The Linear Theory of Fluctuations Arising from Diffusional
Mechanisms—An Attempt at a Theory of Contact Noise

By J. M. RICHARDSON

The spectral density is calculated for the electrical resistance when it is linearly
coupled to a diffusing medium (particles or heat) undergoing thermally excited
fluctuations. Specific forms of the spectral density are given for several types of
coupling which are simple and physically reasonable. The principal objective is
the understanding of the frequency dependence of the resistance fluctuations in
contacts, rectifying crystals, thin films, etc.

1. INTRODUCTION

HEN a direct current is passed through a granular resistance such as
a carbon microphene or a metallic-film grid leak, or through a single

contact, there is produced a voltage fluctuation possessing a component
called contact noise which is differentiated from the familiar thermal noise
component by the fact that its r.m.s. value in any frequency band is roughly
proportional to the magnitude of the average applied voltage, and is differ-
entiated from shot noise by the strong frequency dependence of its spectral
density. One may regard this component of the voltage fluctuation as aris-
ing from the spontaneous resistance fluctuations of the element in question
if one is willing to allow the resistance to have a slight voltage dependence.
This effect has been the subject of numerous experimental investigations,'™
among which we mention in particular that of Christensen and Pearson’
on granular resistance elements. These authors (henceforth abbreviated
as CP) arrived at an empirical formula, to be discussed presently, connect-
ing the contact noise power per unit frequency band with the applied volt-
age, the resistance, and the frequency for several types of granular resistance.
Their measurements covered a range of frequency from 60 to 10,000 cps,
and involved the variation of several other parameters, i.e., pressure. More
recently, Wegel and Montgomery'® have measured the noise power arising
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from single contacts and have obtained results in agreement with the CP
empirical formula down to frequencies of the order of 10~ — 10~ cps.

Significant theoretical work upon this problem has not been attempted
until recently. G. G. Macfarlane has advanced a theory based upon a
non-linear mechanism containing one degree of freedom which seems to be
in agreement with the CP law. W. Miller' has worked out a general theory
of noise in crystal rectifiers. His theory is linear, contains essentially an
infinite number of degrees of freedom, and is equivalent in many respects
to the theory discussed in this paper; however, he has not succeeded in ob-
taining agreement with the experimental data on crystal rectifiers (which
satisfy approximately the CP law) for any of the specific models he used.

The purpose of this paper is the calculation of the spectral density of the
fluctuations of the electrical resistance when it is linearly coupled to a diffus-
ing medium (particles or heat), or, mathematically speaking, is equal to a
linear function of the concentration deviations of this diffusing medium.
This diffusing medium undergoes thermally excited fluctuations and thereby
causes fluctuations in the resistance. The motive behind this investigation
was the understanding of the frequency dependence of contact noise dis-
cussed in the following paragraphs, but at the present time it is apparent
that this treatment in addition may apply to rectifying crystals, thin films,
transistors, etc. The quantitative details of the coupling between the resist-
ance and the diffusing medium are not considered here; in consequence of
which, this work can hardly pretend to give a complete explanation of con-
tact noise. However, important results are given concerning the relation
between the spectral density of the resistance, on one hand, and the geom-
etry of the coupling and the dimensionality of the diffusion field on the
other.

Now let us consider the CP empirical formula in detail. Let E be the
average resistance' of the contact (we will henceforth consider only contacts
and will regard a granular resistance as a contact assemblage) and let B,
(1) be the instantaneous deviation from the average. By theorems I-3 of
Appendix I, we can express the m.s. value of R; as a sum of the m.s. values
of R, in each frequency interval as follows:

R} =_£ S(w) do, (1.1)

11 G, G. Macfarlane, Proc. Plys. Sec. 59, Pt. 3, 366-374 (1947).

12 To be published.

13 The resistance of a contact is composed of two parts: the “gap resistance” and the
“spreading resistance.”” The term “‘gap resistance” is sell-explanatory. The “spreading
resistance” is the resistance involved in driving the electric current through the body of
the contact material along paths converging near the area of lowest gap resistance. The
measured contact resistance is the sum of these two parts. In some of the particular
physical models considered in Section 3, R is taken to be the gap resistance necessitating
ad hoc arguments relating gap resistance and total resistance.
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where S(w) is called the spectral density of R, and w is the frequency in
radians per second. Now in our notation the CP formula may be expressed

S(w) = KVot b2/, (1.2)

where V' is the applied d-c voltage across the contact, K is a constant de-
pending upon the temperature and the nature of the contact, and @ and b
are constants having values of about 1.85 and 1.25 respectively. CP state
that the constant K is equal to about 1.2 X 107 in the case of a single
carbon contact at room temperature.

In this paper we will regard the nonvanishing of a — 2 as arising from
a non-linear effect which should become negligible at a sufficiently low
voltage, although this interpretation does not seem completely justified on
the basis of the work of CP. Consequently we assume thata — 2asV — 0
in such a way that V=2 — 1. This is in keeping with the idea that the
resistance fluctuations are truly spontaneous—at least for small applied
voltages.

Although Eq. (1.2) may represent the observations over a large range of
frequency it must break down at very high and very low frequencies in
order that the noise power be finite (or, in other words, in order that the
integral (1.1) converge).

One has several clues to be considered in looking for an underlying mecha-
nism of the resistance fluctuations. First of all, the mechanical action of
the thermal vibrations in the solid electrodes of the contact seems to be
unimportant because of the following reasons: (1) there are no resonance
peaks in S(w) at the lowest characteristic frequencies of mechanical vibra-
tion of the contact assembly; (2) S(w) becomes very large far below the
lowest characteristic frequency; and (3), according to CP, R; is strictly
proportional to V? when the fluctuations are produced by acoustic noise

vibrating the contact, whereas Rj is proportional to V% a ~ 1.85, when
the fluctuations arise from the dominant mechanism existing in the macro-
scopically unperturbed contact. One of the obvious mechanisms left is a
diffusional mechanism. Such a mechanism does not violate any of the ob-
servations to date and, furthermore, possesses a sufficient density of long
relaxation times to give large contributions to S(w) near zero frequency.

