
Australian Unix systems

User Group Newslette

AUUG 88 Conference Issue

Volume 9 - Number 4

September 1988

Registered by Auatralis Post Publication No. NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 9 Number 4

September 1988

CONTENTS

3

AUUG General Information 4

Editorial 6
Adelaide UNIX Users Group Information 7
Western Australian UNIX systems Group Information 8
AUUG 88 Comments from the Programme Chair 9

AUUG 88 Programme 12
AUUG 88 Key Speaker Biographies 14

¯ e ¯ e ¯ ¯ ¯ * ¯ ¯

AUUG 88 Conference Papers 18
Unix Networks: Why Bottom-Up Beats Top Down23

Future Telecommunications Products 24
An Oveawiew of the Sydney Univeristy Network version IV3O

¯ ¯ ~ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

NeWS Programming 31
The X window system - an overview 32

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Hows a Windowing System 33
FTAM and OSI standards are hard to implement from scratch

40
ABI and OSF: Technology and Future Impact on UNIX

Distributed Trouble: The Sydney Uni experience with networked workstations
42

49
Installing and Operating NFS on a 4.2 BSD VAX62
Networks: The Legal and Social Implications 71
Link Management and Link Protocol in SUN IV

The Development of Distributed Processing within the Queensland Government
77

85
Time Synchronisation on a I_x~cal Area Network91
On MICROLAN 2 - An Office Network 99
Programming on UNIX System X release Y 115
Real-time disk I/O scheduling on UNIX operating systems120
The Process Life Cycle in STIX

AUUGN
Vol 9 No 4

AUUG 1988 Election Results
135AUUG Membership Catorgories
137AUUG Forms
139

Copyright © 1988. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 9 No 4 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.Wo 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

AUUG Executive

President Greg Rose

greg@soflway.sw.oz
Softway Pry. Ltd.,
New South Wales

Secretary Tim Roper

timr@labtam.oz
Labtam Limited,
Victoria

Treasurer Michae~ Tuke

Committee
Members

no net address
Edge Computer,
Victoria

Frank Crawford

frank@teti.qhtours.oz
Q.H. Tours,
New South Wales

Chris Maltby

chris@softway.sw.oz
Softway Pty. Ltd.,
New South Wales

Richard Burridge

ric hb@ sunaus.aus.o z
Sun Microsystems Austrlia
New South Wales

Tim Segall

tim@hpausla.aso.hp.oz
Hewlett Packard Australia,
Victoda

Next AUUG Meeting
Regional Meetings will be held during February 1989, and a major Conference and Exhibition
will be held in Sydney in September 1989. Futher details will be provided in the next issue.

Vol 9 No 4
AUUGN 3

AUUG Newsletter

Editorial
Welcome to the AUUG 88 Conference issue of AUUGN.

This Conference has attracted many interesing speakers and papers most of which you will find
reproduced in the following pages. I hope you will find time to enjoy reading them.

I am now entering my third year as Newsletter Editor, and think that the Newsletter could still be
improved. I cannot do this task ALONE. I would like the Newsletter improve its ability to attract
papers during the rest of the year when there is not the incentive for the authors to present their paper at
an AUUG Conference. I intend to continue the policy of reprinting the US and European User Group
Newsletters as this adds a world perspective to the Newsletter.

The Newsletter is only as good as the material that it gather from its sources and I think it needs greater
input from our members.

I will be attending the Conference and I would be more than pleased if you approached me concerning
any ideas you may have for future Newsletters.

I wish to thank Tim Roper and his programme committee for their efforts in assembling the papers.
Also I want to thank Katharine Ching and Peter Nankivell of Monash University, and my colleagues at
Webster Computer Corporation Corporation for their assistance in producing the issue.

Again, I hope you enjoy this issue and please feel free to contribute an article soon.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Webster Computer Corporation
1270 Ferntree Gully Road
Scoresby, Victoria 3179
AUSTRALIA

ACSnet: john@wcc.oz

Phone: +61 3 764 1100

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 14th of October 1988.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by. via electronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Vol 9 No 4 4 AUUGN

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Tim Roper.

Acknowledgement
This Newsletter was produc~ with the kind assistance and equipment provided by Webster Computer
Corporation.

Disclaimer
Opinions expr~seA by authors and reviewers are not n~essarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committ~.

AUUGN 5 Vol 9 No 4

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135 } !mulga!aegir.dmt.oz!dhj
ARPA: dhj %aegir.dmt.oz!dhj@ seismo.arpa
CSNET: dhj@ aegir.dmt.oz

Vol 9 No 4 6 AUUGN

WAUG
Western Australian UNIX systems Group

PO Box 877, V~EST PERTH 6005

Western Australian Unix systems Group

The Western Australian UNIX systems Group (WAUG) was formed in late 1984, but
floundered until after the 1986 AUUG meeting in Perth. Spurred on by the AUUG
publicity and greater commercial interest and acceptability of UNIX systems, the group
reformed and has grown to over 70 members, including 16 corporate members.

A major activity of the group are monthly meetings. Invited speakers address the group on
topics including new hardware, software packages and technical dissertations. After the
meeting, we gather for refreshments, and an opportunity to informally discuss any points
of interest. Formal business is kept to a minimum.

Meetings are held on the third Wednesday of each month, at 6pm. The (nominal) venue is
"University House" at the University of Western Australia, although this often varies to
take advantage of corporate sponsorship and facilities provided by the speakers.

The group also produces a periodic Newsletter, YAUN (Yet Another UNIX Newsletter),
containing members contributions and extracts from various UNIX Newsletters and
extensive network news services. YAUN provides members with some of the latest news
and information available.

For further information contact the Secretary, Skipton Ryper on (09) 222 1438, or
Glenn Huxtable (glenn@wacsvax.uwa.oz) on (09) 380 2878.

Glenn Huxtable,
Membership Secretary, WAUG

Vol 9 No 4
AUUGN 7

Comments from the Programme Committee Chair

AUUG88

Timothy Roper

Labtam Limited

Such a choice selection of guest speakers immediately made my task a pleasure. The theme of Network-
ing: Linking the UNIX~" Worm is certainly topical but having Michael Lesk to deliver the keynote
address makes a delightful combination. As originator of uucp, the first and biggest network of UNIX
systems, an early worker in computer typesetting and a ringer at novel applications and user interfaces,
he will provoke a lot of thought about modern approaches to computer-based human communication
systems.

John Mashey is no stranger to UNIX systems having been employed by Bell Laboratories in 1973 along
with its f’wst PDP 11/45. We look forward to benefiting from his expertise in hardware and software
architectures and his knowledge of their current trends.
There is no doubt that the efforts of Mike Karels and his team have contributed greatly to the per-
vasiveness of networking software on many brands of UNIX system. What he has to describe about
current and future developments in th6 Berkeley Software Distributions is sure to be seen in the market-
place very soon.

I know that the AUUG Management Committee is delighted to have Ken Thompson attending the
conference and is further pleased that he has agreed to speak.
The Programme Committee is confident that this programme will provide something of particular
interest, and a lot of general interest to most people. The Future Directions session on Wednesday
morning promises to be a topical and lively discussion of interest to everybody. We are grateful to
Pyramid Technology Corporation, AT&T Unix Pacific Co Ltd Japan, Hewlett-Packard Australia Limited
and Sun Microsystems Australia Pty Ltd for sponsoring contributions to this debate.
On behalf of the Programme Committee I am pleased to congratulate Rex di Bona on the paper for
which he has earned the AUUG prize for the best paper submitted by a full time student. In Distributed
Trouble: The University of Sydney Experience with Networked Workstations he gives a timely and
detailed insight of the increased need for attention to security issues in the context of local area net-
works.
I would like to thank the Programme Committee for their assistance, the authors for their cooperation,
John Carey for making these proceedings a reality, and my employer for the latitude and resources
necessary to coordinate those individual efforts.
It is my hope that you will go away feeling inspired and refreshed by the offerings of these three days.
Please remember that it is not too early to start thinking about your paper for the next AUUG Confer-
ence and Exhibition.

UNIX is a trademark of Bell Laboratories.

Vol 9 No 4 8 AUUGN

AUUG 88

Australian UNIX* systems User Group
1988 Conference and Exhibition

Tuesday 13th to Thursday 15th September, 1988
Southern Cross Hotel, Melbourne

PROGRAMME

DAY 1 - TUESDAY 13 SEPTEMBER

0900-1000 Registration

1000-1100 KEYNOTE ADDRESS
Unix Networks: Why Bottom-Up Design Beats Top-Down
Michael Lesk
Bell Communications Research

1100-1130 Coffee & Exhibition Viewing

1130-1200Future Telecommunication Developments
Steve Jenkin, Softway Pry Limited

1200-1230 An Overview of the Sydney University Network
version IV

P. R. Dick-Lauder and R. J. Kummerfeld
Sydney University

1230-1400 Lunch

1400-1430 NeWS Programming
Tim Long
Information Concepts

1430-1500 An Xll Overview
Tim Segall
Hewlett-Packard Australian Software Operation

1500-1530 Hows a Windowing System
Greg Rose, Softway Pty Limited

1530-1600 Coffee & Exhibition Viewing

1600-1630 An Implementation of FTAM
Andrew Worsley
CSIRO Division of Information Technology

1630-1700 ISO/OSI under Berkeley UNIX
Mike Karels, Computer Systems Research Group,

University of California at Berkeley

1730-1900 COCKTAIL RECEPTION

AUUGN 9 Vol 9 No 4

DAY 2 -WEDNESDAY 14 SEPTEMBER

0830-0900 Registration

0900-0930 The Future of UNIX Software:
The Open Computing PlaO"orm for the 1990s

Larry Crume, AT&T Unix Pacific Co Ltd, Japan

0930-1000 Future Berkeley UNIX Developments,
Mike Karels, Computer Systems Research Group,

University of California at Berkeley

1000-1030 Unified UNIX
John Young, Sun Microsystems Australia Pty Ltd

1030-1100 Coffee & Exhibition Viewing

1100-1130 Open Software
Tom Daniel, Hewlett-Packard Australia Limited

1130-1200ABI and OSF: Technology and Future Impact on UNIX
Ross Bott, Pyramid Technology Corporation

1200-1230PANEL SESSION
Future Directions of UNIX
Ross Bott, Larry Crume, Tom Daniel,

Mike Karels, John Young

1230-1400 Lunch

1400-1430 Distributed Trouble: The University of Sydney
experience with networked workstations.

Rex di Bona, University of Sydney

1430-1500Installing and Operating NFS on a 4.2 BSD VAX
Jim Reid, Strathclyde University, Glasgow

1500-1530 Networks: The Legal and Social Ramifications
James Watt, Griffith University

1530-1600 Coffee & Exhibition Viewing

1600-1700 Human Interface Issues
Michael Lesk, Bell Communications Research

1700-1730 AUUG General Meeting

1900-2300 CONFERENCE DINNER

Vol 9 No 4 10 AUUGN

DAY 3 - THURSDAY 15 SEPTEMBER

0830-0900 Registration

0900-0930 AUUG ACSnetSIG Meeting

0930-1000 Link Management and Link Protocol in SUN IV
P. R. Dick-Lauder and R. J. Kummerfeld
Sydney University

1000-1030 A New C Compiler
Ken Thompson, Bell Laboratories

1030-1100 Coffee & Exhibition Viewing

1100-1130 The Development of Distributed Processing
within the Queensland Government

Peter Waller and Tony Ashburner
CITEC, Queensland State Government

Tom Crawley and Rob Cook
CiTR, University of Queensland

1130-1200 Time Synchronisation on a Local Area Network
Frank Crawford, Q.H. Tours
Jagoda Crawford, Australian Nuclear Science and

Technology Organisation

1200-1230 On MICROLAN 2 - An Office Network
Richard Lai, ICL Australia Pty Limited

1230-1400 Lunch

1400-1430 Writing portable UNIX programs
Stephen Frede, Softway Pty Limited

1430-1500Real-time disk I/0 scheduling on
UNIX operating systems

Jeongbae Lee, Electronics and Telecommunications
Research Institute, Korea

1500-1530 The Process Life Cycle in STIX
Sunil K Das and Aarron Gull
Department of Computer Science,

City University London

1530-1600 Coffee & Exhibition Viewing

1600-1700 RISC and the Motion of Complexity
John Mashey, MIPS Computer Systems

1700 Close

Vol 9 No 4
AUUGN 11

AUUG 88 Key Speaker Biographies

Ken Thompson
AT&T Bell Laboratories
Ken Thompson was bom in New Orleans, Louisiana in 1943. He attended the University of California
at Berkeley and received B.S. and M.S. degrees in Electrical Engineering.
In 1966 he joined Bell Laboratories where he has worked until the present. In 1975, he returned to
Berkeley to teach Computer Science for a year.
Ken Thompson and Dennis M. Ritchie, the principal designers of the UNIX system have received recog-
nition many times. In 1983 they were presented with the most prestigous award in computing, the ACM
A. M. Turing Award.
Ken is also one of the principal designers of Belle, the former World Computer Chess Champion and
five times winner of the North American Computer Chess Championship.

Michael Eo Lesk
Bell Communications Research
With a prescient market instinct, Michael made text formatting accessible to the masses with the generic
macros -ms, which were to troff what a compiler is to assembly language. He rounded out -ms with
the preprocessors tbl for typesetting tables and refer for bibliographies. He also made the lex generator
for lexical analysers. Eager to distribute his software quickly and painlessly, Michael invented uucp,
thereby begetting a whole global network. Uucp gave operational meaning to the phrase "Unix com-
munity". News now travels electronically among users all over the world; and technical collaborations
proceed between distant locations almost as easily as within one building. Over the years, often helped
by Ruby Jane Elliot, he initiated fascinating on-line audio, textual, and graphical access to phone books,
news wire apnews, and weather. With Brian Kemighan, he was responsible for the UNIX computer-
assisted software learn.

Mike Karels
University of California at Berkeley

Mike Karels is one of the leaders of the Computer Systems Research Group at the University of Califor-
nia, Berkeley. This group is the current focal point of the world’s UNIX research initiative, and has
been since AT&T stopped distributing the work done by Bell Laboratories, where UNIX was originally
created in the early 1970’s.
During the 80’s, Berkeley has created, and collected from other sources, the most advanced UNIX sys-
tem currently available, overcoming many of the limitations and restrictions of the original Bell Labora-
tories releases. So successful has this been, that AT&T have now adopted, or are in the process of
adopting, most of Berkeley’s enhancements, either unaltered, or with some cosmetic variations, as is to
be expected when a research effort is transformed into a commercial product. The Berkeley enhance-
ments are already supported by most of the various UNIX vendors, and have been for some years, the
offering of a UNIX product without "Berkeley enhancements" is almost unheard of today.

As one of the leaders of the Berkeley group in recent years, Mike has been one of the principal archi-
tects of future UNIX commercial systems. His decisions will have a lasting effect on the future of com-
puting.

The theme of the AUUG Winter Conference and Exhibition is "Networking", and in this area Mike is a
particular expert. He and Van Jacobsen, from the Lawrence Berkeley Laboratory, have recently released
into the public domain a much enhanced implementation of the TCP/IP networking protocols for UNIX.
Earlier versions of this code now form the basis of many vendor’s TCP networking products.

Vol 9 No 4 12 AUUGN

We are sure that Mike will be able to inform us on the current status of networking in UNIX, an area
where Berkeley are the clear leaders, and of future plans in this important area. Mike will also indicate
the current, and expected future, status of the UNIX research work at Berkeley, from which we should
be able to draw some informed conclusions as to the likely appearance of commercial UNIX releases in

the next decade.

John R. Mashey
Vice President, Systems Technology
MIPS Computer Systems
Dr. Mashey joined Bell Laboratories in 1973, joining the Programmer’s Workbench department the same
week it received its first PDP 11145. He worked on various UNIX-related projects, including
PWBAJNIX, the merger of UNIX versions that resulted in UNIX/TS 1.0, and UNIX-based applications
for use in the Bell System. In 1983, he moved to Convergent Technologies, ending as Director of
Software Engineering for the Data Systems Division. In 1985, he joined MIPS Computer Systems,
where he helped design the MIPS R2000 RISC microprocessor, and managed operating systems, net-
working, and software QA. He was an ACM National Lecturer for 4 years, and has given about 200
public talks on software engineering, UNIX, and RISC architectures.

Vol 9 No 4
AUUGN 13

AUUG 1988 Conference Papers
In order of presentation

UNIX Networks: Why Bottom-Up Design Beats Top-Down
Keynote Address

Paper
Michael Lesk

Bell Communications Research

Future Telecomunications Products
Abstract

Steve Jenkin
Softway Pty. Ltd.

An Overview of the Sydney University Network version IV
Paper

P.R. Dick-Lauder
R.J. Kummerfeld

Sydney University

NeWS Programming
Abstract

Tim Long
Information Concepts

The X window system - an overview
Abstact

Tim Segall
Hewlett-Packed Australia Software Operation

Hows a windowing system
Abstract

Greg Rose
Softway Pry. Ltd.

FTAM and OSI standards are hard to implement from scratch
Paper

Andrew Worsley
CSIRO Division of Information Technology

Vol 9 No 4 14 AUUGN

AUUG 1988 Conference Papers
continued

ISO/OSI under Berkeley UNIX
Paper Unavailable

Mike Karels
Computer Systems Research Group
University of California at Berkeley

The Future of UNIX Software: The Open Computing Platform for the 1990s
Paper Unavailable

Larry Crume
AT&T UNIX Pacific Company Limited, Japan

Future Berkeley UNIX Developments
Paper Unavailable

Mike Karels
Computer Systems Research Group
University of California at Berkeley

Unified UNIX
Paper Unavailable

John Young
Sun Microsystems Australia Pry. Ltd.

Open Software
Paper Unavailable

Tom Daniel
Hewlett-Packard Australia Limited

ABI and OSI: Technology and Future Impact on UNIX
Synopsis and Outline

Ross Bott
Pyramid Technology Corporation

Distributed Trouble: The University of Sydney experience with networked workstations
Winner of AUUG prize for best paper submitted by a full time student

Paper
Rex di Bona

University of Sydney

Vol 9 No 4
AUUGN 15

KEYNOTE ADDRESS

Unix Networks: Why Bottom-Up Design Beats Top-Down

Michael Lesk

Bell Communications Research

ABSTRACT

Distributed operating systems, designed with an idea of central control, have not
gained many adherents in the fiercely independent world of Unix systems. By con-
trust, netnews survives despite attempts to stamp it out. As the bottom up designers
extend from mail to remote file systems, and the motivation for top down design starts
to shrink with faster workstations, one wonders whether any of the distributed designs
will survive. This paper will discuss some Unix networking projects, particularly the
early history of UUCP, with analogies to the Newcastle connection, a cached file sys-
tem project, and various other Unix networks, ending up with a brief mention of
DUNE (Bellcore) and Plan9 (BTL). So far, the shared file systems and mail projects
are way ahead of the centralized distributed systems.

There are lots of arguments about network design. We have stars vs. buses. We have token rings
vs. CSMA/CD. We have left-first addressing vs. right-first addressing. But perhaps one of the most
important from the practical point of view is the choice between centrally administered networks and
locally accumulated networks. UUCP (Unix* to Unix copy), of course, is the prime example of a
locally grown network; there is no central administration at all and so nobody can even tell you how
many sites there are on it. By contrast, most people who design networks believe in central control. In
this talk I’m going to discuss the past of UUCP and the future of more general networks, to explain why
I think bottom up design is the best course.

UUCP began as a cheap kludge. Originally what I really wanted to do was remote software
maintenance. I had been rather drowned in keeping things like -ms and tbl running on about 40 com-
puters around Bell Laboratories, and I counted for a while and discovered that about 70% of the bug
reports were fixed by simply giving the complainant the latest version of the software. So it seemed
that some kind of automatic distribution would be a help. There were the usual questions ("I don’t want
anybody installing new software on my machine without checking with me") but I thought I had an
answer to that, based on a scheme of automatic regression testing. The more immediate problem, how-
ever, was how to get software from one machine to another. I wasn’t anxious to do unnecessary work,
so I inquired around Bell Labs for good networks that might be used to connect all the Unix systems. I
found at least three different groups, each of which insisted that they had the solution and in about a
year they would begin installing their magic carpet on all the machines. Well, I didn’t want to wait a
year (I also had some skepticism about these groups, mitigated by the thought that there were so many
of them). So I started looking for a cheap way to get things from one place to another. There was
already a "cu" program (call-unix) that would dial up one system from another, so I thought I could try
running it from a script. It seemed quickly to make more sense to write a C program; the bootstrap was
only about 200 lines long. This was of course without any administration or anything else. So when
people called with a bug report, I would ask for their userid and password (in those days, this was

* Unix is a trademark of AT&T - Bell Laboratories.

Vol 9 No 4 18 AUUGN

always given immediately) and then put their machine in the table. Pretty soon there were about 50
machines connected, and I could send files to any of them.

The job of keeping UUCP running then prevented further progress on the software maintenance
front. During much of this time I was fighting a rear-guard action against the assaults of the managers
who thought this program was an awful security hole and should be abolished. I lost, as you all know.
(In the 17th century a man named John Hill attempted to establish a privately run penny post for Eng-
land, but was stopped by the Cromwell regime which objected to both the loss of revenue and the loss
of their ability to read letters.)

The good side of all this management interest was that UUCP was rewritten, with elaborate
administrative checks. This work was done first by Dave Nowitz, and then again later by Brian Red-
man, Peter Honeyman, and Dave Nowitz. My thanks to them; they turned a research kludge into a
fairly robust program. Some of the administration added was an advantage (you now get told when
your mail can’t be delivered); a lot of it has meant that UUCP is not a useful interface for closely linked
communities, because it can not deal directly with user t-des, always working through spool direc-
tories.I,2

Today, better networks have made much of the dial-up nature of UUCP obsolete. The perfor-
mance of hardwired networks, and the general availability of links such as Ethernet or Datakit, means
that few people would want to use dial-up within a building. Without dial-up, the kind of queuing and
administration in UUCP is no longer sensible. Numerous proposals have been made for replacement,
redesign, and the like. One is even familiar to you since it runs successfully here.3 But I think some of
the lessons from the program are useful and can be applied in future networks. For example, UUCP has
had features providing a choice of access methods, the idea being that if there were both a high-speed
and a low-speed access method, you’d try the high-speed first and the low-speed route when the first
choice fails. This turns out to be a bad idea; if people get accustomed to a high-speed route, they send
so much material that you are better off waiting for it to become available than using a low-speed route
which will take very much longer. This lesson was learned between 1200 and 300 baud.

The script-driven style of UUCP internals was also useful; the major difficulty has been the inabil-
ity of such scripts to handle more complex choices and procedures. But the adaptability of UUCP to a
variety of system procedures has been fairly good.

A more important message is the importance of being able to maintain the same software interface
while switching the hardware connectivity underneath. UUCP originally started with dial-up connec-
tions but now the typical mail user has no idea what the actual link between sites iso

Another major lesson is the need to build networks which do not demand to "own" the systems
they are connected to. Many designers of networks can think of schemes which require kernel modifica-
tions and effective control of the systems on the nets. This is, in practice, intolerable. Many users can’t
change their kernels; most don’t want to. A network has to plug into a variety of systems at the
minimum level of disturbance. Bitnet, for example, follows this lesson. It has been very successful
connecting a large group of complex systems, many IBM MVS, which are not easily modified.

Electronic libraries are another example of this general problem. It is very tempting to design a
system in which you own all the data, store it on your machine, and then offer various services to peo-
ple who dial in. This is even efficient and effective. However, it doesn’t match what the publishers
want. In general, they are worried about the consequences of access to electronic data, and they respond
to the fear by maintaining control over the data. Often they have particular systems of their own, and
insist that the only access will be via this system. It is inconvenient to realize that different publishers

1 D. A. Nowitz, P. Honeyman, and B. Redman, "Experimental Implementation of UUCP - Security Aspects,"
Uniforum Conference, pp. 246-250, Washington DC, January 1984.

2 R. Kolstad and K. Summers-Horton, "Mapping the UUCP Network," Uniforum Conference, pp. 251-257 It is also
no longer sensible to bootstrap UUCP onto a new machine by sending a short, 200-line hook over with "cu"; the
distribution is too large., Washington DC, January 1984.

3 p. Dick-Lauder, R. Kummerfeld, and R. Elz, "ACSNET - The Australian Altemative to UUCP," Summer USENIX
Conference, pp. 11-17, Salt Lake City, Utah, June 1984.

AUUGN 19 Vol 9 No 4

will not put their databases together; it resembles the days when movie actors were under contract to
particular studios and certain obvious pairs never acted together. Similarly, one may not be able to
combine information from a dictionary and a thesaurus unless they come from the same publishing
house.

What of the future? Computer networking today is rather complex.4, 5 Many large installations
have to employ gurus to deal with networks and remember odd pieces of information such as "the
Netnorth-Bitnet gateway is at British Columbia" or "the Bitnet-Arpanet gateway is at CUNY". (For a
while my mail to Toronto and Waterloo went from New Jersey to Ontario via Vancouver, a 6,000 mile
path for a 400 mile trip. This proves bandwidth really is cheap today.) But the complexities of net-
works are a problem in making electronic mail ubiquitous. I did not expect fax growth to overtake
email growth; part of this is the standardization on fax (another part is the formatting capability it
allows). It would be better if we could make electronic mail compatible among the communities and
systems that we all use.

How is universal electronic mail, similar to paper mail, going to come about? There are two gen-
eral approaches, the centralized and the separated. The centralized approach is exemplified by ISDN.
ISDN is an international standard, and is intended to be offered as a service by the telephone companies.
It has been an awfully long time coming, and even after implementation starts it is likely to be quite a
while before it reaches any kind of ubiquity. The alternative is the continued accumulation of local net-
works. Most large businesses today have some kind of internal electronic mail. The research commun-
ity is connected through a linkage of these internal systems either through the Internet/Bitnet systems, or
just via dial-up connections similar to UUCP.

The centralized approach creates several difficulties. First, it often requires years of negotiation to
overcome administrative difficulties. As computers get cheaper, they become more numerous and it
becomes impossible to suggest that the various owners get together and agree on anything. I can not
imagine, for example, trying to force the staff of Bellcore to agree on one word processing system. (I
can imagine translating a few into a standard form, though). You can get people to buy something new
and add it to their system; you can not get them to give up something they have been using and that
they like. You can hardly get them to give up something they have been using and that works, even if
they don’t like it. Think of how long it took to get domain addressing throughout the Arpanet.6 Of
course, the need to remain outside the operating system delays really high performance networks. We
have to hope that the OSI model will let us provide these. Its complexity does tend to discourage this.

Another difficulty of centralized systems is the tendency to multiplex at too low a level. In order
to achieve high throughput, a network is going to want high-bandwidth channels; in order to minimize
costs, these will be shared. But this is inefficient. Ideally, multiplexing for minimal cost should be
done only once, by the transmission carrier which actually handles the messages. If it is presented with
all the traffic, it can come up with an arrangement of circuits which will minimize cost or maximize
reliability, or whatever the goal is. If only part of the traffic is presented, then only a partial optimiza-
tion can be done. Present bureaucratic and regulatory constraints often encourage the use of high-cost
pathways. I hope that the advent of optical fiber will lower the cost of transmission enough that optimi-
zation of link cost won’t matter as much.

Most important, however, of the difficulties with centralized networks is the extension of human
bureaucracy to electronic networks. We are all familiar with mail headers that are longer than the mes-
sages they carry, and with the enormous growth of mail programs. I can remember when Unix mail was
about four pages of source code; today the some code is 1300 pages. This has, in effect, made the
overhead of connecting to networks and maintaining a mail interface much higher. Worse, it is not a
routine operation: various networks serve academic sites, sites connected to particular government agen-
cies, sites using particular machine styles, and the rest. To join a net like Arpanet or Janet is not

4 I. S. Quarterman and L C. Hoskins, "Notable Computer Networks," Comm. ACM, vol. 29, pp. 932-971, 1986.
5 D. M. Jennings, L. H. Landweber, I. H. Fuchs, D. I. Farber, and W. R. Adrion, "Computer Networking for

Scientists," Science, vol. 231, pp. 943-950, 1986.
6 Craig Partridge, "Mail routing using domain names: an informal tour," Summer USENIX conference, pp. 366-376,

Atlanta, Ga., June, 1986.

Vol 9 No 4 20 AUUGN

routine; you have to be a member of the approved community. This is causing electronic mail systems
to fragment into systems serving particular groups, and frustrating those just outside the boundaries. For
example, last year the British temporarily cut off transatlantic mail access to a particular set of users
who were characterized by the fact that they DID pay their bills themselves. It all makes sense, sort of,
if you know the whole story, but it is infuriating to those who lose service.

What’s happening next? Distributed systems are spreading. We are beginning to see a continuum
in the level of connection between systems. The advent of remote file systems, starting with libraries
like the Newcastle Connection, has made some systems able to do the .kind of remote copy that UUCP
was originally intended for. There are transparent systems where the user doesn’t even care which CPU
is running what. More commonly, today, are systems connected (often by Ethernets) that allow remote
copy and execution but do keep in mind who’s running where. This makes security easier to enforce.
We still don’t have, in routine use, geographically distributed transparency; but we will soon, since this
is now available in some experimental systems.7 Soon, we should have distributed file systems connect-
ing machines which do not run the same operating system, following the OSI models. Ideally, we can
get a smooth connection between distributed systems and mail.

But more important to me is to have ubiquitous electronic mail. How is this to be achieved? I
hope that UUCP will~ serve as a model for the development of connections between systems of different
types, so. ~t electronic mail can become as familiar as word processing and facsimile transmission.
This involves some technical questions and some economic questions.

Technically, we need a "gateway" (as described by Judge Greene) which wouM interface all kinds
of electronic transmission. It should permit all of information services, mail, file transmission, and
other services. It should not require kernel modifications to computer systems. Just text-based elec-
tronic mail does not consume enormous bandwidth, nor extreme efficiency. How could such a system
be built? I would suggest an idea of Robin Alston’s (British Library): rather than try to standardize all
systems, try to just get each to describe its format. That is, agree that any system, upon connection, will
be prepared to describe its basic operations (in BNF, or some kind of object description language, or
whatever formalism seems appropriate). Then, each system could ask upon connection for a description
of the expected format. What I can not see working are isolated systems which hope that everyone
will use them for electronic mail and nothing else (eg the initial version of British Telecom’s Telecom
Gold service).

Another technical problem is to deal with security. Security precautions present difficulties to
people trying to do work. An efficient security precaution presents much greater difficulties to an
intruder than it does to a legitimate user. The problem is that ordinary users are willing to spend, on
every transaction,, much, less effort than a thief or vandal is willing to spend to do just one transaction.
In practice I believe tha~ we should ~ two general approaches to security: (1) rely more on authentica-
tion, so that we know WHO did something, than on sorting legal’ from illegal acts; and (2) rely more on
a variety of small barriers, rather than trying to f’md a single technical solution to security, since the
greatest dangers often turn out to be human frailty rather than technical decipherment. I look forward to
the ability of digital phone switches to do calling number identification so that we can identify the peo-
ple breaking into systems.

The administrative problems are more severe. Electronic mail today is rarely paid for by the mes-
sage and often is paid for in ways that make it difficult for people to join even if they are willing to pay
the bill. We need networks that are on a straight fee basis; fortunately, systems like UUCP and Bitnet
can be reasonably cheap. This should make it possible to have a system to which universities, corpora-
tions, and individuals can all connect. If connecting to an electronic mail system merely meant the pay-
ment of a fee and the installation of some software, rather than elaborate legal negotiations, I believe it
would spread much faster. I do not think that a purely separate mail system will prosper, though, since
people prefer to use a single computer system for most of their business, not to have separate machines
for every purpose;.. For those that don’t have computers at all, there are various systems (eg Dan
Nachbar’s at Bellcore) which can provide a low-cost paper printing electronic mail systems.

7 ~I. L Albed and M. F. Pucei, The DUNE distributed operating system, December 1987. Private memorandum

AUUGN 21 Vol 9 No 4

What I do not believe will work is an imposition of a single system of electronic mail from the
beginning. The telephone network, the postal system, the railways, the electric utilities, and the airlines
all started as isolated instances. Here in Australia your railway gauges still show the remains of the

¯ independent planning, and yet the trains ran. In some countries, some of these utilities have been com-
bined; others have been kept separate. But in all cases, standardization followed technical development.
Technology may provide too many ways to do something, but planners will provide nothing.

