Electric Circuit Theory and the
Operational Calculus'
By JOHN R. CARSON

CHAPTER IX
The Finite Line with Terminal Impedances

So far in our discussions of wave propagation in lines and wave-
filters, we have confined attention to the case where the impressed
voltage is applied directly to the infinitely long line. We have found
that, by virtue of this restriction, the indicial admittance functions
of the important types of transmission systems are rather easily
derived and expressible in terms of well known functions, and the
essential phenomena of wave propagation clearly exhibited. In
practice, however, we are concerned with lines of finite length with
the voltage impressed on the line through a terminal impedance Z,
and the distant end closed by a second terminal impedance Z.. We
now take up the problem presented by such a system.

Let K=K(p) denote the characteristic operational impedance of
the line, and v=7v(p) the operational propagation constant of the
line. We have then

V=Ae 74 Ber,

1

1 (240)
= = -7 — — yx

where 4 and B are so far arbitrary constants. To determine these
constants we assume an e.m.f. E impressed on the line at x =0 through
a terminal impedance Z; and the line closed at x=s by a second termi-
nal impedance Z;. At x=s we have therefore

ZQI = V

whence from (240)

ZJ —vs 4 — __22 s B = =75 Vs
% ¢ 54 %° B=Ae 7+ Be
and
= — Lfa ,—2YS
B= i pzb A (241)

where p.=Z»/K.
1Concluded from the issue of January, 1926.
336
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At x=0 we have ‘
V=E—Z]I

whence

gl D
A-I—BﬁE—KArFKB,

(1+p)A+(1—p)B=E, (242)
where py=2,/K,.
From (241) and (242) we get

A= 11 p2 E

(14p1) (1+p2) — (1= p1) (L — pa)e™**

— (1 —pa)e—27¢

 PE— E

(14 p1) (14p2) — (1—p1) (1 — po)e™ 2

and finally
1—p2 !
—Yx + Fa —vy(@s—x)
o E ° pRETN (243)
* K+Z, 1— 1—91_1—P23_2%. ’
1+p: 1+p2

If we replace E by a unit e.m.f. we get the operational formula for
the indicial admittance A.; thus

A e“T-\'+'u.zg_T(23—x) 1
Ay === = 244
4 K 1—ppse™2r Z(p) (244)
where
AN=K/(K+2Z),
— ]. —pP1 =K —Z1
S TN S A
1—ps K—2Z,

K,v,Z1,Zo,u1 and p, are, of course, functions of the operator p.
The integral equation corresponding to the operational formula
(244) is

Ez"i(?f J; " end (D). (245)
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Now by (244) we can expand jl/Zx(p); it is

1 e—Yx =7 (25 —x)
Zp) VK TR
e~ (25+x) e~ s—x)
+7\M1N2T+ Nu1paa® Ve
e—Y({ds+=x) (246)
F Al ———+
K

Now we observe that ¢”7*/K is simply the operational formula for
the indicial admittance at point x of an infinitely long line with unit
e.m.f. impressed directly on the line at x=0. This will be denoted
by a:(t). Similarly e”7®~*/K is the operational formula for the
indicial admittance at point (2s—x) with unit e.m.f. impressed directly
on the line at x=0. This will be denoted by as;—.(¢), etc.

Recognition of this fact allows us to derive a formal solution in
terms of a series of reflected waves. For let a set of functions
Vo,01,02,73, . . . . satisfy and be defined by the operational equations :

%=A(p) =\

71 M (247)

Vg =Au1fg
va=MNu143, ete.
It then follows from the preceding and theorem II that

d [ o(t—7)ax(7) +v1(t— 7)@os—(7)
A=~ | dr . (248
® dt ‘L- { Fvo(t—71)aos(7)+ . . . } (248)

If, therefore, we know the indicial admittance of the infinitely long
line with unit e.m.f. directly applied and if we can solve the operational
equations (247), then A.(f) is given by (248) by integration. This
solution may well present formidable difficulty in the way of com-
putation. It is, however, formally straightforward and the numerical
computation is entirely possible, the only question being as to whether
the importance of the problem justifies the necessary expenditure of
time and effort. Without any computations, however, the solution
(248) admits of considerable instructive interpretation by inspection.
The first term represents the current at point x of an infinitely long
line in response to a unit e.m.f. impressed at x=0 through an im-
pedance Z;; 9, =1,(¢) is the corresponding voltage across the line termi-
nals proper. The second term is a reflected wave from the other
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terminal due to the terminal irregularity which exists there. The
third term is a reflected wave from the sending end terminal, etc.
The solution is therefore a wave solution and is expanded in a form
which corresponds exactly with the sequence of phenomena, which it
represents.

The solution takes a particularly instructive form when Z,=%# K
and Z,=koK where %k, and ks are numerics. Then

go= — L _
O 14k,
1 1=k 4_
U= h 1k (249)
U T St ST St A
T by 14ky LR
and
)+ a0 ) }
{ (” 1 ‘ (£ 1+ ks Aos—x l ,
A) =575 1 e (250
R IR S E 0+ - %20
14k, 14k,  2FF T

If ky=0, k»=1 we have the case of the e.m.f. impressed directly on the
sending end of the line and the distant end closed through its char-
acteristic impedance; the solution reduces to

A (1) =ax(t)

as, of course, it should be by definition.
If k=0 and ks= %, we have the case of the line open-circuited at
the distant end, and the solution reduces to

A= ':G_\-(!) —@as—x(t) —@as () Fass—(O)+ . . . i (251)
Finally, if both %; and k. are zero, the line is shorted and

Au(t) =) a() +ass—<(t) Fass () Fas—(B) + . . 5. (252)

The operational equations (247) admit of further interesting and
instructive physical interpretation without computation. Consider
a circuit consisting of an impedance Z, in series with an impedance
K. Let a unit e.m.f. be applied to this circuit and let v, be the re-
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sultant voltage across the impedance K. Then, operationally,

K

N 57

v

so that z,, thus defined in physical terms, is the v, of equations (247).
Now let this voltage be impressed on a circuit consisting of an
impedance 2Z, in series with an impedance K—Z, so that the total
impedance is K+Z; Let the resultant voltage drop across the im-
pedance element K —Z, be denoted by v;; then operationally

9 = 7K . K;ZS =\
"T K47, K+z, ™"
which agrees with », as given by equation (247).
Similarly if voltage #, is applied to a circuit consisting of an im-
pedance 2Z; in series with an impedance K —Z, and if »» denote the
voltage drop across impedance K —Z,, then

Vo =AM1lio

We can thus see physically what the voltages v,,21,v2 . . mean in terms
of simple circuits consisting of K and Z; in series and K and Z; in
series respectively.

I shall now work out a specific problem exemplifying the preceding
theory. The example is made as simple as possible for two reasons.
First because its simplicity makes it more instructive than when the
phenomena depicted and the essentials of the mathematical methods
are obscured by complicated formulas and extensive computations.
Secondly while the general method of solution illustrated is thor-
oughly practical we cannot hope to arrive at the numerical solutions
of the complicated problems without a large amount of laborious
computations. Problems involving transmission lines with com-
plicated terminal impedances are among the most difficult, as regards
actual numerical solution, of any which present themselves in mathe-
matical physics. On the other hand, the formal solution (248) gives
at a glance the essential character of the phenomena involved.

The specific problem we shall deal with may be stated as follows:
A unit e.m.f. is directly impressed on the terminals of a transmission
line of length s, the distant end of which is closed by a condenser C..
The line is supposed to be non-dissipative, its constants being in-
ductance L and capacity C per unit length. Required the current at
any point x(x <s) of the line.

We write /L/C=k, 1/N/LC=v: then by virtue of the preceding
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analysis of transmission line propagation the indicial admittance a.
of the infinitely long line is given by

a,=0, for i<x/v,

1
=7 for 1= x/v.

The operational characteristic impedance is, of course, k=+/L/C, and
the terminal impedances Z; and Z, are given by
Z,=0,
Z:=1/pC,.
Referring now to equation (244) we have :—
A=1, m=1,

_k=1/pCy _ RCp—1
M= EF1/pC, kCp+1

Consequently, referring to equations (247), we have, operationally,

w=v= (rengi)

In order to determine these functions we have therefore to solve the
general operational equation

Ve (iciprn)’

where V, denotes either vs,_; or o,.
In order to eliminate the coefficient £C,, we make use of theorem

VIII, and write
_(P=1\"
"’"‘(p+1) .

In accordance with that theorem

Vault) = ¢nlt/kCo).
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We therefore start with the operational equation
_ lb — 1) n
on=( 1) -

Now the solution of this operational equation is very easy and can
be expressed in a number of ways. We require it expressed in the
form most easily computed. The following appears best adapted
for our purposes. Consider the auxiliary operational equation:—

=5

= (p"gzﬁpn—l_}_Qﬂ (n)(n
1!

Pn 2

... +(—1)"2»)51".

