Harmonic Production in Ferromagnetic Materials at Low
Frequencies and Low Flux Densities

By EUGENE PETERSON

Synopsis: When a multi-channel communication circuit includes a non-
linear element such as a ferromagnetic core coil, distortion of the wave form
impressed upon the circuit is produced. In terms of the single frequency
components, this distortion is manifested in the appearance of new com-
ponents. This distortion may give rise to the reduction of quality in any
channel, and it may also introduce crosstalk and interference, which consists
of new frequencies not present in the impressed wave of any channel under
consideration, produced by independent channels. In view of the recent
increased use of multi-channel systems, it has become necessary to in-
vestigate the effects of this type of distortion, to determine the dependence
of this distortion upon the properties of the magnetm materials constituting
the cores of inductance coils and transformers, as well as upon the circuit
impedances, and to determine those constants of core materials which are
significant in the dlstortmg process.

The behavior of magnetic materials to complex waves of magnetizing
force is ordinarily a highly involved process, so that a direct correlation
between distortion and some of the easily measured constants of materials
is a matter of some difficulty. It has been established experimentally, as a
confirmation of theoretical speculations, that the third harmonic e.m.f.
generated by a sinusoidal wave of magnetizing force may serve as an index
of the distortion with a complex wave of magnetizing foice. This relation
is valid for low flux densities and for frequencies at which the screening effect
of eddy currents is not important. The paper is therefore devoted to an
investigation of the third harmonic production in its dependence upon the
properties of hysteresis loops. These loop constants in turn are shown to be
deducible from AC bridge measurements on a coil of known dimensions hav-
ing a core of the magnetic material under investigation. The loop con-
stants for a few materials are included in the text. An analogy exists be-
tween the treatments of hysteresis loop and of three-element vacuum tube
characteristics which enables us to compare simplifying relations introduced
by Rayleigh and by H. J. van der Bijl in the two cases.

The theoretical deductions are found to be in general agreement with
experiment, and are applied to a number of cases of practical interest.
These include the effects of air gaps and dilution, and the choice of core
material in third harmonic production by inductance coils and transformers.
Finally, the amount of third harmonic current flowing out of long lines is
deduced with both lumped and continuous loading.

Parr 1. HysTERESIS LOOPS AND THEIR MATHEMATICAL
REPRESENTATION

EW and improved systems of multi-channel communication which
have come into use during the past few years have imposed
rigorous requirements on the circuit elements constituting the com-
municating link, and have made it necessary to investigate the degree
of distortion which arises from the use of ferromagnetic apparatus.
The distortion introduced may have two general effects: distortion
of the signal in any one channel, which is usually the minor effect,
and production of crosstalk and interference between the various
762
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channels to which the non-linear element is common. Such elements
are, in general, ferromagnetic core coils or transformers. The distor-
tion introduced by the non-linear relation between flux density and
magnetizing force is therefore of fundamental importance in the design
of iron core coils and transformers which carry simultaneously a
number of communication channels.

The use of iron core coils and transformers in communication work
is confined to comparatively low flux densities in contrast to the ordi-
nary practice in power work, where operation usually occurs above the
knee of the normal magnetization curve at a value of the order of a
thousand times greater than that used in communication work. There
are two main reasons for this restriction: losses are reduced, and the
relation between flux density and magnetizing force approaches line-
arity so that distortion is minimized.

Under actual operating conditions in which the more important
crosstalk effects arise, we have a complex wave of magnetizing force
acting on the magnetic core. Non-linearity in the magnetic circuit
gives rise to new frequencies which normally ! are related to those
impressed upon the circuit, being sums and differences of integral
multiples of the originally impressed frequencies. These modulation
products are all of odd order? when the core is unpolarized. On
purely theoretical grounds we would expect to find relations between
the amplitudes of the different frequencies resulting from any one
order of modulation. To take the third order modulation products of
two impressed frequencies (fi, f2) as an example, we would expect the
amplitudes of the harmonics 3f1 and 3f; to be related to the amplitudes
of the other third order products: 2f; & fs, 2fs 4= fi. This has been
confirmed by direct experimental test, so that we are enabled to use
the generated third harmonic voltage as an index of the generated
voltages corresponding to the other third order products. Accordingly,
we shall deal in the following with the third harmonic produced by a
sinusoidal wave of magnetizing force, and so avoid a more involved
analysis.

The fundamental relation in the operation of ferromagnetic appa-
ratus is of course the relation between the flux density B and the
magnetizing force . In contrast to the usual behavior of circuit
elements, the relation between the two fundamental quantities—the
independent and the dependent variables, H and B in this case—is a
function not only of the value of the independent variable, but is also

! This is true in the low flux density region. At high densities and with highly
reactive circuits as in magnetic modulators, other frequencies are sometimes found
which correspond to natural oscillations of the coil and circuit.

¢ Bell System Technical Journal, Jan. 1928, pp. 110, 111.
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a function of its previous history as manifested in the phenomenon
of hysteresis. This complicates matters to an extent far greater than
is the case with other circuit elements, and some analysis has been
carried out in which the hysteresis loop has been replaced by the
normal magnetization curve, or by some such single valued relation
between the variables. For some purposes this convenient simplifica-
tion—it cannot be called a close approximation for our present pur-
poses—is satisfactory, while for others it does not begin to tell the story.
Inasmuch as our aim here is to deal with the actual phenomena
involved rather than to arrive at some arbitrary procedure for repre-
senting the facts, we shall in the following base considerations upon
the hysteresis loop.

Fig. 1 will serve to illustrate the effect of previous history upon
flux density. The main loop there, which extends between the two
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limits of magnetizing force — H and H, is obtained when the magne-
tizing force is varied cyclically between those two values in such a
way that the magnetizing force has but one maximum and one mini-
mum per cycle. In that case the B—H loop is traversed in the direction
shown by the arrow. It is independent of frequency when the eddy-
current losses in the iron are small, as we shall suppose them to be,
and it is independent of the wave form of the magnetizing force so
long as that wave form satisfies the condition we have laid down above.
A sinusoidal magnetizing force, for example, satisfies that condition.
When the magnetizing force contains components of such magnitude
and phase that the wave form has multiple maxima or minima, the
simple B—H loop no longer suffices to represent that relation, but
auxiliary loops shown in the figure are involved.
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Thus suppose a subsidiary maximum to exist at /,; as the magnetiz-
ing force decreases, the flux density no longer follows the main loop
but branches off on a subsidiary loop as indicated by the arrows.
When the subsidiary minimum at /- is reached a new branch is started
which completes the subsidiary loop, and which brings the magnetizing
force back to the main loop at the point from which it originally
diverged, and the main loop is thereafter followed until another
maximum (or minimum as the case may be) of the magnetizing force
wave is reached. For simplicity in the following we are going to deal
solely with a sinusoidal wave of magnetizing force so that subsidiary
loops are never called into play. With this understood, the relation
between B and H is described by the simple loops of Fig. 2 over a

g
g
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certain range of magnetizing force, each loop being defined by a
particular value of maximum magnetizing force. Each loop may be
considered as constituted by two branches which join at the maximum
field of the loop.

