Extraneous Frequencies Generated in Air Carrying Intense
Sound Waves *

By A. L. THURAS, R. T. JENKINS and H. T. O’'NEIL

The exact equation of the propagation of plane sound waves in air is not
linear and consequently harmonics and combination tones are generated.
The pressure of these extraneous frequencies in terms of the fundamental
pressure, frequency, and distance from the source has been mathematically
determined by Rayleigh, Lamb and others. These equations have been
applied to an exponential horn.

Measurements of the second harmonic and combination tones have been
made at various points within a long tube, and in front of an exponential
horn, Measurements, in general, agree with theory, but the absolute values
are lower than the calculated values,

ECENT developments in horn type loud speakers! for high

quality reproduction of intense sounds necessitate a consideration

of the more exact equations of wave motion if distortion due to the

generation of extraneous frequencies in the air of the horn itself is to be

avoided. Similar considerations may be of some importance in con-
nection with the pick-up of intense sounds.

The propagation of waves of finite displacement has interested
physicists for more than a century. In 1808 Poisson derived an
equation which shows that, in general, a sound wave cannot be
propagated without a change in form and consequent generation of
additional frequencies. This distortion is caused by the non-linearity
of air; that is, if equal positive and negative increments of pressure are
impressed on a mass of air the changes in volume of the mass will not
be equal; the volume change for the positive pressure will be less
than the volume change for the equal negative pressure. An idea of
the nature of the distortion can be obtained from the adiabatic curve
AB for air as given in the familiar volume pressure indicator diagram
(Fig. 1a). The undisturbed pressure and specific volume of air are
indicated by point P¢V,. Any deviation from the tangent through
this point causes distortion and consequent generation of extraneous
frequencies. The theoretical magnitudes of the waves of extraneous
frequencies are obtained from a solution of the exact differential
equation of wave propagation in air. The solution shows that the
pressure of the second harmonic frequency, which is generated in the
air, increases with the frequency and the magnitude of the fundamental

* Published in the January 1935 issue of the Jour. Acous. Soc. Am.
1E. C. Wente and A. L. Thuras, ‘“Loud Speakers and Microphones,” Bell Sys.
Tech, Jour., 13, 259 (1934).
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pressure and also with the distance from the sound source. The
solution also gives the magnitudes of the waves of sum and difference
frequencies generated when two tones are simultaneously impressed
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Fig. 1a—Adiabatic curve for air.

on the air; these magnitudes also increase with distance from the
source and with the product of the fundamental pressures and, re-
spectively, with the sum and difference frequencies.
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THEORY OF PROPAGATION OF PLANE WAVES oF FINITE AMPLITUDE

The derivation of the exact differential equation for sound wave
propagation in air involves the continuity equation, Newton’s force
equation and the equation expressing the relation between pressure
and specific volume in a gas. Since there may be some question as to
the accurate definition of the density and force in the equation of
motion a somewhat detailed discussion of this subject will be given.

Following Rayleigh,? let y and ¥ 4 (dy/dx)dx be the actual distances
at time ¢ from the plane x = 0 to neighboring layers of air whose un-
disturbed positions are defined by x and x + dx, respectively, Fig. 1b.

dy
———————————————————————— y ----——-r-.--g;dx ]
ekt EEE (Rp—— tq-dx—l—
Po P

Fig. 1b.

The displacement corresponding to % is thus £ = y — x and the
equation of continuity of the fluid is

p = po(@y/dx)=t = po(1 + BE/dx)", (1)

where p and pg are the densities of the fluid in the disturbed and un-
disturbed states, respectively. If the effect of viscosity is neglected
the exact equation of motion of the element of mass p(dy/dx) -dx is

d*y  ady %y ap dy
——— _d = — = —_—— e T
A P ax T T i pudy 3y ax
or
po(9*E[08r) = — ap/ax, (2)

p is the pressure at the point ¥ (Fig. 1b) which moves with the air
particle, not the pressure at a fixed point. Except for very large dis-
placements these pressures are nearly the same. From equations (1)
and (2)
#E[or = (dp[dp)- (1 + 9&[0x)~2- (8%/9x). )
* Lord Rayleigh, ** Theory of Sound,” 2nd Ed., Vol. II, p. 31.
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By virtue of.equation (1), equation (3) is linear in £ only if dp/dp
= Kp~2ordpl/dv = — K, wherev = 1/p = specific volume and K is a
constant. This condition is not satisfied during any ordinary varia-
tions of state of a gas, but is approximately satisfied when the variations
are very small. For isothermal changes we have pv = pw, and for
adiabatic changes:

plte = (vo/v)” = (p/po)?, (4)

where « is the ratio of the specific heats and p, is the undisturbed
atmospheric pressure. In either case, for very small variations, the
pv curve is practically identical with the tangent to the curve, hence
dp/dv is practically constant (Fig. 1a).

