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This paper discusses the application of switching (Boolean) algebra to the
development of an all-relay dial pulse counting and translating circuit em-
ploying the minimum number of relays. An ailtempt s made to outline what
appears to be the mast promising method of oblaining beneficial resulls from
the use of the algebra in the design of practical swilching circuils.

INTRODUCTION

The demands made upon telephone switching systems in regard to im-
provements in handling capacity, speed, flexibility and economy are con-
tinually increasing. In order to meet design objectives enabling the
fulfillment of these demands, switching circuits have of necessity become
more and more complex and intricate. As certain types of relay switch-
ing circuits increase in complexity, the problem of control and output
contact network design becomes more and more laborious and time con-
suming. This is especially true in those circuits in which an attempt has
been made to achieve the ultimate in efficiency and economy in that the
number of relays used therein approaches the absolute minimum neces-
sary to provide the required number of distinct output combinations.
In this type of near-minimum combinational or sequential relay circuit
there are numerous parallel control and output contact paths which
thread through the same relays repeatedly, thereby causing the indi-
vidual relay contact loads to become relatively large. Thus the designer’s
problem becomes that of first developing a workable control and output
contact network and then manipulating and minimizing contacts within
that network so that the maximum number of contacts used on any one
relay is within that permissible on any commercially available relay
having the necessary speed characteristies.

Even in those combinational and sequential relay circuits which are
not near-minimum and therefore probably have fairly light individual
relay contact loads, there are, of course, advantages to be gained by
using the least number of contacts possible. Although the initial cost per
additional contact (assuming that a few added contacts per relay will
not impair the relay speed or space characteristics to an extent that the
circuit requirements are not met) is almost negligible, there are other
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economic savings possible. Since each contact must be connected to the
remainder of the contact network, minimizing contacts and consequently
soldered connections means a saving in wiring time and labor. Further-
more, if the designer will manipulate the contacts so that the relays can
be chosen from a comparatively few standardized codes, which are in
large demand, it is possible to avoid the expensive stockpiling of numer-
ous special designs having only a limited demand. In addition, using
the least number of contacts minimizes the focal points of most relay cir-
cuit failures which are the contacts themselves (i.e., dirty or worn con-
tacts).

It might also be noted at this point that electronic combinational or
sequential circuits usually require electronic gating networks to perform
functions which are completely analogous to those of relay contact net-
works. Hence, the same problem of minimization exists. However, in
electronic circuits, gate minimization is even more advantageous since
the cost per additional electronic gate is much higher than the cost per
additional relay contact.

It is rather obvious that the multiplicity of paths in most combina-
tional and sequential circuits can cause their design to become an ex-
tremely difficult and time consuming problem if the contact paths are
developed with the aforementioned considerations in mind.

The circuit designer’s usual approach to the solution of such contact
minimization and manipulation problems is that of inspection. The
method of inspection presupposes a background of considerable experi-
ence in that the designer must recognize certain contact network arrange-
ments that may allow further rearrangements and thereby he must
mentally develop his own rules. In order to check on any of his manipu-
lations he must repeatedly redraw the network during this inspection
design process. It is evident that this is often a long and tedious method
and, depending on the skill of the designer, may or may not result in an
optimum or even adequate solution.

Suitable contact network arrangements often appear only after con-
sideration of several alternative schemes and the rearrangements of the
network interconnections of these schemes. Realization of this makes it
quite evident that any means of obtaining and comparing these various
schemes quickly and with a mathematical accuracy which does not
require continuous checking of network paths permits a more rapid and
complete exploration of the particular problem. Switching algebra, first
codified by C. E. Shannon!, is the systematic application of G. Boole’s?

! C. E. Shannon, A Symbolic Analysis of Relay and Switching Circuits, Trans.
AIEL, 57, 1038.

2 G. Boole, The Mathematical Analysis of Logic (Cambridge 1847) and An In-
vestigation of the Laws of Thought (London 1854).
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“Algebra of Logic” to switching circuits and is just such a means. It is
a tool which ean be used to investigate the complex combinational and
sequential networks to determine sutisfactory contact arrangements or
reject unsatisfactory ones with a minimum of time and effort. It should
be emphasized, however, that as with any tool, satisfactory results de-
pend upon the judgment, ingenuity and logical reasoning of the user.
Furthermore, as will be evident from the following development, switch-
ing (Boolean) algebra in its present state is not to be considered entirely
selfsufficient but, for the most beneficial results, should be applied, when
warranted, in conjunction with inspection techniques so that the latter
may fill in any limitations in the algebra techniques which have not been
completely systematized as yet due to the newness of this field.

The problem of solving the contact requirements of a minimum relay
dial pulse counting and translating circuit recently developed as a com-
ponent of the originating register of the No. 5 Crossbar System will be
used as a means of illustrating the practical use now being made of
switching algebra and of indicating exactly where the application of the
algebra enters the design problem.

