Transients in Grounded Wires Lying on the
Earth’s Surface *

By JOHN RIORDAN

Voltages during transient conditions in a grounded wire lying on the
earth's surface due to current in a second grounded wire also on the earth’s
surface are formulated for types of transient currents ordinarily obtained
in a.-e. and d.-c. circuits, The fundamental formula is for voltage due to
a unit step current, that is, a current zero for time less than zero, and unity
for time greater than zero: curves are given for the function determining
this voltage for a wide range of values of its two parameters. The for-
mulas for other types of currents are not well adapted for numerical com-
putation, which should be more conveniently carried out by numerical
integration using the above curves.

I

FORMULA for the mutual impedance of grounded wires lying

on the earth’s surface has recently been published by R. M.
Foster.! The object of the present paper is to derive formulas for the
voltages during transient conditions in one such grounded wire due to
current in a second for types of transient currents ordinarily obtained
in a.-c. and d.-c. circuits, and particularly for the voltage due to unit
step current, zero for time less than zero, unity for time greater
than zero.

The voltage due to unit step current is expressed in closed form for
straight parallel wires; closed form expressions have not been obtained
for straight parallel wires for the exponential forms of current for
a.-c. and d.-c. transients. While the integrals might be evaluated
numerically, or transformed to asymptotic expressions, it appears
more desirable in practical calculation to use the curves given for the
unit step voltage directly; a single integration is necessary to find the
voltage for current of arbitrary wave form, from the unit step result.

The fundamental physical assumptions upon which the steady-state
formula is based are as follows: The surface of the earth is assumed
flat, the earth semi-infinite in extent, of uniform conductivity A, unit

* A brief report of the results in this paper was given at the Summer Convention
of the American Institute of Electrical Engineers, Toronto, Ontario, Canada, June
23-27, 1930, in Discussion of ‘“Mutual Impedances of Ground Return Circuits—
%oTellggcgerimental Studies,” by A. E. Bowen and C. L. Gilkeson; 4. I. E. E. Trans.,

~ R. M. Foster: “ Mutual Impedances of Grounded Circuits' (Abstract), Bulletin
of the American Mathematical Society, May, 1930, pp. 367-368; “Mutual Impedance

of Grounded Wires Lying on the Surface of the Earth,” Bell System Technical Journal,
July, 1931.
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permeability and negligible dielectric constant. The air above the
earth is of zero conductivity, unit permeability, and negligible dielectric
constant. Because of the assumption of negligible dielectric constant,
the formulas for voltages during transient conditions do not hold
strictly for small values of the time, that is, during the initial stages of
the transient. The wires are of negligible diameter, lying on the
surface of the earth, and insulated from it except at the ends, where
there is point contact.

In using the steady-state solution as the basis of transient solutions,
the Heaviside operational calculus is employed after replacing iw,
where w = 2xf is the radian frequency and 7 = v—1,by p = d/dt, the
time differentiator, since (d"/di")(exp iwt) = (iw)" exp iw!, where 7 is
integral.

I1

The mutual impedance of grounded wires lying on the surface of
the earth and insulated from it except at the ends is given by the
following formula: 2

Zie 21r7\ff{d5ds( ) =1 = (A yne] }d&“'

The integration is extended over the two wires .S and s, having
arbitrary paths, 7 and e are the distance and angle, respectively, be-
tween differential elements dS and ds, and y = (4mMw)'2; N is the
ground conductivity and w = 2xf is the radian frequency.

Replacing iw by p = d/dt in v, the resulting forms to be evaluated
are exp (— aVp) and Vpexp (— aVp) where o = rv4rh. The first
of these is known and, following Heaviside,> may be developed as
follows.

