Network Synthesis Using Tchebycheff

Polynomial Seriest
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A general method is developed for finding functions of frequency which
approximate assigned gain or phase characteristics, within the special class
of functions which can be realized exactly as the gain or phase of finite
networks of linear lumped elements. The method s based upon manipula-
tions of two Tchebycheff polynomial series, one of which represents the
assigned characteristic, and the other the approximating network function.
The wide range of applicability is illustrated with a number of examples.

1. INTRODUCTION

Network synthesis is the opposite of network analysis—namely, the
design of a network to have assigned characteristics, as opposed to the
evaluation of the characteristics of an assigned network. In general,
there are specifications on the internal constitution of the network, as
well as requirements relating to its external performance. A common
form of the general problem is the design of a finite network of linear
lumped elements, to produce an assigned gain or phase characteristic
over a prescribed interval of useful frequencies. The present paper re-
lates to this particular form.

In general, the restrictions on the network are such that the assigned
performance cannot be matched exactly. This gives rise to an approxi-
mation or interpolation problem. For present purposes, the problem is:
to choose a function of frequency which matches the assigned gain or
phase to a satisfactory accuracy, from that special class of funetions
which ean be realized exactly with physical finite networks of linear
lumped elements. The function of frequency may be defined in terms
of network singularities (natural modes and infinite loss points). The

t Presented orally, in briefer form, at the 1951 Western Convention of the
Institute of Radio Engineers, and at the Symposium on Modern Network Syn-
thesis sponsored by the Polytechnic Institute of Brooklyn and The Office of
Naval Research, New York City, April, 1952,
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interpolation problem may then be regarded as solved when a suitable
set of network singularities has been obtained; for quite different tech-
niques are used to design actual networks with these singularities.

The interpolation problem may be attacked in a number of different
ways; and a variety of different techniques are, in fact, needed to cover
the wide diversity of practical applications. The present topic is a fairly
general way of attacking the problem, based upon manipulations of two
series of Tchebycheff polynomials. The two series represent expansions
of two functions of frequency—one, the ideal assigned gain or phase,
the other, the network approximation to the ideal. The interpolation
problem may be solved in this way because it is feasible, as will be
shown, to determine network singularities from arbitrarily assigned
values of coefficients in the corresponding Tchebycheff polynomial series.

The techniques to be described were derived originally from studies
of the so-called potential analogy; but they can now be developed most
easily without reference thereto.f In a sense they may be regarded as
extensions of familiar filter theory, using Tchebychefi polynomials, to
more general gain and phase functions. The extensions, however, depend
upon a number of new principles. Extensions of the filter theory applied
to more general problems have been noted in published papers; but
those noted have not used the specific general approach employed here.
The wide applicability of this general approach will be illustrated by
specific examples.

2. NETWORK AND TRANSMISSION FUNCTION

It will be sufficient for our present purposes to limit the discussion to
the general 4-pole shown in Fig. 1. The 4-pole may be active or passive,
but it must be a stable finite network of linear lumped elements. F and
V are steady state ac voltages, E the driving voltage and V the response.
The gain « and phase 8 are here defined as the real and imaginary parts
of log V/E.

Tor a finite network of lumped elements, @ + 8 always has the fol-
lowing form:

(p — po)(p — pa) - (1)

+ 8 = log K 77 77
¢ ? (p — p)p — p2) -~

t Tehebycheff polynomials are related to potential analogue charges on el-
lipses, as described in the author’s paper “The Potential Analogue Method of
Network Synthesis’’?, Section 15.

1 For the most part, they have used the potential analogy, in such a way that
Tehebycheff polynomials do not appear at all in general applications. For ex-
amples, see methods of Matthaei?, Bashkow?, and Kuh'.
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The “frequency variable” p represents, of course, 7w. The zeros p, of
the rational fraction are those values of p at which there is infinite loss.
The poles p, are the so-called natural modes, or values of p at which
response V' can exist in the absence of driving voltage F. The scale
factor K determines the average level of transmission. The zeros, poles,
and scale factor together determine the gain and phase completely.

For a physical stable network, the zeros and poles must meet certain
well known restrictions, which are commonly stated in terms of loca-
tions in the complex plane for frequency variable p. Within these re-
strictions, the zeros and poles can be subject to arbitrary choice, say
for purposes of network synthesis.

LINEAR
E LUMPED \%
ELEMENTS

a+ip=Lo6 V/E
Fig. 1—A general 4-pole.

The symmetries required by the physical restrictions permit « and 8
to be represented separately as follows:{
log K (p* — p) (@’ — p°) - -
I "
(p* = p)(p2" — p%) -+
! "
28 = log DL (P F )
(i p) - (= p) -
These expressions hold at all real frequencies, but only at real fre-
quencies,

20 =

(2)

3. TCHEBYCHEFF POLYNOMIALS

It is functions of these special types which we are to synthesize with
the help of Tchebycheff polynomials. More generally, Tchebycheff
polynomials come in various forms, and may be analyzed in various
ways. For our special purposes, however, they take somewhat special
forms (a little different from textbook definitions); and they are best
analyzed in quite special ways.} It will be simplest to start with arbi-
trary definitions, to be justified later on by demonstrations of usefulness.

T The phase equation omits a possible 180° phase reversal, which is trivial for
present purposes.

} For discussions of Tchebycheff polynomials from other viewpoints, see

Courant and Hilberts, and also a paper by Lanezos® on trigonometric interpola-
tion.
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Actually, the definitions must vary with the nature of the useful fre-
quency interval. For the present, however, it will be assumed that the
useful interval extends from « = 0 to w.; or more precisely, from
@ = —w, to 4w, (in accordance with the symmetries of gain and phase
functions). Useful intervals which do not include w = 0 require changes
in the definitions, which will be taken up in Section 28.

For our present purposes, Tchebycheff polynomials 7' may be defined
as follows:

p = lw = iw,sin ¢
T. = cos k¢, keven (3)
T. = isin k¢, k odd

The first equation defines an auxiliary angle variable, ¢, in terms of
which T is especially simple. The imaginary scale factor 7, associated
with polynomials of odd order, simplifies later analysis. In addition, it

|
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Fig. 2—Tchebycheff polynomials.




NETWORK SYNTHESIS 617

is especially appropriate for general network applications, because the
odd ordered polynomials contribute to the imaginary parts of complex
network functions—such as 18 in « + 7b.1

It is apparent from (3) that the Tchebycheff polynomials become
simply Fourier harmonics, if they are plotted against a distorted fre-
quency scale—that is, against ¢. This means that they must be ortho-
gonal, over that particular range of frequencies which corresponds to
real values of ¢. From the relation between ¢ and w, it is clear that real
values of ¢ cover the frequency interval between —w, and +w,, which
is our useful interval. In other words, the interval of orthogonality coin-
cides with the useful frequency interval. The corresponding interval of
p is of course p = —iw, to +iw, .

If a given function is plotted against ¢, instead of w, it may be ex-
panded in a Fourier series. Each term in the series may be replaced by
a Tchebycheff polynomial, to obtain an expansion of a given function
in terms of polynomials, for the specific useful interval w = —w, to
~+w. . Established techniques are available for expanding experimental,
or other numerical data, in Fourier series, as well as actual analytic
functions. A

In Fig. 2, some of the Tchebycheff polynomials are plotted against w.
The frequencies —w, and +w. are also indicated. Frequencies between
these limits correspond to real values of the angle variable ¢. If this
part of the frequency scale is stretched, in the proper non-uniform way,
the various “loops” not only have the same maximum values, but also
the same shapes. In other words, they become periodic. More specifically,
a stretch which changes the frequency scale into a ¢ scale changes the
plots into sin k¢ or cos k¢.

4. TRANSFORMATION OF VARIABLE

An alternate to (3) may be obtained by relating a new wvariable, z, to

¢ by
z=¢" (4)
Substituting z in the exponential equivalent of sin ¢, in the first equa-
tion of (3), gives an alternative definition of z directly in terms of p,

namely:
w, 1 -
p== (z — ;) (5)

T A small change in the definition of ¢ would bring the definitions closer to
convention, by replacing both sines by cosines (without altering 7% as a function
of p). This however, would complicate our later analysis.
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Substitutions in the exponential equivalents of the other sine and cosine
in (3) give:
T, = ! (z" + l—k), I even
z

1/ 1
Tk=:—3(z _?), I odd

Network applications depend upon the nature of the relationship be-
tween the variable p, and the variable z. The relationship is illustrated
in Fig. 3, which indicates corresponding contours in the p and z planes.

Since angle ¢ is real in the useful interval, z, as defined by (4), has
unit magnitude. In equivalent conformal mapping terms, the unit circle
in the z plane maps onto a segment of the axis of real frequencies in
the p plane—namely the segment extending from p = —iw, to +iw, .
Hereafter, we shall say merely that the useful interval in the z plane is
the unit circle, or |z| = 1. The real frequency intervals outside the
useful interval map onto the imaginary axis in the z-plane.

z-plane circles with radii other than unity map onto p-plane ellipses, all
with foei at p = =iw. . This is reminiscent of filter theory using Tcheby-
cheff polynomials, and in fact such a filter may be obtained by spacing
z-plane mappings of natural modes uniformly around such a circle.§

(6)
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Tig. 3—The complex planes for p and z.

t The filter theory is developed in detail in a monograph by Wheeler?, which
also includes an extensive bibliography.
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5. Z-PLANE MAPPINGS OF NETWORK SINGULARITIES

z-plane mappings of network singularities are also an essential part
of synthesis applications. The mapping z, of a typical zero or pole p, is
illustrated in Fig. 4. From (5), the analytic relation must be:

c 1
P = (z, - z—) (7)

By its quadratic nature, there must be exactly two values of z, , corre-
sponding to one p,. The relation is such that replacing z, by —1/z,
leaves p, unchanged; and hence the two values of z, must be negative
reciprocals, each of the other. Thus, one mapping of p, falls outside the
unit z-plane circle, and the other inside.

A unique definition of z, may be obtained by requiring that z, must
be the mapping outside the unit circle. Then | z, | > 1 by definition, and
the complete definition of z, may be:

_eef, _£)
pa'_z a zﬂ (8)

|z | >1

“This definition is unique provided network singularities p, are excluded
from that very special line segment of the real frequency axis which
corresponds to the useful frequency interval, —w, < w < 4w, (where
| 2, | would be exactly 1).

We are going to solve the interpolation problem by choosing the z,
first, instead of the p-plane singularities p, , after formulating the inter-
polation problem in suitable z-plane terms. For this, however, we must
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Fig. 4—Mappings of a network singularity.
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know what further conditions must be imposed upon the z,, so that
the corresponding p, will meet the special conditions necessary for
physical networks. A simple analysis of the definition (8) of z,, and of
the well known restrictions on the p, , leads to the following assertion;

The physical restrictions on z, are
exactly the same as those on p, .