Fortunately, the trend in general today is against centralized systems. European countries-are
thinking about breaking up their PTI"s; the UK has separated British Telecom from the Royal Mail and
is now separating long distance from local service. I hope that international electronic mail can prosper
as a relatively uncontrolled service, rather than automatically attaching to any particular organization.

In the longer-range future, what would a "super-UUCP" look like? Well, it won’t be a Unix pro-
gram anymore; it will connect all kinds of systems. It would take from the Arpanet higher speed ser-
vices; it would take from the standard UUCP the idea of no administration. It will have some pricing
for its services. It will have positive user identification for security (which will also mean that it could
be used for commercial transactions). And it will be as ubiquitous as the other basic communications
services: paper mail, voice mail, facsimile mail, and telephone calls. The historians of the future,
instead of despairing because the evanescent telephone conversation has replaced the permanent written
letter, will despair .at the quantifies of electronic mail saved in historical records (although computer
searching tools may ameliorate the difficulty). And even average individuals may have the attachment
to electronic mail, if not to netnews, that they felt for paper mail a generation ago:

"None shall hear the postman’s knock
without a quick of heart;
for who can bear
to feel himself forgot?"

-- W. H. Auden, "Night Mail"

Vol 9 No 4 22 AUUGN

Future Telecommunications Products

Or, what’s coming our way in the next few years??

Steve Jenkin
Softway Pty. Ltd.

ABSTRACT

It’s obvious some things are here to stay, like the Plain Old Telephone Service (POTS), and commercial
facilities like fax. Others, like Telegrams and Telex, are evaporating.

Recent new services, like "Viatel" and cellular phones, have really taken off, but only in businesses due
to the tarrifs and set-up costs.

As with all new products, the ones that really take-off and survive provide utility at a competitive price.
The most obvious new telecommunications products are X.400, ISDN, Metropolitan Area Networks, and
Broadcast Services. Costs and availability of these services are yet to be announced, but that doesnt
stop a little inspired guesswork, does it?

X.400 is an electronic mail standard. It will do to the plethora of propriatory e-mail services what X.25
did to data services in 1980o Some will prosper, some will disappear or merge, all will have to support
the new standard. Users will benefit from "Universal Connectivity", but probably not lower prices.

ISDN, Intergrated Services Digital Network, sounds like a "Really Good Idea". It is a bit of a let down.
If you want circuit-switched 64kbit telephone-type links, it is great. You even get to have timed local
calls. The Network Provider, Telecom, stands to gain the most from the introduction of the ISDN.
Initially users will see no benefits or any of the massive savings.

MAN’s, will do for public networks what Ethernet did for Local Area Networking. At 34-150Mbit its
high bandwidth and accessibility in and between the Central Business Districts will revolutionise large
scale networking, if Telecom gets its pricing right.

Don’t hold your breath for any of these new services. 1990 is the first you’ll see anything of them, and
then only to "selected customers"° The new "mean and lean" deregulated Telecom is going after
marketshare and profits. They are very strongly targetting the top 300 companiesand continuing to
"milk the cash cows" of telephone services.

In the futher, fuzzier future, say 1995, lies another ’exciting development’ :- Broadband ISDN (B-
ISDN).

We’ll all get 4*150Mbit optical fibres into our homes and be able to dial-up wonderful new services like
High Definition TV, Video Libraries and Services, Computer Databases. And we’ll all have TVophones
in our personal workstations at home and work, to avoid actually having to Travel to make those
important meetings and conferences Of course, it will all cost "Next-to-Nothing".

Getting the best value for your money, or just minimising your comms costs is already a complex and
everchanging task, and is only set to get worse. Telecom offers little help now, and is unlikely to
change.

Costs, advantages, and trade-offs of basic services:- leased lines, dial-up, fax, telex, modems, and
Austpac will be discussed. Foward planning, compatibility issues, and the impact of future services and
standards will also be covered.
AUUGN 23 Vol 9 No 4

An overview of the Sydney University Network version IV.

P. R. Dick-Lauder
R. J. Kurnrnerfeld

Sydney University

1. Introduction

This paper gives an overview of the design and implementation of version 4 of the
Sydney Uni Network software (otherwise known as SUN IV, not to be confused with
the workstation of the same name). The current version of this software (SUN III) is
used to build the Australian Computer Science Network or ACSnet and has been
installed on well over 400 systems. The new system is a complete redesign and
reimplementation that retains the same functionality while providing improvements in
many areas.

The software implements a message handling system that provides message services
such as electronic mail, file transfer, news and directories across a wide area network
of computers running the Unix operating system. The system is constructed in three
layers:

message protocol layer

routing layer

node to node transport layer

Message service protocols are provided at the message protocol layer. The layers
below the message protocol layer provide an end to end message delivery service. A
message service such as electronic mail can request that a mail item be delivered to
the mail system on a remote machine. The routing layer at each machine is then
responsible for passing the message from machine to machine across the network until
the destination is reached and the message is passed to the message protocol layer for
handling. The node to node layer transports messages between machines.

2. Naming and Addressing

In SUN IV naming and addressing in the message transport layers has changed
significantly from that used in SUN III. In SUN IV a name is a type/value pair where
the type and value are character strings containing alphanumeric and a small set of
special characters. An address is a set of names with a defined ordering on the types.
For example, the address of a machine at the Computer Science Department in the
University of Sydney might be:

Node = basser
OrgUnit = "Computer Science"
Organisation = "Sydney University"
Country = Australia

With the type ordering from least to most significant being Node, OrgUnit,
Organisation, Country.

Vol 9 No 4 24 AUUGN

Very flexible mapping facilities are provided that allow synonyms for the type names
and values as well as translation to and from the non-typed addresses used in the
current system. For example, the address given above may be translated from
"basser.cs.su.oz.au". The new form of addressing is available to message level
protocols but current message protocols can be used without change.

3. Regions

The address space of the network is divided into regions using type information from
node addresses. A region is a ’continuous part of a surface or space’. In a network
context a region is a fully connected area of the network and a regional address is one
that includes names that indicate that an object belongs to a particular region.
Examples of regions would be a country or an organisation or organisational unit.
Regions are used by the routing layer to reduce the amount of information held in
routing tables at each node and decrease the processing time when performing routing
calculations.

The SUN III system had similar structures known as ’domains’ that were also used to
reduce the table sizes and processing time. The main difference is that SUN IV region
tables contain complete address information about each node. SUN IV also allows
regions that are not fully internally connected and regions that may not be traversed by
messages travelling between nodes not in the region.

4. Routing

Messages are transported along an optimal route to the destination. The SUN III
system provided for shortest path routing using link speed and cost as the metric.
SUN IV also provides this but the metric for choosing the best link is now much more
flexible and is related to the desired quality of service. Quality of service can be
specified in terms of speed of delivery and cost of delivery. System administrators
can specify costs for links and the speed is determined dynamically by monitoring
queuing delay on each link. Links can be specified to be unidirectional, but in the bi-
directional case, links costs and queueing delays apply separately to each direction.

More control over routing is provided to administrators through the use of "link
restrictions". The restriction is in terms of the addresses allowed on messages
travelling over a link, so that messages whose addresses lie outside the restriction must
choose another link. For example, a site may therefore avoid carrying "through"
traffic by specifying a restriction that all messages travelling over any link into the site
must have an destination within the site.

Routes chosen by the network may be coerced so that all routes to a particular
"region" are forced to take a particular link.

Messages addressed to particular regions may also be explicitly forwarded to other
regions. This can be used, for example, to cause messages with organisation-level
addresses to be forwarded to nodes where address resolution data-bases may be kept.

AUUGN 25 Vol 9 No 4

As with SUN III messages may be sent to a single destination, a group of destinations
(multicast) or all destinations in a region (broadcast). In each case the optimal number
of message hops are used.

5. Messages

Messages in SUN IV have much the same format as in SUN III, except for the addition
of "ID" and "Part" fields in the header.

Each message is given a unique identifier at its source, which together with its source
address uniquely identifies it across the whole network.

Messages can be broken into parts, and the parts transmitted separately. The "Part"
field in the message header, together with the "ID" field, is used to join the parts
after they have all reached their common destination.

Individual messages can also be forwarded from one site to another. This is done on
a message handler basis, so that mail messages for particular users may be forwarded
to a different site than their files. This is very much more efficient, for example, than
having the mail delivery sub-system perform the forwarding.

6. Node to Node Protocol

The node to node message transport protocol has been redesigned and a new
implementation technique used. It is a full duplex protocol that multiplexes
transmission of several messages in each direction simultaneously. This allows higher
priority messages to overtake lower priority. Nine priority levels are specifiable by
message senders.

The new protocol has been designed for maximum throughput with minimum
transmission costs, and to avoid interference with link-level protocols such as X.25,
TCP/IP, or modems with internal buffering protocols. Another criterion was to allow
maximum throughput even when many small messages are being transmitted, a
condition that noticeably slows the SUN III protocol. Input and output have been
decoupled by using one process for each, and all incoming messages are handled by a
single permanently running routing process.

7. Link Management

Link management is performed in three areas:

¯ node description (commands file)

o connection control (config file)

, call script language

The commands file specifies information about the node such as its full address, type
hierarchy and mapping information. It is now mandatory to supply some specific site
description details, such as organisation name, and contact phone number. Other site
specifications are compatible with network mapping data-bases. Links are

Vol 9 No 4 26 AUUGN

parameterised with cost and message delay times, and any addressing restrictions for
messages that may be carded on the link.

The configuration file specifies the links that connect the node to its neighbours and
the times that calls should be made on each link.

A link description specifies the link type and how a connection is to be made on the
link. The detailed call establishment procedure is described in a program written in a
new language designed for the purpose.

8. Higher Level Protocol Handlers

Higher level protocol handlers that are functionally identical to those used with SUN
III are included in SUN IV. In addition a handler will be available that implements the
X400 message handling system protocols.

9. System Structure

The system is constructed in three layers: a message handling layer, a routing layer
and node to node transport layer. Standing beside this are management programs that
control the execution of the programs that implement these layers.

The following diagram shows the major programs and f’des that make up the system.

AUUGN 27 Vol 9 No 4

config call
file script

~-~ Netinit ~..-..-->" ,,

¯ ,. \\\

\\\\\\

commands
file

export
state

At the message protocol layer there are programs that send messages (sendfile,
sendmsg). These programs may be invoked by user agent programs for services such
as electronic mail. The system doesn’t include an electronic mail program but is easily
interfaced to all the popular UNIX mail programs.

Also at the message protocol layer are the handler programs that receive messages.
These may pass the message to user agent programs such as a mail delivery system or
process the message completely such as the simple directory service.

At the routing layer the "router" program receives messages for transmission or
delivery and decides on the basis of routing tables how to dispose of the message.

At the node to node transport layer a daemon process transfers the message to another
host.

The management programs that control the system include "netinit" for invoking
network programs at particular times, VCcall for establishing connections with another
host, a message handler for network state messages and "netstate", a program to
maintain routing tables.

Vol 9 No 4 28 AUUGN

10. Conclusion

The SUN IV system provides a number of major improvements over the previous
version of the software while still maintaining compatibility.

AUUGN 29 Vol 9 No 4

NeWS Programming

Tim Long
Information Concepts

ABSTRACT

NeWS is Sun Microsystems’ PostScript based network windowing system. It is
intended to provide interactive graphics with device independent, efficient use of net-
work bandwidth and ease of programming. NeWS uses a superset of PostScript which
includes event handling, lightweight processes and multiple drawing surfaces. This
talk will describe some aspects of the theory and practice of NeWS programming.

NeWS is a trademark of SUN Microsystems
PostScript is a trademark Adobe Inc.

Vol 9 No 4 30 AUUGN

The X window system - an overview

Tim Segall

Hewlett-Packard Australian Software Operation

X is a network transparent windowing system developed at MIT. The X display servers are designed to
be used with high resolution bitmap terminals. The server distributes user input to, and accepts output
requests from various client programs. These client programs can be either local (on the same machine)
or remote (somewhere out on the ethernet cable).
X. supports multiple overlapping windows, fully recursive subwindows, text and graphics operations
within windows. X attempts to provide hooks to ’bolt in’ your favourite style of user interface. This is
done by allowing you to specify your own ’window manager’ client. A including moving, resizing, and
iconifying.

The software for X is freely available from MIT, this has encouraged the use and creation of a host of
powerful tools. These client programs include terminal emulators, bitmap editors, load monitors, clocks,
calculators, games
The X library is the low-level interface to the X server protocol. This interface is documented in the
’Xlib-C Language X interface’ manual from the MIT Project Athena and consists of more than 150
subroutines. This library gives complete access to all of the capabilities provided by the X window
system, and is intended to be the basis for other high level libraries. In this talk I will explain the
fundamental concepts behind this low-level interface and talk briefly about a number of the higher lever
interfaces.

The world from the X perspective

Keyboard

l
I
I

I
Mouse I

I

I
I Display

I

I
I
I

++++++++ /
+ +

Window Non-window
Programs Programs

Window
Manager

Window

+ X
+ Server +
+ +

++++++++

> I Program I

LAN

I Terminal I
I Emulator I

Window
Program I

<-> Terminall
Based

Program

AUUGN 31 Vol 9 No 4

Hows a windowing system

Greg Rose

Softway Pry Limited

ABSTRACT

Ever wondered how to use a windowing system? These new windowing systems
are far too complicated for common-or-garden applications at the moment.

Introducing "Hows" - the Household Old Windowing System(tm). This talk will
describe in graphic detail just how windows and computers can interact in the house-
hold and every day use of older computers.

The Client/Server model will be examined in some detail along with the security
implications of windows.

Vol 9 No 4 32 AUUGN

FTAM and OSI standards are hard to implement from scratch

by

Andrew Worsley

CSIRO Division of Information Technology

Abstract

OSI or "Open Systems Interconnection" will be the international standardised method of communica-
tion between computer systems once their definition has been completed. The basic OSI standards are reach-
ing a State where they can be implemented. Yet amongst most people who program computers there is a poor
understanding of the standards. The major reason for this lack of knowledge about OSI communication stan-
dards is the great effort required to learn enough about the OSI standards to implement them. The standards
are hard to understand for those not specialising in OSI and often important parts are incomplete As most
computer companies and governments intend to make major use of the OSI protocols for computer communi-
cations there will be a great demand for OSI expertise. The article is drawn from the experience of imple-
menting a part of the OSI standards, called FTAM. The work was carried out to gain some expertise in the
implementation of OSI standards. This article reports the problems and solutions we found during out imple-
mentation of OSI FTAM standard. We also compare the efficiency of the OSI FTAM implementation against
a program, ftp, that provides the same service between BSD Unix systems.

1. Introduction
OSI stands for Open Systems Interconnection, which is a standardised method of exchanging data between

computer systems, which is still being defined.1 Because it will be an international standard it will be available to
anyone and not restricted a few computer manufacturers or licenced organisations. The hope is that all computers
will use these standards as the basis for communication between computers and so will be able to communicate with
any other computer, regardless of its manufacturer or operating system.

In 1986 many of the OSI standards were reaching a state of def’mition suitable for implementation of a proto-
type version. Consequently CSIRO Division of Information Technology decided to support an implementation of the
bTAM standard and some of the other OSI standards necessary to support it. It wanted to develop some expertise in
this area in order to help Australia take advantage of the standards as they became complete.

We expected that an efficient and reliable implementation of the OSI standards could be produced from the
standards documents alone with out any major problems. Since so many organisations were committed to OSI we
expected to find other implementations to test against easily. This would give us confidence that the implementation
conformed to the OSI protocols.

2. Methods and Protocol Standards used

2.1. What do FTAM and OSI look fike?

The OSI standards are structured as seven layers, one on top of the other. Data passes from the user of OSI at
the top of this stack down through each layer to the bottom layer, which is called the physical layer, where it is
transmitted from the computer. The seventh, or top layer, has a different standard for each application provided. The
layers one to six below this always provide the same services and are always present no matter what application is
used. Some of the applications services that standards are being defined for are file transfer called FTAM, mail
called MOTIS, remote login called Virtual Terminal and remote job control called JTM. All these application ser-
vices run over the same bottom six layers.

AUUGN 33 Vol 9 No 4

The application standard b-TAM was chosen for implementation as it was the best defined standard at that
stage, x The name, FTAM, stands for "File Transfer and Manipulation" and it provides the ability to connect to a
remote system and transfer files to and from the remote system.

The def’mitions of OSI standards are published from time to time in Australia by Standards Australia or SA,
which until very recently was the SAA or Standards Association of Australia. These standards are available as a col-
lection of about ninety two documents from the SA for roughly $1500. Each standard is the result of a long process
of proposals, discussion leading to modifications and eventually agreement by interested people. People interested
participate through meetings organised by what ever organisation represents ISO, which means International Stan-
dards Organisation in English, (not OSI) in their country. During this process the standard passes through several
stages, each closer to final agreement of all the people involved. The final stage is called IS or International Standard
and is the finished standard and will not be changed except by the publication of defect reports to fix problems as
they are discovered. The stage before a standard is IS is DIS or Draft International Standard, which is supposedly
stable enough to base a prototype implementation on. Although the implementation will need to be revised to con-
form to the IS version of the standard it is not meant to be a major change.

The implementation of FTAM we developed, which we call CSIRO-MU FTAM, is based on DIS FTAM stan-
dard which reached that stage two years ago. As this is being written it is still not an IS and the latest proposals con-
tain very substantial changes from DIS to IS. These changes will be incorporated in the program which will probably
take a couple of months.

As CSIRO D.I.T. is a contributor to the standardisation process it is supplied by the SA with the proposals,
modifications, and results of the various meetings during the standardisation process. Receiving all the modifications
enables us to keep track of changes to the standards and so to keep up date with current state of each standard. The
implementation of FTAM was based on this material and another document published by the National Bureau of
Standards in the United States. This work is the "Implementation Agreements for Open Systems Interconnection
Protocols" and represents the agreements of many Implementors of OSI standards about how to deal with the defi-
ciencies of the standards.3

2.2. Equipment/Operating system requirements

The implementation is written in C and runs on 4.2 BSD Unix systems.4 The implementation consists of
FTAM and the layers down to and including a class 0 version of transport, which is layer number 4. Below this
layer it expects to run over a network layer, which is layer number 3, provided by the operating system.

At the moment the implementation has two interfaces to the network layer. The first is not a proper OSI net-
work layer but mimics one using TCP/IP. To let people test OSI standards over ARPAnet, a TCP/IP network, a stan-
dard way of providing transport over TCP/IP was defined in Request for Comments number 1006 (RFC1006). Since
TCP/IP is widely available this is a useful substitute until a proper OSI network layer is available on LANs. The
second network interface is to X.25 which can be used as a proper OSI network layer. The TCP/IP interface uses
standard Berkeley sockets whereas the X.25 interface uses Sunlink X.25, which is only available on the Sun comput-
ers.5 Porting the implementation to use another X.25 interface should not be a major problem as this code is only a
small part of the program.

2.3. How was the design work done

First the problem was divided up into as many separate design tasks as practical. Then these tasks were then
implemented by a bottom up design strategy. Every attempt was made to make them as independent as possible from
each other. Thus the design method was a mixture of top down and bottom up, working from both ends towards the
middle. The parts of the standards that were unclear or not defined were left until they were understood, some time
later, or left null if their properties are still not defined.

2.4. Design

First it was split into one design task for each layer. For example the implementation of the transport layer,
layer number 4 was a single task and similarly for each of the other layers. Then each layer was divided into two
parts. The first part handled the assembling and parsing of the layers protocol data units. Protocol data units or
PDUs, as they are known in OSI standards, are the pieces of data exchanged by a layer with its corresponding layer

Vol 9 No 4 34 AUUGN

present in the remote machine. The second pan handled the interaction with the layers above and below it. This
involved checking the correctness of requests and responses it received from other layers, managing the layers state
information and ensuring the required actions of that layer are carried out.

The protocol data for the top two layers, presentation and FTAM, all use the same format, known as ASN.1,
for specifying their protocol data. So a single module was developed to assemble/parse ASN.1 for both layers. Each
ASN. 1 protocol data unit is translated into a table which represents the PDU in the program. To encode a particular
PDU the encoding routine is passed a pointer to the PDU’s table and the parameters for it, and from this it produces
the encoded PDU. Likewise there is a decoding routine which takes a pointer to the PDU’s table and its encoded
form and decodes it into its parameters.

3. Results and Discussion

Writing the program to implement the OSI standards was not the major task. The hardest part turned out to be
understanding the standards and determining what to do about the parts that couldn’t be understood. This difficulty
in understanding all parts of the standards made the task of verifying the implementation was correct even more
important. This was not easy because there is currently only one implementation available to test against. The other
major activity was making the implementation efficient which required a fair amount of work.

3.1. Standards

The OSI standards are written in a very dry and formal manner. They consist mainly of definitions with very
little, if any, description of the meaning or purpose of the constructs they define. There are many references to other
standards for definitions of important objects which means that the reader usually has to read several other standards
as well to understand things. Sometimes these other standards are not written or just not available. The standards
define the parameters, the services and the format of the protocol data but do not put this information in any context
by explaining what its purpose is. This makes it very hard material to understand. The reader must put all the pieces
together and deduce what the standard is trying to do by himself. Consequently the comprehension of a standard
takes much longer than simple reading it through a few times. Since there are many standards that need to be read,
nineteen for the work described here not counting X.25, this represents is a large investment in learning required by
the implementor.

The problem of standards being changed after they were implemented was not a great inconvenience. For
example, to implement the changes between DIS presentation and ACSE standards and the IS versions amounted to
one months work. The transition from DIS FTAM to IS FTAM will probably be two or three months of fairly
straight forward work, as there are a lot of important changes between the two versions.

What helped a great deal with the difficult problem of ambiguous or unspecified pans of the standards, such as
addresses, object identifiers and document types, was the efforts of other implementors. In particular the "implemen-
tation Agreements for OSI protocols" was a great help. It is published by the NBS, or National Bureau of Standards,
in the United States and contains a recommendation of how to handle problems in many OSI standards. It is the
result of the efforts of the people who attend the OSI implementors workshop.

The NBS OSI implementors agreements contain a list of known deficiences in the standards and proposed
changes to fix them as well as other agreements on problems not addressed by the standards. For example, when you
connect to a remote machine to pick up some files, a very useful facility is obtain a list of the files available on the
remote machine for transfer. As the FTAM standard stands now it does not def’me a way of doing this. Even if you
provided a method of doing so in your implementation, there is no way to make sure it will work with other imple-
mentations. The NBS agreement defines a file type which roughly corresponds to a Unix directory. Thus as long as
both the implementations support this special file type, the user can get a list, of files available for transfer. Since this
is an agreement of other implementors it is likely that this useful facility will be widely supported among FTAM
implementations.

There are other implementation agreements published by groups such as SPAG6 in Europe but the NBS is the
more useful. The two groups, SPAG and NBS, have stated they will try to remain compatible and incorporate each
others proposals so implementations can be compatible with both. This problem will become less severe as time goes
by and the standards are fully def’med but even when they are completed there will still be problems, like the file list-
ing one mentioned above, that need to be addressed.

AUUGN 35 Vol 9 No 4

3.2. Design

To achieve an efficient implementation of OSI standards requires a lot of work. The CSIRO-MU FTAM
implementation consists of roughly 32,000 lines of C code, occupying about 690 Kilobytes of space. To give a feel
for how space efficient the implementation is it is compared against some other file transfer programs in table 1.
ISODE 7 is a development environment for OSI protocols which is freely available for a small distribution fee. It
contains an implementation of DIS FTAM we will call ISODE FTAM. The first entry in table 1 is ISODE’s ftam
which uses a straight forward but lengthy encoding and decoding method. This yields a very large implementation
with a binary of over three times larger than the CSIRO-MU ftam.

In the CSIRO-MU ftam a lot of effort was put into making it space efficient. In particular the encoding and
decoding part was done by providing a table for each PDU. This table could be stored very compactly, yielding a
much more compact method of encoding and decoding. In contrast ISODE has a separate function for encoding and
decoding each PDU. While this is not the reason for all the size difference between the implementations it is prob-
ably the most important one. ISODE has not put much importance on space efficiency in general.

Size of various file transfer program binaries
compiled under SunOS 3.5 for Motorola 68000 cpu

user program server program
program

bytes percentage bytes percentage
of ISODE of ISODE

ISODE ftam 727976 100 702292 100
CSIRO-MU ftam 237104 32 231296 32
ftp 97748 13 102032 14

Table 1.
CSIRO-MU ftam is twice the size of the Unix ftp8 command, which provides the same service as the FTAM

implementation for Unix machines. Ftp is so much smaller because it is a much simpler and straight forward proto-
col. In contrast FTAM has a very general protocol and requires several other layers of additional protocol below it.
For other applications we expect that supporting the OSI standards means a large overhead in providing all the OSI
layers below the existing one and a more general application protocol. In table 2 this OSI protocol implementation is
listed as OSI ftam service and in CSIRO-MU FTAM amounted to as much as 140k.

Break down of size of CSIRO-MU ftam program binaries
compiled under SunOS 3.5 for Motorola 68000 cpu

user program
component

bytes percentage bytes percentage
of total of total

OSI ftam service 143464 60 143464 62
interface to ftam service 19104 8 25504 11
library routines 74536 31 62238 26

237104 100 231296 100

Table 2.
The size of the OSI implementations illustrates one of the main weaknesses of the OSI standards. The amount

of program code needed to support the protocol is much greater than necessary to do the job. For why would any-
body want to use a less efficient communication protocol than they are using at present. The ability to communicate
in a standard manner is the only advantage it can offer against this disadvantage. Thus use of OSI protocols leads to
considerably larger programs than use of a simple protocol such as ftp uses. This raises the question of the best way
to handle this large OSI overhead. Much of it is common to all OSI implementations and consequently could be
placed in the kernel or in a memory resident shared library. These areas will need further work to determine which
are the best approaches.

To make the implementation efficient in its speed of operation requires a lot of work because of the number of
layers that the data must pass through. An FTAM implementation can be have the same order of speed as ftp, if it is

Vol 9 No 4 36 AUUGN

implemented so there is little or no copying of data. This is because during a file transfer most of the data is passed
through each OSI layer untouched. If it is passed between layers by pointers, instead of copying, it data can pass
quickly through a layer. The layers still have to do some processing of the data, adding or removing headers, so it is
not a trivial action. As it passes down a layer that layer adds it header to the data and on the way up a layer it
removes its header from the data. This additional work on the headers cannot be avoided but in practice is not a sig-
nificant delay with large transfers of data. This is because data takes nearly a constant time to pass through a layer,
rather than a time proportional to the amount of data, so the larger the piece of data passed the less the delay per byte
transmitted.

File transfer throughputs in Kb/s (Kilo bytes per second) for various programs
direction of transfer (command)

Program from remote machine (get) to remote machine (put)
Kilobytes/second percentage Kilobytes/second percentage

of ftp of ftp
CSIRO-MU FTAM 117__+3 73 142__+3 83
ISODE b~AM 122._+10 76 118_+5 69
ftp in binary
mode (SunOS 3.5) 160._+10 100 170_+ 10 100

Table 3.

From table 3 we can see that both FTAM implementations achieve a transfer rate of as much as two thirds of
ftp transfer rate. In the implementation of ISODE a lot of effort went into its data structures to avoid unnecessary
copying of the data. Likewise CSIRO-MU FTAM uses special data structures and routines to minimise copying of
the data. At the moment CSIRO-MU ftam still spends 10% of its time copying data, future work may eliminate this
unnecessary copying and possibly increase the transfer rate to something close to ftp’s transfer rate.

The decision to separate each layer into the state part and the encoding part greatly simplified the implementa-
tion in practice. It made software much easier to maintain and change, as was necessary when adding in the changes
between the DIS and IS versions of some of the standards. Splitting the ASN. 1 encoding and decoding part into a
special section of its own worked out very well in practice since it meant there was one common-set of
encoding/decoding routines for ,the top two layers. The fact that other implementations, e.g. ISODE, also provide
special help with ASN.1 encoding/decoding supports our approach. In fact further space would have been saved in
the other layers if they too used ASN. 1 for their PDUs instead of their own layer specific methods.

Starting from scratch requires you to understand and design everything, which is a lot more work than taking
taking an existing OSI system and extending it. The first .part of this extra work is designing how data and parame-
ters are passed which is not def’med by the standards in any way. It was important to make this very flexible and fast
so as not to limit the implementation in any way. The other extra work is providing the many subsidiary services,
which are not very well defined by the standards but none the less important. Mostly this is the OSI directory ser-
vices which look up information in some data base. For example it needs to take a machine name and look it up to
produce an OSI address for that machine. Similarly for a particular service on the machine an application entity title
needs to be looked up. As directory services are still being defined and have a large standard themselves a very sim-
ple look-up mechanism used which scanned a standard file for the data. The format of the file was based on that
used by ISODE so only one database is needed for both implementations. Also routines to manage object identifiers
of various things such as document types and abstract syntaxes and so on was provided. By extending an existing
implementation instead of starting from scratch most of this work can be avoided.

3.3. Testing

Testing such a large program is a substantial task. The first problem is that the data it generates is not read-
able. So it is essential that there be some way of displaying its data in a readable form. This is especially important
when it fails while trying to interwork with another implementation. Then it is necessary to see what it is transmitted
at each layer to determine where things are going wrong. Further more it is useful to have some tracing facility to
watch various parts of the implementation perform, so as to quickly isolate a faulty part or verify that a new piece of

AUUGN 37 Vol 9 No 4

code is working, amongst the enormous amount of other code present.
CSIRO-MU FTAM was tested against itself which is a good basic test that the code runs. But this is far from

a good check that it is following the standards. There are often faults where both sides of a connection will be bro-
ken in the same manner and so this will not test not discover the problem. These faults can occur because of the
standards were wrongly uninterpreted or simply because you using the same piece of code with the same problem for
both sides of the connection. Interworking against an independently written implementation is a much more stringent
test. CSIRO-MU b’TAM was tested against ISODE’s bTAM. This turned out to be very beneficial for both imple-
mentations as it did discover several problems in both implementations which have since been f’Lxed.

Even if both implementations do implement the same standard it does not guarantee that they will interwork.
The first attempt to interwork the ftam implementations failed because each ftam had implemented a different and
incompatible service class. This problem of incompatible subsets of a standards is another trouble area of many OSI
standards not just FTAM. Fortunately this is now well addressed by the implementors’ agreements. Still these
agreements cannot guarantee interworking unless their recommendations are implemented which is not mandatory. A
better guarantee of interworking is to implement all possible options of the standard, though this can be prohibitively
time consuming to do. The CSIRO-MU FTAM implements all service class options now.

At the moment there is a dirth of OSI implementations even though all the major computer manufacturers have
committed themselves to supplying OSI products. This may be because they do not want to release any intermediate
versions of the products and are waiting for the standards to be completed. Unfortunately this makes it harder to test
implementations and leads to a low level of awareness as only a few academic sites and even fewer commercial sites
do work on OSI standards in the public arena. Prehaps this problem will only solved when the final version of the
standards becomes available. Unfortunately it is then much harder for their problems to be fixed.

3.4. Conclusion
Although OSI FTAM standard was difficult to implement from scratch, it was achieved and the implementation

is reasonably efficient. As another implementation was available it was possible to test the two implementations
against each other and so gain confidence that it adheres to the standard.

Gaining an understanding of the standards was both difficult and time consuming. The major difficulty with
understanding the standards is the form they are written in. The style of the standards does not give the purpose of
the things it defines, making very hard to understand follow. Other problems are the number of standards the imple-
mentor is required to understand and the fact that many important parts of the standards are still being defined.

The NBS workshop implementors agreements is a great help to implementors. Then documents such as these
do not give an understanding of standards. Another very useful source of help is other implementations, which the
implementor can use as a basis for his own work. This allows the implementor to concentrate on his own area of
interest with out having to learn or implement any of the other parts which represent a considerable saving of effort.

