Low Temperature Coefficient Quartz Crystals
By W. P. MASON

In this paper a review and amplification are given of the types
and characteristics of existing low temperature coefficient crystals.
The principal types are the coupled frequency crystals, the long bar
crystals, and the AT, BT, CT and DT shear vibrating crystals.
The theoretical frequencies for the AT and BT crystals agree well
with those calculated from the Christofel formula for the velocity
of propagation in an aeolotropic medium. For a finite plate other
frequencies appear which are caused by couplings to the flexure
and low-frequency shear modes. It is shown that harmonics of
the high-frequency shear mode can be excited and will have low
temperature coefficients. They can be made to stabilize the fre-
quency of ultra-short-wave oscillators. The properties of the low-
frequency CT and DT shear vibrating crystals are described.
Overtone vibrations of the shear mode of approximately twice the
frequency, having zero temperature coefficients, have been found
and these have been labeled the ET and FT cuts.

It is shown that if two or more rotations of the cut are made
with respect to the crystallographic axes, a line of zero temperature
coefficient high-frequency crystals will be obtained. For the low-
frequency shear crystals a surface of zero temperature coefficient
crystals should result.

In the last section the variation of frequency with temperature
of low coefficient crystals is discussed, and the variation of a new
cut, labelled the GT, is described. This cut has zero first and
second derivatives of the frequency by the temperature, and as a
result has a very constant frequency over a wide temperature
range. It has been applied to very constant frequency oscillators
and frequency standards and has given a constancy of frequency
considerably in excess of that obtained by other low coefficient
crystals.

I. INTRODUCTION

URING the past several years a number of crystal plates have

been found which have the property that at a specified tempera-
ture their frequency will not change with a small change in temperature.
These crystals have proved very useful in stabilizing the frequencies
of oscillators used in frequency standards, broadcasting stations, radio
communication transmitters, airplane transmitters, and for other
purposes. In order to bring out their properties and spheres of

usefulness a review and amplification of them are given in this paper.
74
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The first types of zero temperature coefficient crystals were the
so-called coupled types which obtained their low coefficient by virtue
of the interaction between two modes of motion. The first crystal of
this type was the ‘““doughnut” crystal invented by W. A. Marri-
son,! which was used in the Bell System frequency standard. In this
crystal the principal vibration is a shear and this is coupled to a
flexure motion in the ring. The low coefficient is obtained from the
fact that the shear has a positive temperature coefficient, while the
flexure has a negative coefficient, and due to the coupling there is one
region for which the temperature coefficient goes through zero. The
next crystal of the coupled type was a ¥ cut crystal of specified
dimensions invented by R. A. Heising.? In this crystal a high-
frequency shear with a positive temperature coefficient was coupled
to a harmonic of a low-frequency flexure, and a zero coefficient resulted
at one temperature due to the coupling. Outside of their use in a
frequency standard, such coupled types of crystals have not been
applied much for commercial purposes on account of the difficulty of
adjusting them, the difficulty of mounting them, and the prevalence
of spurious frequencies near the desired frequency.

The next low-temperature coefficient crystals were crystals of the
long bar type. It hasbeen known for a long time that the temperature
coefficient of an X cut crystal with its length lying along the ¥ or
mechanical axis was very low provided the width of the crystal lying
along the optic axis is very small compared to the length. This is
illustrated by Fig. 1 taken from a former paper ® which shows that
for a crystal whose width is less than 0.15 of its length the temperature
coefficient is about 2 parts per million per degree centigrade. Further-
more, it was found by the writer in 19303 that if the thickness of the
crystal laying along the X or electrical axis was increased the temper-
ature coefficient was decreased and in fact for certain ratios of axes
the coefficient approached zero. For a bar of square cross section the
zero coefficient occurs when the ratio of width to length is approxi-
mately 0.272. This apparently is also the method for obtaining a
low-temperature coefficient used in the Hilger resonator. The second
harmonic of this vibration has been used in the frequency standards
of the Physikalisch-Technische Reichsanstaldt.* In their standards

1“A High Precision Standard of Frequency,” W. A. Marrison, Proc. I. R. E.,
April 3, 1929,

2 This crystal is described by F. R. Lack in “'Observation on Modes of Vibration
and Temperature Coefficients of Quartz Crystal Plates,” Proc. I. R. E., July 1929,
Vol. 17, pp. 1123-1141, and Patent No. 1,958,620 1ssued May 15, 1934,

3 "Electncal Wave Filters Employing Quartz Crystals as Elements "B.S. T. J.,
July 1934, Pages 411 and 412.

