A Class of Bi;nary Signaling Alphabets

By DAVID SLEPIAN
(Manuseript received September 27, 1955)

A class of binary signaling alphabets called “group alphabets” s de-
scribed. The alphabets are generalizations of Hamming's error correcting
codes and possess the following special features: (1) all letters are treated
alike in transmission; (2) the encoding vs simple lo instrument; (3) maxi-
mum likelithood detection s relatively simple to instrument; and (4) in
certain practical cases there exist no better alphabets. A compilation is given
of group alphabets of length equal to or less than 10 binary digits.

INTRODUCTION

This paper is concerned with a class of signaling alphabets, called
“group alphabets,” for use on the symmetric binary channel. The class
in question is sufficiently broad to include the error correcting codes of
Hamming,' the Reed-Muller codes,” and all “systematic codes”." On
the other hand, because they constitute a rather small subclass of the
class of all binary alphabets, group alphabets possess many important
special features of practical interest.

In particular, (1) all letters of the alphabets are treated alike under
transmission; (2) the encoding scheme is particularly simple to instru-
ment; (3) the decoder — a maximum likelihood detector — is the best
possible theoretically and is relatively easy to instrument; and (4) in
certain cases of practical interest the alphabets are the best possible
theoretically.

It has very recently been proved by Peter Elias' that there exist group
alphabets which signal at a rate arbitarily close to the capacity, C, of
the symmetric binary channel with an arbitrarily small probability of
error. Elias’ demonstration is an existence proof in that it does not
show explicitly how to construct a group alphabet signaling at a rate
greater than C' — & with a probability of error less than § for arbitrary
positive 6 and ¢. Unfortunately, in this respect and in many others, our
understanding of group alphabets is still fragmentary. _

In Part I, group alphabets are defined along with some related con-
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cepts necessary for their understanding. The main results obtained up
to the present time are stated without proof. Examples of these concepts
are given and a compilation of the best group alphabets of small size
is presented and explained. This section is intended for the casual reader.

In Part II, proofs of the statements of Part I are given along with
such theory as is needed for these proofs.

The reader is assumed to be familiar with the paper of Hamming,'
the basic papers of Shannon® and the most elementary notions of the
theory of finite groups.®

ParT I — GrOUP ALPHABETS AND THEIR PROPERTIES
1.1 INTRODUCTION

We shall be concerned in all that follows with communication over the
symmetric binary channel shown on Fig. 1. The channel can accept
either of the two symbols 0 or 1. A transmitted 0 is received as a 0 with
probability g and is received as a 1 with probability p = 1 — ¢: a trans-
mitted 1 is received as a 1 with probability ¢ and is received as a 0 with
probability p. We assume 0 < p < 5. The “noise” on the channel
operates independently on each symbol presented for transmission. The
capacity of this channel is

C =1+ plog:p + ¢ logg bits/symbol (1)

By a K-letter, n-place binary signaling alphabet we shall mean a collec-
tion of K distinet sequences of n binary digits. An individual sequence
of the collection will be referred to as a letler of the alphabet. The integer
K is called the size of the alphabet. A letter is transmitted over the
channel by presenting in order to the channel input the sequence of n
zeros and ones that comprise the letter. A detection scheme or detector for

q
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q

Fig. 1 — The symmetric binary channel.
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a given K-letter, n-place alphabet is a procedure for producing a sequence
of letters of the alphabet from the channel output.

Throughout this paper we shall assume that signaling is accomplished
with a given K-letter, n-place alphabet by choosing the letters of the
alphabet for transmission independently with equal probability 1/K.

Shannon® has shown that for sufficiently large n, there exist K-letter,
n-place alphabets and detection schemes that signal over the symmetric
binary channel at a rate R > C — ¢ for arbitrary ¢ > 0 and such that
the probability of error in the letters of the detector output is less than
any 6 > 0. Here C is given by (1) and is shown as a function of p in
Fig. 2. No algorithm is known (other than exhaustvie procedures) for
the construction of K-letter, n-place alphabets satisfying the above
inequalities for arbitrary positive é and ¢ except in the trivial cases C = 0
and ¢ = 1.

1.2 THE GROUP B,

There are a totality of 2" different n-place binary sequences. It is fre-
quently convenient to consider these sequences as the vertices of a cube
of unit edge in a Euclidean space of n-dimensions. For example the 5-
place sequence 0, 1, 0, 0, 1 is associated with the point in 5-space whose

1.0
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Fig. 2 — The capacity of the symmetric binary channel.
C=1+plogp+ (1 —p)loga (1 — p)
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coordinates are (0, 1, 0, 0, 1). For convenience of notation we shall gen-
erally omit commas in writing a sequence. The above 5-place sequence
will be written, for example, 01001.

We define the product of two n-place binary sequences, mds - - - @, and
bibz - - - b, as the n-place binary sequence
a; + b, as F bay oo, @y + ba

Here the a’s and I’s are zero or one and the 4 sign means addition
modulo 2. (Thatis0 +0=1 4+ 1 =0, 0+1=140=1)
For example, (01101) (00111) = 01010. With this rule of multiplication
the 2" n-place binary sequences form an Abelian group of order 2"
The elements of the group, denoted by 7', Tz, + -+, T, say, are the
n-place binary sequences; the identity element I is the sequence 000 - - - 0
and

IT; =7 ="T:; TT;="TT:; TuTiTe) = (T:T)NTe5
the product of any number of elements is again an element; every ele-

ment is its own reciprocal, 7; = T, T = 1. We denote this group
by B, .

All subgroups of B, are of order 2 where k is an integer from the set
0,1, 2, -+, n There are exactly
(21': _ 20)(271 _ 21)(211 _ 22) - (Zn _ 2&—1)
(2 — 20)(2F — 21)(2F — 2%) - .. (28 — 2671) (2)

= N(n,n — k)

N, k) =

distinet subgroups of B, of order 2%, Some values of N(n, k) are given in
Table 1.

TapLe | — SoME VaLues oF N (n, k), THE NUMBER OF SUBGROUPS
oF B, oF OrpEr 2°. N(n, k) = N(n, n — k)

n\k 0 1 2 3 4 5
2 1 3 1
3 1 7 7 1
4 1 15 35 15 1
5 1 31 155 1565 31 1
6. 1 63 6561 1395 651 63
7 1 127 2667 11811 11811 2667
8 1 255 10795 97155 200787 97155
9 1 511 43435 788035 3309747 3309747
10 1 1023 174251 6347715 53743987 109221651
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1.3 GROUP ALPHABETS

An n-place group alphabet is a K-letter, n-place binary signaling alpha-
bet. whose letters form a subgroup of B, . Of necessity the size of an
n-place group alphabet is K = 2 where £ is an integer satisfying 0 <
k = n. By an (n, k)-alphabet we shall mean an n-place group alphabet of
size 2. Example: the N(3, 2) = 7 distinct (3, 2)-alphabets are given by
the seven columns

&) (ii) (iii) (iv) ) (vi) (vii)
000 000 000 000 000 000 000
100 100 100 010 010 001 110

010 001 011 001 101 110 011
110 101 111 011 111 111 101

3)

1.4 STANDARD ARRAYS

Let the letters of a specific (n, k)-alphabet be 4, = 1 = 00 -0,

Ao, Ay, ++ , Ay, wherep = 2*. The group B, can be developed accord-
ing to this subgroup and its cosets:
I: A2 y A:! H ] A#
S, S2A45 SoAz, -, Sedy
Sy, Sz4s, 8,45, -+, S:d,
B, = . (4)
S, N SvAz y SvAa y T, S)A;t

p =2 y = 2"7%
In this array every element of B, appears once and only once. The col-
lection of elements in any row of this array is called a coset of the (n, k)-
alphabet. Here S: is any element of B, not in the first row of the array,
S; is any element of B, not in the first two rows of the array, ete. The
elements S2, Sz, -+, S, appearing under I in such an array will be

called the coset leaders.
If a coset leader is replaced by any element in the coset, the same coset
will result. That is to say the two collections of elements

S;, SiAs, SiSa, -+, Sid,
and
SiAx, (S:An)As (S;A)Az, -+ (Sidp) Ay

are the same.
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We define the weight w; = w(T;) of an element, T';, of B, to be the
number of ones in the n-place binary sequence T'; .