It is difficult to develop computer communications conforming to the OSI standards but is possible. As the
standards stand now they will probably never be as efficient as simple and single purpose protocols but with a lot of
effort they can be made to within a factor of two or so of the efficiency simpler protocols. OSI standards will pro-
vide a very useful connection between all computer systems but the efficiency issues may constrain the extent to
which they replace existing methods.

Vol 9 No 4 38 AUUGN

4. References:

1. A.S. Tanenbaum, Computer Networks: Towards Distributed Processing Systems, Prentice-Hall, Englewood
Cliffs, NJ (1981). This gives a good introduction to OSI and networking in general, except it is old. A new
and very much more up to date version is expected in the next six months.

2. ISO/OSI - ISO/TC 97/SC 21/WG 5, ISO/DIS 8571 parts 1-4 - File Transfer, Access and Management,
Standards Australia, Canberra (July, 1986). Standards documents that def’mes DIS FTAM. It gives references
to other standards that it uses, which reference others

3. Robert Rosenthal, Editor, Implementation Agreements for Open Systems lnterconnection Protocols, National
Bureau of Standards, U.S. Deparlment of Commerce, Gaithersburg, MD 20899 (July, 1987). This document
records current agreements on implementation details of OSI protcols among the organisations participating in
the NBS/OSI Workshop Series for Implementors of OSI Protocols. These decisions are documented to facilitate
organisations in their understanding of the status of the agreements.

4. B.W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs, New
Jersey (1978).

5. Stuart Sechrest, "An introductory 4.3BSD Interprocess Communication Tutorial," in Unix User’s Manual -
Supplementary Documents, Usenix Association (April, 1986). This gives an introduction to the programming
interface in the BSD TCP/IP network. It is found in the Unix Manuals for the BSD version of Unix as
published by the Usenix Association in the United States.

6. Standards Promotion and Application Group (S.P.A.G.), Guide to the use of Standards, ELSEVIER SCIENCE "
PUBLISHERS B.V. (November, 1986).

.

.

Marshall T. Rose, The ISO Development Enviroment at NRTC,.ie !"ISODE is an OSI development enviroment
for Unix systems which is distributed for a small cost. It contains a DIS FTAM implementation as well as
many other useful pieces of software. It is essential material for any implementor of an OSI standard as it
provides useable implementations of much of OSI. Available in Australia, for 150 Australian dollars, as part of
the ISODE distribution from George Michaelson, CSIRO, D.I.T., 55 Barry St."" ISODE is an OSI development
enviroment for Unix systems which is distributed for a small cost. It contains a DIS FTAM implementation as
well as many other useful pieces of software. It is essential material for any implementor of an OSI standard as
it provides useable implementations of much of OSI. Available in Australia, for 150 Australian dollars, as part
of the ISODE distribution from George Michaelson, CSIRO, D.I.T., 55 Barry St.

Berkeley Unix User’s Manual, "ftp (lc) - ARPANET f’de transfer program," in Unix Programmer’s Manual -
Reference Guide, Usenix Association (April, 1986). This describes the ftp command which allows the transfer
of f’des across TCP/IP networks. It is found in the Unix Manuals for the BSD version of Unix as published by
the Usenix Association in the United States.

AUUGN 39 Vol 9 No 4

ABI and OSF: Technology and Future Impact on UNIX

Ross Bott
Pyramid Technology Corporation

Synopsis

The AT&T/SUN UNIX Applications Binary Interface (ABI) and the new UNIX
proposed by the Open Systens Foundation (OSF) can be viewed from at least two
perspectives:

(a) A political level involving jockeying among the major computer manufacturers
to best take advantage of what has now become a very hot item -- UNIX.

(b) A technical level -- both approaches have significant and possibly surprising,
effects on applications developers and UNIX users.

This presentation will concentrate primarily upon technical analysis of the OSF and
ABI issues and how they impact the UNIX community. It will conclude with a
perspective of how these issues relate to those of XOPEN and POSIX.

An Outline of the Presentation follows:

Applications Binary Interface

(1) A technical definition.

(2) The Politics of ABI: Why do AT&T/SUN feel that it is necessary? Why is it
viewed as a threat to other manufacturers? (Relationship to 286/MS-DOS and
370/VM.)

(3) Implications to the computer manufacturer. Are multiple ABI’s meaningful?
What does ABI mean to a computer manufacturer who isn’t one?

(4) Implications to applications developers. Does ABI mean that they will need to
support only one binary?

(5) UNIX vs ABI: A consideration of the issues of code portability, porting
"distance", long term applications support.

(6) Long term implications of ABI.

Vol 9 No 4 40 AUUGN

Open

(1)
(2)

(3)

(4)

Systems Foundation

A def’mition of the OSF UNIX charter.

The Politics of OSF: Definition and rights of supporting vs affiliate members.
How is OSF a counter to ABI? Why is IBM invovled? Can OSF and ABI
coexist?

Technical evolution of OSF UNIX into the 1990’s. Is OSF dependent on AT&T
UNIX? The expansion of UN/X capabilities: databases, OSI, office automation,
etc. Effect of OSF on computer manufacturers.

Effect of OSF UNIX on applications developers: Software is a commodity.
Evolutionary directions of future software companies.

(5) Effect of OSF on UNIX users.

X-Open vs POSIX vs OSF vs ABI

(1) Placing these efforts within a single technical framework.

(2) Is "UNIX as a single operating system standard" a
contradiction?

future tautology or

Biography

Ross Bott, Vice President and General Manager, Advanced Architectures, joined
Pyramid Technology in March, 1982, three months after the founding of Pyramid..
Previous roles at Pyramid included operating system designer, manager of the group
which designed Pyramids dualPort(TM) OSx, manager of the Networking .and
Communications Group, Director of Software, and Vice President, International
Marketing, before moving to head up Pyramid’s advanced technology unit.

Prior to Pyramid, he spent four years at Xerox Palo Alto Research Centre, where he
was part of the team which designed Xerox’s STAR workstation, the precursor to
Apple’s Macintosh and Lisa, and other similar personal workstations, and did
theorectical work in the representation of knowledge and other areas of artificial
intelligence. Ross has a BS in Mathematics from Standford University and a Ph.D.
from the University of California, San Diego in Artificial Intelligence.

AUUGN 41 Vol 9 No 4

Distributed Trouble:
The University of Sydney experience with networked workstations.

Winner of A UUG prize for best paper submitted by a full time student

Rex di Bona
rex@c luster.cs.su.oz

Workstation UNIX~" systems are in vogue today. To have a collection of nearly
independent workstations as your computer system raises problems in many areas. Two of
the more important problems raised are software consistency and system security. This
paper will discuss the issues of software consistency and system security as found from
experience with installing, maintaining, and dealing with a network of thirty machines,
each locked in an inaccessible office, which has been set up at the Department of
Computer Science at the University of Sydney.

Introduction

The Department of Computer Science at the University of Sydney has installed a system of thirty
workstations. This system has been setup to provide computing resources for the staff and postgraduate -
students, replacing the Vaxen currently used for research.

One of the major goals of the installation was to provide a secure, distributed computing environment. It
was hoped that the system would provide computing resources that presented the same user interface
that was available on the departments’ Vaxen. This decision required that each workstation provide an
identical view of the filesystem, so that the machine that was actually being used was irrelevant.

During the setup, maintaining, and upgrading of the system, problems were found with both the software
maintenance facilities, and the system security. After installing a new program, or update, on only one
machine previously it was found that having to perform the installation or update on many machines
was more difficult. This problem was exacerbated by the placement of each workstation. The
workstations were distributed to staff members’ rooms, and so were inaccessible if the staff member was
absent and the room locked. If a workstation was not communicating with the rest of the system,
through being powered down, crashed, or for some other reason, then that workstation could not be
attended to until the staff member returned. Any installations, or updates that were scheduled to be done
to that machine had to be delayed until the machine was again available.

Network Architectures.

There are three different methods of connecting up a collection of machines. The difference between the
connection strategies is the user interface. The simplest, and most secure system, is the minimally
connected system; each workstation, each server, and any other connected machine is totally
independent. The servers provide Ides for the diskless machines. Each machine has an independent
f’desystem; no files are shared and no file is visible from multiple machines. In this system a user

t
07VIX is a Trademark of Bell Laboratories.

Vol 9 No 4 42 AUUGN

would have accounts on just those machines for which login permission has been grant~l.

In the minimally connected system, users are allowed to have login sessions between machines. They
would connect using a remote login program, such as rlogin, but no other method of remote access is
allowed. In effect the network is treated as a collection of independent machines between which
terminal connections are provided. The fact that some machines are diskless and that the login
interconnections are done over an ethernet is totally transparent to the user.

A more interconnected system allows for the sharing of files; a file can be seen from multiple machines.
This network architecture has possible security problems which are discussed below. The advantages of
this network architecture includes allowing a user to access a file from several machines, alleviating the
task of keeping the file consistenL Another advantage is that since duplication of files is reduced the
amount of free disk space over the network is increased.

¯

Finally, systems can allow more than just file sharing, they allow users to see all of their files from any
machine, thus allowing easy execution of jobs on any machine. This ease of access creates a situation
where the processors within machines are part of a liquid resource. It does not matter on which
machine a job is executed so the load should be spread over the entire network, resulting in improved
performance for all machines. A user would execute a job on a machine not currently heavily loaded.

Of these three architectures the third is the most preferred as it provides the greatest flexibility for the
user. Any workstation is an entry point into the network and the view of the network is identical from
each workstation. This is especially useful for people who do not have a set workstation assigned, but
who use a random workstation from a pool of workstations.

Software Consistency.

Software consistency is a problem on a network of heterogeneous machines. The University of Sydney
has slight variations in the set up of each of the workstations it is running. Nonetheless it is important
that the user environment remain identical, or nearly identical on each machine; hence differences are
hidden from the ordinary user. The configuration at the University of Sydney consists of thirty Sun
Microsystems workstations, half with, and half without local disks. Three servers provide files for all -
workstations, and root and swap filesystems for the diskless machines.

Problems arise when software has to be updated on the filesystems that are not globally shared.
Because of the desire to have a homogeneous user interface on the heterogeneous network each
modification must be tailored for six different system configurations. The current system configurations
are: 3/50 with disk, 3/50 without disk, 3/60 with disk and the three different servers, each server differs
in both disk capacity and in which filesystems it exports. In its simplest form a software update has to
be installed on all six different system configurations. It is possible that machines in each configuration
are not available for the update when it is installed.

The filesystems on the system are replicated for several reasons. Firstly it reduces the number of
concurrent accesses that are occurring at any server. Secondly it was hoped that in the event of a server
becoming unavailable for some reason, foremostly in case of a machine crash, that some clients would
be able to provide at least a partial service. Some f’flesystems, most notably the root, or ’/’ filesystem,
has to be unique for each machine, as machine unique information is stored there.

Local versions of common programs also have to be placed onto new machines and must be updated
during operating system upgrades, a problem we encountered upgrading from SunOS 3.2 to SunOS 3.5
recently, where several machines did not have the local shell installed causing spurious behaviour.
Attempts to install new versions of existing software can also have this problem of consistency.

In an effort to keep track of which updates had been done on which machines an automated system was
developed to do the updating. A group of people, the system administrators, have permission to run the
updating program which executed a specified command on a specified group of machines. The group of
machines is specified by type: whether each machine has a local disk, each is a server, each machine
does not .have a local disk etc. If a command could not be successfully executed on a particular

AUUGN 43 Vol 9 No 4

machine the machine name, along with the command, is appended to a system wide file. Upon booting
each machine checks to see if any updates are outstanding for that machine, if so the updates are
performed where possible.

The Severity of Security Breaches.

A security breach can take one of several forms, each having a different severity. The least severe
breach of security is being able to read the video screen of another user. By reading the screen it is
possible to examine fries that are being examined by the screen user. More severe still is being able to
modify the screen of another user. If a users’ video screen can be read and modified by a non-privileged
user then important information can be obscured or changed, such as console messages.

Still more severe than reading and/or modifying a video screen is reading and modifying a file that
belongs to another user. To read and modify files is an active break in whereas reading the video screen
is a passive break in. The system breaker is in control during an active break in, whilst during a passive
break in the breaker can only benefit from the targets’ actions. During a passive break in the system
breaker can only observe what the target has executed, or what the target is examining. A common
example of a passive break in is incorrectly set paths for shells, where a user thinks that a standard
utility is being executed, but instead a program of the same name in the current directory is being
executed. The system breaker has placed a command with the same name as a common system utility in
a directory in the hope that the superuser will execute the command. The definitive example of this is
executing the command su instead of giving the full pathname of/bin/su or/etc/su depending upon su’s
location.

The most severe action that can occur is to impersonate another user; to be able to execute commands
and have the kernel believe that a different user was executing them. This is done by either pushing
characters into another users’ terminal input stream, or by corrupting the uid of one of the system
breakers’ shells.

Network Security.

A computer system is physically secure if no physical action by a user can modify the systems
behaviour. In general the best physical security was obtained by having the computer elsewhere; what a
person cannot get to a person cannot change. With the advent of workstations the user now has physical
access to the machine and, more importantly, to the console of the machine. A user may power down
the workstation or the user may use the console escape sequence to restart the operating system. A f’mal
possibility is that the user can use the power of the console to modify the operating kernel and gain
privileges in that way. Several different methods of attack that have been discovered using the console
will be presented, along with possible solutions.

Under UNIX, privileges are arbitrated by the use of a machine wide name space of unique numerical
identifiers, or user identifiers (uids). The protection schemes in UNIX depend upon these user
identifiers. On a network of UNIX machines these name spaces might not be identical. Entries in these
name spaces might not be identical either, a person on one machine having user identifier 1355, may not
be the same person having user identifier 1355 on another machine, even though the names of the
people might also be the same.

Within a kernel running as a single unit, a kernel that has only one name space, user identifiers are
secure. A routine within the kernel can trust, implicitly, that a user identifier that it has been passed is
correct. On a network of associated kernels this implicit assumption is no longer valid. It is possible
that user identifiers passed to a kernel are no longer correct. A kernel must verify somehow that the
user identifier it has been passed is one that has privileges within the local system. The source of all
verification is the password provided by a user on initial connection to the system. Either this password
can be passed with each remote call, or the receiving kernel can do a verification check with the sending
kernel. Both of these methods is fraught with danger.

Vol 9 No 4 44 AUUGN

A machine on a network can impersonate another machine if there are no attempts to trap this sort of
fraud. The main method used to trap this sort of invasion is through the use of encrypted data streams
between corresponding machines. The use of encryption removes the usefulness of tapping into the data
stream’s media. It does not stop people falsifying data on their workstation before it is passed to the
encryption routines. This.possibility of corruption within a trusted workstation is the hardest to
discover.

Security Holes.

There are two steps that a system breaker must do to compromise the security of a network of machines.
The first is to compromise a single machine. The second step is to compromise machines connected to
the first machine. We will now examine methods that can be used to do both of these steps.

There are "traditional" methods used to break UNIX systems. These methods are concerned with badly
set permissions on system files and directories, and badly written system programs. Other common
methods are using insecure system features, the most common being TIOCSTI on Berkeley systems
which allows a program to simulate input on another users’ terminal. These methods have been covered
in detail elsewhere, and so will not be elaborated here.

More interesting are the problems that arise when communicating between kernels. The problems of
system identification; "is this really the machine that it says it is", and of user identification; "is this
really that user?" Under current networking systems there is no method readily avai.’lable to ensure
correct identification.

We shall now concentrate on specific examples of security holes. These holes have been found in
various versions of the SunOS operating system, versions 3.2, 3.5 and 4.0. They work irrespective of the
usual safety features, set-uid over the network, and the promote root to nobody on NFS actions, unless
otherwise mentioned. All of these security problems have been tested and verified. Specific examples are
available from the author ff desired.

Screen Security.

There is no screen security. The video screen on a workstation is very poorly protected. The video
screen is accessed by system calls through the special device/dov/fb which is publically readable and
writable.

The screen device has to be pub!ically readable and writable as it is owned by root, and the ownership is
not changed on login. Under non-windowing systems the terminal that is logged into has its ownership
changed to that of the user logging in. The screen cannot be opened exclusively, as no single process
does all the screen accesses. This is a consequence of the decision to have each process manage its own
window in a windowing environment.

Since the video screen is, by default, going to be used by the person logging in on the console it would
be sensible that the video screen should have its ownership changed at the same time. If this was done it
does prohibit the use of the video screen by persons logged in remotely, and problems still occur in the
case of multiple video screens, who owns which screens, when should the ownership change and how
can having a process that keeps the screen open be prevented? A screen is not exactly like a terminal as
the contents of the screen can still be read, there is a sense of history as previous output is still
available.

Root Security.

The main aim of any general break in is to obtain superuser, or root, privileges. The only way to have
superuser privileges is to have a process running that has a uid of 0. Several methods of doing this will
now be discussed.

, Single User

The main problem of a workstation is that the user has physical access to the machine console. A user

AUUGN 45 Vol 9 No 4

can reboot the machine at any time. The ability to reboot at any time is given as a selling point for some
workstations. It is well known that it is possible to boot a UNIX system single user, where the console is
logged in as the superuser. This single user mode is usually used for system reconstruction after a
system crash. There is nothing stopping a system breaker from halting the system and booting single
user. This would promote the system breaker to superuser privileges without requesting the root
password. The boot code for our system has been changed to disallow this for the workstations.

If the root filesystem requires attention so that the machine can be booted this attention can be provided
in one of two ways, dependiiag upon the type of workstation. If the faulty workstation is diskless then.

the root disk partition is mounted on the server itself (The workstation is powered down so there is no
consistency problem) and the problem corrected. If the workstation has a local disk then the disk is
connected to a diskless workstation and the filesystems mounted on the diskless machine and corrected.
In neither of these cases is the single user boot facility required. The servers are kept in a secure room
so they are allowed to be booted single user.

¯ Diagnostic Monitor
The Sun Microsystems workstation has a disgnostic monitor built into each machine. This monitor
allows system administrators to boot the workstations from various devices, to check all devices that are
present on a machine, and to check that each device is functioning correctly. Also included in the
diagnostic monitor are commands that are useful in the debugging of stand alone programs. These
commands include the ability to read, write, modify, breakpoint and trace programs running within the
workstation.
The UNIX kernel is like any of these programs. It is a standalone program running that happens to run
other programs. Using the diagnostic monitor it is possible to change beth the data structures and code
of the kernel.

¯Kernel Data.
Kernel data can be changed by looking in the system include files which give the address of the kernel
user data structures. The simplest method is to change the uid of all programs running from the
breakers’ uid to root. For example if the breaker had uid 1355 then all uids of 1355 would be changed
to u~d 0 in the kernel user area. All of the system breakers’ programs would now be running with
superuser privileges.

¯Kernel Code.

Kernel code can be manipulated in exactly the same way. It is slightly harder to manipulate the code
area as it is write protected, but monitor commands are available to change the memory protection bits.
A small amount of experimentation will quickly enable a system breaker to discover the meaning of
each protection bit.

The attack described below was done by a person slightly conversant with 68020 code (but armed with a
68020 assembly language manual), no intimate knowledge of the UNIX kernel, and no kernel sources.
It resulted in crashing the workstation about a dozen times before the correct procedure was found.

The code to attack is slightly harder to discover. The ideal piece of code to break would allow an
unprivileged user to be promoted to superuser easily and without complaining or recording the fact if
auditing was enabled. The place to start the attack would be to examine the system calls allowed to
users. This would reveal the setreuidO system call, which changes the uid of the invoking process. If
this system call was to always succeed it would be ideal as it is not executed by system code in the
expectation of failure; system code would not execute it to check if you are currently the superuser.

To determine the correct point of attack within the setreuid code the standard utility adb can be used to
examine the running kernel from an assembly language level. Examining the code reveals several calls
to the kernel routine suser which appears to be a check whether the current user is the superuser.
Modifying the calls so that they succeed no matter what the return value does the trick. The call to
setreuid on the modified kernel now succeeds no matter what the callers’ uid is being changed to. This

AUUGN
Vol 9 No 4 46

is because the kernel believes that the superuser is doing the system call.

To utilise this hole, which is a very hard hole to detect, as the kernel itself is corrupted, the following
’C’ program can be used:

main ()
{

setreuid(O,O) ; /* set uid and euid to 0 */

execl("/bin/sh, sh", O) ; /* run a shell as root */

Figure 1. Setuid Root Program

The program is not elegant, but very functional. It provides a root shell, is not setuid and as such
virtually undetectable.

Both of these attacks require that the breaker have an account on the target machine. The diagnostic
monitor can also be used to log into a machine without a password, enabling the system breaker to use
an account. It is possible to patch the login program so that the test for password correctness is ignored.
This allows a system breaker to obtain the use of an account on a target machine. This is the hardest
method to corrupt a system, as it requires extensive examination of assembly code in the pure data state,
no symbolic instructions are provided, the instructions are not decoded, they are just a stream of bytes.

Dominion Expansion.

Once one trusted machine in a networked file system network is corrupted the system breaker may
endeavour to expand the number of corrupted machines. This can be accomplished in two ways. Either
each machine can be corrupted in a similar fashion to that used to corrupt the first machine, or the fact
that the first machine is corrupted can be used to allow the breaker to affect other machines. There are
differing methods available to do this.

¯ Setuid Programs.

If setuid permissions are allowed over the network then creating a setuid root shell is sufficient to
corrupt any machine from which that program can be seen. All the breaker has to do is log onto the
target machine and execute the setuid root shell which will promote the breaker to root privileges. This
attack only works on systems where setuid is allowed over the network.

It is not necessary that the system breaker have an account on the target machine as the breaker can log
in as bin or any other standard account. It is possible to log in as bin, even though bin has an
impossible password, a~ the password is not checked on remote logins if the machine being logged in
from is a trusted machine.

, Root Access.

If root is believed over the network then to corrupt a new machine becomes a simple task. The breaker
has to create a setuid shell but on the target machine, not on the client machine. In other respects this
attack is similar to that outlined above for setuid programs.

¯ Yellow Pages.

The yellow pages system is a distributed database system for delivering, among other things, the
password file around a network of machines. The yellow pages system is unprotected in SunOS 3.2 and
3.5. In SunOS 4.0 this attack method has been corrected. The basis of the attack is that any user, not
just the superuser can change which server the yellow pages client refers to for the password file. If the
corrupted machine is set up as a yellow pages server then the target machine can be told that all
password references are to be resolved by reference to the corrupted machine. If the password file served
from the corrupted machine has a known password for a root id account then logging in as the root id

AUUGN 47 Vol 9 No 4

account gives the system breaker root privileges on the target machine.

Root System Calls.

Corrupting a remote machine means creating a method by which root privileges are obtained. The
breaker can patch the kernel on the remote machine if the breaker had access to the memory of the
remote machine. The diagnostic monitor provides this access, but may not be available. UNIX provides
a method for modifying, or at least looking at, system memory. This method is to open the special
device/day/morn which is an image of the physical memory of the workstation. Sensibly the permissions
usually associated with this device prohibit ordinary users from writing to memory. The security hole is
that root on a workstation is allowed to perform the mknod system call to create a special device, such
as a physical memory image device over the network. This new memory image can be used to patch
the kernel in the way outlined above, where setreuid is corrupted. The program given in Figure 1 then
has to be executed on the remote machine and a second machine is now corrupted.

Mknod is not the only problem here, it typifies the problem of where checking is done over the network.
Only the superuser is allowed to execute certain system calls, but the checking for whether the caller is
the superuser or not is done on the client machine, not the host machine, so the host machine believes a
corrupted client machine, whereas it is actually being given false information.

After a successful attack two machines are now corrupted. This process of corruption can be continued
as long as there are filesystems that can be seen from both a corrupted machine, and an uncorrupted
machine. In this way an entire network of connected machines can be corrupted from having one
machine corrupted.

Conclusion.

The corruption of a network of workstations starts with the corruption of a single workstation. The first
line of protection is to secure each individual workstation. The diagnostic monitor must be either
removed, or greatly reduced in power, or require a password before use. Other known security holes
should also be removed. Once a single workstation is corrupted the task of corrupting others is made
easier.

It is shown that not allowing setuid and root access over the network does not increase security within
the network currently so these protection devices can be discarded. Discarding these allows for a simpler
interface to system programs such as the mail programs, as the need for daemons is removed. The
problems with the yellow pages interface, and with the incorrect checking of uids on clients instead of
servers, allow for easy penetration of supposedly secure systems. Since it was a trusted client that was
corrupted the normal security measures of rsh and rlogin are circumvented. Encrypting the network
traffic will also not restrict the prevention of these methods. The only of protection against these attack
methods is to do more checking on the server.

In all cases the protection outlined is not a guarantee that a system is secure. Many bugs and security
holes may exist similar to those presented. The main problem is with trying to provide such a general
service as NFS without careful forethought to security issues. Patching a known insecure system will not
guarantee a secure system, a rethink on the security aspects of the NFS/RPC system should be
undertaken. The kernels on each of the machines should not be individual entities, but should be linked
closer.

Vol 9 No 4 48 AUUGN

INSTALLING AND OPERATING NFS ON A 4.2 BSD VAX

Jim Reid

Department of Computer Science,
Strathclyde University,

Glasgow,
Scotland,
G1 1XH.

jim@cs.strath.ac.uk
jirn@strath-cs.uucp

.. .! uune t !mcvax! ukc ! str ath-c s !jim

1. Introduction

The author’s experiences in the installation and operation of Sun’s Network File System (NFS) on
a VAX 11/750 running 4.2 BSD UNIX~" are described in this paper. It discusses the changes made to
the kernel, the C library and to user-level software to accommodate NFS. Some comparisons on the
performance of the VAX 11/750, Sun-2 and Sun-3 computers as both NFS servers and clients are also
given.

The problems that were encountered during the installation are also explained. While these may
not be typical of the difficulties that can be expected, they should give some indication of the problems
that are likely to be faced. Clearly, these will depend on local circumstances such as the hardware
configuration or on the nature of any software modifications, particularly those made to the kernel.

The paper discusses various operational difficulties that became apparent when the VAX NFS
service became widely used. Details of the adjustments that were made to alleviate or solve these
problems are also described.

Some familiarity with the NFS protocol suite, the TCP/IP protocol family (especially its UNIX
implementation) and the internals of 4.2 BSD is assumed.

2. Overview of NFS

Sun’s Network File System extends the conventional notion of a UNIX filesystem where files are
referenced by inodes to a Virtual File System (VFS) using vnodes to access files. A Virtual File System
may be mapped to a physical UNIX filesystem on the local host or to a remote file system accessed
across the network Which may or may not be a physical UNIX filesystem.

Within the vnode is a pointer to a structure which contains a series of pointers to functions
defining the operations that may be carded out on that vnode. The operations defined for a given vnode
- i.e. the functions that are used to manipulate the vnode or the file associated with it - are determined
by the type of filesystem that the vnode refers to. These structures are initialised for each filesystem at
mount time.

~" UNIX is a trademark of AT&T Bell Laboratories.
VAX and UNIBUS are trademarks of Digital Equipment Corporation.
The combination of Sun with a numeric suffix is a trademark of Sun Microsystems Inc.
NFS is a trademark of Sun Microsystems Inc.

AUUGN 49 Vol 9 No 4

Installing and Operating NFS on a 4.2 BSD VAX

For a UNIX filesystem (UFS) that is physically located on the local host, the vnode operations are
the usual UNIX system calls - open(), close(), read(), write() and so on. These use inodes for file
manipulation in the conventional manner.

For network filesystems, most of the vnode operations are the functions that form the NFS
protocol, and have almost a one-to-one mapping with the UNIX filesystem system calls1. Instead of
acting on an inode, the NFS vnode operations use a structure known as file handle which identifies the
file on the NFS client and server hosts. File handles are passed between NFS clients and servers by
means of Sun’s Remote Procedure Call (RPC) mechanism, along with any data required for a given
vnode operation or NFS function. NFS uses UDP to perform remote procedure calls2.

The responsibility of checking access permissions is shared between the NFS and RPC modules.
The remote procedure call modules check the authenticity of the caller and the NFS modules check the
user and group id’s against the permissions of the file, given by fields in the file attribute structures
returned from other NFS calls. The version of the RPC authentication (and hence NFS) in use relies on
each user having the same user id and group ids across all hosts on the network.

To ensure portability of data another protocol called External Data Representation (XDR) is used.
The XDR routines are responsible for converting basic data types - shorts, ints, doubles and so on - to
and from a canonical form, so avoiding machine-specific dependencies like bit and byte ordering and
word size. XDR can also be used for combinations of arbitrary data structures.

3. Installation

The distribution provided by Sun assumes that NFS is to be installed on a "vanilla" 4.2 BSD
system. This distribution was essentially a subset of the source code of Version 2.0 of SunOS, suitably
modified for the VAX.

Before the installation could proceed, some fixes had to be applied to the C compiler. These
corrected some cases of incorrect constant folding, spurious type mismatch errors and faulty handling of
casts in compile-time initialisadons.

Armed with a modified C compiler, installation of the NFS sources could begin. The installation
entailed significant modification of the kernel and some changes to the C library. A few user-level
programs also needed to be altered and new ones added.

The installation of NFS took around three weeks. In view of the substantial changes that were
needed, great care was taken to save the original sources, binaries and libraries so that in the event of a
disaster everything could be restored to the original state. About a week was taken up recompiling the
kernel, the libraries and all the user programs. A further week or so was spent tracking down and fixing
two kernel bugs that appeared to be the result of race conditions. In retrospect, the bugs were simple to
find and correct. [The VAX used for the installation was providing a computer service so time for
testing and debugging the kernel was limited. If a dedicated system had been available, the debugging
time would have been considerably shorter.]

4. Changes

This section describes the changes that were made to accommodate NFS.
modifications to the kernel, the C library and to various utilities are given below.

Details of the

1 For remote filesystems, the system calls are usually performed on the NFS server in response to requests from NFS
clients.

2 The stateless nature of the NFS protocol is simple enough to justify UDP over a more complex transport protocol such as
TCP. However, this can introduce an interesting problem which is discussed in more detail in section 7.

AUUGN
Vol 9 No 4 50

Installing and Operating NFS on a 4.2 BSD VAX

4.1. Kernel changes

As anticipated, the kernel had to undergo the greatest amount of modification. The most global
change was the introduction of the virtual file system layer and the addition of vnodes. This meant
converting most of the kernel modules that used inodes to use vnodes instead. With all VFS file
operations done with vnodes, the virtual file system layer was introduced on top of the conventional
UNIX filesystem using inodes and the Network File System using file handles.

Sun’s NFS distribution provided code for the VFS layer and for vnode manipulation. Also added
to the kernel were routines for the remote procedure call mechanism and the external data
representation protocol.

Module Text Size (Kbytes) Data Size (Kbytes)
VFS 9.5 0.3
Vnode Operations 13.1 1.5
RPC Mechanism 9.9 1.7
NFS Client/Server 8.5 1.0
XDR Modules 6.3 1.2

Table 1 - Size of Code Modules added to NFS Kernel

Overall, the kernel text size was increased by about 45 Kbytes. The static data size remained
roughly the same. The initialised data segment was increased by about 10 Kbytes and the bss segment
reduced by the same amount. However, extra data space is dynamically allocated and freed through the
new heap manager (see below).

The translation of pathnames to inodes (or rather vnodes) is markedly different between the NFS
and BSD kernels. Instead of passing the complete pathname into a lookup routine, the lookup is done
one pathname component (i.e. a directory) at a time. This new lookup routine may then make an NFS
request, depending on whether the pathname component is a local or a remote file.

This style of lookup helps make NFS less UNIX-specific. NFS defines a "generic" directory
format, albeit one which is UNIX-like. Accessing a remote directory through this format hides the
portability problems that would inevitably arise if an NFS client was to read a server’s directory
directly. It just wouldn’t do for a client to read a remote directory like this if a server’s directory format
was different from that on the client.

By traversing pathnames one component at a time, NFS avoids the problem of defining and
implementing a standard pathname representation3.

Heap storage is used to build up the pathname. A LRU cache of vnodes and directory names is
used to improve the speed of lookups.

One of the spare fields in a physical filesystem inode is used to store a generation number which
gets incremented when the inode is freed. The generation number prevents a race condition where an
inode could be freed and reallocated to another file while an NFS client still had a file handle that
referenced an earlier file that used the same inode. To prevent this happening, the generation number is
included in the file handle structure passed in NFS transactions.