Evidence that diffusion of atoms (or ions) can be important in modulating
a current is provided by the “ficker effect” in which the emission of elec-
trons from a heated cathode is caused to fluctuate by the fluctuations in
concentration of an adsorbed layer. We might suppose that contact noise
is a different manifestation of the basic mechanism involved in the flicker
effect.

In view of these considerations it seems worthwhile to investigate in a
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general way a large class of models involving resistance fluctuations arising
from diffusional mechanisms. In the next section we propose a general
mathematical model embracing a class of linear diffusional mechanisms.
In Sections 3 and 4 the consequences of the general mathematical model
are obtained by the “Fourier” and “Smoluchowski” methods, respectively,
these alternative methods leading to identical results. In Section 5, the
general results are specialized to several physical cases, some of which are
introduced only for the purpose of providing some insight into the relations
between the possible physical mechanisms and the resultant resistance
fluctuations, and one of which along with its refinement is a successful'
attempt to provide a theory of Eq. (1.2). Section 6. is a summary.

2. THE GENERAL MATHEMATICAL MODEL

The physical models which we consider in this paper are concerned with
the fluctuations of contact resistance arising from a diffusional process. We
are consequently led to consider the following general mathematical model
embracing a rather extensive class of the physical models as special cases:
Let us consider the instantaneous contact resistance R(f) to be related to
the intensity ¢(r, 1) of some diffusing quantity as follows'®:

GR()) = f Fr, o, ) dr, 2.1)

where 7 is a vector in two or three dimensional space depending on whether
the diffusion takes place on a surface or in a volume, and dr is correspond-
ingly a differential area or volume. The intensity ¢(r, {) may be either a
concentration (in the case of diffusion of material in two or three dimensions)
or a temperature (in the case of heat flow in three dimensions). In writing
Eq. (2.1) we have evidently assumed that the contact resistance R(!) is
independent of the applied voltage. Eq. (2.1) may of course allow a de-
pendence on voltage through the quantity ¢; however, we will consider no
processes involving a dependence of ¢ on the voltage. These restrictions,
strictly speaking, make the model applicable only in the limit of low applied
voltages.

Before proceeding further let us limit the treatment to the case in which
the deviations of R and ¢ from their average values are sufficiently small
for higher powers of these deviations to be neglected. Let

R() = B+ Ri(0), (2.2)
o(r, ) = ¢+ a0, (2.3)

1 That is, successful in so far as agreement with the form of Eq. (1.2) is concerned.

16 A relation more general than R(f) = SF(r, ¢(r, #)) dr is required as one can see from
considering the special case of a total resistance composed of a parallel array of resistive
elements.
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where B and ¢ are the average' values of R(!) and ¢(r, f) respectively.
Evidently, R,(f) = 0, and ¢,(r, {) = 0. Introducing the expressions (2.2)
and (2.3) into Eq. (2.1), expanding in terms of ¢,(r, {), and neglecting terms
of the order of cf, we get

’() = [ 1) atr, 1) a, (2.4)

Tar(, o) dG(R)
f _[ dc :L;/[W]n-i

The function f(r) defines the linear coupling between R, and ¢; and depends
upon the specific physical model used. The non-linear terms neglected in
Eq. (2.4) may be of importance under some conditions; however, we will
not consider them here. Nevertheless, non-linear effects in the behavior of
¢, itself are possibly important in determining the form of the power spec-
trum of R,(¢) in the neighborhood of zero frequency.

where

3. THE FOURIER SERIES METHOD OF SOLUTION

In this section we consider the state of the diffusing system to be defined
by the Fourier space-amplitudes ¢k (f) of ci(r, ¢). The time behavior of cx(t)
will be described by an infinite set of ordinary differential equations con-
taining random exciting forces according to the conventional theory of
Brownian motion.” This method yields the spectral density of R (f) directly.

Now the diffusion process is assumed to occur in a rectangular area 4, =
Ly X L, or in a rectangular parallelopiped of volume 4; = L, X L: X L;.
In regions of the above types, if we apply periodic boundary conditions,
c1(rot) may be expanded in Fourier space-series as follows:

alr, t) = ;" cr(De® T (3.1)

where the components of k take the values
k,‘ = 21!'”,‘/.[," y 1= 1, R A (32)

in which »; are integers and » is the number of dimensions. The prime on
the summation indicates that the term for & = 0 is to be omitted. This is
required by the equivalence of the time and space averages of ¢, (true for
A, sufficiently large) and by the vanishing of the time average of ¢ (by
definition).

16 The average values here may be considered as either time or ensemble averages but

not space averages.
17 See Wang and Uhlenbeck, Rev. Mod. Phys., 17, 323-342 (1945).
18 If the final results are given by integrals over k- space they will be insensitive to the

boundary conditions,
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Before proceeding to the solution itself let us consider what it is that we
wish to know about c¢g(f). Expanding the function f(r) of Eq. (2.4) in a
Fourier space-series in the region 4, ,

fr) = ;f,.e""", (3.3)

we can write Eq. (2.4) in the form

R() = 4, Zk'f;':ck(:) (34)

where /i is the conjugate of fg.
The spectral density S(w) of Ri(f) is then

S(w) = A3 2 Cuwr @)k fir (3.5)
where Cgp+ (@) is the spectral density matrix for the set cx(/) given by

Crer(w) = 2m Liml ler(w, e (@, 7) + cal—w, Dep(—w, 7] (3.6)

r=b00 T
in which

1 [t »
o 7) = o= [ a0 d 3.7)
2w J—rp2
For a full discussion of spectral densities and spectral density matrices see
Appendix I. Consequently our objective in this section is the calculation
of the maxtix Cgg (w) defined by Eq. (3.6).

