Contemporary Advances in Physics—XV
The Classical Theory of Light, First Part
By KARL K. DARROW

TOR twenty years and more we have been hearing continually
about the conflict between the corpuscular and the undulatory
theories of light, and it is possible that for years to come we may be
hearing about a similar contest between the wave-theory and the
particle-theory of matter. Furthermore, there are intimations that if
an adequate theory either of light or of matter ever is attained, it will
involve conceptions of waves which in certain limiting cases approach
to conceptions of particles. Already it is established that the ap-
propriate way to attack the typical problems of the atom consists in
setting up a wave-equation, and dealing with it in the same manner
as one adopts to solve the typical problem of acoustics: how to deter-
mine the resonance-frequencies of a piece of elastic matter, such as a
taut wire or a drumhead or a column of air in a tube. Therefore it
seems opportune to restudy, with care and in detail, the great classical
example of a wave-theory highly developed and widely successful—
the great theory of light dimly foreshadowed by Huygens, endowed
with its essential attributes by Young and Fresnel and Kirchhoff and
a host of their coevals, utilized in the design of a multitude of ingenious
instruments, perfected by Maxwell and connected with the theory of
electricity and magnetism, and serving to this day as the basis for the
theory of quanta. So doing, we shall be reminded of many triumphs
of the past century of physical research, discoveries which in their time
were as exciting as new quantum phenomena in ours; we shall notice
certain achievements themselves as recent as those of quanta, and
perhaps not less impressive; we shall retrace the reasonings which led
to certain conclusions which the quantum-theories, unable to do with-
out them and yet incompetent to derive them, have taken bodily over
from their forerunner; we shall reconsider the evidence which in the
litigation of a century ago caused the verdict to be rendered in favour of
the wave-theory over the particle-theory; and perhaps incidentally we
shall be drilling ourselves to test the evidence lately submitted and still
to be submitted in the appeal of that case, and in the hearing of that
other which impends.
For purposes of drill it might seem better to study the example of
water-waves, which are visible; or sound-waves, of which no one denies
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the existence, and no one wishes to supplant them with quanta. Rip-
ples on the surface of a pond do furnish a precious example of wave-
motion, and I presume that the notion of an undulatory theory was
suggested originally by these; but it is precisely because they are vis-
ible that they fail to pose some of the questions which in dealing with
light and matter are the most perplexing. Watching the leaves and the
straws which float upon the surface of the water, one sees that they do
not advance with the ripples; they are heaved up and down as the
crests and the troughs of the wavelets pass them by. It is evident
that the waves are not to be identified with the water; rather they are
a form, a profile, a molding of the surface, which moves rapidly along
while the substance of the liquid oscillates only a little. Now in this
instance of the ripples on the pond, it is the relatively-immobile water
which seems substantial and real, while that which is propagated as
a wave appears to be merely a shape or a configuration, nothing more
than a geometrical abstraction. It would seem strange and whimsical
to assert that the liquid is a mere abstraction, but the waves are real.
Yet we have to embrace this apparent absurdity in dealing with waves
of light.

The example of sound-waves shows forth the paradox quite clearly.
One can feel a tuning-fork; when it begins to act as a source of sound,
one can see that it is quivering, and with a stroboscope one can even
follow the actual course of its motion; it is even possible to see conden-
sations and rarefactions travelling through the air, and there are
numberless indirect ways of showing that sounding bodies and sound-
transmitting media are matter in vibration. To the eye and to the
hand, the body which vibrates is material and substantial, but not so its
“yibration "—this word is only a way of saying that the shape, or the
position, or the density of the body is undergoing a continuous and
cyclic change.

It happens, however, that we also possess a sense for which the
vibration is real but the vibrating substance is not. The ear takes
no cognizance of the steel of which the tuning-fork is made, nor of the
air which carries the undulations; but the ear perceives a tone. One
must fully realize that the sense of hearing does not disclose that
sound is vibratory. The ear does not report a sensation which goes
through a cyclic variation two hundred and fifty-six times (or whatever
the frequency of the fork may be) in every second. If it did, it would
be perceiving the vibrating medium, not the vibration. The ear
reports a sensation which is uniform, unvarying, constant; in fact, it
translates a steady vibration into a constant sensation. This we have
learned with ease, because of the collaboration of the other senses
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which observe the bodies which oscillate. But if no one had ever felt
or seen the quiverings of the humming fork, the ringing bell, or the
resounding drumhead, we should be handicapped severely for dis-
covering the true nature of sound.

Precisely so handicapped are we for discovering the nature of
light. It may be that light is the vibration of a substance; but if so,
the eye does not perceive that substance nor anything which fluctuates;
it translates the vibration into a constant sensation. Moreover,
we have no other sense which perceives that substance. When the
filament of a lamp is incandescent, nothing is observed to pulsate on
its surface; nothing is observed to go up and down or back and forth
in the surrounding vacuum. Our instruments also fail to detect any-
thing of which the vibrations are light. One may measure light with
a photographic film or a bolometer; but the undulations—if such there
be—are translated, in the one case into a steady rate of chemical
change, in the other into a steady flow of electric current. Inshort, the
eye and all our instruments register light as the ear registers tone, and
not at all as the eye or the hand may register the quiverings of a sound-
ing body; and therefore they do not report that light is vibratory.
And if it be true that tangible matter is itself of the nature of a wave-
motion, then the sense of touch must respond to these waves as the
eye to light or the ear to sound, not reporting anything vibratory and
not perceiving any medium which vibrates, but translating the vibra-
tions into a constant sensation.

Therefore, to test whether light or matter or electricity is a wave-
motion, one must make such experiments as could be made to test
whether sound is a wave-motion, if there were no instrument able to
perceive the vibrations of matter except the ear. Let us then suppose
ourselves required to prove, to someone unable or unwilling to use any
instrument except the ear, that sound is of the nature of waves; and
consider how we should go about it.

The ear, we are told, is able to make distinctions of ‘““loudness,”
“timbre,” and “pitch.” The two latter, interesting as they are, are
of no immediate concern in this enterprise. It is sufficient to know
that the ear makes distinctions in loudness, which according to the
wave-theory correspond to distinctions in amplitude of vibration.
Again, we have no concern with the exact relation between amplitude
and loudness. What matters is that the former controls the latter,
and therefore the latter reveals the former. Though the ear cannot
detect the cyclic variations of the density and pressure of the air which
make the sound, it can detect fluctuations in the amplitude of these
cyclic variations. To put this statement into briefer language of
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which, much later, there will be a reminiscence: the ear can detect the
amplitude, but not the phase, of the vibrations. It follows, then, that
we must devise tests of the wave-theory in which the amplitude of the
waves shall vary from time to time, or from place to place.

Such tests are easily arranged. Let a pair of tuning-forks be set up
not too close together and not too far apart. If sound consists of
waves, the spherical undulations broadening outward from each of
these separately must fall off steadily in amplitude as they recede, and
the sound grow steadily fainter as the listener moves away. So it
does; but the fact is equivocal, and cannot be taken as evidence for
the waves; if the fork emitted corpuscles of sound, they would scatter
apart as they flew away, and fewer would enter the ear the farther off
it was placed. If, however, both of the forks are giving voice at once,
and trains of spherical waves expanding outward from both, then the
amplitude in the air must vary in a curious and striking manner from
place to place, alternating between maxima and minima. This is just
the sort of test which the ear is excellently fitted to make; being moved
(or the mouth of its listening-tube being moved) from place to place
in the field where the streams of sound overlap, it reports the fluctua-
tions of loudness which are predicted from the wave-theory. By
properly choosing the conditions one or more of the minima may be
reduced to zero; loudness added to loudness makes silence. By
properly choosing the conditions, maxima and minima may be caused
to move in succession across a fixed point, listening whereat the ob-
server hears “beats.” All of these are phenomena of nterference, and
many like them are realized with light.

But it is not necessary to produce two overlapping streams of sound,
in order to find evidence favouring the wave-theory. One suffices,
provided that we try to separate from it a narrow jet or ray. Near
one of the forks let a wall be placed, and perforated with a little hole.
This seems to be an artifice for producing a constricted beam of sound
proceeding like a searchlight straight outward along the line passing
from the source through the hole; but it does not work that way.
Instead, the tone of the fork is heard everywhere beyond the wall;
sound is radiated from the hole in all directions. The aperture be-
comes itself a sort of secondary source, from which sound emanates
sidewise as well as forward.

Precisely similar is the visible behaviour of water-waves (and in-
cidentally of the violent compressional pulses produced in air by ex-
plosions, which have been photographed; but we are assuming that
our imaginary pupil knows nothing of sound but what he hears!).
Circular ripples expand over the surface of still water until one of them
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meets a wall with a very narrow opening. Does a narrow segment of
the ripple go clean through the opening and continue onward as a
sharply-ended crescent? Not so; a new circular or semicircular
ripple spreads out from the aperture as a new centre.

This is called, in the science of light, a phenomenon of diffraction.
Actually, it is a phenomenon which reveals the law of wave-propaga-
tion—a law, which in the deceptively simple cases of spherical,
circular, or infinite plane waves is artfully concealed. When one sees
a circular ripple broadening over the surface of a lagoon, it seems as if
each arc of the circular crest were advancing independently and of its
own momentum; as if each segment of the circle at a given moment
were due entirely to the corresponding segment of the smaller circle
which existed a fraction of a second earlier. Nothing could be further
from the truth. At a given moment, a given segment of the circle
is due to the collaboration of all the segments of the earlier smaller
circle; and it will collaborate with all the segments of its own circle
to build the future yet larger one; and if isolated from the rest of the
circumference, it would build a new family of circular ripples all by
itself. Somewhat as the primitive animals which can regenerate their
amputated parts, a wave-system seems to possess in each of its elements
something of the power to build itself anew.

Such is the nature of ripples on water and sound-waves in air.
As for a general definition of wave-motion, perhaps there is no better
way of making one than to accept this manner of propagation as the
distinctive mark. It may seem strange, however, that there should
be any question about definition. Does not everyone know what a
wave is? and is not the difference between a wave-theory and a
corpuscle-theory made instantly clear by their names?

