Efficient Coding

By B. M. OLIVER
(Manuseript received May 14, 1952)

This paper reviews briefly a few of the simpler aspects of communication
theory, especially those parts which relate lo the information rate of and
channel capacity required for sampled, quantized messages. Two methods
are then discussed, whereby such messages can be converled lo a *“‘reduced”
form in which the successive samples are more nearly independent and for
which the simple amplitude distribution is more peaked than in the original
message. This reduced signal can then be encoded into binary digits with
good efficiency using a Shannon-Fano code on a symbol-by-symbol (or
pair-by-pair) basis. The wusual inefficiency which resulls from ignoring
the correlation between message segments 1s lessened because this correlation
1s less in the reduced message.

INTRODUCTION

The term coding, as applied to electrical communication, has several
meanings. [t means the representation of letters as sequences of dots
and dashes. It means the representation of signal sample amplitudes as
groups of pulses having two or more possible amplitudes as in pulse
code modulation. Lately, it has also come to be the generic term for
any process by which a message or message wave is converted into a
signal suitable for a given channel. In this usage single-sideband modula-
tion, frequency modulation and pulse code modulation are examples of
encoding procedures, while microphones, teletypewriters and television
cameras are examples of encoding devices.

This is a nice concept, but it is useful to distinguish between two classes
of encoding processes and devices: those which make no use of the
statistical properties of the signal, and those which do. In the first class,
the encoding operation consists simply of a one-to-one conversion of
the message into a new physical variable, as a microphone converts sound
pressure into a proportional voltage or current, or of the one-to-one
remapping of the message into a new representation without regard to
probabilities, as by ordinary amplitude, frequency or pulse code modula-
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tion. In ordinary PCM for example, the message samples are converted
into groups of on-or-off pulses. The particular combination of pulses
in any group depends only upon the amplitude of the particular sample,
not upon any other property of the message, and the same time is allotted
to each group, regardless of the probability of that group or of the
amplitude it represents. Almost all the processes and devices used in
present day communication belong to this first class. In the second class,
the probabilities of the message are taken into account so that short
representations are used for likely messages or likely subsequences, longer
representations for less likely ones. Morse code, for example, uses short
code groups for the common letters, longer code groups for the rare ones.

Processes of the first class we may call non-statistical coding processes,
or simply modulation or remapping processes. The time of transmission
is the same for all messages of the same length, and all messages are
handled by the system with equal facility (or difficulty). These processes
require no memory and have a small and constant delay. They are
inefficient in their use of channel capacity.

Processes of the second class we may call statistical encoding proc-
esses. These processes in general require memory. The time of trans-
mission of messages of the same length may be different so that if
messages are to be accepted and delivered by the system at constant
rates, variable delays may be necessary at the sending and receiving
ends. They are more efficient in their use of channel capacity. It is with
this second type of process that this paper is concerned, although pro-
cesses of the first type may be used as component steps. Thus we con-
sider systems of the type shown in Fig. 1, with the accent on the word
“efficient’.

TRANSMISSION CIRCUITS AND THEIR VOCABULARIES

Communication circuits or channels can, of course, differ in many
respects. Either the peak signal power or the average signal power may
be limited. The transmission may be uniform over the band or vary
with frequency; it may be constant or subject to selective fading. The
noise may be gaussian thermal or shot noise uniform across the band, or
peaked at some frequency; or it may be largely impulse noise or erratic

MESSAGE SIGNAL MESSAGE
—— | CODER =r. DECODER b=

SIGNAL = EFFICIENT DESCRIPTION OF MESSAGE
Fig. 1—Reversible statistical encoding.
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static discharges. The best type of signal for one channel may be very
poor for another.

In the following sections it is assumed that the channel transmission
characteristic is flat in amplitude and delay over a definite band and
zero outside. It is also assumed that the channel has a definite peak signal
power limitation, and that the noise is white gaussian noise. Such a
channel is no mere academic ideal. It is in fact quite closely approached
in practice by many circuits. Moreover, the conclusions based on these
assumptions can usually be modified or extended to other actual cases,
such as that of noise with non-uniform spectral distribution (as for
example the coaxial cable).

If the bandwidth of the channel is W, we can (using single sideband
modulation, if necessary) transmit over it without distortion from fre-
quency limitation signals containing frequencies from 0 to W (or —W
to W in the Fourier sense). Such a wave can assume no more than 2W
independent amplitudes per second. Any set of samples of the wave

taken at regular intervals %V serves to specify the wave completely.

The wave may be thought of as a series of (sin x)/2 pulses centered on
the samples and of proportional height, and indeed the wave may be
reconstructed from the samples in this fashion. This is the well-known
sampling theorem'. Thus a message source of bandwidth W can supply
at most 2 independent symbols (samples) per second, and this same
number can be transmitted as overlapping, but independently dis-
tinguishable pulses by a circuit of bandwidth W.

Since, as will appear later, channels which are to transmit signals
resulting from efficient statistical encoding must be relatively invulner-
able to noise, we shall assume that the pulses on the channel are quan-
tized. This allows regenerative repeatering to be used to eliminate the
accumulation of noise'. If there are b quantizing levels, and if the levels
are sufficiently separated so that the probability of noise causing in-
correct readings is negligibly small, then the capacity of the channel in
bits/sec is*

C = 2W logs b. (1)

Such a circuit talks in an alphabet of b “letters” and uses a language
in which all combinations of these letters are allowed. There are no for-
bidden or impossible “words”. The circuit has a vocabulary of b one-
letter words, b* two-letter words, " n-letter words. The basic ineffi-
ciency in present day electrical communication is that we build circuits
with unrestricted vocabularies and then send signals over them which
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use only a tiny fraction of this vocabulary. If all the letters of the written
alphabet were used with equal probability and if all combinations of
letters were allowed, then many words which are now long could be
made shorter, and written text would be less than one third as long as
English. Similarly, if we could arrange to let our circuits use their en-
tire voeabulary with equal probability, they could describe our messages
with much less time (or bandwidth) on the average.

