Graphic Representation of the Impedance of Net-
works Containing Resistances and Two Reactances

By CHARLES W. CARTER, ]Jr.

AmsTrACT: The driving-point impedance of an electrical network com-
posed of any number of resistances, arranged in any way, and two pure
reactances, of any degree of complication within themselves but not related
to each other by mutual reactance, inserted at any two points in the resist-
ance network, is limited to an eccentric annular region in the complex plane
which is determined by the resistance network alone.

The boundaries of this region are non-intersecting circles centered on
the axis of reals. The diameter of the exterior boundary extends from the
value of the impedance when both reactances are short-circuited to its
value when both are open-circuited. The diameter of the interior boundary
extends from the value of the lmpedance when one reactance is short-
c1rculted and the other open-circuited to its value when the first reactance
is open-circuited and the second short-circuited.

When either reactance is fixed and the other varies over its complete
range, the locus of the driving-point 1mpedaru:e is a circle tangent to both
boundaries. By means of this grid of intersecting circles the locus of the
driving-point impedance may be shown over any frequency range or over
any variation of elements of the reactances. This is most conveniently
done on a doubly-sheeted surface.

The paper is illustrated by numerical examples.

INTRODUCTION

UPPOSE that any number of resistances are combined into a
network of any sort and provided with three pairs of terminals,
numbered (1) to (3) as in Fig. 1. The problem set in this paper is
to investigate the driving-point impedance' of such a network at

Variable ° .A"‘.Y .| Variable
Reactance |(2)| Resistance (3)| Reactance
——| o
Za Network Zs

Lenl

Fig. 1—The Network to be Discussed

terminals (1) when variable pure reactances, Z» and Z3, are connected
to terminals (2) and (3), respectively. Z, and Z; are formed of
capacities, self and mutual inductances. They are not connected
to each other by mutual reactance, but they may be of any degree
of complication within themselves.

The problem is dealt with in terms of the complex plane: that is,
the resistance components of the impedance, .S, measured at terminals

1 The driving-point impedance of a network is the ratio of an impressed electro-
motive force at a point in a branch of the network to the resulting current at the
same point.
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(1) are plotted as abscissas and the reactance components as ordinates.
To every value of the impedance, then, there is a corresponding
point, and to the values of the impedance over a range of variation
of some element, or over a frequency range, there corresponds a locus,
in the complex plane. This locus may be labelled at suitable points
with the corresponding value of the variable. So labelled, it com-
bines into one the curves which are usually plotted to show separately
the variation of the reactancé and resistance components or to show
separately the variation of absolute value and angle.

The use of the complex plane is not new: it is the basis of most
of the vector diagrams for electrical machinery. The character-
istics of both smooth and loaded transmission lines have also been
displayed by its means. Its application to electrical networks, how-
ever, is not common, and it is a subsidiary purpose of this paper
to illustrate the fact that the properties of certain networks, which
have complicated characteristics if exhibited in the usual way, may
be shown quite simply in the complex plane. This simplicity, com-
bined with generality, is attained by application of theorems con-
cerning functions of a complex variable which are immediately avail-
able,

THE FUNDAMENTAL EQUATIONS

The impedance measured in branch 1 of any network is

. A
S=R+iX=— (1)
Ay
where A is the discriminant of the network, either in terms of branches
or # independent meshes.?
Assigning the reactances Z, and Z; to meshes 2 and 3

Ru Ri» Ris . . Ru
Ry; Rw+Z: Ros . . Ra

A= Ry Ry Rys+Zs . . Raa ©
Rnl Rn2 Rua . . R,m

where Rjj is the resistance in mesh j and Rj(=Rg) that common
to meshes j and k.

1See: G. A. Campbell, Transactions of the A. I. E. E., 30, 1911, pages 873-909,
for a complete discussion of the solution of networks by means of determinants.
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A+ AsZstAsZs+ Agn 332075
Therefi S=
crelore AuntAneZotAnsZstAna0Z:Z; ®)

where A4 is the discriminant of the resistance network alone and Ajj.xe.n

denotes the cofactor of the product of the elements of 4 located at

the intersections of rows j, k and ! with columns j, k and I, respectively.
For convenience this is written as

a +ng +CZa+ngZa

=Gl+5122+61za+d12223' (4)

The constants of (3) and (4) are real and positive since they are
cofactors of terms in the leading diagonal of the discriminant of a
resistance network. The determinant being symmetrical, there is
the following relation among them:

(Gd1—01d+b61“b16)2=4(bd1_bld)(ﬂcl—ﬂlc). (5)

The function to be studied is, then, a rational function of two
variables, having positive real coefficients determined by the resist-
ances alone. Furthermore, if one reactance is kept constant while
the other is varied, the function is bilinear. The particular property
of the bilinear function, which has been studied in great detail, of
interest here, is that by it circles are transformed. into circles.?