The explicit solution is gotten by replacing 1/p" by t"/n! and p" by
d"/dt", whence

d" nd'! v} £
n@= (5 -2 (- D2)s,
__n2t n(n 1) (2t) . (20"
I_FTT—F ! +o =D nl
But writing
(=2 _ 1
""‘( b ) ~ H(p)

it follows that

o= (§+D H=H(p1+1)

_p+l p 1
b pH1HpTT)

—(14Ly. 21
(%) primery
Referring now to theorem VII, we see that

o) = (14 i "dz) o0 (f) « e

Since we have already solved for ¢,(#), this determines ¢,(f) and
hence V.(t). The functions #,7,,7: . . . are therefore determined.
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Now refer back to equation (248) giving the required current in
terms of w,v1,%2...and the admittances a.(f),as—(8),.... It
follows at once by substitution of the preceding that

0= (0= 2) 022 -8 1

the functions ., 1, v2 being zero for negative values of the argument.
This result may possibly require a little explanation.

Consider the expression
— t —7) - 1(n)d

where 1(¢) denotes a function which is zero for ¢ <#, and unity for t=+t,.
It is evidently identical with the admittance a.(f) provided the
proper value is assigned to f,.

Now since 1(t) =0 for { </, and unity for =14, the preceding may
be written as zero for t<¢,, and

kdtff(t dr for 121,

which is equal to f(t—#).
If we set x=0, we get the current entering the line; thus

440} {0t B vu(c= )

tos(t= 2 ) (=) + }

-1 { 1+2V1(,:——)+2V3(¢—§f)

k
+2V( bf)+}

This has been computed for the case where v/sLC, =10 and is shown
in Fig. 26. Referring to this figure we see that the current jumps
at t=0 to the value /C/L=1/k, and keeps this constant value for a
time interval 2s /2. At this instant the first reflected wave arrives and
the current takes another jump, of 2/k. Thereafter it begins to
decrease very slowly until time t=4s/v at which time it takes another
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jump of 2/k. Thereafter we have a series of jumps of 2/k at time
intervals 2s/v, the current decreasing between successive jumps.
The smooth curve is the indicial admittance of an oscillation circuit
consisting of an inductance sL in series with a capacity C,. We see
therefore, that the current in the line oscillates with discontinuous

it

08

gl
A

06

sL=Total Inductance of Line
74 sC= » Capacity l
4 Cgz Terminal Capacity
1/VsLCa =01
|7-— Multiply Urdmalbes by VG \ \

2

Values of t/nVSLC,

0

oi

02 03 04 05 06 or

08 08

10

Fig. 26—Current entering non-dissipative line terminated by capacity C, unit E.M.F.
applied to line

jumps about the current in the corresponding oscillation circuit.
Since the whole circuit contains no resistance, the oscillations never
die away, but continue to oscillate, as shown, about the curve

\} % sin (\/.:L—G,)

which is the indicial admittance of the corresponding oscillation
circuit.

I shall now discuss a method of solving circuit theory problems,
quite generally applicable to complicated networks, and particularly
useful in dealing with transmission lines terminated in impedances.
I have found it particularly useful in arriving at numerical solutions
where other methods prove far more laborious. It is also of mathe-
matical interest, as it applies another type of integral equation to the
problems of electric circuit theory.

Suppose that we have a network with two sets of terminals as shown
in Fig. 27.7 Now suppose that terminals 22 are short circuited and a
unit e.m.f. inserted between terminals 11. Let the resultant current
flowing between terminals 11 be denoted by Su(f) =S and that

7 Regarding conventions as to signs, see the Appendix to this chapter,
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between terminals 22 by Say(f) = S21. Siiis the driving point indicial
admittance with respect to terminals 11 and Ss; the transfer indicial ad-
mittance of terminals 22 with respect to 11 under short circuit con-
ditions.

Similarly if terminals 11 are shortcircuited and a unit e.m.f. inserted

{ 2

o— 5

I Network l

o—_ | )

i 2
Fig. 27

between terminals 22 the current flowing between terminals 22 is
denoted by Szs(f) = Ss» and that flowing between terminals 11 by Sia(2)
=S5, If the network is passive, i.e., contains no internal source of
energy, it follows from the reciprocal theorem that Sy =S5 As far
as the two sets of terminals are concerned, the network is completely
specified by the indicial admittances Siy,S29,521= 5.

Now let a voltage Vi(f) = V1 be inserted between terminals 11, and
a voltage Va(f)=1V, between terminals 22. The current flowing
between terminals 11, denoted by I, is

d d M
Lo =5 [ Vi@Sut=ndr+G [ Va@Su(t-ndr  (253)
while the corresponding current between terminals 22 is

1,0) =% [ Vi) St = e+, [ Vit Sut=r)dr  (254)

23, S12= S 21
and 11,7 s, T1s = T’ respectively and let them be connected in tandem
as shown in Fig. 28 to form a compound network.

b—] \ﬁ_-—‘ 3 3
S Vo | T T
P —y

Fig. 28

Now consider two networks of indicial admittances Si1, Sae

We require the indicial admittances of the compound network in
terms of the indicial admittances of the component networks.
Short circuit terminals 22 of the compound network and insert a
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unit e.m.f. between terminals 11. Let V3 (#) denote the resultant
voltage between terminals 33 measured in the direction of the arrow,
and I; the current flowing between the networks. We have then the
two following expressions for the current Is.

!
I=Su()— S VutnSutt=rds (255)
and

!
IF% ﬁ Vor(r) Taa(t—1)dr. (256)

Equating we get
d t
= f Via(s) [Saa(t— )+ Tia(t— )] dr = San 2). (257)

By precisely similar reasoning, if terminals 11 are short circuited
and a unit e.m.f. inserted between terminals 22, and the correspond-
ing voltage across terminals 33 denoted by V3., we have 8

%./Ot:Vsz(T) [Sea(t—7)+Tu(t—7)]dr=Ta(t). (258)

Equations (257) and (258) are integral equations of the Poisson
type which completely determine V3, and V3, in terms of the indicial
admittances Sand T. We shall discuss the solution of these equations
presently.

If Uy1,Use,Usy= U2 denote the indicial admittances of the com-
pound network we have at once

Un=Su(f) —% ﬁ Vaa(r)Sua(t—7)dr (259)

d ]
Un=Tu()—5 _[ Vas(r) Tor(t—7)dr (260)
and
d 3
Un = Uu_ = Ei.j)‘ V:u(f) Tz]_(t— T)d‘r
" (261)
= E‘:[O‘ Vaa(7)S1a(t — 7)d 7.

If, therefore, equations (257) and (258) are solved for Vi and Vs,
the required indicial admittances of the compound network are given

8 V3, being opposite to V3 in direction.
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by (259), (260) and (261) in terms of the indicial admittances of the
component networks.

A simple example will now be worked out illustrating the method
of solution just discussed. Suppose that a unit e.m.f, is impressed
on a transmission line (infinitely long) of distributed constants R,L,C,
through a terminal resistance R,. Required the terminal line voltage
V.

The operational equation of this problem is gotten in the usual
manner. The current entering the line is

V\/ ,
Lyt R’

It is also obviously equal to Ri (1—V): equating the two expressions,
and rearranging we get:—
1p+R
Rt \/Lp—l—R

Writing R/2L =p and setting R, = \/L/C, this becomes

_ VIt2%/p
1+ 1+2p/p

(262)

This operational equation can, of course, be solved in a number of
ways, though, as a matter of fact, its numerical solution is quite
troublesome. This point will be returned to later: we shall first
formulate the problem in accordance with the method just discussed.

The indicial admittance of the line is known; it is

\j %e‘”’fo(pt) —AQ).

Consequently the current entering the line is explicitly
d t
z ‘f V(R A(t—7)dr

But the current is also equal to I%— (1—V(#)); equating, we get
0

V(o) =1—Ruc%fu' V() A(—)dr.
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Performing the indicated differentiations

V() =1—ReA (0) V() — Ro j; V(DA (t—1)dr.

Now 4 (o) = \l% and

A'() = e (Tslot) = L(o) | €
and Ro=\/I_.7_C"; therefore the equation becomes
!
V() =3+ [ V=L (o)~ Lon)le-rra.

As a matter of convenience we change the time scale to pf, and get

V() =é +é' L Vit— DL (7 — L(D)]e="dr (263)

1 1 d
—_ T(F —T
=5 2'£d-r V(¢ T)d—T8 I.(7),

where it is understood that ¢ is actually pt. This is the integral equa-
tion of the problem and is in the canonical form of Poisson’s integral
equation.

Before solving this equation numerically I shall show how a simple
approximate solution is obtainable immediately; an advantage often
attaching to this type of integral equation.

The function (—?} e”'I(f) is equal to —1 for t=0 and converges

rapidly to zero. V(t) has, as we know from the operational equation,
the initial value 1/2 and the final value 1. Neither function changes
sign. It follows from the mean value theorem that the equation

can be written as

al
V(e =} — %V(t) f (%e"[v(t)dt
oS0

where a<1. Integrating
V(D) =y — 3V e Tfat) 1]

and
1

1+e % (at)’ (264)

Vi) =
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The correct initial and final values of V(f) result for all final values
of <1, so that approximately

1
14e~t,(t)"

“This equation, while not exact, except for =0 and ¢ very large, shows
faithfully the general character of V(¢) and the way it approaches its
final value unity. For large values of ¢

e~'Io(t) =1/~/2xt

_ 1
14+1/7/2x
Approximations of the foregoing type are not always possible and

may not be of sufficient accuracy. I shall therefore give next a

method of numerical solution which is generally applicable to integral

equations of this type and works quite well in practice. We shall
write the integral equation in the more general form

W@ =)+ [CuG-ke)y (265)

V(t) =

whence

V(t) >8. (264-a)

where f(x) and k(y) are known and #(x) unknown. The method
depends on the numerical integration of the definite integral. Let
us divide the x scale into small intervals d and for convenience write

u(nd) =uy,
f(nd) =fn
k(nd) =kp.

