
Scientific Atlanta Secur1tv Monitoring System

Version A060 and A061 Description of

Operation

The SMS software consists of about 400k bytes of source code
in 26 modules. After assembly and linkage it produces just under
16k of object code. The data and stack requirem~nts are 16k bytes
with an additional 4k of EEPROM data area for the subscriber
bitmap and power level array. The source code is fairly well
documented and should be considered the ultimate source of
information when confl1ct1ng operational details are encountered.

The following pages represent a module by module description
of the system. Mare detail will be provided in those areas that
are particularly system intensive.

1

Module Name: ERGOCRT
Size: 11~136

This module contains most of the CRT specific interface and
control routines. It is basically a series of subroutines that
generate the necessary escape sequences to perform the following
functions:

1> read current cursor position
2) move cursor to a given position <x~y>
3) home the cursor
4) home down the cursor
5) move cursor up one line
6) clear screen from cursor position ta end of screen
6) clear screen from cursor position to end of line
?> insert a line at cursor position
8) delete a line a cursor position
8> enter and exit protect mode
9) enable and disable the keyboard
10) turn on and off video display enhacements
11> turn on (initialize) the function keys
12> write ta the 25th display/status line
13) initi~lize the terminal
14) print current screen ta printer port
15) print a line at cursor position
16) print a line of text to the printer
17) print the time and date to the printer

2

Module Name: MON
Size: 31,488

This module contains most of the routines that handle the
SMS commands and error messages. It is called from the main menu
screen (see MAIN> so it is itself a background routine. After
writing the monitor status screen to the crt and setting up the
function key menu and subroutine calls, it calls the routine
"CMDLN" (1 oce.ted in CF~T) that di spl e.y·s the comm.:i.nd prompt e.nd
processes any command line entered by an operator <CMDLN calls
!TEXT and it, in turn, calls ICHAR>.If no commands have been
entered, the routine waits in a loop until something happens.

Assuming a valid command has been entered, a call is
executed ta the address pertaining to the given command. All
routines must return with the zero flag set, or MON will return
to the main menu screen.

Listed below are the commands and
subroutines as found in MON module:

COMMAND

EXAMINE: handled by subroutine EXAM

their associated

This routine first writes a new function key menu for
its own operation. It then checks to see if an address was given
after the command. If so, it will begin the display at this
address, otherwise it will start at address O. At this paint it
simply checks the function keys 1 through 4 for further commands,
which allow an operator to examine, enable or disable addresses~
and exit the command.

LIST: handled by subroutine LISTO

This routine causes a sequential listing of enabled
addresses to be sent ta the printer. If any digit from 0 to 9 is
given as an argument to the list command~ the no response bit map
will be listed instead of the data base bitmap. The routine
simply sets the most significant bit of the LOG Clog alarms)
flag which serves as a signal ta the task CHECKS <in CHECKS> to
begin listing addresses from a bit map to the printer. The base
of either the data base bitmap or the no response map is loaded
into location LSTMAP. CHECKS lists this map, from lowest address
to highest address, to the printer.

3

ACKNOWLEDGE: handled by routine ACK

This command allows operators to clear a pending alarm
frorn the que and send the acknowledgement to the transponder. The
routine has two entry points, one by way of the FB function key,
and the other via the ACK command. If the function key is used,
the cursor position is first saved then restored after the call
to the entry point at ACK2. Upon entery at ACK2~ the crt
acknowledge que <ACKCQ) is checked, and the oldest entry is
removed and processed. The alarm acknowledge command is sent to
the 3ddress in the entry (except for power level alarms> then the
alarm count is decremented and the oldest alarm on the screen is
deleted.

For the case where entry is via the ACK command with no
transponder address as an argument, the sequence is the same as
that just described <the cursor address is not saved and restored
though>. If an address is given as an argument, then the alarm
acknowledge is sent to this address and nothing is removed from
the ACKCQ, and nothing is changed on the screen. If additional
addresses are given on the command line, they will be processed
in succession.

ADD/DEL: handled by subroutines ADDR and DELETE

These commands add or delete addresses from the data
base bitmap. Basically both commands share the same body of code.
The difference being that either the add or delete flag (AORD) is
set befor~ the routine begins. Whether the bit is enabled or
disabled is is determined in the subroutine ADORDL by examining
the AORD flag. A checksum is calculated after each add or delete
<CKAER> and stored at loactions PAERl-4. This is to insure
database integrity.

CMC: handled by routine CMCOMM

This command simply toggles the most significant bit of
the SMSFLG. This indicates to interrupt and background routines
that alarms should be sent to the cmc and that communications
should be periodically established between the sms and the cmc.

RETURN: handled by RETN

This routine allows for exiting from the sms monitor
screen and returning to the main menu screen. It first checks the
MONFLG (bits 0-4) for pending alarms. If none are pending, it
checks the scanner status flags (STATSC> to see if the scan is
on. If so, the most significant bit of the SMSFLG is checked to
see if the cmc is enabled before allowing an exit. If any alarms
are pending, or if scan is on and cmc disabled, exit is
disallowed. Upon successful exit, the MONFLG is cleared, the crt
alarm <CRTAQ) and status queus (CRTSQ) are flushed, and control
is returned ta MAIN.

4

RESPONSE: handled by subroutine RESPN

This command performs two functions, depending
whether or not an argument was given with the command.
argument was supplied, then the no response flag (bit
MONFLG> is toggled. If an integer argument of between 0 -
given, then this value is stored into the global variable
a.nd will become the new no response dela.y time.

SWAP: handled by subroutine RFSWAP

upon
If no
5 of'

255 is
NF:TIME

This command causes a swap from the interrupt to the
polling channel (or vice versa>. This is accomplished simply by
setting or resetting the global CHANBF, which various background
and interrupt routines use to determine which channel is the
polling channel.