EXCHANGE OF BANDWIDTH AND SIGNAL TO NOISE RATIO

It was the advent of wide band FM, and other modulation methods
which exchange bandwidth for signal-to-noise ratio, which revealed the
inadequacy of earlier concepts of information transmission and ulti-
mately led to the development of modern communication theory, or
information theory®.

One of the more familiar results of this theory is the expression for the
maximum capacity of a channel disturbed by white noise:

N

in which (' is the capacity in bits/sec, W is the bandwidth and P/N the
ratio of average signal power to average noise power. This capacity can
only be approached, never exceeded, and is only reached when the sig-
nal itself has the statistics of a white noise. The expression sets a limit
for practical endeavor, and also gives the theoretical rate of exchange
between W and P/N.

A practical quantized channel, operated so that the loss of informa-
tion due to incorrectly received levels is negligible requires about 20
db more peak signal power than the average signal power of the ideal
channel to attain the same capacity'. However, bandwidth and signal-
to-noise ratio are still exchanged on the same basis. For example, a satis-
factory television picture could be sent over a channel with, say, 100
levels. This would require a (peak) signal to rms noise ratio of some 40 4
20 = 60 dh. The bandwidth could be halved by a sort of reverse PCM:
by using one pulsef to represent two picture elements. But there are 10,000
combinations of two samples each of which ean have any of 100 values.
Hence the new combination pulse would need 10,000 distinguishable
levels and this would require a signal to noise ratio of 80 + 20 = (2 X
40) + 20 = 100 db.

It is evident that while bandwidth compression by non-statistical or
straight signal remapping means is not an impossibility, it is neverthe-

¢ =W log (1 + 5) )
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less impractical when the signal to noise ratios are already high. What
we should really try to do is make our descriptions of our messages more
efficient so that less channel capacity is required in the first place. The
saving can then be taken either in bandwidth or in signal-to-noise ratio,
whichever fits the requirements of our channels best.

MESSAGES

Messages can either be continuous waves like speech, music, or tele-
vision; or they can consist of a succession of discrete characters each with
a finite set of possible values, such as English text. Because a finite band-
width and a small added noise are both permissible, continuous signals
can be converted to discrete signals by the processes of sampling and
quantizing'. This permits us to talk about them as equivalent from the
communication engineering viewpoint. Since many of the principles
which follow are easier to think of with discrete messages and since
quantization of the channel is assumed for reasons already stated, we
shall think of our messages as always being available in discrete form.

Let S = the symbol (or sample) rate of the message

S

5 = the original bandwith of the continuous message

Wy

I

¢ = number of quantizing levels.

Then if all the message samples were independent and if all quantizing
levels were equally likely, the information per sample would be

H, = log. { bits (3)
the information rate would be
Ho = S logs { bits/sec (4)

and the message would use the full capacity of a channel with ¢ quan-
tizing levels, and bandwidth S/2. Or by remapping k message samples
log

(with the ¢ possible levels) into (1@3 I samples, a channel with b levels

and bandwidth W = §/2 (%) could be loaded to full capacity.
0

However, it is not true that the successive samples of typical messages

are independent, nor is it true that the various sample amplitudes are

in general equiprobable. If these things were true, speech and music

would sound like white noise, pictures would look like the snowstorm
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a TV set produces on an idle channel. Written text would look like
WPEIPTNKUH WFIOZ—: a random sequence of letters. The statistics
of the message, in particular the correlations between the various sam-
ples, greatly reduce the number of sequences of given length which are
at all likely. As a result the information rate is less, and fewer bits per
second are required to deseribe the average message.

A sequence of M binary digits can describe any of 2" possible mes-
sages. Conversely any of N messages can be described by logs N binary
digits. The information rate, H, of a message source is therefore given by

H = lim lo g N bits/symbol
where N = number of message sequences of length n. If the successive
symbols of the message are independent but not equiprobable, then a long
sequence will contain x; symbols of type 1, ; of type 2, ete. The number
of possible combinations of these symbols will be

n!
T I
i
so that log N = Z log x;!
For large enough n, all the x; will be large also and we may write, by
Stirling’s approximation

logNalog\/ﬂ—}-nlogn—n—Z[log\/Q—mc_,--i-
1

z;j log z; — x5
But since 2 2; = n, and since for large n, , — p(j)n where p(j) is the
probability of the ;™ symbol, we have

log N — log /27n + nlogn — n 2 log 2rr; —
-
n 2 p(j) log p(j) — nlogn + n
i

. log N
Hy = lim —-5_ E p(5) log p(7) (5)
which is the expression Shannon derives more rigorously®. H, is a maxi-
mum when all the p(j) are equal to 1/¢. Then H, = log, { = H,. The
more unequal the p(7), i.e., the more peaked the probability distribution,
the smaller H; becomes.
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If the successive samples are not independent, the message source will
pass through a sequence of states which are determined by the past of
the message*. In each state there will be a set of conditional probabilities
describing the choice of the next symbol. If the state is ¢ and the condi-
tional probability (in this state) of the next symbol being the j* is p:(7),
then the information produced by this selection is

H: = —'Z’_: pi(7) log pi(7). (6)

The average rate of the source is then found by averaging (6) over all
states with the proper weighting; thus

H = E'_: p()H; = —Z p(f); () log pi(j). (7)

The greater the correlation between successive symbols or samples of a
message, the more peaked the distributions pi(j) become on the average,
and this results in a lower value for H. As Shannon points out, the in-
formation rate of a source, as given by (7), is simply the average un-
certainty as to the next symbol when all the past is known. But in a
properly operating communication channel the past of the message is
available at both ends, so that it should be possible to signal over the
channel at the rate H bits/message symbol, rather than H, as we now
do. In present day communication systems we ignore the past and
pretend each sample is a complete surprise.

