A Theory of Scanning and Its Relation to the Characteristics
of the Transmitted Signal in Telephotography and
Television

By PIERRE MERTZ and FRANK GRAY

By the use of a two-dimensional Fourier analysis of the transmitted
picture a theory of scanning is developed and the scanning system related
to the signal used for the transmission. On the basis of this theory a
number of conclusions can be drawn:

1. The result of the complete process of transmission may be divided into
two parts, (a) a reproduction of the original picture with a blurring similar
to that caused in general by an optical system of only finite perfection, and
(b) the superposition on it of an extraneous pattern not present in the
original, but which is a function of both the original and the scanning
system.

Y 2. Roughly half the frequency range occupied by the transmitted
signal is idle. Its frequency spectrum consists of allernating strong bands
and regions of weak energy. In the latter the signal energy reproducing
the original is at its weakest, and gives rise to the strongest part of the
extraneous pattern. In a television system these idle regions are several
hundred to several thousand cycles wide and have actually been used
experimentally as the transmission path for independent signaling channels,
without any visible effect on the received picture.

3. With respect to the blurring of the original all reasonable shapes of
aperture give about the same result when of equivalent size. The sizes
(along a given dimension) are determined as equivalent when the apertures
have the same radius of gyration (about a perpendicular axis in the plane
of the aperture). ]

4, With respect to extraneous patterns certain shapes of aperture are
better than others, but all apertures can be made to suppress them at the
expense of blurring. An aperture arrangement is presented which almost
completely eliminates extraneous pattern while about doubling the blurring
across the direction of scanning as compared with the usual square aperture.
From this and other examples the degradation caused by the extraneous
patterns is estimated. .

IN the usual telephotographic or television systems the image field
is scanned by moving a spot or elementary area along some recurring
geometrical path over this field. In the more common arrangement
this path consists simply of a series of successive parallel strips.
Imagining the path developed or straightened out (or in the more com-
mon case, the strips joined end to end), this method of scanning is
equivalent to transmitting the image in the form of a long narrow strip.

The theoretical treatment of such transmission has usually been
developed by completely ignoring variations in brightness across the
image strip, assuming the brightness to have a uniform distribution
across this strip. This permits the image to be analyzed as an ordin-
ary one-dimensional or single Fourier series (or integral) along the
length of the strip; and the theory is then developed in terms of the
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* one-dimensional steady state Fourier components. Such a method of
treatment naturally gives no information in regard to the reproduction
or distortion of the detail in the original image across the direction of
scanning, nor, as will appear below, does it give any detailed informa-
tion in regard to the fine-structure distribution of energy over the
frequency range occupied by the signal.

The need of a more detailed theoretical treatment originally arose in
connection with studies of the reproduction of detail in telephoto-
graphic systems, especially in comparisons of distortion occurring
along the direction of scanning with that across this direction. Later,
this same need was strikingly shown by the discovery that a television
signal leaves certain parts of the frequency range relatively empty of
current components. Certain considerations indicated that a large
part of the energy of a signal might be located in bands at multiples of
the frequency of line scanning. Actual frequency analyses more than
confirmed this suspicion. The energy was found to be so closely con-
fined to such bands as to leave the regions between relatively empty of
signal energy.

Such bands and intervening empty regions are illustrated by the
examples of current-frequency curves in Fig. 1. These curves were
taken with the various subjects as indicated, and the television current
was generated by an apparatus scanning a field of view in 50 lines at a
rate of about 940 lines per second. The energy is grouped in bands at
multiples of 940 cycles and the regions between are substantially de-
void of current components. In addition to the bands shown by the
curves, it is known that similar bands occur up to about 18,000 cycles
and that there is also a band of energy extending up from about 20
cycles.

Certain of the relatively empty frequency regions were also investi-
gated by including a narrow band elimination filter in a television
circuit. The filter eliminated a band about 250 cycles wide and was
variable so that the band of elimination could be shifted along the
frequency scale at will. By shifting the region of elimination along in
this manner it was found that a band about 500 or 600 cycles wide
could be removed from a television channel between any two of the
current components without producing any detectable effect on the
reproduced image. ,

At a later date a 1500-cycle current suitable for synchronization was
introduced into a relatively empty frequency region, transmitted over
the same channel with a television current, and filtered out—all with-
out visibly affecting the image.

These results indicated quite clearly the need of a more complete
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theory of the scanning processes used in telephotography and television
and led to the study outlined in the following pages. Since this study
will be confined to characteristics of the scanning processes all other
processes in the system, wherever used, will be assumed to be perfect
and cause no distortion.

The general trend of this more complete theory can be foreseen when
it is considered that to obtain an adequate reproduction of the original
it is necessary to scan with a large number of lines as compared with
the general pictorial complexity of this original. This means that for
any original presenting a large scale pattern (as distinguished from a
random granular background) the signal pattern along successive
scanning lines will, in general, differ by only small amounts. Thus, the
signal wave throughout a considerable number of scanning lines may
be represented to within a small error by a function periodic in the
scanning frequency. Since such a function, developed in a Fourier
series, is equal to the sum of sine waves having frequencies which are
harmonics of the scanning line frequency, it will be natural to expect
the total signal wave to have a large portion of its energy concentrated
in the regions of these harmonics.

Furthermore, the existence of signal energy at odd multiples of half
the scanning frequency will indicate the existence of a characteristic in
the picture which repeats itself in alternate scanning lines. It is to be
expected that such detail in a picture cannot be transmitted without
accurate registry between it and the scanning lines and that when the
detail spacing or direction or both differ somewhat from the scanning
line spacing and direction, beat patterns between the two will be pro-
duced in the received picture which may be strong enough to alter con-
siderably the reproduction of the original.

These phenomena are exactly what is observed, and will be treated
in more quantitative fashion in the discussion below.!

AN IMAGE FIELD As A DOUBLE FOURIER SERIES

Let us first consider the usual expression of the image field as a
single Fourier series. The picture will be considered as a “still”” so
that entire successive scannings are identical. Then if the long strip
corresponding to one scanning extends from —L to +L, the illumina-

11n the following treatment an effort has been made to confine the necessary
mathematical demonstrations almost exclusively to two sections entitled, respec-
tively, “Effect of a Finite Aperture at the Transmitting Station,” and “ Reconstruc-
tion of the Image at the Receiving Station.” Even in these sections a number of
conclusions are explained in text which do not require reading the mathematics if
the demonstrations are taken for granted. The occasional mathematical expressions
occurring in the earlier sections are very largely for the purpose of introducing
notation.
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tion E as a function of the distance x along the strip may be expressed
as the sum of an infinite number of Fourier components, thus:

-]

E(x) = Y ancos (n_}r‘x + gpn) ) (1)
n=0

In this summation a, represents the intensity of the nth component

and ¢, its phase angle. The complete array of these for all components

will vary if the picture is changed.

The cosine series above is very convenient for physical interpretation.
It will be simple, however, for some of the later mathematical work to
use the corresponding exponential series. The cosine series can be
returned to, each time, as physical interpretation is required. That is,
since

2a cos (%—C + tp) = (aei?)elim=/D) L (ge—i¢)el=ir=/T) (2)
the series in equation (1) can be written

E(x) = -E A exp im(nx/L) (3)

if we make
A = (1/2)a. exp (ign)
and :
A_n = (1/2)an exp (—ign) 4)

and if we use the notation exp 6 = é°.