1A, Scheibe and V. Adelsberger, Ann. d. Phys. 18, 1, 1933,
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the length is cut along the X axis and the vibration is excited by
fields applied along the length of the bar. Since a rotation about the
optic or Z axis does not change the properties of the elastic constants
involved in this vibration, this bar should have a zero temperature
coefficient at about the same ratio of axes as that given above. The
zero angle of orientation is, however, not the most favorable angle of
orientation for the fundamental vibration of a long bar, for if the
length of the crystal lies at an angle of + 5° with respect to the ¥ or
mechanical axis, the coefficient of a long bar is nearly zero.® These
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Fig. 1—Temperature coefficient of a perpendicularly cut crystal for
varying ratios of width to length.,

long bar type crystals have been used to a small extent to control
oscillators and to stabilize the pass bands of filters. Their small use
is attributable to the fact that they vibrate at low frequencies and are
difficult to excite in an oscillator circuit.

The AT and BT high-frequency shear crystals and the CT and DT
low-frequency shear crystals are other low temperature coefficient
crystals and they are discussed in detail in section II. These crystals
are cut with their planes at specified angles with respect to the crystal-
lographic axes and all of them involve a single rotation about an axis
which is parallel or approximately parallel to one of the crystallographic
axes. It is shown in section III that such crystals are not the only
zero coefficient crystals of these types that can be obtained, for if we
allow three rotations about the crystallographic axes a whole surface
of zero temperature coefficient crystals can be found. These crystals

5§ Matsumara and Kansaki, “On the Temperature Coefficient of Frequency of ¥
E&’aves in X Cut Quartz Plates,” Reports of Radio Researches and Works in Japan,
arch 1932.
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are more difficult to cut than the standard crystals and are more
subject to couplings to other modes of motion and hence most of them
are probably of more theoretical interest than of practical value.

All of the zero coefficient crystals described above are zero coefficient
at a specified temperature only and for temperatures on either side of
the specified temperature the frequency usually increases or decreases
in a parabolic curve with temperature. This merely expresses the
fact that the frequency-temperature curve is not exactly linear, but
must be expressed more generally in a series of powers of the tempera-
ture. Then for all the crystals considered above, the first derivative
of the frequency by the temperature is zero at the specified temperature
T,. The next term of importance is the square term and hence most
crystals have a frequency which varies as the square term of the
temperature about the zero coefficient temperature 7. A crystal
cut, labelled the GT crystal, has recently been found for which both
the first and second derivatives of the frequency by the temperature
are zero. As a result this ““GT"" crystal has a very constant frequency
over a very wide temperature range, and in fact does not vary by
more than one part in a million for a temperature range of 100° centi-
grade. For a temperature range of =& 15° C. it can be adjusted so
that it does not vary by more than one part in ten million. This
crystal has been applied to portable and fixed frequency standards
and has given a constancy of frequency considerably in excess of any
other piezo-electric crystal used under the same conditions. It has
also been applied in quartz crystal filters to give pass bands which do
not vary appreciably with temperature.

II. STANDARD ZERO TEMPERATURE COEFFICIENT CRYSTALS

AT and BT Zero Temperature Coefficient Crysials

Crystals which employ the characteristics of a single shear mode of
vibration to obtain a zero temperature coefficient are the AT and BT
cut crystals.® These crystals vibrate in shear and their frequencies
are determined principally by the thickness of the quartz plate.
Their mode of vibration is similar to the ordinary Y cut, and they
obtain their zero coefficient from the fact that the temperature coeffi-
cient of the shear mode changes from positive to negative as the angle
of cut is rotated about the X axis by positive or negative angles from
the position of the ¥ cut crystal. Figure 2 shows the method of
cutting these plates from the natural crystal. Figure 3 shows the
temperature coefficient of these crystals plotted against the angle of

6 “Some Improvements in Quartz Crystal Circuit Elements,” F. R. Lack, G. W.
Willard, and L. E. Fair, B. S. T. J., July 1934, pp. 453-463.
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Fig. 2—Diagram illustrating angles used in expressing orientation of AT and BT
plates within the natural crystal.
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cut while Fig. 4 shows the frequency constant of the crystal; i.e., the
kilocycles for one millimeter thickness plotted as a function of the
angular cut. The AT crystal which occurs at an orientation of
+ 35° — 20’ has a frequency constant of 1662 kilocycles for one
millimeter thickness while the BT cut which occurs at — 49° has a
frequency constant of 2465 kilocycles for one millimeter thickness.