Well! it would not be hard to compile a series of paradoxical state-
ments, by which to show that our immediate off-hand notion of a
“wave" is not by any means sufficiently precise to serve as basis for
an elaborate physical theory. Even in the ancient and familiar
instance of circular ripples on water, even for students acquainted
with the concepts of wave-length and wave-speed, there are possi-
bilities of confusion. It is not expedient to define the wave-length as
the distance from one crest to the next, for this is inconstant. It is
not expedient to define the wave-speed as the speed with which a
crest advances, for this may depend upon the form of the wave.
It is injudicious to think exclusively about the profile of the water-
surface as a sequence of visible elevations and depressions gliding
steadily onward without change of shape; for any part of the profile
may alter itself incessantly as it advances, departing more and more



286 BELL SYSTEM TECHNICAL JOURNAL

from its original contour till it becomes unrecognizable. Definite
as the wave-length and the wave-speed and the waves themselves
may seem at times to be, at other times they seem indefinite and
indefinable.

Now in the general theory these difficulties are removed, for the
attention is focussed first of all upon an abstract entity with a neutral
name—the ‘“‘phase.”” There is a differential equation, a “wave-
equation,” governing the phase; and this entity is propagated in a
certain very definite way conforming to the vague description which
I gave above, and it has a wave-length and a wave-speed. As for the
elevations and depressions of the water-surface, they copy the varia-
tions of the phase more or less faithfully, and may be computed from
these: but except in particular cases the copy is not exact. To the
theorist, the ripples upon the water appear as the secondary and
imperfect manifestations of an abstract wave-motion, discernible only
to the eye of the mind.

That the undulatory theory should introduce an abstraction even
into the example whence it sprang, requiring us to imagine waves of
phase underlying the tangible waves of the sea, is not at all remarkable.
Often in physics a theory evolves in this way. It begins when some
one notes a resemblance between two or more phenomena; it continues
by the invention of a neutral and colorless mathematical expression
for describing the common aspect of all these phenomena; and then
the theorists take over the mathematical expression and transform
and generalize and extend it, until the theory, which at first was
a casual statement that two different things are in some ways much
alike, eventually is defined as the entire system of solutions of some
differential equation. At present there seems to be no adequate way
of defining the term ‘‘wave-theory,” except to say that wherever a
certain differential equation is introduced and solved, there a wave-
theory is adopted. Moreover, it is open to anyone to adduce new
differential equations more or less like the first one, and define as a
wave-theory any which involves the solutions of these. Then a wave-
motion is any motion which conforms to one of the solutions; and
when it comes to defining a wave, what can anyone say except that
under certain restricted conditions a wave-motion may resemble a
procession of ripples on water?

Such a consummation may be devoutly wished by the mathemati-
cian: to the physicist and to the expositor it is not always so welcome.
As a theory increases in scope through increase of abstraction, it loses
the picturesqueness which for many minds is its reason for being.
One climbs and climbs, and the view indeed grows wider, but the
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fascinating details of the landscape are distorted when seen from
above, and finally they are lost in the haze of distance. It grows
more difficult to lead others to the heights, and sometimes even the
explorer cannot retrace his path and return to the firm ground of
experience whence he departed. Yet repeatedly in the evolution of
physics it happens that a theory, already grown so abstract that it
seems almost completely severed from reality, suddenly makes new
contact with the world of phenomena by a prediction so novel and
daring that except for the far preliminary excursion it would probably
never have been conceived; as for instance the existence of quanta,
the "Einstein shift” of the lines in the spectrum of the sun, the
diffraction of electrons by crystals. Remembrance of such episodes
as these is an encouragement, when the path seems devious and
steep.

ProracatioN or WAVES

The laws of the propagation of waves—the so-called ‘‘laws of diffrac-
tion"'—are the most important topic with which we have to deal;
for they involve the very nature and definition of wave-motion, and in
the end the distinction between a corpuscular and an undulatory
theory of matter may rest upon these. Let us attend first of all to the
making of this distinction.

Imagine, then, a multitude of particles—bullets, or atoms, or sand-
grains—all rushing along through space in the same direction with the
same speed, say northward with the speed ¢. Suppose that the loca-
tion of each is stated for a certain moment of time, say {o. The question
to be asked is a very simple one, of the yes-or-no variety. At an
arbitrarily-chosen point P, at an arbitrarily-chosen moment ¢, will
there be a grain of sand or will there not?

It is easy to see what determines the answer. If at the point P at
the moment ¢ there is a grain of sand, it must have spent the time-
interval extending from {; to { in travelling northward along the straight
south-to-north path which ends at P, and therefore commences at a
point Py due south of P and distant from it by ¢(¢ — f) units of length.
If therefore at the moment #, there is a grain of sand at Py, the answer
to the question is yes. Otherwise it is no. No other knowledge is
required, or even relevant. It is not necessary to know the location
of any of the particles which are not upon the north-south line travers-
ing P. It is not even necessary to know the location of any particle
which is upon that line, provided that at the instant f, it is surely
somewhere else than at Py. The state of affairs in P at ¢ is controlled
by the state of affairs in Py at f;, and by nothing else whatever.
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Let the same question be put in another way. Be it supposed that
we are required to predict whether or not there will be a particle in the
place P at the moment ¢; and that we are offered our choice of data
concerning the places of the particles at any prior moment. Let us
choose at random some point P’ due south of P, distant from it by 7
units of length. Then there is only one piece of information for which
we have to ask: is there a sandgrain passing through P’ at the moment
(t — 7'[c), earlier than ¢ by #'/c units of time? Any other information
would be not only superfluous, but useless. Had we chosen some point
lying south of P at a distance 7", the condition prevailing there at the
moment (¢ — #'/¢) would have had no bearing upon the problem; but
the condition there at the moment (¢ — r"/c) would have been all-
powerful. Had we chosen some point not lying south of P, nothing
happening there at any time would have had any bearing upon the
question to be answered.

In fine: at any moment ¢ there is a corresponding point P’ lying
south of P, which holds the destiny of the point P at the moment ¢.
That which is predestined to befall in P at ¢ is at every prior instant
concentrated, so to speak, at a particular point of space. As time
draws on towards ¢, this point moves on toward P, travelling always
along the north-south line—travelling always, let us say, along a certain
ray which at the proper moment carries it right into P.

All these remarks may seem too evident and trivial to be worth the
making; yet they deserve attention, for it is here that the contrast
lies between motion of particles and motion of waves, between un-
dulatory theories and corpuscular. If the region around the point P
is traversed not by corpuscles but by waves, it is not correct to say that
the condition at the point P at the moment £ is determined by the con-
dition in some other point at some prior moment. Even if the waves
appear to be travelling northward with the constant speed ¢, it is not
right to say that the state of affairs prevailing in P at ¢ is controlled
entirely by the state of affairs prevailing at the moment (¢ — r/c) at
the point 7 units southward from P. The destiny of P at { is not
travelling towards it concentrated into a point moving along a ray.
Under some circumstances it appears to be right to say so; but this is
only a semblance, as experiments in other conditions will clearly prove.

Suppose for instance that one is confronted with the task of sheltering
the point P, first against corpuscles and then against waves, which
are advancing from the south. It seems natural to put some obstacle
athwart that particular north-south line which traverses P; for ex-
ample, to place a solid disc so that its axis lies upon that line. If the
disc can arrest all the particles which fly towards it, and cannot deflect
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those which do not, then no matter how small it is it shields the point
P completely against corpuscles. Not, however, against waves.
Suppose that the point P is in water, where the actual waves may be
seen; suppose that before the obstacle is dipped in, each of the wave-
crests extends straight east and west, and they move straight north-
ward. When the obstacle is inserted southward from P, the water at
P does not become perfectly quiet. Apparently the waves curl around
the edge of the obstacle, invading the zone behind it which it could
have protected perfectly against corpuscles. One cannot stop a wave-
motion from reaching a point merely by interrupting with some small
obstruction the line along which the waves seem to be approaching it.

Now what this means is simply that, whether the obstacle be present
or absent, and even though the undisturbed wave-crests move steadily
due northward, the motion at P is not controlled exclusively by the
motions at earlier moments at the points due south of P. To putita
little more loosely: the wave-motion at a point arrives not solely from
the direction from which the wave-fronts appear to be coming, but
from all directions. To put it much more strictly: imagine a sphere
drawn, with any radius 7, around P as centre. When we were dealing
with corpuscles, we found that the state of affairs at the centre of this
sphere at the moment ¢ was entirely controlled by the state of affairs
at the moment (¢ — r/c) at one single point on the sphere (the point due
south from P). Now that we are dealing with waves, we shall find that
the state of affairs at the centre of the sphere at ¢ depends upon the
state of affairs all over the sphere at (¢ — #/c). Every point upon the
sphere influences the centre. Every point in the medium which the
waves traverse sends forth an influence to every other point; the in-
fluence is not instantaneous, but travels from one point to another with
the wave-speed ¢. This “influence” is often called the wavelef.

Too much emphasis has been laid, in the foregoing passage, upon
the spheres which are centred at P; and this must now be rectified.
Any closed surface whatever may be drawn around P, and the state of
affairs in P at ¢ will be determined by the state of affairs prevailing all
over this surface, S, at certain prior moments ¢’; only, since the area-
elements of .S are not in general equidistant from P, the corresponding
values of ¢’ are not in general the same for all of them. The distance
r, measured from P along any direction to the surface S, is in general
a function of direction; consequently the time-interval, r/c, required
for a wavelet to arrive at P from S along any direction is itself a func-
tion of direction; and so also is ¢/, which is (¢ — r/c). To every point
P’ on S corresponds its own value of #; and if we know the wave-
motion in every P’ at its proper ', we can determine the wave-motion

19
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in Patt. Therefore, if there is any closed surface in space, everywhere
over which the wave-motion is known for all times, it is possible to
compute the wave-motion at any point in the volume which that sur-
face encloses.*

This is a feature common to all the familiar examples of wave-
motion, and it is suitable for a tentative basis for a general definition
of waves.