BASIC DIAL PULSE COUNTER REQUIREMENTS

The primary function of the originating register is to receive pulse
signals representing digits from a telephone dial or similar calling device
and to store a record of the digits in a form suitable for use by an external
cireuit. The dial pulse counting and translating circuit, an integral part
of the originating register, is oriented with respect to other parts of the
register by the block diagram of Fig. 1. The L relay is the pulse detecting
relay. When the subscriber’s switchhook contact is closed due to the
lifting of the phone, the originating register is connected to the line and
the L relay is operated. Thereafter it follows the breaks and makes of
the subseriber’s dial and feeds these repeated dial pulses into the counter.
After the pulses are counted they are translated to a new code. In switch-
ing systems it is advantageous to translate from the basic dial ten pulse
decimal code to a “two out of five” self-checking code. In this latter code
any single error within the circuit will result in either one or three relays
operated in the associated storage circuit rather than two and thus an
error can readily be detected. The output of the translator is fed via a
steering cireuit to the register or storage circuit. The slow release RA
relay is the pulse train detecting relay which holds between the indi-
vidual pulses of a digit and releases only at the end of the pulse train.
When it releases it activates the translating circuit and thereby transfers
the translated code information to the storage circuit. The RAI relay
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in operating terminates the output from the translator and simultane-
ously releases the relays in the counter to prepare it for the next digit.

Specific requirements imposed by the originating register circuit neces-
sitate the counting of one to eleven pulses; the use of a driving source
consisting of a single break-make (or transfer) contact with ground on
the armature spring; and outputs as follows:

1. Count of 1 through 10: ground on two of the 0, 1, 2, 4, 7 output
leads in the combination corresponding to the count.

2. Count of 10: ground on the Z0 lead.

3. Count of 11: ground on the 0.lead only (this is a trouble-detecting
feature).

In addition, the design of the steering and register-storage circuit
requires that no output leads be connected together until the second
pulse is received. Furthermore, each relay is limited to a combination of
simple make and break contacts not exceeding a total of twelve. This uti-
lizes the maximum number of springs obtainable on presently available
relays and also avoids the larger armature gaps imposed by transfers
which would result in a reduction in the relay speed of operation. Speed
requirements also do not permit the use of shunt release in the circuit
operation.
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Fig. 1-—The schematie of a portion of a dial pulse register circuit for counting
decimal code pulses and translating them to “‘two out of five” signals. (In the
symbolism used in the illustrations a cross indicates a “make’ contact and a
vertical bar indicates a “break’ contact.)




284 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952

THEORY OF A MINIMUM RELAY COUNTER

The counting circuit under consideration does not contemplate the
use of any circuit elements other than relays that react to the beginning
or end of a pulse. Therefore it must establish a distinet combination of
relays operated or released during and between successive pulses. The
minimum number of ordinary ‘“‘two-position” relays, R, required to
count P pulses can be obtained from the expressions (1) 2P < 2% if
the counter is to lock up during, or recycle after, the last pulse or (2)
2P < 2% — 1 if the counter is to lock up after the last pulse.

The usual counting eircuit used for determining the number of pulses
in a dial train is required to count ten pulses, however there are certain
advantages in regard to trouble indications if the counter counts eleven
pulses. In either case the minimum number of relays necessary, accord-
ing to the preceding formulae, is five. It should be noted that the ease
with which this minimum number can be attained depends upon whether
the input is derived from a single, double or transfer contact source.

DETERMINATION OF OPERATING SEQUENCE

Having determined that the minimum number of relays necessary is
five, the first step in design is to develop an operating sequence pattern
from the resulting 2° or 32 possible relay combinations. These combina-
tions may be utilized in any order deemed desirable to obtain the 23 dis-
tinet combinations needed to differentiate between eleven pulses (22 for
the eleven makes and breaks plus an all-relays-normal combination). In
this phase of the design switching algebra is not involved. The optimum
sequence to meet a particular set of requirements can only be determined
by repeated trials guided by an intimate knowledge of objectives.

Initial studies, made by Joseph Michal, of various possible sequence
patterns for a five relay circuit, including those having a three relay
“ring” followed by two auxiliary relays and those having a two relay
pulse divider followed by three auxiliary relays, resulted in the conclu-
tion that the latter approach was the most fruitful. The sequence pat-
tern adopted is shown in detail in Table I. The pattern is extended
through 12 pulses, and it can be seen that the nature of the sequence is
such that this employs all 32 combinations of the 5 relays. Several of
these are transient and occur during part of a pulse or inter-pulse inter-
val. Examination of the tail end of the sequence indicates that it will be
simpler to design on the basis of a full 12 pulses than attempt to block
at the end of the 11 pulses specified by the requirements. If trouble con-
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TasLE I
SEQUENCE oF OPERATION