The frequency curve of Fig. 4 agrees very closely with the frequency
calculated from the elastic constants used in the formula for the
velocity of propagation of an aeolotropic medium given by E. B.
Christofel.” Christofel showed that for any direction of propagation
in an elastic solid, there were three different waves whose velocity of
propagation could be obtained from the determinant

A1 — pe?, Mg, i3
A1z, Aoz — pc?, Nas = 0. (1)
A1z, N2s, Asz — pc?

In this equation p is the density, ¢ the velocity of propagation, and
\'s are related to the elastic constants of the crystal by the formulae

M1 = cul® + ceam?® + cssn® + 2csemn + 2c15nl + 2c16lm,

Mz = c16l? + cagm? + casn® + (cue + Cos)mn

+ (c11 + cse)nl + (c12 + cee)lm,

Mz = cul? + cagm?® + casn® 4 (css + cz)mn
+ (513 + Cﬁﬁ)nl + (014 + cge)lm,

Aoz = csel® + coam® + com® + (€aa + coag)mn
+ (css + cas)nd + (c25 -+ c16)lim,

Moy = coel® + coom? + cagn® + 2coemn + 2csenl + 2ca6lm,
a3 = el + cam?® + cagn® + 2cagmn + 2casnl + 2caslm, (2)

where [, m, and »n are respectively the direction cosines between the
direction of propagation and the x, y, and z axes. For quartz

Cog = €11y C24 = — C14; Csp = Ca4y Cs6 = C14; Ce6 = (Cu - 612)/2

and
€15 = C1p = Cap = Cog = Cy4 = Cas = €36 = C45 = €45 = 0. . (3)

For a rotation about the x axis for which a positive angle is measured
in a counter clockwise rotation for a left handed crystal and a clockwise
direction for a right handed crystal when an electrically positive face

7 See Love's “ Theory of Elasticity,” page 298, fourth edition.
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(determined by a compression) is up, the values of I, m, and = are
1=0; m = cos 0; n = — sin 6. 4)

In this definition, a right handed crystal is taken as one which causes
the plane of polarization of light traveling along the Z or optic axis to
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Fig. 4—Frequency constant for thin plates plotted against angle of cut.

rotate in the sense of a right handed screw. Substituting the values
of (3) and (4) in (2) we find

M1 = cgp c0s? 8 -+ cyasin? § — 2¢y48in 0 cos 6 = ced',

Mg = — cucos? @ — (caq + c23) sin 0 cos 6,

Ao = €20 cO5% 0 4 ceasin? @ + 2c¢14 sin 6 cos 6, (5)
iz = C44 COS% @ + cg3sin? 0,

M2 = Az = 0.

With these values of A, the three solutions of equation (1) are

51;\’@:
p

o5 = \jl[ﬁf+"_-*3i\/(“_"_%)2+41(="_“’7‘_?f]. (6)

. 2l p  p P p P

where K? = Agg®fAaohss.
The frequency of any plate with its edges free to move will be

f=g@u+1)  w=012 (7)
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where ¢ is the thickness of the plate. Hence for the 4 type vibration
which corresponds to the first velocity ¢,, the frequency will be

fim l\}c“ cos® 8 + caasin® 0 — 2cy4sinfcos 1 (_ﬁi ®)
! 2t p 2£ ’

The solid curve of Fig. 4 shows a plot of this equation while the
measured values are shown by dots.
The frequencies of the other two modes of motion are given by

fuit = 30fa + S5 = NG5 — JaF + 4K 757,

where
7\22 7\33 Nag
Ja = K = . 9
P VAaohsa

This formula is the same as that for the frequencies given by two
coupled modes ® and hence can be interpreted as a mode of vibration,
determined by \s;, and a mode of vibration, determined by the
constant Ags, coupled together through the coupling compliance Ags.
For an isotropic medium one of these modes would be a pure shear and
the other a longitudinal mode, but in a crystalline medium the motions
are not strictly along or perpendicular to the direction of motion
The A type vibration which is an x,” shear vibration is not coupled
to the other two since the coupling elasticities A;z and A3 are equal to
zero. For a more general rotation, however, they will not necessarily
be equal to zero and hence the general solution of equation (1) will
represent two shear like vibrations, the x,’ and y., and a nearly
longitudinal v, vibration all mutually coupled together.

