Equivalent Networks of Negative-Grid Vacuum Tubes at
Ultra-High Frequencies

By F. B. LLEWELLYN

It is shown that the equivalent network of negative-grid vacuum tubes
both at low and at very high frequencies may be expressed in many different
forms. Several are suggested and the advantages of two are described in
some detail. One of these is closely analogous to that which is in general
use at low frequencies and requires only the addition of resistive components
in series both with the cathode-grid and the grid-plate capacitances to make
it applicable to frequencies where transit time effects are appreciable
though moderately small. The resistance in series with the grid-plate
capacitance is negative in sign. In this form of the equivalent network,
;_‘:lectron transit times do not introduce a phase angle into the amplification
actor.

The paper is divided into two parts. The first gives a descriptive in-
terpretation of the results while the second contains the mathematical
. manipulations.

Part I

HEN the equivalent network of a vacuum tube is mentioned,
it brings to the mind of practically every radio engineer a
certain combination of resistances and capacitances together with an
internal p-generator which has become familiar through years of use.
Historically, this equivalent network did not spring into being full
grown like Athena from the forehead of Zeus, but was the result of a
slow and painful development. The beginnings of the equivalent
network of negative-grid vacuum tubes are to be found in the work of
Nichols where it was pointed out that a non-linear resistance is the
equivalent of a fixed resistance in series with a generator. As a
second step, Van der Bijl’s relation states that the plate current in a
vacuum tube is a function of the plate voltage plus a constant times
the grid voltage. This constant was identified with our well-known
amplification factor u and it was an easy step thereafter to combine
the Van der Bijl and Nichols relations and represent the vacuum tube
by the equivalent network shown in Fig. 1.

Here the cathode is located at C and the plate at P. Between them
the vacuum tube is represented by the internal plate resistance 7,
acting in series with the fictitious generator u,V,. This equivalent
naturally represents conditions between the cathode and plate at very
low frequencies only, because the low-frequency impedance between
the grid element and the other electrodes is so high that it can safely
be disregarded. Such an equivalent network was satisfactory only so
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Figs. 1-6—Equivalent vacuum tube networks.
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long as frequencies were low enough to allow this last approximation
to remain valid. With the advent of higher frequencies it became
evident that the internal tube capacitances played an important role
in the operation of the device. The lengths to which early workers
went to include the capacitance effects are illustrated by the compli-
cated formulas on page 207 of Van der Bijl's well-known book on
Thermionic Vacuum Tubes. Further study, however, showed that
the complication could be overcome largely by a modification of the
simple network of Fig. 1 so that capacitances are introduced between
all three elements of the vacuum tube. The result is Fig. 2 which
has been adequate in the past for all purposes. In comparatively
recent years, however, increasing frequencies demand that a further
revision be made.

The necessity for revision first became evident with the discovery
that the impedance measured between grid and cathode when a very
large condenser was placed between plate and cathode, showed an
important resistive component at very high frequencies so that the
simple combination of Fig. 2 involving only capacitances for the grid-
cathode and grid-plate impedance was no longer valid. The tools for
effecting the modification of Fig. 2 are available ! and already have
been employed to a certain extent. These tools are the result of a
theoretical analysis of the motions of electrons within vacuum tubes
and started from fundamentals. With the reservation that they
apply strictly to planar rather than cylindrical tube structures, the
results should therefore require little further modification for some
time to come.

The first result of theoretical analysis was to produce an equivalent
network which, on the face of it, resembles Fig. 2 only remotely, but
which can be shown! to be exactly equivalent at low frequencies.
This generalized theoretical network is shown in Fig. 3. It may be
seen to consist of two branches only, which exist respectively between
cathode and grid and between cathode and plate. Both branches
contain internal generators and, in general, the impedance in neither
branch is a pure resistance but depends upon a number of factors
including the time required by electrons in traversing the vacuum
tube. The immediate query which results from inspection of Fig. 3
is “What has become of the grid-plate path?” The answer to this
lies in the definition of current in Fig. 3 so that the cathode-plate
path is included in the network as shown. This definition of current
is merely the generalized one adopted years ago by Maxwell when he

1F. B. Llewellyn, “Operation of Ultra-High-Frequency Vacuum Tubes,” Bell
Sys. Tech. Jour., Vol. XIV, pp. 632-665, October 1935.
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realized that a change in electric intensity produces precisely the same
effect in a circuit as does an actual motion of charge. In Fig. 3 this
means that the current entering the branch between cathode and grid
for example consists not only of ordinary conduction current but also
of displacement current so that the current in the cathode-grid mesh
is the whole current flowing into the grid element. Likewise, the
current in the cathode-plate mesh is the whole current flowing into the
plate element of the tube.