It is clear, therefore, that with a periodic magnetizing force having
but one maximum and one minimum per cycle, the flux density depends
upon three properties of the magnetizing force—the maximum value,
the instantaneous value, and the sign of dh/di, being located on the
lower branch when dh/dt is positive, and on the upper when it is
negative. Now it is of course evident that when a definite loop form
is available, a numerical solution by graphical or step-by-step methods
may be had. It is further evident that, in the case of a definite im-
pressed magnetizing force, the B-H loop may be broken up into its
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harmonic components, as was done by S. P. Thompson.? Solutions
in this form possess all the advantages and disadvantages of numerical
ones in which any change of conditions leads to a new problem; the
solution desired is a general one which will describe the phenomena in
terms of coefficients characteristic of the magnetic material, and this
type of solution is the subject of analysis in the following pages.

Perhaps the least difficult method of arriving at an analytical
solution without making any assumptions as to the form of the loops
is the following. A power series for each branch of any loop is
formulated, and the two resultant equations are combined in a trigo-
nometric series. In this way the solutions, each one valid over but half
the cycle, are combined to represent the relation of B to H over the
entire cycle.

The flux density on each branch of the loop may be defined in
terms of two values of magnetizing force, one the maximum value of
magnetizing force on the particular branch with which we happen to
be concerned and the other the instantaneous value of the magnetizing
force on that branch. The equation for either branch may then be
expressed as a double power series in these two variables, the instan-
taneous magnetizing force (k) which will be expressed in gilberts/cm,
and the maximum value of the magnetizing force (J1), expressed in
the same units;

=] w

B(h, H) = 2 Y aph™H", (1)
m=0 p=0
where

W L WBLE)T
. m! n! Bh”‘&H" 0y 0

(2)

The parallelism of this representation with that for the plate current-
grid potential curves of a three electrode thermionic tube is evident,—
in both cases double power series are involved.! The coefficients aun
are derivatives which are evaluated at the point 2 = 0, H = 0, and
it will be understood in (2) that these particular values are inserted
after the derivatives have been taken, in quite the usual manner.
There is a further interesting parallel here to the vacuum tube case
regarding simplification of the general relation. In the case of the
vacuum tube a simplification of the double power series due to van
der Bijl has been employed which represents the family of tube char-
acteristics by an equation in a single variable. This simplification
consists in assuming the amplification factor to be constant, and the
important point for us here is that it is equivalent to the assumption
3“On Hysteresis Loops and Lissajous' Figures,” Phil. Mag., 1910.

4 Peterson and Evans, ‘“ Modulation in Vacuum Tubes used as Amplifiers,’ Bell
System Technical Journal, July, 1927,
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that the different branches of a family have the same form, so that by
suitable change of plate or of grid potential the plate current-grid
voltage curves may be superposed. A relation of precisely the same
form in the case of magnetic hysteresis loops was stated by Lord Ray-
leigh 5 upon examination of data obtained by a magnetometric study
of the behavior of a single low permeability specimen. Examination
of his data enabled Rayleigh to conclude that the branches corre-
sponding to different loops of a family could be superposed when re-
ferred to a common loop tip, the branches all having the same parabolic
form within the limits of accuracy of the measurements, over the
range of magnetizing forces involved.

It is of course evident that even if this relation held at low fields in
all materials it would break down at sufficiently high fields. Further,
there is no a priori reason to expect this relation to hold for magnetic
materials other than the one Lord Rayleigh investigated unless we
restrict consideration to a very small range of magnetizing force.
With these ideas in mind it seems the safer procedure to assume no
such simple relation between the different loops of a family, however
convenient it might be, and to treat the problem in more general terms;
if any such simplifying relations exist they will be made apparent
after application to definite materials. We may anticipate matters a
bit to state at this point that certain materials seem to obey the
relation while certain others seem to violate it within the range of
forces involved in communication work, and further light is shed on
the significant processes involved in harmonic production by treating
the problem in this way.®

General Equations for Hysteresis Branches. The equations of both
the upper branch family and the lower branch family have the form of
equation (1)—we may designate the upper branches by B and the
lower branches by Bs—but the coefficients of the two series differ in
general.

In order to put the equations in shape so that they may be of
practical utility it is now necessary to determine the coefficients of
the expressions for B; and B, so that they apply to a definite loop
family, and this is accomplished by reference to some of the more
general properties of the loops and of the normal magnetization curve.
These properties are as follows:

& ““ Notes on Electricity and Magnetism, II1,”" Phil. Mag., 1887, V. 23.

§ Unpublished work based on assumptions which include Rayleigh’s relation was
independently carried out by W. P. Mason of these Laboratories in 1922 and 1923,
An account of some applications of Rayleigh's relation is to be found in an interesting
paper by Jordan published in the Elektrische Nachrichten Technik, B. 1, H. 1, July
1924,

49
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1. When both % and H are zero the flux density on either branch
is zero.

2. The flux density on one branch with H and % given is equal and
opposite in sign to the flux density on the other branch corre-
sponding to the negative of # and to the same maximum
force H.

3. The two branches corresponding to a definite ' meet at the
normal magnetization curve.

The application of these properties to the power series enables us
to deduce relations between the coefficients as demonstrated in
Appendix 1:

@1 = ap = 0,
dop = — Qayp, (7)

oz = — Q2.

We shall find it sufficient to include the third degree terms for our
work, so that we need not investigate relations between coefficients
of higher degree. The loop equations are simplified by utilizing (7)
and we can make a number of interesting deductions. Thus the equa-
tion for the normal magnetization curve is given by

B(H, H) = ayH + anH* + (a1 + aso) I’ (6a)

In this equation @;p will be recognized as the initial permeability
usually expressed as gy since upon division by I we have for the
permeability

b= ay + and + (012 + aaa)H2 s

According to this equation the change of permeability with magnetizing
force is linear at sufficiently small fields. The above equations are,
in all rigor, infinite series, but for our purposes it will be found sufficient
to consider only coefficients of the third and lower orders,—in some
cases the second order will suffice.

An expression for the remanence curve of the loop family may be
obtained by setting % equal to zero in the equation for the upper
branch. In that case we find from (4a)

B(O, H) = aogH2 + |£I[);;1:.;'.r3 + ey, (8)

hence for sufficiently small magnetizing forces the remanence increases
as the square of the magnetizing force.

The hysteresis loss per cycle per unit volume may also be obtained
directly from the branch equations (4a) and (5a). The loss in ergs, w,
is equal to the area of the hysteresis loop divided by 4w. If now we
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consider the loop area to be built up of strips of infinitesimal width
based on the k-axis, the height of any one of the strips is given as

B = Bi(h, H) — Bs(h, H)
and we have

1 H
w= — f Bdh )
47

—H

so that, by Appendix 1, (9) may now be expressed as
2
w=§(a02H"“‘+ausH‘—|— ) (10)

It is clear, therefore, that at sufficiently low fields the hysteresis loss
varies as the cube of the magnetizing force, and diverges when the
field is made sufficiently large—it seems to be in general agreement
with experimental results on ballistic loops and, as will be pointed out
later, is verified by impedance change data under alternating excita-
tion. In view of the remanence curve equation, (10) may be rewritten
as

w= 2 HB(0, I). (11)
3T

Various approximations have been made in the past to hysteresis loop
forms in order to obtain convenient expressions for the hysteresis loss.
Thus if we consider the loop as an ellipse the loss becomes

L HB(O, m),

while if we consider the loop a parallelogram the loss is
1 uBo, m.
™

Both these expressions give too large a result since the coefficient 2/3r
of the exact equation (11) is 0.212.

