A New Type of High-Frequency Amplifier
By J. R. PIERCE and W. B. HEBENSTREIT

This paper describes a new amplifier in which use is made of an electron flow
consisting of two streams of electrons having different average velocities.
When the currents or charge densities of the two streams are sufficient, the
streams interact to give an increasing wave. Conditions for an increasing
wave and the gain of the increasing wave are evaluated for a particular geometry
of flow.

.

1. INTRODUCTION

N CENTIMETER range amplifiers involving electromagnetic resonators
or transmission circuits as, in klystrons and conventional traveling-wave
tubes, it is desirable to have the electron flow very close to the metal circuit
elements, where the radio-frequency field.of the circuit is strong, in order
to obtain satisfactory amplification. It is, however, difficult to confine the
electron flow close to metal circuit elements without an interception of elec-
trons, which entails both loss of efficiency and heating of the circuit elements.
This latter may be extremely objectionable at very short wavelengths for
which circuit elements are small and fragile.

In this paper the writers describe a new type of amplifier. In this ampli-
fier the gain is not obtained through the interaction of electrons with the
field of electromagnetic resonators, helices or other circuits. Instead, an
electron flow consisting of two streams of electrons having different average
velocities is used. When the currents or charge densities of the two streams
are sufficient, the streams interact so as to give an increasing wave. Electro-
magnetic circuits may be used to impress a signal on the electron flow, or to
produce an electromagnetic output by means of the amplified signal present
in the electron flow. The amplification, however, takes place in the electron
flow itself, and is the result of what may be termed an electromechanical
interaction."”

While small magnetic fields are necessarily present because of the motions
of the electrons, these do not play an important part in the amplification.

!Some _electro-mechanical waves with a_similar amPlifying effect are described in
“Possible Fluctuations in Electron Streams Due to Ions,” J. R. Pierce, Jour. App. Phys.,
Vol. 19, pp. 231-236, March 1948.

2 While this paper was in preparation a classified report by Andrew V. Haeff entitled
“The Electron: Wave Tube—A Novel Method of Generation and Amplification of Micro-
wave Energy’’ was received from the Naval Research Laboratory. Dr. Haeff’s report
(now declassified) contains a similar analysis of interaction of electron streams and in
addition gives experimental data on the performance of amplifying tubes built in ac-

cordance with the new principle. We understand that similar work has been done at the
RCA Laboratories.
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The important factors in the interaction are the electric field, which stores
energy and acts on the electrons, and the electrons themselves. The charge
of the electrons produces the electric field; the mass of the electrons, and
their kinetic energy, serve much as do inductance and stored magnetic
energy in electromagnetic propagation.

By this sort of interaction, a traveling wave which increases as it travels,
i.e., a traveling wave of negative attenuation, may be produced. To start
such a wave, the electron flow may be made to pass through a resonator or a
short length of helix excited by the input signal. Once initiated, the wave
grows exponentially in amplitude until the electron flow is terminated or
until non-linearities limit the amplitude. An amplified output can be ob-
tained by allowing the electron flow to act on a resonator, helix or other
output circuit at a point far enough removed from the input circuit to give
the desired gain. :

There are several advantages of such an amplifier. Because the electrons
interact with one another, the electron flow need not pass extremely close
to complicated circuit elements. .This is particularly advantageous at very
short wavelengths. Further, if we make the distance of electron flow
between the input and output circuits long enough, amplification can be
obtained even though the input and output circuits have very low imped-

“ance or poor coupling to the electron flow. Even though the region of
amplification is long, there is no need to maintain a close synchronism
between an electron velocity and a circuit wave velocity, as there is in the
usual traveling-wave tube.

A companion paper by Dr. A. V. Hollenberg of these laboratories describes
an experimental “double stream” amplifier tube consisting of two cathodes
which produce concentric electron streams of somewhat different average
velocity, and short helices serving as input and output circuits. No further
physical description of double stream amplifiers will be given in this paper.,
Rather, a theoretical treatment of such devices will be presented.