SCAN: handled by subroutine SCAN

This command is another toggle. In this case the STATSC
flag is checked for zero. If it is zero it means the scan was off
and that it should be turned on. Before turning it on, the nc­
response bitmap is cleared and the alarm count (bits 0 - 4 of
MONFLG) are cleared, and the alarm screen is cleared of any
alarms. If the scan was on, then the STATSC flag is simply
c 1 e.:i.red.

POWEH: handled by the routine PWR

This command is another dual function command. Its
mode of operation depends upon the setting cf the AUTOFG, which
is checked upon entry. If it is zero, then at least one address
is expected on the command line. This address is loaded into the
RF level adjustment que CRFLAJQ) to force an auto power level
adjustment procedure to occur on the given address. Additional
addresses supplied on the command line are loaded into the
HFLAJQ one after the other, as long as there is room. If the
AUTOFG is non-zero, it is set to the value Ofh as a signal to the
SEND routine, at which point a jump is made to that routine to
complete the processing of the command. (see SEND>

READ: handled by subroutine RD

This is another command that requires an address for an
argument. The address supplied, along with a read status command
request is loaded into the crt acknowledge que (ACKQ) and
subsequently sent out to the transponder. The resultant
information is formated and displayed on the crt.

5

RESET: handled by subroutine RSTT

This command is one of three commands that use the
common subroutine BRUTE to read the required address from the
command line and load it into the ACKQ. The actual command, in
this case a reset command, is loaded into the BC registers before
cal)ing BRUTE. Upon receiving this command, the transponder will
execute a tight loop which will allow the watch-dog circuitry to
timout and trigger the reset line on the device. This command
will not be executed by a transponder if it has any alarms
latched into its internal alarm register.

TEST: handled by subroutine TEST

The test command is exactly like the RESET command in
that it simply loads the BC registers with the command code that
is to be sent to the transponder, then jumps to routine BRUTE.
BRUTE looks at the command line for the address(s) and loads it
into the ACKQ then puts the command into the DATAQ for
transmission by the interrupt routine INTO.

DIAL: handled by subroutine DIAL

Like RESET and TEST, DIAL loads the command code that
(in this case, the code to cause the dialer trigger to toggle) is
to be sent to the transponder into the BC registers. A jump is
then performed to the routine BRUTE, which gets the address(s)
from the cdmmand line and loads it into ACKQ. It then takes the
command in BC and stuffs it into the DATAQ.

SEND: handled by subroutine SEND

The SEND command allows any given 16 bit data pattern
(supplied in decimal form) to be sent to any particular address.
It reads the command line first for the transponder address, then
the data to be sent. After the data is obtained, a check of the
AUTOFG is ~ade. If it shows a signal from the POWER command (see
POWER> then the data is checked for a valid power level value of
between 0 - 16. This value is then positioned properly into the
data word, then stuffed into the DATAQ. If the AUTOFG does not
indicate that this is a power adjust operation, then the data (as
obtained from the command line) is stuffed into the DATAQ.

In the case of the power level command processing, the
value sent to the transponder is also stored into a four bit
field in EEPROM. This four bit field is pointed to by the address
of the transponder given on the command line. This is done so
that the global power adjust background routine can send this
unique value to each device upon being invoked by the GLOBAL
command. <see HELP - GLOBAL>.

See the description of the HELP module for additional
commands and their associated subroutines.

6

Module Name: NORCHK
Size: 3,456

This module basically contains the single subroutine NORCHK.
It is called from various background tasks so that it gets a
chance to process no responses almost continually, if any exist.
What it does upon entry, is check the no response que CTIMEQ +
NORSPQ) for any pending no responses. If there are any in the
que~ then the time that the oldest was entered is checked against
the current time. If it has been in the que longer than the time
specified in the global NRTIME~ it is removed from the que. At
this point~ the MONFLG is checked (specifically bit 5) to see if
no response reporting is on or off. If off, then the image is
updated to reflect the no response status, and the routine loops
back to check the TIMEQ again. If no response reporting is on,
then a no response alarm for the given address is loaded into the
alarm que <ALARMQ>.

This routine sets a counter to 10 upon entry~ and
decrements it each time through the loop. When the counter
<NRTODO> reches zero the routine will exit. It will also exit
without doing anything if there is nothing in the TIMEQ - meaning
that there are no no responses to be processed.

7

Module Name: Power
Size: 6~844

This routine is a background task that only runs under the
following conditions:

1) Once on startup.
2> When commanded to by the cmc.
3) When a GLOBAL command is issued from the sms.

All it does is cycle through the AER bitmap (data base) and load
any enabled addresses found into the RF level adjustment que
CRFLAJQ). This will cause an adjustment to be performed on that
address by the background task PWRCAL. Whether this adjustment
will be an automatic adjustment or a manual adjustment, depends
upon the setting of the AUTOFG. <see AUTO command and COMMON>.

This module is fairly well documented in the source
and is generally self explanatory. Therefore no
duscussion will be persued here.

8

listing
further

Module Name: QMAN
Size: 11,782

This module contains all of the subroutines that are
required for manipulating the various queus used throughout the
sms. All of the queus are FIFO, and have a maximum depth of 255
entries. Each entry is a 16 bit entity with byte 0 holding the
upper, or most significant byte, and byte 1 holding the least
significant byte of the transaction. In the case where the entry
contains a transponder address, the most significant four bits
(bits 4-7) of byte zero contain a four bit tag. This tag
identifies the type or origin of the transaction. See TASKS for a
listing of the tag bits and their meanings.

This module is well documented and does not require further
explanation here. Further detail may be obtained directly from
the source code listing. Below is a list of the subroutines
contained within QMAN:

OPENQ: Initializes a que to zero entries.
CLOSEQ: De-activates a que, so that it appears ta be full.
FREEZQ: Stops all que activity. No transactions may go in or out.
STARTQ: Re-activitaes a que which is frozen.
CHECKQ: Returns the number of transactions currently in a que.
ENTERQ: Places a transaction into a que. Returns space remaining.
LEAVEQ: Retreives a que entry. Also returns space remaining.
VIEWQ: Returns with a copy of the next available transaction.
FINDXQ: Finds a que entry and removes it.
PURIFY: Removes the nth entry of a que.