Now from the integral equation we have at once
1(0) =tto=fo,

d
w(d) =1 =f1+ [ w(d—y)E()dy.

Now if d is taken sufficiently small

[ =k )y = & ikt k],
whence
wy=[1-+ % [101kot11ok]
and

w1 = i_—-Tk]m [f1+ft0k1d/2]
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which determines #, since #, is known. Similarly
s =fotd [Fuckot1u1k+ F1sk,)
which determines #,. Proceeding in the same manner
ty=fa+d [Suoks+ kst taky 4 S1uako), ete.
In this way we determine the value of #(x), point by point from the

recurrence formula

1, 4
1y :f"+d[2”0kn+”1knﬁl~j—12i"'_g+ .. ‘l"uuflkll_ (266)
ko

The result of the application of numerical integration, in accordance
with formula (266), to the integral equation (263) is shown in Fig.
(29). The dotted curve is a plot of the approximate solution as

10

_________ Po———

0 Valuesof pt
0 10 20 30 40 50 60 ] 80 90 100

Fig. 29—Line terminal voltage unit E.M.F. impressed on line through resistance
R,=+VL/C

given by equation (264), for a=1. We see that the voltage starts
with the value 1/2 and slowly reaches its ultimate value, unity,
its approach to unity, for large values of £, being in accordance with
the formula

1

e 1+1/4/2xt

The application of the foregoing method to the transmission line
problem proceeds as follows. Let Su(#), Sea(f) and Sia(¢) be the
short indicial admittances of the line. S5):(f) is the current entering
the line (at x=0) with unit e.m.f. directly impressed and the distant
end short circuited, Si»(f) is the current at x¥=s under the same
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circumstances. Consequently from (252)
Su(t) =ao(t) +2ass(t) +2a4()+ . . .
Su(t) =2} as(t) +an(t) tas) + . . .1

Sas 1s clearly equal to Siy by symmetry.

Now suppose that an e.m.f. E=E(/) is impressed on the line at
x=0, {=0, through a terminal impedance Z,, and the distant end
(x=s5) closed through an impedance Z.. We suppose these terminal
impedances and the actual impressed e.m.f. replaced by the actual
line voltages V; and V., impressed directly on the line at x=0 and at
x=s are

(267)

il
(1) =L%jnsn(z—r) Vi(r)dr
(268)
d ("
e / Sua(t—1) Va(r)dr,
d,t 0

Lm:—%ﬁkm—ﬂmmw
o (269)
+h ]ﬂ Sas(t— 1) Va(r)dor.

But the current at x=s is also equal to the current in the terminal
impedance Z» in response to the terminal voltage V,: denoting by
as(t) the indicial admittance of Z, it is

1.(1) = % [0 wall— 1) Va(r)dr. (270)

Similarly the current entering the line at x=01is the current flowing
in the terminal impedance Z; in response to the em.f. E— V. De-
noting by a;(f) the indicial admittance of Z,, it is

L) =[% ]ﬂ “an(t—1)3 E(r) — Vi) L. (271)

Equating equation (268) and (271) and (269) and (270) we eliminate
I.(t) and I(f) and get

/“ [Suilt— 1) +ai(t—1)] Vi(r)dr— ]} Sya(t—7) Va(r)dr

- ]‘J"al(f—r)E(:T)dr, (272)

—j;'sm(z—f} Vi(r)dr+ L"[sw(f—r)—ag (1—1)] Va(r)dr=0. (273)
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These two equations are simultaneous integral equations of the Poisson
type in Vi and Vs, which completely determine these voltages provided
the admittances and the impressed voltages are known. They therefore
represent the application of a new type of integral equation to the problem
of electric circuit theory.

The numercial solution of the general case, either by (248) or
(272-273) is necessarily laborious when the terminal impedances are
complicated and is only justified when the technical importance of the
problem is considerable. I wish, however, to emphasize two points
in this connection: the numerical solution is always entirely possible
and, compared with other and older forms of solution, enormously
simpler. One has only to inspect the classical forms of solution of
problems of the type to realize the truth of this last statement.

I shall now give two applications of equations (272-273) to specific
problems, in one of which an approximate solution of the integral
equation can be gotten, and in the other of which numerical integra-
tion is applied.

Problem I. Given a non-inductive cable of distributed constants
C and R and length s, with unit e.m.f. applied at x =0, while at x=s
the cable is closed by a condenser C.. Required the terminal voltage
V(¢) across the condenser Co.

We first write down the short-circuit indicial admittances of the
cable; from equation (168) of a preceding section and equation (267)

they are:—
S1(f) = Sa2(t)

al 183 50 3643
= \/F% { 1+2e‘7+2g“3r+26“‘7+ . } , (274)
S12(.t) :Szl(.t)
C 8 98 250
D P R e N Y (275)

where 8 =s2RC/4.

Now the current at x=s is equal to
d t
Sul)— 4 f V(#)Sua(t—7)dr.
tJo
1t is also the condenser current due to the voltage V(/); that is

d
C"d_t 14OR
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Equating the two expressions and integrating we get

CoV(t) = .LH Sia(r)dr— l/: V(r)Saa(t—7)dr (276)

which is the integral equation of the problem. In order to get an
approximate solution without detailed computation we assume that
the cable is long. In this case the leading terms of (274) and (275)
are large compared with the terms following: Furthermore S;.(f)
builds up very slowly while S.a(f) is a rapidly varying function. A
good approximation therefore results if we take V(r) outside the
integral sign in (276) and write

" /
CV() = /(]Sm('r)(f'r* V() fSu_)g(T)dr

whence

"y
L [) Sl

V()= At :
l+éﬂjﬂ Sua(t)dt

& (277)

This approximation is quite good for long cables and shows the way
V(t) builds up quite truthfully. We see that V is initially zero, and
builds up ultimately to unity. For large values of ¢, it becomes

V)= (278)

This is the approximate formula also for the open circuit voltage, as
may be seen by setting C,=0 in (277).

In electric circuit problems, it is often suthcient, as implied above,
to know qualitatively the behavior of an electric system without going
through the labor of detailed computation. For this purpose the
formulation of the problem as a Poisson Integral Equation is par-
ticularly well adapted. A simple example will be given, which can
be checked from the known solution. Suppose that we require the
voltage V' at point & of an infinitely long transmission line (L,R,C)
in response to a unit e.m.f. impressed at x=0. This is, of course,
known from formula (211-a): we shall here be concerned, however,
with approximate solutions from the Poisson integral equation of
the problem.
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If a.(f) denote the indicial admittance of the line at point x, then
the current at point x is simply a.(#), which is given by formula
(210-a). But if V() is the voltage at point x, the current is also
given by

d [
- L]O V(P)ao(t—r)dr.

Equating these two expansions, we get the integral equation of the
problem

i
4 [ V() au(t—7)dr =a.(t).
dtl 0
. . xR |
Now if we write 7" =pt— A where p=R/2L and A R then
C |
Ay = 4| Z g~ (T+4) / N
\ e TOINTTF24), T>0,
and in terms of the relative time 7, the integral equation is reducible to
d [T . S
= J V(T —r)e"L(r)dr = e~ T+ [(/T(T+24)
0

while the exact formula for V is by (211-a)

Tt T (S Ty
(D) =eatae [ 1\1/ %;j';{f)z“”df.

From the integral equation it is easy to establish superior and inferior
limits for V{(717); it is

p—
a LWV T(T+24) _ oy

V( T) <e” IO(T)

T
J T I(T)Vo(T)dT
~ [}

>0 — V().
l} T I,(T)dT

Both formulas give the correct initial and final values of V'; namely
¢~ and unity. Since V lies between V, and V}, the mean value
(Va+ Vi) /2 also has correct initial and final values and should be a
better approximation than either. The table given below shows the
orders of approximation obtainable from the case where A=3. It
is evident from this table that the foregoing approximate formulas
exhibit the form of V(T) qualitatively in a quite satisfactory manner.
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T V. i Vo V47 v
[}

0 0.05 0.03 0.05 0.05
2 0.25 0.12 0.18 0.17
4 0.39 0.19 0.29 0.26
6 0.50 0.23 0.36 0.32
8 0.57 0.27 , 0.42 0.37
10 0.64 0.31 | 0.47 0.41
12 0.69 0.34 | 0.51 0.44
15 0.74 0.38 0.56 0.48
18 0.78 0.41 0.60 0.52

Problem II. Our second illustrative problem may be stated as
follows :—A unit e.m.f. is impressed on a transmission line of length s
and distributed constants L,R,C. At x=s the line is closed by a resist-
ance R, in parallel with an inductance L,. Required the current in
the terminal resistance. If V(#) denotes the terminal voltage, the
current at x=s is given by

Sualt) — %' ]0" V() Sus(t— 7)dr.