The system call argument passing has been "enhanced", passing the call parameters directly
from the per-process user area. This enabled system calls to be called from inside the kernel. The NFS
system calls gain a performance benefit from this as it can reduce the amount of context switching
needed when executing NFS operations.

3 To the author, it appears that lookups will still go horribly wrong if a UNIX NFS client gets a filename with a ’/’ charac-
ter in it from a non-UNIX NFS server.

AUUGN 51 Vol 9 No 4

Installing and Operating NFS on a 4.2 BSD VAX

New system calls were added for NFS client and server operations. A second mount system call
was added for mounting remote filesystems. The unmount system call only needed a little modification
to work for local and remote filesystem unmounts. The semantics of mounting local and remote
filesystems are more involved than the converse operation. [Later versions of SunOS have just one
mount system call to handle the mounting of local and remote filesystems.]

A system call was added to get directory entries. For remote directories, the NFS read directory
call returns some status information as well as the file name and remote filesystem inode number.
Another was added to get a file handle for a given file descriptor4. Two variants on the star system call
were also added to provide the filesystem attributes for a VFS - essentially the size of the filesystem
and the number of used and free blocks. These four system calls are not strictly necessary. As they
map directly to functions in the NFS protocol, presumably they have been added as system calls for
reasons of performance.

Finally, another two system calls were added to set/get the domain name. The domain name is
only used by the Yellow Pages daemons.

Sun claim the UDP packet size limit was increased from 2 Kbytes to 9 Kbytes5. This would
partly be a side-effect of the statelessness of the NFS protocol. NFS operations are considered atomic,
so a larger packet size is needed for better throughput for NFS block I/O transfers that would generally
be 4 or 8 Kbytes in size, plus a few bytes for protocol headers and NFS status information.

Several bugfixes and performance improvements were made to the networking code and ethernet
device drivers. Some subtle changes were made to the mbuf manipulation code. These had some
interesting interactions with a DEUNA device driver that took no account of these alterations (see
section 4 below).

A heap manager was added for dynamic storage allocation of NFS data structures such as file
handles and filesystem or file attributes. These data structures tend to be transient and somewhat small.
Static storage allocation or grabbing clists, mbufs or even blocks from the buffer cache would be
wasteful.

For debugging, a stack traceback was added for kernel traps. When called as a result of a kernel
panic, the traceback would print the values of some of the stack frames to trace the events that lead to
the crash. This was of little help when the panic was the result of a machine check. It was later
necessary to make a simple change to the reboot system call to force the kernel to dump memory when
rebooting.

Some minor changes were also made to some kernel data structures. This meant that programs
which accessed the kernel namelist needed to be modified. [For instance, to interpret the load average
statistics as longs rather than as doubles in the 4.2 BSD kernel.]

4.2. Additions to C library

Extra trap entries were made for the new system calls, requiring the C library to be rebuilt.

Since the format of/etc/fstab changed to allow for mounting network filesystems, extra routines
were provided to read the new format. The existing geOrs lookup functions were re-coded in terms of
the additional routines, providing backwards compatibility at the C source code level.

The directory reading routines were altered to use the new getdirentries system call, making the
read times for remote directories comparable to those for a local directory.

Also added were user-level RPC and XDR routines, making the protocols readily available for
general use. Some of the Sun-supplied daemons make use of these facilities (see section 4.4).

4 Since the NFS servers are stateless, open and close system calls are handled by NFS clients using the information returned
from remote directory reads to generate file handles (and hence vnodes and file descriptors) to reference the file.

5 Later releases allocate even more space for UDP datagrams used in NFS requests.

Vol 9 No 4 52 AUUGN

Installing and Operating NFS on a 4.2 BSD VAX

Support for the Yellow Pages was added to some of the lookup routines for several files in/etc:
group, hosts, networks, passwd, protocols, services and rpc. [Sun’s Yellow Pages provides a distributed
lookup service that uses RPC to get information from Yellow Pages servers. This saves repeatedly
updating several files as a new user or host is installed on the network.]

The dbm database code was given a close routine, to reduce the number of active file descriptors
used. The main beneficiaries of this dbm close are the Yellow Pages daemons that tend to have several
dbm files in use at once.

4.3. User Programs

Most of the user programs were unchanged at source level as a result of installing NFS. Once
they were recompiled and relinked with the new C library, the programs incorporated the new features.
All user programs were recompiled. This was not really necessary. The only ones which had to be
changed were those that read information from/dev/kmem that had changed between the 4.2 and NFS
kernels. It was easier to recompile everything rather than select which sources to recompile and install.
In any case, it was best that the utilities were relinked with the new C library and re-installed.

As mentioned above, it was not necessary to change programs that used the 4.2 BSD library
routines to read/etc/fstab. The old routines were rewritten to use another set that understood the new
format of the file.

One or two programs were changed as a direct consequence of the addition of NFS. These were
modified because of possible time skews between clients and servers that could set file access times and
so on to "impossible" dates in the future.

The main ones that were affected were ls and ranlib. For ls, a test was added to check that the
modification date of a file was greater than the current time and if so print the date rather thz.:’, the date
and time. Ranlib was changed to ensure that the date stamp in the table of contents was always less
than or equal to the modification date of the library.

The shutdown command was altered to make a remote procedure call invoking a broadcast to
everyone on clients served by the host that was about to shutdown.

Fsck was changed to understand the generation number field added to an inode.

Not surprisingly, mount was changed so it would understand the difference between mounting
local and remote filesystems.

4.4. New Programs

Some new daemons and RPC programs were supplied. The most obvious were the NFS server
and client daemons. These are trivial programs because the NFS protocol code is in the kernel. All they
do is detach from the control terminal, make the appropriate system call and let the kernel do the work.

The portmap daemon was supplied for remote procedure calls. This has the task of mapping
sockets to programs for remote procedure calls. Portmap listens for incoming RPC requests on a known
port number and returns the port number the requested RPC server is listening on and some status
information. RPC servers pass information to this daemon when they start up.

Some RPC server programs came on the distribution. These could be kicked off from the inet
daemon which was also supplied. One RPC server program is a mount daemon that checks NFS mount
requests from NFS clients. Another reports kernel activity statistics - the load average, disk transfer
rates and so on. Another provides a remote broadcast facility - rwall - which is mainly used to warn
users on NFS clients when an NFS server is about to shutdown.

Code to support Sun’s Yellow Pages (YP) service is also provided. This has daemons that use
RPC to provide a distributed database for name service lookups. Updating the Yellow Pages on one YP

AUUGN 53 Vol 9 No 4

Installing and Operating NFS on a 4.2 BSD VAX

master causes the other masters, if any, to be updated automatically and the changes then dispersed to
the YP clients. The data is stored in dbm format for fast access.

A further couple of programs report on NFS and RPC statistics.

5. Installation Problems

Two trivial problems prevented the NFS kernel being compiled smoothly. There were a couple of
obvious typing errors that had to be corrected in the NFS source code. The symbol sort of the kernel
namelist had to be fixed to take account of a change in the names of some kernel data structures.

When the new kernel was booted, two serious faults occurred. The first caused the kernel to
crash, panicking "mclput". This happened every time a bulk data transfer was received from the
ethernet - typically remote printer requests or file transfers. Ethernet terminal traffic was unaffected.
Inspection of the source code and the kernel core dumps suggested that a race condition was corrupting
an mbuf cluster - the kernel would panic when asked to free a cluster-type mbuf that was already
marked freed.

The second problem was that the NFS daemons hung shortly after NFS requests were made. The
daemons would go into an infinite busy wait and could not be killed. In this case, the daemons were
waiting for cluster mbufs to become free. This gave further credence to the theory of a race condition.

It was decided that it would be necessary to trace all mbuf activity. The symptoms were
characteristic of a race condition. Work was started to add tracing information to every section of code
that manipulates mbufs.

This was not to be a trivial task. The mbuf code is used all over the kernel, both as macros and
function calls. Kernel printf’s would be too slow because of the delay involved. (Mbuf manipulation is
often done at interrupt time. If something was printed, the network event would be likely to be missed
by the time the console I/O completed.) Analysing kernel core dumps would be little better - the
supposed race condition could involve the interaction of two or more processes and the potential
offender could have died or exec’ed long before the race was detected.

However, closer inspection of the DEUNA device driver showed that there was no race condition.
The solution was embarrassingly simple. The DEUNA driver was using the original 4.2 mbuf
manipulation macros. These did not know of (or therefore initialise) a new type identifier for cluster
type mbufs. So when it passed those mbufs into the IP and UDP protocol handlers, the cluster type
would be unspecified. When the protocol handlers came to free the mbuf, the extra type field would
have a random value that would then cause a panic. In the case of the NFS daemons, the cluster type is
used to call a function to wakeup the process(es) sleeping for the transfer to be complete and the mbuf
freed. This time the DEUNA driver would free the mbuf but would never call the function to wakeup
the daemons. The DEUNA driver was promptly changed to use the proper code for manipulating mbufs
and the problems were solved.

This DEUNA device driver left some scope for improvement, and its shortcomings soon became
painfully clear. These are described in the next section.

6. Operational Problems

As the VAX NFS service became operational, further problems with the DEUNA driver became
apparent. Occasionally, the VAX would stop transmitting ethernet packets. This was quickly traced to a
bug in the device driver. If the transmit queue of the DEUNA was full, the driver simply wouldn’t
initiate a packet transmission. Although the bug had been present for some time, it had gone unnoticed
prior to the installation of NFS. Clearly, NFS service was placing higher demands on ethernet
throughput.

Vol 9 No 4 54 AUUGN

Installing and Operating NFS on a 4.2 BSD VAX

Another problem was that the Sun-3’s would often complain about NFS timeouts - the VAX was
too slow at responding to requests from these clients. It was considered that there were too few NFS
kernel contexts. Sun recommended running four nfsd NFS server daemons. By trial and error, we found
that it was best for the VAX to run eight server daemons. This increased the number of NFS server
processes that could be scheduled, making more kernel contexts available for NFS service and so giving
higher NFS capacity. This change reduced the number of NFS timeout warnings dramatically.

For a while after these changes were made, the VAX kernel was plagued by a spell of
unreliability. It was common for the kernel to either crash or hang every two or three days. This was
particularly frustrating as it proved very difficult to get a crash dump for analysis. Either the VAX
generated a machine check as the dump was being taken or the dump would fail to be recovered by
savecore. The analysis of the few crash dumps that were recovered proved to be inconclusive -
elementary data structures such as the kernel stack were corrupt.

A further nuisance was the DEUNA driver regularly complaining about unavailable buffers. This
was happening because the DEUNA was trying to transfer packets into buffers in VAX memory faster
than the VAX was able to make buffers available. The original device driver only allocated space for
three buffers - two for incoming packets and one for outgoing packets.

After experimenting with various numbers of buffers, we settled on using thirty-two buffer
descriptors for incoming packets and sixteen for outgoing packets. This figure was a compromise
between the needs of the other UNIBUS DMA devices and the requirements of the DEUNA. UBA
map resources had to be left for the other DMA devices.

This eliminated the complaints about unavailable buffers from the DEUNA, but caused another
problem. Another device - a frame store interface - would only function if it could perform DMA in
the bottom 64 Kbytes of the UNIBUS address space. The DEUNA was occupying that space since it
was the first device to be allocated UNIBUS map resources and it was taking the first 72 Kbytes of the
UNIBUS address space. The DEUNA driver was changed to allocate the first 64 Kbytes of address
space and then take the space it needed for its own buffer descriptor entries. After that was completed,
the first 64 Kbytes of space would then be freed, making it available to the frame store. The code to do
this was ugly.

Curiously, the reliability of the kernel was improved by increasing the buffer space available to
the DEUNA. Hangs and crashes became much less frequent, though it is not clear how the change had
this effect.

7. User-Generated Problems

After all the upheaval and adjustments mentioned above, the VAX NFS service has settled down
and now works well for most of the time. "Normal" I/O from users on NFS clients does not have a
dramatic impact on the VAX, although it is noticeable. There are however some user actions that are
very damaging.

Processes which don’t use the usual block I/O mechanism can prevent severe problems. Any
recursive traverse of a remote filesystem puts extreme stress on the file server. In our environment, it
was, necessary to modify the find and du commands to prevent them wandering into remote filesystems
by default.

Further trouble arises when a fast NFS client does non-block FO to files on a slow NFS server.
Examples include linking executables with the suntools or suncore libraries, dumping core or demand
paging from an executable image on a remote filesystem. In the worst cases, both the client and server
grind to almost a complete standstill.

It soon became clear what caused the problem. The nfsstat program was reporting an excessive
number of retransmitted NFS requests. The Sun-3 client was transmitting the NFS message as eight or
nine packets, sent out back-to-back on the ethernet. The VAX could not always accept such a burst of
data because the DEUNA was sometimes forced to drop the packet because the interface did not have
the internal space to store it. The VAX would try to assemble the packets comprising the NFS

Vol 9 No 4
AUUGN 55

Installing and Operating NFS on a 4.2 BSD VAX

datagram, find there were fragments missing and eventually throw the NFS request away.

Meanwhile, the client would notice that its last request had not been replied to. It would then
retransmit the message, causing the cycle to repeat itself. To make matters worse, the bulk of this
processing gets done at interrupt time (particularly on the server), leaving little CPU free for other
processes.

The DEUNA could cope with burst traffic like this now and again. However, it could not cope
when there were several sustained bursts coming one after the other as a result of NFS requests caused
by processes that did not perform normal block I/O.

This condition arises out of the statelessness of the NFS protocol. There is no notion of flow
control between clients and servers. Since UDP datagrams are used to send NFS messages, it does not
matter to the transport protocol if the data even reaches its destination. The NFS protocol could be
extended to include client and server status information. That would make the NFS servers stateful, as
would using a reliable, flow-controlled transport protocol like TCP. As a work round solution, later
versions of NFS have parameters to the mount command to try to achieve a better match between the
performance of heterogeneous NFS clients and servers.

8. Timings

A series of benchmark timings are given in the tables below. The first set are for simple block
I/O using block sizes of 1, 4 and 8 Kbytes. The VAX and Sun-3 server filesystems used an 8 Kbyte
block and 1 Kbyte fragment size. The The Sun-2 filesystem used a 4 Kbyte block and 1 Kbyte fragment
size. For comparison, timings are also given for remote copies between each system. The results are
presented in tables 2(a), 2(b), 2(c) and table 3 below.

The second set of timings measure the effectiveness of directory lookups on a VAX NFS server.
Table 4 below contains the results.

All the systems were lightly loaded when the timings were done. They were up multi-user, but
had only one user logged in during the tests. Since the UNIX time command was used, the system
times given are approximate though the overall elapsed times were checked with a stopwatch and are
accurate. All times in the tables below are in seconds.

In normal operation, the VAX and Sun-3 are clients and servers of each other. To prevent
deadlocks when rebooting, the NFS filesystems are soft mounted. Both kernels wait forever for a hard
NFS mount to succeed.

The Sun-3 used release 3.0 and the Sun-2 release 2.0 of Sun UNIX. Of course, the VAX used 4.2
BSD. The hardware used was as follows:

cl-’u RAM Disk Drive Disk Controller Ethemet InterfaceVAX 11/750 4 Mbytes 2 × Fujitsu Eagle
Sun-3

SI 9900
4 Mbytes DEUNA

1 x Fujitsu Eagle Xylogics 450/440
Sun-2 2 Mbytes 1 x Fujitsu M2243 AS Sun-2 (Interlan?)

SCSI Sun-2 (Interlan?~
Table 1 - Hardware used for benchmarks

8.1. Block I/O

The tests were carried out using all systems as NFS clients and servers. In cases where the client
and server systems are the same, the timings are for I/O to the local disk on that system. The times
given are an average of 10 runs, reading or writing a 1 Mbyte file using 1, 4 and 8 Kbyte block sizes.
Between each run, a few minutes of normal disk activity was done to minimise the impact of any
buffer cacheing on the client and server systems.

Vol 9 No 4 56 AUUGN

Installing and Operating NFS on a 4.2 BSD VAX

#include <stdio.h>
#define BLOCK 1024
#define ONEMEG (1024"1024)
char buf[BLOCK1;
main()
{

register int a, b, c;

if (a -- creat("foo" ,1) < O) {
fprinOr(stderr, "Can’t create foo~n");
exit();

}
for (b -- O; b < ONEMEG/BLOCK; b++)

if (c = write(a,buf, BLOCK) .t_- BLOCK)
fprinif(stderr,"Write error: c --- %d~n", c);

close(a);

#include <stdio.h>
#define BLOCK 1024
#define. ONEME G (1024"1024)
char buf[BLOCK1;
main()

register int a, b, c;

if (a -- open("foo",O) < O) {
fprinq~(stderr, "Can’t open foo\n") ;
exit();

for (b -- O; b < ONEMEG/BLOCK; b+÷)
if (c = read(a,buf, BLOCK) .t_- BLOCK)

fprinif(stderr,"Read error: c = %&n", c);

close(a);

Figure 1 - 1 Kbyte read and write programs (the 4 and 8 Kbyte versions are similar)

The CPU times are an average of the time each process spent in the kernel during a run. User
time was negligible. The programs used for reading and writing are given in figure 1 below.

Table 3 gives comparative figures for remote copies using rcp. The file used was also 1 Mbyte in

size.

Vol 9 No 4
AUUGN 57

Installing and Operating NFS on a 4.2 BSD VAX

-~ CLIENTI/O OPERATION II VAX ~ ~Sun-3
CPU Elapsed II CPU E~--a-~a~sed

8 Kbyte read ~

.4 _K_.byte read II 1.8 3.3 1] ~15 ~i~_.1 Kbyteread _~ 4.1 4.0 II 0.9 714

.4 ,K_.byte write 11 4.0 4.8 II1 Kbyte write
~_ 10.7 11.0 ~ 1.3 2~i~

Table 2 (a) - VAX NFS Server

~ CLIENT
I/O OPERATION I~ ~-~--AX ~

CPU Elapsed ii CPU---~{apsed
8 Kbyte read - 2A 8.2 I 0.3

__1 Kbyte read ~_ 7.6 13.0 [[~:~

II 4.2 -0-A
II 3.9 II

1 Kbyte write ~ 9.7 43.4 ~ i:~

Sun-2
CPU_ Elapsed_

--
2.0 7.4
2.5 22.7
5.0 31.6

~ 21.9
2.5 22.5
5.4 31.6

Table 2 (b) - Sun-3 NFS Server

I/O OPERATION

8 Kbyte read
4 Kbyte read
1 Kbyte read

8 Kbyte write
4 Kbyte write
1 Kbyte write

~ CLIENT

C~,,U
Ela sed CPQ---E-i~a sed

~2..5 10.3 II 2.3

,2.5. 1!"2 II 2.~ 9.6

,4,.~6 45"1 II 3.3 39.6
16.9 56.6 /~ 11.3 45.9

Sun-2

2.4 5.6
1.8 5.5
4.0 6.9
3.1 6.3
3.2 6.0
6.0 7.8

Table 2 (c) - Sun-2 NFS Server

It can be seen from the above tables that the systems have a broadly comparable throughput for
serving NFS read requests at between approximately 100 and 150 K bytes per second. This figure is

~ approximately 10-15% of the maximum bandwidth of Ethemet and of the UNIBUS. Bearing in mind
the differences in raw CPU performance, this would suggest that the throughput on the ethemet
interfaces is the limiting factor here. This transfer rate compares quite well to the normal disk I/O
throughput which is roughly twice that of NFS. Obviously, the data has to be fetched from the server’s
disk before it can be passed over the network.

Sequential reads are a best case for NFS. Both the client and server will notice that the process is
reading the file sequentially. The client and server will both initiate read-ahead to give a double cache
effect. By the time the server has fetched a read-ahead block, there is a good chance it will shortly see

Vol 9 No 4
58

AUUGN

Installing and Operating NFS on a 4.2 BSD VAX

an NFS request for that block as the client will have started its own read-ahead for the same block.

The times for NFS write, requests are also somewhat similar. It takes approximately seven times
as long to write a remote file with NFS as it would to write the file locally. The throughput of NFS
writes is much lower than that for NFS reads because each write request is performed synchronously on
the server. [Again, this is a result of having stateless NFS servers. If NFS write requests were queued
for transfer in the normal way, it is reasonable to suppose that NFS write requests would be as fast as
the read requests.] The tables show a data transfer rate of between roughly 30 and 50 Kbytes per
second.

DESTINATION
SOURCE VAX Sun-3 Sun-2

User System ElapsedUser System Elapsed User System Elapsed

VAX 0.4 10.7 33.5 0.3 16.3 20.0 0.3 15.7 27.0
Sun-3 0.1 3.3 27.4 0.0 2.9 14.2 0.0 3.2 25.4
Sun-2 0.2 12.8 30.6 0.3 13.9 29.5 0.1 11.6 46.7

Table 3 - Timings for a remote copy of a 1 Mbyte file

The data transfer rate for remote copies in the above table is generally around 30 to 40 Kbytes
per second. This is comparable to the performance of NFS write requests, but is two or three times
slower than the transfer rate of NFS reads. The difference is probably because of the extra processing
needed for a TCP connection (as in an rcp) as opposed to the minimal overheads of an NFS UDP
"connection". It would be interesting to repeat this comparison using the new fast TCP/IP code in 4.3
BSD.

8.2. Directory Lookup

One of the filesystems exported by the VAX to the NFS clients is /usr/man. Table four below
gives the time taken to search the filesystem to find a given filename on both Sun-2 and Sun-3 NFS
clients and on the VAX. As this involves some recursive directory searching and the scanning of some
fairly large directories, it should give a reasonable idea of the effectiveness of directory lookups.

Host User System Elapsed
VAX 35.0 35.8 82.3
Sun-3 8.1 39.6 155.4
Sun-2 36.2 51.1 211.8

Table 4 - Time for a recursive ls of/usr/man

From the times above, it should be clear that although the directory cacheing may improve
performance, exhaustive lookups are fairly slow for remote filesystems using NFS. It was noticed that
while the clients were performing the lookup, the load average on the VAX server increased quite
dramatically because the kernel was doing a great deal of protocol handling and the NFS server
daemons were kept in a busy wait.

AUUGN 59 Vol 9 No 4

Installing and Operating NFS on a 4.2 BSD VAX

9. Conclusions

The installation of NFS was more straightforward than had been anticipated. Providing the
original kernel is largely unchanged from the 4.2 BSD release, NFS can be installed on a VAX in about
a week. Most of that time will be taken up by recompiling sources. The interaction of the ethernet
device driver with the mbuf code in the kernel should be carefully checked. This area is likely to give
problems when a "non-standard" device driver is used.

A system administrator who plans on installing NFS on a VAX should be prepared to experiment
to provide a more robust and/or faster service. Areas that are clearly worth exploring include the I/O
throughput of the ethernet interface and the numbers of NFS client and server processes. For
distributions based on Version 3.0 of SunOS or greater, it would also be worthwhile to try several
values for the mount parameters such as the NFS timeout and the block size of NFS reads and writes.

The installation of NFS has had no noticeable impact on the performance of the VAX or on user
programs. Most user programs are unchanged by the addition of NFS, though those which use the
Yellow Pages file lookup routines experience an increase of about 12 Kbytes in text size. This is
because of the extra code needed to parse the YP file formats and then make remote procedure calls
when needed.

It should be noted that NFS in the 2.0 release of SunOS is extremely trusting. The routines
blindly accept whatever data is presented with no real attempt to verify the identity of the client making
the request. The NFS and RPC routines will happily accept an NFS request from anywhere, provided
the request looks to be in the proper format. They will also assume that the user-id and group-id
information on any request was legally filled in by the client. In short, anyone with knowledge of the
protocols could easily compromise the server’s security.

This glaring security problem has eventually been fixed. Version 3 of SunOS has added a check
so that only NFS requests that are made from privileged ports are fully trusted. [It’s not much help, but
at least it was a start.] Another optional check would verify the IP address of clients making mount
requests. In Version 4 of SunOS, a much more secure authentication system is available. This uses a
combination of DES and public key encryption with time stamps to make it extremely difficult to
impersonate NFS clients or servers.

Perhaps the most important conclusion to be drawn is that NFS works best when the clients and
servers are equally matched in terms of performance, especially in ethernet I/O throughput. It appears
that some vendors cannot keep up with Sun’s ethernet interfaces - a VAX 11/750 with a DEUNA surely
can’t - which can readily take up most of the bandwidth of an ethernet cable. If the performance
mismatch between an NFS server and a client is wide enough, the consequences are unpleasant for both
the NFS client and the server.

10. Future developments

We have no plans to continue working on the VAX implementation of NFS. This is for several
reasons. Firstly, our VAX has a hard job trying to act as an NFS server and we no longer feel
comfortable using it in using it in that capacity. Secondly, the VAX 11/750 that has been used is
expected to be phased out of service shortly. There are also licensing problems that make it awkward
for us to obtain a merged source distribution of NFS and 4.3 BSD. Sun only distribute a VAX NFS
implementation based on 4.2 BSD, not 4.3 BSD. Even without the licensing difficulties, merging the
latest NFS release from Sun with 4.3 BSD is a non-trivial task that is of little benefit given the
imminent demise of the VAX. Furthermore, our VAX kernel also includes X.25 socket code from the
University of British Columbia. This would also be affected by any move to some combination of 4.3
BSD and a VAX NFS distribution.

Vol 9 No 4 60 AUUGN

Installing and Operating NFS on a 4.2 BSD VAX

11. Acknowledgements

I would like to thank my colleague Jon Malone for his comments and suggestions on the drafts of
this document. Allan Black deserves a mention for his help in debugging the kernel dumps. Special
thanks are due to Rusty Sandberg at Sun Microsystems for his encouragement and advice when things
were going wrong.

AUUGN 61 Vol 9 No 4

Networks :Social And
Legal Implications

James Watt
School Of Computing And

Information Technology
Griflfith University

ABSTRACT

This paper examines some of the the legal and societal issues
posed by the rapid increase in the use of computer networks,

Key Words ’ Virus,Electronic Hail,Anonymity,Legal And Social
Implications

INTRODUCTION

Computer networks have grown at a staggering rate in the
past few years, This development and spread of use has brought
Lo bear many benefits, Benefits such as enhanced
communication, the sharing of resources,increased information
flows and a gradual shrinkage in the Lime needed Lo make
contact globally,

More and more these services are being enjoyed by a wider
cross section of society,

Although technically we surpass our goals daily,the social
and legal implications of these advances are often
overlooked,or ignored altogether,

IL is our belief that we should, as a profession and as a

Vol 9 No 4 62 AUUGN

society, have a greater awareness of the potential pitfalls that
such advances in technology can bring. Only by doing this are we
able then to take the appropriate steps necessary for their
solution.

This paper discusses some of the legal and social issues
relating Lo the use of electronic mail, and Lo the spread of
viruses,both of which have important ramifications for network
systems.

ELECTRONIC MAIL

The advent of electronic mail has in many respects
revolutionized our means of communication.It is a fast,cheap
and dependable form of communication, quite different in many
respects from other more conventional written means of
interaction.

When we think of electronic mail,there are certain
psychological factors which come Lo mind.Kies]er,Siege] and

HcGuire1 Le]] of Lhe social anonymity of electronic mail.They
also describe sLudies which reveal LhaL users of electronic
mail are sometimes more aggressive and less inhibited in their
language and manner than they would be otherwise. I am sure
we have all seen on many occasions such examples of what is
quaintly termed "flaming".

Much of the flaming that does take place is clearly
defamatory,and of Len obscene. IL would seem LhaL many people
do not consider email a "legitimate" form of communication and
that common courtesies and conventions need not apply in this
medium.

Electronic mail enjoys widespread use in any network
1 Kiesler,Sara,Siegal Jane,HcGuiPe,TimoLhy W,(1984),Social Psychological

Aspects Of" CompuLer-Hediated CommunicaLion,AmePican PsychologisL,vol 59,no
10,pl 12:5-11:54

AUUGN 63 Vol 9 No 4

system,With the rapid "internationalization: oF networks almost
no part of the modern world will be inaccessible Lo the
electronic postman,

IL would seem appropriate then For some Form of standard
Lo be adopted,This may then be used Lo regulate out much of the
destructive traffic and allow For fiuller more constructive
communications,

The anonymity spoken of earlier also poses some legal
questions,It would seem not aL all diffliculL for a person to
assume the identity of another,

When one receives a message through electronic mail,how
often do you slop Lo wonder whether or noL the sender is who
they purport Lo be?

This is especially a problem when emailing internationally,
This has the potential when placed in devious hands to lead to
serious and potentially damaging situations,

Concern has also been voiced about the transferral of
information From one country to another,What if the
inf’ormaLion is illegal in some parts of Lhe world buL noL
others? And what too about the countries in between ? These
issues seem to remain unresolved even though quite extensive
discussion has taken place,As the tentacles of networks
grow,this type of problem can only worsen,

Perhaps part of the answer is Lo condition people Lo treat
electronic means of communication,in a manner similar Lo any
other Form of interaction,and promote some Formality into the
informality LhaL seems Lo exisL aL present,

THE VIRUS

The virus poses a great threat Lo every user of computing

Vol 9 No 4 64 AUUGN

technology.The possible erasure of valuable data and programs
is as much an economic nightmare as a technical one.It is also
non- discriminatory as Lo whom it attacks.The so called
Christmas Tree virus demonstrated that no one is immune, no
matter how large.

Most at risk are the large institutions, universities,
research institutes.These installations often contain hundreds
of micro-computers and many mainframes.A single infection
could spread its way through and effect every machine in a very
rapid time.

The cheapest and easiest way Lo transport the virus is
through billboards and networks.The network provides the ideal
vehicle Lo insure maximum exposure For the infection.

Within the computing community the virus is beginning to
cause concern akin to that shown within the general community
about aids,What we are beginning to see is a growing
mistrust,Fear, and a reluctance Lo accept software on Face
value,The question "where has this program been?", may
become the First we ask.

The public domain and shareware market has no doubt Felt
some of the ill winds, Pity, as this Form of software is popular
and was a valuable asset to many in the past.

IL may in the long term also alter the way people view
networks,This may have the effect of undoing many of the

benefits of network technology,as people do not avail
themselves of many of the services through Fear of
contamination,

The virus will no doubt cause some lowering in the public
esteem about computing, with the Feeling that computers are
insecure and that they should not be trusted with our
knowledge,

In the near Future viral infections may not only be set up and

Vol 9 No 4
AUUGN 65

run by West German teenagers for a prank,but also by
disgruntled employees,criminals and general sabateurs,

A legal issue to rise from all of this is liability.Exactly
who is liable for the destruction a virus may cause to valuable
information.Should it be the manufacturers of the hardware for
not allowing for this,or the programmers who designed the
operating system,or the software manufacturers,or the
operators of the networks iL passes through?As the virus
increases this issue will become more and more relevant.

Again here we see that the action of injecting a virus into a
computer system is probably perceived by most Lo be less
serious than sending harmful objects through the post,or
poising food tins in a supermarkeL.

REMEDIES

Obviously we deal here with very complex issues,with much
inf.erleaving off cause and effiecLs.However through the adoption
of" some basic concepts,we can aL least we can go part of" Lhe
way to their alleviation.

One such factor is that of’education.HacKenzie2 argues
that societal aspects should not be simply optional extras for
scientists and technologists.We would endorse this concept and
add to it by saying that only through better education and
understanding can these problems be properly assessed,and
without this no satisfactory solutions will ever eventuate.

To this end if. is highly desirable that societal concepts be
taught in the curricula of" computer science and allied fields.It
may be that we need become infiormaticists, instead of" purely
technologists.

2 blacKenzie Donald,(1986),Why The Social Aspecl:s or" Science And Technology,Is

Not Jusl: An Opl:ional Exl:ra,Compul:ers And Sociel:y,vol 15 no 4,p2 -6

Vol 9 No 4 66 AUUGN

It is also desirable that legal studies to some extent should
also be incorporated in the curricula,For a basic understanding
of legal principle is a necessity For delving into legal
questions,We would also argue For computer concepts to be
incorporated in some manner in law degrees,

Important also that we frame people’s opinions about the
use of technology,As mentioned earlier, many do not seem to
treat electronic mail in the same manner as they would other
forms of" communication.