In Part II straightforward transformation of the equations repre-
senting Fig. 3 shows that it may be represented just as well by an
infinite number of other equivalent networks. Naturally our aim is
to choose the form of network which is easily adaptable to the greatest
number of practical applications, and the one that suggests itself
primarily for this purpose contains the fewest number of internal
generators. A second consideration in the choice of the best equivalent
network is that the network should resemble the familiar delta equiva-
lent of Fig. 2 as closely as may be, so that results based on that figure
may be interpreted readily in terms of the more general network.

Fig. 2 is actually a modified form of a delta network. The most
general delta would be the one shown in Fig. 4 which consists of three
series branches, each containing an internal generator in series with
an impedance. When the mathematical transformations from Fig. 3
to Fig. 4 are carried through, it is found that a proper choice of defini-
tions for the various impedances reduces Fig. 4 to the network shown
in Fig. 5. Here only one internal generator remains, but that generator
acts in series with the internal plate impedance of the tube so that
Fig. 5 does not quite conform to the popular network where a capaci-
tance is assumed to shunt the internal generator by acting directly
between plate and cathode. However, again it can be shown that
Fig. 5 may be transformed to Fig. 6 and by a proper choice of the two
impedances Z’ and Z”, the internal generator reduces merely to our
familiar low-frequency amplification factor multiplied by the grid
potential variation.

Thus Fig. 6 with the associated definitions of impedance represents
the generalized form of the equivalent network of negative-grid vacuum
tubes and is valid until the velocity of the electrons approaches that
of light or until the distance between elements of the vacuum tube
becomes comparable to the free-space wave-length of any ultra-high
frequency considered. The expressions for the various impedances in
Fig. 6 are naturally long and complicated. However, at frequencies
where the effects of transit time of the electrons are only moderately
important, the complication reduces enormously and we have Fig. 7.
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Fig. 7—General equivalent of vacuum tubes valid for moderately high frequencies.

This is nearly identical with the well-known equivalent which was
shown in Fig. 2, and the modification consists only of the addition of
series resistors in the internal cathode-grid and cathode-plate paths.
A phase angle in the amplification factor is avoided by the resistances
in series with the capacitances.? The impedance in series with the
u-generator is the well-known internal plate resistance as given by the
slope of the static characteristic of the tube. The capacitances are
likewise those we have used all along at lower frequencies, but the
mathematics now enables their dielectric constants to be computed.
Fig. 7 will be found to be valid at any of the frequencies for which
negative-grid tubes are now contemplated for commercial application,
including those where the transit angle is about half a radian.

Much has been said and written of late years about the active grid
loss.!: % %% 1In Fig. 7 this would be determined by placing a large

*It can be shown that measurements published in a paper “Phase Angle of
Vacuum Tube Transconductance,” F. B. Llewellyn, Proc. I. R. E., Vol. 22, August
1934, may be interpreted as well in terms of the phase angle of the grid-plate imped-
?[111::‘ If the phase angle of the latter is «, and the angle measured for the paper is 6,

. C’ | sin ¢ cos ¢ tan @
2 p— _—— ——
sinea =1 C-{- JLC ’

where C’ is the grid-plate capacitance of the cold tube, C of the hot tube, and ¢ is
the |?_l‘1ase angle of the inductive branch of the tuned circuit used in the experiments,

! Loc. cit.

3]. G. Chaffee, " The Determination of Dielectric Properties at Very High Fre-
quencies,” Proc. I. R. E., Vol. 22, August 1934.

*W. R. Ferris, "“Input Resistance of Vacuum Tubes as Ultra-High Frequency
Amplifiers,” Proc. I. R. E., Vol. 24, January 1936.

