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A Laplacian Expansion for Hermitian-Laplace Functions of
High Order*

By E. C. MOLINA

Among the wide variety of practical and theoretical problems con-
fronting the telephone engineer, there is a surprisingly large number to
whose solution mathematics has made notable contribution. In his kit of
mathematical tools the theory of probability is a frequently used and most
effective instrument. This theory of probability contains a large number
of theorems, a large number of functions, which permit of application to
telephony. Among these is a particular tool, a particular group of mathe-
matical functions known as the ‘Hermitian Functions,” each of which is
identified by a number called its ‘“‘order.”” These mathematical functions
or relations have no practical utility until the variables in the equation can
be assigned numerical values and the resultant numerical value of the
function calculated. Tables of the numerical values of Hermitian functions
of low order exist; for example, Glover's Tables of Applied Mathematics
cover the ground for those of the first eight orders. But tables for the
functions of higher order are still a desideratum. This paper presents an
expansion by means of which the evaluation of a high order function can
be readily accomplished with a considerable degree of accuracy.

The development of the expansion is prefaced by some remarks on the
early history of the Hermitian functions and the relation of this history
to modern theoretical physics.

I

MONG contributions made by Laplace to the domain of pure and
applied mathematics, two of great practical value are:

(2) His method of evaluating definite integrals' whose integrands
involve factors raised to high powers;

(b) The pair of orthogonal polynomial functions * which he defined by
the following Equations (1) and (2)

(1) [(2n) Wa/2n ! ] Un(u) = f e — iun)ndx

= 2¢*’ f e~="x2 cos (2ux)dx;
0

(2)  [(2n + 1) Wx/220 U, (u)

0
i f e (x — iu)ntidy

o0

= 2¢%* f e~ sin (2ux)dx.
0

* Presented at International Congress of Mathematicians, Oslo, Norway, July
13-18, 1936.
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These polynomial functions formed the coefficients in a series sat-
isfying the partial differential equation
au a

U

ur

Ut

ou
to which Laplace reduced the solution of the following ball problem: ?

Consider two urns 4 and B each containing # balls and suppose that of the total
number of balls, 2%, as many are white as black. Conceive that we draw simultane-
ously a ball from each of the urns, and that then we place in each urn the ball drawn
from the other. Suppose that we repeat this operation any number, r, of times,
each time shaking well the urns in order that the balls be thoroughly mixed; and
let u‘z tli)nd the probability that after the r operations the number of white balls in
urn e X.

Under the caption ““The Statistical Meaning of Irreversibility”
Lotka ¢ has pointed out the significance of Laplace’s ball problem in
the modern kinetic theory of matter. Moreover, Hostinsky ® has
shown the bearing of the same problem on the theory of Brownian
movements and said ‘“In effect, the partial differential equation ob-
tained by Laplace has been refound by Smoluchowski."’

To avoid confusion with the Laplace functions which one encounters
in spherical harmonic analysis, the functions defined by Equations (1)
and (2) are herein designated as Hermitian-Laplace functions. Such
a designation is justified by the Equations (3) and (4) derived in the
next paragraph.

II

We also find in Laplace ©

o0 —_ nal— 2n' —ul
L(w)* = f e=x cos (2ux)dx = ( 221"11“[# (dd:h )1
0

* — 1)nH 2nH1 p—ul
I/(u) = e~=x2H sin (Qux)dx = (=1 V7 (d*nHe—)
0 22n+2 d u2“+1

Comparing these Laplacian expressions for the definite integrals In(x)
and I,’(x) with the Equations (1) and (2) we see immediately that

3) Un(u) = (= 1)[n!/(2n)! JHz2a(1),
(4) U (w) = (= 1)[n})22n + 1) JHan i1 (),

where Ho, and Has.,1 are the original Hermite polynomials” of order
21 and 21 + 1, respectively. These equations connecting the Her-

* The symbols I.(x) and I.'(x) are introduced here as convenient abbreviations
for the integrals to which they are equated; these symbols do not appear in Laplace.
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mite with the Laplace polynomials have been presented in an earlier
paper.B

Appell and Feriet, Arne Fisher, T. C. Fry, H. L. Rietz and others
base their definitions of the Hermite polynomials on e~**/2 instead of
e—='. We shall write 4,(x) for the nth polynomial as defined by these
authors, reserving H,(u) to symbolize the Hermitian polynomial as
defined in his paper of 1864. Thus, in what follows,

An@) = (= Vretr(dne=dxr),  Ha(u) = (= 1V2)" A o (uy
111

Laplacian expansions * for the U, H, and A polynomials follow
immediately from those obtainable by applying to the integrals I5(x)
and I,/(x) his method of evaluating definite integrals whose integrands
embrace factors raised to high powers. As will be shown in Part IV
of this paper, we have

