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The general problem of subscriber interconnection is stated here, while
some of the economic and service factors in the selection of trunking systems
are briefly considered. The characteristic manner in which telephone calls
fall upon ordinary straight trunk groups is presented from both common
sense and theoretical standpoints.

One of the widely used trunk rearrangements by which an improved
capacity may be achieved under certain conditions is known as graded
multiple. A theoretical analysis of this scheme is given, from which are con-
structed curves for common probabilities of loss. Illustrative examples
are included to make clear their use.

A detailed comparison between theory and observation is made with
considerable attention paid to critically examining the validity of the
assumptions underlying the theory. It is concluded that the present graded
multiple engineering tables are based upon a proper modification of the
theoretical formula.

INnTRODUCTION
ITH the completion of the third commercial telephone instru-
ment some fifty odd years ago was born the problem of inter-
connection. And as the system has grown so has the demand for a
universal service. The present complexity of our communication

i

Fig. 1—Direct interconnection of subscribers.

network malkes it difficult to appreciate that in those early days it was

a comparatively simple thing to provide a direct line from each sub-

scriber to every other subscriber, as shown in the schematic intercon-

nection of the six telephone stations in Fig. 1. In such schemes there
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is no possibility of the line being busy; the only faults a subscriber may
properly find with the service (over and above transmission troubles)
are that “the called party is busy '’ on another line, and “he does not
answer,” conditions beyond the control of the interconnecting system.

For a very small number of subscribers all in close proximity such a
scheme would and does serve admirably. As soon as the number of
subscribers, “#,” is increased, however, the number of lines, which
equals nn — 1) 2-_' 1), goes up at an enormous rate, almost as the square
of the number of subscribers. Since a major element of the cost is in
direct variation with the number of lines this plan, even on a modest
scale, is quickly prohibited.

Nevertheless, if a truly universal service is to be furnished it must
not only be possible for any subscriber to communicate directly with
any other, but it must be easily possible. This problem was solved
by the development of the central office plan of interconnection.

ELEMENTARY STUDIES

We may represent a simplified central office exchange system by the
line diagram of Fig. 2. Two sets of 100 subscribers, A and B, may
make calls to the opposite set via the 10 “trunks” C.! A line which
connects an individual subscriber to his central office exchange is
unique in that it will never be used except when /e is talking. The
lines C, however, which are provided for establishing connections
between the telephones in one office and those in the other may well
carry calls originated by a large number of subscribers. Thereupon
it is readily seen that one interoffice line (or trunk, as we shall hereafter
call it) may easily attain a very much higher efficiency, as measured
by the per cent time it is in use, than an individual subscriber’s line.
When one subscriber is not using a particular trunk it is available
for use by another; thus we make one trunk do the work for which
two or more lines were required in the original arrangement of Fig. 1.

To obtain this increased call carrying capacity per trunk and the
consequent savings due to reduction in the total number of trunks,
it is necessary to forego one particular advantage: we cannot be ab-
solutely sure that there will be an idle trunk available when each
subscriber desires to place his various calls. For it is possible, although
very improbable, that all of the subscribers might want to call one
another simultaneously, and having far fewer trunks than subscribers
in either office many would fail to get immediate service. The

1 For our purpose it is unnecessary to consider how two subscribers within the
set 4, or the set B, may be interconnected.
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analyses necessary to determine the theoretical probability (or the
proportion of times in the long run) that a particular subscriber will
find all of a group of trunks busy are well known; and tables and curves
are available showing for wide ranges of loads and numbers of trunks
the probability of a particular subscriber finding them all in use.?
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Fig. 2—A simplified central office interconnection system.
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In Fig. 3 is shown the load, a, in average simultaneous calls which
theoretically may be submitted to ¢ trunks so that, on the average, one
one-hundredth (P = .01), or one one-thousandth (P = .001), of all
the calls submitted will find no idle trunk available. By replotting
Fig. 3 to show as in Fig. 4 the average load carried per trunk (efficiency)
we see that a large group of trunks is relatively much more efficient
than a smaller one.

For example, to carry a load of @ = 41 at P = .01 we should provide
a single group of 57 trunks, while if we are required to carry the same
total load over groups of ¢ = 16 trunks, we shall need five such groups
or a total of 80 trunks. That this should be so may become clearer
by considering, say 20 trunks, first as a complete group and then as
two split groups or subgroups of 10 trunks, each carrying one-half of

*“The Theory of Probabilities Applied to Telephone Trunking Problems,” by
E. C. Molina, Bell System Technical Journal, November, 1922.
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the total load as pictured in Fig. 5. A trunk is represented by each
horizontal line, and the load submitted by the vertical arrow, as
though it were starting at the bottom of the group to hunt for the first
idle trunk. We first observe that the proportion of calls lost on the
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Fig. 3—Load carried by a trunk group at a constant loss.

average in the split groups cannot be less than in the complete group
since when all the trunks are full in either case the calls coming in will
be delayed or lost altogether, and only when all 20 trunks are occupied
in the case of the complete group will calls be lost. On the other hand,
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in the split group calls may be lost when as few as 10 trunks are busy
provided they are all in the group to which the calls at the moment are
being originated. Thus the splitting of the group and the consequent
reduction of the access may prevent a call in one subgroup, upon
finding its 10 trunks busy, from continuing on over the remaining
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Fig. 5—Comparison of arrangements of twenty trunks.

trunks, one of which might have been idle. We conclude then that,
other things being equal, a given load may be more economically
carried over one large group than over two or more smaller groups.

SWITCHING LIMITATIONS
Unfortunately, ‘‘other things’ are decidedly not equal. Three
major considerations may be pointed out which quite definitely tend
to limit the number of trunks to which a particular source may be
given access:

]

1. The high cost of switches having a large number of contacts.

2. The undesirable long hunts which occur in trunk groups of large size.

3. The double connections which increase directly with the load
carried.

Of these the first two are usually the more instrumental in regulating
the practicable upper limits to the access or hunt. When considered
with the efficiency of the trunk groups in a system they comprise, in
general, the fundamental data for determining the appropriate arrange-
ment which may be economically employed to handle any given amount
of traffic.