The Christofel formula is only valid for a plate of thickness ¢ which
extends to infinity in all other directions and hence this solution does
not show the coupled frequencies due to the contour dimensions which
occur in a finite plate. In general there are two types of vibration
which couple strongly to the A type vibration, the low-frequency
shear modes and the flexure modes in which bending occurs in the
xy’ plane. As pointed out by Lack, Willard and Fair,® both the AT
and the BT occur near angles of cut for which the coupling to the
g low frequency shear mode vanishes. Hence one would expect that
these crystals would have fewer subsidiary resonances and this
expectation is verified by experiment. A practical result is that the

8 “Electrical Wave Filters Employmg Quartz Crystals as Elements,” W. P.
Mason, July 1934, page 444, B. S. T'. .

* “Some Improvements in Quartz Crysta] Circuit Elements,” B. S. T. J., July
1934, The problem of couplings is discussed in more detail in the U. S. Patent
2,173,589, Sept. 19, 1939 issued to R. A. Sykes and the writer. In this patent the
AC cut and the — 18.5° X cut crystals are described. ’
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AT and BT crystals can control considerably more powerful oscillators
without danger of the crystals breaking than can the X or ¥ cut
crystals. The frequency spectrum of an AT cut plate ground down
from a large ratio of dimensions to a smaller one is shown on Fig. 5.
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Most of the prominent frequencies can be identified as shear frequencies

of the type discussed in a previous paper ' and harmonics of flexure

10 “Electrical Wave Filters Employing Quartz Crystals as Elements,” W. P.
Mason, B. S. T. J., July 1934, page 446. The verification was made by R. A. Sykes
who kindly supplied Fig. 5.
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vibrations, This figure shows clearly that the strongest flexures en-
tering are controlled by the length of the X axis rather than the Z’ axis.

As shown by equations (6), (7) and (8) the AT and BT cut crystals
have odd harmonic vibrations which are controlled by the same
elastic constants as the fundamental vibrations. Since they are
controlled by the same elastic constants, the harmonic vibrations have
the same temperature coefficients as the fundamental mode and hence
will have nearly zero coefficients. This property has been made use
of in oscillators in controlling high-frequency vibrations with crystals
whose thicknesses can be obtained commercially.

CT and DT Low-Frequency Zero Temperature Coefficient Crystals

Another set of zero temperature coefficient crystals which are
particularly useful for low frequencies has recently been described by
Hight and Willard.'* They are related to the AT and BT cuts dis-
cussed above in that they use the same shearing motion to produce
the low coefficient. This relation is illustrated by Fig. 6 which shows
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Fig. 6—Relation between the AT and DT cuts.

11 “Presented before the Institute of Radio Engineers, March 3, 1937. Published
in I. R. E. Proc. May, 1937, p. 549. Similar crystals are also discussed in U. S.
Patents 2,111,383 and 2,111,384 issued to S. A. Bokovoy.
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the approximate orientations of the AT cut and the DT cut. In the
AT plate the x, strain is produced by a shear mode of vibration as
shown by the arrows which represent instantaneous displacements.
In the DT plate the x, strain is produced by a shear mode of vibration
as shown again by the arrows. Two diagonally opposite corners
move radially outward while the other two move radially inward.
The relatively low frequency of the DT plate results from the relatively
large frequency-determining dimensions x and 3’. The temperature
coefficient of frequency of these plates may be made zero, for the
proper angles of cut, since it goes from a large positive value at one
orientation to a large negative value for an orientation 90 degrees from
the first. Actually the angle of cut of the DT plate is not exactly
90 degrees from the AT. This is due to the fact that the frequency
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Fig. 7—Frequency constant for low-frequency shear crystal
plotted against angle of cut.

for a square plate involves the s’ constant rather than the ces’ constant
which controls the frequency of a thin plate. Similarly we find that
there is a crystal almost 90° from the BT which has a zero coefficient
and this has been designated the CT.