To formulate it strictly, let s be used as the symbol for any quantity
which is propagated in waves. Examples of such a quantity are:
the twist of a taut and twisted wire—the lateral displacement of a
taut wire or a tense membrane—the excess of the pressure in the air
over its average value—a component of the electric field-strength
or the magnetic field-strength in a vacuum—the entirely imperceptible
and hypothetical entity denoted by ¥ in wave-mechanics.

We write s as a function of x, v, z, and #:

s = s(x, v, 3, ). (1)

Fewer than three dimensions of space will suffice in some cases (e.g.,
those of the wire and the membrane); in certain problems of wave-
mechanics, more than three may be required ; but in dealing with sound
in air and light in vacuo, three are usually necessary and sufficient.
For the time being I will suppose that the speed of the waves is every-
where the same. Interesting things will happen when this assumption
is discarded.

What I have loosely called ““the state of affairs” in a point P(x, y, 2)
at a moment ¢ will involve the value of s at x, ¥, 5, and £. Also it may
involve the first and higher derivatives of s with respect to space and
time, evaluated at x, v, z, £. Which of these derivatives we are re-
quired to know is something which might vary from case to case. For
the present, we may consider ourselves required to know s and its first
derivatives ds/dx, ds/dy, ds/dz, ds/dt.

We are to evaluate s and its derivatives at a point P at a moment ¢,
in terms of the values which s and its derivatives possessed at certain
earlier moments over a surface S enveloping P.

Let P be made the origin of our coordinate-system; let ¥, y, z denote
the coordinates of the points on the surface S; let r denote the distance
from the origin to any of these points, so that:

7P =a+9+ 2% (2)

Introduce as an auxiliary the function U, defined thus:

* Naturally the surface must not be so drawn that it includes sources emitting
waves during the time-interval (¢ — ).
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Ulx, y, 2, 1) = s(x, 3,5, t — 7/c). (3)

The value of Uin any point of the surface Sat the moment ¢ is the value
of s which prevailed in that point at the moment when the “wavelet”
started forth which was destined to reach the origin at £. It might be
said that an observer, stationed in the origin at the moment ¢ and
inspecting the surface by means of the wavelets, observes the values of
U instead of the contemporary values of s. Thus a star-gazer viewing
the sky perceives, not the stars as they now are or as at some one
past moment they all were, but each star separately as it was at some
past epoch peculiar to itself; and the apparent arrangement of the
heavenly bodies is one which in fact has never existed.

We shall be concerned not only with the value of s, but with the
values of the space-derivatives ds/dx, ds/dy, ds/dz, which prevail at
each point of the surface at the moment when the wavelet starts forth;
for all of these will influence the value of s at the origin when the wave-
let arrives there. These may be written as derivatives of U/; but one
must be careful here, for U is a function of x, ¥, z not only explicitly,
but also implicitly through 7; and there is a distinction to be made
between total and partial derivatives, a distinction having physical
importance.

To grasp this, denote by (x, ¥, z) the coordinates of some particular
point on S, and by (x + dx, y, 5) those of a nearby point, and by r and
r + dr their respective distances from the origin, and by U and
U + dU the values of U in these points at the instant . Now, U
and U + dU are values of s which existed at different instants of time,
as may be seen by writing down the expressions:

U=s(x,y,5,t—rfc); U+dU = s(x+ dx,y,3,t — r + drfc). (4)

Therefore, if I form the total derivative d U/dx in the classical way, I
am not obtaining the value of ds/dx which prevailed in (x, y, 2) at
(t — r/c). To obtain this value, I must begin by subtracting the value
of s prevailing in (x, v, 5) at (¢ — #/c) from the value of s prevailing in
(x + dx, v, 2) at the same moment; that is, I must form the differ-
ence between (U 4+ dU) and U, meaning by the former symbol:

U+ 99U = s(x + dx, v, 5, t — rfc). (5)

I must then divide this difference by dx, and pass to the limit. But
this is the classical way of forming the partial derivative of U with
respect to x. Therefore the values of the derivatives ds/dx, ds/dy,
ds/dz prevailing at the moment of departure of the wavelet which is
destined to reach the origin at ¢, are the partial derivatives 8U/dx,



292 BELL SYSTEM TECHNICAL JOURNAL

aU/ay, aU/dz. However, the value of the derivative ds/d¢ prevailing
at the moment when the wavelet starts is simply the derivative dU/dt,
which we may as well write dU/dt—it makes no difference.

Our definition of wave-motion may now be stated more rigorously.
A quantity s is said to be propagated by waves, if its value at the
origin at the moment ¢ is determined by the values of U, aUlax, dU/ay,
and 9 U/dz over any surface enveloping the origin.

We now turn to another and more familiar definition of wave-motion,
which shall presently be shown to fall as a special case under this one.

Tae WAvVE-EQuUATION

There is a very celebrated differential equation of mathematical
physics, known as ‘‘the wave-equation” par excellence. Any theory
which culminates in this equation is designated as a wave-theory.
The foundation of the theory of sound is the proof that the excess of
pressure in the air over its average value is subject to this equation.
The elastic-solid model of the luminiferous zther was partially suited
to explain the phenomena of light, because the compressions and the
distortions of an elastic solid conform to the wave-equation. The
electromagnetic theory of light was born when Maxwell discovered
interrelations between electric and magnetic fields, out of which
by transformation a wave-equation could be formed. Undulatory
mechanics is based upon an equation of this type which emerges during
the process of setting and solving the classical equations of motion.

This wave-equation is:

d’s  d’s | ds d’s
(St 3) =% (©)

To demonstrate why it is called a wave-equation and what is the
physical meaning of the constant ¢, it is customary to make a drastic
simplification by assuming that the function s depends only on one co-
ordinate. Such is the case, for instance, when s stands for the trans-
verse displacement of an endlessly long taut string initially parallel to
the axis of x: likewise, when it stands for the excess of the pressure of
the air over its average value, and this excess is constant over every
plate normal to the x-direction—a condition known as that of “plane
waves.” Then the wave-equation assumes the form:

&5 d's
“oET e 7

There are infinitely many solutions of this equation, and among them
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are all ! the functions of the pair of variables x and ¢, in which these
variables appear coupled together into the linear combination (x — ¢t.)
Using f as the general symbol for a function, we may write

s = f(x — cl). (8)

When such a relation prevails, any value of s which occurs at a given
place x at a given moment # recurs at any other moment ¢’ at another
place x', distant from x by the length (' — #)/c. All of the values of
s existing at ¢ are found again in the same order at #, but they have all
glided along the x-direction through the same distance (I — f)/c.
The form, the profile, the configuration of the string are moving along
with the speed ¢, although the substance of the string is oscillating only
a little, and not even parallel to the x-direction. Now this is the
property which to a certain degree of approximation ripples on water
display; this in fact supplies the elementary and restricted definition
of wave-motion, out of which by generalization and extension the
wave-theory has grown.

Thus we see that there is reason for calling (7) a wave-equation,
and identifying the constant ¢ with the speed of the waves. Yet there
are also solutions of (7) which are not of the form (8), and these do
not correspond to an unchanging profile of the string travelling along
with a constant speed, though by mathematical artifice they may be
expressed as a summation of such; and nothing is easier than to find
solutions in two or three dimensions of the general equation (6) which
do not bear the least resemblance to a regular procession of converging,
flat, or diverging waves. The question then arises: is there a feature
common to all solutions of the “wave-equation” fitted to serve for a
general definition of wave-motion?

I will now show—in the manner of Kirchhoff and Voigt—that there
is such a feature, and it is precisely the one already proposed as a
definition for wave-motion. If s be a function conforming to (6), and
U a function related to s according to (3), then the value of s at any
point at any moment is determined by the values of U and its partial
derivatives dU/ox, aU/dy, dU/dz, over any surface surrounding that
point.* The proof is long and intricate; bur for anyone who desires
appreciate the nature of wave-motion, it is not superfluous.

To prove the theorem we have to manipulate the vector (call it W)
of which the components are:

! Exceptions being made for functions which do not have derivatives, and other
curiosities of the mathematicians’ museum.

* The necessary requirements for continuity in s exclude sources of light from
the region of integration.
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10U 19U 1aU
_19U _ 19U _ 19U 9

We= 2o W, roy' W. r 0z ©)
Like U, it is a function of x, ¥, z not only explicitly, but also implicitly
through r; we must therefore discriminate with care between total
and partial derivatives. For reference, here are the formule ? con-
necting derivatives of the one type with those of the other:

d 9 ,90rd 98 ,xd 9 9
+ g __fax—}-cos(x,r)ar, (10a)

dx ~ 9x  dxar ox ' ror

a%=é% %%=%+%%=;—y+cos(y,r)%, (10 b)
Genthntontan
=g;+€05(?',x)%+c05(r.y)%+cos(r.z)%. (10d)

The procedure consists in forming the expression for the true diver-
gence of W, Lo wit:

AW, W, | dW.
div v = + oy + FPRE (11)

dx

and integrating it over the volume comprised between two surfaces:
outwardly, the surface .S over which the values of U are preassigned,
and which envelops the origin at which the value of s is to be com-
puted; and inwardly, an infinitesimal sphere centred at the origin.

It will turn out that the volume-integrals of the various terms either
vanish, or else may be converted into area-integrals over the two sur-
faces. Now the area-integral of any function f over the surface of a
sphere of radius R may be written as

A = 47RY, (12)

in which f stands for the mean value of f over that surface—a statement

2 In deriving the first three of these formulz, use the relation r* = 2? + 3 + 22 in
evaluating dr/dx, dr/dy, dr/dz. In deriving the last, remember that in forming a
derivative with respect to 7 at a point P, the increment dr is always measured along
the line extending from the origin through P, for which line x/r = cos (x, ) = const.;
y/r =cos (y, r) = const.; z/r = cos (3, r) = ccnst.; hence dx/dr = cos (x, 7), etc.
Or one may arrive by geometrical intuition at the formula,

djdr = cos (r, x)d/dx + cos (r, ¥)d/dy + cos (r, 5)d/dz,
from which (10 d) may be obtained by means of (10 a, b, €).