In this new summation the complex amplitude 4, represents both
the absolute intensity and the phase angle of the nth component.
The complex amplitude of the corresponding component with a nega-
tive subscript is merely the conjugate of this.

As has already been noted, however, and as might readily be ex-
pected, the single Fourier series in equations (1) or (3) above do not
always represent a two-dimensional picture with sufficient complete-
ness. In order to consider the two-dimensional field more in detail,
let us assume that Fig. 2 represents such an image field of dimensions
2¢ and 26, and take axes of reference x and y as indicated. The
brightness or illumination of the field is a function E(x, y) of both x
and y. Along any horizontal line (i.e., in the x direction, constantly
keeping ¥ = ¥,) the illumination may be expressed as a single Fourier

series

Ex, 31) =m:}f_° A exp i(mz/a). (5)
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Along any other line in the x direction a similar series holds with
different coefficients, that is, the A's are functions of y. They may

Y

+b

-a +a X
-b
Fig. 2—Scanned field and image.
therefore each be written as a Fourier series along
t .
= ¥ An.expin(ny/b). (6)

n=—w

Substitution in equation (5) gives the double Fourier series,

T i . (mx
E(x, y) = > _Z Amn €xpim + . (7

For purposes of physical interpretation, as in the case of the simple
FOErlel‘ series, it is desirable to combine the +m, +# term with the
—m, —n term (giving the single ( n%‘ 4-1)th component) and similarly
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the +m, —n with the —m, +n terms (giving the single (m, —n)th com-
ponent). This brings equation (7) back to a cosine series,

@ o0
Ee) = 3 5 omeos|[r(Z4 ) 4 om|  ®
when
Amn = (1/2)@mn exp (Zomn)

and
A_pmn = (1/2)am. exp (—i@mn)

and where a., is always a real quantity. Each term of this series
represents a real, two-dimensional, sinusoidal variation in brightness
extending across the image field. The image is built up of a superposi-
tion of a series of such waves extending across the field in various
directions and having various wave lengths.

Imagining brightness as a third dimension, we may, as an aid in
visualizing the components of an image field, draw separate examples
of various components as shown in Fig. 3. It will be noted that any
given component (m, n) passes through m periods along any horizontal
line in the image field, and through n periods along any vertical line.
The slope of the striations with respect to the x-axis is therefore
—mb/na (the negative reciprocal of the slope of the line of fastest
variation in brightness).. For the same values of m and of #, the m, +n
component and the m, —n component have equal wave lengths but
are sloped in opposite directions to the x-axis. If m is zero the crests
are parallel to the x-axis; if n is zero they are parallel to the y-axis.
The component with both m and # zero is a uniform distribution of
brightness covering the entire image field. The wave length of a

component is
m\ 2 7\ 2
Ann = 1/\/(5) +(?z3)

A complete array of the components, up to m and # equal to 4, is
illustrated in Fig. 4.

As of course is characteristic of the harmonic analysis, the wave
lengths and orientations of the components are seen to vary only with
the shape and size of the rectangular field, and to. be independent of
the particular subject in the field. A change of subject, or motion of
the subject, merely alters the amplitudes of the components and shifts
their phase; but their wave length and inclination with respect to the
x-axis remain unchanged. Consequently, for the same rectangular
field all subjects appearing in it may be considered as built up from the
same set of components. For a “still” subject, the amplitudes and
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phase angles of the cosine components, or the complex amplitudes of
the exponential components, remain constant with time. For a mov-
ing subject these complex amplitudes may be considered modulated as
functions of time,

m

0,+2 COMPONENT +2,0 COMPONENT

—]
|

Fig. 3—Examples of field components.

The real amplitudes @, for a circular area of uniform brightness on a
black background are relatively easily calculated, and this subject is
also a good one to study as a picture from some points of view because it
has a simple sharp border sloping in various directions. The amplitudes

-
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for a circle of unit illumination of radius R are
TR2 [ Amn 27R
“’""‘E(m)fl(xm ) ©)

where J; is the first order Bessel function. In this particular subject
all components of a given wave length have equal amplitudes; and the
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Fig. 4—Array of field components.

amplitudes may therefore be plotted as a function of wave length alone,
as in Fig. 5. The curve illustrates the rapidity with which the ampli-
tudes fall off for the higher order components in a subject of this nature.
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TuE FREQUENCY SPECTRUM OF THE SIGNAL

When an image field is scanned by a point aperture tracing across it,
each portion of the picture traversed causes variations in the light
reaching the light sensitive cell and is thus translated into a corre-
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Fig. 5—Amplitudes of field components for a circular area of brightness.

sponding signal. Further, each Fourier component in the field is trans-
lated into a corresponding Fourier component in the signal. An equiv-
alent translation occurs when a pencil of light traces over a photo-
graphic film in telephotography, or when a subject is scanned by a beam
of light in television, whether or not a simple flat two-dimensional image
is ever physically formed at the transmitting station. For clarity and
simplicity, the discussion will be confined to the case in which a point
aperture traces across a plane image field.

In most systems the aperture traces a line across the field and then
there is a sudden jump back to the beginning of the next succeeding
line. This discontinuous motion is naturally not easily subjected to
mathematical treatment. It is much simpler to deal with the equival-
ent result that would be obtained if the scanning point, instead of trac-
ing successive parallel paths across the same field, moved continuously
across a series of identical fields. Such an equivalent scanning motion
can fortunately easily be used because a double Fourier series represents
not only a single field, but a whole succession of identical image fields
covering the entire xy plane, and repeated periodically in both the x
and y direction as illustrated in Fig. 6.
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The equivalent of scanning a single field in parallel lines is obtained
by assuming that the scanning point moves across the repeated fields
along a sloping path as indicated. Let % be the velocity parallel to

Fig. 6—Array of periodically recurring scanned fields.

the x axis and v the velocity parallel to the y axis. Then the picture
illumination at the scanning point at any instant, and consequently
the signal current, may be obtained by substituting

x = ut, y=ut

in the double Fourier series representing the image field, equation (8).
Of course the entire expression must be multiplied by a factor K which
is the constant ratio between the signal current and the picture
illumination. This gives for the real signal as a function of time 2

? It will be noted that this process does not explore the picture completely, inas-
much as, no matter how fine the scanning, there will always be unexplored regions
between scanning lines. In this respect the process is quite analogous to that
followed in analyzing a function of a single variable into a simple Fourier series
when the values of the function are given only at discrete (even though closely spaced)
values of the variable. The complete exact theory, which necessarily depends upon
the size and shape of the finite scanning spot or aperture, will be given further below.
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=3 3 amcos[w(’%w%’)w%,.]. (10)

m=0 n=—w

Thus if # and v are constants, each wave of the image field gives rise
to a corresponding Fourier component of the signal. The frequencies
of the signal components are

mu | no
f=%5; T3 (11)

The frequency spectrum of the signal is thus made up of a series of
possible discrete lines, the position of which in that spectrum is deter-
mined by » and v, that is, by the particular scanning motion employed.
We shall designate these lines by the indices m, 4# and m, —n, as
they are correlated with the particular components of the image field
that generated them.

