CHAPTER VII

Theoretical Analysis of Modes of Vibration for Isotropic
Rectangular Plates Having All Surfaces Free

By H. J. McSKIMIN

7.1. INTRODUCTION

The comparatively recent advent of crystal controlled oscillators and of
wave filters employing piezoelectric elements has resulted in an extensive
study of the ways in which plates made of elastic materials such as quartz
or rochelle salt can vibrate. Of special interest have been the resonant
frequencies associated with these modes of motion. As will be indicated in
subsequent paragraphs, the general solution to the problem of greatest
interest is quite complex, and has not been forthcoming, (i.e., as applied to
rectangular plates completely unrestrained at all boundary surfaces). For
this reason numerous approximate solutions have been developed which
yield useful information in spite of their limitations. Several of these
solutions will be discussed in the following sections. The three general
types of modes (i.e., the extensional, shear, and flexural) will be analyzed in
some detail. Also, as a preliminary step the formulation of the general
problem along classical lines will be developed.

For the most part, the solutions obtained here are limited to those for an
isotropic body. However, such solutions provide considerable guidance
for the modes of motion existing in an aeolotropic body such as quarta.

7.2. METHOD OF ANALYSIS

In order to set up the desired mathematical statement of our problem it
will be necessary to consider first of all two very fundamental relationships.
The first of these is the well known law of Newton which states that a
force f acting on a mass m produces an acceleration @ in accordance with the
formula

f=m-a

The second relationship which we shall need is Hooke’s law relating the
strains in a body to the stresses. If forces are applied to the ends of a long
slender rod made of an elastic material such as steel (Fig. 7.1) a certain
amount of stretching takes place. If the forces are not too great, a linear
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relationship between the applied stress and ensuing strain is found to exist.
Expressed as an equation

X _ E in which X, is the force per unit area,

Xz
%, is the strain per unit length, and E is a constant known as Young’s
Modulus. (Refer to Section 7.7 for further definition of terms).
In an analogous manner, shearing stresses applied to an elastic solid as
shown by Fig. 7.2 produce a shearing strain such that

%’ = A, the shear modulus.

In general there will be contributions to a particular strain from any of
the stresses which may happen to exist. For example, when an isotropic

Fig. 7.1—Bar under tensional stress
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Fig. 7.2—Bar under shearing stress

bar is stretched, there will be a contraction along the width which has been
produced by a stress along the length. A statement of these relationships
(known as Hooke’s Law) is given by the equations of Section 7.8.

Tt is now of interest to consider the conditions of equilibrium for a very
small cube cut out of the elastic medium which in general is stressed and in
motion. Reference to Fig. 7.3 will help to visualize the stresses which may
exist on the faces of this cube. Since these stresses vary continuously
within the medium, a summation of the forces acting on the cube along each
of the major axes can be made with the use of differential calculus. From
Newton’s Law previously cited, it is apparent that any unbalance of these
forces will result in an acceleration inversely proportional to the mass of
our small cube. Three equations may then be derived, one for each major
direction." If only simple harmonic motion is considered (i.e. all displace-

1 Refer to “Theory of Elasticity” by S. Timoshenko or to any standard text on elasticity.
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ments are proportional to sin wf where w = 27 times frequency) the following
simplified equations result.
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Fig. 7.3—Stresses acting on small cube
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Since stresses are related to strains in a very definite manner, the above
equations may be converted into a more useful form involving only displace-
ments. For isolropic media, the following results.
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and A and B are given in terms of the fundamental elastic constants A and
pwithd = p, B=X+ p.

An even more elegant statement of the equilibrium conditions attributable
to Love? follows immediately from equations 7.2, since by differentiating
each one in turn with respect to x, ¥, and z respectively, and then adding
results, one obtains the wave equation

(V2 + h’)e =0 (7.3)
where

R = sz — sz
A4+ B N+ 2u _
Whatever our solution may be, then, it must satisfy equation (7.3). If
such an expression for e is found, the displacements formed in the following
way will satisfy equations 7.2 as can be shown by direct substitution.

_1 de _ _1 e _ 1 3
12 ox

By  °T Twm Y

In addition to equations 7.2, another set of requirements will be necessary
when any particular problem is considered. They are known as the bound-
" ary conditions, and in general are easily deduced from a knowledge of how
the plate or bar is held.

For a rectangular plate free on all surfaces, the boundary condition is
simply that all surface tractions vanish. This requires certain stresses to
become zero at the boundary as can be seen from the following expressions
for the x, ¥, and z components of traction in terms of unit stresses.