CONTEMPORARY ADVANCES IN PHYSICS 205

which, of course, is merely the definition of f. The essential thing is
that if the sphere is infinitesimal, then in the limit f becomes the value
fo which the function f possesses at the centre of the sphere. If fyis
finite at the origin, 4 vanishes in the limit; but if f varies inversely
as the square of the distance from the origin, A approaches in the limit
a finite value differing from zero. Upon this property our demonstra-
tion will depend.

Developing by means of (10 a, b, ¢) the expression given in (11) for
div W, we find:

. 178U, U | U
divw =2 ( o T oy T oF )
1 a*U U U
+ 7 (x oxdr Ty dyar + _"Bzar) (13)

1/ U au au
—F(x—a;‘l-y@-{*ZE).

The second and third terms on the right may next be beneficially trans-
formed by means of (10 &, using first U and then dU/dr as the argu-
ment of the derivatives in \hat equation:

xdU | yaoU zdU dU oU

;E+ray roz  dr or’ (14.a)
PU | yPU 28U _ 4T _#U aen
rdxdr | ravar | radzdr dr or o’
and so finally we arrive at
. 1 /02U *U , U @&*U 1d ou
= — 4+ — _— — — —_— =
divw r( o Ty + Fra e ) +?‘2dr(r 3 U) (15)

as the expression to be integrated over the volume between S and the
infinitesimal sphere.

Now owing to the nature of the function U, the first term of the expression
panishes. Thisis responsible for our theorem; for the volume-integrals
of the remaining terms can easily be translated into surface-integrals
over .S and the infinitesimal sphere, from which it will follow that the
value of s at the origin is determined by the values of U and its deriva-
tives over S; but if this first term should remain, its volume-integral
could not be thus transformed, and we should find that the value of s
at the origin was influenced by the values of U all through the space
which .S encloses.
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That the term in question does actually vanish is easily proved.
For on the one hand it follows, from the coupling of { and r into the
linear combination (¢ — #/c) in the argument of U, that

U _ U

FkarE (16)

and on the other hand it follows, from the facts that the partial deriva-
tives of U/ at any point and moment have the same values as the cor-
responding derivatives of s at the same point at some other moment,
while the derivatives of s at every point and moment conform to (6)—
from these it follows that

U aU | U |, *U
ﬁ“(a? oy aT) a7

Therefore the first term of the right-hand member of (15) is zero
everywhere, and we have to perform the volume-integration only over

the second:
. 1d au
fdedV—fﬁa;( = U) (18)

Employ spherical coordinates for the integration; then the element
of volume is dV = #? sin 8d0d ¢dr, and we have:

fdledV fdﬂsmﬁfdwfdr (?’——-—U)
- fansos fs[(2-0) - (8- |

This signifies that the long narrow volume-element comprised within
any elementary solid angle dw = sin 6dfd e, and limited at its two ends
by the surface of the sphere and the surface S, contributes to the
volume-integral the difference between the values of (» dU/dr — U) at
its two extremities. Completing the integration by considering all of
these volume-elements together, we see that the volume-integral there-
fore becomes a pair of angle-integrals, those of the function (rdU/dr
— U) over the surface .S and over the sphere. We may transform
the first of these into an area-integral by reflecting that the elementary
solid angle dw intercepts upon the surface S the area-element d.S,
given by the equation:

— dS cos (n, r) = rdw. (20)

(19)

in which (%, r) stands for the angle between the normal to d.S and the
radius 7 drawn to dS from the origin. We must choose positive
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directions for these lines. Let the radius be taken as pointing out-
ward, and the normal as pointing inward towards the volume over
which we have integrated. Then the angle is greater than 90° and
not greater than 180° its cosine is negative, and the negative sign
must be prefixed to the left-hand member of (20) that dS may be
positive. We make this transformation in (19), and the first of the
angle-integrals becomes:

fdesinafd¢(r%’-~ U) decos(n r)(l"U—%). (21)

The second of the angle-integrals in (19) relates to the infinitesimal
sphere. We transform it as we did the first. Now, however, the
process is more simple, for the radius 7 is constant and equal to R,
and the angle (n, r) is zero; hence

dS = R*sin 6déde (22)

and the second angle-integral becomes:

fdﬁsm&fdgo(r——U) fds(;";f g,) (23)

Here we meet the situation for which equation (12) was introduced—
the integration of a function over an infinitesimal sphere. Denote by
f the integrand in (23), viz.,

=R "R (24)

by f the mean value of f over the sphere of radius R, by U, the value
of U at the centre of the sphere, which is the origin, As R approaches
zero, the surface-integral in (23) approaches a limit 4, which coincides
with the limit approached by 4w R*:

Ay = Lim 47R(aU/dR) — 4x U,. (25)
R=0

Unless the mean value of dU/dR should vary as the first or a higher
power of (1/R)—a possibility which must be guarded against—the
first term on the right of (25) will vanish. Under this restriction, then,
Ay is equal to —47Up. Now at the origin U is identical with s, by
definition (equation 3). Consequently U, is identical with the value
of s at the origin at the moment {—the very thing which we set out to
calculate. For this—let it be called s,—we have attained the follow-
ing equation:

drsy = S div WdV + S dS cos (n, r)(aU/far). (26)
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We still have a volume-integral in the formula; but there is a very
noted theorem whereby it may be transformed with sign reversed into
a surface-integral over the two surfaces, S and the sphere, which bound
the region of integration. According to Gauss’' Theorem, any vector
function satisfying certain simple conditions of continuity throughout
a region enclosed by a surface enjoys this property: its volume-
integral through the region is equal to the area-integral, over the
enclosing surface, of the projection of the vector upon the direction of
the outward-pointing normal. This latter is the same in magnitude
and opposite in sign to the projection upon the direction of the inward-
pointing normal, which it is traditional to prefer. The theorem is
not valid, if the vector should exhibit certain singularities within the
volume:; one of the reasons for introducing the infinitesimal sphere is
that the vector W has a singularity at the origin, which point must
therefore be excluded from the volume of integration.

Remembering the definition of W (equation 9), we see that its pro-
jection upon the direction of the inward-pointing normal at any place
upon either surface is

Wa = W cos (n, ¥) = W cos (n, x) + W, cos (n, y) + W, cos (n, 3)

% [(8U/ox) cos (n, x) + (3 U/dy) cos (n,y) + (dU/d3) cos (n,3) ]

=L oUyan),

in which (8 U/dn) stands for the rate at which the function U, owing to
its explicit dependence upon x, y, and 3, varies as one moves inward
along the normal to the surface. The distinction drawn in the fore-
going pages between partial and total derivatives must be remembered.
The partial derivative dU/dn existing at any point P and moment ¢
is equal to the value which the corresponding derivative ds/dn of the
function s possessed at that same point at the earlier moment (/ — rfc).

The quantity W, is to be integrated over the surface of the sphere
and over the surface S. However, the integral over the sphere vanishes
as the radius of this latter approaches zero, for the same reason—and
under the same restriction—as caused the integral of the first term in
(25) to vanish. This leaves us with nothing but the integral of W,
over the surface .S, so that eventually:

f div WdV = — f %(aU/an)ds. (28)

41rsa=l£d5|:c05(n,r)%(l7])--1--%]]. (29)

r on
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We have spoken of the value of s at the origin of coordinates, for
mathematical convenience; but in reality the “origin’ is any point P,
and S is any surface enclosing that point, and s, is the value of s in the
point P at any moment ¢, and U is the value of s in any point distant
by 7 from P, evaluated at the moment (¢ — r/c). Hence (29) may be
written thus:

ds = de[cos (n, r)%(s(t — r/c)) _los(t — r/c)]' (30)

r 7 an

The task is achieved. It has been proved that when a function con-
forms to ‘‘the wave-equation” it conforms also to the first-suggested
definition of a wave-motion, in that its value at any time and place is
determined by its anterior values and those of its derivatives over a
surface completely enclosing the place. Moreover the actual formula
has been derived whereby the value at any point and moment can be
computed when the values all over any surrounding surface are known
at the appropriate prior moments.

INTRODUCTION OF THE IDEAS OF FREQUENCY AND WAVE-LENGTH

it

Hitherto I have spoken chiefly of an extremely abstract ‘‘some-
thing,” denoted by a symbol s, and possessed of the property that its
value at any point and moment is built up out of contributions des-
patched at earlier moments from all of the area-elements of any con-
tinuous surface which encloses the point; these contributions being
borne as it were by messengers, who travel to the point at a finite speed
from the various area-elements whence they depart. Only one physical
constant has been introduced, and this is the speed of these messengers.
This is the constant which appears in the wave-equation (6), being
there denoted by ¢. It is commonly called the speed of the waves;
but, for various reasons which will eventually appear, it had better be
called the phase-speed. Now there are two other constants familiar
in our experience with water-waves and sound; they are frequency
and wave-length. Let us try to import them into the general theory.

At any point of a water-surface over which uniform ripples are
passing, the elevation is a periodic function of time; so also are the
pressure and the density at any point of a gas through which uniform
sound is flowing, or the displacement of either prong of a steadily-
humming tuning-fork. Any periodic function of time is either a sine-
function, or a composite of sine-functions. It is suitable therefore 1o
begin by analyzing the case in which the function is a sine. Using f
to denote any of the quantities above mentioned or anything behaving
like them—say displacement, for example—let us write:

f = Fsin (nt — 8§) = Fsin ¢. (41)
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In this very familiar form, F stands for amplitude and n for 2r times
the frequency, and & for something which is commonly called the
phase; but it will be better to reserve this name for the entire argument
of the sine-function:

Phase = ¢ = ni — & = arcsin (f/F), (42)

and I shall use it henceforth in this sense.

Now, in general, both the amplitude F and the phase ¢ vary from
point to point—the latter because é is often a function of position.
Consequently f is a function of x, y, z and #; and it is immediately
important to find out whether f satisfies the wave-equation. One who
is familiar chiefly with the standard one-dimensional case of waves on
a string is likely to think that this is true as a matter of course. How-
ever, on differentiating f twice with respect to x or y or z and taking
due account of the dependence of both F and & upon these variables,
one sees directly that in general it is not true—not unless the functions
F and & conform to definite and sharply restrictive conditions.?