Figure 6 shows that the electrode faces of the DT crystal are placed
on the z’x plane and hence the shear mode generated would ordinarily
be called the 2z, mode even though it is similar to the x,” shear mode
in the AT crystal at right angles to it. The measured frequency
constant of such a series of square plates is shown on Fig. 7. In the
absence of a complete theoretical solution * taking account of all the
elastic couplings for a square plate vibrating in shear, an empirical

2 Ap approximate solution neglecting coupling was given in a former paper
# Electrical Wave Filters Employing Quartz Crystals as Elements,” page 446. This
solution is mot complete enough, however, to allow calculations of temperature
coefficients with very great accuracy.
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formula was developed for the frequency which is

1.25 1

1= 50 N a0

where d = x = 2’ if the plate is square and d = (x + 2')/2 if only
nearly square. The elastic constant ss;;' depends on the orientation
angle 8 according to the equation,

Ses’ = S44 COS% 0 + Sg 5in® @ + 4514 sin 6 cos 6. (11)

Figure 7 shows the measured values of frequency and the values
calculated from equations (10) and (11). Agreement is obtained
within 2 per cent.

From equations (10) and (11) the temperature coefficient of fre-
quency of a shear vibrating plate should be for a square crystal

T, = — (1)2) [T,+ T+ T,

S44T 54 COS® 0 + Sg67 g S5in? 0 + 45147, sin 0 cos 0
544 COs® 0 + Sggsin® @ + 4514 sin 6 cos 6

-+

] . (12)

~ The temperature coefficient of length along the optic axis is about
7.8 parts per million (per degree centigrade) while that perpendicular
to the optic axis is 14.3 parts per million. For any other direction

Ty = 7.8 + 6.5 cos? 4, (13)
where 6 is the angle between the length and the optic axis. Hence

T. = 14.3; T.) = 7.8+ 6.5 cos? 9,
and
T, = — 36.4 per degree C. (14)

The temperature coefficients of the six elastic constants were evaluated
in a former paper.® Since then they have been slightly revised so
that the best values now are

Tey, = + 12, Ty, = —54.0,

Tey, = — 1,265, this T, = — 2,350,

Ty, = — 238, results in Ty = — 687,

Ty, = + 123, T, = + 96, (15)
Tuy = + 213, Ty = — 251,

T,“ = 4 189, Tﬂu = — 160,

Thyy = — 133.5, T = + 161

13 “Electric Wave Filters Employing Quartz Crystals as Elements,” W. P. Mason,
B.S.T. J., 13, p. 446, July 1934,
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Using these values in equation (12) the expected temperature coeffi-
cients for the low-frequency vibration are as shown on Fig. 8 The
measured points are shown on the curve. The zero temperature coeffi-
cients occur at the angles 4+ 38°and — 53°. These crystals have been
designated the CT and DT low-frequency shear crystals. These types
of crystals are useful for stabilizing low-frequency oscillators ranging
from 50 KC to 500 KC.

Just as the AT and BT crystals have harmonics which can be used
to control oscillator frequencies, so also do over-tones of the low-
frequency shear crystals exist. They do not bear, however, the simple
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Fig. 8—Calculated and measured temperature coefficients
for low-frequency shear crystals.

relation to the fundamental that the high-frequency harmonics do.
S. C. Hight has found a mode of motion, which is probably related
to the second flexural vibration, of nearly twice the frequency of the
low-frequency shear mode and which has zero temperature coefficients
at angles of + 66°-30’ and — 57°. These crystals have been desig-
nated respectively as the ET and FT crystal cuts. Figure 9 shows a
plot of this frequency versus orientation. It will be observed that the
frequency constant of this mode of motion is about twice that for the
low-frequency shear mode and hence these crystals can be obtained in
reasonable sizes for twice the frequencies that the CT and DT crystals
can be obtained.
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Practically all the work done has been on square or nearly square
plates. Some time ago Bechmann  and Koga !* published work done
on crystals which departed from the square shape for which zero coeffi-
cients were obtained at somewhat different angles and different frequen-
cies than those given for the CT and DT crystals. This is due to the
fact that when the crystal shape departs from the square, the frequency
approaches more nearly the resonant frequency of the crystal vibrating
in its second flexure mode and the increased coupling changes the angle
for which the coefficient becomes zero. The square crystal is the one
which has fewer secondary frequencies and is therefore more desirable.
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I111. ZErRO TEMPERATURE COEFFICIENT CRYSTALS FOR MORE
GENERAL ORIENTATIONS