1 A E. Love, “A Treatise on the Mathematical Theory of Elasticity.”
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X=X +Xm + X
Y=Vm+ Vau + X, } = 0 for free surfaces (7.5)
Z=Zn +XL +Vm

(¢, m, and n are direction cosines of the normal to the surface at the point in
question).

The general problem is now seen to be one of finding solutions for the
displacements #, v, and w such that both the equilibrium and boundary
conditions are satisfied. In the following section several interesting solu-
tions will be considered for rectangular plates having all surfaces free, this
being the case of greatest interest in so far as this paper will be concerned.

7.3. EXTENSIONAL VIBRATIONS

One of the most useful modes of vibration of practical interest is the
extensional, in which particle motion takes place in essentially one direction
so as to alternately stretch and compress the elastic medium. Piezoelectric

YA

ol
f
x

Fig. 7.4—Longitudinal bar

plates vibrating in this manner, and of the shapes shown in figures 7.4 and
7.5 have been used extensively in wave filter and oscillator circuits. The
approximate resonant frequencies corresponding to this type of motion are
easily obtained by a consideration of equations 7.1 and 7.2. For the
longitudinal bar of Fig. 7.4 the only stress that need be considered is the X
extensional, all other stresses being so small that they can be neglected.
The equilibrium equation then becomes

aX: —_ 2
T = POl (7.6)
or, since
ou 1
=B
2
u_ Py (1.7)
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It is easily seen that % = cos kx is a solution to this equation if 2 = w 1/ % .

If now the boundary condition that the stress X, must become zero at the
ends of the bar (te., ¥ = 0, x = £ — refer to Eq. (7.5)), is fulfilled, the

solution will be complete. Atx = 0, X; = E g; will always equal zero.

il
I
stress will likewise reduce to zero at x = £. The desired solution will then

be as follows, f being the resonant frequencies.

“=COSWVJ—;E;9$
w = 27|-f = ”ﬂ VE (7'8)
£ p

m =1, 2, 3, etc.

Furthermore, if 2 = - or any whole number multiple of ; the extensional
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=

Fig. 7.5—Thin plate

The plate of Fig. 7.5 will now be considered. Here it can no longer be
assumed that the X, stress is the only one of importance. Instead, the
displacements v and w will be considered zero and the displacement u a
function of « only. This means that the shear stresses X, , X., ¥, vanish,
so that the equilibrium equations 7.2 reduce to

o’u u 2
or
a'u _ —pw'n
Froily ey (7.10)

This is seen to be of the same form as equation (7.7) previously discussed,

and will again have the solution # = cos kx with £ = « i _F;_ 3" The
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boundary condition on the X, stress will be met if 2 = ? so that the

following solutions result.’

u=cosw1/p(l-E|'(i')(_l;;2’)x=c05w1/)\:2“3.
w=z1rf='”_”1/§ -0 _mr /Afo (110)
rV e d+at-290 " TV 5

m = 1, 2, 3, etc.

It is seen that this formula for resonant frequencies is the same as given by
equations 7.8, with E replaced by (———lE_.(éa:j)a)
constant f-# will be somewhat higher than f-£ for a long slender bar.

It is recognized that the solutions derived above hold true only for the
limiting cases of a long slender bar, and a very thin plate respectively. Itis
therefore of interest to trace the resonant frequencies corresponding to these
extensional modes of vibration as departure is made from the limiting cases
mentioned above.

An experimental plot of the resonant frequencies of a thin plate of length £
and width w reveals that the frequency of the longitudinal mode first
discussed is gradually lowered as the width of the plate is increased. There
is also another frequency corresponding to an extensional vibration along
the width which for a very narrow plate corresponds to the second type of
extensional mode considered in the foregoing paragraphs, except that the
frequency constant will be slightly different because coplanar stresses are
involved.

As seen from Fig. 7.6, the resonant frequency curves do not cross, but
exhibit coupling effects. This is understandable from the fact that motion
in one direction is mechanically coupled to motion in the other as indicated
by Poisson’s ratio o.

In order to derive expressions for the # and v displacements associated
with the extensional mode along the length, taking into account the above
coupling effect, the following analysis proves interesting.

