Statistical Properties of a Sine Wave Plus Random Noise
By S. O. RICE
INTRODUCTION

N SOME technical problems we are concerned with a current which
consists of a sinusoidal component plus a random noise component. A
number of statistical properties of such a current are given here. The present
paper may be regarded as an extension of Section 3.10 of an earlier paper,!
“Mathematical Analysis of Random Noise”, where some of the simpler
properties of a sine wave plus random noise are discussed.
The current in which we are interested may be written as

. _ I = Qcos gt + Iy

, (3.4)
= Rcos (gt + 8)

where () and ¢ are constants,  is time, and Iy is a random (in the sense of
Section 2.8 of Reference A) noise current. When the second expression in-
volving the envelope R and the phase angle § is used, the power spectrum of
Iy is assumed to be confined to a relatively narrow band in the neighborhood
of the sine wave frequency f, = ¢/(2r). This makes R and @ relatively
slowly (usually) varying functions of time.

In Section 1, the probability density and cumulative distribution of I are
discussed. In Section 2, the upward “crossings” of I (i.e., the expected
number of times, per second, I increases through a given value I,), are
examined.

The probability density and the cumulative distribution of R are given in
Section 3.10 of Reference A. The crossings of R are examined in Section 4
of the present paper.

The statistical properties of ¢, the time derivative of the phase angle 8,
are of interest because the instantaneous frequency of I may be defined to
be f, + 0'/(27). The probability density of # is investigated in Section 5
and the crossings of 8’ in Section 6. #' is a function of time which behaves
somewhat like a noise current and may accordingly be considered to consist
of an infinite number of sinusoidal components. The problem of determin-
ing the “power spectrum” W(f) of ¢, ie., the distribution of the mean
square value of the components as a function of frequency, is attacked in

1B.S.TJ. 23 (1944), 282-332 and 24 (1945), 46-156. This paper will be called
“Reference A",
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Sections 7 and 8. The correlation function of ¢ is expressed in terms of
exponential integrals in Section 7, the power spectrum of 7y being assumed
symmetrical and centered on f,. In Section 8, values of W() are obtained
for the special case in which the power spectrum of Iy is centered on f, and is
of the normal-law type.

It is believed that some of the material presented here may find a use in
the study of the effect of noise in frequency modulation systems. For
example, the curves in Section 8 yield information regarding the noise power
spectrum in the output of a primitive type of system. Also, the procedure
employed to obtain the expression (5.7) for # may be used to show that if

(Qcos[(4 /wo) cos wet + gt] + In = Rcos (gt + 6)
the sinusoidal component of df/d¢ is*
—A (1 — e ") sinwg

where p is the ratio 0?/(2 I%). This illustrates the “‘crowding effect” of the
noise. The statistical analysis associated with R and 6 f equations (3.4)
(when the sine wave is absent) is similar to that used in the examination of
the current returned to the sending end of a transmission line by reflections
from many small irregularities distributed along the line. This suggests
another application of the results.
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1. PROBABILITY DisTRIBUTION OF A SINE WAVE PLus RaNDoM NOISE

A current consisting of a sine wave plus random noise may be represented
as

I = Qcos gt + Iy (1.1)

where Q) and ¢ are constants, ¢ is the time, and 7 is a random noise current.
The frequency, in cycles per second, of the sine wave is f; = ¢/(2r). Inall

2 The first person to obtain this result was, I believe, W. R. Young who gave it in an
unpublished memorandum written early in 1945. He took the output of a frequency
modulation limiter and discriminator to be proportional to either the signal frequency or
to the instantaneous frequency (assumed to be distributed uniformly over the input band)
of Iy according to whether  is greater or less than the envelope of /.  His memorandum
also contains results which agree well with several obtained in this paper.
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our work we denote the power spectrum of Iy by w(f) and its correlation
function by ¢/(r). The mean square value of I is denoted by ..
The study of the probability distribution of I is essentially a study of the

integral®
_ 1 " [T —Qcos@ |
p(I) = w\/%.[)\ (P[ Vo :'dﬁ (1.2)
where :
— __1_ —:2|;2
o(x) = \/ﬂg (1.3)

and p(I) is the probability density of I, i.e. p(I)dI is the probability that a
value of current selected at random will lie in the interval I, I + dI. An-
other expression for p(I) is given by equation (3.10-6) of Reference A,
namely

1 e —izI—ygal/2
by = o [ e s s (14)

where J((Qz) denotes the Bessel function of order zero.
The substitutions

I
y = \/—Iu; a = \/nyo (1.5)
enable us to write (1.2) as
o) = Vb = - [ ol —acoso) as, (16)

where p:(y) denotes the probability density of y. This is the expression
actually studied. Curves showing pi(y) and the cumulative distribution
function ‘

[ pwar = [ pisoan

. (1.7)
= %_j.; ¢_1(y — a cos 6) db,
where
@) = [ eGdn = 3 + 3 of @/v/D) (1)

3W. R. Bennett, “Response of a Linear Rectifier to Signal and Noise,” Jour. Acous.
Soc. Amer. Vol. 15 (1944), 164-172, and B.S.T.J. Vol. 23 (1944), 97-113.
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are shown in Figs. 1 and 2. The curvesfore = 10and ¢ = /10 were com--
puted by Simpson’s rule from (1.6) and (1.7), and the curves for a = 1
were computed from the series (1.10) given below. Since both ¢(x) and
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Fig. 1—Probability density of sine wave plus noise.

I= QCOSQ"_'_*' IN; a = Q/‘\/\:’:E;;y = I/V Yo, ‘\/I,E= J.'IIISIN
$1(y) dI//¥o = probability total current lies between I and I + dI
y(I 4 a2/2)"12 = I/(rms I). Curves are symmetrical about y = 0.

¢_1(x) are tabulated! functions the integrals in (1.6) and (1.7) are well
suited to numerical evaluation.

4 o(x) is given directly and ¢—,(x) may be readily obtained from W.P.A., “Tables of
Probability Functions,” Vol. IT, New York (1942). The functions ¢‘™’(y) are tabulated
in Table V of “Probability and its Engineering Uses” by T. C. Fry (D. Van Nostrand Co.,
1928). ik
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The form assumed by #1(y) as the parameter a becomes large is examined’
in the latter portion (from equation (1.12) onwards) of the section.

Series which converge for all values of a but which are especially suited
for calculation when @ < 1 may be obtained by inserting the Taylor’s series
(in powers of x) for ¢(y + x) and ¢_1(y + %), x = —a cos 6, in (1.6) and
(1.7) and integrating termwise. When we introduce the notation*

m, 4 __ L dm
e () = @;&0(3’) = \/ﬂ@”e (1.9)
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Fig. 2—Cumulative distribution of sine wave plus noise.

) v
Ordinate = 100 l #1(w) dy, . See Fig. 1 for notation.
-]

we obtain
o0 1 2n "
po) = 2 M(f) ) (y)

[“’ P)I = ealy) + Z ninl (a) “’(EFH('.\’)

The second equation of (1.10) may be shown to be valid by breaking the
interval (— o, y) into (— o, 0) and (0, y). In the first part,

(1.10)

[ 21 =610
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since both sides have the value 1/2. In the second, term by term integra-
tion is valid since the series integrated are uniformly convergent as may be
seen from the inequality

) < n! 1/2 2 1/4 3 P q
o1 < () () 1+ oo + ool @

in which we suppose that y remains finite as # — . This may be obtained
by using the known behavior of Hermite polynomials of large order.®

When Q > rms I, so that a is very large the distribution approaches that
of a sine wave, namely

0, ly| > a
pl(y) o 2 2\ —1/2
(@ —y) /, |y! <a (1.12)
¥ ; 1 1 .y .
j:mpl(yl)dyl 3 + ;rarc sin 7 [y]| <ea

In order to study the manner in which the limiting expressions (1.12) are
approached it is convenient to make the change of variable

s=y=—acosh o= o= (y— s
z=x—9y+a
‘in (1.6). We obtain

y‘i’a
po) = L[ el = & — 1

] (1.13)
= }rj; oz + v — a)lz(2a — )] da.

An asymptotic (as @ becomes large) expression for p:(y) suitable for the
middle portion of the distribution where a — | y | 3> 1 may be obtained from
the first integral in (1.13). Since the principal contributions to the value of
the integral come from the region around x = 0 we are led to expand the
radical in powers of x and integrate termwise. Legendre polynomials enter
naturally since they are sometimes defined as the coefficients in such an
expansion. Replacing the limits of integration y + a and y — a by 4+
and — =, respectively and integrating termwise gives

2 12 © _
Mw~&7¥-b+2hrﬁi@—ﬁmwﬂ

n=l (a* — 5" (1.14)
_ @ - y”)‘”z[ 3t+1 ., 335 4 30+ 3) ]
o x Lt 2@ = t g — ey +

5 A suitable asymptotic formula is given in Orthogonal Polynomials, by G. Szegd,
Am. Math. Soc. Colloguium, Pub., Vol. 23, (1939), p. 195.
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where { = y?/(a® — ¥*) and P,,( ) denotes the Legendre polynomial of
order 2n. We have written this as an asymptotic expansion because it
obviously is one when v, and hence ¢, is zero in which case

213520 — 1)
24....2n

When y is near @ or is greater than e, a suitable asymptotic expansion may
be obtained from the second integral in (1.13) by expanding (2a — z)71/2
in powers of z/(2a) and integrating termwise. The upper limit of integra-
tion, 2a¢, may be replaced by <« since ¢(z + ¥ — a) may be assumed to be
negligibly small when z exceeds 2a. We thus obtain

] 1 n+1/2 0
n(y) ~ :;E @ (i) j; oz +y —a)" " dz

—o n! \2a

— ‘P(J’ - a’) i g%_)g (l)ﬂ-*-”2 fm efz(v—a)—(zzfﬂ] z"—lf2 dz
0

T =0 n! \2a

])211({)) = ( =)

(1.15)

where we have used the notation
(@) =1, (@)n =ale+ 1) - (@+n— 1)

The integrals occurring in (1.15) are related to the parabolic cylinder
function® D,,(x). Their properties may be obtained from the known
properties of these functions or may be obtained by working directly with
the integrals.

Suppose now that a is very large so that only the leading term in the series
(1.15) for $1(y) need be retained.

Then

‘

p1(y) ~ a2 F(y — a) (1.16)

where
F(s) = n' 27 [ oz + 85" dz (1.17)
0

By writing out ¢(z + s), expanding exp (—zs) in a power series, and inte-
grating termwise we see that

01
4 o I (— + -
F) = 2252 ) (~s3/2)¢

= (1.18)

= 2n) s e(s/V/2) Ki(s'/4)
where K denotes a modified Bessel function.” The relation (1.18) may also

6 Whittaker and Watson, “Modern Analysis,” 4th ed. (1927), 347-351.
7 A table of Ki(x) is given by H. Carsten and N. McKerrow, Phil. Mag. S7, Vol. 35
(1944), 812-818.
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be obtained from pair 923.1 of “Fourier Integrals for Practical Applica-
tions,” by G. A. Campbell and R. M. F oster.”