Henceforth, unless otherwise stated, we agree in dealing with an ar-
ray such as (4) to adopt the following convention:

the leader of each coset shall be taken {o be an
element of minimal weight in that coset.

(5)

Such a table will be called a standard array.
Example: By can be developed according to the (4, 2)-alphabet 0000,
1100, 0011, 1111 as follows

0000 1100 0011 1111
1010 0110 1001 0101
1110 0010 1101 0001
1000 0100 1011 0111

(6)

According to (5), however, we should write, for example

0000 1100 0011 1111
1010 0110 1001 0101
0010 1110 0001 1101 ™
1000 0100 1011 0111

The coset leader of the second coset of (6) can be taken as any element
of that row since all are of weight 2. The leader of the third coset, how-
ever, should be either 0010 or 0001 since these are of weight one. The
leader of the fourth coset should be either 1000 or 0100.

1.5 THE DETECTION SCHEME
Consider now communicating with an (n, k)-alphabet over the sym-

metric binary channel. When any letter, say A;, of the alphabet is

transmitted, the received sequence can be of any element of B,. We

agree to use the following detector:

if the received element of B, lies in column 1 of the array (4), the

delector prints the letter A; ,7 = 1,2, - -+ , u. The array (4) is to (8)

be constructed according to the convention (5).

The following propositions and theorems can be proved concerning
signaling with an (n, k)-alphabet and the detection scheme given by (8).

1.6 BEST DETECTOR AND SYMMETRIC SIGNALING

Define the probability £; = {(T) of an element T; of B, to be {; =
p*¢" "% where p and ¢ are as in (1) and w; is the weight of T';. Let
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Q;,%7=1,2,---, ube the sum of the probabilities of the elements in
the 7th column of the standard array (4).
Proposition 1. The probability that any transmitted letter of the
(n, k)-alphabet be produced correctly by the detector is Q.
Proposition 2. The equivocation® per symbol is

Hy(z) = —% ;:21 Q; log: Q;

Theorem 1. The detector (8) is a maximum likelihood detector. That
is, for the given alphabet no other detection scheme has a greater average
probability that a transmitted letter be produced correctly by the de-
tector.

Let us return to the geometrical picture of n-place binary sequences
as vertices of a unit cube in n-spate. The choice of a K-letter, n-place
alphabet corresponds to designating K particular vertices as letters.
Since the binary sequence corresponding to any vertex can be produced
by the channel output, any detector must consist of a set of rules that
associates various vertices of the cube with the vertices designated as
letters of the alphabet. We assume that every vertex is associated with
some letter. The vertices of the cube are divided then into disjoint sets,
Wi, Wy, -+, Wg where W, is the set of vertices associated with ¢th
letter of the signaling alphabet. A maximum likelihood detector is char-
acterized by the fact that every vertex in W, is as close to or closer to
the 7th letter than to any other letter, 7 = 1, 2, - - - , K. For group alpha-
bets and the detector (8), this means that no element in the 7th column
of array (4) is closer to any other 4 thanitisto A;,¢=1,2, -+, p.

Theorem 2. Associated with each (n, k)-alphabet considered as a point
configuration in Euclidean n-space, there is a group of n X n orthogonal
matrices which is transitive on the letters of the alphabet and which
leaves the unit cube invariant. The maximum likelihood sets Wi,
W, -+ W, are all geometrically similar.

Stated in loose terms, this theorem asserts that in an (n, k)-alphabet
every letter is treated the same. Every two letters have the same number
of nearest neighbors associated with them, the same number of next
nearest neighbors, etc. The disposition of points in any two W regions
is the same.

1.7 GROUP ALPHABETS AND PARITY CHECKS

Theorem 3. Every group alphabet is a systematic® code: every syste-
matie code is a group alphabet.”
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We prefer to use the word “alphabet” in place of ‘“‘code” since the
latter has many meanings. In a systematic alphabet, the places in any
letter can be divided into two classes: the information places — % in
number for an (n, k)-alphabet — and the check positions. All letters
have the same information places and the same check places. If there
are k information places, these may be occupied by any of the 2* k-place
binary sequences. The entries in the n — & check positions are fixed
linear (mod 2) combinations of the entries in the information positions.
The rules by which the entries in the check places are determined are
called parity checks. Examples: for the (4, 2)-alphabet of (6), namely
0000, 1100, 0011, 1111, positions 2 and 3 can be regarded as the informa-
tion positions. If a letter of the alphabet is the sequence aiasa304 , then
a; = az, ay = ay are the parity checks determining the check places 1
and 4. For the (5, 3)-alphabet 000003 10001, 01011, 00111, 11010, 10110,
01100, 11101 places 1, 2, and 3 (numbered from the left) can be taken
as the information places. If a general letter of the alphabet is a;axaza4a5 ,
then as = a2 a3, a5 = a1 + a2 + as .

Two group alphabets are called equivalent if one can be obtained from
the other by a permutation of places. Example: the 7 distinet (3, 2)-
alphabets given in (3) separate into three equivalence classes. Alpha-
bets (i), (ii), and (iv) are equivalent; alphabets (iii), (v), (vi), are equiva-
lent; (vii) is in a class by itself.

Proposition 3. Equivalent (n, k)-alphabets have the same probability
Q of correct transmission for each letter.

Proposition 4. Every (n, k)-alphabet is equivalent to an (n, k)-
alphabet whose first k places are information places and whose last n — &
places are determined by parity checks over the first & places.

Henceforth we shall be concerned only with (n, k)-alphabets whose
first & places are information places. The parity check rules can then
be written

k
@ = 2 yiya;, t=k+1 -, n (9)
7=1

where the sums are of course mod 2. Here, as before, a typical letter of
the alphabet is the sequence a1az - - - @, . The v;; are k(n — k) quantities,
zero or one, that serve to define the particular (n, k)-alphabet in question.

1.8 MAXIMUM LIKELIhOOD DETECTION BY PARITY CHECKS

For any element, T, of B, we can form the sum given on the right of
(9). This sum may or may not agree with the symbol in the ith place of



A CLASS OF BINARY SIGNALING ALPHABETS 211

7. 1f it does, we say T satisfies the sth-place parity check; otherwise T
fails the tth-place parity check. When a set of parity check rules (9) is
given, we can associate an (n — k)-place binary sequence, R (T), with
each element T of B,. We examine each check place of T in order starting
with the (& 4 1)-st place of 7. We write a zero if a place of T satisfies
the parity check; we write a one if a place fails the parity check. The re-
sultant sequence of zeros and ones, written from left to right is R(T).
We call R(T) the parity check sequence of T. Example: with the parity
rules a; = as + a;, a; = ai + a2 4 a; used to define the (5, 3)-alphabet
in the examples of Theorem 3, we find R(11000) = 10 since the sum of
the entries in the second and third places of 11001 is not the entry of
the fourth place and since the sum of @ = 1, a2 = 1, and a3 = 0 is
0= ag .