Consider the infinite isotropic strip of width b as shown by figure 7.7.
As will be demonstrated presently, solutions can be found such that the
equilibrium equations and the boundary conditions are precisely satisfied.
Furthermore it will be found possible to cut a section out of this strip in

, so that the frequency

31f the length and width of the plate are very large in comparison to the thickness,
the boundary conditions for the ¥, and Z, stresses may be neglected without causing
appreciable error. The quantity 4 + B has been evaluated in terms of E and ¢ for
purposes of comparison.
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such a way that the boundary conditions for the cut edges are very nearly
satisfied. The plate formed in this way may then be considered as vibrating
at the required frequency f, which will then be the resonant frequency
desired.
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Fig. 7.6—Extensional modes with mechanical coupling
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Fig. 7.7—Infinite strip

Let displacements be arbitrarily chosen in the following way:

u = U cos kx cos {,
(7.12)

v = Vsin kxsin {,
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As shown in Section 7.9, two solutions of this type will satisfy the equi-
librium equations precisely. One corresponds to e = 0 in the wave equation
7.3, while for the other ¢ # 0. Superposition of these two solutions and
proper evaluation of parameters make it possible to satisfy the boundary

conditions at the edge of the strip; namely, that at y = =+ g, ¥, = 0and
X, = 0. (Refer to equations 7.5). The following transcendental equation

is obtained

b
ths 206801 — o)

= (7.13)
2 2 2 2
cot {gg (ta = K)a + ok)
in which
s A Y]
& A+B¢ E
G=60—-F1 (7.14)
2
2 pw
iy

This equation may be solved graphically to yield values of frequency
corresponding to given values of k& For our discussion of the length ex-
tensional mode of vibration, the first root only will be considered.

Fig. 7.8 shows a plot of 6-b against -k assuming that Poisson’s ratio is
33% Ifk=1,and b = 1,for example, 6 = /‘/ﬁm = 1.62.

The equations for the displacements when determined as explained in
Section 7.9 become: N

# = U, [cosh-344 y 4+ .402 cos 1.278 9] cos x

) . (7.15)
v = U; [.344 sinh .344 y 4+ .315sin 1.278 y] sin a

All three stresses X, ¥,, and X, may be calculated from the above
equations. If the length of our plate is made equal to mm, where m is an
integer, the extensional stress X, will equal zero regardless of y at the
boundaries * = 0 and x = £ since X.a sin x = 0 when x = mr. Also it
can be shown by calculation that X, is so small in comparison to the exten-
sional stresses as to be entirely negligible; hence our solution is complete.

If £ = , the plate will be vibrating in its fundamental longitudinal mode.
The distortion which results is shown by Fig. 7.9. It is seen that most of

¢ Plotted in this way, the same curve results regardless of the value of b chosen for the
purpose of solving Eq. 7.13.
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the motion is along the x axis, though there is a certain amount of lateral
contraction as the plate elongates.

The second harmonic will have the same resonant frequency if £ = 2,
the third if £ = 3, etc.
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Fig. 7.9—Distortion of plate vibrating in first longitudinal mode

Fig. 7.8—6-b versus kb for plate longitudinal modes (a = .33,k =

In addition to harmonic modes along the length just considered there
will be those for which the motion breaks up along the width. In general,
the distortion of the plate may be quite complex with simultaneous variations
along both dimensions. Similarly, for plates such as shown in Fig. 7.5
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there will be many extensional modes which have resonant frequencies
somewhat above those given by Eq. 7.11. Analysis of the motion shows
that for these modes the displacement along the thickness varies periodically
(or “breaks up”) along the major dimensions of the plate. There again the
distortion pattern of the plate may become very complex.

7.4. SHEAR VIBRATIONS

The second class of vibrations which will now be considered is the shear.
This type of mode is of special importance because of the fact that piezo-
electric plates vibrating in shear are widely used for frequency control of
oscillators. For example, the AT quartz plate which is so much in demand
utilizes a fundamental thickness shear mode in which particle motion is
principally at right angles to the thickness. = The distortion of the plate will
be similar to that shown in Fig. 7.2.

A simple, yet very useful formula for the resonant frequencies associated
with the above type of displacement has been derived on the assumption

A\

e 1
Fig. 7.10—Orientation of thin plate

that the length and width of the plate are very large in comparison to the
thickness. For the xy shear mode, the displacement % is assumed to be
u = U cos ky, all other displacements being equal to zero. The only stress
that need be considered then, is the X, shear which is proportional to sin &y.
Boundary conditions on this stress at the major surfaces of the plate are
easily satisfied by choosing k such that X, = Oaty = Oand y = . (Refer

to Fig. 7.10.) This will be the case if £ = ?-r—;’—r, where m is any integer, and

¢ is the thickness of the plate. By using the simplified equilibrium equation
as reduced from equations 7.1, a formula for the resonant frequencies is
obtained in much the same manner as for extensional thickness modes.