This appears a rather disconcerting result. However, if instead of
f we envisage f/ F—the value of the displacement at each point referred
to its amplitude there as a unit, or the sine of the phase—it turns
out that the condition under which f/F obeys the wave-equation
is far less drastic. Forming the derivatives, we obtain:

a* f

L= —msing, (43)

v L = (v0) cos ¢ - [(?Ti)'l- (3—‘;)2+ (%)] sin g, (44)

Evidently, in order that the function f/F shall conform to the wave-
equation, it suffices that

vie = 0, (45)

This condition is fulfilled by a variety of functions, including all which
are linear in x, v, and z—the case of ‘‘plane waves,'" which as we shall
see is one of those permissible when the wave-speed is everywhere the
same, as [ have been assuming.

Next we will evaluate the speed of the phase-waves, and incidentally
we shall be led to a new aspect of wave-motion. When the phase

3 The general expression for v¥f is (v2F — F|v¢|?) sin ¢ + (2vF-v¢ + Fy?9) cos ¢.
The coefficient of cos ¢ must vanish, if f is to satisfy the wave-equation with real
phase-speed. By introducing the notion of ‘‘imaginary phase-speed” one may

continue to regard the function f as conforming to the wave-equation, even though
the coefficient of the cos-term does not vanish.
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conforms to (45), it follows from (43) and (44) that

(GG BTN T

The quantity in brackets, being the square of the magnitude of the
gradient of ¢, shall be denoted by the usual symbol |ye|2% Then for
the square of the phase-speed we obtain 72/|v¢|?, and for the phase-

speed itself:
¢ == +n/|ve|, (47)

The quantity = is 27 times the frequency. Also, it is the time-
derivative of ¢, as follows directly from the definition in (41); conse-
quently:

¢ = = (9g/a0]|ve]. (48)

This is an equation with a very important meaning, which will now be
displayed.

Select any point in the medium and any moment of time £, and de-
note by ¢o the value of ¢ prevailing then and there. Singular cases
excepted, there is an entire surface containing the point in question
everywhere over which ¢ has the same value ¢,. This surface is by
definition a wave-front. Call it S,. At a slightly later moment
lo + dt, there will also be a surface everywhere over which the value
of ¢ is ¢p. It will however not be the same surface Sy, but another—
a wave-front S, so placed that from any point Py on .S; the nearest
point on S) is reached by measuring the length c¢d: along the line
normal to .So, in the sense in which ¢ is decreasing (the sense opposed
to the gradient of ¢).

To see this, imagine a particle which at the instant # is travelling
through P, along the direction normal to S, in the sense just stated,
with a speed to be designated by u. At the instant {p + df it occupies
a point where the value of ¢ then prevailing is given by the formula:

oo+ de = g0 — |volds + (‘f,—f)dz
(49)

Il

d
e — u|veld: + (g‘f)d:,

for in the time-interval dt it travels over a distance ds = = wudt along
the normal to the surface S, and along this normal the slope of the
function ¢ is equal to |V¢|, and meanwhile at each point of space ¢
is varying directly with time at the rate (9¢/df). Now if the imagi-
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nary particle happens to be moving with just the speed defined by the

equation
u = (dp/d)[Ve = ¢, (50)

the coefficient of df in equation (49) vanishes; that is, the particle as
it moves along keeps up with the preassigned value of ¢; but this is the
same thing as saying that ¢ is the speed of the wave-front.

The phase-function ¢ therefore possesses a quality which in itself
suggests one aspect of a wave-motion. It is not periodic, neither does
it conform to the wave-equation; but each of the surfaces over which
¢ has any constant value is perpetually travelling. Each of them
may be changing continually in size, it may even be changing in shape;
but each retains its identity, and if it is completely known for any
given instant, its past and future history are determined completely;
for each of the area-elements of such a surface is moving at the speed
¢ and in the direction normal to itself, and from the position of each
area-element at the moment ¢ we can determine the position of the
area-element into which it evolves at the moment ¢ + dt, and repeat
this process of prediction or retrospect ad infinitum. 1 will speak of
this state of affairs as propagation by wave-fronts.

Having determined by (48) the relation between frequency and
phase-speed, we now can give both the definition and the formula for
the wave-length. The wave-length \ is by definition the quotient of
phase-speed by frequency:

(n/2m)\ = ¢, (51)

and in this special case, the formula for it is:
A = 2n/|vel. (52)

The reason for giving this quantity a name, and such a name as “wave-
length,” arises from the best-known and too-exclusively-known special
case, that of “plane waves” commonly so called—meaning not only
that the wave-fronts are plane, but also that the amplitude is constant
over each. Such waves travelling along any direction, say that of
x, are described by the expression:

f = Fsin (nt — mx), F = constant. (53)

The wave-fronts—that is to say, the surfaces over which ¢ = (nt — mx)
is constant at any moment—are planes normal to the axis of x. These
planes are likewise the surfaces over which the displacement f is con-
stant at any moment, and it is tempting to define the wave-fronts as
the loci of constant displacement; but this is a coincidence which should
be regarded as an accident. At a given moment, any value of sin ¢
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which is found anywhere repeats itself at intervals 2w/m all along the
x-direction; exactly as, at a given point, any value of sin ¢ which is
found at any moment repeats itself at intervals 27/% all through time.
Owing to the coincidence aforesaid, any value of f which is found any-
where also repeats itself at spacings 2«/m along the direction of x.
This constant spacing serves as the elementary definition of wave-
length; and in this special case the elementary agrees with the general

definition, for
m = |d¢/dx| = |ve| = 2m/\ (54)

But there is an almost equally simple case in which the spacing between
wave-fronts and the spacing between surfaces of constant f are not the
same. I refer to the case of spherical waves of sound or the circular
ripples on a water-surface, in which we have:

f = Fsin (nt — mr), F = constant/r. (55)

In this case f/F does not conform to the wave-equation, but the func-
tion f does. Nevertheless it is the phase, and not the displacement,
which advances steadily outward (or inward) in a sequence of steadily
diverging (or converging) spherical wave-fronts which expand or
contract with the constant phase-speed ¢. For any two of these
spherical wave-fronts differing in radius by 2x/m, the values of ¢ are
the same. The surfaces of constant f are also spheres, but they expand
or contract with variable speed, and for any two which differ in radius
by 27/m the values of f are different. This shows that one must not
be misled by experience of plane waves into defining ‘‘wave-length” as
“‘distance between points where at the same moment the displacement
is the same’’ but must hold fast to the phase as the central fact of any
wave-motion. _

If the phase-function ¢ does not vary in space, we have the case of
stationary waves. The coefficient of cos ¢ in the general expression
for ¥2f (footnote on p. 339) now vanishes automatically; the coefficient
of sin ¢ reduces to the term y*F, and this must be equated to — #2F/c?,
which if # and ¢ are preassigned leads to an alternative form of the
wave-equation

n2
vF+ 5P =0 (56)

very common in acoustics and in wave-mechanics.

In summary:

We have considered two definitions of wave-motion: first, that the
state of affairs at any point and moment in the medium is controlled
by the state of affairs at earlier moments all over any continuous sur-
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face drawn in the medium completely around the point; second, that
the function which is propagated in waves conforms to the so-called
“wave-equation.”

We have found that these definitions are compatible with one
another, the latter being included under the former.

We have applied them to the case of a function which at any par-
ticular point of the medium varies as a sine-function of time, thus:

f = F(x,y, 3)-sin ¢; ¢ = nt-6(x, ¥, 2),

and have found:

(a) that provided the functions F and & conform to certain stipula-
tions, the function f will satisfy the wave-equation;

(b) that ¢ itself is propagated by wave-fronts; although there is
nothing periodic or vibratory about ¢, each surface over which ¢
possesses any constant value wanders onward through space, changing,
it may be, in shape as well as position;

(¢) that the speed with which the wave-fronts of the phase-function
o travel is the speed at which the contributions, out of which the value
of f{F at any point and moment is built up, travel to that point from
any environing surface.

A Test oF KIRCHHOFF'S THEOREM

Having formed the conceptions of plane waves and sine-vibrations
and frequency and wave-length, we now can practice on Kirchhoff's
theorem by applying it to a problem of which the answer is predeter-
mined, so preparing ourselves for other problems of which the answers
can be discovered only by means of the theorem.

Imagine plane monochromatic waves, of frequency v = 2wz,
wave-length A = 2x/m, and phase-velocity ¢ = »A = n/m, travelling
in the positive x-direction in an endless procession through an infinite
medium. They are described by the function:

s = cos (nt — mx), (61)

which is a solution of the wave-equation (6).
The value sp of the function s at the origin at the moment / is by

hypothesis
s¢ = cos #nt (62)

and according to Kirchoff's theorem it is given by the following

equation:

4‘ﬂ'Sn=de[COS (n,r)ig—la—q], (63)

ar r r on
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in which the integrand on the right is integrated over any surface
completely enclosing the origin. For any such surface, then, the
integral on the right of (63) must be equal to 4= cos nt.

Fic. 1

This we proceed to test for the simplest of such surfaces, a sphere
centred at the origin.

Denote by R the radius of the sphere; by 6, the angle between the
positive direction of the x-axis and the line drawn from the origin out-
ward through any point P of the sphere. The inward-pointing normal
at P is directed oppositely to this line, and hence cos (n, ) = — 1 and
cos (n, x) = — cos 8. The function U and its derivatives are these:

U = cos [u(t —E) — mx] = cos (nt — mr — mx),

dUfor = msin (nt — mr — mx),
aUlan = (9U/dx) cos (n, x) = (dU/ax) cos (v — 0) (64)
= — mcos fsin (nt — mr — mx).