1t is obvious, for example, that conjugate complex z, are necessary
for conjugate complex p, . Also, because | z, | > 1, z, dominates —1/z, .
Then the sign of Re p, is the same as that of the Re z,, and p, with
negative real parts require z, with negative real parts, and so on.

Thus the direct choice of z, is restricted in exactly the same way as
the choice of p, , except for the additional general requirement | z, | > 1.
The last condition imposes no important restriction on the corresponding
p. . Initially, it was adopted to make z, unique for any p, (not at a
useful real frequency); but this condition does also play an essential
role in the z-plane formulation of the interpolation problem.

6. NETWORK GAIN AND PHASE IN TERMS OF 2

A first step in the z-plane formulation of the interpolation problem is
the formulation of the network gain and phase functions, (1) and (2), in
terms of z. This is most usefully examined as a transformation of fune-
tional form, rather than as a conformal mapping.

The gain and phase function (1) transforms as follows: The analytic
relation between p and z is regular in the neighborhood of the singular-
ities p, of the network function. Therefore, there will be similar singu-
larities of the transformed function at the z-plane mappings of p,,
which are z, and —1/z, . These singularities, and also suitable behavior
at infinity, are exhibited by the following expression for @ + 18 as a

function of z.
2 1
(i -5)(1+z)

a + 18 = log K; P 1 (9)
m(i-7)(1+z)

H is used here to designate a product of factors of the type following it.
t The expression is readily eonfirmed in the following very elementary man-
ner: For every factor (1 — -;) , in (9), there is also a factor (1 + z—l-;) . The

product of the two may be c-;p:mdec[ as follows:

S ] (S R O I
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If we define a new scale factor K. by K. = K%, we may write (9) as

follows:
m(-2)
a+ i = log K,—-—;
()

Zs

Same Rational
{ Function in —l/z} (13)

Similar expressions for the separate gain and phase functions may be
derived from (2):

z'.‘
1 - )
2 II ( 3nr')_ {Same Rational }

2a¢ = log K, —F——=% ..
I (1 _ 272) Function in —1/z

Zﬂ'
(14)
z z
=5 1+ .
. Za Z | [Same Rational
128 = log 4 IT 2 I Z { Function in —l/z}
1 + ; 1-— z.’f

Equation (13) holds at all values of p and 2, while (14) holds at all
real frequencies. Simplifications of (14) should be noted, good for the

useful interval only. When | z| = 1, 1/z = z*. Reecalling also that log
|z [*is 2 log | « |, and similar elementary relations, one obtains from (14):
When | 2| = 1,

()

K: ——\
(- 2)

log

R
Il

(15)
2 z
11— 1+2,‘_”
B = Phase [] zH 2
1+ = 1— 7
Zq Zg

Comparison with (5) and (7) gives:

z 1 2
(1 _—)(1+—) =——1(p—1p,) (11)
Z, 27 Wz,

Thus (9) is equivalent to (1) provided

K. =K (12)
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7. THE POWER SERIES IN 2

Our applications to network synthesis depend upon a correspondence
which may be shown to exist between certain functions of z and certain
power series in z. The functions of z may be formulated in terms of
network singularities. The power series in z may be derived from the
Tchebycheff polynomial series in p representing the corresponding gain
and phase.

The Tchebycheff polynomial expansion of a gain and phase function
may be written:

a+i8 = E CiTh (16)

If « + 18 corresponds to a finite network, it may be represented by the
function of z in (13). At the same time, T may be represented by the
function of z in (6). With these changes, (16) becomes:

2
1— 2
II ( 34) {Same Rational }
2

log { K. H z Function in —1/
1 - z;f (17)

-zalfe+(3)]

The logarithm of the product of the two rational functions, in z and
—1/2 respectively, may be written as the sum of two logarithms. The
series in sums of 2° and (—1/2)" may be written as the sum of two series.

Then
z
1— =
1 K H( zé) 4o Same Rational

08 s H(l _ 2) €1 TFunction in —1/z

I’
T

(18)
= E%z"+ Z%(_?l)k

The above expression equates the sum of two similar functions, in z
and —1/z respectively, to the sum of two power series, also respectively
in z and —1/z. The theorem on which the synthesis methods are based
asserts that the functions and power series in z and —1/z may be equated
separately, throughout the useful interval. That is:
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When |z | = 1,

m(-2)

log < K. SN = 32 Gt
m(-7) (19)
Al . _ k
o {Samc Rational z} _ Z C. (Tl)

Function in —1/

The relation (18) does not, by itself, require (19) to be true. (19) fol-
lows from (18) if and only if the function of z has a power series expan-
sion involving only positive powers of z, and the function in —1/z has
a power series expansion in —1/z, with the same coefficients. This added
condition, however, is readily established for the useful interval.t

Combining (19) and (16) yields a most useful relationship connecting
the z-plane mappings z,, of the network singularities p,, and the
coefficients (' , of the Tchebycheff polynomial expansion of & 4 #8:

a+ 18 = 2, C.Tx

210" = log K. %El:—z_:;)) (20)

(S

|
[

2y
In more qualitative terms:

The transformation from variable p to variable z
converts an expansion in Tchebycheff polynomials
in p inlo an expansion in a power series in z.

Thus, by working with the z,, in place of the p,, one may use a
power series sort of analysis in calculating, or in choosing, the coeffi-
cients (' in the Tchebycheff polynomial series.

The relations (20) refer to the combined gain and phase function.
Exactly similar relations can readily be obtained, however, for gain and

t As defined in (8), | .z,) > 1. In the useful interval, | z| = 1. Hence | z/z,| < 1.
It follows that log (1 — z/z,) has a power (MacClauren) series expansion in posi-
tive powers of z, convergent on and within the eirele | z | = 1. Finally the first
logarithm in (19) may be expressed as a sum of logarithms of this simple type,
each of which may be expanded separately. Substituting —1/z for z maps the
unit cirele onto itself. It follows that the second logarithm in (19) has an expan-
sion in positive powers of —1/z, in the useful interval, provided the first loga-
rithm has an expansion in positive powers of z; and the coeficients in the two
series will be the same.
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phase separately. These may be derived from (14), and take the form:
a = Z CkTJ,,

>0 = log K m

_ (21)

i8 = 2_ CiTy

V4 -1

7 1t bk odd

1

1+ = 1— =
2, z

1—

>t =1log ]

(The absence of factors & in D, Ci2", as compared with (20), reflects the
factors 2 associated with « and g in (14).)

8. REPRESENTATION OF ASSIGNED GAIN AND PHASE

In synthesis problems, the network gain or phase, @ or 8, is to ap-
proximate an assigned (ideal) gain or phase, say & or B. To make effec-
tive use of the z-plane analysis, in network synthesis, we need to describe
& and B by relations analogous to (20) and (21), which express « and g
in z-plane terms. These relations, while similar to (20) and (21), must
take a more general form (since & or B need only be approximately the
gain or phase of a finite network). For our present purposes, the ap-
propriate relations are those noted below.

Let & + 8 be any function of p» which has the following properties:
It must be analytic throughout the useful interval. Further, there are
to be no singularities within a (p-plane) distance e of the useful interval,
where ¢ is finite (but may be small). Finally, at real frequencies, & and
iB are to equal respectively the even and odd parts of & + 8.

Under the conditions stated, @ + 78 may always be expanded in
terms of our Tchebycheff polynomials 7' . Let > C. T be the expansion.
To obtain a parallel to (20), we may form (arbitrarily) a power series
3 10,25, Then we may define a function R(z) by identifying log R(z)
with the power series. All this adds up to the following, comparable to
(20):

&+ ip = 2 Ol

2
230" = log R(2) i
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The functions of z have the following properties: Because of the mild
restrictions, which we have imposed on the singularities of @ + 48, the
series . Ciz° defines a function which is analytic within, and on the
cirele | z| = 1. Then F(z), also, is analytic within, and on the cirele.
Further, £(z) has no zeros anywhere in the same region. (£(z), however,
may be more general than the rational fraction in (20).) Finally, because
of the even and odd symmetries, required of @ and 78, (22) may be
broken into the following parallels of the equations (21):

a = Z éka
k, even
> G = log [R(DR(—2)]

EB = Z éka

o R(z) k, odd
>0 = log l:f_l’(—z)}

In some applications, it is possible to express /(z) in closed form. In
all applications, it is possible to expand £ (z) as a power series, convergent
in the region |z | = 1. The same is true of 1/R(z), since there are no
zeros in the region. Coefficients of either series (R(z) or 1/R(z)) may
readily be calculated by means which we shall examine a little later. For
the present we shall say merely that £(z) iz a known function, corre-
sponding to an assigned & + 3.

(23)

9. A DESIGN CRITERION

When the gain and phase function, @ 4 8, is to approximate & + 8,
the error in the approximation is (&« — &) + (8 — B). The error may
be expressed in terms of z by taking the difference of corresponding
equations in (20), (22). The difference of the logarithms may be ex-
pressed as a single logarithm of a ratio. Alternatively, and also more
conveniently for our later purposes, it may be expressed as the negative
of the logarithm of the reciprocal ratio. When this is done,

(@ — &) +i(8—B) = 2 (C. — C)Ts
m(1-%

Consider the following arbitrary requirement, as a design criterion:
The series »_ (T is to match exactly the series > C.uT, through

Z 3(Cx — C_'k)é’* = —log
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terms of order m. If both series have converged to small remainders
when &k = m, this criterion will surely make o + 78 a good approxima-
tion to & + 8.1 In terms of the coefficients, the criterion requires:

O = Cr, EF=m (25)

If (25) is applied to the second equation of (24), the power series is
zero through terms of order m. In other words, the logarithm, equated
to the series, will approximate zero in the power series, or “maximally
flat”’ manner, to order m. The logarithm is zero when the expression in
brackets is unity. Further, the logarithm will approximate zero in the
maximally flat manner when, and only when the bracket approximates
unity in the maximally flat manner. Thus a condition which is equivalent
to (25) is the following:

LO(-5)
K —~7 z\ B2 =14 empr 2" empe 2™ (26)
zH(l__

)

This may be represented symbolically by

9\[“ :‘:lm

. I (1 - E% ) "
LN &=/ R =1 (27)
K. 10 z
(-%)
where = is used to indicate equality through power series terms of
order m.