In the past much of this has been left to the social
scientists Although not diminishing their part in this, we feel
that the technologists,the engineers and the scientists,are the
in the best position to tackle this problem.This conclusion is
based not only on the fact that they are at the rock face of the
technology,but also that they are the only ones that truly and
fully understand it.

THE ROLE OF LAW

The law is playing an ever increasing part in the computing
industry,However the practice of law,with it’s many
conventions and Fondness For legalise, is often aL odds with
Fast pace OF change of technology,

We can see Hoff’man3,that privacy laws can affect the
way systems are designed,We believe LhaL laws also can aFf’ecL
our altitudes Lo the design and use of network systems,

New laws or refinements of existing ones would help give a
clearer picture of the situation, and Lo change our p.ercepLions
of network use,However laws only become clearly defined if
they are applied in cases, and in the technology area there is a
dearth of case law,Also we must learn Lo see network
problems,and technology problems in general within a legal

:3 Hof’fman Lance J,(1977),Privacy Laws Affecting System Design,Computers And

SocieLy,vol 8 no 3,p3 -6

AUUGN 67 Vol 9 No 4

f,ramework,

Even so problems will invariably arise,

If, we examine the television industry we may be able Lo
see some parallels with computing,

Recently the ownership regulations were changed Lo allow
owners a larger share of, the viewing audience.This has meant
an increase in the size of, networks, and Lo claims LhaL Lhe
viewing public may be disadvantaged by this .What do we do
when our computer networks gel so large and the same claims
are levied?

A well known entrepreneur recently unveiled plans Lo
broadcast via satellite to Britain f’rom Europe,thereby puLLing
himself outside the jurisdiction of, the British Broadcasting
Authority and Freeing himself From all regulations.Regulations
f,or instance relating Lo such things as censorship and
obscenity.

So even in case where laws exist dif,f,icuiLies arise .We feel
that in some ways some of, the societal and legal dilemmas
which have faced television networks could in time aFf’ecL
computer ones.

Nonetheless we see the law as still playing a valuable role
and will continue Lo play LhaL role as networks become more
complex and f,ar reaching.

CONCLUSION

WhiisL iL is true that computer networks bring great
advances to many f,acets of" lif,e,they do by their design and
operation,give rise to many social and legal questions.

Hany of, these problems gel very]itL]e or no exposure or
discussion.

Vol 9 No 4 68 AUUGN

Better education and understanding can go some way Lo
alleviating the problems,

The law is invariably becoming more involved in
technology,and has a role to play in the management of‘ networks,

We believe LhaL through their deep understanding of" the
technology, scientists and engineers are better equipped Lo
attempt Lo deal with these problems,than are the social
scienLisLs,

Attempts must be made Lo address these q.uesLions aL an
early stage,lest we gel enveloped by a tangled web of" socio-]ega]
problems which undo the technical f"eaLs LhaL have so f"ar been
achieved,

REFERENCES

Armstrong Mark,(1982),.Broad ’ _ ’ . A_u_s_LEa]_~,BuLterworLhs

Criminal Code Act Qld,1899

Encel Prof Sol,(1985),lnrormation Technology And Communication,National

Information Technology Council

Englehart L.K,(1986),¢omuuters And CulturaLCJaang#_,CompuLers And Society vol

1 6,no I

Holoien Martin O,(1977),Computers And Their Societal Impact,Wiley And Sons

Kippax Susan,Murray J,P(1979),Small Screen,Big Busines:The Great Australian TV

_E.Qdb.j~#_Ey~Angus and Robertson

Pask Gordon,Curran Sussan,(1982), ’ - ’ ’ _ ’ _ ’

ComDuters.,.CenturyPublications

Committee On Computers And Public Policy,Peter G Neuman

AUUGN 69 Vol 9 No 4

Hoderalor

Seymour dim,Malzkin Jonothan,(1988),Viruses - It’s Time To Talk,Auslralian

Personal Compuler,vol 9,no 7 ,p 67 -78

Tanenbaum Andrew,(1981),~ter NeLworks,PrenLice Hall

Vol 9 No 4 70 AUUGN

Link Management and Link Protocol in SUN IV

P. R. Dick-Lauder
R. J. Kumrnerfeld

Sydney University

1. Introduction

This paper describes the design and implementation of link management procedures
and link level protocol in version 4 of the Sydney Uni Network software.

2. Link Management

Link management is performed in three areas:

¯ node description (commands file)

¯ connection control (config file)

¯ call script language

The commands file specifies information about the node such as its full address, type
hierarchy and mapping information. This file has been described by the authors in the
companion paper ’An overview of the Sydney University Network version IV’.

The configuration file specifies the links that connect the node to its neighbours and
the times that calls should be made on each link. A link description specifies the link
type and how a connection is to be made on the link. The detailed call establishment
procedure is described in a program written in a call script language designed for the
purpose.

3. Connection Control

Systems that are members of a SUN IV based network have one or more connections
to other systems. These connections may be activated continuously, at particular times,
when messages are available to be sent, or the connection may be only activated when
the remote system calls. The configuration file is used to specify the type of link and
how and when connection should be made.

The configuration file is read by the ’netinit’ process that runs continuously. Netinit
invokes call programs and daemons and creates new link directories when necessary.
The file contains an entry for each link from the system. The link may receive
incoming calls only, in which case netinit will create the necessary link directories
when the link first appears in the configuration file. The link may be a permanent
connection such as a leased line and netinit will start and restart a daemon on the line.
The link may be ’call on demand’ and netinit will invoke the call program when
messages are available to send. Finally, the link may be one for which calls should be
made at particular times, in which case a ’cron’ style time specification may be given
for activation of the calls.

Each entry in the configuration file consists of lines that begin with the name of the
program to invoke followed by flags that are passed to the program and attributes that
AUUGN 71 Vol 9 No 4

are interpreted by netinit. Here is an example:

VCcall -T3 host = cluster callscript
crontimes = "20 * * * *"
loginstr = netaccount
pwstr = netpasswd
phoneno = 6923524

>../cluster/call.out 2>&l

= hayesocs

The entry can be continued on subsequent fines by beginning the lines with
whitespace. Flags and attributes are passed to the program specified but some
attributes are also interpreted by netinit. In particular, the attribute "crontimes =
"string"" allows the specification of times to run the program in the same form as the
’ ’cron" program.

VCcall entries in the configuration file specify a connection program written in the
call script language. Attributes from the configuration file entry are made available to
the call script program as string variables. This is useful for giving the values for
variables such as telephone numbers and passwords.

4. Call Script Language

The call script language, CS, has facilties for opening and conditioning network
connections, carrying on a connection dialogue with a remote system, initiating virtual
circuit daemons and continuing a dialogue to close the connection.

CS is a very simple language with a small number of primitives. Wherever possible,
features were simplified or even removed in order to reduce the size of the language
while still retaining the desired functionality.

The only data structure is the simple variable and the only data types are string and
integer. The language has no declarations: variables are created when first mentioned.
When a variable is used a check is made to see if it has been given a value thus
helping to avoid the problems that arise when variables are not declared. ~

A CS program consists of a series of statements. There is an assignment statement,
several statements that interact with network connections (open, device, timeout, write,
and others), control flow statements (test, expect, match, next), statements to initiate
daemons (execdaemon, forkdaemon), tracing and error statements and a parameterless
procedure call statement.

The open and device statements take at least one argument that specifies the device
type. This is used to select a function that handles operations on this device type. Any
further arguments are passed to the function which then carries out the desired action.
Functions for simple try connections and a number of other device types are provided,
new device types can be added by recompiling a table and linking in the device
handling function.

The expect and match statements provide a simple pattern matching facility. The
expect statement reads characters from the network device and attempts to match them

Vol 9 No 4 72 AUUGN

against user supplied patterns, branching to a label elsewhere in the call script when a
match is found. The match statement is similar except the input string is taken from a
variable rather than input.

The execdaemon and forkdaemon statements either exec or fork a daemon program
that carries out the message transfer with another system. Execdaemon does not return.
Forkdaemon returns execution to the call script, making the return status available in a
variable. Forkdaemon is used when cleanup operations need to be carried out such as
hanging up a line.
The CS program is compiled into a simple code and interpreted by the VCcall
program. Programs that are called from within another program are compiled on the
first call.
To create a connection the VCcall program is invoked with arguments that indicate the
call program to use and any variables that are to be given values on startup. Such
variables~ might include a phone number, a login name and a password for a dialup
connection. VCcall then compiles the call program and begins to interprete it. The call
program would normally initialise variables, open the network device and condition it
and then begin a dialogue to create the connection. The dialogue may include
interacting with a modem to autodial the destination, logging in and detecting that the
remote VCdaemon has been started. The call progam would then start a VCdaemon
locally. After the connection has terminated, the call program may regain control and
interact with a modem (or other device) to clean up.

Here is a fragment of a call script:-

Vol 9 No 4
AUUGN 73

script to call a host via a Hayes compatible modem

The variables modemdev, linespeed, phoneno, loginstr and passwd
are imported from the config file.

set mcnt 3; /* 3 dial attempts */
set icnt 8; /* 8 login attempts */
timeout 60;
open "dial" modemdev;
speed linespeed;

start:
timeout 60;
trace "resetting modem";
sleep 2;
write "+++,,;
sleep 2;
write "ATZ\r";
sleep 4;
expect

"OK" dialing,
TIMEOUT nomodem;

nomodem:
fail "modem not responding";

dialing:
trace "dialing...’,;
test mcnt toomany;
timeout 90;
write "ATD" phoneno "\r";
expect

"BUSY" rstmodem,
"NO CARRIER" rstmodem,
"CONNECT" atlogin,
TIMEOUT rstmodem;

atlogin:

... at this point the login dialogue takes place
when the daemon is started the following is executed ...

success:
trace "connection successful";
forkdaemon Target; /* returns when daemon terminates */
sleep 4;
write "+++-;
sleep 4;
write "ATZ\r";
sleep 4;
write "ATS0=0\r";
return;

Vol 9 No 4 74 AUUGN

The CS language is a convenient way to specify complicated connection procedures
for SUN IV. Changes can be made and tested in seconds and the language and its
compiler/interpreter are powerful enough to handle almost any network connection.

5. Node to Node Protocol

The node to node message transport protocol has been redesigned and a new
implementation technique used. It is a full duplex protocol that multiplexes
transmission of several messages in each direction simultaneously. This allows higher
priority messages to overtake lower priority. Nine priority levels are specifiable by
message senders.

The new protocol has been designed for maximum throughput with minimum
transmission costs, and to avoid interference with link-level protocols such as X.25,
TCP/IP, or modems with internal buffering protocols. Another criterion was to allow
maximum throughput even when many small messages are being transmitted, a
condition that noticeably slows the SUN III protocol. Input and output have been
decoupled by using one process for each, and all incoming messages are handled by a
single permanently running routing process.

5.1 Message Protocol

The message protocol allows the reliable exchange of messages via virtual circuits that
may break during message transmission. The message transmitter is free at any time
to send a new message on an idle channel followed by up to eight kilobytes of data.
The message receiver acknowledges a new message and allows further data
transmission as soon as possible after receiving the start of a new message.

For messages being restarted after a break, the receiver indicates the start address by
determining the amount of data correctly received before the break. The transmitter
won’t pre-send any data for a message that is being restarted. On receiving the new
start address, the transmitter skips any intervening data, and commences data
transmission at the new address.

The effect of this approach is that the full bandwidth of a virtual circuit can be utilised
immediately on start-up. The delay that occurs between the end on one message being
transmitted, and a successful reception indication allowing the start of the next, can be
filled by transmitting a message on another channel.

Messages awaiting transmission are described by "queuefiles" linked into the
transmitter’s operating directory. These files are sorted by name before transmission,
and assigned to a channel based on the alphabetic range of the first character of the
name. Groups of messages may thus be constrained to travel via certain channels.

Incoming messages are each spooled in their own file, and a "queuefile" describing
each received message is passed to the routing process on successful reception, by
linking it into the router’s operating directory.

AUUGN 75 Vol 9 No 4

5.2 Packet Protocol

The packet protocol has been designed to exchange "messages" of up to four
gigabytes in size by allowing individually addressed data packets to be transmitted in
sequence. The protocol makes the assumption that the receiver is always ready to
receive more data, and that the virtual circuit supporting communications is mostly
reliable. Correct data is never acknowledged, but incorrect data is negatively
acknowledged asynchronously. "Incorrect" means either that the CRC for the packet
data was incorrect, or that a gap in the sequence was detected. The transmitter will
send all the data in the message as quickly as possible, responding to negative
acknowledgments by retransmitting the indicated data interspersed with normal data.

Synchronisation of the protocol occurs on message boundaries, the transmitter refusing
to start transmitting a new message until the previous one has been fully transmitted,
and the receiver refusing to acknowledge successful transmission until all outstanding
negative acknowledgements have been satisfied. Four separate message "channels"
allow message buffering, so that when one channel is synchronising, another channel
can be transmitting data.

Packets headers contain a 32 bit "address" and a 16 bit CRC, up to 1024 bytes of
data, and an optional 16 bit CRC for the data.

5.3 Implementation

The aim of the implementation is to de-couple the transmitter and receiver so that they
can take full advantage of UNIX’s synchronous I/O. They are implemented as
separate processes, with a single "pipe" connecting the receiver to the transmitter.
The only data that travel over the pipe are two message synchronisafion packets per
message, and any negative acknowledgements. This low data-rate allows UNIX
"signals" to be used by the receiver process to indicate when the pipe should be read
by the transmitter process.

6. Conclusion

Link management and the node to node protocol in SUN IV are major improvements
over the previous version. The SUN IV system offers extra flexibility and finer control
over links and a higher throughput node to node protocol.

Vol 9 No 4 76 AUUGN

The Development of Distributed Processing within the Queensland
Government

Peter Waller
Tony Ashburner

Centre for Information Technology and Communication
Queensland State Government

Tom Crawley
Rob Cook

Centre for Information Technology Research
University of Queensland

ABSTRACT

With the development of low cost, high performance mini-computers, there has
been a perceived desire by Queensland government departments to shift from central-
ised mainframe computing to in-house computing facilities. Investigations had led the
Centre for Information Technology and Communications (CTrEC) to set up a group to
facilitate this shift, and as well provide guidelines in terms of the direction to be taken
and support to those groups undertaking such steps. The desired approach was to stan-
dardise on UNIX~- based systems together with SQL based Relational Data Base
Management Systems. To assist groups in their preliminary studies and in the installa-
tion and day-to-day running, CffEC developed a ’cookbook’ outlining the suggested
procedures to be followed and also provided a set of administration utilities which
would enable system management by non technical specialists.
This paper describes the existing computing environment within the government, the
distributed computing strategy adopted, the place of UNIX within this strategy and the
role and development of the cookbook and utilities.

1. Introduction
The Centre for Information Technology and Communication (CffEC, formerly the State Government
Computer Centre) provides as one of its services, a bureau facility for most government departments.
Typical applications are commercially oriented and involve large data base systems. There is not a large
volume of technical work done at the centre, and departments requiring this type of work have tended to
procure their own hardware.

Approximately two years ago, internal investigations into the future directions of computing within the
government indicated that there would be a growing demand for distributed commercial processing in
which applications would be developed using relational databases, with less reliance upon a centralised
bureau and reduced dependence upon any manufacture’s hardware.

The remainder of the paper describes the distributed computing strategy adopted by the Queensland
government, the place of UNIX in the strategy and the key role of the cookbook and toolkit.

UNIX is a trademark of Bell Laboratories.

AUUGN 77 Vol 9 No 4

2. The Existing Queensland Government Computing Environment
The current Queensland government computing environment consists essentially of:

a centralised bureau located at CITEC housing large mainframes from Unisys, IBM and
Prime, which are available for use by government departments. Major applications are high
volume transaction processing on large databases developed using Cobol, Mapper and DB2.
A CAD facility based on Prime equipment is also supported.

a state-wide communications network based in CITEC permitting terminal access to the cen-
tral computer mainframes.

departmental computing systems which are often located at CITEC for facilities manage-
ment. These machines may be independently linked to the regional offices as well as linked
to CITEC machines. A number of these machines are UNIX based and are often used for
technical computing.

a large number of personal computing systems and workstations which exist in most depart-
ments and may be interlinked via local area networks. These are generally not connected to
the CtTEC network.

The availability of cheap, high performance systems means that more and more departments are acquir-
ing their own computing systems. The expectation is that a greater range of activities will be computer-
ised providing for more up to date information and improved decision making, enhancing the efficiency
and effectiveness of government.

The acquisition of computers by departments will cause changes in the relationship between departments
and CITEC. Online database applications running on CITEC machines are controlled by the CITEC DBA
group. This group imposes controls to ensure the integrity and security of the department’s data.
Departments acquiring their own machines will be required to carry out these functions.

It is unrealistic to expect departments using small computer systems to employ specialist computing
staff. On the other hand, if CITEC undertakes to provide a central support service without any real con-
trol over the type of equipment purchased by the departments, it will have a formidable task to provide
expertise in a wide variety of different computing environments to far-flung corners of the state.

The current network design, currently centered around computers located at CITEC, will need to be
expanded to reflect the decentralisation of computing resources.

3. A Preferred Distributed Operating Environment
CITEC has recommended a common operating environment to departments embarking on a course of
distributing computing, and that application development be done using 4GLs utilizing SQL based Rela-
tional Database Management Systems (RDBMS). This environment was seen to provide a number of
advantages:

¯ the solution is independent of the hardware used,
¯ CITEC would be able to provide systems support to all departments,
¯ departments would not need to provide their own system support,
¯ applications software developed in one department could easily be ported to another depart-

ment with a minimum of change,

staff could move between departments, and between head office and regional offices,
without having to be retrained on new computer systems,

¯ a single operating environment would make the establishment of a communications network
between different departments easier,

~ CITEC could set up preferred supplier (term) contracts for the supply of the hardware, reduc-
ing the need for each department to carry out their own tendering,

® CITEC could set up separate term contracts for the supply of the RDBMS, again reducing
the effort and cost to departments.

Vol 9 No 4 78 AUUGN

There are two candidate operating systems available today that fulfill the above requirements; UNIX and
Pick. UNIX was seen to have advantages because of its availability on a diverse range of hardware, the
moves towards standardisation, the extensive range of applications and application development environ-
ments and the availability of suitable RDBMS.

CITEC commissioned CiTR to produce reports on the management[l] and technical[2] issues involved in
basing .future development on UNIX. A a result of this study, CITEC set up a UNIX group to undertake
the following tasks:

¯ establish term contracts for the supply of RDBMS,
¯ establish term contracts for the supply of UNIX based computer systems,
o establish term contracts for the supply of UNIX related consultancy services,
® produce a cookbook in collaboration with CiTR which would provide guidelines for the

acquisition, installation and setting up of a UNIX system together with suggested procedures
for administering the system and simplify maintenance and incompatibilities between depart-
mental systems,

commission CiTR to develop a toolkit of UNIX utilities to enable the system administration
of a UNIX system to be carded out by non-technical staff.

The purpose was to facilitate the transition of departments to self-reliance with distributed processing
and minimise costs to departments of obtaining such systems.

It should be noted that the establishment of hardware and software items on a term contract does not
prevent a government department from purchasing other equipment. However that department will have
to call tenders for the supply of the required equipment and carry out their own evaluation of the
responses.

4. Departmental Serf Reliance

An important facet in CITEC’s distributed systems strategy is that government departments and their per-
sonnel should be as self-reliant in all aspects of the acquisition, commissioning, systems development
and day-to-day operation of their own computer systems. This should be achieved without the depart-
ments needing to hire more specialist staff and with a minimum of assistance from the support staff
within CITEC. The CITEC role should ideally be restricted to consultancy and assistance with any prob-
lems that would otherwise prove intractable.
This aim is being achieved through the recommendation of UNIX as a common operating environment in
the following ways:

® acquisition of systems, software and services by departments by way of term contracts as
described in the previous section,

® development and tdalling application software at CITEC’s central service, allowing depart-
ments to develop their applications in advance of the delivery of their system in an environ-
ment where skilled help is close at hand,

establishment of a systems administration environment allowing simple to use administration
tools that are standard across all systems on the term contract,

provision of a systems administrator’s cookbook that allows non-computer experts to install
and maintain a UNIX system,

® provision of support within CITEC of the services listed above and other support as
requested by departments.

5. Cookbook Overview

5.1. Objectives

The cookbook, titled The UNIX Administrators Cookbook, aims to provide instruction on the acquisition,
installation and commissioning of UNIX computing environments (both hardware and software), on the
staff that will be required to manage and operate the system and on the administration of an operational

AUUGN 79 Vol 9 No 4

UNIX system.
The target audience consists of two groups:

the management personnel who are contemplating or have been assigned the task of setting
up a UNIX system
the staff responsible for the day-to-day operation of the system.

It is possible that one or both groups may have a minimal computing experience or little exposure to
UNIX administration, and the cookbook aims to assist them without the requiring them to become como
puter experts.
The cookbook is for administrators, not users. A number of suitable texts for UNIX application develop-
ers already exist, and end-users require application specific manuals.

5.2. Philosophy
The rationale behind the cookbook was to provide a wealth of explanatory material to help administra-
tors understand what they are doing and what the outcomes will be. In addition it takes a management
viewpoint of the operation of computer systems, stressing forward planning at all points and the creation
of an operations schedule.
The majority of the cookbook has l:~,zn written to be as machine independent as possible. Where neces-
sary, reference is made to specific sections of manufactures’ manuals. Other specific information is
included as appendices which can be easily modified as required. The version of UNIX which is used in
the cookbook is System V.2, which is in accordance with the preferred variant of UNIX to be supported
within the government.
The cookbook was written in "friendly" (non-technical) writing style. It was hoped that this would
reduce the fears non-computer experts may have to UNIX system administration. Particular effort has
been made to keep the level of detail even throughout the cookbook. It avoids describing UNIX is depth,
but describes the processes that need to be undertaken and is intended to provide sufficient information
for administrators to feel confident that they understand what they are doing.
The major reference is

Fiedler,D and Hunter, B. (1986), UNIX System Administration, Hayden Books

which represents a good text for details of the procedures and programs that a system administrator
needs to use, and the cookbook references it extensively. However Fiedler and Hunter does not provide
a management perspective, nor does it explain the system administration goals and methods of achieving
them in a way that a person without a computer background can understand.

The cookbook gathers and collates information that can be found in a number of reference works and
has been learned through experience by most UNIX system administrators, presenting it in a form that
can be used directly. None of the information it contains is original, but we have not been able to locate
texts of a similar style of presentation and orientation towards administrators with limited computer
background.

5.3. Organisation and Contents

The table of contents for the cookbook is given in Appendix A. The remainder of this section describes
each part of the cookbook briefly and illustrates the way the cookbook is presented.

Section 1 deals with the steps needed to be carried out prior to the acquisition, of a computer system. In
particular, the approval procedures required for Queensland government departments are outlined,
together with a checklist of items to be considered in a requirements analysis. The section is completed
by a brief review of the hardware, software and other items which are available to departments and sta-
tutory authorities through States Store contracts.

Vol 9 No 4 80 AUUGN

This is the only section which is primarily intended for Queensland government departments.
Section 2 itemises and discusses the steps required to be taken to prepare for the installation of the
selected computer systems. The areas covered include:

the possible administrative structure with role definition and duties together with the training
required for these roles

the pre-installation planning required to ensure the installation and power-up can be carried
out with a minimum of problems,
the day-to-day running of the system.

Section 3 gives an overview of the UNIX operating system from an administrator’s point of view.

Section 4 outlines the steps to be carded out in the installation and commissioning of a UN/X system.
Section 5 deals with day-to-day management of a UNIX system. The section begins with a discussion of
the tasks that the system administrator is expected to perform, and the schedule that should be followed.
This section references a set of administrative tools developed in association with the cookbook. The
administrators toolkit is discussed in more detail later in this paper.
Appendix A contains CITEC’s recommended standards for maintaining a consistent set of user account
names, file structures, operating procedures and security. Consistency in these areas will become
increasing important as use of the communications network increases.

Appendix B outlines a proposed schedule for acquiring, installing and commissioning a new computer
system.

Appendix C describes the features of each of the computer systems which have been included on the
term contracts for UNIX systems. Included in the description is machine specific information.

Appendix D details the administration tools in the administrator’s toolkit.

5.4. Cookbook Development

Development of the cookbook was a joint effort between CITEC and consultants from CiTR. CITEC
have a considerable depth of experience in the operation of complex computing environments, but very
litde exposure to UNIX. CiTR was able to provide the benefit of 15 years of experience with UNIX at
the University of Queensland, tempered with the commercial experience of CiTR’s project management
expertise and experience in producing user-oriented documentation. The cookbook has been extensively
reviewed by potential users, both computer literate and non-literate, from government departments.

It has always been envisaged that the cookbook would undergo considerable revision and adaptation as
CITEC learns more about their distributed computing requirements; as feedback is obtained from depart-
ments using the cookbook; and as other organisations make use of the cookbook in their own environ-
ments.

Currently the first version of the cookbook is available to Queensland government departments. After
feedback has been collected from practical use, the cookbook will be revised and published more widely.

6. System Administration Tools

Proprietary operating systems such as DEC’s VMS and IBM’s MVS provide a range of standard
administration tools which are operating system specific but generally standard across machines running
that particular operating system. UNIX was developed in an environment where less emphasis was
placed on system administration functions compared to the programming environment.

When UNIX was taken into the commercial marketplace, this problem was recognised and addressed.
Unfortunately, each company marketing a UNIX based system offered a different solution to the same
problem. Therefore, although the same version of UNIX would be running on two machines from dif-
ferent manufacturers, the administration interface for each UNIX system could appear to be very dif-
ferent.
CITEC elected to develop a set of tools suited to the requirements for UNIX in the diversified commer-
cial environment of the Queensland government. The tools

AUUGN 81 Vol 9 No 4

provide a standard system administration environment across UNIX systems from different
manufacturers
ease the system administrator’s relationship with UNIX by providing more and better feed-
back than standard UNIX utilities and requiring simple responses to questions, rather than
the requiring the administrator to type the standard inscrutable UNIX commands,

additional error checking.

Developing the tools inhouse:
¯ provided a technology transfer from CiTR to CITEC,
¯ gave CgI’~.C access to the source code, ensuring that versions of the toolkit can be readily

made available on current and future hardware available on the term contracts.
C~I’EC system administrator tools were only developed where it was felt that the UNIX operations
required to perform a task were too complex or difficult to describe simply. Maximum use has been
made of standard UNIX utility programs, with almost all the tools being written as shell scripts calling
these standard utilities.

7. Networking
The current network is based around a local area network at CITEC that connects the larger computers
together and a wide area network of terminals that access these computers. Network design and strategy
has so far been limited to standardising on the method of terminal interconnection. Applications can
also use this access method to access data on other machines via virtual terminals.
As the computers are being distributed geographically more widely, the need for coordination of the
information used by computers is becoming increasingly important. Each item of information should
ideally be captured once, stored in the state-wide computing system, and made available to whoever has
the need and authority to use it. This requirement is driving a movement towards distributed information
systems in which applications running on one computer can access information stored on the other com-
puters as necessary. This in turn is forcing the development of more sophisticated communications pro-
tocols (such as the Applications Layer of the ISO OSI protocols) that allow computer-to-computer tran-
sactions to be carded by the same networks that today connect terminals to central computers.
Alternative networking strategies are currently being investigated. CITEC commissioned CiTR to pro-
duce a report on the issues of using, and the current state of, higher level protocols[3]. Subsequently,
CiTR undertook a joint study in conjunction with Unisys to review possible approaches for Open File
System services applicable to the CITEC environment[4]. Suitable electronic mailing standards are also
being investigated.

8. Future Developments of the Cookbook
The first version of the cookbook is currently being distributed to Queensland government departments.
It is premature to judge its success at this stage. Early reviews have been positive, and the level of
interest and demand from government departments is high.
The accompanying toolkit is in the final stage of testing by CITEC before distribution to departments.

Developments that are planned or considered include
~ extensions to include networking within UNIX systems in a standardised manner
¯ extension of the toolkit to include additional facilities eg. a tape management system
¯ the review and adoption of system administration tools provided by third-party software sup-

pliers

~ a rexvrite by a technical writer to provide a smooth finish to the text.
If the cookbook proves popular it will be worthwhile to consider marketing the text to a wider audience.
This will involve reconsideration of the OTEC specific parts for a general audience, and decoupling the
cookbook from its reliance on the UNIX Systems Administration book as a companion text.

Vol 9 No 4 82 AUUGN

9. Conclusion
The cookbook/toolkit approach is aimed at encouraging the introduction of UI’ZlX as a standard process-
ing environment for departmental systems. The selection of UNIX hardware on term contracts provides
for departmental processing at a much lower cost to the government than would be the case if each
department were left to do the task by itself.
The approach adopted by Queensland government to the implementation of distributed processing has
been followed with interest by computing departments in other state governments. Response within the
Queensland government has been positive.

10. Acknowledgments
CITEC and CiTR would like to thank the assistance of the Computer Science Department at the Univer-
sity of Queensland for sharing their UNIX expertise and knowledge.

11. References

[1] CiTR (1987), Management Issues in the Use of the UNIX Operating System, Project Report
[2] CiTR (1987), Technical Issues in the Use of the UNIX Operating System, Project Report
[3] CiTR (1987), Higher Level Communications Architectures- A Comparative Study, Project Report
[4] Unisys and CiTR (1987), Open System Services - A Feasibility Study, Project Report

AUUGN 83 Vol 9 No 4

Appendix A

Introduction

1. Selection of UNIX Systems
1.1 Introduction
1.2 Identification of Requirements
1.3 State Stores (Term) Contracts

2. Preparation for System Delivery
2.1 Introduction
2.2 Staffing
2.3 Training
2.4 Pre-Installation Planning
2.5 Site Preparation

3. System Management Fundamentals

4. Installing a UNIX System
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Installation Overview
When the System First Arrives
Configuring Disks
Adding New Devices
CYI’EC Administration Tools
Acceptance Testing
Creating User Accounts
Third Party Software

5. Managing
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Your UNIX System
Fundamentals of UNIX System Management
Tasks Which Should be Done Regularly
How to Start and Stop UNIX
Managing User Accounts
Managing the File System
System Breakdowns
Protecting the System
Managing System Services
How to Get the Most Out of UNIX
Software Development Tools

Bibliography

Appendix A.
A.I
A.2
A.3
A.4
A.5
A.6
A.7

Sample Systems Standards Documents
Installation Overview
Naming Standards
Security Standards
Operations Standards
User Registration
Printers
Sample User Registration Forms

Appendix B. Installation Timetable

Appendix C. Machine Specific Features

Appendix D. Description of Cfl’EC Utilities

Vol 9 No 4 84 AUUGN

Time Synchronisation on a Local Area Network.

Frank Crawford

Q.H. Tours, PO Box 630, North Sydney 2060
(frank@ teti.qhtours.oz)

and

Jagoda Crawford

Australian Nuclear Science and Technology Organisation, Private Mailbag 1, Menai 2234
(jc@atom.oz)

ABSTRACT

Given a number of machines on a Local Area Network (LAN), it is often desirable to keep
their times synchronised, for such purposes as consistent timestamps, synchronising
distributed processes or even just consistent responses to the system time command.

This paper gives details of an implementation developed at Q.H.Tours on an Ethernet based
LAN linking four Unix systems. It discusses the algorithms and their underlying theory,
together with results observed for this implementation. Some ancillary programs are also
outlined.

One other area that is addressed is that of fault tolerance, for example, during system
startup, when some hosts are unavailable or when the variation is excessive. The
approaches taken in this implementation and their limitations will be given.

1. INTRODUCTION

One of the simplest requests that can be made of a computer system is to display the current time.
When the system is part of a local area network (LAN) it is reasonable to expect that it would make no
difference on which machine such a request is made. Unfortunately this is not the case. The task of
keeping the time synchronised across a LAN is a non-trivial one, and facilities are not generally
available to implement these requirement.

Aside from the aesthetic value of getting the same response from all machines it is often necessary for a
number of operations across the network, for example, for consistent timestamps or to synchronise
remote procedures.