9

Module N3.me: RTC
Size: 9!'216

This module contains four routines that deal with the real
time clock interrupt <Multibus INT?, generated by the 8253 timer
chip located on the CPU board). The first, named (appropritely)
INT?, is the actual interrupt service routine for the timer
interrupt!' which is generated every 50 ms. The time of day clock
global SECOND is incremented every 50 interrupts, at which time
the INCTIM routine is called to update the time of dav clock. The
time is updated to the crt every 8 seconds.

INT? also calls the routine TASK on every interrupt. This is
the task manager which rotates through the list of background
tasks and schedules them in "round-robb in 11 f asi on. Due to the
frequency of the interrupt, and the asyncronous nature of the
system!' each task is limited to a 25 ms. time slice. The
background routine SCRTY is started every other interrupt, which
results in it having the greatest allocation of CPU time.

The module also contains the routine CKINIT which is called
on startup~ and initializes the 8253 timer 0 for continuous
oper.:i.t i an.

Below is the list of background tasks and the interrupt
cycle they are allocated:

TASK CYCLE

SCRTY 1
QUE;;QRT '":• ..:..

SCF~TY "'=!' ·-·
PWF~CAL 4
SCF:TY 5
CMC 6
SCRTY 7
UF'STAT 8
SCRTY 9
POWER 10
SCRTY 11
FUN PRC 12
SCRTY 1 "':!' ·-·
CRTPF:C 14
SCRTY 15
CHECKS 16

10

Module Name: SCRTY
Size: 13,312

This module contains the dominant SCRTY background task,
which runs every 100 ms. It basically monitors the queues and
flags associated with the transponder scanning operation. Upon
entry it checks the scanner status byte CSTATSC) to see if the
scan is on or off. If the scan is off, it simply exits with no
action taken, otherwise it proceeds to check the STATSC flag for
the initialization signal. If initialization is required (ie. on
startup, or after a scan-off scan-on operation) the queues are
cleared along with image ram and the temporary voting block. It
then increments the global SCNCNT which is always reset to zero
by the transmit routine. If this byte overflows, then SCRTY
assumes that the scan has stopped for some reason and signals an
E004 condition.

Next, the alarm and repall queus are checked to see if they
are full Cor closed). If so, they are further checked for space
remaining. If either has space remaining they are restarted. If
both queus were restarted, then the INTO routine is also
restarted.

Following this, the poll que <POLLQ) is checked for space
remaining. If it is closed or frozen but has space remaining it
is restarted. If it contains zero transactions it is staked up
with valid addresses from the AER table. The subroutine that
performs this oper-ation <FETCH) checks- the glob~.l fla.g PECK to
see whether a PEEK command is in oper-ation. A value of 3 or
greater- indicates that a PEEK command has been executed and the
POLLQ is stoked with the addr-ess contained in the memor-y
location PEEKAD. This causes continuous polling ta a single
address for signal measurement.

This module also contains two subroutines that are called
from other modules. FILTER is a routine that checks to see if a
no response transaction is a result of a valid poll from the AER
table, or Whether it was a result of noise. I~ the address is not
valid, the alarm is discarded, otherwise it is processed as an
ordinary alarm. The routine MAPMSK takes a transponder address
and uses it to form an index into the AER (bitmap). The routine
returns both the index address, and a mask with a bit set
corresponding to the given address.

11

Module Name: SERIAL
Size: 24~832

This module contains all the serial I/O routines needed to
support the interrupt driven CMC and CRT interfaces. All I/O is
fully buffered for efficient interfacing with the rest of the
system. The module is particularly well documented, and therefore
additional detail will no be given here. Below is a listing of
the subroutines contained in this module and a brief description
of their operation.

INT3: This is the crt transmitter interrupt service routine. It
handles the transmission of characters to the crt from the ring
buffer allocated for output characters CTXCRTB>. When the buffer
is empty, it shuts off its on interrupt.

INT4: This is the crt receiver interrupt service routine. It
services the interrupt generated by the receiver side of the 8251
USART mounted on the piggy-back module on the CPU card. It
buffers incomming characters, checks for XON/XOFF pacing and
calls a routine called FUNKEY that checks for function key
characters so that they can be processed separately.

INT5: This interrupt service routine handles the transmission of
characters from the cmc transmit buffer CTXCMCB> out to the cmc
port. It will shut off its on interrupt when the buffer becomes
empty, and signals the communications handler via the sms flags
CSMSFLG) that the process is complete.

CHKSPC: This routine simply checks and returns the remaining
space left in the crt transmitter buffer.

CHECK: This routine checks for available space in any of the
other I/O ring buffers.

!CHAR: This routine reads a single character from the crt input
buffer and returns the character to the caller. If a character is
not available in the buffer~ the routine waits in a loop until
one is entered from the keyboard.

OCHAR: This routine puts a character into the output buffer for
terminal transmission. If the output routine is shut down it will
prompt (boot) it to start. If there is no room in the output
buffer, it will wait in a loop until space becomes available.

OUTPUT: This routine loads a character into the output buffe~ for
transmission to the cmc. Like OCHAR, it prompts the output
routine (in this case INT5) if it is not running. It will also
wait if the output buffer is full.

12

STRING: This routine transmits a string of characters to the crt
until a null is found. I calls OCHAR.

AUTOBD: This routine initializes the baud rate clack for the crt
USART. It checks for two successive escape characters to indicate
the baud rate is correct. It switches between 1200 and 4800 baud
until the above condition is met.

SLEEP: This routine re-initializes the baud rate clock ta 4800
baud and suspends operation of the crt. Typing two or more escape
characters will re-awaken the crt monitor functions.

INITIO: This routine is called on system start up. It initializes
both the cmc port and the crt port USARTs for proper asyncranaus
operation. It then initilaizes the ring buffers.

