (52) into (7) and (10) and taking advantage of (11),
we get for the longitudinal field components:

H, = joe 3 Vada Z‘L_ T,
(53)
Bo = jou 2 In xi

where e and & = w+/ge are permittivity and intrinsic propagation con-
stant of the medium in a particular cross-sectional part of the guide.
They have constant but different values for the different cross-sectional
parts of the guide, and & is the permittivity of the empty helix interior.
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The quantities d, , ¢ and ¢ and the separation constants x, and x," are
chosen so that the boundary conditions of the shielded helix waveguide

E, =0 at helix and shield,
K, =0 at shield,

(54)
Ewinlcriur = Eu'cxmrior i].t helix,

I{"inlerior = Hl‘csmrior at heli.\'

are satisfied by the individual terms of (52). Only then do the individual
terms of (52) represent normal modes of the shielded helix waveguide.
IFFrom K, = 0 at the helix:

oT.,

_ el 55
dn AT . (55)

10U | u=a

From #, = 0 at the shield:

(k) y
C = Hh) (56)

I'rom £, = 0 at the shield:

' Hpm)f(.ﬁ]cnc)
H,(ok?)’

where p = b/a, k" = x."a, and k, = x.a. The prime at the Bessel func-
tions denotes differentiation with respect to the argument. The condi-
tion of £, being continuous across the helix boundary is satisfied by
virtue of the formulation of the T functions in (51). The remaining
condition of H, being continuous across the boundary leads to the follow-
ing (characteristic) equation of the shielded helix waveguide:

Jp'(kn) P2 h112 ']p(l"u) _ €& I“n I:Hp(zv(knc) _ CI{p(”’(’f-nc)

J () - }:j'k_g T, (k) = f—u A_,." H,® (k) — C[Ipm(f\'u”)

. (58)
_ Pt B k) = C'H,,m(k,:)]
o ke H P (") — ¢ H,M (ka')d
The characteristic equation, together with
k) = — b,
(59)

e

e o= (k' — hD)d
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determines the separation constants k, and k,". The transverse field
components of any two different modes are orthogonal to each other in
that

f(lllri X Hrm) d‘s

T, AT\ (9T B aT,,.'>
- j:,e.] [(elau +d, e._.ap) e + dn B2 ey (60)

aT ar."\ (aT b’ T ] :
-—_l'i — J” n m _ {," l m i \1
+ (P-_:('Jt' ‘ elau.) (egav O g edu “

= 6!“" .

The integration is to be extended over the entire cross section. The
quantity 8., is the Kronecker delta. To satisfy (60) for n = m requires
the normalization N, to have a certain value. Both (60) and N, are
ealeulated in the Appendix.

We have now determined all quantities in (51) and (52) except the
current and voltage coefficients. To find relations for them we sub-
stitute (52) for the field components into Maxwell’s equations and con-
vert to generalized telegraphist’s equations. We add

2 r
—ey (aT’" —d, h"f, %) = times (5)

s "k edu

and

BT?H i?"in 6T"i’
(elau t dn 2 el

) ~ times (6)

and integrate over the cross section. Using (11) and (60) and the bound-
ary conditions of (54), the result is:

(‘? I’:’ﬂl ]1 m I

*[faT
. + m - 1 ¢ [( -
dw J e wep Juom Z { s eu e 0u

Lo h% in)(aT,,. “y MaT,,.)

m
k* esdv edu k* esdv

aT ' aT.'\ (oT hn' 8T .
n g M Ol ) (0w A T2 s
+ (egat' d I clau-) (egar' d k2 elau)] ‘

— f g‘ X0 X T, des}.

x'

(61)
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Similarly, we add

r
—ey (aT"' + d.. T ) times (8)
e10u eadv

and

—e; (GT,,, — du 676’" ) times (9)

eadv e 0u

and integrate over the cross section:

I | el = MOE vl f E[(

dw

e0u

AT\ (9T aT.'
+da @)—) (e;&u T dm ezau)
T, a1, \( 9T aT..
+ (8201} — e10u )(egav dn 0 ):l s

_ f £C dd, X X’" 7T, ds}

ISquations (61) and (62) are the generalized telegraphist’s equations for
the curved helix waveguide. The specification of the normalization factor
in (60), which seemed rather arbitrary at that time, turns out in (61)
and (62) to be the only right one. Only with this normalization are the
mutual impedance and admittance coefficients symmetrical:

Yﬂm = Ymn y
an = Zmu y
as we must expect from the symmetry properties of the curved helix

waveguide structure.
Introducing travelling waves

Vm = ‘\/ITm (a'm + bm):
1 (63)
Im = ‘\/Kim (a'm - bm)

into (61) and (62) with K,, = h,./we , we get the more convenient form:
da, |, . . -
(;L,w + Jhmttm =7 E (Cmn+au + cun bu);

(64)
dbm

+ Jhm m '_,7 Z (cmn+bn + cmn_an)-
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The coupling coefficients in (64) are:

i L[ + o G ) - o )

(% - e ) — e ) s

- % Vihah, j; b [(e.a; 31';1} )(elau + dn %) (65)
(5~ 02— -5 o

i e s

+ = \/hh fg dd,,,""x'"TT ds.