I(w)/[NT(YVN)¥] = [Scos (uN2ZN)] + [’ sin (uN2N], N =2n,

I/ (w)/[N=(YNN)¥] = [Ssin (uN2N)] — [.5' cos (u¥2N], N = 2n + 1,
where ¥ = (xe~#*) for x = X = 1/42 and

S=3 (Z_l)’[u—(z.m K2,

The explicit expressions for Ko, K, K; and K,, Kj, K; are given in
Section V of this paper. The desired expansions are then given by
the equations:

e’ I,(u)[Nr = Un(u)[(2n) /2271 n!]
Hy(u)[(— 1)»[22vH1]
= A2 (uN2)[(— 1)"/27+1],
eI (w)[N7= U/ () [(2n + 1)}/22*n!]
= Honpa(u)[(— 1)+ /22042 ]

= Asapr(uN2)[(— 1)7/2r1142],

The numerical results shown below in Table I indicate the efficacy

* It may be of interest to compare the expansions presented in this paper with
the asymptotic forms of the Hermite functions given by N. Schwid® and by M.
Plancherel and M. Rotach.1?
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TABLE I

_ [sAy(x) — Ap(x)]/A (%)

N uvVZ ==x True Value of Ap(x)

s =1 5 =2 s=3

9 0.1 9.32438 X 10t 0.0089 0.0000 0.0000
0.5 3.26533 X% 102 0.0084 0.0001 0.0000
1 2.80000 x 101 0.0263 — 0.0010 — 0.0002
2 — 1.90000 X 102 0.0002 0.0018 0.0001
3 1.62000 X 10° — 0.0474 — 0.0027 0.0002
4 — 1.74680 X 104 — 0.0283 — 0.0082 — 0.0027

10 0.1 — 8.98064 X 102 0.0084 — 0.0001 0.0000
0.5 490439 X 10t —0.0027 0.0013 0.0000
1 1.21600 X 103 0.0046 0.0003 0.0000
2 — 2.62100 x 103 — 0.0147 0.0002 0.0001
3 9.50400 X 103 — 0.0436 — 0.0044 — 0.0004
4 — 5.18090 X 104 0.0445 0.0013 — 0.0018

15 0.1 — 1.98001 X 10° 0.0054 0.0000 0.0000
0.5 — 5.05845 X 10 0.0052 0.0000 0.0000
1 4.69456 X 105 0.0022 0.0002 0.0000
2 — 1.41980 X 108 — 0.0102 0.0000 0.0000
3 4.38955 X 108 — 0.0284 — 0.0017 — 0.0001
4 — 1.85644 X 107 — 0.0338 — 0.0041 — 0.0006

20 0.1 5.90233 x 108 0.0042 0.0000 0.0000
0.5 — 4.45178 X 108 0.0035 0.0000 0.0000
1 — 1.61935 X 108 0.0046 0.0000 0.0000
2 — 1.62882 X 10° — 0.0081 0.0000 0.0000
3 4.60718 X 10° — 0.0212 — 0.0009 0.0000
4 8.53219 X 100 0.1241 0.0068 0.0000

of the Laplacian expansion as applied to the evaluation of A4,(x),
x = u+2, for values of x ranging from 0.1 to 4 and for N = 9, 15, 10
and 20, respectively.

Designating by ,4x(x) the approximate value obtained for Ay(x)
when one takes into account the first s terms in each of the two series
S, S’, the last three columns of the table show the proportional errors
incurred when s = 1, 2 and 3, respectively. It will be noted that for
N = 10 and x = 4 the second approximation is closer than the third;
this situation will occasion no surprise if it is recalled that to obtain
the best results the natural order of the terms may have to be altered
when, for example, one expresses a term of the binomial expansion in
a series of Hermite functions.

For the convenience of one who wishes to calculate Ax(x) for values
of N other than 9, 10, 15 and 20, there are given in Table II the values
of u=mLK, form = 0, 1, 2, 3, 4, 5 and those values of % covered by
Table I.

I am indebted to Miss E. V. Wyckoff of Bell Telephone Labora-
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tories, for the computations involved in the preparations of Tables I
and II.

TABLE 1II

uv2 u 1Ko u 3K u Ky
0.1 0.7053412 0.234229 0.034490
0.5 0.6642654 0.198970 — 0.069716
1 0.5506953 0.0936947 — 0.273541
2 0.2601300 — 0.158968 — 0.018172
3 0.07452849 — 0.121885 0.514828
4 0.01295111 0.0244632 — 0.078479

u2K) u4K3 uKs
0.1 — 0.03520828 0.00602953 0.091905
0.5 — 0.1591469 0.0450683 0.40870
1 — 0.2294564 0.150921 0.48658
2 — 0.08671002 0.255634 — 0.78050
3 0.05589638 — 0.104689 — 0.35023
4 0.04317037 — 0.162097 0.98512

v

A simple change of variable gives
(5) I.(u) = (W)NHI (e=**%)" cos (x2uVN)dx, N = 2n,
0

(6) I.)(u) = (W)N"“fm (e=="x)N sin (x2uNN)dx, N=2n+1
0

Set y(x) = e*x, and note that dy/dx = Oforx = X = 1/42. Now set
Y = y(X),
[g(x)]* = (log ¥ — 1033’)/5?‘ — X)* ;

_Af e — Xy e — X\ La— XN

- ol =3 () ) e
(7), t=(x— X)gx).

