
C)

0

0

EUNICE BSD

REFERENCE MANUAL

August 1988

THE WOLLONGONG GROUP, INC.
1129 San Antonio Road

Palo Alto, California 94303
(415) 962-7100

TWX 910-373-2085

Restricted Rights

Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii)
of the Rights in Technical Data and Computer Software clause in FAR 52.227-7013. The Wollongong Group,
Inc., 1129 San Antonio Road, Palo Alto, California 94303, U.S.A.

Copyrights

Copyright © 1982, 1983, 1984, 1985, 1987, 1988 The Wollongong Group, Inc. All rights reserved. This
software and its related documents contain confidential trade secret information of The Wollongong Group, Inc.
No part of this program or publication may be reproduced, ttansmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any fonn or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, except as provided in the license agreement governing the
computer software and documentation or by prior written pennission of The Wollongong Group, Inc., 1129 San
Antonio Road, Palo Alto, California 94303, U.S.A.

Trademarks

EUNICE, MetaPort, REX, and WIN are trademarks of The Wollongong Group, Inc.

DEC, DECnet, VAX, and VMS are trademarks of Digital Equipment Corporation.

UNIX is a registered trademark of AT&T.

0

0

0

0

0

0

EUNICE BSD

REFERENCE MANUAL

CONTENTS

1. INTRODUCTION.. 5
1.1 TIIE MET APO RT CONCEPI' 5
1.2 FEATURES AND BENEFITS OF EUNICE BSD .. 5

2. EUNICE BSD COMMAND AV AII..ABil..ITY 2

3. EUNICE BSD FUNCTIONAL DESCRIPfION
3 .1 FII..E NA.MES .. .
3.2 COERCION

3.3

3.4
3.5

3.2.1 File· 110 .•.••...•••.•.•...•••......••••••••••••....•..••.•••••••.•.•..••.•.•.•••...........•..•....•...•.••....••.•..........
3.2.2 Pil)CS •••.•••••
3.2.3 File Protection
3.2.4
3.2.5

Time
Environment Variables .. .

3.2.6 stat md fstat ~
VFORKnI .. .
3.3.1 Sigrials md Job Control
3.3.2 UNIX Sub-Process Creation .. .
3.3.3 Debugging Aids
UNIX AND VMS OBJECT FILES
UNIX SYS1'EM CALLS
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15

access
alallll .. .
brk
chdir
chmod ...•..•...•...••...•............•..•.......•......................••...
chown · .. .
close
creat
dup
execve .. · .. .
exit
fork .. .
stat md fstat .. .
time and ftime .. .
getenv .. .

3.5.16 getgid
3.5.17 getpgip
3.5.18 getpid
3.5.19 getuid
3.5.20 gtty
3.5.21 ioctl .. ·

iii

30
30
31
31
32
33
34
34
35
35
35
36
37
37
38
38
38
38
38
39
39
39
39
40
40
41
41
41
41
42
42
42
42
42
42
43

3.6

3.5.22 kill .. .
3.5.23 killpg .. ···
3.5.24 link and unlink•...
3 .5 .25 lseek
3.5.26
3.5.27
3.5.28

nice .. .
open
pause .. .

3 .5 .29 pipe .. .
3.5.30 profil .. .
3.5.31 ptrace
3.5.32 read .. .
3.5.33 sbrk. .. .
3.5.34
3.5.35
3.5.36
3.5.37
3.5.38
3.5.39
3.5.40
3.5.41
3.5.42
3.5.43
3.5.44
3.5.45
3.5.46
3.5.47
3.5.48

setpgip
sighold
sigignore .. .
signal
sigpause
sigrelse
sigset .. .
times .. .
umask. .. .
utime .. .
vfork .. .
vread .. .
vtimes .. .
wait .. ·······················
wait3 .. •······· ············ ········ ···· ·············

3.5 .49 write
INTERNAL EUNICE BSD CALLS .. .
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9
3.6.10
3.6.11
3.6.12
3.6.13
3.6.14
3.6.15
3.6.16
3.6.17

cvt_unix_to_ vms .. .
_$bbss .. .
_$call_signal_routine
_$clleck_tty _ownership .. .
_$deliver_signal
_$do_process_group .. .
_$ediv .. .
_$emu.I
_$flush_subprocess .. .
_$fp .. .
_$free_fabrab
_$get_buffer .. .
_$get_data_segII1ent
_$get_defdev .. .
_$get_defdir
_$get_fabrab .. .
_$get_gillt_info .. .

3.6.18 _$get_subprocess
3.6.19 _$Get_ 'ITY _Pgip .. .
3.6.20 _$get_tt_name .. .
3.6.21 _$hash_device_n3IIle

iv

43
43
43
43
44
44
44
44
45
45
45
45
46
46
46
46
46
47
47
47
47
47
47
48
48
48
48
48
48
49
so
50
50
50
so
so
51
51
51
51
51
51
51
52
52
52
52
52
52
52

0

0

0

0

0

0

3.6.22 _$initialize_process_info... 53
3.6.23 _$locc ... 53
3.6.24 _$LTOSTOP _ls_On ... 53
3.6.25 _$lock_forkcomm 53
3.6.26 _$map_forkcomm ... 53
3.6.27 _$move... 53
3.6.28 _$release_data_segment.. 54
3.6.29 _$release_forkcomm ... 54
3.6.30 _$release_subprocess .. 54
3.6.31 _$sbrk_prealloc... 54
3.6.32 _$set_file_info 54
3.6.33 _$Set_TIY_Pgrp.. 54
3.6.34 _$Setup_Tenn_MBX.. 54
3.6.35 _$sigrial_init ... 55
3.6.36 _$Sigrial_Unlnit.. 55
3.6.37 _$Stop_Process... 55
3.6.38 _$Startup_Unix / _$Startup_ Vms... 55
3.6.39 _$Subtract_Quadword... 55
3.6.40 _$Unopen ... 55

4. VMS/UNIX INTERFACE ... 56
4.1 CREA TIN'G VMS AND UNIX OBJECT FII..ES.. 56

4.1.1 VMS Objects and Executables... 56
4.1.2 UNIX Objects and Executables.. 57

4.2 UNIX AND VMS SYMBOL TABLES... 57
4.3 USING UPPER CASE WITH THE cc OR f77 COMPILER.. 57
4.4 SHAREABLE C LIBRARY ... 58
4.5 UNIX LOADER OPrIONS ... 58
4.6 FORTRAN 77 NO'I"ES... 59

4.6.1 f77 Compiler... 59
4.6.2 f77 Vs VMS FORTRAN Compiler .. 59

4.7 COMBINING OBJECTS FROM VARIOUS SOURCE LANGUAGES............................. 59
4.7.1 Loading FORTRAN and C... 59
4.7.2 Loading Pascal and C... 59
4.7.3 Loading VMS Module Using the UNIX C Compiler.. 59

4.8 EXAMPLES OF USEFUL SCRIE>'fS... 60
4.9 UNIX COMPILATION ERRORS.. 60
4.10 VMS LINK/R.UN ERRORS... 63

5. GUIDE TO OPERATIONS PROBLEM SOLVING... 67

6. GLOSSARY... 77

7. LICENSING OBLIGATIONS... 83

V

Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4

EUNICE BSD
REFERENCE MANUAL

LIST OF TABLES

4.3 BSD UNIX Commands Supported by EUNICE BSD
EUNICE Specific Commands
4.3 BSD UNIX Commands Not Supported by EUNICE BSD
V AXNMS File Fonnats
Protection Groups
Protection Codes
UNIX Signals

vi

0

0

0

C
Preface

This manual is intended as a reference for users of EUNICE™ BSD. The manual is divided into seven
sections, as follows:

Section 1: Introduction

Explains the concept of EUNICE BSD as a MetaPort and the advantages of such a
MetaPort.

Section 2: EUNICE BSD Command Availability

Contains a brief description of all of the 4.3 BSD commands, system calls, subroutines,
special files, file formats, games and system maintenance programs supported, and not
supported, under EUNICE BSD.

Section 3: EUNICE BSD Functional Description

This is of particular interest to programmers, as it explains how EUNICE BSD is
implemented on VMS™. It includes information on UNIX® system calls (also
incorporated as EUNICE NOTES to the UNIX Programmer's Reference Manual [PRMJ)
and internal EUNICE BSD calls.

0 Section 4: VMS/UNIX Interface

0

Explains how to interface VMS and UNIX modules by using the options available with the
UNIX assembler and loader in order to produce VMS object code or link VMS shareable
libraries with UNIX programs. This section also provides valuable hints for using the C
and FORTRAN 77 compilers.

Section 5: Guide to Problem Solving

Contains a list (in alphabetical order) of the most frequently experienced customer
problems reported when using EUNICE BSD commands. Many of these problems are the
result of an incorrect VMS or UNIX environment setup. Solutions and clarifications to
these problems are given. This is an excellent section to review when unexpected results
are encountered. (The EUNICE BSD Administrator's Guide has a separate Appendix on
installation problem solving.)

Section 6: Glossary

Section 7: Licensing Obligations

Explains the EUNICE BSD licensing agreements.

vii

Document Conventions

The following conventions are used throughout this guide:

$

%

[]

Bold

Italics

Regular

<< >>

VMS system prompt.

UNIX system prompt

Enclose VMS device name. CTRL key

Literal commands to be entered exactly as shown. (Obseive case sensitivity rules.)

1) Variable parameters, 2) EUNICE BSD commands, or 3) networking commands.

System response to a user's command.

Enclose descriptions of site-specific infonnation.

The VMS DCL (DIGITAL Command Language) converts all file name characters into upper-case
letters before processing. UNIX, however, is case-sensitive, and the majority of the commands are in
lower case. Examples and file names are given in VMS DCL environment fonnat, except in those
cases where the UNIX context is obvious to the reader.

0

Where VMS device names are to be entered, we have assumed a typical case: "DUA0:" for the disk,

0 and "MUA0:" for the tape drive. Please change these command lines as necessary for your system .·.
configuration.

0

viii

0

0

0

Related Publications

Other Wollongong documents in this product set are:

Vol I:
Vol Ia:
Vol II:
Vol III:
Vol IV:
Vol V:

EUNICE BSD User Guide
User's Reference Manual
SCCS Reference Manual
Programmer's Reference Manual
User's Supplementary Documents
Programmer's Supplementary Documents
System Administrator's Guide

To order additional copies of the Wollongong publications listed here, write to:

The Wollongong Group, Inc.
Attn: Sales Dept.
1129 San Antonio Road
Palo Alto, CA 94303

or call:

(415) 962-7200

The following document contains additional infonnation:

VAX/VMS Linker Reference Manual

ix

0

0

0

0

0

0

1. INTRODUCTION

EUNICE BSD

REFERENCE MANUAL

This manual is intended to be a reference guide for users of EUNICE BSD. A separate EUNICE BSD
Administrator's Guide covers installation, installation related problem solving, and EUNICE BSD
administration.

1.1 THE METAPORT CONCEPT

The tenn "porting" refers to the process of transporting software to a particular hardware architecture.
The UNIX operating system has been the object of much porting activity and is now available on
many different hardware architectures. However, there is a major drawback to simply "porting" the
UNIX operating system to an existing hardware architecture. Usually, such hardware already has a
well established vendor supplied operating system and a large body of applications software. Since
existing applications software cannot easily be ported to other environments, the cost of converting to
UNIX is prohibitive for many users, even though it provides the environment desired for future
growth. DEC™ VAX™ computers executing the VMS Operating System are a prime example of
this dilemma.

The Wollongong Group's (Wollongong's) EUNICE BSD system provides transparent access to both
VMS and UNIX environments. This concept of "coexistent environments" is called a MetaPort .
The MetaPort system gives the user access to both VMS and the UNIX tools and utilities, so that
previously written software and files can be executed or manipulated by either UNIX or VMS software
facilities.

EUNICE BSD provides all the inherent features of a native port, plus the ability to concurrently
execute both VMS and UNIX software on a single host CPU. Coexistent environments pennit users
to, at their option, use the UNIX environment, the VMS environment (including any other VMS
software), or a hybrid environment, in which the features of both environments are available.

A further advantage of the EUNICE BSD MetaPort is that the user can take advantage of the excellent
perfonnance capabilities of the VMS Operating System.

1.2 FEATURES AND BENEFITS OF EUNICE BSD

Using EUNICE BSD, the user enjoys the following advantages:

A. A full UNIX environment

B. A full VMS environment

C.

D.

E.

Intercommunication between the VMS and UNIX environments

A minimum of added overhead to the VMS Operating System

A minimum of required special privileges

F. Ability to use the standard VMS file system (RMS) (UNIX pathnames are transfonned into VMS
filenames)

A005003-002 EUNICE BSD

REFERENCE MANUAL

G. Ability to run application programs written for Berkeley 4.3 BSD UNIX under V AXNMS, with O·
the following advantages:

1. Little or no modification to the source code is required

2. Access to a wealth of applications software implemented for UNIX

3. Use of VAX compatible hardware

4. Increased programmer productivity

0

0
A005003-002 EUNICE BSD

0

0

REFERENCE MANUAL 2

2. EUNICE BSD COMMAND AVAILABILITY

The following tables outline the UNIX commands that are supported, EUNICE BSD-specific
commands, and un-supported UNIX commands. Table 2-1 lists 4.3 BSD UNIX commands supported
by EUNICE BSD; Table 2-2 lists EUNICE BSD specific commands; and Table 2-3 lists 4.3 BSD
UNIX commands not supported by EUNICE BSD.

The UNIX User's Reference Manual [URMJ, Section 1 contains EUNICE NOTES, with EUNICE
BSD-specific infonnation where appropriate.

Table 2-1. 4.3 BSD UNIX Commands Supported by EUNICE BSD

Section 1 Commands and Application Programs

intro introduction to commands
adb debugger
addbib create or extend bibliographic database
apply apply a command to a set of arguments
apropos locate commands by keyword lookup
ar archive and library maintainer
as VAX-11 assembler
at execute commands at a later time
awk pattern scanning and processing language
basename strip filename affixes
be arbitrary-precision arithmetic language
biff be notified if mail arrives and who it is from
binmail send or receive mail among users
cal print calendar
calendar reminder service
cat catenate and print
cb C program beautifier
cc C compiler
cd change working directory
checknr check nroff/troff files
chmod change mode
ci check in RCS revisions
clear clear tenninal screen
cmp compare two files
co check out RCS revisions
col filter reverse line feeds
colcrt filter nroff output for CRT previewing

EUNICE BSD A005003-002

0

0

0

0

0

0

3 REFERENCE MANUAL

4.3 BSD UNIX Commands Supported by EUNICE BSD

Section 1

colnn
comm
compress
cp
crypt
csh
ctags
date
dbx
de
dd
deroff
df
diction
diff
diff3
du
echo
ed
efl
eqn
error
ex
expand
expr
f77
false
file
find

Commands and Application Programs

remove columns from a file
select or reject lines common to two sorted files
compress and expand data
copy
encode/decode
a shell (command interpreter) with C-like syntax
create a tags file
print and set the date
debugger
desk calculator
convert and copy a file
remove nroff, troff, tbl and eqn constructs
disk free
print wordy sentences
differential file and directory comparator
3-way differential file comparison
summarize disk usage
echo arguments
text editor
Extended Fortran Language
typeset mathematics
analyze and disperse compiler error messages
text editor
expand tabs to spaces, and vice versa
evaluate arguments as an expression
Fortran 77 compiler
provide truth values
detennine file type
find files

finger user infonnation lookup program
fmt simple text fonnatter
fold fold long lines for finite width output device
fp Functional Programming language compiler/interpreter
fpr print Fortran file
from who is my mail from?
fsplit split a multi-routine Fortran file into individual files
gprof display call graph profile data
graph draw a graph
grep search a file for a pattern

A005003-002 EUNICE BSD

REFERENCE MANUAL

Section 1

groups
head
ident
indent
install
join
kill
last
ld
learn
leave
lex
lint
lisp
liszt
1n
lock
look
lookbib

lorder
lpr
ls
lxref
m4
mail
make
man

merge
mesg
mkdir
m.kstr
more
mset
msgs
mt
mv
newaliases

EUNICE BSD

4.3 BSD UNIX Commands Supported by EUNICE BSD

Commands and Application Programs

show group memberships
give first few lines
identify files
indent and fonnat C program source
install binaries
relational database operator
tenninate a process with extreme prejudice
indicate last logins of users and teletypes
link editor
computer aided instruction about UNIX
remind you when you have to leave
generator of lexical analysis programs
a C program verifier
lisp interpreter
compile a Franz Lisp program
make links
reserve a tenninal
find lines in a soned list
build inverted index for a bibliography,
find references in a bibliography
find ordering relation for an object library
off line print
list contents of directory
lisp cross reference program
macro processor
send and receive mail
maintain program groups
find manual infonnation by keywords
print out the manual
three-way file merge
pennit or deny messages
make a directory
create an error message file by massaging C source
file perusal filter for en viewing
retrieve ASCII to IBM 3270 keyboard map
system messages and junk mail program
magnetic tape manipulating program
move or rename files
rebuild the data base for the mail aliases file

4

0

0

0
A005003-002

5

Section 1

nice
run
nroff
od
pagesize
passwd
pc
pdx
pi
pix
plot
pmerge
pr
printenv
prof
ps
ptx
pwd
px
pxp

0 pxref
ranlib
ratfor
res
rcsdiff
rcsmerge
rdist
refer
rev
rlog
nn
nnail
nndir
roffbib
SCCS
script
sed
sendbug

0
A005003-002

REFERENCE MANUAL

4.3 BSD UNIX Commands Supported by EUNICE BSD

Commands and Application Programs

run a command at low priority (sh only)
print name list
text fonnatting
octal, decimal, hex, ascii dump
print system page size
change password file infonnation
Pascal compiler
pascal debugger
Pascal interpreter code translator
Pascal interpreter and executor
graphics filters
pascal file merger
print file
print out the environment
display profile data
process status
pennuted index
working directory name
Pascal interpreter
Pascal execution profiler
Pascal cross-reference program
convert archives to random libraries
rational Fortran dialect
change RCS file attributes
compare RCS revisions
merge RCS revisions
remote file distribution program
find and insert literature references in documents
reverse lines of a file
print log messages and other infonnation about RCS files
remove (unlink) files or directories
handle remote mail received via uucp
remove (unlink) directories or files
run off bibliographic database
front end for the SCCS subsystem
make typescript of tenninal session
stream editor
mail a system bug report to 4bsd-bugs

EUNICE BSD

REFERENCE MANUAL

Section 1

sh
size
sleep
soelim
sort
sortbib
spell
spline
split
strings
strip
struct
stty
style
sum
symorcler
tabs
tail
tar
tbl
tc
tcopy
tee
test
time
tip
tk
tn3270
touch
tp
tr
troff
true

EUNICE BSD

4.3 BSD UNIX Commands Supponed by EUNICE BSD

Commands and Application Programs

command language
size of an object file
suspend execution for an inteival
eliminate ".so's" from nroff input
sort or merge files
sort bibliographic database
find spelling errors
interpolate smooth curve
split a file into pieces
find the printable strings in an object, or other binary, file
remove symbols and relocation bits
structure Fonran programs
set tenninal options
analyze surface characteristics of a document
sum and count blocks in a file
rearrange name list
set tenninal tabs
deliver the last part of a file
tape archiver
fonnat tables for nroff or troff
photoypesetter simulator
copy a mag tape
pipe fitting
condition command
time a command
connect to a remote system
paginator for the Tektronix 4014
full-screen remote login to IBM VM/CMS
update date last modified of a file
manipulate tape archive
translate characters
text fonnatting and typesetting
provide truth values