A different choice of values for # and v (so long as these, once having
been chosen, remain constant) changes the location of the lines in the
frequency spectrum, but their amplitudes, depending only on the
corresponding components of the image field, remain unchanged. In
other words, the lines in the frequency spectrum of the signal are
characteristic of the image field, and the scanning motion merely deter-
mines where they will appear in the frequency spectrum. Thus, if for
a given subject the distribution of energy over the frequency scale is
known for one method of scanning, it can be predicted for a great many
other methods.

To scan a field in lines approximately parallel to the x axis, the
velocity » must be made small compared to z. Under such conditions,
u/(2a) of equation (11) is the line scanning frequency and v/(2b) is the
frequency of image repetitions (or “frame frequency”). The fre-
quency spectrum of the signal for a “still” picture thus consists of
certain fundamental components at multiples of the line scanning
frequency u/(2a), each of which is accompanied by a series of lines
spaced at equal successive intervals to either side of it. The spacing
between these satellites is the image repetition or frame frequency
v/(2b).

If the picture changes with time the amplitudes of these fundamental
lines and their satellites are modulated, also with respect to time. In
other words they each develop sidebands or become diffuse. The
diffuseness will not overlap from satellite to satellite unless the fre-
quency of modulation becomes as great as half the frame frequency.
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Thus for motions in the picture which are not too fast to be expected to
be reproduced with reasonable fidelity, this diffuseness of the funda-
mental lines and their satellites will not obliterate their identity.

A diagrammatic arrangement of some of the possible lines in a fre-
quency spectrum, with their corresponding m and » indices, is shown
in Fig. 7.

It is important to note that the correlation between the wave lengths
of the field components and the frequencies of the current components
is not the one that is naturally assumed on first consideration. We
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Fig. 7—Diagram of signal frequency spectrum.

are quite likely to make the erroneous assumption that high frequencies
correspond to all sharp changes in brightness and that low frequencies
correspond only to slow changes. The error in this assumption is
readily realized by noting that sharp changes in brightness may gener-
ate very low frequencies if the scanning point passes over them in a
sloping direction. An actual correlation is shown schematically in
Fig. 8. It is seen that the same general type of correlation is repeated
periodically over the frequency scale at multiples of the line scanning
frequency. There are evidently numerous regions of the spectrum in
which short image waves, or fine grained details of the image field, may
appear in the signal. They are not confined to the high-frequency

region alone.
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Fig. 8—Correlation between wavelength and frequency of signal components.

In telephotography the frequency of line scanning is usually low and
the groups of lines in the frequency spectrum are so closely spaced that
such fine grained details of the signal are of little practical importance
as far as the electrical parts of the system are concerned. In television,
however, these bands are widely spaced, of the order of 1000 cycles or
so apart, and such details of the signal are quite important.

As a specific example, it is interesting to plot the frequency spectrum
of the television signal that results from scanning a circular area of
uniform brightness on a black background. So far as the present
theory extends, this may be done by converting the field components
of equation (9) into current components with the aid of equations (10)
and (11). Taking b/a = 1.28, the radius of the circle as /3, and as-
suming that the field is scanned in 50 lines 20 times per second, we ob-
tain the amplitude-frequency spectrum shown in Fig. 9. Since it is
not convenient to show the individual current components—only 20
cycles apart—the curve shows simply the envelopelof the peaks of
these components. At low frequencies, the energy is largely confined
to bands at multiples of the line scanning frequency, 1000 cycles, and
to an additional band extending up from zero frequency. In the re-
tions between the bands, the signal components are so small that they
do not show when plotted to the same scale. At higher frequencies the
signal energy as thus far computed is not confined to such bands. It
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will be shown farther on, however, that the effect of the use of a finite
aperture for scanning is to confine the signal energy more rigorously
to such bands throughout the frequency range.

The theoretical energy distribution for the circular area is in excel-
lent agreement with actual frequency analyses of television currents,
which show the energy confined to bands at multiples of the line scan-
ning frequency with apparently empty regions between. It is evident
from the theory so far, however, that these regions are not really empty
but are filled with weak signal components representing fine details of
the subjects; and subjects of greater pictorial complexity than a simple
circular area may be devised to give large signal components in such
regions. We must therefore look for other factors to explain why these
frequency regions do not transmit any appreciable details of an image.

CONFUSION IN THE SIGNAL

With the usual method of scanning, one such factor is the confusion
of components in the signal. This confusion arises from the fact that
two or more image components sloping across the field in different
directions may intercept the line of scanning with their crests spaced
exactly the same distance apart along this line of scanning. As the
scanning point passes over them they thus give rise to signal current
components of exactly the same frequency. Consequently the two
image components are represented by a single, confused, signal current
component that can transmit no information whatever in regard to
their relative amplitudes and phases. This confusion evidently de-
pends on the scanning path.

If the image field is scanned in V lines, the velocity v of the scanning
point parallel to the y axis is

v=—u (12)

and the signal frequencies from equation (11) are

u n
J=p(m+ ) (13)
Field components with indices m, # and m', »’ such that

r
m+£=m’+?—v

- (14)

give rise to current components of the same frequency.
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In other words, the bands of components in the frequency spectrum
really overlap. Consequently the components of one band may coin-
cide in frequency with the components of adjacent bands. Such coin-
ciding components are illustrated schematically in Fig. 10.
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Fig. 10—Coinciding lines of confused bands.

It is obvious that a single a-c. component cannot transmit the sep-
arate amplitudes and phases of two or more image components. Con-
sequently the receiving apparatus has no information to judge how the
components in the original image are supposed to be distributed in the
reproduction.

The situation is most serious where the intensities of coinciding com-
ponents have the same order of magnitude, that is, at the centers of the
frequency regions intermediate to the strong bands. The confusion
in these regions is the most important factor that renders them in-
capable of transmitting any appreciably useful image detail.

On first consideration it would appear that the overlapping of bands
in the signal might result in a hopeless confusion. The situation is
saved, however, by the fact that components with large # numbers will
tend to be weak due to the convergence of the Fourier series, and are
further reduced, as will be shown later, by the effects of a scanning
aperture of finite size. They therefore do not usually seriously inter-
fere with the stronger components. The interference usually manifests
itself in the form of serrations on diagonal lines and occasional moiré
effects in the received picture.

Confusion in the signal may be practically eliminated by using an
aperture of such a nature that it cuts off all components with # numbers
greater than N/2, that is, cuts off each band before it reaches the center
of the intervening frequency regions so that adjacent bands do not
overlap. The practical possibilities of this arrangement will be dis-
cussed further below.

The mere elimination of confusion in the signal itself does not neces-
sarily prevent the appearance of extraneous components in the repro-
duced image. The receiving apparatus itself must be so designed that
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when it reproduces all the image components represented by a given
signal component, it suitably suppresses all those but the dominant one
desired.

ErFect oF A FINITE APERTURE AT THE TRANSMITTING STATION

In the preceding pages the scanning aperture has been assumed as
infinitesimal in size, or merely a point. In any actual scanning system
the necessary finite size of the aperture introduces effects which will
now be considered for the transmitting end.