PACE: This is the terminal pacing routine. It is called by ICHAR
and checks for the AQ AS <XON/XOFF> charcaters from the terminal.
Upon receiving the XOFF character~ it shuts dawn the crt
transmitter. Upon receiving an XON character the transmitter will
be restarted.

13

Module Nmae: TASKS
Size: 28~032

This module contains three of the background routines listed
in RTC. In addition~ it contains three subroutines that decode
and display alarm and status data on the crt of the sms. One
final routine~ CLRFKY, is used ta clear any function key service
routines and flags so that no service occurs. Listed below are
routines contained in this module along with an operational
description.

QSORT: This
f ram scanner
output queus:

is a background task that sorts the alarms passed
routines via the ALARMQ into one of the following

1) CMC communications que CCMCQ)
2> CRT status que CCRTSQ)
3) CRT alarm que <CRTAQ)

If a que is full, then the alarm is re-entered into the ALARMQ.
If either the crt or the cmc is not active~ the transaction is
trashed rather than loaded into the appropriate que. The
fallowing tags Cin the upper four bits of the transaction
address) are used to direct the disposition of transactions as
they are pulled out of the ALARMQ:

TAG

0000
0001
0010
0011
0101
0110
0111
1000
1001
1010
1011
1100
1101

DESCRIPTION

New alarm from scanner Csee ALMCHK>
Reque of alarm destined for the CMCQ
Reque of alarm destined for the CRTAQ
Status for the CMCQ
Read status register status for CMCQ
Read status register status for CRTSQ
Status for the CRTSQ
New power level alarm
Reque of power level alarm destined far the CMCQ
Reque of power level alarm destined for the CRTAQ
No response reporting shut dawn alarm
Reque of no response alarm far CMCQ
Reque of no response alarm for CRTAQ

The remaining two tag values are spares~ and are not used.

CRTPRC: This routine is another background task that simply
calls two subroutines: CRTALM and CRTSTA. Bath routines check
their respective queus for pending alarms or status <CRTAQ +
CRTSQ). If an alarm is present it is removed and the indicated
alarm or status information is formated for display to the crt.

14

The actual decoding and formating of alarm information is done by
the subroutine ALRMTX. If bit 6 of the global MONFLG is set, then
the alarm information is displayed in binary format. This may be
useful for debugging purposes.

FUNPRC: The function key processor background task checks for a
function key flag that has been set (previously by the INT4
receiver interrupt service routine - see SERIAL>. If it finds a
flag for a given function key set, it looks for a non-zero
address to call to process that particular key. This allows
function keys F5, F6, F? and FB to operate as interrupt driven
tasks, and Fl through F4 to be used as application keys for the
operator interface.

CLRFKY: This subroutine is called on startup, and zeros all
function key flags and service routine addresses.

15

Module Name: UPSTAT
Size: 11,264

UPSTAT is another background task scheduled by the real time
clock task manager. It has the job of monitoring and decoding
va~ious system status flags and updating the status fields on the
crt. It first checks MONFLG to see if the monitor is active. If
so~ it calls CHKSPC (see SERIAL> to insure adequate room is
available in the crt output buffer for all the status information
and enhancement escape codes that will be required. Given that
the monitor is active and there is room in the buffer. the
following flags are checked against the values stored when they
were la.st

1) STATSC
2) SMSFLG
3) CHANBF
4) MONFLG
5) MONFLG
6) NF~SCNT

7) STUCNT

checked:

0 means scan is on, non-zero means off or error
bit 7=0 means cmc is on, else cmc is off
0 means polling channel, else interrupt channel
bits 0 - 4 contain number of alarms on screen
bit 5=0 means no response reporting is on, else ott
display # of no responses if any (if bit 5 MONFLG=O)
display # of transponders currently being scanned

This module also contains a routine called INSTAT, that is
called upon entry into the monitor screen from the main menu
screen. It initializes the status display with reverse video and
default values for the various fields.

16

Module Name: INT2
Size: 8,448

This is the interrupt service routine that handles any
interrupts from the 64k RAM/EEPROM board. The ready signal from
all of the EEPROMS are wire-ored to produce one interrupt signal.
The SAVE and VERIFY commands initiate operations that require
interrupt processing by INT2. The global SAVFLG indicates whether
the current operation is part of a SAVE command <non-zero, and
value 1-5) or whether it is due to the execution of a VERIFY
command <value 128-129>. This flag is checked when the routine is
first entered, right after the interrupt latch is reset by perfo­
rming an I/O write to port 50h.

If the SAVFLG indicates that the interrupt is the result of
a SAVE operation, the global SAVCNT is decremented and checked
for a zero value. A zero value indicates that the end of one of
each of the four AER maps has been reached. The value of the
SAVFLG determines which current AER map: when it hits 4, and the
SAVCNT reaches O, programming is done. The four checksum bytes
are then loaded one at a time. After the last checksum byte has
been programmed, the checksum is recalculated for the map in
EEPROM. The value thus obtained is compared to the values
programmed in. If they match, a successful save operation has
been performed and the message is displayed on the crt screen. If
the checksums do not match, an error message is displayed, along
with an error code.

The other possible reason INT2 would be triggered is during
a VERIFY command from the main menu. The VERIFY command sets the
SAVFLG equal to 80h then writes the compliment of the first bvte
of U4 to trigger the start of the EEPROM test. Upon entry (with
SAVFLG bit 7=1), a branch is made to the routine UTTER which
basically handles the EEPROM test. The current byte being tested
is stored in the global SAVCNT. This is compared to what was read
and if they match, the value is complimented and written back.
This process repeats until every byte has been written/read and
re-written again. This allows for a non destructive go-nogo test
of the EEPROM. See HELP for more information on the VERIFY
command.

17

Module Name: CHECKS
Size: 6,912

CHECKS is another background task that performs two basic
operations:

1) prints a listing of enabled addresses or no responses to the
printer.
2> Updates the BIN, LOG and AUTO flags to the crt status line.

