Effect of Dislocations on Ultrasonic Wave
Attenuation in Metals*

By W. P. MASON
(Manuseript received April 6, 1955)

The causes of energy dissipation and mechanical instabilities of the
elastic constants in melals can usually be iraced to the presence of an im-
perfection in the crystal lattice called a dislocation. Edge dislocations are
regions in the lattice where an extra plane of atoms has been added or sub-
tracted from an otherwise perfect crystal. Such dislocations can move through
the crystal under the application of shearing stresses or because of thermal
agitation. It is shown that the primary causes of energy dissipation in
a melal are dislocation loops pinned at irregular intervals by impurity
atoms. At very low temperatures these dislocations lie along minimum energy
positions but at higher temperalures they can be displaced to the next mini-
mum energy position. In going to the next position, the dislocation meets an
energy barrier determined by the energy required to overcome the limiling
shearing stress Ty, and the energy to stretch the dislocation. This barrier
causes a relaxation effect for which the dislocations lag behind the applied
stress and abstract energy from the mechanical vibrations. By measuring the
position and height of the relaxation peak as a function of frequency and
temperature, evidence is obtained for the value of the limiting shearing stress,
the number of dislocations per square cm., and the average loop length. The
values obtained agree with other methods for measuring these quantities.

At higher temperatures thermal agitation causes the loops to break away
from their pinning impurity atoms. In the process, it is shown that a loss
occurs which is independent of frequency and amplitude but which varies
exponentially with the temperature. The activation energy found agrees with
the calculated value for the binding energy of an impurity atom. Disloca-
tions also occur at the boundaries between grains in the metal and produce
a peak in the measured attenuation of a polycrystal which reaches a maxi-
mum at high temperatures and low frequencies. The activation energy for
this process is delermined by the energy required for a vacancy to diffuse

* Edilor’s Note: The present paper is a chapter of a new book entitled “Ultra-
sonics in Solids’’, which is scheduled for publication by D. Van Nostrand in 1956.
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from one position to another. This energy is somewhat less than the bulk
diffusion energy on account of the strains in the grain boundary.

Highly worked melals show two other effects due to dislocations, called the
Kaster effect and the viscosity effect. It appears that these are due to zig zag
dislocations which do not lie in minimum energy positions. In the course of
time free dislocations become pinned and the Kaster effect disappears.

INTRODUCTION

Metals are used very considerably in conducting sound waves in such
applications as mechanical filters, reed relays, low frequency delay lines,
and ultrasonic processing devices. In all of these devices, the energy
loss and the stability of the elastic properties of the metals are of prime
importance. The causes of energy losses and instabilities in all solid
materials are associated with the molecular motions that can take place
under thermal agitation and under the stresses that are applied to the
materials. For metals, most of the irreversible processes have been inter-
preted in terms of a type of imperfection known as a dislocation. While
it is not within the scope of this book to discuss dislocation theory in
detail,’ a short introduction is given in order to provide a background
for the ultrasonic measurements discussed in this chapter.

Dislocations were first introduced into the theory of metals to explain
the fact that the limiting shear stress required to cause plastic flow in
very pure single crystals was such a small fraction of the shear elastic
constant of the erystal. Various measurements for very pure metals have
shown that the limiting shear stress may be only 1/60,000 times the
elastic shear modulus g at room temperature and not more than three
times this value at absolute zero. Without invoking imperfections of
some type it is very difficult’ to explain why the limiting shearing stress

L —__/ _IMPURITY

7T ATOM

(a) (b)

Fig. 1 — Edge dislocation showing position for small impurity atom.

t Complete discussions of dislocation theory have been given in two recent
hooks, A. H. Cottrell, Disloeations and Plastie Flow in Crystals, Oxford Univer-
sity Press, 1953, and W. T. Read, Dislocations in Crystals, MeGraw-Hill Com-
pany, 1953.

2’See A. H. Cottrell, loc. cit., pp. 8-12.
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should be less than 1/30 of u. A type of imperfection known as an edge
dislocation was first introduced by G. L. Taylor and E. Orowan to ex-
plain this effect. An edge dislocation, as shown by Fig. 1, is a region in a
crystal lattice where an extra row of atoms is either introduced or ab-
stracted from an otherwise perfect crystal. This can be accommodated
only if the erystal is severely strained in the joining region, with a high
compression in the region of too many planes and a high tension in the
region of too few planes.

Experiment has shown that these dislocations are mobile and move in
close packed atomic planes since the energy they have to overcome in
these planes is less than in other planes. For face centered metals such as
aluminum, lead, copper, and silver this plane is the (111) plane which is
the plane perpendicular to the cube diagonal as shown by Fig. 2. The
direction of motion is in the 101 direction which is the direction for which
successive atoms are closest together. As can be seen from Fig. 2, the
distance b that they are separated is 1/4/2 times the cube edge for the
unit cell. Body-centered crystals glide along the (110) plane in the
[111] direction. Table I shows® the number of glide planes, glide direc-
tions and atomic spacings for several types of erystal structures.

Returning to the problem of the limiting shearing stress, it is obvious

GLIDE
4-—PLANE
(111)

DIRECTION
[101]

Fig. 2 — Glide plane, glide direction and glide distance b for a face centered
metal.

3 See W. T. Read, loc, cit., p. 22,
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TapLe I
Structure Glide Plane | Glide Direction %EE.E:E&? gﬁﬂ’:ﬁg;ﬁns
Simple cubie.............. 010 100 1 3
Face-centered cubiec....... 111 110 -&5 6
Body-centered cubic. . . ... 110 111 15/3 4

that with this type of imperfection it will require less force to move a
plane of atoms to the next minimum energy position one molecular dis-
tance b from the first minimum energy position. This follows from the
fact that the large force required to push one atom by another one is
partly cancelled by the attraction of the next atom for its opposite num-
ber on the other side of the dislocation. This force depends on the width
of the dislocation, i.e., the number of atom planes over which the dislo-
cation is spread. Various assumptions are considered by Cottrell* who
finds that the limiting shearing stress should be in the range

Ti, = 40 X 107 4 t0 3.6 X 10~ 4 1)

As discussed in the next section, an ultrasonie relaxation at low tempera-
tures has been found which correlates with the energy required to move
a dislocation from one minimum energy position to the next one at a dis-
tance b from the first against the limiting shear stress T3, and it is found
that

Ty, = 6.0 X 107° p, (@)

in satisfactory agreement with the lower limit of (1).

In a pure single crystal there is evidence that the dislocations form a
network which outlines mosaic blocks having slightly different orienta-
tions from each other in the erystal. Evidence for such blocks is obtained
from the width of X-ray reflections from a metal® which can be inter-
preted to indicate that the number of dislocation lines is of the order of

Nof = 10° dislocation per sq em (3)

Here N, is the total number of dislocation loops per cubic centimeter and
{ is the average loop length as shown in the model of Fig. 4. If these dis-

4+ A. H. Cottrell, loc. cit., p. 62-64.
5 A, H. Cottrell, loc. cit., Chapter IV, pp. 99-102.
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locations form the edges of a network we must have
NofP =1 (4)
and hence equations (3) and (4) would indicate
No = 10%; { = 10" em (5)

Data from the etching of erystals® for which pits are delineated at dislo-
cation ends, however, indicate that for aluminum the number of disloca-
tions per square centimeter is in the order of

Nol = 10° to 10° ©)

For germanium’ the number of dislocations per square em. is about 10*
to 10° per sq em.