Branch Equations for Materials Obeying Rayleigh’s Relation. Ray-
leigh’s observation enables us to establish relations between the
different coefficients involved in our development above when the
loops of a family are similar in form. For the sake of completeness a
derivation of these relations is given in Appendix 2; their validity
may then be judged by test in specific cases. In the derivation we
assume a power series expansion for one branch of the largest loop
of a family referred to the tip, and assume that the smaller loops
are of the same form. Then by referring the equations to the origin
instead of to the loop tip, we arrive at the hysteresis branch equations.
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By comparing the coefficients of this equation with those of the general
equation (1), we can deduce relations between the coefficients. These
are, from Equation 16 of Appendix 2,

o1 = 0, -

@ + @z = 0, a1y = 2aa, (17)
@91 + ags = 0, @12 = @21 = 3azo,

@40 + @22 + aps = 0, a3 = @13 = daqy = 6ds.

The left column is in agreement with Equation (7), while the right
column furnishes new relations between the coefficients. Thus the
coefficients based on loop similarity are not inconsistent with those
deduced under no assumptions, but the former involve additional
relationships between coefficients which need not be satisfied in the
general case.

Families of hysteresis loops obtained by the usual ballistic method
have been examined for these relationships in the case of several
materials with the following results for coefficients up to and including

the second degree:
HystEREsIs Loor COEFFICIENTS

Silicon Steel ‘B’ Dust7 ‘C’ Dust?
[157)) 270 35.3 26.2
@ 2600 1.53 0.59
@12 1300 0.76 0.295
ap2 967 065 029
as — 951 —0.71 — 0.285

The values tabulated were obtained by ‘smoothing’ data obtained
from ballistic loops, which leaves a great deal to be desired from the
standpoint of precision. The difference between aop: and — a0 is an
index of this lack of precision. The average deviation of ¢1,/2 from
the mean of a¢ and as (a relation deduced on the basis of similarity)
is small for C dust and large for silicon steel while the third order
coefficients show much poorer results. The lack of precision in the
original data however, is such as to leave unsettled the question of
loop similarity for the materials tested at the fields to which the
coefficients apply; the experimental error is too great.

The use of ballistic methods for determining coefficients becomes
even less satisfactory for materials with low hysteresis losses and
cannot be used for analyses which have any aspirations to precision.
It will be shown in the next section, however, that the significant
coefficients enter into the impedance of a coil which employs the
material under examination as a core, so that the desired coefficients

"Speed and Elmen, ‘‘Magnetic Properties of Compressed Powdered Irom,"
A. 1. E E,V.40.
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may be obtained with the aid of AC bridge measurements under
appropriate conditions for which eddy currents and winding capacities
are unimportant. These measurements are of a higher order of
precision than those obtained by the ballistic method, and will be
treated in detail in the next section.

PART 2. ALTERNATING MAGNETIZATION

Sinusoidal Magnetizing Force. The same magnetic characteristics
which were the subject of the investigation of the last section are
involved in alternating magnetization when the applied field has but
one maximum and but one minimum per cycle, and when the eddy
losses are not great enough to introduce screening effects. As one of
the results of that investigation, we have arrived at equations for both
the upper and the lower branch families, so that to obtain an expression
for the flux density valid over the entire cycle, it is now necessary to
combine the two branches by a Fourier's series in the usual manner.

Before doing this, however, it is necessary to express the branch
equations for the flux density in terms of time, rather than as series of
powers of the independent variable, the magnetizing force. To do
this we substitute the equation for the magnetizing force 8

h = H cos pt (18)
in the branch equations (4a) and (5a) of Part 1. The result of the
substitution is to give the upper and lower branch flux equations in
terms of powers of cos pt, which may be expressed in terms of multiple
angles. These two equations are then combined in a Fourier series
which is valid over the entire cycle:

k=
= %—"+ > (bx cos kpt + ax sin kpl),
k=1

in which the coefficients are given by the usual expressions, equation
22a of Appendix 3. The coefficients bo, bs, - b2k, Go, @2, **+ @2y are
found to be identically zero on account of the symmetry of the loop
family about the origin, while the fundamental and third harmonic
coefficients are found to be as follows:

a = 3—87; (augIF + ﬂoa-Hs),

b = @l + aH? + (ﬂl'_' + %am)fl“, (25)
— T (I + awl),

by = asoI‘IR/4.

8 The purely sinusoidal magnetizing force may be obtained, despite the varying
reaction of the iron core coil, by connecting a generator through a low pass or band
pass filter having a high impedance outside the pass band, or by connecting a pure
sine wave generator to the coil through a high impedance.

ay =
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Details of the derivation are given in Appendix 3. Inasmuch as we
assume the applied field to vary as cos ptf, the b’s are in phase with the
applied field and the a's are in quadrature. The two a’s, it is observed,
are connected by a constant of proportionality (a; = — 5a;) and
depend upon the remanence; or upon what is the same thing, the
hysteresis loss divided by the magnetizing force.

If we expanded the loop equations to higher powers we should find
that @, and a; cease to be linearly proportional. The coefficient b,
is observed to have its first three terms identical with those of the
normal magnetization curve, but the fourth term differs by precisely
the amount b;.

The voltage existing across a coil enclosing a core characterized
by the above coefficients is

E = nd10-98 (26)

dt _
where 7z is the number of turns enclosing the core, 4 is the core area
in cm?, B is the total flux density and E is the total generated potential.

Carrying out this operation we have

E = nA1073(pa, cos pt + 3pa; cos 3pt
— pb; sin pt — 3pbs sin 3pt)  (26a)

in which the voltage components in phase with the current depend
on the hysteresis coefficients, and the quadrature components depend
only on the coefficients of the normal magnetization curve. The
dependence of each of these components upon the applied field is clear
from Equation (25). To take the two third harmonic components it
will be observed that aj starts to vary with the square, while bs starts
to vary with the cube, of the applied field. It follows therefore that
at sufficiently small amplitudes the third harmonic is produced by the
a3 term and not by the by term, which means that under the conditions
noted, harmonic production is due fo hysteresis and not primarily to
permeability change. '

From the two fundamental components of voltage across the coil
an expression for the inductance and resistance offered to the flow of
alternating current may be deduced. The inductance, it is easy to
see, is obtained directly from the magnetization curve,—the d.c.
permeability of the normal magnetization curve therefore coincides
with the a.c. permeability at small fields. The resistance may be
obtained from the expression derived above for hysteresis loss per
cycle per cc. If we multiply that value by the volume of iron in the
coil, by the frequency, and by 1077 to convert ergs to watts we have
the loss per second, and this may be equated to the square of the
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effective fundamental current multiplied by the hysteresis resistance, or
wfAmd10~7 = I*R,/2.

Here d is the diameter in cm, I is the peak value of the fundamental
current, f is the frequency, and Rj is the hysteresis resistance. T his
may be solved for the hysteresis resistance in terms of the r.m.s.
value of fundamental current I, which is at low fields,

Ry = 1.2:10n*AfTa/d>. (27)

The hysteresis resistance at small fields thus varies linearly with the
applied current.