2. SMmPLE THEORY

For simplicity we will assume that the flow consists of coincident streams
of electrons of d-c. velocities #; and u. in the x direction. It will be assumed
that there is no electron motion normal to the x direction. The treatment
will be a small-signal or perturbation theory, in which products of a-c.
quantities are neglected. M.K.S. units will be used. All quantities will
be assumed to vary with time and distance exp j(w! — 8x). The wavelength
in the stream, A, , is then related to 8 by

B = ZW/AI (1)



HIGH-FREQUENCY AMPLIFIER 35

The following additional nomenclature will be used:

€ dielectric constant of vacuum
e = 8.85 X 1072 farad/meter
7 charge-to-mass ratio of the electron
n = 1.76 X 10" coulomb/kilogram
Ji, J2 d-c. current densities
Uy, Uz d-c. velocities
po1, po2 d-c. charge densities
porL = —J/uy, por = —Jo/us
p1, P2 a-c. charge densities
71, U2 a-c. velocities
Vi, V2 d-c. voltages with respect to the cathode
V a-c. potential

Br = w/u1, B2 = w/us

Although the small-signal equations relating charge density to voltage V'
have been derived many times, it seems well to present them for the sake
of completeness. For one stream of electrons the first-order force equation is

du EELI vy _ 90 V

N T TR i
(w — By, = —nBV
—nBV
o= — 2
1= =) (2)
From the conservation of charge we obtain to the first order
9 0
ai; = - a (Pom + PL“!)
wp1 = pofnn + wiBpy
_ puBo
p ul(.@1 - 08)
7 :

P T e - B)
From (2) and (3) we obtain
1BV

PL= (e — B)

BV
P27 ua(. — B
It will be convenient to call the fractional velocity separation b, so that
2(y — g)
p = At — e 6
u + Uy (6)

(4)
We would find similarly

(5)
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It will also be convenient to define a sort of mean velocity #o

20ty Up
= 7
it w )
We may also let Vg be the potential drop specifying a velocity #, , so that
Uy = \/ﬂﬁ (8)
It is further convenient to define a phase constant based on %,
w
=2 9
Bo ™ (9)
We see from (6), (7) and (9) that
B = Bo(1 — b/2) (10)
Bz = Bo(1 + 8/2) (11)
We shall treat only a special case, that in which )
Jo J2 T
S=3=13 (12)

L3 Us ﬂg
Here J, is a sort of mean current which, together with u,, specifies the
ratios Jy/2% and J»/13 , which appear in (4) and (5).
In terms of these new quantities, the expression for the total a-c. charge
density p is, from (4) and (5) and (8)

JoB*

2’“0 Vu

p=p+p=
i 1 (13)

(=9 -] [0+ 1)

Equation (13) is a ballistical equation telling what charge density p is
produced when the flow is bunched by a voltage V. To solve our problem,
that is, to solve for the phase constant 8, we must associate (13) with a
circuit equation which tells us what voltage V' the charge density produces.
We assume that the electron flow takes place in a tube too narrow to propa-
gate a wave of the frequency considered. Further, we assume that the
wave velocity is much smaller than the velocity of light. Under these
circumstances the circuit problem is essentially an electrostatic problem.
The a-c. voltage will be of the same sign as, and in phase with, the a-c.
charge density p. In other words, the “circuit effect” is purely capacitive.

Let us assume at first that the electron stream is very narrow compared
with the tube through which it flows, so that V may be assumed to be con-
stant over its cross section. We can easily obtain the relation between
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V and p in two extreme cases. If the wavelength in the stream, A, , is
very short (8 large), so that transverse a-c. fields are negligible, then from
Poisson’s equation we have

i 4
p = nax2
p=ealV (14)

If, on the other hand, the wavelength is long compared with the tube radius
(8 small) so that the fields are chiefly transverse, the lines of force running
from the beam outward to the surrounding tube, we may write

p=CV (15)

>

ﬁ/ﬂo_..

Fig. 1—A “circuit” curve for a narrow electron stream in a tube. The ratio of the a-c.
charge density p to the a-c. voltage V produced by the charge density is plotted vs. a
parameter 8/8o , which is inversely proportional to the wavelength A, in the flow. Curve 1
holds for very large values of 8/8 ; curve 2 holds for very small values of 8/8; , and curve
3 over-all shows approximately how p/V varies for intermediate values of 8/8; .