Cimn

We are interested here only in coupling between circular electric and
other waves. Let the subscript m refer to a TLy. wave. Then J,(kn) is 0,
and

Tn =0, T, = Nudo(xnt).
From (60) we get as normalization factor:
1k 1
Lvaluation of (65) then yields:

7 . 1.2
+ ‘\/T—r hn ]\'m'l"n Jl(]“n) |: hm

dmNm =

Coun = noi T 1.2 1. = 1+ —
2La ho b2 — ki®

b
+ (hm + kY _Jalka) ] L
ha — ha) (k)| R

L hn 1 ll\‘mkn2

- \/é Emkmg - kri2 (GG)
b o ((hm + R\
b= h,, T (hm - h.n) Ya 1
R bl

) hw . 2 r2 2 1
[F (]‘n - 1)) n + ?)_1', + }L ( - ]bo-_a) y
1 ek ok, :
21 —— — V € 92
+ 2 (Y,. },.) ” ( kn” cot 8k, + T )]
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where
v k)
ke v/ (Kn)
and
5=p— 1.

With (64) and (66), the circular electric wave propagation in the curved
helix waveguide can be analyzed. Neglecting backward travelling waves
in (64) and considering only coupling between a circular electric wave
and one other mode at a time, the coupling coefficients ¢,,," and propa-
gation constants h, can be used in formulae like (49) and (50) to com-
pute circular electric wave loss and mode conversion in the curved helix
waveguide.

A theory of the helix waveguide, however, is complete only when the
transmission and conversion properties of waves at a transition from
metallic guide to helix guide is known. When we represented helix wave-
guide propagation in terms of normal modes of the metallic guide, we
obtained these transmission and conversion properties with the matrix
L in (42). To obtain the corresponding matrix in the present formula-
tion, we express a typical normal mode of the helix waveguide in terms
of normal modes of the metallic guide. To do this exactly, an infinite
set of linear equations in an infinite number of unknowns would have
to be solved. However, as before we may safely neglect reflected waves
and match only one pair of field components. The problem is then con-
siderably simplified, especially when we choose the longitudinal field
components to be matched.

The longitudinal field components of a typical forward mode in the

helix waveguide are
. WE X :
E_'u = JL!J,U. VF" E;_T Tnau b}

T 2
ha Xn
we |2

(67)

H., = jwe 4T, a..

Longitudinal field components of forward modes in the metallic wave-

guide are
) . wWE X(n)
Eany = jop /‘/ Boy Twaw ,
(n .

2
— Wi X([nl
I{Z[n] = Juwe B‘{; 2 T[nla[n] .

(68)
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Matching the field components:

Ezu = Z lﬁ‘:(n): }Isu = Z HE[H]

we can, by means of a I'ourier-Bessel expansion, express the wave am-
plitudes of the modes in the metallic waveguide in terms of the wave
amplitudes of the modes in the helix waveguide:

Aimy = [(m}na‘u 3
(69)
dim] = I[m]nﬂ‘u .

The coefficients Iima and f,, are the elements of a matrix L which
corresponds, in our present formulation, to the matrix L of (42).

To improve the approximation, we actually did not match the longi-
tudinal field components. Rather, we obtained two slightly different sets
of I’s by matching first the transverse components of the electric field
and then the transverse components of the magnetic field. We expect
that, if we would determine a set of Is from an exact solution of the
problem, the values would lie somewhere between the results of these
two calculations. Since the two approximate results are near together
for modes sufficiently far from cutoff, their geometric mean should fur-
nish a still better approximation to the exact . Typical coefficients [ are
thus given by:

l(m)n = Xn2 f T,,T(,,,) (]S)
5
(70)

e = 20 2y [ 1T a8,
Ik s

The integrals in (70) are extended only over the part of the cross section

which is inside the helix.

Caleulation of the reciprocal coefficients proved the law of reciprocity
Limy = lmn and L) = limia to be satisfied when the normalization
factor N, is chosen according to (60).

Evaluation of the integrals in (70) yields:

9

AT ]"n"]p(;r‘ln)

](m)u = ‘\/Epﬂ' 1\’ n3 5 1. 2?
lr\n- - lr\(pm)"

Ve PNu Bum k'S (E)
‘\/l’f[,ﬂni]2 - p': k I\‘“e - ]‘1[1’"']2,

where the expression for N, is given in (91) of the Appendix. There is
only conversion between modes of equal azimuthal order p.

(71)

I[m] n —
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IV. MODIFIED JACKET STRUCTURES

The helix waveguide which has been analyzed in the preceding sec-
tions has a wall structure of very special and highly idealized form. Prac-
tical jackets may intentionally or unintentionally be quite different from
this mathematical model. We shall discuss several modifications of the
ideal shielded helix waveguide which have proven to be important in a
practical helix waveguide.” They are either changes of the ideal structure
to simplify the manufacturing process or improve the performance, or
they are deviations from the ideal structure, which are unavoidable in
a real structure. It turns out that, for most of these modifications, we
need not work out a new theory (as in the preceding sections) but can
include their effects in the foregoing formulae. A quantity which is very
useful for these discussions is the wall impedance of the helix waveguide:

4.1 The Wall Impedance of the Helix Waveguide

In all cases of practical interest the jacket permittivity is high enough
so that

| B® | > | (49" — 1)/8 |
is well satisfied and the Hankel functions may be replaced by their

asymptotic expressions. The characteristic equation (58) for the normal
modes of the helix waveguide then reduces to:

1J,) (k) 'k’ k) o 1 e
F - T Tk n - 72
fen J p(kn) kaAk? Jﬁ’(kn) e ot cot ok ( )

The right-hand side of (72) can, to the same approximation, be expressed
by the impedance

Bon _ 7 X% tan ok, (73)

v mEE

Z=—

=

which the wall presents to a typical mode of the helix waveguide:

1 J, (k) _ p'ha’ Tplka) _ —F (74)
Fn Jp(kn) ka2 T (kn)  weaZ”

Thus, the separation constant %, and with it the helix waveguide mode is
determined by the wall impedance alone.