Upon entry, it checks the LOG flag. If bit 7=1, then a LIST
command is in operation and it proceeds to build a one line
buffer of addresses to list to the printer. This is done by
searching through the bitmap, pointed to by location LSTMAP, for
up to 100 addresses, or until a one line buffer to be printed is
completed. It then exits, and picks up where it left off on the
next go around to print the line. This process continues until
the entire bitmap has been searched, and the set bits evaluated
and listed.

If bit 7 of LOG=O, then nothing is going on with the LIST
command so a branch to the routine STATUS occurs. This routine
performs the same activities as UPSTAT. That is, it examines
certain flags and interprets the results to the status fields on
the crt. Specifically, it checks the following flags:

1> LOG = 0 means Logging is off, else on.
2) MONFLG - bit 6 = 1 means binary status reporting on, else off
3) AUTOFG = 0 means auto power level mode on, else off.

As done in the routine UPSTAT, current values are compared
against previous values as stored in a last-check buffer. If any
change has occurred, the field is updated. Otherwise no data is
output to the crt.

18

Module Name: HELP
Size: 12, 672

This module contains some additional sms monitor commands~
and is genericaly part of the module MON. It was created when
additional commands were added to the scanner, and rather than
make MON any larger than it is, it was decided to put the
additional commands in a separate module. See MON for background.

Listed below are the commands and
subroutines as found in module HELP:

their a.ssoci .:i.ted

COMMAND

HELP: handled by subroutine HELP

The HELP command generates a menu
commands on the alarm screen of the crt.

of available scanner
It requires most of the

alarm screen to display the menu, so if more than 3 alarms are
pending, the menu will not be displayed.

SAVE: handled by subroutine SAVE

This command causes the current contents of the AER maps
(database bitmap) to be written to a non-volatile save area in
EEPROM. The actual save programming operation is performed by
INT2 Csee INT2> but it is initiated by the SAVE command.
Basically what occurs here is as follows:

1) A warning message is first displayed to request an affirmative
response before beginning the save operation. This is because
once the operation has begun, it will over-write any existing
data.

2) The interrupt mask is updated to enable INT2 interrupts.

3) The save flag is set up to signal INT2 that a save is in
progress.

4) The first byte from AER1 is read and stored into the EEPROM
s.:i.ve .::i.re.a.

When the byte has been programmed, the EEPROM chip · wi 11
trigger its ready line which will cause the INT2 to occur. Then
the interrupt routine will read and write the next byte and so
on. At this time, the SAVE routine itself is through. INT2 will
report the success or failure of the save operation.

19

LOAD: handled by subroutine LOAD

This routine will load a bitmap in from the EEPROM save area
to ~he AER map in RAM. It is the compliment of the SAVE command.
Before loading the database however, it will run a checksum on
the EEPROM table to be sure of the validity of the data. If this
is successful, the AER maps and parity bytes will be loaded from
the image in EEPROM. A message will be displayed a~ to the
results of the operation.

VERIFY: handled by subroutine VERIFY

This routine is available from the main menu screen only. It
allows the user to perform a simple, non-destructive memory test
on the RAM <at COOOh> and EEPROM Cat 6000h + BOOOh). While it is
not a definitive memory test, it will find bad chips, chips with
bent pins, or faulty address or data buss drivers on board. It
will call out failing memory by U number, as per the schematic.
After running a RAM test, it sets up the flags for INT2 and
enables the interrupt via the interrupt mask. It then reads the
first byte from EEPROM, stores it in the SAVCNT, then writes a
complimented version back the the EEPROM. At this time INT2 will
complete the testing while VERIFY waits by repetitively calling
DELAY (see LIB>. Upon each return from DELAY, VERIFY will check
the value ·of the "read 11 pointer. If it has not changed for t\1-m
consecutive cycles, then it assumes that the operation is
complete. It then moves down to check the value of the SAVFLG. A
zero value here indicates that the test terminated normally and
that INT2 reported the results. Otherwise, it is assumed that
there is a failure in one or mare of the EEPROM chips so, based
on the current address pointer, an error message is displayed,
calling out the faulty EEPROM.

AUTO: handled by subroutine AUTO

This command toggles the AUTOFG an and off. This flag is
checked during execution of the POWER command Csee MON) to
indicate what method of power adjustment is to be used, and how
the command itself will execute. It is also checked in the
subroutines PWRCAL and PWRCHK (see COMMON> to indicate whether or
not the auto power adjust mechanism should be used. If the the
flag is zero then auto made is on, if it is nan-zero, manual mode
is on.

PEEK: handled by subroutine PEEK

The PEEK command causes a single transponder to be palled
exclusively for about five seconds so that its return signal can
be measured. When executed, it loads the address given as an
argument into the global PEEKAD. It then stores a non-zero value

20

(greater than 3) into the global PECK, after which it calls DELAY
far 5 seconds. During the delay~ the PECK flag is examined in
the subroutine FETCH in the SCRTY background routine <see SCRTY>.
If the flag is greater than 3~ the address at PEEKAD is loaded
repeatedly into the POLLQ. After the return from DELAY, the PECK
flag is set to 1 and another 2 second delay is entered which
allows the addressee to drain fully from the POLLQ. The PECK flag
is then reset to z era 21.nd the routine returns.

GLOBAL: handled by routine SWEEP

The GLOBAL command simply sends a signal to the background
task POWER via the global PWRADJ, which causes it to start
loading enabled addresses into the RFLAJQ far power adjustements.
The AUTOFG flag is checked first to determine whether auto or
manual mode is in operation. Currently the routine will not
initiate a global power level adjustment process if in auto mode.

21

Module Name: INTVEC
Size: 1, 697

This is an absolute module which contains interrupt vectors
starting at location 40h, and also provides the jump instruction
to the entry point in MAIN after system reset.

