
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

ll!ktron~
COMMITTEDTOEXCELLENCE

4027
COLOR GRAPHICS

TERMINAL
PROGRAMMER'S

REFERENCE MANUAL

MANUAL PART NO. First Printing DEC 1978

070-2657-00 This Printing JUL 1979

SUPPORT POLICY

This software product is designated Support Category B, as
shown on the applicable software data sheet existing at the
time of order. Tektronix' sole obligation shall be to correct
defects (non-conformance of the software to the data sheet)
as described below, without additional charge.*

During the one (1) year period following installation, if the
customer encounters a problem with the software which his
diagnosis indicates is caused by a software defect, the
customer may submit a Software Performance Report (SPA) to
Tektronix. Tektronix will respond to problems reported in
SPRs which are caused by defects in the current unaltered
release of the software via the Maintenance Periodical for the
software, which reports code corrections, temporary correc
tions, generally useful emergency by-pass and/or notice of
the availability of corrected code. Software updates, if any,
released by Tektronix during the one (1) year period, will be
provided to the customer on Tektronix' standard distribution
media as specified in the applicable sheet. The customer will
be charged only for the media on which such updates are
provided, unless otherwise stated in the applicable data sheet,
at Tektronix' then current media prices.

*In addition to the locations within the contiguous forty-eight
(48) United States and the District of Columbia, this service is
available in those areas where Tektronix has software support
capability.

Copyright © 1978 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.
Contents of this publication may not be reproduced in any
form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one
or more U.S. or foreign patents or patent applications.
Information provided on request by Tektronix, Inc., P.O. Box
500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

PRODUCT 4027 Color Graphics Terminal

., This manual supports the following versions of this product: Version 1.1 and 1.1 Options

MANUAL REVISION STATUS

REV. DATE· DESCRIPTION

@ 12/78 Original Issue

A 7/79 Revised Pages

4027 PROGRAMMER'S REV A, JUL 1979

CONTENTS

Section 1 INTRODUCTION Page
About This Manual ... 1-1
Related Documentation 1-2
The 4027 Computer Display Terminal 1-2

4027 Features ... 1-2
Optional Features 1 -4

The Split Screen: Workspace and Monitor 1-5
The 4027 Keyboard .. 1-7

ASCII Keys .. 1-8
Cursor/Numeric Pad Keys 1-8
Function Keys ... 1-9
Programmable Keyboard 1-11

Section 2 4027 COMMAND STRUCTURE
How to Find Commands in This Manual 2-1
The Format of 4027 Commands 2-2

Delimited ASCII Strings 2-4
Continuing a Command 2-5

The Syntax of Command Descriptions 2-6
Selecting the Command Character 2-7

COMMAND Command 2-9

Section 3 HOST PROGRAMMING FOR THE 4027
Text and Commands .. 3-1
Computer-to-4027 Communications 3-1

Sending Numeric Parameters 3-3
Continuing a Command 3-4
A Note on Invalid Commands 3-5
Displaying a Command File 3-7

4027-to-Computer Communications 3-8
Typing Into the Monitor 3-8
SEND Command ... 3-8
REPORT Command 3-11

4027 PROGRAMMER'S @ ii

Section 4 PROGRAMMING THE KEYBOARD Page
Programming a Key ... 4-1

LEARN Command .. 4-2
Special Considerations 4-5

Macros and the EXPAND Command 4-6
EXPAND Command 4-7
The LEARN Command and the COMMAND Command 4-7

Key Programming and Keyboard Lockout 4-8
Clearing Key Definitions 4-9

CLEAR Command .. 4-9

Section 5 SYSTEM STATUS AND INITIALIZATION
Terminal Status Commands 5-2

COMMAND Command 5-2
WORKSPACE Command 5-3
MONITOR Command 5-5
MARGINS Command 5-7
STOPS Command .. 5-9
FORM Command ... 5-10
SNOOPY Command 5-11

Communications Status Commands 5-13
BAUD Command ... 5-13
PARITY Command 5-15
ECHO Command ... 5-17
BUFFERED Command 5-19
EOL (End-of-Line) Command 5-21
PROMPT Command 5-23
DELAY Command .. 5-25
FIELD Command ... 5-26
EOF (End-of-File) Command 5-28
DUPLEX Command 5-29
DISCONNECT Command 5-31

Status Messages ... 5-32
The STATUS Key and the STATUS Message 5-32
SYST AT and the SYST AT Message 5-32
TEST Command .. 5-35
GTEST Command .. 5-37

iii @ 4027 PROGRAMMER'S

Section 6 CONTROLLING THE DISPLAY Page
The Cursor Commands 6-1

JUMP Command ... 6-2
UP Command .. 6-5
DOWN Command .. 6-8
RIGHT Command .. 6-1 O
LEFT Command .. 6-1 2

The Tab Commands .. 6-14
TAB Command ... 6-14
BACKTAB Command 6-16

The Scrolling Commands 6-18
RUP (Roll Up) Command 6-18
RDOWN (Roll Down) Command 6-20

Additional Commands 6-22
ERASE Command .. 6-22
BELL Command .. 6-23

Section 7 4027 COLOR COMMANDS
The Color Commands 7-1

COLOR Command 7-2
MAP Command .. 7-3
RMAP (Relative Map) Command 7-5
MIX Command ... 7-7
PATTERN Command 7-8

Section 8 GRAPHICS
The Graphics Commands 8-1

GRAPHIC Command 8-2
ENABLE Command 8-4
DISABLE Command 8-6
VECTOR Command 8-7
RVECTOR (Relative Vector) Command 8-9
LINE Command .. 8-11
POLYGON Command 8-1 2
RPOL YGON (Relative Polygon) Command 8-14
PIE Command .. 8-16
CIRCLE Command 8-19
INK Command ... 8-22
STRING Command 8-24
ERASE G Command 8-26
SHRINK Command 8-28

4027 PROGRAMMER'S @ iv

Section 8 {cont) GRAPHICS Page
Effects of a Graphic Region 8-29
4010-Style Graphics on the 4027 8-32

Addressing the Vector Beam 8-32
Graph Mode Memory 8-33

Alternate Character Fonts 8-34
SYMBOL Command 8-35
FONT Command ... 8-37
DFONT (Delete Font) Command 8-38

Section 9 FORMS AND FORM FILLOUT
Form Fillout Mode .. 9-1

FORM Command ... 9-3
Creating a Form .. 9-4
Field Attributes and Field Attribute Codes 9-6

Font Attributes ... 9-6
Logical Attributes .. 9-7
Visual Attributes ... 9-8

Color Attributes .. 9-8
Inverted Attributes 9-8
Blinking Attributes 9-9
4025-Style Visual Attributes 9-9

Field Attribute Codes Within a Line 9-9
Creating Fields ... 9-10

ATTRIBUTE Command 9-10
Creating Fields with JUMP 9-13

Rulings .. 9-16
HRULE (Horizontal Rule) Command 9-16
VRULE (Vertical Rule) Command 9-17
Making Correct Junctions 9-18

The Effect of Form Fillout on 4027 Commands 9-20
Typing in Form Fillout 9-20
TAB in Form Fillout. 9-21
BACKTAB in Form Fillout 9-23
ERASE in Form Fil lout 9-25
The HOME Key and JUMP in Form Fillout. 9-26

Transmitting Forms and Form Data 9-27
SEND in Form Fillout 9-27
FIELD in Form Fillout 9-29
Some Sample Transmissions 9-30

V @ 4027 PROGRAMMER'S

Section 10 TEXT EDITING
The Text-Editing Commands 10-1

DCHAR (Delete Character) Command 10-1
ICHAR (Insert Character) Command 10-3
DUNE (Delete Line) Command 1 0-6
ILINE (Insert Line) Command 1 0-1 O

Section 11 PERIPHERALS
Initializing the 4027 for Peripheral Communications 11-1

SET Command ... 11-2
Printer Parameters 11-2
Tape Unit Parameters 11-4
Plotter Parameters 11-5

PERIPHERALS Command 11-7
The REPORT Command and Peripherals 11-8

Tape Unit ... 11-8
Plotter .. 11 -9
Printer .. 11-10

Communicating with Peripherals 11-11
ALLOCATE Command 11-11
DIRECTORY Command 11-14
KILL Command .. 11-16
PASS Command ... 11-17
COPY Command ... 11-21
Auto-Incrementing The Tape Unit 11-25
Copying the Workspace to the Plotter 11-25

Copying on a Hard Copy Unit. 11-26
HCOPY (Hard Copy) Command 11-26

4027 PROGRAMMER'S @ vi

vii

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

TEKTRONIX 4027 COLOR STANDARD

THE ASCII CODE

4010-STYLE GRAPHICS CODES

ALTERNATE CHARACTER FONTS

SAMPLE PROGRAMS

MEMORY CONSIDERATIONS

PROGRAMMER'S REFERENCE TABLE

OPTION SUMMARY

ROUTINE EXTERNAL CONVERGENCE BOARD ADJUSTMENTS

COMMAND LISTING

@ 4027 PROGRAMMER'S

ILLUSTRATIONS

Figure Description Page

1-1 The 4027 Color Graphics Terminal frontis
1-2 The Split Screen; Workspace and Monitor Scrolls 1-6
1-3 The 4027 Keyboard .. 1-7
2-1 Command Format. ... 2-1
2-2 String Delimiters ... 2-2
5-1 Status Message ... 5-32
5-2 The 4027 SYSTAT Message 5-34
5-3 4027 !TEST <CR> Results .. 5-36
5-4 4027 !GTEST <CR> Results 5-38
6-1 The Workspace Window and the Workspace Scroll 6-3
8-1 A Graphic Region .. 8-3
8-2 The VECTOR Command .. 8-8
8-3 The RVECTOR Command .. 8-9
8-4 VECTOR Line Types ... 8-11
8-5a An RPOL Y Command Using 0,0 as the First Coordinate Pair 8-14
8-5b An RPOLY Command Using 150,0 as the First Coordinate Pair 8-15
8-6 Drawing a Line in INK Mode .. 8-23
8-7 The STRING Command .. 8-25
8-8 A Graphic Display ... 8-30
8-9 A Graphic Display After The SEND Command 8-31
8-1 O A User-Defined Symbol .. 8-36
9-1 Sample Form .. 9-1
9-2 The Parts of a Form .. 9-4
9-3 Rulings Junction Chart. .. 9-19
11 -1 Peripherals Data List. .. 11 -7
A-1 Tektronix 4027 Color Standard A-1
A-2 Cross Section of the 4027 Color Standard A-3
1-1 Adjusting the External Convergence Board 1-1

4027 PROGRAMMER'S @ viii

TABLES

Table Description Page

5-1 Snoopy Mode Mnemonics .. 5-1 2
8-1 4010-Style Graphics Required Byte Transmissions 8-33
11-1 Tape Error Codes .. 11-9
11-2 Plotter Language Commands 11-18
11-3 Transmitting Plotter Commands Using PASS 11-20
11-4 4027 COPY Parameters .. 11-21
11-5 4027 COPY Switches .. 11-22
B-1 ASCII Code Chart. ... B-1
B-2 ASCII Control Characters .. B-2
C-1 4010-Style Graphics Code Chart C-1
D-1 4027 Alternate Character Fonts D-1
D-2 Ruling Junctions Chart. .. D-2
F-1 Graphic Memory Capacity .. F-2
G-1 Programmer's Reference Table G-1
J-1 Command Listing .. J-1

ix @ 4027 PROGRAMMER'S

COMMAND LISTING
ALLOCATE 11-11 JUMP 6-2, 9-13, 9-26
ATTRIBUTE. 9-10 KILL. 11-16
BACKTAB 6-16, 9-23 LEARN 4-2, 4-7
BAUD 5-13 LEFT 6-12
BELL 6-23 LINE 8-11
BUFFERED 5-1 9 MAP 7-3
CIRCLE 8-1 9 MARGINS 5-7
CLEAR 4-9 MIX 7-7
COLOR. 7-2 MONITOR 5-5
COMMAND 2-9, 5-2 PARITY 5-15
COPY 11-21 PASS 11-17
DCHAR 10-1 PATTERN 7-8
DELAY 5-25 PERIPHERALS 11-7
DFONT 8-38 PIE 8-16
DIRECTORY 11-14 POLYGON 8-12
DISABLE 8-6 PROMPT 5-23
DISCONNECT 5-31 REPORT 3-11, 11-8
DUNE 10-6 RDOWN 6-20

'DOWN 6-8
- DUPLEX 5-29

RIGHT 6-10
RMAP 7-5

ECHO 5-17 RPOLYGON 8-14
EOF 5-28 RUP 6-18
EOL 5-21 RVECTOR 8-9
ENABLE 8-4 SEND 3-8, 9-27
ERASE (Workspace and Monitor) . 6-22, 9-25 SET 11-2
ERASE G(Graphics) 8-26 SHRINK 8-28
EXPAND 4-7 SNOOPY 5-11
FIELD 5-26, 9-29 STOPS 5-9
FONT 8-32 STRING 8-24
FORM 5-1 0, 9-3 SYMBOL 8-35
GRAPHIC 8-2 SYSTAT 5-32
GTEST 5-37 TAB 6-14, 9-21
HCOPY 11-26 TEST 5-35
HRULE 9-16 UP 6-5
ICHAR 10-3 VECTOR. 8-7
ILINE 10-10 VRULE 9-17

INK 8-22 WORKSPACE 5-3

4027 PROGRAMMER'S @ X

xi
Figure 1-1. 4027 Color Graphics Terminal.

@

4027 PROGRAMMER'S

Section 1

INTRODUCTION

The 4027 Color Graphics Terminal belongs to the class of machines popularly known as
"smart terminals." It is a computer terminal that carries communications between the
operator and a host computer. In addition, the 4027 contains its own microprocessor and
supporting electronics. With this electronics, the 4027 responds to its own set of
commands, independently of the host computer.

The 4027 is not intended to be a stand-alone computing system. Rather, its computing
ability complements that of the host computer, enabling the user to make full use of the
4027's information display capabilities.

ABOUT THIS MANUAL

The purpose of this manual is to acquaint you with these capabilities and to describe in
detail the commands to which the 4027 responds. You can then use the full potential of
the 4027 for problem solving and information display.

Two assumptions are made concerning the reader of this manual. First, the person should
be familiar with computer operations in general and with at least one programming
language. Second, the person should have access to the 4027 Operator's Manual.

The 4027 Programmer's Reference Manual is organized along broad functional lines.
Section 1 gives an overview of the 4027 Color Graphics Terminal. Each succeeding
section explores one class of commands related to a basic terminal function.

An alphabetical Command List is included following the list of Tables to provide an easy
means of locating the various commands in this manual. Also, Appendix J is an
alphabetical command list which includes additional information.

The 4027 has a variety of parameter settings, most of which are set by command, and the
action of other commands may be influenced by these settings. When this is the case,
commands are cross-referenced.

4027 PROGRAMMER'S @ 1-1

INTRODUCTION

1-2

RELATED DOCUMENTATION

Information related to programming for the 4027 can be found in the following

documentation:

4027 Color Graphics Terminal Operator's Manual

4010B01-4010B05 Plot 10 Easy Graphing Software documentation

A 4027 Programmer's Reference Guide, containing a summary of information in this
manual, is also available.

The 4027 can be used in a polling environment. For information related to polling, see the
4020 Series Polling Reference Manual.

THE 4027 COLOR GRAPHICS TERMINAL

The 4027 Color Graphics Terminal (Figure 1-1) is an interface between the terminal
operator and a host computer. It is designed especially for creating color graphic
displays, including a variety of character fonts, in 64 different colors. In addition, it may be
used for applications involving text editing and display and processing of forms.