By completely efficient statistical coding it should be possible to re-
duce the required channel capacity by the factor H/H,. Whether or not
this improvement can be actually reached in practice depends upon the
amount of past required to uniquely specify the state of the message
source. If long range statistical influences exist, then long segments of
the past must be remembered. If there are m symbols in the past which
determine the present state and each symbol has ¢ possible values,
there will be £™ states possible (although only 2™ of these are at all prob-
able for large m). If m is large the number of possible states becomes fan-

* In a philosophical sense the state of a message source may be dependent on
many other factors besides the past of the message. If the source is a human being,
for example, the state will depend on a large number of intangibles. If these could
really be taken into account the resulting H for the message might be quite low.
If the universe is strictly deterministic one might say that H is ‘‘really” always
zero. When we describe the drawing of balls from the urn in terms of probabilities,
we admit our ignorance as to the exact detail of the mixing operation which has
occurred in the urn. Likewise the information rate of a source is a measure of our
ignorance of the exact state of the source. From a communication engineering
standpoint, the knowledge of the state of the source is confined to that given by
the past of the message.
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tastically large and complete statistical encoding becomes an economic
impossibility if not a technical one.

Let B be a particular combination (the ¢™) of k symbols in the past
of the message. Fach of these combinations at least partially determines
the state of the system. Hence we can write an approximation to (7):

Fo = =22 p(BY) 22 pa:(j) log pet () ®)

F,— H,as k — = . If only m symbols in the past influence the present
state, then & need only be as great as m, in order that F,, = H. In any
case the sequence Fy, , Fy , --- F; is monotone decreasing. Naturally
one should always pick the & symbols in the past which exert the great-
est effect upon the present state, i.e. which cause ps%(j) to be as highly

peaked as possible, on the average. In English these would be the im-
mediately previous letters; in television, the picture elements in the im-
mediate space-time vicinity of the present element.

Suppose we break the message up into blocks of length k. Each of these
blocks may be considered to be a character in a new (and huge) alpha-
bet. If we ignore any influences from previous blocks, i.e. if we consider
the blocks to be independent, then the information per block will be
simply

— 2 p(BY) log p(BY). (9)

Since there are k symbols per block, the information per symbol, ;. is

Gi = — 1 T p(BY) log p(B). (10)

As k — =, Gy — H, since the amount of statistical influence ignored
(between blocks) becomes negligible compared with that taken into
account.

If d is the number of binary digits required to specify a message n
symbols long, then as n — =, d/nH — 1. For large n there are thus
2"" messages which are at all likely out of 2""* = (" possible sequences
(in an ( letter alphabet). The probability that a purely random source
will produce a message (i.e., a sequence with all the proper statistics) is
therefore

2

P 27n(Hu~H) (ll)

for large n. Even if Hy, — H is small, p — 0 rapidly for large n. This is
why white noise never produces anything resembling a picture on a
television screen, for instance. For in television signals, Hy, — H > 1
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even for very complicated picture material, and n = 250,000 for a single
frame.

Asgiven by (11), p, also represents the fraction of the possible signals
on a channel of { levels which are likely ever to be used by messages of
length n without statistical encoding.

STATISTICALLY MATCHED CODES

Since a sequence of binary digits can be remapped by a non-statistical
process into a channel with b quantizing levels, or indeed into a wide
variety of other signalling alphabets, it suffices to consider statistical
coding processes and codes which reduce the message to a sequence of
binary digits. An efficient code is then one for which the average number
of binary digits, H., per message symbol lies between Hy and H. As the
efficiency increases H/H. — 1, so this ratio may be taken as an efficiency
index. With highly efficient processes, the sequences of binary digits
produced will have little residual correlation, i.e., they will be nearly
random sequences. Since the encoding process must be reversible the
receiver must be able to recognize the beginnings and ends of code groups.
Since we have at our disposal only zeros and ones, the divisions between
code groups must either be marked by a special code group reserved for
this purpose, or else the code must have the property that no short code
group is duplicated as the beginning of a longer group.

A code which satisfies this latter requirement and which is capable of
unity efficiency is the so-called Shannon-Fano code, developed inde-
pendently by C. E. Shannon of Bell Telephone Laboratories and R. M.
Fano of the Massachusetts Institute of Technology. This code is con-
structed as follows: One writes down all the possible message sequences
of length k in order of decreasing probability. This list is then divided
into two groups of as nearly equal probability as possible. One then
writes zero as the first digit of the code for all messages in the top half,
one as the first digit for all messages in the bottom half. Each of these
groups is again divided into two subsets of nearly equal probability
and a zero is written as the second digit if the message is in the top
subsets, a one if it is in the bottom. The process is continued until
there is only one message in each subset. Fig. 2a shows the code which
results when this process is applied to a particularly simple probability
distribution p(B}) = (1/2)*. Here each code group is a series of ones
followed by a zero. The receiver knows a code group is finished as soon
as a zero appears. Although the longer groups contain mostly ones, their
probability is less and on the average as many zeros are sent as ones.
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Fig. 2—Shannon-Fano codes for three different distributions. The suceessive
bisections are indicated by the dashed lines and the number gives the step at
which that bisection took place.