It is easy to derive the relation between the hysteresis resistance
and the generated third harmonic voltage at low fields since they
involve the same constants age and aes; from (26a) and (25) we have
for the r.m.s. third harmonic voltage

Ey = 3pnA10-%a5/\2 = 0.72-10%n3A Pag/d>.
Comparison with (27) shows that
E; = 0.6R,1. (28)

This simple relation is valuable in obtaining an idea of the harmonic
production in a specific coil through resistance measurements, and
more than that, it enables us to determine the coefficients significant
in the distorting process for the material under test, so that the har-
monic production in a coil of any dimensions enclosing the same core
material may be calculated. The degree of precision ordinarily attain-
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able is brought out for two materials in Fig. 3, and the agreement is
observed to be within the experimental error in those two representa-
tive cases.
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These relations provide us with an expression for the ratio aii/ap
which may be obtained from impedance measurements. It will be
recalled that Rayleigh’s relation would give this ratio the value two,
and a.c. bridge measurements may be used to check this relation.
The change of resistance with current is given by (27), and the change
of reactance with current may be calculated from (25) and (26), since
we have

AX = ﬂ]lHQPﬁAIO_BfT‘\/E
= 1.42-10%n*AfTa,,/d>

Hence if we denote R, by AR, we may write

a AX
M= 085-=.
[ AR
The results obtained on some dust cores of different composition and

two solid materials may be tabulated as follows:

Material Number of Specimens anfaor

Grade ‘B’ Iron Dust. . ............... 10 2.65
Grade ‘C'Iron Dust................. 1 2.63
Permalloy Dust ® ‘A’. . ............... 3 2,10

“ “ ‘B 3 1.81
IronDust No. 1..................... 1 2.80
Iron Dust No. 2..................... 2 2.55
Perminvar®. . ........ ... ... o0l 1 3.0
Alloy ‘D’ e e 2 1.84

The method of analysis and the results obtained above may be
summarized as follows. Starting with the general development of
the hysteresis branches in a double power series and making use of
only the most fundamental experimental observations, equations have
been derived for the normal magnetization curve, the remanence
characteristic, and the hysteresis loss characteristic in terms of the
original hysteresis branch coefficients by combining the equations
for the two branches in a trigonometric series. The series for the
normal magnetization curve is found to start with the first power of
the magnetizing force, the remanence starts with the second power, and
the hysteresis loss starts with the third power, the curves varying in
accordance with their respective first terms when I is small. These
results seem to be in general agreement with experience. For large
values of I the shapes of the different curves depend of course upon
the size and sign of the coefficients involved, about which nothing
can be said until the coefficients have been evaluated from experimental
data.

9 Shackelton and Barber, '‘Compressed Powdered Permalloy,” A. I. E. E. Con-

vention, February 1928.
10 Elmen, ' Magnetic Properties of Perminvar,” J. F. I., September 1928,
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In the case of a sinusoidal magnetizing force the fundamental and
third harmonic flux densities were derived with the aid of the trigono-
metric series development. These were shown to depend in a simple
way at low fields upon the normal magnetization and hysteresis loss
characteristics. The in-phase fundamental voltage component de-
pends directly upon the hysteresis loss per unit current, while the
fundamental component in quadrature varies with the magnetization
curve at low forces. The in-phase third harmonic varies with the
in-phase fundamental at low forces, and the third harmonic in quadra-
ture comes in only with larger forces in a manner which depends upon
the magnetization characteristic. The range of forces over which our
equations are valid depends simply upon the number of terms taken
in the development of the branch equations, and is not necessarily
restricted to small forces. The hysteresis loop coefficient enters into
the impedance offered to the fundamental frequency by a coil enclosing
the core material in question in such a way that the third harmonic
produced may be deduced from the change of resistance with current.
Further, the ratio of the change of reactance with current to the
change of resistance with current may be used to provide a test of
Rayleigh's relation, which is found to hold for some materials, while
it is invalid for others. The precision obtainable in the evaluation of
hysteresis loop coefficients is much greater by the a.c. bridge measure-
ment under proper experimental conditions than by the analysis of
ballistic loops. Incidentally attempts have been made to obtain B-H
loops by AC methods with the aid of the Braun tube, for example,"
but the precision attainable is not sufficiently high for our purpose.

Complex Magnetizing Force. Our preceding analysis has furnished
us with the fundamental voltage drop across a coil enclosing the iron
core under consideration, together with the third harmonic voltage
generated in the coil winding due in general partly to the non-linear
B-H relation and partly to the effect of hysteresis. The generated
voltages corresponding to the fifth, seventh, and higher orders are
also calculable by the same methods but will not be specifically con-
sidered since they are smaller than the third harmonic at low fields.
This generated third harmonic voltage exists in its entirety across the
coil winding only when the impedance of the external circuit is much
higher than that of the coil at the harmonic frequency, a condition
not usually satisfied in telephone circuits. A current of the third
harmonic frequency then flows in the circuit, its amplitude and phase
depending evidently upon the generated third harmonic voltage—
that is, the coil structure and core material—as well as upon the total

11 Peterson, Phys. Rev., Vol. 27, No. 3, p. 320.
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circuit impedance to the third harmonic which includes that of the coil.
We have now to determine the coil impedance to a complex magnet-
izing force constituted by the fundamental and the third harmonic.
It is evident at the outset that if we restrict consideration to a very
small third harmonic, the impedance to the fundamental cannot be
very materially altered.

In general the fundamental and third harmonic may exist in any
phase but for our present purpose we shall take the magnetizing force
to be

H = H, cos pt + H; cos 3pt, (29)

in which the phase angle is assumed zero. This seems to be an
arbitrary assumption, but it may be shown that the results are not
materially different for other phase displacements, and there is some
gain toward simplicity of treatment by taking the phase angle zero.
The equations of Part 1 may then be carried over without change, and
details of the analysis are given in Appendix 4.

The ratio of the resistances to the third harmonic and to the funda-
mental is 0.77, from the relations deduced in the appendix. Some
experimental work has been done to test the validity of the expres-
sions derived above for the reactance and resistance components of
the third harmonic, the results of which are given in Fig. 4. It is seen
that the check for the inductance to the third harmonic is very good
but that the resistance component appears to be substantially that of
the fundamental rather than 77 per cent of it, as the analysis indicates.

EFFECTIVE INDUCTANCE OF A GRADE"B"IRON DUST COIL TQ THE THIRD HARMONIC.
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The experimental method for obtaining this result—the impedance to

a small third harmonic in the presence of a relatively large funda-

mental—is illustrated in Fig. 5. The method consists in measuring

the third harmonic current by means of a current analyzer? for a

number of circuit conditions in which the fundamental current is
F

y (90
<:> . @ - &z
T = _TO CURRENT
ANALYZER

HIGH Z OUTSIDE BAND
F1G. 5

maintained constant. The circuit is first tuned to the third harmonic
by varying the capacity Cin the third harmonic circuit, and the current
is then measured for a series of values of the series resistance r. A
shunt resonant circuit tuned to the fundamental is inserted in the
third harmonic path so as to separate effectively the third harmonic
circuit from that of the fundamental. With this precaution taken to
avoid harmonic production in the analyzer and to maintain the funda-
mental current constant while r and C are varied, the inductance
to the third harmonic is obtained from the resonating capacity, and the
resistance is determined as that value of r for which the third harmonic
current falls to half its maximum.

