Spectra of Quantized Signals
By W. R. BENNETT

1. Di1scussioN oF PROBLEM AND RESULTS PRESENTED

IGNALS which are quantized both in time of occurrence and in magni-
tude are in fact quite old in the communications art. Printing tele-
graph is an outstanding example. Here, time is divided into equal divisions,
and the number of magnitudes to be distinguished in any one interval is
usually no more than two, corresponding to the closed or open positions of a
sending switch. It is only in recent years, however, that the development
of high speed electronic devices has progressed sufficiently to enable quan-
tizing techniques to be applied to rapidly changing signals such as pro-
duced by speech, music, or television. Quantizing of time, or time division,
has found application as a means of multiplexing telephone channels.!
The method consists of connecting the different channels to the line in se-
quence by fast moving switches synchronized at the transmitting and re-
ceiving ends. 1In this way a transmission medium capable of handling a
much wider band of frequencies than required for one telephone channel can
be used simultaneously by a group of channels without mutual interference.
The plan is the same as that used in multiplex telegraphy. The difference
is that ordinary rotating machinery suffices at the relatively low speeds em-
ployed by the latter, while the high speeds needed for time division multi-
plex telephony can be realized only by practically inertialess electron
streams, Also the widths of frequency band required for multiplex tele-
phony are enormously greater than needed for the telegraph, and in fact
have become technically feasible only with the development of wide-band
radio and cable transmission systems, As far as any one channel is con-
cerned the result is the same as in telegraphy, namely that signals are re-
ceived at discrete or quantized times. In the limiting case when many
channels are sent the speech voltage from one channel is practically con-
stant during the brief switch closure and, in effect, we can send only one mag-
nitude for each contact or quantum of time. The more familiar word
“sampling’’ will be used here interchangeably with the rather formidable
term ‘“‘quantizing of time”.

Quantizing the magnitude of speech signals is a fairly recent innovation.
Here we do not permit a selection from a continuous range of magnitudes
but only certain discrete ones. This means that the original speech signal
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is to be replaced by a wave constructed of quantized values selected on a
minimum error basis from the discrete set available. Clearly if we assign
the quantum values with sufficiently close spacing we may make the quan-
tized wave indistinguishable by the ear from the original. The purpose of
quantization of magnitudes is to suppress the effects of interference in the
transmission medium, By the use of precise receiving instruments we can
restore the received quanta without any effect from superposed interference
provided the interference does not exceed half the difference between ad-
jacent steps.

By combining quantization of magnitude and time, we make it possible
to code the speech signals, since transmission now consists of sending one of
a discrete set of magnitudes for each distinct time interval?#4.5.6.7 The
maximum advantage over interference is obtained by expressing each dis-
crete signal magnitude in binary notation in which the only symbols used
are 0 and 1. The number which is written as 4 in decimal notation is then
represented by 100, 8 by 1000, 16 by 10,000; etc. In general, if we have N
digit positions in the binary system, we can construct 2¥ different numbers.
If we need no more than 2~ different discrete magnitudes for speech trans-
mission, complete information can be sent by a sequence of N on-or-off
pulses during each sampling interval. Actually a total of 2~! different
coding plans (sets of one-to-one correspondences between signal magnitudes
and on-or-off sequences) is possible. The straightforward binary number
system is taken as a representative example convenient for either theoretical
discussion or practical instrumentation. We assume that absence of a pulse
represents the symbol 0 and presence of a pulse represents the symbol 1.
The receiver then need only distinguish between two conditions: no trans-
mitted signal and full strength transmitted signal. By spacing the re-
peaters at intervals such that interference does not reach half the full
strength signal at the receiver, we can transmit the signal an indefinitely
great distance without any increment in distortion over that originally
introduced by the quantizing itself. The latter can be made negligible by
using a sufficient number of steps.

To determine the number of quantized steps reqmred to transmit specific
signals, we require a knowledge of the relation between distortion and step
size. This problem is the subject of the present paper.* We divide the
problem into two parts: (1) quantizing the magnitude only and (2) combined
quantizing of magnitude and time. The first part can be treated by a simple
model: the “staircase transducer”, which is a device having the instantane-
ous ouput vs. input curve shown by Fig. 1. Signals impressed on the stair-

* Other features of the quantizing and coding theory are discussed in forthcoming
papers by Messrs. C. E. Shannon, J. R. Pierce, and B. M. Oliver.
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case transducer are sorted into voltage slices (the treads of the staircase),
and all signals within plus or minus half a step of the midvalue of a slice are
replaced in the output by the midvalue. The corresponding output when
the input is a smoothly varying function of time is illustrated in Fig. 2.
The output remains constant while the input signal remains within the
boundaries of a tread and changes abruptly by one full step when the signal
crosses the boundary. It is not within the scope of the present paper to
discuss the internal mechanism of a staircase transducer, which may have
many different physical embodiments. We are concerned rather with the
distortion produced by such a device when operating perfectly.
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The distortion or error consists of the difference between the input and
output signals. The maximum instantaneous value of distortion is half of
one step, and the total range of variation is from minus half a step to plus
half a step.  The error as a function of input signal voltage is plotted in
Fig. 3 and a typical variation with time is indicated in Fig. 2. If thereis a
large number of small steps, the error signal resembles a series of straight
lines with varying slopes, but nearly always extending over the vertical
interval between minus and plus half a step. The exceptional cases occur
when the signal goes through a maximum or minimum within a step. The
limiting condition of closely spaced steps enables us to derive quite simply
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an approximate value for the mean square error, which will later be shown to
be sufficiently accurate in most cases of practical importance. This ap-
proximation consists of calculating the mean square value of a straight line
going from minus half a step to plus half a step with arbitrary slope. If
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Fig. 2—A quantized signal wave and the corresponding error wave.
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E, is the voltage corresponding to one step, and s is the slope, the equation
of the typical line is:
E, E,