The 4027 consists of a display unit and a keyboard attached to the display unit by a thin
cable. The display unit contains a 13 inch, refresh-style color cathode ray tube (crt), a
microprocessor with supporting electronics, and a standard RS-232 interface. The
terminal operator types information on the keyboard. Information from both the keyboard
and the host computer is displayed on the crt.

4027 terminal operations are controlled by the microprocessor and its associated
firmware (programs for the microprocessor which are stored in Read Only Memory chips,
or ROMs). With this firmware, the 4027 responds to several dozen commands,
independently of the host computer. These commands determine settings of the 4027
system parameters, control the screen display, and perform various functions useful in
applications programs.

4027 Features

• Workspace and Monitor - The 4027 display memory can be divided into two
portions (or scrolls). One portion, called the workspace, serves as a composition
area for creating color graphics, editing text, filling out forms, or displaying the
results of applications programs. The monitor portion of memory stores messages
to and from the computer and any 4027 commands typed on the keyboard.

@ 4027 PROGRAMMER'S

INTRODUCTION

• Split Screen - The 4027 screen can be divided into two areas or windows,
corresponding to the two portions of the display memory. The upper area is the
workspace window and displays information from the workspace. The lower area
is the monitor window and displays information from the monitor without writing
over the workspace display. The portions of the screen allotted to each of these
windows are set by command.

• Color Graphics - The 4027 can store and display graphs and a variety of
geometric shapes in the workspace. Solid lines and several types of dashed lines
can be drawn. All graphs, shapes, and lines can be displayed in any of 64 colors.

• Color Display - The 4027 can display up to eight of it's palette of 64 colors at one
time. Eight colors are assigned to color numbers C0-C7. If other colors are
desired, the colors set by each of the color numbers may be changed by using the
MAP, RMAP, or MIX commands.

• Visual Enhancements - Characters can be displayed with the standard (CO)
attribute (white on black background) or on one of six other colors on a black
background. In addition, the characters may be inverted (black characters on a
colored background). Characters may also blink between colors, or between
inverted and noninverted. In addition, various combinations of characters and
background colors may be defined by the operator to provide an even wider
variety of attributes. Screen contrast is controlled manually by the operator but
screen brightness is internally set.

• Scrolling - When either the workspace window or the monitor window is full,
information in that window scrolls up to display additional information. lnfomation
scrolled off the screen is saved as long a memory is available; the scrolled text
may be reviewed by scrolling down.

• Forms - The workspace can display a form. When the operator has filled in the
blanks of the form, the data in these blanks can be sent to the computer with a
single command.

• Locally or Remotely Controllable - Commands to the 4027 can be typed on the
keyboard or sent from the computer.

• Programmable Operating Parameters - Various operating parameters (such as
parity, workspace margins, tab stops, etc.) can be set by commands given either
from the keyboard or from the computer.

• Programmable Baud Rate - The 4027 baud rate can be set by command.

4027 PROGRAMMER'S @ 1-3

INTRODUCTION

1-4

• Buffered Operation - In buffered mode, a line of text (up to 80 characters) in the
monitor is saved for proofing or local editing before it is sent to the computer.

• Programmable Keyboard - Almost all of the keys on the keyboard can be
programmed to generate a different character or character string than the default
one. This allows commonly used character strings or commands to be generated
by pressing a single key.

• Local Text Editing - Using the editing keys or commands, one can edit text held
in the workspace before sending it to the computer.

• Status Messages - The 4027 can display status messages which indicate
parameter settings, the command character, and the amount of unused memory in
the terminal.

• Modules - Display unit and detached keyboard. The keyboard can be located up
to eight feet from the display unit.

Optional Features

• Printer Copies - Text in the workspace or in the computer can be copied on a
Tektronix 4642 Printer. The printer cannot copy graphics.

• Hard Copies - The 4027 can make permanent copies of all information on the
screen using a Tektronix 4632 Hard Copy Unit. The 4632 Video Hard Copy Unit
with Option 6 (Enhanced Gray Scale) will copy forms and graphs just as they
appear on the 4027 screen (substituting gray scale for color).

• Additional Graphics Memory - Standard graphics memory is 48K. Options
provide 96K, 144K, or 192K total graphics memory.

• Additional Display Memory - Standard display memory is 8K. Options provide
either 16K or 32K bytes total display memory.

• Optional Interfaces - Options allow the 4027 to use a 20 mA current loop or an
RS-232 peripheral communications line. A polling interface allows the terminal to
operate as one of several "slave" display stations which communicate with the
computer through a polling controller.

• GPIB Interface - The 4027 can communicate with four Tektronix 4924 Digital
Cartridge Tape Drives and two Tektronix 4662 Interactive Digital Plotters, using a
GPIB (General Purpose Interface Bus).

@ 4027 PROGRAMMER'S

INTRODUCTION

• Half Duplex - A half duplex optional interface is available. With this option the
DUPLEX command is added to the terminal command set.

• Alternate Character Fonts - The Math Characters font provides a variety of
symbols useful in mathematical applications. A number of fonts containing 1 28
characters each may be assigned by the user for graphics or other purposes. 32
fonts are available, of which 30 may be user defined.

• Rulings - The Ruling Characters font provides a variety of ruling characters.
Using this font, the 4027 can draw horizontal and vertical rulings to highlight the
structure of a form displayed in the workspace.

• Polling Controller - The 4027 can act as a "polling controller" to supervise
communications between several 4027 or 4024/4025 "slave display stations"
and a host computer, using IBM 3270-Bisynchronous EBCDIC protocol.

THE SPLIT SCREEN: WORKSPACE AND MONITOR

Information sent to the display unit from the keyboard or the computer is stored in a part
of the terminal's memory called the display list. This display list can be divided into two
sections or scrolls - the workspace scroll (or simply workspace) and the monitor scroll
(or simply monitor).

Information from the keyboard can be directed into either scroll, as can information from
the computer. Each scroll has specific uses, and the 4027 processes information in the
workspace differently than it processes information in the monitor.

The workspace serves as a composition area. The operator can use it to create text to
send to the computer, to edit text, to create graphics, to create or fill out forms, or to
display results of applications programs. Text typed into the workspace is stored there
until the terminal is commanded to send data in the workspace to the computer. Data is
not transmitted as it is typed.

The monitor is used to display commands typed on the keyboard and messages to and
from the computer. The monitor cannot contain forms or graphics. In general, the monitor
allows (1) the operator to communicate with the terminal or the computer, and (2) the
computer to issue error messages or prompts, without this information being written over
the contents of the workspace.

There is always a monitor defined; hence there is always a monitor window of at least one
line. There may, however, be no workspace defined. If no workspace is defined, there is no
workspace window; the entire screen is devoted to the monitor.

4027 PROGRAMMER'S @ 1-5

INTRODUCTION

1-6

WORKSPACE
WINDOW

WORKSPACE
SCROLL

MONITOR
SCROLL

Figure 1-2. The Split Screen; Workspace and Monitor Scrolls.

MONITOR
WINDOW

2402-1

When the terminal is powered up or RESET (using the reset button on the back panel), the
monitor window occupies the entire 34 lines of display, no workspace is defined, and text
from the keyboard and text from the computer are directed into the monitor. Appropriate
commands to the 4027 define a workspace, select the number of lines in each window,
and direct text from the keyboard and text from the computer into the desired scrolls.

NOTE

If the command character is not known, pressing the shift STATUS key
displays the command character, whether the terminal is in buffered or
unbuffered mode, and the number of blocks of display memory available.
The command character must be known so that commands may be given
to define the workspace and monitor regions of the display. If the
workspace and monitor areas have not been defined, text will not appear
on the screen.

@ 4027 PROGRAMMER'S

INTRODUCTION

For each scroll there is a cursor - a pointer in the display list indicating where the next
character entered in the scroll will be stored. The cursor appears on the screen as a
bright underline one column wide. Only one cursor will be visible at a given time. (There
may be brief periods, while the terminal performs certain routines, when neither cursor is
visible.)

If the workspace window is full and additional text is entered in the workspace, the
workspace automatically scrolls up to display the new text. Text scrolled off the screen is
saved in the display list so long as that memory capacity is not exceeded. The operation
of the monitor is similar, except that information scrolled off the monitor window will be
discarded if that memory space is needed for other purposes.

Scrolling commands and scrolling keys roll the workspace and monitor up and down,
independently, to display various portions of text.

THE 4027 KEYBOARD

The 4027 keyboard is shown in Figure 1-3.

2657-1

Figure 1-3. The 4027 Keyboard.

As indicated in Figure 1-3, the keys on the 4027 keyboard fall into three categories:
ASCII keys, cursor/numeric pad keys, and function keys.

4027 PROGRAMMER'S @ 1-7

INTRODUCTION

1-8

ASCII Keys

The ASCII section of the keyboard resembles an
ordinary typewriter keyboard. Each key in t~is
section, except the BREAK key, sends a character
of the ASCII code to the computer. (See the ASCII
Code Chart, Appendix B.) The BREAK key sends a
break signal which interrupts the computer's opera
tion.

Cursor/Numeric Pad Keys

The cursor/numeric pad is the group of 11 keys to
the right of the ASCII section of the keyboard. This
group of keys functions either as a cursor pad or as
a numeric pad.

When the NUMERIC LOCK function key is off
(unlighted), the group functions as a cursor pad. In
this mode the four keys marked with arrows move
the cursor and the two keys marked with triangles
scroll the display list. If the terminal has been given
the ENABLE command, the four keys marked with
arrows move the crosshair in the direction indicated.

The zero/crosshair (0/ +) key and the ENABLE com
mand may be used to ENABLE the crosshair on the
4027. The remaining pad keys have no effect.

When the NUMERIC LOCK function key is on
(lighted), the group functions as a numeric pad,
generating the digits O - 9 and the decimal point
(period). The shifted versions of the appropriate pad
keys still move the cursor and scroll the display list.

@

o:rn o:rn o:rn o:rn ••••••••••••••• ~□ -············-· ·············-··········-·
ASCII KEYS

o:rn o:rn o:rn o:rn
11111111111111111 •••
. 1111111111111 .. ••• □ I 1111111111111 I •••

. I 11 I I I I I I 11 I . :,/-·

CURSOR/NUMERIC PAD

1~1~1~1~~ I _ 1111111111111 _ _ □
I I I I I I I I I I I I I I I

. 111111111111,

CURSOR MOVEMENT KEYS

o:rn o:rn o:rn o:rn
11111111111111111; _ 1111111111111 _ _ □
I I I I I I I I I I I I I I I

. 11111111111 I/

SCROLLING KEYS/

NUMERIC LOCK

1

~1~1~1~ _ i 111111111111 __ ••• □
I I 111111111111 I ~·· . 11111111111 I.-•

NUMERIC KEYS

4027 PROGRAMMER'S

Function Keys

The function key group consists of the ERASE key,
the PT (Pad Terminator) key, and the sixteen keys

along the top of the keyboard.

The ERASE key is at the extreme upper left of the
ASCII section of the keyboard. This key erases
whichever scroll (workspace or monitor) receives
text from the keyboard.

The PT (Pad Terminator) key is the large key to the
right of the cursor/numeric pad. The default defini
tion of this key is "undefined."

The sixteen keys along the top of the keyboard are
divided into four groups of four keys each. Each key in

the rightmost group includes an LED which, when
lighted, indicates the key is "on." These sixteen keys
have the following definitions.

F1 - Undefined

F2 - Undefined
F3 - Undefined
F4 - Undefined
F5 - HOME

F6 - Undefined
F7 - Undefined

F8 - SEND**
F9 - DELETE CHARACTER
F10 - DELETE LINE

F11 - ERASE & SKIP
F12 - INSERT LINE
F1 3 - INSERT MODE *
F14 - TTY LOCK*
F15 - NUMERIC LOCK/LEARN *
F16 - COMMAND LOCKOUT/STATUS*

* - lighted keys
**

4027 PROGRAMMER'S

The SEND key has no definition until

programmed.

@

INTRODUCTION

••••••••••••••••
~ r11111111111111~ 1111111111111 I - I I 11 I II I I I I I I I

. I I I I II II I I I I .

FUNCTION KEYS

1-9

INTRODUCTION

1-10

Function keys F1 -F4 and F6-F8 have default definitions of "undefined"; these keys cause
no action unless they are programmed.

Function key FS is the HOME key. Pressing this key returns the visible cursor to its
"home" position in row 1, column 1 of its scroll.

Function keys F9-F16 perform the functions indicated by their keyboard labels. These
keys are discussed in detail in the 4027 Operator's Manual.

The default definition of the SEND key is "undefined." Since the 4027 command set
includes two different types of SEND commands, the shifted and unshifted versions of the
SEND key may be programmed, each with a different type of SEND command.

The LEARN key is the shifted version of the NUMERIC LOCK key. The STATUS key is the
shifted version of the COMMAND LOCKOUT key. Neither the LEARN nor the STATUS key
is a lighted key; each operates independently of the corresponding unshifted key.

The action of the DELETE CHAR, DELETE LINE, INSERT LINE, INSERT MODE, and LEARN
keys can be duplicated by 4027 commands discussed later in this manual.

There are no 4027 commands which correspond exactly to the HOME, ERASE & SKIP,
TTY LOCK, NUMERIC LOCK, COMMAND LOCKOUT, or STATUS keys. The action of the
HOME, ERASE & SKIP, and COMMAND LOCKOUT keys can be duplicated by certain
command sequences discussed in later sections of this manual. There are no command
sequences which duplicate the action of the TTY LOCK or NUMERIC LOCK keys.

NOTE

In a 402 7 which contains a Polling Controller (Option 11), the definitions
assigned to some of the function keys will be different than those
discussed in this section. Refer to the 4020 Series Polling Reference
Manual for relevant details.

@ 4027 PROGRAMMER'S

INTRODUCTION

Programmable Keyboard

Most of the keys on the 4027 keyboard can be programmed with definitions other than
the default ones. This allows the operator to generate commonly used character strings,
commands, or command sequences by pressing a single key.

All of the keys on the keyboard can be programmed except the following six keys.

• The rightmost three lighted function keys - TTY LOCK, NUMERIC LOCK, and
COMMAND LOCKOUT. (Neither the shifted nor the unshifted versions of these
keys can be programmed.)

• The three ASCII keys - SHIFT, CTRL, and BREAK.

Key programming can assign different definitions to the shifted and unshifted versions of
the same key. For example, the upper case A key and its unshifted version, the a key, may
be programmed with different definitions.

Function keys F1 -F4, F6-F8, and the PT (Pad Terminator) key have no definitions
assigned to them. These keys are reserved specifically for programmed definitions. The
SEND key (function key F8) is usually programmed with some version of the SEND
command.

4027 PROGRAMMER'S @ 1-11

Section 2

4027 COMMAND STRUCTURE

HOW TO FIND COMMANDS IN THIS MANUAL

The 4027 responds to several dozen commands. This manual is organized functionally.
Each command, with a description of its structure and what it does, is listed in the
appropriate section of the manual: the UP and DOWN commands are described in
Controlling the Display, the HRULE and VRULE commands in Forms and Form Fillout, and
so forth. The first section in which a command appears contains a complete description of
the command syntax.

If the presence of certain modes or settings affects the action of the command, these
effects are discussed in the relevant section. The TAB command, for example, causes a
different action when the terminal is in form fillout mode, and the action of TAB in form
fillout mode is discussed in the Forms and Form Fillout section.

In addition to these command descriptions, Appendix J is a convenient alphabetical
listing of commands and additional information. Also, following the Table list in the
Contents section is an alphabetical list of commands including the section and page
where each command is found.