According to Mott® the most likely form for a network of dislocations
is one for which dislocations from three intersecting glide planes meet in
a point as shown in Fig. 3. The Burger’s vectors then add up to zero and

(b) (c)

Fig. 3 — Dislocation network forming crystal mosaie (after Mott) (a) A close
packed plane, showing the Burgers vector for complete and half dislocations (b)
Junction of three dislocations (¢) Network of dislocations.

o T. and H. Suzuki, Dislocation Networks in Crystals, Rep. Res. Inst. Tohoku
Univ. A8, No. 6, Dec., 1954.

7 I, Vogel, private communication.

8 N, F. Mott, Phil, Mag., 43, 1151, 1952.
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the nodes are stable. A network of such dislocations can outline the
mosaic blocks as already discussed. However, the ultrasonic data pre-
sented shortly indicate that the effective loops are delineated by im-
purity atoms rather than by dislocation nodes. This is a possibility even
with the model of Fig. 3 if impurity atoms settle along dislocation lines
and clamp them at definite points. Impurity atoms having different radii
than the solvent atoms are attracted to dislocations since they relieve
energy by their presence. If the radius of the impurity atom is smaller
than that of the solute atom, the former will take the position shown by
the dotted line of Fig. 1 in the compressed region since this position cor-
responds to lower energy. If the radius is larger than that of the solvent
atoms, the impurities will settle in the region of crystal extension.

Using elastic theory Cottrell’ has shown that the binding energy of an
impurity atom is given by the equation

_ 4 (14 o\ pbr'esin
UB_3(1—0') I @

where r is the radius of solvent atom, e = (»' — r)/r where r' is the radius
of the impurity atom, 6 is the angle between the glide plane and the line
joining the dislocation center and the impurity atom and R is the dis-
tance of the dislocation center from the impurity atom. At low tempera-
tures the dislocation atoms will settle in the position of minimum energy
which is sin # = —1; R = r. Equation (7) was calculated on the basis
of elastic theory which is not strictly valid for such large strains. Com-
parison with experimental values' shows that the measured energy is
about 14 to L4 that calculated from (7). Hence we take

Us = 1 (1 + ") ube ®)

3\l —¢

for a face-centered metal for which » = b/4/2. Consequently the model
considered for a pure single crystal is the one shown in Fig. 4. It consists
of the basic network of dislocations shown in Fig. 3 with a distribution of
impurity atoms along the dislocations determining the average loop
length between pinning points. With this model

Not* 21 9

The ultrasonic data presented in the next sections indicate ‘that, for
aluminum, Nof® = 0.08, while for lead it is about 0.5.
The fundamental unit considered for ultrasonic attenuation is then the

9 A, H. Cottrell, loc. cit., p. 57.
1 A H, Cottrell, loe. cit., p. 134.
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pinned dislocation of average length £, . Such a loop acts like a stretched
string and it can be shown' to have a tension 7" equal to

T = ub* (10)

At absolute zero such loops remain stationary in their minimum energy
positions, but as the temperature rises, thermal agitation occurs and a
dislocation loop may become displaced to the next minimum energy
position. When a dislocation moves from one minimum energy position
it has to overcome the shearing stress tending to return it to the mini-

Tig. 4, — Dislocation model with impurity atoms.

/
MINIMUM ENERGY /
POSITIONS \

N
DISLOCATION

Fig. 5 — Dislocation loop with pinning atoms and form of dislocation loop.
A, H. Cottrell, loe. cit., p. 53.
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mum energy position; this is usually taken as a sinusoidal stress

Ty = Tlaub sin '2%1 (].1)
where T3, is the limiting Peierls shearing stress required to surmount the
barrier and z is the loop displacement. In addition to this, energy is re-
quired to stretch the dislocation against its tension 7'. The model that
has usually been considered" for this type of motion is the one shown by
Fig. 5. This consists of a straight section of dislocation connected to the
pinning points by two “kinks” or approximately straight sections of dis-
locations cutting across between two minimum energy positions. The
energy associated with the dislocation loop at any displacement d from
a minimum energy position can be calculated as follows. If pf is the
percentage of the total length of the loop covered by a “kink”, the in-
crease in length for a displacement d is

2

i 2,

Al = 2(+/(pl)? + @ — pl) = ” (12)
The work done against the tension T is
2 42
W, = Ta¢ = 4 (13)
pf

Work is also done against the restoring force of (11) in an amount
v d(y) "
Wao=Tup [ dy [ sin 2_’; dx (14)
0 o

Performing the integration, we find that

oo Tubt[ 2wd 2rd b, 21rd) -
W, = e 1 — cos 5 + 2p ( cos 5 5 sin . (15)
Hence the total energy W is the sum of (13) and (15).
When the loop reaches the next energy minimum, cos 2xd/b = 1, and
_ Tub’pt 4 ub’d’
™ pl

A (16)

To obtain the minimum energy, the length p¢ is determined by making
W min @ minimum with respeet to pf. Differentiating Wyia by pl and set-

12 This type of loop was first considered by N. F. Mott and F. R. N. Nabarro,
Disloecation Theory and Transient Creep, Report of a Conference on Strength of
Solids, published by The Physical Society, 1948, and has been elaborated by Read,
loe. cit., p. 47. Read investigated the conditions for kink stability.
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ting the result equal to zero, we find

(= 1/ LIy 1/ T
P Tm,, T13.,

since d = b at this position. Hence this length is independent of the total
loop length. For the ratio of Th;,/p found experimentally, i.e., 6.0 X 107°,
the length of each kink is about

pl = 720b = 2.5 X 107" ¢cm for lead (18)

b (17)

The energy for both kinks is from equation (13)

W, = b° ,‘/T:‘*“ (19)

The total energy at the first minimum A is then

A= 2% ,‘/ @ (20)

The energy H, at the maximum, which occurs when cos 2xd/b = —1
becomes
2
H = Tl:::b { 1)

There are other minima at distances 2b, +3b, etc., on each side of
the central position and it can be shown that the successive minima
have values of 24, 34, etc., while the height of the energy barrier re-
mains at H. The question arises as to whether these other positions should
be included in the calculation. This model is an ideal situation in which
no strains of any kind are permitted in the medium. Actually, impurity
atoms above and below the glide plane introduce stresses which distort
the dislocation from its straight line position and have the effect of in-
creasing the energies at the bottom of the potential wells. This effect will
be much larger for position of =42b, £3b, etc., and will probably wipe
out these minimum energy positions. For the central line and for the
positions b, the effect is smaller and hence it appears that the model
should have only two alternate positions in addition to the central
position. For an absolutely pure crystal these other energy positions
would probably exist. Caleulations including them show that the form
of the Q" curve given by equation (37) is essentially unchanged but that
the multiplying constant Au/p is increased.