—st, —Mopc™ 1.0
€= 2 S5 (1.0)

where € is the error voltage and / is the time referred to the midpoint as
origin. Then the mean square error is
e s [ en B

= = “dl = — .
€ By Lo, € o’ (1.1)

or one twelfth the square of the step size.
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Not all the distortion falls within the signal band. The distortion may
be considered to result from a modulation process consisting of the appli-
cation of the component frequencies of the original signal to the non-linear
staircase characteristic. Figh order modulation products may have fre-
quencies quite remote from those in the original signal and these can be ex-
cluded by a filter passing only the signal band. It becomes of importance,
therefore, to calculate the spectrum of the error wave. This we shall do in
the next section for a generalized signal using the method of correlation,
which is based on the fact that the power spectrum of a wave is the Fourier
cosine transform of the correlation function. The result is then applied to a
particular kind of signal, namely one having energy uniformly distributed
throughout a definite frequency band and with the phases of the components
randomly distributed. This is a particularly convenient type of signal
because it in effect averages over a large number of possible discrete fre-
quency components within the band. Single or double-frequency signal
waves are awkward for analytical purposes because of the ragged nature of
the spectra produced. The amplitudes of particular harmonics or cross-
products of discrete frequency components are found to oscillate violently
with magnitude of input. The use of a large number of input components
smooths out the irregularities.

The type of spectra obtained is shown in Fig. 4. Anticipating binary
coding, we have shown results in terms of the number of binary digits used.
The number of different magnitudes available are 16, 32, 64, 128, and 256
for N = 4, 5, 6, 7 and 8 digits, respectively. Here a word of explanation is
needed with respect to the placing of the scale of quantized voltages. A
signal with a continuous distribution of components along the frequency
scale is theoretically capable of assuming indefinitely great values of instan-
taneous voltage at infrequent instants of time. An actual quantizer (stair-
case transducer) has a finite overload value which must not be exceeded and
hence can have only a finite number of steps. This difficulty is resolved
here by the experimentally observed fact that thermal noise, which has the
type of spectrum we have assumed for our signal, has never been observed
to exceed appreciably a voltage four times its root-mean-square value.
Hence we have placed the root-mean-square value of the input signal at
one-fourth the overload input to the staircase. This fixes the relation be-
tween step size and the total number of steps. In the actual calculation
the number of steps is taken as infinite; the effect of the assumed additional
steps beyond 2¥ is negligible because of the rarity of excursion into this range.

The curves of Fig. 4 are drawn for the case in which the signal band starts
at zero frequency. The original signal band width is represented by one
unit on the horizontal scale. The relatively wide spread of the distortion
spectrum is clearly shown. As the number of digits (or steps) is increased
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the spectrum becomes flatter over a wider range, but with 4 smaller maxi-
mum density. The area under each curve represents the total mean power
in the corresponding error wave and is found to agree quite accurately
with the approximate result of Eq. (1.1). The distortion power falling in
the signal band is represented by the area included under the curve from
zero to unit abscissa.

Quantizing the magnitude only is not a technically attractive method of
transmission because of the wide frequency band required to preserve the
discrete values of the quanta. Thusin a 128-step system, a full load sinus-
oidal signal passes through 64 different steps each quarter cycle and hence
would require transmitting 256 successively different magnitudes during
each period of the signal frequency. We therefore consider the second prob-
lem—that of sampling the quantized magnitudes.

The theory of periodic sampling of signals is a limiting case of com-
mutator modulation theory as previously shown by the author! We may
think of a periodically closed switch in series with the line and source as
producing a multiplication of the signal by a switching function. The
switching function has a finite value during the time of switch closure and is
zero at other times. It may be expanded in a Fourier series containing a
term of zero frequency, the repetition frequency of switch closure, and all
harmonics of the latter. Multiplication of the signal by the Fourier series
representing the constant component of the switching function gives a term
proportional to the signal itself. Multiplication of the signal by the funda-
mental component of the switching function gives upper and lower side-
bands on the repetition frequency. Likewise multiplication by the har-
monics gives sidebands on each harmonic. The signal is separable from the
sidebands on a frequency basis if the signal band does not overlap the lower
sideband on the repetition frequency. This leads to the condition for no
distortion in time division: the highest signal frequency must be less than
one-half the repetition frequency.