When (27) is applied to network synthesis, the singularities 2 , and
scale factor K. are the unknowns, while R(z) is known. If m is equal to
the total number of z,, (27) will determine the network function com-
pletely. When m is smaller, (27) will furnish m 4 1 relations between
the network parameters (including the zero order condition), which
may be combined with specifications of other sorts. Since (27) is equiv-
alent to (25), this procedure amounts to the determination of network
parameters which will yield assigned values of the coeflicients, C = Ch,
k < m, in the Tchebycheff polynomial expansion of a + 5.

Equation (27) applies when both gain and phase are to be approx-
imated. For approximation to gain only, or to phase only, similar rela-
tions may be derived from (21) and (23). Only even ordered Tchebycheff

t When both residues are relatively large, the approximation may still be

good, for the remainders may be quite similar, and the error will be their differ-
ence. In practical applications, this is a not uncommaon situation.



NETWORK SYNTHESIS 627

polynomials contribute to gain. The following condition turns out to be
the equivalent of Coy, = Cu, &t = m:

e g((ll%g R@R(—2) = 1 (28)

T
me

where = means approximation in accordance with a power series of
even ordered terms, through order 2m. Correspondingly, only odd
ordered Tchebycheff polynomials contribute to phase. The following
condition is equivalent to Cuy—y = Cory, b = 1 to m:

z z
1 — 7 14+ =7 = 2m
II—=1I ZR}éf)) =1 (29)
14+ = 1— z
Zs 2,

The remaining sections (except the last) develop in more detail the
application of z-plane techniques to more specific synthesis problems, of
various sorts. Most of these (but not quite all) are based directly on
(27), (28), or (29). The exceptions use a modification of (28), in which
the function of z on the left is retained, but with the zeros and poles

adjusted for a different kind of approximation to unity, = but not =.

In all cases, unity is approximated with one of the functions appear-
ing in (27), (28), (29). It will be convenient to use H(z) to represent the
error in the approximation, or departure from unity. When gain only is
of interest, the function in (28) is used, and H(z) is defined by:

= H—(:@-R(z)R(—z) =1+ H() (30)
K T (1 _ 25)

In developing the specific techniques, we shall start with a very
definite, rather special example, in order to illustrate the techniques
with specific operations. This will be discussed in considerable detail in
Sections 10 through 14. Thereafter we shall examine how these specific
operations may be generalized, in a number of different respects.

10. AN INTRODUCTORY EXAMPLE

The example which has been chosen for detailed discussion is the
ecqualization of the gain distortion produced by two resistance-capacity
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type cut-offs. The equalization is to be accomplished with a network
which has » natural modes, but no finite frequencies of infinite loss.
(This is simply one of the arbitrary specifications which define this
problem.)

The two cut-offs may be due to circuits or devices at two different
points in a communication system, which may be represented schemat-
ically as in Fig. 5. Their effect can be described in terms of two assigned
natural modes. Two assigned modes are assumed, instead of only one,
because a single mode would make the problem too simple. Our present
purposes will be served well, however, if we simplify the problem by
requiring the two assigned modes to be identical, say at p = P .

VT WA

Fig. 5—A system with two resistance-capacity type cut-offs.

The two natural modes would be cancelled completely by two infinite
loss points at the same location in the p plane. A network with two
infinite loss points, however, is not physically possible unless it has also
at least two natural modes; and the natural modes will have to introduce
distortion of their own. Thus no finite network will give perfect equali-
zation of unwanted natural modes. Sometimes it is desirable, in practice,
to use an equalizer configuration which produces no finite frequencies of
infinite loss, the entire equalization being accomplished by a suitable
choice of its n modes. Configurations of this sort are illustrated in Fig.
6. Thus, our simple illustrative problem, though chosen to introduce
principles, is also of some practical interest.

The exclusion of finite frequencies of infinite loss simplifies the repre-

STIR T e W T

3 1

Fig. 6—Configurations which produce no finite frequencies of infinite loss.
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sentation of the network gain a. In (21), the z, correspond to finite fre-
quencies of infinite loss, and are to be omitted when there are to be
natural modes only. What is left is the logarithm of the reciprocal of a
polynomial, which is of course the negative of the logarithm of the
polynomial itself. Thus & may be deseribed as follows, for this particular

application:
2 Oyl

E CQ:.-ZR = _][)g I{E H (]' - 33) = ]! e, (31)

(For convenience, z, has been written for z, , and K. has been redefined
to avoid the 1/K. required if it is defined as in (21).)

The assigned gain & is even more special. In this particular problem,
& has most of the properties of a network gain «. Specifically, it is the
negative of the gain to be equalized, which in fact corresponds toa
finite network. As a result, B(z) of (22) may be expressed in closed
(rational) form. (Later on, we shall modify the methods appropriate for
this very special situation, so that F(z) need be representable only by
series.)

The specific representation of our present & may be very similar to
the representation of « in (31), as follows:

@ = Z Cop T
. ., 2\* 2
> O™ +log K: (1 - 73) (32)

20
(Both (31) and (32) apply only to the useful interval, |z | = 1.)

The constant 2 is the z-plane mapping of the assigned unwanted
natural modes at p = P, and may be ealeulated therefrom by (8). In
(32), 2 determines the C. , which in turn determine & The constants
2z, , in (31), are the z-plane mappings of the arbitrary natural modes of
the equalizer. They are to be adjusted to make « approximate & Then
the network natural modes p, may be calculated from them, by means
of (8).

Taking the difference of corresponding equations in (31) and (32)
gives the following, analogous to (24):

a— a = Z (Cop — Coi) T

E (Cop — 62.!:)2% = —log {If?kz (1 _ ;)3 H (1 _ :_;)} (33)

a

a3

This differs from (24) in two regards. It relates to the gain error, (& — &),
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without regard to phase. It reflects the more specific functional forms of
our present « and &.

The formulas show that the coefficients in the Tchebychefl poly-
nomial expansion of our present « — & are fixed by the logarithm of a
polynomial in 2°, of degree n + 2. Since the Tchebycheft polynomial
series is simply one representation of the function @ — &, this means
that @ — & itself is determined by the polynomial in 2°. Out of the n + 2
zeros, in terms of 2°, n are subject to arbitrary choice, but the other two
are required to be at Z=3.

To arrive at a useful choice of the zeros, one may start with the ex-
panded form of the polynomial, which replaces the second equation of
(33) by:

> (O — Co)d™ = —log (Ko + Ki&" + - R, (34)

All but two of the coefficients K may be assigned arbitrary values, pro-
vided the remaining two are then adjusted to give the required two
zeros at 22 = z . The corresponding zeros z; may then be found by
ordinary root extraction methods.

The coefficients may be chosen in such a way that the complex poly-
nomial approximates unity, when | z | = 1. Then the logarithm approx-
imates zero, the coefficients in the power series (34) are small, and since
these are also the coefficients in the Tcehebycheff polynomial series in
(33), @ — @& 1s small.

11. TCHEBYCHEFF POLYNOMIAL SERIES MATCHED THROUGH 71 TERMS

A special choice of coefficients, which meets these requirements fairly
well, is the choice determined by (28), with m = n. The function on the
left side of (28) is here the polynomial in (34). For our present purposes,
therefore, (28) becomes:

(Ro+ B+ -+ R} =1 (35)
This requires Ky = 1, and K. = 0fork = 1ton. Then K,y and R
must be adjusted to give the two required zeros at Z* = z . This gives:

© N % T 2 \2nt2 2\
0 MR A S 7/ =1 (?1+2) E—" -l—(n-l—l) 2—0 (36)

In accordance with Section 9, this special choice of coefficients corre-
sponds to a match of Tchebycheff polynomial series, @ to &, through
terms of order 2n:

Co, = Cur, k=n (37)
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Fig. 7—FError when four natural modes equalize two natural modes at
Do = "‘0.75"-’r.

The actual accuracy may be calculated from the final zeros and poles,
from non-zero terms in the expansion of @ — &, or by an analysis in
terms of z which will be described later.

A sample plot of @ — & is shown in Fig. 7. This corresponds to an
equalizer of four natural modes, compensating for an initial loss which
rises to about 8 db at the top useful frequency, or a distortion of 44 db
about the median loss. Residual errors are order of 4-0.06 db.

A little later we shall return to the question of accuracy, to take up
methods of estimating what can be done with other numbers of arbi-
trary natural modes, and other values of the assigned modes. First,
however, we should investigate whether the network singularities z,
determined by (36) meet the other necessary conditions.

12. PROPERTIES OF 2z,

In the first place, | z, | must be >1. Otherwise, the function of z in
(31) will have no power series expansion over the useful interval | z | = 1;
and (31) will not, in fact, determine the gain « over the useful interval.
It turns out, however, that the condition does not give trouble in the
synthesis of natural modes, when there are no arbitrary frequencies of
infinite loss. This may be demonstrated by the argument outlined below.

The z, are zeros of the polynomial in (34), which we have given the
special form (36), by applying (35). A function theoretic test for | z, | < 1
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makes use of the contour in the complex plane for the polynomial, corre-
sponding to the z-plane circle | z| = 1. (This is like a Nyquist diagram
except that the contour for the variable, z, is different.) There will be
|z,| < 1if and only if the contour for the polynomial encloses the
origin.

Now the polynomial in (34), and (35), is merely a special case of the
function on the left in (28), and (30). For this special case (30) becomes

YK =14 H(z) (38)

The polynomial cannot enclose the origin without passing through some
negative real value. But this requires an | H(z) | > 1, at some point on
the contour in question, | z| = 1, which happens to be also our useful
interval. On the other hand, « — @ = 0 when S Ri2™ = 1,and H(z)
is in the nature of a correction term, which is small in the useful interval
when a — & is small.

The conclusion is: There will be no | z, | < 1 unless the approxima-
tion, a to &, is so poor that a — & exceeds several db in the useful inter-
val.

Besides the requirement | z, | > 1, the z, must meet physical restric-
tions, which we found to be the same as those Ilmltlng the natural
modes p, . The z, may be calculated as follows: The z; are IOOtS of the
polynomial in (35), in terms of z All the roots in terms of 2° are z;
except the two required roots at z , which correspond to assigned gain &.
Each z, is a square root of a z; . There are two pcssible square roots,
however, differing only as to sign. As far as gain « is conccrncd either
choice of sign is permissible; for a depends only on 22 . For a physical
network, however, the choice must be such that Re z, < 0. This choice
is possible if, and only if /2% has a finite real part. A pure imaginary z,
corresponds to a negative real z; , and thus negative real roots in terms
of 2* are excluded by physical considerations.

Table I lists both 22 and z, for a number of values of n. When n is
even, all roots are physical. On the other hand, when n is odd, one root
is always non-physical. In a sense, an odd = is not really appropriate
for the present illustrative problem, with any physical design. An odd n
must necessarily bring in a real natural mode, which merely increases
the sort of distortion we are trying to equalize—that is the distortion
due to unwanted real modes.