w=2nf = 1? ,‘/4 m =1, 2, 3, etc. (7.16)
p

In this formula the shear modulus A appears instead of Young’s modulus
as in the case of longitudinal modes. Harmonic modes are given by values
of m greater than unity.
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In addition to the resonant frequencies predicted by the foregoing analysis,
there will be others corresponding to shear vibrations in which the principal
shear stress varies periodically along the length and width of the plate.
A formula which yields the approximate frequencies for these modes is
developed in Section 7.9. It is shown that if the length and width are
large in comparison to the thickness, the following expression may be used:

'-21rf_1r1/ 1/;11 ‘“2” fi‘f (7.17)

In this formula which has been derived for xy shears the ¢ constants are
the standard elastic constants for aeolotropic media. For isotropic plates
such as have been considered up to this point

E(1 — o)

W g, T

and
css = cgg = A, the shear modulus (7.18)

Various combinations of the integers m, #, and $ may be chosen, with the
restriction that neither m nor » can equal zero. It is seen that if £ and w
are very large the formula reduces to that of Eq. 7.16 which was derived on
precisely that basis. Also, it is seen that the more complex modes all lie
somewhat above the fundamental shear obtained by setting m = n = 1
and p = ‘

Plate shear modes are also of considerable interest, particularly the one
of lowest order. For a plate having a large ratio of length to width a formula
similar to that given by equation 7.17 (but for two dimensions only) may
be developed. 1If the plate is nearly square, however, this formula no longer
yields sufficiently accurate values for the resonant frequencies. Coupling
to other modes of motion® complicates the problem so much that only
experimental results have been of much practical consequence. Fig. 7.11
shows in an exaggerated way the distortion of a nearly square plate vibrating
in the first shear mode.

7.5. FLEXURAL VIBRATIONS
7.51. Plale Flexures

One of the most studied types of vibrations has been the flexural. Perhaps
this is true because it is the most apparent and comes within the realm of
experience of nearly everyone. The phenomena of vibrating reeds, xylo-
phone bars, door bell chimes, tuning forks, etc. are quite well known.

81t is found experimentally that odd order shears are strongly coupled to even order
flexures; similarly, even order shears and odd order flexures are coupled.
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Beam theory has been used quite extensively to derive the equations
which yield the resonant frequencies and displacements for bars vibrating
in flexure. To obtain reasonably accurate results for ratios of width to
length approaching unity, however, the effects of lateral contraction, rotary
inertia, and shearing forces must be considered. This leads to a rather
complicated solution which is much more accurate than that derived by the
use of simple beam theory only, though it is still approximate in nature.

For two dimensional plates free on all edges a method of analysis may be
used which is similar to that described under extensional modes. While
it is somewhat involved it yields direct expressions for the two displacements
% and v, so that all stresses may be calculated, and the extent to which
boundary conditions are satisfied determined.®

Fig. 7.11—Distortion of plate in first shear mode

Solutions for % and v are assumed to be of the form

% = U sin {y ccs kx
. (7.19)
v = V cos {ysin kx
For the infinite strip previously considered a transcendental equation is
obtained which is the same as equation 7.13 with the exception that the
left-hand expression is inverted.

tan £, -l-’
'2_ 26K — o) (7.20)
tan {22 (t: — B)({i + ok .

(Refer to Eq. 7.14 also.)

8 This is an extension of Doerfller’s analysis used to obtain harmonic flexure frequenceis
for plates—“Bent and Transverse Oscillations of Piezo-Electrically Excited Quartz
Plates”—Zeitschrift Fiir Physik, v. 63, July 7, 1930, p. 30. Also refer to “The Distribu-
tion of Stress and Strain for Rectangular Isotropic Plates Vibrating in Normal Modes of
Flexures”—New York Univ. Thesis by Author, June 1940.
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The lowest order solution to this equation is found to correspond to
flexure vibrations in the infinite strip. A calculation of stresses, however,
reveals that boundary conditions cannot be satisfied properly even for the
case of a long narrow plate. It can be shown, however, that another
solution may be derived for the same value of frequency by letting £ become
imaginary. This simply means that the # and v displacements become
hyperbolic functions of x instead of sinusoidal. The two complete solutions
for the infinite strip may then be superimposed and parameters adjusted so
that for definite values of length corresponding to fundamental and harmonic
modes the proper stresses reduce essentially to zero on the ends of the plate.
For plates having a ratio of width to length less than .5, this method gives
very accurate expressions for displacements and stresses. If only the
resonant frequency is required, ratios up to unity and beyond (for the
fundamental mode) may be considered.