Theorem 4. Let I, Az, --- A, be an (n, k)-alphabet. Let B(T') be the
parity check sequence of an element T of B, formed in accordance with
the parity check rules of the (n, k)-alphabet. Then R(T:) = R(T,) if
and only if T and T, lie in the same row of array (4). The coset leaders
can be ordered so that £(S;) is the binary symbol for the integer ¢ — 1.

As an example of Theorem 4 consider the (4, 2)-alphabet shown with
its cosets below

0000 1011 0101 1110
0100 1111 0001 1010
0010 1001 0111 1100
1000 0011 1101 0110

The parity check rules for this alphabet are a; = a1, as = a1 + @as.
Every element of the second row of this array satisfies the parity check
in the third place and fails the parity check in the 4th place. The parity
check sequence for the second row is 01. The parity check for the third
row is 10, and for the fourth row 11. Since every letter of the alphabet
satisfies the parity checks, the parity check sequence for the first row is
00. We therefore make the following association between parity check
sequences and coset leaders

00 — 0000 = S,

01 — 0100 = S,
10 — 0010 = S;
11 — 1000 = 8,

1.9 INSTRUMENTING A GROUP ALPHABET

Proposition 4 attests to the ease of the encoding operation involved
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with the use of an (n, k)-alphabet. If the original message is presented as
a long sequence of zeros and ones, the sequence is broken into blocks of
length k& places. Each block is used as the first % places of a letter of
the signaling alphabet. The last n-% places of the letter are determined
by fixed parity checks over the first & places.

Theorem 4 demonstrates the relative ease of instrumenting the maxi-
mum likelihood detector (8) for use with an (n, k)-alphabet. When an
element T of B, is received at the channel output, it is subjected to the
n-k parity checks of the alphabet being used. This results in a parity
check sequence R(T). R(T) serves to identify a unique coset leader, say
S; . The product S,7T is then formed and produced as the detector out-
put. The probability that this be the correct letter of the alphabet is @, .

1.10 BEST GROUP ALPHABETS

Two important questions regarding (n, k)-alphabets naturally arise.
What is the maximum value of @, possible for a given n and & and which
of the N(n, k) different subgroups give rise to this maximum ¢;? The
answers to these questions for general n and & are not known. For many
special values of n and & the answers are known. They are presented in
Tables II, ITT and IV, which are explained below. 7

The probability @, that a transmitted letter be produced correctly by
the detector is the sum, @ = > 1 £(S;) of the probabilities of the coset
leaders. This sum can be rewritten as @y = 21— a; p'q" ' where a; is
the number of coset leaders of weight ¢. One has, of course, Zai =p=

2% * for an (n, k)-alphabet. Also a; < (:) — ! since thisis the

~gl(n — 1)
number of elements of B, of weight .

The «; have a special physical significance. Due to the noise on the
channel, a transmitted letter, A;, of an (n, k)-alphabet will in general he
received at the channel output as some element T of B, different from
A; . If T differs from A, in s places, i.e., if w(A;T) = s, we say that an
s-tuple error has occurred. For a given (n, k)-alphabet, «; is the number
of i-tuple errors which can be corrected by the alphabet in question,
1=0,1,2, -, 1

Table II gives the o, corresponding to the largest possible value of @,
foragivenkand nfork =23, ---n—1,n =4 --- 10 along with a
few other scattered values of n and k. For reference the binomial coeffi-

cients (f) are also listed. For example, we find from Table 11 that the
best group alphabet with 2' = 16 letters that uses n = 10 places has a
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probability of correct transmission Q, = ¢" + 10¢°p + 39¢°p* + 14¢'p".
The alphabet corrects all 10 possible single errors. It corrects 39 of the
possible (1,)(}) = 45 double errors (second column of Table IT) and in

addition corrects 14 of the 120 possible triple errors. By adding an addi-
tional place to the alphabet one obtains with the best (11, 4)-alphabet
an alphabet with 16 letters that corrects all 11 possible single errors and
all 55 possible double errors as well as 61 triple errors. Such an alphabet
might be useful in a computer representing decimal numbers in binary
form.

For each set of &'s listed in Table II, there is in Table 111 a set of
parity check rules which determines an (n, k)-alphabet having the given
o’s. The notation used in Table 111 is best explained by an example. A
(10, 4)-alphabet which realizes the o's discussed in the preceding para-
graph can be obtained as follows. Places 1, 2, 3, 4 carry the information.
Place 5 is determined to make the mod 2 sum of the entries in places
3, 4, and 5 equal to zero. Place 6 is determined by a similar parity check
on places 1, 2, 3, and 6; place 7 by a check on places 1, 2, 4, and 7, ete.

It is o surprising fact that for all cases investigated thus far an (n, k)-
alphabet best for a given value of p is uniformly best for all values of
p,0 = p = 15. 1t is of course conjectured that this is true for all n and k.

It is a further (perhaps) surprising fact that the best (n, k)-alphabets
are not necessarily those with greatest nearest neighbor distance be-
tween letters when the alphabets are regarded as point eonfigurations on
the n-cube. For example, in the best (7, 3)-alphabet as listed in Table
I11, each letter has two nearest neighbors distant 3 edges away. On the
other hand, in the (7, 3)-alphabet given by the parity check rules 413,
512, 623, 7123 each letter has its nearest neighbors 4 edges away. This
latter alphabet does not have as large a value of @, , however, as does
the (7, 3)-alphabet listed on Table III.

The cases k = 0, 1, n — 1, n have not been listed in Tables IT and III.
The cases & = 0 and & = n are completely trivial. Fork = 1, alln > 1
the best alphabet is obtained using the parity rule as = a3 = --- =
a, = a.Ifn = 2j,

i—1 1
i n—i 1 j 7 . i n—1i
O =2 (:) P+ 5 (’;) P TEn =2+ 1,Q = 2 (:l> plg"
0 2\, 0
For k = n — 1, n > 1, the maximum @, is Q, = ¢" " and a parity rule
for an alphabet realizing this @, is a, = a;.

It the o’s of an (n, k)-alphabet are of the form a; = (:L) ,1=10,1,
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TasLE IT — ProBABILITY oF No ERROR WITH BEST

1

n—1i

AvraaBETS, Q1 = Z a;p'q
i (r_n) k=2 k=3 k=4 |k=5|k=6
1 ag ay ay @i aq

n =4 0 1 1

1 4 3

0 1 1 1
n 5 1 5 5 3

2 10 2

0 1 1 1 1
n 6 1 6 6 6 3

2 15 0 1

0 1 1 1 1 1
n 7 1 7 7 7 7 3

2 21 18 8

3 25 6

0 1 1 1 1 1 1
n 8 1 8 8 8 8 7 3

2 28 28 20 7

3 56 27 3

0 1 1 1 1 1 1

1 9 9 9 9 9 7
n 9 2 36 36 33 22 6

3 84 64 21

4 126 18

0 1 1 1 1 1 1

1 10 10 10 10 10 10
n 10 2 45 45 45 39 21, 5

3 120 110 64 14

4 | 210 00 8

0 1 1 1 1 1

1 11 11 11 11 11
n 11 2 55 55 55 55 20

3| 165 | 165 | 126 61

4 330 | 226 63

5 | 462 54

0 1 1 1

1 12 12 12
n 12 |« 2 66 66 66

3 | 220 | 220 | 200

4 | 495 | 425 | 233 |

5| 792 300 |

k=7
ai

Lo =

-1 =

12
19

QI

~1—

E=0|k=10
a; a;i
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2, -+, j, @jy1 = r some integer, aji2 = ajp3 = - = a, = 0, then
there does not exist a 2"-letter, n-place alphabet of any sort better than
the given (n, k)-alphabet. It will be observed that many of the «’s of
Table II are of this form. It can be shown that

Proposition 5 if n + (n ; k)' + (n ; k) > 2" — 1 there exists
no 2*-letter, n-place alphabet better than the best (n, k)-alphabet.
When the inequality of proposition 5 holds the o’s are either ay = 1,

ap = 2"% — 1,allothera = 0;0rap = 1, 4 = (T’),aa =9 _ 1 —

(’:) all other @ = 0; or the trivial & = 1 all other « = 0 which holds
when & = n. The region of the n — k plane for which it is known that
(n, k)-alphabets cannot be excelled by any other is shown in Table IV.

