Propagation of Periodic Currents over a System of
Parallel Wires

By JOHN R. CARSON and RAY 8. HOYT

Synoprsis: The first section of this paper is devoted to the formal mathe-
matical theory of the propagation of periodic currents over a system of
parallel wires energized at its physical terminals only, The theory de-
veloped is essentially a generalization of the classical theory of transmission
over a single wire (with ground return) or over a balanced metallic circuit.
The solution here given furnishes the fundamental formulas and a good
deal of information regarding what takes place in a system of parallel
wires; for actual calculations, however, the method of treatment is not
so well adapted as that developed in the remaining sections of the paper.

The second section deals analvtically with the problem of propagation
over a line or a circuit exposed throughout its length to an arbitrary im-
pressed field of force. The resulting solution is immediately applicable to
problems of crosstalk and interference, and to the theory of the wave
antenna.

The last two sections are devoted to the development and application
of a more physical or synthetic method of treatment, based on the substitu-
tion of ‘equivalent electromotive forces’ for the arbitrary impressed field.
This synthetic treatment, which permits of an intuitive or physical grasp
of the various problems, has been found quite useful in dealing with cross-
talk and interference, and also with the wave antenna. The method is
illustrated (in the last section) by application to two representative problems
of a diverse nature.

N the modern telephone system, transmission takes place over a

circuit which is usually in close juxtaposition to a number of
parallel circuits, and which may be, and frequently is, exposed to inter-
ference from power circuits or other disturbing sources. The mathe-
matical theory of wave propagation over such a circuit involves two
problems: (1) propagation over a system of parallel wires, and (2)
propagation over a wire or metallic circuit in an arbitrary impressed
field of force.

The first Section of this paper is devoted to the formal mathematical
theory of the propagation of periodic currents over a system of parallel
wires, energized at its physical terminals only.! This problem is
essentially a generalization of the problem of transmission over a
line of uniformly distributed resistance, inductance, capacity and leak-
age; and involves the formulation and solution of a differential equa-
tion which may be termed the generalized telegraph equation in con-
tradistinction to the well-known felegraph eguation which characterizes
transmission over a single wire (with ground return) or a balanced

! This is the assumption underlying ordinary transmission theory.
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metallic circuit. The analysis of this problem, while furnishing the
fundamental formulas and a good deal of information regarding what
takes place in a system of parallel wires, is not well adapted for
actual calculations, except for relatively simple systems; in particular
it is not adapted to deal with the important problems of crosstalk
and interference.

In Section II the problem of propagation over a circuit or line
exposed throughout its length to an arbitrary impressed field of force
is taken up. The resulting solution is immediately applicable to
interference problems, where the field of the disturbing source is
supposed known, and to the theory of the wave antenna. Moreover,
as shown in Section Ilg, it is particularly well adapted to the problems
of ‘crosstalk,’” or interference between circuits of the parallel system.

Sections I, II and Ile furnish the formal analysis and the funda-
mental formulas. Sections III and IV, constituting the remainder
of the paper, are devoted to the development and the application to
representative problems of a more physical or synthetic treatment,
in which the general theory and formulas are interpreted in terms of
‘equivalent electromotive forces’; this concept permits of an intuitive
or physical grasp of the various problems, and has been found quite
useful in dealing with crosstalk and interference, and also with the
wave antenna.

I
PRrOPAGATION OF PERIODIC CURRENTS OVER A SYSTEM OF PARALLEL
WiIRrES, WITH IMPRESSED FIELD CONCENTRATED AT TERMINALS

The physical system under consideration is supposed to consist of
n parallel wires, numbered from 1 to #, which may either be a system
of overhead wires parallel to the surface of the earth, or a multi-wire
cable enclosed in a sheath. The formal analysis applies equally well
to both cases; but the calculation of the circuit parameters is a matter
of considerably greater difficulty in the case of the cable, due to the
close juxtaposition of the wires. Even in this case, however, the
circuit constants are rather easily calculable to a first approximation
from the dimensions of the system; and they are, in any case, experi-
mentally determinable.

Let Iy, I -+ I, be the currents in the » wires, which are taken as
parallel to the x-axis, which is itself parallel to the surface of the
earth or to the sheath (in the cable case). A steady state is assumed;
that is to say, the currents are sinusoidal and involve the time ¢ only
through the common factor exp (iwf), where w/2r is the frequency and
i denotes ¥ — 1; consequently the differential operator d/dt is replace-
able by iw in accordance with the usual methods of alternating current
theory.
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The first equations of the problem are derived by applying the law
curl E = — p(dH/dt)

to a contour bounded by a length dx in the surface of the jth wire, a
corresponding length dx in the surface of the earth, and two lines nor-
mal to the axis of the wire and joining the corresponding ends of the
two line elements dx. This gives

sl — By = =000 g
In this set of equations, 3;; denotes the ‘internal’ impedance per unit
length of the jth wire, that is, the ratio of the axial electric force at the
surface of the wire to the current I;. E,;is the electric force, parallel
to the axis of the wire, in the earth's surface. 1/ is the line integral
of the electric force from the wire to the surface of the earth, that is,
the ‘potential,’ or ‘voltage,” of the wire. Finally, ¢; is the magnetic
flux,* per unit length, threading the contour.

Now, both ¢; and E ,; are linear functions of the # currents I,, - - - I,;;
consequently (1) is reducible to the form ?
av; & .
ZHIJ‘: _.Eci_kglzjkjk’ (]=I,2"‘ﬂ). (2)

The calculations of the impedance functions Z;; and, in particular,
the effect of the finite conductivity of the earth are dealt with in
detail in an earlier paper.* The internal impedance, 3, is of the
general form r;; 4+ iwl;;, where r;; is the resistance of the jth wire and
I;; its ‘internal inductance.” In the ideal non-dissipative system the
mutual impedance Zj; is a pure imaginary of the form 7eL;;, where
Ly, is the mutual inductance between the jth and kth wires; actually,
however, due to the finite conductivity of the earth and to ‘proximity
effect’ between the wires, it is always complex and of the form
R;; + dwL;i. A similar statement holds for the self impedance Z;;.
The ‘proximity effect’ 3 is, of course, the increased internal impedance
of the wire due to the currents in the neighboring wires. It may be
taken as negligible in open wire lines but is quite appreciable, at
telephonic frequencies, in cable circuits.

2 Expressed in 1078 maxwells if the remaining quantities are in 'practical units.’

31t 1s to be noted that Z;; does #not include the internal impedance z;; of wire J.

1'Wave Propagation in Overhead Wires with Ground Return,' John R. Carson,
B. S. T. J., October, 1926.

3 See ‘Wave Propagation over Parallel Wires: The Proximity Effect,” John R.
Carson, Phil. Mag., April, 1921. Rigorously the term z;;I; of equations (1) and (2)
should be replaced by Zz;ilk, the additional terms formulating the proximity effect.

This effect will not be explicitly included in the following analysis and the term
z;xlx may be regarded as incorporated with Z;ifz.
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Let Q1, --- Qn denote the charges per unit length on the n wires;
the potentials and charges are then related by the set of linear equa-
tions

0= FauVe, G=12-m, 3)
Vi=XpuQn  G=1,2-m), )

in which the g and p coefficients are Maxwell’s capacity and potential
coefficients. They are calculable by the usual methods of electro-
statics, on the assumption that all the conductors, including the earth,
are of perfect conductivity.

To complete the specification of the system we have the further
set of relations

. dal; .
Qi+ I/ = =52, =12 m). s)

Here I, is the ‘leakage’ current from the jth wire; it is, in general,
a linear function of the # potentials, that is,

/= SeaVi  G=12:m), ©)

where the coefficients g;; depend on the geometry of the system and
the conductivity of the dielectric medium. From (3), (5) and (6)
we have

al; _

9L P Gog g Ve G=1,200m) (D)
k=1

This system of linear equations, when solved for the potentials, gives

Swple  (G=1,2 n). (8)

d
Vi k&

For the special case where the dielectric medium surrounding the con-
ductors is homogeneous and isotropic, the coefficient w;, which in
general is obtained by solving (7), is given by

wp = P/ (iw + 8), 9)

where 8 = 4ra/et, o and e being the conductivity and specific inductive
capacity of the dielectric, and & a constant whose value depends only
on the units.® In many cases w;: is calculable with sufficient accuracy
from equation (9), so that the solution of (7) is then unnecessary.

¢ A derivation of the formula for & is outlined shortly after equation (18) of
Appendix L.
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We are now prepared to write down the generalized telegraph equa-
tion, which is obtained by eliminating Vi, --- V, from equations (2)
by aid of (8); it is:

n d? .
ziilj = 2 (wiktp - Zik)Ik: (G=12---m). (10)
k=1 X

This system of # equations, which constitutes the generalized telegraph
equation, will be written as:

mnly + mds + -+ + my I, =0,

1-772|{l -'._ 7”?‘.'1—2.'{' .' " '. + :"7211-111 = 0.1 (11)
”fnlIl + 1”11212 + Tt + mnﬂIﬂ = 0;
where
Ny =ij—w5kd—9;2, (J = k), (11.1)
42
mij = 5+ Zij — Wiig s (11.2)

Equations (11) are a system of # homogeneous equations; a finite
solution for the currents Iy, - - - I, therefore necessitates the vanishing
of the determinant of the system, that is,

My My Myz -t Mgy
Mz1 Moy Moz v Mop | 0 (12)
Mp1 Mpz Mps st Man

In order to solve this equation the operator d*/dx® is to be replaced by
~2, which is equivalent to the assumption that the » currents I, - -+ I,
involve the variable x only through the common factor exp (yx).
With this substitution, equation (12) is of the nth order in y? and its
solution gives, in general, 2z values of v, namely, ¥1, v, -+ ¥n and
— 41, — Y2, -+ — ¥au. The general solution of equations (11) is
accordingly of the form

= ¥ (Ape® = Bue),  (j=1,2---m).  (13)

The potentials are then determined from (8) and (13) in terms of the
parameters of the system, the propagation constants, and the arbitrary
constants of integration 4 ;i, Bj.

By means of the relations (11) obtaining among the currents, it is
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easy to show that the number of independent arbitrary constants of
integration is 2n. These are determined by the 2z boundary condi-
tions to be satisfied at the physical terminals of the system. In general
these boundary conditions specify 2 relations among the impressed
voltages, the terminal impedances, and the line currents and voltages.
While the evaluation of the constants of integration from these 2n
relations is formally straightforward, it is actually a matter of very
considerable complexity if the system is composed of a large number
of wires; furthermore, the evaluation of the propagation constants
w1, - . presents great difficulties in such cases.

The results of the foregoing formal analysis may be summarized
as follows: In a system of » parallel wires there are in general » modes
of propagation, corresponding to the # roots vy, - -+ v» of the general-
ized telegraph equation; these may be termed the normal modes of
propagation. Except when special boundary conditions obtain, the
current in each and every wire is made up of component waves of all
n modes of propagation, and the distribution of energy among the n
modes is determined by the boundary conditions at the terminals of
the wires. A characteristic and fundamental property of the normal
modes of propagation is that a normal mode of propagation is the
type which can exist alone. That is to say, if the boundary condi-
tions have a particular set of values, the currents in all the wires may
be made up of one mode only; unless, however, the particular condi-
tions obtain, the currents involve components of all modes.