The following argument substantiates the suggestion, and also illus-
trates manipulations of a sort which are frequently useful in more gen-
eral applications: The highest order coefficient in (34), K.i2, may be
set aside for adjustments to satisfy physical requirements. The rest of
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TaBLE I—Z-Plane Natural Modes for Equalization of Two Identical

Unwanted Modes
n 223 VT 2/l 5|
1 —.5000 0 £ ¢ .7071 Non Physical
2 —.3333 £ 1 4714 +(.3492 = 4 .6747) - —.3492 + ¢ .6747
3 —.6059 0 x4 7784 Non Physical
—.0720 £ 7 .6384 +(.5340 = 4 .5977) —.5340 £+ ¢ .5977
4 4.1378 + 7 .6G782 +(.6441 = ¢ .5264) —.6441 + ¢ .5264
—.5378 £ 1 .3582 +(.2328 &£ 7 .7695) —.23287:|: 1 .7695
5 —.6703 0 £ ¢ .8187 Non Physical
+.2942 4+ 7 .6684 +(.7157 = 1 .4670) —. 7157 £ ¢ .4670
—.3757 £ ¢ .5701 +(.3918 &+ 7 .7275) —.3918 + 7 .7275

the coefficients may then be chosen to eliminate terms from the series
> (Co — Co)Tu , vepresenting « — &, subject to the previous condi-

ne (n—1)e
tion that two zeros must be z° = 2 . This replaces = by = | in
(35), and changes (36) to:

ZRe"=1-@+1) (2_])2 . (§)2ﬂ+2

20

(39)
+ Kﬂ+9z2u (23 _ 22)2

If n is odd, all the roots z, can be physical only if K,,, is negative.
On the other hand, any finite negatlve K., leads to a larger error,
a — &, than K,» = 0. Reducing K, . to zero is the same as 1educmg
the degree of the polynomial by one, which amounts to reducing » by 1,
from an odd to the next smaller even integer. In other words, a physical
design with an odd number of natural modes is less effective, for the
present application, than a simpler network, with the next smaller even
number of modes.

Note that the z, in Table I are proportional to Z, . This means that
root extraction methods need be used only once for each value of n,
after which the roots may be quickly adjusted for any value of z,
corresponding to any assigned value of the two identical modes, f, .

13. ACCURACY

The accuracy of a completed design can be checked by ecalculating o
from the natural modes p, , and comparing a with &. It is important,
however, to have at least some information about accuracy in advance
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of the detailed calculation of the p, . Otherwise, it may be necessary to
carry out several designs, in all detail, in order to obtain one satisfactory
design.

The needed information about accuracy can in fact be obtained from
the error function H(z), which we formulated for general gain applica-
tions in (30), and for the present application in (38). The analysis
which yields (15) may be used to obtain a very similar expression for
@ — &, in which R(z)R(—2z) appears in combination with the rational
funetion of z from (15). It may be expressed in terms of the error func-
tion H(z) of (30), as follows:

a —a= —log|l+ H() | (40)

When H(z) is zero, a — @& is zero. When H (z) is small, « — & depends
on phase H(z) as much as on | H(z) | . When H(z) is a positive real,
« — & is negative. When H(z) is imaginary, @ — & is very small. When
H(z) is a negative real, @ — &is positive. When H(z) is complex, | &« — & |
is always smaller than with a real H(z) of the same magnitude. The last
statement may be expressed as follows:

—log {1+ |H@ |} Sa—a= —log{l—|H@EI[} 1)
The left hand relation is an equality when phase H(z) is an even num-

ber of = radians; the right hand side, when it is an odd number of =

radians. _
In the useful interval, where z = ¢'*, the H(z) corresponding to (36)
is as follows:

i 2n+4
H@ = -(n+2) (:T,) + (n+ 1) (:Lo)
T P e )

1 .
phase H(z) = = + (2n + 2)¢ + phase {1 — (n—nm em}

As o varies from 0 to w., ¢ varies by g radians. The corresponding

phase of H(z) varies by (n 4+ 1) radians, which means that H(z) is
successively positive real, imaginary, negative real, imaginary, through
n + 1 half eycles. This accounts for the oscillatory nature of the e — &
curve, illustrated in Fig. 7.

The amplitudes of the oscillations are fixed by | H(z) | , which varies
relatively slowly. Specifically, the two logarithms in (41) determine
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envelopes, between which the actual error curve oscillates. Theseare

the dashed lines in Fig. 7.
The maximum error, in the useful interval, is determined by the
maximum value of the envelopes, i.e.,

_ L + 2 n+ 1 l
((1 - a)mnx. = Egn+2 []- + n + 2 53] ('1:3)

This function is plotted in Fig. 8, for various values of n. The abscissae
‘“distortion before equalization” represent distortion relative to the
median loss in the useful interval, or one half the total variation in the
interval. (This is a function of the top useful frequency w. , relative to
the assigned natural mode 7, ; and (7) makes w./f a simple function of
2, .) The figure is convenient for estimating the values of n needed for
specific applications.

The various ripples in « — & do not all have the same amplitude, (43).
For some values of n and Z , the amplitudes are almost uniform; for
others they are quite variable. A measure of the variability in ripple

0.1 I’ i, I'

0.08 7/ ’l I’
boe / / /
/ II

:::: /i1
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/ / l

DISTORTION AFTER EQUALIZATION IN DECIBELS
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0.001 Ll Ll
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DISTORTION BEFORE EQUALIZATION IN DECIBELS

Fig. 8—Distortion before and after equalization—n natural modes equalizing
2 identical natural modes.
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amplitude, across the useful interval, is:

| H (2) |mes, _ (n+ 2% + (n + 1)

H(2) lmin. (4 2)3% — (0 + 1) (44)

14. APPROXIMATION IN THE TCHEBYCHEFF SENSE

The above analysis suggests a way of improving the design deter-
mined by (37) (or the equivalent, (36)). An oplimum a — & is commonly
one which has the following properties, in the useful interval:

A maximum number of “ripples,”’
all mazima of | @ — & | equal.

(This usually minimizes the largest departure in the useful interval,
thereby yielding an “approximation in the Tchebycheff Sense.”) Since
the variation in phase H(z) determines the number of ripples, while
| H(z) | determines the amplitudes of the ripples, the above conditions
will be met if H(z) has the following properties, in the useful interval:

Phase H(z) as variable as possible,

| H(z) | constant. (45)

These conditions may be regarded as alternative design criteria, re-
placing Ca = Cu . They can in fact be applied to our special example,
and also to certain other special problems which will be noted later.
Tor more general applications, a suitable H(z) can be defined, but no
reasonably simple procedure has yet been found for calculating the re-
quired constants. (The difficulties will be particularized in a later
section.)

For the present example, (38) may be used to replace (34), and hence
also the second equation of (33), by:

3 (Co — Cou)e™ = — log [1 + H(2)] (46)

(33) requires H(z) to be a polynomial in 2, of degree n + 2, with two
zeros of [I + H(z)] at 2 = 2 . The object is to find an H(z) of this
sort, which also satisfies (45), at least to a good approximation.

The following H(z) does in fact exhibit the required properties:

JZZ][]. _ Jn+2/52n"H]
1 — J/#

HG) = gL (47)

The function is a polynomial because the factor [I — J""/z""* is

divisible by (1 — J/2%). The constants J and G are to be chosen to
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give the required double zero of [1 + H(z)] at 2° = % . One value of J,
so determined, is real and of order 1/2; . This is the appropriate solution.
Then | J""/2*" "™ | is of order 1/2"™* , when |z | Z 1. This suggests the
following approximation in place of (47):

1 —JzZ

~ 2n+2
H(Z) = GZ 1—_—‘]7;

(48)
The approximation is at least as good as 1/z"*, compared with
unity, both in the useful interval and in the neighborhood of the singu-
larities Z, , and z, . This means that the approximation can be used: in
estimating the error @« — & (in the useful interval), in calculating J and
(7, and in finding the roots z, .

In the useful interval, |z| = 1, and therefore 1/z = z*. Then
(1 — J/2% is (1 — JZ°)*; and their ratio has magnitude unity. Thus
| H(z) | = |G|, in the useful interval, to order of 1/z"*" compared
with unityf. With | J | < 1, phase H(z) varies over the useful interval
to the same extent as the phase of 2*"™.1 Fig. 9 illustrates the difference
in « — &, as determined by (42) and (48). These curves, however, are
for single values of n and Z ; and the improvement obtained by using
(48) would be different with different values of n or 3, .

The values of J and G, determined from (48), and the requirement
that [1 4+ H(z)] must have two zeros at 2 = 7 , turn out to be:

J_n-l—ll_ 2
T n+4 2% 1 /‘/ 1Y 4

et/ E e
G- _ L 1-J/E

=2 2 =2
Zn"+ 1 — JZQ

Note that this J is in fact smaller than 1,2 .

15. GENERALIZATION

The several sections preceding deseribe a quite specific example, as
an introduction to synthesis applications. The next several sections de-
seribe how the specific methods of the example may be generalized, in
several respects.

First, the ideal gain, &, is generalized, so that it need not even have
the sort of functional form associated with finite networks. Then, the

t The | H(z) | determined by (42) is constant only to order 1/22 .

1 This is the most we can expect, when we have n singularities, which can pre-
vent the dominance of only lower order terms, through 22"
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Fig. 9—Comparison of design procedures—four natural modes equalizing two
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approximating network gain is generalized, by introducing arbitrary
frequencies of infinite loss, in addition to the arbitrary natural modes.
The methods are also modified for approximation to an assigned phase,
instead of gain, or to phase and gain simultaneously. Finally, the anal-
ysis is modified to permit useful intervals of the “high-pass” type, or
(in the case of gain simulation) of the “band-pass” type.

16. APPROXIMATION TO A GENERAL ASSIGNED GAIN &

If we now permit the assigned gain @& to be general, in the sense of
Section 8, we must return to the formulation:

a =2, Culu

0
2 Cuz™ = log [R()R(—2)] 0
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If we retain simulation with a network which has » natural modes, and
no frequencies of infinite loss, we must retain the formulation:

a = E Co T

: 5 2 (51)
ZCuzM-_-—logK;H(l—ig), a‘=1’-..’n
The corresponding formulation of the error is (in place of (33)):
a—a=2,(Cx — Co) T
(52)

Z (Czk - Czk)zzk

—log [K 11 (1 - S;)-R(z)f?(—z)]

For Oy = Cu, k < m, the following special case of (28) is now required:

me

K1 (1 - S;)R(Z)R(—z) . (53)

Now the reciprocal of B(z)R(—z) has a power series expansion, in the
region of interest. (Recall Section 8.)