Let us first review briefly the usual theory of this effect when the
picture is analyzed simply as a one-dimensional Fourier series. Ac-
cording to equation (3) above, this series is

Ei(x) = -E A, exp in(nx/L).

fi=—o0

Let ¢ be a coordinate fixed with respect to the scanning aperture as
shown in Fig. 11 and let the optical transmission of the aperture for

aud

E (X) ORIGINAL PICTURE

T (€) SCANNING BEAM

|
|

. 1.
]

X+E

Fig. 11—Analysis of one-dimensional scanning operation.

any value of ¢ be T(£).? Then if x is taken as a coordinate of the
origin of ¢ the illumination at any point £ of the aperture is

Eix+ &) = -E Anexpir(nlx + £]/L), (15)

n=—w

3 This optical transmission may represent either the transparency of an aperture
of constant width or the width of an aperture which is a shaped hole in an opaque
screen.
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so that the total flow of light through the aperture at any position x is
aperture 4

Fi(x) = | T(§)Ei(x + £dt. (16)

Since x is a constant with respect to the integration the exponential
term may be factored and the part involving x only may be brought

outside the integral sign. This gives .
o
Filx) = X Y(_{;)A,, exp iw(nx/L), an
where
Y(n) = | T(t) exp iw(nt/L)dE. a7
aperture

For a symmetrical aperture (that is, about the origin of £)

Y(n) = | T(&) cos (nn&/L)dk (17")

+/ aperture

and ¥Y(») in this case is, therefore, a pure real quantity.

The important conclusion to be drawn from equation (17) as to the
effect of a finite transmitting aperture is that it multiplies the complex
amplitude 4, of each original image component by a quantity Y(x)
which is independent of the picture being scanned. This is entirely
similar to the effect of a linear electrical network in a circuit, and the
quantity ¥(») is quite analogous to the transfer admittance of that
network.

The quantity ¥(») has been plottéd for variously shaped apertures
in Fig. 12. For convenience in comparison, the ordinates of each curve
have been multiplied by a numerical factor to make ¥(0) = 1. The
curves show the characteristics that are by this time familiar, which
are that the effect of the finite size of the scanning aperture in the
transmitter is similar to that of introducing a low-pass filter in the
circuit, namely, cutting down the amplitudes of the signal components
for which # is numerically high, i.e., the high-frequency components.

The curves are remarkable, however, in that in the useful frequency
band (i.e. from # = 0 to something like half of the first root of ¥(n)
= () all the distributions considered give practically the same transfer
admittance if the dimensions of the beam along the direction of scanning
are suitably chosen, as has been done in the figure. This results from

4 The integral is mathematically taken from — = to 4 « but the regions outside
the aperture give no contribution since the integrand is there equal to zero.
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the physical limitation that the illumination in any part of the beam
must be positive, that is, the illumination from one part of the beam
must always add to that from another part and cannot subtract from
it.5 This observation enables one to define the resolution of two
apertures of different shapes as being equal along a certain direction
when their transfer admittances in the useful frequency range show
the same filtering effect, if that direction is used as the direction of
scanning. This will occur when the radii of gyration (about a normal
axis in the plane of each aperture) are equal. According to this
definition all the apertures illustrated in Fig. 12 have the same resolu-
tion along a horizontal direction. '

When the picture is analyzed as a two-dimensional Fourier series
the equations which have been given above become

0 +o0
Ey(x,y) = +Z > Amnexpiw(m?x_[_%'),
Efx+ &y +m)

- ¥ ¥ 4. expi'fr(m[x:_ 5]+”D’j”]), (18)

M==—0w0 N=—0

Fy(x, y) = f Tu& ME(x + & y + n)dédn, (19)

aperture

M=—w0 N=—00

-+ +o0
Filx,y) = > 2 Yim n)Amexpinr ( ? + n_;:) ) (20)
where '

Yi(m, n) = f Tl<s,n>expf:w(”’f+%”)dsdn. (20)

aperture a

For an aperture symmetrical about both £ and 7 axes

Yi(m, n) = f Ti(&m) cos ( %‘E + -'%’ ) dtdn. (20"

5 The shape of the transfer admittance curve near » = 0 depends upon the power
of n in the first variable term of the Taylor expansion for ¥(n) about # = 0, and
upon the sign of this term. Assuming a symmetrical aperture, the expansion from

equation (17") is
w2n? wint

Y(n) = STdE = 200 SETdE + T SETdE = oo,
Since T is everywhere positive the first variable term is always in #? and negative.
The shape of the curve near n = 0 is, therefore, alwaysa paragola (indicated 1n Fig.
12), which can be made the same parabola by suitably choosing the two disposable
constants in the aperture. Even after departing from this common parabola, the
curves maintain the same general shape over a substantial range; for the next variable
term is in #* and positive, and has the same order of magnitude for all usual types
of apertures. Consequently, the curves for these apertures have approximately
the same shape over a wide range extending up from n = 0. The results are the
same for an unsymmetrical aperture, but the reasoning is more involved.
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In the two-dimensional case T(§, 5) is defined, for a hole in an
opaque screen, as unity throughout the area of the hole, and zero for
the screen. Where the aperture is covered with a non-uniform screen
T may take on intermediate values.

The transfer admittances have been calculated for a variety of
shapes of aperture in Appendix I. It will be noted that for those types
of aperture for which 7" can be separated into two factors, one a func-
tion of £ only and the other a function of n only, namely, for which

T1(&m) = Te(&) - Tyin), (21)

then equation (20’) becomes

Yiom, n) = [ Te(t) exp Gmme/a)dg [ Ton) exp (imnn/a)dn
= Yim) - Vo) (22)

and Y;and ¥, are each one-dimensional integrals of the type illustrated
in Fig. 12.

The rectangular aperture is a simple case of this type. Assume
the field to be scanned in N lines and take the dimensions of the aper-
ture, 2¢ and 2d parallel to the x and y axes, respectively, as

c d 1
TN (23)
Then
sin mmc/a
Ye(m) = mjzc/a,/
and
- sin wnd /b
¥y(m) wnd/b

and the frequency corresponding to a given signal component mn is,
from equation (11)

u n
= — m p— .
f 2a( + N )

Thus, Y1(m, n) considered as a function of the signaling frequency
corresponding to each component of indices m#n, consists of a succes-
sion of similar curves #/2a cycles apart, corresponding to the successive
integral values of m (these curves are themselves really not continuous

but consist of a succession of points #/(2aN) cycles apart. For con-
venience, however, the drawings will always show the curves as con-
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Fig. 13a—Detail of equivalent transfer admittance of aperture for two-dimensional
scanning.
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tinuous). Each of the curves is of the equation

2w N¢ ( mi )
n R ——
u 2a
2w Nc¢ mu
(%)

and therefore has a peak of the value Yi(m) at the point where n = 0
or f = mu/2a, and trails off from the peak in each direction according
to a curve of the same shape as curve “A"” in Fig. 12. The successive
curves are all of identical shape, but each one is to a reduced scale of
ordinates as compared with the preceding (in the useful frequency
range) as imposed by the factor ¥(m).

The peaks, it will be noted, occur at the frequencies ClCCLl[)led by
what have been called the fundamental components (as distinguished
from the satellite lines) in the discussion above on the frequency spec-
trum of the signal.