The existence of # modes of propagation in a system of » parallel
wires follows from the fact that the determinant is of the nth order in
~v* and therefore has # roots. In certain cases of practical importance,
however, we may have multiple roots, so that the number of distinct
modes of propagation is reduced. For example, in the ideal case of
perfect conductors and perfect ground conductivity, Lj;/pi; = L/
= 1/c? and therefore v = iw/c, where ¢ is the velocity of propagation in
the medium. In this case, only one mode of propagation exists,
namely, unattenuated transmission with the velocity of propagation
of light in the dielectric medium; thus, for the direct wave,

I,‘ = A,’B_""""" (14)

and the 7 constants 4., -+ - 4, are independent.
Another case of some interest is that in which the wires are all
alike, so that my = ey = -+« Mpy = m and furthermore m;, = m’

(a condition which is partially realizable by a properly designed system
of transpositions). In this case equation (12) becomes
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m m m' - m

=0, (15)
m' m’ om’ -0 om

and there are only two modes, ¥, and 7., corresponding tom — m' = 0
and m + (n — 1)m’ = 0 respectively. The first mode obviously cor-
responds to metallic transmission, the second to ground return trans-
mission. It is easily shown that the direct current waves are expressed
by

I,‘ = A,‘Bg-"z + Be 7, (16)

with corresponding expressions for the reflected waves. The corre-
sponding potentials are

Vi = 1K, A ;e + nK,Be~r=, (18)

Here K, is the characteristic impedance of a metallic circuit composed
of two wires, and K, is the characteristic impedance of the n wires in
multiple, with the ground for return.

A case of greater practical importance is that of » balanced pairs,
which is the ideal telephone transmission system. To consider this
case let

My = Mag = =+ = Mpp = Mg, 2n = M,

m;. = m' between wires of the same pair, (19)

m;r = m'’ between wires of different pairs.

In this case the determinant becomes

m om' om’owm e e om
m' om ow owm’ e om
= 0. (20)
m’ wm’ om" e e om oW
m'" m'" owm'’ e e om' om

There are therefore three modes of propagation 1, 73, v correspond-
ing respectively to:
wm —m' =0,
m 4+ m' = 2m" =0, (21)
m4+m' + 2n — m" = 0.

The first mode of propagation corresponds to metallic transmission
over a pair, the second to transmission over a four wire phantom
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circuit, and the third to ground return transmission. It may be
easily shown that the solution for the direct waves is (writing /; and
I, for the currents in the two wires, j and j’, of the jth pair, and 7V},
V; for the corresponding potentials):

I; = Aje™ 4 B + Ce ™,

22
I/ = — A + B ™ 4+ Ce™ ", (22)

with the further condition 3 B; = 0. The corresponding potentials

are:
Vi = 3K Ae® 4 KaBje ™ + 2nK3Ce ™,

23
V{ = — 3K:d;e7" + KoBje™* + 2nK3Ce™. (23)

The characteristic impedances K;, K, K; correspond to the three
modes of propagation; from the foregoing and equation (8) they are
found to have the following values:

K, = 2(w — @),
Ky = (w+ w' — 2w')y,,

Ks = 5 (w+w + 2[n — 1J")7s

(24)

The importance of the case just considered lies in the fact that the
conditions of symmetry which obtain are those of the ideal multi-
circuit telephone system. Two of the normal modes of propagation,
physical and phantom circuit transmission, are those actually em-
ployed in telephone transmission and these modes can exist in any
physical or phantom circuit without crosstalk or the induction of
current in any other circuit. In fact the problem of crosstalk is the
designing of the system, by means of transpositions, to approximate
the ideal case, and the calculation of the effect of small departures
from the ideal conditions of symmetry.

In investigating problems of crosstalk and of induction from foreign
disturbing sources, the general formulas developed in the preceding
pages do not lend themselves readily to the necessary calculations and
interpretations. In the first place, calculation by means of the
general formulas involves the location of the # roots of an nth order
equation and thus presents the same difficulties as those encountered
in the calculation of the transient oscillations of a network of =
degrees of freedom; in fact the problems are mathematically the same,
the space variable x of the present problem corresponding to the time
variable f of the transient problem. In the second place the formulas,
as they stand, are inapplicable to the important case where the circuit
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or line is exposed throughout its length to an arbitrary impressed
disturbance. Furthermore, in the problem of crosstalk the departures
from the conditions of balanced symmetry are necessarily very small,
whereas the formulas are so general as to make it very difficult to
introduce the essential simplifications which follow from the condition
of small departures. For example, if the foregoing formulas are
applied, as they stand, to transposed lines, it is necessary to set up new
boundary conditions and evaluate a new set of integration constants
at every transposition point, since a transposition point is a discon-
tinuity. The difficulty of such a procedure is very great, aside from
the fact that it requires as a preliminary the calculation of the =
modes of propagation of the system in each transposition interval.
In view of these difficulties a more powerful method of attack is
required in the analytical investigation of the problems of crosstalk
and of interference in general. Fortunately this is furnished by the
solution of the problem dealt with in the next section: the propagation
of periodic currents over wires in an arbitrary impressed field of force.

IT

ProracatioN oF PrEriopic CURRENTS OVER WIRES IN AN
ARBITRARY IMPRESSED FIELD oF FORCE

We shall consider first the simplest case, namely, a single wire with
ground return. The impressed or disturbing field is assumed to be
periodic, of frequency w/2m, so that the problem is a steady state one
and the time is involved only through the factor exp (fwt). The result-
ant field is made up of two parts: first that due to the primary im-
pressed field; and secondly that due to the current in and the charge
on the wire, and the corresponding induced currents and charges in the
ground. Let f(x) = f denote the component of the electric force of
the primary or impressed field parallel to the axis of the wire at its
surface,” and F(x) = F the line integral of the impressed or primary
field from the surface of the wire to ground. It is then proved in
Appendix I that the differential equation of the problem is
K/, &

(Tﬁd—x—g)f=f, (25)

v
the solution of which is 8

[ = e [‘4 +)LK f dy- f(y)e‘f”]

— * [A" + —2%1 dy 'f(.")fw] ‘

7 f(x) is assumed to be sensibly constant over the cross-section of the wire. .
8 The lower limit, v, of integration is at our disposal. In case the line begins at
x = 0, it may be convenient to take v = 0.
33
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The corresponding potential of the wire is

V = Ke [A +%fdy-f(y)e""’]

L 27)
+ Ke™ [A’ —|—~—f dy-f(y)e—‘"’:l + F(x).
2K ),

In these equations, v and K are the propagation constant and the char-
acteristic impedance of the circuit ? consisting of the wire with ground
return, while 4 and A’ are arbitrary or integration constants which
are determined from the boundary conditions. It will be observed
that if the arbitrary impressed field is removed (f = F = 0), the solution
reduces to the usual form. If the terminal impedances are specified,
it follows from (26) and (27) that the problem is completely solvable
provided that fis specified along the wire and F at its physical terminals.

Two more general cases of practical importance will next be formu-
lated :

(1) Balanced Pair of Wires

Let K1, 1 be the characteristic impedance and propagation constant
of transmission over the metallic circuit; and K3, v; the corresponding
quantities for the case of the two wires in multiple, with ground return.
Let f; and f. be the electric force of the primary or impressed field
along the surfaces of the wires No. 1 and No. 2 respectively, and I;
and I, the currents in the wires. The solution may then be written as

I, =a +c¢, Iy = —a+c¢g,
where

o = e[ 4t g [ 10) = s ey |

_ ew’[fl' JrzLKJu (1) *fz(y)]"w'”dy] )

o
|

= e[ g [(H50) + fi) ey |

— e[ ¢+ gk [T350) + h0)lemdy |

The component a corresponds to transmission over the metallic or
physical circuit; while the component ¢ corresponds to transmission
over the two wires in multiple, with ground return. A4 and C are the .

9 It will be observed that in these equations the characteristics of the ground do

not appear explicitly. They are, however, implicitly involved in K and v of the
ground return circuit.
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integration constants of the direct wave, while 4’ and C’ are those of
the reflected wave. The first component, as regards the impressed
force f along the wires, depends on the difference f; — f» at the surface
of the two wires, while the second depends on the mean value
(fi + f2)/2. In the case of interference from external sources the
latter is usually much the larger and consequently the induction
mainly corresponds to the ground return mode of propagation, 7s.

(2) System of » Balanced Pairs

We shall now write down the expressions for the currents in a
system of n balanced pairs (2»# wires) when exposed to an arbitrary
impressed field. The properties of this system were discussed briefly
in the preceding section and formulated in equations (19), «-- (24).
Let I; and I be the currents in the two wires j and j’ respectively of
the jth pair, and let f; and f;’ be the corresponding impressed forces
along the surfaces of the two wires, while F; and F; are the corre-
sponding line integrals of the impressed force to ground. By an
extension of the previous formulas it is easy to show that the currents
are made up of three components:

I = a;+ b+

I/ = —a; + bi + ¢ )

If we write f; = (f; + f;')/2, the components a;, b;, ¢; are given by:

| A+ 5 | ) = 5O eway |

a; =
. (30)
= et i+ g [T USi) = 51 e vy |
z 1 "7 1 T Yol
b= | By g [ 1Fi0) = 3 £ Fuotenay | »
= | B+ g [T 150) L Ry |
S B =%B/ =0, (32
cj = e [ C+ ﬁ‘f %): fk(y)e””dy] )

Y3z ' 1 1 N
—° [C +411K3fﬁzfﬂ'(})e ”dy:l.

Here the a component corresponds to transmission over a pair,
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the & component to transmission over a phantom circuit, and the ¢
component to ground return transmission. It will be observed that,
as regards the impressed field, the ¢ component depends on the
difference f — f’ of the impressed force at the two sides of the circuit,
while the ¢ component depends on the mean impressed electric force
averaged over the 2n conductors of the system; the b, or phantom
component, involves the impressed field in a slightly more complicated
way, depending on both the mean impressed force averaged for the
two conductors of a pair and also averaged over all the 2z conductors
of the system.

The extension of the preceding analysis to the general case of
parallel wires, in general dissimilar, is straightforward. The resulting
formulas are, however, extremely complicated and for this reason, as
well as their small practical utility, they will not be written down.

Formulas (25), --- (33) are immediately applicable to the wave
antenna and to interference problems in general where the impressed
disturbance is supposed to be known. Their application to the
problem of crosstalk, which will now be taken up, is not immediate in
the same sense because here the primary disturbance which sets up
crosstalk is itself a function of the unbalances among the wires com-
posing the system. That is to say, the primary disturbance or im-
pressed field causing the crosstalk is implicitly rather than explicitly
given.

I1a

In discussing the theory of crosstalk a representative problem will
be dealt with rather than a formulation of the general problem. The
types of problem encountered in practice are extremely varied, de-
pending on whether we have to do with ‘side-to-side,’ ‘side-to-phan-
tom’ or ‘phantom-to-phantom’ crosstalk, etc.; and each problem may
call for special treatment. The representative problem, however, be-
sides showing the underlying mathematical theory should serve to in-
dicate the correct procedure in other specific problems.

Let us return to the general system of n parallel wires, dealt with
in Section I, and let us suppose that two of them, say wires No. 1 and
No. 2, constitute a metallic circuit which, for convenience, we shall
suppose would be balanced with respect to ground if the other wires
were removed. We now suppose that this metallic circuit is energized
by an electromotive force impressed at x = 0, which in the absence of
the other wires would produce a current I in wire No. 1 and an equal
and opposite current — I in wire No. 2. Our problem is now to cal-
culate the currents induced in the neighboring wires and the additional



PROPAGATION OF PERIODIC CURRENTS 507

currents induced in wires No. 1 and No. 2 due to the reactions in the
system.