We are then faced with the problem of obtaining the maximum
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efficiency (maximum average load per trunk) with a given hunt or
access. We have seen that the ultimate efficiency is obtained when
the total trunks are arranged in a complete or straight grouping.
We have also noted how greatly the efficiency is reduced by splitting
the total trunks into distinct individual subgroups. It may well be
that by certain rearrangements we shall be able to increase this low
efficiency without increasing the access.

GrADED MuLTIPLE THEORY

The “graded multiple'” means for improving the efficiency of trunk-
ing multiples requiring more channels than a single switch can profit-
ably hunt over was proposed in 1905 by E. A. Gray.! We may gain
an insight into the manner of working of graded multiple by considering
a very simple example.

Suppose we have two 10-trunk subgroups as in Fig. 6(4), each carry-
ing an average load corresponding to some predetermined probability of
loss, say P = .001. Then the approximate average load carried by
each individual trunk, provided all calls hunt over the trunks in the same
order, is shown in Table 1. The important point to observe here is
that the first trunk is busy a goodly proportion of the time [a(1)=.748],
the second trunk a somewhat shorter time, and so on down to the
last trunks which are comparatively lightly loaded, the tenth trunk
being busy only about one-half of one per cent of the time.

The same distribution is approximately maintained in both sub-
groups of 10 trunks, each of which on the average presents all of its
10 trunks as busy to one out of each thousand calls submitted to it;
but it is quite unlikely that this busy condition would occur simul-
taneously on the two groups. Hence, if on those occasions when a call
is being lost in one group it could be allowed to hunt over, say, the
last half of the other group, in many cases it would find an idle trunk

3 E. A. Gray, assignor to the American Telephone and Telegraph Company, filed
application July 30, 1907. The patent, No. 1002388, was granted September 5,
1911, for ' A Method of and Means for Connecting Telephone Apparatus."

4 By Erlang's statistical equilibrium method, upon the assumption that *‘lost”
calls are immediately cleared and do not reenter the system, we find the average
carried on the rth trunk is

a(r) = a[B(r — 1, a) — B(r, a)],

where B(x, a) is the proportion of traffic passing beyond the xth trunk and may be
expressed,

a:

(x, a) E
B(x, a) = .
v a? a? ax
1+ﬂ+ﬁ+E+"' +,—’E

In all cases “a" refers to the average number of simultaneous calls being submitted
to an individual set of trunks.
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Fig. 6—Genesis of a graded multiple.

That is to say, we should be able to capitalize the possi-

bilities of teamwork between the more lightly loaded parts of the
groups.

available.

TABLE 1
L.oap CARRIED BY EACH TRUNK OF A STRAIGHT MULTIPLE
Average Submitted = a = 2.96

Number of Trunk in Order Hunted Over

1 2 3 4 5
Load carried on each trunk..|.748 |.658

6 | 7| 8 9 | 10
.544 |.413 |.279 |.170 [.087 [.039 [.015 |.005

This may be done by arranging the two groups as in Fig. 6(B) so
that the cross-connection of the last choice trunks provides an oppor-
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tunity for their mutual use by the calls from either subgroup. In this
particular case, however, the hunt or access has been increased from
10 to 15 terminals. If we wish to retain the operation of the system
on 10-point switching equipment we must compress the trunks into
some such form as indicated in Fig. 6(C). In so doing we have very
likely increased the split group efficiency of the trunks but, at the same
time, on account of their fewer total number the load originally sub-
mitted may not be adequately served. Hence, a remedy such as shown
in Fig. 6(D) may perhaps be devised: that is, the addition of more sub-
groups of the restricted-availability trunks. The study of the actual
carrying capacities of these various arrangements is reserved for a
later point in this paper.

In general, then, we may represent any such plan of trunking by
the schematics of Figs. 7(4) and 7(B). These are called “simple

1 | | | | COMMON
[l | | | | TRUNKS

— | INDIVIDUAL
[ | [ 1 ! TRUNKS

PR Rk

Fig. 7(4)—Simple graded multiple with g subgroups.

lan Iaz ida IFM Ias las
Fig. 7(B)—Example of a non-symmetrical progressive graded multiple.

graded multiples’ and ‘‘progressive graded multiples,” respectively,
and by varying the number and placement of the trunks composing
them a very large variety of arrangements indeed may be obtained.
Here all calls hunt from the “bottom" of the group over a particular
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one of several sets of “individual” trunks called a subgroup, and if
none are idle they continue on up to the ‘‘common’’ or ‘partially
common " trunks which are made accessible to all of the switches that
appear before the contributing subgroups. The essential characteris-
tics of the graded multiple are, then: the trunks hunted over first serve
a minimum number of switches while those trunks hunted over last
are multipled before more or all of the switches. Provided our pre-
liminary analysis is correct, the teamwork obtained between the latter
portions of all of the subgroups should result in an increased average
per trunk carrying capacity throughout the whole multiple.

EFrriciEncy oF GRADED MULTIPLES

Several theories for calculating the grade of service of graded mul-
tiples with any given submitted load per subgroup have been advanced.
All of these involve certain assumptions or empirical approximations.

Dr. Fritz Lubberger?® of the Siemens and Halske Manufacturing
Company, Berlin, in collaboration with Dr. G. Riickle,® has presented
a universal scheme, partly theoretical, partly empirical, for estimating
the load carried by any trunk in a split or graded, or a combination of
the two, multiples. That remaining load which is not carried then
constitutes the overflow (*Verkehrsreste’”) from which the proportion
“lost” may immediately be determined. The nub of Lubberger's
method consists in the application of so-called ‘‘Zuschlagsfaktors” to
correct the submitted load for the loss when splitting, and the gain
when grading. This modified load, on the assumption that it has been
reduced to the appropriate equivalent load, is then used to enter a
chart constructed for a straight multiple. Combined with this pro-
cedure is the assumption that the busy hour loads in each subgroup
may not occur simultaneously, thus giving a still freer opportunity
for a cooperative usage of the common trunks.