The potential well model for a dislocation displaced from its minimum
energy position to the next minimum on either side will then be that
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ENERGY =

-b —_—

0
DISTANCE ——

Fig. 6 — Potential well model corresponding to dislocation loop.

shown by Fig. 6. The two energy wells on either side are higher than the
center one by the energy A of equation (20). In between these minimum
energy positions there are potential barriers of height H given by equa-
tion (21). The physical picture given for the process is then that the
dislocation vibrates in its lowest potential well (2) until it acquires
enough thermal energy to overcome the barrier H and land in wells 1 or
3. According to reaction rate theory, the number of times per second
that this process is likely to occur is given by the equation

a = y& VT (22)

where v is the number of times that the dislocation attacks the barrier
per second, U is the height of the energy barrier and RT the thermal
energy. If U is expressed in calories per mole, then R the gas constant
per mole is 2 calories per degree increase in temperature. The number of
times that the dislocation attacks the barrier should be approximately
equal to the resonant frequency of the dislocation in its potential well.
Experimentally, it is found that v is close to 2xf = , the value for the
natural vibration.

The resonant frequency of a dislocation in its potential well can be
calculated from the restoring force and the mass per unit length which"

13 J, 8. Koehler, Chapter VII, Imperfections in Nearly Perfect Crystals, Wiley,
1952. Koehler considers dissipation to be due to dissipation of freely vibrating dis-
locations. For the potential well model, freely vibrating dislocations do not exist.
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. 2 . . . .
is mpb*. The restoring force can be determined from the derivative of

(W1 + W.) with respect to d as d becomes small. The result of differenti-
ation, using equations (13) and (15) is

[214-7’.30( + b VT (% - g vr):| d (23)

Since the last term is much smaller than the first, we neglect it, and have
the equation

2, d'd
‘J'I'pb ( W —I— 271’T13n(d = 0 (24)
For simple harmonic motion d'd/df’ = —w'd so that
mpb’lw’ = 27Tyl (25)

Hence the resonant frequency for a dislocation in its potential well is
independent of the loop length and equal to

_ 1 2T, )
f= b /‘/ p (26)

For lead, copper, aluminum, and silver, using the value of T3, = 6.0 X
107° u, the relaxation values of w for the metals are

Pb Cu Al Ag
w=2ef =78X 10" 28%10° 3.6X10° 1.9X10° (27)

All of these values are considerably higher than any angular frequencies
« which have so far been used. For frequencies approaching these values
resonance effects may be expected.

The potential well model of Fig. 6 results in a relaxation type loss and
a change in the elastic constant. As with all relaxation effects, energy for
low frequency vibrations has time to equilibrate among the various po-
tential wells and is returned at a later part of the cycle without appreci-
able loss. Since the dislocations can be displaced from their equilibrium
positions, a plastic component of strain results and the metal has a greater
elastic compliance than would occur without dislocation displacement.
As the period of force application becomes comparable with the equilib-
rating or “relaxation” time an appreciable fraction of the energy is not
returned to the vibration but is converted into heat. In this frequency
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range, the attenuation becomes a maximum and the elastic constant is
intermediate between its high frequency and low frequency values.
Finally if the frequency of vibration is sufficiently high there is not time
for the dislocation to move from its potential well and the material be-
comes stiffer and less lossy. At room temperature sufficiently high "
sonic frequencies have not been used to observe this complete process.
However, as one lowers the temperature, the relaxation frequency de-
creases due to the activation energy term ¢ “/*" of (22); this process was
first observed by Bordoni." An explanation in terms of dislocation loops
was first published by the writer."”

The loss and change in the elastic constant can be obtained by apply-
ing reaction rate theory to the model of Fig. 6. The effect of applying a
shearing stress along the glide plane is to lower one potential well and
raise the other one as shown by the dashed line of Fig. 6. The effect of
any other stress is to provide a component of shearing stress in the glide
plane and the magnitude of the relaxation effect is then related to the
relaxation in the glide plane as discussed in the next section. In general
a relaxation measured in one stress system has to be multiplied by a fac-
tor I to equal that in the glide plane.

The lowering of the potential well 3 by the shearing stress Ty is equal
to

A = Tub*(1 — p) (28)

Potential well 1 is raised by a similar amount. This results in a redistri-
bution of the number of dislocations in the three types of wells and
hence a plastic strain equal to

= (Ns — N)(1 — p)b*e, (29)

where (1 — p)b{ is the area swept out by a single loop. The rate at which
the shearing stress changes with time is determined by combining the
four transition probabilities for the three wells and since the details of
the calculation have been given previously,'® only the final result is given.

14 P, C. Bordoni, Elastic and Anelastic Behavior of Some Metals at Very Low
Tempemtures, J. Acous. Soc. Am., 26, July, 1954.

15 W, P. Mason, Dislocation Relaxations at Low Temperatures and the Deter-

mination of the Llrmtmg Shearing Stress of a Metal, Phys. Rev., 98, pp. 1136-1138,

May 15, 1955.
18 W, P. Mason, Relaxations in the Attenuation of Single Crystal Lead at Low

Temperatures and Their Relation to Dislocation Theory, J. Acous. Soe. Am., 27,
July, 1955. For other measurements see also paper K4 hy B. Welber, Program of
the49th meeting of the Acoutica Society of America, July 2, 1955. The relaxation
in lead at 50 ke was shown as a slide.

July, 1955.
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For finite stresses the formula for the plastic strain takes the form

—AIRT _
No(1 p)b { sinh — IcT

o [1 jo ( + ¢/ET )B(H—A)"RT]
Suf = cosh A/2kT

—AlRT s J_w
14 2 cosh kT ;

(30)

— 3(.0 o — T
4+ 26 —AIRT cosh = (x A)IRT 2(H—A) IR
- ( ) 2kT +

if H and A are expressed in calories per mole. For stresses such that

A _ T1ab25(1 — p)

T BT <1

we can replace the sinh by the argument and the cosh by 1. Hence equa-

tion (30) reduces to

S’ip
Tl3

2 (N ) [ e (L) e
1 + 2e4/FT kT d 2

= jw 3 (H—A)IRT jw (H—A)IRT
(1 ( 1+ 26*‘4!37') e (1 - ? ¢ )

If we expand the right hand side of (31) into real and imaginary parts,
we find

SlsP _ QG_AMT [No(z(l e p)2b4j|
ET

Ty 1+ 2747
1 + (‘_’{_) 2eAfRT + e—A,'RT) f_ [5 + 26—.&)‘&!‘ _ eAIRT
w@o 1 + 2¢4/RT wo L 2(1 + 2e4/7)
" (w) 3(1 + ¢*'*7) ):l
w/ \2(1 + 26“4““')
—-A.'.RT —24/RT 2
8 (i ) + (5) (7 em)
1+ 4e—AIRT | 4¢ 24/[RT 1+ zeﬁ.um'

and

(31)

(32)

—(H—A)/RT
wy = ye E
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If A is small compared to RT this equation reduces to the usual expres-
sion

.w
S 9 AIRT I:N“CZU _ p)zb‘] 14+ w_o
T

= 2
o)
wy

Ty 1+ 24t
An intermediate equation is obtained by expanding the three terms of
(31) into a series for the two factors in the denominator divided by the
factor in the numerator. The first two terms yield in the equation,

LW
313P B 2(4!&1‘ (Nuﬂz(l _ p)zb‘) 1 +Jw"—u
kT w \?
1+ (%) (33)

Ty 1 4 2e4ler
e—-(H’—A},fRT

where wy = 7

and

2 + 56.4[}?7' _ eZA,fRT
2(2 + e4/A7)

This equation will be used in evaluating the measurements to be dlscussed
in the next section.