Pulsing Counting Relays
Relay ‘_ - ) Relay Twao out of
| l Combination| Five Code
L | 4 \ B c D E
Seizure 0 1 ‘ 1 1 1 1 1
1st pulse 1 0 1 1 1 1 2
0 0o 0|1 1/|1 3 0,1
2nd pulse 1 1 0 1 1 1 4
1 1|0 0 1 1 5
0 11 o |1 |1 6 0,2
3rd pulse 1 0 1 0 1 1 7
0 0o o |11 8
0 0| 0 0 0 1 9 1,2
4th pulse 1 1 0 0 0 1 10
0 1 1 0 0 1 11 0,4
5th pulse 1 0 1 0 0 1 12
1 0 1 1 0 1 13
0 0 0 1 0 1 14 1,4
6th pulse 1 1 0 1 0 1 15
0 1 1 1 0 1 16
0 1 1 1 0 0 17 2,4
7th pulse 1 0 1 1 0 0 18
0 00 1 010 19 0,7
8th pulse 1 1 0 1 0 0 20
1 1 0 0 0 0 21
0 1 1 0 0 0 22 1,7
9th pulse 1 0 1 0 0 0 23
0 0 0 0 0 0 24
0 0 0 0 1 0 25 2,7
10th pulse 1 1 0 0 1 0 26
0 1 10|10 27 4, 7-Z0
11th pulse 1 0 ‘ 1 | 0 1 0 28
1 0 1 1 1 0 29
0 o0 1|10 30 0
12th pulse 1 [ 1 0 1 1 0 31
‘ 0 ‘ L1 ‘ 1 1 0 32 | 0

Total of 25 = 32 combinations used. )
Note: 0 is used to indicate that the relay listed at the head of the column is
operated, and 1 ig used to indicate that the relay is released.

ditions introduce pulses beyond 12, the circuit will without difficulty
recycle through combinations corresponding to pulses 11 and 12.
Table I also indicates the leads which must be grounded in order to
provide the translations to the “two out of five” and “single lead’” codes.
The characteristics of this circuit may be summarized as follows: It
contains only five relays which is the absolute minimum necessary. It
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uses all 32 of its available combinations. Its control and translating job
is complex enough to indicate the need for a considerable number of con-
tacts and hence the need for extensive contact manipulation to minimize
and distribute these contacts.

It is apparent that a great deal of time would be necessary to accom-
plish this manipulation by inspection methods, thereby indicating the
need for an additional tool such as switching algebra to assist the de-
signers in this task.

ALGEBRAIC METHODS APPLIED TO CONTROL CIRCUIT

The sequence of operations of Table I is used as the starting point
in the application of the algebra. The exact calculations necessary to
develop the control and translating circuit by this means are shown in
detail later. However, the individual steps in the solution might well be
outlined here. First, the design of the control and translating networks
will be regarded as separate problems. In theory these can be integrated
together, but the resultant network is likely to be so complex that under-
standing and maintenance of the circuit would suffer. Each of the two
networks can be individually considered as a multi-terminal network of
the single input type. That is, the control network is an associated set of
contacts which connects a single ground input to the windings of five
relays, and the translating network is an associated set of contacts which
connects a single ground input to the six output leads. Since switching
algebra is directly applicable to two-terminal networks rather than multi-
terminal networks, the approach to this particular problem is of neces-
sity somewhat indirect.

The most satisfactory method of attack is to develop first a two-
termina) network for each of the output paths of the multi-terminal
network under consideration. The two-terminal networks can be ex-
pressed algebraically and manipulated into their simplest form by means
of the switching algebra theorems to be given later. The individual net-
works can then be inspected carefully, either in algebraic or circuit form,
with the objective of combining them in the most advantageous fashion.
It will be found, in general, that the simplest network configurations do
not readily combine and that further manipulation is necessary to obtain
an economical circuit. It is at this point that the algebra achieves its
greatest utility, since its application permits the simple and rapid chang-
ing of a given two-terminal network into a large variety of different
forms with mathematical assurance that circuit equivalence is main-
tained. Inspection of the networks in the several forms provides clues
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as to the preferable combining forms and often indicates additional
manipulations that might be desirable.

This network development is a combination of mathematics and inte-
gration by inspection. It is characterized by repeated trials of alternative
forms and at no stage is there any definite assurance that the optimum
circuit has been attained. However, the ease of manipulation provided
by the algebra greatly enhances the probability of designing a better
circuit than would be possible by inspection alone. In combining the
two-terminal networks, care must be taken not to introduce “sneak”
paths which improperly conneet outputs together. The algebra usually
offers means of introducing one or two additional contacts which permit
combining networks and yet eliminate the adverse effects of the sneak
paths.