Assuming N to be 100 and for simplicity taking the factor #/2a as
equal to 1, a plot is shown in Fig. 13a of Yi(m, n) over a very limited
region near the upper end of the useful frequency range. The curve
shown in a solid line represents ¥;(m, n) for m = 45, and the dotted
curves on either side represent the function for m = 44 and 46,
respectively.

The function has been redrawn for the complete useful range of
frequencies and a little beyond, in Fig. 13b, with the frequencies to a
logarithmic scale. This logarithmic plot opens out the scale at the low
frequencies and enables the fine structure of the function to be indi-
cated there, and still enables the complete range of useful frequencies
to be shown without requiring a prohibitive size of drawing (it has,
however, the disadvantages that the distortion in the frequency scale
then masks the symmetry of the individual curves around the funda-
mental lines, the similarity of shape of these individual curves, and
also the constant frequency separation between the successive funda-
mental lines).

The function ¥i(m, #), as is clear from equation (22) and Figs. 13a
and b, consists of a sort of envelope function ¥;(m), “modulated” by
a fine structure function Y,(n). The latter function has the value
unity at the positions of the fundamental lines in the frequency spec-
trum of Fig. 7 and diminishes for the satellite lines in the same way
that the envelope function diminishes for the fundamental lines
away from zero frequency. It will be seen that the envelope function is
the only one obtained by the simple one-dimensional analysis. The

Yl(m1 n) = Yi(m)
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complete function shows, by the very small transfer admittance in the
regions half-way between the fundamental lines, an additional reason
why the signal currents in these regions will be weak and relatively in-
capable of transmitting appreciable image detail.

Examination of the other apertures for which computations are given
in Appendix I will show that, in general, for all ordinary apertures the
same broad phenomena are observed as for the rectangular aperture,
although it is not always possible to express the complete function in
the simple product form above, in which case the curves for the suc-
cessive values of m will vary gradually in shape.

The final signal current is proportional to the light flux through the
aperture, given in equation (20). Neglecting constant factors it may,
therefore, be written as

I(t) = Jrf E Yy(m, n)Apn €xp iw("m+%))t. (24)

M=—w R=—a a

RECONSTRUCTION OF THE IMAGE AT THE RECEIVING STATION

At the receiving station the signal current is translated back into
light to illuminate an aperture moving in synchronism with the one
at the sending end. Neglecting constant factors the flow of light Fa(f)
to the receiving aperture is

Fa(t) = I(). (25)

Let Ea(x, v) be the resulting apparent illumination (integrated with
respect to time) at a point x, y of the reproduced image, or, in tele-
photography, the integrated exposure of the recording film at this point.
This illumination may be expressed as a double Fourier series, similar
to equation (7) (but primed subscripts will be used to distinguish them
from those of that equation).

+ o ! r
> B expin (@ + %) (26)

' =—cw a

+w
Eﬂ(x! y) =m'=Z_w

where
_ 1 -+ 0 +a . mfx niy
B = iab j_‘b B Eq(x, y) exp —irm (_a- + T) dxdy. (27)

Reproduction of detail in the image may be studied by comparing
these components with the corresponding ones of the original image.
The apparent illumination is the same as if the aperture traced a
single strip across repeated fields in the xy plane as illustrated in Fig.
14, and all of the repeated fields included between y = — b and

L
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y = 4+ b were cut out and superposed to form the image. Let
Ej(x, ) be the illumination of this strip. Then, since the exponential

Y
— - o
I
|
T 1
| |
_4_ R
YITI 7 ’—'?__T
_mE |
- T Y |
_a l ! 1
a 2a i | 3ai X
x g
x+g — E
1
i
|
1 -b o ] o

Fig. 14—Analysis of received picture.

. factor of the integrand in equation (27) is periodic in x and identically
reproduced in each of the fields, the integral is equal to

1 [t e . (m'x | n'y ;
B = mf—b ‘[m Ey(x,y) exp —iw (T +T) dxdy. (28)

The limits —b& to +& in v and the infinite limits in ¥ may be used be-
cause the illumination is zero everywhere outside of the strip.

Again taking a coordinate system £y fixed with respect to the aper-
ture, such that

x = ¢+ ul, y=n+u (29)

the instantaneous illumination of any point covered by the aperture is,
neglecting constant factors,

To(E, m)I(t) = Talx — ut, y — vi)I(2). (30)
The total illumination of any point xy in the image strip is thus
+
Ey(x, y) = Tao(x — ut,y — vt) I(t)dt.

—

Substitution in integral (28) and a change in the order of integration
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gives

o0
B = -——I f Tg(x — ut,y — o) I(£)
- - r !
- exp —im (m—aJ-C + n—by> dxdydt. (31)

Changing to the &3 system

1 —+o0 b—ot +0 A ! U
BMV=ERLBLFW£QTﬁmﬂwam—w(ﬂf+%ﬂz

. exp —ir (’” mE | n )dsdv;dt (32)

This integral may be considered as the surface integral of a function
o(n, t) taken over a strip shaped area shown in Fig. 15, in elements of

/T

\\-b\ TN

Fig. 15—Equivalent integration regions.

the type indicated as I. From this it may be seen that, when also
integrated in elements of the type indicated as I,

o0 b—ol +o0 (b—=n)fo
- f f o(n, Ddndt = f f oln, Odidn.  (33)
—o0 - (=b—m0

b—tt

Consequently
+00 (b—n)jo +2 ) m,” n,v

B 4a,bf j: N Ta(E, ) I(t) exp —im (—a- + T) ¢
* exp —im ( mE L n ) dédtdn.  (34)

Consider now the intensity Busas of a final reproduced picture com-
ponent m’, n' resulting from a single component 7, % in the signal as
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expressed by equation (24). The integral becomes

+oo (b—n)jo -+
_Bm = AmnYl(m 7’1) f f f T2(E, n)
- b—rn/v
m n —
- expim ( 7 u + 5 v) t

« exp —imw ( m's + ) didtdyn.  (35)

It will be noted that the exponential function of ¢ is periodic in ¢, one
of the periods being #y = 2b/v. Furthermore, this is just the difference
between the upper and lower limits in . Hence the integral in { may

be written
! ——— ———ts
I=foexp£1r(m mu-{—n nw)tdt.
b a b

This integral is zero except when

m — m’ n—n ,
- u + R v = 0, (36)

I=t, (37)

in which case

The meaning of these last few equations is clear. It is, as would
be expected, that a signal component m, # does not give rise to all
components m’, #’ in the final received picture, but that these latter
components are in general zero unless m’ and »n’ satisfy a definite rela-
tionship with m and #, expressed by equation (36). A somewhat un-
expected result is, however, that equation (36) allows some other
m’, n’ components besides the normal one for which m’ = mand n’ = #.
That is to say, a given signal component m, # in the line will reproduce
in the final picture not only a corresponding m, #» component, but as has
been foreshadowed in the discussion on confusion in the signal, it w1ll
also reproduce certain other components with different indices. .

Let us consider first, however, the reproduction of the normal
component for which m’ = m and »’ = #, which is obviously allowed
by equation (36). The amplitude Bn, is then, neglecting constant
factors,®

Bun = AunYa(m, n) Ya(m, n), (38)
where

YVo(m, n) = f f Ta(E, 7)) exp —iw ( Ul + = ) d&dn.  (38")

¢ The constant factor neglected as compared with equation (35) is #o/(4ab). The
fg is the period of image repetitions (or ‘'frame period”). It appears here because
the brightness of a single image depends on how quickly it is reproduced.
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The quantity ¥, it will be noted is almost the same, for the receiving
aperture, as the Y; is in equation (20') for the sending aperture.
Thus, on the normally reproduced component the receiving aperture
merely adds whatever filtering action it has to that which has already
been caused by the sending aperture.