These transformations give

L(u) = (WN)N1Y¥ f i e N2(dx/dt) cos (x2u\N)dt.

By (7) and the Lagrange-Laplace expansion for a function of x in
powers of ¢{ we obtain

oo

I.(w) = (WN)¥H YN io | N Len A (2m) Tl
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or
L) NT(PVNY = 3 (120N (Asa/m),
where, writing D for the differential operator d/dx,
A = [D2mg=CmHD cos (£2uVN) Joex

or, by the Leibnitz theorem for the product of two functions,

2m

=3 (2:") (2uNN)" cos (uN2N + rrj2)[ D2r—rg-Cmi ], 5

=0

and, therefore,

%ﬂ — cos (uN2W) Z (2111)(—1)'5::‘2\6\?)2r [D,2m-trg—Gm+1)],_

_ m-1 —1y\r 2r+1
— sin (uV2N) S (Zfﬁl)( 1) (Z;ZIV' N) [ D 2m—tr1g—Gmin ], o
r=0 .

on separating the even and odd terms in . Now setting m — r = s
and summing with reference to s and 7, instead of m and r, gives

f;ﬂ (1/2N) A gy !

21 = (2r4 25)! (— ud)r
= cos (“"ZN)):(Q\/N) & @l T
1

X [D,?g—rt2st ], v — sin (uwaN) Z: ( \[N)ﬂl_l (2s — 1)!

(2 + 29)1 (= 1)t
2r 4+ 1) (r 4+ 5)!

But, Writing u/g = 9, we hH.'Ve
@ ((2r + 25)N\ (— 1)ru o
g’o( (2r)! ) (r + 5)! [D Zag—(2ri2etl) ]

= (— 89— (28 280,28+1 (_ 1)r+s.v2r (2?’ + 25)'
= (= 1)t ‘H’[D: 2ot Eﬂ 19! a0 ]

= (_. 1)1u7(23+l) [Dzhwia-H_Dug,i ﬂfﬂ]
=0 (r+3)!

= ( -1 ) 8y, (28+1) [D=2IZJ2’+1_D ﬂ?ae—gﬂ:l,

X E [Dzhflgfﬂrﬂﬂﬂ)]zﬁxl

since D, 2p?m = 0 for m less than s.
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Likewise

o (2r + 25)!(— 1)raett

Eﬂ (21’-—|— 1)1 (?‘ ¥ S)' [.Dzz"‘lg—(af+2!+1)]

= (_ 1)lu—2-[Dx2s—lv23D"h—le—u2]‘

Therefore, finally,

Iﬂ o0 1 28
E}:ﬁ; = cos (uV2N) Ea(Z—\f_IZV) [w @K, ](— 1)

. r— 1 0 1 2(s—1) ng o
+ sin (u ZN)(Z\{N) §1(24N) [ﬂ 2:—1](— 1) ,
where
(25)!K3, = [D.202 e~ Hy,(v) Joux,
(25 — 1)1Ky,_1 = [ D2 W " Hy,_1(v) Joox.
Substituting sin (x2uVN) for cos (x2uVN) in the equations defining
Asm and then proceeding exactly as above we derive the corresponding
expansion for I, (u).
A%
To obtain the values of K,, and Ks,—; note that

Xe?=1—(x— X)3X + (x — X)}4X? — (x — X)}/5X*+ - -~
gives, for x = X = 1/4/2,

g =2, v = (1N2)u,
dgldx = — 1/3, dvjdx = (1/6)u,
d?gldx? = (4~/2)/9, dwfdx® = — (1/32)u,
digldx® = — 88/45, d%/dx® = (53/90)u,
digldx* = (824+2)/135, div/dxt = — (21142/135)u,
dég/dx® = — 28184/567, dsv/dx® = (79/7)u,
etc.
Therefore

V2(uKp) = e 1,
36vV2(u—Ks) = e4(us — 6ut — 9u? + 12),

7776 N2(uK,) = e d?(u!? — 1201 — 183.61° + 1432.8u°
+ 2889%% — 10368u? + 432), etc.

6(u2K,) = ue *(u? — 3),
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648(u1K;) = ue 1 (u® — 9us — 59.4ut + 27942 + 54),

233280(u°K;) = ue 1 (114 — 15u2 — 41451 4 449448

—+ 25152.4u% — 168723u* — 119340u2 + 304560).
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