It follows that (53) may be multiplied by this quantity, without
damaging the equality of power series coefficients. In other words (53)
is equivalent to:

" 2\ ™ 1
K: 11 (1 - 23> = BOR(—2) (54)

Let K, be the coefficient of z** in the polynomial expansion of the left
hand side; and let K; be the coefficient of z** in the infinite series ex-
pansion of the right hand side. Then,

2

KEH(1—§)=K0+KIJ+ s K2

. o (55)
R(z)—l?(—'z_)=ZK‘z“’ E=0-——, =
Substitution in (54) gives
Ko+ K2 4 - Ko™ = 3 R™ (56)
In other words,
Ki=RK., k=m (57)

These relations are directly applicable to network synthesis, provided
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the coefficients K; can be calculated. Formulae for their calculation
may be derived in the following way:

If (55) is substituted in (50), the result is:{
&= CuTu (58)
E ézkzzk = — log Z Kkz2k

When z = 0, the second equation reduces to:

Ko = B_E“ (59)
If the functions of z are differentiated, a simple rearrangement gives:
Z kK;;sz‘z = [—E kézkzﬁ—z] [E Kkzu] (60)

The right hand side may be expanded as a single power series, and then
like powers on the two sides may be equated separately. The result is:

Kl = "C?an
2K, = —C.K, — 20K, (61)
3K; = —C.K, — 2C.K, — 3CsK,

Synthesis calculations may now be carried out in the following stages.
The assigned gain @ is expanded as a Tchebycheff polynomial series, to
determine coefficients Ca. , say through order & = n. The equations (61)
are then used to calculate coefficients K, , also through order n. Each
successive coefficient is computed in terms of those previously deter-
mined. Note that the K., k < n, are fixed by the same number of
C—that is, orders k = n.

Equation (57) is now applied to identify K with K,k = m. If all
the network degrees of freedom are to be used to get Ca = Ca , index
m = n, and (57) determines the polynomial in (55) completely. Other-
wise, m < n, and coefficients K41 to K, are to be adjusted in accord-
ance with specifications of other kinds. When all the K, have been
determined, the singularities z, are found by root extraction methods,
applied to the right hand side of the first equation of (55).

The previous example might have been carried out in these terms,
but happened to be simpler in the terms used. If (32) is regarded as a
special case of (50), and if (32) is simplified (for purposes illustration)
by using K. = 1, the corresponding R(z)R(—2) becomes simply

2\* 5 2% -
1- 2) Then D Kz is
0

t We may think of these equations as defining an 7nfinite network, with na-
tural modes only, which would match the assigned gain & exactly.
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_ 1 2\
o o+ (2
Z Kz = (1 — 22/23)2 = Z 4+ 1 (Eg) (62)
thus K and K, become
_ E+1
Kk = ;2_& 3 E=0to »
0
(63)
k41
K, = +

3 E=0ton
0

EL]

If these K are used to evaluate the polynomial on the left hand side of
(53), in accordance with (55), and if the polynomial is then multiplied
by the above special R(z)R(—z), the result is exactly (36).

The error function H(z), of (30) and (42), may now be defined as
follows:

2
K1 (1= 3) ROR-2) = 1+ HE) (6
The error & — & is again:
a—a=—log|l+4+ H() | (65)

If (64) is used to express (53) in terms of H(z), a “1” may be sub-
tracted from each side of the relation, to get

me

H(z) = (66)
When m = =, this requires an H(z) of the following form, in terms of

the coefficients K derived from R(z)R(—z):

= 2n+2 > 2n+4
K.H.]z" +Kn+zZ" + .-

E K. (67)

H(z) = —

17. CHARACTERISTICS OF 2,

As in the previous example, |z, | > 1 when the approximation, « to
@, is at all reasonable. The z, are again zeros of 1 + H(z); but now
H(z) is defined by (64). If | H(z) | < 1, when |z| = 1, there will be
the same number of zeros of 1 + H(z) as poles, in the region |z | < 1.
Any poles would have to be poles of B(z)R(—z). In Section 8, we noted
that this function is regular in the region |z | = 1. Hence, there will be
no poles, and there will be no |z, | < 1, under ordinary accuracy con-
ditions.

As before, the z, can be chosen in accordance with the physical con-
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ditions, provided none are pure imaginaries. Since an imaginary 2z, is a
. 2
negative real z; :

. 2
There must be no negative real z; .

There will be no negative real z; if the polynomial E K™ in (55) is
non-zero at all negative real 2°. If the requirement is violated, initially,
one or more K, of the highest orders, must be modified. Graphical
methods are likely to be useful for this, combining plots of the original
polynomial, and proposed changes. An approximation of the form
Oy = Cu, k £ m, will still be realized, but with m < n.

The error function corresponding to m < n is as follows, in place of
(67):

- = am+2 5ot
(hm+l - Km—{—l)z " . K!l+lz " e

Z Kkz!k

H(z) = (68)

18. ACCURACY

The accuracy of match again may be estimated by the means of (41),
using H(z) of (67) or (68). H(z), however, may not be so easily cal-
culated as for the previous example.

A simpler but less reliable estimate of accuracy is furnished by the
error in the first unmatched coefficient in the Tchebycheff polynomial
series. If K, = K, through k = m, the leading terms in various series
are as follows. First, from (64) and (68),

Km+] - Km+1 2m+2

2 2 _ Ky — Kot _
K: 11 (l - zz) R(z)R(—2) = 1+ K 2 .. (69)
using this in (52) gives:
~ Km - Km

Then, from the properties of logarithms,

K1 — Knir sy

Z (Czk - CTM)Z“ = — )—K,—— P .o (71)
0
Consequently (also from (52)):
Km - Km

This is the same as the leading term of H(2), except that 2" s re-
placed by — Tanye . If m = n, the same equation holds with Ky, = 0.
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The coefficient I&"—ﬂj%&'“ in (72) is a sort of average of the enve-

0
lopes of the ripples in @ — &. The variability of the envelopes, across
the useful interval, depends upon higher order coefficients, in compari-
son with the leading term. Caleulation of higher order coefficients is

relatively complicated.

19. APPROXIMATION IN THE TCHEBYCHEFF SENSE

The criteria (45) carry over to general assigned gains, as conditions
on H(z) which, if realized, are usually sufficient to establish approxima-
tion in the Tchebycheff sense. For this purpose we must use the H(z) of
(64), rather than (67) or (68) (which correspond explicitly to Co = Cyy ,
k = m). In terms of the polynomial and series representations of (55),
the H(z) of (64) becomes:

Ko + K2 -+ K,z
H(z) = —"—EIKT— -1 (73)

The following somewhat special problem is easily solved, in these
terms, and has a direct bearing on various quite different synthesis
techniques: A network is to be designed which combines the functions
of an equalizer or simulator, with those of a filter, or selective network.
In the useful interval, an assigned gain variation & is to be approximated
in the Tchebycheff sense. At higher frequencies, there is to be a rapidly
increasing loss, or ‘“‘sharp filter cut-off.” The number of natural modes,
n, is to be more than sufficient to match & to the required accuracy, in
the absence of a selectivity requirement, the latitude being used to pro-
duce the required sharp cut-off. In particular, n is to be large enough so
that an n term match of Tchebycheff coefficients produces errors that
are negligible compared with those accepted as a price of the sharp
cut-off.

On the above assumption of an ample n, the infinite series Y, K;2™
in (73) may be truncated after the term of order n, and the errors due to
the truncation may be neglected in calculating the design error & — a.1
Then (73) becomes

I\y(l + I\y_l-—: T K"zﬂn
Ku + Klz‘.! . an2n

H(z) = -1 (74)

f The truncated series is merely the polynomial on the left side of (56) which
would be obtained if the filter selectivity were ignored, and m were given the
maximum value, n.
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If a sharp cut-off were not required, this approximate H(z) could be
made exactly zero, by using K = K; for all coefficients. Then the actual
design error would be determined by the approximation inherent in the
use of (74) in place of (73). For high selectivity, however, K, should be
much larger than K., as large as possible within assigned limits on
a — & in the useful range. (It is readily established that K,z" will deter-
mine a at asymptotically high frequencies.) The other K are then to
be adjusted so that @« — @ exhibits the desired “‘equal ripples.”

The following H(z) has the functional form (74), and also meets con-
ditions (45):

. K, K,
Ko + 22 2n (75)
Ko+ Ki2* -+ K.2™

Multiplying Gz*" into the numerator gives a rational fraction which is
obviously consistent with (74). The coefficients K of (74) which corre-
spond to (75) are:

H(z) = Gz

K: = K + GR. (76)

In the useful interval [Y Ki/2™] is [2_ Ki2™]* Hence the polynomials
in z and 1/z have identical magnitudes, in the useful interval; and,
since also |z| = 1, | H(z) | = |G| in (75). The phase variation, over
the useful interval, is the same for H (2) as for 2" which yields the same
number of ripples in @ — & as an ordinary Tchebycheff filter of like
degree.

The constant @ is arbitrary, except that its sign must be properly
chosen to avoid non-physical natural modes. Increasing G increases the
filter selectivity, but also increases @ — & in the useful interval. G and n
are to be chosen together, to realize an assigned selectivity within an
assigned limit on distortion.

The above analysis may be related to the following filter problem:
Required to design a filter which has flat gain, in the useful interval,
but which has m assigned frequencies of infinite loss, in addition to n
arbitrary natural modes (m = n). The n arbitrary natural modes may
be regarded as compensating for gain variations due to the assigned
frequencies of infinite loss, in the useful interval, while reinforcing their
effects at other frequencies. Compensation of effects of the infinite loss
points is the same as simulation of the effects of natural modes at the
same (assigned) frequencies. The approximation in the useful interval

t This assumes an & with the general characteristies described in Section 8,

which are such that the numerator and denominator of the fraction in (75) will
each have a net phase shift of zero, across the useful interval.
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is to be no better than necessary, so that there may be a maximum
reinforcing of losses at other frequencies. In these terms, (58), and
> K™ in (73), correspond to the assigned natural modes (at the
same locations as the assigned frequencies of infinite loss). Then the
ideal 3 K;2™ is itself a polynomial, of degree m < n, and (74) is exact,
rather than an approximation to (73). Then (76) determines the n
arbitrary modes in such a way that the net filter gain approximates
zero in the Tchebycheff sense, over the useful interval.

A different procedure for obtaining the same result is described in the
author’s paper “Synthesis of Reactance 4-Poles”.® The above analysis
of the filter problem is of interest in relating the more general synthesis
techniques, in terms of Tchebycheff polynomial series, to previous filter
theory.