It will be observed that, if the system were ideally balanced, no
currents would be induced in the neighboring wires and we should
simply have the current I° in the metallic circuit; in engineering
language there would be no crosstalk. This is the ideal to which the
correctly designed telephone system approximates by means of ‘trans-
positions.” It is never, of course, completely realized but the approxi-
mation, as regards the neighboring metallic circuits, must be extremely
close, since the allowable amount of crosstalk is very small.

Let us now return to the original system of equations for # parallel
wires discussed in Section I and let us write I, = I+ I/,
I, = — I+ I, and replace Is, I3 --- I, by I/, Id --- I, respec-
tively, the primes indicating that the currents are ‘unbalance’ currents.
Similarly write Vi = V' + VY, Va= — VO V5 Qi = Q"+ QY
Q. = — Q%+ Q.'; and for the rest of the wires add primes to the
symbols for potential and charge. Equations (2) may then be
written as

avy
(e + Z))' + = = = Zuly' — Zuld — Zuld — -,
avsy
(z20 + Zao) ' + dxu = — Zal)' — Zoaly — Zagly — -+,
(34)
avy
(zi.r' + Z:i'J')IJ" + TV;“ = — (ij_ —_ Zfz)ID —_ Z]‘lflr

— Zply — Zpld — -,
G=34-n),

or, denoting the right hand sides of the equations by f/, f.', f/,
respectively, '
avy

[ ' = !
(s + Z)I + e S
, , avy
(222 + Zaa) ' + d—: = fz’. (35)
’ dVi’ ’
i+ ZiDli' + - =Ti
: (j=3,4---mn).
This set of equations in the unbalance currents I,/, --- I," and
unbalance potentials Vi, - -+ V.’ admits of immediate interpretation.

This is to the effect that the unbalance currents may be regarded as
due to an impressed field characterized by an axial electric intensity
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fi’ — dFi|dx along the jth wire (j =1, 2, --- %), and an impressed
potential F; (line integral of impressed field from jth wire to ground),
where

Fl’ = PlﬂQZ' + PlEQE' + PléQ4’ + T,
Fo' = pa1Qy + $23Q05" + $24Q4 + - -+, (36)
= (pir — pi)Q° + POy + 202" + pisQs" + - -+,
(G=3,4---m).

Consequently if f;/ and F; were known, equations (25), --- (27)
would be immediately applicable to the calculation of the unbalance
currents. Inspection of equations (34), - - - (36) shows, however, that
while I°, V? Q¢ are supposed known, the expressions for f;/ and Fy
involve the unbalance currents and charges themselves. The solution
of the equations calls therefore for a process of successive approxima-
tion, now to be discussed. While this method of solution is theoret-
ically sound and applicable in all cases, its success in practical applica-
tions depends largely on the fact that the unbalance currents must be
extremely small, compared with the primary current 19, if the cross-
talk is to be kept within tolerable limits.

Returning to equations (34), --- (36), the first approximate solu-
tion is obtained by (1) ignoring the unbalance currents and charges
in their effect on the current in the primary wires (No. 1 and No. 2),
and (2) replacing f3’, +-- fa’ and Fy', «++ F,' by

fi=—(Zn— Zp)I"

Fi = (pn — £i2)Q°, (37)
(G=34-n).

Consequently in the first approximate solution the primary current,
charge and potential are I°, Q° V¢, which are calculable in terms of the
impressed e.m.f. and the terminal impedances for the circuit composed
of the primary wires (No. 1 and No. 2) by ignoring the reaction of the
other wires.”® The unbalance currents, charges and potentials of the
other wires are then calculable on the supposition that those wires
are energized by the known impressed field f;/, i, as given by (37),
which depends only on I° and Q"

The second approximate solution is obtainable by substituting the
first approximate values of I/ and Q; in the right hand side of equa-
tions (34) and (36) and then proceeding precisely as in the first approxi-

10 It should be clearly understood that this particular procedure is not required
and is not always followed in practlce For example it is customary in calculatlng
the crosstalk induced in a metallic or ‘side’ circuit to take into account, in the first
approximate solution, the reaction between the wires making up the disturbed circuit.
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mate solution. This process can, theoretically, be repeated indefi-
nitely and successively closer approximations thereby obtained.
Practically, however, even in a system of only a few wires, the process
rapidly becomes prohibitively laborious and complicated, so that
only the first and perhaps the second approximate solutions are prac-
ticable. Theoretically, however, the process is straight-forward and
the successive approximate solutions form a convergent sequence.
Fortunately, in engineering applications the allowable amount of
crosstalk is so strictly limited that higher approximations than the
second at most are not usually required.

It is an important and valuable property of the solution by successive
approximations that the ‘datum configuration’ is not uniquely fixed,
but is at our disposal, within limits. By ‘datum configuration’ is
meant the assumed distribution from which the first approximate
solution is derived. In the preceding the datum configuration for the
primary wires is taken as

I, =1"= — T,
0= 0= -0 e
while in calculating any I/ (j = 3, - - - ») it is assumed that the unbal-

ance currents and charges of the other disturbed wires are zero. From
the form of the equations this is certainly the natural configuration
with which to start. [t does not at all follow, however, that this datum
configuration results in the optimum first approximate solution.

Another datum configuration which may be taken and which appears
to possess practical advantages in certain cases is the following:

I]_ = ID = - Ig
! 39
0= 0= -0y 39
for the primary wires, while in calculating any I,/ (j = 3, -+ n) it is

assumed that the unbalance currents and potentials (instead of charges)
of the other disturbed wires are zero.!* Higher successive approximate
solutions then follow the same scheme of procedure as in the first case.

The foregoing completes the formal analytical theory. The remain-
ing sections of the paper will be devoted to the interpretation of the
fundamental mathematical theory and its formulation along more
physical and engineering lines, together with applications to repre-
sentative problems.

11 This is essentially the basis of the crosstalk formulas developed, in terms of a
different mathematical treatment, by Dr. G. A. Campbell of the American Telephone
and Telegraph Co., in his early and fundamental work on crosstalk and transposition
theory.

12 See, however, the preceding footnote as to possible modification of the datum
configuration.
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ITI
REPRESENTATION OF IMPRESSED FIELD BY EQUIVALENT
EvLeEcTtrOMOTIVE FORCES

In the present section we shall start anew with the problem dealt
with in Section 11, and attack it by a synthetic method, as distinguished
from the analytical method employed there. While the results so
derived are all deducible from the analytical theory and formulas of
Section II, the synthetic or physical mode of attack has important
advantages in engineering applications, in giving a physical picture
of the phenomena and an intuitive grasp of the problem. In many
cases it enables us to deduce results very simply, when the physical
picture is well in mind, whereas the purely analytical solution may be
laborious.

The essence of this synthetic method consists in replacing the
known electric field impressed on the physical system by a set of
equivalent electromotive forces; the current at any point in the
system can then be calculated when the transfer admittances between
that point and the points where the electromotive forces are situated
are known or calculable (as is often the case in practical applications).
For, considering any linear system containing any number m of elec-
tromotive forces inserted at any points 1, - - - m, it is known, from the
principle of superposition, that the current I; at any point 7 is a linear
function of all the electromotive forces, that is,

I = tg"'l AuE. (40)

The coefficient A, is called the ‘transfer admittance’ from % to %,
because Aj: is equal to the ratio of I to Ej when all of the electro-
motive forces except E; are zero. If the system contains any uni-
lateral element (such as a one-way amplifier, for instance), A is
not in general equal to A4 .

Fundamental Set of Equivalent Electromotive Forces:
General Formatlation

Consider any system of parallel wires situated in an arbitrary
impressed field, with any number of localized admittance bridges
between wires or between wires and ground. (Evidently, distributed
bridged admittance can be analyzed into infinitesimal elements, and
these can be regarded as localized.) The cross-sectional dimensions
of the wires are assumed to be small enough so that the axial (longi-
tudinal) impressed electric force is sensibly constant over each cross-
section.
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The electric constituent of the impressed field is assumed to be
specified at every point along the wires by the impressed axial electric
force and the impressed potential. At any point x in any wire, 7,
the impressed axial electric force will be denoted by fi(x) and the
impressed potential by F,(x); these are to be regarded as arbitrary
functions of x, and may even be discontinuous.

The following set of electromotive forces is easily seen to be equiva-
lent to the above-specified arbitrary impressed field, in the sense of
producing the same currents and charges. This set will be termed
the ‘fundamental’ set of equivalent electromotive forces; for, from the
physical viewpoint of this paper, it is in fact the fundamental set.!?

(4) In each wire a distributed axial electromotive force whose
value, per unit length, at each point is equal to the impressed
axial electric force there; thus, at any point x in wire %, an
electromotive force f,(x)dx in the differential length dx.

(B) At each point where the impressed potential is discontinuous,
an axial electromotive force equal to the decrement in the
impressed potential there; thus, at any point of discontinuity

¥ =u in any wire B, an electromotive force equal to
— AF(u) = F(u —) — Fy(u +).

(C) In each bridge an electromotive force equal to the impressed
voltage in that bridge; thus, in a bridge at any point x = &,
from wire i to any other wire & (or to ground), an electro-
motive force equal to F,(b) — Fi.(b).

(D) In case a point x = b where a bridge is situated coincides with
a point x = u where the potential F,(x) impressed on wire %
is discontinuous, the corresponding electromotive forces are
as follows: Axial electromotive forces equal to Fu(b —) and
— Fu(b +) at points b — and b + respectively in wire k: no
electromotive force in the bridge itself, which is connected
to the point b situated between & — and & + in wire /1%

13 For a one-wire line and for a balanced two-wire line, five other sets of equivalent
electromotive forces are formulated in a later subsection.

% By supposing points & and x to be not quite coincident, say b = # — or
b =u +, item (D) can be derived by first applying items (B) and (€) and then
applying the ‘branch-point theorem’ formulated in the second paragraph following
equation (75).

A further application of the ‘branch-point theorem’ yields for item (D) the
following alternative set of electromotive forces: Axial electromotive forces each
equal to [Fi(b —) — Fu(b +)J/2 at b — and b + in wire #: an electromotive force
equal to [Fi(b =)+ Fi(b +)1/2 in the bridge at b, Clearly, this set reduces to

(C) when F(x) is continuous at x = b, and it reduces to (B) when there is no bridge
at x = u.
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A physical verification of the correctness of the foregoing set of
equivalent electromotive forces can be obtained by starting with the
given system, situated in the specified arbitrary impressed field (but
not otherwise energized), and then inserting in the wires and bridges
a set of electromotive forces, which will be termed the ‘annulling
electromotive forces,’ such as to annul all currents in the wires and
bridges. The resultant axial electric force in the wires will then be
zero, and furthermore the wires will be uncharged; hence the inserted
axial electric force must be equal and opposite to the impressed axial
electric force. Since the wires are uncharged their potentials will be
those of the impressed field; hence, since no current flows in the
bridges, the electromotive forces inserted in the bridges must be equal
and opposite to the voltages of the impressed field at the bridges.
Evidently the negatives of the annulling electromotive forces consti-
tute a set of electromotive forces equivalent to the impressed field;
for, insertion of the negatives of the annulling electromotive forces
restores the system to its original state, in which it is acted on by only
the original impressed field.