12 For details of current analysis see the paper by A. G. Landeen, B. S. T. J.,
April 1927,
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PART 3. APPLICATION OF THE ANALYSIS

Air-Gaps and Dilution. Under certain conditions improvement in
the operation of iron core coils toward freedom from harmonic pro-
duction may be attained by inserting air-gaps in the magnetic path.
The expressions which we have derived up to this point are valid for
a material having the constants assigned, and the question now arises
as to the parameters which characterize the operation of the iron core
including air-gaps, and their relation to the parameters for the original
core without air-gaps. With these relations given, our previous work
may be applied to cores with air-gaps.

In establishing the correspondence between the parameters for the
two cases, it is instructive to use two methods—one a direct attack,"
the other resting on an analogy with non-linear vacuum tube circuits.*
We may determine the effects sought for by the direct method on
consideration of a single branch of a hysteresis loop, which is expressed
by equations (4a) or (5a) of Part 1,

B(h, H) = 2> a,hrH. (36)

Now with an air-gap in the magnetic circuit, the magnetomotive force
effective is that applied, reduced by the drop acioss the air-gap, or

r

m' =m — py,

M = M — pd, (37)
in which mM, ¢® are instantaneous and maximum values, respec-
tively, of the impressed m.m.f. and flux, and in which p represents the

air-gap reluctance
p = NA4, (38)

A being the length of air-gap and A the core cross-section.
In order to apply (37) we re-express (36) in terms of magneto-
motive force and flux as follows:

Aa,, M
o(m, M) = 230G m M", (39)
where 1 is the length of magnetic circuit in the iron. Equations (37)
may now be substituted in (39) to yield

olm, M) = ST 4% (n — o) (M — pB). (40)

13 Due to Mr. H. P, Evans.
14 See Appendix 5.
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This equation may be solved for ¢ by identifying coefficients when we
substitute the solution

14
o(m, M) = Ez'ﬁir: mrMe,
which is equivalent to
B(h, H) = 2> as hrH". (41)

Carrying out the operations, the primed coefficients are determined
in terms of the original coefficients and the core structure as follows:

am/(l +;—\&w)-
— s = am / (1 +%a) (42)

I

r
Q1o

e
2
Il

|

a,,' = 011/(1 +%G10)3'

It is clear that the effect of an air-gap is to diminish the higher
order coefficients to a greater extent than those of lower order; no
new coefficients are introduced. If we refer to a constant flux density,
then the impressed force is

big =H(1 +}am) (43)

and the modulation voltage becomes proportional to

GogHz
X 1
1+ l_ ayg

2
doz’jip =

. . . A
so that the harmonic e.m.f. has been reduced in the ratio of 1 + 7 @

to unity, which is precisely the ratio of initial permeabilities.

Dilution. 1 the magnetic material is diluted with a non-magnetic
substance (insulation) so that the effective air-gap length is N, the
above equations for the flux density still hold. The effective cross-
sectional area, however, is reduced to

A’ =A("_T}‘)2, (44)

which is ordinarily of small account compared to the other factors
involved.
Choice of Core Material. The ideal characteristics for a core ma-
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terial in respect to its freedom from harmonic production may be
determined by a consideration of the circuit problem. The third
harmonic driving e.m.f. is obtained from the last section as

E3 = P”AGUQHQIO_B,
. niA Y 45
= —&2— agaly?, ( )
in which 7 represents the number of turns enclosing the core of area
A, d is the mean diameter of the toroidal core and ay, is the hysteresis
coefficient.
Suppose that we have to design a coil of fixed inductance in which
the harmonic is to be a minimum, so that
nud
d

L=K = const. (46)

We proceed to the consideration of a number of special cases subject
to condition (46).
Case I—L Fixed, n Variable. From (46)

d 1/2
# = const. <H) ,

which may be substituted in (45) to give

. 1 Qo2
B = o G 4

Hence in a coil of fixed inductance, fixed core area, and fixed core
diameter, minimum harmonic voltage is produced with a material
for which agp/u*? is minimum.

Case 2—L Fixed, A Variable. From (46)

A = const. d/n® pu,
which, upon insertion in (45), yields

Ey =—-—, (48)

in which the modulated voltage varies linearly with ag/u.
Case 3—L Fixed, d Variable. By a similar procedure, we obtain an
expression for the generated third harmonic voltage

. 1 oae
B =g, (49)

For further work we suppose the coil reactance considerably greater
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than the circuit resistance at the fundamental frequency, and consider
the case of an input transformer in which the secondary is practically
open-circuited.

Case 4—Input Transformer. In accordance with the above assump-
tion the fundamental current through the coil is determined by the
coil reactance x or

E. d
Li=2=5a
Putting this in (45), we find
. 1 ap
By = nd 2’ (50)

which is identical with Equation (49).

In the four cases treated above it has appeared that there are three
quantities which characterize the modulating properties of a ferromag-
netic coil under different conditions—as/u, @o2/u®?, ao2fp®. The values
of these ratios have been determined for a number of materials and are
tabulated below.

@osfre Qoafudl? @oz/p?
Bdust,............coiiiiiann 18 X 1073 3.1 X 1073 0.52 X 1073
Cdust.. ... 11 2.2 0.42
Permalloy dust ', ... .......... 17 2.1 0.24
Perminvar . .. ............... 2.1 0.1 0.0045
Silicon Steel . ................. 2500 210 16

These results apply only when eddy currents are negligible; as the
frequency is raised eddy currents effectively screen the core and the
harmonic flux is reduced to a greater extent than is the fundamental.
This effect, as is well known, depends upon the specific resistivity of
the core material and will not be evaluated here.

It has been pointed out that under different circuit conditions an
index of the modulation is given by the ratios @oe/u, Gos/u’?, @os/p?,
depending upon specific conditions. For diluted materials, these ratios
referred to the undiluted material become

g2 o2 Qo2
h 2' -A 3'1?_! A 1
ﬂw(l +z—am) [am(l +fa1o)] 11102(1 ‘]‘faw)

and the utility of air-gaps toward the reduction of harmonic is made
evident quantitatively in every case.
In order to test these relations a comparison was made of the

15 Laboratory specimens.
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coefficients for specimens of grade “B" and grade “C’' dust which
represent different dilutions of electrolytic iron. The coefficients
used were those tabulated in Part 1. In accordance with equations
(42) above we may write

35.3,

[

aw//(l —!—%am) - 262, aw/(1+¥aw)
au/(l -I-%am)3
/()
From these, we should have equality of the ratios

0.59/1.53,  0.29/0.65,  (26.2/35.3),

059, Gu//(l ‘I‘?ﬂm):‘ = 1.53, (51)

3
0.29, ﬂng//(l —I—)\Tzam) = 0.65.

or

0.37, 0.43, 0.41,

which are evidently in fair agreement. It is clear then that the
properties of diluted materials may be calculated from the character-
istics of the original material, at least when the process of dilution
does not change the intrinsic properties of the magnetic material
involved.

Applications to Transformers. The third harmonic flux component
may be obtained when the fundamental magnetizing force is given,
and the latter is easily obtained in toroidal core inductance coils from

the relation
= 0.4ni/d, (52)

where both % and ¢ refer to the fundamental frequency. In a trans-
former, however, the net magnetizing force is obtained as the sum of
two components, one due to the primary and the other produced by
the secondary, so that some further investigation is required before
the net magnetizing force in the core may be calculated in terms of the
transformer constants and the primary current.