Now we assume that ¢ (r, {) satisfies the diffusion equation

.é‘?; alr, i) = DV%a(r, 1) + gr, 0 (3.8)

where D is a constant, V? is the Laplacian operator in two or three dimen-
sions, and where g(r, {) is a random source function, whose Fourier space-
amplitudes gg(/) possess statistical properties to be discussed presently.
The random source function g is required for exciting ¢ sufficiently to main-
tain the fluctuations given by equilibrium theory. In the case of material
diffusion the random source function ¢ may be discarded in favor of a ran-
dom force term of the form —D/x T-V-[f(¢ + a)], where V-f = divf, x
is the Boltzmann constant, 7" is the temperature, and f is the random force;
however, in the linear approximation these two procedures will give identical
final results. In the case of heat flow it is understood that the diffusion
constant is D = K/pC where K is the thermal conductivity, p the density,
and C the specific heat. Eq. (3.8) as written is valid only for D a constant
and ¢ small.
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Introducing the expansion (3.1) and the expansion

g(r, 0 2 gale™” (3.9)
into Eq. (3.8) we obtain the infinite set of ordinary differential equations
;t cr(l) = —DEce(t) + gel0), (3.10)

k=|k]

describing the time behavior of the Fourier space-amplitudes cg(f). The
Fourier space-amplitudes gg(/) are assumed to be random functions of !
possessing a white (flat) spectral density matrix Cgg , independent of fre-

quency. Multiplying Eq. (3.10) by 51?3_"”', integrating with respect to time

from —ir to +%r, and neglecting the transients at the end points of the
r-interval, we obtain

gk("’; 7) (3-11)

ale ™) = DR

where ¢g(w, 7) is given by Eq. (3.7) and gg(w, 7) is given by an analogous
equation. Forming the spectral density matrices we get for the diagonal
elements

G

o + DS (312)

Crpr(w) =

The matrix Ggg can now be evaluated by the thermodynamic theory of
fluctuations (See Appendix II). This theory gives

Oppr
cellep (D) = %{% (3.13)

litk =k
Opkr = .
0 otherwise,

. o fds 1 [o%
H 7] . T 1862 e=t (3.14)

s and e being the entropy and energy, respectively, per unit area or volume,
T the average temperature, and x the Boltzmann constant. In the case
where ¢ is the concentration of particles whose configurational energy is
constant, s” = x/é. If ¢ be the temperature T then s” = C/T? where C

where
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is the heat capacity per unit area or volume. Now by a general theorem
concerning spectral density matrices (see Appendix I) we have

c#(l)c:r(l) = '4 Crp(w) dw,

giving finally by combination with (3.12) and (3.13),

2 xDE
Gkk' = - A S” 6## ] (3-15)
and
. 2 xD kzﬁmy
Curle) = L4, T D (3.16)
The spectral density S{w) of Fi(¢) then becomes
2 xA D E | fe |’
Sw) ==% Zm2+ D (3.17)

If we are concerned with frequencies greater than a characteristic fre-
quency

w = 4mD/L? (3.18)
where L is the smallest of L;, 2 = 1, -+« , », then the summation in (3.17)
may be replaced by an integration giving
vt v XD f 'f(k)l E dk
Slw) =2 Tt DR (3.19)
where
f(k) = R gy, (3.20)

The integration in Eq. (3.19) is carried out over the entire »-dimensional
k-space. If the range of the function f(r) is sufficiently small compared with
the region 4, , or if we let A, become indefinitely large, then the integration
in Eq. (3.20) may be extended to all of »-dimensional r-space.

It is perhaps revealing to rephrase Egs. (3.17) and (3.19) in terms of
distributions of relaxation times. In the theory of dielectrics we speak of
the real part of the dielectric constant being equal to a senes of terms
summed over a distribution of relaxation times: Z; a; 7:/(1 + iw?), if the

distribution is discrete, or f a(r)rdr/(1 4+ 7%?), if the distribution is con-
0

tinuous. In the above, a; is the weight for the relaxation time 7;, and, in
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the case of a continuous distribution, a(7)dr is the weight for the relaxation
times in the range dr containing 7. In these terms Eq. (3.17) becomes

S = a"’i 3.17
(@) g 14 Tin’ ( 8)
where
2 2
k= | frl (3.17b)
TS
Eq. (3.19) becomes
a(7)r dr
Slw) = T ol (3.19a)
where
a(r) = Tl—)""z—"”“f |f(/~/Dr) | d. (3.19b)

in which ! is the unit vector in the direction of &, d©, is the differential
“solid” angle in the »-dimensional k-space, and the integration is over the
total solid angle (27 in 2 dimensions, or 4, in 3).

It is of interest to calculate the self-covariance Ry({)Ri(¢ + #). In Appendix
I, it is shown that the self-covariance above is related to the spectral density
S(w) as follows:

Ri(OR (L + ) = [n S(w) cos uw de. (3.21)
Using S(w) in the form (3.17), Eq. (3.21) gives
ROR(+ 1) = xA,/5" - 2 |fe e, (3.22)
u > 0;

whereas with S(w) in the form (3.19) we get
RiOR\(t + u) = (2m)" x/s" f | f(R) |* 2 dk. (3.23)
The method of the next section yields the self-covariance directly.