The above procedure will now be carried out in detail with the switch-
ing algebra theorems that are used in all the following algebraic manipu-
lations noted at the margin by the number which corresponds to the
number of the theorem in the complete listing in Table IT. This table is

TasLe 11
SwiTcoiNG (BooLEAN) ALGEBRA*

Definitions Puslulntes
Addition (1 ) =0 OrX = 1 where X is a con-
(+) = AND = Scries tact or a network.
Multiplieation (2a) 0-0 =0
(+) = OR = Parallel 2b)y1 4+1=1
(3a) 1-1 =1
Cireuit States Bb)04+0=0
0 = Closed Cirecuit (42) 1-0 = 01 =0
] = Open Cireuit 4h)y0+1=1 0=1
Theorems
([L)\ VY=V + X (8&)X’+X=
(Ib) XY = VX (8h) X'X =
(2a) X VY +Z=X+V)+ 2 (9a) 0 + X =
=X+ (Y Z) Oh) 1-X = X
(2b) XYZ = (XYV)Z = X(YZ) (10a) 1 + X =
3a) XY + XZ = X(V + Z) (10b) 0-X = 0
@Bb) (X + MX+2)=X+YZ (11a) (X + Y)Y = XV
(40) X + X = X (11bh) XY —I— Yy =X+4+Y
(4b) XX = X (12a) (X + Y (X' 4+ Z)(Y + Z)
(ha) X + XY = X = X+ VX + 2)
BGh) XX + V) =X (12b) XZ + X'Y + YZ = XZ + X'Y
(6a) (X)" = X’ 13) X +1NX'+7%Z)=XZ+ X'Y
(6b) (X') = X (110) F00) = A-f(Dracr. nroo
(a) (X + Y + 24 -1 + .ft’-f(.\')A-u. Al
=’.\’-} VAR (14b) f(X) = [A + [(X)a=0, a7 =1]
(7b) ( VeiZ. ...) (A" + f(X)a=r.ar=d]

X' 4+ Yﬂ +/I +

* Ropnnt?d from ’l'hc Design of Switching Circuits by Keister, Ritchie and
Washburn with the permission of D. Van Nostrand Co., Inc.
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taken from The Design of Switching Circuits by Keister, Ritchie and
Washburn*. The development of the algebraic expressions from the
sequence of operations table will be in exact parallel to the methods
suggested in the aforementioned text.

The symbolism adopted in the following development is basically that
of using the notation A for all the make contacts on the A relay, and A’
for all the break contacts on the A4 relay. Contacts or groups of contacts
in series are related by the symbol of addition (+) and contacts or groups
of contacts in parallel are related by the symbol for multiplication (-)
which may or may not be explicitly written, as in ordinary algebra.
Therefore (A + B’) symbolizes a series contact path that is closed
when the A relay is operated and the B relay is released, while (AB")
symbolizes the parallel contact path that is closed when either A is
operated or B is released. Switching algebra includes only two numerical
values, 0 and 1, with the quantity 0 assigned to represent a closed path
and 1 to represent an open path. For the tabular notation of Table I, 0
is used to indicate that the relay listed at the head of the column is oper-
ated and 1 is used to indicate that the relay is released.

As stated earlier, the present application of switching algebra utilizes
the sequence of operation chart of Table 1. The operate and release
combinations for controlling the A, B, €, D and E relays can be selected
from this table by observing where each relay to be controlled changes
state. For example, the operate combination for relay D is relay combi-
nation 8 and the release combination for relay D is relay combination 24.
It is not necessary to include the contacts of a relay in its own operate
and release combinations. Note that the A and B relays which serve as
a pulse divider can be controlled solely by the L relay and contacts on
A and B without reference to ¢, D, E. However the C, D and FE relays
are internally controlled by all five counting relays. The development
of all these control paths uses the following abbreviations:

g(X) = operating combinations for the X relay

r(X) = releasing combinations for the X relay

h(X) = holding combinations for the X relay
X = make contact on the X relay

Furthermore as expressed by theorem (6a and 6b) the negative of a
contact network X is defined as a network which is a closed path under
all conditions for which X is open, and is open under those conditions

* 1), Van Nostrand, 1951. The Bell Telephone Laboratories Series.
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for which X is closed. Hence A(X) may be obtained from r(X) by noting
that A(X) is the negative of r(X). Therefore the entire control path of
any relay can be expressed generally as

X)) = g(N)[X + h(X)] = (X)X + (1(X))]
Thus for the A relay

g(d) = L'+ B’
rA) = L'+ B
h(A) = [’ + Bl = LB’ (7a)

and

J(A) = (L' + B')(A + LB’)

= (L' + BYA + L)(4 + B (3b)
= (L + (L + B (12a)
Also for the B relay
gB) = L+ A
r(B) = L+ A’
hB) = [L+ A" = L'A (7a)
and
J(B) = (L+ A)(B+ L'4)
= (L 4+ A)(B+ L) B+ A) (3b)
= (L+ AL+ B (12a)

The schematic forms of the A and B control circuits as represented by
the above algebraic expressions are shown in Fig. 2a and 2b. Since the
general requirements of the basic problem specify only one transfer on
the L relay, only simple makes and breaks on the A and B relays and no
shunt release paths (to avoid reduction in speed of operation), the combi-
nation of the above specific cireuits is not possible without recourse to
double windings. Another factor which affects the practical form of the
circuit is the finite transit time of the L relay armature spring. Switching
algebra presupposes instantaneous action of relay contacts and in certain
cases, when the use of a break-make transfer is required, additional con-
tacts are necessary to cover the open contact interval. The final ecircuit
form, conceived by F. K. Low, is shown on Fig. 2¢ and uses an added A
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contact. Algebraic equivalence of this cireuit with the original is shown
below.
f(A) = (L’A 4+ B')L + A) (Fig. 2¢)