A curve showing F(y — a) plotted as a function of y — a is given in Fig. 3.
It was obtained from the relation

F(s) = 2482y (—5/4/2)

where
x@ = [ &
]
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Fig. 3—Probability density of sine wave plus noise.
When rms Iy << Q and I is near Q, pi(y) ~ @ ?F(y —a),y —a = (I — Q)/(rms Iy).
See Fig. 1 for notation. :

This function has been tabulated by Hartree and Johnston.”
The probability that I exceeds (), or that y exceeds g, is, integrating the
second of expressions (1.13),

o0 1 fzu dZ fan
= - — dx.
[oray =1 [ Jige=]. o @
An asymptotic expansion may be obtained by expanding (2a — z)71/2 as in
the derivation of (1.15) but we shall be content with the leading term.

8 Bell Telephone System Mnﬁagraph B-584.
9 Manchester Lit. and Phil. Soc. Memoirs, v. 83, 183-188, Aug., 1939,
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Using
L o0 @ T
f g2 dzf o(x) dz = f o(x) dx f 7 gy = 2" wil"zl‘(*})
0 z 0 0

we obtain
f P dy ~ 2727 r(@)a ™ = 0.185- - .07 (1.19)

For use in computations we list the following values
') = 3.62561, I'(3) = 1.22542, T'(3) = 0.90640
2. ExrECcTED NUMBER OF CROSSINGS OF I PER SECOND

In this section, we shall study two questions. First, what is the proba-
bility P(I1, th)dt of I increasing through the value I, (i.e. of I passing
through the value I, with positive slope) during the infinitesimal interval
{1, £+ di?  Second, what is the expected number N(/;) of times per second
I increases through the value 7,. When 7, is zero, 2N(0) is the expected
number of zeros per second, and when I, is large N(I,) is approximately
equal to the expected number of maxima lying above the value 7, in an
interval one second long. .

We start on the first question by considering the random function

z = F(al, Qg, *** Ay, z)
where the a’s are random variables. The probability that the random curve

obtained by plotting z as a function of { increases through the value z = z,
in the interval 4, t; + d¢ is"

d!fﬂ np(z1, n; b) dn (2.1)

where p(£, n; £1) denotes the probability density of the random variables
E= F(alx Qg *** , ANy tl)

-[%]
" ot Ji=t, .

In our case z becomes the current I defined by equation (1.1). The
method used to obtain equation (3.3-9) of Reference A may also be used to

show that the quantity p(I1, 0, #1) (which now appears in (2.1)) is given by
7Ny
P, mt) = —pm ¢(y — a cos gh)e(x + b sin gt) (2.2)

10 This result is a straightforward generalization of expression (3.3-5) in Section 3.3 of
Reference A where references to related results by M. Kac are given. A formula equiva-
lent to (2.1) has also been given by Mr. H. Bondi in an unpublished paper written i in 194-4
He applies his formula to the problem studied in Section 4.
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where ¢( ) denotes the normal law function defined by equation (1.3) and
" 5 ¥ 2 1 /‘/'—l,b’o’ ’ I,
—gy =4 f df, No=-4A/ , =
Yo =4r | w()f df, =4V % Y= Ve
a = “_Q x = #n b = —Q__L = ._....zafq
Vi T V=W vV =y N’

Equation (3.3-11) of Reference A shows that N is the expected number of
zeros per second which 7y would have if it were to flow alone.

Let P(I 4, t1)dt be the probability that I will increase through the value I,
during the interval ¢y, #; + df. Then (2.1) and (2.2) give

(2.3)

P(Il t]) =j; ﬂP(IIl m, tl) dﬂ

o (2.4)
= wNog(y — a cos gty) j; xe(x + b sin gty) dx.
The integral in (2.4) is of the form
f xe(x + 2) dx = ¢(v) — 'uf o(x) dx
0 v
= —; + (@) + v_[ ¢(x) dx
(2.5)

= —v + ¢(v) + vp_4(v)
= 2+ @n"F (—1-1- —’iﬂ)
2 I\ 272 2

where v replaces b sin ¢, and ,F; denotes a confluent hypergeometric func-
tion.

The distribution of the crossings at various portions of the cycle (of the
sine wave) may be obtained by giving special values to g/, in (2.4).

The expected number of times I increases through the value 7, ia one
second is

T
T—w Th
(2.6)

bsind

= Noj; ¢(y — acos ) |::p(b sin ) + b sin Gf o(x) da::l de

o
where we have used (2.4) and the second equation of (2.5). The integrand
in (2.6) is composed of tabulated functions and is of a form suited to nu-
merical integration. Expanding¢(y — @ cos 6) in (2.6) as in the derivation
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of (1.10), replacing the quantity within the brackets by the series shown in
the last equation of (2.5) ,and integrating termwise leads to -

TR (P(En)(y) a\" 1 b
N(I) = No(x/2)"* 252 (5) Pl —bin+1; =5 (2.7)
a0 nln! \2 2

The series (2.7) converges for all values of @, v, and . This follows from the
inequality (1.11) which may be applied to ¢ (v), and from the fact that
the 1F; is less than exp (b*/2) as may be seen by comparing corresponding
terms in their expansions.

The expected number of zeros, per second, of 7 is 2V (0) where we have set
I, and hence y, equal to zero. In this case the integral in (2.6) may be
simplified somewhat and we obtain

2
2N(0) = N, [e‘“lo(ﬁ) + b—Ie (9’ a)] (2.8)
2a o
where I4(8) is the Bessel function of order zero and imaginary argument and
o+ b B & — b
a=—y P=—

Te(k, ) = f ¢ To(ku) du.
0

The integral 7e(k, x) is tabulated in Appendix I.
I have been unable to obtain a simple derivation of (2.8). It was orig-
inally obtained from the following integral

N(I,) = lﬂ fr dd o(y — a cos 8) f xp(x + bsin 8) dx  (2.9)
2 J. [}

which may be derived from the second equation of (2.4) and the first of
(2.6). Setting I, and v equal to zero and writing out the ¢’s gives

2N (0) =éi: f_ defu dx

x exp [—3(x" + 2bx sin 6 + @’ cos’ 8 + &’ sin® 6)].

Equation (2.8) was obtained by applying the method of Appendix III to
this expression.

3. DEFINITIONS AND SIMPLE PROPERTIES OF R AND O

The remaining portion of this paper is concerned with the envelope R and
the corresponding phase angle 8. These quantities are introduced and some
of their simpler properties discussed in this section.

Suppose that the frequency band associated with Iy is relatively narrow
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and contains the sine wave frequency f,. The noise current may be re-
solved into two components, one “in phase” and the other “in quadrature”
with O cos gf.  Using the representation (2.8-6) of reference A and proceed-
ing as in Section 3.7 of that paper:

Iy = E ¢n €05 (wal — @n) (3.1)

n=1

= Ecn cos [(wa — @)t — ¢n + ¢l

n=1
= I cos gt — I,sin g! . (3.2)

where

M
I, = Z Cn €08 [(wn — @)t — @nl
n=1

N (3.3)
I, = 2 ¢asin [(wn — @)t — @il

n=1

= 27fn, fn = nAf, ¢ = 2w(fa)Af

w(f) denotes the power spectrum of Iy and the g,’s are random variables
distributed uniformly over the interval (0, 2r).
The total current I may be written as

I'=Qcosqgi+ In
= (Q + I.) cos gt — I,sin gt
= R cos @ cos g¢ — R sin 6 sin g¢ '
-—Rcos(qt-l— )

where we have introduced the envelope functlon R and the pha.se angle 0
by means of

(3.4)

Il

Rcos=Q+ I,

Rsin@ =1,

(3.5)

Since I, and I, are functions of ¢ whose variations are relatively slow in
comparison with those of cos gf, the same is true of R and (usually) 6.

A graphical illustration of equations (3.4) and (3.5) which is often used is
shown in Fig. 4.

In accordance with the usual convention used in alternating current
theory, the vector OQ is supposed to be rotating about the origin O with
angular velocity g. If Iy happened to have the frequency ¢/2m, its vector
representation QT would be fixed relative to OQ. In general, however, the
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length and inclination of QT will change due to the random fluctuations of
Iv. Thus the point 7 will wander around on the plane of the figure. If
rms I is much less than Q, T will be close to the point () most of the time.
In this case

R=[(Q+Ip+L"2~Q+1,
_ —1 Ia ~ l_'a
b=t 51170 (3.6)
4L _1
d  dtQ Q

and a number of statistical properties of R and § may be obtained from th®
corresponding properties of noise alone when we note that I, I,, and I,
behave like noise currents whose power spectra are concentrated in the
lower portion of the frequency spectrum.

0S=Q+Ic=RcCOS® T
QT =1IN

[}

Fig. 4—Graphical representation of I = Qcos gt + Iv .

By squaring both sides of equations (3.1) and (3.3) and then averaging
with respect to # and the ¢,’s we may show that I, I,, and Iy all have the
same rms value, namely ",

It may be seen from (3.3) that the power spectra of I, and I, are both
given by

w(fe+ )+ w(fe — ) (3.7

where it is assumed that 0 < f < f,. Likewise the power spectrum of the
time derivative I, of I, is

dnfffw(f, + f) + w(fa — 1) (3.8)

This follows from the representation of [ . obtained by differentiating the
expression (3.3) for I, with respect to ¢, the procedure being the same as in
the derivation of equation (7.2) in Section 7. The power spectra shownin
Table 1 were computed from equations (3.7) and (3.8).

The correlation function for I, and hence also for I,, is, from equations
(A2-1) and (A2-3) of Appendix II,

LG T =g = f w(f) cos 2x(f — fo)r df
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where the bar denotes an average with respect to fand gisa function of .
From (A2-3) the correlation function for I is —g” where the double prime
on g denotes the second derivative with respect to 7.