An example has been worked out to provide a complete picture of the
displacements for a bar of width = 1, 2 = 1 and ¢ = .33. Use of equation

2
7.20 yields the quantity §* = % = .166 from which the resonant frequency

may be obtained. Using this value of 62, one finds that k2 = —.800 also
satisfies equation 7.20. By making the total length of the bar equal to
4.50 the X extensional stress and the X, shear stress may be made essen-
tially zero on the ends of the plate regardless of y.”

The following expressions for # and v are obtained:

# = (sinh .9132 y — 1.02 sinh .9718y) sin x
—.160 (sin .9828y — .9568 sin .9250y) sinh .8944x
v = (—1.094 cosh 9132y + .9915 cosh .9718) cos x
—.160 (.9095 cos .9828y — .990 cos .9250y) cosh .8944x

(7.21)

Fig. 7.12 shows the distortion of the plate as calculated from the above
expressions. It is seen that there will be two points at which there is no
motion in either the x or y directions. These nodal points can be used in
holding the plate, since it may be clamped firmly there without altering
the displacements or resonant frequency. For the example shown, these
nodes are positioned a distance of .211¢ from the ends of the plate as com-
pared to .224( for a long thin bar.

7 A graphical solution to determine £ is most convenient in which parameters are
adjusted so that X; = Oatx = ;I:-; andy = :!:g; Xy,=0atx = :I:i and y = 0. These
w

stresses will remain essentially zero for all values of v if the ratio of 7 is not too great.
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Figures 7.13 and 7.14 show the distribution of the principle stresses as a
function of position along the length. It is seen that for the particular
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Fig. 7.12—Distortion of bar vibrating in first free-free flexure mode
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Fig. 7.13—Distribution of longitudinal stress for free-free bar vibrating in first
flexure mode
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Fig. 7.14—Distribution of shear stress for free-free bar vibrating in first flexure mode

example cited, the maximum shear stress is only about one-tenth the
maximum X, extensional stress. Both of these stresses reduce to zero at
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the ends of the plate as they should in order to satisfy the boundary condi-
tions. As the ratio of %v is increased the shear stress becomes of greater

importance.
7.52. Thickness Flexures

The final analysis to be considered in this paper is for thickness flexures
along the width or length of a thin plate. These modes are of particular
interest in connection with the dimensioning of quartz plates for which it is
desirable to utilize the fundamental thickness shear mode. (AT plate, for
example.) It is found experimentally that even ordered thickness flexures
are coupled to this shear to such a degree that at certain ratios of dimensions
the operation of the plate as an oscillator or filter component is impaired.

The two-dimensional solution derived in the preceding paragraphs can
be used to predict certain harmonic thickness flexures; however, in order to
obtain a complete picture it is necessary to extend the theory to three
dimensions. This has been done by the author with the following transcen-
dental equation as a result (refer to Section 7.93).

b
tan !1 i _ _2(1 (QAO.Z (7 22)
b [eB(fi + o) + 44l — &l '
tan £, 5

Solutions to this equation are exact in nature for a plate of thickness &
and of infinite extent in both the x and z directions. The quantity o is
equal to the sum of the squares of % and m which appear in the expressions
for displacements as follows:

u = U fi(y) sin kx cos mz

v = V fuly) cos kx cos mz (7.23)

w = W fi(y) cos kx sin mz

Also in equation (7.22)

2 _ o A 2

b=03Tp—«

=0 —4d ' (7.24)
2

Ll

v==

The lowest order solution to equation (7.22) with o? positive again cor-
responds to flexure vibrations, as in the two dimensional case. Fig. 7.15
shows a plot of #-b against -5 calculated for ¢ = .3.
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For reasonably high order flexures it may be reasoned that the true dis-
placements will be very nearly the same as those for the doubly infinite
plate as derived by the above method since the correction necessary to
fulfill the boundary conditions will only apply very close to the edges of the
plate. It will then be sufficient to choose values for k and m such that

k=1p %r and m = %r where p and g are integers. The values of o? obtained

in this way determine the corresponding resonant frequencies.
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Fig. 7.15—6-b versus a-b for thickness flexures

If it is desired to solve for the ordinal xy flexures, for example, m should
be set equal to zero. The displacements in this case will be independent
of the z dimension. When g is assigned values other than zero however,
the resulting modes may be considered as xy flexures which vary or break
up along the third major dimension. If g is small the resonant frequencies
will lie only slightly higher than that of the corresponding ordinal flexure
for which ¢ = 0.