If we add to this the purely elastic strains Si" = Ty u”, the ratio of
the total strain to the applied stress is

S’ + St 11 2¢ T N1 — p)'b'e* ( 1+ jw/wo) (34)

Tis  p uf | 1 4 2eaT kT 1 + (w/w)?

This equation shows that the elastic shear modulus g varies with fre-

quency and the presence of an imaginary term indicates that there is a
dissipation associated with this relaxation. For the real part we find

E —A/RT 2rq a2
K n_zg;:( 2 )Nut’-’(l p)b#x( 1 )(35)

P 1 o4 2e 48T ET 1 4+ ?/w’

F =

The total change in elastic constant Au” which occurs when the fre-
quency goes from zero to infinity is then

A.utl _ ( 267.&{5’?‘ )Nn{g(l _ p)2b4“!s‘ (36)

W \1 + 2e4/RT kT

Since the imaginary part of (34) represents the dissipation of energy it
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can be shown that

L e
Q 1+ (o)

These are the equations connected with a single relaxation which, in this
case, would be associated with the displacement of a single length dislo-
cation. Since there is a distribution of loop lengths about the most
probable value, the activation energy, H, will vary and hence each length
will have a different relaxation frequency. Equations (35) and (37) can
be generalized to the forms

ot (e, S ) @9

= oo \1 + (0/w)? Ko i opo \1 + (w/w)?

As will be discussed in the next section, these equations can be used to
evaluate the characteristics of a relaxation at low temperatures which is
connected with the displacement of dislocations from their minimum
energy positions to adjacent minimum energy positions. In the process
they give experimental evidence on the limiting shearing stress in metals,
on the number of dislocations per square centimeter in metals and on
the average loop lengths. The values found are in good agreement with
other methods for measuring these properties.

(37)

EXPERIMENTAL EVIDENCE FOR DISLOCATION RELAXATIONS AT LOW TEM-
PERATURES

The first experimental evidence for a relaxation at low temperatures
was provided by the work of Bordoni." Using an electrostatic drive
method, Bordoni measured the inverse ( values for a number of metals
down to liquid helium temperatures. All these measurements were made
with very small strains, i.e., less than 107, which are in themselves too
small to displace dislocations from their minimum energy positions. They
can, however, bias the potential wells of the model of Fig. 6. Then, tem-
perature induced motions arise so that, for slowly applied motions,
equilibrium of dislocation distributions can occur between the potential
wells, with the applied stress thereby superimposing a plastic strain on
the elastic strain. For very high frequencies there is not time for the dis-
locations to redistribute themselves and only the elastic strain occurs.
This process results in a relaxation which extends over a frequency range.
As discussed in the previous section, the dislocations have too high a
natural frequency for this process to be observed at room temperature.

All of Bordoni’s measurements were made for polyerystals or single
crystals of a definite length, ie., 6.4 ems. The natural resonance fre-
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angular relaxation frequencies w, = 2xf, can be represented by the equa-
tion
w = 5.3 X 10° ¢ "FT (40)

so that we are dealing with a process having an activation energy of
about 975 calories per mole. This is a very low activation energy and the
only known process which has as low an energy as this is the one discussed
in the previous section, namely, the displacement of a dislocation, by one
atomic spacing, against the limiting shearing stress of the crystal.

To show that this is of the right order of magnitude, we may evaluate
the activation energy of the process from (20) and (21):

o o [Tt s 1/'113,]#] 6.025 X 10®
H—- A= [T 2b — | ii8e 107 (cal./mole) (41)

As will be shown presently, the energy average loop length is of the order
of 4 X 107" em and since it is known that

b =35X 10" cm; and u =70 X 10" dynes/cm*® (42)

we find for the limiting shearing stress a value of 4.8 X 10° dynes/cm”.

108
.- 915
.3 X10°e RT
5 tuo=2nfu=L
F
A 2a
RT —€RT
2l F:M—?—-;AZHOCAL/MOLE
A
M 2(2+eﬁ)
10

O PRESENT MEASUREMENTS
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Fig. 9 — Plot of log of relaxation frequency against 1/7'.
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Due to the factor, F, a slightly nonlinear relation is obtained between
the relaxation frequencies and the reciprocal of the temperature as
shown in Fig. 9. Hence we find

Ty, = 4.8 X 10° dynes;  Thy,/u = 6.8 X 107 (43)

values in good agreement with Peierls’ lower theoretical value in (1).
The value of v = 5.3 X 10" is within a factor of 1.5 of the caleulated
angular resonance frequency of a dislocation in its potential well as given
by (26).

In calculating T, an assumed value was used for the average length
of a dislocation loop. Some evidence on the size of the dislocation loops
and their distribution around the average size can be obtained from the
data of Fig. 8 for the attenuation measured in a lead single crystal. The
form of the 1/Q curve for a single loop length is given by (32). The best
fit to the measured values is shown by the dashed curve of Fig. 8(a),
and, as can be seen therein, a single relaxation does not agree fully with
the measured values. If we assume a distribution of activation energies,
the measured curves can be fitted by using the weighting function given
in Fig. 10. This verifies the existence of loops shorter and longer than
the mean value, in agreement with the model siown in Fig. 4. Since the
measured activation energies, I — A, are nearly proportional to the loop
lengths, the distribution in activation energies also corresponds to the
distribution of loop lengths. The distribution function for the shear meas-
urements is also shown in Fig. 10. The height of the shear curve is about
9 times as high as that for the longitudinal measurement. It will be
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evident from subsequent discussion of equation (45) that this is to be
expected. The number of dislocations for the shear crystal is about 40
per cent higher than for the longitudinal erystal.

Some data on the average loop length can be obtained from the data
of Fig. 8(a). If we consider a single loop length as shown by the dashed
curve and increase the maximum until the area under the loop is equal
to that under the measured curve, the value of the weighting factor
Acyi/en becomes

Aen _ g4 x 107* (44)
C11
Since all the formulas used in dislocation theory refer to isotropic ma-

terials rather than cubic erystals, we take
en =N+ 2p

To determine how a measured change in Acyi/ey , determines a weighting
factor Au/u, we note that the bulk modulus, B, does not have any relaxa-
tion effect, i.e., a pure compression will cause no shearing motion in the
glide plane. Since

B =\+4 24 p; AB = AN + 24 Ay = 0; Hence AN = —24 Au

Therefore
Acu _ AN 4 28 _ (%A#) u
o A+ 2 A+ 2’
C11 + 2u u “ (45)
and %=§(1+2F)Aill
v 4 I cu

It is readily shown that the relation between the change in Young’s
modulus and the shearing modulus is

b _ 3 (41)
H- YD YO y (46)

a relation needed later.
From (35), (44), and (45), we have

9 ARITo

-3 _
43 X 107 = 2e—Amo[

kT, “7)

1\75(1 — ?)2b‘:| E

n
where N = N, is the number of dislocations per square centimeter,
which is a measurable quantity if one uses the etch technique.