It is, on the other hand, quite easy to determine the wall impedance
of a composite jacket structure to the same approximation. The physical
meaning of the approximations which have been made to derive (73)
is 8 <€ 1. The thickness of the dielectric jacket or the penetration of waves
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into it is small enough so that the coaxial structure can be considered
plane in cartesian coordinates. Furthermore, the dependence on the
azimuthal coordinate ¢ or v respectively is of so low an order compared
to the r or w and z or w dependence that it may be neglected. The wall
impedance we then calculate and quite generally use in the characteristic
equation (74) is that of a symmetrical TM wave at a plane interface.
Tor these waves the wall impedance of (73) is an exact representation
of the boundary condition.

4.2 Unshielded Helix Waveguide

When the lossy jacket surrounding the helix is either so thick or has
so high a loss factor that the electromagnetic field has died away before
it reaches the metallic shield, we may remove it or substitute a different
supporting structure without affecting the electrical performance of the
helix waveguide. Some formulae in Section IIT may be simplified in this
case, by letting b, the radius of the shield, go to infinity. For example,
the characteristic equation (58) for the normal modes of the helix wave-
guide reduces to:

Jp (k) Pha’ Jy(ka) ek [H,,“’"(k,f) S 1—1,,““(1»-;)] (75)
k) Tl T (kn) o kot LH® (k) T b Hy®' (k)

Likewise, the expression (91) for the normalization factor N, in the
appendix can be somewhat simplified to give (92).

Instead of (72), the form (74) of the characteristic equation may be
used; the wall impedance is in this case obtained from (73) by using the
asymptotic value for the tangent function:

Z =X, (76)

4.3 Dielectric Matching Layer

The absorption of unwanted modes in the helix waveguide is eritically
dependent on the permittivity of the lossy jacket. In constructing a
helix waveguide it is difficult to find a jacket material which has both a
suitable value of complex permittivity and good enough mechanical
properties to support the helix properly. A layer of lossless dielectric
material in between helix and lossy jacket can serve to overcome both
of these difficulties to a certain extent. By choosing a suitable material
for this layer the bond between helix wires and jacket can be strength-
ened, thus improving the mechanical strength of the structure. Electri-
cally, this layer acts as a radial transmission line-section. When made
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of the proper thickness, this transmission line transforms the wall im-
pedance to more suitable values as far as unwanted mode attenuation
is concerned.

Let Z be the input impedance of the lossy jacket as given for example
by (73) or (76); then the new wall impedance in front of the dielectric
layer is given by the following transformation:

Z + jZ, tan xu!

= g 2 T JA AT Xl
! Z1 + jZ tan ant

(77)
When ¢ is the permittivity of the matching layer, the radial prop"uga-
tion constant is

Xnt = \/m”,uel — h,?

and the wave impedance is

Z, = X
wep ’
The expression in (77) must be substituted for the wall impedance in
the characteristic equation (74).

4.4 Laminated Jacket

The foregoing consideration of one dielectric layer can be extended to
a semi-infinite stack of laminated material having alternate thin layers
of lossy and nonlossy material. It has indeed been proved very useful
to have the helix jacket made of such laminations. Excellent mechanical
and electrical properties have been achieved in this structure.

The wall impedance presented by a semi-infinite stack of alternating
layers is found by iterating the single layer transformation of (77). This
calculation has been made in a theory of laminated transmission lines:*

Th — Tw 1

S —_ll = - 7'1-) 2 — .
Z = 5T + 5TL V(Ty + Ta) 4 (78)

S

|

-
€, ta
€ b

Fig. 2 — Laminated jacket of helix waveguide.
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The T, are the elements of a transmission matrix relating input values
of the electric and magnetic field strengths to the output values in one
elementary double layer of the stack. With the constants and dimensions
of Fig. 2, they are defined by

1 - .
T = €08 xml1 COS Xnals — — SIN Xpify SIN Xna2la,
2

T = jZy sin xuify €08 Xl + jZa SN Xaele €OS Xnilt,

(79)

J o |
Tar = o sin xut1 €OS xuele + ,i sin xuefz cos Xl ,
1 2

l7Al _ B / 2 . .
To = cos xuh1 COS xuols — 7 sin yuity Sin Xpefs ,
=31
where
2 2 2
X = wpe — R,

2 2 2
Xn2 = W €2 — hri

are the radial propagation constants in each individual layer and

Xnl
7z, = Xt
We
Xn2
22 — Xn ,
weEa

are the radial wave impedances in each individual layer.
If the laminates are fine enough

‘ Xnil1 l <« 1,
| Xnala E < 1:

the trigonometric functions may be replaced by their Taylor series. Then
the wall impedance of (78) reduces to

= 15
wVee 2 werer el + el

g xw 1t wpee —Rhiate) 0 (g

The first term of this expression is the radial wave impedance of a
homogeneous hut anisotropic medium. The permittivity of this medium
is, for an electrie field polarized in radial direction,

eieats + 4)

B 6211 + els (81)

r
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and, for an electric field polarized in longitudinal or azimuthal direction,

eili 1+ el
€ =, (82
b+ 16k )
The propagation constant of this anisotropic medium in (80) is
x,,rg = wuer — b (83)

The second term in (80) is a correction for the finite thickness of the
laminae.