From equations (1), (3), (4) we obtain the exact equation of adiabatic
plane wave motion in a non-viscous fluid:

85[0 = cX(1 + O/ax) (/o) (5)

where ¢ = ypo/po. This equation is given by Rayleigh.® # Rocard *
was first to call attention to the generation of harmonics in the air
within an exponential horn. His theoretical solution is based on a
plane wave equation in which the term 9%£/ai was replaced by

9% | 0f 9 [9F),
o 6‘x<3t) (6)

In support of this substitution Rocard cites Riemann’s ® treatment of
the problem. However, Riemann's analysis is based on the Eulerian
form of the hydrodynamical equations whereas equation (35) is derived
from the Lagrangian equations. (For a comparison of these systems
of equations see Lamb.f) In the Lagrangian notation 9£/df and
2£ /a1 are the exact values of the velocity and acceleration, respectively,
of the particle whose displacement from its equilibrium position (x) is £.
It is to be noted that in equation (2) the term po, or undisturbed
density, does not represent an approximation.

A rigorous solution of (5) for the displacement § as an explicit
function of x and ¢ has not been obtained. As a first approximation to
equation (5) we take

i P 08 9%

—_— = 2
2= Cae— (YT UGG 5n (7)

1 Lamb, ' Dynamical Theory of Sound,” 2nd Ed., p. 182,

1Y, Rocard, “Sur la propagation des ondes sonores d’amplitude finie,” Compies
rendus, 196, 161 (1933).

5 Riemann, * Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingung-
sweitte,”’ Gottingen Abhandlungen, No. 8, 1860.

6 Lamb, “ Hydrodynamics,” 6th Ed., Chapter 1.
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This approximation restricts the dilatation d£/dx to values small com-
pared with unity or the excess pressure to values small compared with
¥4, but the restriction need not be as severe as would be required for
the linear approximation:

O[O = c20%E[ox2.

By a method of successive approximations, carried to the second
approximation, Lamb ? derives the solution of (7):

¥+ 14
8 ¢t

£ = acos w(t— x/c) + a®x[1 — cos 2w(t — x/c)] (8)

corresponding to a motion ¢ = a cos wt imposed on the air at x = 0,
and assuming complete absence of reflection. By virtue of (4) and (1)
we have for the pressure:

p = po(l — votfox + - -+).

Neglecting the terms of small amplitude, in the region where 47x is
large compared with the wave-length A we have

p= Pa+ p1+ P2 (9)

where
Pa; = po — vpo ((v + 1)/8) - («?*/c?)a?,
p1= — vpo-(waje) sin w(t — x/c),
P2 = vpo- ((v + 1)/4)- (&))@’ sin 20(t — x/c),
o p1= 2¥P; cos [w(t — x/c) + /2],
pa = 24Py cos [2w(t — x/c) — /2], (10)
where
P, = ypowa/2¥c, (11)
v+ 1 P} wx
Pz——z—(z)—*-_y—m-?. (12)

P; and P, are thus the r.m.s. fundamental and second harmonic
pressures, respectively.

Lamb? also gives a solution of (7) for the case when the forced
motion at x = 0 is: £ = £4 cos wat + £p cos wpt. In addition to the
two fundamentals and two second harmonics, the pressure now in-
cludes components whose frequencies are, respectively, the sum and
difference of the two primary frequencies:

p. = 21P, cos [(wa + wp)(t — xfc) — =[2],
pa= 21P4cos [(wa — wp)(t — x/c) + /2],
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where ,
_'Y-’rl'PAPR.wA—i—mg)x

Po= 300 o (13)
_ v+ 1 PuPp (wi — wp)x

Pa= 2(2)Y  vpo c ’ (14)

and P4, Py are the two r.m.s. fundamental pressures.

If we extend Lamb’s method of solution of equation (7) to the third
approximation and again consider the case £ = a cos wf at x = 0 we
find that in the region kx > 1, the r.m.s. third harmonic pressure is

_3 (1 ex)ia,
=165 s) P (15)

In the case of the greatest r.m.s. fundamental pressure used in the
experiments, P; = 8000 bars at 600 c.p.s., equation (15) indicates
that the third harmonic at 400 cm from the source is about 10 db
below the second harmonic.