Shortly after the discovery of the AT and BT crystals it was realized
that zero temperature coefficient crystals could be obtained at a variety
of angles provided two rotations of the crystal with respect to the
crystallographic axes were used. This would allow the direction of
the shearing axis to point in any direction with respect to the crystallo-
graphic axes. Using the cg’ constant as the elastic constant determin-
ing the frequency, it was found that there was a whole series of zero

¥ R. Bechmann, Hochfrequenstechnik u Elekiroakustic, Vol. 44, No. 5, p. 145.
1 1. Koga, Report of Radio Research in Japan, Vol. IV, No. 2, 1934. See also
Patents 2,111,383 and 2,111,384 issued to S. A. Bokovoy.
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temperature coefficient crystals whose plot as a function of the two
rotations would be a line in which the AT and BT cuts would be in the
region of two points on the line. A few of these crystals whose angles
were in the region of the AT crystal were measured and were found to
have zero coefficients but also had a much more complicated frequency
spectrum than the AT or BT crystals when cut to have their major
faces more nearly parallel to the x axis.

Recently Bechmann ¢ has made calculations and experiments in
respect to double orientation crystals which have zero temperature
coefficients. The calculations were made by means of the Christofel
formula of equations (1) and (2). Although this gives the same result
as that calculated from the constant cgg’ for rotations around the x axis,
it differs from it somewhat for more general rotations. If we expand
equation (1) we obtain the cubic equation for the frequency of
oscillation.

5= fifa® + f6* + feP)
+ Pf2f52 (1 — Kag?) + fa2f (1 — Kac®) + f5'fc*(1 — Ke) ]
— 2f 8 fc*(1 — K4p* — Kac® — Kpc® +2K48KacKpe) =0, (16)

where
f= [ VAu/p . 5= VAaz/p fo = VAaa/p
o 2 ¢ JET T 0T T
A2 Aig Aeg
K = —_—, KAC = H K = .
A V1A VA11Aas Be Vhoohaz

fa, fe fe can be interpreted as the three primary frequencies and would
correspond to the three solutions of (16) if the couplings K4g, etc.,
were zero. The three solutions of (16) then will be these three primary
modes modified by the coupling between them. If we let

P = l:(fAz +f32 + fﬂ‘z) - 3[fA2f32(1 - KA-B?)
+ faifct(l — Kag®) + faifc* (1— Kge?)11/9, (17)

Q = [2(fa® + fo* + [P — 9(fa® + f5* + fc?)
X [F2f52(1 — Kap®) + fa’fc*(1 — Kac®) + f5*fc*(1 — Kne?) ]
+ 27f4%f 52 c*(1 — Kap* — Kac® — Kpc® + 2K 45K 4cKpe)1/54,
16 # Researches on Natural Elastic Vibrations of Piezo-Electrically Excited Quartz
Plates,” R. Bechmann, Zeit. f. Technisch Physik, Vol. 16, No. 12, 1935, pp- 525-528.
This multiple orientation of high-frequency shear crystals is also the basis of the

V cut crystal of Bokovoy and Baldwin discussed for example in British Patent
No. 457,342 issued May 27, 1936.
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and set
Q
cos I# = 'ﬁﬁz}

the three solutions will be

= JZ@COS% + (2 +f§2 +‘f02):

\/—2\%05(“3’:&%) +(f..ﬁ+f;2+_fr-*), (18)

Sas

From these equations and equation (2), the frequencies and tempera-
ture coefficients of all three modes of motion have been calculated by
Bechmann. Based on these calculations the angles of zero coefficient
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Fig. 10—Angles of cut for zero temperature coefficient high-frequency
shear crystals for two rotations.

are shown on Fig. 10 for the angular placement of the direction of
propagation adopted on Fig. 11.

Using the empirical formula (10) for the low-frequency shear vibra-
tion a surface of zero coefficient low-frequency shear vibrating crystals
can be calculated. For this crystal three angles are required to

7 Multiple orientation low- and high-frequency shear crystals are discussed in
British Patent 491,407 issued to the writer on September 1, 1938.
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RIGHT HANDED [ ]
CRYSTAL

+8

X (+BY COMPRESSION)

Fig. 11—Angular system for locating the axis of shear of high-frequency
crystals with two rotations.

specify the position of the plate since, for a low-frequency shear crystal,
rotating the plate around its shearing axis will change the §55 constant
and hence the frequency and temperature coefficient of the plate. If we
let the position of the plate with respect to the crystalline axes be de-
noted by the angles, 6, ¢ and v, measured as shown on Fig. 12 it can be