Fig. 7.16 shows a few of the resonant frequencies as calculated for values
of shear modulus and density corresponding to AT quartz. The effects of
coupling to the fundamental thickness shear are shown by dotted lines for
the 14th xy flexure. As might be expected there is similar coupling between
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the 14th flexure which breaks up once along the z dimension and the shear
which breaks up once along z—etc. A few of these flexures which break up
along s are shown for the 16th ordinal flexure.
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Fig. 7.16—XV thickness flexure modes for square plate

7.6. SUMMARY

Three main classes or families of vibrational modes are found to exist in
rectangular elastic plates free on all surfaces; namely, the extensional, the
shear, and the flexural. In general, the associated displacements are
functions of all three dimensions and may vary in such a manner as to make
the distortion of such plates quite complex.

For certain limiting cases, approximate solutions for the resonant fre-
quencies and displacements (from which strains and stresses may be cal-
culated) can be derived. Though there are a number of methods that can
be used for specific problems, it has been found very convenient to utilize
the classical formulation. For this reason the basis of this method hasbeen
discussed briefly. In essence it requires that displacements and stresses
occurring within the elastic solid satisfy conditions of equilibrium as de-
rived from Newton’s Law. At the boundaries, certain other relations must
be satisfied in order that conditions of clamping might be fulfilled. For
plates entirely unrestrained the latter requires that all forces (tractions)
acting through the free surfaces must vanish.

For thin rectangular plates (such as quartz crystal oscillator plates) the
modes of greatest practical consequence are plate modes, for which all
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stresses are essentially coplanar and independent of the thickness, and
thickness modes, for which all dimensions must be considered except in
limiting cases.

Because of their great utility, simplified formulae have been derived for
the resonant frequencies associated with long, narrow bars vibrating longi-
tudinally, thin plates with extensional motion along the thickness dimension,
and thin plates vibrating with shearing motion at right angles to the
thickness.

Exact solutions for the infinite strip have been derived, and used in
obtaining the displacements and resonant frequencies for flexural and
longitudinal modes. Such solutions take account of the fact that the width
of the plate may become appreciable. While limiting cases of plate shear

may be analyzed, solutions for ratios of ;f approaching unity have not

proved very satisfactory. This is attributable to the fact that coupling to
flexural modes is severe.

Thickness flexural modes which exhibit displacement variations along
both length and width dimensions of the plate have been analyzed by
extending the “infinite strip” theory to three dimensions. Solutions
obtained are fairly accurate if the harmonic order of the flexure is sufficiently
great.

7.7. NOMENCLATURE
p = density
E = Young’s modulus

¢ = Poisson’s ratio

E
A = Shear modulus = WMFo) I
B = E =X+ for 3 dimensions
21 + o) (1 = 20) H
E
= =9 for plane stress

w = angular velocity = 2xf

2
2 = PY
="

u, v, w = displacements in x, y and z directions

du , dv dw
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2 2 2
a N N A
V" = Laplacian = 3 x2+3?+ P

x” yﬂ) Za
Xy, X2y Y2

Xz, Yy, Z: .
X,,, X,, Y, unit stresses

} unit strain components

7.8. STRESS-STRAIN EQUATIONS FOR IsoTRoPIC MEDIA

2 = }3 (X. — o¥, — oZs)
= 2 (¥, — oXa — 0Z)
YW = VY Az Oty
1
=z (Zs — 0X: — o¥y)
shear strain = ;1 ¥ shear stress
Z(che + 4 a—“)
ox

Y,=2(aBe+Aa—”)

Xs

dy
Jw
Z.=2(aBe+A~—)
0z
o do
X8=A(a_lf+a_ﬁj)
Z 0
_ dv | dw
Y. =4 £+@)

For plane stress in xy plane

1
Xz = E (Xz - G'Yy)
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X: =

E
Yﬂ=1To_2(yv+°'
Xy, = Ax,

7.9. MATHEMATICAL DE

1M

E
1= ot (2= + oyy)

%z)

RIVATIONS

7.91. Longitudinal Vibrations in Two-Dimensional Plates

As explained in the text, solutions for th
first derived. Let

U cos kx cos
V sin kx sin

?

where U and V are constant. From these

be obtained and substituted into the equ
expressions as follows result after dividing
cos kx cos {4y .