As noted, in addition to this normal component, the integral (35)
exists in general for other values of m’ and »’ and thus gives rise to
extraneous components in the reproduced image. If equation (36) is
applied particularly to the usual system of scanning in N lines in
which as in equation (12), v = ub/(Na), it becomes

LN
m-i—N m—I—N (39)

For values of m’ and #»’ satisfying equation (39), the reproduced com-
ponent has the complex amplitude (neglecting constant real factors)

Bm'ﬂ' = Am,. Y](m, ﬁ‘.) Yg(m', n’). (40)

Looking back at equation (14) and comparing it with equation (39)
it may be seen that these components correspond in indices to the
original image components that are confused in the signal to give only
one signal component. The result is, therefore, after all quite reason-
able from a physical point of view. For when a signal of a certain
frequency is transmitted over the line the receiving apparatus has no
information by which to judge which component in the original picture
it is supposed to represent. So, as shown by equation (40) it impar-
tially reproduces every one of the components it could possibly repre-
sent, each component with the intensity and phase it would have if it
were really the one intended to be represented by the signal. The
components are then all superimposed in the picture.

From this development it is clear that the process of scanning an
image field in strips and reproducing it in a similar manner not only
reproduces the components of the original image but also introduces
extraneous components. The reproduced field thus consists of two
superposed fields: a normal image built up from the normally repro-
duced components, and an additional field of extraneous components.
Although not really independent, it is convenient to consider these
two fields as existing separately, and thus to think of the normal image
field as having an extraneous field superposed on it.

Considering the normal field alone, we may term the reproduction of
its detail as the reproduction of NORMAL detail. There is a loss in such
reproduction, for both the transmitting and receiving apertures intro-
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duce a relative loss in the reproduction of the shorter wave components.
Consequently there is a loss of definition in the finer grained details of
the normal image. This type of distortion due to aperture loss may be
termed simple omission of detail.

In addition to the simple omission of detail, the normal image is
masked by the presence of the extraneous field. The more pronounced
features of this field are the line structure and serrated edges that it
superposes on the normal image. Its presence is not only displeasing,
but it also masks the normal image components and thus results in a
further loss of useful detail. This type of loss may be termed a
masking of detail or a masking loss. It is true that the extraneous com-
ponents may sometimes give rise to an illusory increase in resolution
across the direction of scanning in special cases where they add on to
the diminished normal components in just the right phase and magni-
tude to bring the latter back to their phases and intensities in the
original image, giving no resultant distortion whatever. (In all such
cases, however, to obtain this benefit it is necessary to effect a quite
accurate register between the original image and the scanning lines or
the distortion is very large. Such accurate registering is generally
impractical and may be definitely impossible if the registry required for
one portion of the image conflicts with that required in another portion.
Such cases may, therefore, in general be disregarded.)

THE REPRODUCTION OF NORMAL DETAIL

The preceding theory permits a numerical calculation of the repro-
duction of detail in the normal image. This is given directly by equa-
tion (38) above.

In order to make some of the discussion in the following pages more
concrete and specific the sending and receiving apertures will be taken
alike; this condition, therefore, gives [ ¥(m, ) ]* as a measure of how
well the various components are reproduced. If a picture be assumed
in which all the original components have the same amplitude then
[¥(m, n)? is the amplitude of the reproduced normal components.

The relative admittance for any given pair of apertures may be
calculated from equations (20’) or (38’). Such calculations have been
made for various apertures and the results summarized in Appendix II.

The admittance of an aperture is not in general uniquely determined
by the wave length of a component, but also depends on the orientation

" of the component with respect to the aperture. The admittances of
reasonably shaped apertures do, however, decrease in general with
increasing numerical values of the indices # and #; and the shorter wave
components are, therefore, in general, less faithfully reproduced than
the longer wave ones.
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A circular aperture furnishes a simple example of such reproduction—
because its admittance, from its symmetrical shape, is a unique func-
tion of the wave length of a component. In other words a circular
aperture reproduces normal detail equally well in all directions. We
may, therefore, simply plot [ ¥(m, n) ] as a function of the component
wave length as in Fig. 16, and this single curve is a measure of how
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Fig. 16—Equivalent transfer admittance for circular apertures at both sending and
receiving ends, vs. wavelength.

well the various normal components are reproduced. The shorter
wave components are practically omitted in the reproduction of an
image.

Other apertures do not reproduce normal image detail equally well
in all directions because their admittances depend on the slope of a
component. To simplify the consideration of such apertures we may
resort to a practice commonly used in discussing telephotographic or
television systems, and that is, we may take the resolution along the
direction of scanning and across the direction of scanning separately as
criteria of their performance.

Neglecting the small slope of scanning lines with respect to the
« axis of the image field, the admittance of an aperture for components
normal to the direction of scanning is ¥(m, 0). Consequently, we
may take [ ¥(m, 0)]? as a measure of the reproduction of normal detail
along the direction of scanning. In a similar manner we may take
[ Y(0, #) ]2 as a measure of the reproduction of normal detail across the
direction of scanning.

It thus follows that an aperture gives the same resolution of normal
detail along the direction of scanning and across the direction of scan-
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ning when the two admittances ¥(m, 0) and ¥(0, #) are substantially
equal for components of the same wave length over the useful range.
Circular apertures, square apertures and other apertures that are
suitably symmetrical fulfill this condition exactly, and consequently
give equal resolution of normal detail in the two directions.

The curve [ ¥(0, #)]? has been plotted, by way of illustration for a
rectangular aperture, in the middle line of Fig. 17.
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Fig. 17—Reproduction of original and extraneous patterns.

It may be noted incidentally that the simple omission of detail which
occurs in the reproduction of normal components is quite similar to the
loss of resolution that an image suffers when it is reproduced through
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an imperfect optical system. Specifically the effect of a sending or
receiving circular aperture alone, or ¥(m, n), is the same as that caused
by an optical system which reproduces a mathematical point in the
original as a circle of uniform illumination (circle of confusion) in the
image of the same size (with respect to the image) as the scanning
aperture. The effect of the two apertures in tandem, or [ ¥(m, ) J?,
may be very closely simulated by a circle of confusion of about twice
the area of either aperture, as can be judged from the discussion which
has been given above regarding the curves in Fig. 12.

THE ExTRANEOUS COMPONENTS

It will be clearly understood that the discussion immediately pre-
ceding has been confined entirely to the normal image components,
that is, to the image that would be seen if no extraneous components
were present. In particular, it should be clear that the reproduction
of normal detail equally well in the direction of scanning and across the
direction of scanning does not mean that the details of the total result-
ant image will be seen equally well in the two directions, for the
extraneous components will to a certain extent mask the normal
image.