4, SMOLUCHOWSKI METHOD OF SOLUTION

We call the procedure employed in this section the ‘“Smoluchowski
method” because it is based on an equation very closely analogous to the
well-known Smoluchowski equation forming the basis of the theory of
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Markoff processes.!? We set out directly to calculate the self-covariance for
Ri(t) which, by Eq. (2.4), is given by

ROR(t + u) = f f VO Dalr, { + w) drdr. (4.1)

Thus the problem is now reduced to the calculation of ¢,(r', H)ey(r, t + u).
The quantity ¢,(r', )ai(r, # + %) is calculated in two steps. First we find
(t+1)

ofr, t + u) , the average value of ¢, at the point r at the time / + «
with the restriction that ¢; is known at every point 7’ with certainty to be
a(r’, 1) at the time ¢ (assuming, of course, that % > 0). Then we find that

the required self-covariance for ¢ is given by multiplying the above
P )
alr, t + u) by a(r’, t) and averaging over-all values of & (r, ¢) at

time {; thus:
(e)

alr, Do, t + w)*™ = o, Dalr, t + u). (4.2)
—_—  (tw)
Now we assume that ¢ (r, ¢ + %) is related to ¢(r’, {) by an integral
equation, analogous to the Smoluchowski equation, as follows:

(it4u)
am it = f o1 — 7|, welr, 1) dr. (4.3)

In the case that ¢ represents a concentration as in the diffusion of particles,
p(| T — 1" |, u) dr is the probability that a particle be in the »-dimensional
volume element dr at time ¢ 4+ # when it is known with certainty to be at
r' a time /. Now the number of particles in dr” at r’ at time / is evidently
[ + a(r, )] dr'; consequently, the probable number of particles in dr at
time ¢ 4+ # which were in dr’ at time ¢ is p(|r — 7' |, w)[c + a(¥/, )] dr dr’.

Integration over dr’ gives the total probable number
(t+u)

E+ alr,t + ) ) dr of particles in dr equal to
(f p(lr =1 |, wle + al, )] dr’) dr which reduces to

((; + f pllr— 1" |, walr, 1) dr’) dr. Division by dr and subtraction of ¢

from both sides of the equality leads directly to Eq. (4.3). For the case of
heat flow in crystal lattices the above picture can be used approximately if
one uses the concept of phonons.?® For a diffusional process p(| 7 — 7’ |, %)
is the normalized singular solution of the diffusion equation®; thus

1 2
r—r = — —|r—=1r/4 .
p(] |, 1) @D exp [—| [*/4.Du) (4.4)
19 Loc cit.
0. Weigle, Experientia, 1, 99-103 (1945).
N Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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where », as previously defined, is the number of dimensions of the region in
which the process occurs.

Combining Eqs. (4.2) and (4.3) we get
o

o, Daln  + u) = f aw D D ollr—1" | wdr. (45)

Now using the fact that

W
alr, Da@”, 1) = al’,Dalr’, 1) (4.6)

and using the relation

alr', Da(r'’, 1) = 1 3 — 1) (4.7)

proved in Appendix II, Eq. (4.5) reduces to

alt’, Dalr, t +u) = SE ol|7 — 7|, w). (4.8)

Introducing the expression (4.8) into Eq. (4.1) we obtain at once the desired
result

R1(I)R1(L’ + u) = Rk fff (rpl|r — 1", u) dr dr’
(4.9)

= ”(41an)"f‘f f)f(r') exp [—|r — 1" |/4Du] dr dr'.

For the sake of comparison with Eq. (3.23) it is necessary to write (4.9)
in terms of the Fourier space-transforms of the pertinent quantities. We
write

10y = [ 1) & a
where
_ 1 ik-r
flk) = (—ZT)vff(T)B dr.
Also, we write

pllr — 7'l u) = exp [—|r — 7' "/4Du]

1
(4w Du)*?
1 . ,
= ) f exp [—Duk” 4 ik-(r — r')] dk.

After introduction of these expressions into (4.9) a short calculation yields
the result

RORG+ ) = o X, f LF(R) 2™ dk (4.10)
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which is identical with Eq. (3.23) (provided that we let A, — < in the lat-
ter). Thus the methods of approach used in Section 3 and in this Section
are completely equivalent.

5. Specian Prvsicar. MODELS

In the previous two Sections we have developed by two different methods
the consequences of the general mathematical model discussed in Section 2.
Here we apply the general results to some special physical cases. In this
task we will be principally concerned with finding the form of the function
f(r) and establishing the number of dimensions v of the diffusion field. The
main objective here is to provide some orientation on what mechanisms are
or are not reasonable and to find at least one mechanism leading to the
observed spectral density (inversely proportional to the frequency).

a. A General Class of Models. Here we consider all at once mechanisms
which can be adequately represented by having f(r) a »-dimensional Gaussian
function of the form

- bi —2li2a;

f(r) = 1;11 W € ’ (5.1)
where A}'? is the “width” of the function measured along the i-th coordinate
;. This form of f(r) can represent approximately several types of localiza-
tion of the coupling between R; and ¢; , as will be seen in the special examples
later. Now if we work with 4, = oo, we will then have to consider the Fourier
space-transform of f(r), which is readily shown to be

1 —ikr
1®) = 50, f 16 * T dr

) \ (5.2)
= I1 bs/2m- 8"
i=1
Inserting this result into Eq. (3.19) we obtain immediately
2D [+ B exp (——; A.-kf) K dk
S(w) = s’ (H ﬂ) f w? 4+ D2 kA (5.3)
k=2 k.
i=1

Inserting this expression (5.2) into Eq. (3.23) gives

v bf
Rl(l‘)Rl(f + 'H) = % H m, uw >0 (5.4)

i=1
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In order that (5.3) give the observed S(w) @ 1/w as a result, the integral
nust reduce to comething proportional to f k dk/(w® + D%*). It is clearly

impossible that any choice of » and any set of A; can achieve this result.
Furthermore the seli-covariance R,(/)R,(¢ 4+ u) corresponding to the ob-
served S(w) should depend explicitly on the way S(w) deviates from 1/w
as w goes to zero. The expression (5.4) is finite for all # > 0 and does not
depend upon any cut-off phenomena in S(w) at low frequencies. Therefore
we can exclude any physical mechanisms belonging to the class considered
here. However, since several mechanisms that have been proposed do fall
into this class, we consider them below:

(1) Schiff’s Mechanism. Schiff* considered tentatively that the fluctua-
tions in contact resistance may be due to the variation in concentration of
diffusing ions (atoms, or molecules) in a high resistance region bounded by
parallel planes of very small separation. Schiff arrived at a noise spectrum
proportional to 1/w but at the expense of disagreeing in a fundamental way
with thermodynamic fluctuation theory. Here we will show what the cor-
rect consequences of this mechanism are.