AR + £ — %’ (—kU A

A +c’)+—( kU -

Subtracting the second from the first of th

(Bk )( KU +

U
Either or both of these factors equal to ze

values of g are obtained. By substitutin

e infinite strip of Fig. 7.7 are

{,

v

t} (7.12)
6

expressions € = — -I- ay can

ilibrium equations 7.2. Two
through by the common term

- ev) =
(7.25)
- LV) = po’

ese equations, it is seen that
€V) =0

ro will satisfy 7.26, so that two

(7.26)

g back into equations (7.25),

V1 4

U,
Va

U:

conditions on w? are found. The two solutio}l

with (4 + B)(

k with AF + &) =
&

s will be

+ £) = po’
(1.27)

2
pw

By superimposing the two solutions the % and v displacements now become

u = [Uycos 1y + Uz co

v-.-_-[—-%Ulsmtly-l--EU

5 o y) cos kx

. ] . (7.28)
b sin £y |sin kx
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Using the relationships of Section 7.8, one may now calculate all stresses.
The argument % has purposely been kept the same for both of the super-

imposed solutions in order that boundary conditions at y = :l:E might be

2
satisfied regardless of x.
For ¥, to equal zero at the edges of the strip
dv ou

This gives rise to the equation:

U(€ + o) cos zlg — DA — o)] cosﬂg% —0  (7.30)

Similarly, if X, = 0aty = :I:g
du , dv
% + Q_E_”:*Eb =0 (7.31)
Another relation is obtained from (7.31):
~264Tssin &) + U — 6) sin P=0 (7.32)

The two equations (7.30) and (7.32) will be satisfied if the determinant
of the coefficients of U; and U, vanishes. The following transcendental
equation will then be obtained; values of £;> and £? being those required
by Eq. 7.27.

b
by  _6F0 — o)

2
CELEICETS) (7.13)
2

cot &2

By using either of equations (7.30) and (7.32), one may derive the relation
between U, and U, provided a solution to (7.13) is found.

~26t;sin b
U, = Uy -———-——-}; (7.33)
(&5 — ) sin & 5
To solve equation (7.13) assume a value for 2 and plot graphically the

2
right and left hand expressions as functions of 82 = Bz" . Rootsare indicated
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by the crossover points. Values of 6% corresponding to different values of
k2 may also be found in this way and a curve plotted for 6* versus k%, (or for
6-b versus k-b).

7.92. Thickness Shear Vibrations
To obtain a formula for the approximate resonant frequencies 6f thickness

shear for a plate having large ratios of and %, one may consider the

following displacements: r
# = U sin kx cos £, cos rz
v =0 (7.34)
w=10
If there are no cross couplings between shear stresses or between shear

and extensional stresses one may write:®

X = cu% + cua— + cma—w = ¢y kU cos kx cos £y cos rz
ox dy 0z

e
I

au av — . .
o (53_, + 6‘_x) = —cg LU sin kx sin £y cos rz (7.35)

X, = cg éﬁ+ a_w) = —cg rU sin kx cos £y sin rz
9z dx

Substituting into the first of the equilibrium equations (7.1) and dividing
through by common factors
cn k4 ces £ 1+ s 1t = po? (7-36)
The other two of equations (7.1) may be neglected if £ and r are quite
small so that it will only be necessary to consider equation (7.36) which
can be solved for w?. It will be noticed that the X, shear stress will pre-
mm
T ’

and r = 1:—; (n, m and p are integers) in order to satisfy the boundary condi-

dominate under these restrictions on & and ». Letting 2 = —, { =

tions for this stress and also for X., one obtains the following formula.
(This choice of &, ¢, and r is also required if the shear stress is to vary in
essentially the same manner as is experimentally observed.)

= nf =7 1/ E“i ““’”‘ + "“f’z (7.17)

in which L and W must be much larger than T

8 Refer to equation (7.18) for values of ¢ constants for isotropic case.
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The boundary condition for the extensional stresses will not be met;
however, they will be quite small in comparison to X, if % is small, and may
be neglected.

7.93. Thickness Flexures

Consider a three dimensional plate having a thickness 4 lying along the y
direction. The following displacements are found to be of a form that can
be made to satisfy the equilibrium equations 7.2,

# = U sin kx sin £y cos mz
9 = V cos kx cos £y cos mz (7.37)
w = W cos kx sin £y sin mz

Performing the operations indicated and substituting into the equilibrium

equations give the following result:
3

AR + & + ) + B_[f(w — IV + mW) = pe

AR + 8+ mh) — %‘ (RU — LV + mW) = pa’ p  (7.38)

/

AR+ &+ md) + %"(w Wt W) = g

Subtract the second and third equations of (7.38) from the first:

Bk, BC Bk Bm _
then ﬁ + -V,' = 0 and —l-]— —W =
: (7.39)
K = —£ and E = i
N U~ % Uk

Putting these values back into 7.38, it is seen that the following relation- -
ship must be satisfied.