If the successive message segments are independent, the code will gen-
erate a random sequence of zeros and ones. Fig. 2b shows the code which
results with another distribution. Here the termination of each code
group is more complicated but the non-duplicative property exists so
the receiver can still identify the groups. Fig. 2¢ shows the code which
results when all the p(B%) are equal. Tt is the ordinary binary code.

The length of each code group is equal to log 1/ p(BY), for the cases
shown in the figures. This is true in general so long as it is possible to
divide the list into subgroups which are of exactly equal probability.

When this is not possible, some code groups may be one digit longer
as Shannon shows. The average number of digits per message symbol
using this code is therefore given by

—1/k X p(BY) log p(BY) < H. < — 1/k 2 p(BY) [=1 + log p(BY)]

Gy < H. < G+ 1/k

For large k, H. — G, — H and the efficiency approaches unity. With
small k, H. increases both because the smaller list of messages cannot be
so accurately divided repeatedly into equal probability subsets (so-
called “granularity” trouble), and also because more statistics are ig-
nored between the shorter blocks.

The ordinary binary code provides a statistical match between mes-
sage source and channel only if the various message blocks B have
equal probability p(B}) = 1/2", and are mutually independent. With
k=1, p(BY) = p(j) and the “blocks” are merely the successive symbols,
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Ordinary PCM is statistically matched only to a random message source
with flat distribution.

If the messages from a source are characterized by frequent long runs
of symbols of the same type (e.g., long runs of zeros) an obvious saving
is possible by sending the value of the symbol only once, together with
a code group which gives the length of the run. This is commonly known
as run length coding. The remaining sections of the message (between
runs) may then either be sent directly (i.e., merely remapped by a non-
statistical process) or they may be encoded by some other statistical
process, if this seems warranted. In the latter case we have a mixed cod-
ing procedure. The codes representing run lengths must either be set
apart from the remainder of the signal by ‘“punctuating” codes, or iden-
tifiable by some distinguishing characteristic.

Run length coding may be generalized to take care of other common
sequences besides runs of a single symbol. Any commonly occurring se-
quence of symbols may be considered a “run” and treated in the same
fashion. More complicated code groups will be required to specify the
type of run, if a large variety is accommodated this way. Ultimately,
the distinction between this type of coding and Shannon-Fano coding
becomes rather nebulous, especially if a fixed maximum length of run
is permitted, for then all possible messages of this length may be con-
sidered “runs’ and simply encoded by the Shannon-Fano code.

No optimal general solution of the coding problem is known. That is,
one cannot say in all cases exactly what coding procedure one should
use with a given message source to produce the most efficient encoding
for a given complexity of apparatus. Several procedures have been de-
vised which seem suitable for certain types of messages and these are
discussed in the following sections.

N-GRAMMING

The application of the Shannon-Fano code to a block of k symbols of
a message in an { letter alphabet requires that ¢* different codes be used.
The receiver must be able to recognize each of these and to regenerate
the proper message block when a particular code is received. If £ is on
the order of 10 to 100 as is typically the case, we very quickly run out of
room to house the receiver and money to build it with. On the other
hand, if k is small, say on the order of 1 to 3, considerable statistical
information between blocks is ignored. These considerations led to the
development of a class of encoders known as n-grammers. The name
stems from the fact that they operate on the n-gram statistics of the
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message, to produce a reduced signal having more nearly independent
symbols, but (in return) a highly peaked simple probability distribution
which allows savings with Shannon-Fano coding on a symbol-by-sym-
bol (k = 1) basis.

The simplest member of this class is the monogrammer. It is basically
merely a re-ordering device. The operation may be best understood by
the following example. Suppose someone supplied us with English text
encoded into a quantized pulse signal as follows:

Symbol Pulse height
Space 0

A 1

B 2

¢ 3

D 4

etc. ete.

Now the letter frequencies in English are shown in Fig. 3. Merely to
save average power in our channel we might wish to convert this signal
into one in which the pulse height is not alphabetical, but in which the
most common symbol is sent as a pulse of zero height, the next most com-
mon as a pulse of unit height, ete. In other words, we would like the fol-
lowing representation:

Symbol Pulse height
Space 0

E 1

T 2

A 3

ete. ete.

The device shown in Fig. 4 will accomplish this translation. The orig-
inal signal is applied to the vertical deflecting plates of a cathode ray
tube. The rest position of the spot corresponds to “space”, i.e. no pulse.
A pulse one unit high deflects the spot to A, a pulse two units high de-
flects the spot to B, ete.

Now in front of these spot positions we place a number of light at-
tenuating filters. In front of the ‘“space’ position we place an opaque
mask. Hence when the spot is deflected to ““space’” the photocell receives
no light and no pulse is sent. In front of the “E’ position we place a
mask having one unit of transmission. So although E is received as a
pulse 5 units high, it is sent as a pulse of unit height. In front of the
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“T position we place a mask with two units transmission, and so on.
The signal amplitudes as received are thus re-ordered in the desired
fashion.

The resulting signal has lower average power and this can sometimes
be an advantage, particularly if several such signals are to be sent over
a common channel by frequency division. In this case the extreme rarity
of oceurrence of high peak powers on all channels simultaneously means

O p—
O e—

D p—

|| “ | . ||I
F G H U v w

[ | _1
A E .J K LMNOPQRST X Zz
Fig. 3——Letter frequencies in English.
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-

Fig. 4—The “Monogrammer.”



EFFICIENT CODING 737

that the system can be designed to have a lower peak power capacity.
The signal out of the monogrammer can be remapped into binary digits
using a Shannon-Fano code, pulse by pulse. However, this could have
been done equally well with the original signal merely by rearranging the
code groups in the coder tube. It is when we extend the principle to di-
grams and trigrams that the potentialities of the system become evident.