To apply the above theory to instantaneous sampling we let the duration
of switch closure in one period approach zero. We then approach the con-
dition of one signal value in each period, so that the repetition frequency
now becomes the sampling frequency. Clearly the sampling frequency
must slightly exceed twice the highest signal frequency. We also note that
as the contact time tends toward zero, the switching function approaches a
periodically repeated impulse. The important terms of the Fourier series
representing the switching function accordingly become a set of harmonics
of equal amplitude with a constant component equal to half the amplitude
of the typical harmonic. On multiplication of this series by the signal, we
get a set of sidebands of equal amplitude including the one corresponding tg
the original signal itself, the sideband on zero frequency.
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These results may be applied to the staircase transducer. The output
may be resolved into the input signal plus the error. The sampling fre-
quency is assumed to exceed its minimum required value of twice the top
signal frequency. The component of the output that is equal to the origi-
nal signal can therefore be separated at the receiver by a filter passing the
original signal band. A similar statement cannot be made for the error
component, for it has been found to extend over a vastly greater range than
the original signal. To calculate the total distortion received in the signal
band, we can multiply the distortion spectrum by the switching function and
sum up all sideband contributions to the original signal band. Each har-
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Fig. 5—Total distortion in signal band from quantizing and sampling a random noise
wave. Full load on the quantizer is 12 db above the r.m.s. value of input.

monic of the switching function makes such contributions by beating with
a band of the error spectrum above and below the frequency of the har-
monic. These contributions add as power when the sampling frequency is
independent of the individual frequencies contained in the signal. The
total error power accepted by the signal band filter decreases as the sampling
frequency is increased because each harmonic of the sampling frequency is
thereby pushed upward into a less dense portion of the error spectrum. In
the limit as the sampling frequency is made indefinitely large, we return to
the non-sampled case, that of the staircase transducer only.

Figure 5 shows the calculated curves of distortion in the signal band
plotted as a function of ratio of sampling frequency to signal band width.
The curves have downward slopes approaching asymptotes corresponding
to the area from zero to unity under the corresponding curves of Fig. 4.
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The initial points at the minimum sampling rate are determined on the other
hand by the total area under the curves of Fig. 4, since the accepted side-
bands on the harmonics in this case exactly fill out the entire error spectrum.
These initial points are therefore given quite accurately by Eq. (1.1), which,
as pointed out before, is a good approximation for the total areas. We can
also give a direct demonstration of the applicability of Eq. (1.1) to the
initial points of the curves of Fig. 5 by means of the following theorem:

Theorem I. The mean square value of the response of an ideal low-pass
filter to a train of unit impulses multiplied by instantaneous samples occur-
ring at double the cutoff frequency is equal to the mean square value of the
samples provided no harmonic of the sampling frequency is equal to twice
the frequency of one component or equal to the sum or difference of two
component frequencies of the sampled signal. Proof of the theorem is given
in Appendix I.  To apply it here we resolve the input into two components:
the true signal and the error. The former is reproduced with fidelity in the
output because it contains only frequencies below half the sampling rate.
The error component in the output represents the response of the low-pass
filter to the error samples. Except for very special types of signals, the error
samples are uniformly distributed throughout the range from minus half a
step to plus half a step. Calculation of the mean square value of such a
distribution gives Eq. (1.1).

We have tacitly assumed above that the sampled values applied to the
filter in the output of the system are infinitesimally narrow pulses of height
proportional to the samples. In actual systems it is found advantageous to
hold the sampled values constant in the individual receiving channels until
the next sample is received. This means that the input to the channel filter
is a succession of rectangular pulses of heights proportional to the samples.
The resulting magnitude of recovered signal is much larger than would be
obtained if very short pulses of the same heights were used; stretching the
pulses in time produces in effect an amplification. The amplification is
obtained, however, at the expense of a variation of channel transmission
with signal frequency. Infinitesimally short pulses have a flat frequency
spectrum, while pulses of finite duration do not. The frequency character-
istic introduced by lengthening the pulses is easily calculated by determining
the steady state admittance function of a network which converts impulses
to the actual pulses used. The general formula for this admittance when a
unit impulse input is converted into an output pulse g(¢) is easily shown to
be:

V(i) = /o j: : o()e ™ di a2

where f, is the repetition frequency and w is the angular signal frequency.



SPECTRA OF QUANTIZED SIGNALS 455

We shall call this Theorem II and give the proof in Appendix II. This
relation is similar to that found in television and telephotography for the
“aperture effect”, or variation of transmission with frequency caused by the
finite size of the scanning aperture. The pulse shape g(¢) is analogous to a
variation in aperture height g(x), where x is distance along the line of scan-
ning. Hence it has become customary to use the term “aperture effect” in
the theory of restoring signals from samples. The aperture effect asso-
ciated with rectangular pulses lasting from one sample to the next amounts
to an amplitude reduction of 7/2 or 3.9 db at the top signal frequency (one
half the sampling rate) compared to a signal of zero frequency. There is
also a constant delay introduced equal to half the sampling period. The
latter does not cause any distortion and the amplitude effect can be corrected
by properly designed equalizing networks.

The fact that many pulse spectra can be simply expressed in terms of a
flat spectrum associated with sharp pulses and an aperture effect caused by
the particular shape of pulse used does not appear to have been recognized
in the recent literature, although applications were made by Nyquist in a
fundamental paper® of 1928. Premature introduction of a specific finite
pulse not only complicates the work, but also restricts the generality of the
results.