Net Magnetizing Force. 'To obtain the net magnetizing force which
determines uniquely the generated flux components we are required to
obtain the primary and secondary currents (ii7.), to multiply each
current by the number of times it encircles the core, to add the two
products, and finally to multiply the sum by 0.4/d:

Hnet = 0.4(?111.]_ + ?Zg‘l:g)]‘d. (53)

To evaluate (53) then we shall solve for the primary and secondary
fundamental currents in terms of the circuit constants and the applied
potential.
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The transformer circuit equations from which the currents may be
evaluated are the familiar ones

E = Zyy 4 jpMis,

in which we assume the transformer to be an idealized structure—the
capacity and leakage effects of actual transformers will be assumed
combined with the connected impedances for simplicity—they will
therefore not be dealt with explicitly. From the second of (54) is
obtained the relation between the two currents

which may be substituted in the first of (54) to give the usual expression
for the primary current
. SUE . 22
21=E/[R1+BZ2—R2+J (XJ—%Z—-)Q)]‘ (56)
An expression for the met magnetising force in terms of i, may be
had putting (55) and (56) in (53)

_ 0.4?11'i1 ._jpﬂd'K
IInet = d (1 Z2 ? (57)
in which K represents the turns ratio:
Na ‘\IE
K=—= . 58
= (58)

If we make the convenient assumption, which is closely approximated
under working conditions, that the coupling is perfect (no leakage) we
have

P-M = ‘\Xle (59)
and (57) may be simplified to the form
r _ 0.41@1?:1 Rg .
Hye = a4 7 (60)

This equation shows that the net magnetizing force may be obtained
from that of the primary alone by applying the reduction factor Rs/Z..
Now in well designed transformers the winding reactances are much
greater than the resistances to which they are connected, and in this
case

X2, 2> Ry o (61)

Applying this further simplification to (60) we have finally for the net
S0
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magnetizing force

Hnet — 0.4?311:1 _Rig

7 X, (60a)

in which the reduction factor applied to the force due to the primary
alone is seen to be the ratio of resistance to reactance in the secondary
circuit.

This equation with the aid of (56) may now be put in terms of the
primary voltage—a fixed quantity—rather than in terms of the
primary current which is variable according to the circuit resistances
used. Applying the assumptions (59) and (61), Equation (56) may
be written

i1 = E/(R1 + Ry/K?), (56a

which may be put in (60a) to express the net force explicitly in terms
af the circuit constants:

 04n,E 1 )
IIm,-t - Xm ( 1 —|— KZ.RU'RZ (62)

In view of (58). When the transformer is terminated in its normal
resistances the expression within parentheses reduces to the value one-
half. Itis of interest in this connection to compare the field here with
that produced with the secondary open; in the latter case it is clearly

0.4”1E,"dX1,

which is twice as great as the field in the properly terminated trans-
former. This result is otherwise evident, for in the properly termi-
nated transformer but half the generator voltage is applied across
the primary.

Third Harmonic. According to Equation (28) the amplitude of
third harmonic voltage generated in a coil of # turns encircling a core
subjected to a magnetizing force of H,« gilberts/cm is

Ea = 5% IO‘SGOZPnAHEm (63)

and the generated primary or secondary voltage is obtained by attach-
ing appropriate subscripts to #n. Because of the coupling, the two
circuits react on one another at the third harmonic frequency as they
did at the fundamental frequency, and to find the two third harmonic
currents we must go through a procedure analogous to that followed
for the fundamentals except that here we have an independent
generator voltage effective in each of the two windings.

Indicating quantities referring to the third harmonic frequency
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by the subscripts p, s for primary and secondary circuits, respectively,
we have the circuit equations for the third harmonic currents:

ep = Zgip + j3pMi,,

Ke, = Zd, + j3pMi,, (64)

and by equating the two expressions for e, we obtain a relation between
the two currents:

. KZ,—3j3pM.
b= Z, — BpME ™ (65)
Putting 7, in terms of e, and using (59) and (61) we find
2s = ¢, KR,/R, X, (1 + K’R,/R,). (66)

Suppose now that we are dealing with pure resistance loads so that
R, = R, R, = R,.

We may then substitute (63) for ¢, in (66) to obtain the third harmonic
current in the secondary.

From (63)
8. 0.16n,2E 1 2
€p = 5 10 auzpﬂ]A d2X12 (1 + KERIJ‘RQ) ' (67)
and by substitution in (66)
2
iy = PR (68)
3X1R2(1 + sze-’)
2

If we consider the factor containing the resistances,

F=R 1 (69)

~ R, 1+ K?Ry/Ro)*’

it is zero for Ry/R. zero or infinite, and reaches a maximum under the
condition

9F
L L——)
9(R1/Ry) (70)
The third harmonic secondary current is maximum when
R,y
2= 2,
K IR, (71)

Now K? is fixed by the turns ratio (58), so that we may say the
secondary third harmonic current is maximum when the primary
resistance is made half its nominal value, or when the secondary
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resistance is made twice its nominal value. This is well borne out by
Fig. 6 due to A. G. Landeen taken under conditions to which the

above discussion applies.

SECONDARY THIRD HARMONIC AS FUNCTION OF SECONDARY LOAD RESISTANCE.
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At first sight the result obtained, in which the secondary harmonic
current increases as the secondary resistance is increased for all values
of secondary resistance below twice the nominal secondary resistance,
seems a bit strange since the fundamental secondary current decreased
under the same conditions. A little thought however shows that the
increase of secondary resistance acts in two ways; first to reduce the
harmonic current directly, and second to increase the net magnetizing
force in the core which in turn increases the generated harmonic.
Thus with zero secondary resistance the net magnetizing force is zero
and no harmonic flux can be produced, while with large secondary
loads the flux density in the core or the net magnetizing force reaches
an asymptotic maximum so that the generated third harmonic increases
slowly if at all while the reduction in secondary current by the re-
sistance is continuously increasing. Under the assumptions noted
Equation (68) is valid for any circuit condition and it will be observed
that 7, decreases with the primary resistance below the optimum point.
The value of « is explicitly

3
a =272 X 107 P‘:flg (”{}—;4) , (72)
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in which the bracketed expression coincides with the variable factor
in equation (45). Hence when L, is constant the choice of core
material follows the rules laid down for inductance coils. When
the inductance is not constant, however, the factor becomes pro-
portional to
a = const. ciaaAE (73)
with the understanding that the turns ratio, resistances and frequency
are fixed. Thus the secondary harmonic current with a given material
is reduced by increasing the turns and core area and reducing the
diameter. As far as core materials go, we have for the significant ratio
ags/u® the values:
Material
Silicon Steel . . ...
Permalloy Dust 1
BDUSE. oot eeie e N

CDUSE. oot e
Perminvar 0. . . ... i 0.05 X 1074

The great superiority of perminvar indicated above is restricted of
course to fields of the order of less than 0.1 gilbert/cm. above which
it tends to become smaller; at a field of 0.7 for example the above
factor for perminvar would be multiplied by the factor three. Perm-
alloy dust is observed to be approximately twice as good as the iron
dust cores.

A very important question to answer with regard to transformer
cores is this—what benefit can be gained as to harmonic production by
inserting air-gaps, or by diluting the core material, leaving everything
else unchanged. This is evidently to be answered by an investigation
of the ratios ag/u® and @’epe/p”, the primes referring as before to the
diluted material. These relations are given by Equation (42) in
which p and a0 are interchangeable:

A
010/ (1 +T am> =,
>y 3
ap’ = ﬂcz/ (1 +f aw) *
These permit us to evaluate a’oafu’:

142y )
aw' _ __ ao ( +iom) _ o (74)

R \ 3 3 3
M (1+%am) ayo I

18 Laboratory specimens.

!
ayo
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which clearly indicates that no change is produced in the secondary
third harmonic current by introducing air-gaps or by diluting the core
material, the change in core area being negligible. This relation has
been verified experimentally.