Attention is sometimes fixed upon the variation in distance between suc-
cessive zerosof I. The time between two successive zerosof I at, say, fpand {;
is the time taken for ¢¢ + 6, as appearing in R cos (¢¢ + 6), to increase by .
This assumes that the envelope R does not vanish in the interval. For the
moment we write 8 as 6(¢) in order to indicate its dependence on the time ¢.
Then #; and ¢, must satisfy the relation

gh + 0(t1) — gto — 0(te)) = m (3.9)
Since () is a relatively slowly varying function we write

8(t:) — 6(t) = (81 — )8 (t0) + (11 — £0)0" (t0)/2 + -~

TABLE 1
POWER SPECTRA OF Iy, 1., 1, , AND I
In I;and I, Ig
w(f) = wo /=2 yo/Bforfy — B/2 < f | 2wofor 0 < f < B/2 (8« 2wofor0 < f < B/2
+8

w(f) - 0 elsewhere 0 elsewhere 0 elsewhere
f¢ = mid-band frequency
w(f) = wn—-npn/ﬁforfq—,ﬂ<f<fq wofor0 < f < B 4rfwpfor0 < f < B
w(f) = 0 elsewhere 0 elsewhere 0 elsewhere
fo = top frequency

# —(—iq)2 (207) W _r2en 8o _s1/(207)
w(f) e . 2"_6 oy €

where the primes denote differentiation with respect to &. When this is
placed in (3.9) and terms of order (¢; — #,)? neglected, we obtain

1 _q
W—h) 2x Ix - o) (3.10)

which relates the interval between successive zeros to §'.
The expression on the right hand side of (3.10) may be defined as the in-

stantaneous frequency:

1 de

Instantaneous frequency = f, + — — (3.11)
2r dt

This definition is suggested when cos 2xft is compared with cos (gt + 6)
and also by (3.10) when we note that the period of the instantaneous fre-
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quency is approximately equal to twice the distance hetween two successive
zeros which is 2(f, — o).
The probability density of R is'
R R+ ¢
R exp [— %Q] 1y(RQ/¥o) (3.12)
0

where I, (RQ/¥s) denotes the Bessel function of order zero with imaginary
argument. In Section 3.10 of Reference A, it is shown that the average
value of R" is*
&= (34 1) (=55 1 - ). G
where p = 0%/ (2y1), of which special cases are
R =¢""mpo/2)" [(1 + p)Io(p/2) + pI(p/2)]

_ (3.14)
R*= Q"+ XY

Curves showing the distribution of R are also given there.

4. ExPECTED NUMBER OF CROSSINGS OF R PER SECOND

Here we shall obtain expressions for the expected number Ny of times,
per second, the envelope passes through the value R with positive slope.
When R is large, N is approximately equal to the expected number of
maxima of the envelope per second exceeding R and when R is small N is
approximately equal to the expected number of minima less than R. For
the special case in which the noise band is symmetrical and is centered on
the sine wave frequency f, N is given by the relatively simple expression
(4.8).

The probability that the envelope passes through the value R during the
interval ¢, t + dt with positive slope is, from (2.1),

dt f R'p(R, R', {) dR’ (4.1)
(1]

where p(R, R, {) denotes the probability density of R and its time derivative
R', t being regarded as a parameter.

An expression for p(R, R’, ) may be obtained from the probability density
of I,,1,, I.,I.. From our representation of a noise current and the central
limit theorem it may be shown (as is done for similar cases in Part III of
Reference A) that the probability distribution of these four variables is

11 Ip equation (60-A) of an unpublished appendix to his paper appearing in the B.5.T.J.
Vol. 12 (1933), 35-75, Ray S. Hoyt gives an integral, obtained by integrating (3.12) with
respect to R, for the cumulative distribution of R.

*The correlation function for the envelope of a signal plus noise, together with associated

probability densities of the envelope and phase, is given by D. Middleton in a paper
appearing soon in the Quart. JI. of Appl. Math.
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normal in four dimensions. If the variables be taken in the order given
above the moment matrix is, from equations (A2-2) of Appendix IT,
b O 0 b
0 by —=by 0 (4.2)
0 —by b O
b 0 0 b

M =

where the b’s are defined by the integrals in equations (A2-1). The inverse
matrix is

1 1 bg 0 0 —bl 2
M == ] B = bobg - bl (43)
Bl 0 & b 0
0 b b O
—b 0 0 bo

which may be readily verified by matrix multiplication, and the determinant
| M |is B2 The normal distribution may be written down at once when
use is made of the formulas given in Section 2.9 of Reference A. The sub-
stitutions

I, = Rcos 8 — (, I, = R'cos § — Rsin 6 ¢'
I, = Rsin 6, I. = R'sin 6 + Rcos 6 ¢ 4
dI dI dI.dl, = R*dRdR'd0de’
enable us to write
bo(l: + 1) + oI + 1Y)
—2by(I Iy — 1.07) = by(R* — 2QRcos 6 + (?)
+bo(R? 4+ R%6")
e —2b,R2¢ + 2b,0(R'sin 6 + RO cos 6).
Consequently the probability density of R, R/, 8, ¢ is
p(R, R, 6,6") = R exp {—i [b2(R* — 2QRcos 6 + Q°)
4n’B 2B @s

+ b(R”* 4+ R%"*) — 2b6,R%' 4 2b,Q(R’sin 8 + R6'cos a;]}

In this expression R ranges from 0 to «, 6 from —= to w, and R’ and ¢
from —w to +w. The probability density for R and R’ is obtained by
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integrating (4.5) with respect to 6 and 6 over their respective ranges. The
integration with respect to ¢ may be performed at once giving

PR, R, 1) = R(z’“)'m [
(4.6)
exP{ 2Bb, [B(R® — 2RQcos 6 + Q) + (boR' + b1Qsin 6) 1}

From (4.1) and (4.6) it follows that the expected number Nz of times‘per
second the envelope passes through R with positive slope is

—3/2 L]
Ne = RG@m f df f R'dR’
\V/Bb, b

exp {—- E [B(R - ZRQCOS 0 + Q) + (bDR-’ + blosm 9) ]}

| 4.7)

When the power spectrum w(f) of the noise current I is symmetrical about
the sine wave frequency f,, by is zero and B is equal to bob2. In this case the
integrations in (4.7) may be performed. We obtain

5 \"? R RQ ( R + Q
Ng (ﬂ) B_u Io exp ng
_ ﬁ & % Probability density of
T \2r envelope at the value R
where the second line is obtained from expression (3.12). As will be seen
from its definition (A2-1), b, is equal to the mean square value ¥, of Iy

(and also of I, and I,).
Introducing the notation

v = Rby""* = R/rms Iy
a= Aby"* = Q/rms Iy,

(4.8)

(4.9)

which is the same as that of equations (3.10-15) of Reference A except that
there P denotes the amplitude of the sine wave and plays the same role as
(Q does here, enables us to write (4.8) as

Na = .”LTE wo(ay)e"‘“”"w2[“@]”2%) (4.10)
R 21‘!’60 21I'bu ) .

The function p(v) is plotted as a function of v for various values of a in Fig.
6, Section 3.10, of Reference A.
It is interesting to note that

(by/bo)t2/m = Expected number of zeros per second of I, (orofI,) (4.11)
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This relation, which is true even if the noise band is not symmetrical about
[ q; follows from equation (3.3-11) of Reference A.

When Q >> rms Iy and f, is not at the center of the noise band it is easier
to obtain the asymptotic form of N from the approximation (3.6),

R~Q+ 1,

instead of the double integral (4.7). When Q> > rms Iy and R is in the
neighborhood of Q (as it is most of the time in this case), N is approximately
equal to the expected number of times I, increases through the value I, =
R — Q in one second. Thus, regarding 7. as a random noise current we
have from expression (3.3-14) of Reference A

Ng~ ¢ 0/® 5% [1/2 the expected number of zeros per second of 7]
and when we use equation (4.11) we obtain

Np ~ 2i (bz/bu)lﬂgkm‘m!”%“} = i (bz/bo)”zﬂg(u#ﬂ)zm (4.12)
p 27

TABLE 2
w(f) = wo = bo/B OVER A BAND OF WIDTH

ba Ngr

1. Band extends from f, — 8/2 to 282D,/ 3 (x/6)128p(v) = 0.724 8p(v)
fo +8/2

2. Sameas1andinadditionQ =0 5 (/6)1/2Bye 212

3. Same as 1 and in addition o — (v—a)2/2
Q>>rmmsly "‘"2\/33

4. Band extends from f; to f; + 8 4w2B8%h/3 B _(—a)2f2
and Q >> rms 1y ""’_\73*3

Table 2 lists the forms assumed by (4.10) and (4.12) when the power spec-
trum w(f) of the noise current [ is constant over a frequency band of width 3.
The quantity b, in the expressions for b, represents the mean square value
Of IN.

In the general case where the band of noise is not centered on f, and
where R is not large enough to make (4.12) valid we are obliged to return to
the double integral (4.7). Some simplification is possible, but not as much
as could be desired. Introducing the notation

a = RO/b, v = b:Q(Bbo) "
x = (boR’ + b:1Qsin 6)(Bby)~1
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enables us to write (4.7) as
Ni = (2m) " (R/bo)(B/bo)" %17/

T o (4.13)
_[ dﬂf (x — v sin 0)@3""""“'_""2 dx
x 7 8in @

Part of the integrand may be integrated with respect to x and the remaining
portion integrated by parts with respect to §. The double integral in the
second line of (4.13) then becomes

h['eacosﬂél'yain 6)2/2 do + ffl:fng e—xE,'Z dx:l d[ya—leu coaB]
x g ysin @

f (1 + Tﬂaﬁl cos G)eucosﬂ—(vainﬂ)m de
—r

I

] (4.14)
- Ta—le—('r“ru"?"-‘)wf (7 cos 8 + a/,},)e('ycos0+af1)’-'2 de

-

2 3 Do (_ 1)" (@) + Yo Tun(@)].

n=0 n! a

The series is obtained by expanding exp [—(y sin 8)?/2] in the second
equation in powers of sin § and integrating termwise.

5. PrROBABILITY DENSITY OF g—f

As was pointed out in Section 3 the time derivative ¢’ of the phase angle
g associated with the envelope is closely related to the instantaneous fre-
quency. The probability density p(#') of " may be expressed in terms of
modified Bessel functions as shown by equation (5.4). Curves for p(6') are
given when the sine wave frequency f, lies at the middle of a symmetrical
band of noise. Although the expressions for p(8') are rather complicated,
those for the averages 8 and | ¢’ | given by equations (5.7) and (5.16) are
relatively simple.