Consider that the high resistance region is bounded on either side by planes
parallel to the (a1, az)-plane and that the thickness in the wx;-direction is
very small. Now this is obviously a case of the general model just considered
in which we take » = 3 and
Ara> Du,}

(5.5)
Ay K Du,

where 1/u is of the order of magnitude of the frequencies of interest. It is
then a matter of algebraic manipulation to show that

Sw) & xD bkl _f"’ ki dky
T WA h S+ D
a2 9 2 (5'6)
_ X by ba by 1
= pirgt’ P 2 A}” A;.fz Wl
and
S X bi b by
Rl(’)Rl(t + ﬂ) = D”g 3” . (_LW)S:;!AiIi 1/2 . ’HT” u > 0‘ (5‘7)

Thus we see that Shiff’s mechanism leads to a noise spectrum proportional
to 1/w"?, not 1/w. The explanation of the singularity of the self-covariance
(5.7) at u = 0 lies in the inequalities (5.5).

21, I, Schiff, BuShips Contract NObs-34144, “Tech. Rpt. #3”, (1946). Before the
publishing of this paper, Schiff informed the writer that he has discarded this mechanism.
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The above treatment could just as well be applied to the case in which
the diffusing quantity is heat instead of ions.

(#i) Resislance of a Localized Conlact Disturbed by a Diffusing Surface
Layer. Here we consider the case of two conductors covered with diffusing
surface layers. It is supposed that the conduction from one conductor to
the other is distributed Gaussianly with a width AY2 Finally, it is supposed
that the conductivity through the above area varies with the surface con-
centration of the surface layer in that region. This situation is well repre-
sented by the above general model by taking » = 2, A, = A, = A, and
bl = bz = b.

The self-covariance is readily calculated with the result

RORGT = X. b
The corresponding spectral density is
1 xb* “cosuwdu 1 xb* _ )
Slw) = i h AT Du =z sD| S (wA/D)Ci(wA/D) 50
8a

+ sn (wA/D) (; - Si(wA/D))]

where Ci(x) and Si(x) are the cosine and sine integrals® respectively. When

w <K D/A

_ 1o
272 s"'D

5 = 05772,

Sw) ~ log (8w /D), (5.8b)

and when w 3> D/A

(5.8¢)

Thus we see that this case does not lead to the experimental form of the
spectral density. It must be remarked that here S(w) is very sensitive to
the form of the self-covariance for small .

b. Contact between Relatively Large Areas of Rough Surfaces Covered with
Diffusing Surface Layers. We consider this case in detail since it leads to
results in agreement with experiment. Furthermore, the more detailed
consideration of this case will illustrate more fully the use of the general
mathematical model, which may be of use in studying other diffusional
mechanisms should they be postulated at some future time. This mechanism
does not fall into the class just considered.

# See Jahnke and Emde, “Tables of Functions,” p. 3, Dover (1943).
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Suppose that the contact in an idealized form consists of two rough sur-
faces close together. Let positions on the surfaces be measured with respect
to a plane between the surfaces, which we will call the mid-plane. Let the
coordinate system be oriented so that the a; and x, axes lie in the mid-
plane. Furthermore let the region in the mid-plane corresponding to close
proximity of the rough surfaces be a rectangular area 4, = L; X L,. Now,
for convenience, we describe positions on the mid-plane by a two dimensional
vector ¥ = (x;, x), and henceforth it will be understood that all vector
expressions refer to this two-dimensional space. Let the distance between
the upper and lower surfaces at r be denoted by /(r). The geometry of the
above model is illustrated in Fig. 1.

Now suppose that each surface is covered by a diffusing absorbed layer,
such that the sum of the concentrations on both surfaces is ¢(r, {) at the
time ¢ in the neighborhood of r. Now consider the conduction of current
between the surfaces. Let us assume that the conductance per unit area
(of mid-plane) is a function of the separation / of the surfaces and the total
concentration ¢ of absorbate near the point in question, i.e., F(k, ¢). The
total conductance will be the sum of the conductances through each element
of area: hence, the instantanecous resistance R(/) at time { will be given by

i

1/R()) = f R0, clr, 0) dr (5.9)

where dr is the differential area on the mid-plane and the integration extends
over the rectangle 4, = L, X L,. Behind the above statements lies the
tacit assumption that the radii of curvature of the rough surfaces are gen-
erally considerably larger than the values of i However, we will not explic-
itly concern ourselves with this implied restriction.

At this point it is expedient to imagine that we have an ensemble of con-
tacts identical in all respects except for different variations of the separa-
tion k(r). If we have any function of %, ¢ (k) say, which we wish to average
with respect to the variations of /, we simply average the function over the
above ensemble giving a result which we denote by y (k) “.

Now let us write

h(r) = RO + In(r), (5.10)
and, as before,
R =
(1) = B+ R(), (5.11)
cr,) =¢+ o, 1).