From the nature of this demonstration it is seen that the ‘funda-
mental set’ of equivalent electromotive forces is not limited to a
system of parallel horizontal wires. In the general case, where the
wires are neither straight nor parallel nor horizontal, x (and hence u
and b) is to be interpreted as being the ‘intrinsic coordinate’ of a
point in the particular wire contemplated, that is, the distance meas-
ured along that wire from any arbitrary fixed point therein. Thus,
for wires & and k respectively, x becomes x, and x5, which in general
are independent of each other.

For the case of a one-wire line, an analytical derivation of this set
of equivalent electromotive forces is given in a later subsection by
interpretation of the fundamental differential equations of the line.

A One-Wire Line in an Arbitrary Impressed Field

As indicated by Fig. 1, the line extends from x = 0 to x = 5, and
is terminated in impedances Z, and Z, respectively. « denotes the
propagation constant per unit length, and K the characteristic im-
pedance!* The direct leakage admittance from the wire to ground,
per unit length, is denoted by Y’; this is the generalization of a mere
leakage conductance.?!

The impressed field is specified by the functions f(x) and F(x);
f(x) denoting the impressed axial electric force and F(x) the impressed

14 Given by formulas (12) and (11) of Appendix I.
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potential, at any point x of the wire. For generality, F(x) is assumed
to be discontinuous at any point x = # by the increment

AF(u) = Flu +) — F(u —).

The problem is to calculate the current I(x) produced at any
point x by the impressed field.

Positive
f?‘-g directions
F(x

) K,Y i _ Zs

T Y T

Fig. 1.

Case 1: General Case

The current I(x) is the sum of two constituents: j(x) due to the
impressed axial electric force, and J(x) due to the impressed potential.
Formulas for these constituents will now be written down by aid of
the fundamental set of equivalent electromotive forces formulated in
the preceding subsection. Thus 13

i) = f " A, 9)fG)dy, (a1)

A(x, v) denoting the transfer admittance between points x and 7.
J(x) itself consists of four constituents: Jy(x) and J,(x), originating
in the terminal impedances Z, and Z, respectively, Jo.(x) originating
in the direct leakage admittance of the whole line 0-s, and J.(x)
originating at the point x = u where F(x) is discontinuous. Thus

J(x) = A(x, s)F(s), (43)
Tuw) = [ VFGIBG, iy, (44)
Julx) = — A(x, u)AF(u), (45)

B(x, y) denoting a current transfer factor representing that fraction

18 With regard to the analytical evaluation of the integrals, attention should
perhaps be called to the fact that the integrand may be discontinuous or may change
its functional form at one or more points within the range of integration; whence
the integral must be broken up into a sum of integrals.
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of the current contribution originating in the direct leakage admittance
element Y’dy at y, which reaches point x.

Case 2: Terminal Impedances Equal to Characteristic Impedances
Here we have

Zo=Z, =K, (46)
Alx, y) = E}(ﬂ'ﬂ', (47)
B(x,y) = F 3e"=v, y=ux, (48)
whence
i®) =35 | ey D
- ox J eesoy (50)

1 L
+3x | oy,

x

Jolx) = — %e“‘”, (51)
1w =S e, (52)
Joslx) = — 1;]: F(y)evevdy (53)

+ % j F (y)e Y@ =dy,
Tulx) = — %};‘)ew!ﬂ. (54)

A Balanced Two-Wire Line in an Arbitrary I'mpressed Field

Because the metallic circuit here contemplated is balanced, its
treatment can be made formally the same as the treatment of the
one-wire line in the preceding subsection.

This fact is immediately evident in two special cases of the impressed
electric field (potential and axial electric force): (1) the case where the
impressed electric field has equal values at the two wires, and (2) the
case where it has equal but opposite values at the two wires.

The general case where the impressed field at the two wires has any
values can be treated as a superposition of the two special cases just
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Page 514, Equations (48), (49) and (34) should read:

B(x, v) = F sevl=vl, vy = x, (48)
whence
1 4 .
i(x) = = e~ vl f(y)d (49)
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mentioned, by the simple device of resolving the impressed field at
each wire into two constituents one of which has equal values at the
two wires while the other has equal but opposite values at the two
wires. This resolution is always possible, for it is merely in accordance
with the following pair of algebraic identities:

m = 3(m + n) + (0 — ), (55)
N2 = 3(m + n2) — 3(m — m2). (56)

Although 7, and »n, may in general denote any two quantities what-
ever, in the present application they refer to the impressed electric
field at the two wires No. 1 and No. 2 of the contemplated two-wire
line. It is convenient to introduce the symbols 7. and 7, defined by

the equations
7e = z(m + n2), (57)

Na = M1 — M2, (58)

so that the resolutions (55) and (56) of %: and %3 can be written in
the more compact forms
M= 1+ 3%, (59)

N2 = N — 7a (60)

n. and n, will be termed respectively the mode-c and mode-a con-
stituents of the impressed field, because they give rise to mode-c and
mode-a effects respectively; mode-c effects being defined as those
which are equal in the two wires, mode-a effects as those which are
equal but opposite in the two wires—as discussed in connection with
equations (28). From (57) and (58) respectively it will be noted that
the mode-c effects and the mode-a effects depend respectively on the
average and on the difference of the impressed fields at the two wires.
As in treating the one-wire line (in the preceding subsection), so
also in treating the balanced two-wire line (in the present subsection)
it is usually advantageous to deal separately with the axial electric
force and the potential of the impressed field. Furthermore, in the
case of the two-wire line each of these constituents of the impressed
field is to be resolved into two modes, ¢ and a, in the manner repre-
sented by equations (59) and (60) together with (57) and (58).
Owing to the balance (bilateral symmetry) of the assumed two-
wire line, the mode-c constituent 7, of the impressed field will produce
only mode-c effects, and the mode-a constituent only mode-a effects.
Thus, 7. will produce equal currents I, and I, in the two wires, while
1s Will produce equal but opposite currents I, and — I, in the two
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wires. The total mode-c current 2/, along the two wires in parallel
is calculable from 7. through the mode-c parameters (v., K., and
terminal impedances) of the system; while the mode-a or loop current
(I,and — I, in the two wires respectively) is calculable from 7a through
the mode-a parameters (v, K,, and terminal impedances). The
connection of each current constituent with the corresponding field
constituent, through the corresponding parameters, is formally the
same as for the one-wire line (treated in the preceding subsection).

Finally, it may be remarked that the assumption of balance (bi-
lateral symmetry) for the two-wire line is essential to the above sim-
plicity; for otherwise each mode of the impressed field would produce
components of both modes of effects, instead of only the appropriate
single mode of effects.

Illustrative Special Case

For illustration it will suffice to choose the simple case of a balanced
two-wire line terminated at each end in its mode-¢c and mode-a char-
acteristic impedances simultaneously. That is, the line consisting of
the two wires in parallel, with ground return, is terminated at each
end in the mode-¢ characteristic impedance K.; while the loop circuit
is terminated at each end in the mode-a characteristic impedance K.
(Evidently these two modes of terminating can be simultaneously
accomplished by means either of a balanced T-network or of a
balanced II-network at each end.)

Let f1(x) and fa(x) denote the axial impressed electric forces at any
point x in wires No. 1 and No. 2 respectively; and let them be
resolved into mode-c and mode-a constituents f.(x) and fu(x), respec-
tively, such that

fo®) = 30Ai(x) + falx) ], (61)
falx) = filx) — falx), (62)

in accordance with equations (57) and (58). Similarly, let Fi(x) and
Fy(x) denote the impressed potentials at point x; and let them be
resolved likewise, so that

F.(x) = 3[Fi(x) + Fa(x) ], (63)
F.(x) = Fi(x) — Fa(x). (64)
Thus, formulas (49), -+ (54) of the one-wire line are seen to be

formally applicable to the balanced two-wire line, for calculating
separately the two modes of currents. This is with the understanding
that they give the sum of the mode-¢ currents in the two wires, hence
twice the mode-¢ current in each wire; and that they give the loop
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current (the current circulating in the metallic loop), which is equal
to the mode-a current in one of the wires and hence to the negative
of the mode-a current in the other wire.

Six Different Sets of Equivalent Electromotive Forces for a One-wire1®
Line in an Arbitrary Impressed Field

The physical system here contemplated (Fig. 2 below) is a one-wire
transmission line consisting of a uniform horizontal straight wire
situated in an arbitrary impressed field and terminated in any arbi-
trary impedances to ground. The wire extends from x = 0 to x = s;
the arbitrary terminal impedances ' are denoted by Z; and Z,. The
arbitrary impressed field is specified, at each point of the wire, by the
impressed axial electric force f(x) and the impressed potential F(x), as
previously.

Six different sets of ‘equivalent electromotive forces’ are formulated
in the early part of this subsection; while their derivations are briefly
outlined toward the latter part. Set 1 will be recognized as a par-
ticular case of the ‘fundamental’ set already formulated in the early
part of Section III. The five remaining sets are derived from Set 1.
In the actual formulations of these various sets of equivalent electro-
motive forces, the impressed potential F(x) is assumed to be a con-
tinuous function of x; the extension to the case where F(x) is dis-
continuous is a simple matter and is formulated in connection with
equations (65) and (66).

In the following diagrams (Figs. 2, -+ 11) it is found convenient
to represent any localized electromotive force by the conventional
battery-symbol. This symbol is intrinsically directional; the longer
of the two plates is to be regarded as at the higher potential, so that
there is an internal rise of potential in passing through the symbol
from the shorter to the longer plate.

In some of the figures the actual line is represented as replaced by
the corresponding artificial line composed of differential elements, each
of length dx. (For clearness, the line is represented as composed of
only a small number of such elements.)

The letters Z, ¥, Y’, ¥Y° denote certain line parameters per unit
length, as follows: Z and Y respectively denote the ‘complete series
impedance’ and the ‘complete shunt admittance’ or, briefly, the
‘series impedance’ and the ‘shunt admittance.” These may be re-
garded as defined by the equations

Z = 'YK’ Y= T/KI

18 The case of a balanced two-wire line is outlined in the next subsection.
17 See also the remarks under the subheading following shortly after equation (67).
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v denoting the propagation constant of the line per unit length, and
K the characteristic impedance. Or they may be regarded as defined
by the differential equations

— dV/dx = ZI, — dljdx = YV,

characterizing the line when there is no impressed field present. ¥’
denotes the ‘direct leakage admittance’ and Y° the ‘basic shunt
admittance,’ the latter defined as being the value of ¥ when Y’ = 0,
whence ¥ = ¥9 ++ ¥’. On referring to equations (12), (11), (8), (1)
of Appendix I, and also to equations (2) and (7) in Section I, it is
seen that 8

Z =z 4+ iwl, V =G +iwC,
G=G"+7, Yo = G° 4 dwC.

The various sets of equivalent electromotive forces remain valid
even when the line parameters are functions Z(x), ¥(x), etc., of position
x along the system. For the ‘fundamental’ set this fact can be
readily seen by reference to the formulation and verification of the
fundamental set, in the early part of Section IIL.

As indicated by the arrows, the positive axial (longitudinal) direc-
tion is the direction of increasing x, and the positive vertical direction
is downward.

Six Different Sets of Equivalent Electromotive Forces
Set 1 (Fig. 4)

(4) In the wire, a distributed electromotive force, f(x)dx in each
differential length dx.

(B) In the distributed direct leakage admittance, a distributed
electromotive force, F(x) in each differential element Y’-dx of direct
leakage admittance.