Here C is a constant expressing the capacitance per unit length between the
region occupied by the electron flow and the tube wall.

We see from (14) and (15) that if at some particular frequency we plot
p/V vs. B/Bq for real values of 38, p/V will be constant for small values of 8
and will rise as §* for large values of 8, approximately as shown in Fig. 1.
For another frequency, 8, would be different and, as p/V is a function of B,
the horizontal scale of the curve would be different.

Now, we have assumed that the charge is produced by the action of the
voltage, according to the ballistical equation (10). This relation is plotted
in Fig. 2, for a relatively large value of Jo/#V, (curve 1) and for a smaller

value of Jo/usV, (curve 2). There are poles at 8/ = 1 + —z , and a mini-

mum between the poles. The height of the minimum increases as Jo/#oV
is increased.
A circuit curve similar to that of Fig. 1 is also plotted on Fig. 2. We see
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that for the small-current case (curve 2) there are four intersections, giving
four real values of 8 and hence four unattenuated waves. However, for the
larger current (curve 1) there are only two intersections and hence two
unattenuated waves. The two additional values of @8 satisfying both the
circuit equation and the ballistical equation are complex conjugates, and
represent waves traveling at the same speed, but with equal positive and
negative attenuations.

Q>

. -
0 of 02 03 04 05 06 07 08 09 1.0 1.1 1.2 1.3 1.4 1.5 1.8
B/Bo

Fig. 2—Curve 3 is a circuit curve similar to that of Fig. 1. Curves 1 and 2 are based
on a ballistical equation telling how much charge density p is produced when the voltage
V acts to bunch a flow consisting of electrons of two velocities. The abscissa, 8/8,
is proportional to phase constant. Intersections of the circuit curve with a ballistical
curve represent waves. Curve 2 is for a relatively small current. In this case inter-
sections occur for four real values of 8, so the four waves are unattenuated. For a larger
current (curve 1) there are two intersections (two unattenuated waves). For the other
two waves 8 is complex. There are an increasing and a decreasing wave.

Thus we deduce that, as the current densities in the electron streams are
raised, a wave with negative attenuation appears for current densities -
above a certain critical value.

We can learn a little more about these waves by assuming an approximate
expression for the circuit curve of Fig. 1. Let us merely assume that over
the range of interest (near /80 = 1) we can use

p = a’eBV (16)

Here o is a factor greater than unity, which merely expresses the fact that
the charge density corresponding to a given voltage is somewhat greater
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than if there were field in the x direction only and equation (11) were valid.
Combining (16) with (13) we obtain

1 1 1

(== w(e)-) AT @

Jo

= 2 2
2 EoﬁouuVo

where

U (18)

In solving (17) it is most convenient to represent 8 in terms of B and a
new variable &
B = Bu(1 + 4) (19)
Thus, (14) becomes 7
1 1

1
2 + 3 = T3

Solving for é, we obtain

[ ) T

The positive sign inside of the brackets always gives a real value of &
and hence unattenuated waves. The negative sign inside the brackets
gives unattenuated waves for small values of U/b. However, when

(%) >1 (22)

there are two waves with a phase constant 8y and with equal and opposite
attenuation constants.

Suppose we let I/ y be the minimum value of U for which there is gain.
From (22),

Uur = b*/8 (23)

From (21) we have for the increasing wave

AR )T

The gain in db/wavelength is
db/wavelength = 20(27) logio e | 8 | (25)

546 |5 |

Il
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We see that by means of (24) and (25) we can plot db/wavelength per
unit b vs. (U/Ux)?. This is plotted in Fig. 3. Because U? is proportional
to current, the variable (U/U x)? is the ratio of the actual current to the
current which will just give an increasing wave. If we know this ratio,
we can obtain the gain in db/wavelength by multiplying the corresponding
ordinate from Fig. 3 by &.