RIGHT HANDED
CRYSTAL

x”(+ BY COMPRESSION)

Fig. 12—Angular system for locating low-frequency shear crystals
with three rotations.
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shown that the s;;' constant is given by the equation

sss = (511 — 2513 + 533) cos? ¥ sin? 2¢ + sg6 5in? ¢ sin?
+ 4514 sin ¢ [sin 36 cos ¢ (cos? ¥ cos? ¢ — sin? y)
+ cos 30 sin  cos ¢ (cos 2¢ + cos? ¢) ]
+ 544 (cos? § cos? 2¢ + sin? Y cos? ), (19)

where the angle « is given in terms of a new angle ¢ and ¢ by the
equation
COS vy = sin ¢ cos Y. (20)

If we introduce this expression into equation (12) and introduce the
numerical values of equation (15), the expression for the temperature
coefficient of a low-frequency shear crystal cut at any angle becomes

. — 5877.5 cos? ¢ sin® 2¢
— 2 2 2

T, = [4.5 + 2.9 (sin® ¢ cos® Y + cos? ¢) + [ 105 cos? ¢ sint Zp

+ 15790 sin? ¢ sin?y + 10340 sin ¢ [sin 36 cos ¢ (cos?y cos 2¢ — sin? §)
+ 292.8 sin® psin?y — 172.4 sin ¢ [sin 38 cos ¢ (cos?y cos 2¢ — sin? §)
~+ cos 36 sin ¢ cos ¢ (cos 2¢ + cos? )]

~+ cos 36 sin § cos ¢ (cos 2¢ + cos? )]

— 19,525 (cos® ¢ cos? 2¢ + sin? ¢ cos? ¢) _
+ 200.5 (cos®y cos? 2¢ + sin? y cos? ¢)

(21)

Figure 13 gives a contour map of the location of the angles of zero
temperature coefficient. The dotted lines indicate the paths for which
the piezo-electric constant is a maximum and hence for which the
crystal is most easily excited.

IV. A NEw CrysTAL Cut, LABELED THE GT CrystaL, WHICcH Has A
VERY CONSTANT FREQUENCY FOR A WIDE TEMPERATURE RANGE

All of the zero temperature coefficient crystals so far obtained have a
zero temperature coefficient only for a specified temperature, while on
either side of this temperature the frequency either increases or de-
creases in a parabolic curve with the temperature. This is well illus-
trated by Fig. 14 which shows a comparison of the frequency stability
of the standard zero temperature coefficient crystals over a wide tem-
perature range. What is plotted is the number of cycles change in a
million from the zero coefficient temperature. These curves show
that for a 50° C. change from the zero coefficient temperature the fre-
quency of standard zero temperature coefficient crystals may change
from 30 to 140 parts per million. The curves are usually nearly para-
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Fig. 13—Contour map of zero temperature coefficient low-frequency
shear crystals with three rotations.
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bolas. This is what would be expected for in general we can write the
frequency as a function of temperature by the series

f= fn[l + ai(T — To) + ao(T — To)2 4 as(T — To)* + -- ':I' (22)

where T is any arbitrary temperature. Differentiating f with respect
to T we have

Eda'f:zfo[ﬂl'i'zﬂz(T— Tn)+3ﬂs(T_T0)2+ ] (23)

For a zero coefhicient crystal the change in frequency will pass through
zero at some temperature 7. Hence a; = 0, and the frequency will
then be

f=75l1 4 ax(T — T0)* + as(T — To)* + -+ 1. (24)

Since a: will ordinarily be much larger than succeeding terms, a
parabolic curve will be obtained. If a» is positive the frequency will
increase on either side of the zero coefficient temperature Ty and if
negative it will decrease.

Recently a new crystal cut, labeled the GT, has been found for
which both a; and @, are zero. As a result the parabolic variation with
temperature is eliminated and the frequency remains constant over a
much wider range of temperature. The variation obtained is plotted
on Fig. 14 by the curve labeled GT', and, as can be seen, the frequency
does not vary over a part in a million over a 100° C. change in tem-
perature.

This crystal, which will be described in a forthcoming paper, has
found considerable use in frequency standards, in very precise oscilla-
tors, and in filters subject to large temperature variations. It has
given a constancy of frequency considerably in excess of that obtained
by any other crystal.