(C) In the termial impedances Zo and Z,, electromotive forces
F(0) and F(s) respectively.

From the physical viewpoint of the present paper, Set 1 is the
fundamental set of equivalent electromotive forces.

This set is particularly simple when there is no direct leakage
admittance (¥’ = 0), for then it reduces to merely the axial con-
stituents (4) and the terminal constituents (C).

®Thus Z, unsubscripted, includes the internal impedance z = z, + 3, of the
circuit, and hence is to be sharply distinguished from the double-subscripted Z
occurring frequently in this paper; for, as remarked in connection with equation
(2), Z;; does not include the internal impedance z;; of wire j, whence it is seen that

Z = Zjj + 3z for wire j.
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Set 4 (Fig. 8)

(4) In the wire, a distributed electromotive force, [ f(x) 4+ (¥'/Y)
X dF(x)/dx]dx in each differential length dx.

(B) In the terminal impedances Z, and Z,, electromotive forces
(1 — Y'/Y)F(0) and (1 — Y'/Y)F(s) respectively.

Set 2 is distinguished by containing no electromotive forces in the
shunt admittance even when the direct leakage admittance YV’ is not
negligible. Thus Set 2 with the direct leakage admittance not negli-
gible is formally as simple as Set 1 with the direct leakage admittance
negligible. However, in Set 2 the element of axial electromotive force
is a much more complicated function than in Set 1.

Set 3 (Fig. 9)

(4) In the wire, a distributed electromotive force, [f(x) +
d F(x)/dx]dx in each differential length dx.

(B) In the distributed basic shunt admittance, a distributed elec-
tromotive force, — F(x) in each differential element Y'x of the
distributed basic shunt admittance.

In Set 3 it should be noted that the electromotive force — F(x) is
in the basic shunt admittance element ¥%x, not in the complete shunt
admittance element Vdx.

It will be observed that this set contains no electromotive forces
in the terminal impedances.

When the ground is a perfect conductor, so that fy,(x) = 0, the
differential element of axial electromotive force in this set reduces to
merely — [d®(x)/di]dx, as is shown by equation (2) of Appendix I,
®(x) denoting the impressed magnetic flux.

Set 4 (Fig. 8)

(A) In the wire, a distributed electromotive force, [f(x) + (1
+ V'/Y)dF(x)/dx]dx in each differential length dx.

(B) In the distributed complete shunt admittance, a distributed
electromotive force, — F(x) in each differential element Ydx of the
complete shunt admittance.

(C) In the terminal impedances Z, and Z,, electromotive forces,
— (Y'/Y)F(0) and — (Y'/Y)F(s) respectively.

In Set 4 it should be noted that the electromotive force — F(x)
is in the complete shunt admittance element Ydx.

The differential element of axial electromotive force in this set does
not reduce to — [d®(x)/dt]dx when the ground is a perfect conductor
(f,(x) = 0) unless also the direct leakage admittance is zero (¥ = 0).

34
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Set 5 (Fig. 6)

(A) In the wire, a distributed electromotive force, f(x)dx in each
differential length dx.

(B) In the distributed complete shunt admittance, a distributed
electromotive force, (¥’/¥)F(x) in each differential element Ydx of the
complete shunt admittance.

(C) In the terminal impedances Z, and Z,, electromotive forces

F(0) and F(s) respectively.

In Set 5 it should be noted that the electromotive force (¥/Y)F(x)
is in the complete shunt admittance element ¥Ydx.

It will be observed that Set 5 (Fig. 6) is the same as Set 1 (Fig. 4)
as regards the axial and the terminal electromotive forces.

Set 6 (Fig. 11)
(A) At any arbitrary fixed point x = a in the wire, an axial electro-

motive force Ga,
Go= [ [ ) + 252 |

(B) In each differential element Ydx of the distributed complete
shunt admittance, a distributed electromotive force E.,

E.= f[f(x)+1;d§;x)]dx, x <a,
E.=— f[f(wc)—i—YIdF(x)]dx, > a.

(C) In the terminal impedances Zo, and Z,, electromotive forces
(1 — Y'/V)F(0) and (1 — Y'/¥)F(s) respectively.

Set 6 is perhaps mainly of academic interest.

Two limiting cases of Set 6 may be noted, corresponding to @ = 0
and a = s respectively, each characterized by containing no internal
axial electromotive force: for when @ = 0 the axial electromotive
force G, can be combined with the terminal electromotive force
(1 — Y'/Y)F(0) in the terminal impedance Z,, and when ¢ = 5 it
can be combined with (1 — ¥’/ Y)F(s) in Z,.

Extension to the Case where the Impressed Potential is Discon-

tinuous

In the foregoing formulations of Sets 1, - - - 6 of equivalent electro-
motive forces it has been assumed that the impressed potential F(x)
is a continuous function of x throughout the length of the line.

Suppose now, for greater generality, that the impressed potential
F(x) is discontinuous at any point ¥ = « by the increment

AF(u) = F(u +) — F(u —).
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Then (as shown in the next paragraph), for the particular differential
element which contains the point u, the quantities f(x)dx and
[dF(x)/dx]dx must be replaced by — AF(x) and AF(u) respectively;
that is,

f)du = — AF(w), (65)
d{;g:‘) du = AF(1). (66)

Equations (65) and (66) can be obtained, by a limiting process,
from equation (2) of Appendix I, which for the present purpose will
be written in the form

f)dx = — d‘;"fcx) dx — d‘l;(f) dx + f,(x)dx. (67)

It will be recalled, from Appendix I, that this equation was derived
by applying the second curl law to a differential rectangle extending
from x to x + dx; but x may equally well be a point within the
differential segment dx, and for the present purpose it will be so re-
garded. The limiting process now consists in letting dF(x)/dx ap-
proach infinity while dx approaches zero, but in such a way that the
product [dF(x)/dx]dx approaches a preassigned finite value, denoted
by AF(x). Then, in the limit, the last two terms on the right side
of (67) vanish so that (67) reduces to

flx)dx = — AF(x).

Thus we obtain equations (65) and (66), where « denotes, for distinc-
tion, the particular value of x at which F(x) is discontinuous.

Remarks on the Terminal Impedances and the Equivalent Electro-
motive Forces in Them

The arbitrary terminal impedances Z, and Z, (Fig. 2) need not
actually be localized. They may, for instance, be the impedances
offered by other lines to which the given line 0-s may be connected,
and these other lines may themselves be situated in arbitrary im-
pressed fields; in particular, 0-s may be merely a segment, of any
length, forming part of a given line in an arbitrary impressed field.

From this broad view, any ‘ equivalent electromotive forces’ situated
in the terminal impedances Z, and Z, may advantageously be regarded
as being situated in the ends of the line itself (that is, in the end-points
x = 0 and x = s), these electromotive forces being then regarded as
pertaining primarily to the line-segment 0-s rather than to the terminal
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impedances. Thus, for instance, in the formulations of Set 1 and
Set 35, item (C) would read: ‘(C) In the ends x = 0 and x = s of the
line, axial electromotive forces — F(0) and F(s) respectively.’ (Ob-
serve, here, the negative sign before F(0), in contrast to the positive
sign in the original formulation.)

In this way it is readily seen that at a point & = » where the im-
pressed potential F(x) is discontinuous, the equivalent electromotive
force is an axial electromotive force equal to the decrement of the
impressed potential, that is, equal to F(u —) — F(u +); this agrees
with equation (65), and with item (B) in the fundamental set of equiva-
lent electromotive forces formulated in the early part of Section III.

Derivations of Set 1

A synthetic derivation of Set 1 has already been furnished in the
early part of Section III. An analytical derivation will now be out-
lined; it is based on an interpretation of equations (68), (71), (73)
below; these equations, in turn, are based on certain equations of
Appendix I, as follows:

Combining equations (1) and (2) of Appendix I gives

R (68)

where f denotes f,; and V' is that part of the potential of the wire
due to its charges (and the corresponding opposite charges on the
surface of the ground), while ¢’ is that part of the magnetic flux due
to the current in the wire (and the corresponding return current in
the ground); that is,
V=V —F={0Q|C (69)
¢ = ¢ —&=LI (70)

so that ¥’ and ¢’ do not include the impressed potential and impressed
magnetic flux F and & respectively.

By (5) and (7) of Appendix I the equation of current continuity
can be written

I _dQ | G ,
— =G tCQ+ VFE (71)

The actual potential V of the line is of course the resultant of V’

and F; that is,
V="V =Vk) + Flx), (72)

whence, in particular, at the ends x = 0 and x = s,
V(0) = V'(0) + F(0),

V(s) = V'(s) 4+ F(s). (73)
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Returning, now, to a consideration of equations (68), (71), (73), it
is seen that they are identically the same as the equations for the same
line without any impressed field but containing the set of electromotive
forces formulated above under the heading ‘Set 1 (Fig. 4)’; for an
interpretation of equations (68), (71), (73) vyields respectively (4),
(B), (C) of Set 1.

It may be noted that equations (68) and (71) can be written in
the following more compact forms:

—dV'fdx = ZI — f, (74)

—dlldx = YV' 4 YV'F, (75)

whose interpretation yields immediately items (4) and (B) of Set 1.

Outline of Derivations of Sets 2, 3, 4, 5, 6

Synthetic derivations of Sets 2, 3, 4, 5, 6 from Set 1 will now be
briefly outlined by aid of the diagrams in Figs. 2, --- 11. The
physical systems represented by these diagrams are all equivalent in
the sense that the currents at corresponding points in all of them
are equal.

In the derivation-work extensive use is made of an artifice which,
for convenience, will be formulated in what may be termed the
‘branch-point theorem,’ as follows: In any network of any number of
branches the currents will not be affected by inserting at any branch-point
a set of equal electromotive forces, one in each branch, directed either all
toward or all from the branch-point.

Fig. 2 represents the given one-wire line in an arbitrary impressed
field, as already specified. For generality the line is assumed to have
uniformly distributed leakage admittance of amount ¥’ per unit
length.

Fig. 3 is derived from Fig. 2 by lumping the distributed direct leak-
age admittance into localized admittances each of amount ¥’-dx at
intervals of length dx.

Fig. 4 is derived from Fig. 3 by replacing the arbitrary impressed
field by Set 1 of equivalent electromotive forces.

Fig. 5 is derived from Fig. 4 by replacing the line, exclusive of the
direct leakage admittance Y’, by its equivalent artificial line having
‘complete series impedance’ Z and ‘basic shunt admittance’ ¥° per
unit length. This replacement of the actual line by the corresponding
artificial line is permissible now that the impressed field has been re-
placed by a set of equivalent electromotive forces (Fig. 4).

Fig. 6 is derived from Fig. 5 by replacing the compound shunt
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element, consisting of ¥%x in parallel with ¥’dx containing the elec-
tromotive force F(x), by the equivalent simple shunt element ¥Ydx con-
taining the electromotive force (¥'/Y)F(x).

Figs. 7, 8, 9 are derived from Figs. 6, 7, 5 respectively by applying
the ‘branch point theorem.’

Fig. 11 is derived from Fig. 7 by applying the ‘branch point the-
orem' in the manner indicated by Fig. 10, where f’(x)dx denotes, for
brevity, the original axial equivalent electromotive force situated
between x and x + dx of Set 2 as indicated by Fig. 7, so that

SN Y’ dF(x)
fil) =f@) +5 —g (76)

and a is the coordinate of the contemplated arbitrary point. The
E's, of which E, is typical, are sets of electromotive forces inserted
at the branch-points. At first these electromotive forces are arbitrary,
except that each set of three accords with the branch-point theorem,
so as not to alter the original currents in the system. Next, starting
at the ends, it is found that these electromotive forces can be so deter-
mined as to annul the original axial electromotive forces f'(x)dx in all
of the differential elements dx except in the one containing the point a;
the requisite value of E, and the resulting value of G, are found to be
as formulated in Set 6.