Distortion caused by quantizing errors produces much the same sort of
effects as an independent source of noise. The reason for this is that the
spectrum of the distortion in the receiving filter output is practically inde-
pendent of that of the signal over a wide range of signal magnitudes. Even
when the signal is weak so that only a few quantizing steps are operated,
there is usually enough residual noise on actual systems to determine the
quantizing noise and mask the relation between it and the signal. Eq.
(1.1) yields a simple rule enabling one to estimate the magnitude of the
quantizing noise with respect to a full load sine wave test tone. Let the full
load test tone have peak voltage E; its mean square value is then E?/2.
The total rahge of the quantizer must be 2E because the test signal swings
between —E and +E. The ratio 2E/E, = r is a convenient one to use in
specifying the quantizing; it is the ratio of the total voltage range to the
range occupied by one step. The ratio of mean square signal to mean square
quantizing noise voltage is

EY2  6E* 3
Ei/12 ~ 4E/F T 2 (1.3)

Actual systems fail to reproduce the full band f,/2 because of the finite
frequency range needed for transition from pass-band to cutoff. If we in-
troduce a factor  to represent the ratio of equivalent rectangular noise band
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to f,/2, the actual received noise power is multiplied by . Then the signal-
to-noise ratio in db for a full load test tone is

2
D = 10 logw >~ db (1.4)
2k

In practical applications the value of x is about 3/4 which gives the con-
venient rule:
D = 20lognr+ 3db (1.5)

In other words, we add 3 db to the ratio expressed in db of peak-to-peak
quantizing range to the range occupied by one step. For various numbers
of binary digits the values of D are:

TaBLE I

Number of Digits D

WIS W
%)
7%

From Table I we can make a quick estimate of the number of digits re-
quired for a particular signal transmission system provided that we have
some idea of the required signal-to-noise ratio for a full load test tone. The
latter ratio may be expressed in terms of the full load test tone which the
system is required to handle and the maximum permissible unweighted
noise power at the same level point. Since quantizing noise is uniformly
distributed throughout the signal band, its interfering effect on speech or
other program material is probably similar to that of thermal noise with the
same mean power. Requirements given in terms of noise meter readings
must be corrected by the proper weighting factor before applying the table.
If the signal transmitted is itself a multiplex signal with channels allotted
on a frequency division basis, the noise power falling in each channel is the
same fraction of the total noise power as the band width occupied by the
signal is of the total band width of the system.

We have thus far considered onlythe case in which the quantized steps are
equal. In actual systems designed for transmission of speech it is found ad-
vantageous to taper the steps in such a way that finer divisions are available
for weak signals. For a given number of total steps this means that coarser
quantization applies near the peaks of large signals, but the larger absolute
errors are tolerable here because they are small relative to the bigger signal
values. Tapered quantizing is equivalent to inserting complementary non-
linear transducers in the signal branch before and after the quantizer. In
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the usual case, the transducer ahead of the quantizer is of the “compressing”
type in which the loss increases as the signal increases. 1f the full load sig-
nal just covers all the linear quantizing steps, a weak signal gets a bigger
share of the steps than it would if the transducer were linear. The trans-
ducer after the quantizer must be of the “expanding” type which gives de-
creased loss to the large signals to make the overall combination linear.

On-the basis of the theory so far discussed, we can say that the error spec-
trum out of the linear quantizer is virtually the same whether or not the sig-
nal input is compressed. The operation of the expandor then magnifies the
errors produced when the signal is large. When weak signals are applied,
the mean square error is given by Eq. (1.1), as before, but when the signal
is increased an increment in noise occurs. The mean square value of noise
voltage under load may be computed from the probability density of the
signal values and the output-vs-input characteristic of the expandor, or its
inverse, the compressor. A first order approximation, valid when the steps
are not too far apart, replaces (1.1) by:

5 _ E [ n(E) dE,
12 Jo, [F'(Ey)P

€ (1.6)
where (; and Q; are the minimum and maximum values of the input signal
voltage E;, g1 (E,) is the probability density function of the input voltage,
and F'(E,) is the slope of F'(£;), the compression characteristic.

Some experimental results obtained with a laboratory model of a quan-
tizer are given in Figs. 6-9. Figs. 6-7 show measurements on the third
harmonic associated with 6-digit quantizing. As mentioned before, the
amplitude of any one harmonic oscillates with load. The calculated curves
shown were obtained by straightforward Fourier analysis. In the measure-
ments it was convenient to spot only the successive nulls and peaks.

In Fig. 6 the bias was set to correspond to the stair-case curve of Fig. 1,
while in Fig. 7 the origin is moved to the point (Eo/2, Eo/2), i.e., to the mid-
dle of a riser instead of a tread. The peaks of ratio of harmonic to funda-
mental decrease steadily as the amplitude of the signal is increased to full
load, which is just opposite to the usual behavior of a communication sys-
tem. Tt is difficult to extrapolate experience with other systems to specify
quality in terms of this type of harmonic distortion.

Figure 8 shows measurements of the total distortion power falling in the
signal band when the signal is itself a flat band of thermal noise. The
technique of making such measurements has been described in earlier ar-
ticles.?” Measurements are shown for quantizing with both equal and
tapered steps. The particular taper used is indicated by the expandor
characteristic of Fig. 9. The compression curve is found by interchanging
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horizontal and vertical scales. The measurements were made on a quan-
tizer with 32, 64, and 128 steps, and a sampling rate of 8,000 cycles per sec-
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ond. The applied signal was confined to a range below 4,000 cycles per
second. With equal steps the distortion power is practically independent
of load as shown by the db-for-db straight lines. With tapered steps, the
distortion is less for weak signals, and only slightly greater for large signals.
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The vertical line designated ““full load random noise input” .represents the
value of noise signal power at which peaks begin to exceed the quantizing

NOISE INPUT-SIGNAL POWER IN DECIBELS DOWN ON FULL-LOAD SINE-WAVE
48 44 40y 36 32 28 24 20 16 12 8 4 ]