For calculating wave propagation in a helix waveguide with a lami-
nated jacket, (78) or (80) must be substituted for the wall impedance in
the characteristic equation (74).

4.5 Finite Size of Helix Wires

In the preceding analysis the wires of the closely wound helix had been
assumed to be of so small a size that the helix could be represented by
an infinitely thin sheet ideally conducting in azimuthal direction and
nonconducting in longitudinal direction. This anisotropic conducting
sheath, however, does not always represent the helix satisfactorily.
Helices wound from the smallest feasible wire sizes—3 to 10 mils
diameter (American Wire Gauge Nos. 30 to 40) — are not completely
permeable to longitudinal electric fields. Displacement currents partly
bridge the gap between successive turns. By partly shielding the jacket
from the helix interior, they may change the propagation characteristics
substantially.

This shielding effect is most easily taken into account by a capacitance
in parallel to the input impedance of the jacket. The capacitance of an
infinite grating of cylindrical wires is calculated in the Appendix. With
the dimensions of Tig. 3, the capacitance per square of the helix surface

is given by
d In 4
C/square = ed (m — T)’

Fig. 3 — Helix wires.
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where e is the permittivity of the space in between wires. The corrected
wall impedance is then obtained from

7= 3 +iea (g - 12). (84
Again, this expression must be substituted for the wall impedance in
the characteristic equation (74).

All expressions for the wall impedance [(73), (76), (77), (78), (80),
(84)] contain implicitly the axial propagation constant jh, of the particu-
lar mode under consideration, and it is only through the characteristic
equation (74) that this propagation constant will be determined.

In Section II, on the other hand, where the helix waveguide propaga-
tion is expressed in terms of normal modes of the solid wall guide, the
wall impedance as introduced in the boundary condition (18) is not
associated with a particular mode. The propagation constant jh, remains
undetermined. The boundary condition (18) ecannot exactly replace a
complex jacket structure.

IPor all eases, however, in which the modes under consideration are far
from cutoff, the propagation constants are nearly equal to that of free
space. We may then replace h, by wv/pe in all expressions for the wall
impedance and use them in (18) and the corresponding equations.

V. APPLICATIONS

Three different applications of the helix waveguide for circular electric
wave transmission have been mentioned in the introduction. The for-
mulae of the preceding sections will now be used to calculate the trans-
mission properties of helix waveguide in the different applications. The
theoretical values will be compared with results of measurements.

5.1 Helix Waveguide Mode Filter

It has been shown both theoretically and experimentally that the
transmission characteristic of the eircular waveguide can be substantially
improved by the insertion of mode filters at intervals along the wave-
guide.” Conversion of energy to unwanted modes and reconversion at
any imperfections of the waveguide seriously disturb the TE,, transmis-
sion characteristic. Mode filters, which provide low loss for the TEy
mode and high loss for all unwanted modes, greatly reduce the effects
of mode conversion-reconversion by dissipating most of the converted
power in unwanted modes before reconversion.

Helix waveguide has the desired properties of low TE,, attenuation
and high loss for all other modes. It therefore is well suited for a mode
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filter. To design a helix waveguide mode filter one would choose a lossy
material for the jacket which maximizes the attenuation constants of
the unwanted modes of propagation. A detailed analysis® of the helix
waveguide modes has shown, however, that there is no unique solution
to this problem. As one changes the complex permittivity of the jacket,
the attenuation constants of some modes increase while those of others
decrease after passing through a maximum. Furthermore, a normal
mode of a metallic waveguide incident in a helix waveguide will scatter
its power into quite a few modes of the helix waveguide. As a result, a
helix waveguide section inserted into a metallic waveguide will not only
dissipate power in unwanted modes but will also introduce cross-coupling
between unwanted modes. To find the transmission and conversion prop-
erties of a helix waveguide in the arrangement of I'ig. 4 the matrix L
of (42), as a scattering matrix between metallic waveguide modes and
helix waveguide modes, must be combined with the transmission matrix
T of the helix waveguide to give the relation between mode amplitudes
at the input A, and output 4, :

Ay = LTLA;, (85)

where T is a diagonal matrix, the elements of which are transmission
coefficients of the helix waveguide modes

b = €%, (86)

Equation (85) has been evaluated for a typical helix waveguide with a
relative permittivity e¢/es = 4 — j1, and an inner radius to wavelength
ratio /A = 4.70. This evaluation was extended over the TE, , TMy
and TE;, modes of the metallic waveguide, and it was sufficient to take
only five modes (TEy; , TEw, TMy , TEj;; and TMy;) of the helix wave-
guide into account. The propagation constants jh, of these helix wave-
guide modes were taken from the previously cited analysis of the helix
waveguide.” For the elements of L, expressions (71) were substituted.
The resulting transmission loss and conversion loss curves are shown in
I'ig. 5(a).

NORMAL MODES: A W A

|
i
i

LTI

Fig. 4 — Matrices of mode filter.
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Fig. 5 — (a) Caleulated transmission and conversion loss in helix waveguide:
a/x = 4.70, semi-infinite jacket with e/eq = 4 — jl; (b) measured transmission
and conversion loss in helix waveguide of Fig. 6, f = 55.5 kme.