= (L' + B) A + B)(L + 4) (3b)

= (L' + B)(L + A) (12a)
J(B) = ('A + B)(L + 4) (Fig. 2¢)

= (L' + B)(A + B)(L + 4) (3b)

= (I’ + B)(L + A) (12a)

For the €' relay which operates and releases twice in the entire 32
combination cycle

g(C) = (A’ + B+ D + EYA"+ B+ D+ E)
r(C) = [(A+ B + D+ E')A+ B + D'+ E)]
RC) =[(A+ B + D+ E)A+ B + D'+ E)
= (A’'BD'E + A'BDE’) (7a, 7b)
and
f(C)=[(4"+B+ D + EYA"+ B+ D+ E)
[C + A'BD'EE + A’BDE’]
= [A'+ B+ (D' + EYD + B)]
[C 4+ A’B(D" + E')Y(D + E)] (3a,3b,13)
=[4"+ B+ (D' + E')D + E)C + A'B]
C + (D" + E)D + B)] (3b)
= [(A" + B)C + (D' + E")(D + E)]IC + A'B] (3b)

The schematic cireuit which the above represents is shown in Fig. 3a.
Cireuits of this type which use certain contacts more than once can some-
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Fig. 2—Pulse divider of counting circuit.
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times be drawn in bridge form with a consequent saving of contacts.
One method is to manipulate the expression into a form which is known
to be the series-parallel equivalent of a bridge. However, following
usual algebraic procedures it is often difficult to recognize where this is
possible. In the present case a method developed by G. R. Frost (not
yet published) was used effectively. This resulted in the bridge circuit of
Fig. 3b which has the series-parallel equivalent:

flC) =[C+ (D + E)D + E)A"+ B+ (D' + END + E)
[C + A'l[C + B]

By use of theorem (3b) this is seen to be equivalent to the previous
expression for f(C).
For the D relay which only operates and releases once in the entire
cycle
gD) = (A + B+ C+ E)

r(D) = (A + B+ C+ E)
WD) = (A + B+ C+ B
— AlB’C’EI
and f(D) = (A + B + C + E')D + A'BC'E).
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Fig. 3—Internal control of counting cireuit.
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By noting that A + B 4+ C is the negative of A’B'C’, this can be
reduced to
f(D) = (A + B+ C+ E)D+ A'B'(C") (3b, 12a)

However, this transformation introduces a hazard caused by the
transit time of A relay contacts in passing from relay combination 9 to
10. Therefore the original expression will be used for relay D. The control
path is shown in Fig. 3c.

For the E relay which operates and locks only once in the cycle

g(E) = (A’ + B +C' + D)
ME) = E
and
f(B) = (A"+ B+ "+ D)(E + E)
(A"+ B' 4+ "+ D)E (4a)

This control path is shown in Fig. 3d.

Apart from the problem of developing the required contact network,
the practical problem of what operating power must be given to the
relays in order to meet speed requirements must be dealt with. Since
the use of low resistance windings in series with protective external
resistors is called for to obtain the speed required, it appears that the
use of two windings per relay might prove advantageous. By operating
on the low resistance winding while locking on the high resistance wind-
ing, the current drain may be reduced (thereby saving a fuse) and
furthermore some code reduction may be made possible as shown later.
If double windings are used, two of the external series resistors may be
eliminated by combining the eontrol network so as to make certain that
only one of the low resistance windings on the C, D, or I relays is
energized at any one time. This would permit the use of one common
external resistance with the aforementioned relays instead of three.

Keeping these practical considerations in mind, further savings may
be made by combining the control circuits as shown in Fig. 3e. Although
there is in this circuit a possibility of contact stagger on the A relay
contacts causing the ' and D low resistance windings to be energized at
the same time, this will not be harmful since, when the stagger occurs,
both relays are firmly locked operated by their high resistance holding
windings.

TRANSLATING CIRCUIT

The translating circuit is particularly adaptable to switching algebra
manipulation. Table I shows the combinations which prevail at the end
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of each pulse and the necessary “‘code’” leads that must be grounded at
these times. Reference to the block diagram of Fig. 1 shows that the
output of the translator is not activated until the slow release RA relay
releases after the last pulse of a digit has been received. Therefore the A
relay can be eliminated from these combinations since at the end of
every pulse the A and B relays are either both operated or both released
and hence only one is needed to indicate the condition of both. Table I11
lists the numerous combinations which must close a ground path through
to each of the five code leads and the Z0 lead. At the conclusion of the
algebraic manipulation, the 4 and B contacts may be redistributed
evenly since they perform interchangeable functions in translation.