It is also equal to the current flowing into the terminal impedance;
that is

1 1 [
EV@) +f;,£ V(T)d’r
Equating and rearranging

[ z+52@ v =Sut) - [V [+ Sat=) Jar. (219)

Now the short circuit admittance S and S, are given by formula
(210-a) of a preceding chapter, and S:2(0) =+/C/L. In order to apply
numerical integration to (279), numerical values must be assigned to
the constants. We take

R.=+/L/C=1935 ohms,
L,=0.4 henry,

R

of =P=292,

v=1/v/LC=1.105% 10",
s=100.
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The results of the numerical evaluation of equation (279), with these
values inserted, is shown in Fig. 30. The voltage is identically
zero until 22=100; t=100/v is the time of propagation of the line.
At that instant it jumps to the value e ™ =¢""""" and then begins
to die away rapidly due to the draining action of the inductance.

007

006,

L

\\‘
9% 100 105 110 s 120

Valuesof vt

Fig, 30—Voltage across terminal impedance on smooth line

The effect of secondary reflection is insignificant and therefore not
shown. The current in the terminal resistance is V/R, so that it is
given by the same curve.

I have reserved until the last the exposition of the expansion theorem
solution as applied to transmission lines with terminal impedances,
for the reason that it is the least powerful and the most restricted,
although most closely resembling the classical form of solution. Fur-
thermore, it does not represent the sequence of physical phenomena,
in fact it is not a wawe solution, but a solution in terms of normal
or characteristic vibration. In practical application its usefulness is
restricted to the non-inductive cable.

It will be recalled that the expansion theorem solution is formu-
lated as follows:—

1 A=1/Z(p)
is the operational equation of the problem, then the explicit solution is
ekt

1 n
A=z Z AN

where p;,ps . . . are the roots of the equation Z(p)=0.
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Let us apply this formula to the case of a line of length s, with unit
e.m.f. directly applied at x=s, and line short circuited at x=s5. Re-
ferring to equation (244) and putting A =u1=pu=1 we get

_ _l_cosh y(s—x) 1

Ax= K sinhvys — ZJ(p) (280)

as the operational formula of the problem. This can be written as

_ cosh y(s—x) _ 1
A:=(Cp+G) v sinh s Z.(p) (281)
where in the general case,
y=V(Lp+R)(Cp+G). (282)

The values of v for which Z(p) vanishes are the roots of the trans-
cendental equation
sinh ys =0

excluding zero. These roots are infinite in number: Let y. be the

m'™ root; then

.mmw

Ym =1 m=12, ...=%,. (283)

The corresponding values of p. are then gotten by solving (282) for

p and writing v =vym.
The explicit solution of the operational equation (281) is then

ghmt

A= N G) _cosh ym(s—x)

=+ > O+ -
Z-"(O) — ( pm SYm d‘yﬂ cosh YmS
dpm
1 (284)

] cosh ymx .
Z(0)

put,

+ D (C+G/pw) '
$Ym ab';l

Let us apply this to the non-inductive, non-leaky cable in which
L=G=0 and y=+/RCp, so that

. __mw*
pm 7')’.",/RC_ SERC'
and
d'Ym . ]E'

Ym m 9
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Also Z.(0) =sR. We thus get

x meE
At)= EIR + :9%3 z (‘.05”?37.0. R (285)

m=1

This is a thoroughly practical formula for computation, owing to
the rapid convergence of the series. In fact, for this particular line
termination chosen, it is probably the simplest and most easily com-
puted form of solution. These advantages depend, however, strictly
on two facts. First, the fact that the line is taken as non-inductive
and secondly that the terminations chosen are those of a short circuit.
In fact, as we shall see, it is only in the case of the non-inductive
cable that this tvpe of solution is of any practical value.

There is one other point which should be carefully observed in
connection with this solution (285). This is that it is not expressed
in terms of a series of direct and reflected waves, corresponding to the
sequence of physical phenomena, but in terms of normal or characteristic
vibrations. This point will be returned to later.

Let us now attempt to apply this type of solution to the trans-
mission line, L,R,C,G. Writing

R G
P—E—l"zz-!
_R_G
Y A Yo
v=1/LC.
We have
o 1 a 9
'r"=v—._.[{1>+p)'—ﬂ“]
whence
P'" = —p:|:'U \}T?u—l_;?ﬂ
=—p¢iv\/(”£r)ﬂ~f m=1.2
s g 2, ...
dym _ 1
7'"(2.}7," —5'2 (Pr!l+P)

15

T2

%19
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Setting G =0 for simplicity and substituting in (284) we get, after
easy simplifications,

A« =S—R s ———==——=—sin (w‘ \!(mj)z—pj) e~ P (286)

If we write

(286G) can be written as

A(r)ﬂﬁ#C\‘ e {ein™ (#,..t'f—\)+=1n (M,,,lvzﬂ); (287)

S et mr !

This type of solution is often referred to as a wave solution and the
component terms of the series regarded as travelling waves. As a
matter of fact it is a solution in terms of normal or characteristic
vibrations, each of which is to be regarded as instantaneously pro-
duced at time /=0. The solution in terms of true waves has been
fully discussed in the preceding.

Formula (287) is practically useless for computation on account of
the slow convergence of the series (the series are only conditionally
convergent), and cannot be interpreted to bring out the existence of
the actual direct and reflected waves and the physical character of
the phenomena it formulates. In fact, as stated above, this form of
solution is useful only in connection with the non-inductive cable.

In the cases considered ahove we have taken the simplest possi-
ble terminations—these of short circuits in which case the roots of
Z(p) are easily evaluated. If, however, the line is closed by arbi-
trary impedances, the case is quite different, and the location of the
roots becomes, except for simple impedances, and then only in the
case of the non-inductive cable, practically impossible. While, there-
fore, the expansion theorem solution can be formally written down,
its actual numerical evaluation is a practical impossibility, except
in a few cases. For this reason it will not be considered further here.

The physically artificial character of the expansion solution, as
applied to transmission lines, may be seen from the following con-
siderations. When a wave is sent into the line, for a finite time
equal to the time of the propagation of the line, it is independent of the
character of the distant termination. Yet in the expansion solution
every term involves and is dependent upon the impedance constitut-
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ing the distant termination. Evidently, from physical consideration s,
the series of component vibrations making up the complete solution
must therefore so combine as to annihilate the effect of the distant
termination for a finite time. The solution is, therefore, mathe-
matically correct but physically artificial.

Note on Integral Eguations.

An integral equation is defined as an equation in which the unknown
function occurs under a sign of integration; the process of determining
the unknown function is called solving the equation.

Integral equations are of great importance in mathematical physics
and in recent years very considerable work has been done on them
from the standpoint of pure analysis.

The types of integral equations with which we are concerned in
the present work are Laplace’s Equation

Fp) = [ ertna
0
and Poisson's Equation

o(x) =f(x) + f "S(MK (x—y)dy.

But little work has been done on Laplace’s Equation from the
standpoint of pure analysis; its most extensive and useful applications
appear to be in connection with the Operational Calculus. Practical
methods of solution are extensively discussed in the text.

We shall now briefly discuss the solution of Poisson’s Equation.

The formal series solution, which is absolutely convergent, is ob-
tained by successive substitution. Thus suppose we write

o(x) = ¢o(x) +1(x) + () + . . ..

and define the terms of the series in accordance with the scheme

6o(x) =1(x),
o1(x) = £ B K (x—y)dy,

Bal) = [ ") K (x—9)dy, etc.,

the resulting series satisfies the integral equation and is absolutely
convergent. It is, however, practically useless for computation or
interpretation.
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A power series solution, when it exists, can be gotten by repeated
differentiation; thus

‘1’(0) =f(0) ) .
#'(x) =I"(x) +0 () K (x) + ] "o (x— K (¥)dy,

¢'(0) =f"(0) +¢(0) K (0)

In this way all the derivatives at x=0 are calculable; let them be
denoted by ¢, ¢1, ¢2 . . . Then

x x?
¢(r)=¢a+¢li+¢’22—!+ C

This form of solution, also, is of limited practical usefulness, except
for small values of x.

A number of mathematicians, including Wittaker and Bateman,
have studied the question of numerical solution and suggested other
processes. After quite extensive study of the question, however, the
writer is of the opinion that point-by-point numerical integration
like that discussed in the text is, in general, the most practical, rapid
and accurate method of numerical solution. This judgment is con-
firmed by G. Prasad who, in a paper on the Numerical Solution of
Integral Equations delivered before the International Mathematical
Congress (Toronto, 1924), discusses the whole question and arrives
at the same conclusion.

In the text, numerical integration is carried out in accordance
with Simpson’s Rule. It is possible, of course, to employ more com-
plicated and refined formulas for approximate quadrature. It is the
writer’s opinion that this is hardly justified in practical problems and
that the required accuracy is more simply obtained by employing
smaller intervals.

Appendix to Chapter IX. Note on Conventions as to Signs in Nelworks

In the network shown on page 196 the arrows indicate the direc-
tions chosen as positive in the network itself, quite regardless of the
presence of any e.m.fs. and currents.

The sign attributed to a current, an e.m.f., or a voltage is positive
if the current, e.m.f., or voltage is in the positive direction; otherwise
the sign is negative.