The probability density p(6') may be obtained by integrating the expres-
sion (4.5) for p(R, R', 8, 6') with respect to R, R’, 6. The integration with
respect to R’, the limits being — = and + =, gives the probability density
for R, 6, 0"

R (2r

1/2
n o & [ 2m _ p? P . 2
p(R, 8,8 o an) exp [—aR 4+ 20R cos 8 + ¢sin" @ 5

—b:0*/(2B)]
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where
B = boby — b b= Q(by— 5:6)/(2B)
a = (by— 2b:0' + bo0?)/(2B) ¢ = (%;/(2Bbo) = blp/B  (5.2)
p = Q% (2bo) v = b/a

and bg, b1, ba are given in Appendix I1.
Integrating with respect to R gives the probability density for 6, ¢
Expanding exp (25R cos #) in powers of R and integrating termwise,

(9 er) — 1 ( 2 1z & 8in?8—bybgp/ B
20,9) = {6ma ab,B
o n 41

b cos 6\"
2 r(’_’+ 1)( " )
2

(5.3)

When we integrate # from — to m to obtain $(6') the terms for which »
is odd disappear and we have to deal with the series, writing+y for 5%/a,

> 2mm4|— 1 (v cos’ )™ = (2y cos’ 0 + 1) exp (v cos’ 6)
Thﬁs, the probability density of & is
112
P(O’) = 1611.0 (ab B) f (2,}, CUS 0 + 1) ¢ 8in?0+y cos? §—bybgp/ B da
0
L2y (v + I 1’—'”'Jrf(”"" (5.4)
8a \ab.B Y 0 3 Yi 7 .
exp [5_—]2- Y~ bzgu p:I
From (5.2)
N by — 20,6

P be — 20:0 + b

¢+ _bbop _ pby — 2b,6' + 268"
2 "B 20— 260 + bh”

It will be noted that for large values of | 6’ | the probability density of ¢
varies as | 6 [ Although this makes the mean square value of ¢’ infinite,
the average values ¢’ and | §" | of & and | ¢ | still exist. In order to obtain
@ it is convenient to return to (4. 5) and write

(5.5)

6 _[ do f dR dR’ f do’ 0'p(R, R, 8, 6") (5.6)
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The integration with respect to 8 may be performed by setting R6" equal to
x and using

+oo
[ v e B gy = (8/a) (r/a)? e

The integral in R’ reduces to a similar integral except that the factor « in
the integrand is absent. Performing these two integrations and using the
definition of B leads to

_ by [~ ©
9'=l—;f dﬂf dR (R — Qcos )
21I'btj —x 0

. atp[—Qio(R2 —2QRc058+Q2):|

We may integrate at once with respect to R.  When this is done cos 8 dis-
appears and the integration with respect to § becomes easy. Thus

6 = (b/bo) exp [~ 0%/ (2bo)] = (b1/bo)e" (5.7)

When the noise power spectrum is equal to w, in the band extending from
fo — B/2 to fo + B/2 and is zero outside the band, b, = 27(fo — f4)bo.
Hence, from (3.11),
ave. instantaneous frequency = f, + 6'/(2)

=fot+ (fo— fa)(l — )

In the remainder of this section we assume the power spectrum of the
noise current to be symmetrical about the sine wave frequency f,. In this
case b, and ¢ are zero, B is equal to bob» and (5.4) becomes

p(O) = $(bo/ba)V2(1 + ) Rire AR
[(y + DIo(y/2) + yI:(y/2)] (5.9)

(5.8)

= JOo/BE( + )R F, (% i y)

where /7, denotes a confluent hypergeometric function? and
2= bbby, ¥ = Weoo = p/(1 + =) (5.10)

When the noise power spectrum is constant in the band extending from
fo— B/2tof,+ B/2 (see Table 2, Section 4)

(ba/bo)'/* = 37'/*Bm, 5 = 310’/ (Bm) (5.11)

12 The relation used above follows from equation (66) (with misprint corrected) of W. R.
Bennett’s paper cited in connection with equation (1.2).
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Fig. 5—Probability density of time derivative of phase angle.
$(8") d¢' = probability that the value of d8/df at an instant selected at random lies be-
tween ¢’ and 0’ + d¢’. 'The power spectrum of Iy is constant in band of width
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Fig. 6—Cumulative distribution of time derivative of phase angle.

Notation explained in Fig. 5.
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The probability density p(6’) of 8" and its cumulative distribution, ob-
tained by numberical integration, are shown in Figs. 5 and 6.

The probability that 8 exceeds a given 6; is equal to the probability that
z exceeds z;, where z; denotes (bo/b2)!/ 26,, and both probabilities are equal to

e’ w 2, —3/2 3 — -

Tf (143 3"1F1[2; 1; p(1 + 57 ':l dz (5.12)
2 4,

The probability that 8 > 8; becomzs ¢ "/(4z]) as ] — .

When Q >> rms Iy the leading term in the asymptotic expansion of the
1 in (3.9) gives

PO) ~ D (5.13)
oV 2m
when it is assumed that z* << 1. This expression holds only for the central
portion of the curve for p(6'). Far out on the curve, p(8') still varies as
¢'—%.  Equation (5.13) may be obtained directly by using the approximation
(3.6) that ' is nearly equal to 7./( and noticing that b, is the mean square
value of T ;
If the sine wave is absent, p is zero and

p(6") = 3(bo/b2)'2(1 4 27)7°1 (5.14)
which is consistent with the results given between equations (3.4-10) and
(3.4-11) of Reference A. In this case (5.12) becomes

=214 ) (5.15)

| —

Although the standard deviation of #’ is infinite an idea of the spread of
the distribution may be obtained {rom the average value of | 6 |. Setting
b: equal to zero in (4.5) in order to obtain the case in which the noise band is
symmetrical about the sine-wave frequency leads to

7= 2 Fa’wadBfﬂdR’ [awo &
i - dmboba Yo —r — 0
exp § [—(R* — 20R cos 0 + ()/by — (R” + R'9") /by

The integrals in R’, 8’ cause no difficulty and the integral in @ is proportional
to the Bessel function 74(QOR/by). When the resulting integral in R is
evaluated™ we obtain

167 = (bo/bo) e o(p/2) (5.16)
where p = 0%/(2b,).

18 See, for example, G. N. Watson, “Theory of Bessel Functions,” Cambridge (1944),
p. 394, equation (5).
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When p is zero equation (5.16) agrees with a result given in Section 3.4 of
reference A, namely, for an ideal band pass filter

ave|r —m| _ _Jo—Ja

m " V3 fa)

where r is the interval between two successive zeros and 7, is its average
‘value. 7 is equal to £, — £, of our equation (3.10) from which it follows that

(r—r)/m= —¥/q (5.17)
6. ExpeEctED NUMBER OF CROSSINGS OF ! AND %g- PER SECOND

After a brief study of the expected number of times per second the phase
angle 0 increases through 0 and through = (where it is assumed that —r <
§ < ) expressions are obtained for the expected number Ny of times per
second the time derivative of # increases through the value ¢".

The point 7 shown in Fig. 4 of Section 3 wanders around, as time goes by,
in the plane of the figure. How many times may we expect it to cross some
preassigned section of the line OQ in one second? To answer this problem
we note that, from expression (2.1), the probability that 6 increases through
zero during the interval ¢,  + d¢ with the envelope lying between R and
R+ dRis

dt dR f #'5(R, 0, 0') 6/ (6.1)
i}

where the probability density in the integrand is obtained by setting 6 equal
to zeroin equation (5.1). The expected number of such crossings per second
is

(Z_n_)—:uz (ba B)—l.lz R2dRe—b2(n—q)x;(2m
(6.2)

£ “do' e exp [—bo R*0"°/(2B) + b R(R — Q)0'/B]

which may be evaluated in terms of error functions or the function p—1(x)
defined by equation (1.8). For the special case in which the power spec-
trum of the noise current Iy is symmetrical about the sine wave frequency,
b, is zero and (6.2) yields

I T e (6.3)

From equation (6.1) onwards we have tacitly assumed that the range of #
is given by —m < 0 < w because setting 6 equal to any multiple of 27 in our
equations leads to the same result as setting f equal to zero. This is due to
6 occurring only in cos § and sin 8. When 6 increases through the value m,
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as it does when the point T crosses, in the downward direction, the extension
of the line OQ lying to the left of the point O in Fig. 4, we imagine the value
of 6 to change discontinuously to the value —r.

The expected number of times per second # increases through = may be
obtained from (6.2) and, in the symmetrical case, from (6.3) by changing the
sign of ( since this produces the same effect as changing 6 from 0 to 7 in
#(R, 6, ). °

The expected number of crossings per second when R lies between two
assigned values may be obtained by integrating the above equations. For
example, the number of times per second @ increases through zero with R
between Q) and R is, from (6.3) for the symmetrical case,

(4m)~(bo/ bo)** exf [(2b0)* [ Ry — Q |] (6.4)

where we have used the absolute value sign to indicate that R, may be either
less than or greater than Q) and

et =20 [ o a ©.5)
0
Expressions for by and &, are given by equations (A2-1) of Appendix II.
The mean square value of Iy is by, and when the power spectrum of Iy is
constant over a band of width 8, b, = #%3%b,/3.
In much the same way it may be shown that the expected number of times
per second 6 increases through = with R between 0 and R, is

(4m) 2 (be/bo)' 2 {erf [(2b0)7*(Ry + Q)] — erf [(200)7120]}  (6.6)

A check on these equations may be obtained by noting that the expected
number of zeros per second of I, given by equation (4.11), is equal to twice
the number of times @ increases through zero plus twice the number of times
6 increases through =. Setting R, equal to zero in (6.4), to infinity in both
(6.4) and (6.6), and adding the three quantities obtained gives half of (4.11),
as it should.

Now we shall consider the crossings of . The equations in the first part
of the analysis are quite similar to those encountered in Section 3.8 of
Reference A where the maxima of R, for noise alone, are discussed. We
start by introducing the variables xy, x,, - - - x5 where

x;=1I.,= Rcos 8 — Q, 24 = I, = Rsin 6 6.7)

and the remaining %’s are defined in terms of the derivatives of I,and I, and
are given by the equations just below (3.8-4) of Reference A.
Here we shall consider the noise band to be symmetrical about the sine
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wave frequency f, so that b, and by are zero. Then from equations (3.8-3)
and (3.8-4) of Reference A the probability density of x1, %, - - - xgis

S—Tg;—b exp (-—2% [ba(x7 + «3) + 2ba(x1%3 + 242%) .

+ D/ + D) + b + x%n)

where D = bobs — b3 and the b,’s are given by equations (A2-1). Replac-
ing the a’s by their expressions in terms of R and 6, similar to those just
above equation (3.8-3) of Reference A, shows that the probability density
for R, R',R"”,8, &, 0" is

3

p(R, R', R",0,0,0") = ex (—2% [B(R* — 2RO cos 6 + Q°)

R
85D P
+ (D/bs)(R"® + R0 4 2b2(RR” — R*0') (6.9)
4+ bo(R" — 2RR"6® + AR™§" + 4RR'G'6" + R" + R6")

— 2b,Q(R" cos § — Rf" cos § — 2R'¢ sin § — R6” sin 0)])

It must be remembered that (6.9) applies only to the symmetrical case in
which &, and b; are zero.