An approximate correction for the effect of attenuation in a tube
caused by viscosity and heat conduction can be obtained by assuming
that each of the extraneous frequencies and the fundamental is
attenuated as if it were the only wave present. Thus the r.m.s. value
of the fundamental at any point x is assumed to be

P, = Poe = or dPI/dx = — aIPI,

where P, is the r.m.s. value of the fundamental at the point x = 0
and @; is the measured attenuation factor for the fundamental.
If P, is the r.m.s. value of the second harmonic at the point x and as is
the measured attenuation factor for the second harmonic in the absence
of the fundamental, we have by using equation (12):

szldx = KP% — O!QPQ = KP028—2“1: - szpz, (16)
where
2 o S SN
2(2) vpo ¢

When a; = 0 and a2 = 0, equation (16) is equivalent to (12). The
solution of (16) which is consistent with the fact that the second
harmonic vanishes at x = 0 is

P2 = [KPoz/(ZQ‘] - 02)][6—“2‘ — 3_2"13]‘
Hence

....._=__.__.._x.R' (17)
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where
_ g (a—a)z — p—layz Qo

R= (2(!1—0!2)1: :1_7—'_

For the tube used in these experiments as may be taken as 2ia; which

gives
R=1-— alx/Z*—i— e,

Similar correction factors were derived for the other extraneous fre-
quencies measured in the experiments.

MEASUREMENTS OF PLANE WAVES oF FINITE AMPLITUDE
IN A TuBe

The experimental work consisted of measuring the second harmonic
generated along a tube. Measurements were also made of the sum
and difference tones when two fundamental frequencies of equal
pressure were simultaneously impressed on the air of the tube. For
the fundamental pressures and distances used in the experiments, the
magnitudes of the other harmonics and higher order sum and difference
frequencies were probably small. For high fundamental frequencies
and pressures, however, these other tones are important, since they
increase more rapidly with frequency and pressure than the second
harmonic; for instance, the third harmonic pressure increases as the
square of the fundamental frequency and as the third power of the
fundamental pressure.

A sinusoidal displacement, uniform over the cross section, was
impressed on the air at one end of a long tube.. The tube had an inside
diameter of 3.8 cm and was 1566 cm long. Measurements were made
in the first 705 cm only and the remainder of the tube was used for
obtaining a non-reflective termination.

A search transmitter, comprising a small tube of 0.08 cm inside
diameter and 7.5 cm long, coupled to a small condenser microphone,”
was used for the measurements. Attenuation in this search tube
was sufficiently high to prevent either overloading the microphone or
altering the sound wave propagated within the long tube. The search
transmitter was connected to a stage of amplification so operated as
to preclude non-linear distortion. This was followed by a band-pass
filter which selected the frequency desired in the measurements. The
filter was terminated by a measuring circuit consisting of a high-gain
amplifier and a vacuum tube voltmeter. A diagram of the arrange-
ment is shown in Fig. 2.

TH. C. Harrison and P. B. Flanders, “ An Efficient Miniature Condenser Micro-
phone System,” Bell Sys. Tech. Jour., 11, 451 (1932).
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To obtain reliable measurements throughout the length of the test
tube it was necessary to reduce standing waves to a negligible magni-
tude. This was accomplished by laying a strip of felt in the last 761 cm
of the tube, terminating the end with an acoustic resistance approxi-
mately equal to the characteristic impedance of the tube, and carefully
sealing up all joints along the tube. The pressure variation in the
standing wave was = 0.3 db, which corresponds to a reflection coeffi-
cient of 0.035.

395CM 366 CM
FLANNEL—L9 CM WIDE FLANNEL —TAPERED
1.9CM TO 0.635CM
| ACOUSTIC
( RESISTANCE i
s R e —

*
413 CM

RECEIVER

S.T.=SEARCH TRANSMITTER
C.T.=CALIBRATING TRANSMITTER

i 2
I oy

\

| LOW-

i 15w 15w POWER

| ATTENUATOR AMPLIFIER = OSCILLATOR

i 1

| -

1

i

1 op VACUUM TUBE
| 600W VOLTMETER

'

' AMPLIFIER BaND- 600w AMPLIFIER

i NO. 1 pass ATTENUATOR NO.2

Fig. 2—Apparatus for measuring extraneous frequencies generated in air carrying
intense sound waves. R, resistance substitute for receiver.