¢D. O. North, "“Analysis of the Effects of Space Charge on Grid Impedance,”
Proc. I. R. E., Vol. 24, January 1936.
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condenser between cathode and plate and measuring the input im-
pedance. The result of computing the impedance from Fig. 7 agrees
with that formerly presented! as, of course, it should, since both
results were derived from the same fundamental analysis. This
agreement, however, is mentioned by way of giving an example which
checks the algebraic manipulations which were employed in arriving

at Fig. 7.
Finally the values of the various elements in Fig. 7 are summarized

in Table I. The formulas naturally are very long and their greatest

TABLE 1
REFERRING TO FI1G. 7
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use probably is in describing the simple circuit of Fig. 7 where the
values of the various elements can actually be measured or computed
as convenient.

The easiest way to visualize the equations is to apply them to a
special case which can be approached experimentally; namely the
condition that the time required by electrons in moving from grid to
plate is much shorter than the cathode-grid time. When this is the
case, the formulas reduce to those shown in Table II. These show
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TABLE II
REFERRING TO F1G. 7
Let C.,/, Cpp', C.p' be capacitances of cold tube,

i” = ratio of g — p to ¢ — g spacing,

T, . o
= —f” = ratio of g — p to ¢ — g transit time.
€

Then when k — 0:
Cop = 3 Cof [ 112 T2,
_1+§J'+#o

¥, = same as at low frequencies,

c”=§a;ltt£bi],

1+ 3y + o
N T

i 0 4 !

8”{1+3y+m]

1
Co = Cof[ L2 T80 7,
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that the cathode-plate and cathode-grid capacitances have dielectric
constants greater than unity, but that the grid-plate capacitance has
a dielectric constant less than unity. The cathode-grid resistance is
positive, and the grid-plate resistance is negative.

The outstanding result of this investigation of the network repre-
senting the negative-grid tube is the demonstration of the slight
modification required in our conventional network to make it accurate
even in the ultra-high-frequency range. The amplification factor is
the familiar low-frequency one, and at moderately high frequencies,
the only alteration needed in the conventional diagram is the addition
of two small but very important resistances, one in the cathode-grid
path and one in the grid-plate path, where the resistance in the latter
path is negative in sign.

Part II

In a recent paper,! general equations have been derived which
describe the behavior of vacuum tubes at ultra-high frequencies. In

1 Loc. cit.
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the case of negative-grid triodes and referred to Fig. 8, these equations
take the general form:

Vp + anﬂ = IPZIJI (1)
Vﬂ - VV_,, = quu: (2)
where

(Zi 4 Zy) — (Ze+ 23+ Z0) 7
o Z. + Z, '
g = Lot Zat Z9Z, + (Zo+ Zi)Ze
v Z,+ Z, ’
V_—-i'—:

T 2yt Zi+ Z.
g = (Zo+ Zs+ Z)Z, + (Z1+Zz)zc_
? Zo+ Zs+ Z. —

and the Z's may be expressed in terms of the tube geometry and d-c.
current or voltage by means of equations (80)-(84) in the reference.
In these relations the currents, I, and I, denote the total current
reaching plate or grid, respectively, and hence include both the
conduction current carried by the electrons themselves and the dis-
placement current arising from the change of electric force. With
this meaning of current, (1) and (2) contain the complete description
of the performance of the tube, and separate consideration of the
grid-plate current, usual in low-frequency methods, is unnecessary
because that current is already included in I, in (1).

The equivalent network represented by (1) and (2) is shown in
Fig. 8. Only two currents are involved, I, and I,, but, also two
internal generators, uV, and vV, are required. For some purposes,
an equivalent network which corresponds more nearly with the usual
low-frequency delta arrangement is desirable. Such an equivalent
may be obtained from (1) and (2) in conjunction with Fig. 9 which
shows the relation between currents in a delta network and those of
Fig. 8. In Fig. 9 no restriction is yet placed upon the three currents,
I., Ir and I, so that in general they all may be allowed to include
both conduction and displacement components. From Fig. 9

I, =1+ I, (4)
I, =I; — . (5)

Here are two equations expressing the three unknowns, I, I and I,
in terms of the currents I, and I,, which are assumed to be known.
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Fig. 8—Equivalent network of vacuum tube from equations (1) and (2).
Fig. 9—Relation between currents of delta network and those of Fig. 8.
Fig. 10—Equivalent delta network.

Fig. 11—Equivalent cathode-plate paths.