Integrating R’ and R” in (6.9) from — to o gives the probability
density of R, 6, ¢', . The integration with respect to R” is simplified by
changing to the variable R” — R@'2, The result is

p(R, 6,0, 8") = RA(2m)*(bobaD)*12(1 + u)™1/2

exp (_L I:R2 — 2RQcos 6 + O + by R*0"*/b,

2by (6.10)

-

(Qby sin 8 + baRG”)E:I)
(1 + w)D

where # = 4b0,0°/D. The expected number of times per second the time
derivative of @ increases through the value ¢’ is

No. =f def de do" 0" p(R, 6, 8, ")
-1 0 0

= w”z(bzﬁ/ba)mf dﬂf rdrf xdx (6.11)
— 0 0

exp [—yr* + 2racos § — o® — 8(x 4 asin 6)?]
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~where we have set

r = R(2by)~12 x = rbof” /by
a=002bm™"=0p"  y=1400" =1+ (612
2
5 = b
(14 =)D

r being regarded as a constant when the variable of integration is changed
from 6” to x.

The double integral in # and x occurring in (6.11) is of the same form as
(A3-1) of Appendix IIT and hence may be transformed into (A3-3). Here
e=rac= —ba’c+ b*=0. The diameter of the path of integration C
may be chosen so large that the order of integration may be interchanged
and the integration with respect to r performed. The result is again an
integral of the form (A3-3) in which a* = 0. When this is reduced to (A3-6)
it becomes

Noo = ¢ (2my) 702 (5o8) 1 [T o(8p/2)

6.13
+ (1 + 0 + vd/2)7e""Te {v3(2 + v8)7, p/v +8p/2}] @19

where we have used Te(—#k, ) = Ie(k, x) which follows from the definition
(A1-1) given in Appendix I.
When there is no sine wave present, p is zero and (6.13) becomes

by _ b /2
- 1 (bg)”2= 1/bg—bq+4e

= 2y \bob
7Y \lo 27r(1+§99'2)
2

This gives a partial check on some of the above analysis since (6.14) may be
obtained immediately by setting « equal to zero in (6.11). Another check
may be obtained by letting p — o« and using fe(k, =) = (1 — k)72,
(6.13) becomes

(6.14)

Ny ~ (2m) 7 (bs/ba)! 2= (6.15)

which agrees with the result obtained from & ~ I./(.
For the case in which the power spectrum w(f) of the noise is equal to the
constant value w, over the frequency band extending from f, — 8/2 to

fat+ 8/2,
by = Bwo, b = mBwe/3 = 7Bbo/3, by = TS = TB%e/5 (6.16)
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These lead to
z = (bo/b)120 = 3120/ (xB)  D/b = bibo/by — 1 = 9/5 — 1 = 4/5

5
_ 22 — 2 _
w =4 bz /D = 5z 8 55 (6.17)

y=1+2

and the coefficient in (6.13) may be simplified by means of

1 (6\"* B (1 + 522)”2
2my (ED_S) T 1422 15 (6.18)

From (6.14) we see that (6.18) is equal to Ny when noise alone is present
(and is of constant strength in the band of width 8). The curves of Ny /B
versus 5 shown in Fig. 7 were obtained by setting (6.17) and (6.18) in (6.13).
Ny/B approaches ¢ */(z 1/3) asz — .

When the wandering point T of Fig. 4 passes close to the point O, 8
changes rapidly by approximately = and produces a pulse in §. In dis-
cussions of frequency modulation @ is sometimes regarded as a noise voltage
which is applied to a low pass filter. Although the closer 7' comes to O
the higher the pulse, the area under the pulse will be of the order of = and
the response of the low pass filter may be calculated approximately.

That the pulses in ’ arise in the manner assumed above may be checked
as follows. We choose a point relatively far out on the curve for p = 5in
Fig. 7, say 5 = /30’/(Br) = 1.6 or 8 = 2.98. The number of pulses per
second having peaks higher than 2.98 is roughly Ny = .0098, and half of
these have peaks greater than ¢’ = 3.88 which is obtained from Fig. 7 for
N, = .00458. From Fig. 6 we see that ' exceeds 2.98 about .0018 of the
time. Thus the average width at the height 2.98 of the class of pulses
whose peaks exceed this value is .0018/(.0098) = .2/B8 seconds. This figure
is to be checked by the width obtained from the assumption that the typical
pulse arises when 7' moves along a straight line with speed v and passes
within a distance & of O. We take tan 8 = a2t/b = af so that
9 = a/(1 + o). From this expression for " it follows that a pulse of
peak height 3.88 (the median height) has a width of .3/8 seconds at 0 =
2.98. This agreement seems to be fairly good in view of the roughness of
our work. A similar comparison may be made for p = 0 by using the
limiting forms of (5.15) and (6.18). Here it is possible to compute the
average width instead of estimating it from the median peak value. Exact
agreement is obtained, both methods leading to an average width of =/ (46")
seconds at height #'.
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Tig. 7—Crossings of time derivative of phase angle.

Ne’ = expected number of times per second d@/df increases through the value#'. p, 3,
and the power spectrum of Iy are the same as in Fig. 5.
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7. CorRRELATION FuUNCTION FOR;—?

In this section we shall compute the correlation function Q(r) of ¢'(¢).
We are primarily interested in Q(r) because it is, according to a fundamental
result due to Wiener, the Fourier transform!* of the power spectrum W(f)
of #'(2). '

We shall first consider the case in which the sine wave power is very large
compared with the noise power so that, from (3.6), @ is approximately
I./Q and ¢ approximately I,/Q. Then using (A2-3) and (A2-1)

Qr) = WO+ 1) = QLML+ 1)

s e [T . (7.1)
= g’ = 4% f w(f)(f = f2)* cos 2a(f — frdf

When w(f) is effectively zero outside a relatively narrow band in the neigh-
borhood of f4, as it is in the cases with which we shall deal, (7.1) leads to the
relation (divide the interval (0, =) into (0, f,) and (f,, =), introduce new
variables of integration f; = f, — f, fo = f — f,in the respective intervals,
replace the upper limit f, of the first integral by o, combine the integrals,
and compare with (2.1-6) of Reference A)

Power spectrum of #'(f) = W(J)

= 4r’f0*fw(fy + f) + w(fa — f)] (7.2)

This form is closely related to results customarily used in frequency modula-
tion studies.. It should be remembered that in (7.2) it is assumed that
0 <f<Kfqand rms Iy K Q. ]

Additional terms in the approximation for f£2(r) may be obtained by
expanding

I,
Q+ I

in descending powers of (), multiplying two such series (one for time ¢ and
the other for time ¢ + 7) together, and averaging over t. If I, I, and
I3, I denote the values of I, I, at times £ and ¢ 4+ 7 respectively, the
average values of the products of the I’s may be obtained by expanding the
characteristic function (obtainable from equation (7.5) given below by
setting 5; = 55 = 27 = 73 = 0) of the four random variables I .1, Is1, I c2, T s2.
This method is explained in Section 4.10 of Reference A. When w(f) is
symmetrical about f, it is found that

# = arc tan

14 The form which we shall use is given by equation (2.1-5) of Reference A.
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g 8¢’
6102_@ @+3Qﬁ+
9m=ﬂ=—%mg (1.3)
=—%; @@K+g)~@@EW4gQ+-

From the exact expression for 2(r) obtained below it is seen that the last
equation in (7.3) is really asymptotic in character and the series does not
converge. We infer that this is also true for the first equation of (7.3).

We shall now obtain the exact expression for the correlation function Q(7)
of @'(#) when f,is at the center of a symmetrical band of noise. At first sight
it would appear that the easiest procedure is to calculate the correlation
function for 6(f) and then obtain Q(r) by differentiating twice. However,
difficulties present themselves in getting 6 outside the range —m, 7 since @
enters the expressions only as the argument of trigonometrical functions.
Because I could not see any way to overcome this difficulty I was forced to
deal with ¢ directly. Unfortunately this increases the complexity since
now the distribution of the time derivatives of I, and I, also must be con-
sidered.

We have

2
tan€=é—IIr~”Ic, sec3—1+(QiI)

y=@+hm—hﬁm@+Lm—11

sec? 6(Q + 1.)° Q+1)r+1n
and the value of #'(¢)#'(¢ 4+ 7) is the eight-fold integral

Fee += ’ ’
9(7) = f dIcl "t d[aQP(Ir'ly st ;IX‘Z)
) - ’ ’ r r (74)
(Q+]rl)lal - lelrl X(Q+Ic‘£)1.!2_ Ia2Ic2
(Q + 1)+ Iy (Q + I2)* + It
where p(I, - - -, I.s) is an eight-dimensional normal probability density.

As before, the subscripts 1 and 2 refer to times ¢ and { 4 7, respectively.
The most direct way of evaluating the integral (7.4) is to insert the expres-
sion for p(Loq, +-+, [ .2) and then proceed with the integration. Indeed,
this method was used the first time the integral (7.4) was evaluated. Later
it was found that the algebra could be simplified by representing (I .y, - -+ ,
I.,) as the Fourier transform of its characteristic function. The second
procedure will be followed here.
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The characteristic function for Iy, Iz, La1, Laz, Lo, Ils, Ity Iop is, from
(A2-2) and (A2-3) of Appendix IT and Section 2.9 of Reference A,
ave. exp il51l o1 + 2l 2 + 25la1 + 2l oo + 25101 + 36lia + 51la1 + 2l
= exp (— §) Bboat + 2 + 5 + ) + bo(ai + 5 + 57+ 2)
+2by(2157 + 305 — Z3%5 — Z4%6) (7.5)
+2g(z132 + 2370) + 28 (512 — 2275 + 2338 — 2437)
—2g" (3536 + 2128) + 2h(z124 — 22 33)
42K (2128 + 2287 — 2326 — zams) — 2h" (338 — Zaz7)].

Since we have included &y, &, &', h” this holds when f, is not necessarily at
the center of the noise band. However, henceforth we return to our assump-
tion that f, is placed at the center of a symmetrical noise band and take
by, b, I, k" to be zero.

The probability density of I.y, - - - I which is to be placed in (7.4) is
the eight-fold integral

+= +e0
P(.Icl, e I:z) = (Zw)ﬁs[- dzy - - ‘[- Elz;

€xXp ['_’l:Z]_Icl — e == 1:2’3[:2] X [Chf]

(7.6)

where “ch.f.”” denotes the characteristic function obtained by setting b1,
h, ', k" equal to zero on the right hand side of (7.5).
The integral (7.4) for @(r) may be written as

Q(’r):]1—]2—]3+f4 (77)
where J, is the 16-fold integral

+o0 + , +e o0
no= [t [ athee [ Cdne [ da

exp [—izla — -+ — izgll] (7.8)

Q + I)Q + Il 5 [ch.£]
[(Q + L) + I3)(Q + Ie2)® + Ii:]
and J,, Ji, Ji are obtained from J, by replacmg the product ©Q —|— I 51)
Q + IcE)IBIIa2 by (Q + Icl)IuIachz, alIcl(Q + Icz)I-E, .1Ic1I.z[=2
respectively.
The integration with respect to I, and I,; in (7.8) may be performed at
once. WereplaceQ + I, and I,; by xand y, respectively, and use

+o0 o0 .
x —izz—i — 21z
d izz—ify = g
dx[w yxz_l_yzs 2 + 2 (7.9)

— o0
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The integration with respect to /.. and .2 may be performed in a similar
manner. In this way we obtain a 12-fold integral.
The integrations with respect to the I”’s may be performed by using

LI R f e e) ds = £(0)

21r
(7.10)
o0 -+o0
if IdI_[ 1 f(z) ds = _i[‘ﬂz)]
21 S @ dz 220
The result is the four-fold integral
+-00 +o0 % zﬁ(g” . g.rzzazo
= (2m0)° dzy + - - f d
@, = L B+ D@+ (7.11)

exp [—(bo/2)(s1 + 22 + 33 + 53) — gz182 + zs2) + 10(z1 + 29)].