Stated more fully:

A current at a specific point (at a specific instant of time) is posi-
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tive if it is flowing in the positive direction; negative if flowing in the
negative direction.

An e.m.f. or a voltage between two points is positive if the potential
increases in the positive direction between the two points; negative
if the potential increases in the negative direction. (It may be noted
that this convention makes the sign of a voltage the same as the sign
of that e.m.f. which could be inserted between the two points without
producing any effects in the network.)

CHAPTER X
InTrRODUCTION TO THE THEORY OF VARIABLE ELECTRIC CIRCUITS Y

In the preceding chapters it has everywhere been assumed that the
networks are 7nvariable: that is to say, that the constants and con-
nections of the network do not vary or change with time. In many
important technical problems, however, we wish to know, not merely
what happens when an electromotive force is applied to an invariable
network, but the effect of suddenly changing a circuit constant or of
introducing a variable circuit element. In the present chapter we shall
show that this type of problem can be dealt with by a simple extension
of the methods discussed in the preceding chapters.

The simplest and at the same time one of the most technically
important problems of this type is the effect of sudden short circuits
and sudden open circuits on an energized network or system. This
type of problem will serve as an introduction to the more general
theory.

The Sudden Short Circuit

Consider the network shown in Fig. 31.

a
[ ¥
tew A v B
| i
b
Fig. 31

This network, which for generality is supposed to consist of two parts
A and B, indicated schematically, is energized by an electromotive
force E(¢) which produces a voltage V({) between the points ab.
The voltage V(#) is calculable by usual methods from E(f) and the
constants and connections of the network, supposed to be specified.

® The material in this chapter is largely taken from a paper by the writer on
“Theory and Calculation of Variable Electrical Systems,” Phys. Rev. Feb., 1921.
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We now suppose that, at reference time £=0, a short circuit is sud-
denly placed across ab; and require the effect of this short circuit on
the distributions of currents in the network. The solution of this
problem is based on the following proposition:

The effect of the short circuit is precisely the same as the insertion at
time t=0 of a voltage— V (1), equal and opposite to V(¢), between points
a and b.

The resultant currents in the system for t=0 are then composed
of two components :—

(1) The currents which would exist in the invariable network, in
the absence of the short circuit, due to the impressed source E(Z).
These are calculable by usual methods.

(2) The currents due to the electromotive force V(¢) inserted at
time ¢ =0, between the points ¢ and b. These are also calculable by
usual methods, since V(¢) is itself known from the primary distribution
of currents and charges.

By the preceding analysis we have succeeded, therefore, in reducing
the problem of a sudden short circuit, to the determination of the
currents in an invariable network in response to a suddenly impressed
electromotive force: that is, the problem to which the preceding
chapters have been devoted.

The Sudden Open Circuit

The problem of a sudden open circuit in any part of a network
can be dealt with in a precisely analogous manner, although the actual
calculation of the resultant current and voltage distribution is mathe-
matically more complicated. Consider the network shown in Fig. 32,

—]

E®) A Hiw B

L |

a

Fig. 32

Here the network is supposed to be energized by an electromotive
force E(t) which produced a current I(f) in the invariable network in
branch ab. We require the effect of suddenly opening this branch.
The solution of this problem depends on the following proposition.

The effect of opening branch ab ai reference time t=0 is the same as
suddenly inserting at time 1 =0, a voliage V(1) which produces in branch
ab a current — I1(1) equal and opposite to the current which would exist in
the branch in the absence of the open circuit,
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While this proposition is precisely analogous to the corresponding
proposition in the case of a sudden short circuit, it does not explicitly
determine the voltage V(¢), which must be calculated as follows:

Let the driving point indicial admittance of the network, as seen
from branch ab be denoted by A (). Then, from the preceding propo-
sition, it follows at once that V{(¢) is given by

%fvmmb(t— Adr = — (1), 120.

This is a Poisson integral equation in V(¢), from which V(#) is calcul-
able. With V(¢) determined, the currents in any part of the network
are calculable by usual methods, and consist of two components:—

(1) The current distribution in the network due to the impressed
source E(t) in the absence of the open circuit.

(2) The current distribution due to the electromotive force V(¢)
inserted in branch ab at time ¢=0.

As in the case of the sudden short circuit, we have thus reduced the
problem of a sudden open circuit to the determination of the current
distribution in an imvariable network in response to a suddenly im-
pressed electromotive force.

Variable Circuit Elements

In the preceding cases of sudden open and short circuits it will be
observed that the network changes discontinuously from one invariable
state to another. A more general case, and one which includes the pre-
ceding as limiting cases, is presented by a network which includes a
variable circuit element: that is, a circuit element which varies, con-
tinuously or discontinuously, with time. A network which includes
such a variable circuit element will be called a variable network. Vari-
able circuit elements of practical importance are the microphone trans-
mitter, which consists of a variable resistance, varied by some source of
energy outside the system; the condenser transmitter, which consists of
a condenser of variable capacity; and the induction generator, in
which the mutual inductance between primary and secondary, or
stator and rotor, is varied by the motion of the latter. The case of a
variable resistance will serve as an introduction to the general theory
of such variable networks.

Consider a network, energized by a source E(f) in branch 1, and
containing a variable resistance element () in branch #. The func-
tional notation r({) indicates that the resistance r varies with time.
Let 7,(#) denote the current in branch =, and assume that the network
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is in equilibrium prior to the reference time /=0. The mathematical
theory of this network depends on the following proposition :—

The network described above can be treated as an invariable network
by eliminating the variable resistance element r(t) and inserting an electro-
motive force —r(t)1,(t): that is, an electromotive force equal and oppo-
site to the potential drop across the variable resistance element. Conse-
quently the current in the variable resistance branch is determined
analytically by the integral equation

() = % I "E(r) Au(t—r)dr — d% £ NI Aalt—1)dr.  (288)

The first component is simply the current I,(¢) which would exist in
the variable branch if the variable element were absent; hence, drop-
ping the subscript # for convenience, the current in the wvariable
branch is given by the integral equation

100 =1() — Bd? L[ YDA (= 1) dr (289)

and the voltage across the variable element by
v(t) =7 () I1(¢8). (290)

Having determined I(¢) and »(f) from this integral equation, the dis-
tribution of currents in the network is calculable as that due to a
source F(#) in branch 1 and a source #(¢) in branch » of the invariable
network : that is, the network with the variable resistance element
eliminated.

A very simple example will serve to illustrate the foregoing —

Into a circuit of unit resistance, and inductance L=1/a, in which
a steady current I, is flowing, a resistance r is suddenly inserted at
time {=0: required the resultant current I(¢). In this case we have:

A(t) =indicial admittance of unvaried circuit
=1l—e%,
r(t) =r,

and the integral equation of the problem is:
/]
10 =L—r 2 [* (1—e=e) It~ p)dy
dt /0

A
=Io—m/ I(t—y)e=®¥dy.
/0
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If the solution is carried out as indicated by (291) below, and if the
notation at=x is introduced, we get without difficulty

1) =L{1—r(1—es(x)e) +r2(1—ex(x)e) — r(1—es(x)e ) + . . .5.
where the function e,(x) is defined as:
en(x) =1+4x/114+x2/21+x3/314 . . . +x""1/(n—1)!
=first # terms of the exponential series.

For all finite values of the resistance increment » the series can be
summed by aid of the identity

1—ey(x)e v = /-dxr-"x"—l/(n—l)!
J0O
Substitution of this identity gives
N
1(;)=Iﬂ(1—r[ e 0vdy)
(2]

I 14-re— Itn)x
T 14

Equation (289) is an integral equation of the Volterra type, which
includes the Poisson integral equation as a special case. Its formal
series solution is obtained as follows:—Assume a series solution of the
form

L(t) =1,(t) = () + 100 — Is() + - . . (291)

and define the terms of the series by the scheme

IR0 =£_ fu (L) A (L — 7)dr
-------------------- (292)
Topa(d) =% I () a(r) A (t—7)dr.

Direct substitution shows that this series satisfies the integral equa-
tion. Furthermore, it is easily shown that it is absolutely con-
vergent.

While this series solution is not, in general, well adapted for numer-
ical calculations, it throws a good deal of valuable light on the ulti-
mate character of the oscillations in the important case where E(f)
and 7(f) both vary sinusoidally with time. In this case, if the fre-
quency of the applied e.m.f. be denoted by F and that of the resistance
variation by f, it is easy to show that the current I,(#) in the unvaried
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circuit is ultimately ' a steady state current of frequency F. This
follows from the fact that the definite integral which defines the current
I,(t) is resolvable into the ultimate steady state current corresponding
to an applied force of frequency F, and the accompanying transient
oscillations which ultimately die away. The fictitious e.m.f. which
may be regarded as producing the component current I1(f) is rf(£) I,(1);
this is ultimately the product of the two frequencies F and f, and
therefore resolvable into two terms of frequency F+f and F—f re-
spectively. Carrving through this analysis, it is easy to show that
each component current is ultimately a steady-state but poly-periodic
oscillation, as indicated in the following table:

Component Current Frequency

Do oo F,
Iy F+f,F—f,

) F+2f F,F—2,

) A F4-3f, F+f,F—f, F—3f,
A F+4f, F+2f,F,F—2f, F—4f.