1.11 A DETAILED EXAMPLE

As an example of the use of (n, k)-alphabets consider the not un-
realistic case of a channel with p = 0.001, i.e., on the average one binary
digit per thousand is received incorrectly. Suppose we wish to transmit
messages using 32 different letters. If we encode the letters into the 32
5-place binary sequences and transmit these sequences without further
encoding, the probability that a received letter be in error is 1 —
(1 — p)* = 0.00449. If the best (10, 5)-alphabet as shown in Tables II
and TII is used, the probability that a letter be wrong is 1 — G =
L — ¢° — 10¢’p — 214" = 249" — 72" + --- = 0.000024. Thus
by reducing the signaling rate by 12, a more than one hundredfold re-
duction in probability of error is accomplished.

A (10, 5)-alphabet to achieve these results is given in Table ITI. Let
a typical letter of the alphabet be the 10-place sequence of binary digits
1+ + Qotip . The symbols aasazasas carry the information and can be
any of 32 different arrangements of zeros and ones. The remaining places
are determined by

aﬁ=a1—i—03—i—ﬂq—i~aa
a;=a1-§—a.2-i—a4jra-5
ag=al—§—a.gira3-i—a5
a = + as + a3 + a
ay = Gl-irﬂ-z—‘l-ﬂa-i-ﬂ-«l-i-ﬂa

To design the detector for this alphabet, it is first necessary to deter-
mine the coset leaders for a standard array (4) formed for this alphabet.



FOR BEST ALPHABEIS

3]

Ui

TasLe IIT — Parrry CHEck RULE

10

|
e
1
|
- |
It
=
o
I
=
|
-
Il
£
— -
w o
L -
|
1l -+ =F o
= on e e
— —
I~ o0 I~
| .
mi 101010 —+
o -+ =+ -+ =+ e
- | oM R K R
—— ) —
o=~ WO~ 2= YR
-
- oy -1 -+ =t ™ e dackar) e
Il S eI EeE R R B TR
= —— — o — ———— — e —
o e~ 1O 1= U0 Wo=BN S
|
o o m o ™
1 1o aron o o e e ~en el a6 o
s — - —— — = — 0N — Y O =
-+ -0 w0 O I- DO~ W TSI~
o1 o~ =1 =~ [ | o™ [ B}
I o= —m0le Sl S — 8 e QUM e o 8 —
= et MMTD MMTINY M TINGIs M T INOI-0 M e-0S
|
|-—
|
| - Y © - =3
Il I I I i Il
= = = = = =




—
——
o H<H
S,
— |
© O
- -
o0
O~
@‘t‘mlﬁ
<o 1oy €9 < <
Feam L)
o
- m!-!v-! o
=) “om Mo
[ X [= = -
=2
r~ ~r=1=
oo © o
I~ yo LD =
] R0 o e 918 o
-+ = oy <+ a3 + <+ ey 2q
ek~ e LCo N,
= — -t '—'HCJHN
W 0 — 0 O
o 1=}
© oo
oems  BEEas
[~ (]
E e
"4"4!-‘9 =i - —
~00 S [~00 S v
o)
-
00
<+ <H a0 e
meIN e
Hv—#ﬁﬁc
C= bl s f=r ]
~f -
) ™
C"Jﬂ“"ﬁ"ﬂ‘m QMN
Horiemen e Hen e g

co'—n—u—!c\lc
D OI=00 -

=i O] = O
D OI~00C

I en
100 = ]
HIDOI~0 -

0123

oM
[l

Bciocko N,

OO r r= -
I OI~-0D -

CIETR 0 i i
OO = — e
D O I~ 00 T e vl vl

a1
o OO
= INOI~W0D

012

R [ R R ]
— - — -

]
i b s ]

- A

NI OI~0 G mwu:c.nr-ooma.-nq

(=]
—

I
8

—
—
I
=

12

I

217




218 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1956

TasLE IV — RecioN oF THE n-k PranNe ror WarcH IT 15 KNOWN
THAT (n, k)-Avpaasers CanNoT BE ExceiLLep

012345678910 12 14 16 18 20 22 24 26 28 30n

This can be done by a variety of special methods which considerably
reduce the obvious labor of making such an array. A set of best S’s along
with their parity check symbols is given in Table V.

A maximum likelihood detector for the (10, 5)-alphabet in question
forms from each received sequence bibs - -« by the parity check symbol
€1C2C3C4C5 Where

e = bs -i-bI-i-bs-]-be:-i-bs

62=b7—i‘b1+b2‘i‘b4‘i‘bﬁ
Cs=bs—i—b1—i—b2+b3-i—bﬁ
C4=b9 —i—b1—.|-bz—jrb::-i-b4

0b=b!l}+b1‘i‘b2+bﬂ+b4‘i—b5

According to Table V, if eicoeseacs contains less than three ones, the de-
tector should brint bibebshibs . The detector should print (b 4 1)babsbabs
if the parity check sequence cicycscics is either 11111 or 111105 the de-
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TaBLE V— CosiET LEADERS AND PariTy CHECK SEQUENCES
For (10,5)-ALPHABET

£1cacacecs s S C1E2C304CE — S
00000 0000000000 11100 0000100001
10000 0000010000 11010 0001000001
01000 0000001000 11001 0001000010
00100 0000000100 10110 0010000001
00010 0000000010 10101 0010000010
00001 0000000001 10011 0010000100
11000 0000011000 01110 0100000001
10100 0000010100 01101 0100000010
10010 0000010010 01011 - 0100000100
10001 0000010001 00111 0100001000
01100 0000001100 11110 1000000001
01010 0000001010 11101 0000100000
01001 0000001001 11011 0001000000
00110 0000000110 10111 0010000000
00101 0000000101 01111 0100000000
00011 0000000011 11111 1000000000

tector should print bi(b: 4 1)bshsbs if the parity check sequence is 01 111,
00111, 01011, 01101, or 01110; the detector should print bibs(bs 4 1)bsbs
if the parity check sequence is 10111, 10011, 10101, or 10110; the de-
tector should print bibsbs(bs - 1)bs if the parity check sequence is 11011,
11001, 11010; and finally the detector should print bibehsha(bs 4+ 1) if the
parity check sequence is 11101 or 11100.

Simpler rules of operation for the detector may possibly be obtained
by choice of a different set of S’s in Table V. These quantities in general
are not unique. Also there may exist non-equivalent alphabets with
simpler detector rules that achieve the same probability of error as the
alphabet in question.