We can easily take account of the influence of the preceding message
symbol. To do this we apply the signal to the vertical plates as before,
and to the horizontal plates we apply the signal delayed by an amount
equal to the time between successive pulses as shown in Fig. 5. Thus the
beam is deflected vertically by the present message symbol, and horizon-
tally by the previous message symbol. Whereas before we used a single
column of optical filters chosen in accordance with the simple probabil-
ities of the letters, we now have 27 columns, one for each letter and one
for the space. The filters in each column are chosen in accordance with
the conditional probabilities which apply when the corresponding letter
was the previous symbol. For example, in the “Q” column (last letter
Q), and the “ U” row (present letter /) the mask would be opaque, since
U is most common after Q. In general, the transmission of cell 7, in the
i™ column and j™ row, is proportional to the rank of the entry for p:(7)
when the entire distribution (conditioned on ?) is ordered in a monotone
decreasing sequence. The amplitude distribution of the output pulses

SPACE

INPUT
-

Fig. 5—The “Digrammer.”
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from the digrammer will be more peaked towa,rd zero amplitude than
that of the monogrammer. This is illustrated by the signals in the figures.
At the receiver the same type of device, but with an inverse mask can be
used to convert the signal back to its original form.

The digrammer can, with a little assistance, supply all the data re-
quired to prepare the encoding mask. If typical signals from the message
source are applied to the cathode ray tube (without mask) for a long
time, and a time exposure is made of the face of the tube, a lattice of
spots will be obtained on the film. These spots will be dense where the
high probability combinations occur and less dense elsewhere. The order
of decreasing density in each column is noted, and the filter transmis-
sions are arranged in the same order.

It is, of course, not necessary to use a phosphor, optical filters, and a
photocell. An array of targets each of which connects to the appropriate
tap on a load resistor might be simpler and more efficient. The cathode
ray tube itself can be replaced with an appropriate diode switching net-
work. Relay networks could be used for low-speed operation.

At the digrammer level we run out of new dimensions to use in the
cathode ray tube. The principle can, however, be extended to trigram-
ming and general n-gramming. For example, tetragramming could be
accomplished by using a bank of ¢* digrammers all in parallel, and all
deflected by the present and previous samples. Only one of these tubes
would be turned on at a time however. Which one this was would depend
on the other two previous symbols of the tetragram. These (by addi-
tional delays) would be applied to the deflecting plates of a master switch-
ing tube having an array of target plates in place of a mask. Depending
on the particular combination of signal samples applied to this tube,
the beam would strike a particular target. The target current would then
be used to turn on the beam of a particular digrammer tube, namely the
one with the proper mask for that particular combination of two past
symbols.

The complete array of equipment is admittedly rather staggering, but
then, rather efficient coding should result. In practice it would probably
be found that the masks of many of the tubes would be so similar that
little gain resulted from differentiating between them. That is, the state
of the message source might be nearly equivalent for several past com-
binations. In these cases, the group of tubes could be replaced with one
having the best average mask, and the corresponding targets on the
switching tube then tied together. This compromise would be particu-
larly warranted for those tubes which were rarely used anyway. By these
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tricks it should be possible to keep the growth of equipment down to
something approaching 2™ rather than ("

The output signal from the n-grammer will be, as we have seen, a series
of pulses with an amplitude distribution very peaked toward zero and
small pulses. If ¢ ,the alphabet, is large, these pulses can be efficiently
encoded into a Shannon-Fano code. For small alphabets, granularity
trouble can be reduced by remapping the output pulses two-by-two
into pulses of base *, and then encoding these into the Shannon-Fano
code.

The output signal from the n-grammer with English text as the input
message is a pulse amplitude representation of the type of “reduced
text” one gets by using running n-gram prediction on English, as de-
seribed by Shannon’.

More efficient encoding would result if the properly matched Shannon-
Fano code for each particular conditional distribution were applied to the
output pulses, rather than using the same code for all of them. The effi-
cieney of the coding operation would then be close to F, as given by (8)
(take k = n). This would add a great deal to the complexity and with
most signals it is felt the gain would be small. If all the conditional dis-
tributions were alike after ordering, the improvement would be nil.

English text was used as the message in describing the n-gramming
technique to emphasize the fact that it is a powerful general method
which works even when the conditional probability distributions of a
message are disorderly, multimodal affairs. It is obviously suited to other
types of messages as well. Its main drawback is the complexity of ap-
paratus required.

PREDICTIVE-SUBTRACTIVE CODING

When the conditional probability distributions of a message are uni-
modal (or merely strongly peaked as a rule in the vicinity of a particular
sample amplitude) it is not necessary to re-order the distributions in
order to obtain a reduced message for coding. The distributions may then
merely be shifted along the amplitude scale until their modes are near
zero (or their second moments about zero are nearly minimum). This
shifting ean be accomplished by computing from the preceding (n — 1)
gram the amplitude at which this mode or mean is located, and then sub-
tracting this computed amplitude (or the nearest quantizing level) from
the actual amplitude of the present sample. The difference in each case
is a symbol whose amplitude distribution is peaked in the vicinity of
zero amplitude. Fig. 6 shows a block schematic of a system using pre-
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dictive-subtractive coding. In an actual system the reduced signal
would ordinarily be encoded into Shannon-Fano code groups before
transmission over the channel.

If s, is the present sample amplitude, and s, , 82, 8 -+ 8, are previous
sample amplitudes we compute a predicted value, s,, for the present
sample which is given by

Sp = f(51,8, " 8) £

where § < 1 quantizing level. If the conditional probability distribution
for the present sample is p,,.....(s), then the difference, or output, or

------------- 1 REDUCED -

SIGNAL MESSAGE
—_— —

MESSAGE
- ==

Fig. 6—Predictive-subtractive coding.