30
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Fig. 3—The parameter (W/W y)? = ((U/U 5 )%isproportional to current. As the current
is increased above a critical value for which (W/W x)? = 1, there is an increasing wave of
increasing gain. In this curve the gain per wavelength per unit b, called F(W /W )3 is

plotted vs. (W/Wy)* For large values of (W/W )2, F(W /W )? approaches 27.3 and the
gain per wavelength approaches 27.3 b.

We see that, as the current is increased, the gain per wavelength at first
rises rapidly and then rises more slowly, approaching a value of 27.3b
db/wavelength for very large values of (U/Ux)"

We now have some idea of the variation of gain per wavelength with veloc-
ity separation b and with current (U/Ux)*. A more complete theory would
require the evaluation of the lower limiting current for gain (or of U%) in
terms of physical dimensions and an investigation of the boundary condi-
tions to show how strong an increasing wave is set up by a given input
signal. The latter problem will not be considered in this paper; the former
is dealt with in the third section and in the appendix.



HIGH-FREQUENCY AMPLIFIER 41

3. DEsigcN CURVES

It is proposed to present in this section material for actually evaluating
the gain of the increasing wave for a particular geometry of electron flow.
In this section there is some repetition from earlier sections, so that the
material presented can be used without referring unduly to section 2. In
order to avoid confusion, much of the mathematical work on which the
section is based has been put in the appendix.

The flow considered is one in which electrons of two velocities, %, and %, ,
corresponding to accelerating voltages ¥; and V,, are intermingled, the
corresponding current densities J, and J» being constant over the flow.
The flow occupies a cylindrical space of radius a. It is assumed that the
surrounding cylindrical conducting tube is so remote as to have negligible
effect on the a-c. fields.

It will be assumed, according to (12), that the current densities and the
voltages V; and V, are specified in terms of a “mean” current J, and a
“mean” voltage V, corresponding to a velocity g, by

oo T2 Jo
V?fz = ng = 312 (123-)

The gain will depend on the beam radius, the free-space wavelength A,
and on Joand ¥V, , and on the fractional velocity separation

_ 2wy — )
b= u + (6)

The wavelength in the beam, A, , which is associated with the voltage
Vy is given by

A = \ Mo _ )\__\/Q’TV"
c (A
A = 1.98 X 107°A /7, (26)

Here ¢ is the velocity of light.
A dimensionless parameter W is defined to be

s Jo
ﬂ = E = éom,m2 (27)
J
W = 852 X 105f\/"v0. (28)

Here w, is the electron plasma frequency associated with the average space
charge density Jo/uo, and w is the radian frequency corresponding to the
wavelength \. In (28), the constant is adjusted so that J, is expressed in
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amperes per square centimeter rather than in amperes per square meter,
while f is expressed in megacycles.

Below a minimum value of W, which will be called W, , there is no gain.
W a is a function of the velocity separation b and of the ratio of the beam
radius a to the beam wavelength, \,. A plot of (W /b)? as a function of
(a/\,) is shown in Fig. 4. 7

The variation of gain in the interval, W, < W < =, is shown in Fig. 3
where “Decibels gain/wavelength/unit 5” is plotted as a function of
(W/W ):. This is the same curve which was derived in section 2. The
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Fig. 4—As the ratio of beam radius @ to wavelength in the beam, A, , is increased, the
critical value of W, W , decreases and less current is needed in order to obtain gain.
Here (W /)2, which is called H(a/\s), is plotted vs. (a/Xs).

~_

ratio (W /W y)? is the same as the parameter (/U y)* used there, although
U and W are not the same.

The curve in Fig. 3 is useful in that it reduces the interdependence of a
large number of parameters to a single curve. However, there are cases as,
for example, when one is computing the bandwidth of an amplifier, in which
it would be more convenient to have the curve in Fig. 3 broken up into a
family of curves. We can do this by the following means:

We can write the gain in db/wavelength in the form

db/wavelength = bF(W/W y)* (29)
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Here F(W /W y)? is the function plotted in Fig. 3. If ¢ is the total length
of the flow, the total gain in db, G, will thus be

G = %‘Zlev(W/WM)2 (30)

We will now express (W /W x)* in such a form as to indicate its dependence
on wavelength in the beam,\, . We can write from (27)

ws A
IV = E = A—E (31)
Here A, is a “‘plasma wavelength,” defined by the relation
Uo
Ae = —— 32
= (on/2m) (32)
We further have .
W = b*H(a/),) (33)
Here H(a/\,) is the function of (a/A,) which is plotted in Fig. 5.
30
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Fig. 5—In these curves the total gain in db, G, divided by the ratio of the length £ to
the plasma wavelength X, is plotted vs. bw/w., which is proportional to frequency, for
several values of the parameter (a/b\,)%. Changing &, the velocity seperation, changes
both the parameter and the frequency scale.