As an example consider a remotely mounted file system under uN~TM. If the user executes the stat
system call on a file in this filesystem should the time returned be correct for the machine it is
physically mounted on or the machine remotely mounted on.

To overcome this problem a number of different methods have been proposed, the most obvious of
which is to keep the times on each machine on the LAN synchronised. Other methods include
calculating the time differences between machines and adjusting any time related information
appropriately. In this paper an implementation of a time synchronisation method across all machines on
a LAN is described.

UNiX is a registered trademark of AT&T in the USA and other countries.

AUUGN 85 Vol 9 No 4

2. TIME SYNCHRONISATION

The simple statement that time should be synchronised across the LAN involves a number of design
decisions. These include:

¯ Is the time absolute or relative, i.e. is there an external standard that can be referred to, or is it
calculated only from the machines on the network.

o Selecting valid times as opposed to those that are faulty, e.g. the original time was set wrong.

¯ Excluding machines that become unavailable to the rest of the network e.g. crash.

° Selecting algorithms for calculating and adjusting times.

¯ Ensuring that time is monotonically increasing.

A number of methods have been studied on synchronisation of time across both local and wide area
networks. These include studies by Marzullo and Owicki [1983] and Mills [1985a]. Aside from these a
number of implementations for different systems exist, including Mills [1985b] and Gusella et al. [1986a,
1986b] for UNIX systems. These and other implementations are all based on different design decisions,
some of which are mentioned above.

3. THEORETICAL BACKGROUND

The basis of time synchronisation is the selection of a suitable algorithm to calculate a best estimate
from a sample of "mutually suspicious" clocks, i.e. no one clock can be guaranteed to be correct. This
is a common statistical problem and a number of alternative algorithms have been devised to calculate
the best estimate.

A basic assumption for the algorithms discussed in this paper is that the majority of good clocks display
errors clustered around a zero offset relative to a standard time, while the remaining bad clocks display
errors distributed randomly over the observing interval. The problem is to select the good clocks and to
estimate the correction to apply to each clock to set the best estimate of the time. The algorithms
described here use maximum-likelihood techniques.

It should be noted that the algorithms discussed can result in errors if the sample distribution departs far
from the a-priori assumptions. The theory behind the algorithms discussed here is given in Marzullo
and Owicki [1983].

3.1 Majority Subset Algorithm

An intuitively obvious algorithm that is suitable for a small number of clocks is that of the majority
subset. This procedure is as follows:

Given a set of readings:
S={xl,x2

Best time estimate = clock

where

I
for i=t nl

~-t+1 to n
for j=l to C~’

if var(Sid)< min(variance)

clock=Si,j, where Si,j is the jth subset of S of size i.

Vol 9 No 4 86 AUUGN

Unfortunately the number of calculations required is O(n !), where n is the number of hosts, and thus
this method becomes impractical for greater than about 10 hosts. For example when four machines

(n--4) are available on the network, the number of combinations to be considered is C~3+C~ and are
listed in Table 1.

TABLE 1. Majority Subsets for n--4

If it is known that some clocks are more accurate than others then a variation of this algorithm can be
obtained by introducing a weighting function to each reading.

3.2 Clustering Algorithms
When a large number of hosts are to be sampled the clustering method, shown below, is more suitable.
This relies on the fact that there is a majority of good clocks clustered around the correct time. For a
large number of samples this provides a good estimate and requires far less computation than the
majority subset algorithm.

Given a set of readings:
S={xl,x2,...x.}

Best time estimate = clock

where

for i=1 to n-1
S=S-x), for max(I~-xjl)

c/--Tb-~=xj, the remaining element in S

4. IMPLEMENTATION
A time synchronisation program, timed, selecting the most appropriate of the algorithms given above
(based on the number of hosts responding), has been implemented over the network at Q.H.Tours. This
network comprises four Pyramid systems running OSxTM connected via an EthernetTM LAN. OSx is
Pyramid’s version of uN~, which combine both AT&T’s System V.2 and 4.2 BSD, with some features
from 4.3 BSD. The networking package is one of these 4.3 BSD features.

~ OSx is a trademark of Pyramid Technology.
~ Ethernet is a trademark of Xerox Corporation.

Vol 9 No 487

4.1 Guidelines

During the design of this package a number of assumptions were made and guidelines were established.
Some include:

Assumptions:

¯ The minimum time adjustment is 1 sec, i.e. even though adjustments to milliseconds is possible,
this was ignored.

° The propagation time of information across the network is negligible.

Restrictions:

° Time must be monotonically non-decreasing (in reality it should be monotonically increasing but
this was not possible due to the minimum time adjustment of 1 sec).

¯ No machine can be guaranteed to be more accurate than any other.
¯ Maximum time adjust set to 1 sec per 10 second interval, except for setting the time when the

machine is first booted.
4.2 Details

The 4.3 BSD networking package includes a number of trivial services which are implemented within
the inet daemon, a process designed to wait on network calls and pass them to the appropriate program.
The trivial services implemented directly by inet include:

o time - the current time in seconds since midnight, 1st January, 19001 in a machine readable form.

° daytime - the current date and time in a human readable form, e.g. "Sun Jul 24 11:58:10 1988".

° chargen - character generator for diagnostics.

° echo - echo back everything sent to it.

° discard - throw away everything sent to it.

Of these, the most useful for time synchronisation is the time service. With this it is simple to query
each host on the network and then calculate the current best estimate of the time. In order to utilise this
service the user only needs to establish a connection with the remote machine. The current time is
immediately returned as a 4 byte quantity (a 32 bit integer in network order) and the connection is
immediately closed (by the remote hos0.

As this time is only accurate to within a second it satisfies the criterion that the propagation time is
negligible with respect to the actual time. To obtain a better estimate for the time on a remote host, the
average of a number of readings is taken.

The time estimates used in this implementation are the differences between the responding host’s time
and the requesting host’s time. It can be shown that the same results are obtained by using these
differences in the estimation algorithms. This overcomes the problem of having to make all requests at
the same time (which is impossible). It also gives a more convenient value for time adjustment.

This time estimate is used only to give the adjustment direction (advance, retard or no change). If any
change is necessary then the current system time is adjusted by one second (except on boot, as described
below). The synchronisation daemon then pauses for a period dependent on whether any adjustment
was necessary and then repeats the entire process.

1. This is different from b-NIX which is seconds from 1st January 1970.

Vol 9 No 4 88 AUUGN

The reason for the difference in this period is that if an adjustment is made then it is likely that further
adjustments are required so a very short period is set, whereas if no adjustment is made then a change is
unlikely in the short term2.

4.3 Fault Tolerance

As with any system that is affected by a number of separate parts, any of which can exhibit errors (and
further where the system is expected to correct these errors) it has been necessary to include a degree of
fault tolerance. The ultimate responsibility of any fault tolerant system fails on a human to correct
major inconsistencies. In this implementation an effort has been made to report such situations so that
they can be corrected, without being overwhelming.

Faults reported include all time adjustments that are greater than a preset limit (currently the delay to the
next check, if there was no adjustment), and refusing to do adjustments if the difference is more than a
day (most likely caused by an incorrect setting by the operator). It also "includes tracking which
machines are not responding and when they resume responding. An effort is made to handle time
adjustments when the machine is first booted, however without a source independent of the LAN it is
impossible to be sure that it is correct.

The problem with time correction at startup is that there is no prior knowledge of the other machines. It
is possible that only one machine is being rebooted, so the time on the others is still correct, or that all
machines are being rebooted (e.g. after a power failure) so none are correct. In an effort to minimise
errors the current implementation adjusts the time by the total adjustment value at boot if it is positive
but makes no adjustment if it is negative (i.e. time could only progress while the machine was down).

4.4 Other Programs

Although the time synchronisation daemon is self contained, there are two related programs that would
be useful. These are:

o A method to modify internal parameters of timed, e.g. the delay between time checks. Also it would
be useful to be able to request some internal statistics.

o A program to set the time simultaneously on all the machines on the network (i.e. a network version
of date yymmddhhmm.ss).

Both of these have not yet been implemented but it would be trivial to do so.

5. EXPERIENCES

Time synchronisation daemons have been running on all the machines at Q.H. Tours since mid-May and
have, in general, lived up to expectations. When first started they brought the times on all machines
into line within about 20 mins, and they have remained synchronised ever since. Even so there are
some areas that could be improved.

The fh’st of these is that there is some "jiggling" of the time adjustment. The design constraints were
that time would only be adjusted to within one second (due to the accuracy of the readings). In practice
there are a number of conflicting adjustments over a very short time. For example the synchronisation
daemon will first add 1 second, at the next time check subtract 1 second, and so on. This generally only
occurs for a short period, and is most likely caused by the various times differing by about half a
second, and measurement errors causing slight differences. In fact the current implementation takes the
mean of three readings and the differences can often be seen to vary from one third to two thirds of a
second.

2. It is assumed that the clocks are reasonably accurate.

AUUGN 89 Vol 9 No 4

A second problem occurs with cron, the daemon designed to start other programs at given times.- The
version supplied within OSx’s AT&T universe (and thus presumably with System V.2) appears to sleep
between jobs, then start the next job immediately on waking and before checking the current system
time. This is assumed because there have been occurrences of jobs being started twice, once early and
then at the correct time. This problem was seen prior to the implementation of timed, especially during
periods of low activity, e.g. the middle of the night.

A final point about this program is that it is probably only suited to an environment consisting of a
small number of machines. The effect of having each machine on the network requesting the time of
every other machine on the network would cause considerable network congestion on a large network.
However for a small network it is both simple and adequate. It should also be noted in this
implementation, that after synchronisation is achieved, time checks are only performed once every 20
mins...

6. CONCLUSION

The implementation of time synchronisation at Q.H. Tours turned out to be simple and resulted in a
reliable system. It has been running since May with no major problems and has solved the original
problems of synchronising all the host’s clocks to within 1 second.

Although there are some minor additions that can be made, especially in terms of ancillary programs, it
is now effectively complete and has been virtually relegated to the background and forgotten about like
most daemons.

7. REFERENCES

Marzullo, K. and Owicki, S. [1983] - "Maintaining the Time in a Distributed System", Operating
Systems Review, Vol. 19, no. 3, pp. 44-54.

Mills, D.L. [1985a] - "Algorithms for Synchronizing Network Clocks", DARPA Network Working Group
Report RFC-956.

Mills, D.L. [1985a] - "Experiments in Network Clock Synchronization", DARPA Network Working
Group Report RFC-957.

Gusella, R., Zatti, S. and Bloom, J.M. [1986a] - "The Berkeley Unix Time Synchronization Protocol",
Unix Programmer’s Manual 4.3 Berkeley Software Distribution, Vol 2c.

Gusella, R., Zatti, S., Bloom, J.M. and Smith K. [1986b] - "Time Installation and Operation Guide",
Unix Programmer’s Manual 4.3 Berkeley Software Distribution, Vol 2c.

Vol 9 No 4 90 AUUGN

On MICROLAN 2 - An Office Network

Richard Lai
ICL Australia Ltd (Melbourne)
ACSnet ’ lai@iclmlb.oz

Abstract

MICROLAN 2 provides a nea
ICL’s Distributed Resour
workstations together. DRS3
under DRS/NX, ICL’s port o
one trunk cable from a DRS30
other DRS300s are multi-drop

MICROLAN 2
network. The c
through the o
variuos points,
workstations a
moved to anothe
plugged into an

is commonly u
able can ta
ffice, for

connection
re fitted to
r location
other connect

t way of connecting several
ce System (DRS) 300s and
00 is a micro system running
f UNIX* System V.2. There is
0 and the workstations and

ped to this main cable.

sed to set up a small office
ke some convenient routes
example around the walls. At

boxes for processors and
the cable. Should machine be
later, it can be easilly
ion box.

This paper describes the implementation and design of
MICROLAN 2.

1. INTRODUCTION

Where more than
small network, a
MICROLAN 2 port on
that is fitted
proce
cable
works
lead
lowin
2 cab

two processors are to be connected into a
MICROLAN 2 cable can be used. There is a

the front of the DRS300 processor. The cable
to this port is normally used to connect the

ssor to a number of its workstations. At points on the
there are connection boxes to receive a lead from a

tation. However, these connection boxes will also take a
from the MICROLAN 2 port of another DRS 300 processor, al-

g up to four processors to communicate across the MICROLAN
le which may be up to a kilometre long.

A
in wh
the o
nection
cable.
and wor
be set
tions.

MICROLAN 2 cable is used to set up a sma
ich the cable itself takes some convenien
ffice, for examlple round the walls. At va

boxes for processors and workstations a
Since the potential length is 1000 metre
kstations that are plugged into the conn

quite far apart and yet have instant
There may be more boxes than processors

11 office network
t route through
rious points con-
re fitted to the
s, the processors
ection boxes can
aneous communica-
and workstations

*UNIX is a Trademark of AT&T.

AUUGN 91 Vol 9 No 4

which, when in need, can be
desired locations. By placing
building, computing resources
the changing requirements.

simply plugged in the boxes in the
connection boxes throughout a

can be redistributed according to

The protocol used is
protocol includes compreh
for transmission. The UNIX
to communicate with remote

h-level Data Link Control (HDLC). The
ensive error detection and recovery
commands cu and "uucp" can be used
systems connected via MICROLAN 2.

The sy
It is not
order for
running un
participat

stem is resilient
dependent on a pa

the network to f
der DRS/NX with
ing in the networ

against failures of DRS300 machines.
rticular DRS300 system present in
unction. It supports up to 4 DRS300s
up to 4 workstations on each DRS300
k.

2. USER PERSPECTIVE

Interfaces to other DRS300s connected
network are provided through special files.

/dev/netxdy

via a MICROLAN 2
It takes the form ¯

where x is the Small Computer System Interface (SCSI) address of
the DRS300 processor being talked to and y is a number between 0
and 7 that agrees for the two processes that are communicating.

The procedures to set up the network are ¯

a) All the DRS300s on the network are to run at the same speed.
This is configured by the ’hdlcspeed’ parameter in the defini-
tion file.

b) Each of the DRS300s has a unique node name and SCSI address.

c) Up
in th
to 53.
the ne

to four workstations attached to each DRS300 can take part
e network. They use special files in the range /dev/tty50
The MICROLAN 2 address of each workstation taking part in

twork is to be set accordingly.

If the workstation is accessed using /dev/ttyN, (where N is
50 to 53), the MICROLAN 2 address is as follows ¯

MICROLAN 2
Address = Processor SCSI address 4̄ + (N - 50)(decimal)

d) The system is rebooted.

e) The utility ’netbuild’ is run at each of the DRS300s
ate the required network special files and to edit the
ate files to complete the network setup.

to cre-
appropri-

Vol 9 No 4 92 AUUGN

3. INTERFACE

The RS485 interconnect medium is to connect videos and
processors to a DRS300. This is the mulitdrop version of RS422,
which defines particular signal characteristics for an electri-
cally balanced network. The specification for the DRS300
MICROLAN 2 network includes opto-isolation, which is not ad-
dressed in the RS485 standard.

MICROLAN 2 uses a multi-drop, half duplex, 2 wire cable.
The link is via the HDLC interface socket on the front of the
processor. It uses the MICROLAN 2 multi-drop line. There is one
trunk cable from the processor and the devices are connected by
spurs to the main cable.

MICROLAN
workstations
lin
pol
bur
lin
spe
sec
sec

2 workstation driver is responsible for driving
and DRS300s all multi-dropped from a single HDLC

e. It uses a simple round-robin algorithm. The devices are
led at approximately 20 times a second. On each poll cycle a
fer of data can be sent and received from each device. The
e speeds are fixed when the line is being driven. The line
ed is configurable from 153 Kbits per second to 307 Kbits per
ond. There tends to be a higher error rate at 307 Kbits per
ond.

Details of RS422 and RS485 are described in [21 and [3].

4. A NETWORK EXAMPLE

To illustrate the networking concept, an example giving the
physical connection is shown in figure i. Processors 1, 2, 3 and
4 having SCSI addresses I, 2, 3 and 4 respectively and eight
videos are networked together via MICROLAN 2. Processor
controls videos 1 and 4; processors 2, videos 6 and 7; processor
3, videos 2, 3 and 5; and processor 4, video 8.

Applying the rule of 2(c) and assigning /dev/ttyN in
ing order from 50, the addresses of the eight videos are ¯

Video MICROLAN 2
Address (decimal)

1 4
2 12
3 13
4 5
5 14
6 8
7 9
8 16

AUUGN 93 Vol 9 No 4

ACTUAL MICROLAN 2 WIRING

Processor 2 3 4

Control s. I ,4 16,7 i-2,3 & 5 8

5 6 7

figure I

CONCEPTUAL SYSTEM APPEARANCE

4

6 7

PrI_P_Eococessor 2

Processor ;I

Processor 3

figure 2

Vol 9 No 4 94 AUUGN

A conceptual system appearance, illustrating the relation-
ships of processors and videos and the interworking, is shown in
figure 2.

5. LINK LEVEL PROTOCOL

The protocol used is High Level Data Link Control (HDLC). It
provides serial bit by bit transmission over the MICROLAN 2
cable. It is a two-way alternate (half-duplex) multipoint
(multidropped) protocol. It provides error detection and re-
covery procedures.

On an HDLC
secondary device
responsibility f
issue commands. T
responses. The pr
ies using a sendi
poll flag to all
ted between the p
between secondari

link, there is a primary device and a number of
s. The primary is the DRS300 and has
or controlling the link. The primary devices
he secondaries receive commands and return
imary controls the use of the link by secondar-
ng address to select a secondary and sending a
ow the secondary to transmit. Data is transrait-
rimary and secondaries. Data is not transmitted
es.

A detailed description of HDLC is given in [1].

6. ROTATING MASTER SYSTEM

To cater f
arrive on the
rotating mast
special role i

or machines that crash, newly loaded machines that
network, starting up on an inactive network, etc,
er and resilience techniques are employed. No
s given to any particular machine.

Master is th
instant. Rotat
the polling loa
provide resilie
the rotating ma
regarded as f
becomes master
deal with tra
When it has fin
machine in th
master is calle
is given to a r

e machine responsible for polling at a particular
ing master system is a scheme to allow sharing of
d among different machines on a network and to
nee in the event that some machines go offline. In
ster system, the machines on the network are
orming a ring. Broadly speaking, each machine
in turn. During its turn as master, a machine may
ffic for its own videos and send network traffic.
ished its turn, it passes the master to the next
e notional ring. The message used to pass on the
d a ’relinquish’. Unlike other messages, no reply
elinquish.

Video traffic is to take precedence over network traffic. The
following rules are applied ¯

a) No network traffic may be sent if the timer used to control
the interval between video polls has expired;

AUUGN 95 Vol 9 No 4

b) A limit is imposed on the length of a single
network traffic, so that if the polling timer
network transfer is in progress, polling is
significantly.

transmission of
expires while

not held up

To ensure each machine with network traffic to send
opportunity to send it, a ’network reservation byte’ is
in the relinquish message used to pass the master on.

gets an
included

7. DEAD MACHINE

When a machine passes on the master, it gets confi
that the network is healthy when it becomes master aga
has no way of detecting that some intermediate machine
ring has crashed other than setting a timer. This t
called the ’watchdog timer’ and every machine keeps one
used to detect that nothing has been heard for a par
length of time. There are two values used to start this t
startup value, used to wait when a machine first comes
and initial value, used to wait after a machine has pas
the master.

rmation
in, but
on the
imer is

It is
titular
imer :
online,
sed on

It is started every time the
is switched off when the machine
its initial value if any other s
instance, network traffic may b
another machine when that machine

master is passed on. The timer
becomes master, and is reset to
ort of message is received. For
e sent to the machine from

is master.

If the timer expires, the ma
master. Other machines may do the
time. There is a strong probabil
will each assume the role of mast
other, since circulation of mas
mechanisms for dealing with netwo
masters are dealt with later.

chine should assume the role of
same at approximately the same

ity that all remaining machines
er within a short time of each
ter is comparatively quick. The
rk establishment and duplicate

The initial value of the watchdog timer is chosen to
enough so that, with reasonable loads on each machine
ring, the master completes its circulation within the
period. Conversely, it is short enough so that after any
tion caused by duplicate masters is resolved, keyboard
does not suffer unduly.

be long
in the
timeout
conten-

response

A machine is th
network traffic
until it gives an
done by sending
the dead machine a
master is passed
value. Only when
to

a
the now heal thy

ought to be dead if it fails to respond to
sent to it. It is not offered the master again
indication that it is alive again. This is
a message called ’network pair initialise’ to

t a low rate compared with that at which
on, but faster than the watchdog timer initial

response is received is the master passed on
machine.

Vol 9 No 4 96 AUUGN

8. NETWORK ESTABLISHMENT

When first switeched on, each machine supposes that it is
joining a ’live’ network, and would therefore expect to receive
the master or a network pair initialise. It therefore sets its
watchdog timer to its startup value and waits. If another
machine establishes contact with it, eventually passing it the
master, the new machine should find the first live machine that
it can pass the master to.

If the new machine’s timer expires, it must assume the role
of master. It may be that other machines switched on at the same
time are doing exactly the same thing. It is necessary to ensure
one and only one master will emerge and will do so in a
resonable time. A scheme has been devised to resolve this
contention.

Directed broadcast is a message with a secondary address
which includes within it a primary address and another secondary
address. Only the machine with that secondary address should
send a response to the primary address. When a machine assumes
the role of master, it sends out directed broadcast versions of
network initialises at fixed intervals. The intervals are dif-
ferent for each machine. The directed broadcast invites a
particular machine to respond. If it does, the machine assumes
that other machines heard the broadcast, implying that it is now
the one and only master. It therefore carries on as normal.

If a message other than the response to the directed
broadcast arrives during this interval, it knows that another
machine has assumed the role of master, and so it should give up
the role itself.

9. DUPLICATE MASTERS

Duplicate masters can arise exceptionally because
has taken place and been resloved, when a machine that
is master did not hear about the contention, or at
resolution. Collisions of messages occur as a
duplicate masters.

contention
thinks it

least its
result of

Any error th
collision. The
masters that th
sending a rel
machine thought
the relinquish
master, or wait
message, it wo
If it did not r
because of a g
transmitting it

at occurs unexpectedly is treated as a potential
action to be taken is to inform any duplicate

ey should give up being master. This is done by
inquish in directed broadcast form to the next

to be responding. If a duplicate master received
, because it was waiting before passing on the
ing for a response to a video or network device
uld cease to be master, thus solving the problem.
eceive the relinquish ~ it would either be
enuine error, or because it was in the process of
self. The most likely outcome in this case would

AUUGN 97 Vol 9 No 4

be that the relinquish collided with whatever the duplicate
master was transmitting, thus killing off the oringinal master,
again solving the problem.

If two relinquishes clash with each other, then both masters
they represent get killed off, and contention would be used to
get things started again.

10. CONCLUSIONS

MICROLAN 2 allows interworking among several DRS300 systems,
and allows all the workstations assoicated with these machines
to coexist on a single MICROLAN 2 network. The system is
resilient against failures of DRS300 machines. It is not depend-
ent on a particular DRS300 to be present in order for the
network to function.

The system has much enhancement potential in exploiting the
sharing of machines and videos on the same network, allowing for
example, dynamic reconfiguration of videos among the machines.
More sophisticated file transfer facility and remote session
access can be implemented besides ’cu’ and ’uucp’.

Re fe rence s

1. ISO 3309 Data Communication -
Procedures - Frame Structure,
Standardisation.

High Level Data Link Control
International Organisation for

2. RS - 422 Electrical Characteristics of Balanced Voltage
Digital Interface Circuits, Electronics Industries Assoication.

3. RS - 485 Electrical Characteristics of Generators and Receiv-
ers for Use in Balanced Digital Multipoint Systems, Electronics
Industries Assoication.

4. Ritchie, D.M. and Thompson, K., "The UNIX Time Sharing
System", Communication of the ACM, pp365-375, 1974.

5. System V Interface Definition, AT&T, 1985.

6. X/Open Portability Guide, X/Open, 1985.

7. Halsall, F., Data Communication, Computer Networks and OSI,
Addison-Wesley, 1988.

Vol 9 No 4 98 AUUGN

Programming on UNIX System X release Y

Stephen Frede

Softway Pty Ltd

1. intro

This paper is meant to provide a useful reference guide to anyone writing or porting programs for
versions BSD version 4 release 2 (BSD4.2), BSD version 4 release 3 (BSD4.3), AT&T System V
(SysV), AT&T System V release 2 (SysV.2) and AT&T System V release 3 (SysV.3). When porting
programs, the usual problem is to port BSD programs to SysV, rather than vice-versa.

Note that this is a guide only, and readers should refer to the appropriate manual entries for relevant
details. Also note that is is very incomplete and correspondence will certainly be entered into. Sections
marked TODO will be implemented in forthcoming releases of this paper.

2. Common changes

To many people, the most common porting problem they have to deal with is to get programs from
Usenet to run on their systems. In many cases, only a few changes need to be made. The most
common of these are listed here for convenience. Refer to the individual descriptions given later in the
paper for more details.

SysV BSD
strchr() index()
strrchr() rindex()
#include <string.h> #include <strings.h>
memcpy() bcopy()
srand48() srandom()
lrand48() random()
uname() gethostname()

3. System calls and library routines

All of the system calls and some of the non-compatible library routines are listed here in alphabetical
order, so that they can be found easily. Descriptive parameter names are provided for some but not all
of the routines as an aid to comparison more than anything else. Anything given as "pathname" is a
string which refers to a relative or absolute pathname in the filesystem. The argument fd is an integer
f’de descriptor.

accept() (BSD)
access(pathname, mode) (any)
BSD provides definitions in <sys/file.h> not provided in SysV.
#if BSD
include <sys/file.h>
#endif /* BSD */

See Sockets

#ifndef R OK
define R OK 4
define W OK 2
define X OK 1
define F OK 0
#endif /* R OK */

AUUGN Vol 9 No 4

acct(pathname) (any)
Use is compatible. However, there are minor differences in the structure stored in the accounting f’de.
SysV has two extra fields in the acct structure: comp_..~ ac_rw (no. block read/writes) and
char ac stat (exit status). Also the comp__t ac_io means no. disk I/O blocks under BSD and chars
transferre~ by read/write under SysV. Finally, the ac_comm field is 10 bytes long in BSD, and 8 bytes
in SysV.

adjtime(delta, olddelta) (BSD) See Time
This system call is used to adjust the system clock by temporarily speeding it up or slowing it down, so
that the clock always gives increasing values. No comparable functionality in SysV.

alarm(secs) (any)
This SysV system call is implemented as a library routine under BSD.

bind() (BSD) See Sockets
brk(address) (any)
chdir(pathname) (any) Compatible all versions
chmod(pathname, mode) (any) Compatible all versions
chown(pathname, owner, group)
Use is compatible. Under BSD, only the super-user may change the owner of a file, while under SysV,
anyone may "give away" files they already own.

chroot(pathname) (any)
close(fd) (any)
closedir(dirp) (BSD, SysV.3, PD)
connect() (BSD)
creat(pathname, mode) (any)
dup(fd) (any)
dup2(oldfd, newfd) (BSD)
The BSD system call:

newfd = dup2 (oldfd, wantedfd) ;
is equivalent to the following under either BSD or SysV
#include <fcntl. h>

Compatible all versions
Compatible all versions
See Directory
See Sockets
Compatible all versions
Compatible all versions

close (wantedfd) ;
newfd = fcntl(oldfd, F DUPFD, wantedfd);

environ (any)
execl() (any)
execle() (any)
execlp() (any)
exect(name, argv, envp) (BSD)
Used when tracing (with ptrace(2)) the executed process.

Compatible all versions
See exec
See exec
See exec

execv() (any) See exec
execve() (any) See exec
execvp() (any) See exec
exit(status) (any) Compatible all versions

_exit(status) (any) Compatible all versions
f...(fd, ...)
A number of system calls exist starting with the letter "f", which correspond in function to a system call
with the same name without the leading "f". The "f" system calls take a file descriptor as their first
parameter. The corresponding system calls take a pathname as first parameter. Of these, fstat() is
available on all versions, but fchmod(), fchown() and ftruncate() are BSD specific. To emulate these
under SysV, you will need to keep the pathname of the file available and use the corresponding "non-f"
system call.

Vol 9 No 4 100 AUUGN

fchmod(fd, mode) (BSD) See chmod()
fchown(fd, owner, group) (BSD) See chown()
fcntl(fd, cmd, arg) (any)
Use is compatible if the emd argument is F_DUPFD, F_G~.TFD, or F_SV.TFD. BSD has the extra cmd
arguments F_GV.TOraN and F_Sv.rOWN for dealing with job control, which is not applicable under SysV.
SysV has the extra cmd arguments F_GV.Tr.K, F_SV.~LK and F_SV.TLKW which deal with file locking (see
the section on File Locking).

The cmd arguments F_GETFL and F_SETFL are used in the same way under both systems, but the file
status flags being accessed are different. Under SysV, the status values O_RDONLY, O_..WRONLY, O__RDWR,
O__NDELAY and O_APPEND may be accessed. Under BSD, FAPPEND corresponds directly with O_APPEND
under SysV, and in fact uses O_APPEND as a flag for open() (so you can’t just #define it). The BSD
flag FASYNC is USed with job control - there is no equivalent functionality under SysV. The SysV.2
flag O_SYNC is used to ensure that data is physically updated on disk after every write(). Under BSD,
calling fsync() after every write() can be used to achieve the same effect.

The SysV O_NDELAY flag affects reads and writes on pipes and reads from tty devices: a read from an
empty pipe or a tty device with no information available, which would otherwise block, returns with 0.
The BSD FNDELAY flag affects reads and writes on sockets and tty devices: an operation which would
otherwise block returns an error and sets errno to EWOULDBLOCK.

flock(fd, operation) (BSD) See Locking
fork() (any) Compatible all versions
fstat(fd, statbufp) (any) See stat()
fstatfs(fd, buf, len, fstyp) (SysV.3) See statfs()
fsync(fd) (BSD)
The effect of a write() followed by an fsync() can be duplicated under SysV.2 by setting the
flag on the file descriptor prior to the write().

ftruncate(fd, length) (BSD) See truncate()
getdents(fd, buf, nbytes) (SysV.3) See Directory
This system call is designed to read directory entries in a filesystem independant format.
directory(3) routines should generally be used in preference to using this routine directly.

The

getdtablesize() (BSD)
This gives the maximum no. of open file descriptors available to a process. Under SysV, use NOFIr~
defined in <sys/pararn.h>. The information is only available at compile time under SysV.

getgid(), getegid(), getuid(), geteuid() (any) See Access permissions
The only difference in these functions between versions is the return value. Under SysV, they are int.
Under SysV.3, they are unsigned short. Under BSD, they are g±d_.~ and u±d__~, as defined in
<sys/types. h>.

getgroups(gidsetlen, gidset) (BSD) See Access permissions
Used to get group access list under BSD. Under SysV just use getegid() to get the single value group
id that is used for all access permission checks.

gethostid() (BSD)
Designed to get a unique number (as set by sethostid()) for networking purposes. Under SysV, read
this from a file.

gethostname(name, namelen) (BSD)
Designed to get the standard host name for this machine. Under SysV, this information is provided by
the uname() system call.
#if BSD
include <sys/param. h>

static char hostbuf[MAXHOSTNAMELEN + I];

AUUGN 101 Vol 9 No 4

hostname = gethostname(hostbuf, sizeof hostbuf) == -i ? 0
#else /* BSD */
include <sys/utsname.h>

: hostbuf;

°o.

static struct utsname names;
¯ ¯ ¯

hostname = uname(&names) == -i ? names.nodename : 0;
#endif /* BSD */
Under SysV the name of the system (as obtained by uname()) is configured into the kernel and cannot
be changed at mntime. An alternate approach to emu~fing gethostname () and sethostname () is
to read and wdte the name to and from a known file. This approach has the problem that other
programs using uname() will ob~Jn possibly different information. It is rare that a user program
would need to change the system name except at boot time.

getitimer(which, value) (BSD) See Time
getmsg() (SysV.3) See Streams
getpagesize() (BSD)
The value returned by this routine is the system page size. Under SysV this is often defined as NBPP
(number of bytes per page) in either <sys/param.h> or <sy.~/immu.h>, but is rarely required. On
BSD it is the granularity of memory allocated by sbrk().

getpeername() (BSD) See Sockets
getpgrp() (any)
Under BSD, this system calls takes a pid parameter and returns the process group id of the nominated
process group. This capability is not available under SysV - the function call does not take any
parameters and returns the process group of the current process.

getpid() (any) Compatible all versions
getppid() (any) Compatible all versions
getpriority(which, who) (BSD)
Used to get the scheduling priority for a process, process group, or user. SysV can only provide
information about the current process.
#if BSD
include <sys/resource.h>

errno = 0;
prio = getpriority(PRIO_PROCESS, 0);

#else /* BSD */
errno = 0;
prio = nice(0) ;

#endif /* BSD */

getrlimit() (BSD)
Used to determine what current limits exist on resource usage for the resources process cpu time,
maximum file size able to be created, maximum process data area size, maximum process stack size,
maximum size core file to be created, maximum resident set size (ie amount of physical memory being
used). Similarly setrlimit() is used to set these values. Under BSD both a hard and soft limit may be
specified for consumption of these resources. The process may be notified (eg via a signal) when a soft
limit is reached, and will be denied the resource when a hard limit is reached.