“error” signal, ¢, will have the conditional distribution ps,....,(¢ + 5)
for this particular case. The simple distribution is then the weighted
average over all cases, i.e.

p(e) = Z P(31 y 82, = sﬂ)pﬂ'l"'an(e + sp)

where the sum is over all combinations of s, , 82 - -+ 8a.

Predictive-subtractive coding has especial merit when a simple func-
tion can be used for computing s, . This is often the case. When the
function is simply a weighted sum of the past sample amplitudes, i.e.
when

sp = (asy + bss + s+ -++) £ 8

we have what is known as linear prediction. Of course, linear prediction
can always be used, but it may not be good enough with some types of
messages.

As Wiener has shown the coefficients a, b, ¢ --- which minimize
& are readily computed. For simplicity, assume only two message sam-
ples, s and s, , from the past are to be used. We then have

€ = 8 — §p
e = 8 — as; — sy

r: 2 2 2
& = st + a’si 4 b'si — 2ass; + 2ab s18: — 2b 8082



EFFICIENT CODING 741

Now

2 2
Su=SL=Sz=An

SpS1 = 8182 = Al

8082 = Ao

where Ay, A1, and A, are the values of the auto-covariance of the mes-
sage wave at displacements of 0, 1, and 2 sampling periods. Thus

e =(1+a+ )4, + 2(ab — a)A, — 2bA, .
A
Ay’
A, is proportional to the average power in the message wave, so the

The autocorrelation (normalized auto-covariance) is given by ¢; =

2

ratio p = €_ is the ratio of the power in the error signal to the power
0

in the original message wave. Thus:
p=(1+a +b") + 2(ab — a)$r — 2be

1_9_,2
da

0

= 2a 4 2(b — 1)¢n

g‘g=2b+2a¢1—2¢2=0

from which

_ &l — &) _ b — i
A e R Ol
With these values of a and b:
T (91 — ¢2)°
p=1 #1 l———_@T

If ¢» = ¢; , then the expressions simplify to
a=¢,, b=0, p=1-4gi.

As can easily be shown, if ¢(x) = ¢ “*' then all the coefficients except
a are zero, and a has the value ¢ °. In other words, if the autocorrela-

tion function is of exponential shape, the previous sample alone is needed
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for linear prediction. Samples before this add no further information as
to the location of the mean of the conditional distributions.*

It happens that in typical television signals the autocorrelation for
small displacements shows a very nearly exponential behavior. Thus
linear prediction on the basis of the previous picture element alone is
a natural method for television, particularly in view of the simplicity of
apparatus required.

Linear prediction is easily instrumented. Fig. 7 shows in block sche-
matic form the essentials of a linear predictor. Samples of the message
are applied to a delay line. Taps along this line separated by the inter-
symbol time of the message, or multiples thereof, make the desired
past symbols available. The signals from these taps are merely attenu-
ated by amounts corresponding to the coefficients a, b, ¢ - - - and added.
A differential summing amplifier is shown to allow for negative coeffi-
cients, and also to accomplish the subtraction of the predicted sample
amplitude from the present sample amplitude.

A complete linear predictor-subtractor is nothing but a transversal
(time domain) filter whose impulse response is

f(t) = &(t) — ad(t — 1) — bé(t — 27) ---
and whose equivalent frequency response is therefore
Flw) =1 — ae ™ — be ™™ -+
where 7 is the delay between taps. If, for example, simple previous value

prediction is used (@ = 1;b,¢ -+ = 0)

1w

F(w) =1 — ¢ ™ = 2isin %I e 2

* From the preceding expression for p, we see that p = 0 (i.e., perfect predic-
tion is possible) if: ’

@ — #2)? = (1 — 9}
¢ — b= £ — @)

{*f’z—l
¢2=2¢:—1‘

If ¢, = 1, the message samples alternate between two independent but constant
values. For this case a = 0,b = 1. If ¢ = 2¢t — 1 the autocorrelation is a cosine
wave so the message consists of samples of a sinusoid. In this case a = 2¢,, b =
—1. If ¢, iz nearly unity, the sinusoid is of low frequency, and the prediction
approaches “‘slope’’ prediction (i.e. extrapolation of a straight line through the

last two samples).
In any case where perfect prediction is possible the wave is periodic and there-

fore H = 0.
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It is often argued that linear prediction is therefore nothing more than
pre-distortion (frequency-wise). If the message is unquantized and un-
sampled, and if the signal from the predictor is applied to the channel
as straight amplitude or single side-band modulation, the allegation is
certainly true. Pre-distortion is a perfectly valid way of improving the
statistical match between message, and channel, and destination as the
optimum filter theory of Weiner and Lee shows. On the other hand,
when the message is sampled and quantized, and when the output of
the linear predictor is further encoded into a sequence of binary digits,
and these are possibly remapped onto a higher base for the channel, then
the information is being handled digitally throughout, and the usual
reasons for a certain type of predistortion no longer apply. The best
linear predictor will usually be quite different for the two cases. Even
though analogue operations (such as subtraction of amplitudes) are used
for convenience, the quantization makes the operation discrete and
hence equivalent to a digital process.