When, as in this case, the variable in a bilinear function is a pure
imaginary, the function may be rewritten in a form which gives
directly the analytical data needed. For suppose

_ u+tvz
u1+v1z

(6)

where z is a pure imaginary and the coefficients are complex. This is

v u—u/n
= . 7
w U1 + H1+112 @

Multiplying the second term by a factor identically unity,

u—uw,"vl Z'lf(Itl—*'UlZ)+T}|(u|'+'ﬂ1’2’)

v
W= — 8
7, u 41012 wwy +uy'vy ®)
where primes indicate conjugates, or
_uny+uy'v UYL — UqD (z¢1’+vl’z’) ©)
' vy ww) itz /°

3 G. A. Campbell discusses, in the paper cited, the theorem that if a single element
of any network be made to traverse any circle whatsoever, the driving-point im-
pedance of the network will also describe a circle.
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Now, as z is varied, the first term is constant. In the second term
the first factor is constant and the second factor varies onlygin angle,
since the numerator is the conjugate of the denominator. The first
term, therefore, is the center, and the absolute value of the first
factor of the second term is the radius, of the circle in which w moves
as z takes all imaginary values.

ONE VARIABLE REactanceE GiviNGg CIRCULAR Locus

The significance of the equations may be made apparent by a
study of Fig. 2, which shows the impedance S when one of the re-
actances, say Zs, is made zero. We have, then,

A+AsnZ, _ a+bZ, (10)

S= =
Ant+AneZs a+biZ.

and the trivial case abi—a:b=0 is excluded. This is of the type of
(6). When Z, varies over all pure imaginary values, S traces out a

-

=b
=2

< ka

X270 2\ Xz=© R

Fig. 2—Locus of the Impedance S with One Variable Reactance

circle, which (9) shows has its center on the resistance axis. Itsinter-
cepts on the resistance axis are

= gi =R,, say, when Z,=0 (11)
1

and
S=£:Rb, when Z;=0. (12)
1
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But in a symmetrical determinant

AnAgp—At=AA.0; (13)
therefore
aby<ab (14)
a b
or o < o (15)
whence
R, < Ry. (16)

To find the value of S when Z; has some value, say Z>=1X,, it ‘s
only necessary to mark the circular locus with a scale in terms of Z,.
This may be done directly by using (9) to determine the angle, ¢,
which the radius of the circle makes when Z;=1X,. It is simpler to
use the fact that a line passing through R; and the point S has an
intercept on the reactance axis of

Xu=KX2 (17)
where x=b/a,.

The factor « is determined by the resistances; therefore the scale,
as well as the locus, is completely fixed by the resistances. Since « is
always positive, as X» is increased the circle is traversed in a clock-
wise sense; for positive values of X, the upper semi-circle is covered;
for negative values, the lower. That is, when Z, is an inductance
the impedance of the network varies on the upper semi-circle from
R, to Ry as the frequency is increased from zero to infinity. When
the magnitude of Z, is changed the same semi-circle is described but
each point (except the initial and final ones) is reached at a different
frequency. When Z. is a capacity the lower semi-circle, from R
to R;, is traced out.

We know that, in general, the value of a pure reactance * increases
algebraically with frequency, and that its resonant and anti-resonant
frequencies alternate, beginning with one or the other at zero fre-
quency. When Z, is a general reactance, therefore, as the frequency
increases the entire circle is described in a clockwise sense between
each consecutive pair of resonant (or anti-resonant) frequencies.
For example, if Z» is made up of » branches in parallel, one being an
inductance, one a capacity and the others inductance in series with
capacity, as the frequency increases from zero to infinity the circle is
traced out completely #—1 times commencing with Ra.

1See: A Reactance Theorem, R. M. Foster, Bell System Technical Journal, April,
1924, pages 259-267; also: Theory and Design of Uniform and Composite Electric
Wave-Filters, O. J. Zobel, Bell System Technical Journal, January, 1923, pages
1-47, especially pages 35-37.
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Fig. 3—Impedance of Resistance Network Containing One Variable Reactance
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In Fig. 3 is shown the impedance locus for the particular network
given on the diagram. The circle is marked in terms of Z.. From
it, certain properties of S may be read at once: the resistance com-
ponent, R, varies between 260 and 750 ohms, and the reactance
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Fig. 3b—Components of Impedance in Fig. 3 when Z, is Doubly-Resonant

N

component, X, is not greater than 245 ohms nor less than —245 ohms,
attaining these values when Z, is +510¢ and — 5104, respectively.
When the variation of the reactance Z, with frequency is known
the variation of R and X with frequency may be found by using the
scale on the circle. For a particular reactance network, the scale may
be marked directly in terms of frequency, or if it is desired to compare
the behavior of R and X when different reactance networks are sub-
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stituted, the impedance locus may be marked with the frequency
scale for each reactance network in some distinctive manner.