Since A = 110 calories per mole, T, = 140°K, (1 — p)* = 0.90;b = 3.5
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% 1075k = 1.38 X 107 and x* = 7.0 X 10" dynes per sq em we find
N¢ = 1.3 x 10° (48)

Data from the mechanical hysteresis effect discussed in the next section
indicate that

N =31 x10° (49)
and hence the average loop length is about
¢ =4 X 10" cm (50)
Hence we have
2=4X10"cm, and Nof' =05 (51)

One can use the measurements of Bordoni shown in Fig. 7 to show that
the present interpretation, attributing the relaxation to the displacement
of a dislocation by one atomic spacing against the limiting shear stress
of the crystal, is consistent for several face-centered metals. Since the
temperature of maximum attenuation results when the measuring fre-
quency equals the relaxation frequency we have

@
.YB—(H—A”BT

=1

Since the ratio of each measuring frequencies listed in (39) to the cor-
responding resonant frequency for dislocations (27) is nearly a constant,
the activation energy, H — A, will be proportional to the temperature of
maximum loss. The activation energy of lead was evaluated as 975
calories per mole at a temperature of 35°K. Hence, we can evaluate the
activation energy of each metal; as shown in Table II, the average value .
of (T1a,/n) is about 6 X 107",

In view of the approximate nature of this calculation (including the
tacit assumption that all the loop lengths are the same for the different
metals), the results in Table IT constitute satisfactory confirmation of the

TasLe 11
Metal | yRempiof | HAI | bin | wasmes/ems | T dymessemt | Tu/a
Pb.... 35°K 975 3.5 7.0 X 10t 4.8 X 10° 6.8 X 10~¢
Cu.... 85°K 2360 2.55 4.6 X 101 2.4 X 108 5.2 X 10—¢
Al..... 100°K 2760 2.86 2.5 X 101 1.9 X 10°8 7.6 X 10°¢
Ag. ... 60°K 1710 2.88 2.7 X 101 1.3 X 10¢ 4.8 X 10°¢
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Fig. 11 — Higher temperature values of mechanical hysteresis effect (Bordoni
and Nuovo).

proposed origin of the relaxation frequency. The values found are in good
agreement with the most probable values given by Cottrell.!

TEMPERATURE ACTIVATED MECHANICAL HYSTERESIS MECHANISMS

In addition to the relaxation mechanism discussed in the last section,
the measured values in Figs. 8 show that there is another source of loss
which is independent of frequency for a given specimen. Fig. 11 shows an
extension of the measurements of Bordoni, by Bordoni and Nuovo," to
a higher temperature for pure and commercial lead. Both materials show
an increase in attenuation of the form

Q"l — Ce—D',’RT
with the values
pure lead
C =11, U = 3000 cal/mole; and (52)

commercial lead

C = 5.6; U/ = 4350 cal/mole.

Above 350°K, this increase reaches a maximum and then drops off. A
similar rise was found by Ké® for aluminum single crystals at 0.8 cycles

17 P, G. Bordoni and M. Nuovo, Sulla Dissipozione Delle Onde Elastiche Nel
Piombo Ad Alta Tempetura, I1 Nuove Cimento, 11, pp. 127-140, Feb. 1, 1954.

18T, 8. Ké, Experimental Evidence of the Viscous Behavior of Grain Bound-
aries in Metals, Phys. Rev., 71, p. 533, 1947. See also C. Zener, Elasticity and An-
elasticity of Metals, p. 151, Fig. 48, Chicago Univ. Press, 1948.
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as shown in Fig. 12. This rise follows the same formula with
C =037 and U = 5200 cals/mole (53)

Since this effect is independent of frequency it is called a temperature
activated mechanical hysteresis.

The model of Fig. 4 admits only two possibilities. One is that the
pinning points can momentarily be torn from the dislocation, thereby
allowing energy to be transmitted from one loop to the other. The other
possibility is that thermal energy will be sufficient to generate an unstable
Frank-Read loop which will carry off energy. It is readily shown, how-
ever, that it would require 10,000 times the activation energy to cause
the loop breakdown and hence the Frank-Read loop cannot be the mech-
anism. As discussed later, the energy required to remove an impurity
atom is of the right order of magnitude and hence this is considered the
cause of the hysteresis loss.

The question is how a momentary breakaway of a pinning point can
abstract energy from the vibration. All the loops undergo thermal vibra-
tion with a velocity determined by the equation

Vo(Er)'m = kT (54)

where m is the mass of the loop which is mpb’f, where p is the density of
the medium, and @, is the thermal velocity as the loop crosses the
equilibrium position. For lead, with loops Df 4 X 107 em in length,
the mass of the dislocation is about 1.7 X 107" grams so that the thermal
vibration velocity is about 70 em/sec at room temperature. This is large

o~
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Fig. 12 — Temperature activated mechanical hysteresis effect in aluminum
slngle crystal (after Ké).
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compared to the velocity of any particle in the crystal. However, the
particle velocity 7 can add to or substract from the thermal motion
when % and & are in or 180° out of phase; hence the energy of vibra-
tion may be written

V(ir + w)'m + Y%(ir — w)’m = (&r + 9)’m
since it is equally probable for the thermal‘velocity to add or to subtract
from the particle velocity. As long as the loop is pinned at the ends, this
energy is returned to the crystal vibration without loss since the vibra-
tions are coherent. When a pinning point is broken, on the average,
energy equal to

(u)'m
2

(55)

is abstracted from each loop and since two loops are involved for each
impurity atom, an energy of um is abstracted from the crystal vibration.

To caleulate the acoustic loss to be expected from this source, consider
a shear strain of the form shown in Fig. 13 to be propagated in the
direction perpendicular to the glide plane. At ¢t = 0, the particle dis-
placement is zero at © = 0 and u at = {. After an interval of time dt,
the strain will be displaced a distance V.dt, where V, is the shear velocity
which is 8.0 X 10" em/sec for lead. The particle velocity % is a constant
over the time of the wave. The energy lost in going a distance £, = V.dt
can be calculated as follows. The energy lost per dislocation vibration is
m(w)*/2. For an interval of time d¢ this has to be multiplied by fdt where
J is the frequency of vibration of a dislocation. Hence the loss from a

SHEAR STRAIN

| s’

|
L e L
e vt —————>

DISTANCE

Fig. 13 — Form of shear wave for caleulating mechanical hysteresis losses.
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single unpinned vibration, in time d¢ is
.2 2 I /2T130 .2 | /Twop
47b 2

To get the total loss we have to multiply this by the number of unpinned
dislocation loops. From Boltzmann’s principle, the number of unpinned
loops per cc will be

w'mf dt =

N UET (57)

where N, is the number pinned loops per cc and U the activation
energy for tearing an impurity atom away. We have to multiply this by
the volume of the disturbance which may be written V.dt if a unit cross-
_sectional area is considered. Hence the total loss in time df is

(ﬁba‘\/pp 1/ 2—1;“ V.Nute_”’”) (dt)* (58)
The total input energy for the wave, in time dt, is
Wo = w'/pp di, (59)

where +/up is the characteristic impedance of the medium. Hence the
energy transmitted in the first interval of time d¢ takes the form

(fZmwe) 1
W =Wy|l-— L 5 dt |.