Fig. 12—Modified delta network equivalent to Fig. 10.
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It is obvious that a third equation is needed before the unknowns can
be found. But (4) and (5) express all the relationships that are
necessary for the equivalence of Figs. 8 and 9. It follows that we are
at liberty to impose arbitrarily a third restriction upon the currents
in Fig. 9.

The choice of this restriction may be made in many ways, each
resulting in a different network, all equivalent however to Fig. 8 and
to the vacuum tube. For example, I; might be defined as consisting
of conduction current only. Such a choice might seem at first sight
to be a desirable one because it corresponds rather well with the
conception of the cathode-plate path as being determined by electron
movement at low frequencies. If it were adopted, however, the
generalized network resulting would be found to be quite awkward,
involving two or more internal generators and complex amplification
factors.

The simplest network would be the one involving the fewest number
of internal generators, and the restriction adopted in the following
analysis for the currents in Fig. 9 is made with that object in view.
The result, as will be shown, corresponds at low frequencies with the
usual concept of the tube, and gives a high-frequency network where
neither the cathode-grid nor the grid-plate paths contain internal
generators.

The restriction which accomplishes this result is obtained by placing

Vo — Vo = Lz, (6)

so that (4), (5) and (6) determine the internal currents, I, I; and I3,
in terms of the external currents I, and I,, and the, as yet, arbitrary
impedance Z,. ,

The solution of (1) to (6) yields

i, 5] L
V,+ V, Zo =1 z, |’ (7)
_ Zr -7
7Y I
[ v — 2 | [ oz, ]
Zu . _
]/" —_ V'” ZD = Ia Sy (8)
— A 1=z
L Zﬂ_l - 0_

The choice of (6) eliminates the internal generator from the grid-plate
path, but still leaves the impedance Z; to be defined at will. From (8)
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it is evident that the internal generator is eliminated from the cathode-
grid path if Z, is chosen so that

v = 5,/Z,. 9)

The impedance Z; will accordingly be taken to be defined by (9).
The result is that the fundamental equations for Fig. 9 become:

Vp + .’-‘AVg = Ilzpdr (10)
VU = IBZ:JAr (11)
Vo — Vy = LnZy, (12)
where
o Zl —_ Z3 T
Ha Z, '

Z.
Zpa = Zo+ Zs+ Z. +2— (Zl + Zz)p
¢

ZZv+ 2o+ Zy)
Zy + Zy ’

Z
Zo=Zl+Z2+Z”(Z2+ZS+Z¢')-

(13)
Zga = Zﬁ' +

J

The various definitions in (13) are seen to be slightly simpler than
those in (3) but it must be remembered that the delta-network involves
one more current-path than the original ultra-high-frequency network,
Fig. 1. The delta corresponding to (10)—(13) is shown in Fig. 10.

At frequencies only moderately high, all of the impedances in Fig. 10
are composed of combinations of ordinary resistances and capacitances.
Both 2,1 and Z, consist of a condenser and resistor in series.

In the case of the cathode-plate path in Fig. 10, the equivalent
combination of resistance and capacitance may be represented by
either a parallel combination of resistance and capacitance which is in
series with the u-generator, as shown at () in Fig. 11, or a u-generator
of different value acting in series with a resistance, and the whole being
shunted by a capacitance connected between cathode and plate, as
shown at (¢) in Fig. 11. The latter picture is in more strict accord
with conventional practice but the mathematical relationships involve
a choice of definitions for u. It is found by trial that this choice may
be made so that u in Fig. 12 is defined merely as uo, its low-frequency
value, and is independent of frequency. When this definition is
adopted, we have in general the equivalent network of Fig. 12 which
holds at high as well as low frequencies. This differs from Fig. 10 in
the cathode-plate path only, and Z', Z" are defined as follows, where ug
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is the low-frequency amplification factor:

P[RR A PR A FN
- 1= 3
"o (Z2 + Za + Zc)Za + (Zl + Zz)Zc]
2= | WLy — ZiF Z ' (13

Figure 7 is the form taken by Fig. 12 for moderately high frequencies
where transit angle effects are just beginning to become noticeable.

In general, the formulas for the impedances in the delta network
are just as long as in the original network of Fig. 8. The delta may,
however, have an advantage in view of its wide use in low-frequency
work, and of the fact that the amplification factor for the delta can be
expressed without involving the transit angle, and hence does not
contain a phase shift.