However, to show in the usual way some of the types of R and X
curves represented by the locus of Fig. 3, as well as to avoid needless
complication of what is intended as an illustrative rather than a
working drawing, Figs. 3a and 3b have been prepared by direct pro-
jection from Fig. 3. In Fig. 3a are shown the R and X curves plotted
against frequency when Z. is an inductance. In Fig. 3b are shown
similar curves when Z, is a doubly-resonant reactance. The R com-
ponent has a minimum at each resonant frequency and a maximum
at each anti-resonant frequency, while the X component becomes
zero at resonant and anti-resonant frequencies alike. The number
of examples from this one resistance network might be multiplied
endlessly; it is believed, however, that these are sufficient to show the
great amount of information to be obtained in very compact form
from one simple figure in the complex plane, and the especial superior-
ity of the complex plane in displaying the characteristic common to
all the curves of Figs. 3a and 3b: namely, that R and X at any fre-
quency, with any reactance network, are such that the impedance
lies on one circle.

Two VARIABLE R.EACTANCES GIVING ECCENTRIC
ANNULAR DOMAIN

Returning to the more general impedance of (4) it is seen that in
each case short-circuiting and open-circuiting the terminals (2) and
(3) one at a time, and varying the reactance across the other termi-
nals, yields a locus for .S which is a circle of the type just discussed.
These circles are determined as follows:

Extremities
Circle of Diameter Scale Factor «
Z,=0 R, and R. c/a
o= Ry, and Ry d/b,
Z3=0 Rg and R, b/a,
Zai=w R, and Ry d/cy

where R.=¢/¢; and Ry;=d/d;. An examination similar to that in
(13)-(15) shows that
R, <Ry, <Ry, (18)

R.<R.<Ru. (19)
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It may furthermore be assumed without loss of generality, since it
is merely a matter of labelling the reactances Z; and Z;, that Ry<R..

Hence, the four critical points of the impedance are always in the
following order:

R, =Ry=R. =R, (20)

These circles are shown in Fig. 4. By means of the appropriate scale
factors x each may be marked in terms of the reactance which is left
in the circuit.

Now suppose Z; is kept constant at some value which is a pure
imaginary, and Z, is varied over the range —i% <Z,<+iw. We
may rewrite (4) in the normal form (6):

S— ﬂ‘i'ﬁz:i‘i‘(b‘f‘dza)zz (21)

’ _G1+C|_Zu+ (b1+dlzﬂ)zﬂl

Fig. 4—The Region to which S is Restricted and the Critical Circles

The locus of S is one of a family of circles, each circle corresponding
to a value of Z3 and completely traced out by complete variation of Z..
The properties of each circle may be found by substitution in (9).
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Similarly, if Zs is held constant while Z; varies, the locus of S is one
of another family of circles.

By the use of (9), keeping (5) in mind, it may be shown that the
circles of each of these families are tangent to two circles determined
by the resistance network alone. Both families are tangent inter-
nally to a circle centered on the resistance axis, extending from R, to
Ry Both are tangent to a circle centered on the resistance axis, ex-
tending from R, to R., in such a way that the Zs-constant circles are
tangent externally and the Z,-constant circles are tangent enclosing the
circle from R, to R.. These relationships are illustrated in Fig. 4.

The circles R, to Rs; and R, to R, are, therefore, outer and inner
boundaries, respectively, of the region mapped out by the two families
of circles generated when first one and then the other reactance is
treated as a parameter while the remaining reactance is treated as
the variable. No matter what reactances may be attached to termi-
nals (2) and (3), the resistance component R, measured at terminals
(1), is not greater than the resistance when terminals (2) and (3) are
open and not less than the resistance when terminals (2) and (3) are
short-circuited, and the reactance component X, measured at termi-
nals (1), is not greater in absolute value than half the difference of
the resistances measured when terminals (2) and (3) are open and
short-circuited. That is,

RaéRng, (22)
| X | =3(Rs—Ry). (23)

The two families of circles (Z:-constant and Zj-constant) intersect
and may be used as a coordinate system from which the components
of S may be read for any pair of values Z;, Z;. To avoid inter-
sections giving extraneous values of .S resort is made to a doubly-
sheeted surface, analogous to a Riemann surface, for which the two
boundary circles are junction lines. That is, the impedance plane is
conceived of as two superposed sheets, transition from one to the
other being made at the boundary circles. Thus, in Fig. 5, where
the two sheets are separated, each Zs-constant circle is shown run-
ning from the outer to the inner boundary in Sheet I (using the clock-
wise sense), and from the inner to the outer boundary in Sheet II,
while the Zs;-constant circles run from the inner to the outer boundary
in Sheet I and are completed in Sheet I1.%