At the beginning of this section, we were a little vague as to whether
the prediction should shift the modes or the means of the conditional
distributions to zero amplitude. If the object of the prediction-subtrac-
tion operation is to minimize the power in the error signal, then certainly
the means should be shifted to zero. The coefficients as determined from
the autocorrelation function do this aside from quantizing granularity.
They specify an optimum least-square predictor, i.e., one which tends
to minimize & = 2 ; j*p(J)-

MESSAGE
SAMPLES DELAY LINE TERMINATION

ISOLATING
AMPLIFIERS

-

COEFFICIENT

o MAGNITUDES

SAMPLE ™

- —

«--— 5IGNS

(o]
1 T { QUTPUT
‘: —
DIFFERENTIAL
SUMMING AMPLIFIER

. -———-Q——J_—_

IF PRESENT SAMPLE IS SUBTRACTED, OUTPUT WILL
BE “ERROR"” SIGNAL

|F PRESENT SAMPLE 1S OMITTED, QUTPUT WILL
BE “PREDICTION"

Fig. 7—A linear predictor.
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Power reduction is an index of merit when many reduced signals are
to be sent by frequency division over one channel, as we have said.
When the object is to reduce the channel capacity required for a single
message source, then it is the upper bound entropy of the reduced signal
which should be minimized, not the power. That is we want — 2_; p(7)
log p(j) to be minimized. For certain types of signals this requires the
modes to be shifted to zero, although this is by no means a general rule.
Shifting the modes to zero may actually increase the entropy of the
“reduced” signal over that of the original message, by adding too many
new symbol levels, as the example in the last section shows,

If the original message has ¢ quantizing levels, the reduced message
after predictive-subtractive coding will in general contain more than £

. £ .. .
levels since an error of more than 3 can be made in either direction.

An n-gramming operation, on the other hand, never increases the al-
phabet.

PRESENT sSymBoL (])

1 2 3 4 5 6 7 8 9
: 2
|
1 1 a'l|a?| a3l a4 a>|at® —»’
' — 7
T
2| a”! 1| a?! a‘zi a2 | a4|as —| A'EgRTg['aPVC'EY
; - ! DISTRIBUTION
- - _ _ - OF ORIGINAL
3| a2 | a°! 1 a’lt) a2 | a3 ——)1 MESSAGE
4| a2 | a2 | a 1) at | a2 -—>|
1

PREVIOUS symsoL (i)

| I 1 I |
| | |

[ | B’
I N 2 it
— — J— P&
FIRST ORDER ROWS THEN N/ &

&

ADD COLUMNS FOR Ay
DIGRAMMER DISTRIBUTION / N
Y

Fig. 8—Joint probability distribution (divide all coefficients by the sum over
each array). .
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Other operations besides simple subtraction of the predicted symbol
from the present symbol are of course possible. However, in most cases
it would seem that if a more complicated operation were indicated,
n-gramming would have provided a better start.

ILLUSTRATIVE EXAMPLE

Let us compare the operation of n-gramming and prediction-subtrac-
tion techniques on a hypothetical message. We will assume the message
has digram statistics, but that longer range statistical influences either
do not exist or are ignored. The statistics are then specified entirely by
the joint probability distribution p(7, j) of a pair of symbols. Let us
assume that there are ¢ quantizing levels, and that

pG, j) = Ka "l

where a is a constant > 1, and K is given by
—1
k= [z
i

K is the factor which assures that 2 i ; p(i, 7) = 1.

Thus the most likely level is that of the previous sample. A sample
differing by one level is 1/a times as likely, one differing by m levels
is & ™ times as likely. Figure 8 shows a plot of the relative values of
p(i, 7) (neglecting the factor K). For { = 4, the total array would be
the 4 x 4 portion enclosed by the dashed line. This sort of distribution
is rather similar to those of typical television signals, as shown by pre-
liminary measurements, although typical values of a have yet to be
determined. With no statistical coding, the required channel capacity is

Hy = log, ( bits/sample.

If the simple distribution of individual samples is taken into account,
the required channel capacity is reduced to

Hy = =2 p(i) log p(2)
where
p@@) = 290, §) = 2 p(, ) = p(5)
) 13
H; may be computed from the array of relative coefficients by adding
the rows to form the sums

Si= & Tt = B2

K
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In terms of these sums, we have
Hy = log 2 — K 3 Silog 5.

Since, with the assumed distribution, the S; are all nearly equal very
little reduction in channel capacity is achieved by this step.

With linear prediction, the modes of the distributions (7 = j7) could
be centered at zero merely by sending the difference between the present
and previous sample (previous value prediction). This would give a
reduced signal whose distribution may be found by adding the array
along the diagonals. The required channel capacity is then given by:

k(¢ —k
og 21

H,= —Ktlog Kt — 22 ’”(5

k=1

The distribution of the signal from a digrammer is found by rearrang-
ing each row of the table in order of decreasing probability and then
adding the resulting columns. Call these sums S, . The digrammer out-
put will thus require a channel capacity:

£
H[) = —E K.Sd lOg KS,:
d=1

[
log}— — K 2 84 log Sa
K d=1

Lastly, the true rate of the source is given by

H = =3 p(@) 2 pj) log pi(i)

— H
Iog K 1
Values for the above quantities were computed for ¢ = z and n =
2,3,4,6,8, 16, 32, «. For the case of a = 2, we find that
=[30—4(1—-29"
and that as { - =,
HL s HD ’ H—‘)% + I.Ogg 3 = 2.918 bits.
The results are shown in the Table I and also are plotted in Fig. 9.
While Hy and H, increase without limit as ( is increased, H, , Hp,

and H quickly approach a definite limit. This limit exists because we
assumed that the decrease in joint probability as a funetion of number
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Tasre I
I H n Hy Hp "

1 0 0 0 0 0

2 1 1 1.252 0.918 0.918
3 1.585 1.583 1.777 1.437 1.422
4 2 1.995 2.074 1.764 1.750
6 2.583 2.575 2.381 2.157 2.131
8 3 2.988 2.552 2.370 2.343
16 4 3.99 2.768 2.678 2.641
32 5 5 — ¢ 2.850 2.818 2.782
» log = log = 2.918 2.918 2,918

(These figures were computed by slide rule so the fourth figure is not very
significant.)
of levels off the diagonal was the same regardless of . In typical signals
“this is not true. The decrease is more apt to depend on amplitude differ-
ence and the finer the quantum step, the more levels a given difference
represents. As a result, the probability will fall off less per level off the
diagonal, and doubling ¢ will in general add one bit to H.