In the same way Js, J3, J4 may be reduced to the integrals obtained from
(7.11) by replacing z15(g” — g"’zss) by — g%z, —g 7% and zgE(g” —
— g'%13,), respectively. When the J’s are combined in accordance with
(7.7) we obtain an integral which may be obtained from (7.11) by replacing
z152(g” — g*224) by

g" (2132 + 2520) + g'*(z138 — 5975)° (7.12)

The terms 5; + 23 and 23 + zi in the denominator may be represented as
infinite integrals. Interchanging the order of integration and expressing
(7.12) in terms of partial derivatives of an exponential function leads to the
six-fold integral

0 @ 9 . a? +o0 +o0
- -2 e Y
Q(r) = (4m) jﬂi du fu dvl: g 5 + g Ba’l_u dz - _[ dzy

exp [— (bo + ) (i + 2:)/2 — (bo + v)(z2 + 35)/2 (7.13)
—g(en + mm) — alsm — 5%) + 0@ + 2)]

where the subscript @ = 0 indicates that « is to be set equal to zero after
the differentiations are performed.
When the four-fold integral in the z’s is evaluated (7.13) becomes

] wd
o = f o f a'vl: g Bg g Bazila_o
41') exp [—Q*(20 — 2g + u +v)/(2D)] (7.14)

= fo du-{ d"u[(g'2 — gg“)(2 — 2F + 0%/g) — £7°Q/gle™"/(4Dy)
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where
D= (bo+ w)(bo+ 1) — g —o’, F=0QQ2b— 2¢+ u+ 1)/(2Dy)

and D, denotes the value of D obtained by setting & = 0. When differen-
tiating with respect to a it is helpful to note that

a*f(D s D
1O _ pro)(32) + 1) 52
and that only f/(D) = df/dD need be obtained since dD/da vanishes when
a=0.
In order to reduce the double integral to a single integral .we make the
change of variables

Q*(bo + u — )
2[(bo + u)(bo + v) — 7]
s = Q%bo+ v — g)/(2Dy), F=r+s

(r, 5)/3(u,v) = —rs/Do,  4srDo = Q0" — 2g(r + 5)]
The limits of integration for r and s are obtained by noting that the points
(0, 0), (=, 0), (=, =), (0, =) in the (x, v) plane go into (Q*/(2b0 + 2g),
0%/ (2bo + 2g)), (0%/(2b0), 0), (0, 0) (0, Q*/(2b0)), respectively, in the (7, 5)
plane. It may be verified that the region of integration in the (r, s) plane

is the interior of the quadrilateral obtained by joining the above points by
straight lines. Equation (7.14) may now be written as

_ (=g —2r— 254+ Q%/g) — £ 0\ —rs
a0 =[] { 00" = 250 + 9)] } dr ds

r = Qb+ u— g)/(2Dy) =
(7.15)

grz _ ggu grz (7'16)
=g M T g
where y; and y; are the dimensionless quantities
28°(2 — 2r — 25 + 0%/g) o
= dr ds
n= | =t
3y = f 2ge " dr ds
’ 0* = 2(r + )
It is seen that
31 = 250~ {y2+ ff e dr ds}. (7.17)

Since the integrands are functions of » 4 s alone we are led to apply the
transformation

[]f(r + 5) drds _f uf(u) du+f a(zﬁ f(“) du (7.18)
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where A is the area enclosed by the quadrilateral whose vertices are at the
points (r, 5) given by (0, 0), (0, @), (8, B), (a, 0) and it is assumed that 8 and
« are positive. # is a new variable and is not the one introduced in (7.13).

Setting @ = (*/(2bo) and 8 = (*/(2by + 2g), using (7.18), and introduc-
ing the notation

p = Q°/(2b), k= g/b
N (7.19)

bo+g 1+k

£ =000 = o/k

permits us to write

» A _
f f e drds = f we " du + f M) e " du
J 0 s A—op

(7.20)
=1- Ae? + Pe—h
A—p AX—0p
and (7.17) yields
— .F_J _ " _ 14k g 2p! (14
g ke Tk (720

where we have expressed A in terms of p and %.
The double integral defining ¥, may be treated in the same way as (7.20):

T drds [P ue™ du oA — w)e™ du
rr = ffs—r—s_.[).E——w+f(}\—p)(£—u)

Writings# = ¢ — (§ — ) and A — # = A — £+ (£ — %) in the two numera-
tors leads to

Pe™ du f"_
o = - - *d
Y2 Ejl:f—" oe au

_Efe_du )\_pfk_"du

where we have used p(A — £)/(A — p) = —¥ to simplify the coefficient of
the third integral. When the second and fourth integrals are evaluated,
their contribution to yz is found to be equal to the terms independent of y,
on the right of (7.21). Hence, comparison of equations (7.21) and (7.22)

shows that
“ du et du
N = f e _[D p— (7.23)

(7.22)
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The integrals in (7.23) may be evaluated in terms of the exponential inte-
gral Ei(x) defined by, for x real,

T

Ei(x) =f ¢ dt/t = C + tlog.a® + 2, ad

- a1 nln
~ & ) nlfa"!
n=0
where C = 577 - - - is Euler’s constant and Cauchy’s principal value of the

integral is to be taken when & > 0. Weset{=§ — u and obtain
n=e"" {Ei[p/k] — 2Eilp(1 — k)/k] + EI[H]}
where we have again expressed £ and \ in terms of p and &.

A power series for y, which converges when —1/3 < k& < 1 may be ob-
tained by expanding the denominators of the integrands in (7.23) in powers
of #/t and integrating termwise:
yi= =27+ o]

+ 1EL — 2(1 4 p/10e™ + (1 + M/1De™] (7.24)
4 29[ — 2(1 + p/11+ g2 4 (1 + N/11+ M/20e™
doees

The following special values may be obtained from the equation given

above. When p = 0
y1 = —log. (1 — &%)

=0
This result may also be obtained by evaluating the integral obtained when
we set Q = 0, 21 = 7y cos 0y, 33 = 71 8in 0y, 22 = 72 COS 02, 34 = 72 sin s
in (7.11) and (7.12).

(7.25)

Neark = 1,
= ¢ *[Ei(p) — C — loga p(1 — )]
a - (7.26)
ye=py1— 1+ (1 + p)e”
Neark = 0,
n=kl—ec"/p, n=mn (7.27)
except when p = 0 in which case y, is approximately .
When p is large
B, UE | 20F 3R
yl“""‘p"‘ ?—"*" 'F +3—pr + -
(7.28)

11k 18
g~ =1+ 2y~ BT
P p

except near k = 1 where both y; and ¥, have logarithmic infinities. The
asymptotic expansion (7.3) for @(r), which was obtained by the first method
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of this section, may be checked by inserting (7.28) in the expression (7.16)
for Q(r) in terms of y; and ys.

Values of y; and y, tabulated as functions of k for various values of p are
given in Table 3. Negative values of 2 have not been considered since they

TABLE 3
VALUES OF ¥; AND ¥2 USED IN COMPUTATION OF CORRELATION FUNCTION OF de/di
Q) = CWIE + 1) = g — y2) — gg"'nl/(2¢%
g =gl = f w(f) cos 2x(f — fo)rdf, * = g(r)/g(0)

(1}

Values of Values of y:
k P 4
0 .5 1 2 5 .5 1 2 5
0 0 0 0 0 0 0 0 0 0

1 01005 .03526) 04224 .03854| .02000| .03171| .04147 .03936| .02051
2 04082 .08043| .09003| .07979| .04105| .06550| .08654 .08275 .04283
3 09431 .1379 (1452 | .1246 | .06292] .1022 | .1363 | .1315 | .06702
.4 1744 | L2110 .2102 | .1740 | .08586| .1432 | .1926 | .1870 | .09384
5 .2877 3056 .2886 | .2296 | .1101 | .1914 | .2579 | .2515 | .1238
6 4463 4278 | 3860 | .2042 | .1358 | .2481 | .3368 @ .3280 | .1576
7 .6733 5953 .5129 | .3721 | .1636 | .3220 | .4379 | .4269 | .1975
.8 1.0216 .8416 L6914 | .4729 | .1941 | .4275 | .5803 | .5602 | .2461
.84 | 1.2228 .9798 7888 | .5242 | .2075 | .4866 | .6593 | .6318 | .2693
.88 | 1.4890 | 1.1590 19127 | .5866 | .2219 | .5641 | .7619 | .7226 | .2964
.90 | 1.6607 | 1.2742 L0808 | .6241 | .2296 | .6138 | .8260 | .7752 | .3114
92 | 1.8734 | 1.4144 | 1.0834 | .6686 | .2378 | .6753 | .9058 | .8486 | .3294
04 | 2.1507 | 1.5048 | 1.2024 | .7217 | .2466 | .7550 |{1.0093 | .9333 | .3498
06 | 2.5459 | 1.8486 | 1.3668 | .7930 | .2566 | .8711 |1.1558 |1.0546 | .3752
07 | 2.8285 | 2.0251 | 1.4815 | .8414 | .2623 | .9474 |1.2605 |1.1366 | .3849
98 | 3.2280 | 2.2762 | 1.6405 | .9073 | .2690 |1.0704 |1.4081 |1.2548 | .4119
99 | 3.9170 | 2.7080 | 1.9066 [1.0127 | .2778 |1.2773 |1.6610 |1.4505 | .4429
005 | 4.6072 | 3.1341 | 2.1721 |1.1125 | .2846 |1.4838 |1.9175 [1.6416 | .4705
997 | 5.1175 | 3.4445 | 2.3622 [1.1866 | .2889 (1.6367 |2.1048 |1.7859 | .4893

are not required for the case in which Iy has a normal law power spectrum,
the case discussed in the next section.
df
dt
The problem of computing the power spectrum W(f) of ¢'(#) appears to
be a difficult one.* Inorder to obtain an answer without an excessive amount
of work we have had to do two things which are rather restrictive. First,
we confine our attention to the case in which the power spectrum w(f) of

8. POowER SPECTRUM OF — WHEN [y mAS NorMAL Law POWER SPECTRUM

*Since the above was written the general f. m. problem has been studied by D. Middle-
ton. He generalizes our (7.11) and (7.12), introduces polar coordinates, expands the
integrand in powers of g, and integrates termwise. W(f) then follows somewhat as in
a.m. theory.
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Iy is of the normal law type (our method could be applied to other types
but g’ and g” would be more complicated functions of 7 and Table 3 would
have to be extended to negative values of %, if they should occur). Second,
we resort to numerical integration to obtain a portion of W(f). Because
of the second item our results are either tabulated or are given as curves,
shown in Figs. 8 and 9, except when ( = 0 (noise only) in which case the
power spectrum of ¢’ is given by the series (8.7).
The power spectrum of I is assumed to be

o(f) = g\‘iuz_w g~ (202 (8.1)
The mean square value of Iy is equal to that of a noise current whose power
spectrum has the constant value of ¥o/(e+/27) over a band of width fo—fa
= ¢/ 271 = ¢2.507. The value of w(f) is one quarter of its mid-band value
at the points f — f, = +av/2 log, 4 = +01.665 (the 6 db points) and the
distance between these points is 3.330c. Integration of (8.1) shows that the
mean square value of Iy is ¥ in accordance with our customary notation.
The mid-band value of w(f) is §o/ (c8/ 27).