It is of importance to observe that the component currents involve,
from a mathematical standpoint, multiple integrals of successively
higher orders, the nth component I,(f) involving a multiple integral
of the n'" order with respect to I,(). Consequently the successive
currents require longer and longer intervals of time to build up to
their proximate steady-state values, so that the time required for
the resultant steady-state to be reached cannot be inferred from
the time constant of the unvaried circuit.

From the preceding table it will be seen that the ultimate steady-
state current is obtained by rearranging the series I,+ 141, and is
of the form

=
Z Ay cos (Q4nw)i+B, sin (Q+nw)!
H=—0o0
where @=27F and w=2xf.

It is interesting to note that this series comes within the definition
of a Fourier series only when F=0 or an exact multiple of f. The
steady-state solution is of very considerable importance and is con-
sidered in more detail in a succeeding chapter.

From the foregoing we deduce an outstanding distinction between
the variable and invariable networks. In the latter the currents are

10 It hardly seems necessary to remark that the reference time =0 is purely arbi-
trary and that the resistance variation may start at such a time thereafter that 7,(1)
may be regarded as steady state during the entire time interval in which we are in-
terested.  Going [arther, il we confine our attention to sufficiently large values of ¢,
the whole process may be treated as steady state.
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ultimately of the same frequency as the impressed e.m.f., whereas
in the former they are ultimately of an infinite series of frequencies.

In the preceding example, the variable impedance element is a
resistance #(f). If the variable element is taken as an induclance
A(f) the voltage, corresponding to equation (290) is

d
J[)‘(f)I(’:)'

The case of a variable capacity element is handled as follows:
Let 1/C=S and assume that Sis variable: thus, S=S,+a(f). The
drop across the variable condenser element is then

o)) =o(t) ]0 "1_(0(1;.

Similarly a variable mutual inductance u(#) between branches m and
n produces the voltages

WL

in branch m, and
d
Et_‘u(t)I m()

in branch #. This case may be illustrated by:

The Induction Generator Problem

In a sufficiently general form, this problem, which includes the
fundamental theory of the dynamo, may be stated as follows:

Given an invariable primary and secondary circuit with a variable
mutual inductance Mf(#) which is an arbitrary but specified time
function, and let the primary be energized by an e.m.f. E(f) im-
pressed in the circuit at the reference time £=0: required the primary
and secondary currents.

In operational notation the problem may be formulated by the

equations:
Zul—pMf(t) I, =E(1),

_Pﬂff(t)fl‘i‘zzafz =0,
in which Z., and Zys are the self impedances of the primary and sec-

ondary respectively; M/f(f) is the variable mutual inductance; E(t)
is the applied e.m.f. in the primary; and p denotes the differential
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operator d/dt. By aid of the fundamental formula these equations
may be written down as the following simultaneous integral equations:

1) = g7 [ dyAnt=) (EG) + L U I0)

1:(t) =Mc%l /0 “dyAn(t—y) %,{f(y)l (]

In these equations, 4;;(f) and A::(f) denote the indicial admittances
of the primary and secondary circuits respectively (when M =0):
that is, the currents in these circuits in response to a unit e.m.f. (zero
before, unity after time {=0). We assume, of course, that they are
known or can be determined by usual methods.

It follows at once that the formal solution of these equations is
the infinite series:

Li(t) =Xo() + Xo() + Xs(D) 4+ . .. + XD+ - ..
L) =Y+ YO+ Tt} + . ..

in which the successive terms of the series are defined as follows:
d
) =3¢ [ ayA (=3 E0) = Lo,
v f)—ﬂfq’f‘d 4 (iﬁ")ilf( VX ()]
1(—'&'0.322 )dy V)oY,

X =t [Cayane— ;%[f(y) Yiy)],

A dioe
Vi) = Mo [ dydalt—9) FUOX0), et
In the light of formula
d ("
10 =4 [ fA—yay
S0

the physical interpretation of the series solutions follows at once:
Thus, X.(t) is equal to the current I,(¢) flowing in the isolated primary
in response to the applied e.m.f. E(f); the first component current
Y1(#) in the secondary is equal to the current which would flow in the
isolated secondary in response to the applied e.m.f. M (d/dt)f(£) X,(8);
X:(8), the second component current in the primary, is equal to the cur-
rent in the isolated primary in response to the applied e.m.f. M (d/dt)
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f(t) Vi(£); etc. The resultant currents are thus represented as built up
by a to-and-fro interchange of energy between primary and secondary,
or by a series of successive reactions. In the important case where
the applied e.m.f. and the variation of mutual inductance are both
sinusoidal time functions, of frequency F and f respectively, it is easy
to show that each component current becomes ultimately equal to
a set of periodic steady-state currents. Thus the component X, is
ultimately single periodic, of frequency F; ¥, is ultimately doubly
periodic, of frequencies F+f and F—f; X, triply periodic, of fre-
quencies F+2f, F and F—2f; V3 quadruply periodic, of frequen-
cies F+3f, F+f,F—f,F—3f; etc.

The Solution for the Steady-State Oscillations

For the very important case of periodic applied forces and periodic
variations of circuit elements we are often concerned exclusively
with the ultimate steady-state of the system, and not at all with the
mode in which the steady-state is approached: that is, attention is
restricted to the periodic oscillations which the system executes after
transient disturbances have died away. In this case, if the periodic
variations of circuit elements are sufficiently small, the required steady-
state is obtained in the form of a series by replacing each term of the
complete series solution by its ultimate steady-state value; a process
which is very simple in view of the physical significance of each term
of the latter series. The appropriate procedure will be briefly illus-
trated in connection with the variable resistance element. In view
of the fact that we are concerned only with the ultimate steady-
state oscillations, we can base the solutions on the symbolic equation

r=1,-"971 (293)

Here r(¢) is the variable resistance element; I, is the current which
would flow in the absence of the resistance variation; and Z is a gen-
eralized impedance of the network, as seen from the variable branch.
Its precise significance and functional form is given below.

We now suppose that I, is given by

I,=J,et¥ (real part) (294)
=1 (L]fi!]!+i]e —ifr) (295)

where the bar indicates the conjugate imaginary of the unbarred
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symbol, so that (295) is entirely real. Correspondingly the variable
resistance will be taken as

r(t) = fz_ (eiet ¢t

=reit (real part) (296)
=r cos wh.

Here r is taken as a pure real quantity, which fixes the size of the re-
sistance variation. No loss of generality is involved in this, since it
merely involves referring the time scale to the zero of the resistance
variation.

The symbolic impedance Z, as employed in the theory of alter-
nating currents, will depend on the frequency and is, in general, a
complex quantity. Its value at frequency 2/27 will be denoted by

Z(iQ) =2,
while its value at frequency (Q2+nw)/27 will be written as
Z(1(Q+nw) ) =2Z,.
We now assume a series solution of (293) of the form

I=IrJ+I1+Iﬁ+ Y

where the terms of the series are defined by the symbolic equations

Il_ ?%IDI
........... (297)
Irr+1 = r(Z[) Iﬂ

Substitution shows that this series formally satisfies the equation.
Starting with the first of (297) and substituting (295) and (296)
we get

I=— é (it 4 g=iot) (T el T,e=ict)

=— é t Joe Q@F@ . T =it | T i@ T e=i@=w) | = (298)

or
o [ ef@twi  pi@-wi )
Li==5Jo "l —Zl——+ Zo | (299)

In (299) it is to be understood that the real part is alone to be retained.
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Proceeding in a similar way with the equation

[
n=-"91,
we get
2 pi(@+20)  Gi(@=2w)t il s ] 1
L=(g) J°{ Z:Z +z_1zﬁ2+—z:(z’l+z:)}- (300)

In this way the steady-state series solution is built up term by
term, the component currents being poly-periodic as indicated in a

previous table.

For sufficiently small impedance variations this method of solution
works very well, and leads to a rapidly convergent solution. In
other cases, however, the solution so obtained may be divergent,
even when the complete series solution from which it is derived is
absolutely convergent. The explanation of this lies in the fact that
the steady-state series so obtained is the sum of the limils (as ¢t ap-
proaches infinity) of the terms of the complete series solution, whereas
the actual steady-state is the limit of the sum. These are not in
general equal; in particular the former may be and often is divergent
when the latter is convergent.

In view of the foregoing considerations it is of importance to de-
velop another method of investigating the steady-state oscillations
which avoids the difficulties in the formal series solution. The fol-
lowing method has suggested itself to the writer and works very well
in cases where the previous form of solution fails. It should be stated
at the outset, however, that the absolute convergence of the solution
to be discussed, while reasonably certain in all physically possible
systems, has not been established by a rigorous mathematical in-
vestigation, which appears to present very considerably difficulties.

We start with the problem just discussed and, in view of the results
of the formal series solution there obtained, assume a solution of the

form:
1 N
== F(QFmw)t 1 A, p—i(Qtmw)i
I 2_ZN:AMe A e (301)
N
= > Apei@tmadt  (real part). (302)
-N
Here the series is supposed to extend from m=+N to m=—N.

Ultimately, however, N will be put equal to infinity. As before, the
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bar indicates the conjugate imaginary of the unbarred symbol and
(301) is therefore entirely real.