The objective in the design of the translating circuit is to obtain the
most economical contact network subject to a spring distribution that

TasLe II1
TRANSLATION

Counting Relays
Otujt:f:)l:utniﬁc?d - Decimal Pulse
B C D E
0 0 1 [ 1 1 1
1 0 I 1 1 2
1 0 0 1 4
0 1 0 0 7
0 1 1 0 11
1 1 [ 1 0 12
1 0 1 1 1 1
0 0 0 1 3
0 1 0 1 5
1 0 0 0 8
2 1 0 1 1 2
0 0 0 1 3
1 1 0 0 6
0 0 1 0 9
4 1 0 | 0 1 4
0 1 0 1 5
1 1 0 0 6
1 0 1 0 10
7 0 1 0 0 7
1 0 0 0 8
0 0 1 0 9
1 0 1 0 10
Z0 1 0 1 0 10

Inconsequential combinations that may be used for simplification

0
1
0

—_—
‘ — D
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fits in with the control contact network. Again, this is a multi-terminal
network problem and the procedure is to design two-terminal networks
that combine most readily. Since it is impractical to illustrate all the
repeated trials that led to the final design, each network will be designed
separately with the understanding that some of the steps are imposed
by the form of all networks viewed collectively.

The procedure adopted for developing the “0” lead network is as
follows. First set up the miniature table repeating the portion of Table
III that corresponds to the “0’’ lead. These parallel combinations should
then be manipulated algebraically to obtain the greatest simplification
possible. It is rather easy to apply some of the algebraic rules by observ-
ing the condition of the relay in the several combinations in the table.
A simple “shorthand” rule to follow is: if in the table of combinations
describing a particular two terminal network, all possible combinations
of certain relays appear in conjunction with a single combination of other
relays, the network contacts on the former relays may be neglected. In
other words when 2" different combinations of any number of variables
m, are identical in all but n columns, contacts on the corresponding n
relays are not required. This procedure is carried out below.

B CDE

0 1 1 1 B + C + D)
. ® + C + E)
1 0 0 1

0100/ (B + C + E)
0110/

v ’

111 g + D + B

Thus we have the following algebraic expression for the “0” lead,
which can be simplified as shown.

(B4 €'+ D)B + C+ E)B+ C'+ E)C" + D'+ E)
"+ (B+ D)B+ E)D' + BB + C + E) (3b)
[C" + (E + BD')(B + DI(B" + C + E') (3b)

This is shown on Fig. 4a. A somewhat different manipulation of the
equation permits placing the network in the bridge form of Fig. 4b.
The algebraic equation, given below, can easily be shown to be the
equivalent of the original.

£+ ¢'+ B(B'+ DN|(B' + C + E')(B + C" + D)
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In certain cases the use of theorem (14b), normally employed to reduce
the contacts of a particular relay to a single make and break, can pro-
duce simplifications difficult to accomplish otherwise. This is shown
below, with the theorem applied with respect to relay ¥ since ¥ tended
otherwise to be heavily loaded.

B+C +DYB +CH+ EYBA+C + E)C"+ D+ E)

B+ B+ C+D)YB +C+ DB+ +0)C + D+ 0)
[E'+ (B+ "+ D)YB' + €+ 0)(B+ '+ 1)(C" + D' + 1)]
(14b)

(F+ C'"+ BD)E + (B"+ ()(B+ €'+ D")] (9a, 10a, 3b, 9b, 5b)

By modifying the first factor of the final expression in accordance with
theorem 11a, this equation can be put in bridge form as shown on Fig. 4c.

£+ "+ BB + DHE + (B'+ O)(B + €' + D)

The above equation uses the same contacts as the previous expression,
and although the right hand member is in a slightly different form, the
expression is equivalent to the one obtained earlier.

When it is known that output conditions are inconsequential for some
relay combinations, these inconsequential relay combinations may be
combined with valid combinations to eliminate contacts in the network.
Inconsequential means that the output during these particular combina-
tions does not affect the proper functioning of the ecireuit. Four such
combinations are listed in Table IIT. Only those inconsequential combi-
nations which will combine readily with the actual combinations, thereby
resulting in a reduction in the number of contacts, are to be used. Al-
though the use of all the all-relays-released condition may be helpful in
certain cases, it will not be used in the circuit under consideration since
its use makes the requirement that no tie shall exist between output leads
until the second pulse is received hard to meet.

With this in mind the “0” lead network is again examined. Note the
use of another “shorthand” rule which states that if a part of the 27
possible combinations is used in closing a path, the negative of the unused
part of the 2" possible combinations is equivalent to the original com-
binations. Thus if in the case at hand three of the possible four combina-
tions of the B and C relays occur in series with the same combination of
the D and E relays, the expression used is that for the series path of the
D and E relays plus the negative of the missing combination of the B
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and C relays. In the following tabulation the combinations below the
horizontal line are inconsequential.