6

0

0

0
A005003-002

0

0

0

7

Section 1

tset
tsort
tty
ul
unifdef
uniq
units
uptime
users
uucp
uuencode
uulog
uuname
uuq
uusend
uux
vacation
vgrind
vi
vlp
vwidth
w
wait
wall
we
what
whatis
whereis
which
who
whoami
write
xsend
xstr
yacc
yes

A005003-002

REFERENCE MANUAL

4.3 BSD UNIX Commands Supported by EUNICE BSD

Commands and Application Programs

tenninal dependent initialization
topological sort
get tenninal name
do underlining
remove "ifdef'd" lines
report repeated lines in a file
conversion program
show how long system has been up
compact list of users who are on the system
unix to unix copy
encode/decode a binary file for transmission via mail
display UUCP log files
list names of UUCP hosts
examine or manipulate the uucp queue
send a file to a remote host
unix to unix command execution
return '' I am on vacation'' indication
grind nice listings of programs
screen oriented (visual) display editor based on ex
Fo1mat Lisp programs to be printed with nroff, vtroff, or troff
make troff width table for a font
who is on the system and what they are doing
await completion of process
write to all users
word count
show what versions of object modules were used to construct a file
describe what a command is
locate source, binary, and or manual for program
locate a program file including aliases and paths (csh only)
who is on the system
print effective current user id
write to another user
secret mail
extract strings from C programs to implement shared strings
yet another compiler-compiler
be repetitively affinnative

EUNICE BSD

REFERENCE MANUAL

4.3 BSD UNIX Commands Supponed by EUNICE BSD

Section 2

intro
access
acct
adjtime
bric
chdir
chmod
chown
chroot
close
creat
dup
exec
exit
fcntl
flock
fork
fsync
getdtablesize
getgid
getgroups
getitimer
getpagesize
getpgrp
getpid
getpriority
getrlimit
getrusage
gettimeofday
getuid
ioctl
kill
killpg

EUNICE BSD

System Calls

introduction to system calls and eITOr numbers
detennine accessibility of file
tum accounting on or off
correct the time to allow synchronization of the system clock
change data segment size
change current working directory
change mode of file
change owner and group of a file
change root directory
delete a descriptor
create a new file
duplicate a descriptor
execute a file
tenninate a process
file control
apply or remove an advisory lock on an open file
create a new process
synchronize a file's in-core state with that on disk
get descriptor table size
get group identity
get group access list
get/set value of interval timer
get system page size
get process group
get process identification
get/set program scheduling priority
control maximum system resource consumption
get infonnation about resource utilization
get/set date and time
get user identity
control device
send signal to a process
send signal to a process group

8

0

0

0
A005003-002

0

0

0

9

4.3 BSD UNIX Commands Supported by EUNICE BSD

Section 2

link
lseek
mkdir
open
pipe
profil
ptrace
quota
read
readlink
rename
nndir
select
setgroups
setpgrp
setquota
setregid
setreuid
sigblock
sigpause
sigretum
sigsetmask
sigvec
stat
swapon
symlink
syscall
truncate
umask
unlink
utimes
vfork
vhangup
wait
write

A005003-002

System Calls

make a hard link to a file
move read/write pointer
make a directory file
open a file for reading or writing, or create a new file
create an interprocess communication channel
execution time profile
process trace
manipulate disk quotas
read input
read value of a symbolic link
change the name of a file
remove a directory file
synchronize 1/0 multiplexing
set group access list
set process group
enable/disable quotas on a file system
set real and effective group ID
set real and effective user ID' s
block signals
atomically release blocked signals and wait for interrupt
return from signal
set current signal mask
software signal facilities
get file status
add a swap device for interleaved paging/swapping
make symbolic link to a file
indirect system call
truncate a file to a specified length
set file creation mode mask
remove directory entry
set file times
spawn new process in a virtual memory efficient way
virtually ''hangup'' the current control tenninal
wait for process to tenninate
write output

REFERENCE MANUAL

EUNICE BSD

REFERENCE MANUAL

4.3 BSD UNIX Commands Supported by EUNICE BSD

Section 3

intro
abort
abs
alann
asinh
assert
atof
bstring
byteorder
crypt
ctime
ctype
curses
dbm
directory
ecvt
end
erf
execl
exit
exp
fclose
ferror
floor
fopen
fread
frexp
fseek
getc
getdiskbyname
getenv
getfsem
getgrent
getlogin
getopt
getpass
getpw

EUNICE BSD

Subroutines

introduction to C library functions
generate a fault
integer absolute value
schedule signal after specified time
inverse hyperbolic functions
program verification
convert ASCII to numbers
bit and byte string operations
correct values between host and network byte order
DES encryption
convert date and time to ASCII
character classification macros
screen functions with ''optimal'' cursor motion
data base subroutines
directory operations
output conversion
last locations in program
error functions
execute a file
tenninate a process after flushing any pending output
exponential, logarithm, power
close or flush a stream
stream status inquiries
absolute value, floor, ceiling, and round-to-nearest functions
open a stream
buffered binary input/output
split into mantissa and exponent
reposition a stream
get character or word from stream
get disk description by its name
value for environment name
get file system descriptor file entry
get group file entry
get login name
get option letter from argv
read a password
get name from uid

0

0

0
A005003-002

0

C)

0

11

4.3 BSD UNIX Commands Supported by EUNICE BSD

Section 3

getpwent
gets
getttyent
getusershell
getwd
hypot
ieee
infnan
initgroups
insque
jO
!gamma
lib2648
malloc
math
mktemp
monitor
mp
ndbm
nice
nlist
ns
pause
perror
plot
popen
printf
psignal
putc
puts
qsort
rand
random
regex
scandir
scanf

A005003-002

Subroutines

get password file entry
get a string from a stream
get ttys file entry
get legal user shells
get current working directory pathname
Euclidean distance, complex absolute value
copysign, remainder, exponent manipulations
signals invalid floating-point operations on a VAX (temporary)
initialize group access list
insert/remove element from a queue
bessel functions
log gamma function
subroutines for the HP 2648 graphics tenninal
memory allocator
introduction to mathematical library functions
make a unique file name
prepare execution profile
multiple precision integer arithmetic
data base subroutines
set program priority
get entries from name list
Xerox NS address conversion routines
stop until signal
system error messages
graphics interface
initiate 1/0 to/from a process
fonnatted output conversion
system signal messages
put character or word on a stream
put a string on a stream
quicker sort
random number generator
better random number generator
regular expression handler
scan a directory
fonnatted input conversion

REFERENCE MANUAL

EUNICE BSD

REFERENCE MANUAL 12

4.3 BSD UNIX Commands Suppotted by EUNICE BSD

0
Section 3 Subroutines

setbuf assign buffering to a stream
setjmp non-local goto
setuid set user and group ID
siginterrupt allow signals to interrupt system calls
signal simplified software signal facilities
sin trigonometric functions and their inverses
sinh hyperbolic functions
sleep suspend execution for interval
sqrt cube root, square root
stdio standard buffered input/output package
string string operations
stty set and get tenninal state (defunct)
swab swap bytes
syslog control system log
system issue a shell command
tenncap tenninal independent operation routines
time get date and time
times get process times
ttyname find name of a tenninal
ualann schedule signal after specified time 0 ungetc push character back into input stream
usleep suspend execution for interval
utime set file times
valloc aligned memory allocator
varargs variable argument list
vlimit control maximum system resource consumption
vtimes get information about resource utilization
intro introduction to FORTRAN library functions
abort abnonnal. tennination
access detennine accessibility of a file
alarm execute a subroutine after a specified time
bessel of two kinds, for integer orders
bit and, or, xor, not, rshift, !shift bitwise functions
chdir change default directory
chmod change mode of a file
etime return elapsed execution time
exit tenninate process with status
fdate return date and time in an ASCil string
flmin return extreme values
flush flush output to a logical unit

0
EUNICE BSD A005003-002

13 REFERENCE MANUAL

0 4.3 BSD UNIX Commands Supported by EUNICE BSD

Section 3 Subroutines

fork create a copy of this process
fseek reposition a file on a logical unit
getarg return command line arguments
getc get a character from a logical unit
getcwd get pathname of current working directory
getenv get value of environment variables
getlog get user's login name
getpid get process id
getuid get user or group ID of the caller
hostnm get name of current host
idate return date or time in numerical fonn
index tell about character objects
ioinit change f77 1/0 initialization
kill send a signal to a process
link make a link to an existing file
loc return the address of an object
long integer object conversion
malloc memory allocator

0
perror get system error messages
plot f77 library interface to plot (3X) libraries
putc write a character to a fortran logical unit
qsort quick sort
rand return random values
random better random number generator
rename rename a file
signal change the action for a signal
sleep suspend execution for an interval
stat get file status
system execute a UNIX command
time return system time
topen f77 tape 1/0
traper trap arithmetic errors
trapov trap and repair floating point overflow
trpfpe trap and repair floating point faults
ttynam find name of a tenninal port
unlink remove a directory entry
wait wait for a process to tenninate

0
A005003-002 EUNICE BSD

REFERENCE MANUAL

Section 4

intro
cons
floppy
mt
null
printer
rta
tty
ttyp

EUNICE BSD

4.3 BSD UNIX Commands Supported by EUNICE BSD

Special Files

introduction to special files and hardware support
V AX-11 console interface
console floppy interface
magnetic tape interface
data sink
line printer interface
DECnet virtual tenninal interface
general tenninal interface
TCP /IP virtual tenninal interface
(WINtrCP™ option only)

14

0

0

0
A005003-002

15

0
Section 5

L-devices
L-dialcodes
L.aliases
L.cmds
L.sys
USERFILE
a.out
acct
aliases
ar
core
dbx
dir
disktab
dump
fs
fstab

0 gettytab
group
map3270
mtab
passwd
phones
plot
printcap
remote
rcsfile
stab
tar
termcap
tp
ttys
types
utmp
uuencode
vfont
vgrindefs

0
A005003-002

REFERENCE MANUAL

4.3 BSD UNIX Commands Supported by EUNICE BSD

File Fonnats

UUCP device description file
UUCP phone number index tile
UUCP hostname alias file
UUCP remote command permissions file
UUCP remote host description file
UUCP pathname permissions file
assembler and link editor output
execution accounting file
aliases file for sendmail
archive (library) file fonnat
fonnat of memory image file
dbx symbol table information
fonnat of directories
disk description file
incremental dump fonnat
format of file system volume
static information about the filesystems
terminal configuration data base
group file
database for mapping ascii keystrokes into IBM 3270 keys
mounted file system table
password file
remote host phone number database
graphics interface
printer capability database
remote host description file
format of rcsfile
symbol table types
tape archive file format
terminal capability database
DEC/mag tape formats
terminal initialization data
primitive system data types
login records
format of an encoded uuencode file
font formats for the Benson-Varian or Versatec
vgrind' s language definition database

EUNICE BSD

REFERENCE MANUAL

Section 6

GAMES

Section 7

intro
ascii
environ
eqnchar
hier
mailaddr
man
me
ms
tenn

Section 8

intro
catman
chown
cron
makekey
mkpasswd
sendmail
uucico
uuclean
uupoll
uusnap
uuxqt
vipw

EUNICE BSD

4.3 BSD UNIX Commands Supported by EUNICE BSD

Games

are implemented, BUT NOT SUPPORTED

Miscellaneous

miscellaneous useful infonnation pages
map of ASCll character set
user environment
special character definitions for eqn
file system hierarchy
mail addressing description
macros to typeset manual
macros for fonnatting papers
text fonnatting macros
conventional names for tenninals

System Maintenance

introduction to system maintenance and operation commands
create the cat files for the manual
change owner
clock daemon
generate encryption key
generate hashed password table
send mail
transfer files queued by uucp or uux
uucp spool directory clean-up
poll a remote UUCP site
show snapshot of the UUCP system
UUCP execution file interpreter
edit the password file

16

0

0

0
A005003-002

0

0

0

17

Section I

cvtbackup
eunlogin
eunlogout
filetype
mailinfo
trpatch
unixtovms
version
vms
vmsas
vmsld
vmsmail
vmsname
vmstounix

Section 7

greek

Section 8

cvtuaf
mketcgrp
prtusers

A005003-002

REFERENCE MANUAL

Table 2-2. EUNICE Specific Commands Supported by EUNICE BSD

Commands and Applications Programs

converts between VMS backup fonnat and UNIX fonnat
log into the EUNICE accounting
log out of the EUNICE accounting
provides inf onnation about the file type
tells the user that UNIX mail has been received
trace patch
convert UNIX type file from fixed length to variable length VMS fonnat
provides infomation about the EUNICE BSD version level
call a VMS command from the shell
create VMS object file from cc(1) assembler source
link VMS object files into VMS executable image
mails to VMS mailbox
give equivalent VMS file specification
convert variable length file to fixed length VMS fonnat

Miscellaneous

graphics for extended TIY-37 type-box

System Maintenance

create /etc/passwd from the authorize file
set up groups for EUNICE
provide infonnation about EUNICE process accounting

EUNICE BSD

REFERENCE MANUAL

Table 2-3. 4.3 BSD UNIX Commands Restricted or Not Supponed by EUNICE BSD

Section 1

atq
atnn
chfn
chgrp
chsh
ftp
gcore
hostid

hostname

iostat
jove

lastcomm

logger
login

lpq
lprm

lptest
mh

Code Meaning

I - Implemented but not by this command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WINtrCP

Commands and Application Programs code - comment

print the queue of jobs waiting to be run N - not implemented
remove jobs spooled by at N - not implemented
change password file infonnation N - not implemented
change group N - not implemented
change password file infonnation N - not implemented
ARPANETfilettansrerprogram W - WINtrCP option only
get core images of running processes V - use VMS utilities
set or print identifier of current W - WINtrCP option only
host system
set or print name of current W - WINtrCP option only
host system
report 1/0 statistics R - restricted by VMS
an interactive display-oriented text editor N - not implemented

User Contributed Software
show last commands executed in V - accounting is not done;
reverse order use VMS accountin
make entries in the system log N - not implemented
sign on V - done by DCL, while

eunlogin does EUNICE
spool queue examination program N - not implemented
remove jobs from the line printer N - not implemented
spooling queue
generate lineprinter ripple pattern N - not implemented
Message Handler N - not implemented

User Contributed Software

18

EUNICE BSD A005003-002

0

0

0

0

0

0

19 REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Suppolted by EUNICE BSD

Section 1

netstat
quota
rep
readnews

rlogin
rsh
ruptime
rwho
SU

sysline

systat

talk
telnet
tftp
vmstat

vnews

whois
window

Code Meaning

I - Implemented but not by this command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WINtrCP

Commands and Application Programs code - comment

show network status W - WIN/fCP option only
display disc usage and limits V - use VMS utilities
remote file copy W - WIN/fCP option only
read news articles N - not implemented

User Contributed Software
remote login W - WIN/fCP option only
remote shell W - WIN/fCP option only
show host status of local machines W - WIN/fCP option only
who's logged in on local machines W - WIN/fCP option only
substitute user id temporarily V - see SET UIC, epmi

CAUTION: subprocess
retains UIC

display system status on status V - see VMS MONITOR
line of a terminal utility
display system statistics on a crt V - see VMS MONITOR

utility
talk to another user N - not implemented
user interface to the TELNET protocol W - WIN/fCP option only
trivial file transfer program W - WIN/fCP option only
report virtual memory statistics V - see VMS MONITOR

utility
read news articles N - not implemented

User Contributed Software
DARPA Internet user name directory service W - WIN/fCP option only
window environment N - not implemented

A005003-002 EUNICE BSD

REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supponed by EUNICE BSD

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Section 2 System Calls code - comment

accept accept a connection on a socket W - WIN/fCP option only
bind bind a name to a socket_ W - WIN/fCP option only
connect initiate a connection on a socket W - WIN/fCP option only
gethostid get/set unique identifier of current host N - not implemented
gethostname get/set name of current host N - not implemented
getpeemame get name of connected peer W - WIN/fCP option only
getsockname get socket name W - WIN/fCP option only
getsockopt get and set options on sockets W - WIN/fCP option only
listen listen for connections on a socket W - WIN/fCP option only
mknod make a directory or a special file R - no corresponding data

structure in VMS
mount mount or remove file system V - see VMS MOUNT

command
reboot reboot system or halt processor V - Use VMS command
recv receive a message from a socket W - WIN/fCP option only
send send a message from a socket W - WIN/fCP option only
sigstack set and/or get signal stack context N - not implemented
shutdown shut down part of a full-duplex connection N - not implemented
socket create an endpoint for W - WIN/fCP option only

communication
socketpair create a pair of connected W - WIN/fCP option only

sockets

20

EUNICE BSD A005003-002

0

0

0

0

0

0

21 REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Section 3

gethostbyname
getnetent
getprotoent
getservent
inet
rcmd

resolver
rexec

A005003-002

Subroutines

get network host entry
get network entry
get protocol entry
get setvice entry
Internet address manipulation routines
routines for returning a stream
to a remote command
resolver routines
return stream to a remote command

code-comment

W - WIN/fCP option only
W - WIN/fCP option only
W - WIN/fCP option only
W - WIN/fCP option only
W - WINtrCP option only
W - WIN/fCP option only

W - WINtrCP option only
W - WINtrCP option only

EUNICE BSD

REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Section 4

ace
ad
arp
autoconf

bk

cons
crl
css
ct
ddn

de
dh
dhu
dmc

dmf
dmz
dn
drum
dz
ec
en
ex
fl
hdh
hk
hp
ht

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Special Files code-comment

ACC LH/DH IMP interface W - WIN/fCP option only
Data Translation AID converter R - use VMS for drivers
Address Resolution Protocol W - WIN/fCP option only
diagnostics from the R - use VMS for drivers
autoconfiguration code
line discipline for machine-machine R - use VMS for drivers
communication (obsolete)
V AX-11 console interface R - use VMS for drivers
VAX 8600 console RL02 interface R - use VMS for drivers
DEC IMP-1 lA LH/DH IMP interface R - use VMS for drivers
phototypesetter interface R - use VMS for drivers
DON Standard Mode X.25 lMP interface W - WIN/fCP option only

(known as dda)
DEC DEUNA 10 Mb/s Ethernet interface W - WIN/fCP option only
DH-11/DM-11 communications multiplexer R - use VMS for drivers
DHU-11 communications multiplexer R - use VMS for drivers
DEC DMC-l l/DMR-11 point-to-point W - WIN/fCP option only
communications device
DMF-32, terminal multiplexor R - use VMS for drivers
DMZ-32 tenninal multiplexor R - use VMS for drivers
DN-11 autocall unit interface R - use VMS for drivers
paging device R - use VMS for drivers
DZ-11 communications multiplexer R - use VMS for drivers
3Com 10 Mb/s Ethernet interface R - use VMS for drivers
Xerox 3 Mb/s Ethernet interface R - use VMS for drivers
Excelan 10 Mb/s Ethernet interface R - use VMS for drivers
console floppy interface R - use VMS for drivers
ACC IF-11/HDH IMP interface W - WIN/fCP option only
RK6-l l/RK06 and RK07 moving head disk R - use VMS for drivers
MASSBUS disk interface R - use VMS for drivers
TM-03/fE-16,TU-45,TU-77 R - use VMS for drivers
MASSBUS magtape interface