In each of these we are to set # = R and ¥ = R cos § in preparation
for integrating over the sphere. The element of area is

dS = 2nR?sin 0d0 (65)

and the limits of integration are 0 and =. Therefore the integral is

this:

I = 2x f dfsin 8 cos ¢ — mR(1 — cos 0) sin ¢]; (66)
¢ = nt — mR(1 + cos 6),

which is easy to evaluate, since on putting z for (1 + cos 8) and —dz
for sin 8d6 it becomes

0
I=— 27rj dz[cos (nt — mRz) — mR(2 — z) sin (nt — mRz)], (67)
20 :
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which can be integrated almost by inspection (the last term through
integration-by-parts) and yields the desired value:

I = 4w cos nt, (68)

and Kirchhoff’s theorem comes triumphantly through the test.

It happens however that these conditions, to which we have applied
the theorem with so easy a success, are such that the result is of no
value whatever in testing the undulatory theory of light.* As I have
said already, the eye and the light-recording instruments register
amplitude only, not phase. In the train of plane parallel waves de-
scribed by (61), the amplitude is everywhere the same, and the instru-
ments must report an impression uniformly intense. Nothing could
be learned from them about the frequency or the wave-length of the
light, and indeed they could not even show that there is anything
periodic in the beam. The situation is no better in such a train of
spherical diverging waves as (55) describes. Here the amplitude varies
inversely with the distance from the centre of divergence, and the eye
must report a gradual smooth decline of intensity as it moves away
from that centre. In neither observation is there anything to reveal
a periodicity or a wave-length, nor anything to forbid the supposition
that a beam of light is a stream of straight-flying particles. What we
require is a situation in which the use of Kirchhoff’s theorem leads toa
peculiar and striking variation of amplitude from place to place in the
radiation-field—an amplitude-pattern or vibration-pattern, so to speak,
depending in detail upon the wave-length of the waves, and so distinc-
tive that if such a pattern of intensity were actually to be found in a
field of light one could not but regard it as forceful evidence for the
undulatory theory.

Situations which answer this requirement occur when a broad beam
of waves is intercepted by a screen pierced with small apertures. In
the space beyond the apertures there is a wave-motion of which the
amplitude varies from place to place in a remarkable way, depending
in detail upon the wave-length. When light falls onto a screen pierced
with small holes, the intensity beyond the holes varies remarkably in
space. The variations which are observed agree with those which are
predicted from the wave-theory, when the proper value of wave-length
is chosen; and this is the method of measuring wave-length. Also it
is the method of measuring frequency; for the frequency of light can-
not be measured directly; it must be computed by dividing the wave-

* In the actual theory of light there are several distinct quantities s—components

of electric and magnetic field strengths—each of which separately conforms to
equation (6), and which are interconnected in ways which need not yet concern us.
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length into the speed of light. Now all the contemporary theories of
the atom and of light are based upon values given for frequencies of
radiation; and therefore all of them are founded on the wave-theory
of light.

We will consequently next consider the propagation of waves beyond
apertures, or what Rayleigh called the “effects dependent upon the
limitation of a beam of light.”

ProOPAGATION OF A WAVE-MOTION BEYOND APERTURES

Suppose that the entire plane & = 0 is occupied by a wall acting as
a total stop to all the waves which come up against it, except where
it is pierced by one or more openings; and for simplicity suppose that
the oncoming waves compose a plane parallel monochromatic train,

s = cos (nt — mx), (69)

advancing from the side of negative x. The primary question is:
what goes on in the region to the positive side of the screen?

The question shall be answered by approximations,

The first approximation consists in assuming that the wave-fronts
come unaltered up to the screen, and each segment which coincides
with an aperture goes straight through it and indefinitely onward,
travelling unchanged in a straight line even though the surrounding
portion of the wave-front has been blocked. If this were perfectly
valid, there would be rectilinear propagation of light; the laws of
geomelrical optics would always be exact; and there would be no need
for any but a corpuscular theory of radiation. Because this approxi-
mation is deficient, the wave-theory is required. Yet it is close enough
to the truth to seem exact to all but the most careful observation, if
the apertures are as wide as windows or even as keyholes.

The second approximation consists in assuming that the wave-fronts
come unaltered up to the screen, and each segment which collides with
a portion of the wall is swallowed up and blotted out of existence, but
the wave-motion within each aperture is precisely the same as it would
be if the entire wave-front passed intact across the plane x = 0. That
is to say: the displacement on the front face of the screen is supposed
to be given thus:

Il

s = cos nt, ds/ox = m sin n¢ wherever there is an aperture,

(70)

s = ds/dx =0 wherever there is obstruction.

This is the assumption on which are founded the conventional theories
of the passage of light through a hole, or a slit, or a pair of slits, or a
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diffraction-grating, or an echelon, or past a straight-edge or a solid disc
or any small obstacle. Having made it, one proceeds to determine
the value of s at any point beyond the screen by integrating Kirchoff's
integrand all over the apertures—all over the vacant places of the
screen, as if in those places only the wave-front were intact, and else-
where it were abolished; as if the wave-front were cut into the pattern
of the apertures as by a template, and each of the segments thence-
forth propagated according to the law of wave-motion.

This method is fairly easy to apply, at least when the contours of
the openings are simple geometrical figures, circles or rectangles for
instance. In practice it is used almost always; and its results are
ratified by experience. Yet it is not quite accurate.* I am not re-
ferring here to the ever-present possibility that boundary-conditions
chosen for their mathematical simplicity may not properly describe
the actual conditions in the physical world. I am referring to a math-
ematical, that is to say, a logical, difficulty which is inevitably fatal.
A function which is equal to cos (nt — mx) over arbitrary patches of
the plane x = 0, but is always equal to zero over the remainder of the
plane—such a function does not conform to the wave-equation (6).
If in an actual case of light passing through a hole in a screen the phe-
nomena conform everywhere to the wave-equation, then the boundary-
condition (70) cannot be valid; if on the other hand the state of affairs
in the apertures is rightly described by (70), then the wave-equation
cannot be valid and Kirchhoff's theorem cannot be applied.

There is no way out of this dilemma. One must either accept the
foregoing assumption frankly as an approximation, or else undertake
the vastly more difficult problem of solving the wave-equation itself
with the boundary-condition s = 0 (or some other which is deemed ap-
propriate) for all the opaque area of the screen, and with other bound-
ary-conditions at infinity to settle the direction from which the light
is supposed to come. By this method one makes no assumption about
the values of s in the apertures; they are part of the solution. But
the general problem is formidable, and no less eminent a man than
Sommerfeld was required for the solving of even the simplest conceiv-
able case. Later I will mention his solution of the case in which the
barrier covers all that part of the plane x = 0 which lies to one side of
a straight line, the y-axis for instance, and the remainder of the plane
is void. Meanwhile, since on the whole the second approximation is a
close one, I will adopt it to explore these effects of diffraction which
first invited the wave-theory of light, as they now are inviting that of
matter; which serve to determine wave-lengths of light, and of matter;

4+ In some of the texts on optics this is not made sufficiently clear.
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which set the limits for the powers of telescope and microscope, and
perhaps for perception altogether; and which are responsible for the
haloes and the parhelia of the sky.

Imagine then that the waves which come up to the screen from be-
hind are plane-parallel and monochromatic, and travel in the positive
sense of the x-direction, the screen itself occupying the entire plane
x = 0. In making the ‘“second approximation' aforesaid, we are to
regard this plane as a surface where s and its gradient are zero every-
where save over certain patches—to wit, the apertures—and over
these are given by the expressions:

§ = cos (nt — mx);—0 = cos nt, (1)

ds/dx = m sin (nt — mx).—o = m sin ni.

We are then to determine the value sq of s at any field-point P any-
where before the screen—anywhere in the region x > 0—by forming
Kirchhoff's integral over these apertures:

41730=de|:(305(12,?')§-£—1£]:|. (72)

ar r r an

Over the rest of the plane x = 0 the integrand vanishes. Since, how-
ever, Kirchhoff’s theorem involves an integration over an entire closed
surface surrounding P, we ought in strictness to extend the integral
over some far-flung surface completing the enclosure; as for instance
a hemisphere seated upon the plane x = 0, sufficiently great in radius
to contain P and all the apertures. This is always neglected, possibly
because in practice the wave-motion over such a surface would as a
rule be too chaotic to produce any regular effect at P.?

In the integrand of (72), 7 stands for the distance from P to any area-
element dS of an aperture; the positive r-direction is measured from
P through dS in the direction from front to back; the positive n-direc-
tion is the forward-pointing normal to 4S5, and therefore is identical
with the positive x-direction. Remembering the definitions of U and
its derivatives, one easily sees that:

U = cos (nt — mr); (73)
dU[or = aU/ax = aU[dn = m sin (nt — mr).
It will be convenient to give the symbol 0 to the angle between the posi-

& Certainly it cannot be argued that the effect from a distant surface is necessarily
too small to be noticed at P; we have just seen that in a field of plane-parallel waves
it is the same for any spherical surface, no matter how great the radius.
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tive x-direction and the line from d.S to P, so that cos (», ) = — cos 6.
Consequently:

dmso = de[-— r—lzcos (nt — mr) — ? (1 + cos 6) sin (nt — mr)]. (74)

One is tempted to say that the quantity under the integral sign is
the contribution made by the element-of-wave-front d.S to the value of
s at P. This notion facilitates both thought and description, and I
will adopt it, but with a warning. The danger is that one may come
to think of an element-of-wave-front as an independent entity, capable
of existing by itself in the medium regardless of what other elements-of-
wave-front adjoin it or stand elsewhere. This is unpermissible, for
the same reason which makes the method that I am now expounding
an approximate and not a rigorous one. Were one of these elements
of wave-front alone in the medium, the function s would not conform
to the wave-equation. Therefore if we call the expression

dsy = %rdS l: — ;lgcos (nt — mr) — ? (1 + cos 0) sin (nt — mr)] (75)

the coniribution of the element-of-wave-front dS, we must always re-
member that it cannot be isolated, but—like the donations to certain
endowments—is given only under the condition that other elements
also contribute.f .