Finally it may be remarked that each of the Sets 2, 3, 4, 5, 6 can
be verified against Set 1 by formulating the total current produced
at any point x by each of the Sets 2, 3, 4, 5, 6 and then comparing
the resulting formula with the sum of formulas (41), (42), (43), (44).
Evidently it suffices to do this for the relatively simple case where the
terminal impedances are equal to the characteristic impedance of
the line: for this case, formulas (41), (42), (43), (44) reduce to (50),
(51), (52), (53) respectively.

Sets of Equivalent Electromotive Forces for a Balanced Two-Wire Line
in an Arbitrary Impressed Field

The foregoing six sets of equivalent electromotive forces for a one-
wire line can be readily extended to a two-wire line after resolving the
impressed field into mode-a and mode-¢ constituents, which are then
dealt with separately. For Set 1 this procedure has been fully out-
lined above in the subsection entitled ‘A Balanced Two-Wire Line
in an Arbitrary Impressed Field,” and it has found a natural applica-
tion in the ‘Crosstalk Problem’ treated below in Section IV.

It is clear that all of the sets of equivalent electromotive forces are
immediately applicable to dealing with the mode-c constituent of the
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impressed field, since this constituent acts on the circuit consisting
of the two wires in parallel with each other, with ground return, which
is formally the same as a one-wire line with ground return.

All of the sets of equivalent electromotive forces become applicable
to dealing with the mode-a constituent of the impressed field by an
appropriate interpretation of the diagrams (Fig. 2, - -+ 11), namely, the
following interpretation :

1. In each diagram regard the wire-symbol as representing the out-
going wire of the actual two-wire line, and regard the ground-symbol
as representing not the ground but the return wire of the two-wire line.
(The presence of the earth is then to be regarded as implied, its effects
appearing implicitly in the values of the line parameters.)

2. Hence regard Z, and Z, as denoting the mode-¢ terminal im-
pedances functioning as though connected directly across the two-
wire line at itsends x = 0 and x = s respectively,

3. Regard V', V°, ¥, Z as denoting the mode-a line constants
(including implicitly the effects of the earth).

4. Regard f(x), F(x), and &(x) as denoting the mode-a constituents
of the impressed field—that is, as denoting the difference of the actual
values impressed at the two wires. (In order to maintain the balanced
condition of the two-wire line, f(x) is to be regarded as constituted of
J(x)/2 in the outgoing wire and — f(x)/2 in the return wire; and simi-
larly for F(x) and ®(x).)

The Electric Field Due to a System of n Parallel Wires in an Arbitrary
Impressed Field

Thus far in the present section of this paper the field impressed on
the given physical system has been supposed known and the problem
has been to calculate the resulting currents. Actually, however, the
impressed field is not usually known but has to be calculated—from a
knowledge of the currents and charges producing it.

The present subsection deals with the problem of calculating the
electric field impressed on a secondary system consisting of a single
horizontal wire j by a primary system = consisting of # wires which
are parallel to each other and to j. For generality, the primary and
secondary systems are supposed to be in an arbitrary impressed field.!?

Consider at first any parallel geometrical line %, not necessarily in
any of the wires; and let V; = Vi(x) and E; = Ei(x) denote the

Y Of course the field produced by any given system is directly due only to the
currents and charges of the system, and does not depend directly on any field that
may be impressed on the system; but, assuming the system to be energized only by

the impressed field, the currents—and thence the charges—are directly due to the
impressed field and can (theoretically, at least) be expressed in terms of it.
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potential and the axial electric force at any point x in 1. Then V; is
analyzable into three parts (Vi, Vi, Fi) and E; into three parts
(Eix, Eij, f3) due respectively to the primary system m, to the secondary
system 7, and to the arbitrary impressed field; that is,20

Vi=Via+ Vi + Fy (77)
E;= Eix + Eij + fu (78)

In particular, at the secondary wire j the potential V; and the axial
electric force E; are analyzable in accordance with the equations

Vi= Vi + Vi + Fj, (79)
E;j=Ex+ E; + [ (80)

In the present subsection, the problem to be dealt with is the calcu-
lation of Vs and E;r, namely the potential and the axial electric force
at any point x in the secondary j due directly to the currents and
charges of the primary system .

The 7 wires of the primary system = will be numbered 1, 2, 3, - -+ n.
The letters h, k, v will be employed generically: each may denote
any one of the designation numbers 1, -+ n—as % in equation (81);
or each may run through the whole set 1, - -+ z—as in equation (91).
(It is hardly necessary to remark that j is not a member of the set 1,

. m, in the notation of this Section (III), where j always designates
the secondary wire.)

The current at any point x in any wire & of the primary will be
denoted by I, = Ii(x); and the charge on wire %, per unit length,
by Qn = Qx(x). ¢

The potential V; and the axial electric force E; at any primary
wire % are analyzable in the manner expressed by the equations

Vi = Viz + Vij + Fu, (81)
Eh Ehr + Eh.‘f + ffl! (82)

in accordance with the general equations (77) and (78) respectively.
It will be found convenient to call V. the ‘systemic potential’ and
E,. the ‘systemic axial electric force’ at wire k, since Vi, and E.
are due only to the system = of which # is a member, and do not include

20 Regarding the use here of double subscripts, it will be noted that the first
subscript designates the line or the wire where the effect occurs, and the second the
wire or the system of wires which produce the effect. Thus, Vir is the potential

produced in line ¢ by the whole primary system ; the contribution of any one
wire & would be denoted by Vin.
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any contributions from the secondary system or from the impressed
field. (More fully, Vir may be termed the ‘primary systemic poten-
tial" at 7 and E,, the ‘primary systemic axial electric force’ at h.)

For explicit use below, we may here note the formulas for the sys-
temic potential Vi, and the systemic axial electric force Ej, at any
wire k of the primary system :

M=

Vk-;r = PJ‘:IIQM (k = 1! e ?Z), (83)

h=1

L d
Eix = '—hgl (ZkhI}, + P“d_Qxh) , (k =1, - 11), (84)

P and Zy, being respectively the mutual potential coefficient and
the mutual impedance® between wires & and k, per unit length.,
Equation (84) is obtainable by applying the second curl law to a
differential rectangle substantially as in deriving equations (1) and
(2); see also Appendix I.

As already stated in connection with equations (79) and (80) the
problem to be considered in the present subsection is the calculation
of the potential V;, and the axial electric force E;x produced at the
secondary wire j by the primary system =. The fundamental formulas
for Vi and E;, are:

Vi i Qi = 2": Vi (85)
h=1 h=1
Ex=— i (ZikIh + d;’“) -y Ep (86)
h=1 X =1
- _ % , dQs
= rgl (ZJJJ}. + P”'_de ) , (87)

where V; and Ej are the contributions of wire % to Vie and Ejx
respectively.

With regard to applications of the equations (85) and (87) for the
potential Vi, and the axial electric force E;, impressed on the secondary
J by the primary =, it will be supposed that all the primary currents
I, -+ I, are known. But the primary charges (O and their axial
gradients dQy/dx (where & = 1, . 7) are usually not known; and
therefore ways will now be indicated for expressing them in terms of
quantities which may be known. For that purpose, the presence of
the secondary will be entirely ignored, in all respects. (This proce-
dure may be regarded as the first-approximation step in a solution
by successive approximations.)
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The charges Qs can be expressed in terms of the systemic potentials
Vs by solving the set of # equations (83). Thus

On = 231 oiVim (=1, - m), (88)

where qui. is the Maxwell capacity coefficient between wires # and k;
in terms of the potential coefficients, its value is

g = Di(p)[D(P), (89)

D(p) being the determinant of all the potential coefficients (the p's)
in the set of n equations (83) and D (p) the cofactor of puw in D(p).

The systemic potentials Vir, occurring in (88), can be obtained by
solving the equations of current continuity, namely the set of n
equations *

S (yuVie + XuF), (=1, ---m),  (90)

dx k=1
Yy and Xy being of the nature of admittances (per unit length), and
F; the impressed potential at wire k; it is thus found that

Vie = — 3. th(%ur ilxh,m), =1, - m), (1)

where the coefficient Wy is the same function of the ¥’s that g is of
the p's, that is,
Wi = Du(Y)/D(Y). (92)

It is seen that Wi is of the nature of an impedance (per unit length),
though it is not a simple impedance.

The charges can now be expressed in terms of the impressed poten-
tials F. and the axial gradients of the currents by substituting (91)
in (88).

The axial gradients of the charges can be expressed in various ways.
They can be immediately expressed in terms of the axial gradients of
the systemic potentials Vi by merely differentiating (88) with respect
tox. Also, they can be expressed in terms of the currents I, and the
systemic axial electric forces Ejr at the wires, by solving the set of #
equations (84); thus

’ft—@‘ e Y B+ 2L, (=1, m),  (93)
X k=1 r=1

21 Derived in the latter part of Appendix I.
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gnr being the Maxwell capacity coefficient given by (89). Further-
more, the systemic axial electric force E, occurring in (93) is expres-
sible in terms of the current I in wire k and the axial electric force f
impressed on wire k, by the simple relation

-Ek‘x = zka - fks (94)

s denoting the internal impedance of wire %, per unit length: for,
the resultant axial electric force at wire # must be equal to z:J; and
must also be equal to E;r + fi. Thus the axial gradients of the
charges can be expressed explicitly in terms of the currents and the
impressed axial electric forces at the wires, by substituting (94) in (93).
The axial gradients of the charges can be expressed still otherwise by
differentiating (88) with respect to x after substituting (91).

Substituting into (85) and (87), the various foregoing expressions
for the charge Q) and its axial gradient dQ)/dx, and in some cases trans-
forming and rearranging the results, gives the following formulas for
the potential V; and the axial electric force E;, produced at any
point x in the secondary wire j by the primary system 7, when the
presence of the secondary j is entirely ignored in calculating the cur-
rents, charges, and potentials of the primary (in accordance with the
statement of the paragraph following equation (87)):

V=3 DinQn (95)
h=1
= Zn: TinVir (96)
h=1
n n dIk 7
- -3 T,-h[ 5 th(d— + ZXMF,)], ©7)
h=1 k=1 X r=1

where T, which may be termed a ‘ potential transfer factor' or ‘volt-
age transfer factor,’ has the value

Ty = lglP:'kah- (98)
=, __dV,-
Eiwr = hgl Z_th‘l dx (99)
B d
= -2 (Z:'hIh + Pin 'JQ""') (100)
k=1 X
= — 3 (Z,-‘hIh'i‘ ij.(%) (101)
h=1 X



532 BELL SYSTEM TECHNICAL JOURNAL

n n a1 n dF.
--% (z,-hn ~ & TalWi [Wk + 3 Xk,—&;D (102)
--% (zﬂ.fﬁ > z,.,r,) (103)

= — El (Z:'kIh — TalenIn — il — T ZIZ;,,-I,)- (104)

Formula for E; when the Earth is a Perfect Conductor

When the earth is a perfect conductor, all of the external mutual
and self impedances (Zi, Zuk, Zik) etc.) are pure reactances and are
proportional to the corresponding potential coefficients (P, Pak, Pk,
etc.), the proportionality factor being merely iw/T, where 7 is an abso-
lute constant whose value depends only on the units employed.
Thence it can be shown that (103) and (104) respectively reduce to
the very simple formulas

Eir = hgl TjkEkn (105)
Ejr = hz=:1 Tin(zaln — fu)s (106)

with Ty given by (98). It is seen that (105) corresponds exactly to
(96).