22

EUNICE BSD A005003-002

0

0

0

0

0

0

23 REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Section 4

hy
icmp
idp
ik

il

imp
imp
inet
ip
ix

kg
lo
Ip
mem
mtio
np

ns

nsip

pcl
ps

pty
qe

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Special Files code - comment

Network Systems Hyperchannel interface W - WIN/fCP option only
Internet Control Message Protocol R - use VMS for drivers
Xerox Internet Datagram Protocol R - use VMS for drivers
Ikonas frame buffer, graphics R - use VMS for drivers
device interface
Interlan Nil 010 10 Mb/s Ethernet W - WIN/fCP option only
interface
1822 network interface W - WIN/fCP option only
IMP raw socket interface W - WIN/fCP option only
Internet protocol family W - WIN/fCP option only
Internet Protocol W - WIN/fCP option only
Interlan NplOO 10 Mb/s R - use VMS for drivers
Ethernet interface
KL-11/DL-l IW line clock R - use VMS for drivers
software loopback network interface W - WIN/fCP option only
line printer R - use VMS for drivers
main memory R - use VMS for drivers
UNIX magtape interface R - use VMS for drivers
Interlan Np 100 10 Mb/s Ethernet R - use VMS for drivers
interface
Xerox Network Systems protocol R - use VMS for drivers
family
software network interface encapsul- R - use VMS for drivers
ating ns packets in ip packets.
DEC CSS PCL-11 B Network Interface R - use VMS for drivers
Evans and Sutherland Picture R - use VMS for drivers
System 2 graphics
device interface
pseudo tenninal driver W - WIN/fCP option only
DEC DEQNA Q-bus 10 Mb/s Ethernet W - WIN/fCP option only
interface

A005003-002 EUNICE BSD

REFERENCE MANUAL 24

Table 2-3. (Cont.) 4.3 BSD UNIX Commands Restricted or Not Supponed by EUNICE BSD

Section 4

rx
spp
tb

tcp

tm
tmscp
ts
tu

uda
udp
up
ut

uu

va
vp
vv

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Special Files code - comment

DEC RX02 floppy disk interface R - use VMS for drivers
Xerox Sequenced Packet Protocol R - use VMS for drivers
line discipline for digitizing R - use VMS for drivers
devices
Internet Transmission Control W - WIN/fCP option only
Protocol
TM-11/fE-10 magtape interface R - use VMS for drivers
DEC TMSCP magtape interface R - use VMS for drivers
TS-11 magtape interface R - use VMS for drivers
VAX-11n30 and VAX-11nso TU58 R - use VMS for drivers
console cassette interface
UDA-50 disk controller interface R - use VMS for drivers
Internet User Datagram Protocol W - WIN/fCP option only
unibus storage module controller/drives R - use VMS for drivers
UNIBUS TU45 tri-density R - use VMS for drivers
tape drive interface
TU58/DECtape II UNIBUS cassette R - use VMS for drivers
interface
Benson-Varian interface R - use VMS for drivers
Versatec interface R - use VMS for drivers
Proteon proNET 10 Megabit ring W - WIN/fCP option only

EUNICE BSD A005003-002

0

0

0

0

0

0

25 REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supponed by EUNICE BSD

Section 5

hosts
networks
protocols
resolver
seivices

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

File Fonnats

host name data base
network name data base
protocol name data base
resolver configuration file
seivice name data base

code - comment

W - WIN/fCP option only
W - WIN/fCP option only
W - WIN/fCP option only
W - WIN/fCP option only
W - WIN/fCP option only

A005003-002 EUNICE BSD

REFERENCE MANUAL 26

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Code Meaning

Section 6

aardvark
adventure
arithmetic

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Games code - comment

yet another exploration game Implemented, Not supported
an exploration game Implemented, Not supported
provide drill in number facts Implemented, Not supported

backgammon the game Implemented, Not supported
banner print large banner on printer Implemented, Not supported
battlestar a tropical adventure game Implemented, Not supported
bed convert to antique media Implemented, Not supported
boggle play the game of boggle Implemented, Not supported
canfield the solitaire card game canfield Implemented, Not supported
chess the game of chess Implemented, Not supported
ching the book of changes and Implemented, Not supported

other cookies
cribbage the card game cribbage Implemented, Not supported
doctor interact with a psychoanalyst Implemented, Not supported
fish play ''Go Fish'' Implemented, Not supported
fortune print a random, Implemented, Not supported

hopefully interesting, adage
hangman Computer version of the game Implemented, Not supported

hangman
hunt a multi-player multi-tenninal game Implemented, Not supported
mille play Mille Bournes Implemented, Not supported
monop Monopoly game Implemented, Not supported
number convert Arabic numerals to Implemented, Not supported

English
quiz test your knowledge Implemented, Not supported
rain animated raindrops display Implemented, Not supported
robots fight off villainous robots Implemented, Not supported
rogue Exploring The Dungeons of Doom Implemented, Not supported
sail multi-user wooden ships and Implemented, Not supported

iron men
snake display chase game Implemented, Not supported
trek trekkie game Implemented, Not supported
wonn Play the growing worm game Implemented, Not supported
worms animate worms on a display Implemented, Not supported

terminal
wump the game of hunt-the-wumpus Implemented, Not supported
zork the game of dungeon Implemented, Not supported

EUNICE BSD A005003-002

0

0

0

C)

0

0

27 REFERENCE MANUAL

Table 2·3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Code Meaning

I • Implemented but not by this command name
N • Not implemented
R • Restricted by VMS
V • Done from VMS (gives some indication of where to look)
W • Separate Wollongong product - WIN/fCP

Section 8 System Maintenance code - comment

XNSrouted XNS Routing Infonnation Protocol daemon N - not implemented
ac login accounting V - use VMS accounting
adduser procedure for adding new users N - not implemented
arff archiver and copier for floppy N - not implemented
arp address resolution display and control W - WIN/fCP option only
bad144 read/write dee standard 144 bad sector V- VMS uses RMS

infonnation
badsect create files to contain bad sectors V - VMS uses RMS
bugfiler file bug reports in folders automatically N - Not implemented
clri clear i-node N - Not implemented
comsat biff server N - Not implemented
config build system configuration files W - WIN/fCP option only
crash what happens when the system R - use VMS utilities

crashes
dcheck file system directory consistency check V - see VMS ANALYZE
diskpart calculate default disk partition sizes V - use VMS utilities
dmesg collect system diagnostic messages V - see errorlog in

to fonn error log SYS$MANAGER
drtest standalone disk test program V - use VMS utilities
dump incremental file system dump V - use VMS BACKUP
dumpfs dump file system information V - use VMS utilities
edquota edit user quotas V - use VMS utilities
fastboot reboot/halt the system V - use VMS file

without checking the disks SHUTDOWN.COM
fingerd remote user infonnation server W - WIN/fCP option only
fonnat how to format disk packs V - use VMS INITIALIZE
fsck file system consistency check and N - not implemented

interactive repair
ftpd DARPA Internet File Transfer W - WIN/fCP option only

Protocol server
gettable get NIC fonnat host tables from a host W - WIN/fCP option only
getty set tenninal mode N - not implemented
halt stop the processor V - use VMS utilities
htable convert NIC standard fonnat host tables W - WIN/fCP option only
icheck file system storage consistency V - use VMS ANALYZE

check or VERIFY utility
ifconfig configure network interface parameters W - WIN/fCP option only

A005003-002 EUNICE BSD

REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Code Meaning

I - Implemented but not this by command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WIN/fCP

Section 8 System Maintenance code - comment

implog IMP log interpreter W - WIN/fCP option only
implogd IMP logger process W - WIN/fCP option only
inetd internet '' super-setver'' W - WIN/fCP option only
init process control initialization V - done by VMS
kgmon generate a dump of the operating N - not implemented

system's profile buffers
lpc line printer control program N - not implemented
lpd line printer daemon N - not implemented
makedev make system special files N - not implemented
mkfs construct a file system V - done by VMS
m.khosts generate hashed host table N - not implemented
mklost+found make a lost+found directory V - use VMS ANALYZE

forfsck
mknod build a special file R - no corresponding data

structure in VMS
mkproto construct a prototype file system N - not implemented
mount mount and dismount file system V - use VMS MOUNT

command
named Internet domain name setver W - WIN/fCP option only
ncheck generate names from i-numbers R - No inodes in VMS
newfs construct a new file system V - use VMS utilities
pac printer/plotter accounting infomiation V - use VMS utilities
ping send ICMP ECHO_REQUEST packets W - WIN/fCP option only

to network hosts
pstat print system facts V - use VMS utilities
quot summarize file system ownership V - use VMS utilities
quotacheck file system quota consistency checker V - use VMS utilities
quotaon tum file system quotas on and off V - use VMS utilities
re command script for auto-reboot and daemons I - done by

STARTEUNICE.COM
rdump file system dump across the network N - not implemented
reboot UNIX bootstrapping procedures V - use VMS file

SHUTDOWN.COM

28

EUNICE BSD A005003-002

0

0

0

0

0

0

29 REFERENCE MANUAL

Table 2-3. (Cont) 4.3 BSD UNIX Commands Restricted or Not Supported by EUNICE BSD

Section 8

renice
repquota
restore
rexecd
rlogind
nnt
route
routed
rrestore

rshd
rwhod
rxfonnat
sa

savecore

shutdown

slattach
sticky

swapon

sync
syslogd
tailed
telnetd
tftpd

timed
timedc
Upt
trsp

tunefs
update

Code Meaning

I - Implemented but not by this command name
N - Not implemented
R - Restricted by VMS
V - Done from VMS (gives some indication of where to look)
W - Separate Wollongong product - WINtrCP

System Maintenance code - comment

alter priority of running processes N - not implemented
summarize quotas for a file system V - use VMS utilities
incremental file system restore V - use VMS BACKUP
remote execution server N - not implemented
remote login server W - WINtrCP option only
remote magtape protocol module N - not implemented
manually manipulate the routing tables W - WINtrCP option only
network routing daemon W - WINtrCP option only
restore a file system dump across the N - not implemented
network
remote shell server W - WINtrCP option only
system status server W - WINtrCP option only
fonnat floppy disks V - use VMS utilities
system accounting V - use VMS accounting

utilities
save a core dump of the V - use VMS utilities
operating system
close down the system at a given V - use VMS
given time SYSSSYSTEM:SHUTDOWN
attach serial lines as network interfaces N - not implemented
executable files with R - see EUNICE
persistent text SUCHMOD.COM
specify additional device for R - VMS takes care of
paging and swapping designating devices
update the super block R - under VMS control
log systems messages N - not implemented
remote user communication server W - WINtrCP option only
DARPA TELNET protocol server W - WIN/fCP option only
DARPA Trivial File Transfer Protocol W - WINtrCP option only
server
time server daemon W - WINtrCP option only
timed control program W - WINtrCP option only
transliterate protocol trace W - WINtrCP option only
transliterate sequenced packet protocol W - WINtrCP option only
trace
tune up an existing file system N - not implemented
periodically update the R - under VMS control
super-block

A005003-002 EUNICE BSD

REFERENCE MANUAL 30

3. EUNICE BSD FUNCTIONAL DESCRIPTION

EUNICE BSD is a software environment which supports Berkeley 4.3 BSD UNIX software under
V AXNMS. It provides a UNIX system call emulation package which allows UNIX programs to run
under VMS with little or no modification. This section describes some of the features and limitations
of EUNICE BSD. With EUNICE BSD, users have the choice of operating in a UNIX environment
using any UNIX shell, or in a VMS environment with the ability to use tools available under UNIX.

File name coercion in EUNICE BSD allows the user to enter file specifications in either UNIX or
VMS fonnat Data coercion in EUNICE BSD allows UNIX programs to read and write both VMS
files and UNIX files and to read VMS directory files as though they were UNIX directories. In order
to provide a complete emulation of a UNIX environment, EUNICE BSD provides for the UNIX
concept of ROOT ("/') and DEVICE (" /dev 11

) directories.

Although EUNICE BSD was primarily designed to provide users with a UNIX environment, VMS
users will find that they can conveniently make use of available UNIX tools without having to learn
how to use UNIX. Furthennore, UNIX users can access VMS tools from the UNIX shells. In
general, both VMS and UNIX file specifications may be used when specifying files to UNIX
programs. Thus, a VMS user could use the UNIX diff program without having to know that it is a
UNIX program.

3.1 FILE NAMES

0

EUNICE BSD uses the standard VMS file system. All references to file names in EUNICE BSD are o
passed transparently through an internal file name parsing routine. If the file name is a VMS file ·
specification, it is passed unchanged to the VMS Record Management Services for processing. If the
file name is a UNIX file specification, it is transfonned into a VMS file name before being passed on
to the VMS Record Management Services. A void using UNIX file names with extensions of
numerical digits only, since VMS interprets more than one numerical extension as a file version
number. For example, filename.} will be transfonned correctly, but filename.1.1 will not. With a name
of filename.1.1, the second .1 will be interpreted as a file version number. VMS logical names are
used to mount UNIX file systems in the UNIX file hierarchy .1 There is, as well, full support for 11

."

and 11
•• " in UNIX file names. To complete the UNIX file hierarchy, EUNICE BSD allows the system

manager to set up pseudo root ("f') and device ("/dev") directories. A reference to /dev/device will
cause EUNICE BSD to look for a VMS logical name mapping device into its equivalent VMS device
name.2

Since there are typically many tenninals on a VAX, an excessive number of VMS Logical Names
would ordinarily be required to map all the tenninal devices from their UNIX names into their VMS
names. In order to remedy this, EUNICE BSD first checks for the device logical name translation and,
if this is not found, EUNICE BSD uses an internal algorithm to convert from a tenninal name of the
fonn /dev/ttyNNN (where NNN is a decimal number) to a VMS tenninal name (e.g., /dev/ttylO
becomes ITB2:). Checking the logical name first allows sites to change names when necessary, but
still provides a default for those sites which have no special requirements.

1. Creating a VMS logical name TWGSUSR which translates to DBA6: will mount the entire file structure on DBA6: as
/usr. EUNICE BSD will then translate the file specification /usr to DBA6:[000000] and /usr/src/cmd/file.ext to
DBA6:[SRC.CMD]FILE.EXT. EUNICE BSD supports the full range of UNJX file names, including multiple extensions
and case-sensitive file names.

2. Creating a VMS logical name NULL which translates into NL.AO: will allow EUNICE BSD users to specify the null
device as either NL.AO: or /dev/null

EUNICE BSD A005003-002

0

C

0

31 REFERENCE MANUAL

Programs may make the root directory the working directory (using chdir) but may not create files in
the root directory. Programs cannot currently make /dev the working directory.

3.2 COERCION

EUNICE BSD perfonns many different kinds of coercion to make the VMS environment appear to be
a UNIX environment to programs running under EUNICE BSD.

3.2.1 File 1/0

Table 3-1 lists the many different fonns in which VMS files may be stored.

Table 3-1. VAXNMS File Fonnats

Fonnat Descriotion
VMS text V aiiable length records with implied new lines.
VMS data Variable or fixed length records.
UNIX data Fixed length 512 byte records (last record may be truncated).
UNIX text This is a UNIX data file, but the "linefeed" character (octal 12)

is interpreted by UNIX programs to mean "End of Line".
Directories Variable length record VMS directory entries.

VMS 1/0 devices Variable or fixed length records, depending on device
characteristics.

When a program running under EUNICE BSD perfonns a read on a file, the data read from the file
through the VMS Record Management Seivices is changed into a representation that UNIX programs
will understand. VMS data records are passed unchanged to the program, although the read request
will be truncated to the length of the record so that users may make use of record length infonnation.
VMS text records have a "linefeed" appended to them before being passed on to the program, so that
UNIX programs can find the end of line. Reads on VMS text files will fill the entire user buffer
unless an End of File is encountered during the read. This is consistent with the way in which files
are read under UNIX. There is no distinction in UNIX between text and data files. Data in UNIX files
is returned to programs unmodified. In all cases, data may be buffered internally to EUNICE BSD in
order that the calling programs may view the data as a byte stream.

VMS directory records are converted into UNIX directory records before being passed on to the
program. Thus, programs like ls (the UNIX directory listing program) run unmodified under EUNICE
BSD. The VMS File Identification Number is treated by EUNICE as a UNIX inode number. This is
provided to programs that request such UNIX specific infonnation. The file name is converted to
lower case and returned as the UNIX file name. The latest (highest) version of the file is returned with
no version number and older (lower) versions of the file are returned as .filename.ext. version.

Reads on VMS devices are coerced according to the device characteristics, although in most cases
EUNICE BSD will not buffer the data coming in from the device. This is consistent with most UNIX
raw devices and should not affect programs being ported to VMS via EUNICE BSD. The standard
UNIX ioctl calls are supported by EUNICE BSD; facilities also exist for writing ioctl handlers for
non-standard devices. The ioctl handlers are used to tum a UNIX ioctl request into its equivalent
device-dependent request on VMS.

When a program running under EUNICE BSD perfonns a write on a file, the data will be
appropriately coerced into the fonn expected in the file. UNIX files (which are the default created by
A005003-002 EUNICE BSD

REFERENCE MANUAL 32

the creat call) are written with the data unchanged, with EUNICE BSD buffering data internally to
give the appearance of a byte stream file. Unlike UNIX, directory files may not be written through 0
EUNICE BSD. All attempts to write to directory files will return an appropriate error code. A write .
to a VMS data file creates a record boundary at the end of the data presented to the write(2) call, thus
allowing users to control record length themselves (e.g., to create valid VMS object files). This is also
the case with writes to most VMS devices, since it is usually desirable to not have EUNICE BSD
perfonn any internal buffering on raw devices. A write to a VMS text file requires EUNICE BSD to
search for "linefeed" characters and break the records up at end of line boundaries. In this case,
internal buffering may be involved to make the file appear as a byte stream.

Since EUNICE BSD uses 512 byte buffers internally, no single line in a VMS text file may be longer
than 511 characters (plus an end of line). If a line being buffered by EUNICE BSD exceeds the 512
byte buffer, EUNICE BSD proceeds to scan backwards from the end of the now full buffer for a word
delimiter (space or tab) at which to break the line. If no such delimiter is found, the line is arbitrarily
broken at the 512 byte boundary. No data is lost in this case, but extra "End of Line" characters may
be seen when the data is read back by a program. This solution was considered preferable to having
the program generate an exception condition and exit In the few instances where programs have
generated very long text lines (e.g., in Lisp), the technique of searching for the last word boundary has
worked quite well.

Since the VMS Record Management Services are used for almost all 1/0 operations, EUNICE BSD
will transparently support 1/0 over DECnet™. In fact, devices and file hierarchies on other DECnet
nodes may be placed in the UNIX file hierarchy of a given machine by the standard EUNICE BSD
method of mounting file structures through VMS logical names.