The results of measurements on an 18 in. long section of 2 in. 1.
helix waveguide are shown in Fig. 5(b). This measured waveguide sec-
tion has the helix wire dimensions and a jacket structure as shown in
Tig. 6. The values of anisotropic permittivity of the laminated lossy
material have been determined separately by impedance measurements
on small samples in RG-08/1 waveguide. The radial impedance of this
laminated material is given by the first term in (80). The layer of glass
roving between the lossy laminate and the helix wires transforms this
impedance according to (77). Iinally, the ecapacitance between helix
wires changes the radial impedance according to (84). The resulting
wall impedance is Z = (147 + j22)Q. The mathematical model of a
helix waveguide which was used to caleulate the curves of Fig. 5(a) has
an isotropic and homogeneous jacket of relative permittivity e¢/ep = 4 —
j1. Its wall impedance as ealeulated from (76) is Z = (162 4+ j14)Q. Com-
paring both wall impedances we find that the measured helix waveguide
of Figs. 5(b) and 6 and the mathematical model of Fig. 5(a) are nearly
equivalent. Thus the ealculated curves of Fig. 5(a) may be compared
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[+
———— | ————=

e

Tig. 6 — Helix waveguide structure. Helix: No. 37 copper wire with heavy
Formex coat; Mediums I and I1I: Fiberglas laminated with epoxy resin; Medium
II: sLx layers of tin oxide-coated glass cloth; e./e0 = 9 — jl13, e-/e0 = 5 — jl at
55.5 kme.

to the measured curves of Fig. 5(b). We find indeed very good agree-
ment.

The transmission and conversion loss of the various modes were meas-
ured with millimeter-wave short pulse test equipment,” using the ar-
rangement shown in Fig. 7. The pulses had a hase width of about 3
millimicroseconds. Mode discrimination in the mode couplers and mode
transducers combined with time diserimination based on the different
group velocities of modes in the 220 ft. long waveguide provided sufficient
over-all diserimination to identify energy travelling in different modes.

The results of Fig. 5 do not give an answer for designing helix wave-
guide for mode filtering purposes. They do, however, give assurance
that the theory gives correct results even for quite complicated jacket
structures, and that this theory may safely be used to design helix wave-
guide mode filters.

3Dp8 MODE N MODE m 2" HELIX PISTON
COUPLER TRANSDUCER COUPLER LINE WAVEGUIDE \

\
PULSED — n'n — ' I
TRANSMITTER 3 0TI~ 3

| |
'\AN |~—220 FT—>,-¢-—%~-4

[T ~—~
L PULSE

RECEIVER

Fig. 7 — Measurement of transmission and conversion loss in helix waveguide.
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The high amount of mode conversion which is caused by a helix wave-
guide of a certain length is perhaps surprising. The mode conversion
loss between Ty and TMy; is as low as 6 db in the case treated above.
There may be cases in which this high mode conversion is undesirable.
In order to reduce it, the abrupt transition from solid waveguide to
helix waveguide may be replaced by a taper in wall impedance. The
formulae of Section II give the basis to analyze such a wall impedance
taper. The generalized telegraphist’s equations in this section must then
be solved for varying coupling coefficients instead of constant coupling
coefficients.

5.2 Intentional Bends in Helix Waveguide

The analysis of a tapered curvature bend® has shown that the circular
electric wave can be transmitted around bends with very low losses in
a waveguide in which the degeneracy of equal phase velocity between
TEs and TMy; is broken up by lossless means. The shielded helix wave-
guide having a low-loss dielectric between the helix and the highly con-
ducting metallic shield lends itself perfectly to this application.

A curvature taper on both sides of the bend serves to transform the
normal mode of the straight pipe into the normal mode of the curved
region and vice versa. A practical form for a tapered curvature bend is
shown in Fig. 8; the region of constant curvature has vanished and all
that remains is a triangular curvature distribution. This curvature dis-

2l

I/R —_—

Fig. 8 — Triangular curvature distribution of an elastic deflection.
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tribution can easily be made by bending the waveguide elastically over
a fixed center support with forces acting on both ends.

The residual mode conversion in such a triangular curvature distri-
bution is ealculated by solving the coupled line equations for linearly
varying coupling coefficients with suitable approximations for gentle
curvature. Thus, at the end of a linear curvature taper of length [ each
mode n coupled to TEy through curvature causes a mode conversion
loss of

Aen = Re[ CO"; (1 — it — A’y,,l)] nepers, (87)
Ayl

where ¢, is the coefficient of curvature coupling (66) between TEy and
a coupled mode n at the point of maximum curvature, and Ay, is the
difference in propagation-constant between the coupled mode n and
TEq .
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Tsz—b\ - — 7.0
\ ; - - \ 6.5
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TE 12
TM” —a-
TE —=f

o

Fig. 9 — Solution of characteristic equation for shielded helix waveguide with
lossless jacket; e/en = 2.5, a/x = 4.70
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Fig. 10 — Difference in phase constant and coefficient of curvature coupling
to TIEg in shielded helix waveguide; a/» = 4.70.