As at least of some academic interest, it may be remarked that
equations (105) and (106) hold even when the earth is imperfect,
provided

Zn _ L
_—= h=11“' ;k=1!'“ .
on - Do ( n )

v

PRACTICAL APPLICATIONS
For illustrative purposes, the methods presented in the foregoing
sections will now be applied to two practical problems of a rather
diverse nature. The first application will be to the wave antenna
employed in certain important cases of long-distance radio reception,*
the second, to a problem in crosstalk.

The Wave Antenna
The wave antenna, in its usual form, may be described as a trans-
mission line with ground return, utilized foi the reception of radio
waves.

22 Notably in transoceanic radio telephony.
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In its simplest form, as here contemplated, the wave antenna con-
sists of a long straight horizontal wire terminated at each end in its
characteristic impedance K, as represented by Fig. 12a, which gives

Positive
f(x,0) : .
Flx6) directions

YA L TS 7

K K,Y K

R—
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\ \
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Fig. 12b

an elevation view. This is seen to be the same as Fig. 1 when
Zy = Z, = K; and v is now the propagation constant, per unit length,
of the wave antenna regarded as a transmission line. Hence formulas
(46), --- (54), pertaining to Fig. 1, are immediately applicable for
calculating the current at any point x in the wave antenna of Fig. 12a,
after the appropriate formulation of the functions f(x) and F(x)—
namely the impressed axial electric force and the impressed potential,
respectively, at any point x in the wave antenna.

These functions can be evaluated by aid of Fig. 125, which gives a
plan view representing a train of plane radio waves (whose magnetic
component is horizontal) incident on the wave antenna at an arbitrary
angle 6 measured horizontally from the wave antenna to the direction
of propagation of the wave train along the earth’s surface. By the
‘direction of propagation’ is here meant the horizontally specified
direction of a vertical plane which is normal to the plane of the wave
front. f(x, #) denotes the horizontal component of electric force in
the impressed waves at any point x of the wave antenna, and F(x, )
the potential of the impressed waves there.® Then the axial electric

23 The presence of 8 in the functional symbols is of course to allow for a possible
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force f(x) and the potential F(x) impressed at point x on the wave
antenna by the radio waves are given by the equations

flx) = f(x, 6) cos 8, (107)
F(x) = F(x, 6). (108)
It is convenient to take one end, say x = 0, as a fixed reference point,
and then to express f(x, 6) and F(x, §) in terms of their values f(0, 8)

and F(0, 6) at x = 0. For this purpose, it will be assumed that the
radio waves are propagated in a simple exponential manner, so that

f'—‘(x' 6) = Flx, 6) — p—TZcosd
70,0  FO,0 ° , (109)

I denoting the propagation constant of the radio waves, per unit length
measured horizontally along the direction of their propagation. Then
the equations (107) and (108) become

flx) = £(0, 6) cos 6 e "Teos, (110)
F(x) = F(0, §)eT=cos0, (111)

wherein £(0, 6) and F(0, 6) may be supposed known. In this connec-
tion it should be remarked that f(0, 8) and F(0, #)-—and, more gen-
erally, f(x, 6) and F(x, §)—are not in phase.”

On substitution of (110) and (111), equations (49), --- (53) now
become applicable for calculating the current I(x) at any point x of
the wave antenna; this current will be written I(x, §) because it
depends on the incidence-angle 6, even when f(x, 6) and F(x, 6) are
independent of 6. In the engineering of wave antennze, we are
usually concerned merely with the current J (s, ) received at the end
x = 5. In general there will be four constituents of I(s, ), corre-
sponding to equations (50), (51), (52), (53) when x = 5. From the
discussion of the corresponding more general equations (41), (42),
(43), (44), it will be recalled that the current-constituent j(s, 8) is due
to the impressed axial electric force acting throughout the length of the
wave antenna, Jo(s, 8) is due to the impressed voltage F(0, #) acting
at the end x = 0, Ji(s, 6) is due to the corresponding impressed
voltage F(s, 8) = F(0, 8)e"*cos? acting at the end x = 5, and Ju(s, 6)
dependence on §. It may be noted that, in the calculation of the ordinary polar
diagram representing the directional selectivity of a wave antenna, the functions

flx, 0) and F(x, 0) are regarded as independent of 6, in accordance with the very

definition of the directional selectivity.

24 The ratio of the horizontal electric force f(x, 8) to the vertical electric force
F(x, 6)/H—where H here denotes the height of the wave antenna above the earth’s
surface—is a complex number whose value depends on the conductivity, dielectric
constant, and permeability of the ground, and on the frequency.



PROPAGATION OF PERIODIC CURRENTS 535

is due to the distributed impressed voltage acting in the leakage
admittance from the wave antenna to ground (this leakage admittance
being regarded as uniformly distributed). By substituting the values
f(y) and F(y) given by (110) and (111) when x is replaced by v, then
carrying out the indicated integrations, and finally transforming the
results somewhat, the constituents corresponding to (50), (51), and
(52) are found to have the following formulas:

5f(0, 8) cos 0 sinh [(y — T cos 6)s/2] R

6 0) = =g (y — T cos 0)52 (112)
Tols, 6) = — %e‘”, (113)
Ti(s, 0) = F((}(") ~scon (114)

The fourth constituent, Jo(s, 6), corresponding to (53), will be
omitted, because it is relatively unimportant and also because its
formula is found to be somewhat lengthy.

The wvaluable directional selectivity of a wave antenna resides
mainly in the directional properties of the admittance j(s, 8)/sf(0, 8')
whose value is found by dividing equation (112) through by sf(0, '),
where 8 denotes some fixed value of # (usually 8’ = 0). This ratio
may properly be termed a ‘directional admittance.” The correspond-
ing admittances obtained by dividing (113) and (114) through by
sf(0, 6') are not usefully directional, the former being entirely non-
directional, and the latter only directional as regards its phase angle—
not as regards its absolute value. By suitable choice of the length of
the wave antenna, the constituent represented by (112) can be made
to have high directional selectivity, while the constituents correspond-
ing to (113) and (114) become relatively unimportant (except over a
few narrow ranges of the incidence angle 6).%

A Crosstalk Problem

This problem is concerned with the derivation of formulas for the
first-order crosstalk between two simple open-wire telephone circuits
of which one is non-transposed and the other is once-transposed, as
represented in plan view by Fig. 13.

The once-transposed circuit is taken as the primary, and the non-
transposed as the secondary. Each extends from x = 0 to x = s;
and the primary is transposed at its mid-point x = s5/2.

% For a detailed study of the wave antenna, the reader is referred to the well-

known paper by Beverage, Rice, and l\ellog entitled ‘The Wave Antenna’ in
J. A. I. E. E. beginning with March, 1923,

35
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The primary is energized by an alternating electromotive force Eq
inserted at x = 0, Stated precisely, the problem here contemplated
is the derivation of formulas for the currents produced in the two ends,
x = 0and x = s, of the secondary circuit by the primary circuit, when
all reactions of the secondary on the primary are neglected.

(OIO)
K g?o K.Y X Primary gK
@ (@)
0 X -';i s
3)
K/ g K:Y! Secondary ?K’
@)
Fig. 13

The wires of the secondary circuit are numbered 3 and 4. The
primary wires are numbered 1 and 2, in the sense that 1 and 2 designate
the positions the wires would occupy if non-transposed; in this sense,
wires 1 and 2 are each discontinuous at x = s5/2, the transposition cross
thus being regarded as extraneous to the wires.”

Each circuit is terminated at each end in its mode-a characteristic
impedance—K for the primary, K’ for the secondary. The mode-a
propagation constants of the primary and secondary, per unit length,
are denoted by v and «' respectively.

The earth is assumed to be a perfect conductor. This assumption
is effectively a good approximation because the contemplated circuits
are such that the distance between the two wires of each circuit is
small compared with their height above ground; at the same time the
assumption greatly facilitates and simplifies the solution.

Evidently the first step is to formulate the primary current and the
primary systemic potential at any point x. The second step is to
formulate the electric field impressed on the secondary by the primary.
The third and final step is to formulate the currents produced in the
secondary by the impressed field of the primary; this third step will
be carried through by means of the synthetic method, employing the
set of equivalent electromotive forces formulated in the early part of
Section III.

% The transposition cross may conveniently be regarded as merely a particular

kind of transducer (four-terminal network) inserted in the primary, namely a revers-
ing transducer. .
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Let I,(x) = I, and V,(x) = V, denote the current and the potential,
respectively, at any point x of wire », where » = 1, 2, 3, 4. Then,
evidently, for the primary currents and potentials we have:

Iy = — I, Vi= — Vs, (115)
]/71 —_ V'_l = KI]_. (116)
For x = 5/2:
I, = :E:E'lf:‘”I (117)
1 2K ’
Vv, = :!:%98*"". (118)

Thus the primary currents, I,(x) and I.(x), and the corresponding
primary potentials, V(x) and Va(x), are each discontinuous at x = s/2
(by reason of the transposition there).

The electric field impressed on the individual wires of the secondary
circuit by the primary circuit can be formulated by means of equations
(106) and (96). Thus

Ey = (g — Tan)sly, (119)
Ey= (T'w — Twsl,, (120)
Vy = (Ts1 — T3) V1, (121)
Vi=(Ty—TuwV,, (122)

where z = z; = 2, is the internal impedance of each wire of the
primary, per unit length, and the 7"s are ‘voltage transfer factors’
given by (98).

Evidently the secondary circuit constitutes a balanced two-wire
line in an arbitrary impressed field (the field due to the primary),
and hence is amenable to the treatment already fully described and
formulated in the subsection following equation (54). Thus the
current at any point x in the secondary consists of two modes, a and c.
However, as already indicated, we shall ultimately be concerned only
with the currents in the ends x = 0 and x = s of the secondary;
evidently these are mode-a currents, for at each end the mode-¢
currents must be zero, since the circuit is insulated from ground at
each end.