If we now substitute (301) in the symbolic equation (293) we get,
by (295) and (296),

%Z {Amensz+mwu+jme—ft9+mw): } =1J,641 Jemit

__‘_?T_Z_ (eiet ¢ — i) E [Amgimmwn 4 A e i@Fma J! )

Simplifying this equation and dropping the conjugate imaginaries
gives i —

(Qmet — T it T P Q4 (m D)t
> e Jot i — > Ao (303)

v .
. A ez(QJr(m—l)w)l.
7 E m

Z([A(Q2+me) ) =Zm

Finally, if we write

and
v/ Zm=lm (304)

and equate terms of the same frequency on the two sides of the equa-
tion, we get
An=—lhxAy-1
Am=—lm(Ap=1+ A mt1) O<m!<N
Ao=To—la(A_1+A41).

(305)

It will be observed that, by (305), starting with Ay each coefficient
is determined in terms of the coefficient of the next lower index.
Thus:

Ay=—hxAx-1

Ay_1=—ly-1(Axy-—2+4 w)

hy—1Ax—2

S I—hy iy
Similarly
- hy—2AN- 3

An-2=— 1

1— }fozhd\?fl ]_——m]:\,
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Continuing this process it is easy to show that, for positive indices
(m positive),

Am=—lwmCnAm-1 (306)
where C,, designates the continued fraction
1

1

1—Iwhmsr ————
mitm-4-1 1_}In1+lh'm—}-2 )

1
l—kN_lkN
The procedure for the coefficient A_,, is precisely similar. For
convenience we write A_,=A, Z_,=Zw and r/Z_,=h,. In
this notation we get by precisely similar procedure
A:u = }I{,;C,’.;,A :nﬁl (307)
where (), designates the continued fraction
1
= 1
1 - h:‘lrh;ll*f'!

1=l 1liiute .

1
1—hi—1hk

We now put the index N equal to infinity and the continued fractions
C. and C!, become infinite instead of terminating fractions.
Collecting formulas we now have

Am = — kmCmA m—1

Ap=—hnCrAdn 1
and
Ap=T,— (heA+h1AY)
whence
Jo

Ao= 1= hoht1Ci—ho 1 CY

The coefficients are thus all determined in terms of J,.

The practical value of this method of solution will depend, of course,
on the rate of convergence of the continued fractions. While no rigor-
ous proof has been obtained, it is believed that they are absolutely
convergent for all physically possible systems, but this question cer-
tainly requires fuller investigation. Nevertheless any doubt regard-
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ing the convergence of the solution need not prevent the use of the
method in a great many problems where physical considerations
furnish a safe guide. For example this method of solution, when
applied to the problem of the induction generator, discussed above,
leads to the usual simplified engineering theory of the induction
generator and motor, besides exhibiting effects which the usual treat-
ment either ignores or fails to recognize.

Non-Linear Circuils

In the previous examples discussed, the variations of the variable
circuit elements are assumed to be specified time functions, which is
the same thing as postulating that these variations are controlled by
ignored forces which do not explicitly appear in the statement and
equations of the problem. We distinguish another type of variable
circuit element, where the variation is not an explicit time function
but rather a function of the current (and its derivatives) which is
flowing through the circuit. For example, the inductance of an iron-
core coil varies with the current strength as a consequence of mag-
netic saturation. The equation of a circuit which contains such a
variable element (provided it is a single valued function) may be
written down in operational notation

ZI+¢(I)=E(1)
ZI=E(t)—o[I()]. (311)

or

In this equation Z is, of course, to be taken as the impedance of
the invariable part of the circuit, the indicial admittance of which
is denoted by the usual symbol A(f).

Equation (311) may be interpreted as the equation of the current
I(t) in a circuit of invariable impedance Z when subjected to an
applied e.m.f. E(f) —¢[I(#)]; consequently, by aid of our fundamental
formula, I(f) is given by

() = j A(—»EWdy—5 jA (=) elI(y)])dy.

The first integral is simply the current in the invariable circuit of
impedance Z in response to the applied e.m.f. E({); denoting this
by (1), we have

I0) =L~ 3, ] A=)l (¥)]dy.

This is a functional integral equation, the solution of which is gotten
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by some process of successive approximations. For example, pro-
vided the sequence converges, I(f) is the limit as » approaches in-
finity of the sequence

I(t), I,(8), I.(2), - . ., 1.(2),

where the successive terms of the sequence are defined by the relations:

Lo =103 ["40¢-3slLw)dy.

1) =1, (£) _dit D[OltA (t=y)ollu(y)]dy.

We shall not pursue the discussion of non-linear circuits further, in
view of their mathematical complexity and their relatively specialized
technical interest. The reader who is interested may, however, con-
sult the writer's paper on Variable Electrical Systems," for a fuller
treatment of the subject.

CHAPTER XI

THE APPLICATION OF THE FOURIER INTEGRAL To ELECTRIC
CirculiT THEORY

The application of Fourier's series in electrotechnics is a common-
place; the use of the Fourier integral, however, has largely remained
in the hands of professional mathematicians. An outstanding dis-
tinction between the series and the integral, from which the greater
power of the latter may be inferred, is that the series represents only
a periodic regularly recurrent function, whereas the integral is cap-
able of representing a non-periodic function: in fact all types of func-
tions, subject to certain mathematical restrictions which are usually
satisfied in physical problems.

Before taking up the application of the Fourier Integral to Electric
Circuit Theory, we shall very briefly review the elementary mathe-
matics of the series and integral; for a fuller treatment the reader is
referred to Byerly, Fourier's Series and Spherical Harmonics.”

Consider a function ¢(¢), which in the region 0=<!< 7T is finite, single-

1 Phys. Rev. Feb., 1921,

2 In this Chapter the Fourier Integral is approached from the view-point of its
physical application and no completeness or rigour is claimed for the treatment.
The mathematical theory of the Fourier integral is, of course, completely developed

in treatises on the subject. The object of this chapter is mcrcly to outline some of
its applications.
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valued and has only a finite number of discontinuities or of maxima or
minima. In this region it can then be expressed as the Fourier series

< 21 . 2rn \ |
qb(‘f):l Ao+ | An Ccos r’\’t +Bu b‘ill _‘1‘} t (312)
: Z 1 ( 1 ) ( 7 ) |
where
2 (‘T 2mn
Ay= 7-.1} ¢(t) - cos ( T t )df,
(313)
2 ('T . [2mn
B, _T.,]o & (1) - sin (T ¢ )d{-.
An equivalent series is
- 2mn
¢(t) =% Fot > Fucos | = 1—0, (314)
S o (3101
where
Fy=+/43+B, (315)

0, =tan ' (B,/4.,).

This expansion is valid in the region 0=<t<T, irrespective of the
form of the function elsewhere. Let us, however, assume that the
function repeats itself in the period T': that is

o(txkT)=0(1), k£=1,2,3...N.

Then the expansion represents the function in the region —NT'<¢<NT.
Finally if N is made infinite, the function is truly periodic and the
Fourier series represents it for all positive and negative values of
time.

1t follows from the foregoing that, if the Fourier series represents
the function for all positive and negative values of time, the function
must be periodic for all positive and negative values of time; otherwise
the expansion is valid only over a restricted range of time.

Now let us suppose that ¢(¢) is non-periodic. For convenience,
in connection with subsequent applications we shall suppose that it is
zero for all finite negative values of time, that it converges to zero as
t—oo, and that

[ e

exists. Such a function obviously cannot be represented by the usual
Fourier series for all finite positive and negative values of time; it
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can be represented, however, by the limiting form assumed by the
series as the [undamental period 7" is made infinite. That is, we
can assume that the function is periodic in an infinite fundamental
period and this will not affect the expansion for finite positive and
negative values of time. Proceeding in this way and putting the
fundamental period T equal to infinity in the limit, the Fourier series
(314) becomes an infinite integral and we get

¢ (i) = %Jﬂm Flw) - cos (wi—60(w) ) dw (316)
where

Fw) = {I:l)mﬂt) cos wtdt]z—I—[.[’mqf)(!) sin wf dr:r}% (317)

and

tan 8(w) = I wqb () sin wt dt + / ¢ (1) cos wtdt. (318)
«JO SO

This is the Fourier integral identity of the function ¢(f) and is valid
for all finite positive and negative values of time.

In physical applications, particularly those to electric circuit theory,
it is often convenient to employ exponential instead of trigonometric
functions. The required transformation follows easily from the
relation

e'f=cos 641 sin 8, i=v—1.

Thus if we write 27/T =w, the Fourier series (312) is easily reduced
to the form

+m
6= 2 Flinuere (319)
where
. [T ‘
Flinwe) = 1. ] & (1) e=ineor dr. (320)
. {}

In precisely similar manner the Fourier integral (316) can be written
as

qb(t): ]‘T:F(-iw)'f"mdw (321)
1 o0 oo T
=or | oar [ et (322)
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Applications to Electric Circuit Theory

Let us assume that at time t= — N7, an electromotive force E(f),
periodic in fundamental period T, is impressed on a circuit of complex
impedance Z(iw), where o denotes 27 times the frequency. Required
the resultant current 1.