Part II — AppitroNan Taeory AND Proors oF THEOREMS oF PArt 1

2.1 THE ABSTRACT Group C,

It will be helpful here to say a few more words about B, , the group
of n-place binary sequences under the operation of addition mod 2. This
group is simply isomorphic with the abstract group €, generated by n
commuting elements of order two, say ai, a», ---, a,. Here a,a; =
aja; and a;’ = I,4,5 = 1,2, -+, n, where I is the identity for the
group. The eight distinet elements of 3 are, for example, I, a\, a.,
Gy, Ma, , ay , Gy , hiaeas . The group C, is easily seen to be isomorphic
with the n-fold direct product of the group ) with itself.
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It is a considerable saving in notation in dealing with C, to omit the
symbol “a’ and write only the subscripts. In this notation for example,
the elements of Cy are I, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134,
234, 1234. The product of two or more elements of C', can readily be
written down. Its symbol consists of those numerals that occur an odd
number of times in the collection of numerals that comprise the sym-
bols of the factors. Thus, (12)(234)(123) = 24.

The isomorphism between ', and B, can be established in many ways.
The most convenient way, perhaps, is to associate with the element
iriats - - - ix of Cn the element of B, that has ones in places 41,4, =+ , %
and zeros in the remaining n — k places. For example, one can associate
124 of C, with 1101 of By ; 14 with 1001, ete. In fact, the numeral no-
tation afforded by this isomorphism is a much neater notation for B,
than is afforded by the awkward strings of zeros and ones. There are,
of course, other ways in which elements of C, can be paired with elements
of B, so that group multiplication is preserved. The collection of all such
“pairings” makes up the group of automorphisms of C.. This group of
automorphisms of C, is isomorphic with the group of non-singular linear
homogenous transformations in a field of characteristic 2.

An element 7T of C, is said to be dependent upon the set of elements
Ty, Ta, --+, T;of Cif T can be expressed as a product of some ele-
ments of the set Ty, Tw, -+, T;; otherwise, 7' is said to be independent
of the set. A set of elements is said to be independent if no member can
be expressed solely in terms of the other members of the set. For example,
in C4, 1,2, 3, 4 form a set of independent elements as do likewise 2357,
12357, 14. However, 135 depends upon 145, 3457, 57 since 135 =
(145)(3457)(57). Clearly any set of n independent elements of C, can
be taken as generators for the group. For example, all possible products
formed of 12, 123, and 23 yield the elements of Cj .

Any k independent elements of C,, serve as generators for a subgroup
of order 2*. The subgroup so generated is clearly isomorphic with C .
All subgroups of C, of order 2% can be obtained in this way.

The number of ways in which & independent elements can be chosen
from the 2" elements of C, is

Fin, k) = (2" — 2)(@2" — 292" — 2 -+ 2" — 27

For, the first element can be chosen in 2" — 1 ways (the identity cannot
be included in a non-trivial set of independent elements) and the second
element can be chosen in 2" — 2 ways. These two elements determine a
subgroup of order 2°. The third element can be chosen as any element of
the remaining 2" — 2° elements. The 3 elements chosen determine a
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subgroup of order 2°. A fourth independent element can be chosen as
any of the remaining 2" — 2° elements, etc.

Each set of k independent elements serves to generate a subgroup of
order 2*. The quantity F(n, k) is not, however, the number of distinet
subgroups of C, of this order, for, a given subgroup can be obtained
from many different sets of generators. Indeed, the number of different
sets of generators that can generate a given subgroup of order 2 of €,
is just F(k, k) since any such subgroup is isomorphic with C . Therefore
the number of subgroups of C, of order 2 is N(n, k) = F(n, k)/F(k, k)
which is (2). A simple calculation gives N(n, k) = N(n, n — k).

2.2 PROOF OF PROPOSITIONS 1 AND 2

After an element A of B, has been presented for transmission over
a noisy binary channel, an element 7' of B, is produced at the channel
output. The element U = AT of B, serves as a record of the noise
during the transmission. U is an n-place binary sequence with a one at
each place altered in A by the noise. The channel output, 7, is obtained
from the input A by multiplication by U: T = UA. For channels of the
sort under consideration here, the probability that U be any particular
element of B, of weight w is p“¢" ™ ".

Consider now signaling with a particular (n, k)-alphabet and consider
the standard array (4) of the alphabet. If the detection scheme (8) is
used, a transmitted letter A; will be produced without error if and only
if the received symbol is of the form S;4;. That is, there will be no
error only if the noise in the channel during the transmission of A; is
represented by one of the coset leaders. (This applies for7 = 1,2, --- |
g = 2). The probability of this eventis @, (Proposition 1, Section 1.6).
The convention (5) makes @, as large as is possible for the given alpha-
bet.

Let X refer to transmitted letters and let Y refer to letters produced
by the detector. We use a vertical bar to denote conditions when writing
probabilities. The quantity to the right of the bar is the condition. We
suppose the letters of the alphabet to be chosen independently with
equal probability 27,

The equivocation h(X | ¥) obtained when using an (n, k)-alphabet
with the detector (8) can most easily be computed from the formula

MX|Y) = r(X) — h(Y) + (Y | X) (10)

The entropy of thesourceis h(X) = k/n bits per symbol. The probability
that the detector produce A; when A; was sent is the probability that
the noise be represented by A4;4;S,, { = 1,2, ---, ». In symboals,



222 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1956
PrY > A;| X — A) = 2 Pr(N — A:4;8) = Q(4:4))
£

where Q(A;) is the sum of the probabilities of the elements that are in
the same column as A, in the standard array. Therefore

Pr(Y — 4))

Z_ Pr(Y - A;| X - A)Pr(X — A) = % ZQ(AiAj)

1 .
= 50 since Z Q(A:4;) = Z Q(4;) = L
This last follows from the group property of the alphabet. Therefore
hY) = —7}1 > Pr(Y — A)) log Pr(Y — Aj) = % bits/symbol.

It follows then from (10) that
RX|Y) =Y |X)
The computation of h(Y | X) follows readily from its definition
MY | X) = Z Pr(X —» AJ(Y | X — A3)

Il

— S Pr(X — A)Pr(Y — A;| X — A)

i

log Pr(Y — 4, | X — A.)

-% ¥ 3 PrN - AiSed)) log T Pr(N — AiSadt)
i m

= —51’; %:, Q(A.-A,-)jlog Q(AiAJ')
= — 2 Q(A) log Q(AJ)

Each letter is n binary places. Proposition 2, then follows.

2.3 DISTANCE AND THE PROOF OF THEOREM 1

Let A and B be two elements of B, . We define the distance, d(4, B),
between 4 and B to be the weight of their product,

d(A, B) = w(AB) (11)

The distance between A and B is the number of places in which A and
B differ and is just the “Hamming distance.” ' In terms of the n-cube,
d(A, B) is the minimum number of edges that must be traversed to go
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from vertex A to vertex B. The distance so defined is a monotone func-
tion of the Euclidean distance between vertices.
It follows from (11) that if €' is any element of B, then

d(A, B) = d(AC, BC) (12)

This fact shows the detection scheme (8) to be a maximum likelihood
detector. By definition of a standard array, one has

d(S:, I) = d(S;A;, 1) for all 7 and j
The coset leaders were chosen to make this true. From (12),
d(S:, I) = d(SidnS:, I A.8) = d(S:A.., A.)
d(S:A;, I) = d(8.A4,;84,,,1 8:4,) = d(4;A., S:dw)
= d(Sidm, A2)

where A, = A4;A,,. Substituting these expressions in the inequality
above yields

A(Silm, Ap) = d(Sid ., Ay) for all ¢, m, €

This equation says that an arbitrary element in the array (4) is at least
as close to the element at the top of its column as it is to any other letter
of the alphabet. This is the maximum likelihood property.