A second plan for estimating the probability of loss of a graded
multiple was proposed by the late Dr. M. Merker of Antwerp.” He
developed a very complicated formula which involves a consideration
of the various ways in which a graded multiple might accommodate a
given number of calls.

The British Post Office has made some interesting and valuable

¢ F. Lubberger: * Die Wirtschaftlichkeit der Fernsprechanlagen fiir Ortsverkehr.”
R. Oldenbourg, Munchen und Berlin, 1927.

¢ G. Riickle und F. Lubberger: ' Der Fernsprechverkehr als Massenerscheinung
mit starken Schwankungen.” Julius Springer, Berlin, 1924,

" M. Merker: ‘“Some Notes on the Use of the Probability Theory to Determine

the Number of Switches in an Automatic Telephone Exchange.” The Post Office
Electrical Engineers’ Journal, vol. 17, Part I, April, 1924,
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empirical investigations of the graded multiple problem® These have
included successively or progressively-graded multiples as well as
those involving only a single set of subgroups feeding into a simple
group of common trunks. They conclude that for more than two
subgroups the successive grades are somewhat advantageous and the
highest efficiencies are to be gotten when there is ‘‘a smooth progression
from individuals to commons.” That is, the number of trunks in each
subgroup of individuals, pairs, fours, eights and commons, should be
very nearly equal, and in general ‘‘no grading should be used, if it can
be avoided, in which the actual number of circuits required to the next
rank exceeds half the maximum possible number.® An 18-group
grading, for example, should not be used when more than 90 circuits
are required. . . . These specific data are, of course, with reference
only to the gradings of 10-contact switches.”

Finally, a very interesting field of study has been opened up through
the design of an artificial traffic machine by Messrs. E. A. Elliman
and R. W. Fraser of the Standard Telephones and Cables, Ltd.® In
the particular machine constructed two group gradings with all arrange-
ments of individuals and commons up to hunts of 25 could be simu-
lated. In the single examples given of straight and graded groups
the results showing the load per trunk appear to be closely in accord-
ance with their expected values. If a more flexible mechanism could
be devised and tested to insure concordance with practice a most
valuable contribution to the art of trunking would be made.

In the Mathematical Appendix I of this paper Mr. E. C. Molina
sets forth the analytical theory for simple (single-stage) symmetrical
graded multiples as originated and practiced (with certain modifica-
tions to be mentioned later) by the Bell System. The present method
of estimating the probability of loss, knowing the arrangement of
trunks and the average load submitted per subgroup, is the natural
outgrowth of several preliminary formulas each of which was closely
studied and compared with the actual conditions to be met in
operation.

The four governing assumptions which need careful scrutiny in the
final formula presented in this paper are:

1. The holding time of all calls is assumed to be constant.

2. A call not receiving immediate service is held in waiting for its
normal holding time period, and if an available trunk becomes idle it
will occupy it till this period is completed. This is usually referred to
as the “lost calls held" assumption.

8 G. F. O’'Dell: “An Outline of the Trunking Aspect of Automatic Telephones.”
The Journal of the Institution of Electrical Engineers, vol. 65, February, 1927.

9 By ““next rank" is meant, for instance, second selectors following first selectors.

1 Elliman and Fraser: “An Artificial Traffic Machine for Automatic Telephone
Studies.” Electrical Communication, October, 1928.
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3. The distribution of the load submitted to each subgroup follows
the Poisson Law and each subgroup carries the same average load as
every other subgroup.

4. At no time shall a call be occupying a common trunk if an idle
trunk exists in the group of individual trunks assigned to the subgroup
of calling sources or switches from which the call under consideration
originated. In other words, it is assumed that calls which seized idle
common trunks because, at the time they originated, idle individual
trunks were not available, shall be immediately transferred (by some
fictitious redistributing apparatus) back to their individual trunks as
soon as these become idle. This assumption will be referred to below
as the assumption of “no-holes-in-the-multiple.”

Whether these are admissible assumptions must be decided by a
comparison of what actually results in practice with the formula which
they give rise to. Their concordance will be discussed in a following
section.

In order to put this graded formula in a usable form for engineering
study curves or tables are needed showing how much load any given
arrangement of trunks will be able to carry at any specified grade of
service. Such charts have been constructed for the two more com-
monly used probabilities of loss, P = .01 and P = .001, compre-
hending all possible arrangements of trunks in simple symmetrical
graded multiples having an access or assignment of 10, 20, 30 and 40
terminals and subgroups from two to seven in number. These are
designated as Figs. 8 to 15, 8 to 11 corresponding to P = .01, and 12
to 15 to P = .001; the four at each probability cover the ranges of
access or assignment, 10, 20, 30 and 40, respectively. These dis-
tinguishing parameters are noted in the upper right-hand corner of
each chart. In order to simplify the necessary descriptive terms the
number of trunks in each individual subgroup is called “‘x,” the
number of common trunks is called ‘‘v,”” and the number of sub-
groups, ‘‘g.”" Thus the access equals x + v, and the total number of
trunks equals gx + y.

For the sake of compactness and brevity both the abscissa and
ordinate scales of these charts are plotted in terms of ratios; the former
gives gx + y or total trunks in terms of the access, x + v, and the
latter the per cent gain in efficiency (per cent increase in average load
per trunk) over the efficiency of a simple straight multiple of x 4+ ¥
trunks. A single one of the seven semi-circular curves on each figure
then yields the load information for any number of trunks having a
particular number of subgroups, a designated access, and a specified
grade of service. The dotted curve on each figure is included to show



542 BELL SYSTEM TECHNICAL JOURNAL

the “per cent gain over the efficiency of x + y trunks” if the total
gx + v trunks are placed in a single complete-access group. A few
problems will make clear the exact meaning and use of the curves.
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Suppose we wish to know how much load may be submitted to each
subgroup of a symmetrical graded multiple of 105 trunks having five
commons out of an access of 30, such that, on the average, one call in
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one thousand will be lost. Evidently,
ge+y=105, x+y=30, =125 y=35, P=.001;

from which, solving the first three equations simultaneously, we find g,
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Fig. 10—Graded multiple efficiency. = +y = 30. P = 0.01.