For values of t> — N7 the electromotive force (see formula (319))
can be expressed as the Fourier series

E(l) = z Flinew,) e

where

: 1T
F(-},nwo) = _7—‘- I E(T)e inweT ]
SO

The resultant current for t> — NT is therefore

O\ Flinw,) . ' transient oscillations
I= L ?(;ﬁ et 4 initiated at time ;
—e ’ t=—NT. |

If we are concerned with the current for values of =0, and if NT is
made sufficiently large, the initial transients will have died away and
the complete current for t=0, will be given by

— OE‘F(T:nwo) inw, ‘
I=2  Zlina ™" (323)

—_— 0

This formula implies the periodic character of E(f) for sufficiently
large negative values of time. If, however, E(f) is zero for negative
values of time, we can employ the Fourier integrals (321) and (322)
in precisely the same way and get, as the complete expression for the
current for positive or negative values of time:—

_ [ Fla)
- ]_WZ(wa)e ! deo (324)
1 ree E d 1R piw(i—T) ;
‘Zr./o (s [ G de (325)

The infinite integrals (324) and (325) formulate the current in the
network, specified by the impedance function Z(iw), in response to an
electromotive force E(t) impressed at time t=0; they therefore mathe-
matically formulate, by aid of the Fourier integral identity, the funda-
mental problem dealt with in the preceding chapters and solved by aid
of the operational caleulus,
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No attempt will be made here to discuss the solution of the infinite
integral (325), which is usually a problem presenting formidable
difficulties, even to the professional mathematician. The general
method of solution is by contour integration in the complex plane
and the calculus of residues. By this process it has been successfully
applied to the solution of special problems, and also to deriving some
general forms of solution such as the expansion theorem solution.!?
Compared, however, with the operational calculus, it has no advantages
from the standpoint of rigour, and lacks entirely the remarkable sim-
plicity and directness of the Heaviside method.

In the direct solution of circuit problems, therefore, it is believed
that the application of the Fourier integral is attended by few if
any advantages, and presents formidable mathematical difficulties.
On the other hand, there are certain types of problems encountered
in circuit theory, where the Fourier integral is a powerful tool.
These will be briefly discussed.

The Energy Absorbed from Transient Applied Forces

In many technical problems, the complete solution for the in-
stantaneous current due to suddenly applied electromotive forces,
although formally straight-forward, involves a prohibitive amount
of labor. In yet others, the applied forces may be random and
specified only by their mean square values. In such problems a
great deal of useful information is furnished by the mean power and
mean square current absorbed by the network, and to the calcula-
tion of these quantities, the Fourier integral is ideally adapted.
Its application depends on the following proposition, due to Ray-
leigh (Phil. Mag., Vol. 27, 1889, p. 466), and its corollary.

Let a function ¢(f), supposed to exist only in the epoch 0=¢=T,
be formulated as the Fourier integral

o) =~ £ “| /() |- cos [wi—0(w)] de

f(@) = [._][.‘Ttr)(t)cos wl dt:r+ [Jﬂwcﬁ(t) sin wt (uT }"’

T T
tan 6(w) = f o(t)sin wt dt+ ]o (1) cos wit dl.
JO .

where

19 Bush, “Summary of Wagner's Proof of Heaviside's Formula.”  Proc. Inst.
of Radio Engineers.  Oct., 1917. Fry. “The Solution of Circuit Problems.” (Phys.
Rev. Aug., 1919).
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Then

T
S wora-—

whereby the time integral is transformed into an integral with
respect to frequency.

A corollary of this theorem is as follows:

If two functions é(t), ¢2({) supposed to exist only in the epoch
0<t<T, are formulated by the Fourier integrals

(L) =%b[0.m|f1(w) |- cos [wt—8, (w)] do,

80 = [71f2(0) - cos lat—82(w) ] das
then

J‘T¢1(t)¢2(z)d¢=l f (@) | - | faw)] . cos(8y—82)de.
0 ™ J0

The applications of these theorems to circuit theory proceeds as
follows :—

If an electromotive force E(t), supposed to exist only in the epoch
0<(=<T7, is applied to a network of complex impedance Z(iw)=
| Z (iw) }e"ﬁ(“’) we know from the preceding discussion of the Fourier
integral, that the electromotive force E({) and current I({) are
expressible as the Fourier integrals

B =— [ 1] cos (at—b(w))de

. (326)
I(t) = -!— / cos(wt—@(cu) —B(w))dw.
It follows at once from Rayleigh's theorem that
: L= rf(w)"
) ra=— [ g (327)

Now let I, be the current absorbed in branch #; let z(iw) =|2(iw)| ™

be the impedance of that branch and let E,(f) be the potential drop
across that branch. It follows at once from the corollary to Ray-
leigh’s theorem that

W= ]0 TEL0dt= /0 m——F| gg:"i)‘ | ;| 2(iw) | cos a(w)dw. (328)
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Formulas (327) and (328) formulate the mean square current
and mean power absorbed by the branch of the network under con-
sideration, and enable us to calculate these quantities, even in the
case of complicated networks, with a minimum of labor. Formula
(327) is particularly well adapted to computation because the inte-
grand is everywhere positive, permitting, in most problems, of easy
numerical integration, whereas the analytical solution may be com-
plicated.

Formulas (327) and (328) have been applied to the theory of
selective circuits, to the problem of interference from random dis-
turbances, including static, and to the theory of the Schrotteffekt.
For the details of such applications, which will not be entered into
here, the reader is referred to the following papers.

Transient Oscillations in Electric Wave Filters, Bell System
Technical Journal, July, 1923.

Selective Circuits and Static Interference, Trans. A. I. E. E., 1924

An Application of the Periodogram to Wireless (Burch & Bloeh-
msma), Phil. Mag., Feb., 1925.

The Theory of the Schrotteffekt (Fry), Journal Franklin Institute,
Feb., 1925.

The Building-Up of Allernating Currents

Another application of the Fourier Integral, which may be briefly
mentioned, is to the building-up of alternating currents in response
to suddenly impressed sinusoidal electromotive forces. The investi-
gation of this problem is of great importance to the communication
engineer, since the excellence of a signal transmission system is to
a considerable extent determined by the duration and character of
the building-up phenomena.

In long transmission systems the calculation of the building-up
current as a time function is extremely complicated and laborious
if not practically impossible. Furthermore we are usually not
concerned with the current as an instantaneous time function, but
rather with its envelope. The envelope of the current can be formu-
lated and calculated by modified Fcurier integrals, by the following
process.

Suppose that an em.[. E cos wf is suddenly applied, at refer-
ence time {=0, to a network of transfer impedance

Z(iw) =| Z(iw) | €8,
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The resultant current I({) may always be written as:

1) = 2|Z(E 7] (14+9) cos (wi=B)+o sin (wi=B)
=3 \/(l—l—p) F ot == Z{ )| cos (wt— B(w)—8)
where
6 =tan™ 1+p

Evidently the functions p and ¢, which it is our problem to deter-
mine, must be —1 and 0 respectively for negative values of ¢, and
approach the limits 41 and 0, respectively, as {—s.

In an engineering study of the building-up process we are prin-
cipally concerned with the envelope of the oscillations: hence with

1
TV (1+p)*+e?

Our problem is therefore to determine the functions p and ¢ and to
examine the effect of the applied frequency w/2r and of the charac-
teristics of the circuit, on their rate of building-up and mode of
approach to their ultimate steady values.

The functions p and ¢ can be formulated as the Fourier integrals

p— %./UM[PM()\)-FPG,(—)\)] sin I\, d%‘

—%L]Dm [0w(N) — Qu(— )] cos m‘—i}\-’f

d\

1 gL 1=]
=2 [ 1000+ 0N sin n D

+%!IUIM [Pu(h)— Po(—2A)] cos t)\d%\.
where
| Z (1) |
| Z(iw) +1N)
| Z(iw)|
Z{wFin) |

Pu(\) = -cos [B(w+2N) — B(w)],

Qu(r) = +sin [B(w+\) — B(w)].
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These formulas are directly deducible from the fact that the ap-
plied e.m.f., defined as zero for t<0 and E cos wt for =0, can itself

be expressed as
-}icoswt[lﬂ-—g—/ sin t)\d—)\f .
2 T J0

For important types of transmission systems, including the
periodically loaded line, these formulas have been successfully
dealt with and solutions of a satisfactory approximate character
obtained. For further details, the reader is referred to a paper on
“The Building-Up of Sinusoidal Currents in Long Periodically
Loaded Lines” (Bell System Technical Journal, October, 1924).

The foregoing must conclude our very brief account of the Fourier
Integral and its applications in Electric Circuit theory; an adequate
treatment of this subject would require a treatise in itself, and is
beyond the scope of the present work. All that has been attempted
is to give a very brief introduction to its significance in physical
problems and a few of its outstanding applications in circuit theory.
The reader who is interested in pursuing this subject further is
referred to a paper by T. C. Fry on “The Solution of Circuit Prob-
lems” (Phys. Rev., Aug., 1919), -which gives a rigorous discussion
of the solution of the Fourier Integral by contour integration, to-
gether with some general forms of solution of the circuit problem.'

! It was planned to include in this paper a bibliography of the important papers
bearing on the Heaviside operational method. This, however, has not been com-
pleted, but plans call for its publication in the next issue.—Editor.