2.4 PROOF OF THEOREM 2

Again consider an (n, k)-alphabet as a set of vertices of the unit n-cube.
Consider also » mutually perpendicular hyperplanes through the cen-
troid of the cube parallel to the coordinate planes. We call these planes
“symmetry planes of the cube” and suppose the planes numbered in
accordance with the corresponding parallel coordinate planes.

The reflection of the vertex with coordinates (@, , a2, --- ,ai, -+, a,)
in symmetry plane 7 yields the vertex of the cube whose coordinates
are (a;, a2, -++, a; + 1, --+, a,). More generally, reflecting a given
vertex successively in symmetry planes , 7, k, - - - yields a new vertex
whose coordinates differ from the original vertex precisely in places
1, 7, k -++ . Successive reflections in hyperplanes constitute a transfor-
mation that leaves distances between points unaltered and is therefore
a “rotation.”” The rotation obtained by reflecting successively in sym-
metry planes 7, j, &, ete. can be represented by an n-place symbol having
a one in places 7, j, k, ete. and a zero elsewhere.

We now regard a given (n, k)-alphabet as generated by operating on
the vertex (0, 0, --- , 0) of the cube with a certain collection of 2* ro-
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tation operators. The symbols for these operators are identical with the
sequences of zeros and ones that form the coordinates of the 2° points.
It is readily seen that these rotation operators form a group which is
transitive on the letters of the alphabet and which leave the unit cube
invariant. Theorem 2 then follows.

Theorem 2 also follows readily from consideration of the array (4).
For example, the maximum likelihood region associated with I is the
set of points I, Sz, Ss, -+, S, . The maximum likelihood region asso-
ciated with A; is the set of points A;, A:S., 4:S;, --+, 4:8,. The
rotation (successive reflections in symmetry planes of the cube) whose
symbol is the same as the coordinate sequence of A; sends the maximum
likelihood region of I into the maximum likelihood region of A;, i =
1,2 -,

2.5 PROOF OF THEOREM 3

That every systematic alphabet is a group alphabet follows trivially
from the fact that the sum mod 2 of two letters satisfying parity checks
is again a letter satisfying the parity checks. The totality of letters satis-
fying given parity checks thus constitutes a finite group.

To prove that every group alphabet is a systematic code, consider
the letters of a given (n, k)-alphabet listed in a column. One obtains in
this way a matrix with 2* rows and n columns whose entries are zeros
and ones. Because the rows are distinet and form a group isomorphic to
Cy , there are k linearly independent rows (mod 2) and no set of more
than % independent rows. The rank of the matrix is therefore k. The
matrix therefore possesses k linearly independent (mod 2) columns and
the remaining n — k columns are linear combinations of these k. Main-
taining only these k linearly independent columns, we obtain a matrix of
k columns and 2* rows with rank k. This matrix must, therefore, have &
lmea.lly independent rows. The rows, however, form a group under mod

2 addition and hence, since & are linearly mdepeudent all 2 rows must
be distinet. The matrix contains only zeros and ones as entries; it has 2*
distinet rows of k& entries each. The matrix must be a listing of the num-
bers from 0 to 2° — 1 in binary notation. The other n — k columns of
the original matrix considered are linear combinations of the columns of
this matrix. This completes the proof of Theorem 3 and Proposition 4.

2.6 PROOF OF THEOREM 4

To prove Theorem 4 we first note that the parity check sequence of
the product of two elements of B, is the mod 2 sum of their separate
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parity check sequences. It follows then that all elements in a given coset
have the same parity check sequence. For, let the coset be S;, S:d.,

Sids, +++ SiA, . Since the elements I, 4,, A3, --- , A, all have parity
check sequence 00 --- 0, all elements of the coset have parity check
R(8S,).

In the array (4) there are 2" cosets. We observe that there are 2"*
elements of B, that have zeros in their first & places. These elements
have parity check symbols identical with the last n — k places of their
symbols. These elements therefore give rise to 2"* different parity check
symbols. The elements must be distributed one per coset. This proves
Theorem 4.

2.7 PROOF OF PROPOSITION 5

n—k n—k n—=rL
(-7

we can explicity exhibit group alphabets having the property mentioned
in the paragraph preceding Proposition 5. The notation of the demon-
stration is cumbersome, but the idea is relatively simple.

We shall use the notation of paragraph 2.1 for elements of B, i.e.,
an element of B, will be given by a list of integers that specify what
places of the sequence for the element contain ones. It will be convenient,
furthermore to designate the first & places of a sequence by the integers
1,2,3, -+, k and the remaining n — & places by the “integers” 1/, 2/,
3, ---, ', where { = n — k. For example, if n = 8, k = 5, we have

10111010 < 13452’

10000100 « 11’
00000101 «» 1’3’

If

Consider the group generated by the elements 17, 2/, 3/, ... | f j.e.
the 2 elements 1, 17,2/, -+, (', 1’2, 1’3/, --- | 123" ... (', Suppose
these elements listed according to decreasing weight (say in decreasing
order when regarded as numbers in the decimal system) and numbered
consecutively. Let B; be the ith element in the list. Example: if £ = 3,
By = 123", B. = 2'3', By = 1’3, By = 1’2", B; = 3/, By = 2/, By = 1".

Consider now the (n, k)-alphabet whose generators are

131,232,333, ,kBk
We assert that if
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n—k n—Fk n — k
e (35

this alphabet is as good as any other alphabet of 2* letters and n places.

In the first place, we observe that every letter of this (n, k)-alphabet
(except I) has unprimed numbers in its symbols. It follows that each of
the 2° letters 1, 17,2/, --- , £/, 1’2", --- [ 1’2" ... {’ occurs in a different
coset of the given (n, k)-alphabet. For, if two of these letters appeared
in the same coset, their produet (which contains only primed numbers)
would have to be a letter of the (n, k) alphabet. This is impossible since
every letter of the (n, k) alphabet has unprimed numbers in its symbol.
Since there are precisely 2° cosets we can designate a coset by the single
element of the list By, Bz, - -+, Bot = I which appears in the coset.

We next observe that the condition

n—k n'—'k 'n—k
ne2 ‘( 2 )‘( 3 )‘1

guarantees that Bi, is of weight 3 or less. For, the given condition is

equivalent to
£ £ £ £
> 9 _ — - -
vz 2~ (g) - () (5)- ()

We treat several cases depending on the weight of Biy1 .

If By, is of weight 3, we note that fori = 1, 2, --- , k, the coset con-
taining B, also contains an element of weight one, namely the element
¢ obtained as the product of B; with the letter ¢B; of the given (n, k)-
alphabet. Of the remaining (2° — k) B’s, one is of weight zero, £ are of

weight one, (2

have, then ay = 1, 1 = { + &k = n. Now every B of weight 4 occurs in
the list of generators 1B1, 2B;, -+, kB, . It follows that on multi-
plying this list of generators by any B of weight 3, at least one element
of weight two will result. (E.g., (1'2'3')(j1'2’3'4') = j4') Thus every
coset with a B of weight 2 or 3 contains an element of weight 2 and
az=2‘—ao—a|.

The argument in case By is of weight two or one is similar.