B C D E

01 1 1 (¢ + D' + BE)
1 01 1

1 0 0 1

010 0 (C + E + BD)
011 0

1 1.1 0

0 0 11 B + D + E)
1 10 1/

00 0 O

The expression becomes:
(C + E' + B'DYC" + D'+ BE)(B+ D + E)

[E+ (C+ 1+ BD)C + D' + BO)B + D+ 0)]
[E' + (C+ 0+ BD)C"+ D' + BI)(B+ D+ 1)]
(14b on &)

[+ (" + DB + DIE + (C + BD)C + D'+ B)]
(9a, 9b, 10a, 10b)

(£ + (' + D)(B + D)IE + CD’ + CB + B'D'l  (8b, 9, 4b, 5a)
[E + (C' + D) (B + D)|[E' + BC + B'D'] (12b)
[E + (C" + D')(B + D)E + (B + D')B" + ()] (13)

TFig. 4d shows the schematic of the above expression. It is possible to
put this in a bridge form without other changes because of the manner
in which the front and back contacts of D are related to the other con-
tacts. Comparison of all the circuits of Fig. 4 indicates that they all use
the same number of contacts although final decision should be post-
poned until all the output circuits are obtained and the ease of combina-
tion of the different circuits can be compared.

The procedure for determining the remaining code leads is carried out
on the following pages.
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17 lead—
B C D E
01 1 I—
0 0 0 1/$ + E)
01 0 1
1 0 0 0
0 0 1 1
1 1 0 1
0 0 0 0 (C + D + E)

resulting in [ 4+ (' + D]|[E’ + B] which is shown on Fig. 5a. It will later
be found advantageous, in combining, to include the B’ term in the first
factor, giving the expression:

(E+ B 4+ C+ D)E + B) shown on Fig. 5b

42" lead—
B C D E
0 0 0 1 C + D 4+ E)
1 1 0 0
0 0 1 o
0 0 1 1 B + C + D)
1 1 0 1
C
000 p——® + O
hence
(C'+ D'+ EYB + (" + D)(B + )
or
[+ B + ENC" + B’ + D] (3b)
For later ease in combining, this is changed to:
€'+ B(B"+ D' + ENJ|C" + B + D) (11a)

shown on Fig. 5c.
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(A lead—

B

C = O | = O =

hence

e~ oo ~=c Q@

c o H= O oS

=

p—

o o= = e O

+ C + I

1\
(D 4 B + B’C’)

__—__-.Am’

B + C + D)

+ E)

(D + B+ BC)B + ¢+ D)(B +C+ D'+ E)
D + (B + ¢)(BC + END' + B + C+ K (3b)

which is shown on Fig. 5d.

“” lead—

B

O = O = O = O

hence

or

Q

O = O C =

D
0
0
1
1
1
0
0

E

0

0 B + D + E)
0¥

0 (C + E)

1

1

0

(B+ D+ E)C + E)

E + C(B + D)

which is shown on Fig. 5e.

“Z0” lead—

B C D E

1

0

1

0

(3b)

hence one has (B’ + C + D’ + E) which is shown in Fig. 5f.
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The final contact savings are achieved by combining the various out-
put paths. The combined translation circuit that appears to be as re-
duced as possible is shown in Iig. 6. Note that certain forms of the
individual output paths combine more readily than others. For example
Fig. 4¢ and 5b combine more readily with the remaining paths than
Fig. 4b and 5a. Note also that sometimes it is not the most reduced form
of the individual output paths that permits efficient combining. This is

8 c 3 B c E
S — — ;
= 272 0" LEAD B D C ]uworieap
T J— T T —_—
= c = ]
B : f
5 3 8
T o (a) L (b)
B c 8 c
T —————
_IlE B IID ? wor LEAE) IIE ll) B wo LEAD
A ' ' AL '
- B =
. D
E 8 3 c D
L A o
= (c) = (d)
Fig. 4—The “0" lead of the translating circuit.
. E B "1" LEAD £ B 1" LEAD
i) ‘ . R I =T
= LE c D = E B ¢ D_]
X el X, s e
(a) (b)
§ e "2"LEAD ° B ¢ 4" LEAD
I T T -
D E T t
—t c
t
C D B D B C E
R N
= (c) = (d)
E B D “7" LEAD B C D E “z0"LEAD
> o o - [ X———
= c =
a (f)
(e)

Tig. 5—The “1,2,4,7, and Z0" leads of the translating circuit.
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exemplified by the use of Fig. 5b rather than Fig. 5a. Although various
forms of all of the output leads were tested for efficient combination only
the form used is shown for outputs other than the “0” and “1”" leads.
It is essential to scrutinize the final network for possible sneak paths.
Sometimes to avoid these sneak paths it is necessary to add one contact
on one relay to allow savings on others. Here again the inspection tech-
niques go hand in hand with switching algebra and the need for both is
obvious. The algebra obtains the various forms which are capable of

B c
+——Xj
R e |8 o ¢ RAL “o*LEAD
A1 | ‘ ‘ n "
= E A
X: f
A 0 RA1 mnqn
L% A t7LeaD
“
S D E z0" LEAD
R "
? | )3 ?‘ 1" LEAD
RA £ 8
L—{ r—
= A D RAI wgn | EAD
T 1
[ < |
C b € B8
X } S f
D c E
X t }
A
c B RA1 o LgAD

T T
Fig. 6—Combined translating circuit.

different degrees of combination very quickly and efficiently. The inspec-
tion method is then necessary for the actual combination of these forms.