Expressing the exponential in series form:

exp (— aVp) =1 — aVp %_%4_

Integral powers of p are neglected, since (omitting the discontinuity
at t = 0) the operand is unity and the derivative of a constant is
zero. Then:

exp (— aVp) = 1 —a\lﬁ[1+%+°’;—fz+ ]

The bracketed terms may now be assumed to operate on Np = (mt)—112

? Foster, loc. cit.
3 Heaviside: ** Electromagnetic Theory,”’ Vol. I1, pp. 49-51, equations (4) and (12).
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and, if p* is replaced by d"/di",
al d? o
[1 +3'dt+5!dt’!+ ],[—,,;

1 o’ 1 a?\? a
1‘[1‘m(a)+sm(ﬂ) “"]m

=1 —erf—a—,
24t

since the term in brackets with its accompanying multiplier is the
absolutely convergent expansion of the error function (erf);

erf (2) = %f‘exp (— 2%)dz.
T Jo

The result may also be established either by use of an integral
equation * or the Fourier integral; it is given as pair 803, Table I, in
tables published by G. A. Campbell.5 In the present use of the tables,
for unit step current, the mate of F(p)/p, where F(p) is a function of p
to be evaluated, is taken since the unit step function is expressed by
p7t (pair 415).

The second operational form required may be derived from the
first by differentiating with respect to e, since (d/da) F(p) = (d/da)f(t)
where F(#p) and f(t) are corresponding functions of p and . Thus,

exp (— avp)

a o?
avpexp (— aVp) = V_}EEXP(_E)'
since

et [w()] = r V() ewp{ - [xb(t)]”} :

The unit step voltage may now be expressed, by substitution of
these results, by the following formula:

1 - i [ (2) 22 ()
- 2r\/z-\ exp ( - 1);—}'?)]} dSds. (1)

In equation (1), as in the steady-state formula from which it is
derived, the wires are unrestricted in path or length on the surface of

4 J. R. Carson: ‘“Electric Circuit Theory and The Operational Calculus,” McGraw
Hill Co., 1926, p. 19, eq. 29.

5 “The Practical Application of the Fourier Integral,” Bell System Technical
Journal, October, 1928.
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the earth. The formula for straight parallel wires, wire .S extending
along the z axis from — @ to + @, and wire s from 2, to z, at distance
% from it, is obtained by double integration between these limits with
=a24+ (S —s5)? cose =1.

The result of integrating once, with respect to S, is:

_1([a S B
Vit ’2w?~f{d5[\fxﬂ+(a—s)2 \/x2+(a+s)"J
+ 60 +a) = o — ) [ds, @)

where
1 Z }:r)\
o(u) = merf ( Vit + u? _t-)

—let —WM-E ef(1 L)\
32 &P )\ ENT )

where # is to be replaced by s + @ and s — a in equation (2).
Equation (2) is checked as follows. In the first term substitute

limits after removing differentiation and integration with respect to

S, which cancel each other. In the second term integrate by parts:

f [x* + (Sl— S)ZJMErf \/1? [a? 4 (S — )?]dS

S—s TA ;
B xﬂmerf\/T [a? + (S — )]

- 2\/£Efx2[xz(i ?sz 97 exp {— %[.@2 + (S — 5)%] } ds.

The integral coming from this operation combines with the remaining
term to give:

- 2@[%&;}{—”—}-[& + (S — s)zj}dS,

which can be simplified in terms of the error function to the form in
equation (2).
Integration from z; to z, gives the result:

Viall) = 5o [¥(e2 +0) = ¥z — @) = Yz + @) + ¥(e — @)1, (3)
where
y(u) = — il + xz: % erf ( va? + uz\/lr?)

Va 4+ u?
B p { — mhx? erf ' f"i‘ .
+ EXP ; rf (w7
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As before, u is to be replaced in the equation by the functional
arguments, which are the four sums of the s-coordinates of position.
The factor x in ¢(u) is introduced to make it a function of two
parameters, ux~! and wAx*"!; the result of integration is x—'y(u).
The result has the dimensions of abohms when all quantities are in
electromagnetic c.g.s. units.