A+ B) (B + £ 4 m?) = pu? (7.40)

Letting g = —% as in (7.39), another value for g may be obtained.

The first and second equations of (7.38) will be satisfied for any ratio of w .

so the 3rd equation is used.

AR+ 8+ w4+ B (k“ + &+ mk %’) = pw’ (7.41)
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Solving for g , using (7.41) and first of equations (7.38)

2 2
g 17’: and w_ k-4 (742)

U mk

The first ratio is the same as (7.39). For the second solution to the equilib-
rium equations, then the following relationships exist.

v _ -t w_ —k—{
7% ™M T Tm (743)
When the above are substituted back into (7.38), it is found that
AR + 6+ m?) = pu® (7.44)
In a similar way, using g = % the following are obtained:
W _m V_E+w
TF T M (7.45)

with A(k* 4 €2 + m?) = pw? as before. This is the second solution for
e= 0.

The three different solutions may now be combined or superimposed to
give

# = [Uysin fyy + Uz sin fey + Us sin £5y] sin kx cos mz

1 = [—Ulgcos bty — Ug%costgy

Us(B + m®)
+ o cos {3y | cos kx cos mz (7.46)
: P )
w = [U;%sm by — Us &;—Tzl sin oy
+ U.s;%z sin tay] cos kx sin msz
In the above equations f3 = £; because of the double requirement

of 7.44.1°

It is now possible to calculate the stresses existing at any point. It is
desired to choose U;, Us, and Us in such a manner that the boundary
conditions at the two major surfaces of the plate are satisfied. By using
the relations given in Section 7.8, the extensional stress ¥, , and the two
shear stresses X, and V. are calculated with the use of 7.46. They are then

9 Tt should also be noticed that e = 0 for this solution.
Why = kg = ks = k
my=me=m3=m
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set to zero at the faces of the plate;i.e.aty = :i:% . Three equations, after

simplifying, result.
For V, = 0aty = :J:%

U, [.;B(k“ + £ 4+ m®) sin rlg + Al sin & g]

(7.47)
+ U, [A(§ sin £ g] — Us [A(k“’ + m®) sin £ %] =0
ForX, =0aty = :I:g
b b
U1 [251 Cos (1 i] + Uz [252 cos (’2 5]
(7.48)
2 2
+ Us [ra Gl D )] [cos 2 f’] =0
{3 | 2
b
ForV,=0aty = ii
b 2,0 2 /
Uy | 26ym cos fli + Us| | Lo — ol (fz2 + &%) ) cos fgi
(7.49)

+ Us [((’am _z # + mz)) cos {3 ?:I =0
s 2

In order for these three equations to be satisfied simultaneously a neces-
sary condition is that the third order determinant formed by the coefficients
of the U’s vanish., That is,

[(aB(k” +C+od) + AD) sin & g] I:A(S sin rzg
2 2y . b
— |:A(k + m’) sin [35

[251 cos i -g] [2(2 cos zzg
=0 (.50

2 2 ]
[({3 B (k + = )) o [ﬂf
&

2
[2(1#3 cos flé] [({2171 - :T: (6 + k"')) cos !2‘-’

2

2
m .. s 9 b
[(fam - i (F + m)) cos fai
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By dividing row 1 by cos £, g , Tow 2 by cos (g—g- ; row 3 by cos {3 g and

by subtracting the elements of row 3 from those of row 2, considerable
simplification results.

The full expansion gives the following equation, after further simplifying
operations are performed.

[(aB(k’ + 64+ m') + A0) tan 4 g]-[r-i - —
(7.51)
+ 2&&[4(# + m’) tan £ g] =0

It should be noticed that £ has dropped out entirely. Actually & = &
as previously explained. Also the expression

[rm + L@y zf)]
m

must not be zero, for in simplifying equation (7.51) it was used as a divisor.
Equation (7.51) may be rewritten to give

tan {; b
‘2 _ —20, 6 AR + m°) (1.52)
b [eBE + & + m®) + ALl — kF — m'] '
tan (;ri
In the above
(A + B) (B + i+ m?) = pu?
(7.53)

AR+ 3+ m?) = po?

2
By letting 6 = P% and k2 + m® = o? equations (7.52) and (7.53) above
become
b
tan l'1§ _ —2,ts A a2
b [oB(fi + o) + AGI[G — o] '
tan fa§
with =gt _g
! A+ B
G=0G=0-4

Equation (7.22) represents the general solution for normal thickness
vibrations in an isotropic plate of finite thickness extending to infinity in
both major directions. The analogy for plates of finite dimensions is
considered in the text.