Similar filters have also been obtained by Matthaei’, on a potential
analogy basis. He includes, however, somewhat more general filter char-
acteristics, for which he obtains only approximately equal ripple errors.
Analysis of the sort described above may be used to clarify Matthaei’s
analysis of the conditions under which he obtains exactly equal-ripples.

Equation (75) may be related to work of Bashkow®. The (arbitrary)
amplitude of the (equal) maxima of | @« — & |, computed from H(z) of
(75), depends only on | @ | . The frequencies at which the maxima occur
correspond to phase H(z) = sw, which is independent of | G'|. Thus,
the locations of the maxima are invariant to the arbitrary amplitude,
within the range where (75) applies. (75) applies only when (74) may be
used in place of (73). Generally, (74) only approximates (73), and the
approximation introduces small variations in the maxima of |a — &/
(when a corresponds to (76)). If the maxima themselves are sufficiently
small, the small variations will be large percentage variations; and the
adjustments to compensate for the variations will yield significant
shifts in the location of the maxima. In other words, the locations of
the maxima of [a — &|, required for equal amplitudes, are largely
invariant to the magnitude of the equal amplitudes, but only to an
approximation which becomes worse as the amplitudes are decreased.

Bashkow states the invariance of the frequencies of maximum
|« — &|, as a more or less empirical conclusion, based on a quite dif-
ferent approach to the same synthesis problem.

Equation (75) may be related also to work of Kuh.' The natural
modes z, are zeros of 1 4+ H(z). In other words, H(z,) = —1. Using the
H(z) of (75) gives the following:

2 on 2 ) 5 K, K,
Ko+ Kyzg + -+ Kp2:" = —Gz, {Kn+ =t ;3:} (77)

a
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It must be remembered, however, that this formulation is permissible
only if the approximations, inherent in (75), are justified when z = z,
(as well as in the useful interval). Taking the logarithm of each side
gives:
log {Ko + - -+ K2}
_ K, (78)
= log (—@) + 2n log z. + log <Ko + --- o
Equation (58) may now be applied, to replace the logarithms by
power series, provided the truncation of the series is again justified, and
provided the convergence of ), Cxuz™ is also proper, at both z = 2z, and
z = 1/z,. This gives

—3 Cuztt = =2 Cu/zs" + 2nlog 2, + log (—G) (79)

(Summations Z are all with respect to k; and there is one equation for
each ¢.) This is a suitable rule, for obtaining an | a — & | with equal
maxima, whenever the approximations are in fact unimportant. It is
not at all clear, however, just when the approximations become sig-
nificant.

Kuh uses the potential analogy approach for the same sort of syn-
thesis problem. He spaces the natural modes along a p-plane contour
defined in fairly complicated potential analogy terms. It can be shown,
however, that mapping his potentials from p plane to z plane leads to
(79).

When the network is to approximate & in the useful interval, but is
not required to supply selectivity at other frequencies, the approxima-
tion (74) is usually untenable. It is generally necessary to retain the
exact formulation (73).

When selectivity is not required, the phase excursion of H(z), in the
useful interval, can usually be increased to that of Z"" (as in (67),
corresponding to Ca = Cax, k < n). As a step toward meeting the first
condition of (45), one may then write (73) as follows:

K“ - n+1 1
IR S T
— 7 2n n
H) = — Koz SR (80)
R — Ko
Qk=—+lﬁ——ﬂ, k=1,,n+1

K n+1

_ Koien
The coefficients K, and Atk
Kn+l

are fixed by @& The only arbitrary
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design constants are the @ . They are to be small enough so that they
do not affect the total phase excursion H(z), when |z{ = 1. Their
specific values are to make | H(z)| approximately constant, when
| z| = 1. In general the (required) series in z° in the numerator makes
it extremely difficult to determine the required values for the Q.. No
reasonably simple general procedure has yet been found.

20. ARBITRARY RATIONAL FRACTIONS

The preceding sections were devoted to the approximation « to &,
using n arbitrary natural modes, but no arbitrary frequencies of in-
finite loss. Similar techniques may be used when there are n” arbitrary
natural modes and »n’ arbitrary frequencies of infinite loss. As the appli-
cations become more involved, however, routine calculations must be
supplemented increasingly with an element of art.

For simultaneous design of natural modes and frequencies of infinite
loss, we must go back from (31) to the o formulation in (21). This we
shall now write:

a =), CuTly

y (81)
> Oy = —log%

The functions N and D are polynomials. The coefficients will be defined
as follows:
N = Ky + K7 --- K’),.2"""

2

, o (82)
D=1+4+Kz - K,z

By comparison with (21), the zeros of N, in terms of z°, are the z,"°.
(Note the minus sign in 81.) The zeros of D are then the z,°. For physical
networks, n” = n'.

Equations (50), describing &, may be retained as they stand. Com-
bining (50) and (81) gives, in place of (52):

@ — a = Z (Cox — C!k)T2k

. - (83)
> (Cu — Co)z™ = —log [%r R(z)R(—z)]
The function R(z)R(—z) is exactly the same as before. The reciprocal
of the function will still be 3~ K2, with the K; related to C by (58),
(59), (61). The new rational fraction N/D will appear where previously
we had the polynomial K, + --- K,z*".



648 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1952

Accordingly, the rule for Cy = Cy, k = m, now becomes, in place of
(56),

N s re* (84)
D

This condition may be used to determine the coefficients Ky, Ky of
N and D (in combination with conditions of other sorts, when
m<n” +n'). When the coefficients have been calculated, the (z-plane)
natural modes z, may be determined from the loots of N exactly as
the z, of previous sections. The infinite loss points 2, may be calculated
from the roots of D, in exactly the same way except that Re z, need
not be negative. Signs of the z, must be such that complex and zmagmary

. are in conjugate pairs. Note that there can be conjugate imaginary z,
unly if D has a corresponding double negative real zero.

When m = n” + n’, the following method may be used to calculate
the Ky and Ky determined by (84). The relation is first multiplied by
D, to get:

(nrr+nr)

N = DY K" (85)

Then algebraic manipulation is used to evaluate the power series equiv-
alent of the right hand side, through terms of order »” 4+ n’, using the
known values of the K, , but general values of the K of D. Each coef-
ficient is a linear function of the unknowns, K .

Now the polynomial N, in (85), has no terms of order k& > n”. There-
fore (85) requires zero coeflicients in the etpa.nsion of the right hand
side, from order n” + 1 to order n” + n'. Equatmg these coefficients
to zero gives n' linear equations in the »’ unknown Ky . Solving for the
K determines polynomial D. The values calculated for the K may
then be used in lower order coefficients of the expansion of the right
hand side of (85), which are exactly the coefficients Ky of N.

When n” — n' = 0 or 1, a continued fraction method is likely to be
preferable. Various established techniquest may be used to convert the
series ¥ K;2* into a continued fraction of the form:

YK = an+ !
S+
2 1 (86)

22 ag - -+

t See, for example, Fry’s applications of continued fractions to network de-
sign.*
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If the continued fraction is truncated after the term of order m, and is
rearranged as a rational fraction N/D, it will obey equation (84). The
degrees of N and D will be such that n” + »’ = m,and 2" — n’ = 0
or 1. The continued fraction may be associated with the hypothetical
ladder network shown in Fig. 10, with variable impedance shunt branches
proportional to z*. The impedance of the (truncated) ladder is N/D.

21. ACCURACY

The accuracy of match, « — & may again be evaluated from the
final network singularities; or by (41), with H(z) as in (30), before the
singularities have been determined from roots of N and D. A rougher
estimate may again be obtained from the error in the first unmatched
term in the Tchebycheff polynomial series. As before, (equation (72)),
this is equal to the leading term in H(z), with 2" replaced by — Tapmys .

The rational fraction in (30) is the same as our present N/D. In terms
of N/D, (30) becomes:

N R@R(-2) = 1+ HE) 87

If (86), or Fig. (10), is used to determine N and D, the leading term in
H(z) turns out to be:

(_ )m+lz'.’m+2

H(z) = (ﬂlﬂ-z e am)2am+1go o (88)
The corresponding mismatch in Tchebycheff polynomial terms is:
(=)
Compa — sz-m (89)

B (G1ﬂz T am)zaMIKH'D

22, ZEROS AND POLES

When frequencies of infinite loss are to be chosen, as well as natural
modes, the situation in regard to |z, | < 1 is somewhat less favorable.

8o F] as

—AAA ANA A ---

22 22 22
ay

Fig. 10—A ladder network representation of the continued fraction (86).
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It is still true that 1 4+ H(z) will have the same number of zeros as
poles in the region | z| < 1, so long as @ — & is reasonably small in the
interval |z| = 1. In equation (87), however, the poles of 1 + H(2)
include the zeros z, of D) (the arbitrary 111f1111te loss points), as well as
the poles of RB(z)R(—z). When the coefficients of D are to be chosen as
in the previous section, the contour rule merely says that any zo and 2,
in the region | z| < 1 will occur in like numbers.

I‘ortunately, the frequent oceurrence of |z, | < 1 is softened by the
following curious circumstance. Almost alwa,ys any |z,,| and |2z, | <1
are so nearly identical that factors (z — z,) and (z — 2 ) may be can-
celled out without any important effect on H(z), or & — &. Cancellations
of this sort were encountered a number of times before an explanation
was discovered. Actually the explanation is quite simple.

At any zero of 1 + H(z), H(z) = —1. On the other hand, H(z) is
small when | z| = 1. Generally, it is much smaller in most of the inter-
val | z| < 1. For instance, when Cy = Co t;htough k = m, H(2) is pro-

2m+2

portional to 2™ in the neighborhood of z = 0. As a result, | H(z) |

rarely becomes as large as 1, in the region |z { < 1, except in the very
close p1o~um1ty of a pole. In other words, in the region |z | < 1, any
zero z, is usually very close to a pole z,—usually so close that the
corresponding factors z — z, may be cancleled out without significant
effect on & — &.

The occurrence of non-physical natural modes (Rez, = 0) is the same
as before; but adjustments to correct for these, in an efficient manner,
are much more complicated. In addition, there may be non-physical
infinite loss points, zr . To correct for non-physical singularities, the
simplest procedure would be to change one or both of the highest order
coefficients in N and D of (82), that is K”.. and K. This would be
inefficient, however, for it would spoil the match of C... to Crivyor Co
to €, . The unmodified design, defined by (84), can match terms through
order n” + n’, and it is desirable to change only the highest order terms
in adjusting the design.