n

@

PER CENT GAIN OVER EFFICIENCY OF (X + ¥)
n
s o

o

the number of subgroups, equal to 4. To enter the appropriate chart

- . . gx+ 9y . 105 _
(Fig. 14) we must determine the ratio praap , which equals 30 = 3.5.
The g = 4 curve at this abscissa of 3.5 gives us the gain over the

32

_L -
o 28 R RLLS
2 -1
i _L-
2 2 - Xty = 40
I -] P = 0.0l
20 -

§v -
33.‘/ 16 T i“r,.:""‘-.\
55 2 Pa \ N ™
S K N N N
z s \ N \\
(8] =2 =3 =4 =5 =6 =7
P EEYATATI T\ G
o B

oL/

0 | 2 3 4 5 6 7 8

TOTAL TRUNKS IN MULTIPLES OF (X + y)
Fig. 11—Graded multiple efficiency. x + y = 40. P = 0.01.



tn
rdy
-

PER CENT GAIN OVER EFFICIENCY OF (X +Y)

PER CENT GAIN OVER EFFICIENCY OF (X'Py)

B
S

[y
o

w
o

W
n

n
®

24

20

Iy
o

w
o

w
n

n
@

24

20

BELL SYSTEM TECHNICAL JOURNAL

Pl By
~

] 3

T AC NI

i ) X+y=|
VN AR VAN

\\\\\\
VNN NN

rrd

g=2 \g=3 \9=4 \9=5 \3=7

I 2 3 4 5 6
TOTAL TRUNKS IN MULTIPLES OF (X +Y)

Fig. 12—Graded multiple efficiency. x + v = 10. P = 0.001,

e X+y=20
N P=o0

A .001
2N NN

\

] /
/
//

Z’\\ VAN
\
\

VAL N NN

/ \9’=2 \9=3 \9=4 \e=5 [\o=e o=~

I 2 3 4 5 6 7
TOTAL TRUNKS IN MULTIPLES OF (X + ¥)

Fig. 13—Graded multiple efficiency. x + y = 20. P = 0.001.




THE INTERCONNECTION OF TELEPHONE SYSTEMS 545

efficiency of x + y trunks as 13 per cent. This means that the average
load per trunk in the graded multiple is 1.13 times that in a straight
group of x 4+ y = 30 trunks at the same probability of loss. From
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Fig. 14—Graded multiple efficiency. x 4y = 30. P = 0.001.
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Fig. 4 we read the average carried per trunk on a straight group of 30
as .529. Hence the total load which may be submitted ' to the graded
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1'We may use the terms ‘‘average submitted” and ‘‘average carried” inter-
changeably here since at losses of P = .01 or less the difference is negligible.
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multiple is
A = (1.13)(.529)(105) = 62.77.

To obtain the desired load per subgroup we need only divide by 4

giving @ = % = 15.69. In terms of one-hundred-second-calls this
average per subgroup then equals 36a = 565 calls per hour.

As a second example we may set the question: Given 58 trunks to
grade on an access of x + y = 20 with either three or six subgroups,
which arrangement is to be preferred? We shall have to assume,
since we have no additional information, that the decision rests merely
upon the relative efficiencies of the two schemes. From the given
data, gx +vy=58, x+y =20, and g=3 or g=6. We read

. gx+y=5_8__ _ _
opposite Ty 20 290 for g=3 and g= 6 on both the

P = .01 and the P = .001 charts (since the probability was not
specified) and construct the following table (Table II):

TABLE 11
Per Cent Gain Over
No. of No. of No. of Efficiency of (x-+)
Subg;-oups Individual Trunks Common ax+y
2 per Subgroup Trunks x4y
x y P=,01 P =.001
Fig. 9 Fig. 13
3 19 1 2.90 3.0 3.5
6 7.6 124 2.90 21.2 31.0

It is clear then, that as far as efficiency of arrangement goes, the
six-subgroup plan is in the order of 20 per cent superior to the three-
subgroup plan for ordinary grades of service. There is one difficulty
here, however, and that is that in the symmetrical multiple of six
subgroups the calculated number of individual trunks in each sub-
group and the number of commons are not integers. We may get
around this trouble by either unbalancing the grade slightly or chang-
ing the total number of trunks. For instance, we could use four
subgroups of seven trunks, each pair of subgroups feeding into a
single trunk common to them, before reaching the 12 through-commons
into which the remaining two subgroups of eight trunks would work
directly. The total of 58 trunks would then be disposed of at an
efficiency gain probably not differing markedly from that estimated
in our table above.

Secondly, we could have reduced the total trunks to 55, making
thereby a symmetrical arrangement of x = 7 and y = 13. Had we
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done this we should have been able, at P = .01, to carry a total load
(reading the gain of 21.3 per cent at %C%’= 2.75 on Fig. 9) of
A= (1.213)(.554)(55) = 36.96. At the same time the load we could
have carried on 58 trunks with three subgroups is only 45 = (1.03)
X (.554)(58) = 33.10. Hence, we could reduce the total number of
trunks by three in the six-subgroup case and still carry more load than
if we were to use the three-subgroup arrangement and the original
number of trunks. This decided advantage in favor of the larger
number of subgroups is even more pronounced if the P = .001 com-
parison is made (43 = 26.9 vs. 45 = 32.2).

The secret of the large gains in certain cases is easily found. After
a short study of the curve charts it will readily be verified that, in
general, the modal or maximum gain point on any curve comes very
nearly at the midpoint of the range between x + v and g(x + v).
This midpoint is reached by always setting x = y or x = x4+ ),
that is, by making the individuals compose one-half of the access or
assignment.

CoMPARISONS OF THEORY AND PRACTICE

It is, of course, eminently desirable to know whether the formula
just described for the probability of loss of any simple arrangement is
consistent with the grades of service which it will actually render in
practice. This we could ascertain only after a prolonged and careful
study of typical graded groups already at work in the Bell System.
Accordingly, a set of tests lasting over a period of six months, in the
latter part of 1927, was made in Chicago by the Department of Opera-
tion and Engineering of the American Telephone and Telegraph
Company in cooperation with the Illinois Bell Telephone Company.