To check equation (3) notice that the integration of the first term
of equation (2) is effected by removal of differentiation and integra-
tion signs, and substitution of limits; its contribution is identical with
the d.-c. mutual resistance.® The integration of ¢(#) may be effected
by integrating the first term by parts and employing the indefinite
integral:

f erf (ax)dx = xerf (ax) + -L-exp (— a**) + const.
avT

The result is checked by differentiating, that is, by the relation:
d[ 1 _
| + == - = | = s,

For large values of u,

¥ (1) ~|—Z—|—[1 - exp(—w—?;xf)],

erf (= ) = &+ 1,
so that for @ = o« the unit step voltage approaches the limit:

, — Ax?
Vi(t) = zzwm,_,zl [1 — exp (% E—;—)]

S PR (ﬁﬂf
= P : :

where ! = z; — 5, is the length of the second wire.

This result is in agreement with a result published by F. Ollendorff,
Elektrische Nachrichten—Technik, October, 1930, eq. (26), and by L. C.
Peterson, Bell System Technical Journal, October, 1930, equation (5).

The case of collinear straight wires is obtained by taking the limit
x = 0, which gives

since

wAu? TA

!ri;l‘}x—’\b(u) =$[ -1+ (%—i— —T—)erf(u T)

+ u\/TTTexp ( — T):uz)]
= w i (u). ‘

This result involves the evaluation of an indeterminate form.

6 G, A, Campbell: '"Mutual Impedances of Grounded Circuits,” Bell System
Technical Journal, October, 1923, eq. (3), p. 5.
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Fig. 2—y(u) for the range in which ¢(u) =1, 10 = ux™1 = 100.

Curves for ¢(u) as a function of ux—' with #/(7\x?) as parameter of
the curve families are shown on Figures 1, 2, and 3. The range
¥(u) =1, is shown on Figures 1 and 2 for ux~' = 10 and 100, respec-
tively; both figures cover the entire range of #/(wAx%) in the intervals.
The remaining range ¥(«) > 1 is shown on Figure 3. For the greater
part of the range on Figure 3 the function is determined by its limiting
form for ux~! large, that is, by the equation

Y(u) = ux! [1 - exp( _ W);xﬂ)]
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or

Thus Figure 3 may be used to indicate the range of applicability of
the limiting form, which is quite large; in this range the unit step
voltage is simplified as shown above.
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Fig. 4—The function {(«), for collinear straight wires; for values below the range

shown {(u) ~ — % + f—;f- .

The function {(u), for the case of collinear straight wires, is shown
on Fig. 4 for values of the argument #/(mA\%®) from 0.1 to 1000; for
small values of the argument, the function is approximately
mAu? ( t

¢ AU

s‘(u)m—%-i- <0.4)-

These curves may be employed to obtain voltages due to other

forms of disturbing currents by numerical or mechanical integration
of the following integral:7

Fa(f) = g—! f “I(r) Vaalt — e

d [t d
= I.fu‘ I(t — 1) Vie(r)dr,

where 7(!) is the disturbing current as a function of time.
7 J. R, Carson: loc. cit., p. 16, eq. (20) and (20a).
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111

The equation above may be used to obtain a formula for voltage
due to suddenly applied current exp iwt; or the operational product,
of which it is an expression in terms of ¢, may be carried out directly
in terms of p. The current is expressed in terms of p by:

p_,
P — iw
The second term in (u) is transformed by the operational equivalent
already developed:

exp iwl =

erfziﬁ =1 —exp (— aVp).

The last term in (%) is not known in closed form in p.
The operational product of exp iwt and the second term is evaluated

by

Pl —exD(—a\f—b)'Iz p  pexp(— avp)
p—iw P — w p — iw

= exp iwl — % [exp (1wt — aviw) erfc (z—a\/—? — M)

+ exp (1! + aiw) erfe (ﬁt_ - M)}

the last term of which is given by pair 819 (with 8 = 0) in the tables
referred to. Erfc is the error function complement;

erfc (5) = 1 — erf (2).