More efficient adjustments are in fact feasible. They sometimes re-
quire an increased element of art; but the art may be based on specific
principles. Some particularly useful principles are described in the next
section. These apply to various other corrections besides correction of
non-physical zeros and poles. Examples are reduction in phase to make
two-terminal realization possible, and inerease in shunt capacity in
two-terminal designs. In general, they offer a means of making
m < n' + n” in (84), and using the remaining degrees of freedom to
meet, other conditions.
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23. mobiFicaTioNn oF N/D

Suppose Ni/Dy and N./D. are two rational fractions, representing
special choices of N and D in (82), such that:

N, ™° ©0)
2 > 2k
p, = =K
Then suppose F is a function of z° such that
re 0 (91)

The following combination represents an approximation to ZKkz”‘,
of the order indicated:t

Nl + Fsz_e > 2k
D—l ¥ FD;: = ZK&Z (92)

m = my, or ms + w, whichever is the smaller.

The left hand side of (92) may be used as N/D in (84), to match
O to Cy through & = m. Adjustment of the function F may be used to
satisfy other requirements, in addition to aceuracy specifications.

Frequently, N,/D;, may be the rational fraction corresponding to
truncation of the continued fraction, (86), after the term in a, 4. .
Then N./D, is likely to be a truncation of order m < n” + #n'. The
corresponding F is likely to be proportional to z*, or at most a simple
polynomial in 2°. When F is a constant, and m = n” 4+ n’ — 1, the
use of these particular rational functions in (92), to determine N/D,
corresponds to matching C'y to Cu through & = n” 4+ 2/ — 1, but
leaving (s, 4nny subject to adjustment. Specificially, Csgnrrynry depends
on the choice of F, which may hinge upon such special conditions as
the elimination of non-physical singularities,

Problems which call for more complicated combinations are by no
means uncommon. Skill may be needed in the choice of specific com-
binations which will solve specific problems. Computations may be

t The relationship is easily established by noting that:

Aj -3 K'kzﬂ" k — K
. D D:
- T K= = +F= (93)

1+Pl—)-} — +F
D

.’\"| + FA”-_»
D, + FD,
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systematized, to a considerable extent, by using the error formula (88),
and other relations between the coefficients of the continued fraction,
and the rational fraction truncations of various orders.{

24. APPROXIMATION TO BOTH GAIN AND PHASE

The applications deseribed in previous sections relate to approxima-
tions to prescribed gain, & without regard to the associated phase.
Quite similar methods apply, however, to the simultaneous approxima-
tion of gain and phase.

The starting point is equation (20). Replacing products of factors by
polynomials gives, in place of (81):

a+ B =2, CuTs, k even and odd
(94)
> 30" = —log%

The polynomials are now as follows, in place of (82):

. N = KIO’ + K;’Z s K',:uz"
, , (95)
D=1+Kiz-- Kpz"

e

(If only natural modes are to be used, the suitable replacement for the
first equation or (55) is here obtained merely by using D = 1, and K,
2, %,, in place of their squares.)

A comparable expression is needed for the assigned gain and phase
& + iB. In place of (50), we now repeat (22), and redefine the coeffi-
cients K in accordance with

&+ i =2, CiTr, kevenand odd
> 1Cie* = log R(z) = —log X K"

The definition of K; has been changed in such a way that it is now
related to Cr/2 exactly as it was previously (in 58) related to Cu .
Equations (59), (61) may be applied to calculating the K by merely
substituting therein a Cx/2 for every Coxc .

(96)

l

t For example, a simple recursion formula may be used to assemble the poly-
nomials N and D which correspond to truncation of the continued fraction (86)

Py, , where P

—1
is either N or D and P, corresponds to truncation of the continued fraction after
the term in a, . The formula holds for n = 2.

2
&

at a number of different points. Specifically, P, = Pn +
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Equations (84), (85), (86) may now be modified, for the new N, D
and K, , by merely using z in place of z° wherever it occurs (including
2* in place of z*).t The modifications of equations (84), (85), and the
truncation of (86) after .. now lead to C, = Ci, k < m, instead of the
previous Ca; = Cu . This means that m must be twice as great to match
coefficients out to the same actual orders. This is to be expected since
now one half of our design parameters are used to approximate phase
B, leaving only half for approximating gain & Equation (89) must be
changed not only in regard to the orders of Cy, C,, but also in regard
to the factors § in (94), (96). This gives

Crpt — Cnp1 (=)" )

2 B (mas -+ am)? ﬂm+1Ko

(97)

The most important change is in regard to the zeros and poles z, .
The polynomials N and D now determine z, and z, directly, instead of
their squares. There is no opportunity to adjust the sign of Re z, by
choosing the correct sign of 4/z72. When non-physical singularities ap-
pear, adjustments of high order coefficients may be tried. Section 23
applies provided 2* is replaced by z. If the specification of the problem
permits added delay, linear phase may be added to @ + 48 to increase
the probability of physical singularities]. (Addition of linear phase
changes only Cy, in > C.T:. A negative change in C, increases the
delay.)

25. APPROXIMATION TO AN ASSIGNED PHASE (8§

Sometimes it is required to approximate an assigned phase, without
regard to gain. More commonly, it is required to approximate an as-
signed phase, using an “all-pass” network, which has a theoretically
zero gain. These two problems, however, are very nearly identical, due
to circumstances explained at the end of this section.

For approximation to phase only, we go back to the 8 equation in
(21). As before, products of factors (z — z,) are replaced by polynomial

m me

t and = in place of =.

I The well known relation between the gain and phase of any physical network
(See for instance Bode™) may give some information regarding the reasonable-
ness of 3. It must be remembered, however, that departures of network gain a,
from the assigned gain &, outside the useful interval, may affeet the permissible
phase 8, within the interval.

§ Up to the present, applications to phase problems have not been developed
to the same extent as for gain. Techniques have been explored, however, to deter-
mine how such applications may in fact be earried out.
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equivalents. Then, in place of (81) or (94), we have
B =2, CT:

I

k odd (98)
Z Ckzl = —'log I_)

Using n to represent n” + n’, the total number of network singularities,
we may write N and D as follows, in place of (82) or (95):

N=14+Kz+ Kz + KiZ* -+ + K,2"
D=1-Kgz+ K2’ — Kz’ -+ (=)"K..2"
Notice th“at N and D are related by
D(z) = N(—g), (100)

which is required by the form of the 8 equation in (21).

To arrive at a design procedure most easily (but not the simplest
design procedure), one may express the assigned gain B in the following
way (comparable to (58) and (96)):

B =Y CT:, kodd

S0t = —log 3 Ky

Coefficients K may again be calculated by a modification of (61). This
time Ca is replaced by Ck, wherever it appears in (61), and then all
even ordered C; are made zero (since only odd terms appears in 3 Cid*
of (101)). Note that even ordered K, are not usually zero, even though
even ordered C; are.

The degrees of N and D, in (99), are such that we can make Cy = Cr
through terms of order & = 2n. This requires merely:

2n
% =Y K& (102)

(99)

(101)

As stated, the condition applies to Ci of both even and odd orders.
Since even ordered C; are zero, it means that at least n even ordered
C: will be zero, in addition to the match between n odd orders. (102)
is sufficient to determine an N and a D without reference to (100). If
the (equal) degrees n of (99) are assumed, however, the N and D deter-
mined by (102) will be found to obey (100) automatically (provided
Z K,z* corresponds to an odd series Z C.z*, as here assumed).}

A simpler method for computing the same N and D takes advantage

t This was discovered by Mrs. M. D. Stoughton.
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of the known relation (100), connecting N and D. Let E and O be re-
spectively the sums of even and odd terms in N. Then N is ¥ + O and
(100) requires D to be &£ — O. The ratio O/FK may be related to Z O
of (98) as follows:

0 .
7= —tanh 1 Z (o (103)

Now let two convergent series, respectively even and odd, be such
that:

% = —tanh} Y Ci* (104)

Let coefficients Ky be defined by:
E+ 0= K7 (105)
Then E and O are respectively the sums of the even and odd terms.

The complete series may now be related to the (odd) series Z C,z" as
follows:

> 3Gz = —log 2 R (106)

This fixes the K, of B + O in terms of the Cj .
To make €. = €, through m odd orders, (102) is now replaced by
0 ™0

mo
The symbol = designates equality of power series through m odd orders.
(All even terms are now zero on both sides.) The right hand side may be

expressed as a continued fraction of the following form, comparable to
(86):

0 1
E g 1
— + —_
\ 1 108
. (108)
4 s
z

Truncation after only the m"™ term gives the O/E of (107).

The coefficients of O and E may be caleulated by an appropriate
modification of (61). (Calculate like K, of (101), after dividing all C,
by 2). After O and E have been evaluated, by truncating the continued
fraction (108), their sum gives polynomial N of (99).
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The natural modes and frequencies of infinite loss are determined
from the zeros of the polynormal N. By (21), each zero is either a (z—
plane) natural mode, 2z, , or the negative of an infinite loss point —z
If gain variations are mconsequentlal there i is likely to be some latitude
in designating each zero as a z, , or as a —z,.

A zero of N with a positive real part would make a non-physical natural
mode, and hence it must be a —2z, , corresponding to an infinite ]DSb
point. A zero of N with a negative real part can be a nntulal mode 2, ,
but this may not be required. It may be either a z ora —z, , provided
conjugate zer 0s are assigned in the same way, and pr ovided the total
number of —z. does not exceed the total number of z, . The latter eon-
dition requires:

At least half the zeros of N
must have negative real parts.

The continued fraction (108) shows how many zeros will have nega-
tive real parts, before any zeros have been calculated. The following
theorem makes this easy:

The number of zeros of N which have negative real parts
is equal to the number of positive coefficients in the trun-
cation of the continued fraction (108) which determined N.

When gain is not to be disregarded, but is to be exa,ctly zero, the
synthesis technique needs few changes The phase of an “all-pass’ net-
work is related to the natural modes z, as follows:

‘15 = ZCka, kOdd

Zg;ik=_]0g1_1_(l_:i’) (109)
H(1+z%

This may be regarded as a special case of (20) fm a = 0 (which makes
() = O for k even, and also happens to require 2, = —z, ). In functional
form however, it is more like i8 of (21). It differs in only two regards.
In the power series in z, each (' is divided by two. In the rational frac-
tion in z, all the zeros correspond to natural modes, and the poles cor-
respond to frequencies of infinite loss; but the poles are also exactly the
negatives of the zeros, as in the 78 equations of (21).

Accordingly, the phase synthesis technique which ignores gain varia-
tions may be applied to the zero gain form of the problem by cutting
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every Ci in two. All zeros of N = E + O must be construed as natural
modes 2z . Finally, the network must have as many infinite loss points
as natural modes, such that z, = —z, . (Integer n is now the number
of natural modes, rather than the total number of singularities.)