Now, from (26), (27), and (29) we can write

(O @)

For a given tube the parameters (£/\.) and (a/b\.) do not vary with fre-
quency, while (a/\,) is proportional to frequency. Hence, we can construct
universal frequency curves by plotting G/(£/X,) vs. (a/A,) for various values
of the parameter (a/b\,). Tt is more convenient, however, to use as an
abscissa b\,/A, = bw/w, , and this has been done in:Fig. 5.
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In order to use these curves it is necessary to express the parameters
bw/ws ,Aeand (a/b\,)?in terms of convenient physical quantities. We obtain

bo/we = 545 X 107° bV w/ 7"
he = 2.04 X 1025/ J" (35)
(a/bN)? = 767 Io/b2V*"?

Here I, is current in amperes and J, is in amperes / cm .

The broadness of the frequency response curves of Fig. 5 is comparable
to that of curves for helix-type traveling-wave tubes.

It is interesting to note that the maximum value of G/(£/\,) varies little
for a considerable range of the parameter a/b\, , approaching a constant
for large values of the parameter. This means that, with a beam of given
length, velocity and charge density, one can obtain almost the same opti-
mum gain over a wide range of frequencies simply by adjusting the velocity-
separation parameter b.

4. CoNCLUDING REMARKS

There is a great deal of room for extension of the theory of double-stream
amplifiers. This paper has not dealt with the setting up of the increasing
wave, nor with other geometries than that of a cylindrical beam in a very
remote tube, nor with the effect of physical separation of the electron streams
of two velocities nor with streams of many velocities or streams with con-
tinuous velocity distributions.

This last is an interesting subject in that it may provide a means for deal-
ing with problems of noise in multivelocity electron streams. Indeed, it
was while attempting such a treatment that the writers were distracted by
the idea of double-stream amplification.

APPENDIX

DEerivatioNn oF Resurrs USED IN SECTION 3

Consider a double-stream electron beam whose axis coincides with the
z-axis of a system of cylindrical coordinates (r, ¢, z) and which is subject to
an infinite, longitudinal, d-c. magnetic field. The radius of the beam isa
and each of the streams is characterized by d-c. velocities, #; and %z , which
are vectors in the positive z direction, and d-c. space charge densities, poz
and ppz. All d-c. quantities are assumed to be independent of the coor-
dinates and time, except, of course, for the discontinuities at the surface of
the beam. Small a-c. disturbances are superimposed upon these d-c. quanti-
ties and they are small enough so that their cross products can be neglected
compared with the products of d-c. quantities and a-c. quantities. It is
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further assumed that only those a-c. quantities are allowed which have no

azimuthal variation, that is, t—,:—o = (0. Fig. 6 shows the electron beam.
Outside the beam the appropriate Maxwell’s equations are

19 k

y 5’: (rH,) =17 ;ﬂ E, (A'l)
0H, _ .k B
i (A-2)

oE. oE,

0L _ 0Ly _ 3

or a5~ JrmHe (A-3)

where
E=2 (A-4)
¢

N = 1/53 = 377 ohms (A-5)
0

Inside the beam, equations (A-2) and (A-3) remain the same, but instead
of equation (A-1) we have

10 .k
- = (pr) =17 —E, 4+ (7)1 + 2 (A'ﬁ)
r or Mo

where g; and g, are the first order a-c. convection current densities of the two
streams. These quantities can be calculated from the force equation and
the equation for the conservation of charge. Assuming that all a-c. quanti-
ties vary as exp j(wf — B8z), the force equation is (for stream number one, say)