The eight jump vectors, corresponding to Multibus interrupts
0 8~ are lisred below:

INTO - Polling chann~l transmit and receive
by 8253 timer located on the scanner

interrupt. Generated
i nterf .:i.ce board.

INT1 Interrupt channel receiver interrupt from interface board.

INT2 Program ready interrupt fro 64k RAM EEPROM board.

INT3 Crt receiver USART interrupt.

INT4 Crt transmitter interrupt.

INT5 Cmc receiver USART interrupt.

INT6 Cmc transmitter interrupt.

INT7 Real time clock (task manager) interrupt.

Module Name: GLOBAL
Size: 8~704

This module contains most of the globally declared variable5
and data areas (Queus), although several globals are defined in
other modules. The storage allocation for all of the queus and
tables are located in GLOBAL. The module is fairly well self
explanatory.

23

Module Name: DBINIT

This module contains subroutines that are used to clear and
initialize the various tables and data areas. These routines are
called from various modules at various times, although they are
primarily activated on system initialization. The following lists
the subroutines within this module:

FILMEM: This subroutine is used by other routines to initialize a
given block of memory to some known value, usually zero.

DBINIT: This is the main routine that initializes mast of the
system flags and tables.

SCNCLR: This routine clears the image ram and temporary voting
bloack array ta zero~s <no alarms pending).

ZNRMAP: This routine clears the no response bit map. It is called
after executing a scan-off /scan-on sequence.

24

Module Name: MAIN
Size: 11 !1392

MAIN is the first module entered following a system power-up
or reset. It contains the main initialization routines in
addition to the master background routine <MAIN> and the main
menu screen commands. The following describes each subroutine
contained within this module:

!NIT:
This is the entry point at power up or reset. It is

basically a series of calls to other subroutines that result in
the initialization of all system functions. Below is a list of
activites performed by !NIT~ with the actual initialization
routines or pertinent globals in parenthesis:

1) Sta.ck pointer
2) Real time clock chip <CKINIT>
3) The serial cmc ports <INITIO>
4) The parallel ports 0 an 1 <INITPT)
5) The intet-rupt rer;iisters (8259) (INITIFO
6) CMC communications <INITC>
7> The function keys - flags and calls CCLRFKY>
8) The system error flag <ERRFLG)
9) The crt terminal functions CINITTM>
10) The databases and queues CDBINIT)
11) The crt serial port (SLEEP>
12) Output the power-up message <CPWRUP)

INITPT:
This short routine initializes the parallel I/O ports on the

CPU ca.rd.

INITIR:
This subroutine initializes the interrupt registers of the

8259 chip, and initializes the interrupt mask CINTMSK).

INITTM:
This routine sets all the flags associated with terminal

operations.

MAIN:
This is the master background routine. Upon entry it checks

the crt status flag <CRT> for active status. If not active it
simply loops back and continues to check for crt activity. When
the crt becomes active (i.e. two or more escapes are typed) The
terminal is initialized and the greeting message is displayed on
the crt for a few seconds, and listed on the printer if it is
enabled. The main menu screen is then painted on the crt along

25

with the function key menu. Finally, a call to CMDLN is made
where it will wait for input from the keyboard.

GREET:
This subroutine is called from MAIN for the sole purpose of

outputing a greeting message announcing the name of the system
and who built the thing.

MAINFK:
This is another subroutine called upon entry into MAIN that

initializes the function key menu on the bottom of the screen,
and sets up the addresses for function key commands.

TOD:
This routine handles the TIME command. It reads command line

input and sets the time clock accordingly.

DOY:
This subroutine handles the DATE command. It reads command

line input and sets the date for internal software clock.

SLP:
This subroutine services the SLEEP command. It

terminal operations and clears the screen. After
command has been executed, two or more escapes will
to re-activate the terminal.

26

terminates
the sleep

be required

Module Name: LIB
Size: l6!1 768

This module contains a library of general purpose
sub~outines used throughout the scanner. The module is very well
documented and the subroutines are rather generic and straight
forward. Therefore no amount of time will be devoted to a lengthy
description of the module. The source code listing is more than
adequate as a reference. Below is a listing and brief description
of the subroutines contained in LIB:

BINBCD: Binary to BCD conversion.
BCDDGT: BCD digit generation routine.
BINDEC: Binarv to ASCII decimal conversion.
BINHEX: Binary to ASCII Hexadecimal conversion.
BINBIN: Binar to ASCII binary conversion.
DECBIN: ASCII decimal string to binary conversion.
HEXBIN: ASCII hexadecimal string to binary conversion.
INHEX: ASCII Hex characters (2) to binary byte conversion.
BITADR: Create bit address and bit nmask for a bitmap.
BITSET:
B ITCLF.::
BITTDG:
BITTST:
DELAY:

Set 3 bit in a bitmap.
Clear a bit in a bitmap.
Toggle a bit in a bitmap.
Test bit in a bit map CZ flag set)

1 to 128 second time delay subroutine.

27

Module Name: INTO
Size: 15,488

This is the interrupt handling routine that syncronizes the
scanning of the transponders. It processes interrupts generated
by the 8253 programmable timer located on the scanner interface
board. The same interrupt signals a need for a transmit or a
receive i.e. every other interrupt will be a receive.

Upon entry, the interrupt status flag is checked CSTATO) to
determine whether the interrupt signifies a receive or a
tr:i.nsmit. If bit 3 is set, it indic.::i.te·s tt-.::i.nsmit so e. jump is
made to XMIT, otherwise a receive is assumed and processing
continues. Assuming a receive, the next thing is to decrement the
global that determines the number of receives due <RXPEND). Then
the address of the transponder that is being read, is retrieved
from the transponder receive transaction queue <STURXQ). Next,
the message received bit (bit 4, port EAh) is checked to
determine if the expected message was received. If so, the
[alarmJ data is read in. A call to the subroutine ALMCHK (see
ALMCHK> is then made to check the data for any pending alarm
condition and process accordingly. Following that~ a call to the
routine PWRCHK (see COMMON) is made to check the power level.