T T T 0
! \\ i i -
[ N N Xt I | FULL-LOAD S
L N~ o — Ll RanDOM {5 Z
~, 1\ | |NOISE INPUT [
\\ \ | |- 52
'''''' RN A3 ! e : 0 EZ
\ N i~ \ I 2
o \\ \ | O«
| \}; \ ' Q5
~ | TR | B
Fay | ~
| zZZ
| I'--.k..___‘m ~ N | STEPS: =0
3 T e N x*:c-. 1 20 Z%
~ | ‘\ ™~ 2 |32 =)
TR R N x 25 5,
=~q N "N, N 9
T~ N A 0
-~ 4 | oo
— COMPUTED S~adg IS N d 3009
- ~ T ww
© 32 STEPS | . pepep sTEPS T~ EQ
4 04 STEPS 0 (MEASURED) R SN Gz
£ 128 STEPS it R “hx |128 35 U
x BQUAL STEPS ¢| g
1 o2
1 1 1 ] 41 : 40

Fig. 8—Total distortion in signal band from quantizing with equal and tapered steps.

50

. | /

00—t /

0 Vi
5 20

o]

z 10 : /‘/
0 N e =

Vs

o/
/

-30 /"
a0 |
-0 -8 -8 -4 -2 o] 2 4 6 8 10
POTENTIAL IN VOLTS

Fig. 9—Expanding characteristic applied to noise in tapered steps of Fig. (8).

range. This occurs when the rms value of input is 9 db below the rms value
of the sine wave which fully loads the quantizer.
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Flatness of the distortion spectrum with frequency within the signal band
is demonstrated by Fig. 10. Two kinds of input were used here—a flat
band of thermal noise and a set of 16 sine waves with frequencies distributed
throughout the band. Results in the two cases were practically the same.
The theoretical levels of distortion power for the band widths of the measur-
ing filters (95 cps) are shown by the horizontal lines.

In the experimental results given here use has been made of laboratory
studies by Messrs. A. E. Johanson, W. A. Klute, and L. A. Meacham.
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The quantizing steps were equal and the quantizer was fully loaded by a random noise
or 16-tone input signal with mean power = —2.5 dbm.

2. THEORETICAL ANALYSIS

The correlation theorem discovered by N. Wiener!! may be stated as
follows: Let ¥, represent the average value of the product I()I(t + 7),
where I(¢) is the value of a variable such as current or voltage at time ¢/,
and I(t + 7) is the value at a time 7 seconds later. Mathematically:

bo = TOTG +7) = Lim & [ 1016+ 7 @ 2.0)

From analogy with statistical theory, ¥, is called the correlation of 7 ()
with itself, or the autocorrelation function of the signal. ~Since we shall not
deal here with the correlation of two signals, we shall shorten our terms and
call , simply the correlation of I(f). Letwy df répresent the mean power in
the output of an ideal bandpass filter of width df centered at f. We assume
that the ideal filter is designed to work between resistances of one ohm each
and that the input signal I(f) is delivered to the filter from a source with
internal resistance of one ohm. (The use of unit resistances does not re-
strict the generality of the results, since equivalent transmission performance
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of any linear electrical circuit is obtained by multiplying all impedances by
a constant factor. All voltages are multiplied and all currents divided by
the same factor. By assuming unit values of resistance we are able to use
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CORRELATION FUNCTION OF SIGNAL = @
Iig. 11—Correlation function of 7-digit quantizing errors.

squared values of voltages and currents to represent power.) The theorem
states that w; and ¢ are related by the equation:

wy = 4 f l,b,. CO03 2‘Jrf1' (111' ’ (2.1)
0

Proof may be found in the references cited. When the signal contains peri-
odic components, the integral in (2.1) becomes divergent in the ordinary or
Riemann sense, but this difficulty may be overcome by either applying the
theory of divergent integrals or replacing Riemann by Stieltjes integration.
We shall not require these modifications here because we shall base our analy-
sis on signals with a continuous spectrum. We note that i, is the mean
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square value of the signal itself. We also point out that the inversion for-
mula for the Fourier integral enables us to express ¥, in terms of wy , thus:

v, = fw Wy COS 21rrf df (2.2)
o

It also may be shown that the ratio y./¥o cannot have values outside the
interval from —1 to +1.

The correlation theorem furnishes a powerful analytical tool for the
solution of modulation problems because the calculation of the average ¥,
is often a straightforward process, while direct calculation of w, may be a
very devious one. Once ¥, has been obtained, Eq. (2.1) brings the highly
developed theory of Fourier integrals to bear on the computation of wy .

We shall give the derivation of w; for quantizing noise making use of the
correlation function. In the analysis we shall apply a number of other
needed theorems with appropriate references given for proof.

Our first problem is that of calculating the spectrum of the output of the
staircase transducer, Fig. 1, when the spectrum of the input signal is given.
Let w, represent the power spectrum of the input signal and - the auto-
correlation function. The two quantities are related by (2.1) and it is
sufficient to express our results in terms of either one. If the instantaneous
value of the input signal is represented by Fi, and that of the output by
E,, the staircase function may be defined mathematically by:

2m_1E0<E1<2m+1E9,

2 2 (2.3)
m=0, %1, £2, ---

E = mE,

The error is the difference between E; and E: and may be written as

2m — 1 2m — 1

e(t) = F, — B = E, — mE, , — Ey < E1 < Ey (2.4)

The error characteristic is plotted in Fig. 3.