The contribution of .S, then, is made up of two terms, one varying
inversely as 72 and the other inversely as r/m. - At great distances the
latter must increasingly outweigh the former; and ‘‘great distances’’
in this context signify those which are much greater than 1 /m—-that is
to say, very many times as great as the wave-length of the light.
Now as the wave-lengths of most kinds of light are less than .001 mm.,
a field-point where observations can actually be made must necessarily
be distant by many wave-lengths from the screen. Hence it is cus-
tomary to ignore the first term in the expression (75) and in its integral,
and write for the contribution of d5:

_t

m .
y as - (1 + cos @) sin (nt — mr). (76)

dSo =

This expression is the approximate description of what in an earlier

& The reader may notice that whereas in dealing with a closed surface surrounding
the field-point the n-direction was defined as that of the “inward-pointing normal,’”
there is no way of discriminating between the two senses of the normal to an isolated
area-element. This causes an ambiguity in the sign of the contribution; for reversing
the sense of the normal reverses the signs both of aUfdn and of cos (n, ). The
ambiguity is always, I think, physically trivial.
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passage I called the “influence” or the “wavelet’” which spreads out
from the element-of-wave-front in all directions.

Examining it factor by factor, one sees:

(a) that the amplitude of the wavelet varies inversely as the distance
r from the starting-point, which seems natural;

(b) that the wavelet is not isotropic, its amplitude diminishing ac-
cording to the law (1 + cos #) from a maximum value in the forward
to zero in the rearward direction. This is commonly stated as the
reason why waves can be propagated in one direction only, not neces-
sarily both forward and backward at the same time;

(¢) that for waves of the same amplitude and different wave-lengths
the amplitudes of the wavelets stand in the inverse ratio of the wave-
lengths—the shorter the waves, the more powerfully they are dif-
fracted;

(d) that the wavelet from any point is constantly one quarter of a
cycle in advance of the primary wave, varying as — sin n¢ whereas the
wave varies as cos nl.

The advance-in-phase and the factor m in the amplitude enter, it is
clear, because the “wavelet’ represents the second term in (75)—
the term which involves the slope ds/dx of the wave-function, not the
wave-function itself. One might say that the cyclic variation of
ds/dx stirs up a relatively far-reaching commotion in the medium, while
the disturbance which the cyclic variation of s excites is rapidly attenu-
ated and mostly negligible. Formerly the factor m and the advance-
in-phase seemed unnatural and very strange; for they antedated the
theorem of Kirchhoff by sixty years, having been forced upon Fresnel
before 1820—and this invites an allusion to history.

Though it is in connection with Huyghens' principle that one
commonly hears of wavelets, that principle itself amounts to a denial
of nearly every quality which we associate with the ideas of wavelet
or wave. Not only are the “wavelets” of Huyghens' construction
quite devoid of anything undulatory or periodic; the construction
itself is based on the assumption that there is only one point on each
where the amplitude is appreciable—the point on the prolongation of
the normal from the primary wave-front (corresponding in my notation
to 6 = 0). But to say that a disturbance is transmitted by wavelets
such as these is to say that it is transmitted in concentrated form along
lines or rays—which is the same thing as saying that it travels like
corpuscles. Huyghens’ principle in fact leads straight to the doctrine
of the rectilinear propagation of light, and fails either to predict or to
explain the phenomena which require a wave-theory.* The accredited

* [ am not prepared to say that this is true of the applications to crystal optics.
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founder of the wave-theory of light invented in reality a novel language
for expressing the corpuscular theory!

Fresnel however invested these wavelets of Huyghens with some of
the properties which entitle them to the name. He supposed that the
amplitude was distributed widely over each, not confined to the point
# = 0, though greatest at that point; he thought that it diminished
slowly with increase of 8, though he did not suggest the precise factor
(1 4 cos §) nor any other; and he thought that it varied inversely as
distance. Further, he endowed it with a periodicity. Thus far, he
was right. But naturally he supposed that the cause of the wavelet
was the cyclic variation of the wave-function s, and therefore he pre-
sumed that it started out in consonance of phase with the primary
wave; and he did not insert the factor m. However when he came to
test his ideas in somewhat the sameway as Kirchhoff's theorem has been
tested in these pages—by applying them to a case where the required
result was known & priori—he was unable to derive the proper answer,
except by introducing the factor m and the advance-in-phase; and
thenceforth they have figured in the theory of diffraction, indispensable
and until the day of Kirchhoff inexplicable.

To return to the problem of determining the wave-motion beyond
the apertures: under the approximations stated, it is mathematically
quite definite. The solution is the value of the integral:

Sp = _%rfds[%u + cos 0) sin (nt — mr) |, (77)

(0
._A_l——)n
cﬁ\e\
=
P

Fic. 2 .

extended over the apertures; 7 standing for the length of the line join-
ing the field-point P with the element-of-wave-front d.S, and @ for the
angle between this line and the perpendicular dropped from P to the
plane of the screen.
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A simple, instructive, and historically famous example is that of the
circular hole.

D1FFRACTION FROM A CIRCULAR APERTURE

If the propagation of waves were rectilinear, their amplitude would
be constant along every line passing normally across an aperture.
Such however is as far as possible from being the truth, as we can easily
learn by evaluating the wave-motion along the “axis’ of a circular
hole—that is, the line passing through the centre of the hole perpendic-
ular to the plane of the screen. Locate the centre of the circle at the
origin, so that its axis is the axis of x. Denote by R the radius of the
circle, by xo the coordinate of the field-point P located anywhere upon
the axis. All points on any circle centred at the origin being equi-
distant from P, we may divide the area of the hole by concentric circles
into annular elements-of-area. Denote the radius of such a one by p,
its breadth by dp; then for it:

dS = 2npdp; = x? + % cos @ = 'xo/r, (78)

and the limits of integration are p = 0 and p = R,

The problem is now stated in full; but it is very much simplified if
the distance x, from screen to field-point is very many times as great
as the width R of the aperture; and this in practice is commonly the
case. Then to first approximation,

r = Xy, cosf =1, (79)

and these values are close enough to the correct ones to suffice for the
multipliers of the sine-functionin (77); but in the argument of the sine,
r is multiplied by m, and a variation of only half a wave-length in
entails a complete reversal of the function; hence in the argument we
must proceed to second approximation, and write

mr = mxg + mp?[2x,. (80)

Making these substitutions in (77), we have finally:
R
so = — (m/x) f psin (nt — mx — mp*[2x0)dp
0

= cos (nt — mxo) — cos (nt — mxy — mR?/2x,) (81 a)

V2(1 + cos mR%[2x0) cos (nt — mx, — a). (81 d)

Interpreted, these equations tell the startling fact that along the
axis of the hole the amplitude, far from being constant, varies in a
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gradual and cyclic way between zero as one extreme and double the
amplitude of the unintercepted wave-train as the other. As the
field-point is displaced along the axis towards or away from the aper-
ture, as the aperture itself is expanded or contracted, doubled agitation
succeeds upon quiescence and quiescence upon agitation; and the
opening, far from serving as a window to let a segment of the oncoming
wave-train pass unaltered by, acts as an agency for producing a curious
pattern of varying amplitudes over the region before it.

Now these are precisely the conditions under which, as T remarked
before, one can arrange a test of the wave-theory of sound or light;
for here we have the amplitude varying from point to point, in a pattern
depending in detail upon the wave-length. Experience of light reveals
just such a pattern; when parallel light is shed normally upon a screen
pierced with a small and accurately rounded hole, the illumination in
the axis of the hole passes alternately through maxima and minima
as the observer recedes along it. Fresnel was led in a curious way to
discover the minima. The French Academy having offered a com-
petitive prize for a study of diﬁrfaion#an action instigated, it appears,
by adherents of the corpuscular theory of light, who expected that a
thorough knowledge of the phenomena of diffraction would demolish
the support which they were vaguely supposed to provide for the wave-
theory—TFresnel conducted a research and submitted a memoir which
ranks among the classics of physical science. It went for judgment to
an illustrious committee of five,” one of whom, the very eminent
mathematician and physicist Poisson—who had been an upholder of
the corpuscular theory—promptly deduced the law of the maxima and
minima along the axis from Fresnel's conception of the wavelets. He
imparted this prediction to the author of the memoir; and in a note
appended to the published version, Fresnel has left it on record that he
looked for a minimum and found it “like an inkspot” in the centre of
the field before the hole.

Equation (81) shows further that the amplitude at any point upon
the axis must vary to and fro between the same two extremes—zero,
and double the amplitude of the unhindered waves—as the hole ex-
pands or shrinks. Wood has described how this may be observed
with an iris diaphragm. For an observer stationed at a fixed point
upon the axis at a distance xo from the hole, the amplitude falls to zero
whenever the radius of the circle has one of the values determined by
the condition

mR2[2xy = even integer multiple of , (82)

7 Arago, Biot, Gay-Lussac, Laplace and Poisson. It would be hard to assemble
a more distinguished group at any time or place.
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that is to say, whenever
%o = mR2kw, k=0,2,4,6 ..., (83)

and attains its maximum value, double the amplitude of the uninter-
rupted waves, whenever

xo = mR®[2km, E=1,3517 .... (84)

Imagine circles drawn upon the plane of the screen, with their common

centre at the origin and their radii Ry, R, Rs, . . . prescribed by the
equations,

mR22rxy = k, k=0,1,234,.... (85)

They divide up the plane of the screen into a tiny central circular area
and a series of surrounding rings. These are the “Fresnel zones”
relative to the point x, where the observer is placed. If the circular
hole comprises an odd number of the zones, the wave-motion at x,
attains its maximum; if an even number, the wave-motion vanishes—
there is silence or darkness. It seems as if the first, third, fifth and
other odd-numbered zones brought light, and the second, fourth and
other even-numbered zones destroyed it.

It is equally easy to find the wave-motion along the axis of an an-
nular opening—that is to say, a circular hole partly filled by a con-
centric circular stop. Denote by Ry the radius of the stop and by R
the radius of the hole; then the limits of integration in (81) are super-
seded by p = Ry and p = R, and the amplitude along the axis varies
thus:

A = 2[1 — cos m(R* — R¢*)2x). (86)

This contains the surprising conclusion that the maxima of amplitude
along the axis are as great as they would be if the stop were removed,
though they may be differently placed. An observer properly sta-
tioned should see the light brighten when the obstacle is inserted; it
may even be brighter than when the obstacle within the hole and the
wall surrounding it are totally removed, leaving no hindrance to the
onward march of the waves.