We assume that the ensemble average £’ and the time averages R and &
are constants independent of r and /. Let us also assume that the integrals
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of hy(r) and ¢ (7, 1) over A vanish. Inserting (5.10) and (5.11) into (53 9) and
expanding, we get

1/R — R(O/B + -+ = A, FU, ¢

+(§r£) [t  dr + (ah) [ e ar + (5.12)

where the super zero on the derivatives indicates that they are evaluated at
h = 5 and ¢ = & In accordance with previous approximations in this
memorandum we neglect? terms of the order of ¢; and R} . We also neglect
terms of the order of 4} . After taking the time average of (5.12) and sub-
tracting the result from (5.12) we get

fA 1@, ) dr,

alt® (1), (5.13)

FF\°
~(3iae)

Thus we now have a special case of our general mathematical model for the
number of dimensions » = 2, provided that we assume that the total con-
centration ¢ on both of the rough surfaces fluctuates in the same manner as
the concentration of a single adsorbed layer confined to a plane rectangular
surface. The spectral density S(w) of Ry(f) is then given by Eq. (3.17) which
we repeat here

R0

i

I

2 xd.D ¥ K z
S(w)=1_r.x";D ]fk[

T ot D (5.14)

where k is a two-dimensional vector whose components take the values
ki = 2mni/Li,n; =0, = 1, & 2, -- -, and where f are the Fourier space-
amplitudes of f(r) given by

fo = AT fA T dr,

It may be appropriate at this point to consider the quantity s” in detail

for this particular case. If the energy e per unit area is independent of ¢,
a2

we have s” = — Py evaluated at ¢ = ¢ where s is here the entropy of the

absorbate per unit area. For the sake of illustration let us consider a single

layer of absorbate in which the molecules are non-interacting. If ¢, the sur-

2 We neglect these terms not because they are small compared with ¢; or ha but,
because they are non-fluctuating (in time), are hence to be compared with 1/R.
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face concentration of the absorbate, be measured in molecules (atoms, or
ions) per unit area, then, for the ideal system above, it follows that s = —x
¢ log ¢ and finally that s = x/¢. However, in the mechanism discussed in
this part we have a compound system consisting of two separate layers on
the upper and lower surfaces respectively. Nevertheless, a detailed analysis
reveals that with ¢ equal to the sum of the concentrations of both layers
we still have s” = x/z even though s itself is no longer given by an expres-
sion the same as that above. In conclusion let us consider the factor x/s”
in Eq. (5.14). This factor is under the above idealization simply equal to
¢. That is, the spectral density S(w) is directly proportional to the average
concentration of absorbed molecules, meaning simply that each molecule
makes its contribution to the resistance fluctuations independently of the
others. Of course, in any real system this will not be quite true; however,
the existence of interactions will be manifested only by making x/s” not
equal to ¢ in Eq. (5.14).

The results quoted thus far apply to a system with a given /(r). Now we
shall average the right-hand side of Eq. (5.14) over the ensemble of varia-
tions of k(r), it being supposed that S(w) itself on the left-hand side will
be negligibly affected by this operation. This amounts to replacing | f |2

by | |2m. We then have
|k

where /i, are the Fourier space-amplitudes of /().

* = ot T (5.15)

. — )
We now consider more closely the problem of calculating [ie[F . We want
to assume that /;(r) is a more or less random function of r. If /5(r) were a
random function of 7 in the same way that the thermal noise voltage is a

. . — (@ ]
random function of the time ¢, then | /i, |* ~ would be a constant independent
P

of k and the self-covariance )‘u(r)kl(r’)m would vanish for r # r’. This
clearly cannot be so, since the function /(r) with such statistical properties
would represent a highly discontinuous type of surface incapable of physical
existence, We then fall back upon the more reasonable assumption that the
gradient of I, possesses statistical properties of the above type. This notion
is precisely formulated by means of the following equations:

Vi) = p() (5.16)
where
[ poyar =0, (5.17)

and

OB = Blaer — 7). (5.18)
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In Eq. (5.18) 8 is a parameter (with the dimensions of area) characterizing
the amplitude of the surface roughness, and 1 is the unit tensor in two di-
mensions. Expressing (5.16) in terms of the Fourier space-amplitudes hg
and py of /; and p respectively, we have

—ikhy = pr, (5.19)
giving finally
W(e) _ k-ﬁﬁ‘m R/ (5.20)
Expressing (5.18) in terms of Fourier space-amplitudes we get
Pk = BAT Lowe, (5.21)

which, when inserted into (5.20) gives the following desired result:
TP = pAz* k™ (5.22)

Now replacing | /¢ |* by| f& |3m in Eq. (3.14) and substituting the ex-
pression (5.22) with the use of Eq. (5.15), we obtain

2 xD an 1
S) = -5 Ba’R ; T DR (5.23)
If the frequencies of interest are larger than a certain characteristic frequency
wo = 4x* D/L* where L is the smaller of L, and L., the summation in
(5.23) may be replaced by an integration giving finally

k dk

_ 20 2054 4 - -
S(w) = xD/x's" - a Bl A fo ! + D% (5.24)

= x/41rs"-,@oz21-t¢A2- 1/w

This result is in agreement with experiment in most respects. The dependence
on frequency is, of course, that experimentally observed by all investigators.
The non-dependence on the voltage applied across the contact is implied
by the basic assumptions common to all of the mechanisms considered here,
and is in approximate agreement with the results of Christensen and Pearson
(see Eq. (1.2)). For our result to agree with the results of CP as regards the
dependence on the average resistance® I, the factor ¢*l* Ay must be pro-
portional to E** where b ~ 1.25. These authors also imply that some of

25 Tt must be remembered that the resistance B in the CP formula is the total contact
resistance equal to sum of the gap resistance and the spreading resistance, whereas the B
in our theory evidently should be considered the gap resistance. For the purposes of com-

parison we make the ad hoc assumption that the gap resistance is proportional to the total
contact resistance.
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the parameters necessary to complete the description of a contact between
given substances at a given temperature show up implicitly only through
R. According to our theory the factor a2 /¢ A, does not depend in any unique
way upon F; it matters by what means R is varied. If the resistance B is
changed by altering the contact area A, keeping other parameters fixed,
we would find that B4 is constant so that the factor in question would be
proportional to %, that is, b = 1. However, if & is changed by varying the
contact pressure, the effect would show up through the factor a?, (3 also,
to some extent, perhaps) and, since one would expect @ to increase somewhat
with pressure whereas R decreases with pressure, the factor of interest would
probably depend upon some power of E between 3 and 4, thatis, 1 < b < 2.