4027 PROGRAMMER'S @ 2-1

COMMAND STRUCTURE

2-2

THE FORMAT OF 4027 COMMANDS

Each 4027 command is represented by an English-style ASCII string. In addition to the
English-style commands, the 4027 graphics commands have counterparts on existing
401 O Series terminals and PLOT 1 O software. When these commands are sent from the
computer, they can be represented using the 4010-style codes.

A 4027 command consists of four parts:

• The command character

• The command keyword

• The command parameters

• The command terminator

The command character is a unique, user-selectable character that does not normally
occur in text. This character informs the 4027 that the information which immediately
follows is a command. The exclamation point (!) is selected as the command character
before the 4027 is shipped from the factory. The operator or programmer can change the
command character by using the COMMAND command. (See Selecting the Command
Character later in this section.) The exclamation point(!) is used as the command
character throughout this manual.

The command keyword is a single word that identifies the command to be executed. This
keyword can be spelled out entirely or, if it contains more than three letters, it can be
truncated to the first three letters. Two exceptions are the DISCONNECT and DISABLE
commands which each require four letters. The keyword must immediately follow the
command character; no spaces or other characters are allowed between the command
character and the keyword.

The command parameters, if any, follow the keyword. The type and number of parameters
depend on the particular command; some commands take no parameters at all.
Parameters can be numbers, character strings, or words. A parameter word can be
abbreviated to its first letter.

Parameters which are characters or character strings must be separated from the
keyword and from each other by separators. A separator can be a comma or one or more
spaces. The separator between a numeric parameter and the keyword or between a
numeric parameter and neighboring alphabetic parameters can be omitted.

@ 4027 PROGRAMMER'S

COMMAND STRUCTURE

The last character in a command, whether a parameter or the final character of the
keyword, is separated from subsequent information by a command terminator. A
terminator can be a semicolon, a carriage return, or another command character. If the
command is the final string on a line of text, then the terminator is a carriage return. If the
command is followed by text, a semicolon terminates the command and separates it from
the text. If the command is followed by another command, then the command character of
the following command can serve as the terminator.

Figure 2-1 illustrates the format of 4027 commands.

!BELL<CR> (NO PARAMETERS)

/\
COMMAND KEYWORD

CHARACTER

\
TERMINATOR

! BAUD 1200, 2400 <CR>

COMMr..r-w, I IU\I ' ~
CHARACTER \ ~ TERMINATOR

SEPARATOR SEPARATOR PARAMETER

KEYWORD PARAMETER

(KEYWORDS ABBREVIATED;
! WOR 20 K ! MAR 1 0 , 70 <CR> UNNECESSARY SEPARATORS

U• 1 L...JWU-• __,.-1 t___JU L-...J ____ AND TERM1NATOR OMITTED)

/
ASBRtVIATED V \ \ ~ ~ ~

KEYWORD PARAMETER ~PARAMETER TERMINATOR

COMMAND PARAMETERS ABBREVIATED SEPARATOR
CHARACTER (SEPARATORS KEYWORD (NECESSARY)

OMITTED)

4027 PROGRAMMER'S

COMMAND
CHARACTER
(SERVES AS

TERMINATOR)

Figure 2-1. Command Format.

@

2402-3

2-3

COMMAND STRUCTURE

2-4

Consider the following line in Figure 2-1.

!WOR 20 H;THIS IS THE WORKSPACE!MON H!BEL<CR>

The ; terminates the !WOR H command. The ! of the !BEL command terminates the !MON
H command. The <CR> terminates the !BEL command and the entire line. The string
THIS IS THE WORKSPACE, since it is not preceded by a command character, is treated
as text and printed in the workspace.

Separators followed by + or - signs can be omitted. The command

!RVE +5,0,-20,-110,+35,-110<CR>

may be written

!RVE+5,0-20-110+35-11 0<CR>

The separator between +5 and 0 cannot be omitted.

Delimited ASCII Strings

Some of the 4027 commands accept delimited ASCII strings as parameters. A delimited
ASCII string consists of any string of printing ASCII characters with a delimiter at each
end of the string. The delimiters mark the beginning and the end of the delimited string.

The characters which can be used as delimiters are shown in Figure 2-2.

{ [_(under 1 ine)

11
' < > ? / ' • (pe.-r i od)

2402-4

Figure 2-2. String Delimiters.

The symbol currently used as the command character cannot be used as a delimiter. The
hyphen (-), space, semicolon (;), and comma (,) cannot be used as delimiters (although
their shifted versions can be used), since these symbols have special uses in 4027
command syntax.

@ 4027 PROGRAMMER'S

COMMAND STRUCTURE

The same symbol must be used for both delimiters of a string. You may write

!LEARN F1 [!SEND MOD;[<CR>

but not

!LEARN F1 [!SEND MOD;] <CR>

The delimited string must not contain its own delimiter. To set the end-of-line string to the
ASCII string ***I*, for example, we could write

Neither the * nor the / may be used here as a delimiter.

Some commands restrict the length of a delimited string. In general, a delimited string
should not contain the command character (except in the LEARN command). See the
individual command descriptions for details.

Continuing a Command

" Commands typed from the keyboard may be continued to the next line by simply typing
beyond the end of the current line and allowing the command or parameter string to "wrap
around" to the next line.

Some 4027 commands sent from the host require a continuation character when
commands are continued from one line of code in the host program to the next line of
code. This is discussed in the Host Programming for the 4027 sections.

4027 PROGRAMMER'S @ 2-5

COMMAND STRUCTURE

2-6

THE SYNTAX OF COMMAND DESCRIPTIONS

The 4027 command descriptions which appear in this manual use the following
conventions:

• The exclamation point (!) is always used as the command character.

• In a keyword or parameter string which can be abbreviated, the necessary part of
the string is written in uppercase; the optional part is written in lower case. For
example,

STOps

means that any of the strings STO, STOP, or STOPS can be used as the keyword
in a STOPS command. Usually the choice will be STO for efficiency or STOPS for
readability.

• Expressions in angle brackets, < ... >, are parameter names (except the
expression <CR>, which always means carriage return). When a command is
given, the parameter name is replaced by one choice from a specified set of valid
replacements. The set of valid replacements for the parameter name is listed or
described. The OLINE command, for example, is described in this way:

!Oline [<count>]<CR>

where <count> is a positive integer.

• Optional parameters or parameter names are enclosed in square brackets. In the
OLINE command noted above,

[<count>]

means that the <count> parameter may or may not be specified. Default values
are given for all optional parameters.

@ 4027 PROGRAMMER'S

COMMAND STRUCTURE

• Whenever a list appears, with the members of the list separated by vertical bars,
(I), this means that one element is to be chosen from the list. For example, the
FORM command syntax reads:

!FORm [Yes I No]<CR>

This means that either Yes or No may be specified, but not both. Neither of these
have to be specified. The notation Yes means that Y, YE, and YES are all valid
parameter names and define the same command; likewise for No. Thus,
!FOR<CR>, !FOR Y<CR>, !FORM YES<CR>, !FOR N<CR>, and !FORM
NO<CR> are all valid commands.

• The carriage return, <CR>, is always used as the command terminator when a
single command is listed. In particular, in the command descriptions, <CR>
always terminates the command.

SELECTING THE COMMAND CHARACTER

When the 4027 is shipped from the factory, it recognizes the exclamation point (!) as the
command character. The command character can be changed by the computer or the
operator by using the COMMAND command. The 4027 remembers its command character
even when it is RESET or powered off. The only way to change the 4027's command
character is to give the COMMAND command.

Whenever the terminal receives the command character, it tries to interpret the
information immediately following as a command. If this information is not intended to be
a command, confusion may result. Therefore, the command character must be selected
with care. It should not interfere with normal printing of text or terminal/computer
communications.

Symbols such as carriage return, line feed, or space, which are normally
used during communications between the 402 7 and the computer, should
NOT be used as command characters.

The command character may vary from one applications program to another. In a text
editing program the exclamation point (!) would be a risky choice for the command
character, since this symbol is occasionally used as a punctuation mark. Another symbol,
perhaps #or@ , should be chosen.

4027 PROGRAMMER'S @ 2-7

COMMAND STRUCTURE

2-8

At the end of a program the command character should always be reset to the
exclamation point. In this way, the next user will know the proper command character and
be able to command the terminal as needed. If this has not been done, the command
character may be found by pressing the shift STATUS key and observing the display on
the screen.

@ 4027 PROGRAMMER'S

COMMAND STRUCTURE

COMMAND Command

The COMMAND command is used to select a new command character.

Syntax

!COMmand <character> <CR>

where <character> is a single ASCII character or a two- or three-digit ASCII Decimal
Equivalent (ADE) of an ASCII character.

Action

This command sets the command character to the symbol designated by <character>. If
<character> is a single numeral, that character is the new command character. If
<character> is a two- or three-digit numeral, that numeral is the ADE of the new
command character.

Examples

!COMMAND #<CR> Sets the command character to the number sign(#) whose
!COM#<CR> ADE is 35.
!COM 35<CR>

!COM 8<CR>

!COM 08<CR>

4027 PROGRAMMER'S

Sets the command character to the ASCII character 8.

Sets the command character to the ASCII BS (backspace)
character, whose ADE is 08.

@ 2-9

Section 3

HOST PROGRAMMING FOR THE 4027

This section discusses how to use programming language statements to communicate
with the 4027. Application programs for the 4027 can be written in any programming
language which can display alphanumeric information on the terminal screen and accept
data from the terminal.

TEXT AND COMMANDS

All information received by the 4027, whether sent from the computer or typed on the
keyboard, can be divided into two categories: commands and text. A command causes the
4027 to modify its internal status in some way - perhaps to select a new command
character, to redirect text from the computer, etc. Text is information which is printed
verbatim on the terminal screen.

The 4027 distinguishes between text and commands by the presence of the command
character. When the 4027 receives the command character, it assumes a command
follows and tries to process incoming data as a command. When not processing a
command, the 4027 treats information as text and displays it in the appropriate text
window.

COMPUTER-TO-4027 COMMUNICATIONS

Any programming statement which sends alphanumeric data can be used to send text
and commands to the 4027. Common examples are the PRINT statement in BASIC, the
WRITE statement in FORTRAN or PASCAL, and the DISPLAY statement in COBOL.

Suppose we are programming in BASIC. The BASIC statement

100 PRINT "!WOR 20 K"

creates a workspace of 20 lines and directs text from the keyboard into the workspace.

4027 PROGRAMMER'S @ 3-1

HOST PROGRAMMING

3-2

NOTE

When the PRINT statement is executed, the computer sends a < CR> after
!WOR 20 K. This < CR> serves as the command terminator.

In contrast, the BASIC statement

200 PRINT "WOR 20 K"

causes the text WOR 20 K to be displayed in whichever scroll receives text from the
computer. The command character in line 100 makes the difference; it indicates to the
4027 that the information which follows is a command.

Suppose you wish to initialize the 4027 by establishing a 20 line workspace to receive
text from the computer, signal the operator by printing the message THIS IS THE
WORKSPACE in the workspace, and ring the terminal bell. The BASIC statement

100 PRINT "!WOR 20 H K;THIS IS THE WORKSPACE!BEL"

causes the following events:

• The 4027 receives the first !, signaling that a command follows.

• The 4027 recognizes the string WOR 20 HK; as a valid command and executes it.

• The 4027 receives the string THIS IS THE WORKSPACE. As long as the terminal
does not see the command character, it treats incoming information as text and
prints it in the workspace, which now receives text from the computer.

• The 4027 receives the second !, signaling that another command follows.

• The 4027 receives the string BEL, followed by the <CR> sent by the computer at
the end of the PRINT statement. The 4027 recognizes the BEL<CR> as a valid
command and executes it.

When the 4027 receives information from the computer, it processes that information as it
is received. Consider the example:

100 PRINT "!WOR 20 H K;THIS IS THE WORKSPACE!BEL"

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

The 4027 executes the !WOR 20 H K; command as soon the ; is received, while
continuing to receive information from the computer. The information THIS IS THE
WORKSPACE, since it is not a command, is sent to the workspace as soon as the !WOR
20 HK; command has been executed. When the terminal receives the <CR> it executes
the !BEL<CR> command.

In contrast to this, suppose the following line is typed on the keyboard:

!WOR 20 H K;THIS IS THE WORKSPACE!BEL<CR>

No information is processed until the <CR> is typed. Then the line THIS IS THE
WORKSPACE is displayed in the workspace. If the line came from the host it would be
displayed in the monitor.

Sending Numeric Parameters

Consider the 4027 VECTOR command:

!VEC 100, 1 00 200, 1 00 150,200 100, 1 00< CR>

In BASIC, this command can be sent to the 4027 in any of the following ways.
1. Include the VECTOR command parameters as alphanumeric data in the PRINT

statement:

495 PRINT "!VEC 100,100 200,100 150,200 100,100"

(The PRINT statement provides its own <CR>. This <CR> terminates the
VECTOR command.)

2. Send the VECTOR command parameters as data.

495 PRINT "!VEC"; 100,100,200, 100,150,200, 100,100

3. Define, by host programming, BASIC variables X1=100, X2=150, X3=200, Y1 =
100, and Y2=200. Then use the BASIC statement

495 PRINT "!VEC";X1 ,Y1 ,X3,Y1 ,X2,Y2,X1 ,Y1

This method is most versatile, since the values of the variables can be modified
by input from the 4027 operator or by the program itself.

"' The 4027 graphic commands are discussed in detail in the 4027 Graphics section.

4027 PROGRAMMER'S @ 3-3

HOST PROGRAMMING

3-4

Continuing a Command

Some 4027 commands can be continued from one line of code in the host program to the
next line of code by inserting a continuation character at the end of the line. There are two
cases where this can be done:

• In a VECTOR, RVECTOR, PATTERN or SYMBOL command, the ampersand(&) can
be inserted after a numeric parameter to continue the command to the next line.
For example, the BASIC statement

100 PRINT "!VECTOR 0,0, 175, 175,0, 1 75,0,0"

can be written as two lines of code:

100 PRINT "!VECTOR 0,0,&"

101 PRINT "175, 175,0, 175,0,0"

• In a command which takes a delimited ASCII string as a parameter, the delimited
string can be divided into two delimited strings on two consecutive lines of code
using the hyphen(-) as a continuation character. For example, the BASIC
statement

200 PRINT "!LEARN F1 /!SEND ALL;!ERA W/13"

can be written as two lines of code:

200 PRINT "!LEARN F1 /!SEND ALL;/-"

201 PRINT "/!ERA W/13"

The line of text to be continued in this way should NOT be divided between the
command character and the keyword, within the keyword, within a numeric
parameter, or between a number and its plus or minus sign (if the sign is present).
Commands typed from the keyboard may be continued to the next line by simply
typing beyond the end of the current line and allowing the command or parameter
string to "wrap around" to the next line.

Individual commands may tolerate minor variations in syntax. See the command
descriptions for details.

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

A Note on Invalid Commands

Since not all programs run correctly the first time, some information is in order concerning
what to expect from the 4027 when it receives data which confuses it.

When the 4027 receives an invalid command (that is, a string preceded by the command
character but which the 4027 cannot recognize as a command), the results depend on the
origin of this invalid command. In the following examples the command keyword STOPS is
misspelled STEPS:

1. Suppose the invalid command

!STEPS 20 40 60<CR>

is sent from the computer in the BASIC PRINT statement

100 PRINT "!STEPS 20 40 60"

The 4027 treats this invalid command as text and prints the entire string,
!STEPS 20 40 60, in whichever scroll receives text from the computer.

2. When the invalid command

!STEPS 20 40 60<CR>

is typed on the keyboard, an error message is printed and the invalid command
is repeated:

WHAT?
!STEPS 20 40 60

This calls the operator's attention to the source of the error.