As we shall be concerned only with the mode-a¢ currents produced
in the secondary, the next step is to formulate the mode-a constituents
of the electric field impressed by the primary. If E’ and V' denote
the mode-a constituents of the axial electric force and of the potential
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impressed by the primary, then

E' = Ey — E4; = 4Tz, (123)
V=V — Vy=4TV,, (124)

where
T = (T:u - T32 - T41 + T42)/4- (125)

Remembering that I; and V; are discontinuous at x = s/2, in accord-
ance with equations (117) and (118), it is seen that E’ and V' are
discontinuous at & = s/2 in accordance with the following equations.”
For x = 5/2:

B = £ ET2e™, V' =+ Ede™. (126)
We are now prepared to formulate the mode-a currents produced in
the secondary (3, 4) by the field arising from the primary (1, 2).
Since the secondary constitutes a balanced two-wire line in an arbitrary
impressed field, it is amenable to the treatment formulated in the
subsection following equation (54); thence equations (41), -+ (45)
and equations (50), - - - (54) are formally applicable.
If Ia(x) and I,(x) denote the mode-a currents at any point x in the
secondary wires 3 and 4 respectively, then

Ii(x) = — I4(x) = I(x), say. (127)

On referring to the subsection containing equations (41), --+ (45)
and applying it to the mode-a effects in the present problem, it will
be seen that I(x) is the sum of the five mode-a constituents jlx),
Jo(x), Ju(x), Jos(x), Ju(x), corresponding to equations (41), (42), (43),
(44), (45) respectively. From the discussion in connection with those
equations and from the analysis of the impressed field into two modes,
a and ¢, as described and formulated in the subsection following equa-
tion (54), it will be seen that j(x) is due to the mode-a axial electric
force E(y) — Eu(y) acting at all points y of the secondary, Jo(x) is
due to the mode-a impressed voltage V3(0) — V4(0) acting at the
end y = 0, J,(x) is due to the mode-a impressed voltage Va(s) — Va(s)
acting at the end y = s, Jo,(x) is due to the mode-a impressed voltage
Va(y) — Va(y) acting at all points y in the leakage admittance® between
the secondary wires, and J,(x) is due to the discontinuity V'i(uw —)

27 From mere physical considerations, it is evident that the whole primary field
is reversed at x = s/2.

3 That is, the ‘mutual’ leakage admittance (equal to the ‘direct ' leakage ad-

mittance between wires plus one half of the ‘direct’ leakage admittance from each
wire to ground). .
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— V'(x +) in the mode-a impressed voltage V'(y) = Vi(y) — Vi(y)
at ¥ = u = s5/2. (In what follows, the constituent Jo,(x) will be
omitted because it is relatively unimportant.)

Thus, for the formulation of the mode-a effects the functions f(y)
and F(y), representing the electirc forces and potentials in equations

(41), -+ (45) and (50), --- (54), have the following mode-a values:
F(v) = Es(y) — Es(y) = E'(y), (128)
F(y) = Vi(y) — Vily) = V'(), (129)

whence, in particular,
F(0) = v(0), (130)
F(s) = V'(s), (131)
Flu =) — Flu +) = V'(u =) — V'(u ). (132)

Substituting these values into equations (50), (51), (52), (54), and
carrying out the indicated integrations ' when x = 0 and when x = s,
and finally dividing each equation by the value of the primary current
I,(0) = Eo/2K at x = 0, we obtain the following formulas (134),
+++ (137) for the four mode-a current ratios at x = 0, and the formulas
(141), + -+ (144) for those at x = 5. Also, there are included formulas
for J(x)/I1,(0) at x = 0 and at x = 5, J(x) denoting the sum of the
mode-a current constituents due to the impressed potential, that is,

J(x) = Jo(x) + Julx) + Ju(x) (133)

since Jy,(x) is neglected.
At x = 0 the formulas for the four current-ratios are

10 = TE Ry (134)

re - TE (135)

ﬁg)} =~ T (136)

7i) = e (137)
The sum of the last three is

J{T((OO_} = — T% [1 — e-Or+vs2]2, (138)
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On dividing (134) by (138) the ratio of j(0) to J(0) is found to have
the simple value

i s
O CE T (139)

In particular, when the two circuits have equal propagation constants
(v =7k ©

i 5

L - 2 140
where Z = vK is the mode-a ‘complete series impedance'® of the
primary, per unit length; it will be recalled that z is the ‘internal im-
pedance’ of each primary wire, per unit length. The ratio z/Z is

ordinarily a very small fraction.
At x = s the formulas for the four current-ratios are

i(s) K ss[1 — e
=T ms=———Fp"" 141
1,(0) K'K (y—~7")s/2 € (141)
J——D(S) = — "E_ —'s

no- " fre (142)
Js) K

Lo~ g™ (143)
Jit("’-) = 2]'£e~(7+1';3j2 (144)
1,(0) K’ :

The sum of the last three is

J(s) _ _ ~£ o y—y"8/272— s z
70) ~ ]'K,[l el o (145)
On dividing (141) by (145) the ratio of j(s) to J(s) is found to have
the simple value

[4

s __ =
O CEX (146)

When the absolute value of (y — %')s/2 is small compared to unity,
equations (141) and (145) become approximately

Js) _ o Kssly = ¥)s

Lo - KK 2z ¢ (147)
J(s) _ K[ (v =2)5) s
m_—YKJI:"—Z__JE . (148)
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Thus:
When ~" = v: j(s) =0, J(s) = 0.

For some cases, particularly those where the attenuation is neglected,
it is advantageous to express the square-bracketed factors in equations
(134), (138), (141), (145) partially in terms of hyperbolic sines.

ApPENDIX |
DERrIVaTIONs OF EQuUATIONs (25) AND (90)
Equation (25)

Let the primary or impressed field of force be specified by an electric
intensity f, parallel to the axis of the wire (and to the surface of the
earth), and an electric intensity f, normal to the surface of the earth
and measured downward. We denote by f, the value of f, at the axis
of the wire,® and by f, its value at the surface of the ground in the
plane which is normal to the ground and which includes the axis of
the wire. The impressed or primary potential Fof the wire, due to the

impressed field, is then
h
F= f Judy, -
0

where £ is the height of the wire above ground and the integral is
taken along the vertical from the wire (y = 0) to ground (y = k).

Due to the impressed field, specified above, a current I flows in the
wire and a corresponding superposed current distribution is induced in
the ground. The resultant axial electric intensity at the surface of
the wire is then =,/ (where =, is the internal impedance of the wire,
per unit length); correspondingly the resultant electric intensity along
the surface of the ground is f, — z,I. Application of the second
curl law to a contour composed of two verticals from the wire to
ground and the line segments dx in the surfaces of the wire and ground
gives

., dV d
{zw+zu)I_ja +K = '—'51
which is preferably written as
av d
- fo+ = =2, (1)

where z = z, + 5, is the internal impedance of the circuit, per unit
length; V' is the resultant potential of the wire; and ¢ is the resultant
magnetic flux threading the contour, per unit length. But we have

® fu is assumed to be sensibly constant over the cross-section of the wire.
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also 7
d dd
fw_fy+a__mr (2)

where ® denotes the impressed magnetic flux threading the contour,
per unit length. Subtracting (2) from (1) and observing that

1
V—-—F==-0,
c? (3)
¢ —d=1LI
we get
_ daI | 14dQ _ ,
sl + L+ Gge = fw )

where, of course, Q is the charge, C the capacity to ground and L the
external inductance, per unit length of the wire.

To eliminate Q from (4) we make use of the equation of current
continuity, namely '

dl _ dQ

w-a T )

where I’ is the leakage current per unit length of the wire. If the
wire is embedded in a homogeneous leaky medium, then

r=%0=6v-n, (©)

where G° is proportional to the conductivity of the medium.* If,
furthermore, there is direct leakage admittance from the wire to
ground (as at poles and insulators) of amount Y’ per unit length,®
when regarded as uniformly distributed, then

I_G_O ! ___(_; ]

where

- G=G"+7Y". (8)
On substituting the last value of I’ into (5), setting d/df = iw, then
differentiating with respect to x, and finally substituting the resulting
value of dQ/dx into (4), we get

1 @I Y dF
GCiiacde 1"t GFieCdc’ ©)

10 A formula for G° is equation (18) derived below.

3 While G° is merely a pure conductance, ¥ is in general an admittance (leakage
admittance), because the insulators and poles have capacity as well as conductance.
Hence G, defined by (8), is an admittance.

(z + twl) —
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which can be written

K{ , d&\,_ V'K dF
7(? —@)I—fw-ir ol (10)
where
' [z tdwl
K=NeFiac =
and
v = (z + ioL)(G + iwC). (12)

Thus K is the characteristic impedance and v the propagation con-
stant of the transmission system composed of the overhead wire with
ground return; it is to be noted that G = G° 4 Y7, in accordance
with (8), and hence that G is in general an admittance—not a pure
conductance.

If we define f* by the equation

g YEdF
J'=Ju+ S dx (13)
then (10) becomes
K/ | a? o

which is formally the same as eguation (25) of the text. There,
however, it is assumed that the term (Y’K/y)dF/dx is negligible:
probably this is usually the case but circumstances may arise where
it is not negligible. Its inclusion, however, introduces no formal
modification of the analysis. :

The foregoing derivation has been given in detail because prior
derivations known to the writers have not been entirely satisfactory.
Their chief defect has been that no explicit consideration was given
to the finite conductivity of the ground (except that it produces a
tangential component f,). In the derivation given above, the effect
of ground conductivity is expressly recognized and in the final equa- |
tion appears implicitly in the values of K and y. These parameters,
it will be observed, are experimentally determinable, and are the only
parameters besides ¥’ appearing in the final differential equation.

A formula for the quantity G° occurring in equations (6) and (7)
can be derived by application of Gauss’ theorem, as follows: Let E,
denote the radial component of the total electric force at the surface
of the wire, dS a differential element of the surface of the wire, and
o and e the conductivity and specific inductive capacity of the medium,
which is homogeneous and isotropic by assumption. Then the leakage
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current I’ flowing outward, per unit length of the wire, is given by
I' = f oEdS =" f ¢EdS, (15)

the surface integral being taken over the unit length of the wire.
But, by Gauss' theorem (£ being a constant whose value depends
only on the units),

f eEdS = 47Q/t, (16)

the resultant axial electric flux from the ends of the element being
negligible compared with the radial electric flux from the lateral

surface. Thus
_ 4w

==L (17
and comparison of this equation with (6) gives the result
G C = 4no/et. (18)

In this connection it may be noted that the leakage current repre-
sented by (15) does not directly depend on the impressed field, but
only on the field produced by the wire itself. This is because the
assumed medium is homogeneous and isotropic; hence ¢ in (15) can
be taken outside the sign of integration, and then the conclusion
follows from (15) by noting that one of the constituents of E; is the
impressed radial electric force f,, and that

[ 1.dS = [div f-dv =0,

since the divergence of the impressed electric force must be zero.
The conclusion would not follow, in general, if the medium were either
heterogeneous or molotropic. It may be noted that a homogeneous
isotropic medium surrounding a wire and containing direct leakage
admittance paths from the wire to ground may be regarded as a
heterogeneous @olotropic medium.

The value given for & in equation (9) of the text, namely é = 4wo/e,
is readily derivable by combining equations (4), (10), (5) of the text
with (17) of this Appendix.

Equations (90)
If there were no impressed potential at the primary wires (F = 0),

the equations of continuity would be merely

—%—I,h =2 ViiVim (h=1, - n), (19)
X k=1
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where, in accordance with equations (7) in Section I,
Yie = gur + toghs. (20)

It should here be remarked that Y, depends not only on the geometry
of the system and on the conductivity of the medium but also on any
direct leakage admittance existing between the wires themselves and
also on any between the wires and ground. The direct leakage
admittance between wires & and &, per unit length, will be denoted by
Y’»r and that between wire i and ground, by ¥";,; these are regarded
as being uniformly distributed along the system.

When there is present an impressed potential, the existence of the
direct leakage admittances gives rise to the following supplementary
terms for the right side of equation (19):

n n
FuViu + 2 (Fy— F) Vi =% X Fy,
i{:}"l k=1
where
.\'};f; = — Y’k;_- for k = h,

n
.\'M, = Z lﬂ},;-. (21)
k=1
It is seen that Y); and X, are of the nature of admittances (per
unit length), although they are not ‘direct admittances.” Their pre-
cise meanings are readily deducible from equations (90).
When the medium itself is of zero conductivity, g reduces to X,.