The theory formulated here suffers from the difficulty that the integral
of the power spectrum with respect to frequency is logarithmically divergent
at0and o, thatis

wa wy
f S(w) dw = f dw w=log (ws/w)) — ® as w; —0and ws— .,
@l @l

The divergence at o does not bother us as much as the divergence at 0
since, with only a divergence at «, the self-covariance R;({)R,(¢ + ) exists
for all non-vanishing values of #; whereas, with a singularity at 0, the self-
covariance does not exist for any value of #. For this reason we cannot con-
sider the self-covariance here. In Part ¢ of this Section we consider a possible
way of removing the divergence at 0, and consequently, then, we are able
to calculate the self-covariance for non-vanishing values of #.

c. Refinement of the Theory of Part b. Here we propose a simple modifi-
cation of the model of Part b, removing the divergence of the integral of
S(w) at w = 0. The modification considered here, although it is one of several
possibilities any one of which is sufficient for removing the divergence
(See Section 6.), is perhaps the only one that is sufficiently simple to treat
in a memorandum of this scope. The results of this section are thus intended
to be only provisional and suggestive.

Let us reconsider the statistics of the function 2(r) giving the separation
between the surfaces near a point r on the mid-plane. The distribution of
I’s considered in the last section is open to several criticisms: (1) it possesses
no characteristic length parallel to the mid-plane; and (2) the self-covariance
(1) (r') does not exist for any value of r — 7'.

To correct partially for these difficulties we replace Eq. (5.22) by

Bt

L]
—_— (e)
P b= b
e e =

(5.25)

where { is a new characteristic length. The self-covariance kl(r)in(r’)(e)
based upon (5.25) now exists for all values of r — 1’ except 0. Thus we still
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_ L) L N
have the objection that the variance/} “ is infinite; however, this will

cause us no trouble.
With Eq. (5.25) instead of (5.22) the spectral of density R, takes the form

- R 3 k dk
S(w) = XD/T"23 *Ba R4 - h 1+ 2R ) + Dot
= (x/4ns")-Be’ R'Ax1/w-Q(y), L (5.26)
2
y (y — - log :v) ,
0B) = =55 =D

In obtaining the above equation we have made the usual assumption that
the frequencies of interest are larger than wo = 472D/ L2 and have replaced
the original sum by an integral. The function Q(y) has the following proper-
ties:
0) ~ —2ylogy for y< 1'1
™ (5.27)
Q(y) ~1 for y>1 J
Hence for w K D/, 5(w) « log w, the integral of which converges as w — 0;
whereas, for w 3> D/, S(w) differs negligibly from that given by the unre-
fined theory (Eq. (5.24)).
The self-covariance Ry(f) R;(t + ) now exists for all non-vanishing # and
is given by
© 52 e—Dukzicdk
1+ &8 (5.28)
= (x/Ans")-Ba’ B'4,- BD"‘rﬂ[—Ei( —Du/th]

R()R:(t + u) = (x/2ms"")-Ba’ B'As - A

where

—FEi(—x) =f e’ duv/v,

z

~ —logyx for 2<1,
~% for x> 1,
x
y = 0.5772.
Thus for # < £2/D, Ri()R\(t + u).oz — log (yDu/£) and for u > £*/D,

R(OR( + u) a 1/



LINEAR THEORY OF FLUCTUATIONS 137

Thus we have illustrated how one modification of the model has removed
the divergence at w = 0.

It appears from the treatment here and in part b that roughness and
diffusion in two dimensions are essential (at least in a linear treatment)
features in obtaining S(w)a 1/w. In the case of a non-linear coupling (to be
considered in a later paper) a “self-induced” roughness effect may occur
without introducing roughness ab initio as an intrinsic feature of the model.

6. SUMMARY

(a) If the resistance deviation R;(¢) is related to the concentration devia-
tion ¢,(r, 1) of a diffusing medium (particles or heat) by the linear functional

R() = f fDalr, 1) dr, 6.1)

where r is a vector and dr a volume element in a »-dimensional space of
volume A, , then the spectral density S(w) of Ry(f) is
_2xAD Elfel

S(w) = 2 Y ST DR (6.2)
where D is the diffusion constant, s” is defined by Eq. (3.14), x is the Boltz-
mann constant, w is the frequency (in radians per sec.), & is the wave number
vector in v-dimensional k-space limited to a discrete lattice of points (defined
by Eq. (3.2)) over which the summation is taken, and f is the kth Fourier
component of f(r) (Eq. (3.3)).

(a) If the important terms in (6.2) vary slowly between lattice points in
k-space (true if w > wp given by Eq. (3.18)), then (6.1) can be replaced by
the integral

vl v—1 X_D | /(&) '2132 dk

Slw) = 2o -

7 | o DR (63)

where the integration extends over the entire k-space and where f(k) is
given by (Eq. 3.20)

1 ik
10 = s L e ar. (6.4)

(b) Let w’ be a frequency in the middle of a wide range. Suppose | f(k) |2
averaged over the total solid angle in »-dimensional k-space is proportional
to ™', where n is an integer, in a wide range of k with & = +/ w'/D in its
middle. It follows then that S(w) « D™""* & ™" a5 long as —1 < 2n
+ » 4+ 1 < 3. As a consequence, we see that with »# an integer (as is true for
the simple cases considered in Section 5) » must be 2—the only even di-
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mensionality—in order that S(w) be inversely proportional to w in agree-
ment with experiment. In this case the only allowed value of # is —1.

(c) From (b) we have the interesting result that S(w) is independent of D
when it is inversely proportional to w. This means that very slowly diffusing
substances can contribute as much to contact noise as rapidly diffusing
substances. This result can be derived on quite dimensional grounds and is
not dependent upon the special assumptions underlying our treatment.