Jwvy — jBuwy = —(e/m)E, (A-7)
and the equation for the conservation of charge is
JBporvs + jBuipy = +jwpr (A-8)
Equations (A-7) and (A-8) can be solved forv;and py @
- (e/m)El :
"= "7 N\
) B (A-7a)
1 = F
7@ ( .31)
_ Bpor
P = ( ﬁ) n (A-Sa.)
P
1
where
Br=—



46 BELL SYSTEM -TECHNICAL JOURNAL

Combining equations (A-7a) and (A-8a) one has
- JjBeu(e/m)E,
= , ( B)z
: 1 — —
\ @ .Bl
The first order a-c. convection current density is given by
1 = pnl1 + pithr
which, by combining with (A-7a) and (A-8b), becomes
7(&/m)(por/mes) E,
o= a\2
0D
B

Similarly

[f we now define
Bo = 3(B1 + Be)
B, b
B = Ba’ By Bo
and let
7B
Bo
Wel |

IV1=—, I‘V2=w—d
[} w

where w, , the plasma-electron angular frequency given by

Equations (11) and (12) become
_ _J"(k/ﬂo)Wfii
ql - (Z _ 31)2 El
_ —i(k/n)W1 B3
= "(Z = By

Thus equation (A-6) becomes

10 .k
;a("HP) —J,&; LE.

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-6a)
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where
W3 B; W3 B:

L=1=-G—3y " @-By

(A-20)

If we assume that the tube which surrounds the beam be taken as infinitely
remote, the appropriate solutions outside the beam are

Hg = Ao Ki(yr) (A-21)
Eo=j % Ao Ko(yr) (A-22)
and inside the beam
A, = A;L(¢r) (A-23)
By= —j ;L% A; Io(gr) (A-24)
2= 32— B2y
where % B k 8 (A-25)
g= L

The I’s and K’s in equations (A-21)-(A-24) are modified Bessel functions.?
At the surface of the beam (r = a), one has the following two independent
boundary conditions

By = Ay (A-26)
E.= LBy, (A-25a)

which, using equations (A-21)-(A-24), yield
I(ta)  _ _ Ky(ya) (A27)

VL) Kl
From equations (A-13), (A-14), (A-15) and (A-24) one has

ta = ZBoavV'L (A-28)
va = ZBoa (A-29)

If we now define a beam wavelength, A, , by the relations
Bo = ij (A-30)

and assume for the purpose of simplifying the calculation that in the ex-
pression for L in (A-20)

WiBi = W3B: = W* (A-31)

3See A Treatise on the Theory of Bessel Functions, G. N. Watson, Chapter 3.



48 BELL SYSTEM TECHNICAL JOURNAL

We easily see that

= (we/w)? (A-32)
where W, = EJ.;/ €ty (A-33)
m
We obtain from (A-20), (A-28), (A-29) and (A-30)
X, (21;:12) I ( VI Zm'aZ)
Ke (21;.12) ( Vi 2mz) (A-34)

2 2
- =[]
(Z _ 31)2 (Z - Bﬂ)z
Equation (A-31) is equivalent to Equation (12) of the text or to

ﬁ?ﬁ = _J! v (A-35)
[T A 7
[ v I
—
[ t I

Fig. 6—The diameter of the electron flow considered is 2a, and the length is {.

Letting ¥ = — L and making use of the following well known relations
between the Bessel functions

Io(jx) = Jo(x) (A-36)

Li(jx) = jJ1()
Equation (A-34) becomes

2
K (21ra Z) T (\/I_’ 27a Z)
y = As A/

;(:(2:“ ) (\/I’ 2ma z) (A-37)

8

W w?
" (Z = By)? + (Z — B,)?
Let the right-hand side of equation (A-37) be denoted by F1(Z) and the
middle of F2(Z). In order to find the real roots of equation (A-37) one can
plot Fy and F» as functions of Z on the same chart. The abscissae of the
intersections of the two curves will then be the real roots. In Fig. 7, F,
is plotted as a function of Z for B; = 0.9and Bz = 1.1,

-1
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In view of the definitions in equations (A-13) and (A-14), both B; and B,
ave uniquely defined by a single parameter, namely, the fractional velocity
separation, . That is

b= 2(uy — us)/ (1 + us) = 2(82 — B81)/(B: + 1)

(A-38
= Bg - B; )

and

A-39
14 (b/2) (45
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Fig. 7—A curve illustrating conditions giving rise to various types of roots.