The tests were performed on district multiples, believed to be
representative, by connecting holding time recorders to the groups to
indicate the load being carried by each trunk. Then through the
use of overflow and peg count (number of calls) registers the proportion
of calls being delayed (or lost) was readily found for any particular
busy hour load.

In the First Division of these tests two groups of interoffice trunks,
State to Dearborn and State to Wabash, were selected as typical cases
of the kinds of fluctuating busy hour loads to be found in ordinary
panel graded practice. No attempt was made here to regulate the
load being submitted in any busy hour or to any subgroup since what
was particularly desired was not what would happen if such and such
conditions obtained, but rather what does happen under the fluctuating
load conditions which actually occur in the busy hours from day to day.
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This will account then for the rather decided non-uniformity of the
loads supplied to the two groups for various numbers of trunks. In
Table III are recorded in the left-hand division the nine different
trunking arrangements tested. All cases consisted of grades of five
subgroups (g = 5) in a multiple having “x"" individual trunks in each
subgroup placed before “‘y" common trunks such that the access
(¥ + ») remained constant and equal to 20. The sizes of the result-
ing groups were then varied from 28 to 56 trunks.

In the central division of Table III, designated ‘‘Observational
Data,” are shown the various loads carried by these trunk arrange-
ments with the corresponding proportions of calls lost during the
period of each test. The supporting data of columns VIII, IX and X
give one an idea as to the fluctuations which may be expected in the
lost calls in a limited number of week-day busy hours.

The last division of Table III, " Theory,” shows in its four columns
the number of trunks that would theoretically be specified, on various
bases of engineering, to carry the load actually observed in each run
at a probability of loss equal to the observed proportion of calls lost.
Column XI gives the number of trunks which would be required in
each case could the trunks all be placed in a single straight group.
Since this is the most efficient arrangement possible, a minimum of
trunks need be supplied. At the other extreme we have in column XIV
the number of trunks which would be required if each trunk operated
at the efficiency of a group of 20 (= x + y) trunks. This could ac-
tually be realized, of course, only when the total number of trunks
required was an exact multiple of 20. As shown, from 2 to 12 more
trunks are required with this decreased efficiency than when a full
group is being considered.

The two other columns, XII and XIII, show the number of trunks
that would be needed in a graded multiple of five subgroups having
an access of 20 trunks, upon two different assumptions. The column
headed “Full Gain” is obtained from curves similar to Figs. 8 to 15,
but appropriate to the observed probabilities of loss, to give the ““per
cent gain over the efficiency of x + y trunks.” Knowing the total
load to be carried and the enhanced efficiency of ¥ + y trunks in each
case the number of trunks required is readily determined. The “Half
Gain" column is arrived at in precisely the same way with the excep-
tion that only one-half of the indicated “‘per cent gain over the
efficiency of x + y trunks" is utilized.

To facilitate the interpretation of these results they have been
shown graphically in Fig. 16. Above each point on the abscissa at
which a run with a known number of trunks was made is recorded
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the corresponding number of trunks which would be provided on each
of the bases considered above. The actual number in service is also
shown as a straight line through the shaded points for comparison with
the various theoretical schedules. As noted on the figure the studies
having 28 to 40 trunks were made on the State to Dearborn group and
those having 40 to 56 trunks on the State to Wabash group.

As may readily be seen either from Table III or Figure 16 the
“"Half Gain" schedule coincides especially well with the observed
data, while the other engineering plans fall consistently too high or
too low on the scale. It may be remarked that the ‘Full Gain"
values approach the limiting full group figures very closely and that
it should prove of considerable interest to determine the cause of
divergence between the field observations and these large theoretically
possible graded loads.

CRITICAL INSPECTION OF ASSUMPTIONS IN GRADED THEORY

It has been noted that the number of “Full Gain” trunks specified
is well below the number really required. This confirms the possible
suspicion that not all of the four assumptions fundamental to the
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Fig. 17—Distribution of interoffice trunk holding times.

graded multiple formula presented in this paper are entirely satisfied.
We shall therefore examine, in order, the accuracy of these assumptions.

We know indeed, without investigation, that calls are of widely
differing lengths, and in addition are not ‘“held” in the manner
assumed. In Fig. 17 is shown a typical holding time distribution for
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calls carried over the State to Dearborn group, with a suggested ex-
ponential fitting frequency curve superposed on it. From other
studies carried out on non-graded groups we are led to believe that as
far as the probability of loss is concerned it is almost independent of
the change in holding time from a constant to an exponential form,
the advantage, if any, favoring the varying case. Likewise the manner
of “holding” delayed calls is of negligible importance as long as losses
of .01 or .02 are not greatly exceeded.

The first part of the third assumption regarding the incoming calls
being distributed according to the Poisson Law was not checked in
these particular tests but a wide study of results under similar con-
ditions readily leads us to believe that calls originating from a large
number of independent sources will exhibit this form of frequency
distribution.

The third assumption also necessitates a study of the variations
among the loads submitted to the subgroups of a graded multiple.
This brings us to the Second Division of the tests made in Chicago.
At the same time the first division was in progress on the busy hours
of each day for the cases of 36 trunks in service on the State to Dear-
born group and 52 trunks on the State to Wabash group, all of the
hours of the day from 9 till 5 were observed by one-half hour periods
(to minimize the error due to trends) for the number of call-seconds on
each trunk, the number of calls carried over the group and the number
lost. Thus an extended range of load conditions was obtained for
study. For estimating the effects of subgroup load variations with a
given total submitted load, these short pieces of data were combined
so that the half hours having an average load in trunk hours per hour
within approximately one unit of range were thrown together. The
various analyses were then made on these narrow total load classifi-
cations to discover, if possible, whether the observed subgroup variation
when used in the theoretical formula would cause the latter's “Full
Gain'' probability of loss to approach more closely the observed losses.