The discussion above considers a constant potential applied to a
transformer circuit and the relations derived are somewhat changed
when we consider constant current or constant potential transformers.
We seldom have to do with constant current transformers but constant
potential transformers are met with frequently in vacuum tube circuits
as input transformers or interstage transformers. The above discus-
sion may be applied to this case by taking the primary generator
resistance much lower than its nominal value—a condition, inci-
dentally, which works toward the suppression of harmonic.

The conclusions are also somewhat altered when we have networks
offering different impedances to the harmonic and the fundamental.
Thus it is evident that the third harmonic current can be eliminated
from both primary and secondary circuits by inserting a high series im-
pedance to the harmonic frequency, or by encircling the core with a
winding connected to a network which has a very low impedance to the
third harmonic and high impedance to the fundamental. Further, in
single frequency transmission the result may be equally well obtained
by shunting a series tuned circuit around the primary or secondary
winding.

AppLIcATIONS TO HarRMONIC ProDUCTION IN LOADED LINES

If distortion takes place at any one point of a loaded line, the amount
of distorted current received at the far end depends upon the ampli-
tudes of the currents producing it, and upon the line attenuation from
the point of origin to the far end. The phase similarly depends upon
the phase of the fundamentals, and upon the phase shift of the line.
When we have a number of distorting sources at different points along
the line, the net distorted output is obtained by combining vectorially
the currents due to the individual centers of distortion, since it may
be assumed that no interaction exists. In a uniformly loaded line
we may think of these sources of distortion as being uniformly dis-
tributed, but the amount of distortion introduced is, on the contrary,
not distributed uniformly on account of the line attenuation which
reduces the distortion generated at the far end of the line.

It is apparent, then, that if we are to calculate the net distortion
introduced by the line, a complete specification of the phase shift
and attenuation is required, together with a knowledge of the law of
production of the distortion. This last also requires a specification of
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amplitude and phase angle in their relation to the fundamentals
producing the distortion.

A situation somewhat analogous to the one under discussion which
is less involved, however, is found in the diffraction of light, in which
the illumination at a point proceeds from a number of coherent sources
at various distances from the point. An important difference in the
two cases is the attenuation of the transmitting medium which is
ordinarily small in the optical case, so that the results of the optical
investigations cannot be taken over directly.

In the following we propose to calculate the third harmonic output
currents with the aid of our previously established relations. The law
of harmonic production has been quite definitely established in the
low frequency-low flux density range. The driving third harmonic
voltage of frequency 3f produced by a fundamental current of rms
value T is given by (25) and (26a) as

A

E3 = 072 X 10_5302 2

2= M, (75)

while the phase angle of the third harmonic generated potential is
related to that of the fundamental current by the expression

03 = 301 (76)

The above data are sufficient for a solution of the problem of distortion
in continuously loaded lines when the propagation constant is known
as a function of frequency.

The fundamental current at any point distant x from the sending
end of the continuously loaded, properly terminated line is

I = Ie¥Fs, (7N
where
P =a+4jB.

The third harmonic driving em.f. dE; generated in a length dx of
the line may be written with the aid of (75), (76), and (77) as

dE; = MI e Catidz, (78)
Writing the line impedance as Z,, the resulting current at x is
MIZ2 .
(.iI:; = —223 ¢ @atif)a, (79)

With the line parameters a {unction of frequency we may write for the
propagation of third harmonic current

iy = Lz, (80)
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The distortion at x produces a third harmonic current at the receiving
end

2
diy = Ml ¢ etz —lr+i8) —2) (8]_)

27,

The total third harmonic current at the receiving end may now be
obtained by integrating (81) over the length of the line /, which gives us

. MIg e (vt .
Ir = _ 1 — g a—vH @B 82
$ =22 [@a — ) + 5@ — 5] - (2

Inasmuch as we are concerned with the output amplitude, the above

expression may be put in a somewhat more convenient form:

li5]2 = MIzE\?
TN 27y ) Qo — 4P+ (38 — 6)2
X [1 4 et — 2 Gl cos (38 — 8)1].  (83)

Thus when I is zero the harmonic vanishes as it should, and as I
increases the current passes through maxima and minima determined
by the cosine term. If the attenuation is not very great, the maxima
occur approximately at the line lengths

ll_(2n—1}1r
3-8 '

eﬁ2'yl

where # is a positive integer. These distances correspond to odd half
wave-lengths, as is true of the optical case. As [ is increased the
bracketed expression approaches unity and the current falls expo-
nentially. Before this point is reached, however, the current increases
in certain regions as the line length is increased. The fact that in an
actual line the parameters vary with frequency means that these
maxima and minima will vary in position according to the frequency,
so that a maximum for one frequency may well coincide with a mini-
mum for another frequency.

In the case of lumped loading, the integrations used for continuous
loading are replaced by summations, as was done by Mason in the
unpublished investigation previously cited.* If the spacing between
coils is %, and if we have » coils for which #x; = v, the received third
harmonic current at the end of a properly terminated line may be
written
_ MIg e ] — eBa—rHGi-ay)

27, (e ri@—hln — 1) (84)

13

which is to be compared with (82) for the continuously loaded line.
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APPENDIX 1: SIMPLIFICATION OF LooP EQUATIONS

From the first of the three properties mentioned we have ap = 0,
and from the second property

By(h, ) = — Bs(— h, H) 3)
whence, if we write

By(h, H) = awh + aalH
+ Gguk2 + G]_]_]EII + ﬂog}fz
+ azoh® + aoh?H + aphH?* + aglls - -, (4)
then
Bg(h, H) = Gluh —_ GmI’I
— aooh? + anhH — agH?
+ asoh® — aahtH + aphH? — agH? - - -. (5)

From the third property, the two branches meet at the loop tip which
lies on the magnetization curve for which # = H, or

B,(I, H) = By,(, H). (6)
From the two equations (4) and (5) we have by virtue of this relation
anH + (Gzn + auz)f‘p + (621 + ﬂus)Hs =0

and since this relation holds for every value of H, the coefficients of
each power of H must be zero so that

ay = 0 = ao,
oz = — Q2o (7

Qg3 = — @z21.
The final expressions for the branches are then evidently obtained by
putting (7) in (4) and (5) which become
Bl(h, H) = amk
—_ (I(}ghz + ﬂllh-I'I + aggI‘IZ
+ (130]1;3 - au;;hQH + G12]IH2 + augfls, (4!3)
Bg(h, II) = 0',1(])11
+ aph® + ElnkH — apH?
+ {Ignhs + 0031121[ + G12}IIIE - GQ3H3. (50)

APPENDIX 2: RAYLEIGH'S RELATION

If we suppose the lower branch of any loop, when referred to the tip
of the largest loop considered, to be given by the equation

B, = wohy + v + M+ ohit (12)
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we may refer the family of branches to the origin by the transformation

k =h1 —H,

B = B, — B, (13)
if B,.H refer the midpoint of the largest loop to the tip. Then
Bn = poH + 2vH? + ANH? + 8wH*. (14)

Putting (13) in (12)
B+ By =+ H) +vih+ H?+MNb+ HP + b+ H)Y,
whence, subtracting (14),

B’ = poh + v(l® + 2hH — H?*) + K 4 302 + 3hH* — 31°%)
+ w(h* + 4BPH -+ 612H? + 413 — THY), (15)

which represents the hysteresis branch equation referred to the origin,
on the basis of loop similarity.