The oscillator current was supplied to the loud speaker through a
low-pass filter and the measured harmonic content was found to be
73 db below the fundamental. Pressure measurements in the tube
close to the loud speaker indicated that the harmonics generated in the
measuring circuit and loud speaker were more than 50 db below the
fundamental pressure at 2000 bars.

A calibration of the search transmitter was obtained by comparison
with a small condenser microphone whose diaphragm was exposed
directly to the sound wave at the same position on the test tube, see
Fig. 2. The calibrating microphone (C.T", Fig. 2) had been previously
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calibrated by a thermophone.! The measuring circuit following the
search transmitter was calibrated for each frequency measured by
introducing the oscillator current into the search transmitter circuit
through the attenuator (i, Fig. 2).

The ratio of the pressure of the frequency generated along the tube
to the fundamental pressure was measured by the attenuator as,
Fig. 2, at various holes along the tube in which the search transmitter
was inserted. If an appreciable fraction of the harmonic generated
along the tube is reflected at the end of the tube, the magnitude of
the reflected component near the source may be comparable with or
larger than the harmonic generated between the source and the point
in question. This was found to be the case when several measure-
ments were made near the source over a distance covering a wave-
length. The measured variation in the total pressure of the harmonic
over this distance was = 2.5 db whereas the variation for a funda-
mental of this frequency, as previously stated, was == 0.3 db. There-
fore the measurements close to the receiver may be inaccurate.

Figure 3 shows the measured pressure ratio of the generated second
harmonic to the fundamental along the tube and the theoretical curve
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Fig. 3—Magnitude of 2nd harmonic »s. distance from source.

calculated from equation (17). Each of the three experimental points
plotted at about 45 cm from the receiver is the average pressure ratio
for a series of readings taken over a distance of a wave-length along
the tube.

The measured and theoretical pressure ratios of the second harmonic
to the fundamental are shown as a function of frequency and pressure
in Figs. 4 and 5.

8L. ]J. Sivian, ' Absolute Calibration of Condenser Transmitter,” Bell Sys. Tech.
Jour., 10, Jan. (1931).
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Figure 6 shows the magnitude of the first order sum and difference
frequencies along the tube when two frequencies of equal pressure are
simultaneously impressed on the air in the tube.
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ExpoNENTIAL HorN THEORY

The second harmonic generated in any short section of a horn is
approximately the same as that generated in a tube of area equal to -
the mean area of the section of the horn. Therefore, from the tube
equation and the expression for the change in pressure due to the
divergence of the horn the magnitude of the generated second harmonic
pressure at any point along the horn can be obtained.

The r.m.s. value of a small excess pressure in an exponential horn
of section S = Spe™* is attenuated according to the law

P = P mi? or dP/dx = — mP|/2,

where P, is the r.m.s. pressure in the throat of the horn (at x = 0).
The index of taper m is equal to 4xf./c where f. is the cut-off frequency
of the horn.

From equation (12), the rate at which the r.m.s. value of the second
harmonic increases along a tube is

dx  2()F vpo ¢

If it is assumed that the same expression represents the rate of genera-
tion of second harmonic along a horn, and that both the fundamental
and second harmonic diverge in the same manner, the complete
differential equation for P; becomes

dP . m _ m
”df = KP} — 5 Py = KPje™ — 5 Py,

where P; and P, are, respectively, the r.m.s. fundamental pressures
at the point in question (x) and in the throat of the horn. The solution
consistent with the condition P = Oatx = 0is

Py = [KP3,/(m[2)][e=* — e™]. (18)

Since P, = P, ™2, the ratio of the second harmonic pressure to the
fundamental pressure at any point x in the horn is thus

PE'— . L
?Z_KP“ mj2  2Y2 ype ¢

* According to this equation the magnitude of the second harmonic pressure
generated in the air of a horn is 6 db lower than that given by Rocard’s equation
previously published in the paper “Loud Speakers and Microphones” (Reference 1),
page 264, equation 1.

— p—mz/2
1—e _yv+1 Py wxl, (19) *
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where .
x = (1 — e ™) [(m]2). (20)

Equations (19) and (20) indicate that the second harmonic at the
mouth of an exponential horn of length x is equivalent to the second
harmonic at the end of a tube of length x’ and of uniform section,
equal to the area of the throat of the horn. Thus the second harmonic
in the mouth of a horn having an index of taper m = 0.075 cm™, cut-
off frequency 200 c.p.s. and length 78 cm is equal to the second har-
monic at the end of a straight tube 25 cm long and of the same diameter
as the throat of the horn.