At this point the 8253 is reloaded with the value to be down
counted until the next interrupt, then the routine exits.

In the case of a transmit, the following would take place:

The ACKQ, REPOLQ and the POLLQ are checked (in that order)
to obtain the next transaction (address) to be sent out. Failing
to find anything to send, the routine turns off the RX and TX
pending flags and exits. Given that a transaction is found, The
TX pending CTXPEND> flag is set, and the device address is
clocked out to the interface board to be sent. Next, the tag bits
of the transaction are examined to determine what sort of command
should be sent out (normal poll request, power level, test,
etc.). In the case of a power level <AUTO mode) adjust command,
the value to be sent exists in a four bit field in the image RAM
for the particular address. This value is fetched and sent out in
the command word. Finally, the command is toggled out to the
interface board and the STURXQ is loaded with the address of the
device just processed. The CHANBF flag is then checked to see
which channel is being used for polling. In the normal case where
the P channel is being used, The RXPEND flag would now be
incremented and the 8253 clock on the interface board is loaded
with the down count for the next interrupt. If the I channe) was
being used, the 8253 is set and the RCVEXP bit in image is set to
let the channel I routine CINT1> know that the address has been
polled and a response is expected (see INT1>.

28

Module Name: INT1
Size: 6,400

This is the I channel receive interrupt handling routine. It
basically has two modes of operation. The first is the normal
case where polling is done on the P channel. In this case, only
transponders that have an alarm pending will transmit on the
interrupt channel. The reception of such a message will cause an
interrupt on INT1. The address of the interrupting device will be
read and loaded into the REPOLLQ so that the P channel will be
able to process the data as if the alarm were detected on the P
channel. The [alarm] data in this case is discarded in favor of
processing on the P channel.

If the I channel is being used as the polling channel, the
RCVEXP bit in image RAM is checked. If it is not set <meaning
this receive was not expected) then the transmission is
considered to be noise. Otherwise, the address is compared to the
first entry in the STURXQ for a match. A match indicates the
correct response and the routine ALMCHK is called to process any
alarms that might be indicated. Finally, the power level is
checked via a call to PWRCHK, then the routine exit~.

29

Module Name: ALMCHK
Size: 14,976

This is the main alarm checking and processing subroutine.
It is called from INTO and INT1 Cwhen polling on I channel). The
routine basically checks for the existance of an alarm condition
on the input data. This is determined by comparing the data just
received from the device, with the alarm image stored in system
RAM. If there is any difference, it is considered an alarm. If no
alarm condition is indicated <received data and image RAM match)
the routine simply exits. Assuming there is a miscompare (alarm
condition>, the data is filtered for the existance of all alarms.
If all of the alarm bits are set, it is considered a bogus alarm.
Next, the process byte of the image RAM is checked to see if it
indicates that a verification repoll sequence is active. If so, a
branch to the verification code at label NXTONE is performed
where the 2 out of 3 repoll sequence will proceede. Otherwise,
this is a brand new alarm. and space is allocated in the
temporary voting block for the verification repoll sequence. The
image RAM process byte is updated to show that verification is in
progress~ the alarm data is stored in the temporary voting block,
and the address is loaded into the REPOLQ to be re polled.

In the case where the verification repoll sequence is in
progress, the status byte also indicates the repoll count for the
verificatidn sequence. Less than three causes another repoll ta
be queued, otherwise this is the last repoll therefore the
results of the 3 polls must be tallied to find two that agree. In
the case where none of the repoll data agree, the situation is
called invalid due to noise and processed as a no response. In
the typical case, the validated alarm data along with the
originating transponder address is stuffed into the ALARMQ to be
processed by the by the background tasks.

If the validated alarm is a no response alarm, it will be
processed differently. First, the corresponding bit in the no
response map is checked to see if the address is already in the
no response queue. If it is, then the routine simply e~d ts. If
the bit is not set, meaning this is a new no response, the bit is
set in the map. Next, MONFLG global is checked for the status of
no response reporting. If no response reporting is on, the
transaction is placed in the no response queue. If the que is
full, the no response reporting is turned off (bit 5, MONFLG> and
an alarm message is loaded into the ALARMD.

If the ALARMQ has only enough room left for 3 or less
entries, the REPOLQ is closed until more space is available. If
the REPOLQ is low on space then the POLLO will be frozen Dntil
space becomes available. The queues will be re-opened by the
SCRTY background task as required. Csee SCRTY>.

30

Module Name: CLI
Size: 6~692

This module contains the command line interpreter~ used for
prossesing commands entered on the main and monitor screens. It
compare: the string (command) entered at the command line with a
list of commands pointed to by an array of pointers. If a match
is found, the address parameter from the command table is
returned. This address paramter is the address of the subroutine
that will process the given command. The command line pointer
will be left pointing to the delimiter at the end of the command
string. The called routine then may further parse the command
line for parameters.

31

Module Name: CMC
Size: 38~144

This module contains all of the routines required to
communicated with the CMC (currently an HP-1000 mini-computer).
It is quite well documented and fairly straight forward, so no
amount of time will be spent here other than to list the names of
the actual routines conatined withing the module. Refer to the
source code listing for details on CMC.

Below is a list if the routines in CMC, and what they do:

INT6: CMC receiver interrupt service routine.
CMCM: CMC/SMS communications monitor background tasks <see RTC>.
INITC: Initialization routine for CMC communications.
TXNEXT: Transmit message generator.
XMIT: Transmits actual messages to the CMC.
TXSAVE: Save transmit message in a buffer in case of failure.
TXRCVR: Recover failed transmit message from buffer.
CPWRUP: SMS power up message to CMC.
CMCPRC: CMC to SMS command processor routine.

32

Module Name: COMM
Size: 4,992

This module contains a collection of routines that enable
the SMS crt to become an SMS to CMC communications monitor. The
messages originating from the CMC are displayed in reverse video,
while the SMS messages to the CMC are shown in normal video. All
of the data is converted to hexadecimal representation for
diplay. It also is rather well documented and only the routines
contained within this module will be listed here.