(d) A system comprising a high resistance layer modulated by the three-
dimensional diffusion of particles or heat gives S(w) = w™ ~'%, See Case a.(i)
in Section 5.

(e) In a system composed of a localized contact disturbed by a diffusing
surface layer (See Case a.(ii), Section 5), the self-covariance Rl (OR(E + u)
is inversely proportional to A 4+ Du where A may be considered the contact
area. We have S(w) « — log a + const. for @ < D/A and S(w) « w™*
for w >> D/A.

(f) In a system involving the contact between relatively large areas of
rough surfaces covered with diffusing surface layers (Cases b. and c., Section
5), we have been successful in obtaining S(w) = w™, and also in obtaining
a reasonable dependence upon the average resistance.

APPENDIX 1

SPECTRAL DENSITY AND THE SELF-COVARIANCE

Here we consider in detail the spectral density, the self-covariance, and
the relation between these two quantities, first for the case of a single random
variable. The treatment is subsequently extended to the case of a set of
random variables which necessitates the consideration of the spectral density
matrix and the covariance matrix. .

Let y(/)be a real random variable whose time average vanishes, y(t) = 0.
Now the m.s. value of y can be defined

2 - 1 e 2
y () = Lm - y(t, ) di (I-1)

7= T J—pn

where y(f, 7) = »(!) in the interval —% <t < % and vanishes outside this

interval. Evidently y(t, 7) can be expressed by the Fourier integral
e _
ymf)=_[ 5w, 7)™ do (1-2)

where

1 e _
a%a=ﬂ£m)wyma
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By Parseval’s theorem we obtain
+eo ) +o .
[ y () dl = 2=x [ | y(w, 7) | dw,

which, when combined with (I-1), gives finally the desired result (using
the fact that | y(w, 7) |*is an even function of w)

YO = [ ¥ do (1-3)
where
V(o) = dr thg% | 3w, ) [ (14)

is the spectral density.
By a procedure not very different from the preceding, one can show that

y(y(t + u) = fnm V(w) cos wit dw, (1I-5)

V(w) = % f y(Oy(t + u) cos wu du. (1-6)

The quantity (y()y(¢ + u) is called the self-covariance.

Now let us suppose that we have a set of random variables y;(¢) which are
in general complex and whose time averages vanish. We are then led to
consider, instead of (I-3), relations of the form

300 = [ Vi) de (1-7)
0
where now
1
Vifw) = 2r Lim = [yi(w, Dy (e, 7) + (=@, Dyi(=w, D] (I:8)
in which

1 prem )
o = [ i

2m Joere

Instead of self-covariances like v(/)v(/ + ) we have to consider a covari-

ance matrix of the form y;(/)y; (! + u). Since we shall not have occasion in
this paper to consider the relation between the spectral density matrix and
the covariance matrix we will not consider the derivation of the analogue of

Eq. (I-5).
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APPENDIX II

THERMODYNAMIC THEORY OF FLUCTUATIONS

The value of the quantity ¢,(r, £)ei (1, £) or (cx(t)crr (D) is determined from
equilibrium considerations. Before going into the above continuum problem
let us first consider the problem for the case of a system described by a finite
set of variables. More specifically let us suppose that the state of the system
subject to certain restraints (i.e. fixed total mass and energy) is described
by the set of variablesay , - - - , ¥, . Let the equilibrium state be given by the
values x) TR X , and let

xi= 25+ . (I1-1)

If the system is constrained to constant average energy E, the entropy of the
non-equilibrium state S = S° + AS will be less than S, the entropy of the
equilibrium state, by an amount

a5 = —3 T Suasas, (11-2)
7

S__:_(a”s) +L(62E)
v 82 0%/ z,~%  T° \0%; 0%/ 2,=a)

Obviously, AS must be the negative of a positive definite quadratic form,
otherwise the equilibrium state would not be a state of maximum entropy.
The probability distribution® for the ’s is given by

Play, - ,an) = N (11-3)

where IV is a normalization factor and x is the Boltzmann constant. Averag-
ing the products a; o; we find that

2 Siajoan = xdu. (I1-4)
7

where

Multiplying (IT-4) by the arbitrary set ¥; and summing over i we get
> ¥iSii o = X¥e. (11-5)
L¥)

The generalization to a system described by a continuous set of variables
is not difficult on the basis of (II-5). Now suppose that, in a »-dimensional
space A, , we have a system whose state at time / is defined by the continuous
set of values of the variable ¢c(r, 1) = ¢ + (7, £); we have

AS = -lf s ci(r, 1) dr (11-6)
204, .

26 H. B. G. Casimir, Rev. Mod. Phys. 17, Nos. 1 and 3, 343-4 (1945).
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o (s 1 [
"= (5’)5 + T“(a_)

when s and e are the entropy and energy, respectively, per unit volume (of
v-dimensional space). In calculating (II-6) it was assumed that

where

f C](T, [) dr = 0,
4,

expressing the fact that the system is closed. In order to put (II-6) into a
form strictly analogous to (II-2) we write it

AS = _% f $8(r — Malr, Dal, ) drar. (111
4, J4

We see that the equation analogous to Eq. (II-5) must be
f f (s 8(r — "oy, Dalr, i) drdr’ = xy(r)  (II-8)
A v v

where v(r) is an arbitrary function. Integrating (II-8) with respect to r'’
and using the fact that the delta function is defined by

[vts =1 ar = 4
we readily arrive at the result
alr, Da(r', ) = 31,, (r — r'). (I1-9)

Using the Fourier space-expansions of Cy and &(r)

alr, i) = ;’ cx(e™,

0 = L3 o
v k

in the region 4, = L;X .-+ XL, with k; = 2mn;/L;, we can write (II-9)
over into the equivalent expression:

ce(Dek(t) = A—xs—,, dkke (11-10)

where

(1 if &=k,
ékk’ = .
0 otherwise.