4027 PROGRAMMER'S @ 3-5

HOST PROGRAMMING

3-6

3. Suppose this same invalid command is part of a sequence of commands sent
from the computer as in the following BASIC statement:

100 PRINT "!ERA W!STEPS 20 40 60!BEL"

The 4027 erases the workspace, prints the text !STEPS 20 40 60 in whichever
scroll receives text from the computer, and rings the bell. No error message is
given; whatever the terminal cannot recognize as a command is treated as text.

4. If the sequence of commands

!ERA W!STEPS 20 40 60!BEL<CR>

is typed on the keyboard, all information preceding the invalid command is
processed. Then an error message, the invalid command, and the remainder of
the line are all printed in the monitor:

WHAT?
!STEPS 20 40 60!BEL

If the 4027 receives a command that requires workspace and no workspace is defined,
the command is ignored. Nothing will be executed and no error message will appear.

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

Displaying a Command File

How does one display a file containing 4027 commands so that it can be read, modified,
or debugged? There are two ways this can be done:

1. The 4027 operator can press the COMMAND LOCKOUT key and then display
the file on the screen. When this key is lighted, the 4027 treats all information,
including the command character, as text and prints it in the appropriate scroll.

Press COMMAND LOCKOUT (LED comes on).

(Display file containing ! as the command
: character, review and edit this file, and

return edited file to the computer.)

Press COMMAND LOCKOUT again (LED goes off).

2. The operator or the computer can change the command character to a symbol
which does not appear in the file to be reviewed. In a file which does not contain
the symbol #, one might have

!COM #<CR> (Change command character to #.)

(Display file containing ! as the command
: character, review and edit this file, and

return edited file to the computer.)

#COM ! (Reset command character to !.)

The 4027 can also stay execution of commands by using the 4027 COPY command (see
the Peripherals section).

4027 PROGRAMMER'S @ 3-7

HOST PROGRAMMING

3-8

4027-TO-COMPUTER COMMUNICATIONS

There are three ways to send information from the 4027 to the computer: type into the
monitor, use the SEND command, or use the REPORT command.

Typing into the Monitor

One way to enter information into the computer is to type it into the 4027 monitor. If the
4027 is in unbuffered mode, information typed into the monitor is sent to the computer
character by character, as it is typed. If the 4027 is in buffered mode, information typed
into the monitor is sent to the computer line by line, as each line is terminated by a
carriage return. Buffered and unbuffered modes are discussed in more detail in the
System Status and Initialization section.

SEND Command

A second way to send information to the computer is to first enter that information in the
4027 workspace. When the operator or the computer gives the SEND command, all the
information in the workspace is sent to the computer.

Syntax

!SENd<CR>

This command causes all information in the 4027 workspace to be sent to the computer.

Usually the SEND key is programmed to give the SEND command, so that the operator
can send the workspace contents to the computer, simply by pressing the SEND key at
the appropriate time.

The SEND command is used in conjunction with whatever input request statement is
available in the programming language. In BASIC, for example, the INPUT statement is
used; in COBOL, the ACCEPT statement is used.

NOTE

The key labeled SEND on the 402 7 keyboard is NOT pre-programmed. It
may be programmed to give the SEND command using the LEARN
command or the LEARN key.

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

The following program asks the operator to type a one-line message in the workspace and
press a key to send this message to the computer. When the computer receives the
message, it prints it back in the monitor, so that the operator can verify the message was
correctly received.

LIST
NOtR'E 09:09 /:V'1 2511)r-78
100 REM---CREATE A QE~ l-00<~
110 PRINT '! i,m 20 K'
120 REM---F'ROGR/:V'1 SEND KEY CFLNCTICtl KEY 8) TO GIVE !SEND CCM1AND
130 PRINT '!LEA FB/!SEND/13 10'
140 REM---INF~ Cf>ERAT~
150 PRINT ' ! r-n-1 H'
160 PRINT 'This program accepts a message from the 4027 Workspace'
161 PRINT 'and verifies the message was received. 1-i"ten you type your'
162 PRINT 'message, it appears in the workspace. 1-i"ten you press the'
163 PPrnT 'SEND key, your message Is sent to the COlll)uter. The computer ·
164 PRINT 'verifies your message by printing it back to you, 1n the'
165 PRINT 'monitor. Now type your message and press the SEND key utien'
166 PRINT 'ready.'
200 REM---ACCEPT Il'FIJT FRa-1 TtRMIIR..
210 Itfl.JT A$
220 REM---SEND l'Css:G: RECEIVED~ TO TERMit-R...
230 PRINT 'Your message was received. It read:'
240 PRINT
250 PRINT A$

260 PRINT
270 PRINT
999 END

4027 PROGRAMMER'S @

2657-2

3-9

HOST PROGRAMMING

3-10

NOW IS Tl-£ Til'E

This program accepts a message from the 4027 Workspace
and ver1f1es the message was received. 1-tlen you type your
message, 1t appears 1n the workspace. 1-tlen you press the
SEND key, your message 1s sent to the co~uter. The co~uter
ver1f1es your message by pr1nt1ng it back to you, in the
monitor. Now type your message and press the SEND key utien
ready.
?

Your message was received. It read:

t'W IS Tl-£ Til'E

NOTE

2657-3

When the SEND command is given from the computer, it must be placed in
the applications program before the input request statement. In BASIC, for
example, write

100 PRINT "!SEND"
110 INPUT A$

Do not write

200 INPUT A$
210 PRINT "!SEND"

In the latter case, the program never executes line 210. It halts at line 200,
waiting for data which never comes.

The use of the SEND command in form fillout applications is discussed in the Forms and
Form Fillout section.

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

REPORT Command

A third way to send information to the computer is for the computer to issue the REPORT
command to the 4027.

Syntax

!REPort <device> <CR>

where <device> is an integer from 00 to 14.

Action

This command causes the 4027 to send a report to the computer. The report has the
following format:

!ANS <device>,<data field>;

The report identifier ANS (for "answer") is followed by one space, the two-digit <device>
number, then a comma, then the <data field>, and finally a semicolon.

The <data field> parameter contains one or more fields, separated from each other by
commas. The format of <data field> depends on the value of <device>; that is, on the
device reporting. For a given device, however, the format of <data field> is always the
same. This allows the applications program to correctly extract data from <data field>,
knowing which device was interrogated.

Examples

1. The command

!REP 00<CR>

causes the 4027 to report the system status block to the computer. This report
is in the following format:

!ANS 00,<p1 >,<P2>;

4027 PROGRAMMER'S @ 3-11

HOST PROGRAMMING

3-12

where

<p1 > is a four-digit decimal number specifying the number of unused blocks
of memory. (A block consists of 1 6 8-bit bytes.)

<p2> is a three-digit number representing the decimal equivalent of a binary
number which specifies the system status byte. The numbers which may be
displayed and the condition they represent are:

004 - monitor present (always true).

005 - monitor present, buffered mode.

006 - monitor present, form fillout mode.

007 - monitor present, form fillout mode, buffered mode.

2. The command

!REP 01 <CR>

causes the 4027 to report the status of the alpha cursor within the workspace
to the computer. If no workspace is present, all zeros are returned. This report is
in the following format:

!ANS 01,<p1 >,<p2>,<p3>;

where

<p1 > is a three-digit decimal number specifying the row of the workspace in
which the cursor is located.

<p2> is a three-digit decimal number specifying the column of the workspace
in which the cursor is located.

<p3> is a single character, the character displayed at the cursor position.

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

3. The command

!REP 02 <CR>

causes the 4027 to report the position, color, and shrink factor of the graphic
beam. This report is in the following format:

!ANS 02,<data 1 >, <data 2>, <data 3>, <data 4>;

where

<data 1 > is a three-digit decimal number which indicates the current x
coordinate of the graphic beam position.

<data 2> is a three-digit decimal number which indicates the current y
coordinate of the graphic beam position.

<data 3> is a three-digit decimal number preceded by C or P which indicates
the current color (C0-C7) or pattern number (P0-P119).

<data 4> is a three-digit number indicating the current shrink factor. The
number may be:

001 = 4010
002 = hardcopy
003 = both 401 0 and hardcopy

NOTE

Hardcopy shrinking is not necessary on the 402 7, but is included for 4025
compatibility.

4027 PROGRAMMER'S @ 3-13

HOST PROGRAMMING

3-14

4. The command

!REP 03<CR>

Causes the 4027 to report the status of the crosshair; whether it is present and
its position. This report is in the following format:

!ANS 03, <data 1 >, <data 2>, <data 3>;

where

<data 1 > is a three-digit decimal number that indicates whether the crosshair
is visible (000 is off, 001 is on, 002 is on in 4010 mode).

<data 2> is a three-digit decimal number that indicates the current x
coordinate of the crosshair.

<data 3> is a three-digit decimal number that indicates the current y
coordinate of the crosshair.

The REPORT command can be used for purposes other than straightforward interrogation
of the system status block, the workspace cursor, graphic beam information and
crosshair positioning.

As an example, suppose the applications program is sending large amounts of data to the
4027 at relatively high baud rates. It is possible for the computer to overrun the 4027's
input buffer, resulting in loss of information. Occasionally inserting the pair of statements
(here in BASIC)

XXX PRINT "!REP 00"
XXX+1 INPUT A$

causes the program to pause at each input statement and not continue until it receives
input for A$ (that is, until the 4027 has processed its entire input buffer and ANSwers the
REPort command). This prevents the program from sending more data to the terminal until
the terminal has processed its input buffer. What the terminal ANSwers is not important,
only that it ANSwers.

@ 4027 PROGRAMMER'S

HOST PROGRAMMING

The REPORT command is also used to obtain information about peripherals which may be
attached to the 4027. Details are contained in the Peripherals section. Appendix E
contains a program segment in PASCAL to illustrate how the input from a REPORT
command can be processed.

Listed below is a summary of the REPORT command <device> numbers and the devices
they reference.

Device number: Reports:

00 ... system status block
01 ... alpha cursor information
02 ... graphic beam information
03 ... crosshair information
04 ... tape unit 1
05 ... tape unit 2
06 ... tape unit 3
07 ... tape unit 4
08 ... reserved
09 ... reserved
1 0 ... reserved
11 ... reserved
1 2 ... plotter 1
1 3 ... plotter 2
14 ... printer

4027 PROGRAMMER'S @ 3-15

r r r

Section 4

PROGRAMMING THE KEYBOARD

The 4027 keyboard is programmable; that is, most of the keys can be programmed to
generate a character or string of characters other than the default ones. When a key is
programmed, the new definition assigned to that key is stored in the 4027 RAM (Random
Access Memory). If the terminal is RESET or powered off, the definition is lost and the key
reverts to its default definition.

Key programming enables the operator to give a command or sequence of commands by
pressing a single key. During an applications program the operator can log on or log off
the computer, change terminal parameters, send information to the computer, page
through text, or perform any of several convenient functions just by pressing a key. Key
definitions may be part of terminal initialization or may occur at convenient points in a
program. A key can have several different definitions in a single program.

The user can also use the LEARN command to define sixteen macros (M1-M16). Macros
are command or text strings defined in the same way as programmed keys. However, a
macro is not executed by depressing any key. Instead, a macro is executed when the
EXPAND command is received from the host computer or the keyboard.

All the keys on the 4027 keyboard can be programmed except the following six keys:

• The rightmost three lighted function keys - TTY LOCK, NUMERIC LOCK/LEARN,
and COMMAND LOCKOUT/STATUS. (Neither the shifted nor the unshifted
versions of these keys can be programmed.)

• The SHIFT, CTRL, and BREAK keys.

PROGRAMMING A KEY

A key may be programmed with a new definition in one of two ways:

• The operator may use the LEARN key.

• The operator or computer may give the LEARN command.

The LEARN key performs the same action as the LEARN command. The 4027 Operator's
Manual describes the use of the LEARN key.

4027 PROGRAMMER'S @ 4-1

PROGRAMMING THE KEYBOARD

LEARN COMMAND

4-2

LEARN Command

Syntax

!LEArn <key> [<string>]<CR>

where

<key> designates the key or macro to be programmed.

<string> designates the character or character string to be assigned to the
designated key.

Action

This command redefines the key or macro designated by the <key> parameter;
whenever this key is pressed or macro called, it generates the character string defined by
<string>.

Range of Parameters

The <key> parameter may be any of the following:

• A single printing ASCII character.

• A two- or three-digit ADE (ASCII Decimal Equivalent) value from 00 through 127,
inclusive. (See the ASCII Code Chart Appendix B.)

• A mnemonic representing a non-ASCII key (function key or cursor/numeric pad
key):

F1 - F12
S1 - S12

PO - P9, P., PT

•M1-M16

Function keys 1 through 1 2
Function keys 1 through 12 with SHIFT
depressed
Numeric pad keys and Pad Terminator key

Internal macros 1 through 16 set by giving
the LEARN command from keyboard or host.

@ 4027 PROGRAMMER'S

PROGRAMMING THE KEYBOARD

LEARN COMMAND

• A "psuedo-ADE value" representing a non-ASCII key:

1 28 Function Key 1
1 29 Function Key 2
130 Function Key 3
131 Function Key 4
132 Function Key 5
133 Function Key 6
134 Function Key 7
135 Function Key 8
136 Function Key 9
137 Function Key 1 O
1 38 Function Key 11
139 Function Key 12
140 Function Key 13

160 Pad Key 0
161 Pad Key 1
162 Pad Key 2
163 Pad Key 3
164 Pad Key 4
165 Pad Key 5
166 Pad Key 6
167 Pad Key 7
168 Pad Key 8
169 Pad Key 9
170 Pad Key.
171 Pad Terminator Key

144 SHIFT-Function Key 1
1 45 SHIFT-Function Key 2
146 SHIFT-Function Key 3
147 SHIFT-Function Key 4
148 SHIFT-Function Key 5
149 SHIFT-Function Key 6
150 SHIFT-Function Key 7
151 SHIFT-Function Key 8
152 SHIFT-Function Key 9
153 SHIFT-Function Key 10
1 54 SHIFT-Function Key 11
155 SHIFT-Function Key 1 2
156 SHIFT-Function Key 13

172 ERASE
173 SHIFT-ERASE
174 BK TAB

The <string> parameter may be any of the following:

• One or more ADE values

• One or more pseudo-ADE values

• One or more delimited ASCII strings

• Any combination of the above

If the <string> parameter is omitted, the key is assigned its default meaning (the
standard keyboard meaning). The <string> parameter may be any length as long as the
terminal's display memory capacity is not exceeded.

4027 PROGRAMMER'S @ 4-3

PROGRAMMING THE KEYBOARD

LEARN COMMAND

4-4

Examples

!LEARN # /(End-of-Page)/<CR>
!LEA 35 /(End-of-Page)/<CR>

!LEA 35 13<CR>

!LEA F8 "!SEND MOD;"13<CR>
!LEA 135 "!SEND MOD;"13<CR>

Redefines the # key (SHIFT-3 key), whose
ADE is 35, to generate the parenthetical
comment (End-of-Page). The definition of the
3 key is unchanged.

Redefines the # key to mean carriage
return.

Programs function key F8, whose pseudo
ADE is 135, to give the !SEND MOD com
mand.

!LEA 148 /!WOR!ERA W;READY FOR NEXT PROGRAM/ 7 7 7 /!MON;/13<CR>

!LEA 148<CR>

Programs the SHIFT-HOME key, whose
pseudo-ADE is 148, to direct text from the
keyboard into the workspace, erase the
workspace, print the message READY FOR
NEXT PROGRAM there, ring the terminal bell
three times, and return the keyboard to the
monitor.

Restores the SHIFT-HOME key to its default
meaning (undefined).