One approach depends on a knowledge of the probability density function
p(Vy, V3) of the variables Vi = E, at time £ and V> = E, at time ¢ + .
The definition of this function is that p(V,,V2) dV1dV?z is the probability that

Vi and V2 lie in a rectangle of dimensions dV; and dV's centered on the
point Vi, V5 of the VVe-plane. The function p(V1,V2) has been calculated
for certain types of signals and in theory could be computed for any signal
by standard methods. If it is assumed known, we may determine the
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correlation function of the error. Let
F(y, I') = e(e(t + 7) = (V1 — mE)(Va — nky),

2m — 2m + 1 2n 1 . 2n + 1
2

En < T < ——2— .En, 715‘0 < T < Ey, (25)

mn =0 £1, £2, ---

Eq. (2.5) defines F(V1, Va) as a definite constant value in each square of
width Eq in the V1Ve-plane. By elementary statistical theory, the correla-
tion function £, of the error wave is now

=B,V = [ [ 0L Ve, v dniavs @6)

The correlation may therefore be calculated since F and p are known
functions. The power spectrum @y of the error wave is then equal to the
right-hand member of (2.1) with £ substituted for ..

We are interested in the case in which the signal voltage has a smoothly
varying spectrum over a specified band. This is a property of a random
noise function which has a normal distribution of instantaneous voltages.
The two-dimensional probability density function of such a wave is known'2,
It is

PV, Va) =

W+ 1) — 27, 1”2] .
Y exXp | - —_— . 2.
2 VYE — { 248 — ¢9) 2.7
By inserting this value and that of F (17, V) from (2.5) in (2.6), making the
change of variable:

Vi— mEy = Eew/2
(2.8)
1'2 - NEO = Eoy/2
and adopting the notation,
k= Ei/yo, @ = ¥/, Gl@) = &/¥, (2.9)
we obtain the following integral determining &, ,
;\’2
Gle) = g — i 010
ot —k(® + y* — 2axy) '
. f L avH (x, v) exp S0 = o) dx dy
wn-3% %
- (2.11)

—k[m* + m(x — av) + #* + n(y — ax) — 2czmn]
P 2(1 — a?)
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The power density spectrum of the errors is, from (2.1),

Q = 4.[ £ cos 2nfr dr
0

= 4y j:a G(a) cos 2nfr dr (2.12)

If the signal band is flat from f = 0 to f = f,, with no energy outside this
band,
sin 2xfy 7

3nft (2.13)

o 3]1;-/“40(:03 2ref df =
Letting v = f/fo,
ly) = @ f (S‘“ z) cos vz ds, (2.14)

To complete the calculation, we must evaluate the integral (2.10). The
first step is to transform the double summation (2.11) into products of single
sums by the change of indices:

_m' +
m+n=m m=-"
or (2.15)
m—n=7n N=m’—-n’
2

The rearrangement is permissible because the double series is absolutely
convergent. The new indices #' and »’ also run from minus to plus infinity,
but must be either both even or both odd because m' & »’ is even. On
dropping the primes after the substitution is completed, we find

Z exp —k2m(x + v) + 4m’] Z

H(-T, y) m=—c0 4(1 + ) n=—0w0
—Ek[2n(x — y) + 47
" EXP 11 — a) +,.,=Z_:m 2.16)
C—HEm A+ D+ )+ Cm+ 1) '
e i1+ a) ,.;m
—k[zn + (e — y) + @n + 1)
41 — a) .

A further simplification results from a change of the variables of integration
to eliminate the terms in xy. This is done by setting

(.1: =u + 1‘) o (u = (J;-]-y)/Z) 2.17)
y=u—1 v = (x—9v)/2
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By calculating the Jacobian of the transformation, we find dx dy = 2 du do.

The region of integration in the #v-plane is a rhombus bounded by the lines
# =+ v = +1. We then have:

Gla) = 161r(l — a?)l? I:f f1+u dv + f: du j;:u da‘:l (=&

expl: k( w n v __:I 3 exp —2mk(2u + 2m)

T+a ' 1—alle 11 + a)
=, —2nk(2v + 2 = —(2m 4+ 0DEQu+ 2m+1)
ng_:we"p i1 —a) + 2 esp i1+ a)
3 exp —Cn+ DECo+ 224+ 1) (2.18)
n=—o0 4(1 - OC)
If we substitute # = —ux in the first double integral, m = —m’ in the first
series, and m = —m’ — 1 in the third series, we see that the two double

integrals are equal. We therefore drop the first double integral and multiply
the second by two. The inner integral may then be split into parts with
limitsfroms = Otov = 1 —wandv = u —1tov = 0. Substitutinge =—y
in the second part and treating the series as before, we find that the two parts
give equal contributions, so that the bracketed integral terms become

1 1-u
4 f du f dv
0 0
applied to the integrand.