A complete plot of Fy, for any value of the parameters W and (a/),),
would show that equation (A-37) has an infinite number of real solutions.
A real solution of equation (A-37) means an unattenuated wave. Thus
there are an infinite number of unattenuated waves possible. The waves
which will actually be excited in any given case, however, depend upon the
boundary conditions at the input and output of the tube. Ordinarily only
those waves will be excited which do not have a reversal in phase of the
longitudinal E vector, say, as r varies from 0 to a. Attention, therefore,
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will be given only to those waves for which E, does not change sign over a
cross-section of the beam. By inspection of equation (A-23), it is evident
that this requirement is automatically satisfied if L > 0. On the other
hand, if L is negative, one has

Eu~ o (\/ v %\_’" z) (A-23a)
Thus attention will be limited to those roots which satisfy
VY 2;“’ Z < 2405 (A-40)

where 2.405 is the first zero of the Bessel function in equation (A-21a).

Returning to Fig. 7, portions of three different F; curves are plotted: one
for W? = 0.01, one for W2 = 0.0152 and one for W* = 0.02. All three
curves are for (¢/A,) = 0.16. The intersections which represent roots which
satisfy the inequality (A-40) are marked with arrows. Evidently there are
either four real roots of this type or there are two real roots and a complex
conjugate pair, the distinction being determined by the value of W. Thus
there is a critical value of W? (in this case it is 0.0152) for which two of the
real roots are identical. This identical pair is indicated by two arrows
near the minimum of the F; curveat Z = 1.

A pair of conjugate complex roots means that there are an increasing wave
and a decreasing wave. Thus for each value of § and (a/\,) there is a least
value of W? below which the tube will have no gain.

It can be shown that the critical tangency of the Fy and Fj curves occurs
at a value of Z which is less than 3? away from unity. Very little error will
be incurred, then, by assuming that this critical point occurs at Z = 1
if & is small.

Letting Z = 1 in equation (A-37), and using equations (A-39) one has

Ki(2ma/N)To (\/8(Wy/b)? — 12#&/?\.)) (A41)
Ko(2ma/M)Ty (V/8(Wa/b)2 — 1 2wa/\,)

where Wy is the critical value of W. Equation (A-41) determines (W x/b)*
as af unction of (¢/\,). This relationship is plotted in Fig. 4.

We will find that there will be an increasing wave in the range
Wux < W < w. The calculation of the gain in this interval would be very
laborious since Bessel functions of complex argument would be involved.
However, a good approximation can be made when & is small. The real
part of Z will always be near unity and the imaginary part will be found to
be less than 4/2. Therefore one can let Z = 1 in equation (A-37) where it
multiplies the factor (2ra/A,) in the argument of the Bessel functions and
let Z — 1 = U in the right-hand side of Equation (A-37). With these

8(Wu/b)} — 1 = (
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assumptions ¥ can be determined as a function of (a/A,) and U can be deter-

mined as a function of ¥. We have from Equation (A-37)

1 + 1 1+ Vv
(U+0b/2 " (U~-10/22 W2

When U = 0, W* = Wi = W , so that
14 ¥ = 8(Wu/b)?
and equation (A-37a) becomes

1 1
(U + b2 — b/2)

the solution of which, for the 1ncreasing wave, is

)2 + = (8/52)(WH/W)2

U = j(b/2)[(1/2)(W/W ) (V1 + 8(Wa/W)2 — 1) — 1]}

and the gain will be given by

Gain/b = 27.3[(1/2)(W/Wx)*(\/1 + 8(W,/W)2 — 1) — 1}

db/wavelength /unit b

(A-37a)
(A-42)
(A-37b)

(AJ;?;)

- (A49)

“Decibels gain/wavelength/unit b is plotted against (W/W )? in Fig. 3.
As (W/W 4)? becomes very large, the gam per. wavelength approaches

27.3 b db.