On the other hand, doubling the sampling rate will not in general
double the required channel capacity, for the closer spaced samples will

//
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Fig. 9.
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be more highly correlated. Thus in TV, doubling the horizontal resolu-
tion would not double the bandwidth for the same picture material if
use were made of the statistics. (Of course, increased resolution in TV
might encourage the use of more detailed scenes and this would increase
the required bandwidth.)

It should also be noticed that for small £, linear prediction actually
makes matters worse. The increase in the number of levels in the error
signal more than offsets the peaking of the distribution.

Since all the conditional distributions in this message are of similar
shape (after ordering), Hp and H are almost the same, for all {. The
difference between H, and H is slight except for small ¢ because the
distribution we assumed is unimodal throughout.

Fig. 10 shows the simple probability distributions for (a) the original
message, (b) the reduced signal from linear prediction, and (c) the re-
duced signal from the digrammer.

VARIABLE DELAY AND OTHER PROBLEMS

We have seen in the last two sections how it is possible to convert
a message for which H <« H, as a result primarily of intersymbol correla-
tion, into a reduced signal for which H << H, as a result primarily of a
highly peaked probability distribution in the individual symbols (i.e.
one for which H; — H). Since the operations are reversible, the true
information rate, H, is preserved. In the original signal it was the
eonditional distributions which were peaked, while the simple distribu-
tion was relatively flat. In the reduced signal the simple distribution is
peaked.

The result is that whereas a Shannon-Fano code would only have been
effective on the original message if applied to blocks two or more symbols
in length (and then it would ignore correlation between blocks), in the
reduced signal the code will be effective on a symbol to symbol basis.

(a)_l @] @ (1L (a) ey
(b) (b) (b) (b) I

(1 I [ I I PR I I TS I N N
(c) _I (c) J_I (c) [ (c) |

lL=2 1=3 1l=4 l=8

Fig. 10—Probability distributions: (a) Original, (b) After linear modal pre-
diction, (¢) After digramming.
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The encoding of the reduced signal into binary digits presents no
theoretical difficulties. A PCM type coder tube* with the appropriate
Shannon-Fano groups built into it is all that is needed. The biggest
practical complication arises out of the fact that the code groups are of
different length., Some messages, such as written text, can be fed into
the system as fast as it can handle them. The transmission time will
then vary with the message complexity. Others, such as television are
generated and must be accepted and delivered at a constant rate. One
solution is then to take the binary digits in big and little batches as they
come from the coder and store the surplus in a sort of pulse “surge tank”
before they are sent over the channel at a regular rate. At the receiver,
a similar sort of storage register is necessary as the pulses arrive over
the channel at a regular rate and are used by the decoder at a varying
rate. Devices which will perform this variable delay function satisfacto-
rily for signals with relatively slow sampling frequency are available,
and as the art progresses there is every reason to believe that high speed
sampled signals like television can be handled also.

It will be noticed that the digramming or prediction operation, while
it involves memory, does not introduce appreciable transmission delay.
Each symbol of the reduced signal appears the moment the correspond-
ing message sample is applied. The total transmission delay required
for statistical coding thus depends upon how much variation is required
in the variable delay units. This in turn depends upon the degree of
stationarity in the “local information rate” of the message. For example,
in television, if each line could be described (by the n-grammer and
subsequent coder) in the same total number of binary digits, then the
total delay variation and total delay would be less than one line time.
Since this is not true, we either must have enough channel capacity to
send in one line time the number of digits corresponding to the “worst”
line, or enough variable delay to average the existing rate over many
lines.

Probably the most practical solution is to provide sufficient channel
capacity and variable delay to take care of all but a small fraction of
the possible message sequences. Then when an unusual stretch of message
continues long enough for the variable delay to be nearly all used up, the
system should fail in some relatively harmless way. In television, the
sampling rate could be momentarily reduced, for example. This would
degrade the resolution in rare situations, but a small amount of this
could be tolerated in return for transmission savings.

If long blocks of the message are efficiently encoded as a group, then
an error in transmission may cause the whole block to be reproduced
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incorrectly. If n-gramming or prediction is used, then an error in trans-
mission will cause the receiver to function improperly not only for that
symbol, but its further n-gram decoding or prediction will also be dis-
turbed. Thus errors of transmission are either spread over definite blocks,
or propagate for a considerable time rather than being confined to the
particular symbols sent in error. In fact, if the encoding were completely
efficient, all received sequences would be possible messages, and a single
error could convert the received message from the proper one into a
completely different but possible one. With no redundancy there is
no way to recognize an error. It is for these reasons that we have assumed
a rugged (quantized) channel. In view of the eight to ten db more average
power required in a quantized channel to achieve the same channel
capacity as an ideal channel of the same bandwidth, considerable statis-
tical saving must be possible before statistical coding may be warranted.
This initial handicap of course does not apply to channels already de-
signed to work on a digital basis for other reasons. Lastly, the use of
error correcting codes’ is a possibility. In these codes a small amount of
redundancy is introduced in a particularly efficient fashion. As a result,
a certain frequency of transmission errors can be tolerated without
causing errors in the reproduced message.
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