3.2.2 Pipes

UNIX pipes are implemented using VMS mailboxes (a virtual 1/0 device). The default mailbox size
used by EUNICE BSD is 512 bytes. Therefore, writes to a pipe will block once there are 512 bytes
waiting to be read from the pipe (in UNIX the quantity is 4096 bytes). It is extremely rare for a
UNIX program to use the fact that it may write 4096 bytes without blocking. In this case, the user has
the option of going into the EUNICE BSD data structures at run time and changing the default
mailbox size to 4096 bytes. 3

Since mailboxes provide a more general interprocess communication (IPC) mechanism than UNIX
pipes, a non-UNIX IPC facility is also provided with EUNICE BSD. This facility allows for pipe-like
objects on which the user can perfonn read and write operations identical to those on pipes. The write
operation guarantees that the buffer written will be delivered through the IPC facility as a single atomic
entity (as long as the buffer is no larger than the maximum message length specification for the
mailbox -- which is under the control of the program creating the mailbox).

Unlike UNIX pipes, these objects need not be inherited from a parent process. They are given unique
names which programs may use with the open call to gain access to a given IPC object. Access
pennission to these objects may be specified by the creating program in the same way that access
pennissions to files are specified. The creating program may also give these objects specific names
which are recognized locally (to a specific group of processes) or globally (to the entire system); this
greatly simplifies the task of creating and communicating with specialized setver processes. Typically,
a user might create a uniquely named IPC object, open a globally named IPC object for access to a

0

3. A file of "C" definitions of all internal EUNICE BSD data structmes is included with EUNICE BSD so that users who 0
require the ability to manipulate the internal state of EUNICE BSD or who wish to add/replace routines in EUNICE BSD ·· .. "
may do so.

EUNICE BSD A005003-002

0

0

0

33 REFERENCE MANUAL

server, and then pass the name of its entity in a message to the server for a reply channel.

3.2.3 File Protection

EUNICE BSD translates file protection infonnation and specifications. Tables 3-2 and 3-3 show the
correspondence between VMS protection and UNIX protection:

Table 3-2. Protection Groups

VMS UNIX
(0) owner (u) user
(G) group (g) group
(W) world (o) other
(S) svstem none

NOTE: UNIX has no equivalent to the system protection group.
EUNICE BSD does not display system protection information when
protection information is returned. EUNICE BSD allows all access
privileges to system (although in creat the default VMS protections are
also applied) when protection is specified.

A005003-002 EUNICE BSD

REFERENCE MANUAL 34

Table 3-3. Protection Codes

VMS UNIX
(R) read (r) read
(W) write (w) write
(E) execute (x) execute
(D) delete none

NOTE: UNIX provides no delete protection code. EUNICE BSD does not display delete protection
infonnation when protection infonnation is returned. EUNICE BSD allows delete access to all users
when protection is specified. Thus, delete protection is specified by the write protection of the
directory in which the file resides; this is consistent with the way UNIX handles delete protection.

If umask is not used in the .Login file, files EUNICE BSD creates use the default protection set on the
VMS level. If you do specify um.ask in the .Login file, files EUNICE BSD creates use the protection
specified in umask. In addition, VMS delete bits for the system world, group, and user are also set.

VMS file protection options requested from within EUNICE BSD will supercede UNIX protections;
therefore, if one wishes to apply more versatile protections to files on the system than those possible
with UNIX, one can easily apply VMS protections by using the 'vms set prot= ... ' command. See the
UNIX User's Reference Manual [URMJ, Section 1, vms(l).

3.2.4 Time

Binary time fonnats must also be translated. In UNIX, time is represented as the number of elapsed
seconds since midnight January 1st, 1970 Greenwich Mean Time (GMT). In VMS, time is represented
as 100 nanosecond units from midnight November 17, 1858 with no specific time zone as a reference.
EUNICE BSD translates time fonnats internally for all system calls which deal with time. This makes
time infonnation and specification transparent to UNIX programs.

To deal with the lack of time zone infonnation in VMS, EUNICE BSD uses two system-wide logical
names for acquiring the time zone infonnation required to translate between VMS and UNIX time
representations. The logical name GMr _DSP specifies the displacement west of GMf of the current
site (e.g., in San Francisco GMT_DSP should be assigned as "0-08:00:00", or 8 hours west of GMT).
Negative values (e.g., "0-08:00:00") may be used to specify displacements east of GMT. The logical
name DST _FLAG specifies whether or not daylight savings time is currently in effect. When daylight
savings time is in effect DST_FLAG should be assigned as "ON". When daylight savings time is not
in effect, the DST _FLAG should not exist. These two logical name assignments are generally placed
in the site-specific VMS system startup command file.

3.2.S Environment Variables

The Berkeley 4.3 BSD UNIX environment is correctly emulated by EUNICE BSD. Just as in native
UNIX, environment variables are passed down to sub-processes. Additionally, the routine getenv
checks the VMS logical name tables if a variable is not found in the environment. Thus, the VMS
logical name facility supplements the nonnal 4.3 BSD UNIX environment Note, VMS process logical
name tables do not get passed to subprocesses.

EUNICE BSD A00S003-002

0

0

0

0

0

0

35 REFERENCE MANUAL

3.2.6 stat and fstat

The stat and /stat file status calls also require that VMS dependent data be translated into a form
acceptable to UNIX programs. The VMS File Identification Number becomes the UNIX inode
number. File creation and modification times are translated to UNIX time format. The UNIX file
access time is set to the same value as the modification time, as VMS does not keep track of read
accesses to files. Device major and minor identification numbers are generated by EUNICE BSD such
that the major device identification numbers are unique across VMS devices and the minor device
identification number returns the device unit number. The file protection information is translated as
specified above and file characteristics (i.e., directory file, block oriented device, character oriented
device) are translated into their UNIX equivalent

3.3 VFORKCLI

One of the big problems in producing a UNIX environment under VMS is that UNIX programs tend to
create many sub-processes, while VMS creates sub-processes very slowly. To overcome this
deficiency in VMS, EUNICE BSD does not release a sub-process once it has finished executing.
Every time EUNICE BSD creates a new sub-process, it maps a special Command Language Interpreter
known as vforkcli into the sub-process control region (Pl Space) so that vf orkcli controls the execution
of the sub-process. When the sub-process completes and tries to exit, vforkcli gains control; after
returning all of its resources to VMS vforkcli puts the process into a "hybemation" state. Now, when
EUNICE BSD requires another sub-process it can just resume this sub-process and tell the vforkcli to
execute the program in the subprocess. This is considerably more efficient than creating a new VMS
sub-process for every UNIX sub-process.

In order to minimize the impact of these "kept" processes on VMS system performance, vforkcli
releases all the resources it can to VMS just before going to sleep. vf orkcli also sets up a timer
interrupt for five minutes from the time it goes to sleep. If EUNICE BSD requests a new sub-process
from vforkcli before the five minute timer expires, then the timer is cancelled and vforkcli executes the
sub-process request. If the timer expires, then vf orkcli removes the VMS sub-process from the system.
Thus, unneeded sub-processes will slowly disappear from the system and release all of their resources.
In addition to its role in making EUNICE BSD sub-process creation more efficient, vforkcli is also
used to implement other features of UNIX usually performed by the UNIX kernel.

3.3.1 Signals and Job Control

vforkcli plays a role in the delivery of certain UNIX signals. 4 Table 3-4 describes the various UNIX
signals and the VMS exceptions or mechanisms which are used to implement them:

4. All UNIX signals may be sent to another process using the kill call.

A005003-002 EUNICE BSD

REFERENCE MANUAL 36

Table 3-4. UNIX Signals

Sismal Descriotion VMS mechanism
SIGHUP Tenninal hang up *** not a VMS concept***
SIGINT Interrupt signal VMS Control-C AST mechanism
SIGQUIT Quit signal VMS Control-C AST mechanism

(If SIGINT=SIG_DFL)
SIGllL illegal Instruction VMS Exception handling (Illegal instruction,

ReseJVed Operand, ReseJVed Addr. Mode)
SIGTRAP Trace Trap VMS Exception handling (Trace Trap)
SIGIOT IOT Instruction *** no IOT on VAX ***
SIGEMT EMT Instruction VMS Exception handling

(Compatibility Mode Trap)
SIGFPE Float Point Exception VMS Exception handling (Overflow/Underflow ...)
SIGKil.L Kill *** kill (External Signal) ***
SIGBUS Bus Error VMS Exception handling (Access violation)
SIGSEGV Segmentation Violation VMS Exception handling (Length Violation)
SIGSYS System call error *** not implemented ***
SIGPIPE Broken Pipe *** not yet implemented***
SIGALRM Alann Cock VMS Timer AST mechanism
SIGTERM Software Tenninate *** kill (External Signal) ***
SIGSTOP Stop Process *** kill (External Signal) ***
SIGTSTI> Stop from tty VMS "'Y AST mechanism (vforkcli)
SIGCONT Continue Process *** kill (External Signal) ***
SIGCIIl..D Child Stop/Exit VMS asynchronous MailBox 1/0
SIGTIIN BackGround Read *** generated internally ***
SIGTIOU BackGround Write *** generated internally ***
SIGTINT Input Character VMS asynchronous tty 1/0
SIGXCPU CPU time limit *** not implemented ***
SIGXFSZ File size limit *** not imolemented •••

vforkcli generally deals with the signals involved in the Job Control System. vforkcli sets up and
controls delivery of C'IL-Y, CTL-C, and CTL-T Asynchronous System Traps (AST). The CTL-Y
AST may then generate a SIGTSTP signal for the sub-process, causing it to call back vforkcli to
perfonn a process stop. If the sub-process does not own the tty then both CfL-Y and CTL-C ASTs
are suppressed. The CfL-T AST prints infonnation about the process state. vforkcli also receives
intemipts whenever the sub-process gains or loses ownership of the tty. It then generates an internal
signal to the sub-process infonning the sub-process of its current state of tty ownership (e.g., when the
sub-process attempts to read from the tty it always checks for ownership first. If it does not own the
tty then a SIGTIIN signal is generated). All signals marked as not implemented may, however, be
generated from Programs via the kill UNIX System Call/Program.

3.3.2 UNIX Sub-Process Creation

EUNICE BSD currently implements both the vfork (Berkeley's Virtual Memory efficient version of
fork) and fork system calls for process creation. vfork differs from / ork in that when vfork is called,

0

0

the parent process is put to sleep and the newly created child process executes in the same address o
space as the parent until an exit or exec system call is perfonned. On an exec system call, the child ·.· ·
process gets its own address space and continues. The parent then resumes execution. In almost all

EUNICE BSD A005003-002

0

0

0

37 REFERENCE MANUAL

applications vfork can directly replace fork. There are, however, a few UNIX programs which rely on
the address space copying effect off ork for their correct execution. vf orkcli plays a special role in the
vf ork and fork system calls since it is vforkcli which sets up the sub-process address space according to
the specifications of the vfork or fork system call.

The EUNICE BSD implementation of the vfork and fork calls correctly passes UNIX context {open
files, environment, etc.) to the child process. VMS does not provide the ability to share file position
pointers provided by UNIX. Thus, under EUNICE BSD, inherited UNIX file descriptors are not really
shared with the parent. UNIX programs which rely on this feature will not run correctly on EUNICE
BSD.5

EUNICE BSD emulates the most used fonn of file position pointer sharing, wherein a sub-process
inherits a file descriptor with the file pointer at the end of file. The sub-process appends output to the
end of the file and then returns control to the parent process which will then correctly see the new end
of file position.

3.3.3 Debugging Aids

vforkcli is used to implement the UNIX ptrace and core dump debugging aids. vforkcli responds to
ptrace requests from the parent process and perfonns the requested operation on the sub-process.
vforkcli also intercepts signals in the traced sub-process and stops the sub-process, returning the signal
infonnation to the parent process. Thus, programs like adb and dbx (the UNIX debuggers) will run on
EUNICE BSD. If an untraced program encounters one of the signals which, under UNIX, would
nonnally cause a core file to be produced, vforkcli creates a core file which may then be examined
with adb or dbx.

3.4 UNIX AND VMS OBJECT FILES

When using UNIX compilers under EUNICE BSD, the user has a choice of generating either VMS or
UNIX object files. VMS object files may then be linked with other VMS object modules (from other
VMS languages), while UNIX object files will make EUNICE BSD seem more like a UNIX
environment, and used with UNIX programs which understand the fonnat of UNIX object files. In
order to use the UNIX dbx debugger you must generate UNIX object files, since they contain
debugging infonnation for dbx. 6 The UNIX loader has been modified to also accept VMS shareable
libraries and link them into the resultant image, which allows users to include modules written in VMS
languages by linking them as shareable libraries. The image produced by the UNIX loader is directly
executable by VMS, but also contains a UNIX header (in the second block of the file).

Those sites with UNIX licenses will also be shipped a shareable "C" library which was produced by
compiling all of the routines in libc and combining them into a single shareable library. Since most
UNIX programs consist mainly of the various library routines (like the STDIO package) this results in
a significant savings in both memory usage and disk space. By default, the UNIX loader will include
this shareable image. Refer to Section 4.1 for more infonnation.

5. Fortunately, there are very few UNIX programs which rely on this UNIX feature.

6. With UNIX object files you must also use the UNIX loader Id.

A005003-002 EUNICE BSD

REFERENCE MANUAL 38

3.5 UNIX SYSTEM CALLS

NOTE: Some of these entries have been included as EUNICE NOTES in the UNIX Programmer's
Reference Manual [PRMJ.

This section describes the UNIX system calls emulated under EUNICE BSD. EUNICE BSD follows
the UNIX system call convention of having routines return a value greater than or equal to zero on
success and a value of -1 on failure. The type of system call failure is stored in the global variable
errno. If a VMS error code is also available, then it is stored in the global variable vmserrno. The
following is a list and short description of the system call routines available through EUNICE BSD.

3.5.1 access

status = access (Filename, Accessmode);

access determines if Filename is accessible using the mode Accessmode (O=read,l=write,2=read and
write). The access routine returns O if the file is accessible and -1 if it is not accessible. Toe reason
for inaccessibility is stored in the global symbols errno (for UNIX error return status) and vmserrno
(for VMS error return status).

3.5.2 alarm

old_time_to_go = alann (New_time_to_go);

alarm is used in conjunction with the signal system to deliver a SIGALRM signal at a specified time
from the time of the call to alarm. Specifying New_time_to_go as zero will cancel an outstanding
alarm request. alarm returns the time remaining in any previous alarm call (which is overridden by the
new value).

3.5.3 brk

status= brk (Address);

brk is used to directly set the new upper limit of a program's dynamically allocated data area to
Address. If the call is successful brk returns 0.

Also see sbrk.

3.5.4 chdir

status = chdir (Directory_Name); chdir changes the calling program's current working directory to
Directory_Name.1 Directory_Name is first checked for accessibility before being set as the current
worlcing directory. Both UNIX and VMS directory specifications may be used in Directory_Name.
Status is returned as zero if the chdir is successful or -1 if it is unsuccessful.

7. The directory "/dev" may not be used as an argument to chdir. H the directory "/dev" is used. chdir will remm an error
indicating that the directmy is not accessible.

EUNICE BSD A005003-002

0

0

0

39 REFERENCE MANUAL

3.5.5 chmod

C status = chmod (Filename, Mode);

0

0

chmod changes the mode of file Filename to Mode. The only modes recognized are the various
protection modes for user, group and other. VMS delete access is turned on for all groups and all
access pennissions are turned on for the group SYSTEM.

3.S.6 chown

status = chown (Filename, User_ID, Group_ID);

chown changes the ownership of the file specified by Filename to the owner specified by User _ID and
Group_lD. Use of the chown call is restricted to users with VMS SYSPRV privilege. Since the group
ID is already contained within the user ID under EUNICE BSD, the Group _ID argument to chown is
ignored.

3.S.7 close

status = close (File_Descriptor);

close is used to close an open UNIX file descriptor. If executed in vfork state, the file may not be
truly closed until an exit or exec call is issued. If the file described by File_Descriptor has been
"dup"ed, the file is not closed until all the file descriptors referring to the file have been closed. A
close on a pipe which is open for write access sends an "End of File" message down the pipe, which
is inteipreted at the other end (by EUNICE BSD) to mean that the writer of the pipe has gone away
and all further reads on the pipe should return 0. A close on a pipe which is not "owned" by a
process does not send the "End of File" message. Ownership of a pipe is given to the first sub-process
that inherits the pipe from the creating process.

3.5.8 creat

File_Descriptor = creat (Filename, Mode [,optional EUNICE BSD args]);

creat creates a new file of name Filename and with access modes Mode. Only the protection
infonnation in mode is used and is "and"ed with both the umask and VMS default protections to
produce the real protection for the file.

Unlike UNIX, which will truncate an existing file which is specified in a creat call, EUNICE BSD will
always create a new version of the file (with a higher VMS version number). EUNICE BSD also
allows the specification of extra (optional) arguments to a creat call, allowing the user to specify
additional information to VMS and to take advantage of some EUNICE BSD features. The following
optional arguments may be specified in any combination:8

ctg Create a contiguous file (this argument must be followed by an integer argument
specifying the number of bytes to be allocated to the file).

8. By default (without the optional parameters) EUNICE BSD will create a UNIX file, which consists of fixed length 512
byte records and in which a "linefeed" means End of Line if the data it contains is to be interpreted as text.

A005003-002 EUNICE BSD

REFERENCE MANUAL 40

txt

var

tmd

]version

Create a VMS text file. The file is given the attributes RA T=CR and variable
length records. Writes to this file will be coerced to legal VMS text file writes.

Create a VMS variable length data file. Data written to this file will not be
changed when it is put into the file (i.e., no line splitting is done at "linefeed"s).
This would be the kind of file specified if one were going to write a VMS object
file.

Create a temporary file which will be automatically delete when closed. (The
same effect can be obtained using the unlink call on an opened file, but this
guarantees that the file will really go away, even if the program bombs out).

Force creat to only allow one version of the file.

nversion Force creat to allow multiple versions of the file.

Thus, to specify the creation of a contiguous (1000 byte preallocated) VMS text file which is to be
deleted on close and gives total access to all users, one would call creat as:

File_Descriptor = creat(file,0777,ctg,1000,txt,tmd);

To use the EUNICE BSD IPC, the optional parameter ipc is specified. The creat call then becomes:

File_Descriptor = creat(equivname,protection,ipc,maxmessagesize, prm[or, tmp], &unit);

The string equivname is used to specify a name for the IPC object. protection (same as the mode

0

parameter) is used to put file access type protection on the IPC object. maxmessagesize specifies the o
longest length message (in bytes) which is to be guaranteed to be atomic. Messages longer than this · ··,
length will be split into multiple messages which may arrive through the IPC facility mixed with other
messages. The next argument is specified as either prm or tmp to indicate whether the IPC object is to
be temporary (is automatically deleted when all channels to it are closed) and is to have no system-
wide global equivname associated with it, or is to be pennanent (remains when all channels to it are
closed) and is to be known globally by the name equivname. unit specifies the address of a short
integer to receive the unit number of the mailbox created by this call. The unique name for the IPC
object can be generated by appending the ASCII fonn of the unit number to the string "MBA", and
then appending a ":". Issuing a creat IPC call on a global object which already exists merely opens
another channel to the object (the open call can be used for this as well, but an error will be returned if
the object does not exist).