This is the first term of the expansion of the equation

( 4/ 27130 v ,Note—U/RT );

N

W = W 3 = We ™'
x/Q, we have finally

where § is the decrement. Since the decrement &

| /2T 13, —UIRT
1 B —-——# bV.Nofe (62)

Q - 27
This loss is independent of frequency since it does not depend on £,
which determines the steepness of the displacement-time curve. It does
not depend on the amplitude up to a strain which can cause breakaways
due to the applied strain alone.
To see if (62) yields a reasonable value for a single crystal, assume a
temperature of 250°K for which measurements in Fig. 8 along the [100]
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direction show that Q—! = 1.55 X 10~*. Multiplying this by 5.2, [see equa-
tion (45)], to give the value for a shear wave propagated along the [111]
direction we have

L _s0x10"
¢ (63)
_ 348 X 107" X 3.5 X 107* X 80 X 10° X 1.7 X 107 (Nof)
2
Solving for Nyf, the number of dislocations per sq em, we have
N = Nyt = 3.1 x 10° (64)

If we perform the same calculations with the data for polycrystalline
lead, multiplying the resultant values of Q' by

Aﬂ. 3]1. (AY{]) AYQ
—_— = | =) =12 =, 65
1] Yﬂ Yu] Yo ( )
we find
C. P. lead Commercial lead
_ . _ 8 (66)
N =12X10 N =6 X 10

Hence the number of dislocations for an unstrained single crystal or
polycrystal appears to be in the neighborhood of 10° to 6 X 10°.

A somewhat lower value is found for aluminum from the data of Fig.
12. This curve shows an increase in Q' for a single crystal which can be
represented by the equation

Q" = 0.37¢ =0ET (67)

These measurements were made for a single crystal wire using a torsional
oscillation of 0.8 cycles per second. Since this is for a shear vibration, no
correction will be required in the isotropic approximation. T'o make this
agree with equation (62) for b = 2.86 X 10" and V, = 3 X 10° cm/sec,
we must have

N = Nt = 10° (68)

which is in fair agreement with the values of 10° to 10° determined from
etch pit data.

This temperature actuated mechanical hysteresis is a property of all
the metals measured at high temperatures as is shown by the data of
Ké"” given in Fig. 14(a). Here a peak associated with grain boundary

19 J.8. Ké, J. Appl. Phys., 21, p. 414, 1950.
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crystalline metals, (b) Separation of losses for copper (after Ké). -

motion (discussed in the next section) is followed by an exponentially
rising value of internal dissipation as measured by Q7'. The curve for
copper is shown in detail in Fig. 14(b). We can separate out the grain
boundary loss from the hysteresis loss as shown by the dashed line. This
curve can be represented by the equation of the figure with a constant
(' = 3.5 and an activation energy of 7500 calories per mole. Analysis
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similar to that outlined for lead and aluminum yields about 1.2 X 10°
for the number of dislocations per sq em.

It remains to be shown that the theoretical activation energy for un-
pinning a pinning point is of the right order of magnitude to agree with
experiment. The binding energy of an impurity atom is given by (8). To
obtain U =3,000 to 4,350 calories per mole for lead, 5,200 for aluminum,
and 7,500 for copper, we must have the following ratios of impurity atom
radius to metal atom radius;

Ph; e = 0.108 to 0.156: Al; = 0.102: Cu; €= 0.11 (69)

These values are close to what would be expected for the principal im-
purities which are bismuth and antimony for lead, iron and copper for
aluminum, and silicon for copper.

This process should be present for all metals but the activation energy
is usually too high for this effect to be observed at room temperature.
For lead, as seen from Fig. 11, the effect reaches a maximum at a tem-
perature of about 350°K. This temperature is not far from the critical
temperature Ty of a Cottrell atmosphere, for which the impurity atoms
cease to be condensed around a dislocation but, due to thermal agitation,
form a “Maxwell” atmosphere around the dislocation. The energy to pull
the dislocation away from the atmosphere increases and the number of
free dislocation loops decreases. This temperature™ is

To = U/R log (1/co) (70)

where ¢, is the concentration of impurities in the metal.

For room temperature measurements for most single crystals and un-
strained polycrystals, it appears that most of the loss is due to the relaxa-
tion mechanism previously discussed. This loss becomes nonlinear with
amplitude for large amplitudes as shown by the measurements of
Nowick™ for copper single crystals. These results are shown in Fig. 15.
For strain amplitudes above 1 X 1077, the value of Q" increases as a
function of increasing amplitude. Similar results have been found by
Read™ and others. This can be expected from the model of Fig. 6. When
the value of

A Tl —p)

the argument can no longer replace the sinh. For copper, this corresponds

20 A, H. Cottrell, Dislocations and Plastic Flow in Crystals, p. 141. Oxford
University Press, 1953.

21 A, 8. Nowick, Phys. Rev., 80, p. 249, 1950. T. A. Read, Trans. A.I.M.E., 143,
p. 30, 1941,
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to

138 X 107" X 300
(255 X 107852 X 4 X 10*

Since the shear modulus is 4.6 X 10" dynes e¢m®, this corresponds to a
strain of 3.5 X 107", Furthermore, the potential well model is no longer
adequate since the dislocations can be displaced by several atomic spac-
ings and their ultimate displacement will be determined by the increase
in length of the dislocation. Hence the nonlinear effect is consistent with
consideration of the dislocation loop displacement as the cause of dissipa-
tion in a metal crystal.

It has been found that the larger the number of impurities, and hence
the shorter the loop length f, the larger is the stress required to make
Q' vary non-linearly. This is in agreement with (71). Also since the
attenuation is proportional to the number of dislocations N times the
average loop length ¢ the effect of increased impurities is to lower £ and
also the attenuation. On the other hand the hysteresis loss depends di-
rectly on the number of dislocations only, and should be independent of
the impurity content. This appears to be borne out by the data for the
pure single crystal, 99.99 pure, in Fig. 8 and for the commercial ma-

T = 16 X 10° dynes/em® (72)
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Fig. 15 — Internal friction in copper at room temperature as a function of cold
work and strain amplitude (after Nowick).
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terial in Fig. 11. An extension of the measurements of IFig. 8 to higher
temperatures shows that the hysteresis attenuation reaches its maximum
at 260°K and decreases for higher temperatures. This lowering of the
peak from 350°K to 260°K, by the increased purity of the lead, is con-
sistent with (70) for the Cottrell atmosphere temperature. Below the
peak, however, when one multiplies the crystal value ¢ = 0.92 by 5.2
and the polyerystal value ' by 1.2, to reduce them to the values for the
glide plane, the two values are within a few per cent of each other. Hence
the effect of impurities appears to be small for the hysteresis term.

VISCOUS GRAIN BOUNDARY LOSSES

For polyecrystals, another dislocation relaxation effect occurring in
grain boundaries, contributes to acoustic loss at high temperatures and
low frequencies. The boundaries® between grains of different orientations
are regions of vacancies and considerable strain in the lattice. One of the
simplest types of grain boundaries, called the Burgers boundary, is shown
by Fig. 16. Here two slightly misoriented crystals are made to join by a

(b)

Fig. 16 — Burgers dislocation grain boundary with dislocations along cube
edges (after Read).