) are of weight 2 and the remaining are of weight 3. We

2.8 MODULAR REPRESENTATIONS OF C,

In order to explain one of the methods used to obtain the best (n, k)-
alphabets listed in Tables IT and III, it is necessary to digress here to
present additional theory.



A CLASS OF BINARY SINGALING ALPHABETS 227

It has been remarked that every (n, k)-alphabet is isomorphic with
C . Let us suppose the elements of € listed in a column starting with 7
and proceeding in order 7, 1,2, 3, --+ |k, 12,13, --- |, (k — 1)k, 123,
------ , 123 -+« k. The elements of a given (n, k)-alphabet can be
paired off with these abstract elements so as to preserve group multipli-
cation. This ean be done in many different ways. The result is a matrix
with elements zero and one with n columns and 2" rows, these latter
being labelled by the symbols I, 1, 2, - -+ ete. What can be said about
the columns of this matrix? How many different columns are possible
when all (n, k)-alphabets and all methods of establishing isomorphism
with C} are considered?

In a given column, once the entries in rows 1, 2, - - - | k are known, the
entire column is determined by the group property. There are therefore
only 2° possible different columns for such a matrix. A table showing
these 2 possible columns of zeros and ones will be called a modular repre-
sentatton table for €, . An example of such a table is shown for &k = 4 in
Table VI.

It is clear that the columns of a modular representation table can also
be labelled by the elements of C} , and that group multiplication of these
column labels is isomorphic with mod 2 addition of the columns. The
table is a symmetric matrix. The element with row label A and column
label B is one if the symbols 4 and B have an odd number of different
numerals in common and is zero otherwise.

Every (n, k)-alphabet can be made from a modular representation
table by choosing n columns of the table (with possible repetitions) at
least & of which form an independent set.

TasLe VI — MobpurAr REPrRESENTATION TaABLE ror Grourp C,

I 1 2 3 4 12 3 4 23 24 34 123 124 134 234 1234

Irye o o0 o 0 0 0O O O O O O 0 0 0 0

1 6 1 0 0 O 1 1 1 0 0 0 1 1 1 0 1
210 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
310 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
410 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
2,0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
3,0 1 0 1 0 1 0 1 1 0 1 O 1 0 1 0
4,0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
2|10 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
24,0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
34,10 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
122(0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
12410 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
34 {0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
2340 0 1 1 1 1 1 1 0 O 0 O 0 0 1 1
1234 /0 1.1 1 1 0 0 0 0 0 0 1 1 1 1 0



228 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1950

We henceforth exclude consideration of the column I of a modular
representation table. Its inclusion in an (n, k)-alphabet is clearly a waste
of 1 binary digit.

It is easy to show that every column of a modular representation table
for € contains exactly 257" ones. Since an (n, k)-alphabet is made from
n such columns the alphabet contains a total of n2°~' ones and we have

Proposition 6. The weights of an (n, k)-alphabet form a partition of
n2"" into 2° — 1 non-zero parts, each part being an integer from the set
1,2, -, n.

The identity element always has weight zero, of course.

It is readily established that the product of two elements of even
weight is again an element of even weight as is the product of two ele-
ments of odd weight. The product of an element of even weight with an
element of odd weight yields an element of odd weight.

The elements of even weight of an (n, k)-alphabet form a subgroup
and the preceding argument shows that this subgroup must be of order
2% or 2°71. If the group of even elements is of order 2°*, then the collec-
tion of even elements is a possible (n, & — 1)-alphabet. This (n, k — 1)
alphabet may, however, contain the column I of the modular represen-
tation table of Ci_; . We therefore have

Propesition 7. The partition of Proposition 6 must be either into
2* — 1 even parts or else into 27" odd parts and 281 — 1 even parts.
In the latter case, the even parts form a partition of 27" where « is
some integer of the set & — 1, &, - - - , n and each of the parts is an in-
teger from the set 1, 2, --- , n.

2.9 THE CHARACTERS OF C}

Let us replace the elements of B, (each of which is a sequence of zeros
and ones) by sequences of +1’s and —1’s by means of the following
substitution

01

1« —1. (13)

The multiplicative properties of elements of B, can be preserved in this
new notation if we define the product of two 41, —1 symbols to be the
symbol whose ith component is the ordinary produet of the ¢th compo-
nents of the two factors. For example, 1011 and 0110 become respectively
—11 —1 —1land1 —1 —11. We have

(—11 —1 —1)(1 —1 —11) = (=1 —11 —1)
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corresponding to the fact that
(1011) (0110) = (1101)

If the +1, —1 symbols are regarded as shorthand for diagonal matrices,
so that for example

-10 0 0
01 0 0
—-l-le| o0 )
00 0 -1

then group multiplication corresponds to matrix multiplication.

(While much of what follows here can be established in an elementary
way for the simple group at hand, it is convenient to fall back upon the
established general theory of group representations® for several proposi-
tions.

The substitution (13) converts a modular representation table (col-
umn [ included) into a square array of 4 1’s and —1’s. Each column (or
row) of this array is clearly an irreducible representation of C}, . Since
is Abelian it has precisely 2" irreducible representations each of degree
one. These are furnished by the converted modular table. This table also
furnishes then the characters of the irreducible representations of C,
and we refer to it henceforth as a character table.

Let x*(A) be the entry of the character table in the row labelled A and
column labelled «. The orthogonality relationship for characters gives

2 xX(ANF(A) = 2%
ACCy

Zk x“(A)x"(B)

aC e

25845

where § is the usual Kronecker symbol. In particular

2 XANA) = X FA) =0, p#I

ACCy ACCy
Since each ¥*(4) is +1 or — 1, these must occur in equal numbers in any
column 8 7 [. This implies that each column except I of the modular
representation table contains 2°" ones, a fact used earlier.

Every matrix representation of € can be reduced to its irreducible
components. If the trace of the matrix representing the element 4 in an
arbitrary matrix representation of Cy is x(4), then this representation
contains the irreducible representation having label 8 in the character
table dg times where
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ds = % Aék x(A)x"(4) (14)

Every (n, k)-alphabet furnishes us with a matrix representation of Cy
by means of (13) and the procedure outlined below (13). The trace x(4)
of the matrix representing the element A of Cy is related to the weight
of the letter by

x(4) = n — 2w(4) (15)

Equations (14) and (15) permit us to compute from the weights of an
(m, k)-alphabet what irreducible representations are present in the alpha-
bet and how many times each is contained. It is assumed here that the
given alphabet has been made isomorphic to € and that the weights are
labelled by elements of C). .

Consider the converse problem. Given a set of numbers w, , w., « -+,
wy that satisfy Propositions 6 and 7. From these we can compute
quantities x; = n — 2w; as in (15). It is clear that the given w’s will
constitute the weights of an (n, k)-alphabet if and only if the 2 x; can
be labelled with elements of (' so that the 2° sums (14) (8 ranges over
all elements of C}) are non-negative integers. The integers dg tell what
representations to choose to construct an (n, k)-alphabet with the given
weights w, . v

2.10 CONSTRUCTION OF BEST ALPHABETS

A great many different techniques were used to construct the group
alphabets listed in Tables II and III and to show that for each n and &
there are no group alphabets with smaller probability of error. Space
prohibits the exhibition of proofs for all the alphabets listed. We content
ourselves here with a sample argument and treat the case n = 10, k =
4 in detail.