3.S.9 dup

New_File_Descriptor = dup [dup2] (Old_File_Descriptor);

Both dup and dup2 create duplicate file descriptors. dup2 differs from dup, in that the user specifies
the file descriptor into which Old_File_Descriptor is to be duplicated. Within a program, dup ed file
descriptors really access the same file byte stream (since, intemally to EUNICE BSD, they both point
to the same data structures for manipulating the file). The dup call selects the first free file descriptor
for the result of the duplication.

3.S.10 execve

status= execve [exect] (Filename, Argv, Env);

EUNICE BSD A005003-002

0

0

C)

0

41 REFERENCE MANUAL

execve is the root routine of a family of library routines used to execute a new program image. If
Filename has no extension, both Filename and Filename.exe are checked for. If found, the VMS
image activator is called to map the new image into memory for execution. The new image is checked
to see whether or not it contains EUNICE BSD routines. If it does, the Argv and Env infonnation is
passed to the image. If it does not, the image is called as though DCL had started it A DCL callback
by the image to obtain the argument list will retrieve the first entry in Argv. When running in vfork
state, an exec call causes a real sub-process to be invoked for the execution of the new image (using
file descriptors and the supplied Argv and Env lists) and the parent process to be resumed. If Filename
specifies a VMS text file with execute pennission enabled, the exec call looks at the first line of the
file. A line of the form "# ! filespec" cause the filespec to be used as the shell which is to execute the
file. Otherwise the UNIX error ENOEXEC is returned in errno.

exect is the same as execve but causes the sub-process to enter the stopped/traced state as soon as
possible. This is used by the UNIX debuggers to start a traced sub-process.

3.S.11 exit

exit [_exit] (Status);

These two calls are used to tenninate the execution of a program. exit also calls _cleanup to allow the
Standard 1/0 package in the UNIX "C" library to clean up any internal buffers. If the exit or _exit
calls are executed while in vfork state, the pseudo sub-process executing as the child is tenninated and
the parent resumed. The status returned to the parent process is the completion status of the child.

3.S.12 fork

child_pid = fork();

fork creates a sub-process with an exact copy of the parent's address space. Currently, shared memory
is not inherited by the sub-process (which gets a private copy of the shared memory at the time of the
fork call). It should be replaced with vfork whenever possible.

3.S.13 stat and fstat

status = stat [fstat] (Filename, Stat_Buffer);

stat and /stat return information about files. The stat call tends to be somewhat inefficient since it
must open the file to get the information to be returned. The only difference between the EUNICE
BSD and UNIX versions of the status call is that EUNICE BSD returns the access time with the same
value as the modified time, because VMS does not maintain access information for the file. File sizes
for variable length record files will be slightly greater than the number of bytes actually returned when
reading through the file, due to the fact that the file contains record control information which is
counted in the file size.

3.S.14 time and ftime

Current_ Time = time (&Timeloc);
ftime (&Ftime_Buffer);

A005003-002 EUNICE BSD

REFERENCE MANUAL 42

time and ftime return, respectively, the current time (in seconds from 00:00:00 GMT January 1, 1970)
and detailed information about the current time (time, milliseconds, timezone and daylight savings time O·
flag).

3.S.15 getenv

string = getenv (Environment_String);

getenv looks in the environment and returns the value (a string) of the specified Environment_String.
If the Environment_String is not found in the UNIX environment then the VMS logical name tables
are searched.

3.S.16 getgid

Group_Id = getgid [getegid] ();

getgid returns the VMS Group Identification Code of the process. getegid returns the effective Group
Identification Code, which is always the same as the Group Identification Code returned by getgid.

3.5.17 getpgrp

Process_Group = getpgrp (Process_ID);

getpgrp returns the process group of the specified Process_ID. This is part of the Berkeley Job
Control system and is used in identifying tty ownership.

3.5.18 getpid

Process_Id = getpid();

getpid returns, as its value, the process identification number of the current process. Since VMS
process identification numbers have a process slot re-use count in the high-order 16 bits, the returned
value of getpid will usually be greater than 65535. UNIX programs which rely on the process
identification number for generating temporary file names will have to mask off the high order 16-bits
of the result of getpid.

3.5.19 getuid

User_Id = getuid [geteuid] ();

getu.id returns the process' VMS User Identification Code "or''ed with the VMS Group Identification
Code (after the Group Identification Code has been shifted left by 8-bits), thus generating a unique
number for each user on the system. geteuid returns the same value as getuid.

3.5.20 gtty

status= gtty [stty] (Ftle_Descriptor, Buffer);

EUNICE BSD A005003-002

0

0

0

Q

0

43 REFERENCE MANUAL

gtty and stty respectively retrieve and set teletype parameters if the specified File_Descriptor is
connected to a tenninal. If not, an error is returned. Some of the effects of stty are local to the
process doing the stty call. tty modes like ECHO and RAW are global. Any UNIX programs which
rely on stty changing tenninal parameters globally may not run correctly. stty tenninal parameter
changes are always reflected in other file descriptors open to the same tenninal in the same process.

3.S.21 ioctl

status= ioctl (Ftle_Descriptor, Command, Buffer);

ioctl is used to provide device-dependent access to 1/0 devices. The standard UNIX ioctl commands
are provided with EUNICE BSD. Additional device-dependent commands may be added by users.

3.S.22 kill

status = kill (Process_lD, Signal);

kill sends the signal number Signal to the process specified by Process_ID. kill (0, Signal) sends
Signal to the process' Process Group.

3.S.23 killpg

status= killpg (Process_Group, Signal);

killpg sends the signal number Signal to the Process Group specified by Process_Group. killpg (0,
Signal) sends Signal to the invoking process' Process Group.

3.S.24 link and unlink

status = link (source, destination);
status= unlink (Ftlename);

unlink is used to delete files. On UNIX, the unlink routine decrements a file reference count and
deletes the file only when the file reference count reaches zero. Since VMS does not have reference
counts associated with files, EUNICE BSD assumes that the link count is always one. This causes
unlink to delete the file. unlink will also accept the name of an IPC object with the prm attribute and
delete it.

Since VMS does not support reference counts, the link call caµnot be as general under EUNICE BSD
as it is under UNIX. EUNICE BSD emulates the interaction between link and unlink which is used in
UNIX to perfonn the file rename function. The call to link does nothing but verify the source operand
and remember the destination operand. If an unlink call is made and the Filename operand matches
the link source operand, the file specified by Filename is renamed to the saved destination name.

3.5.2S lseek

new _position = lseek (File_Descriptor, Offset, Whence);

A005003-002 EUNICE BSD

REFERENCE MANUAL 44

lseek positions the read/write pointer in an open file to the byte position specified by Offset and

0 Whence.

Whence=0 ➔ position = Offset
Whence=} ➔ position = current position + Offset
Whence=2 ➔ position = End of File + Offset

On UNIX type files, all lseek operations work correctly. Doing an lseek past the end of file position
causes enough zero bytes to be appended to the file to reach the new position. This has the same
effect as the same operation on UNIX but will be much less efficient if many zero bytes need to be
written. On all files with variable length records (VMS text files, directories and VMS data files with
variable length records) lseek must read through the file to find the desired byte. Random /seeks to
variable length record files can be very inefficient. The most efficient pattern of positioning in a
variable length record file is to order the lseek calls to have increasing byte addresses in the file.
lseeks beyond the end of file on variable length record files is illegal. Writes to variable length record
files may only occur at the end of file position, attempts to write to any other position will cause an
error.

3.5.26 nice

nice (Increment);

nice is used to change the priority of the current process. Every increment/decrement of 4 to nice
becomes a decrement/increment of 1 to VMS. Sub-processes created by fork or vfork inherit the
priority of the parent process. A sub-process can have its priority changed by nice when in the parent O··
vfork state.

3.S.27 open

File_Descriptor = open (Ftlename, Mode);

This routine opens the file Filename for access with the mode Mode (Read=O, Write=l, Read and
Write=2). The file read/write pointer is positioned at byte O of the file.

3.S.28 pause

pause();

This routine places the process in a paused state, usually to await the arrival of a signal. The actual
process state entered is the VMS hibernate state.

3.5.29 pipe

status = pipe (Ftle_Descriptor_Array);

The pipe call creates a UNIX pipe and places a file descriptor open for reading in the first element of
File_Descriptor _A"ay; a file descriptor open for writing is placed in the second element of o· ..
File_Descriptor _Array. Currently, broken pipes are only detected when the process writing to the pipe
closes it.

EUNICE BSD A005003-002

0

0

0

45 REFERENCE MANUAL

3.5.30 profil

profil (Buffer, Buffer_Size, PC_Offset, Scale);

profil controls profiling of program execution. It will produce a PC histogram of program execution in
the buffer Buffer of size Buffer _Size starting from address PC_Ojjset using the scale Scale. Greater
detail on this system call is available in the UNIX Programmer's Reference Manual [PRMJ. The
actual sampling interrupt is derived in a different manner than the UNIX sampling interrupt; however,
sampling is still done every 1160th of a second and produces the correct results.

3.5.31 ptrace

status= ptrace (Request, Process_ID, Address, Data);

ptrace is used by the UNIX debuggers to control the execution of a sub-process. User programs
almost never use this system call. See the UNIX Programmer's Reference Manual [PRMJ for more
detail.

3.5.32 read

number_of_bytes = read (File_Descriptor, Buffer, Buffer_Size);

This routine performs a read operation on the file/device open on File_Descriptor. The maximum
number of bytes to be transferred is Buffer _Size, while the number of bytes actually transferred is
returned as the function value. Depending on the device or type of file being read, the number of
bytes read may be less than the number of bytes requested. In most cases, the number of bytes read
will be the same as the number of bytes requested (except at end of file).

3.5.33 sbrk

address = sbrk (Increment);

sbrk is used to dynamically expand/contract the highest address in PO space used by the program.
Increment specifies the number of bytes to expand (if positive) or contract (if negative), rounded to a
1024 byte boundary. If Increment is zero, the current highest address in the program is returned with
no change in PO space. Since EUNICE BSD uses the VMS $EXPREG system call to expand PO
space, there is no guarantee that allocations using sbrk will be contiguous (both EUNICE BSD and
VMS Record Management Services (RMS) allocate memory for internal data structures and buffers
using the $EXPREG system call).

If you have a program which is sensitive to the state of PO space and requires contiguous allocations in
PO space, link the program with prealloc in /lib/libc.a. This will cause EUNICE BSD to use
preallocated (static) data structures rather than dynamically allocating them at run time. The current
version of prealloc in /lib/libc.a is set up for 10 simultaneously open files. To ensure that RMS does
not touch PO space, a linker options file is required with the specification:

iosegment=NNN ,NOPOBUFS

Where NNN is the number of P 1 space pages to use as RMS buffer space. A number on the order of

A005003-002 EUNICE BSD

REFERENCE MANUAL 46

100 to 250 is quite sufficient. NOPOBUFS is a linker option which ensures that RMS does not touch

0 PO space.

3.5.34 setpgrp

status= setpgrp (Process_lD, Process_Group);

setpgrp is part of the Berkeley Job Control facility and is used to change the process group (and thus
the tty ownership) of the specified process. If Process_lD is specified as 0, the current process is
affected.

3.5.35 sighold

sighold (Signal_Number);

sighold (part of the new signal system) is used to cause the signal specified by Signal_Number to be
held and not delivered until a sigrelse is done.

3.5.36 sigignore

sigignore (Signal_Number);

sigignore (part of the new signal system) is used to cause the signal specified by Signal_Number to be
ignored. 0
3.5.37 signal

old_signal_value = signal (Signal_Number, New_Signal_ Value)

signal is used to enable/disable the delivery of various flavors of UNIX interrupts and to specify the
routines to handle them. A new signal value of SIG_DFL returns the interrupt action to its default
value (cause a program exit). A new signal value of SIG_IFN causes the specified signal to be
ignored. A signal value of SIG_HOLD causes the specified signal to be held. All other values specify
the address of a routine to handle that signal. If the routine address is odd then the even address (1
lower) is used to specify the routine and the signal goes into the hold state after it has been delivered.
Signal handling routines are called in the following way:

signal_handler(signal_number)

3.5.38 sigpause

sigpause (Signal_Number);

sigpause is part of the new signal system. It automatically un-holds Signal_Number and then places the
process in a paused state.

EUNICE BSD A005003-002

0

0

0

0

47 REFERENCE MANUAL

3.S.39 sigrelse

sigrelse (Signal_Number);

sigrelse is part of the new signal system. It releases a previously held signal.

3.S.40 sigset

old_signal_value = sigset (Signal_Number, New_Signal_ Value);

sigset is part of the new signal system. It has the same function as signal, but signal actions are
pennanent and are never reset upon delivery of specified signal.

3.S.41 times

times (Buffer);

times returns CPU time infonnation about the current process and tenninated children of the current
process. The system time infonnation is always set to zero (as VMS includes this in the user time
figure).

3.S.42 umask

oldmask = umask (Complmode);

umask sets the creat file access mode mask. This mask is used to clear bits in the mode infonnation
supplied in the creat call to produce the true creation mode infonnation. Note that in the creat call,
the VMS default protection infonnation is used to further restrict the access to the created file.

3.5.43 utime

utime (file,timep);

utime changes what the system thinks is the last accessed/modified time of a specified file. Since
V AXNMS does not keep track of accessed times, the accessed time is made the same as the modified
time.

3.5.44 vfork

Process_Id = vfork();

vfork is used to create a sub-process in a virtual-memory efficient way. Since the vast majority of fork
calls almost immediately do an exec, it is very wasteful to copy a potentially large virtual address
space to the child process only to have the child process immediately throw it away. To fix this
problem, Berkeley implemented a call which is almost exactly the same as fork but avoids the address
space copying. The vfork call creates a sub-process which shares the address space with its parent On
EUNICE BSD this is not a true sub-process, just a separate thread of execution. There are various
flags for EUNICE BSD which indicate that the process is in vfork state. The parent is placed in a non-

A005003-002 EUNICE BSD

REFERENCE MANUAL 48

running state until the sub-process does an exit or exec call. On the exec call, the sub-process gets its
own address space (into which the new image is placed) and the parent is resumed. The value o
returned from vfork indicates which process is executing (zero means the sub-process is executing, · ..
non-zero -- the process ID of the created sub-process -- means the parent is executing). The vast
majority of UNIX programs can use the vfork call as a direct substitute for the fork call.

3.5.4S vread

number_of_bytes = vread [vwrite](File_Descriptor,Buffer,Buffer_Size);

vread/vwrite is potentially more efficient when doing 1/0 to large files. vread maps data from a file
into virtual memory and vwrite updates the file with only those pages which have been changed. See
the UNIX Programmer's Reference Manual [PRMJ for more details.

3.5.46 vtimes

vtimes (Parent_Info, Child_Info);

vtimes is similar to times but is used to get extended infonnation about the parent and child processes
(e.g., paging infonnation).

3.5.47 wait

Process_Id = wait (&Status);

wait causes the process to suspend until one of its children processes (if any) has tenninated.

3.5.48 wait3

Process_ld = wait3 (&status, Options, Vtimep);

wait3 is similar to wait but includes options to return an error if no tenninated child exists or to return
infonnation about stopped but untraced children. Vtimep is an optional pointer to a vtime structure to
receive extended infonnation about a tenninated child process.

3.5.49 write

number_of_bytes = write (File_Descriptor, Buffer, Buffer_Size);

This routine perfonns a write operation on the file/device open on File_Descriptor. Buffer _Size is the
number of bytes to be transferred, while the number of bytes actually transferred is returned as the
function value. These two values should always agree, unless an error has occurred.

3.6 INTERNAL EUNICE BSD CALLS

0

This section describes internal EUNICE BSD calls available to the programmer who wishes to use
EUNICE BSD internals. Though Wollongong does not recommend such a practice, these routines may Q
be used for better program control.

EUNICE BSD A005003-002

0

0

0

49 REFERENCE MANUAL

3.6.1 cvt_unix_to_ vms

vms_filename_size = cvt_unix_to_vms (UNIX_Filename,VMS_Filename)

cvt_unix_to_vms is a EUNICE BSD internal routine which converts a UNIX file name into its
equivalent VMS file name. All the work of dealing with mounted UNIX file suuctures and converting
/dev/device specifications into the correct VMS device name is handled by this routine. The
UNIX_Filename parameter is a standard null tenninated "C" string. The VMS_Filename parameter is
the address of a char array which will receive the translated file name. The size of this string is
returned as the value of the function Cvt_Unix_To_VMS. To force a null tenninated string use:

size=cvt_unix_to_ vms(unix_filename, vms_filename);
vms_filename[size]=''D';

A005003-002 EUNICE BSD

REFERENCE MANUAL

3.6.2 _$bbss

was_set = _$bbss (&Variable);

50

_$bbss perfonns an uninterruptable test and set on the low order bit of Variable. It returns a boolean
value indicating whether or not the bit was set.

3.6.3 _$call_signal_routine

_$call_signal_routine (QrAST_Flag, Signal_Number, PC_PSL, R0_Rl);

_$call_signal_routine is the common routine for delivering a UNIX signal. ClrAst_Flag, if true,
causes $CLRAST to be called to clear any VMS Asynchronous System Trap state. Signal_Number is
the signal to be delivered. PC_PSL points to the PC/PSL pair and RO_Rl points to the R0/Rl pair.

3.6.4 _$check_tty _ownership

value = _$check_tty _ownership();

EUNICE BSD uses _$check_tty _ownership to call vforkcli to detennine the state of tty ownership for
the current process. value is returned with flags which indicate the conditions
NOT_IN_TTY_PGROUP and LTOSTOP_SET. In addition, the internal flags used by EUNICE BSD
to detennine tty handling are set by the call to _$check_tty_ownership. This routine is not
recommended for use outside the EUNICE BSD runtime system.

3.6.S _$deliver _signal

_$deliver_signal (Signal_Number);

_$deliver _signal is used to deliver the signal number Signal_Number,

3.6.6 _$do_procea_group

_$do_process_group (Process_Group, Process_Descriptors, Routine, Arg);

_$do_process_group is used to iterate through all of the processes in the current process' Process
Group calling Routine to deal with each process based on the arguments in arg. It is also used to
implement such things as killpg.

3.6. 7 _$ediv

quotient = _$ediv (Divisor, Dividend, &Remainder);

_$ediv does a quadword divide (See VAX Architecture Handbook).

EUNICE BSD A005003-002

0

0

0

51 REFERENCE MANUAL

3.6.8 _$emul

0 _$emul (Multiplier, Multiplicand, Addend, Product);

_$emul does a quadword multiply (See VAX Architecture Handbook).

3.6.9 _$8ush_subprocess

_$flush_subprocess (Process_ID, ForkComm_Range);

_$.flush_subprocess is used to delete a bogus sub-process from the global data base. This is most often
called by EUNICE BSD when an inconsistency is detected in the global data base. F orkComm_Range
points to the global section used by the bogus sub-process.

3.6.10 _$fp

frame_pointer = _$fp();

_$fp returns the hardware frame pointer for the current procedure.

3.6.11 _$free_fabrab

_$free_fabrab (F ABRAB);

0 _$/reeJabrab frees the specified FABRAB structure for re-use.