The conclusion still holds good when the boundaries of the circular
hole retire to infinity, leaving nothing but an opaque disc in an other-
wise uninterrupted stream of plane parallel waves; although the ap-
proximations made in the foregoing pages are then no longer valid, and
equation (86) is not to be employed. Experience however shows that
when a small and accurately rounded circular disc is immersed in a
beam of parallel light there is a bright spot—more precisely speaking,
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a bright core—along the axis of the geometrical shadow. Poisson
forecast this also when Fresnel's memoir came before him, and seems
to have thought that it would make an experimentum crueis, for another
member of the committee—Arago—has recorded that he tested the
prediction when Poisson made it. He found the bright spot in the
centre of the shadow of a circular disc. It is said that Delisle had
found and recorded it already, but the record had slipped into oblivion .8

We take up now the problem of determining the wave-motion away
from the axis—otherwise expressed, that of determining the distribu-
tion-of-amplitude over any plane parallel to the plane by the screen.

AY

ds(0nt)
0\\‘\\—.}:-— X

° TS P(xy,2)

Fic. 3

Denote by (x, ¥, 2) the coordinates of any field-point and by (0, », {)
those of any area-element dS of the aperture; by r, as heretofore, the
distance from P to 4.5, and by 7, the distance from P to the origin.
Then

Amatb -t == = - B (8]

As heretofore 7 and 7, shall be supposed to be very many times as great
as the dimensions of the apertures, and therefore as the greatest values
attained by 7 and ¢; therefore, to first approximation,

r = n, cos B = x/r, (88)

8 [t is interesting to notice why an accurately circular disc is required to show the
bright spot in its best development. Take the case of the aperture, since we already
have its suitable equation (81). A nearly but not quite circular hole may be regarded
as made up of sectors, each with a different radius. For each of these the upper limit
of the integral in (81) would be different, and therefore the condition (84) for doubled
amplitude could not be realized for all at once. There would be a wave-motion along
the axis, but not the regular alternation of maxima and minima nor the sharply out-
standing brightness at the maxima,
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and to second approximation,

r=r0o— (yn + zx)/r. (89)

Into equation (77) we insert the first-approximation values of # and
cos § in the multipliers of the sine-function, but the second-approxima-
tion value of  into the argument of the sine. Therefore we have, for
the value of s at the very distant point (x, ¥, z), the expression:

s = _ET.,<1 -{-;-;)jfdnd{sin (nt — mry — myn + zi/re). (91)

It is expedient to introduce the three direction cosines of the line
extending from the origin to the field-point, the cosines of the angles
between it and the coordinate axes:

a = cos (x, ro) == x/re; B = v/re; ¥ = z/ro. (92)

Then, with a slight additional transformation, we convert equation
(89) into:

s = const. (1 + «) [sin (nt — mrg) ff dndi cos m(By + ¥¢)

— cos (nt — mro) f f dnd{ sin m(8y 4 "}’ﬁ')] 53)

= const. {1 + a)[Csin (nl — mro) — S cos (nt — mny)],

the symbols C and S being traditional for these integrals.

The coordinates of the field-point have disappeared, leaving only the
cosines which define its direction as seen from the origin. This means
that we have here the formula for the wave-motion over any plane
parallel to the screen and infinitely far away, in terms of the directions
in which its various points are seen. The words ““infinitely far away "’
sound formidable; but it is not necessary to depart for infinity, in order
to find a plane where (93) describes the state of affairs. There is an
artifice for bringing the infinitely distant plane up to a convenient
nearness; an artifice known as a lens. When a converging lens is set
up before the apertures, the wave-motion predicted by the formula
(93) for all points infinitely far away upon the line with direction
cosines (@, 8, v)—this wave-motion occurs at the point where the line
intersects the focal plane of the lens. Therefore we may regard equa-
tion (93) as the description, according to the wave-theory of light, of
the distribution-of-amplitude in the focal plane of the lens. (To con-
vert the cosines into coordinates in that plane, it is sufficient to multiply
each by the focal length of the lens.)
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Returning now to (93), it is evident that the problem is solved when
the integrals are evaluated; in particular the amplitude is given by
the formula,

A = const. (1 4+ a) VC2+ S~ (94)

Whatever the shape of the aperture or apertures, the values of the
integrals can be determined as closely as may be desired; and in two
instances which happily are the most frequent and useful—those of the
circular and the rectangular openings—the integrations lead directly
to familiar functions.

DIFFRACTION PATTERNS IN THE FocAL PLANE OF A LENS

If the origin is located at the centre of the circle, the integral S
vanishes—for the value of the sine-function contributed by each area-
element is annulled by the value contributed by the element symmetri-
cally placed to the other side of the centre—and the integral C for the
same reason becomes this:

C = J S cos (mpBn) cos (my{)dnds. (95)

By putting ¥ = 0and then integrating, we shall obtain the distribution
of amplitude along the line passing through the centre of the diffraction-
pattern and parallel to the axis of y; but this, by reason of the circular
symmetry of the entire system, is the same as the distribution of
amplitude along any radius passing through the centre of the diffrac-
tion-pattern, and therefore is all we need. In the expression so ob-
tained, replace the Cartesian coordinates heretofore used in the plane
of the screen by polar coordinates p and ¢; then we have

C= S J pcos (mBpcos p)dpde, (96)

the limits of integration being 0 and R (the radius of the aperture)
for p, and 0 and 2= for e.
The integral C is proportional to the Bessel function of order unity of

the variable mRp:
C = 2(xR/mB) J,(mRp). (97)

This is a function which like the sine vanishes at intervals, though
not at equal intervals. The centre of the diffraction-pattern is there-
fore encircled by concentric rings over each of which the wave-motion
vanishes; between each pair of these there is a zone where the ampli-
tude differs from zero and varies, attaining a maximum somewhere
near the middle of the zone. In the focal plane of the lens there are
ring-shaped zones of light, surrounded and divided by dark circles;
these are the ‘‘fringes.”
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This system of annular fringes is the #mage produced by a lens on
which plane-parallel light falls normally through a circular aperture;
also when there is no screen before the lens, for being circular it serves
as its own aperture. Now plane-parallel light is such as originates in
an infinitely distant luminous point, or—what comes to the same thing
—any luminous object so distant that neither the curvatures of the
wave-fronts proceeding from its various parts nor the angles between
the directions in which these lie are appreciably large; a star, for
instance. The image of a star in the focal plane of a telescope objective
is therefore not a point, however far away the star may be; it is a
system of rings. So it is in the eye, the pupil serving as the aperture;
but the inner rings are in both cases so narrow and the outer rings so
faint that they appear condensed into a point. Magnification of the
fringes in the telescope by the eyepiece brings them into view, and so
they set a limit to the value of magnification; for it is of no avail to be
able to examine an image more minutely if all that can be examined
is the consequence of the disturbance produced in the incoming waves
by the finiteness of the lens.

The limitation which the law of propagation of light thus sets upon
the formation of images is very important. The simplest possible
illustration is furnished by a double star. Let the telescope be directed
upon such a pair of stars so that the light from one component falls
normally upon the lens, the light from the other component at any
angle of which I denote the complement by ¢; thus ¢ stands for the
angular distance between the two stars in the sky. Now I have not
hitherto treated the case of light falling otherwise than normally upon
the screen containing the apertures, which in this case is nothing but
the plane of the objective. The extension however is immediate.
Orienting the y-axis in the plane of the screen so that the direction of
propagation of the waves coming from the stars lies in the xy-plane,
we have for the wave-function in the region extending up to the
aperture from behind:

s = cos (nt — mx cos ¢ — my sin @), (98)

and therefore in the plane of the aperture (x = 0) we have, instead of
the values given in (71), these:

s = cos (nt — mysin @),

ds/ox

I

m cos ¢ sin (nt — my sin @), (99)

and for the value of s at any point in front of the aperture we have,
instead of (77), this value:
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So = — ;rde[T(cosﬂ-l—cosw)sin (nt—mysingo—mr)].

and there are corresponding changes in the values of the integrals C
and S which determine the amplitude. To first approximation—that
is to say, when ¢ is not too great—the result is, that the diffraction
pattern of one star is like that of the other, but shifted sidewise. The
angular displacement between the centres of the two fringe-systems is
the same as the angular displacement between the two stars. The
question now arises: how far apart must the two fringe-centres be,
that the two families of rays may be securely told apart?

Such a question of course cannot be definitely answered; the answer
would depend upon the acumen and the experience of the observer.
The conventional response is, that the two systems of rings are surely
distinguishable if the centre of one lies upon the first dark circle of the
other. Now the angular radius of the first dark ring, i.e., the value of
B for which the Bessel function of (97) first vanishes, is 1.22 times the
ratio of the wave-length of the light to the diameter of the aperture;
for green light in the largest available refracting telescope this amounts
to about an eighth of a second of arc. This then is nearly the least
angular separation between two stars which are distinguishable; a
pair or a group much closer together would appear as one, not through
any avoidable defect of the telescope nor through any insufficiency of
the eyepiece but through the laws of propagation of light themselves,
working to prevent the formation of an image indefinitely sharp.

For a rectangular aperture the integrals C and S are extremely easy
to evaluate. The diffraction-pattern is a criss-cross of dark lines,
intersecting at right angles and bounding rectangular areas of light,
similar in shape to the aperture but oriented at right angles to it.
If the rectangle is prolonged indefinitely and so becomes an infinitely
long slit, the diffraction-pattern becomes a sequence of parallel bands
separated by dark lines normal to the length of the slit. If then a
multitude of identical slits are cut into the screen at equal intervals
side by side, a new periodicity is superposed upon the periodicity of
the waves, and out of the interaction of these two there come diffraction-
patterns much more sharp and striking than any which a single
aperture, however shaped, is able to produce. These will be considered
in the following chapter.