22 A complete discussion of dislocation grain boundary models is given by
W. T. Read, Dislocations in Crystals, Chapters 11 to 14, MeGraw-Hill Co.
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series of edge dislocations whose spacings depend on the angle of misfit.
Such a grain boundary can be made to glide on the application of a
shearing stress, as has been shown by Parker and Washburn.* More
complex boundaries occur when the plane of joining is not a cube edge.
For such boundaries as shown in Fig. 17, two sets of dislocations are
required to join the two differently oriented crystals. This type of bound-
ary is called a tilt boundary. If the two grains are given a relative rota-
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Fig. 17 — Read-Shockley dislocation tilt boundary with two sets of dislocations.
# Trans. A.LM.E., 194, pp. 1076-1078, 1952. -
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tion with respect to each other, the dislocations connecting them are of
the screw type and such boundaries are called twist boundaries.

In the more complicated types of boundaries, the motion cannot be
simple glide as in the boundary of Fig. 16 because, due to the various
dislocation systems, glide requires sending one set of dislocations through
the other and such a motion is strongly resisted. Such a boundary can
move only if atoms diffuse into adjacent vacancies and this takes place
only at high temperatures where thermal energies can overcome the high
activation energies of diffusion. Hence when a cyclic stress is applied to
a polycrystal, there is not enough time for a grain boundary to move
appreciably so that the elastic constant of a polyerystal does not differ
much from a single crystal at room temperature.

Fig. 18 shows the measurements of Ké* on the elastic and dissipation
properties of polyerystals and single crystals of aluminum for a torsional
vibration at 0.8 cycles, between 100°C and 450°C. The measurements

\ (a)

o
~

~

Zz
]
=
2 06 N~
g o
>
w SINGLE ™.
[+] ICRYSTAL
> 0.5
[¢]
g \
Fl
3 \
o 04 N
w POLYCRYSTAL
i N
=
% 0.3
Q.10
. bos
T POLYCRYSTAL
o .
z
O 0,06
e
(%)
£ / \
w
= |
004
<
z / N
w
=
z
= o002
-/ SINGLE
CRYSTAL | e
i B B el
0 100 200 300 400 500

TEMPERATURE IN DEGREES CENTIGRADE

Fig. 18 — Elastic constants and internal dissipation in polyerystal and single
crystal aluminum showing grain boundary effect (after Ké).

2T, S, K¢, Phys. Rev., 70, p. 105A, 1946, and 71, p. 533, 1947.
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show a relaxation for the polycrystal but none for the single crystal.
Both crystal types, however, show the hysteresis effect. By measuring
the temperature shift of the maximum attenuation as the driving fre-
quency is changed, Ké found an average activation energy of about
31,000 calories per mole, which is approximately 3.5 kilocalories under
the self-diffusion constant of about 34.5 kilocalories per mole for alumi-
num in aluminum. This decrease of the average value is probably due
to the average shearing stress exerted along the boundary. Shearing
stress can lower the activation energy for diffusion, as has been shown by
the measurement of diffusion bonding in solderless wrapped connections.”
The measurements of Ké confirm the fact that grain boundaries can only
move by diffusion of their components under a stress bias. With an ac-
tivation energy of 31,000 calories per mole, the equation for the angular
relaxation frequency becomes

wo = 4 X 10l2g—3l.000.’RT (73)

The value of 4 X 10" is close to what one would expect for the vibration
of a molecule in its own potential well and agrees with the idea that the
fundamental process is the motion of the domain wall by diffusion of its
separate parts.

The breadth of the relaxation is greater than would be expected for a
single activation energy. In fact it requires an activation energy distri-
bution from 27.5 kilocalories to 34.5 kilocalories to account for the
width. If we compare this with the measured® activation energy curve
as a function of shear stress, shown in Fig. 19, this range can be explained
by shear stresses ranging from 0 to 2000 pounds per square inch with an
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Fig. 19 — Lowering of activation energy of diffusion in aluminum by the appli-
cation of a shearing stress.

2 W, P. Mason and O. L. Anderson, Stress Systems in the Solderless Wrapped
Connection and Their Permanence, B.S.T.J., 33, pp. 1093-1111, Sept., 1954,
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average value of 1,000 pounds per square inch. The strength of the re-
laxation shows that when the motion of the domain walls can adjust in
a time much less than one period, about 14 of the strain occurs by grain
boundary motion and 24 by elastic straining.

EFFECTS OF SMALL AND LARGE AMOUNTS OF COLD WORK ON ACOUSTIC
ATTENUATION IN METALS

The curves of Bordoni, shown by Fig. 7 and Nowick in Fig. 15 show
that small amounts of cold work can increase the attenuation due to the
relaxation effect previously discussed. Since the activation energy does
not change, the indications are that this increase is due to the production
of more dislocations lying along minimum energy positions. An increase
in dislocations by factors of 10 or more can occur by this process.

When large amounts of cold work are applied to metals, two other
effects have been discovered by Koster*® and his collaborators. The first
effect, as shown in Fig. 20, consists of a temporary decrease of the
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Fig. 20 — Internal friction (solid circles) and dynamic Young’s modulus (open
circles) of Armeo iron, measured at 20°C as a funetion of time after deformation.
Degree of cold drawing: A — 25 per cent, B — 80 per cent. (After Koster.)

26 W, Koster and K. Rosenthal, Z. Metallkunde, 30, p. 345, 1938; W. Késter,
Arch. Eisenhiittenw, 14, p. 271, 1940-41; and F. Forster and W. Koster, Naturwiss,
26, p. 436, 1937.
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Young’s modulus and an increase in the internal friction which relax
out in several hours at room temperature, i.e., far below a recrystalliza-
tion temperature. For very high values of cold drawing, i.e., 80 per cent,
a permanent change occurs in the value of Young’s modulus until the
metal is recrystallized. Although complete measurements®’ have not been
made it appears that this effect is independent of amplitude for strains
up to 107°, and is not strongly dependent on frequency or temperature
from —100°C to 0°C. This effect has been called the Koster effect.””

Heavily deformed metals, particularly aluminum, show another effect
called the ‘“viscosity” effect after the Koster effect has disappeared. A
residual internal friction is observed provided that the measurements
are made at sufficiently high temperatures or low frequencies. Fig. 21
shows the internal friction of heavily worked aluminum after a series of
anneals at the temperatures indicated in the figure. The most complete
study of this effect is that of Ké&® and Zener and Ké&® in which low
frequency (torsional pendulum) and static measurements (relaxation)
were made. These curves show that the internal friction keeps on rising
with temperature and shows no relaxation effect. At the recrystallization

27 A 8. Nowick, Internal Friction and Dynamie Modulus of Cold Worked Met-
als, J. Appl. Phys., 26, pp. 1129-1134, Sept., 1954.

3T S, Ké, Trans. A.LM.E., 188, p. 575, 1950 and T. 8. Ké and C. Zener, Sym-

posium on the Plastic Deformation of Crystalline Solids, U. 8. Office of Naval
Research, Pittsburgh, 1950.
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temperature, 300°C, this effect disappears and the normal grain boundary
relaxation returns. This effect is not observable in brass or iron at these
temperatures since the lower melting temperature of aluminum gives it
a much lower activation energy.