The TEy mode of the straight waveguide in passing through the curva-
ture taper is transformed to the local normal mode of the curved region.
It suffers a slight change in field configuration and consequently a change
in attenuation constant. Thus, in a linear curvature taper of length [
each mode coupled to TEy by curvature causes an additional normal
mode loss of

Am = Re [;ﬁ\")’i] nepers. (88)

There is another way to caleulate this normal mode loss: D). Marcuse
has solved the boundary problem of the curved helix waveguide directly
for the TEy wave." He obtains a closed expression for the curvature
attenuation, which is in most cases easier to evaluate than a sum of the
terms given by (88).

To provide data for the design of a low-loss helix waveguide for inten-
tional bends, several of the expressions in Section IIT have been evalu-
ated. In Fig. 9 the solution of the characteristic equation (72) is plotted
in the range of interest for p = 1. A relative permittivity of 2.5 is a
typical value for low loss dielectric materials. The ratio a/N = 4.70
corresponds to a 2 in. 1.p. helix waveguide operated at 55.5 kme. In
Fig. 10 the coefficient of curvature coupling from (66) and the difference
in phase constant have been plotted for this helix waveguide. The mode
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Fig. 11 — Factor of mode conversion loss in linear curvature taper of shielded
helix waveguide; e/es = 2.5, a/x = 4.70.

conversion factor shown in Fig. 11 is found by combining the two curves
of Fig. 10. This factor facilitates the calculation of mode conversion in
the tapered curvature bend of Iig. 8.

An inspection of these conversion loss figures as well as of D. Marcuse’s
normal mode loss figures shows that, for optimum performance in a
tapered curvature bend, the distance between helix and shield should
be about a quarter of the radial wavelength in the jacket material. In
no case should this distance approach a half radial wavelength anywhere
in the frequency range.
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Shielded helix waveguide with a low-loss jacket has been made with
materials and construction techniques presently available in Bell Tele-
phone Laboratories. The details of this waveguide are shown in Fig. 12.
The TEq, loss in this structure was measured by a resonant cavity method
both for the straight guide and the guide bent to various curves between
0 and 4.2 degrees. The curvature distribution was that of I'ig. 8. Reason-
able agreement, between measured and calculated values of curvature
loss was found. The measured loss followed closely the square-law de-
pendence on curvature. At a total bending angle of 4.2 degrees the addi-
tional curvature loss in the 9 ft. long curved section was measured at
55.5 kme to be 0.004 db. This figure is nearly equivalent to doubling the
length of the waveguide. Mode filters on both sides of the curved section
presented enough dissipation to avoid spurious mode interference in the
measurements.

5.3 All-Helix Waveguide

A third and probably the most important application is a transmission
line entirely consisting of helix waveguide. Present experimental expe-
rience shows that an all-helix waveguide line must present enough loss
to unwanted modes so that power in these modes is dissipated at the
same rate as it is converted at imperfections of the waveguide. In addi-
tion, the jacket of the helix waveguide should be designed so as to mini-
mize the circular electric wave losses in bends, allowing relaxation of
the straightness tolerances. Obviously, these two requirements contra-
dict each other to a certain extent. A compromise will have to be chosen

1
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' |
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1.000 !
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Fig. 12 — Shielded helix waveguide with low loss jacket. Helix: No. 37 copper
wire with heavy Formex coat; Medium I: glass eloth laminated with epoxy resin,
e/eo = 4 — j0.1 at 55.5 kme; Medium II: copper tubing.
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Fig. 13 — Propagation constants in helix waveguide; a/x = 4.70, ¢ = 4. Rep-
resentative values of ¢’ are shown on the curves.

between sufficiently high unwanted mode loss and sufficiently low Ty
curvature loss. This compromise will be made on the basis of tolerances.
While the manufacturing tolerances call for a mode-filtering helix wave-
guide, the laying tolerances call for low TEg loss in random curvature.

However, it is to be expected that, as the art of making helix wave-
guide is improved and imperfections can be controlled better. the re-
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quirement of low curvature loss will become more important and less

unwanted mode loss ean be tolerated.

The first information needed for the design of a helix waveguide in
this application is the unwanted mode loss. It is contained in a detailed
analysis of the unwanted mode propagation in helix waveguide.” Some
of the results are taken from this analysis and plotted in Figs. 13 and 14.

Also plotted in Figs. 13 and 14 are the approximate values of the
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Fig. 14 — Propagation constants in helix waveguide; a/x = 4.70, ¢ = ¢". Rep-

resentative values of ¢” are shown on the curves,
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propagation constants which have been obtained as solutions of the
characteristic equation (44) in Section II. The characteristic equation
(44) has been reduced to a quartic equation by taking only four modes
of the metallic guide (TE,, , TM;, TE:, TM;s) into account to repre-
sent the lower order modes with p = 1 in the helix waveguide. From Figs.
13 and 14 it has to be concluded that this representation is obviously
a very poor one. At still fairly high values of the jacket permittivity,
there is already a marked deviation of the approximate values from
the exact curves. For a better representation in this large waveguide size,
many more modes of the metallic guide have to be taken into account. It
is therefore more convenient in most helix waveguide problems to use
the representation of Section IIT with modes of the helix waveguide
rather than the representation of Section II with modes of the metallic
guide.

Imperfections like tilts and offsets or changes in diameter in an other-
wise ideal guide convert TEy power to unwanted modes. The effect of
most of these imperfections in metallic waveguide has been analyzed in
detail by 8. P. Morgan, Jr., as quoted elsewhere." More recently, another
analysis has been made."