The series in (2.18) may be written as Theta Functlons and the imaginary
transformation of Jacobi then used as an aid in reduction. We may
proceed in a more direct manner, however, by applying Poisson’s Summation
Formula:"

E o(2mn) = — Z_j f o(r)e ™ dr (2.19)

We thereby show that
> exp [—am(x + 2m)] =
'E ar?/s 9 = —m?/x22a _mmx
/‘/20 e [1 + _mge cos 3 :, (2.20)

Z exp [—a(2m + 1)(x + 2m + 1)]

g/ Ter [ B e s ] Gy
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When the series in (2.18) of type corresponding to the left-hand members of
(2.20) and (2.21) are replaced by the equivalent righthand members, positive
exponents containing the squared variables of integration are introduced
which cancel the negative exponents already present in the integrand. The
resulting integral may be written:

Gla) = z fo du f T = DAL + @, i — a,9)
+ f2(1 + @, w) (1 — a, v)] dv, (2.22)

where

mrra mmwx

fila,x) =1+ 2 Z exp ——z— €08 —= (2.23)

2 2
fala, ) =142 m;l (=)™ exp :";Tra cos;m (2.24)

The integrations may now be performed without difficulty. The complete
result, which as we shall immediately show is hardly ever necessary to use
in full is:

w 2 2 2 2
Gla) = 2 Z; 1 exp (— 4%) sink 4”;“

+ * EZ(m#n)A,l exp —4(m” + n')x

T mt aml (m2 - 112) k
A — D)ra kS 1
sin/k —')k - 1;2 mgl r§ ('m' 7 ﬂl) (‘HZ _ %)2 — (” — %_512
_ _1y? 1322 e — 1Y%y — 12y]2
exp 4[(1}; 2) k—{- (n ) | sink 4[(??& 2) . (” 2 )]7" @ (225)

An alternative derivation of (2.25), subsequently suggested by Mr. S. O.
Rice, is based on the fact that €(f) as defined by (2.4) or Fig. 3 is a periodic
function of E; which can be expanded in a Fourier series with period Eo.
Substituting the series in (2.5) leads to an expression for e(!) € (¢ + 7) as the
product of two Fourier series. After proof that it is permissible to write
this product as a double series and to calculate the average sum as the sum
of the averages of the individual terms the problem is reduced to a double
series in which the typical term is proportional to the average value of exp
i(uV1 + vV,) where u and v are constants depending on the position of the
term in the series. Rice has shown™ that the average value of such a term
is exp [—(u* + )¥o/2 — uwf;]. Summation of these terms leads again
to (2.25).
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From the defining equation (2.9) we note that & is a small quantity when
more than a very few steps are used in the quantizer so that exponentials
with exponent containing the factor —1/% are very small except when the
factor is multiplied by a number near zero. It will be seen that this can
only happen in the first series and then only when « approaches the value
unity. We'recall that « lies in the range —1 to +1 and it is apparent from
(2.25) that G(a) is an odd function of @. We thus need consider only posi-
tive values of a very slightly less than unity. Only the component of the
sinf with positive exponent is then significant, and we write the very
accurate approximation for G(a):

o0 2 2
Gla) = Qk,, 2 jz exp -w) (2.26)

A typical curve of G(a) vs. « for a fixed value of £ is shown in Fig. 11. The
rapidity with which it falls-away at the left of the point @ = 1 is such that
the curve can only be plotted by greatly expanding the scale of « in this
region. The physical significance of the spike-shaped curve is that G(a)
is a measure of the correlation of the errors as a function of the correlation
of the applied signal. When there are many steps there is virtually no
correlation between errors in successive samples except when there is com-
plete correlation of successive signal values.

Use of the approximation (2.26) enables us to derive a convenient formula
for the spectral density of the errors in a flat band input signal. Sub-
stituting (2.26) in (2.14) we obtain:

P &1 (" — 4t sin 3 .
Qly) = Z exp | - 1 — = cos vz ds (2.27)
[ -

el 12 k

The integrand is neghglble except when z is near zero, and in this region we
may replace (sin z)/z by the first two terms of its power series expansion.
We then find

@ 2 22
Qly) = fé > -1: f exp (2;;3_4) cos vz dz
2 '

31 =3k
T 20 1/Zr ,.Z;Me‘\p(&zﬂwg ’

Only one set of calculations from the infinite series need be made since we
may define a function of one variable

—z/n?

Bis) = 3¢ (

n=1 nd

(2.28)

(S}
o

9)
Then

= )/ m (1), (2.30)
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The curves of Fig. (4) were obtained in this way. The relation between &
and the number of digits NV is based on the assumption of the rms value of
signal reaching one-fourth the instantaneous overload voltage of the
quantizer. Since zero signal voltage is in the middle of the quantizing
range 2VE, , the overload signal measured from zero is 2%7E;. The mean
square signal input is . Therefore

2V Ey = 44/, (2.31)
or from (2.9)
E=1/4"" (2.32)

We thus have obtained the spectrum of the quantizing errors without
sampling. To apply our results to the sampling case we sum up all con-
tributions from each harmonic of the sampling rate beating with the noise
spectrum from quantizing only. The resulting power spectrum is given by

Ay =9 + g (Rusys + Qorrs)y 0 < F<f/2. (233)

If v is the ratio of sampling frequency to signal band width and 4,(y) is the
ratio of quantizing power received in the signal band to the applied signal
power,

Ay(y) = (1) + Zl [Qo(ny + 1) + Q(ny — 1)]. (2.34)
This is the equation used in calculating the curves of Fig. (5).

APPENDIX 1

RELATION BETWEEN MEAN SQUARES OF SIGNAL AND ITS SAMPLES

We have already shown that there is a unique relationship between a
signal occupying the band of all frequencies less than f., and the sampled
values of the signal taken at a ratef, = 2/, . If weare given the signal wave,
we can obviously determine the samples; and if we are given the samples,
we can determine the signal wave since it is the response of an ideal low-pass
filter of cutoff frequency f. to unit impulses multiplied by the samples. If
we apply samples of a signal containing components of frequency greater
than f. , the output of the filter is a new signal with frequencies confined to
the band from zero to /. and yielding the same sampled values as the original
wideband signal.