According to (2) there are N(10, 4) = 53,743,987 different (10, 4)-
alphabets. We now show that none is better than the one given in Table
III. The letters of this alphabet and weights of the letters are

1 0
167810 5
267910 5
3568910 6
4578910 6
1289 4
13579 5
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14569
23578
24568
3467
123579
1245710
134810
234910
12346789

WLgn ot & S W= Ut OOt

The notation is that of Section 2.1. By actually forming the standard
array of this alphabet, it is verified that

oy = 1, a] = 10, s = 39, a3 = 14

Table II shows (10) = 45, whereas a» = 39, so the given alphabet

2
does not correct all possible double errors. In the standard array for the
alphabet, 39 coset leaders are of weight 2. Of these 39 cosets, 33 have
only one element of weight 2; the remaining 6 cosets each contain two
elements of weight 2. This is due to the two elements of weight 4 in the
given group, namely 1289 and 3467. A portion of the standard array
that demonstrates these points is

I 1289 3467
12 89

18 29

19 28

34 . 67
36 A7

In order to have a smaller probability of error than the exhibited
alphabet, it is necessary that a (10, 4)-alphabet have an az > 39. We
proceed to show that this is impossible by consideration of the weights
of the letters of possible (10, 4)-alphabets.

We first show that every (10, 4)-alphabet must have at least one ele-
ment (other than the identity, I) of weight less than 5. By Propositions
G and 7, Section 2.8, the weights must form a partition of 10-8 = 80 into
15 positive parts. If the weights are all even, at least two must be less
than6 since 14-6 = 84 > 80. If eight of the weights are odd, we see from
85+ 7-6 = 82 > 80 that at least one weight must be less than 5.



232 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1956

An alphabet with one or more elements of weight 1 must have an
as = 36, for there are nine elements of weight 2 which cannot possibly
be coset leaders. To see this, suppose (without loss of generality) that
the alphabet contains the letter 1. The elements 12, 13, 14, --- 1 10 can-
not possibly be coset leaders since the product of any one of them with
the letter 1 yields an element of weight 1.

An alphabet with one or more elements of weight 2 must have an
a: < 37. Suppose for example, the alphabet contained the letter 12.
Then 13 and 23 must be in the same coset, 14 and 24 must be in the
same coset, - -+ , 1 10 and 2 10 must be in the same coset. There are at
least eight elements of weight two which are not coset leaders.

Each element of weight 3 in the alphabet prevents three elements of
weight 2 from being coset leaders. For example, if the alphabet contains
123, then 12, 13, and 23 cannot be coset leaders. We say that the three
elements of weight 2 are ““blocked” by the letter of weight 3. Suppose an
alphabet contains at least three letters of weight three. There are several
cases: (A) if three letters have no numerals in common, e.g., 123, 450,
789, then nine distinet elements of weight 2 are blocked and a» = 36;
(B) if no two of the letters have more than a single numeral in common,
e.g., 123, 345, 789, then again nine elements of weight 2 are blocked and
as < 36; and (C) if two of the letters of weight 3 have two numerals in
common, e.g., 123, 234, then their product is a letter of weight 2 and by
the preceding paragraph a. < 37. If an alphabet contains exactly two
elements of weight 3 and no elements of weight 2, the elements of weight
3 block six elements of weight 2 and a: = 39.

The preceding argument shows that to be better than the exhibited
alphabet a (10, 4)-alphabet with letters of weight 3 must have just one
such letter. A similar argument (omitted here) shows that to be better
than the exhibited alphabet, a (10, 4)-alphabet cannot contain more
than one element of weight 4. Furthermore, it is easily seen that an
alphabet containing one element of weight 3 and one element of weight
4 must have an a; < 39.

The only new contenders for best (10, 4)-alphabet are, thelefme
alphabets with a single letter other than I of weight less than 5, and thls
letter must have weight 3 or 4. Application of Propositions 6 and 7 show
that the only possible weights for alphabets of this sort are: 356" and
5°46° where 5 means seven letters of weight 5, etc. We next show that
there do not exist (10, 4)-alphabets having these weights.

Consider first the suggested alphabet with weights 35'6". As explained
in Section 2.9, from such an alphabet we can construct a matrix repre-
sentation of €y having the character x(/) = 10, one matrix of trace 4,
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seven of trace 0 and seven of trace —2. The latter seven matrices cor-
respond to elements of even weight and together with I must represent
a subgroup of order 8. We associate them with the subgroup generated
by the elements 2, 3, and 4. We have therefore

x(D) =10, x(2) = x3) = x(4) = x(23)
= x(24) = x(34) = x(231) = —2.

Examination of the symmetries involved shows that it doesn’t matter
how the remaining x; are associated with the remaining group elements.
We take, for example

x(1) =4, x(12) = x(13) = x(14) = x(123)
— x(124) = x(134) = x(1234) = 0.

Now form the sum shown in equation (14) with 8 = 1234 (i.e., with the
character x"™* obtained from column 1234 of the Table VI by means
of substitution (13). There results disy = 14 which is impossible. There-
fore there does not exist a (10, 4)-alphabet with weights 35°6".

The weights 5°46° correspond to a representation of €y with character
x(I) = 10,0% 2, ( —2)°. We take the subgroup of elements of even weight
to be generated by 2, 3, and 4. Except for the identity, it is clearly im-
material to which of these elements we assign the character 2. We make
the following assignment: x(I) = 10, x(2) = 2, x(3) = x(4) = x(23) =
x(24) = x(34) = x(234) = =2, x(1) = x(12) = x(13) = x(14) =
x(123) = x(124) = x(134) = x(1234) = 0. The use of equation (14)
shows that d» = 14 which is impossible.

Tt follows that of the 53,743,987 (10, 4)-alphabets, none is better than
the one listed on Table III.

Not all the entries of Table I1I were established in the manner just
demonstrated for the (10, 4)-alphabet. In many cases the search for a
best alphabet was narrowed down to a few alphabets by simple argu-
ments. The standard arrays for the alphabets were constructed and the
best alphabet chosen. For large n the labor in making such a table can
be considerable and the operations involved are highly liable to error
when performed by hand.

I am deeply indebted to V. M. Wolontis who programmed the IBM
CPC computer to determine the a’s of a given alphabet and who pa-
tiently ran off many such alphabets in course of the construction of
Tables IT and III. I am also indebted to Mrs. D. R. Fursdon who eval-
uated many of the smaller alphabets by hand.



234 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1956

REFERENCES

1. R. W. Hamming, B.S.T.J., 29, pp. 147-160, 1950.
2. I. 8. Reed, Transactions of the Professional Group on Information Theory,
PGIT-4, pp. 38-49, 1054,
3. See section 7 of R. W. Hamming’s paper, loc. cit.
4. I.R.E. Convention Record, Part 4, pp. 37—45, 19455 National Convention,
March, 1955.
5. C. It. Shannon, B.S.T.J., 27, pp. 379423 and pp. 623-656, 1948.
6. Birkhoff and MacLane, A Survey of Modern Algebra, Macmillan Co., New
York, 1941. Van der Waerden, Modern Algebra, Ungar Co., New York, 1953.
Miller, Blichfeldt, and Dickson, Finite Groups, Stechert, New York, 1938.
7. This theorem has been previously noted in the literature by Kiyasu-Zen'iti,
Research and Development Data No. 4, Ele. Comm. Lab., Nippon Tele.
Corp. Tokyo, Aug., 1953.

. F. D. Murnaghan, Theory of Group Representations, Johns Hopkins Press,
Baltimore, 1938. . Wigner, Gruppentheorie, Edwards Brothers, Ann Arbor,
Michigan, 1944,

o0