First, the proportion of lost calls was determined for each of these
approximate unit intervals of load. The results are shown graphically
in Figs. 18 and 19 for State to Dearborn and State to Wabash, re-
spectively. On these same figures have been superposed the theoretical
curves for the losses to be gotten using ‘‘Full,” ““Half"" and “No
Gain'' efficiencies in the graded formula described above. These
theoretical computations have assumed that equal average loads are
submitted to each subgroup at all times. The observed data indicate
that the correct descriptive curves lie in both cases somewhere between
those for the “Half” and “Full Gain” efficiency theories. This
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seeming improvement of the observed data over its position in Fig. 16
is reasonable since here we have sorted out and combined only hours
of like average loads while before all the busy hours, high and low,
of a given period were included. It should be noted that the abscissa
for the observations here is load carried while for theory it is load
submitted. The comparison error is doubtless negligible for losses of,
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group. x =4,y =16, ¢ = 5.

say, P = .03 or less. The data beyond this figure are rather too
meager for useful correction.?

Next the “Full Gain" formula was generalized by the author to
comprehend the submission of different averages to each of the various
subgroups. (See Appendix II.) Then, selecting typical loads, for
instance 4 = 18.00 for the State to Dearborn tests and 4 = 33.80
for the State to Wabash tests, they were each divided up arbitrarily

12 The advisability of correction here, were the data plentiful, may well be doubted

since it would necessitate an assumption as to the manner in which calls were ‘‘held,”
a procedure especially precarious at high losses.
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into five different magnitudes for use in this theoretical calculation.
As a measure of the variation from equal loads submitted to the sub-
groups, the standard deviation of the estimated subgroup loads carried
taken about their average value was used in each case. To estimate
the load, ‘“I,”” which would be carried by any subgroup to which the
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average, ‘‘a,”’ is submitted, Erlang's formula, as set down earlier in
this paper, was utilized in the following relationship:

I =a[l — B(x,a)],

wherein, as before, B(x, a) connotes the proportion of the submitted
load which goes beyond the x individual trunks. The reason for
working with the theoretical load carried by a subgroup rather than
the load submitted to it will be clear when it is recalled that all the
observed data available for comparison yielded the former values only.
We shall now examine briefly the result of assuming subgroup variations
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when the above typical total loads are substituted in the generalized
graded formula.

TABLE IV
THE EFFECT OF SUBGROUP LOAD VARIATIONS ON THE GRADE OF SERVICE—30 TRUNKS
Total Load Submitted = 4 =18, x =4,y = 16,g = 5.

Loads Submitted to Subgroups Standard Overall
Case oPs‘;]:ri;griS.'fp Probability

ay as as [N as Loads Carried of Loss

Theoretical No. 1....| 3.60 | 3.60 | 3.60 | 3.60 | 3.60 0 .000189
Theoretical No. 2....| 3.00 | 3.00 | 4.00 | 4.00 | 4.00 .18 .000223

Theoretical No. 3....| 2.57 | 2.57 | 3.60 | 4.63 | 4.63 35 000289
Theoretical No. 4....] 2.20 | 2.20 | 3.60 | 5.00 | 5.00 48 .000531
Theoretical No. 5....] 2.20 | 2,20 | 2.20 | 5.70 | 5.70 .58 .000957

Theoretical No. 6. ... 2.00 | 2.00 | 2.00 | 6.00 | 6.00 .67 001493
Observed. .......... - — — — — .30 .00050

TABLE V

THE EFFECT OF SUBGROUP LOAD VARIATIONS ON THE GRADE OF SERVICE—52 TRUNKS

Total Load Submitted = 4 = 33.80,x =8, y =12, g = 5.

Loads Submitted to Subgroups Standard Overall
Case oPg}‘gﬁggp Probability
a az a a as | Loads Carried of Loss
Theoretical No. 1.. 6.76 | 6,76 | 6.76 | 6.76 | 6.76 0 .00619
Theoretical No. 2. . 5.50 | 5.50 | 7.60 | 7.60 | 7.60 45 .00925
Theoretical No. 3. . 440 | 6.40 | 7.40 | 7.40 | 8.20 .60 0116
Theoretical No. 4. . 4,60 | 4,60 | 8.20 | 8.20 | 8.20 .89 .0181
Theoretical No. 5. . 4,00 | 5.00 | 7.00 | 8.20 | 9.60 .99 .0214
Observed. .......... — -— — — — 84 013

In the last two columns of Tables IV and V are indicated the
measures of subgroup load wvariation and the expected grades of
service, respectively, for various theoretical unbalances studied on
these two symmetrical graded multiples. Figs. 20 and 21 indicate
the rapidity with which the overall probability of loss on the general-
ized “ Full Gain" formula basis may be expected to rise with increases
in the load unbalances in the subgroups. Reading off on the abscissa
of Fig. 21 a measure of subgroup unbalance of .45, for example,
indicates that for a total load of 4 = 33.80 being submitted to 52
trunks arranged in a grade of five subgroups and an access of 20, the
correct probability of loss is not the “Full Gain" efficiency value of
.00619 but rather the more conservative figure of about .0090.
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The corresponding subgroup variation obtaining throughout the
Second Division of the tests was then determined and appears in the
Figs. 18 and 19 as an auxiliary broken line at the bottom of the charts.
Strangely enough, in both tests, the subgroup variation maintains an
almost constant magnitude whatever the load. In fact, as mentioned
in a later paragraph this criterion of variation seems rather to depend
in practice upon the particular trunking arrangement being con-
sidered. Entering Fig. 20 with the observed average subgroup vari-
ation of .3542 for the 36 trunks in the State to Dearborn group, we
should expect the proportion of calls lost at a total load of 18.00 sub-
mitted to be about .000289. Likewise, we should find that this same
variation occurring in total loads of 20.5 and 24.0 gives us losses of
.00278 and .0239, respectively. The dotted curve on Fig. 18 is drawn
through these three points and represents the theoretical probability-
load curve for this arrangement of trunks when the index of variation
in loads from subgroup to subgroup is equal to the average observed.
This schedule falls slightly above the observed losses over a consider-
able portion of the important range of loads although at the lower
losses it seems quite likely to coincide fairly well with a curve drawn
by eye through the data represented by the irregular line.