0

3.6.12 _$get_butTer

buffer = _$get_buffer();

_$get_bujfer is used to get a 512 byte buffer from EUNICE BSD.

3.6.13 _$get_data_segment

seg_no = _$get_data_segment (Size,Segment_Range,ForkComm_Range);

_$get_data_segment gets a _shared memory data segment through which one can pass parameters to a
sub-process. seg_no is the returned data segment number. The address range into which the data
segment is mapped is in Segment_Range. ForkComm_Range points to the global section used by the
process to which parameters will be passed via the shared memory segment

3.6.14 _$get_defdev

device_name = _$get_defdev();

_$get_defdev returns a character string which contains the device name of the current working
directory.

A005003-002 EUNICE BSD

REFERENCE MANUAL

3.6.15 _$get_defdir

device_name = _$get_defdir();

_$get_dejdir returns a character string containing the current working directory.

3.6.16 _$get_fabrab

fabrab = _$get_fabrab();

52

_$getJabrab is used to get a new FABRAB structure from EUNICE BSD on which a file may be
opened. The returned FABRAB structure has already been initialized as much as possible; the caller
need only fill in the FAB and RAB fields necessary to access the desired file.

3.6.17 _$get_gmt_info

seconds_from_gmt = _$get_gmt_info();

_$get_gmt_info returns the number of seconds west of GMT and sets up the GMT lnfonnation cache.

3.6.18 _$get_subprocess

process_descriptor = _$get_subprocess (ForkComm_Range);

_$get_subprocess returns the process_descriptor of a sub-process which can then be used to complete
a fork or vfork operation. F orkComm_Range points to the global section used by the sub-process
which will be used to complete a fork or vfork operation.

3.6.19 _$Get_ TTY _Pgrp

TIY _Pgrp = _$Get_ TTY _Pgrp (ForkComm_Pointer);

_$Get_ITY _Pgrp returns the Process Group to which the tty belongs. F orkComm_Pointer is the
address into which the FORKCOMM global section has been previously mapped.

3.6.20 _$get_tt_name

tty _name = _$get_tt_name();

_$get_tt_name returns a character string containing the name of the controlling tty for this process.

3.6.21 _$hash_device_name

hash = _$hash_device_name (F ABRAB);

_$hash_device_name looks at the device name in the supplied FABRAB structure and returns a 32-bit
value with the low order 16-bits set to the major/minor ID number for the device and the high order
16-bits set to the device unit number.

EUNICE BSD A005003-002

0

•

0

53 REFERENCE MANUAL

3.6.22 _$initialize_proce~_info

0 _$initialize_process_info (Process_Descriptor);

_$initializeJJrocess_info should be called only by the EUNICE BSD runtime system. It is used to
initialize global infonnation about a process which is using the global process (FORKCO:M:M:) data
base for the first time.

3.6.23 _$1occ

nbytes = _$locc (Search_Cllaracter, String_Length, Address);

_$locc searches for Search_Character in the string specified by String_Length and Address and returns
the number of characters left in the string. (See the VAX Architecture Handbook.)

3.6.24 _$LTOSTOP _Is_ On

status = _$LTOSTOP _Is_ On();

_$LTOSTOP _ls_On returns a true or false value in status to indicate whether or not LTOSTOP mode
is on for the controlling tty of this process.

3.6.25 _$1ock_forkcomm

0 _$1ock_forlccomm (ForlcComm_ptr);

0

_$lockJorkcomm locks FORKCOMM shared memory so that the caller may then update infonnation
there. ForkComm_Ptr should point to the place in memory where the FORKCOMM shared memory
has been mapped. _$lockJorkcomm waits for the shared memory to be in an unlocked state before
locking it. Various timeouts also exist to prevent resource lockout should someone lock the shared
memory and never release it.

3.6.26 _$map_forkcomm

forkcomm_ptr = _$map_forkcomm (ForkComm_Range);

_$mapJorkcomm maps the FORKCOMM shared memory into the ForkComm_Range specified area of
memory. If ForkComm_Range[0] is 0, then the mapping is done at the current end of PO space using
$EXPREG.

3.6.27 _$move

_$move (Length, Source, Destination);

_$move moves Length bytes from Source to Destination. See the VAX Architecture Handbook for the
MOVC3 instruction.

A005003-002 EUNICE BSD

REFERENCE MANUAL

3.6.28 _$release_data_segment

_$release_data_segment (Segment_Number, ForkComm_Range);

_$release_data_segment is used to give a global data segment back to the system for re-use.

3.6.29 _$release_forkcomm

_$release_forkcomm (ForkComm_Ptr);

_$releaseJorkcomm unlocks the FORKCOMM global memory.

3.6.30 _$release_subprocess

_$release_subprocess (Process_lD, ForkComm_Range);

54

_$release_subprocess is used to release the process specified by Process_ID once it has been allocated
for a fork or vfork operation. $release_subprocess is usually used when an error occurs after a sub
process has been allocated. ForkComm_Range is a standard VMS Range Descriptor for the area in
which the FORK.COMM global section has been mapped.

3.6.31 _$sbrk_prealloc

_$sbrk_prealloc (Npages);

_$sbrkJJrealloc uses $EXPREG to preallocate Npages of virtual memory for use in the sbrk system
call. It can be used to ensure contiguous sbrk allocation.

3.6.32 _$set_file_info

_$set_file_info (File_Descriptor, FABRAB);

_$setJile_info looks at the information in the supplied FABRAB structure for the file on
File_Descriptor and sets up various flags inside the FABRAB structure to allow EUNICE BSD to
correctly coerce data "coming from/going to" the file into a byte stream.

3.6.33 _$Set_ TTY _Pgrp

_$Set_TIY _Pgrp (Process_Group);

_$Set_ITY_Pgrp changes the ownership of the process' controlling tty to Process_Group.

3.6.34 _$Setup_ Term_MBX

_$Setup_Term_MBX();

0

0

_$Setup_Term_MBX sets up the process termination mailbox so that child processes can report their 0
tennination to this process. EUNICE BSD uses _$Setup_Term_MBX to make sure that a termination i .·.·

mailbox exists before any sub-processes are created.

EUNICE BSD A005003-002

0

0

0

55

3.6.35 _$signal_init

_$signal_init();

EUNICE BSD uses _$signal_init to initialize the signal sub-system.

3.6.36 _$Signal_ Unlnit

$Signal Unlnit();

REFERENCE MANUAL

_$Signal_Unlnit is used to return the signal system to its uninitialized state. _$signal_init can then be
used to re-initialize the signal system.

3.6.37 _$Stop_Process

_$Stop_Process (Signal_Number);

_$Stop_Process stops the current process and repons the signal number Signal_Number to the parent
process. EUNICE BSD uses _$Stop _Process to stop a process when it tries to do tty 1/0 without
owning the tty.

3.6.38 _$Startup_Unix / _$Startup_ Vms

_$Startup_Unix Q;
$Startup Vms0;

These two routines are called by the "C" startup code (in crtO) to start the EUNICE BSD world from
either from DCL or from a UNIX exec call.

3.6.39 _$Subtract_Quadword

$Subtract Quadword (Subtrahend, Difference);

_$Subtract_Quadword perfonns a quadword subtract of Subtrahend from Difference.

3.6.40 _$Unopen

_$Unopen (File_Descriptor);

_$Unopen causes the file on File_Descriptor to be closed in such a way that when any 1/0 operation is
later done on File_Descriptor the file is automatically re-opened.

A005003-002 EUNICE BSD

REFERENCE MANUAL 56

4. VMS/UNIX INTERFACE

EUNICE BSD allows a VMS program to call UNIX utilities or source code developed under UNIX. 0
Conversely, EUNICE BSD allows a UNIX program to utilize VMS services.

This section describes how to generate object files which can be linked with VMS style objects into
VMS executables or with UNIX style objects into UNIX executables. There is also a description of
how to include the C library in a VMS program, and conversely, how to include VMS shareable
executables in a UNIX C program. lnfonnation is also included about the shareable C library, which
can be accessed either from UNIX style objects or from VMS style objects. Another section describes
how objects from various source code environments can be combined together into UNIX or VMS
style executables. Finally, this section presents some examples of simple cshell scripts which can be
used as a template for creating different style objects and executables, and includes descriptions df
errors and possible problem solving.

4.1 CREA TING VMS AND UNIX OBJECT FILES

The C and Fortran compilers, cc(1) and j77(1) provided with EUNICE BSD can produce a choice of
UNIX or VMS style objects, which allow C or Fortran programs created with EUNICE BSD to be
linked with objects generated from either VMS or 4.3 BSD UNIX compilers. Separate assemblers and
loaders exist for the two object styles. When invoked, the C and Fortran compiler reads two
environmental variables (AS_IMAGE and LD_IMAGE) to determine which object style is desired, and
stans the appropriate assembler and loader. The value of the variable AS_IMAGE detennines which
assembler will be started, while LO _IMAGE detennines the loader to be used. The same source file
can be used for either object type, since the C or Fortran syntax is the same as on a native Berkeley
4.3 BSD system.

Notice that the ability to determine which object style will be used is unique to cc(1) and P7(1)
compilers. Other compilers like pc(1) (Pascal) or lisp(1) (Lisp) currently do not have this ability. If you
need, for example, to link Pascal programs with the objects developed under VMS, see examples of
Cshell scripts in Section 4.8.

4.1.1 VMS Objects and Executables

In order to link routines created under EUNICE BSD with VMS objects, a VMS style object file must
be generated from the source files for the routines.

The following two environment variables must be set to create VMS objects:

setenv AS_IMAGE /usr/eun/vmsas
setenv LD_IMAGE /usr/eun/vmsld

The program vmsas(1) is a modified UNIX assembler which produces VMS object code while the
program vmsld(1) converts a UNIX loader argument list into a valid argument list for the VMS linker.
cc(1) and P7(1) then use these programs to create VMS Style objects and to load VMS object code.
Notice that requesting VMS objects results in the use of compilers provided with EUNICE BSD (not
the VMS C compiler).

It is suggested that a csh(1) alias is used to set the environment variables to create VMS objects. Add
the alias to the .login file (see the template file in /usr/skel directory) and then use vmsobj to set the
variables, as indicated below:

#Have compilers use VMS assembler and loader.

EUNICE BSD AOOS003-002

0

0

C

0

0

57 REFERENCE MANUAL

alias vmsobj 'setenv AS_IMAGE /usr/eun/vmsas;
setenv LD_IMAGE /usr/eun/vmsld'

Note that ld(1) does not look at the environmental variables set by unixobj or vmsobj to detennine
whether UNIX or VMS objects are desired. Use cc(1) or j77(1) to do the load phase.

See Sections 4.8 and 4.9 for examples of simple Cshell scripts, which create VMS style objects and
executables, and for an explanation of possible user's errors.

Should problems occur, use the debugging option (-d) with cc(1) or /17(1) compiler, which also
displays the assembler and loader used with all accompanying files.

4.1.2 UNIX Objects and Executables

To link routines created under EUNICE BSD with UNIX objects, a UNIX style object file must be
generated from the source files for the routines. The following two environmental variables must be
unset:

unsetenv AS_™AGE
unsetenv LD_IMAGE

When the environmental variables AS_IMAGE and LD_IMAGE are not set, cc(]) and f17(1) will use
the standard /bin/as assembler to create UNIX style objects and the standard loader /bin/Id to load
UNIX objects. The environmental variables AS_IMAGE and LD_IMAGE are not set up at EUNICE
BSD system startup time; the UNIX assembler and loader are used by cc(1) or f17(1) as a default.

It is suggested that the following csh(1) alias be used to set the environment variables to create UNIX
objects. Add the alias to the .login (see the template file in /usr/skel for reference) and then use
unixobj to unset the variables, as shown below:

#Have compilers use UNIX assembler and loader
alias unixobj 'unsetenv AS_IMAGE; unsetenv LD_IMAGE'

See Sections 4.8 and 4.9 for explanation of possible user's problems and simple Cshell scripts used
during compilation.

4.2 UNIX AND VMS SYMBOL TABLES

The VMS and UNIX assemblers and linkers generate symbol tables which have different fonnats.
Programs which need to use the symbol tables, such as the debugger, adb and dbx can be used only
with UNIX symbol tables.

4.3 USING UPPER CASE WITH THE cc OR rn COMPILER

Note that UNIX is case sensitive, while VMS is not case sensitive. This means that source code
compiled in the UNIX environment which has upper and lower case variables will result in symbols
with mixed cases. Whenever capital letters are to be used in source code (such as VMS· system calls)
be sure that the case conversion is turned off. This is true when UNIX or VMS objects are being
created by the EUNICE BSD compilers or the VMS linker is used with VMS objects created by the
EUNICE BSD compilers.

Nonnally, one of the EUNICE BSD system startup files (EUNICE.COM) sets this conversion (used by
the EUNICE BSD hashing mechanism) "ON".

A005003-002 EUNICE BSD

REFERENCE MANUAL

When the compilations are done in the UNIX environment using csh, do the following:

% setenv UNIX_ASSEMBLER_CASE_CONVERT OFF

Or if linking from the DCL environment, use the command:

$ DEFINE/JOB UNIX_ASSEMBLER_CASE_CONVERT OFF

which defines case conversion at the job level.

4.4 SHAREABLE C LIBRARY

58

One of the highly useful features of EUNICE BSD is the existence of the shareable C library in
addition to the standard C library. If there are any changes in the contents of the shareable C library,
the user does not need to relink all the programs which make calls to this library. Relinking of
programs is always required when a change occurs in the standard C library.

4.S UNIX LOADER OPTIONS

The option -noshare will cancel the (generally useful) default which loads the shareable "C" library
and will cause all routines to be loaded from the standard "C" library. This produces an image with
no dependencies on outside images and which can then be run on vanilla VMS systems. The -noshare
option is also important if the user is linking code which manipulates the EUNICE BSD runtime
system (e.g., code which contains #include <eunice/eunice.h>). It is possible that the module you are

0

trying to link will generate multiple definition of other global symbols, causing the UNIX Id loader to O··.
repott multiple definition errors for symbols such as e"no, vmserrno and environ. It is not unusual for
the VMS LINKER to generate multiple warning messages when object modules define global symbols
more than once (e.g. two different files declare the variable inti; globally.) These error messages are
only warnings; the VMS LINKER will still link things correctly. Ideally, programs should declare a
variable as global only once and "extern" it everywhere else.

The options file TWG$USR:[LIBVMS]SHARE.OPT allows the VMS LINKER to obtain the
shareable "C" library when linking VMS style objects, as follows:

$ LINK FILE1,FILE2,FILE3,TWG$USR:[LIBVMS]SHARE/OPT

The option -nopObufs will set the NOPOBUFS flag in the VMS image header and will set the
IMGIOCNT to 250, which will keep RMS from intruding on PO space in those programs which are
sensitive to the state of PO space. Programs which do their own memory allocation and want to see
contiguous sbrks are no1U1ally sensitive to the state of PO; very few UNIX programs (e.g., adb and dd
) have this requirement Including /lib/prealloc.o for UNIX object files or /usr/libvms/prealloc.obj for
VMS object files in an Id command will keep EUNICE BSD from intruding on PO space by
preallocating all of the internal EUNICE BSD data structures.

The option -notraceback will provide an image that has no traceback capability so that the image can
be installed as a privileged program in VMS.

The flag -vSHAREABLE_IMAGENAME is responsible for including the shareable image
SHAREABLE_IMAGENAME in the load. To get VMS shared libraries into programs generated by
using UNIX object code, create a VMS shareable image with the VMS object modules and then link o.
the UNIX object modules with this shareable image.

EUNICE BSD A005003-002

0

0

0

59 REFERENCE MANUAL

Global symbols defined by UNIX object modules will override global symbols in shareable images,
allowing users to supply procedures with the same names as those in shareable images (in particular
the shareable "C" library) without creating name conflicts.

4.6 FORTRAN 77 NOTES

4.6.1 f77 Compiler

The P7(1) Compiler automatically searches libraries in the following order: /lib/crtO.o,
/usr/lib/libF77.a, /usr/lib/lib/77.a and /lib/libc.a. If you need to specify these libraries in the load
sequences, load them in this order. If using /usr/eun/vmsld, load the corresponding VMS libraries,
(e.g., /usr/libvms/libF77.olb). VMS object libraries are found in /usr/libvms, whereas the UNIX
objects libraries are found in /usr/lib.

4.6.2 f77 Vs VMS FORTRAN Compiler

EUNICE BSD supplies the P7 (standard UNIX FORTRAN) compiler. Although there is no
documentation in any of the accompanying UNIX manuals on standard ANSI FORTRAN, the article
titled "A Portable FORTRAN 77 Compiler" (in the UNIX Programmer's Supplementary Documents
[PSI]) lists the differences between standard ANSI (f66) and P7.

Although the VMS FORTRAN compiler offers more features than P7, such as parameter statements,
variable name length (31 characters for VMS FORTRAN versus 6 characters for p7), and column size
(80 characters versus 72), programs written using p7 are much more portable than those written with
the VMS FORTRAN compiler.

4.7 COMBINING OBJECTS FROM VARIOUS SOURCE LANGUAGES

4.7.1 Loading FORTRAN and C

When combining FORTRAN and C source code, use the p7 compiler as the loader. The p7 compiler
is aware of the C compiler, but the C compiler is unaware of FORTRAN.

4. 7 .2 Loading Pascal and C

Note that the Pascal program does not initialize its variables to O at the beginning of runtime, which
can occasionally cause problems if C subroutines are called from the Pascal programs and the Pascal
variables are not set to 0. The problem can be solved by using a C main(); routine which calls the
Pascal program. By using the C main(); routine, all variables will be set to Oat runtime.

4.7.3 Loading VMS Module Using the UNIX C Compiler

If you create a VMS FORTRAN or Pascal module and want to load it under the UNIX C Compiler,
create a C main(); routine which calls the Pascal or FORTRAN subroutine, because
/usr/libvms/crtO.obj expects to branch to C main();. If a C main(); routine is not created, an error
message will indicate a bad magic number.

A005003-002 EUNICE BSD

REFERENCE MANUAL 60

4.8 EXAMPLES OF USEFUL SCRIPTS

Case 1.

Solution:

Case 2.

Solution:

A Pascal program (or any other program except C or FORTRAN) needs to call VMS
object.

Currently the pc(1) compiler does not have the ability to distinguish between UNIX
and VMS style objects and variables. The following script presents a solution to this
problem:

Call Pascal compiler, but do not do any assembly
pc -S pascal_subroutine.p
Set variables, so that VMS style assembler and loader
will be used by cc(l)
vmsobj
Let C compiler to do the rest of the work
cc c_main_routine.c pascal_subroutine.s vms_called_by _pc.obj

A UNIX C program uses a VMS system call.

Use the following script:

Set case conversion off
setenv UNIX_ASSEMBLER_CASE_CONVERSION OFF
Set variables, so that assembler and loader will produce
VMS style objects and executables
vmsobj
Call C compiler
cc c_main.c c_subroutinel.c c_other.c

4.9 UNIX COMPILATION ERRORS

The following are examples of the errors which the user may see during compilation. If you are not
able to find an answer to your problem among them, see the UNIX User's Reference Manual [URMJ,
Section 1 and UNIX Programmmer' s Supplementary Documents [PSI] and [PS2] for references to the
compiler used.