In the same manner as for the normally reproduced components, the
amplitudes of the extraneous components, according to the preceding
theory, are given by equation (40) above, where

m' =m + p,

n' =n — uN,
where

p = an integer = m’ — m = (1/N)(n — ). (41)

The composite transfer admittance Y(m, n) - ¥(m', n’) may therefore
be taken as a measure of the extent to which the extraneous components
are introduced. If a picture be assumed in which all the original com-
ponents have the same amplitude then ¥Y(m,n) - Y(m', n’) is the
amplitude of the extraneous components.

A given original component of indices m, n gives rise to a whole
series of extraneous components, m’, #’, as p ranges from 1 up through
the positive integers and —1 down through the negative integers.
As an illustration we have plotted the case of a rectangular aperture
of a width just equal to the scanning pitch, in Fig. 17, which has just
been referred to in considering the normal components. The two
lines marked *first extraneous pattern’’ show the relative amplitudes
for pequal to 1 and — 1, respectively, and those marked *'second extran-
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eous pattern,” for u equal to 2 and — 2, respectively, form = 0. (The
shift from m’ = 0 tom’ = + 1 and =+ 2 has been ignored since if N is
at all large this has a negligible effect on ¥V (m’, #"), as may be noted from
Fig. 13.) An examination of Fig. 17 and a consideration of the nature
of ¥(m,n) and ¥(m', n’) shows that the principal interference effect
will come from the pattern for which |x| = 1, and that the relative
amplitudes become very small as p increases in absolute magnitude.
In general, therefore, only the first extraneous pattern may be con-
sidered as of really serious importance. Considering this pattern in
Fig. 17 it will be seen that the amplitude ¥(0, #) ¥(0, »") increases as
|n'| increases from zero, the extraneous components becoming more
and more comparable to the normal components. At N/2, both com-
ponents are of the same amplitude, and the extraneous components are
therefore masking the normal components. It will be noted that the
index region at N/2 corresponds to the centers of the relatively empty
regions in the frequency spectrum of the signal. The large masking
effect caused by the extraneous components explains why such small
signal energy as exists in these regions is almost completely incapable
of transmitting any useful image detail.

It will be noted that the components with values of |#’| in the
neighborhood of N/2 and greater are in general almost parallel to the
direction of scanning. The masking loss will therefore be greatest
across the direction of scanning and practically negligible along the
direction of scanning. This is quite reasonable because the extraneous
components constitute the line structure of the reproduced image, and
should therefore cause the greatest loss of detail across the direction of
scanning.

For clarity in the explanation up to this point, masking loss has been
discussed as if an extraneous component could only mask the normal
component with which its indices happened to coincide. In reality the
masking is of a more serious nature. An extraneous component un-
doubtedly obscures any normal component that has about the same
wave length and the same slope across the field even though it does not
exactly coincide in these characteristics.

More detailed curves than Fig. 17, showing the amplitudes of the
extraneous components have been prepared in Appendix II. These
also show the results for other index values of m than zero, and for
other than the simple rectangular aperture. The results indicate that
the extraneous patterns diminish in intensity progressively as more
overlap is tolerated between adjacent scanning lines, at the expense, of
course, of increased aperture loss for the normal components. This
point will be taken up again below.



A THEORY OF SCANNING 499

The reality of these extraneous components is strikingly demon-
strated in Fig. 18, for which we are indebted to Mr. E. F. Kingsbury.

a. Original. b. Transmitted.

Fig. 18—Fresnel zone plate.

This shows at (a) the original of a Fresnel zone plate and at (b) the
picture after transmission through a telephotographic system. The
first extraneous pattern is very prominent in the lower corner of (b)
and a detailed study of the slope and spacing of the extraneous striations
shows them to be in exact accord with the theory which has been given.?

The special case of the extraneous components which are formed when
the original consists of a flat field is of some interest due to the high
visibility of these components under such a condition. This scanning
line structure is quite familiar as an imperfection in many pictures

7 The extraneous pattern, although it is (and should be according to the theory)
very nearly a transposed reproduction of the original pattern, must not be confused
with a long delayed echo of that original pattern. In other words, if only the lower
half instead of the whole of (a) had been transmitted, the lower half of (b) would
still have been exactly as it is, the extraneous components being generated entirely
irrespective of whether components representing a similar configuration exist in
other portions of the original or not.

In the region about half-way between the centers of the normal picture and the
first extraneous picture the resulting pattern gives very much the appearance of
another set of extraneous components. It is not such, however, that successive
rings are not really bright and dark, as they would be in the case of a genuine ex-
traneous component, but alternating uniform gray and striped black and white,
so that the average intensity along the circumference of a ring is independent of the
diameter of the ring, except for some photographic non-linearity.



500 BELL SYSTEM TECHNICAL JOURNAL

transmitted by telephotography and television. It can be removed
only by insuring that ¥ (m’, »") shall vanish whenever #’ = N, so that

¥(0,0) « ¥(u, uN) = 0.

The requirement can be met for the elementary shapes of apertures
A, E and F of Fig. 12, but cannot be met in the others. In these other
cases the overlap between adjacent scanning lines is usually adjusted
so that the requirement is met for 4 = & 1, to remove the most serious
pattern. Thus, for example, for the circular aperture B this requires
an overlap of around 25 per cent.

THE REPRODUCTION OF DETAIL

In optical instruments the reproduction of detail is usually measured
by what is called the “resolving power'’ which in turn is defined from
the smallest separation between two mathematical point (or parallel
line) sources of light in the original which can be distinguished as
double in the reproduced image.

For the present it is perhaps simpler to consider another criterion of
the resolving power, namely, the shortest element length in an image
resembling a telegraph signal, used as an original, which can be recog-
nizably reproduced with certainty in the received picture. For reasons
that have already been mentioned above it is necessary to insist that
the received picture be recognizable with certainty without any registry
requirement between the original image and the scanning lines.

Using this criterion for the resolution along the direction of scanning
and assuming the apertures at the sending and receiving ends to be
rectangular and of the same length with respect to the picture size,
the minimum signal element required for a recognizable picture (as set
by the apertures as distinguished from the electrical transmission
circuits) will be of about the length of either aperture. For other
* shapes of aperture the minimum element length will be very nearly the
length of the equivalent rectangular aperture using the term "equival-
ent’ in the same sense that it was used in the discussion regarding
Fig. 12.

According to the same criterion, for the resolution across the direc-
tion of scanning the minimum element length required for recognizable
transmission, in the case of a rectangular aperture of width equal to the
scanning pitch, will be twice the scanning pitch. It will be noted that
this is twice the length which would be required if only the normal im-
age components were reproduced, and this difference may be considered
as a measure of the degradation caused by the masking effect of the
extraneous components for this arrangement of apertures.
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This figure for the degradation must be taken with a certain reserve,
partly because the exact telegraph theory for the criterion of resolution
considered has really been inferred rather than presented in complete
logical form, and partly because the figure may be expected to vary
according to the criterion of resolution chosen. Some rough studies
have indicated the degradation to be materially less if the more con-
ventional criterion of resolution (two parallel line sources of light) were
used.