The only equivalent functionality in SysV is provided by the ulimit() system call, which allows a
process to examine and set the file size limit, and to get the maximum possible data area size. There is
no soft limit capability.

Vol 9 No 4 102 AUUGN

#if
#
#

#else

long currfilemax, newfilemax, currdatamax;
BSD

include <sys/time.h>
include <sys/resource.h>

struct rlimit rl;

getrlimit(RLIMIT FSIZE, &rl);
currfilemax = (long) rl.rlim max;

rl.rlim max = (int) newfilemax;
setrlimit(RLIMIT_FSIZE, &rl);

getrlimit(RLIMIT_DATA, &rl);
currdatamax = (long) rl.rlim max;
/* BSD */
long ulimit();

currfilemax = ulimit(l, 0L)

ulimit(2, (newfilemax + 511)

currdatamax = ulimit(3);
#endif /* BSD */

getru~ge() (BSD)

512 ;

/ 512) ;

The system call allows a process to enquire about the utilisation of various resources by itself or its
children. There is no equivalent functionality available direcdy through the system call interface under
SysV. If such information is required, system accounting may be able to provide it. A process may
directly examine the process accounting file, or use the output of the commands sar(1), sar(1M),
timex(I), acctcom(1). Probably the most useful approach is to use timex(l) to run the command in
question and use the resulting output information.

getsockname() (BSD)
getsockopt() (BSD)
gettimeofday(tp, tzp) (BSD)
index(str, ch) (BSD)
Equivalent under SysV to strchr(str, ch).

See Sockets
See Sockets
See Time

ioctl(fd, request, argp) (any) See Tty
The actual use of this command is compatible amongst all versions, though the possible values of the
parameters vary widely. This system call is used to perform device specific actions on various devices.
The only device where a modicum of standardisation exists is the tty interface.

kill(pid, sig) (any) Compatible all versions
killpg(pgrp, sig) (BSD)
This system call can be replaced with the kill() system call under any version.
#if BSD ONLY

status = killpg(pgrp, sig) ;
#else

status = kill(-pgrp, sig) ;
#endif

link() (any) Compatible all versions
listen() (BSD) See Sockets

AUUGN 103 Vol 9 No 4

Is~k(~, offset, whence) (any)
BSD defines tokensfor the w~e ~gumentof thiscall.
#ifdef BSD
include <sys/file.h>
#endif /* BSD */

Compatible all versions

#ifndef L SET
define L SET 0
define L INCR 1--

define L XTND 2
#endif L SET

ls.tat(pathname, statbufp) (BSD) See Symbolic links, stat()
Like slat(), but provides information about symbolic links, instead of the file referred to by the link.
No equivalent in SysV.

mkdir(pathname, mode) (BSD, SysV.3)
This system call was introduced into SysV with release 3. For a non-privileged process, the only
alternative is to execute the setuid root mkdir(1) command. A privileged process could duplicate the
code in mkdir(1) to create the directory with mknod(2), but this is not recommended.
#if SysV && SysVver < 3
#include <fcntl.h>
mkdir(path, mode)
char *path;
int mode;
{

int pid,
wstat;

switch(pid = fork())

case -i:
return -I;

case 0: /* child */
close(2);
fd = open("/dev/null", O_WRONLY);
if (fd != 2)

fcntl(fd, F_DUPFD, 2);
execl("/bin/mkdir", "mkdir", path, 0);

exit (i) ;
}
/* parent */
while ((s = wait(&wstat))

;
if (s != pid)

return -i;
if (wstat != 0)

return -I;
umask(mask = umask(0));
mode &= ~mask;
return chmod(path, mode);

}
#endif

!= pid && s != -I)

Vol 9 No 4 104 AUUGN

mknod() (any) Compatible all versions

mount() (any)
BSD is compatible with SysV up to release 2. SysV.3 is incompatible. The following code handles the
simplest case, where the file system being mounted is the same type as the root filesystem.

char *special, *pathname ;
int rwflag;

#ifndef SYSV3
mount (special, pathname, rwflag) ;

#else /* SYSV3 */
mount(special, pathname, rwflag == 0 ? 0 : I, 0) ;

#endif /* SYSV3 */
See Message Queues
See Message Queues
See Message Queues
See Message Queues

msgctl() (SysV)
msgget() (SysV)
msgrcv() (SysV)
msgsnd() (SysV)
nice()
The SysV system call is compatible with the BSD library routine, except that no value is returned by the
BSD version.

open(pathname, flags, mode) (any)
For SysV, flag values are defined in <fcntl .h>; for BSD they are defined in <sys/file.h>. See
fcntl() for details on the flag values.

opendir(f’dename) (BSD, SysV.3, PD) See Directory

pause() (anY) Compatible all versions

pipe() (any) Compatible all versions

plock(op) (SysV)
This system call allows a process to lock (or unlock) its text and data segments in memory. This means
that they are immune to all normal swapping. There is no functional equivalent under BSD.

poll() (SysV.3) See Streams
profil(buff, bufsiz, offset, scale) (any)
These are compatible except for the interpretation of the scale argument. A 1:1 mapping of pc to words
in buff is specified by a scale of 0xl0000 under BSD and 0xFFFF under SysV.

ptrace() (any)
Similar but ~fferences.
#if ,BSD
include <sys/signaloh>
include <sys/ptraceoh>
#endif /* BSD */

#ifndef /* PT_TRACE_ME */
define PT_TRACE_ME 0

define PT_READ_I 1
define PT_READ_D 2
define PT_READ_U 3
define PT_WRITE_I 4

define PT_WRITE_D 5

define PT_WRITE_U 6

define PT_CONTINUE 7
define PT_KILL
define PT_STEP
#endif /* PT_TRACE_ME */

8
9

Vol 9 No 4
AUUGN 105

putmsg() (SysV.3) See Streamsquota() (BSD)
The quota() and setquota() system calls are used to implement per-user disk quotas on BSD systems.
There is no equivalent functionality available under SysVo

read() (any) Compatible all versions
readlink() (BSD) See Symbolic links
readdir(dirp) (BSD, SysV.3, PD) See Directory
readv(fd, iov, ~ovcnt) (BSD)
struct iovec /* defined on BSD in <sys/uiooh> */
{

char *iov base;
int iov_len;

};

readv(fd, iov, iovcnt)
int fd;
struct iovec *iov;
int iovcnt;
{

struct iovec
int

char

*iovt;
n,

nread;
*buf,
*bp,
*malloc();

n = O;
/* count up no. bytes to read */
for (i = O, iovt = iov; i < iovcnt; i++, iovt++)

n += iovt->iov_len;
if (! (buf = malloc((unsigned) n)))

return -i ;
if ((nread = read(fd, buf, n)) == -I)
{

free (buf) ;
return -i ;

}
n = nread;
bp = buf;
for (i = O, iovt = iov; i < iovcnt && n; i++, iovt++)
{

int nx;
nx = iovt->iov len;
if (nx > n)

nx = n;

memcpy(iovt->iov_base, bp, nx);
bp += nx;
n -= nx;

}
free (bp) ;
return nread;

Vol 9 No 4 106 AUUGN

reboot() (BSD)
This system call is used to shutdown and possibly reboot the system. It may be sensibly invoked in two
possible ways, and these can be emulated under SysV.3 versions.
#if BSD
include <sys/reboot .h>

o o °

reboot
reboot

#else / * BSD
include

o o ¯

uadmin
uadmin

#endif /* BSD */

(RB_HALT) ; /* halt; no reboot */
(RB AUTOBOOT); /* halt; then reboot multiuser */
*/
<sys/uadmin.h>

(A_SHUTDOWN, AD_HALT, 0);
(A_SHUTDOWN, AD_BOOT, 0) ;

/~ immediate halt; no reboot */
/* immediate halt; reboot multiuser */

The 2nd parameter of uadmin() could also be A REBOOT, indicating that the system shutdown is
immediate, rather than after killing all user processes-? flushing the buffer cache and unmounting the root
filesystem. Also note that the 3rd parameter of uadmin() has a machine dependant function.

reev() (BSD) See Sockets

reevfrom() (BSD) See Sockets

reevmsg() (BSD) See Sockets

rename() (BSD)
rewinddir(dirp) (BSD, SysV.3, PD) See Directory

rindex(str, ch) (BSD)
Equivalent under SysV to strrchr(str, ch).

rmdir(pathname) (BSD, SysV.3) See mkdir()

sbrk(incr) (any)
seekdir(dirp, loc) (BSD, SysV.3, PD) See DirecWry

See Socketsselect() (BSD) See Semaphores
semctl() (SysV)

See Semaphoressemget() (SysV)
See Semaphoressemop() (SysV)
See Socketssend() (BSD)
See Socketssendto() (BSD)
See Socketssendmsg() (BSD)

seteuid(euid), setegid(egid) (BSD) See setreuid(), setregid()
These are library routines on BSD which call the setreuid() and setregid() system calls.

setgroups(ngroups, gidset) (BSD) See getgroups(), Access permissions

Under SysV, use setgid().

sethostid() (BSD) See gethostid()

sethostname() (BSD) See gethostname()

setitimer() (BSD) See getitimer(), Time

setpgrp() (BSD, SysV) See getpgrp()

The SysV call
status = setpgrp() ;

is equiv~ent to the BSD code
status = getpid() ;
if (setpgrp(0, status) ==-i)

status = -i;
Under BSD, this call can be used to alter the process group of another process. There is no SysV
mechanism to do this.

AUUGN 107 Vol 9 No 4

setpriority() (BSD) See getpriority()Used to set the scheduling priority for a process, process group, or user. SysV can only set the priority
of the current process.
#if BSD
include <sys/resourceoh>

int pri;

#else

#endif

o , o

setpriority (PRIO_PROCES S,
/* BSD */
int pri, incr;
incr = pri - nice(O) ;
errno = O;
nice (incr) ;
/* BSD */

O, pri) ;

/* calculate increment required */

setquota() (BSD) See quota()setregid(rg~d, egid), setreuid(ruid, euid) (BSD) See Access permissionsThese system calls are used to change the real and effective uid and gid of the current process. If a
parameter is given as -1, the current value is used (ie no change is requested). Under SysV, there is no
capability for a non super user process to change its real uid or gid, and no capability for a super user
process to change its real uid or gid independant of the effective uid or gid.

See setreuid(), setregid()

See getrlimit()
See getsockopt(), Sockets
See gettimeofday(), Time
See Access permissions
See Shared Memory

See Shared Memory

See Shared Memory

setrgid(rgid), setruid(ruid) (BSD)
These BSD library routines use the setreuid() and setregid() system calls.

setrlimit(resource, rip) (BSD)
setsockopt() (BSD)
settimeofday(tp, tzp) (BSD)
setuid(uid), setgid(gid) (any)
shmat(shmid, shmaddr, shmflg) (SysV)
Attach an already existing shared memory segment to the current process.

shmctl(shmid, cmd, bur) (SysV)
Perform various operations on a shared memory segment.

shmdt(shmaddr) (SysV)
Detach a shared memory segment from the current process.

shmget(key, size, shmflag) (SysV)
Create a shared memory segment. See Shared Memory

sigblock(mask) (BSD) See Signalssigmask(signum) (BSD) See SignalsThis is a macro defined in <signal.h> on BSD systems which is used to construct a signal mask from a
signal number.

sigpause(sigmask) (BSD) See SignalsTODO

sigreturn(scp) (BSD4.3) See SignalsTODO

sigset(mask) (SysV.3) See Signalssigsetmask(mask) (BSD) See SignalsTODO

sigstack(ss, oss) (BSD) See SignalsTODO

Vol 9 No 4 108 AUUGN

sigvec(sig, vec, ovec) (BSD) See Signals

socket() (BSD) See Sockets

socketpair() (BSD) See Sockets

stat(pathname, statbufp) (any)
Used in the same manner on any version, but the stat structure varies between SysV and BSD. Fields in
common are listed below. The types are defined in <sys/t:ypes .h> and the actual names may vary
from those given here (eg ushort: in SysV is u short: in BSD).

dev t st dev; /* dev on which inode resides */

ino t st ino;
ushort st mode;
dev t st rdev;
short st nlink;
ushort st uid;
ushort st_gid;
off t st size;
time t st atime;
time t st mtime;
time t st ctime;

Additionally, BSD provides the fields:
long st_blksize;
long st_blocks;

/* inode number */
/* file mode */
/* dev of this inode (if applicable) */
/* no. links */

/* uid of file owner (short on BSD)
/* gid of file group (short on BSD)

/* file size in bytes */
/* time of last access */
/* time of last data modification */
/* time of last inode modification */

/* optimal blocksize for i/o */
/* no. blocks actually allocated

,/
,/

statfs(pathname, bur, len, fstyp) (SysV.3)
This system call is used to retrieve generic information about a filesystem. It replaces the ustat()
system call used before SysV.3 (though SysV.3 also supports ustat()). Its introduction is because of the
Fdesystem switch introduced with SysV.3 - reading the filesystem superblock directly is no longer a
practicable alternative for the many different possible filesystem types. To obtain information about a
filesystem under BSD, or more information than is provided by ustat() under SysV, a process has to
open the filesystem directly and read the superblock.

stime(timep) (SysV) See Time
This system call is used to set the system’s idea of time of day. Under BSD, settimeofday() can be
used instead.

strchr(str, ch) (SysV)
This system call is equivalent on BSD to index(str, ch).

strrchr(str, ch) (SysV)
This system call is equivalent on BSD to rindex(str, ch).

swapon() (BSD)
Used under BSD to add a swap device for interleaved paging/swapping. No equivalent functionality
under generic SysV. However, some implementations of SysV provide an implementation specific
means of doing this. For example on the 3b series running SysV.2.1 and up, the sys3b() system call
with cmd parameter S3BSWPI can be used to add or delete swapping areas.

See Symbolic linkssymlink() (BSD)
Used to create a symbolic link to a file. No equivalent in SysV.

sync() (any) Compatible all versions
sys3b(cmd, argl, arg2, arg3) (SysV)
This system call is machine dependant. Other implementations of SysV (and indeed BSD) may provide
similar machine specific system calls to handle tasks not otherwise provided by the release. Typical
uses of this sort of system call are to operate lights on the machine, provide access to internal system
tables, access or change kernel configuration parameters, access or change boot information, access or
change swap areas, access or change information stored in non-volatile RAM, etc.

AUUGN 109 Vol 9 No 4

syseall()
Indirect system call. This is very system dependant, and is not intended to be used by C programs.

sysfs() (SysV.3)
This system call is used to determine the type of a filesystem.

telldir(dirp) (BSD, SysV.3, PD) See Directory
thne() (any) See Time
times() (SysV) See Time
truncate(path, length) (BSD)
The system calls truncate() and ftruncate() are used to reduce a file to a particular length. Under
SysV, trucation of a file is only possible to 0 length.

uadmin() (SysV)
ulimit() (SysV)
umask(mask) (any)
umount(path) (any)
unlink() (any)
ustat() (SysV)
utime(pathname, times)
utimes(pathname, tvp)

(SysV)
(BSD)

See reboot()
See getrlimit()
Compatible all versions
Compatible all versions
Compatible all versions
See staO%()
See utimes()

Under SysV, one only needs write permission on a file to change the times. On BSD, only the owner
(or super-user) may do this. In both cases, the inode change time is set to the current time, and in
neither case can the inode change time be set to any arbitrary value.
long atime, mtime; /* new access and modification times in seconds */
#if BSD
include <sys/time .h>

struct timeval tvp[2];

#else

¯ ¯ ¯

tvp[0] .tv sec = atime;
tvp[l] .tv sec = mtime
utimes(file, tvp) ;
/* BSD */
struct utimbuf tbuf;

#endif

tbuf.actime = atime;
tbuf.modtime = mtime;
utime(file, &tbuf) ;
/* BSD */

vfork() (BSD)
This system call is provided for efficiency only where the child process intends to immediately exit or
call exec(), and can be replaced in SysV with fark(). If you are writing portable code and intend to
use vfork() if the code is running on a BSD system, you should read the manual entry carefully before
doing so.

vhangup() (BSD)
This system call causes a number of actions to take place, basically disassociating the current process’s
control terminal from any other references. TODO

wait(statusp) (any)
Although the def’mition of the parameter under BSD is a pointer to a union wait, rather than to an int
under SysV, the usage and meaning is generally compatible.

wait3(status, options, rusage) (BSD)
This system call allows a parent to collect more detailed information about its children, and to optionally
avoid hanging.

Vol 9 No 4 110 AUUGN

write(fd, buf, nbytes) (any) Compatible all versions

writev(fd, iov, iovcnt) (BSD) See ready()

4. curses
System V introduced the terminfo terminal description database scheme to replace the previous termcap
database, which is still in use by BSD. At the same time, a new version of the curses library was
introduced. Fortunately it is largely compatible with the old version, but there are a number of
differences. The most common of these incompatibilities is given below. The best way to write code
which distinguishes the two versions is to #ifdef on a token like A_P, EVERSV. which is def’med in
<curses .h> in th~ terminfo version, but not in the termcap version.

Note that BSD programs that use termcap routines only are compiled with -ltermcap, while those that
use curses routines must be compiled with -lcurses -ltermcap. All SysV programs that use any of these
routines are compiled with -lcurses only.

#ifdef A REVERSE #ifndef A_REVERSE

cbreak (7 crmode ()

nocbreak () nocrmode ()

attron (x) standout ()

attroff (x) standend()

wattron(win, x) wstandout (win)

wattroff(win, x) wstandend(win)

beep() putchar(’ 07’)

flash () {
if (BP)

--puts (VB) ;
else

putchar(’ 07’) ;

saveterm()
resetterm()
erasechar ()

}
savetty()
resetty()
ioctl(o, TIOCGETP, &sg), sg.sg_erase

5. Directory

The traditional directory structure, and that used in SysV looks like:
struct direct
{

ino t dino;
char d name[DIRSIZ] ;

};
wh~e ino t is normally a 2 byte quantity and DIRSIZ is always 14. This is defined in <sys/dir.h>
on SysV s-ystems (although it will not be in SysV.4). BSD4.2 introduced long filenames, up to
MAXNAMLEN (<sys/dir.h>) bytes in length. In order to access this new directory structure in a
relatively simple and portable fashion, the directory(3) library routines were introduced. These should
be used wherever directories are to be read. They are in the standard C library in BSD systems, and
many vendors provide them for SysV systems, either in the standard C library or in an alternate library
(eg try compiling with -lndir). Additionally, there are public domain versions freely available for SysV
and other operating systems (such as MS-DOS). Also, SysV.3 has these routines provided as standard.

If the world were a perfect place, this would be all there was to it - just use these routines, and tack a
PD implementation of them onto software for systems that don’t already have them. Unfortunately, the
world not being a perfect place, there is more to the story.

When BSD implemented long directory names, they chose the same structure name in the same include
file (struct direct in <sys/dir .h> to refer to the new directory structure supported by the system,

AUUGN 111 Vol 9 No 4

and the readdir() routine returns a pointer to one of these structures. This gives compatibility
routines on other systems two alternatives. They could either retain maximum compatibility with BSD,
in which case programs using them could not #include <sys/dir.h>; or they could opt to change
the name of the directory structure returned by readdir(). While routines are available to do the former,
the IEEE 1003.1 and the SVID (and various other PD implementations) have opted for the latter
approach.

The imp~cation is that you need tohandleboth BSD-compafibleandPOSIX-compatible (inc. SysV.3)
cases. The ~llowingcodecanbeusedasaguide:
#if BSD DIR
if BSD /* BSD 4.2 */
include <sys/dir.h>
#- endif /* BSD */
if V9 /* Bell Edition 9, and some others */
include <ndir.h>
endif /* V9 */
if BRL /* BRL System V emulation */
include <dir.h>
endif /* BRL */
define dirent direct
#else /* BSD DIR */

/* SysV.3 or library compatible with same */
include <sys/dirent.h>
#endif /* BSD DIR */
Just in case you thought things weren’t too bad, the BSD stmct direct is different ~om the SysV.3 stmct
direnL melds in common are long d._ino (the inode number), short d_reclen(the length of this record
rounded up), and d_name (the actual filename, which can be treated as type char * though the actual
declaration varies). Most importantly, d_.namlen does not appear in the SysV.3 structure, ~ portab~
programs should use s~en(...->d__name) instead. Both provide MAXNAMImN as the maximum poss~le
name length.

That’s it as far as most programs are concerned. But I should mention the SysV.3 getdents() system
call. It has nothing to do with parking your car in the street, but is designed to read directory entries in
a file system independent format. The impetus for this system call is tim famous filesystem switch
implemented in SysV.3; getdents() can be used to read directory entries regardless of the actual type of
the filesystem. The readdir() routine uses this system call and should be used in preference to using
this call directly (in fact the manual entry explicitly states that this call should not be used for other
purposes).

6. Exec

Note that BSD allows fries which begin with "#! interpreter", to be executed directly, while SysV allows
only a.out style files to be executed directly. This means that an instance of one of the exec...()
routines in a BSD program may have to be changed under SysV to execute the interpreter (typically
foin/sh) for that program instead. For example if/usr/bin/thing is a shell script:
#if BSD

execl("/usr/bin/thing,,, "thing", "it", 0);
#else /* BSD */

execl("/bin/sh", "/usr/bin/thing", "thing", ,"it" 0) ;
#endif /* BSD */

7. Time

TODO

Vol 9 No 4 112 AUUGN

8. Sockets

Under BSD, sockets are used as the primary IPC mechanism. A socket is described as "an endpoint for
communication between processes", with each socket having queues for sending and receiving data. It
has been said that sockets are a good idea done badly. BSD has 18 system calls, 25 error numbers and
14 related library routines to implement sockets. Porting a BSD program which uses sockets to SysV
will usually require major changes to the code, and probably sigificant design changes. The following
list is purely to enable you to identify a BSD program which uses sockets.

System calls: accept(), bind(), connect(), getpeername(), getsockname(), getsockopt(), listen(),
recv(), recvfrom(), recvmsg(), select(), send(), sendmsg(), sendto(), setsockopt(), shutdown(),
socket(), socketpair(). Related library routines: endhostent(), endprotoent(), gethostbyaddr(),
gethostbyname(), gethostent(), getprotobyname(), getprotobynumber(), getprotoent(), res_comp(),
res__expand(), res_init(), res_mkquery(), res_send(), sethostent(), setprotoent().

10. Semaphores

TODO

11. Message Queues

TODO

12. Streams

A very nice idea implemented in SysV.3, which would be even more relevant if tty devices had been
implemented using streams, which in SysV.3 they are not.
TODO

13. Signals

TODO

14. Symbolic links

BSD supports the concept of symbolic links. A symbolic link is a file in the filesystem which refers to
another file. An attempt to open the symbolic link results in a file descriptor referring to the file to
which the link is pointing. Similarly a stat() system call and most other system calls which act on f’des
will affect the referenced file rather than the actual symbolic link. An unlink() or rename() system call
will affect the symbolic link itself. A new lstat() system call has been inlroduced to access information
about the symbolic link itself.

15. MAUS

This acronym stands for Multiple Access User Space. Some implementations of SysV up to SysV.2 had
a set of system calls known under this acronym to implement shared memory. These should normally
be avoided and the more standard (though still only SysV) shared memory operations used instead.

16. Shared Memory

SysV supports shared memory through the use of the shmget(), shmat(), shmctl() and shmdt() system
calls.

AUUGN 113 Vol 9 No 4

17. Access permissions

Every BSD process has a set of group ids used for file access permission checking, as well as the real
and effective gid used by SysV. The getgroups() and setgroups() system calls are used to access and
change this set. When any file access is attempted, the gid on the f’de is compared with all the gids in
the list. Under SysV, group file access is determined solely by the effective group id of the process.

Under SysV, the gid of a f’de when it is created is set to the effective gid of the process that created it.
Under BSD, the gid of the f’de is set to the gid of the directory in which the file is beaing created.

Under both BSD and SysV, a process may change its effective uid to match its real uid. Under BSD
only, a process may also change its real uid to match its effective uid. The same is true of group ids.

Note that when a process has an effective uid set by executing a setuid program, this effective uid is
saved seprately from the current effective uid, so that if the effective uid is changed by the process back
to the real uid, it may be changed back to the saved effective uid. This is true for both SysV and BSD,
and the same applies for group ids.
An undocumented but deliberate feature of SysV only is that a process cannot change its effective uid to
its real uid, if that real uid is the super-user.

The sticky bit has a special meaning when applied to a directory in BSD4.3. Where this is the case, in
order to unlink or rename a file in that directory, as well as having write permission on the directory a
user must own the file or directory (or be the super-user).

18. Include f!les

TODO

Vol 9 No 4 114 AUUGN

A study about the implementation of real-time disk I/O
scheduling on UNIX operating system

J.B. Lee*, HJ. Kim*, K.W. Rim*, K.O. Park*
* ETRI Dae Dog Dan-Ji P.O. Box 8, Chungnam, Korea

Y J. Park**
** Hang-Yang univ., Seoul, Korea

To use UNIX system in the real-time environment, many real-time supporting features such as
preemptive process scheduling, contiguous f’de system, modular kernel, memory locking mechanism and
the other features must be added to the operating system. Although these features are implemented in
the UNIX operating system, real-time disk I/O scheduling mechanism is required to use applications
efficiently in the real-time system where the disk I/Os are used frequently.

In this paper, the real-time scheduling mechanism is proposed. The proposed mechanism was
implemented and tesl~l to provide faster disk I/O for the real-time process than the general time sharing
process on the UNIX operating system. A buffer mechanism and a disk I/O scheduling algorithm were
modified for the real-time disk I/O scheduling.

I. Introduction
Requirements in computer application areas becomes more complicated as computers are used more
widly. In particular, the real-time system should process external events generated in application areas
and should reply for the external events within a limited time depending on the specific usage of the
system to satisfy those various requirements. Typical areas for the real-time systems are data
acquisition, transaction processing, process control and factory automation area. In general, a structure
of the real-time system depends on the environment of applications because the real-time criteria
depends on the environment of the application area.

The UNIX operating system has been used originally in the general computer system. Therefore,
UNIX operating system was not suitable for real-time applications naturally. But, many real-time UNIX
products such as Masscomp RTU(Real Time Unix), HP-UX of HP company, MERT and DMERT of
3B20D system and etc. were developed to satisfy these real-time requirements. A basic idea to support
the real-time process is that general time sharing process should not be scheduled to run while the real-
time process are executing. So the real-time process can be performed fight after the general time
sharing process is executed while the other general time sharing process are waiting for the CPU. This
is a preemptive process scheduling mechanism. But, if the system included this feature can not execute
real-time process in a limited time, another features such as a contiguous f’de system, a modular kernel,
a memory locking mechanism and the other features should be optionally added to finish the real-time
process in a limited time.

In this paper, we propose a real-time disk I/O scheduling mechanism to execute disk I/Os generated
by real-time process faster than by the general time sharing process. It can be used in the real-time
applications efficiently where disk I/Os are frequently used. And it was implemented and tested on the
KONIX(Korean UNIX) operating system of th SSM-16 developed in ETRI.

2. Real-time disk I/0 scheduling

2.1 Development Background
Real-time disk I/O scheduling was implemented on the real-time UNIX with a preemptive process
scheduling alone. Process scheduler of the system can preempt disk I/Os generated by the general time

AUUGN 115 Vol 9 No 4

sharing process that are waiting for CPU for the service, and the scheduler passes the control to real-
time process prior to general time sharing process. If the real-time process generates disk I/Os, it Mocks
itself on the sleep state while disk I/Os is processed by the disk driver. Disk I/O requests which are
generated by the general time sharing process are put into the request queue and are sorted by its
cylinder number. If a disk I/O generated by the real-time process is treated in the same manner, the
real-time process has to sleep until all preceding requests and real-time disk I/Os are completed.
Therefore this mechanism drops the efficiency of the real-time processing.

But the real-time disk I/O scheduling mechanism can provide to serve real-time disk !/O requests
directly after the request being executed is served while the other early arrived disk I/O requests is
waiting. So this mechanism increases the efficiency of the real-time process.

2.2 The Method of Development.

As disk I/O requests are generated by a process, the system examines whether wanted disk blocks are
already existing in a block I/O buffer cache of the memory. In case that the blocks exist in the buffer
cache, the system will return them from the buffer cache without physical disk I/O. If they do not exist
in the buffer cache, the system allocates the buffer and fills a buffer header with appropriate contents
The system calls a disk driver to request blocks from a disk. And "disksort" function in a disk driver is
called for disk seek scheduling. The function puts I/O requests in the request queue sorted by its
cylinder number to minimize the overall disk seek time.

To implement real-time disk I/O scheduling, real-time relevant informatious are included in the
buffer header. The buffer header is used to identify whether the disk I]O is generated by real-time
process or not. There are two methods to give the real-time concerned informations to the buffer
header. First method is one using special real-time system calls such as r_read0 and r_write0. The
real-time concerned informations are recorded in the buffer header through these system calls. Major
advantage of this method is that the system can execute only required disk I/Os as real-time disk I/Os
among disk I/O requests generated by the real-time process.

Major disadvantages of this method are that the system can hardly determine the sequence among .
real-time disk I/O requests. It means that to implement priority based real-time disk I/O scheduling is
difficult. And new system calls should be made for this method.

The second method is to record those informations in the process table when the real-time process
being created. Then, the system can identify easily whether disk I/O requests generated are from real-
time process or not by reading process table. The major advantage of this method is the flexibility to be
able to determine the processing sequence even among the real-time disk I/O requests. Because the
priority based real-time process scheduling can be implemented, the disk I/Os generated by real-time
process can be easily implemented in the same manner. And major disadvantage will be that all disk
I/Os generated by the real-time process are handled as real-time disk I/Os. As a result, that method can
possibly hamper other more urgent disk request.

3. Implementation Issues

The second method mentioned above was adopted to schedule real-time disk I/O requests according to
priorities of their real-time process in this implementation. And this method is designed to provide user
level compatibility, so it does not make special system calls for a real-time read and a real-time write
system call. As it was mentioned above, process table is used to provide the real-time concerned
informations.

3.1 the implementation of system call for generating real-time process
First of all, header file "proc.h" was modified to represent the real-time process.

#define SREAL 0200

Vol 9 No 4

/* real-time process */
/* to define p_flag in proc table */

116 AUUGN

And a system call to generate the real-time process is implemented as followings.

* make real-time process
*/

realtime()
{

register struct proc *pp;
register struct a {

int flag;
} *uap;
if (!suser()) { /* permitted to super user only */

u.u error = EPERM;
return;

}

uap = (struct a *)u.u_ap;
pp = u.u_procp;
if(uap->flag)

pp->p_flag I= SREAL;
else

pp->p_flag I= ~SREAL;

Also, a realtime0 system call is registered in
(libc/sys/realtime.a68) for the system call is made.

the system call entry, and library interface

3.2 Buffer header modifications
The flags and variables are added to represent real-time disk I/O as followings. And various flags can
be defined more to schedule real-time disk I/Os based on its priority.

struct buf {
short b_flag;
short b rtios;

}

real-time i/o flag

/~ b rtios flags */
#defTne B TSIO 00; /~ general time sharing
#define B RTIO 01; /* real-time */

3.3 System I/0 process routine modifications
The system I10 process routine(bio.c) for block I/O is modified to identify whether the requested process
is real-time process or not by reading the real-time concerned informations in the process table. If real-
time process orders disk I/O, the system sets the flag(b_rtios) in the assigned buffer header to real-
time(B_RTIO). The disk I/O scheduling routine(dsort.c) of a disk driver schedules by referencing this
information. When the system I/O process routine releases the buffer used, the flag is reset to time

AUUGN 117 Vol 9 No 4

sharing(B_TSlO) again.