EUNICE BSD A005003-002

0

0

0

0

0

0

61 REFERENCE MANUAL

Symptom 1. load errors: undefine main_0003x:

situation: DEC object modules or programs calling UNIX C programs were loaded using ld(1) as
the loader with vmsobj set. Id(1) does not recognize the setting of the environmental
variable LD_IMAGE, which was done with the alias vmsobj (See Section 4.2). The
load must be done by cc(1), not Id(1).

A .obj file may have been created with DEC compilers. Now these objects are to be
loaded under EUNICE BSD, with some additional code created with vmsobj.

solution: cc(1) will automatically load crtO in as the first file in the load sequence.
/usr/libvms/crtO.obj expects to branch to C main. A C main program should be created
calling the main DEC object program.

main()
{

/"'** this is the pseudo C main program
calling the DEC FORTRAN main program ***/

dec_main_object();

example % vmsobj
% cc main.c dec_main_object.obj

Symptom 2. bad magic number:

situation: An attempt was made to load a VMS library with a UNIX object module.

solution: cc(1) or j77(1) uses the UNIX loader by default UNIX objects cannot nonnally be
linked with VMS objects. To get the special EUNICE BSD loader to create VMS
objects with cc(1) or /77(1), refer to Section 4.2 and the alias given in the login files in
/usr/skeI.

Example % vmsobj
% cc unix_first.obj unix_second.obj /usr/libvms/libm.olb

Symptom 3. premature eof:

situation: The UNIX loader is probably being used on a VMS object file. This would happen if
Id(1) was used on objects created by cc(1) with vmsobj set or if cc(1) was used without
setting vmsobj and linked with VMS objects.

solution: The ld(1) command doesn't check the environmental variables to detennine whether
VMS or UNIX objects are desired. If using the alias vmsobj, then use the cc(]) or
j77(1) command. The assembler and loader for VMS style objects and executables will
be used by them for both the compile and link phase.

A005003-002 EUNICE BSD

REFERENCE MANUAL 62

Symptom 4. Id: premature eof

situation: unixobj and the/77 compiler were used on VMS FORTRAN source code. 0
solution: Unlike the VMS FORTRAN compiler, j77 is very particular about the filename

extension used on the source file. In order for j77 to function properly, use .f, not for.
Simply rename the file with the f extension.

example: % mv test.for test.f
% f77 test.f

Symptom 5. link w/illrectype illegal record type (32) in module# file for

Every record will show as an illegal record type.

situation: j77(1) is being used with vmsobj set. File names have 'for' extension.

solution: Rename the files with I extension.

Symptom 6. undefined symbols, _get_fderr :

situation: UNIX C is calling VMS system calls.

solution: Make sure that UNIX_ASSEMBLER_CASE_CONVERT is undefined.

% setenv UNIX_ASSEMBLER_CASE_CONVERT OFF

If code which manipulates EUNICE BSD runtime system was created, make
sure that /usr/include/eunice/eunice.h was included.

Symptom 7. error: 0 byte record

situation: An attempt was made to run interactive VMS executables from inside the csh.

solution: Use vms to run interactive programs from the shell. Alternately, use a command file
which includes the following:

EUNICE BSD

$ DEFINE SYS$INPUT 'F$LOGICAL("SYS$0UTPUT")
$ 'Pl 'Pl
$ EXIT

For instance, the user may want to set up an alias and then refer to the alias to execute
the program. Notice that special characters in the VMS file specification will have to be
escaped. For example, to run 'myprog':

% alias myprog 'vms DRAl: \[dave\]myprog'
% myprog

A005003-002

0

0

63 REFERENCE MANUAL

Symptom 8. Id: readit: cannot open 0 situation: An attempt was made to run j77(1) or cc(1) on a file which does not have an extension.

solution: Unlike VMS compilers, UNIX compilers require an extension to be added to the
filename. For example, P7(1) requires a / and cc(1) requires a .c extension. Be sure
that proper extensions are used with a given compiler.

Symptom 9. symbol table overflow

situation: The compiler was used on large, complex programs.

solution: Any compiler feeds its symbol infonnation into a table whose size is detennined and
hard-coded by the assembler. The solution is to break the program up into smaller
modules.

Symptom 10. multiply defined symbols: vmserrno, e"no, environ

situation: An attempt has been made to load UNIX object modules which manipulate the EUNICE
BSD runtime system (e.g., code with #include <eunice/eunice.h> in it).

solution: Since the UNIX loader will not produce an executable with multiply defined symbols, it
is necessary to load the programs with the option -noshare set. This will cancel the
default which loads the shareable C library and cause all routines to be loaded out of the
standard C library.

0 4.10 VMS LINK/RUN ERRORS

0

This section describes problems which can occur during link or runtime. (See the UNIX User's
Reference Manual [URMJ, Section 1 vmsld(1) or the VAX/VMS Linker Reference Manual for further
infonnation.)

Symptom 11. no transfer address

situation: An attempt was made to link VMS FORTRAN with UNIX C compiled under vmsobj.

solution: There is no transfer vector; use the options file supplied, which includes both the
shareable C library, the standard C library, crtO.obj, and sets base=O.

A005003-002

$ LINK TWG$USR:[LIBVMS]CRT0.OBJ FILEl, FILE2,
TWG$USR:[LIBVMS]:LIBC/LIB

Or, put TWG$USR:[LIBVMS]:CRT0.OBJ and /usr/libvms/libc.olb in the VMS link:

$ LINK FILEl, FILE2, TWG$USR:[LIBVMS]SHARE/OPT

EUNICE BSD

REFERENCE MANUAL

Symptom 12. multiple transfer address

situation: An attempt was made to link VMS FORTRAN with UNIX C compiled under vmsobj

solution: See above solution for no transfer address.

Symptom 13. SYSTEM F _opdec,opcode reseived to DIGITAL fault at pc=00003000

PSC=03COOC4,
trace-F-traceback symbolic
stack dump
module name routine line Rel recs
crtO $$C_text0

64

situation: FORTRAN object modules have been created using the UNIX compiler with vmsobj
and with the VMS linker (including the four necessary libraries).

solution: The problem is /usr/libvms/crtO.obj expects to branch to C main. Create a simple C
main routine which calls the FORTRAN program such as:

main()
{
/* The fonnal main FORTRAN program is now called fortran_prog_ * /

fortran_prog_();

NOTE: The underscore appended after the driver name is essential. (Refer to the f77
Section in the UNIX User's Reference Manual [URMJ, Section 1 concerning the C
FORTRAN interface.)

The link command needs to bring in four libraries if UNIX P7 object modules are being
used. These libraries have hashed filenames and can be copied, not moved, to a
standard VMS name.

$ LINK TWG$LIB:CRT0, []DRIVC.O, []FORPROG.O,
TWG$USR:[LIB]UB$t'77/LIB,
TWG$USR:[LIB]LIB$i77/Lm, TWG$LIB:LmC/LIB

Symptom 14. undefined symbol abc_00/

situation: UNIX C was compiled with vmsobj calling a VMS FORTRAN subroutine, linking them
in DCL with the VMS LINKER.

solution: Make sure the call to the subroutine is in lower case. C distinguishes between lower
and upper case; VMS FORTRAN does not.

Define UNIX_ASSEMBLER_CASE_CONVERT OFF in DCL:

$ DEFINFJJOB UNIX_ASSEMBLER_CASE_CONVERT OFF

EUNICE BSD A005003-002

0

0

0

0

0

Q

65

To use the VMS LINK command from the csh use:

% setenv UNIX_ASSEMBLER_CASE_CONVERT OFF

To test, do the following:

% vmsobj
% cc -c test.c
% strings test.a I more

REFERENCE MANUAL

With UNIX_ASSEMBLER_CASE_CONVERT turned on, those subroutines with upper
case or mixed case will be hashed to names such as junk_0000f.

Symptom 15. link_w_userundefundefined symbol exit_ reference in

psect $$c_text0

Each DEC subroutine referenced in the P7 program will show up as an undefined
symbol with an underscore appended.

situation: Objects from P7 were linked with vmsobj set, and linked VMS FORTRAN objects
under VMS link. The p7 program calls the VMS FORTRAN program.

solution: P7 appends an underscore to the end of the subroutine name; UNIX C and VMS
FORTRAN do not. Funher, VMS FORTRAN does not allow subroutines to have an
underscore, whereas UNIX C does. Therefore, a C interface must be written between
the P7 and VMS FORTRAN subroutine. Have P7 call a pseudo-C subroutine which in
tum calls the VMS FORTRAN subroutine.

example: P7 program
program main
call vmsfortran(); ! nonnally a call to DEC FORTRAN subroutine

C interface subroutine
vmsfortran_()
{
return vmsfortran();
}

VMS FORTRAN subroutine

subroutine vmsfortran()

Symptom 16. linker -w illrectype in filename, record 1 is illegal
record 2 is illegal
no end of module.

situation: An attempt was made to use the VMS LINKER with UNIX objects.

solution: Set vmsobj and re-compile the UNIX sources ..

A005003-002 EUNICE BSD

REFERENCE MANUAL

Symptom 17. linker -w illrectype in filename, record 1 is illegal
record 2 is illegal
no end of module.

illegal object language structure (13) should be 0 in module

66

situation: The unixobj file type was specified, a unixtovms was done on that object file, and an
attempt was made to link it with the VMS LINKER.

solution: unixtovms(1) only affects the type of the text file, not the object file. (Refer to the
UNIX User's Reference Manual [URMJ, Section 1.) The VMS LINKER expects both a
VMS file type record (variable length) and a file compiled under vmsobj.

Symptom 18. undefined _error, weak reference to main

situation: An attempt was made to link VMS C or VMS FORTRAN with UNIX (vmsobJ) C.

solution: Make sure .I /usr/libvms/crtO.obj is the first module being linked in the link (ln)
command.

Symptom 19. 512 byte record too large for buffer.

situation: An attempt was made to use a VMS compiler on a file with UNIX style records. (512
byte blocks, line-feed, no carriage return.)

0

solution: Change the file type of the source to a VMS file with the command unixtovms(1). (See o
the UNIX User's Reference Manual [URMJ, Section 1 for unixtovms(l).)

Symptom 20. bad image header

situation: An attempt was made to run an incorrect executable type in VMS. If the created record
is variable length with carriage return, it will complain of bad image header.

solution: Create the executable with a 512 fixed length record (use VMS FORTRAN compiler,
linker).

Symptom 21. 0 byte record too large for user's buffers

situation: An attempt to run @TEST.EXE (where TEST.EXE is an executable) was made from
C or FORTRAN. (It does not matter whether the program was UNIX or VMS.)

solution: The @ symbol is used to run a DCL .COM (command) file. Use RUN from VMS DCL
to execute the compiled executables.

EUNICE BSD A005003-002

0

0

0

67 REFERENCE MANUAL

S. GUIDE TO OPERATIONS PROBLEM SOLVING

The following list contains solutions to problems that could possibly occur while operating in the
EUNICE BSD environment For further infonnation, check Section 2, "EUNICE BSD Command
Availability", of this manual, or the EUNICE NOTES in the UNIX User's Reference Manual [URMJ,
Section 1. Further infonnation is contained in Appendix B, "Guide to Installation Problem Solving",
in the EUNICE BSD Administrator's Guide.

ar(l)

ar(l)

at(l)

at(l)

cd(l)

chmod(l)

A005003-002

symptom: phase error

solution: ar(1) archives UNIX objects, not VMS objects. Set the
LD_IMAGE and AS_IMAGE environmental variables to produce UNIX
objects by using the unixobj alias. The error message is just a warning; the
ar command worked correctly.

symptom: table of contents out of date

solution: Use ranlib(1) to update table of contents.

If the system administrator suspects that several of the archives may have
been touched, then he can avail himself of the EUNICE BSD utility
ranlib.csh, which resides in /etc/eunice. This shell-script will re-randomize
all the lib*.a files in one run. (The script DOES, however, take a while to
run.)

symptom: output is lost

solution: The output of at(1) must be redirected or is lost Also, the directory
/usr/spool/at must be writable to all. Note: There is no atrun. VMS
SYS$BATCH takes over (or whichever VMS batch queue has been specified
in RC.COM).

symptom: does not work

solution: The output of at(l) must be redirected or is lost Also, the
directory /usr/spool/at must be writable to all. Note: There is no atrun. VMS
Batch Processing takes over. The logical for the batch queue used is
TWG$ATQUEUE. This is normally assigned to SYS$BATCH.

symptom: cd .. cannot find directory

solution: Refer to the solution for adduser.com (cvtuaj) in
Appendix B of the EUNICE BSD Administrator's Guide.

symptom: chmod adds VMS delete protections to file

solution: EUNICE BSD provides UNIX file protections without
compromising VMS security. Files created under EUNICE BSD adhere to
the UNIX file protection conventions. In order to implement UNIX file
protections using VMS protections, the VMS delete pennission must be
turned on; however, this does not violate file security.

EUNICE BSD

REFERENCE MANUAL

csh(l)

csh(l)

cu(l)

dd(l)

DECnet

delta(l)

delta(l)

EUNICE BSD

68

To delete a file, VMS, like UNIX, requires the directory to have write
pennission. In addition, VMS requires the file to have delete pennission.
Therefore, even though chmod(1) adds the VMS delete pennission to the
file's group and world users, the file cannot be deleted from either EUNICE
BSD or VMS unless both the write and delete pennissions on the file and
directory are turned on. EUNICE BSD is careful not to turn on write
pennission unless explicitly told to do so. File and directory permissions are
determined by the umask(1) and the mode specified in the chmod command
itself. This is consistent with native 4.3 BSD.

symptom: does not read the .login or .cshrc when logging in.

solution: Home directory listed in /etc/passwd is incorrect

symptom: unless an unprivileged account gives the full pathname, the
command is not found.

solution: Check the RMS values. Lower the multi-block count to at least 16,
or perhaps 8, and make the value of index, relative and disk multi buffer
count at least 2.

symptom: end of file not recognized when using cu(1) to transfer a file from
System V to EUNICE BSD 4.x.

solution: VMS 4.x now implements "j for line editing, but System V cu(1)
expects "z. It is necessary to disable line editing for the tenninal from the
DCL with:

$ SET TERM/NOLINE

symptom: J/0 error reading from tape.
solution: Mount the tape from VMS with appropriate blocksize:

$ MOUNT/FOR/BLOCK:10240 MMAO:

symptom: exceed quota, return to node vax (host)

solution: The SYSGEN parameter, MAXBUF, needs to be increased on the
host as well as the target machine. You will need to experiment with the
lowest acceptable value; nonnally, doubling the original value will do the
trick.

symptom: truncates files to zero

solution: Install delta with SYSPRV. The default protection should be
S:RWED. See 1WG$ADldlN:SUCHMOD.COM.

symptom: cannot make delta

solution: Requires emulation of native UNIX environment, so turn on
EUNICE_! VERSION:

"% $ DEFINFJSYSTEM "EUNICE_lVERSION" "ON"

A005003-002

0

0

0

69

0 EUNICE.COM

eunlogin(1)

@TWG$ADMIN:CSHELL

@TWG$ADMIN:CSHELL

@TWG$ADMIN:CSHELL

0
/etc/utmp

f77(1)

find(l)

find(l)

foreign(!)

Q
A005003-002

REFERENCE MANUAL

This is usually set system-wide.

symptom: global page table full

solution: Increase the SYSGEN parameter GBLP AGES and reboot Also
edit MODP ARAMS.DAT giving the new value. EUNICE BSD requires a
minimum of 661 global pages.

symptom: lastlogin message says "tty??".

solution: Refer to solution for who(1).

symptom: does not produce the last login message

solution: Permissions on files /usr/adm/wtmp and /usr/adm/lastlog must be
W:R.
symptom: null no match when accessing the csh(l).

solution: Permissions on /etc/passwd must be W:R. Or, the user may not
have used the command file provided. /etc/cshell.com should call
TWGSADMIN:EUNLOGIN and TWGSADMIN:CSH.COM. It is a good idea
to put a logical assignment for this command file in the system wide login
file.

symptom: no entry for you in password file

solution: ADDUSER.COM must be run every time new users are added to
the SYSUAF.DAT. The protections on /etc/passwd must be W:R.

symptom: not updated for some terminal lines.
solution: Refer to solution for who(1).

symptom: allows use of -nN flag

solution: Most of the UNIX utilities provided with EUNICE BSD are from
4.3 BSD. However, .f77 is from a newer version, 4.3c. The documentation
for f77 is for the older version, so the -nN flag is not in the documents.

symptom: "find/ -name filename -print" doesn't work

solution: Use 'r' as the pathname. Also, be sure to specify either -print or
-exec, or find(1) will execute but not report anything back.

symptom: find: bad status < filename >

solution: This indicates that the user does not have read permission for the
file, but the directory can still be read.

symptom: arguments are passed as lower case.

solution: Put a caret (") before any character to be passed as upper case.

EUNICE BSD

REFERENCE MANUAL

kill(l)

lavdriver

ld(l)

lint(l)

lisp(l)

lisp(l)

lisp(l)

liszt:

EUNICE BSD

symptom: "get -e sccs/s.file" fails but "get sccs/s.file" works.

solution: Make the secs directory writeable to allow creation of p.files.

symptom: after a "kill %% " the process hangs

70

solution: Notify should be added to the .cshrc. If this is not done, processes
can be put in mwait and the system will have to be re-booted to re-enable use
of the port.

symptom: w(l), uptime(]), and -r do not display the load average.

solution: Check to see if the following lines are in EUNICE.COM:

$ RUN SYSSSYSTEM:SYSGEN
CONN LA VO /NOADAPTER/DRIVER=TWG$ADMIN:LA VD RIVER
$ ASSIGN/SYSTEM LAV0: $$VMS_LOAD_AVERAGE

symptom: ld:/ms/src_lib/rnx: cannot open

solution: Verify that the named libraries are readable to the individuals
(usually the world) using them.

symptom: does not work

solution: The /usr/tmp directory is missing or is not accessible.

symptom: cannot open more than three files

solution: There may not be enough unused global pages available. Use
SYSGEN to increase the GBLPAGES, and add the number to
SYS$SYSTEM:MODPARAMS.DAT and re-boot the system.
symptom: an image created by dumplisp may get
an image activation failure when run.

solution: Run the VMS PATCH utility on the executable image, as follows:

$ PATCH/NONEW/ABSOLUTE 'image name'
DEPOSIT/BYTE 10=1
UPDATE
EXIT

The above can be used from a command file which accepts an image as a
parameter.

symptom: premature eof

solution: See Section 4 of this manual.

symptom: premature eof

solution: See Section 4 of this manual.