ExroNENTIAL HORN MEASUREMENTS

Measurements of the output of a horn attached to a moving coil
receiver were made in an acoustically damped room. The horn had a
throat diameter of 3.8 cm, a length of 78 cm and a cut-off frequency of
200 c.p.s. The diaphragm of the loud speaker was coupled to the
throat of the horn through a straight tube 13 cm long. A filtered
single frequency tone was impressed on the loud speaker and the sound
was picked up by a small microphone in front of the horn. The funda-
mental and second harmonic voltages from the microphone amplifier
were separated by means of a band-pass filter and measured.

The approximate acoustic power at the throat of the horn was
calculated from the known efficiency of the loud speaker and the
electrical voltage and current supplied.

The measured and calculated ratios of the second harmonic pressure
to the fundamental pressure at the mouth of the horn, including the
effects of generation of second harmonic in both the horn and the
straight tube coupling the receiver and the throat of the horn, are
shown in Fig. 7 in terms of the sound output in watts. See equations
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Fig. 7—2nd harmonic generated in an exponential horn vs. sound output.
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(17) and (19). The attenuation due to viscosity and heat loss in the
horn has been neglected.

A number of measurements at various microphone positions in
front of the horn, shown by the dotted circles, indicate the difficulty
of obtaining accurate results in a room. The average of the measure-
ments at a number of random positions in front of the horn at a con-
stant sound power output and the measurements at a single position
for various sound outputs gives the plotted curve which is probably
not greatly different from that which would be obtained in open air.

Figure 8 shows the measured and calculated ratios of the second
harmonic pressure to the fundamental pressure for various funda-
mental frequencies.
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Fig. 8—2nd harmonic generated in an exponential horn vs. fundamental frequency
(sound output = 10 watts).

DEMONSTRATION OF EXTRANEOUS FREQUENCIES

Almost two hundred years ago Sorge, a German organist, and
Tartini, an Italian violinist, discovered independently, apart from all
theory, that the union of two loud independent tones produced a
difference tone. That this is not entirely a subjective tone produced
by the ear but is actually present in the air was demonstrated by
others some years later by the use of a tuned resonator. With modern
apparatus consisting of power amplifiers, oscillators and tuned electro-
mechanical vibrators it is a relatively simple matter to show not only
the difference tone but the summation and harmonic tones as well.

An exponential horn was attached to the open end of the 1566 cm
tube previously described but with the damping material removed.
A moving coil microphone placed in front of the horn picked up the
complex tone produced when two equal pure tones of 600 and 940
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c.p.s. were impressed on the air. The microphone voltage was
amplified and impressed on six torsional vibrators tuned to 340, 600,
940, 1200, 1540 and 1880 c.p.s. Spherical mirrors attached to the
vibrators produced on a screen bands of light the amplitudes of which
were approximately proportional to the relative pressures of the
various frequencies in the complex tone.

For the higher power inputs to the loud speaker used in the experi-
ment, the presence of the sum and difference frequencies and the har-
monic frequencies was easily observed. At these power outputs the
quality of the sound was very disagreeable and the fundamental tones
could hardly be distinguished.

CoONCLUSION

The theoretical and experimental determinations of the extraneous
frequency waves generated in the air within a tube are in good agree-
ment as regards the variation in magnitude with frequency, distance
from the source and magnitude of the primary tones. The magnitude
of the second harmonic is very nearly proportional to the distance
from the source, to the fundamental frequency and to the square of
the amplitude of the fundamental pressure. When there are two
primary tones, the extraneous frequencies generated in the air include,
as well as the harmonics of the primary tones, frequencies which are,
respectively, the sum and the difference of the primary frequencies
and also other higher order tones. The magnitudes of the summation
and difference tones are very nearly proportional to the distance from
the source, to the product of the magnitudes of the two primary
pressures, and in each case, to the frequency of the particular com-
bination tone. As regards the absolute magnitudes of the generated
tones in the tube all of the measured values are about 3 db lower
than the theoretical values.

Good agreement was obtained also between the experimental and
theoretical determinations of the second harmonic generated in the air
within an exponential horn, as regards proportionality to the funda-
mental frequency and power and also as to absolute magnitude. In
fact the agreement in absolute magnitude was closer for the horn than
for the tube, but not much significance should be attached to this fact,
as the horn theory is developed from the theoretical solution for the
tube and the horn measurements are known to be less reliable than
the tube measurements.