Similarly, in the case of the 52 trunks between State and Wabash,
we may construct a schedule of losses based on a subgroup load vari-
ation having a measure equal to the observed value, .8271. Such a
curve is shown dotted in Fig. 19 and as before indicates that upon
taking into approximate consideration the variation in loads being
submitted to the subgroups the resultant discrepancy between a curve
fitted to the observed losses and the “‘Full Gain'' theoretical grades
of service is, in the main, slightly more than accounted for. In Figs.
20 and 21 the observed points fall one above and one below the
theoretical schedules. These deviations do not appear to be of any
significance except to illustrate the many chance elements which enter
into telephone traffic problems.

A priori one might expect also that there would be some correlation
between the proportion of lost calls and the subgroup variation for
half hours in any given unit interval of total load. The number of
calls lost in these tests, however, is so small that plotting by half hours
the large natural fluctuation due to other causes seems to completely
mask any such small effects which might be predicted.

To further study the manner and amount of this subgroup variation
in carried loads, similar calculations were performed by half-hour units
on the First Division of the tests (busy hours only) wherein the restric-
tion of unit range of average was not present. The results shown by
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the heavy dots in Fig. 22, as might be expected, give slightly higher
values of variation for the non-restricted load values at gx + y = 36
and 52 trunks than for the restricted cases belonging to the second
division of the tests. The remarkable point here, however, is that
the phenomenon for the ranges studied exhibits practically a straight
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Fig. 22—Change in subgroup load variation with number of trunks in group.

line relationship between variation of subgroup loads and the number
of trunks per subgroup, a difference of four in total trunks meaning
an increase of one in each subgroup. An added variation for the
larger number of trunks seems only natural, however, since as the
subgroup size is increased part of the fluctuations previously borne
by the commons is transferred to each subgroup itself. That this
natural increase in subgroup variability does not affect the grade of
service of the larger groups for busy hour measurements seems to be
amply demonstrated by the consistency of the “Half Gain" formula
in fitting the observed number of trunks in Fig. 16. We conclude,
then, that a formula based on the third assumption (equality of sub-
group loads), is considerably at variance with actual results; by
modifying this assumption, to approximate loading differences, the
graded loss formula appears to describe the observed losses quite
satisfactorily.

Concerning the last assumption underlying the graded formula
derived here, that of ‘“‘no-holes-in-the-multiple,” somewhat less is
known. That the “holes” do exist is self-evident. It is suggested
by these Chicago half-hourly observations, however, that under or-
dinary conditions the reaction of holes-in-the-multiple upon the grade
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of service is negligibly small in comparison with the effect of subgroup
load variations.

PracTICAL GRADED MULTIPLE ENGINEERING

In the Bell System, engineering of equipment and lines is done on
the basis of the grade of service desired in the busy hours over a con-
siderable period of time. The theoretical formula used, then, is the one
giving, for those ranges in which satisfactory service is being rendered,
an approximate relationship between the average total load carried
and the proportion of lost calls expected over a number of busy hours.
This, rather than some less conservative plan which would simulate the
losses encountered only in a particular busy hour. The use of the
“Half Gain" efficiency curves, therefore, is justified from a considera-
tion of Fig. 16, which illustrates how closely that theoretical expression
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Fig. 23—Multiple capacity curves. P = 0.01,

approximates the actual conditions which maintain over a considerable
range of trunk combinations and load values in two typical graded
multiple installations.'
In practice, of course, the load to be carried rarely comes out
exactly equal to that which a given symmetrical trunk arrangement
1 Some five years ago it was appreciated that “Full Gain" was not likely to be
attained. The value of ‘‘Half Gain" was then arbitrarily selected as the graded

engineering basis in the Bell System until field studies of the efficiency could be com-
pleted. The merit of this estimate is attested by the material presented in this paper.
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TABLE VI
GRADED MULTIPLE TRUNK CArAaciTY TABLES

P = .01—Terminal Assignment = 20

Equiv- | Number Equiv- | Number
alent of ‘Total Ind. [Common|| alent of Total Ind. |Common
1007 Ind. Trunks | Trunks | Trunks 100" Ind. Trunks | Trunks | Trunks
Calls Groups Calls Groups
423 2 21 1 19 954 3 44 12 8
448 2 22 2 18 961 4 44 8 12
448 3 22 1 19 961 5 44 6 14
470 2 23 3 17 961 7 44 4 16
470 4 23 1 19 987 6 45 5 15
492 2 24 4 16 992 3 46 13 7
492 3 24 2 18 1026 3 48 14 6
492 5 24 1 19 1030 4 47 9 11
515 2 25 5 15 1050 5 48 7 13
515 6 25 1 19 1065 3 50 15 5
540 2 26 6 14 1099 4 50 10 10
540 3 26 3 17 1099 6 50 6 14
540 4 26 2 18 1099 7 50 5 15
540 7 26 1 19 1140 5 52 8 12
562 2 27 7 13 1160 4 53 11 9
584 2 28 8 12 1215 6 55 7 13
584 3 28 4 16 1225 4 56 12 8
584 5 28 2 18 1236 5 56 9 11
609 2 29 9 11 1236 7 56 6 14
609 4 29 3 17 1300 4 59 13 7
634 2 30 10 10 1324 5 60 10 10
634 3 30 5 15 1324 6 60 8 12
634 6 30 2 18 1340 4 62 14 6
652 2 31 11 9 1370 7 62 7 13
670 2 32 12 8 1395 4 65 15 5
684 3 32 6 14 1410 5 64 11 9
684 4 32 4 16 1435 6 65 9 11
684 5 32 3 17 1494 5 68 12 8
684 7 32 2 18 1498 7 68 8 12
692 2 33 13 7 1544 6 70 10 10
717 2 34 14 6 1570 5 72 13
734 3 34 7 13 1627 7 74 9 11
740 2 35 15 5 1650 6 75 11 9
756 4 35 5 15 1650 5 76 14 6
756 6 35 3 17 1730 5 80 15 5
774 3 36 8 12 1757 6 80 12 8
774 5 36 4 16 1765 7 80 10 10
824 3 38 9 11 1857 6 85 13 7
824 4 38 6 14 1890 7 86 11 9
824 7 38 3 17 1958 6 920 14 6
872 3 40 10 10 2015 7 92 12 8
872 5 40 5 15 2055 6 95 15 5
872 6 40 4 16 2140 7 98 13 7
892 4 41 7 13 2258 7 104 14 6
918 3 42 11 9 2372 7 110 15 5