3.4 Implementation of real-time disk I/0 scheduling routine

A logical queue for real-time disk I/O requests before the other logical queue for the other disk I/O
requests is placed in a request queue. Disk I/O requests are sorted according to their cylinder number in
each logical request queue. By this mechanism, the real-time disk I/O requests are executed early
compared to the other disk I/O requests.

4. Performance evaluation
4.1 Evaluation method
We evaluated real-time disk I!O scheduling with self-developed test program without testing tool proper
tothis test. This test was performed by executing test programs for real-time process and general time-
sharing process respectively at the same system environments. That is, it is the evaluation method to
analyze advanced response time of real-time process by comparing response times. We analyzed the
performance and response time for each process by running following test program.

main ()
{

/* test program for real-time process */

get start time; /* s_real_time */
while(count) {

do real-time disk i/o; /* rtio */
}
get terminating time; /* t real time */
calculate elapsed time;

/* (rtio)t_real_time - s_real_time */

main() /* test program for general time sharing process */
{

get start time; /* s ts time */
while(count) {

do time-sharing disk i/o; /* tsio */

get terminating time; /* t ts time */
calculate elapsed time;

/* tsio(t_ts_time - s ts time) */

A test was performed to measure response times at five different phases, which were made at our
convenience, at the same system environments. Five phases were divided according to disk load level.

Phase 1 : No load
Phase 2 : Light load (only vi executed)
Phase 3 : Middle load (vi and INGRES.demo executed)
Phase 4 : Light heavy load (vi and two INGRES.demo executed)
Phase 5 : Heavy load (vi, two INGRES.demo and cat *.c)

As a result of executing test programs in each phase, the following table was obtained.

Vol 9 No 4 118 AUUGN

load
level

P-P--fi-~a~ 1
Phase 2
Phase 3
Phase 4
Phase 5

tsio response rtio response evaluation
time time ~

lmin 36sec 918 lmin 32sec 015 4sec 913
lmin 40sec 080 lmin 33sec 445 6sec 635
2min 00sec 825 lmin 49sec 745 llsec 080

2min 09sec 405 lmin 57sec 425 llsec 980

2min llsec 800 lmin 58sec 735 13sec 065

Table 1. Test result for each Phase

It is easily noticeable from table 1 that the response time for disk I/O has been significantly
decreased by the real-time process rather than the general time sharing process.

5. Conclusions
Most of important application of the real-time system is a disk I/O related one. Therefore, fast disk I/O
for those real-time process is very important to attain the required performance. In this paper, we
presented the implementation of real-time disk I/O scheduling. With that, we can improve response time
for the real-time process even when the system suffers from the heavy load. Further study area is a
development of algorithm for the real-time disk scheduling in order to differenciate from real-time
processes, and implementation of more improved disk seek algorithm.

6. References

1. H.M. Deitel," An Introduction to Operating System", Chap 12-15, Addison Wesley, 1982

2. H. Lycklama & D.L. Bayer, "The MERT Operating System", The Technical Journal, Vol.57, No.6,
p.2049-2085, 7. 1978,

3. B. Look, "Real Time Extensions to the UNIX Operating System", UniForm Conference Proceedings,
p.293-299, 1. 1984

4. J. M. Scanlon, "The 3B20D Processor & DMERT Operating System", The Bell System Technical
Journal, 1. 1983, p.167-179

5. W.N. Toy & L.E. Gallaher, "The 3B20D Processor & DMERT Operting System", The Bell System
Technical Journal, 1. 1983, p.181-190

6. Maurice. J. Bach,"The Design of the UNIX Operating System", Prentice-Hall Inc.

O.S. ,Electromcs, 3. 1983Evanczuk, Real-Time " ’7. Stephen " ’

8. P. Sherrod & S. Brenner,"Minicomputer System offers Time Sharing and Real Time Tasks",Computer
Design, 8. 1984

9. J.B. Lee, S.J. Jang, S.M. Kim, "A study of real-time UNIX", ETRI, TD88-1640-72, 1. 1988

Vol 9 No 4
AUUGN 119

The Process Life Cycle in STIX

Sunil K Das & Aarron Gull
City University London

Computer Science Department
ECIV 0HB UK

Abstract
STIX is a port of the MINIX operating system onto the Atari ST

micro-computer. This paper discusses first the experiences gained by the
authors in creating a cross-development system using a Gould super mini-
computer as host and an Atari as target. Following this is a description of
STIX processes and their implementation, and the associated system calls
for process creation and termination. The primary interest in this discus-
sion concentrates upon how the authors overcame the problems presented
by the lack of hardware memory management within the Atari.

1 STIX- Project Overview

The MINIX operating system [Tanenbaum, 1987a] is a rewrite of the seventh
edition UNIX system, frequently referred to as Version 7 or V7, which runs
on the IBM PC, XT or AT. The system calls available to the MINIX user are
compatible with those of V7. For users of IBM micro-computers, MINIX is a
low cost, UNIX-like system which is an alternative to those provided by IBM.
Moreover, MINIX is available to teachers and students for use in operating
system courses since it is fully documented [Tanenbaum, 1987b] and the source
code is available on floppy discs without licencing restrictions.

The City University Computer Science Department in London houses in
the order of 100 Atari 520 and 1040 ST micro-computers for use as terminals,
and as development devices associated with computing projects and teaching.
Thus, the idea of porting MINIX from the IBM PC to the Atari ST range of
micro-cbmputers [Gerits; 1988] was conceived and called the STIX project.

There are inherent difficulties in porting MINIX to the ST. A significant
problem was selecting and adapting a suitable C compiler which could be used
for the port. Tanenbaum supplies a C compiler with MINIX which can be
used on the PC to recompile the operating system. The compiler, based on
the Amsterdam Compiler Kit [Tanenbaum, 1983], is supplied in binary form
only. A mc68000 C compiler was required for the STIX project because the

Vol 9 No 4 120 AUUGN

Intel 8086/8088 is the internal processor for IBM micro-computers whereas the
ST is based on the Motorola 68000 processor. Furthermore, it was imperative
to have access to the source code of the compiler in order that modifications

could be made to it.
Since it is very difficult to obtain source code for a public domain mc68000

C compiler, it was necessary to use a compiler for which the Computer Science
Department had a source licence. This compiler could not be used on the ST
because of site licencing problems. Thus, it was decided to use the Department’s
Gould computer as host for development, with the Atari as the micro-computer
target, since the Gould’s UNIX based operating system UTX/32 was source li-
cenced. In order to use a host-target pair, a cross-development environment was
needed comprising a C compiler and associated libraries, which would produce
code of a suitable form to down-line load and run on the target ST.

After a brief description of the cross-development environment, this paper

discusses the novel software decisions taken to overcome the Atari’s lack of hard-
ware memory management. The life cycle of a process is investigated to clarify
the effect of STIX on the memory and process managers. The behaviour of the
swapper() algorithm is examined together with its relationship to the system
calls fork(), execO and exit(). The paper concentrates upon the implementa-
tion of these system calls and the effect that relocation has on execO.

2 The Cross-development Environment
A cross-development environment offers several advantages over the traditional
method of developing software on the target machine. The host is much faster,
more stable, and has greater disk space. Also, it provides access to a range
of UNIX tools such as lint, make, SCCS and I~CS, which are specifically
intended for C program development. Moreover, on completion of the system,
it is available for the use of others who want a more hospitable ST development
environment. For this purpose, it was decided to provide many function calls
which would give an interface to the resident ST operating system, TOS.

The source code to the compiler and the C library is not supplied with
MINIX. The Stanford UNIX Mac C Development Kit (SUMacC) [Croft; 1984]
is distributed in the public domain under the condition that it may be "used"
but not "sold" because it is subject to a Stanford copyright. SUMacC version
2.0 became available in November 1984 and was packaged for a VAX computer
running either BSD UNIX or Eunice. It was considered possible to adapt the
kit to any UNIX box having a mc68000 C compiler. The SUMacC based
mc68000 cross-development system available to the authors consisted of two
compilers, one from Berkeley and one from Stanford, which are merged by the
use of ,conditional compilation statements. The Stanford code was removed and
the remaining system adapted for cross-development.

Cc68, the C compiler steering program, had to be modified to reflect the

Vol 9 No 4
AUUGN 121

Berkeley file structure of STIX; the compiler had to know where to find the
header files and libraries. The assembler as68, had to be modified in order to
produce the correct header format required by the linkage loader. The compiler
was not distributed with its own C preprocessor cpp68, so the public domain
Florence EUUG C preprocessor was ported for this purpose. The majority of
the work undertaken on the compiler centred around ld68, the linkage loader.
Apart from having numerous bugs, ld68 had to be modified to produce the new
executable header formats required by STIX.

The source code to the MINIX C library was, at that time, in the public
domain but not readily accessible to the authors. Consequently, it was decided
to reimplement the C library. Each library routine was decompiled by hand back
into its C or mc68000 equivalent. It is important to realise that writing the C
library was a significant amount of work; the library is composed of 13,000 lines
of C code and 2,000 lines of assembler. Writing the library however, although
a long and rewarding academic exercise, is not of particular interest to report.

Once ported to the Department’s Gould computer, the cross-development
system had to be modified to produce code of a suitable form to run on the
target micro-computer. For MINIX on the IBM PC, there exists four segmen-
tation registers so processes can be relocated to run from any place in memory.
The Atari ST does not have segmentation registers. Furthermore, it has no
memory management hardware at all. Under these circumstances the ideal
cross-compiler would produce executable code which is relocatable. Thus, when
STIX either forked or exceed a process, the program text would be loadable into
any available memory, and executable no matter where the segment had been
located in user memory. It is unlikely, due to some of the operations possible in
C, that such a compiler exists. One was not known to the authors.

The strategy adopted for process creation in the STIX environment was to
retain the fork() and exec0 system calls, and to incorporate a swapper() to
interchange the address spaces in user memory of two processes. Substantial
revisions would have to be made to the memory management code to control
this movement of processes. This approach has the advantage of retaining the
Version 7 interface, but the disadvantage of adding complexity to the STIX
kernel and memory manager.

A detailed description of the cross-development system [Gull; 1988] is avail-
able from the authors.

3 Process Management

The composition of the STIX KERNEL is very similar to that of MINIX; the
KERNEL contains four modules: the kernel, the memory manager, the file sys-
tem and the init process. The kernel image is composed of the process manager,
the system task and the device drivers for the terminal, printer, memory, disk
and clock.

Vol 9 No 4 122 AUUGN

STIX processes are very similar to V7 processes. A process is the image of
a program in execution and has a number of associated resources: text, data,
bss and stack segments allocated from memory; a set of arguments and an
environment list; the processor registers; a number of open files; the concept of
a current working directory; and a group and user identifier.

A STIX process is the entity that is created by the fork() system call; every
process, except those of the KERNEL, is created when another process executes
a forkO.

3.1 The Memory Map

The MINIX memory manager neither supports hardware paging nor process
swapping onto a swap device. MINIX processes are never swapped out and
never relocated to another place in user memory. Once user memory has been
allocated to a MINIX process, it remains there until its termination. The mem-
ory region allocated to a MINIX process remains constant in size during its life
time. The memory manager and the kernel’s process manager in MINIX use
the following structure in their process tables, giving both access to the virtual
and physical addresses:

struct mem_map {

unsigned mem_vir;

unsigned mem_phys;

unsigned mem_len;

/* virtual address */
/* physical address */
/* length */

In STIX, these two fields have different names and are used for different
purposes. The process manager uses an ezecution and current address, while the
memory manager uses an ezecution and creation address, in their corresponding
process table structures. The execution, current and creation addresses of a
process are three pointers to the regions in user memory from where the process
executes, is currently residing, and to where the process is located on creation
by fork() or exec(). When a process is in execution, its execution and current
addresses will be the same; when the process is relocated into some other region
of user memory they will differ.

A difficulty occurs when a process tries to give up its memory, for example
during the exec() or exit() system calls. The memory manager needs to know
the whereabouts of the process; it does not know, at a give time, where in
memory any particular process is located. The current address of a process is
known only to the process manager. The problem has been solved by adding
the internal system call sys_swap0 to the kernel. This call returns a given
process into its creation region. If another process occupies the creation region,
the two are interchanged. The creation address of a process is known to the
memory manager and so after the interchange, it is aware of a process’ location
in memory. Note that the memory manager has no knowledge of this swapping.

AUUGN 123 Vol 9 No 4

An example follows to clarify the new usage of these address fields in the
structure mere_map{}. Assume process A begins life at address 0xS0000 and
has a length of 0xl0000. Its execution, current and creation addresses are
all 0xS0000. Process A then forks a child process CA. Process CA also has
to run at address 0xS0000, therefore its execution address is 0xS0000. When
process CA is created, the memory manager reserves enough memory to hold
the image of its parent process. This area of memory is the creation address
of the process. Let us assume that 0x67000 is the start address of the first
hole available capable of containing a process of length 0xl0000. Since the
process CA is located initially at 0x67000, this becomes its current address.
When process CA begins execution its current address becomes 0xS0000 and
the current address of process A becomes 0x67000.

3.2 The Context Switch

The context of a process is its state, as defined by its text, data, user and
supervisor stacks, the values of the processor registers, and the values stored
in its kernel, memory manager and file system process tables. When executing
a process, the system is said to be executing in the context of the process. A
context switch is made whenever a process cannot continue to run. When doing
a context switch, the kernel saves enough information so that it can later switch
back to the process and continue its execution. A context switch will only occur
when the processor detects an exception. Most exceptions are caused by the
clock interrupting the processor. However, other exceptions are generated by
the process itself when it executes code. This is the manner in which system
calls are made to the kernel. STIX supports the traditional activities of context
saving and restoring.

3.3 The Swapper

The swapper() is called whenever a process needs to be restarted. In STIX,
we use the term swapper() to mean the program which interchanges the ad-
dress space of two processes which concurrently reside in user memory. MINIX
processes are never relocated in user memory and never swapped out of user
memory to a swap device.

Due to the nature of the fork() system call and the ST hardware, several
processes may exist which have to execute in the same region of memory. The
swapper() ensures that a process which is about to be restarted is located in the
required region of memory.

STIX processes are of fixed size which is determined at the time of exec0
and cannot be increased or decreased dynamically as in virtual memory systems.
This means that processes which require to run at the same address will always
be of the same length and therefore, can be physically swapped with each other.

The algorithm of the swapper() is detailed below.

Vol 9 No 4 124 AUUGN

algorithm swapper

input: proc table pointer
output: none

iT (!currently panicing &~ process not in execution region)

if (KE~NEL process)
panic(attempt to swap in kernel);

for (all user processes)
if (another process is in execution region)

found = true;

break;

if (found == true) {

if (processes are of different lengths)
panic(cannot swap different length processes);

swap process with that in execution region;
} else

copy process into its execution region;

update the current address fields of the processes;

Processes are always multiples of 4 bytes in length and start on even byte
boundaries. This allows the swapper() to copy processes 4 bytes at a time which
greatly increases the speed of moving processes around in memory.

Although swapping processes around in memory is slow, the actual cost in
system performance is small; most processes will fork() and immediately follow
with an exec().

The ezec0 system call will relocate the new process so that it no longer
needs to swap in order to execute. The child process is scheduled to run first
and therefore the system often only needs to swap twice; the child process is
swapped in prior to its exec() and the parent process is swapped in after the
child has execed.

Consider the the following example: process A forks a child process CA,
which in turn forks a grandchild process GA. This creates three processes whose
execution addresses are equal (0xS0000 say) and therefore, they can be Swapped
around in memory as each is given a time slice. Process GA now execs process
B which gains a new execution address (0x70000 say). This has the effect of
reducing the overhead of swapping processes, thus increasing the speed of the
system. This scenario is displayed below.

Vol 9 No 4
AUUGN 125

50000

60000

70000

PROCESS A

PROCESS CA

PROCESS GA

<--execution region for A CA GA
}
}
} processes A CA GA

<........... } can swap in these
} regions of memory
}
}

50000

60000

70000

PROCESS A

PROCESS CA

PROCESS B

<--execution region for A CA
}
} processes A CA
} can swap in these

<........... regions of memory

<--execution region for B

Some care must be taken when copying data to and from processes. This will
occur as part of message passing or due to kernel system call activities. Processes
pass system call addresses which are valid when the process is swapped into its
execution region. Such addresses are invalid when the process has been swapped
out. Several routines have been modified in order that this is taken into account.

Swapping does have an unfortunate side effect however: interrupts are dis-
abled during swapping thus preventing thrashing when large processes are in-
volved. This means that clock interrupts can be lost when the processor is per-
forming large amounts of swapping. Hence, the time-of-day clock tends slowly
to lose time. Moreover, there is a significant flaw in the way processes are im-
plemented on the Atari; the hardware provides no mechanism for protecting
processes from each other. There is no way of stopping a malicious program
which reads or writes outside its allotted memory. This is attributable to the
hardware and not to the implementation of the STIX kernel.

Vol 9 No 4 126 AUUGN

4 System Calls

To make the task of invoking system calls easier, a C library has been written,
which provides the programmer with convenient functions which interface with
the KERNEL.

The STIX system call interface is superficially identical to that of MINIX;
all of the MINIX calls have been provided and have identical functionality.
Internally however, STIX system calls have been changed extensively. The
modifications fall into two categories: those changes which were required for the
software to run on the Atari and those which increase the power and efficiency
of the KERNEL.

The more interesting modifications and design philosophies of the STIX
KERNEL will now be described in detail.

4.1 Fork()
In order to retain the fork() system call, this implementation allows STIX to
support process swapping. The concept is theoretically simple: STIX processes
are of fixed sizes, therefore it is possible to move the process with the time-slice
into the memory it requires, copying the process which resides there into the
memory vacated by the first. If a process forks a child, these processes continue
to execute by swapping in and out of the memory originally occupied by the
parent.

The fork() system call itself knows little about the swapping process itself:
this is handled by the context switching code. Fork() simply creates another
entry in the process table, which contains new execution and current addresses.

This procedure actually reduces the complexity of the fork() system call; a
process is treated as a contiguous region of memory rather then separate text,
data and stack segments. Swapping, however, does make process termination
and subsequent memory reallocation considerably more complex and is accom-
plished by the exit() system call.

4.2 Exit()
The exit() system call has the task of clearing up after processes which have
terminated. This is on the whole a trivial task. However, there are three points
of interest.

First, the memory manager has no understanding of swapping; it is only
the kernel which knows the current address of a process. The memory manager
knows the execution and creation address of a process, not the current address.
This makes releasing the memory of a terminated process difficult: the memory
manager does not know where a process is located.

The solution to this problem in STIX is achieved by adding the internal
system call sys_swapO. This call causes the kernel to swap a named process

AUUGN 127 Vol 9 No 4

with anything currently residing in a given address. By calling sys_swapO using
the terminating process number and creation address as parameters, the kernel
can determine where any individual process is in memory.

Second, a parent process (typically it has an execution and creation region
in common) whose creation region is being shared by its children (it is the
child’s execution region) must not release that memory when it terminates. The
memory must be retained until the last child exits. The memory of a process
with no children may be released when the process exits.

Assume process A forks a child process CA. Process A now terminates.
Its memory cannot be released because it is being used by process CA as an
execution region. This memory must be retained until process CA exits. If
process CA had terminated first A’s memory would have been released as soon
as it had terminated.

Third, MINIX does not release memory associated with a process until the
parent process has executed a wait() system call. This could result in a fork()
or exec() system call erroneously failing due to lack of free memory.

STIX releases the memory of processes when they exit(). This leaves entries
in the process table which have no memory associated with them. This is similar
to the zombie process state of UNIX. The algorithm of exit() is illustrated below.

algorithm system_call(exit)

input: return code for parent process

output: none

store exit status for next wait() system call;

if (parent is waiting)

release parent and tell everybody;

else
suspend process;

kill pending timers;

tell_kernel(to swap process into creation region);

tell_kernel(to stop scheduling process);

if (no other process runs in execution region)

free(execution region);

if (execution region != creation region)

if (no other process runs in creation region)
free(creation region);

/* Process is now in zombie state

Vol 9 No 4 128 AUUGN

4.3 Exec()
The exec() system call invokes another program, "overlaying" the memory space
of the current process with a copy of an executable file.

The exec() system call has been made considerably more complex by the port
to the Atari, the added complexity being due to the lack of hardware memory
management. The main problems which need to be overcome are program
relocation and memory reallocation.

STIX can only support the small memory model of a process; the split in-
struction and data model implemented on a machine without hardware memory
management. The maximum segment size of 64K has been removed from the
KERNEL, but a practical limit of 128K is imposed by the superstructure.

A STIX executable file consists of several parts:
(i) A set of headers that describe the attributes of the file;
(ii) The program text and data; and
(iii) Relocation information.

The header describes the sizes of the text, data, bss and relocation sections of
the executable, the total memory the executable requires and the magic number,
which gives the type of the executable file.

The program text and data form the image which is initially loaded in the
process address space.

The relocation information is a list of offsets within the text and data. Each
element of the list represents a program byte, word or long which is an address
to be relocated. Text and data relocation allows a process to be loaded and

executed in any area of free memory.
A process invokes the exec() system call by calling one of its front-end func-

tions. The exec0 front-end builds an image of the new process stack from the
supplied arguments and environment. The stack image is passed as an argument
to the exec0 system call proper.

The algorithm of exec0 is described below:

algorithm user_exec

input: pathname and arguments
output: -I returned and errno set if exec failed

Build a relocatable stack image with parameters;
system_call(exec);

/* Exec failed */

set errno and return(-l);

The KERNEL validates the arguments passed by the exec() front-end. If
they are invalid the kernel returns an error number to the user which relates to

the reason for failure.

Vol 9 No 4
AUUGN 129

If the supplied parameters are valid, the KERNEL copies the stack image
from the user space into a safe region of memory; when the exec0 takes place
the process image will be destroyed.

The kernel then opens the file which holds the executable image. The header
information is examined; if there is not enough free memory to hold the new
image the exec0 system call fails and returns an error number to the user. This
is the last point at which the kernel can recover from an error and return control
to the calling process.

The kernel then attempts to free the memory occupied by the current process
image. The creation region of the process is released and the execution region
is also released if it is not required by any other executing process.

The image of the old process is now lost and free memory is allocated for
the new process. This is filled by the image of the new process which is read in
from the executable. The KERNEL uses the relocation information to modify
the process image to run at its new address.

The KERNEL makes extensive checks in order to detect files which have
been accidentally (or deliberately) corrupted. Corruption could take the form of
invalid headers or modified/omitted relocation information. The kernel validates
that the sizes of the text, data and relocation information of executable files
matches those specified in their headers. The kernel also validates that the
addresses to be relocated are within the text or data space of the process in
question.

If either of these checks fails the process exits without returning to the user;
continuing execution after such errors could result in a system crash.

The exec0 call will now succeed. The KERNEL performs several tasks to
initialise the new process. These include filling the process stack and bss with
zeroes, copying and relocating the saved stack image at the top of the user stack,
setting the permissions and scheduling the process to be restarted.

The algorithm described above is detailed below.

Vol 9 No 4 130 AUUGN

algorithm system_call(exec)

input: pathname and stack image

output: only is exec fails

if (invalid stack image II filename is !executable)

return(error);

Fetch the new stack from the user;

Read the file header and extract the header sizes;
if (!enough free memory for new image)

return(error);

/* Last point a failed exec() will pass back to user

tell_kernel(to swap process into creation region);

(no other process runs in execution region)
free(execution region);

(execution region != creation region)
if (no other process runs in creation region)

free(creation region);

Reclaim memory to hold new image;

Read in the new image from the file;

if (the header information is invalid)
exit(process);

Relocate the image to its new address;

if (the relocation information is invalid)
exit(process);

zero the stacks and bss of the process;
Copy the stack image into the stack;

Relocate the stack image;

Take care of setuid and setgid bits;

Reset all caught signals;

tell_kernel(tidy the stack and reschedule the process);

After a process has executed a successful exec0 system call and prior to
being restarted its memory map will resemble that in the diagram below:

AUUGN 131 Vol 9 No 4

high memory

supervisor stack -

arguments -

user stack

low memory

execution addr

status reg

dummy address

spare

environment

arguments

env array

arg array

envp

argv

argc

heap

zeroed bss

new data

new text

<.... supervisor stack
pointer

<.... user stack pointer

Vol 9 No 4 132 AUUGN

The most important features of the diagram are:
(i) The new text and data have been loaded and relocated;
(ii) The bss, heap and stacks have been filled with zeroes;
(iii) The arguments and environment have been copied onto the top of the user
stack. Arrays of pointers to each entry have been set up. Argc, argv and envp
have been pushed onto the user stack; and
(iv) The supervisor stack has been constructed so that the process will restart
execution in the C startup routine.

The C startup routine crtso is an assembly language routine which simply
calls main() as a subroutine. No arguments are passed by crtso; these have
already have been placed on the stack by the kernel. Crtso simply builds the
standard parameter passing stack frame around the arguments. The routine
main can then be treated as a standard C function.

5 Results and Conclusions

In material terms the result of the project is 3 disks: the STIX boot disk, a
400K root disk and a 680K/usr disk. These are all that are required to use the
STIX operating system.

The KERNEL, comprising kernel, mm, fs, and init boots correctly. The
KERNEL passes the entire Tanenbaum validation suite, which is a set of exten-
sive tests.

The system retains version 7 compatibility. The authors wrote several pro-
grams which were developed under UNIX, using version 7 compatible function
calls. These programs ran as expected when they were down-line loaded and
run under STIX.

The authors opinion is that the STIX KERNEL has all the required function-
ality. Many MINIX bugs and "features" have been corrected. A large number
of utilities have been provided to enable users to find their way around the sys-
tem and so actually do serious work. The system has proved remarkably stable;
users can make full use of all the available utilities without the system crashing.
During extensive testing sessions, no system crash has ever occurred.

As a side effect of the project, an ST development system has been created
on the Gould super mini-computer. This system could be used by anyone who
wishes a more hospitable Atari ST development environment than that provided
by the target machine itself.

The original aim of this project was to port the MINIX operating system to
the Atari 520/1024 ST range of computers. The goals of the project state that
the port is complete when it is possible to run the Tanenbaum validation suite
successfully. The final product fulfills this criterion; it is functionally correct
and highly stable.

AUUGN 133 Vol 9 No 4

6 References

[Croft; 1984] Croft W; SUMacC: Stanford UNIX Mac C Development Kit;
Stanford University Medical Centre; Nov 1984.

[Gerits; 1988] Gerits K, Englisch L &c Bruckman R; Atari ST Internals - The
authoritative insiders guide; Abacus Software; 1988.

[Gull; 1988] Gull A; STIX: A Port of the MINIX Operating System to the
Atari ST; BSc Final Year Project Report - City University London Com-
puter Science Department; May 1988.

[Tanenbaum; 1983] Tanenbaum A, van Staveren H, Keizer E ~ Stevenson,
J; A Practical Toolkit for Making Portable Compilers; Communications of
the ACM; Vol 26, pp 654-660; September 1983.

[Tanenbaum; 1987a] Tanenbaum, A; MINIX: A UNIX Clone with Source
Code; EUUG Newsletter; Vol 7, No 3, pp 3-11; 1987.

[Tanenbaum; 1987b] Tanenbaum, A; Operating Systems: Design and Imple-
mentation; Englewood Cliffs, N J; Prentice-Hall; 1987.

Vol 9 No 4 134 AUUGN

AUUG 1988 Election Results

President:
Greg Rose

Secretary:
Tim Roper

Treasurer:
Michael Tuke

Committee
Rich Burridge
Frank Crawford
Chris Maltby
Tim Segall

Returning Officer
John O’Brien

Assistant Returning Officer:
- no candidates remained.

AUUGN 135 Vol 9 No 4

THIS PAGE INTENTIONALLY LEFT BLANK

Vol 9 No 4 136 AUUGN

AUUG

Membership Categories

Once again a reminder for all "members" of AUUG to check that you are, in fact, a
member, and that you still will be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just right for you.

The membership categories are:
Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate. 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.
If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the

AUUGN 137 Vol 9 No 4

contents, or the association.

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right corner you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Vol 9 No 4 138 AUUGN

A G
Application for Ordinary, or Student, Membership

Australian UNIX* systems Users’ Group.
*UNIX Is a registered trademark of AT&T In the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:® Please don’t send purchase orders -- perhaps your

AUUG Membership Secretary purchasing department will consider this form to be an
P O Box 366 invoice.
Kensington NSW 2033 ¯ Foreign applicants please send a bank draft drawn on an

Australia Australian bank, or credit card authorisation, and remember
to select either surface or air mail.

I, ... do hereby apply for

[] Renewal/New* Membership of the AUUG $65.00

[] Renewal/New* Student Membership $40.00 (note certification on other side)

[] International Surface Mail $10.00

[] International Air Mail $50.00

Total remitted AUD$
(cheque, money order, credit card)

Delete one.
I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

Date: / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: .. Phone: ...(bh)

Addross: ...(ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $ to my

Account number:

Name on card:

Office use only:

Chq: bank

Date: / /

Who:

bsb

$

[] Bankcard

a/c

[] Visa [] Mastercard.

Signed:

#
cc type ~ v#

Expiry date: /

Member#

AUUGN 139 Vol 9 No 4

Student Member Certification (to be completed by a member of the academic staff)

I, ...certify that

... (name)

is a full time student at ...(institution)
and is expected to graduate approximately / / .

Title: Signature:

Vol 9 No 4 140 AUUGN

A G
Application institutional Membership
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary o Foreign applicants please send a bank draft drawn

P O Box 366 on an Australian bank, or credit card authorisation,
Kensington NSW 2033 and remember to select either surface or air mail.

Australia

.. does hereby apply for

[] New/Renewal* Institutional Membership of AUUG

[] International Surface Mail

[] International Air Mail

Total remitted

* Delete one.

$300.00

$ 20.00
$1oo.oo

AUD$
(cheque, money order, credit card)

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: / / Signed:

Title:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $ _ to my/our [] Bankcard
Account number:

[] Visa [] Mastercard.
. Expiry date: /

Name on card:
Office use only:
Chq: bank
Date: / /
Who:

bsb

$
a/c

Signed:
Please complete the ~ ~her side.

Member#

#
CC type ~ V#

Vol 9 No 4
AUUGN 141

Please send newsletters to the following addresses:

Name: ..
Address"

Phone" (bh)
.. (ah)

Net Address: ..

Name"
Address: ..

Phone’. ... (bh)
.. (ah)

Net Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the tide and signature pages of each, if
these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

[] System V.2 source

[] System V source

[] System III source

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source [] System V.3 binary

[] System V.2 binary

[] System V binary

[] System III binary

[] Other (Indicate which) ..

Vol 9 No 4 142 AUUGN

A G
Application for Newsletter Subscription
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and retum it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders -- perhaps your
purchasing department will consider this form to be an
invoice.
o Foreign applicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember
to select either surface or air mail.
¯ Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter / renew my subscription forthe Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: ... (bh)

... (ah)Address: ..

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose"

[] Subscription to AUUGN

[] International Surface Mail

[] International Air Mail

Copies requested (to above address)

Total remitted

$ 65.00

$ lO.OO

$ 50.00

AUD$.
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $~
Account number:

Name on card:
Office use only:

Chq: bank

Date: / / $

Who:

to my [] Bankcard [] Visa[] Mastercard.

Signed:

Expiry date: /

bsb - a/c

CC type

Subscr#

AUUGN 143 Vol 9 No 4

A G
Notification o~ Change of Address

Australian UNiX systems Users’ Group.
*UNIX Is a registered trademark of AT&T In the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:
AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Phone: ...(bh)

... (ah)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 9 No 4 144 AUUGN