For the helix waveguide the results of this analysis can be combined
with the seattering matrix L of (42) to give the conversion from TEy
to the unwanted modes in the helix waveguide at these imperfections.
Thus, given a certain distribution of imperfections in a helix waveguide,
mode conversion and reconversion effects can be caleulated. From such
calculations the required unwanted mode loss to reduce the degrading
effects of imperfections on TEy, propagation to an acceptable degree can
be found.

The second requirement for an all-helix waveguide is low TEy curva-
ture loss. To find the TEq curvature loss the expressions (47) or (66)
for the coefficient of curvature coupling can be evaluated. The results
of such an evaluation are plotted in Figs. 15 and 16. Here again the
approximation (47) with only four modes (TEy;, TMy, TEwp, TMs)
of the metallic guide deviates markedly from the exact values according
to (66) for a low permittivity of the jacket.

Note that in the curved helix waveguide the TEgy-wave couples to all
TM,, and TE,, waves. In the curved metallic waveguide the TEy cou-
ples to all TE;, but only to TMy; .

With the coupling coefficients on hand, TEy loss and mode conversion
can be calculated with formulae like (49) and (50). The perturbation
of the Ty, propagation constant in (49), especially, means an increase
o, of TEy attenuation. In Fig. 17 this attenuation inecrease a, has been
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Fig. 15 — Coupling coefficient between TEy; and unwanted modes in eurved
helix waveguide; a/x = 4.70, ¢ = 4.

plotted in a reduced form. The approximate values have again been
obtained from the representation of Section II taking only four modes
(TEy, TMy, TEn, TMys) into account. They deviate substantially
from the exact values as obtained from Section IIT and equation (66).
As mentioned earlier, ., can also and more conveniently be calculated
from D. Marcuse’s normal mode solution of the curved helix waveguide."
Values for . of that calculation coincide with the exact curves of Fig.
17.
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Tig. 16 — Coupling coefficient between TEy and unwanted modes in eurved
helix waveguide; a/x = 4.70, ¢ = €.

The mode conversion which occurs in regions of changing curvature
can be caleulated from (50) if the change in curvature is abrupt, or from
a solution of the coupled line equations with changing coupling coeffi-
cients when the curvature is changing gradually. Because of the laws of
elasticity, the most common kind of curvature change, either intention-
ally or unintentional, is the linear curvature taper. The mode conversion
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loss in a linear curvature taper is given by (87). From this expression
it can be estimated if mode conversion effects in a changing curvature
are large enough to influence the design of a helix waveguide. Usually
it is found that this mode conversion is small enough to be neglected
and that only the curvature attenuation e, must be made as small as
possible to optimize the performance of an all-helix waveguide in bends.

Here again, as in the case of the shielded helix waveguide with a loss-
less jacket, a certain distance between helix wires and shield minimizes
the curvature attenuation. The distance should be about a quarter of
the radial wavelength in the jacket material. It should approach halt of
this wavelength nowhere in the frequency range.

Measurements of TS, attenuation in bends have heen made in the
two different helix waveguides shown in IFig. 18. Tight-foot-long sections
of the waveguides were bent elastically to the triangular curvature dis-
tribution of Iig. 8. The average curvature of this distribution is found
by taking the square-law dependence between loss and eurvature into
account. The TEy transmission loss was measured with a resonant
cavity method for varying degrees of curvature. In the lossless helix
waveguide, for intentional bends the TEy, transmission loss is composed
of normal mode attenuation and mode conversion loss. However, in the
present test of the lossy helix waveguide mode conversion losses can be
neglected as compared to normal mode attenuation. The measured in-
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Fig. 17 — Inerease of TEy attenuation in curved helix waveguide; a/x = 4.70.
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crease in TEy transmission loss in the curved waveguide can therefore
be interpreted as additional TEq, attenuation per unit length. The results
follow closely the square-law dependence on curvature and agree with
theoretical values. The lower value of curvature attenuation in the
second helix waveguide doubles the theoretical TEq attenuation at a
radius of curvature of 320 ft.

VI. CONCLUSIONS

Circular electric wave loss, mode conversion and unwanted mode loss
can be calculated from generalized telegraphist’s equations for the curved
helix waveguide. A wall impedance can be used to represent the bound-
ary condition at the helix interface. The effect of a composite jacket
structure and of finite size helix wires can be taken into account in this
wall impedance.

Three different applications of shielded helix waveguide for eircular
electric wave transmission require different designs for optimum perform-
ance. Helix waveguide as mode filter should have a highly lossy jacket
between helix and shield for high unwanted mode absorption. An all-
helix waveguide transmission line should have a medium lossy jacket
to reduce TEqy loss in gentle bends and still maintain sufficient unwanted

s

o

e —————8 ——————
]

1 |
| |
| |
| |
| |
| |
: |
I |
¥ B , ) . ¥

Tig. 18 — Shielded helix waveguide with lossy jacket. Helix: No. 37 copper wire
with heavy Formex coat; Mediums I and III: glass cloth laminated with epoxy
resin; Medium II: carbon loaded paper laminated with epoxy resin, (left) e./e =
15 — 14, /o = 9 — 72; (right) e:/e0 = 4.7 — j2.1, &/ = 3.9 — 0.6 at 55.5 kme,
Medium IV: steel tubing. Ty curvature loss a.(R*/a) at 55.5 kme: (left) mea-
sured, 79, caleulated, 84; (right) measured, 48, calculated, 40.
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mode absorption. Ior sharp intentional bends, the material between
helix and shield should have low losses and the shield should be highly
conducting. In all three applications the optimum distance between helix
and shield is a quarter of the radial wavelength in the jacket material.
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APPENDIX

Normalization of Modes in Helix Waveguide

The orthogonality relation (60) for n # m has been proven for expo-
nential modes on an inhomogencous cylindrical structure bounded by
opaque walls or unbounded."