The coefficients obtained by the two methods may now be compared.
Thus identifying coefficients of (15) with those of the general equation

)

o = Mo, an = 2v, Qpg = — v aps = 3\,

Aop = U, g = 3)\, doz = 3%, a1z = 4&0, (16)
a3y = ?\, a3 = 40}, oy = — 7(.1}, dog = 6(1.).

Iy = w,

APPENDIX 3: ALTERNATING MAGNETIZATION, SINUSOIDAL
MAGNETIZING FORCE

The resulting expression is simplified if we make the following

substitutions
a = apH? + apH?® = B(0, H),
B = aiw + anld + a7, (19)
6 = ﬂ,3[)H3.

It may be noted that « is the remanence and that 8 is an approxima-
tion to the permeability, in fact the permeability is given as the sum
of Band 6. With (18) and (19) inserted in the branch equations, then,

we have

By cos pt, H) = a+ Bcos pt — acos® pt + 6 cos® pt,
Ba(H cos pt, H) = — a + B cos pt + a cos® pt + & cos® pt.

For convenience we shall express these relations in terms of multiple
angles, and we have for the equation of the upper loop family

Bi(Hcos pt, H) = — /2 + (B + 35/4) cos pt — /2 cos 2pt + §/4 cos 3pt,
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If we write

A= a/2 = (a(m]zp + anJF)/Z,
B =8+ 35/4 = ayp + anH + a,H* + 3aaom/4.

C==-—4, (20)
D = 5/4 = 330H3/4,

the final form for the loop equations is

Bi(Hcos pt, H) = A + BV cos pt + C cos 2pt + D cos 3pt, 21)

Ba(H cos pt, H) = — A + B cos pt — C cos 2pt + D cos 3pt.

We are now in position to combine the two equations of (21) in a
Fourier series valid over the entire cycle as

B = %—}- 3 (bi cos kpt + ay sin kpt), (22)
where

2
ar =2 [ f(pt) sin kpt d(pe),

T Jo

o (22a)
by = % f F(pl) cos kpt d(pl).

For our particular case we have, since B = B, for the first half of the
cycle, and B = B, for the second:

0 T
Ty = f By(h, H) sin kpt d{pt) -I—f Bi(h, H) sin kpt d(pt),
- 0

0 ar
wby = f Bo(h, H) cos kpt d(pt) —I—f Bi(h, H) cos kpt d(pt).
— 0

These integrals may be simplified considerably when we take advantage
of the fact that both B, and B. are even functions of the time as given
by (21). Thus

ray = jo [Bi(h, H) — Ba(h, I)] sin kpt d(pt),

xby = f ) [B.(h, H) + Bs(h, H)] cos kpt d(pt).

Referring to (21) we may then write
ar = gf (4 + C cos 2pt) sin kpt d(pt),
™ Jo
. (23)
by = ?rf (B cos pt + D cos 3pt) cos kpt d(pt).
0

17 This coefficient is not to be confounded with the general expression for flux
density.
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Upon integration of (23) the coefficients for the fundamental and third
harmonic flux components are found to be as follows:

=2 -3, b=B,
" (24)
4/4  3C

w=i(3+5) n-D

which, by reference to (20), may be put in terms of the branch coeffi-
cients.

APPENDIX 4—IMPEDANCE REACTION TO A SMALL THIRD HARMONIC
IN THE PRESENCE OF A LLARGE FUNDAMENTAL
We have for the two hysteresis branch equations from Egs. (4a),
(5a)
By(h, H) = B(0, H) + Bh + vh® 4 azh® + -, (30)
By(h, H) = — B(O, H) + Bh — v* + ash® + - -+,
in which
B8 = @ + anfd + aH? (31)
Y= = (aoz + Gu3m-

Putting (29) in (30) we get

B(h, H) = A + B cos pt + Ccos 2pt + D cos 3pt + F cos npt
+ G[cos (n + 1)pt + cos (n — 1)pt]
+ J[cos (n + 2)pt + cos (n — 2)pt] (32)

in which the coefficients have the following significance

A= .B(O, II) + H]_2'}'/2, F = ﬁHa -+ 30301:1-121-{3.,'2,

B = BH, + 3asd/4, G = vH\Hs, (33)
C = 7H12/2, J = 3&30H12I’I3]4.
D = 030H13/4,

The coefficients of the Fourier Series for the output wave may
now be obtained as before by combining the two equations (30) since
each one is operative during one-half the cycle. There results an
expression similar to the one obtained in the single frequency case,
and since we have

= bo/2 + Zay sin kpt 4+ Zby cos kpt

the coefficients are evaluated from the expressions
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2w
ag = 7—2“]0‘ (A + C cos 2pt + G(cos 4pt + cos 2pt)) sin kpt d(pt),

by = 7—2rf2r(B cos pt + (D + F) cos 3pt 9
' + J(cos 5pt + cos pt)) cos kpt d(pt).
Upon integration we find
b, = B, by = F. (35)

Comparing these two coefficients we see that at low amplitudes we
may write
bl = F-Hll b3 = Ju-IIﬁl

in which the permeability is the same to the two components, and is
determined by the fundamental amplitude. For the dissipative
terms we find
4
a, = —-(4 — C/3 — 2G/35),
m

:-f(Ags — 3CJ5 + 6G/35),

(35

ag

but some care is required in interpreting these expressions. Inasmuch
as we are primarily interested here in determining the dissipative
component to a third harmonic magnetizing force of amplitude H;,
we are required to select from a; only those terms containing s,
which means the single term 24G/35w. The other terms take care
of the harmonic producing properties of the core and do not affect
the impedance to the third harmonic. The impedance term for the
third harmonic comes down to

24
m ((1031[1113 + au;,-]:Iles)'

which may be written as
24 __ B(0, H)
3= L
This may be compared with the corresponding term for the funda-
mental given by (25).
AprpEnDIX 5. ErrEcT OF AIR-GAP BY VAcuUM TUBE ANALOGY

In the elementary treatment of non-linear two element vacuum
tube circuits, approximate solutions are obtained in the form

J=li+Jot o T
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where J represents the variable part of the space current on the basis
that J, represents the nth approximation, but that the series converges
rapidly so that we need consider only the first two terms to arrive at
a substantially accurate result. The expressions derived for the first
and second approximations are known to be

Jl = GlE/(l + G1R),
Jz GzEz/(]. + tIlR)a,
where the ‘a’ coefficients describe the tube characteristic
J = aw + a1t

R being the external plate circuit resistance, v the tube potential,
and E the circuit e.m.f.

Turning now to the equations for the hysteresis loop branches, we
have from (4a)

B = amh - {loghz + a-ukH + 002H2.

Hence by the analogy between flux and current, and between reluc-
tance and resistance, the first order terms are reduced by the factor
1/(1 + a,R) which corresponds to 1/(1 + Aai/4), and the second
order terms are reduced by the cube of this factor, which yields the
same results (42) as the laborious direct method.