5 It may be mentioned that the inner and outer boundaries are impedance curves

A Ay Zy A A

=B and 2= , respectively.
Arzgg Argnz Zy A A P 4

traced out when Z,Z;
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Sheet 11
Fig. 5—The Doubly-Sheeted Surface
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Fig. 6—Sheet I

Sheets I and 1T of Fig. 6, taken together, show the impedance domain of the network

at the bottom of the opposite page, made up of three fixed resistances and two

variable reactances. The dashed curve, appearing in four distinct parts, two on

each sheet, shows the impedance S when Z: is the doubly-resonant circuit of Fig. 3b,

and Z; is an inductance of 1.0 henry. Points on this curve are labelled in terms of
frequency
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The numbering of the sheets is, of course, arbitrary. If the upper
half of the Z,=0 circle is put on Sheet I, the arcs of the other critical

circles are determined as follows:®

Circle On Sheet 1 On Sheet 11
Zy=0 Upper half Lower half
Zy=o0 Lower half Upper half
Z3=0 Lower half Upper half
Zy= Upper half Lower half

Each sheet, then, is divided into four sub-regions, indicated on
Fig. 5 by the signs of the reactances for which S is within them. When
Z and Zjz are composed of single elements the sub-regions in which .S
falls at any frequency are as follows:

Sub- At Frequency
Zs ' Zs Region Zero Infinity
Inductance Inductance (+,+) S=R, S=R;
Inductance Capacity (+,—) R, Ry
Capacity Inductance (—,+) Ry R,
Capacity Capacity (—,—) Ri R,

The course of S over the complete frequency range may be shown
by a curve through the appropriate intersections of the Zj-constant
and Zj-constant circles, as in the following example.

The impedance region for a particular bridge network is illustrated
in the two sheets of Fig. 6. The arcs of Z,-constant and Zj;-constant
circles in each sheet form a curvilinear grid superposed on the RX
grid of the complex plane. For example, if Z;=200; and Z;=900z,
the value of S is read from Sheet I as 327414291, and S has this value
irrespective of the structure of Z, and Zs.

An impedance curve (dashed) is shown in Fig. 6 representing the
variation of S with frequency when Z, is the doubly-resonant reactance

& When the sheets are numbered in this way, the point S falls on Sheet I or Sheet II

according to the following table, in which &, and k; are the critical values for the
product and quotient of Zs and Zs, respectively, given in Footnote 5:

(Z2, Zy) (+,+) (+,-) (—,+) (—=,-)
On Sheet I, if Zﬂ/Zx<k2 ZoZy> Ry ZoZs< by ZQ/Zs>k2
On Sheet 11, if ZofZs> ks ZaZ3 <k ZoZy>ky ZofZy< ks

For the network of Fig. 6, k1=116,875 and %k, =0.972111,
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used in Fig. 3b and Z; is an inductance of 1.0 henry. This impedance
curve has four parts, two in each sheet. It starts on the resistance
axis at the intersection of the Z,=c and Z;=0 circles. As the fre-
quency increases from zero the first part of the curve is traced out in
Sheet II. At 25 cycles the impedance is approximately 310+47140.
The reactance component has a maximum of about 250 ohms at about
70 cycles, the resistance component has a maximum of about 720
ohms at about 160 cycles, the reactance component has a minimum
of about —110 ohms at about 300 cycles, and finally at about 480
cycles the curve reaches the inner boundary, whereupon it changes
to Sheet I. It remains in Sheet I up to a frequency of about 910
cycles, the resistance component having a minimum and the react-
ance component a maximum, which may be read from the diagram.
The impedance between 910 cycles and approximately 1,390 cycles
lies on Sheet 11, and from 1,390 cycles to infinite frequency on Sheet I.
The resistance component has a total of three maxima and three
minima, and the reactance component three maxima and two minima,
following the cyclical order: R-minimum, X-maximum, R-maximum,
X-minimum.

An interesting exercise is to observe the effect on the impedance
curve of changing the value of the inductance Z;. The curve inter-
sects the Zs-constant circles at the same frequencies in each case,
but the points of intersection are moved in a clockwise or counter- .
clockwise sense as Z; is increased or decreased. With each such
change parts of the impedance curve disappear from one sheet and
reappear on the other. For instance, with a decrease of the inductance
Zj the first loop of the impedance curve on Sheet II shrinks, and with
sufficient decrease in inductance may become too small to plot, al-
though it does not disappear entirely.

It is evident that if Z, and Z; are formed of reactance networks of
greater complication the impedance curve may be very involved.
But no matter how tortuous its path, it is restricted to the impedance
region, that is, to the ring-shaped region between the non-intersecting
boundary circles determined by the resistance network alone.

My thanks are due to Dr. George A. Campbell for his stimulating,
continued interest, and to Mr. R. M. Foster for suggestions on every
phase of this work.