The right-hand side of (60) can be rewritten as

Vn[,,, ,[ (E‘" X Hfm) dS

= [ £ [(grad T ) grad 7,) + d.d,(grad T,/ )(grad T.")  (89)
S €y

- ];"; (flux T,)(grad 7,)) + d,(flux 7,")(grad Tm)] dsS

Partial integrations, like Green’s theorem,

a!l’

f(gl'ld T‘u)(gldd TY,,, I']S f?‘m f".'! dv + anETnT'm d‘—q’
S

and

T aT
. ” L) dS = 1 o dy = T, 25" 60 dp
L(ﬂux T.)(grad T,,) d j;F eadv s v /: 1 o o @ dv
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reduce (89) to

f 'E‘ an (Tn Tm + dn dm h_".l,: Tﬂ’T‘[n’) dS
S € k2

7] 1!
+ fi T 7w + d, &J e dv
v € e 0u eadv

€ h : 7 6T 8’1‘ ’:l
- - dm _‘g Tm —= — d,, - €9 db'.
v €p ’\',3 I:Bgal) Glau

The integrand of the last term is continuous across the helix boundary
and vanishes at the shield. It therefore cancels out;

Iv j‘ (Etn X Iltm) ([‘5 fei Xr:2 (Tyu Tlu + dudm 1;”.: ?1 ’ m ) dS

nim S €0

€ aT, ar,’
-’rm dn o 2] 1v.
+ f (elﬂu egav) ey

From (90) the orthogonality relation can be verified for n = m.

To caleulate the normalization factor N, we substitute (51) for the
T functions in (90) and perform the integrations. Since in all cases of
practical interest | k," | > | (4p" — 1)/8 |, the Hankel functions may be
replaced by their asymptotic expressions. Then, in order to satisfy (60)
the normalization factor has to be

V2 [It,. 2 1y 2 1 2 ( P’ )
Nn = — ]i.u l/ n e I‘ln ]- -
‘\/ﬂ' Jp(ll‘u) "0 p ( p ) + Y”.l + ].;Zaz

1 . . ]]n Bknc —1/2
2 ¥ " 'u - Vi T o o1 . y
T (Yn P ) € ke’ (2 cot " + sin? :Sk.,f):l

J (k)
knd o' (kn)
For the unshielded helix waveguide deseribed in Section I'V the normali-
zation factor is given by:
(- )
Ta?

‘\/:Z [huq 2 _'
, T ( n
1 9 o € I e
— — PV jo & fin .
+ 2 (Yﬂ P }n) + p” k,,ﬂ’]

= \/w a
For the other jacket structures it is not an easy matter to calculate
the normalization factor. Finding the field vectors in the jacket region

(90)

(91)

where

—
I.ﬂ_

Nu

n
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and integrating over the cross-product of the transverse components is
quite involved, even when asymptotic approximations such as in (91)
are substituted. A further approximation, however, eliminates this prob-
lem. The integral on the left-hand side of (89) is the flux of the Poynting
vector, through a waveguide cross section. From the dimensions of the
helix waveguide we may safely conclude that for a typical mode the
power flowing in the jacket is small compared to the power flowing inside
of the helix in all cases of practical interest. Then we may extend the
integral in (89) only over the helix interior and neglect the last terms
under the square root of (91) or (92).

Capacitance of Plane Grating of Cylindrical Wires

The contour in the z-plane of Fig. 19 is an elementary cell of the field
surrounding a plane grating of cylindrical wires. Its transformatlon to
the strip 0 £ u = = of the w-plane is approximately effected by™

_ D -1 21 + 1
z = A E) [tanh T a a] (93)

nh™!

ﬁ

—1
Z|+ﬂ

and

! cos w — —, (94)

Z PLANE W PLANE

Fig. 19 — Conformal mapping of wire grating.
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where » is the root of

coth® (1’5“_:”) L”—ri(l-l-v)—l (95)
and a is given by
=142c¢ ot‘—)—ﬁ(l-i-v) (96)

A uniform electrie field polarized in the direction of the y-axis is fringed
by the grating. The capacitance of this fringing field is the difference
between the capacitance of the z-plane contour and a parallel plate con-
denser of plate distance D/2 and extension 2a:

C . 2 4x -
:‘l‘l‘.,:(;”‘ﬁ)- 07)
Substituting for v from (93) and (94) we get, instead of (97),
v 2 —
C_2 [Lu(a + 1) + ona — 1) In(a — 1):|. (98)
€ T 1+ v

For D/d = 1 the root of (95) is v = 0. When d is only slightly smaller
than D, as is the case in a closely wound helix, » is small and the argu-
ment of the cot in (95) is nearly =/2, while the argument of the coth is
very large. Then, with

da+n=a+w

the cot and coth functions can be approximated by:

1; (1= =
T ( + 1’) _ —7 d
coth——]j ” =1+ 2¢ D—a
Instead of (95) we get
7r2 2 . (l
TS poa

Substituting for a from (96) into (98), the capacitance is

(8 d d In 4
C_od _ e,
(D_d ,) (99)
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