While sufficient data for the Koster effect has not been obtained to
make certain any interpretation in terms of dislocation theory, two
possibilities may be mentioned. When the material is highly worked,
large numbers of new dislocations are produced principally along slip
bands in the interior of the crystal grains. From the absence of a tem-
perature dependence of the Koster effect they must be of the zigzag
types®™ which run across minimum energy positions, such as those illus-
trated in Fig. 5, in a zigzag manner as shown in Fig. 22. Such dislocations
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Fig. 22 — Form of zigzag dislocation that crosses lattice rows in a slip plane
(after Cottrell).

are not bound by potential wells and their frequency of vibration is
determined by their tension rather than by the limiting shearing stress
for a potential well which was discussed in the first section. The equation
for a stretched dislocation, as discussed by Koehler,” can be written in
the form

3 ax T

me +BE—;-6—y2=Tmb (74)
where m, the mass per unit length, is mob’; B is a dissipation constant,
T is the tension of the dislocation equal to pb®, z is the displacement of
the dislocation at a distance y from one end, and Ts; the applied shearing
stress. The natural frequency for a vibration loop is obtained by setting
B and T'y; equal to zero. The preferred shape of a vibration is then

= Ayt — ) (75)

2 For a discussion of zigzag dislocations, see A. H. Cottrell, Dislocations and
Plastic Flow in Crystals, p. 65, Oxford University Press, 1953.
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which represents a zero displacement at y = 0 and y = € with a para-
bolic shape in between. The average displacement for the dislocation is

11 2
p=t [ —pay =4, (76)
£ Jo 6
Inserting this value in (74) and introducing the value ajoft = —o, we
have
2 2 .2 2
w (wgb ) _ % (77)
Solving for the frequency we find
_ 1 J/12u
= 2 @)

When the zigzag dislocations are originally formed, some of them are
probably relatively free from entanglement with other dislocations or
with impurity atoms. In the course of time they gravitate towards other
disloeations or atoms and form pinning points with them, thereby re-
stricting their possible motion and the associated dissipation.

While they are free to vibrate, one possible cause of loss is the damped
vibrations of the dislocations discussed by Koehler."” Koehler considers
that the dislocations can be made to follow the applied stress and due to
the damping constant B of (74) abstract energy from the vibration. To
a first approximation, the loss caused by this mechanism is proportional
to the first power of the frequency and the fourth power of the loop
length.” Since no activation energy is involved, this loss should be inde-
pendent of the temperature. As the loop length becomes smaller due to
an increased number of pinning points, this loss rapidly decreases.

If the Koster loss is independent of the frequency, another possibility
may be the thermal type of hysteresis loss, i.e., loss independent of fre-
quency. For the case of free dislocations it is supposed that they can
move in loops but the pinning points are not fixed points. Hence, energy
abstracted from the mechanical vibration by the motion of the loop will
not be coherent and therefore will not be returnable to the vibration.
The loss calculated from such a mechanism will be

_ b2 lfNoV,
Inserting f from (78) we find
‘\/gszuV,
2

s

Q" = (80)
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where N, is the total number of loops present in the unpinned disloca-
tions. This should be independent of the temperature at the time of
forming. As these free dislocations gradually become pinned by other
dislocations or atoms, the number, Ny, decreases and the attenuation
decreases while the value of Young's modulus increases, since the degree
of displacement diminishes as the loops become pinned. Since b = 2.5 X
10°% V, = 3.2 X 10" em/sec for iron, Q' should be multiplied by 1.2
to transform from a Young’s modulus strain along the axis to a shearing
strain in the glide plane. Hence N, should have a value of

Ny = 1.3 X 107 (81)

Some idea of the effect of such a model on the elastic constants can be
obtained by caleulating the ratio of the plastic to elastic shear for a
static force. From equations (74) and (76) the average displacement &
of a dislocation loop is

2

- 1|'T13(’-
T =7 5ub (82)
The total plastie strain, due to the displacement of N, loops, is then
r - TrTlal?a
Sm = NoSb = Noﬂlfb = Nﬂ 12 (83)
m

where S is the average area of a loop. To this we add the elastic strain
so that

S+ St 1 wNo 1
T uE + 12u i (84)
Hence the difference between two constants is
E 3 3 E
— A Nof A ¢
fad B'“.A_i'"s:"r 0 or Ap _ wNol'n (85)
m i 12p I 12u

Using (46) to relate the change in elastic constant along the glide plane
to the change in the elastic constant Y, for an isotropic material, we
multiply the change in elastic constant of Fig. 20 by a factor of 1.2,
Hence

A;.t ‘J'I'Noﬂa

— =12X 001 =

# 15 (86)

Since

b=25X%X10"cm (87)
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we find
Nol® = 0.046; £ = 15X 10" cm (88)

where we have used the value of No = 1.3 X 10". This appears to be a
possible value for a free dislocation loop not pinned down by other dislo-
cations. According to Nowick” the permanent change in the elastic
modulus for heavily worked material, which does not recover below the
recrystallization temperature, stems from the lowering of the true
Young’s modulus due to the decrease in the average interatomic force
constants resulting from the deformation.

As soon as the free dislocations become tied down by other dislocations,
this source of dissipation and modulus change disappears. As shown in
Fig. 21, however, there remains another source of dissipation which
appears to be related to the temperature actuated hysteresis effect
previously discussed. If we take the difference between the actual at-
tenuation curves and the grain boundary relaxation effect, which should
always be present, the added attenuation can be represented by the
equation

Q—l = Cg“(lU,E(]OfRT) (89)
where the constant ' varies from
¢ = 2.0 X 10" to zero (90)

as the annealing temperature goes from 125°C to the recrystallization
temperature. Since this effect does not reach a peak value in the manner
of the grain boundary relaxation effect, this cannot be a relaxation effect.

The mechanism considered here is that it is a temperature actuated
hysteresis effect similar to that discussed previously except that the
dislocations are not in a potential well and are bound by other disloca-
tions rather than by impurity atoms. It is known that under conditions
of severe deformations, each crystallite is broken into sub-grains by the
production of slip bands. Hence the dislocations are present in these
bands and in the course of time join into a network of dislocation loops.
The slip bands are under a shearing stress equal to the limiting shearing
stress of the crystal and under these conditions the data of Fig. 19 show
that the activation energy for diffusion ean be lowered to 10.5 kilocalories
per mole. Hence the loss considered here is that due to thermal energy
abstracted from the mechanical vibration by the incoherent energy of
unpinned disloecation loops.

TFrom (80) it is readily seen that the form of the loss equation should
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be

_ b2V| —(10,500/RT)
g = V3UV.Nw (91)
T
From the value of C in (90), the number of loops per cubic centimeter
should be

Ne = 107 (92)

If we consider that the dislocations outline the form of an approxi-

mately regular mosaic structure, with Not® = 1; £ = 10° em; we find
Nof = 10" dislocations per sq ¢m (93)

which is a reasonable value for a hard worked material. In all prob-
ability, the dislocations concentratein theslip bands and have a consider-
ably higher density and smaller average loop length than given by (93).
This type of loss does not show up in the same temperature range for
brass and iron, as found by Késter, since the activation energy for these
materials cannot be reduced to such a low value as for aluminum.