!LEA M1/The rain in Spain falls mainly on the plain./<CR>

Programs macro M1 to print the delimited
string. M1 may be invoked by giving the
EXPAND M1 command from the keyboard or
the host computer.

!LEA M16/!RVE 0,0 20,0 0,100 -10,-50/ 13 <CR>

Defines macro M16 to be the specified RVEC
TOR command.

!LEA F1 /!RMAP C2 30,-25,-50/ 13 <CR>
!LEA 128/!RMAP C2 30,-25,-50/ 13 <CR>

Defines function key F1 to the specified RMAP
command.

@ 4027 PROGRAMMER'S

PROGRAMMING THE KEYBOARD

LEARN COMMAND

NOTE

When programming a key to give a command or sequence of commands,
always include the ADE 13 as the last character of< string> (outside the
delimiters). This insures that pressing the programmed key causes the
command(s) to be executed.

Special Considerations

When the LEARN command is given from the computer, it may be continued from one line
of program code to the next by using a hyphen (-) as a continuation character. This
causes the next <CR>, up to one <LF>, and all NULs, RUBOUTs, and SYNCs to be
ignored until another character is received. The LEARN command

!LEA F3 /THIS COMMAND IS TOO LONG TO FIT ON ONE LINE./ 13<CR>

can be written on two consecutive lines of BASIC program code as follows:

100 PRINT "!LEA F3 /THIS COMMAND IS TOO/-"
101 PRINT "/LONG TO FIT ON ONE LINE./ 13"

This does not apply to a LEARN command entered from the keyboard. If the command is
entered from the keyboard, one simply continues typing until the command is complete. If
the command is longer than one line (80 characters), the cursor wraps around to the next
line; the command is not terminated until <CR> is pressed.

Since delimited strings may contain only printing ASCII characters, any control
characters or non-ASCII characters included in a LEARN command must be encoded
using ADEs or pseudo-ADEs outside the delimited string. Thus, the command

!LEA$ 13 1 0<CR>

programs the$ key (SHIFT-4 key) to mean <CR> <LF>. In contrast, the command

!LEA$ /13 10/<CR>

programs the$ key to print the ASCII string 13 10.

If one of the ASCII numeral keys (0-9) or the period key (.) is programmed, the
corresponding numeric pad key (with the NUMERIC LOCK key lighted) is also
programmed. Likewise, if the numeric pad key (with NUMERIC LOCK on) is programmed,
the corresponding ASCII numeral or period key is programmed. Programming an ASCII
key does not program the corresponding cursor pad key with NUMERIC LOCK off.
Likewise, programming the cursor pad key with NUMERIC LOCK off does not program the
ASCII key marked with the same symbol.

4027 PROGRAMMER'S @ 4-5

PROGRAMMING THE KEYBOARD

MACROS

4-6

If the character string assigned to a programmed key includes one or more commands,
those commands are executed but not displayed on the screen when the programmed key
is pressed.

The <string> parameter may include the CLEAR command, discussed later in this
section. Suppose we program the F1 function key as follows:

!LEARN F1 /!ERA M!CLEAR!BEL;Goodbye for now.!MON/13<CR>.

Pressing F1 causes all of the commands to be executed and the text "Goodbye for now."
to be printed in the workspace, even though the CLEAR command is given early in this
string. The string will be executed only the first time the key is pressed.

Function key pseudo-ADE's can be included in the <string> parameter, but those ADE's
generate default definitions instead of previously programmed definitions. Consider the
command sequence:

!LEARN 172 /!ERA W!BEL/13<CR>
!LEARN 128 172<CR>

The first LEARN command programs the ERASE key (pseudo-ADE 172) to erase the
workspace and ring the bell. the second LEARN comand programs function key F1 to
mean the same as the unprogrammed ERASE key.

NOTE

The SEND keys (keys FB and SB, with pseudo-ADEs 135 and 151,
respectively) have no meaning until programmed. Normally, these keys will
be programmed to give the SEND ALL or SEND MOD command, or some
command sequence which sends information to the computer.

Macros and the EXPAND Command

The EXPAND command is used to execute macros which were defined by the LEARN
command.

@ 4027 PROGRAMMER'S

PROGRAMMING THE KEYBOARD

EXPAND COMMAND, LEARN AND COMMAND

EXPAND Command

Syntax

!EXPand <macro no.> <CR>

where <macro no.> is a macro name (M1, M2, ... , M16).

Action

This command is used to invoke any macros specified by the LEARN command. EXPAND
may be given by the keyboard or the host computer. Thus, a command or series of
commands or a string may be sent by the host or the operator by giving the EXPAND
command.

Example

!EXPand M1 <CR>

causes the string assigned to the given macro (M 1) to be inserted in the input queue in
place of the EXPAND command. Macros are numbered M1 through M1 6.

The LEARN Command and the COMMAND Command

Do not confuse programming a key using the LEARN command and selecting a new
command character using the COMMAND command. These operations are different.

Programming a key with the LEARN command causes the programmed key to generate a
different character or character string than it normally generates. In contrast to this,
selecting a new command character does not change the character string generated by
any key. Rather, it changes the way the 4027 processes the default symbol generated by
one particulr key. The same key generates the same symbol, but that symbol, when seen
by the terminal, now has a different effect.

When the COMMAND command selects a new command character for the 4027, this new
selection is stored in the 4027 battery-maintained RAM. This means that the 4027
remembers the new command character, even when it is turned off or RESET. The only
way to change the 4027's command character is to give a new COMMAND command.
When a key is programmed using the LEARN command, however, the learned definition is
lost if the terminal is turned off or RESET, and the key returns to its default definition.

4027 PROGRAMMER'S @ 4-7

PROGRAMMING THE KEYBOARD

KEYBOARD LOCKOUT

4-8

KEY PROGRAMMING AND KEYBOARD LOCKOUT

When a key is programmed, the new definition assigned to that key is generated
whenever the key is pressed; however, the default character assigned to that key can still
be sent to the terminal. It is not the default character, but the key itself, which generates
the new definition.

Suppose we execute the following sequence of commands:

!LEA 127 34!LEA 34 /!WOR 20 H K/13<CR>

The RUBOUT key (ADE 127) is now programmed to mean quotes (") and the quotes key
(ADE 34) is programmed to mean !WOR 20 H K<CR>. The ASCII quotes character can
be sent to the terminal with its usual meaning, either by sending the ASCII quotes
character (ADE 34) from the computer or by pressing the RUBOUT key on the keyboard.

It may be desirable to prevent an operator from issuing arbitrary commands to the
terminal during an applications program, but still allow him to issue certain specific
commands or command sequences. During a form fillout program for example, the
operator should not be able to modify the form itself, but should be able to give the SEND
MOD command.

Key programming can accomplish this. Suppose ! is the command character. If the
computer sends the command

!LEARN 33 00<CR>

to the 4027, the! (SHIFT-1) key is programmed to generate the ASCII NUL character. This
prevents the operator from using the ! key to generate the command character. Yet the
computer can send command characters to the terminal and can program function keys
to issue commands when pressed by the operator. Only the operator's ability to issue the
command character arbitrarily from the keyboard is impaired. At the proper time, the
computer returns control of the 4027 to the keyboard by sending the command

!LEARN 33<CR>

This returns the ! key to its default meaning.

@ 4027 PROGRAMMER'S

PROGRAMMING THE KEYBOARD

CLEAR COMMAND

CLEARING KEY DEFINITIONS

To restore a single key to its default definition or to clear macro definition, use the LEARN
command with the <string> parameter omitted. The command

!LEARN <key> <CR>

will restore the <key> key or macro to its default meaning.

CLEAR Command

To clear all programmed key definitions and all macro definitions simultaneously, use the
CLEAR command.

The command

!CLEar<CR>

clears all key and macro definitions generated by LEARN commands or by the LEARN
key. All keys revert to their default definitions; all macros become undefined.

4027 PROGRAMMER'S @ 4-9

r r r

Section 5

SYSTEM STATUS AND INITIALIZATION

The 4027 has many operating parameters which can be set from the keyboard or from the
computer. This allows the 4027 to interface with a variety of host systems, as well as run
many different applications programs easily and effectively. Some of these parameters
(the end-of-line string, for example) must be set when the terminal is first installed and
are changed infrequently, if at all. Other parameters (the form fillout mode setting, for
example) will be changed more often, perhaps several times within the same program.

Clearly, it is necessary for the host and the applications program to be well informed of
the status of these parameters. Since these settings may be changed from the keyboard
without the host's knowledge, the first task of any applications program is to initialize the
terminal; that is, the terminal must be set to a known and desired state which facilitates
execution of the program. When the program is completed, the terminal should be
returned to a known reference state for the convenience of future users.

Some parameters affect the status of the terminal itself. Other parameters affect the
status of communications between the terminal and the host computer. This section first
discusses the terminal status commands which determine the status of the terminal itself.
These are the COMMAND, WORKSPACE, MONITOR, MARGINS, STOPS, FORM, and
SNOOPY commands. Then the communication status commands which determine the
status of communications between the 4027 and the host computer are discussed. These
are the BAUD, PARITY, ECHO, BUFFERED, EOL, PROMPT, DELAY, FIELD, EOF, DUPLEX,
and DISCONNECT commands.

4027 PROGRAMMER'S @ 5-1

STATUS/INITIALIZATION

COMMAND COMMAND

5-2

TERMINAL STATUS COMMANDS

COMMAND Command

The syntax of the COMMAND command is

!COMmand <character> <CR>

where <character> is a single printing ASCII character or the ADE (ASCII Decimal
Equivalent) of an ASCII character. The syntax and action of this command were
discussed in the 4027 Command Structure section; however, some additional comments
regarding terminal initialization are in order here.

Since each command to the 4027 must be preceded by the command character, the
computer must know the command character at all times. Although the terminal operator
can discover the command character by pressing the STATUS (SHIFT-COMMAND
LOCKOUT) key, the computer cannot do this. Therefore, at the end of each applications
program the command character must be set to a reference symbol. This insures the next
user proper access to the terminal. The exclamation point(!) is recommended as the
reference symbol. It is the command character when the 4027 is shipped from the factory.
It is also used as the command character throughout this manual and throughout the
4027 Operator's Manual.

The command character can be changed at the beginning of an applications program, or
anytime during the program, by using the COMMAND command. But the program should
always reset the command character to the reference character, !, before releasing
control of the terminal. Consider a text-editing program. Since the ! symbol is used
occasionally as a punctuation mark, one may wish to avoid using it as the command
character in this situation. Such a program might begin by choosing another command
character, say the @ character, and resetting to! at the end of the program:

!COM@<CR>

(Body of program)

@COM !<CR>
End of execution

@ 4027 PROGRAMMER'S

ST A TUS/INITIALIZATION

WORKSPACE COMMAND

WORKSPACE Command

When the 4027 is powered up or RESET, there is no workspace or workspace window, the
entire 34-line screen is devoted to the monitor window, and text from both the keyboard
and the computer is directed into the monitor. Before an applications program is run, the
4027 terminal screen must be initialized:

• Divide the screen into a workspace window and a monitor window to display
information from the corresponding scrolls.

• Direct text from the computer and from the keyboard into the appropriate scrolls.

One of the commands used to initialize the screen is the WORKSPACE command.

Syntax

!WORkspace [<number>] [Host] [Keyboard]<CR>

where <number> is an integer between O and 33, inclusive.

Action

If <number> is included, this command erases the entire display list (the monitor, and if
a workspace is defined, the workspace also). The terminal then defines a workspace and
allots the top < number> lines of the screen for the workspace window. The remaining
34-<number> lines are used for the monitor window. At least one line is always reserved
for the monitor window.

If H (Host) is specified, text from the host computer is directed into the workspace. If K
(Keyboard) is specified, text from the keyboard is directed into the workspace.
(Commands typed on the keyboard are still displayed in the monitor.)

4027 PROGRAMMER'S @ 5-3

STATUS/INITIALIZATION

WORKSPACE COMMAND

5-4

If only the <number> parameter is specified, text from the keyboard and text from the
computer go to the same scrolls as before. A WORKSPACE 0 command directs text from
both the keyboard and the computer into the monitor, since this command destroys the
workspace.

If no parameters are specified, and the command comes from the host computer, a
WORKSPACE H command is executed. If no parameters are specified and the command
is typed on the keyboard, a WORKSPACE K command is executed.

Examples

!WOR 20 H K<CR>

!WOR 25<CR>

!WOR 0<CR>

!WOR H<CR>

!WOR<CR>

Erases the display list, reserves the top 20 lines of the
screen for the workspace window, and directs text
from both the computer and the keyboard into the
workspace.

Erases the display list, reserves the top 25 lines of the
screen for the workspace window. Does not change
the destination of text from the computer or of text
from the keyboard.

Erases the display list, reserves the entire 34-line
screen for the monitor window. Directs text from both
the computer and the keyboard into the monitor, since
no workspace is defined.

Directs text from the computer into the workspace.
Does not erase the workspace or change the position
of the workspace cursor.

If this command comes from the computer, it directs
text from the computer into the workspace. If the
command comes from the keyboard, it directs text
from the keyboard into the workspace.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

MONITOR COMMAND

MONITOR Command

The WORKSPACE command does not allow you to specify which devices (Host,
Keyboard) send information to the monitor. The MONITOR command allows-you to do this,
as well as create text windows.

Syntax

!MONitor [<number>) [Host l [Keyboard)<CR>

where <number> is an integer between 1 and 34, inclusive.

Action

If <number> is included, this command erases the entire display list (the monitor, and if
a workspace is defined, the workspace also). The terminal then defines a workspace and
reserves the top 34-<number> lines of the screen for the workspace window. The
remaining <number> lines are used for the monitor window. At least one line is always
reserved for the monitor window.

If H (Host) is specified, text from the computer is directed into the monitor. If K (Keyboard)
is specified, text from the keyboard is directed into the monitor.

If <number> is the only parameter specified, text from the computer and from the
keyboard go into the same scrolls as before. A MONITOR 34 command directs text from
both the computer and the keyboard into the monitor, since this command destroys the
workspace.

If no parameters are specified and the MONITOR command comes from the host
computer, a MONITOR H command is executed. If no parameters are specified and the
MONITOR command is typed on the keyboard, a MONITOR K command is executed.

Examples

!MON 10 H K<CR>

4027 PROGRAMMER'S

Erases the display list, creates a monitor window of 1 O

lines and a workspace window of 24 lines, and directs
text from the computer and from the keyboard into the
monitor.

@ 5-5

STATUS/INITIALIZATION

MONITOR COMMAND

!MON 4<CR>

!MON 34<CR>

!MON H<CR>

!MON<CR>

5-6

Erases the display list, creates a monitor window of 4
lines and a workspace window of 30 lines. Text from
the keyboard and text from the computer go into the
same scrolls as before.

Erases the display list and reserves the entire 34 lines
of screen for the monitor window. Directs text from
both the computer and the keyboard into the monitor,
since no workspace is defined. Equivalent to a WORK
SPACE O command.

Directs text from the computer into the monitor; does
not erase either scroll.

If this command comes from the computer, it directs
text from the computer into the monitor. If the com
mand comes from the keyboard, it directs text from the
keyboard into the monitor.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

MARGINS COMMAND

MARGINS Command

Workspace margins are set with the MARGINS command. (Monitor margins are always
set to columns 1 and 80, and cannot be changed.)

Syntax

!MARgins [<left>] [<right>]<CR>

where <left> and <right> are integers between 1 and 80, inclusive, and <left> is less
than < right>. If only one parameter is specified, it is taken to be the < left> parameter;
in this case, the < right> parameter remains unchanged. If both parameters are omitted,
<left> and <right> def au It to 1 and 80, respectively.