Assuming f, >> ¢ and evaluating the integrals (A2-1) of Appendix IT
defining b, and g gives

bo=do, = poe T = e
g/g = —uw' = —2nou, g"/g = —(2na)’(1 — ) (8.2)
no 2 .
: gg2 £ = —(@mo), k=g/bo=e""
where we hAve set
u = 2rar, w = 2wo (8.3)

and the primes on g and # denote differentiation with respect to . The cor-
relation function is accordingly, from (7.16).

Q(r) = 2n%(y1 — uy) (8.4)

If #'(t) be regarded as a noise current its power spectrum is
W(f) =4 f Q(7) cos 2afr dr (8.5)
0

When noise alone is present, p is zero and (7.25) yields

Q@:-Mm%u—w;—wﬁ%u—ﬂﬁ (8.6)
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In this case the power spectrum is, from (8.3), (8.3), and (8.6),

Wy(f) = —4dne [ﬂ cos(uf/a) log (1 — e ) du
(8.7)

El

3/2 —3/2 —f2 2
= 2ar®? 3 2N e

n=1

the series being obtained by expanding the logarithm and integrating term-
wise. When this equation was used for computation it was found conven-
ient to apply the Euler summation formula to sum the terms in the series
beyond the (N — 1)st. Writing & for f*/(4¢%), the series in (8.7) becomes

1-312g—b/1 4+ 28212 L (‘\' — l)valﬂevb.'w—l)

9 I3 /9 —3/2 —b/ 1 1 3 b
12 AR N2 b.NI:_ _ (_ >, 0
+ (x/b)" erf [(b/N)"7] + N7 5~ N R 8.8)
1 105 1056 216 | 8
+m( 3T AN 2Nﬂ+ﬁ)+ ]
When & is zero the sum?'® of the seriesis 2.61237 - -+ . The values for p = 0

in Table 4 were computed by taking N = 12in (8.8). As b— = the domi-
nant term in (8.8) is seen to be the one containing erf (choose NV so that
b= N%?). Henceasf— =

Wa(f) ~ 4n%?/f. (8.9)

When both noise and the sine wave are present it is convenient to split the
power spectrum into three parts. The first part, W.(f), is proportional to
Wx(f), the power spectrum with noise alone. The second part Wa(f) is
proportional to the form W (f) assumes when rms [y << () and the third
part W;(f) is of the nature of a correction term. This procedure is suggested
when we subtract the leading terms in the expressions (7.26) and (7.27)
(corresponding to & = 1 and k = 0, respectively) from y;. Likewise we
subtract the leading term in y., (7.27), at 2 = 0 but do not bother to do so
at the end k£ = 1 because #?y, approaches zero there. We therefore write

y1— uty = [y1+ e “log (1 — k%) — k(1 — e *)*)/p — Py
1+ atk(1 — ¢ ?)/p] —e P log (1 — B 4+ (1 — w)k(1 — ¢™)/p

_ ¢"(2m0)
an

(8.10)

= Z(u) — ¢ log (1 — &) 1-—¢")?

15 “Theory and Application of Infinite Series,” Knopp, (1928), page 561.
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where Z(u) denotes the function enclosed by the brackets in the first equa-
tion and the expressions for g”/g and & in (8.2) have been used in the replace-
ment of (1 — u?)k. ’

TaABLE 4
VALuEs OF Ws(f)/(dn%)

L4 p=0 0.5 1.0 2.0 5.0

oaw

0 0 —.03517 —.03891 —.02444 —.001948
1 0 —.03003 —.03196 —.01830 —.001814
2 0 —.01717 —.01486 —.003304 .004052
3 0 —.002436 .004014 .01252 .008225
4 0 .008757 .01730 .02244 .01027
6 0 .01478 . .02157 .02167 007665
8 0 .01018 .01366 .01237 .003505

10 0 .005768 .007378 006201 .001437

12 0 .004027 .004463 .003552 .0006439

VarLugs of W(f)/(4n%s)

0 L7369 L4118 .2322 .07529 .003017
1 . 7098 4294 .2672 L1134 .02342
2 L6439 4516 L3231 1784 .05828
3 .5542 4225 .3225 1947 .06852
4 .4623 .3496 .2654 .1580 .01590
6 .3195 2178 .1508 07554 .01540
8 .2390 L1553 .1019 .04506 .005325
10 .1908 1215 07768 .03206 .002726
12 .1595 .1003 .063006 02511 .001719

Inserting (8.10) in the expression (8.4) for ©(r) and taking the Fourier
transform (8.5) leads to

W(f) = Wl(f) + I’Vz(f) -+ Wa(f)
Wi(f) = e "Wx(f)

_ 2 ™
Wu(f) = — (12[,—8) f g cos 2mfr dr
w. = (8.11)
(a- e*")g er-mtza’)

. (2xf)” o

Wi(f) = 4na j: Z(u) cos (uf/a) du
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In these equations Wx(f) is obtained from (8.7), and Wa(f) by two-fold
integration by parts to reduce g” to g then evaluating the integral obtained

0.75
p= Q2 _ AVERAGE SINE-WAVE POWER
2vo AVERAGE NOISE POWER
0.70 -
0.65

0.60 \
0.55 .h\
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N
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Tig. 8—Power spectrum of d6/d!.
Power spectrum of Iy is assumed to be
YoloV/2r) exp [—(f — f2)*/(26).

In this expression fis a frequency near f,. The fin W(f) and in the abscissa is a much
lower frequency. W(f) = power spectrum of 8 = df/df, &' being regarded as a random
noise current. Dimensions of W(J)df same as (df/d{)* or (radians)?/sec.2

by substituting the expression (8.2) for g. That W(f) approaches Wa(f)
as p — = follows when expression (8.11) for Wy(f) is compared with the
limiting form (8.13) given below.
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Instead of dealing with W () it is more convenient to deal with (47%)™"
W (f) which is the sum of the three components

‘ 2 2
—3/2 —
E :ﬂ .'_8 -2/ (4na?)
n=1

CEOMUAGES f\_yﬁ;
(r’0) ' Wa(f) = (lp_T;_:)z (f) Pabla (8.12)

o

(Wre) " Ws(f) = }r fn Z(u) cos (uf/o) du

0.08

0.07

008 / N
N/
MRV
Rl \ X
] e | NN
R4 b A A

0 I 2 3 4 5 6

w(f)/(am?c)
(=]
g

Fig. 9—Approach of W(Jf) to limiting form.
As p— =, W(f) = 4x% (oV/2r)™ (f/a)? exp [ — £2/(20%)).

The integral involving Z(x) has been computed by Simpson’s rule, v, and
v, being obtained from Table 3, with the results shown in the first section
of Table 4. The value of W,(f) may be computed directly, and W ,(f) may
be obtained from Wx(f). The values of these two functions together with
those of IW; (f) enable us to compute the values of (4x*¢)~'IW(f) given in
Table 4 and plotted in Fig. 8.

Since, as is shown by (8.9), Wx(f) varies as 1/f for large values of 7, the
areas under the curves of Fig. 8 become infinite. This agrees with the fact
that the mean square value of ¢' is infinite.

The values of (47%)~1W(0) for p equal to 0, .5, 1, 2, and 5 are .7369, 4118,
2322, .07529, and .003017 respectively. When these values are plotted on



PROPERTIES OF SINE WAVE PLUS NOISE 151

semi-log paper they tend to lie on a straight line whose slope suggests that
1 (0) decreases as ¢ * when p becomes large.

The limiting form assumed by 1V(f) as p — = is given by equation (7.2).
When the normal law expression (8.1) assumed in this section for the power
spectrum of Iy is put in (7.2) we find that '

4 2 2 2/ (2g2
W(f)— ﬁ;’_w (i) PRl (8.13)

Fig. 9 shows that for p = 5 the limiting form (8.13) agrees quite well with
the exact form computed above.

Both (7.2) and (8.13) show that, for small values of f, the power spectrum
of 6 varies as f* when p >> 1. This is in accord with Crosby’s* result
that the voltage spectrum of the random noise in the output of a frequency
modulation receiver is triangular when the carrier to noise ratio is large.
‘When this ratio becomes small he finds that the spectrum becomes rec-
tangular. Fig. 8 shows this effect in that the areas under the curves between
the ordinates at f = 0 and f = Ao (where X is some number, generally less
than unity, depending on the ratio of the widths of the i.f. and audio bands)
become rectangles, approximately, as p decreases.

APPENDIX 1
TuE INTEGRAL Ie (, x)

The integral'®
Te(ky) = f ¢ “To(ku) du, (A1-1)
0

where I¢(ku) denotes the Bessel function of imaginary argument and order
zero, occurs in Sections 2 and 6. The following special cases are of interest.

Te(0, ) =1 —¢=
Te(1, x) = xe *[Io(x) 4+ I.(x)] (A1-2)

Te(k, =) = i

The second of these relations is due to Bennett.?”

* M. G. Crosby, ““Frequency Modulation Noise Characteristics,” Proc. I. R. E. Vol. 25
(1937), 472-514.  See also J. R. Carson and T. C. Fry, ““ Variable Electric Circuit Theory
with Application to the Theory of Frequency Modulation,” B.S.T.J. Vol. 16 (1937),
513-540.

16 The notation was chosen to agree with that used by Bateman and Archibald (Guide
to Tables of Bessel Functions appearing in ‘““Math. Tables and Aids to Comp.”, Vol. 1
(1944) pp. 205-308) to discuss integrals used by Schwarz (page 248).