A005003-002

0

0

0

0

0

71

lpr(l)

lpr(l)

lpr(l)

lpr(l)

A005003-002

REFERENCE MANUAL

symptom: does not work, cannot create PRINTER:LPR

solution: The printer may be the operator's console, or may be used as a
terminal. If a user is logged into such a device, lpr(l) will not be able to
access the device. Wait until the "printer" is free and try again.

symptom: Can't print using lpr(l).

solution: Queues under VMS 4.X have access permissions associated with
them. In the system start-up file, queue protections should be set to W:RWE
before the print queue is started.

symptom: cannot create LP A0:LPR

solution: The templates provided with EUNICE BSD reference LP AO: as the
printer. If a terminal is used as the printer, refer to /etc/re.com for setting up
the terminal as the print device. /etc/dev.com should have the following
logical assignment:

$ ASSIGN/SYSTEM/EXEC TXC7: PRINTER

NOTE: TXC7 stands for the device that is spooled as the printer. (Also, see
below.)

symptom: does not work, cannot create PRINTER:LPR

solution: Refer to /etc/re.com for an example of how the printer should be
set up. The VMS logical name for PRINTER should translate to a hard
device name with leading underscores. The translation should also be placed
in /etc/dev.com. The device must be spooled as follows:

$ SET DEV/SPOOLED TXA7:

If the device is a terminal, use the flag, "/I'ERM ".

$ INIT/QUFfrERM TXA7:
$ ASSIGN/SYSTEM TXA 7: PRINTER

In VMS releases later than VMS 3.3, devices have
access permissions associated with them. If

% Is -1 /dev/printer

returns "/dev/printer not found", the appropriate access permissions must be
set before starting the queue. With VMS OPER and LOGIO privileges, type:

$ SET PROT=(G:W,W:W)/DEV LPA0:

EUNICE BSD

REFERENCE MANUAL

mail(l)

mail(l)

make(l)

man(l)

man(l)

man(l)

EUNICE BSD

72

solution: When lpr(1) submits the job to the VMS printer queue it is still
owned by the submitter. Users need sufficient disk quota on the system disk
to enable them to write to the print queue. Alternately, use an alias to the
VMS PRINT command.

symptom: mail does not get sent, but no error is returned

solution: /etc/newaliase has to be run after adding a user to EUNICE BSD.
/etc/adduser.com runs newaliase automatically in addition to updating the
passwd and group files.

symptom: instead of appending mail to the mbox, the mbox is overwritten.

solution: mail(]) requires that EUNICE_l VERSION be turned ON. Purge the
directory. (See TWG$ADMIN:EUNICE.COM.)

symptom: does not work

solution: Requires that EUNICE_l VERSION (which can be turned on at the
process level) be turned ON. The directory must also be PURGED.

symptom: cannot unlink /tmp/catxx

solution: The online version of the UNIX manual pages is unfonnatted in
order to save disk space. When a page is requested, it is fonnatted and a

0

copy is sent to the screen which has been filtered through more(1). Another 0
copy is sent to the reserve directories, /usr/man/cat[l-8], which directories .· ·.
must be writable to all. The 'cat' files will be owned by the first person
requesting the manual page. To avoid disk quota problems, the system
administrator should periodically change the ownership of these files to
SYSTEM.

symptom: cannot read /usr/lib/tmac/tmac.new or tab37. The manual page is
not piped to more(1).

solution: Decrease the system RMS block value. Test for values ranging
between 2 and 8.

$ SET RMS/SYSTEM/BLOCK=8

symptom: the files /usr/man/c~ belong to the individual users who first run
the man command on a particular entry. (This is only a problem if disk
quotas are enabled.)

solution: System should periodically run /etc/chown on /usr/man/cat, or use
/etc/catman during off peak hours to create all the man files.

% at 6pm mmdd /etc/catman 1234578

This will create all the sections (except Section 6 - games) starting at 6pm on
the specified month and day.

A005003-002

0

0

0

0

73

metacharacters

mkdir(l)

mv(l)

mwait

nroff(l)

nroff(l)

printer

signal(2)

A005003-002

REFERENCE MANUAL

symptom: neither shell can do metacharacter conversion

solution: The authori7.ation file has set the user's device to a logical which is
assigned to a rooted file specification. To the .login file add:

cd $cwd or cd

symptom: The EUNICE BSD command mkdir testdir returns:
cannot create directory testdir/

while, the DCL command shown below does work:

$ CREATE/DIRECTORY TESTDIR

solution: After your system has been running for some time, the VMS mail
box (MBAs) numbers (used to implement mkdir) are reset mkdir will work,
once the system is rebooted. Alternately, use the VMS command (or an
alias) to create directories until the system can be rebooted.

symptom: does not move multiple versions correctly

solution: To emulate a native UNIX environmen~ use PURGE to delete
multiple file versions and tum on EUNICE_l VERSION.

symptom: processes go into mwait.

solution: One must use set notify with the csh. To ensure that set notify is
used by any sub-process csh' s, set notify should be put in the ".cshrc" file.

symptom: file not found

solution: The VMS system RMS block value is too high. Try using values
from 8 down to 2, as follows:

$ SET RMS/SYSTEM/BLOCK=8

symptom: file not found

solution: There may not be enough unused global pages available. Use
SYSGEN to increase GBLP AGES, and add the value to
SYS$SYS1EM:MODPARAMS.DAT. The system must be re-booted for the
new value to take effect

symptom: trying to have a program write to printer using /dev/lp.

solution: /dev/lp cannot be written to by a user program. As a spooled VMS
device, it is allocated to another user, and can't be written to directly. Have
the program write to a file and then spool i~ or set up a non-spooled device
specifically for this program.

symptom: there is no SIGPIPE

EUNICE BSD

REFERENCE MANUAL

spell

stty(l)

stty(l)

stty(l)

tar(l)

tar(l)

tar(l)

tar(l)

EUNICE BSD

74

solution: This is currently generated when a program writes to a pipe for
which there is no reader. o
symptom: cannot make pipe

solution: B YTLM, which affects the amount of data which can be re-directed
or piped, is too low. Set it to 60000 or higher.

symptom: kill and erase not changed

solution: The VMS terminal driver, which EUNICE BSD must use, does not
have the ability to change the many terminal options supported by the UNIX
terminal drivers.

symptom: cbreak does not work

solution: Try using raw mode.

symptom: returns "is not a tty".

solution: Refer to the solution for who(1).

symptom: ls -l shows a number instead of the owner's name.

Solution: These files were brought in from a real UNIX system. (This is a O·. · ..
EUNICE BSD feature.) You can change the owner (to the correct owner) . .·
from DCL as follows:

$ SET FILFJOWN=[LOGINAME] [-.]•.•;•

symptom: cannot open /dev/rmtl

solution: The tape must be mounted from VMS as a foreign tape with the
correct blocksize. Tar tapes are frequently created with a blocking factor of
20, which is a blocksized of 10240.

$ MOUNT/FOR/BLOCK=10240 MTAO:

Tar reads from /dev/rmtl by default. To use another drive such as /dev/mt0,
use:

% tar xvO

symptom: cannot read tar tape from native 4.3 BSD

solution: Filter through dd(1), modifying the blocksize as appropriate.
/dev/rmtO is the raw device, used for byte by byte transfer.

$ dd if::/dev/rmtO ibs=l0240 I tar xvf •

symptom: does not handle multiple versions correctly

A005003-002

0

0

0

0

75

touch(l)

tty(l)

uucp(l)

vi(l)

vi(l)

vmsmail

vpr(l)
vtroff(l)

who(l)

A005003-002

REFERENCE MANUAL

solution: To emulate a UNIX environment, PURGE old versions of the file
and turn on EUNICE_l VERSION. (See TWG$ADMIN:EUNICE.COM.)

symptom: file date not changed

solution: touch(1) works only on deletable UNIX format files. Use
/usr/eun/vmstounix to convert VMS files to UNIX format. (This also updates
the modification date.)

symptom: returns tty??

solution: Refer to solution for who(1).

symptom: uucp will not login to a VAX from a UNIX Version 7 System.

solution: Most native UNIX systems use line feed, not carriage return to
indicate end-of-record. VMS requires both carriage return and line feed.
Thus, when a native UNIX Version 7 system tries to log in to a VAX
machine, the VAX expects a carriage return, not a line feed, which will
prevent uucp from logging on to the VAX.

Modify the native UNIX to send a carriage return when talking to the Vax
machine via uucp. This modification must be done in the routine called
conn.c.

symptom: /tmp/ex00051

solution: This occurs when you are trying to write to a file and then exit
vi(1) when there is not enough free disk space available. Check this with
df(l) and delete any unnecessary files.

symptom: file not found

solution: From the SYSTEM account, decrease the RMS multi-block count.
You will need to experiment with different values (usually between 8 and 2).

$ SET RMS/SYSTEM/BLOCK=8

symptom: mail to VMS mailboxes

solution: Aliases in /usr/lib/aliases should be of the fonn:

user:" I /usr/eun/vmsmail user"

Run /etc/adduser.com which will re-run newaliase. This should be run each
time the /usr/lib/aliases file is edited.

symptom: not working under VMS 4.x.

solution: Can be used as a printer, but not with troff(1).

symptom: does not work

EUNICE BSD

REFERENCE MANUAL

write(l)

EUNICE BSD

76

solution: Verify the following:

I. Permissions on /etc/ttys and /etc/locations must be W:R.

2. /etc/utmp, /usr/adm/wtmp and /usr/adm/lastlog must be W:RW. The
intervening path should be W:RE.

3. Entries in /etc/eunice/dev.com and /etc/ttys, which indicate the number of
terminals available on the system must all reflect the same number.

4. Always make the logical assignments for devices by running
/etc/eunice/dev.com.

symptom: permission denied.

solution: VMS OPERA TOR privilege is needed to use write(1).

A005003-002

0

0

0

0

0

0

77 REFERENCE MANUAL

6. GLOSSARY

ASTLM

VMS user quota for asynchronous system trap creation.

BALSETCNT

VMS sysgen parameter. Maximum number of processes resident in memory at one time.

Berkeley 4.3 BSD

Version 4.3 of the Berkeley Software Distribution of UNIX software (from the University of
California at Berkeley).

BYTLM

VMS user quota for buffered 1/0 byte count limit quota.

CLISETUP.EXE

csh

One of the EUNICE BSD run-time executive files. Maps a special command language
interpreter into the sub-process control region.

Default shell in EUNICE BSD environment

.cshrc

File which is read by csh to perform various functions and set up the environment. The template
for this file is in /usr/skel.

cvtbackup

Allows tools produced by backup to be shipped over DECnet or ARPANET. The executable are
convened to ASCII files and then should be unconverted after transfer, with cvtbackup.
cvtbackup is located in /usr/eun.

cvtfnames

A file created for EUNICE BSD 4.2 to convert files hashed under previous versions of EUNICE
BSD to the new EUNICE BSD (VMS 4.x) hashing mechanism. Still present on EUNICE BSD
4.3.2. cvtfnames is located in /usr/eun.

cvtuaf

Program to generate a UNIX passwd file from the VMS authorization file.

A005003-002 EUNICE BSD

REFERENCE MANUAL

DCL

Digital Command Language. Command language interpreter on VMS.

DST_FLAG

Aag for daylight savings time.

EUNICE_FULL_FILENAMES

Logical name no longer used by EUNICE BSD.

EUNICE_lVERSION ON

Logical name to make file creation behave the same way as in the UNIX environment.

eunlogin

78

Programs to control UNIX access. Located in /etc/eunice. See Section 4.2 in the EUNICE BSD
Administrator's Guide .

. exrc

File used by the ex and vi editors to set up a minimum required environment for the editor. The
template for this file is in /usr/skel.

Fillm

VMS user quota for file and logical link limit.

forkdumy .exe

A EUNICE BSD nm-time executive file. A dummy image used in fork.

forkdumyl.exe

A EUNICE BSD nm-time executive file. A dummy image used in fork.

group file

UNIX group file located in /etc. Created by mketcgrp.

KFILSTCNT

VMS parameter - known files count. Restricts the number of programs that can be installed as
known images.

lastlog

/lib

Located in /usr/adm. This file contains infonnation about the last time each user logged in. It
should be cleaned out periodically. When rebooting, lastlog is cleaned out by
TWG$ADMIN:RC.COM

Location of UNIX libraries in VMS object fonnat.

EUNICE BSD A005003-002

0

0

0

79

0
libc.a

The C library in UNIX fonnat. Jibe.a resides in /usr/lib.

libc.olb

The C library in VMS fonnat. libc.olb resides in /usr/libvms.

locations

File which describes the tenninal locations. locations resides in /etc .

• login

REFERENCE MANUAL

The .login file is executed by EUNICE BSD from shell file /etc/eunice/cshell.com. Template for
this file is in /usr/skel.

login.com

File which is executed upon login into the VMS system. The template for this file is in
/usr/skel.

LPA0:

VMS device name for standard printer.

MAXPRO

0 VMS parameter MAXPROCESSCNT. The maximum process count.

motd

0

UNIX message of the day. motd resides in /etc.

MTA0:

VMS device name for tape drive.

/dev/mtO

UNIX name for tape drive (logically assigned to MTAO:) in blocked mode. See RMTO:

NLA0:

Null device (VMS name).

OPA0:

Console temiinal (VMS name).

passwd

UNIX passwd file located in /etc. It is created by running cvtuaf(l).

A005003-002 EUNICE BSD

REFERENCE MANUAL

Prclm

VMS symbol for subprocess creation limit quota.

PRIO

VMS symbol for base priority quota.

prompt

80

The two UNIX prompts are '%' for the csh and '$' for the Bourne shell. The DCL prompt is
also '$'. All three prompts can be changed if required.

RMS

Record Management System. The file system used by RMS.

/dev/rmtO

UNIX name for tape drive (logically assigned to MTAO:) in character mode. See /dev/mtO.

root

Top level directory in native UNIX, denoted by /. In EUNICE BSD, the root directory is a
VMS search list.

rooted file spec

0

One in which the last directory in the specification list · is followed by a dot signalling that other 0
directory specifications may be attached.

RTAl:

VMS device name for DECnet remote tenninal.

sh

The UNIX shell (since Version 7) is also called the Bourne shell, after its author. The csh is
from Berkeley UNIX. Both are available in EUNICE BSD.

snap.csh

Takes a snapshot of the EUNICE BSD and VMS environment. This is used in debugging site
specific problems. It gets a listing of SYSGEN parameter values, runs AUTHORIZE on the
SYSTEM and DEFAULT accounts. It also lists the contents of the files modified during the
installation. (See Section 9.1 in the EUNICE BSD Administrator's Guide.) Located in /etc/eunice.

SYSUAF.DAT

VMS system user authorization file.

termcap

Contains tenninal entries, one per tenninal type, based on specific capabilities. Located in /etc.

tests.csh

EUNICE BSD A005003-002

0

81 REFERENCE MANUAL

This is a test shell script for the csh. tests.csh is located in /etc/eunice. C tests.sh

C)

0

This is a test shell script for the Bourne shell which is located in /etc/eunice.
treewalk.com

Sets up proper protections on the EUNICE BSD directories and files. Many problems with
EUNICE BSD are caused by the pennissions on files or directories being altered from the
pennissions which were set at the time of installation. Located in /etc/eunice.

/tmp

UNIX directory where temporary files are created by such utilities as editors, text processors,
and the compilers.

TQELM

VMS user quota for timer queue entry limit.

trpatch

A utility created for EUNICE BSD 4.3.1 and subsequent releases of EUNICE BSD to change the
header infonnation on executable files for VMS 4.0, so they can be properly installed. Located
in /usr/eunice.

TWG_LIBC_ 43.EXE

Shareable C language runtime executable, containing some of the objects from the C library. It
resides in SYSSSHARE.

unixtovms

Converts a UNIX file type to a VMS variable length, carriage return file. A manual page is
provided in the UNIX User's Reference Manual [URMJ, Section 1.

A005003-002 EUNICE BSD

REFERENCE MANUAL

/usr/lib

Location of UNIX libraries in UNIX object fonnaL

utmp

File to keep track of who is on the system. Located in /etc.

uucp

Command used to transfer data between UNIX systems.

UUCP _HOST_NAME

UNIX system name, used by uucp(l), mail(l), and who(l).

vforkcli.exe

82

One of the EUNICE BSD run-time executive files. Controls execution of the subprocess in
which it resides.

VMS

Virtual Memory System. Standard operating system for VAX computers.

vmstounix

0

Converts a variable length file to a 512-byte file. A manual page is provided in the UNIX User's

0
, ·,

Reference Manual [URMJ, Section 1.

VOS

Directory containing the EUNICE BSD run-time files which create a Virtual Operating System.

wtmp

This file contains UNIX login/logout infonnation. Located in /usr/adm.

EUNICE BSD A005003-002

0

0

0

0

83 REFERENCE MANUAL

7. LICENSING OBLIGATIONS

The EUNICE BSD environment provides a transportation link which enables the use of software
written for the UNIX operating system to run in a VMS environment. This ability is referred to as
REXTM (Runtime Executive) by The Wollongong Group. REX provides a cost-effective solution for
migrating your application to other VMS systems.

Porting UNIX-based software to run under VMS is a very powerful ability, and is the main reason
why EUNICE BSD was purchased at some sites. However, it is important that the programmer using
EUNICE BSD be aware of licensing obligations if these programs are to be moved to another VAX.

Both the UNIX and EUNICE BSD code are licensed on a per-CPU basis. This means that if any
portion of the distributed software on the EUNICE BSD tape is moved to a machine other than the
licensed CPU, a license agreement is necessary for the target machine. The licensed CPU serial
number appears on your UNIX and/or EUNICE BSD license agreement(s).

The libraries which contain the Section 2 system calls, (see the UNIX Programmer's Reference Manual
[PRMJ, Section 2) are at the heart of what provides this transportation link. These libraries are:

SYS$SHARE:TWG_LIBC_ 43.EXE
TWG$USR:[LIBVMS]LIBC.OLB
/lib/libc.a

When programs which were originally written to run in the UNIX operating environment are compiled
with these libraries, they can then be run under the VMS operating system. If a program is compiled
by cc(1) or j77(1) with the alias vmsobj set, the code for the system calls included in the executable
program will come from the VMS object fonnat libraries. Because these libraries contain EUNICE
BSD code, a REX license is required to move any portion of the code in libc or the shareable libraries
to another machine.

In addition, if any of the following EUNICE BSD files are to be placed on a machine which does not
have a EUNICE BSD license, a REX license is required.

CLISETUP.EXE
VFORKCLI.EXE
FORKDUMY.EXE
FORKDUMYl.EXE
SHELL

INITGBL
USERS.COM
ROOT.COM
DEV.COM
EUNICE.COM
SUCHMOD.COM
RC.COM
ST ARTEUNICE.COM

Use of the UNIX executables is not included in the REX license. As a special case, a company can
also obtain the right to use a selected list of the UNIX executables. For example, if commands such as
date(l) or csh(l) are used in a program to be run on another VAX, a special agreement can be
constructed which includes REX and the selected UNIX executables.

A005003-002 EUNICE BSD

REFERENCE MANUAL 84

If the compilers provided with EUNICE BSD are only being used as a development tool, and no
EUNICE BSD or UNIX code is being included in the executable, there is no need for a REX license o
for the target VAX. In this case, the compiled version for the target machine must be compiled with a · .
non-UNIX compiler, such as the DEC C compiler. Note that if you choose to use the DEC C
compiler, The Wollongong Group will not support the resultant code. It is important to recognize that
no EUNICE BSD or UNIX proprietary code can le_gally be placed on a machine which does not have a
valid license for that code.

Each REX distributorship is arranged individually with The Wollongong Group. If you have any
questions regarding REX, please contact your sales representative.

EUNICE BSD A005003-002

0

0