Action

This command sets the workspace margins - the left margin to column < left> and the
right margin to column <right>.

When the terminal receives a <CR> from the computer or from the keyboard, the cursor
moves to column <left>. All cursor movement keys and almost all commands which
move the cursor respect the left margin: if the left cursor key is pressed repeatedly, the
cursor moves left to column <left>, then wraps around to column 80 of the previous line;
the BACKTAB key does not move the cursor past column <left>. (The one exception is
the JUMP command. See the Controlling the Display section.)

If a character is typed into column <right>, the terminal bell rings. This is the only action
which occurs. If more characters are entered in the workspace, those characters are
displayed on the same line, and the cursor continues moving right until either (1) the
cursor moves past column 80 and wraps around to the next line, or (2) the terminal
receives a <CR> as a signal to begin a new line. In either case, the cursor moves to the
left margin in column <left> of the next line.

Examples

!MARGINS 10 70<CR>

4027 PROGRAMMER'S

Sets the left workspace margin to column 10 and the
right margin to column 70.

@ 5-7

STATUS/INITIALIZATION

MARGINS COMMAND

5-8

!MAR 25<CR>

!MAR<CR>

Sets the left margin to column 25; leaves the right
margin unchanged.

Sets the left and right margins to their default settings:
columns 1 and 80, respectively.

The 4027 remembers its right and left margins when it is powered off or RESET.

NOTE

Unless stated otherwise, it is always assumed in this manual that the left
margin is set to column 1.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

STOPS COMMAND

STOPS Command

Tab stops are set with the STOPS command.

Syntax

!STOps [<stop 1 >] [<stop 2>] ... [<stop 16>]<CR>

where each <stop n> parameter is a positive integer between 2 and 80, inclusive, and
parameters are arranged in increasing order.

Action

This command sets up to 16 tab stops by listing the columns in which stops are defined.
Stops are defined in both the workspace and the monitor simultaneously. Only the stops
specified are defined; all previous stops are deleted. Stops may be set to the left of the
left workspace margin, to the right of the right workspace margin, and between the
margins.

If no parameters are specified, all tab stops are cleared.

Examples

!STO 1 O 20 35 45 60<CR> Defines monitor and workspace tab

!STO<CR>

stops in columns 10, 20, 35, 45, and 60. No other
stops are defined; any previously defined stops are
deleted.

Clears all tab stops.

The 4027 remembers its tab stops when powered off or RESET.

4027 PROGRAMMER'S @ 5-9

STATUS/INITIALIZATION

FORM COMMAND

5-10

FORM Command

The FORM command places the 4027 in form fillout mode and removes it from form fillout
mode.

Syntax

!FORm [YesJNo]<CR>

Action

The FORM YES command (or equivalent) places the 4027 in form fillout mode. The FORM
NO command (or equivalent) removes the 4027 from form fillout mode. A detailed
discussion of form fillout mode is found in the Forms and Form Fillout section.

If no parameter is specified, Y (Yes) is assumed.

Examples

!FORM YES<CR>
!FORY<CR>
!FOR<CR>

!FORM NO<CR>
!FOR N<CR>

Places the 4027 in form fillout mode.

Removes the 4027 from form fillout mode.

The 4027 always powers up and RESETs to FORM NO.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

SNOOPY COMMAND

SNOOPY Command

The 4027 has a "snoopy" mode of operation. In snoopy mode, the non-printing ASCII
characters (control characters) are represented on the screen by two letter mnemonics.
The RUBOUT (or DELETE) character is represented by a blotch of fine diagonal lines.
Entering and leaving snoopy mode is controlled by the the SNOOPY command.

Syntax

!SNOopy [Yes I No]<CR>

If neither parameter is specified, Yes is assumed.

Action

The SNOOPY YES command places the 4027 in snoopy mode. The SNOOPY NO
command removes the 4027 from snoopy mode.

Snoopy mode is useful for troubleshooting and debugging, since it allows the operator to
examine all ASCII characters received by the terminal, not just printed characters. It is
also useful for inserting control characters into text stored in the workspace. Commands
are still executed in snoopy mode.

To see the ASCII NUL character printed when examining incoming data, it is necessary to
have the 4027 parity set to "data." (See the discussion of the PARITY command in this
section.)

Examples

!SNOOPY YES<CR>
!SNO Y<CR>
!SNO<CR>

!SNOOPY NO<CR>
!SNO N<CR>

Places the 4027 in snoopy mode.

Removes the 4027 from snoopy mode.

The 4027 always powers on or RESETs to SNOOPY NO.

4027 PROGRAMMER'S @ 5-11

STATUS/INITIALIZATION

SNOOPY COMMAND

5-12

CONTROL
CHARACTER

tu..
50H
STX
ETX
EOT
Et-0
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI

Table 5-1

SNOOPY MODE MNEMONICS

SNOOPY MODE CONTROL SNOOPY MODE
MNEMONIC CHARACTER MNEMONIC

~ DLE 'l
~ DC1 01

~ DC2 Ill
~ DC3 ~
~ DC4 0..
'ii NAK \
\ SYN s,,
\ ETB ...
I\ c~ ~

~ EM ~ .,. SUB \
'<- ESC 't ,, FS 's
~ GS 6s
t RS "s
5t us ~

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

BAUD COMMAND

COMMUNICATIONS STATUS COMMANDS

BAUD Command

The simplest communications system consists of a device to transmit information, a
device to receive information, and a communications link or "line." The rate at which
information is transferred over a communications line is called the "baud rate." This rate
is given in bits/second; a baud rate of 1200 means information is transferred at the rate
of 1200 bits/second.

During any communication, the rate at which the transmitting device transmits information
must be the same as the rate at which the receiving device receives it. If the host
computer is sent data to the 4027 at 1 200 baud, the 4027 must be set to receive data at
1 200 baud or greater.

The 4027 has a "receive baud rate" and a "transmit baud rate." These need not be the
same; i.e., the terminal may receive information at a different rate than it transmits
information.

The 4027 baud rates are set using the BAUD command.

Syntax

!BAUd <transmit>[<receive>]<CR>

where both <transmit> and <receive> are chosen from the following list:

(o I 50 I 15 I 11 o I 134 I 1 50 I 300 I 600 I 1 200 I 1800 I 2400 I 4800 I 9600)

Action

This command sets the transmit baud rate to <transmit> and the receive baud rate to
<receive>. A baud rate of 0 means a "times 1" external clock is used.

If <receive> is omitted, it is set equal to <transmit>.

4027 PROGRAMMER'S @ 5-13

STATUS/INITIALIZATION

BAUD COMMAND

Examples

!BAU 300, 1200<CR>

!BAU 2400<CR>

Sets the transmit baud rate to 300 baud and the
receive baud rate to 1 200 baud.

Sets both transmit and receive baud rates to 2400
baud.

When the 4027 is turned off or RESET, it remembers the current baud rate.

5-14 @ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

PARITY COMMAND

PARITY Command

In the ASCII code, each of the 1 28 ASCII characters is represented by a 7-bit binary
number. When a character is transmitted, an eighth bit, called a "parity bit," is also
transmitted. Some computers use this extra bit for error checking, some use it as a data
bit, and some simply ignore it.

The 4027 parity must be set to correspond with that of the computer to which it is
connected. This is done by using the PARITY command.

Syntax

!PARity [Even I Odd I None I High I Data]<CR>

If no parameter is specified, the 4027 parity defaults to None.

Action

This command sets the 4027 parity. If the parity is set to Even, the terminal transmits
characters with even parity and checks incoming characters for even parity. If the parity
is set to Odd, the terminal transmits characters with odd parity and checks incoming
characters for odd parity. If the parity is set to None, the terminal transmits characters
with parity bit set to zero; the parity of characters input to the terminal is ignored. If the
parity is set to High, the terminal transmits characters with parity bit set to one; the parity
of incoming characters is ignored. If the parity is set to Data, the parity bit of each
character input to the terminal is treated as data; the parity bit is set to zero on characters
output from the terminal. Note that with parity set to data, if a character is received which
has the parity bit set to one, it will be treated as a pseudo-ADE rather than a real ASCII
character (since real ASCII is in the range of Oto 127). Thus a parity setting of data
should only be used if the programmer can control how the computer sets the parity bit.

Examples

!PAR E<CR>

!PAR O<CR>

!PAR N<CR>

4027 PROGRAMMER'S

Sets the 4027 to even parity.

Sets the 4027 to odd parity.

Sets parity to "none;" the 4027 ignores the parity bit
on input characters and sets it to zero on output
characters.

@ 5-15

STATUS/INITIALIZATION

PARITY COMMAND

!PAR H<CR>

!PAR D<CR>

Sets parity to "high;" the 4027 ignores the parity bit on
input characters and sets it to one on output charac
ters.

Sets parity to "data;" the parity bit is read as a data bit
for incoming characters and set to zero on output
characters.

The 4027 remembers its parity setting when powered off or RESET.

5-16 @ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

ECHO COMMAND

ECHO Command

When the operator types into the monitor in unbuffered mode, there are two ways that the
characters typed may be displayed on the screen: remote echo and local echo.

In remote echo communications, characters typed into the monitor are sent to the
computer without being displayed. As the computer receives each character, it "echoes"
it back to the terminal. (In some systems, a modem may provide the echo.) It is the
received echo, rather than the original transmitted character, that the 4027 displays on
the screen. In remote echo communications:

• As each character is typed into the monitor, the operator can tell immediately
whether the computer has received that character correctly.

• Selective echo is possible. The computer can be programmed to decide which
characters to echo. In timesharing systems, for example, the computer is usually
programmed not to echo a user's password.

In local echo communications, as each character is typed into the monitor, the 4027
supplies its own echo. It displays each character sent to the computer without waiting for
the computer echo. Local echo communications may be used with half duplex
communications links, while remote echo requires full duplex communications.

It is important that the 4027 be set for the proper echo. If the 4027 is set to remote echo
and neither the host nor the modem provides an echo, characters typed on the keyboard
are not displayed at all. If the 4027 is set to local echo and either the host or the modem
also provides an echo, characters typed in the keyboard are displayed twice.

The type of echoing which the 4027 uses is selected with the ECHO command.

Syntax

!ECHo [Local I Remote]< CR>

If neither L nor R is specified, L is assumed.

Action

This command selects the echoing used by the 4027 when text from the keyboard is
directed into the monitor and the 4027 is in unbuffered mode.

4027 PROGRAMMER'S @ 5-17

STATUS/INITIALIZATION

ECHO COMMAND

Examples

!ECH<CR>
!ECH L<CR>

!ECH R<CR>

Sets the 4027 for local echo.

Sets the 4027 for remote echo.

The 4027 remembers its ECHO setting, even when powered off or RESET.

5-18 @ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

BUFFERED COMMAND

BUFFERED Command

The 4027 can operate either in unbuffered mode or buffered mode. These modes of
operation differ in the way that the 4027 processes information from the keyboard.

When the 4027 is in unbuffered mode, each character typed into the monitor is
immediately transmitted to the host. Under these circumstances, it is not possible to
locally edit the information displayed in the monitor. As soon as a character appears in
the monitor window, it has already been sent to the computer. Text typed into the
workspace is not sent to the computer until the SEND command is given and executed.
When the SEND command is executed, all the text in the workspace is sent to the
computer in an uninterrupted stream.

When the 4027 is in buffered mode, characters entered in the monitor are stored in the
display memory until RETURN is pressed. Anytime before RETURN is pressed, the current
line can be edited locally. When RETURN is pressed, the 4027 stores the line in a
transmit buffer followed by an end-of-line string. The line remains in the transmit buffer
until it is processed.

Each line typed in the workspace is stored there and can be edited locally, even after
RETURN is pressed. When the SEND command is given, the entire workspace contents
are read into the transmit buffer for processing; at that time, an end-of-line string is added
to the end of each line.

The contents of the transmit buffer are processed line by line on a first-in/first-out basis.
To do this, the 4027 uses a switching arrangement involving prompts (prompt strings)
from the computer and EOL (end-of-line) strings from the 4027.

When the computer is ready to receive data, it sends a prompt to the terminal. When the
terminal receives this prompt, it knows the computer has finished its transmission and is
ready to receive data. The terminal waits an amount of time specified by the DELAY
command to insure that the computer is ready to receive. (Refer to the description of the
DELAY command in this section.) The terminal then processes the oldest (first-in) line in
its transmit buffer: information destined for the computer is sent there and 4027
commands are executed. When the entire line has been processed, the terminal sends an
EOL string to the computer. When the computer sees the EOL string, it knows the terminal
has finished processing a line and is waiting for data. If the computer has data for the
terminal, it sends this out, followed by a prompt; if the computer has no data to send but
wants data from the terminal, it simply sends a prompt. So it goes, with suitable
arrangements to begin and end this conversation.

The 4027 powers up in unbuffered mode. It remains in unbuffered mode until placed in
.., buffered mode by the BUFFERED command.

4027 PROGRAMMER'S @ 5-19

STATUS/INITIALIZATION

BUFFERED COMMAND

5-20

Syntax

!BUFfered [Yes I No]<CR>

If neither Y nor N is specified, Y is assumed.

Action

If Y (Yes) is specified, the terminal is placed in buffered mode. If N (No) is specified, the
terminal is placed in unbuffered mode.

When a BUFFERED YES command is given by the host, each subsequent line of text
typed on the keyboard is held in the terminal's output buffer until the host has sent a
prompt requesting that line. When a BUFFERED YES command is typed on the keyboard,
the same is true, except that the 4027 behaves as if it has already received the first
prompt: the first line typed on the keyboard will be sent as soon as it is terminated;
subsequent lines each require a prompt before they are sent.

Examples

!BUF<CR>
!BUF Y<CR>

!BUF N<CR>

Places the 4027 in buffered mode.

Removes the 4027 from buffered mode.

The 4027 powers up in unbuffered mode, and RESETs to unbuffered mode. Pressing the
BREAK key twice in quick succession also removes the 4027 from buffered mode.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

EOLCOMMAND

EOL (End-of-Line) Command

When the 4027 sends information to the computer, it sends an end-of-line string at the
end of each line of text. This end-of-line string tells the computer where one line of text
ends and the next line begins. In buffered mode, it also informs the computer that the
terminal has finished current processing tasks and can receive data from the computer.
Some computers expect to see <CR> (carriage return) at the end of each line; others
may expect to see <CR>< LF> (carriage return, line feed) or other strings at the end of
each line.

When the operator types text into the monitor destined for the computer, an end-of-line
string is inserted whenever RETURN is pressed. When text from the workspace is sent to
the computer (with a SEND command), an end-of-line string is inserted at the end of each
line of text. (In buffered mode, as the computer requests each line of text from the
terminal, the terminal sends that line, and inserts an end-of-line string at the end of the
line.) The EOL command is used to set the 4027 end-of-line string.

Syntax

!EOL [<string>]<CR>

where <string> may be:

1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces, or commas.

3. Any combination of 1 and 2.

The end-of-line string defined by this command must not be more than ten characters in
length. If <string> is not specified, it defaults to <CR> (carriage return).

Action

This command sets the end-of-line string which the 4027 sends to the computer at the
end of each line of text.

4027 PROGRAMMER'S @ 5-21

STATUS/INITIALIZATION

EOLCOMMAND

Examples

!EOL<CR>
!EOL 13<CR>

!EOL 13 1 0<CR>

!EOL f**$/ 1310<CR>

Sets the 4027 end-of-line string to carriage return,
<CR>, with ADE 13.

Sets the end-of-line string to <CR>< LF>.

Sets the end-of-line string to the ASCII string

**$<CR> <LF>.

The 4027 remembers its end-of-line string when it is powered off or RESET.