The additional RA relay contact is necessary to assist in avoiding in-
terconnections between the output leads until after the second pulse is
received. The final assignments of cither A or B relay contacts are
chosen to equalize the load on these relays.

THE COMPLETED CIRCUIT

The final form of the counting and translating circuit is shown on
Fig. 7. The relays are all double wound to gain the benefits of current
drain reduction. One additional advantage of using double windings is
the relay code reduction made possible since now only two codes are
necessary. One code serves the A relay and one other code serves the
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B, €, D and F relays. In comparison to this total of five relays and two
codes the cireuit in present use in the latest crossbar system requires ten
relays and seven codes,

AN ALTERNATE DESIGN OF THE PULSE DIVIDER

To illustrate the application of algebra where the apparatus contem-
plated puts less premium on contact minimization but more on stand-
ardization and winding minimization, certain modifications of the
proposed circuit are considered.

In the event that new apparatus developments make possible the
construction of relays that meet the necessary speed requirements even
though winding impedance is increased, it appears possible (if the pulse
divider is redesigned) to use only one code having a single winding for
all five relays. The use of added contacts might be allowable if the new
type of relay carries more springs than the present relay.

The redesign of the pulse divider to use single windings can be accom-
plished by manipulation of the basic algebraic expressions derived earlier
for the pulse divider.

Thus for the 4 relay

f(4)

(L + B")(A + LB')
(L' + B[4 + BY(L + B)] (11a)

By attempting to manipulate the B relay control circuit into the same
form, one obtains

J(B) = (L + A)(B + L'A)
= (L + AL + B)(4 + B) (3h)
= [l + BJ|A + BL] (3h)
= [I' + B)A + B(L + B")] (11a)

The schematics represented by the above algebraic expressions are
shown in Fig. 8a and 8b. The circuit of Fig. 8¢ is obtained by combining
the first two circuits so that only a single transfer is needed on the L
relay. Note however that it is necessary to make the lower two B trans-
fers have continuity action to insure proper functioning, Fig. 8d shows the
pulse divider drawn in conventional form.

CONCLUSION

As far as is known, the dial pulse counting and translating cireuit
described herein requires fewer relays than any other circuit with similar
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functions at present employed in Bell System standard switching equip-
ment. The previous dial pulse counter used in the latest crossbhar system
required a total of ten relays. Thus the present design represents a
considerable saving in cost and space. To a certain extent this result can
be ascribed to the use of switching algebra during the circuit develop-
ment.

Relay circuits designed on the basis of utilizing a large proportion of
the possible combinations permitted by the component relays usually
require heavy spring pile-ups. Since general purpose relays are limited
in the number of springs which they ean carry, this type of circuit usually

L e @ L e (&)
%J:_)L(_;_T_QJ Hile i N BJ o | i
" L

X
L (&) L (b)

. N (A) . A (B)
, X n (w — 3
I ' :
L [P EDJ o) el
L B A — ?I‘—-— =
-~ St | T
i E'“h_ 5 °-ﬂi1_
= . (B) = 3 r :E—
;_3—] (c) ;

Fig. 8

entails considerable design effort to make most effective use of the avail-
able springs. Application of switching algebra to this aspect of the design
problem can often provide crucial assistance.

It is recognized that switching algebra, in its present state of develop-
ment, does not permit complete mathematical statement and manipula-
tion of multi-terminal networks as represented by the counting and
translating circuits. It does provide, however, facilities in manipulating
two-terminal networks into a variety of forms from which can be selected
those that combine most readily. This can result not only in a saving of
time, but also in improved circuits which might not be realized by other
design techniques. Unfortunately the algebra in its present state does
not indicate when the optimum circuit has been attained. To some extent
this is caused by apparatus or circuit considerations to which, since it is
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concerned solely with contact networks, the algebra does not apply.
Thus, there is still considerable room left for the ingenuity and judgment
of the switching circuit designer.

As a result of the experience in designing the dial pulse counter and
translator, certain observations on the use of the algebra are believed to
be valid. Although switching algebra may be used in the design of the
simplest circuits, the most noticeable benefits are obtained by the appli-
cation of the algebra to the design of those circuits in which the control
and output paths are complex and interrelated. The particular minimum
relay counting and translating circuit under discussion is an excellent
example of this type of circuit. A secondary advantage of the algebra is
its compact notation and its value as an efficient circuit ‘“bookkeeping”
method.
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