For physical networks, all the first n terms of the continued fraction
(108) must now be positive. To meet this condition it may be necessary
to add linear phase to the assigned phase (by adding a negative cor-
rection to C,). It appears that sufficient linear phase will always lead
to a physical design, provided the number of modes n is increased to
retain a reasonable accuracy.

26. LINEAR PHASE

When the assigned phase B is linear, the calculations are relatively
simple.

If a delay D is to be approximated over a frequency interval extending
tow = w,,

i = —Duw.T) (110)

If delay D is to be realized without regard to gain variations, the ap-
propriate O/F is

]

= = tanh chz (111)

=

b

A known continued fraction expansion of tanh X may be applied to
(111), to obtain the coefficients of (108) without bothering with (105).1
The result may be arranged as follows:

Doz T 32 1 (112)
Doz 5-2
Dwez

Trunecation of the continued fraction gives O/FE, and then O 4+ E. The

Tl) , and therefore root extraction
techniques are required only for one D, for each n. The zeros are tabu-

lated for sample n’s, in Table IT.

zeros z, turn out to be proportional to

t For the expansion of tanh X, reference may be made to a text on continued
fractions by Wall"!, page 349, equation 91.6.
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TaBLE II—Z-Plane Natural Modes for Linear Phase

n chz,
1 —2
2 -3 x1i V3
3 —4.64438
—3.67782 + i 3.50876
4 —5.79242 + 7 1.73446
—4.20758 + 7 5.31484
5 —7.29348
—6.70392 + ¢ 3.48532 .
—4.64934 X 7 7.14204
6 —8.49668 + ¢ 1.73510
—7.47142 =+ 1 5.25256
—5.03190 + 7 8.98532

The error in the first mismatched Tchebycheff coefficient is a rough
measure of accuracy. It may be shown to be

(=)"(Dwe)™™

Copngr — Conpr = T35 @ - DF@n + D) (113)

This measure of accuracy is plotted in Fig. 11, for various numbers of
natural modes n. A sample detailed curve of 8 — B is shown in Fig. 12,
with dotted lines corresponding to the estimated error (113).

If delay D is such that the error is reasonable, all the zeros may be
natural modes. If these are combined with a like number of infinite
loss points, such that zv = —z , an all-pass network will be obtained,
instead of one which approximates D without regard to gain. The all
pass network will produce twice the delay, and twice the nonlinearity
of phase. In other words, for an all pass network, both codrdinates in
Fig. 11 must be doubled.

27. SIMPLIFICATION OF SINGULARITY ARRAYS

In complex communication systems, a single equalizer may be re-
quired to correct for a number of effects. In a coaxial cable system, for
instance, a single network in the standard repeater may be required to
compensate for the following: Cable attenuation, characteristics of input
and output networks, effects of interstages (significant because the feed-
back is limited), and distortion due to variable controls at mean settings.
Tchebycheff polynomial methods may not be efficient when applied
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directly to all these effects. They may still be useful, however, when
applied in the following way:

Separate arrays of singularities are determined, which match the
separate effects to required accuracy, using any convenient methods.
Minimum network complexity is not required at this point. Combining
all the singularities in a single array gives an initial design which is
sufficiently accurate, but may use many more singularities than are
actually necessary. Tchebycheff polynomial methods are now used to
obtain a simpler set of singularities, which approximates the initial set
to sufficient accuracy. This has been designated “boiling down” the
original set.

In a problem of this sort the assigned characteristic has the network
form, as well as the network characteristic which is to approximate it.
(The example discussed in Sections 10 to 14 is also a problem of this
sort.) As a result, equations (20) and (21) apply to & and B, as well as
to @ and 8. This makes it possible to replace Z Kz and Z K7, of
(55), (56), (96) etc., by a finite rational fraction N/D. If both & and 8
are to be approximated, the following is derived from (20).

(- 3)
()

The singularities 2:', z, correspond, of course, to the network singu-
larities which are to be boiled down. If only &, or only B, is to be ap-
proximated, suitable modifications are readily derived from (21).
The boiling down is accomplished by requiring
N

D D

where N/D is of lower total degree than N/D. If m = n” + =/, and
n” — n' = 0 or 1, the continued fraction method can again be used.
This requires expansion of N/D in continued fraction form, instead of
E K};Zk.

An example of a boiled down set of singularities is illustrated in Fig. 13.

_ _ N
> 10" = log K. = —log D (114)

(115)

98. GENERALIZATION OF THE USEFUL INTERVAL

All the previous analysis applies to a useful frequency interval —w, <
w < -uw,. Its important characteristics are as follows: It is a single
continuous interval, with = 0 at its center. Useful intervals with other
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other characteristics may be obtained, within limits, by changing the
definitions of z and z, , in terms of p and p, (equations (5) and (8)),

In all cases, the definition of Tchebycheff polynomial 7', remains
the same in terms of z. The interval of orthogonality remains |z | = 1;
and the relation between p and z is always such that the useful fre-
quency interval is the p-plane mapping of |z | = 1. The relation must
also be such that rational functions of p may be expressed as products
of rational funections, in z and 1/z respectively, corresponding to (13),
(14). At the same time, the physical restrictions on network singulari-
ties p, must translate into manageable restrictions on the z-plane singu-
larities 2z, . It is restrictions such as these that limit the manageable
useful intervals.

It is easy to apply the ‘“low-pass” techniques to “high-pass” in-
tervals, extending from . , through o, to —w. . The appropriate trans-
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formation, replacing (5), is:

2w,
p= 1 (116)
z — =
z
With this transformation, the whole of the previous z-plane analysis
may be applied at once to high-pass useful intervals, except where
linear phase is involved.

The situation is more complicated in regard to “band-pass’ intervals.
If the useful interval includes the frequencies between wq and we , the
complete useful interval (p-plane mapping of |z | = 1) must include
also the “image” frequencies, between —ws and —we . Otherwise,
conjugate complex z-plane singularities z, will not lead to conjugate
network singularities p, . When there are two disjoint parts of the use-
ful interval, the appropriate relation between p and z is relatively com-
plicated. Up to the present, no corresponding technique has been dis-
covered for approximating assigned phases over band-pass intervals,
in Tchebycheff polynomial terms. Gain approximations can be handled,
however, and for a quite simple reason. Gain functions are even func-
tions, and behave in the p° plane much as gain-and-phase functions
behave in the p plane. In the p° plane, —w and +w are identical, and a
band-pass useful interval is a single segment of the w” axis.

For gain approximations over a band-pass interval, (5) may be re-
placed by:

12
a+b(z——)
1+c( —1)

-4

The three coefficients, a, b, ¢ are subject to two conditions, stemming
from the requirement that the interval | z| = 1 must map onto the
interval o’y < «® < wi . This leaves one arbitrary degree of freedom.
Its choice may be related to ordinary least squares approximations in
the following way:

If @ = 2 CuTa , the first n terms approximate « in the least squares
sense. In other words, the integrated square of the error is a minimum,
relative to all possible choices of the first n coefficients Cy , provided
the integration extends over the useful frequency interval, and in-
cludes an appropriate “weight function”. When (117) relates z to p,
the arbitrary degree of freedom in the choice of the constants a, b, ¢
permits selection of any one of a family of weight functions. Conventional



NETWORK SYNTHESIS 663

least squares analysis may be applied to determine these funec-
tions.t

In applying least squares analysis, it must be borne in mind that the
network gain « does not approximate the assigned gain @ in the simple
least squares sense. When (', = Cy for k = n, @ — a depends upon
two least squares approximations. The first n terms of ), Ca. T2, represent
a least squares approximation to «, and are made identical with the
first n terms of »_ Cax T , which represent a least squares approximation
to a.

When (117) relates p to z, z-plane singularities z, may be defined by:

2
a—|—b(z,—1)
p2= 2y
o 2
1+c(z,—~i)
Zg

|z. | > 1,

(118)

Re z, to have same sign as Re p,

An additional singularity, z , is also needed, corresponding to the finite
poles of (117). It may be defined as follows:

1\
1—|-c(zu— —) =0
o (119)
IZ()‘ > 1

When p; — p°, in « of (2), is expressed in terms of z and z,, (117)
introduces denominator factors (1 — 2°/z) and (1 — 1/z32°). As a re-
sult, @ of (21) must be changed to the following, for band-pass intervals:

E Cor Tax

n(-3)

log K3 —— =/ (1 - 2) (120)
(1 -)

a4

E C’gkzﬂk

Il

z,”

When definite values have been chosen for a, b, ¢ of (117) (in order
that the Cr may be caleulated), (1 — z°/z) in (120) is not subject to
arbitrary adjustment. This situation can be handled by defining N/D
as the rational fraction in the « equations of (21), as before, but re-

t For general discussions of orthogonal functions and least squares approxi-
mations, see Courant and Hilberts, and also a short text by Jackson.?
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placing (84) by
me 2 n'f—ant
¥ (1 - z—) Y R (121)

0
Fig. 14 illustrates an application of the technique to the simulation of
a coaxial cable attenuation (which is nearly proportional to 4/w).

29. RECAPITULATION

Tchebycheff polynomial series may be applied advantageously to a
very wide range of network synthesis applications. The scope of their
usefulness may depend upon the skill of the designer, as with any
synthesis tools, but the underlying principles are reasonably simple.
The most important principles are perhaps the following:

A Tchebycheff polynomial series in frequency may be related to a
power series in a new variable z. When the Tchebycheff polynomial
series corresponds to a finite network gain or phase, the power series
corresponds to an analytic function of 2, quite similar in form to the
network function of p, with singularities at z-plane mappings of the
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frequency = 46 db; Network = four constant-resistance sections.
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network singularities. This makes it possible to apply power series ap-
proximation methods, in terms of 2, to obtain approximations based on
Tchebycheff polynomial series, in terms of frequency.

“Maximally flat”’ approximations in terms of z may be used to match
the first m terms in the Tchebycheff polynomial series representing net-
work gain or phase to the corresponding terms in the series representing
assigned gain or phase. In this way, a Tchebycheff polynomial type of
least squares approximation to the network function is made identical
to the corresponding least squares approximation to the ideal function.
The overall error, network function minus ideal function, is then the
difference between the two least squares errors.

The z-plane analysis may also be manipulated, in a quite different
way, to approach an equal ripple type of approximation (which usually
represents approximation in the Tchebycheff sense). The complications
are such that applications have been limited to problems of certain
quite special types. On the other hand, analysis of this sort has been
found useful in clarifying various other ways of seeking equal ripple
approximations.
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