5-22 @ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

PROMPT COMMAND

PROMPT Command

In buffered mode, when the host computer is ready to accept another line of text from the
4027, it sends a prompt or prompt string as a cue for the terminal to transmit another line.
The prompt must always be the last character(s) sent by the computer. If characters are
received by the terminal after the prompt character(s), the terminal may assume that the
computer is still transmitting. If there is any doubt about control characters being sent
after the prompt, the program can be run in SNOOPY, UNBUFFERED mode so that the
output may be examined. Prompt strings vary with the computer and with the program; but
the prompt to which the 4027 responds must agree with the prompt sent from the
computer. The 4027 prompt string is set using the PROMPT command.

Syntax

!PROmpt [<string>]<CR>

where <string> may be:

1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces or commas.

3. Any combination of 1 or 2.

The <string> parameter may not define a string of more than ten ASCII characters.

If <string> is omitted, the prompt string is set to the line feed character, <LF>.

Action

This command sets the 4027 prompt string to <string>. In buffered mode, the 4027
waits to receive <string> from the computer before processing the next line in its
transmit buffer.

4027 PROGRAMMER'S @ 5-23

STATUS/INITIALIZATION

PROMPT COMMAND

Examples

!PRO /**$/<CR>

!PRO 13 10<CR>

!PRO 1••$/13 10<CR>

!PRO<CR>

Sets the prompt string to **$. In buffered mode, the
4027 must receive this string from the host before it
sends a line of text from its transmit buffer.

Sets the prompt string to <CR> <LF>, with ADEs 13
and 1 0, respectively.

Sets the prompt string to **$<CR> <LF>.

Sets the prompt string to the default setting, <LF>.

The 4027 remembers its prompt string when RESET or powered off.

5-24 @ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

DELAY COMMAND

DELA V Command

Sometimes it is desirable that the 4027 not respond immediately to a prompt from the
computer. If the 4027 is executing a SEND command on a rather full workspace and the
computer's input buffers are small, it is possible for the 4027 transmission to overrun this
input buffer. Information is lost and communications are garbled.

The prompt string may be used in other ways as well. Suppose the prompt string is <LF>
and the computer is sending a paragraph of straight text to the 4027. There will be many
line feeds which are not intended as prompts. If the 4027 waits before responding to a
< LF>, and another character is received, the 4027 knows to cancel the planned
response and keep listening to the computer for more text.

The 4027 transmission delay is set using the DELAY command.

Syntax

!DELay <time> <CR>

where <time> is a positive integer.

Action

This command sets the transmission delay to <time> milliseconds. In buffered mode,
after a prompt is detected, the 4027 waits at least <time> milliseconds before
transmitting anything back to the computer.

Examples

!DEL 20<CR>

!DEL 0<CR>

Causes the 4027 to wait at least 20 milliseconds
before responding to a prompt from the computer.

The 4027 responds immediately to a prompt from the
computer.

The 4027 remembers its delay time when it is RESET or powered off.

4027 PROGRAMMER'S @ 5-25

STATUS/INITIALIZATION

FIELD COMMAND

5-26

FIELD Command

When the 4027, in form fillout mode, sends form fields to the host computer in a SEND
operation, the computer must know when a new field begins. This can be arranged in two
ways:

• Fields sent to the computer are preceded by a field separator character; each time
the computer sees this character it knows a new field immediately follows. If a
field has not been completely filled out, only the filled out portion of the field is
transmitted; trailing spaces are not sent.

• Each field is sent in its entirety, including trailing spaces. The choice of which
method to use is determined largely by the programming language used. (See
Forms and Form Fillout for details.)

The 4027 is instructed how to send form fields to the host by using the FIELD command.

Syntax

!FIEid [<character>]<CR>

where <character> is a single printing ASCII character, or a 2- or 3-digit ADE between
00 and 127, inclusive.

If no parameter is specified, it is assumed to be NUL.

Action

This command sets the character which precedes fields of a form when they are
transmitted to the computer by the 4027. If no value is supplied, then no character is
inserted before a field, and trailing spaces are sent. Common choices for the field
separator are TAB, CR, and US.

@ 4027 PROGRAMMER'S

Examples

!FIE@<CR>
!FIE 64<CR>

!FIE<CR>

STATUS/INITIALIZATION

FIELD COMMAND

Sets the field separator to the @ character, with ADE
64. This character precedes each field of a form sent
to the computer.

When fields of a form are sent to the computer, no field
separator is used. Each field is sent in its entirety,
including all trailing spaces.

The 4027 remembers the field separator when RESET or powered off.

4027 PROGRAMMER'S @ 5-27

STATUS/INITIALIZATION

EOFCOMMAND

5-28

EOF (End-of-File) Command (Requires Option 3 or 4)

The 4027 can copy a file from one device to another by using the COPY command. When
the data comes from the host, the 4027 looks for an end-of-file string to know when to
stop the COPY operation. It also sends the EOF string to the host at the end of a copy.

The end-of-file string is selected using the EOF command.

Syntax

!EOF [<string>]<CR>

where <string> consists of:

1. One more delimited ASCII strings.

2. A sequence of ADE values separated by spaces or commas.

3. Any combination of 1 and 2.

This command may not define an ASCII string of more than ten characters. If <string> is
not specified, it defaults to I*.

Action

This command sets the end-of-file string. This string marks the end of a file transferred by
a COPY command. See the Peripherals section.

Examples

!EOF 27 27 ?<CR>

!EOF<CR>

Sets the end-of-file string to the ASCII string, $**.This
string marks the end of a file transferred by a COPY
command.

Sets the end-of-file string to ** <ESC>.

Sets the end-of-file string to its default value,/*.

The 4027 remembers the EOF setting when RESET or powered off.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

DUPLEX COMMAND

DUPLEX Command (Requires Option 1)

The 4027 with Option 1 may be set for either full duplex or half duplex communications.

Full duplex mode is used with full duplex communication lines, which permit both terminal
and host to transmit at the same time. Half duplex is used with half duplex communications
lines, over which only one device (terminal or host) can transmit at a time.

Half duplex communications can use either normal or supervisor mode.

In half duplex communications, the 4027 can also be set to respond to either "line
turnaround only" or "prompt string plus line turnaround" as the prompting condition in
buffered mode.

The DUPLEX command is used to set the 4027 for half duplex or full duplex
communications.

Syntax

!DUPiex [<fulldup> I <halfdup>]<CR>

where <fulldup> = Full
< halfdup > = Half [Supervisor I Normal][Line I Prompt]

If no parameters are specified, full duplex operation is assumed. If half duplex is chosen,
supervisor mode and line are the default parameters.

Action

This command sets the 4027 for either full duplex or half duplex communications. If half
duplex is chosen, either Supervisor or Normal mode is chosen. Also, the prompt condition
to which the 4027 responds in buffered mode is set to either Line (line turnaround only)
or Prompt (prompt string plus line turnaround).

Examples

!DUP<CR>
!DUP F<CR>

4027 PROGRAMMER'S

Sets the 4027 for full duplex.

@ 5-29

STATUS/INITIALIZATION

DUPLEX COMMAND

!DUP H<CR>
!DUP H S<CR>
!DUP H S L<CR>

!DUP H S P<CR>

!DUP H N<CR>
!DUP H N L<CR>

!DUP H N P<CR>

Sets the 4027 for half duplex with supervisor. In
buffered mode the prompt condition is line turnaround
only.

Sets the 4027 for half duplex with supervisor. In
buffered mode the prompt condition is the prompt
string plus line turnaround.

Sets the 4027 for half duplex normal. In buffered mode
the prompt condition is line turnaround only.

Sets the 4027 for half duplex normal. In buffered mode
the prompt condition is the prompt string plus line
turnaround.

The 4027 remembers its duplex setting when RESET or powered off.

5-30 @ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

DISCONNECT COMMAND

DISCONNECT Command (Requires Option 1)

Syntax

!DISConnect<CR>

Action

This command sends a signal to the modem, causing it to disconnect the 4027 from the
communications line. (The terminal turns off the "data terminal ready" signal on the RS-
232 interface for about one second. This causes the modem to disconnect from the
communications line.)

Example

!DISC<CR> Disconnects the 4027 from the communications line.

NOTE
DISCONNECT may not be abbreviated to the first three letters (DIS) as this
would conflict with the DISABLE command.

4027 PROGRAMMER'S @ 5-31

STATUS/INITIALIZATION

STATUS

5-32

STATUS MESSAGES

In addition to the commands which set the 4027 terminal parameters and communica
tions parameters, there are four "status" messages which display, on the screen,
information about the parameter settings and internal status of the terminal. These are the
STATUS message, the SYSTAT message, the system TEST message, and a GTEST
(Graphic Test) message.

The STATUS Key and The STATUS Message

At any time, the 4027 operator may press the STATUS (SHIFT-COMMAND LOCKOUT)
key to get a brief STATUS message. This message is displayed in the monitor, without
disturbing the contents of the workspace. The STATUS message shows whether the 4027
is in buffered or unbuffered mode, the command character, and the number of unused
blocks of terminal memory. (A block consists of 16 eight-bit bytes. One block holds at
most 14 characters.) A status message is shown in Figure 5-1.

U ! 988

/ \ ~
UNBUFFERED COMMAND CHARACTER 988 BLOCKS OF

MODE IS "I" MEMORY LEFT

B , 988

/\~
BUFFERED COMMAND CHARACTER 988 BLOCKS OF

MODE IS"\" MEMORY LEFT

(2401) 2657-4

Figure 5-1. STATUS Message.

SYSTAT and The SYSTAT Message

The 4027 has a SYSTEM STATUS, or SYSTAT, message which lists most of the
parameter settings discussed in this section. The SYSTAT command displays the
SYSTAT message in the monitor.

Syntax

!SYStat<CR>

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

SYSTAT

SYST AT Parameters

The 4027 SYSTAT message lists the following parameters, using the abbreviations
shown.

TB - Transmit baud rate
RB - Receive baud rate
DL - Delay time
LM - Left margin
RM - Right margin
WL - Number of workspace lines displayed on the screen
V# - Firmware version number
TS - Tab stops
CC - Command character
FS - Field separator
PR - Prompt string
EL - End-of-line string
DU - Duplex (DU=F means full duplex, DU=H means half duplex.)
BU - Buffered mode (Y means buffered, N means unbuffered.)
EC - Echo (EC= R means remote echo, EC= L means local echo.)
FF - Form fillout mode (Y means yes, N means no.)
SN - Snoopy mode (Y means yes, N means no.)
KB - Keyboard (KB=M means text typed on the keyboard is directed to the monitor,

KB=W means text from the keyboard is sent to the workspace.)
CM - Communications line (CM=M means text from the communications line is

directed to the monitor, CM =W means such text is sent to the workspace.)
PA - Parity (N means none, D means data, E means even, 0 means odd, H means

high.)

C0-C7 - Color numbers C0-C7 are displayed with color samples and the HLS
parameters for each color.

If the 4027 contains Option 10 (Polling Interface) an additional field, PL=, appears. This
field is followed by a two-digit decimal number indicating the polling address of this
display station.

If the 4027 contains Option 1 (Half Duplex) and the 4027 is set for half duplex
communications, the DU field may contain one or two additional letters. See the DUPLEX
command description earlier in this section for details.

4027 PROGRAMMER'S @ 5-33

STATUS/INITIALIZATION

SYSTAT

5-34

If a parameter is set to an ASCII control character, the two-letter mnemonic for that
character is shown in the parameter setting. The SYSTAT message is illustrated by Figure
5-2.

: ::.yst-::tt
TB= 2400 RB= 2400 DL= 0 LM= 1 RM=65 l,,.L= 0 '-./♦=1. 0
TS= 4 10 13 0 0 0 0 0 0 0 0 0 0 0 0

EL='~
DU=F BU=N EC=P FF=N '3N=t-1 KB=M CM=M PA=N
Cf(] 0.100.100 Cl/120. 50.100 C-l,?40. 50? 100
c4100. 50.100 csi1!J300. 50.100 C6/f 60. 50.100

Figure 5-2. The 4027 SYSTAT Message.

0. 50,100
0. 0.100

2657-5

When the 4027 is turned off or RESET, it remembers some of the parameter settings in
the SYSTAT message, and resets others to default settings. Those settings which are
remembered are: TB, RB, DL, LM, RM, TS, CC, FS, PR, EL, DU, EC, and PA (and the PL
setting, if present).

When the 4027 is powered up or RESET:

• WL = 0 (There is no workspace defined.)

• BU = N (The 4027 is in unbuffered mode.)

• FF = N (The 4027 is not in form fillout mode.)

• SN = N (The 4027 is not in snoopy mode.)

• KB = M and CM = M (Both the keyboard and the computer direct text to
the monitor.)

• C0-C7 = (All eight colors are displayed with their default HLS parameters.
Color C7 (black) is not visible.)

The V# setting will not change unless a different firmware version is installed in the
4027.

@ 4027 PROGRAMMER'S

STATUS/INITIALIZATION

TEST COMMAND

TEST Command

The command:

!TEST<CR>
or

!TES<CR>

causes the 4027 to run a program which checks whether the terminal memory and
display are operating properly. The following actions occur:

• The terminal erases the entire display list and creates a 34-line monitor window.

• System ROM (Read Only Memory), system RAM (Random Access Memory), and
display RAM are checked. The four system ROM checksums are displayed. An
error in display RAM prevents a bad block of memory from being used; the number
of free blocks is reduced, but the terminal operates correctly.

• After the memory test, the lights on the four lighted function keys are turned on, all
1 28 ASCII characters are displayed in the monitor in snoopy mode, and all Font 1
characters (ruling characters) are displayed. (If this character set is not installed,
each of its characters is displayed as a dot matrix with every dot turned off.)

• After the two character sets are displayed, a sample of colors C0-C6 is
represented by displaying three upper-case letter A's in each color. Color C7
(black) is not visible.

• At the end of the test, the lights on the function keys are turned off and the bell is
rung.

Should the test reveal a failure in the system RAM, the message "RAM ERROR" appears.
If such a message appears, call your Tektronix service personnel.

NOTE

Running this test destroys any text or key definitions which may have been
stored in the 4027 memory.

An example of the display created by a successful TEST on the 4027 is shown Figure 5-3.

4027 PROGRAMMER'S @ 5-35

STATUS/INITIALIZATION

TEST COMMAND

4 141 TT 44
~'le\. "s",-',,l?F.-'i.~¥l 01'2"11~'1.c+'ii'i.~11Vs~~ ! "+$:;& ' () *+. - . /0123456789: ; < = > '?@ABCDEFGHIJl<.LMNO

miiifitml:i!Wiiiiiiiiiliii~ ''""'1•~•~~Hi~
f~

4 141 TT 44] SYSTEM ROM
CHECKSUMS

THE 128 ASCII
CHARACTERS IN

'M,S,½.-,.'lc\."s"r-',,"'-.-.-'i.~"r'l.-°1'2"11~'1.cs,'i,<;.~1,..,.-5~~ ! "ff;;&• ()*+, -. /0123456789:; ··• = '?@ABCDEFGHIJl<'U1t-lO l
pr,PSTlJVWXYZ[.]·'·_ • abcdefgh 1 Jk lnY1opqr-stuv1.1J)<yz (:) '•;;, SNOOPY MODE

~~Hi~t-+1, .. n1111t=F:111-.a1.1••••~+N11~1""'"■1+11~~Hi~
]

RULING

H-, '"'21'1111 ~lliliJai••• .. Ff-l'+1111~1, 111TiM'I

ro~~1 ,__,_,__.._,_.,._,_,.__,,-..--__.
CO C1 C2 C3 C4 CS CS

Figure 5-3. 4027 !TEST< CR> Results.