7 It is given in equation (62) of the reference cited in connection with our equation
(1.2) in Section 1.
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The values in the table given below were computed by Simpson’s rule for
numerical integration. The work was checked at several points by using

Ie(k, x) = i (k/2)™ %-’:3:1

a=0

where
21 (2n)!
When x is so large that Te(k, «) is nearly equal to fe(k, =) we have
Ie(k, x) ~ (1 — B — [20(1 — B)]7*(2/A/7) f e di
t

where t; = v/x(1 — £). However, this was not found to be especially useful
in checking the values given in the table.

2 In
A,,=1—-[1+x+“’_--- + = ]c—’

x
TaBLE OF Te(k, x) = f el o(ku) du
0

k
x
0 2 4 .6 8 9 1.0
0 0 0 0 0 0 0
.2 .1813 .1813 .1814 .1815 .1816 .1818
4 .3297 .3298 .3303 .3311 3322 .3337
.6 .4512 .4517 .4530 4554 .4586 .4629
.8 .5507 .5516 5545 .5593 .5661 .5749
1.0 .6321 .6337 6386 .6468 .6584 .6736
.2 .6988 .7012 .7086 .7209 .7386 .7620
.4 7534 .7567 .7669 .7841 .8089 8422
.6 .7981 .8025 .8157 .8383 .8712 9157
.8 .8347 .8401 .8566 .8850 .9267 .9839
2.0 .8647 .8712 .8910 9255 9766 1.0476
.2 .8892 .8968 L9201 9607 | 1.0217 1.1075
.4 .9093 9179 .9446 9916 | 1.0627 1.1642
.6 L9257 19354 .9655 | 1.0186 | 1.1001 1.2183
.8 .9392 .9499 L9831 | 1.0424 | 1.1345 1.2699
3.0 .9502 L9618 L9982 | 1.0635 | 1.1661 1.3195
.2 .9592 9718 1.0110 | 1.0822 | 1.1953 1.3672
N .9666 .9800 1.0220 | 1.0988 | 1.2223 1.4132
.6 L9727 .9868 1.0314 | 1.1136 | 1.2475 1.4578
.8 9776 9925 1.0394 | 1.1268 | 1.2708 1.5010
4.0 .9817 .9971 1.0463 | 1.1380 | 1.2926 1.5430
.2 L9830 1.0010 1.0522 | 1.1492 | 1.3130 1.5839
.4 L9877 1.0043 1.0574 | 1.1587 | 1.3320 1.6237
.6 .9899 1.0070 1.0619 | 1.1672 | 1.3499 1.6625
.8 .9918 1.0092 1.0657 | 1.1749 | 1.3666 1.7005
5.0 .9933 1.0111 1.0680 | 1.1818 | 1.3823 1.7376
5.4 .9955 1.0140 1.0743 | 1.1937 | 1.4110 1.8095
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TABLE—Continued
k
x
0 2 A4 .6 .8 .9 1.0
5.8 L9970 1.0160 1.0783 1.2034 1.4364 1.8786
6.2 .9980 1.0174 1.0814 1.2114 1.4590 1.9452
6.6 .9986 1.0183 1.0837 1.2180 1.4792 2.0097
7.0 .9991 1.0190 1.0854 1.2234 1.4972 2.0722
7.4 .9994 1.0195 1.0867 1.2278 1.5134 2.1328
7.8 .9996 1.0198 1.0876 1.2375 1.5279 2.1917
8.2 9997 1.0201 1.0885 1.2346 1.5409 2.2491
8.6 - .9998 1.0202 1.0891 1.2371 1.5526 2.3050
9.0 .9999 1.0203 1.0896 1.2393 1.5631 2.3597
10.0 1.0000 1.0205 1.0902 1.2431 1.5852 1.9207 2.4910
11.0 1.0000 1.0206 1.0907 1.2456 1.6024 1.9668 2.6157
12.0 1.0000 1.0206 1.0909 1.2471 1.6158 2.0066 2.7347
13.0 1.0000 1.0206 1.0910 1.2482 1.6263 2.0411 2.8487
14.0 1.0000 1.0206 1.0910 1.2488 1.6346 2.0711 2.9584
15.0 1.0000 1.0206 1.0911 1.2492 1.6412 2,0973 3.0041
) 1.0000 1.0206 1._0911 1.2500 1.6667 2.2942 w0
k
x
.86 90 96 1.0
15.0 1.8773 2.0973 2.5810 3.0041
16.0 1.8899 2.1201 2.6371 3.1663
17.0 1.9006 2.1403 2.6894 3.2653
18.0 1.9095 2.1579 2.7381 3.3614
19.0 1.9171 2.1737 2.7837 3.4548
20.0 1.9235 2.1870 2.8263 3.5457
0 1.9597 2.2942 3.5714 ©
APPENDIX II
SEcoND MoMENTS ASSOCIATED WITH I, AND I,
The in-phase and quadrature components of the noise current I
M
1) = 22 cacos [(wn — @)t — ¢4
n=1
(3.3)

Iﬂ(t)

Il

i Cn sin [(wn - Q)‘,' - (0!1]

n=1

are closely related to the envelope R and phase angle 6 of the total current,
this relationship being being shown by the equations (3.4) and (3.5). 1.0
and 7,(#) and their time derivatives may be regarded as random variables.
In much of our work we have to deal with the probability distribution of

these random variables.

By virtue of the representation (3.3) and the

central limit theorem' this distribution is normal in the several variables.
The coefficients in the quadratic form occurring in the exponent are deter-

18 Section 2.10 of Reference A.
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mined by the second moments of the variables.” Here we state these
moments. Some of the moments have already been given in Sections 3.7
and 3.8 of Reference A. For the sake of completeness we shall also give
them here. The new results given below are derived in much the same way
as those given in Reference A.

Let

b= @ [ WD = 50" 0

bo= [ @) df = vo
(A2-1)

g = V/:w(f) cos 2x(f — fo)r df

h= f w(f) sin 2n(f — fo)r df

and let g’, g”, ', k" denote the first and second derivatives of g and & with
respect to . For example,

g =—12r £m w(f)(f — fo) sin 2x(f — for df

Incidentally, in many of our cases w(f) is assumed to be symmetrical about
fo. This introduces considerable simplification because by, bs, bs, - -,
h, ¥, K", reduce to zero.

The following table gives values of b,’s and g for two cases of frequent
occurrence

Ideal band pass filter Normal law filter

centered on f, centered on fy, f¢ > o
el ::Jladfc:z{; efsgw:ef; .%Lz_ﬂ- o
bo wo(fs — fa) Yo
by 7wo( fo — f2)'/3 4o’y
b mwolfs — fa)®/5 48mtoty
4 (wr)wo sin w(fo — fa)7 o X7’

If we write I, I., I. for I (), I.(#), I. (i), where the primes denote differ-

¥ Section 2.9 of Reference A.
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entiation with respect to ¢, and do the same for I,(¢) and its derivatives we
have, from Section 3.8 of Reference A,

LI = =L = b, I =1I =0

LTI

IP=I=b, II. =0 (A2-2)

When we deal with moments in which the arguments of the two variables
are separated by an interval r as in (see the last of equations (3.7-11) of
Reference A)

I+ 1) = h,

it is convenient to denote the argument ¢ by the subscript 1 and the argu-
ment { + 7 by 2. Then our example becomes

IclI o= h
We shall need the following moments of this type.
Toidey = Inla =g, ITodp = —Iplag=h

o L ! - ! = p/
Talo=Inln = —Iale= —Iala =g (A2-3)

Icll: = Icth = —I:J:z = ‘"I:2I-1 =K
Indo = Inln = —¢’, Llp = —Ioly = —h"
It should be remembered that in these equations the primes on the I’s

denote differentiation with respect to ¢ while the primes on g and /% denote
differentiation with respect to 7.

APPENDIX III

EVALUATION OF A MULTIPLE INTEGRAL

Several multiple integrals encountered during the preparation of this
paper were initially evaluated by the following procedure. The integral
was first converted into a multiple series by expanding a portion of the inte-
grand and integrating termwise. It was found possible to sum these series
when one of the factorials in the denominator was represented as a contour
integral. This reduced the multiple integral to a contour integral a.nd some-
times the latter could be evaluated.
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We shall illustrate this procedure by examining the integral
I = f “do f dx x exp [—xz + 2a cos 0 + 2bxsin 0 + ¢ sin” 0] (A3-1)
— 0 .

Expanding that part of the exponential which contains the trigonometrical
terms and integrating termwise gives ‘

_ 0 ] a'lnbz’mcg',rr(t_‘_ m+%)
: W";wzﬂ;mﬁ(f-l-m+n)!r(m+%j

where we have used

2"Iln + D! = Ve(2n)!

We next make the substitution
1 1 ¢ di

T+ m+n)  2mlc wmmh (A3-2)

where the path of integration C is a circle chosen large enough to ensure the
convergence of the series obtained when the order of summation and integra-
tion is changed. The summations may now be performed:

I = %fc di eH—n“.’! Zﬂ b2mt—m—l (1 -, ct—l)—m—lm
= % (A3-3)
_ L[ 9" ey, |

_E ¢c t—c¢— b

C encloses the pole at ¢ + 52 and the branch point at ¢ as well as the origin.

When a2 is zero the integral may be reduced still further. Let ¢ be com-
plex and b such that the point ¢ + b’ does not lie on the line joining 0 to c.
Deform C until it consists of an isolated loop about ¢ 4 5% and a loop about
0 and ¢, the latter consisting of small circles about 0 and ¢ joined by two
straight portions running along the line joining 0 to c. The contributions
of the small circles about 0 and ¢ vanish in the limit. Along the portion
starting at 0 and running to ¢, arg (¢t — ¢) = —m + arg ¢, and along the por-
tion starting at ¢ and running to 0, arg (¢ — ¢) = = + arg ¢. On both
portions arg ¢ = arg ¢. Bearing this in mind and setting ¢ = ¢ sin? § on the
two portions gives

/2 2 5 ¢8in?d

Z; fe
S Y 212 c4b2 f cos &
Too = wblc+0)7 "¢ + 2 B ey (A34)

The integral may be expressed in terms of the function

Ie(k, x) = j: e " Io(ku) du
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by noting that

T e—ﬂ—ﬂcuav f:r 1 1
dy = d i f —t(a+p cosv)
./; a4+ Bcosv 0 [} ”I:a—i—ﬁcos'u o 2 %

1
= a(a® — )7 — 1rf e ™ Io(Bt) dt (A3:5)
(]
= m(a® — B2 — (w/a)le(B/a, a)
Thus
CJemo = we”* To(c/2) + (wb?/a)el'b“ Ie (2105’ a) (A3-6)
where

a= b+ /2 : (A3-7)