can carry at the allowable probability of loss. The next higher number
of symmetrical trunks is then ordinarily specified. Thus, Fig. 23
shows the load-trunk curve for the '“Half Gain"’ formula as a broken
line representing the loads which may be submitted to the more im-
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portant arrangements of gx 4+ y trunks for a terminal assignment of
x + y = 20, g varying from two to seven subgroups, at a probability
of loss of P = .01. This same figure portrays vividly the relative
inefficiency of a straight subgrouped multiple compared with a like
graded multiple, and again, the eminent superiority of the complete or
full-group multiple over both of these. Table VI shows the same
information as Fig. 23, recorded in the more familiar tabular form
ready for engineering use.

SUMMARY

We have sketched briefly some of the general principles underlying
the furnishing of an adequate and economical telephone exchange
service. One of the several practical means of interconnection is
through the employment of special trunking arrangements of the type
known as graded multiples. The common-sense theory of this plan
has been discussed in some detail after which an approximate mathe-
matical formula is presented.

A group of graded multiple tests run in Chicago in 1927 serves to
indicate what modifications should be made in this theoretical trunking
schedule before it is used for engineering purposes. A typical table
of the loads which, on this basis, may properly be submitted to attain
a specified grade of service over a wide variety of arrangements and
numbers of trunks, is shown as an example of what appear as the
most satisfactory graded multiple capacity figures for Bell System
practice at the present time.

As a more detailed and accurate knowledge is acquired concerning
the behavior of telephone traffic over increasingly complex and non-
symmetrical graded trunking arrangements, some slight modification
in the conclusions we have reached here may be expected. There is
ample opportunity, then, for additional theoretical analysis of the
graded multiple problem (as well as of many other multiple problems),
an analysis that perhaps will overcome the limitations which have
thus far been levied in order that a working result might be obtained.

ApPPENDIX [ M

MATHEMATICAL THEORY OF THE SIMPLE GRADED MULTIPLE
The mathematical analysis given in this appendix is based on the
following assumptions:
1. Constant holding time per call.
2. “ Lost calls held.”
3. The load submitted by each subgroup of selectors varies about its
average value **a’’ in accordance with the Poisson Law
" Prepared by E. C. Molina.
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a‘e °

/x

and is independent of the variations in any other subgroup.
4. “ No-holes-in-the-multiple.” **

The probability that a calling source fails to obtain an idle trunk
immediately may be divided into two parts, corresponding to two
essentially different sets of circumstances under which a call may be
interfered with. Assume, to fix ideas, that the particular source
under consideration belongs within subgroup No. 1 in Figure 7(4).
Failure will occur if in addition to the call originating from this source,

1. At least x + v calls originated by subgroup No. 1 occupy trunks
(actually or potentially); or,

2. The number of calls placed on the trunks consists of x + r origin-
ated from subgroup No. 1; at least x + 1 calls originated from
each of s of the other subgroups; and, moreover, that said s
other groups have, collectively, placed at least sx +y —r
calls. s is a number which may have any value from 1 to
(g — 1), inclusive.

This classification of the circumstances under which the call under
consideration may be delayed gives, for the desired probability when
“ holes-in-the-multiple "’ are not possible, the equation

P = P+ Py,
where
a. Py=P(x+ v, a)
y—1 ﬂ,,z+r~e—a
b. Pz_r§0<1x7+_r)F(g— l,x,y—r)

¢. P(x + v, a) is the Poisson expansion f: <_alg_a)
=24y /i
d. F(g'—l,x,y_r)
—_— = g - 1 . g—1—a 8 (ﬂj)
e oS (255)

where S indicates that in the product
& az+rr8~a
H(——-),r Ta, ¥3 oo ¥,
b /x + e 1y 72y ]

15 [magine that some method of transferring calls from common to individual
trunks eliminates the possibility of **holes-in-the-multiple.”
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are to be given all values such that
8
re > 0, Elﬁ Ly =1

For computing purposes, note that the function F satisfies the finite
difference equation

Fg—1,x,y—1=Plx+vy—ra)
y—r— az+e—a
+[1 —P(x,a)]F(g — 2, %,y — 1)

This difference equation becomes obvious if one considers the change
which takes place in the value of P, when the number of subgroups
in a graded multiple is increased from (g — 1) to g.

R=0

AppreEnDIX II

MATHEMATICAL THEORY OF GRADED MULTIPLE WITH
UNEQUAL SUBGROUP LOADS

If we deal with a single stage (or simple) graded multiple having g
subgroups of “ ¥’ individual trunks each, and ““ y "’ common trunks;
and if to each subgroup, ' m " for instance, is submitted a particular
load, "“a,,” in average simultaneous calls which are originated at
random according to the Poisson Distribution Law requirements; and
if these calls are moreover of a constant holding time obeying the
" lost calls held " assumption; and if they are at all times so arranged
on the graded trunks that ‘‘ no-holes-in-the-multiple '’ exist; then the
proportion of calls not obtaining immediate service over the multiple
taken as a whole may be approximated by:

g

"'IPHI
P=G-1P1+(12P2+ +aaP9=m:1a
art+az+ -+ +a !
mgla"l
where
Pn=P T g
m — (A‘ + ¥, Um) + rgﬂW (E — Lay,az -, ap-y,
Amy1y ***y gy X, Y — r)l

in which:

@ g, e am
Plx + v, an) = m
(x + ¥, an) g=§ru 7s
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and

F(g - 1| Ay, Ao, ***y Am—1y Qimt1y " " Qg X5 Y — 1’)
P(x + )+ Y W g — 2
= —na T LR — 4, @y, A3 """, Cm—1y
X y 1 FA /ixj_iR g 2, A3 1
am+l)"'sa‘a'1x’y_r—R)
+ [1 - P(x, al)]F(g - 2,0'21031 ey A1y A1y Ay XY — ?').