The operational product of exp iwt and the last term in y(x) may
be expressed in integral form by the formula:

1w

p — iw

qu)=[1+

2 |0

¢
= f(¢) + iwexp 'imtf exp (— twt)f(t)dl.
0
The complete expression for the voltage due to cisoidal current is

as follows:

Euult) = 5o [0z + @) = @2 — ) = ¥ +0) + ¥ — )], (4)

TAX
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where

(I)(M)=—M2 —Yex (—M)erf(n 7Bﬁ)
oV X P t 4
— # [exp (twt — yVa? + u?) erfc (:\/W—? (x2 + u?) — @)

+ exp (1wt + vVa? + ) erfc (\ /? (2% + %) + \’;u_t):l
; t 2
- %iw exp twt f exp( — dwl — —:r):x )erf (u /W?) di.
: Jo

The integral appearing in ®(#) apparently cannot be expressed in
closed form in terms of known functions; for numerical results series
or asymptotic expressions may be derived but it appears more desirable
to employ numerical or mechanical integration using the unit step
voltage since tables or charts of the error function of complex variable
which also appears in ®(u) are not available.

A useful check on the above formula is obtained by taking the limit
for ¢ = =, which gives the steady-state mutual impedance between
straight parallel wires; the result is as follows:

Zia = Ep(t) exp (— iwt)
= 5 [¥(a +0) — ¥(s — a) — ¥ +a) + ¥ — )], (5)
where
_ ut Va? + 22
U(u) = T e o (— vV + )
L 242
- g[ﬂ exp ( - w— %'—;)erf%dw

\/—+—+WT[1“P<—NT)]

Il

u ¢

- exp ( — v Va2 + w?)dw,

Yo

where as before v? = 4m\iw.

The third term in ®(x) approaches the limit given because
erfc (— Vi ») = 2, erfc (i ») = 0; the integral term as given in
the first form of ¥(x) has been transformed by the substitution
w = iwl.
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The first form of ¥(x) may be checked directly from equation (3)
by introducing 7w = p in the operationally equivalent function of p;
the third term of (3) being expressed by the infinite integral:

Fip) = p f " enpyt

The second form of ¥(#) is obtained by separating the d.-c. mutual
resistance term, and transforming the infinite integral as follows:
express the error function in integral form, put 3 = ~v/ (24w) where
v is the variable of integration for the error function, and invert the
order of integration; thus

fw exp ( —w — ) if V[_ dw
i ex ( —w — ﬁ—_‘—u~—-72(x2 + %) ) dw
T P ’ 4w Vw

1—
)
Jyf fe\D( fw)d z = V)

i‘l

= 'rf exp ( — v Var + o®)do.
0

The infinite integral evaluated in the third line is No. 495 in Peirce's
“ Short Table of Integrals,” third edition.

The second form of ¥(ux) may be verified by direct double integra-
tion of the mutual impedance; it agrees with the known result in the
limit for one wire infinite, and, when expanded in powers of v, with
the terms given in the second form for the mutual impedance by R. M.
Foster, loc. cit.

Expressions for voltages due to suddenly applied currents
exp (— ki) sin wt or 1 — exp (— kf), which are important forms for
a.-c. and d.-c. networks, may be readily obtained from equation (4),
the first by use of the expression:

exp (— kf) sin wl = .217 [exp (— kt 4 iwl) + exp (— ki — iwt)]

and the second by the substitution — 2 = iw and subtraction from
the unit step voltage.

The results attained in this paper depend in appreciable measure
on advice and suggestions received from Mr. R. M. Foster of the
American Telephone and Telegraph Company; I am also appreciative
of the interest and advice of Messrs. K. L. Maurer and H. M, True-

blood of this company.