We now consider the problem of determining the mean square value of the
samples of an arbitrary function f(7). Let the samples be taken at / =
nT,n=0 %1 %2 -, where T = 1/2f. = 1/f,.
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We may write an expression for the squared samples as a limit of the
product of the squared signal and a periodic switching function of infinitesi-
mal contact time, thus

Jut) = Lim £ ()S(r, 0 (1—1)
where: . i ,
, —T/i<t< T
Sr 1) = (0, f,f2/< t<T i f/z) =2
Srt+7T)=8Sr),n=0,x£1£2 --- (I—3)

By straightforward Fourier series expansion:

Z 2 sin mwr/T

m=1 mar

S(r, 1) = + cos 2mxf, 1. (I—4)
The mean square value of the samples is the limit of the average value of
1S taken over the contact intervals of duration r. The average value of
%S taken over all time, including the blank intervals, is in the limit a fraction
7/T of the average over the contact intervals only. Therefore

ﬁm = Lim T L 056, 0

i 27 T sin mar/T

- I:LT f )+ m=l mrT S0) cos 2mmfit (I—=5)
= J;’“2(_1) + Lirzl g 27 %E%EIWT/T (0 cos 2mxf, 1.

Now the long time average value of f*(f) cos 2mnf ¢ must vanish unless ()
contains a component of frequency mf, . This could not happen except
where f(¢) itself contains a component of frequency mf./2 or two components
_fl and fg such that

| fo| = mf. . (I—6)
When no such relation of dependency exists:
fnta) = 700 (1—7)

As pointed out before if f(¢) contains no frequencies above f. , the response
of the ideal low-pass filter to the samples is f(f), and f(nf,) represents the
samples of f(£). If f(¢) does contain frequencies exceeding f. , the response of
the filter is ¢(f), where ¢(/) is wholly confined to the band 0 to f. and yields
the same samples as f(4), i.e.,

d(nto) = f(nto), n = 0, £1, 42, ... (I—8)
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Eq. (I—7) applied to ¢(t) gives the result:

¢ (nty) = ¢'(1). (1—9)
By combining (I—8) and (I—9), we obtain

Fint) = ¢*(0). (1—10)

APPENDIX II

FUNDAMENTAL THEOREM ON APERTURE EFFECT IN SAMPLING

If we sample the wave Q cos gf at a rate f, , and multiply each sample by
a short rectangular pulse of unit height and duration 7 centered at the
sampling instants, we obtain by reference to Eq. (I-4) replacing 2af, by

ws ,

F(t)y = Qcos gt S(r, 1) = %Q cos qi
+02 sin mrr/T [cos (mw, + g)t + cos (me, — g)i].

m=1 mm

The fact that pulse modulation is similar to the more familiar carrier
modulation processes is brought out by this equation; the sampling frequency
is in fact the carrier. The writer has found that the method of calculation
he published in 1933, in which the signal and carrier frequencies are taken
as independent variables, is ideally suited for calculations of pulse-modulated
spectra. Artificial and cumbersome devices such as assuming the signal
and sampling frequencies to be harmonics of a common frequency are thereby
avoided.

A unit impulse 8() has zero duration and unit area; hence we may write:

» §(f) = Lim S(%Q . (I1—2)

7—0

A train of samples in which each sample is multiplied by a unit impulse
may therefore be written as

> Qcosqtd(t —t,) = Lim Q cos gf
n=—o0 7—0 T
(I1—3)

+0X Sin_:;::l‘ [cos (mes, + gt) + cos (mw, — q)t]] :

m=1
Suppose we apply the train of waves (II-3) to a linear electrical network

which delivers the response g(#) when the input is a unit impulse 6(f). The
steady state admittance of the network is given by"®

TG = [ 0™ (11—4)
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and the response of the network to (II-3) is therefore:

() = g: | Yo(ig) | cos [t + ph Yo(ig)]

o0

+ %).. (| Volime, + iq) | cos [(mw, + @)t (11—53)
1

m=

+ ph YVo(imw, + ig)] + | Vo(imw, — ig) | cos [(mw, — )t
+ ph Yolima, — iq)]).

But (/) evidently represents a train of pulses in which the pulse occurring
at { = nT is equal to the nth sample multiplied by g(t — »T). We have thus
obtained the spectrum of a set of samples in which the pulse representing a
unit sample is the generalized wave form g(f). Furthermore if the signal
frequency ¢ is less than w./2, an ideal low-pass filter with cutoff at w,/2
responds only to the first component of (IT—35).

The ‘“‘aperture effect” or variation of transfer admittance with signal
frequency is thus given by

Vi) = 7. Yolig) = £, Valia). (11—6)

This is Theorem II. Since the system is linear when the signal frequency
does not exceed half the sampling frequency, the principle of superposition
may be applied to composite signals. In the case of distortion from quantiz-
ing errors the aperture effect applies to the error component delivered by the
low-pass output filter. For an imperfect low-pass filter in the output we
multiply the aperture admittance function by the actual transfer admittance
of the filter.

A theorem equivalent to the above has been derived by a different method
in a recent paper'® published after completion of the above work.
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