COMM: Entry routine; screen initialization & command line
processing.

ECHOTX: SMS message handler/processor.

ECHORX: CMC message handler/processor.

ECHO: Root handler of ECHOTX and ECHORX.

33

Module Name: COMMON
Size:20,864

This module contains seven routines that are used in the
various scanning and interrupt routines and the SCRTY background
task. Below is a listing of these rotuines ans a description of
their operation:

PWRCAL:
This routine is actually a background task itself (see RTC).

Its primary job is to check the RFLAJQ for transactions. If there
are transactions present, it calculates the necessary adjustment
and loads the power adjust transaction into the repel queue. The
tag bits of the transaction indicate whether it is the first
adjustment or a subsequent adjustment. In the case of the first
adjustment, a branch is taken down to the label INIADJ. Here, the
AUTOFG is checked to determine whether auto or manual power level
procedure is in effect. If auto mode is indicated, a fixed value
of attenuation, midway between maximum and minimum, is asserted
and the adjustment command is loaded into the repoll queue. If
manual mode is in effect, the address is used to index into the
EEPROM power level storage area to get the 4 bit value stored
there during the most recent PO command for that address. This
value is loaded into the power adjust command and stuffed into
the repoll queue. In both cases the process byte in image RAM is
updated to·show that a power level adjust is in progress.

In the case where the adjustment is a second or subsequent
adjustment, the branch to INIADJ is not taken, and the process
byte in image RAM is checked far the direction of the power level
discrepancy (if any) so that an approriate successive
approximation adjustmant can be calculated. This then is built
into a new power adjust command and stuffed into the repoll que.
If satisfactory power adjustment cannot be obtained in 4 tries~
then an alarm message is loaded in the ALARMQ for that particular
address, and the bit corresponding ta the address is set in the
PWRMAP, otherwise the bit is cleared.

XNDEX:
This routine will index ta the status byte of temporary

storage used during reool verification of an alarm.

PWRCHK:
This routine is called by either the P or I channel receiver

routine to check the received power level for a particular
address. It first checks to see if adjustment is in progress for
this address. Then it checks the bit in the PWRMAP associated
with this address. If this bit is set, it does not bother to
proceed further. Otherwise, it reads in the power level from port
EBh. Before checking the value, it looks at the AUTOFG to see
whether auto power level adjustment is in effect.

34

If auto mode is not in effect, a value of 05h, CRF OK> is
forced over the actual value that was read. The value (either the
actual one read, or the 05h) is checked in a lookup table to
determine whether it is high or low. The new value ta send is
calculated and another power adjust transaction is loaded into
the RFLADJQ if it is still not within limits. If the adjustement
procedure originated via the PO command, a report is sent to the
crt as to the results of the adjustment.

ERRHAND:
This routine reports hard system errors Ci.e.E004> to the

LED display and the CMC (if connected).

GENQUS:
This routine opens and initializes all of the ques used

throughout the SMS.

LEDOUT:
This routine clocks a four digit BCD value in BCDE registers

into the front panel LED display.

CANCEL:
A short routine

progress, and clear all
to cancel a power level adjusternent
associated flags and storage.

35

in

Module Name: CRT

This is a well documented group of general purpose
sub~outines used for operation and manipulation of a terminal
interface. All of the routines a rather straight forward and do
not require a detailed description here. Below is a list of the
routines contained in this module:

READ: Read a character from an input string.
WRITE: Write a character to terminal and keep track of cursor.
ITEXT: Read string from crt buffer into memory.
TEXT: Write a null terminated string to the crt.G
MSPACE: Output multiple spaces to the crt.
SLASH: Output an ASCII slash to the crt.
SPC: Output a single ASCII space to the crt.
PROMPT: Set up the command line with the prompt.
HEAD: Output menu heading.
MENU: Output menu directory.
CMDLN: Command line handler.
SKIPCM: Skip command within primary input string.
LASTDL: Get the last delimiter from input string.
RDVALU: Read a decimal value from primary input string.
NEXTWD: Find next word in input string.
UPTIME: Out~ut date and time to the terminal.
TIME: Output the time to the terminal
DAYTE: Output the date to the terminal.
FUNKEY: Function key sort routine.

36

, 5 m 5 v. , ;) 1 8L o c.k___f)j__tt u R1lrn ·--
r:t?roQ ~ QsoR-r ~ ~
I I

~ JN11 jc«Ty

TNT¢ CRTPf?t

Il\/T 2. INT"?
((T<!_ t---

I ?_j {!_JYl(!.,W\ - ~-------r·-
)No~eu~]

.. :---:::--===::::::J

r··-- .. -"···\\
INTC,

f
eornrn

INT.3

MAIN

MO/\/

I NT 1 I ~-----,
\. l===tl'- Fowe<ZC.AL

UP5TAT
~ovJe.~

C.ltftJ(~
fUNP{(c_

CRI

~&T 'lj?jpr

f1LlDC Ai E Tt""' ()
v :)\ ,·'N (; l3Lo!~

-----i - 5h<e :SfA-\v..S

Tu av
OFF
fvR . •
RePrm"-6

N.R.
~lorn')
f'tl.e~so1e

11'\ Aln-r'itfl

.:Jer
J..ooP
Ql)l.A'f1i~C"'"

to 10

Ge.+ o Cop 'I of:
dd ~st- e'(\hy

o.{\cJ ~e(!,~
+~M e \ Y\ · .. •

((e~1ove.
Xrlt.·h D'I'

f r(1r"' Q,"'e1.1.t

f.ese t bit ,·Yl

N.R. 8J·t'Y'a p
)f OrJ

Vf'Df\TE
J-11~ A(,~

f\Atn

ffJTB~ N. f?
A L-rtr?~1

'"" t-o ft l ft ((yri Q

:Se}
T~ f'ENO

flo~

Reset
T~p~
Flo~.