This degradation may be estimated in another manner. In Ap-
pendix II the extraneous components have been computed for a variety
of apertures and degrees of overlap between adjacent scanning lines.
In Fig. 19 there have been plotted the maximum amplitudes of these
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Fig. 19—Magnitude of extraneous components as a function of resolution.

extraneous components in each case (the first and second extraneous
patterns being plotted separately) as a function of the relative coarse-
ness of resolution for the normal image alone. This latter quantity is
taken relative to a rectangular aperture of width equal to the scanning
pitch, and, for example, for a rectangular aperture of width equal to
twice the scanning pitch, is represented by the figure 2. For conveni-
ence, above the various points have been inserted small diagrammatic
representations of the corresponding apertures. Also for convenience
the points have been arbitrarily connected together.

From inspection of Fig. 19 several conclusions may be drawn,
namely,
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1. Considering apertures of a given shape, the more overlap allowed
between adjacent scanning lines the weaker will be the extraneous pat-
terns but the coarser will be the reproducible detail in the normal
image.

2. Not all shapes of aperture are equally efficient in suppressing
extraneous components, and at the same time retaining a given resolu-
tion of normal detail. Of the shapes considered, the rectangular
aperture is least efficient in this respect, and the full-wave sinusoidal
aperture (E in Fig. 12), is the most efficient.

3. Although not proved, it may be inferred from the figure that the
finest resolution in the normal image that can be obtained (assuming
a given scanning pitch) without showing a first order extraneous pat-
tern on a flat field, is that obtained with the rectangular aperture of
width equal to the scanning pitch.

4. With the most suitable aperture it is possible practically to sup-
press the extraneous components, at the expense of coarsening the
normal reproducible detail to slightly under twice that given by the
rectangular aperture just mentioned.

The last point in particular enables us to draw a conclusion in regard
to the degradation contributed by the extraneous components. Fora
rectangular aperture of width equal to the scanning pitch it appears
that the degradation amounts to a little less than doubling the coarse-
ness of resolution to normal detail. This substantially checks the
estimate which has already been made above. - It may further be sur-
mised for all the other shapes of aperture shown with a value of abscissa
under 2 that as the degradation contributed by the extraneous com-
ponents is reduced, the coarseness of resolution to normal detail is in-
creased to just about make up for this, and that in the overall picture
the minimum element length which can be recognizably reproduced
remains substantially constant at about twice the scanning pitch.®? For
aperture arrangements with values of abscissa over 2, either the ineffi-
ciency in suppressing extraneous components, or the unnecessarily
large overlap, tends to coarsen the overall resolution to a minimum
elementary length greater than twice the scanning pitch. In this
region the line connecting the points has been dotted.

8 ]t may very well be that even if all these aperture arrangements transmit an
about equal amount of information they do not give the same psychological satis-
faction to the viewer at the receiving end. The general effect of a square aperture
of scanning pitch width is to give a “‘snappy’’ appearance, disturbed, however, by

the presence of the extraneous patterns. When these are removed, keeping the over-
all resolution about the same, the appearance becomes ‘' woolly'’ or “fuzzy.”
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AN EsTIMATE or THE IDLE FREQUENCY REGIONS

As mentioned at the beginning of this paper, the frequency regions
between the strong bands appear to be empty when examined with a
frequency analyzer of limited level range, or when a narrow band
elimination filter is used in connection with visual observations of the
reproduced image. These regions are not really completely empty,
but do contain weak signal components as shown by the preceding
theory, which are not, however, particularly useful inasmuch as, in
the final result, they give rise about equally to components simulating
the original picture and to masking extraneous components. The
regions may, therefore, be considered as idle.

The factors determining the extent of these idle regions are too com-
plicated to permit an exact theoretical evaluation of their width, but
an estimate may be attempted from an inspection of Fig. 12 and of the
curves given in Appendix I1.

From Fig. 12 and the experience that along the direction of scanning
the minimum recognizably transmitted elementary signal length is the
length of a rectangular aperture it can be deduced that in the absence
of extraneous components the useful band of an aperture extends up to
the point where its relative admittance, for a single aperture, is in the
neighborhood of 0.65. For two apertures in tandem the corresponding
relative admittance is 0.652 = 0.42.

Now in Fig. 27 of Appendix II the extraneous components are very
small and may be considered negligible. According to the above cri-
terion, therefore, the useful frequency band constitutes approximately
54 per cent of the total space. The idle frequency regions would,
therefore, occupy the remainder, or 46 per cent of the total space.

Experimental examination of a television signal with a narrow band
elimination filter gave the width of the idle regions as 50 to 60 per cent
of the total space. This was for a field scanned with a circular aperture
giving a one-quarter overlap of scanning strips. The discrepancy for a
quantity so vaguely defined is not large but is probably due to incom-
plete utilization of even the theoretically active region by the television
set because of inherent imperfections in parts of the complete system
outside the scanning mechanism proper.

The width of the individual idle bands is then about half the fre-
quency of repetition of scanning lines. For most systems of telephotog-
raphy this runs in the order of magnitude of one cycle per second, mak-
ing the waste regions very narrow and close together. For systems of
television the waste bands come in much more significant “slices,’ al-
though the same fraction of the frequency space is wasted. For ex-
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ample, in a 50-line system the waste bands are each about 500 cycles
wide. In a system using a single sideband of one million cycles width
the waste bands are each about 3300 cycles wide.

These idle frequency regions naturally lead to the questions whether
(a) there is any way of segregating all of the relatively useless signal
components in one region of the frequency spectrum so that the useful
parts of the signal may be transmitted over a channel of about half the
width, or (b) whether it would be worth while placing other communica-
tion channels in these waste regions. It must be realized, however,
that even when the complete frequency space is utilized (by any one of
a number of possible schemes), the required frequency band for trans-
mitting a picture of given detail at a given rate is still only halved as
compared with the simple system considered above, which is not a
change in order of magnitude. The problems of transmitting the wide
band of frequencies necessary, for example, in television, while lessened,
therefore still remain.

APPENDIX 1

The calculation of ¥,(m, n) according to equation (20’) is, for the
three simple apertures here considered, a straightforward mathematical
process which will therefore not be reproduced. The results are plotted
in the form of charts in the conventional manner for functions of two
variables, namely as a series of contours, one of the two variables being
kept constant for each contour. This constant value changes progres-
sively for each successive contour.

The variables are taken as m and #, multiplied by parameters depend-
ing on the sizes of the scanning aperture and of the picture. Because
of the obvious symmetry of the function, only half of each chart has
been drawn. In order to avoid confusion the contours have been
dotted when |m| is greater than the first root of ¥1(m, 0) = 0. In
one case the contour is shown in a dashed line when |m| is equal to this
root. Constant factors in the scale of ordinates have been neglected,
to make Y,(0,0) = 1.
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Fig. 20—Rectangular aperture.
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APPENDIX II

As in the case of Appendix I, the calculation of Vi(m, n) + Ya(m', n")
is a straightforward mathematical procedure which will not be repro-
duced. The results are again presented in the form of charts.

In these charts the intensities of the principal extraneous components
are indicated by solid lines, while the higher order extraneous com-
ponents are indicated by dotted lines. The normal components have
been indicated by dashed lines.

It should be explained that what has really been plotted is ¥1(m, n)
« Yo(m, n') rather than V(m, n) - Yao(m’, n’). This is because the
difference between m’ and s, when multiplied by the parameters
chosen for the charts, varies with the proportions of the scanning system
used. As discussed in the text with regard to Fig. 17, however, this
difference between m’ and m has a negligible effect for any system em-
ploying a useful number of scanning lines.
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