5-36 @

CHARACTERS

]
SEVEN
VISUAL
ATTRIBUTES

(2656) 2657-6

4027 PROGRAMMER'S

STATUS/INITIALIZATION

GTEST COMMAND

GTEST Command

The 4027's Graphics Memory can be tested by the command:

!GTEST<CR>

or

!GTE<CR>

causes the 4027 to test its graphic memory.

When this command is executed, the entire display list is erased and a 34-line monitor
window is created. The terminal then tests its graphic memory. After a delay of about 15
seconds while it performs the test, the terminal displays the test results in the monitor,
starting with font 1 and proceeding to font 31. If no RAM is installed for a particular
character set, the 4027 displays a "NO MEM" message. If RAM is installed, each
character is tested twice (each bit is tested for both 1 and O). If the RAM passes the test,
the 4027 displays "OK" for each of these two tests. If the RAM for a particular character
set fails the test, the 4027 displays the "RAM ERROR" message and an error code for use
by Tektronix service personnel.

A sample display of a successful GTEST is shown in Figure 5-4.

4027 PROGRAMMER'S @ 5-37

STATUS/INITIALIZATION

GTEST COMMAND

5-38

1 ROM FONT- ROM Font 1 Enabled
2 NO l"EM-- RAM and ROM Not Enabled
3 R()M FONT- Font 3 Enabled

4 NO l"EM

~ ~ ~ - RAM and ROM Not Enabled

7 NO l"EM
8 NO l"EM ◄
9 NO l"EM

10 NO 1"EM
11 NO l"EM >-- RAM Not Enabled
12 NO l"EM
13 NO l"EM
14 NO l"EM
15 NO 1"EM ,
16 OK'
17 OK
18 OK
19 OK
20 OK
21 OK
220K
23 OK ,..._ ___ RAM Fonts 16-31 Enabled
24 OK and Functioning

250K
26 OK
ZTOK
28 OK
29 OK
30 OK
31 OK,

TEST COl"A...ETE

2657-7

Figure 5-4. 4027 !GTEST<CR> Results.

@ 4027 PROGRAMMER'S

Section 6

CONTROLLING THE DISPLAY

Before information is displayed on the terminal screen, decisions must be made regarding
the set-up of the screen: how the screen's 34-line display is to be divided between the
workspace window and the monitor window; which scroll is to receive text from the
computer and which from the keyboard; and margins and tab stops. The commands which
set these parameters are discussed in the System Status and Initialization section. We
assume here that these parameters have been set. Throughout this section we assume
the left workspace margin is set to column one.

THE CURSOR COMMANDS

Explanation of the 4027 will involve reference to three cursors. One, called the graphic

cursor or crosshair, is used in the creation of graphic displays and is discussed in the
Graphics section. This section will discuss only the other two cursors; the workspace
cursor and the monitor cursor. Only one of these is visible at a given time. Since, in either

window, the cursor indicates the position at which new information will be printed on the

screen, one may wish to change the cursor position at various times.

The programmer uses commands to position the cursor at a desired location. (The
operator may give these same commands from the keyboard or use the corresponding
keys.) The commands which affect the cursor position are the cursor commands (JUMP,
UP, DOWN, RIGHT, LEFT) and the tab commands (TAB, BACKTAB). In addition, even
though there is no "HOME" command corresponding to the HOME key, the JUMP
command can be used to simulate the action of the HOME key. (See discussion of the
JUMP command.)

NOTE

If a cursor movement command, tab command, or scrolling command is
typed on the keyboard and text from the keyboard is directed into the
monitor, execution of the command inserts a line just below the line on
which the command is typed.

4027 PROGRAMMER'S @ 6-1

CONTROLLING THE DISPLAY

JUMP COMMAND

6-2

JUMP Command (Workspace only)

Syntax

!JUMp [<row>[<column>11<CR>

where <row> is a positive integer, and <column> is a positive integer not greater than
80. If only one parameter is specified, it is assumed to be the <row> parameter. If neither
parameter is specified, both <row> and <column> default to one.

Action

This command positions the workspace cursor in the row and column of the workspace
designated by <row> and <column>, respectively.

Picture the workspace scroll as a long table with an indeterminate number of rows, each
row having 80 columns (Figure 6-1). The topmost row in the workspace, (whether it
contains text or is blank) is labeled row 1, the next row is row 2, and so forth. In each row,
columns are labeled column 1, column 2, ... , 80. This establishes an absolute coordinate
system in the workspace scroll. Portions of this scroll may be visible in the workspace
window.

The JUMP command moves the workspace cursor to the specified row and column of the
workspace, expressed in absolute workspace coordinates. The destination of the cursor
does not depend on its current location. (This is in contrast to the other cursor movement
commands, whose parameters specify positions relative to the current cursor position.)

If the <row> parameter specifies a row of the workspace below the bottom of the
workspace window, the workspace rolls up and stops with the line containing the cursor
at the bottom of the window. If <row> exceeds the current number of lines in the
workspace, blank lines are created at the bottom of the workspace and the <row>-th row
is displayed as the last row in the workspace window.

If the <row> parameter specifies a row of the workspace above the top of the workspace
window, the workspace rolls down, stopping with the row containing the cursor at the top
of the window.

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY

JUMP COMMAND

Line 1
Line 2

Line_N ___ _

\
(N,1)
Row N, Column 1

--/-
(N,80)

Row N, Column 80

--'v..------

WORKSPACE
WINDOW

2402-9

Figure 6-1. The Workspace Window and the Workspace Scroll.

NOTE

This command applies only, and always, to the workspace cursor. It is not
necessary for the workspace to receive text from the computer or the
keyboard for this command to move the workspace cursor. When the
workspace cursor next appears, it appears at the location specified in the
JUMP command (assuming no other instructions which affect the
workspace cursor location have been given to the terminal meanwhile).

4027 PROGRAMMER'S @ 6-3

CONTROLLING THE DISPLAY

JUMP COMMAND

6-4

Examples

1. The command

!JUM 3,10<CR>

moves the workspace cursor to row 3, column 10.

2. Either of the commands

!JUM 3<CR>
!JUM 3,1 <CR>

moves the workspace cursor to row 3, column 1.

3. Any one of the commands

!JUM<CR>
!JUM 1 <CR>
!JUM 1,1 <CR>

moves the workspace cursor to row 1, column 1. Each of these commands is
equivalent to pressing the HOME key when the workspace cursor is visible and
the terminal is not in form fillout mode.

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY

UP COMMAND

UP Command

Syntax

!UP [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the up cursor key (pad key 8, marked t)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

' Suppose text from the computer is printed in the workspace and the command

!UP <count> <CR>

is sent from the computer. This command moves the workspace cursor up <count> lines
from its current position, leaving the column location unchanged.

If <count> is large enough to move the cursor to a line not visible in the workspace
window, the workspace rolls down so that the line which the cursor moves to is the top
line in the window. However, the cursor will not move past the first line of the workspace,
regardless of how large <count> is.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

4027 PROGRAMMER'S @ 6-5

CONTROLLING THE DISPLAY

UP COMMAND

6-6

Examples

Suppose text from the computer is printed in the
workspace, with the cursor in line 23, column 5:

1. The command

!UP3<CR>

positions the cursor in line 20, column 5.

2. The subsequent command

!UP 7<CR>

causes the workspace to roll down and
positions the cursor in line 13, column 5.

@

Line 1
Line 2

Line 20
Line 21
Line 22

~:~=•~,.-~----CURSOR IN LINE 23,
Line 25 COLUMN 5

Line 1
Line 2
Line 3

t:~:•;~~----AFTER !UP 3<CR>
Line 22 CURSOR IN LINE 20,
Line 23 COLUMN 5
Line 24
Line 25

Line 1
Line 2
Line 3

Line.13
Line 14

Line 20
Line 21

J

-. I
AFTER !UP 7 < C

CURSOR IN LINE
COLUMN 5

R>
13,

4027 PROGRAMMER'S

3. The subsequent command

!UP 13<CR>

rolls the workspace down, leaving the cursor
in column 5 of line 1. Since the workspace
will not scroll past the first line, the com
mands

!UP 14<CR>
!UP 15<CR>

each have the same effect.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY

UP COMMAND

Line.1 AFTER !UP 13<CR>
Line 2----- CURSOR IN LINE 1,
Line 3 COLUMN 5

6-7

CONTROLLING THE DISPLAY

DOWN COMMAND

6-8

DOWN Command

Syntax

!DOWn [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the down cursor key (pad key 2, marked !)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

!DOW <count> <CR>

is sent from the computer. This command moves the workspace cursor down <count>
lines from its current position, leaving the column location unchanged.

If <count> is large enough to move the cursor to a line not visible in the workspace
window, the workspace rolls up until the line which the cursor moves to is at the bottom of
the window. If <count> is large enough to move the cursor past the last line in the
workspace, enough blank lines are created at the bottom of the workspace to
accommodate this command.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

Pressing the LINE FEED key <count> times has the same effect on the cursor. Pressing
this key also generates the ASCII Line Feed character, while pressing the down cursor
key does not.

@ 4027 PROGRAMMER'S

Examples

Suppose a workspace window of ten lines is
defined, and the workspace contains 20 lines of text
(some of which may be blank). Suppose also that
line 1 is the top line in the workspace window and
the cursor is in line 1, column 6.

1. The command

!DOWB<CR>

moves the cursor down eight lines to line 9,
column 6. No roll up occurs.

2. The subsequent command

!DOW 5<CR>

moves the cursor to line 14, column 6; the
workspace rolls up four lines.

3. The subsequent command

!DOW 10<CR>

adds four blank lines at the bottom of the
workspace and rolls the workspace up 1 O
lines. The cursor stops in the last blank line
created, at the bottom of the workspace
window.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY

DOWN COMMAND

Line l CURSOR IN LINE 1.
Line~,----- COLUMN 8
Line 3

Line 19
Line 20

Line 1
Line 2
Line 3

· AFTER !DOW 8<CR>
· ---------- CURSOR IN LINE 9,

Line Ii-------- COLUMN 8
Line 10 -----~--,.-? -------

Line 19
Line 20

Line 1
Line 2

Line 5

AFTER !DOW 5<CR>
Line 13 ~,,.--· CURSOR IN LINE 14,
Line 1 ~ COLUMN 8
- -'!! - - - - - - - - - -

Line 19
Line 20

Line 1
Line 2
Line 3

Lme15

Lme 20
Lme 21 (blank)
Line 22 (blank)
Line 23 (blank)
Line ~4 (blank)

AFTER !DOW 10<CR>
CURSOR IN LINE 24,

COLUMNS

6-9

CONTROLLING THE DISPLAY

RIGHT COMMAND

6-10

RIGHT Command

Syntax

!RIGht [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the right cursor key (pad key 6, marked-)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

!RIG <count> <CR>

is sent from the computer. This command moves the workspace cursor <count>
columns to the right.

If <count> is large enough to move the cursor beyond column 80, the cursor wraps
around to the left margin of the next line and continues moving right a total of <count>
columns. If this action requires the cursor to move to a line which is not visible in the
workspace window, the workspace rolls up so that the line in which the cursor stops is
the bottom line in the window. If this command requires the cursor to move beyond the
last line of the workspace, enough blank lines are created at the bottom of the scroll to
accommodate this command.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 4027 PROGRAMMER'S

Example

Suppose there is a workspace window of ten lines,
with ten lines of text in this window. The left margin
is set at column 1 and the cursor is in column 1 of
line 8.

1. The command

!RIG 7<CR>

moves the cursor right seven columns to
column 8 of line 8.

2. The subsequent command

!RIG 153<CR>

moves the cursor through the remaining 73
columns of line 8 to column 1 of line 9, then
through the 80 columns of line 9 to column 1
of line 1 0. No roll up occurs.

3. The subsequent command

!RIG 167 <CR>

moves the cursor through the 80 columns of
line 10, creates a blank line 11 and moves
the cursor through the 80 columns of line
11, creates a blank line 12 and moves the
cursor through seven columns to column 8
of line 12. The workspace rolls up to display
line 12 as the last line in the workspace
window.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY

RIGHT COMMAND

Line 1
Line 2

:~----CURSOR IN LINE 8,

Line 1
Line 2

COLUMN 1

Line 8 AFTER !RIG 153<CR>
Li~; 9 ~ CURSOR IN LINE 1 O.

~~----- COLUMN1

Line 1
Line 2

Line 3
Line 4

Line 9
Line 10 AFTER !RIG 167<CR>
Line 11 (blank) / CURSOR IN LINE 12,
Line12!~ ---------------

6-11

CONTROLLING THE DISPLAY

LEFT COMMAND

6-12

LEFT Command

Syntax

!LEFt [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the left cursor key (pad key 4, marked-)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

!LEF <count> <CR>

is sent from the computer. This command moves the workspace cursor <count>
columns to the left.

If <count> is large enough to move the cursor to the left of the left margin, the cursor
wraps around to column 80 of the preceding line and continues moving left a total of
<count> columns. If this action requires the cursor to move to a line which is not visible
in the workspace window, the workspace rolls down so that the cursor stops in the top
line of the window. However, the cursor will not move above the first line in the workspace.
Thus this command does not insert blank lines at the top of the workspace.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 4027 PROGRAMMER'S

Examples

Suppose a workspace is defined and the cursor is
visible in column 10 of line 6.

1. The command

!LEF 9<CR>

moves the cursor to column I of line 6.

2. The subsequent command

!LEF 150<CR>

moves the cursor through the 80 columns in
line 5, rolls down the workspace to display
line 4, and moves the cursor through the
rightmost 70 columns in line 4. The cursor
stops in column 11 of line 4.

3. The subsequent command

!LEF 300<CR>

moves the cursor through the leftmost ten
columns in line 4, then through the 80
columns in each of lines 3, 2, and 1, rolling
the workspace down to display these lines.
The cursor stops at column 1 of line 1.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY

LEFT COMMAND

Line 1
Line 2

Line 5
~ine 6
--:--------- AFTER ILEF 9<CR>

CURSOR IN LINE 6,
COLUMN 1

Line 1

t:~:: ··•-----AFTER !LEF 150<CR>

Line 6 cuRgg~J:~1f1E 4,

~~
Line 2 --------- AFTER I LEF 300 <CR>
Line 3 CURSOR IN LINE 1,
Line 4 COLUMN 1

6-13

CONTROLLING THE DISPLAY

TAB COMMAND

6-14

THE TAB COMMANDS

TAB Command

Syntax

!TAB [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the TAB key <count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

!TAB <count> <CR>

is sent from the computer. This command moves the workspace cursor <count> tab
stops to the right. If there are no tab stops defined to the right of the current cursor
position, the next tab moves the cursor to the beginning of the next line. Thus if <count>
is large enough to move the cursor past the last tab stop in a line, the cursor jumps to
column 1 of the next line and continues tabbing a total of <count> stops. Each skip to
the next line, as well as each skip to the next tab stop in a line, accounts for one of the
<count> tabs. If <count> is large enough to move the cursor below the bottom of the
workspace window, roll up occurs.

If <count> is large enough to move the cursor past the last line in the workspace,
enough blank lines are created at the bottom of the workspace to accommodate the
command.

If the text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY

TAB COMMAND

Examples

Suppose there is a workspace window of ten lines,
with tab stops in columns 10, 20, and 30, and the
cursor is in line 9, column 1.

1. The command

!TAB 4<CR>

moves the cursor to the three stops in line 9
and then to column 1 of line 1 0.

2. The subsequent command

!TAB 17<CR>

moves the cursor to column 1 0 (the first
stop) in line 14. The first 16 tabs move the
cursor through lines 10, 11, 1 2, and 13, to
column 1 of line 14; the final tab moves the
cursor from column 1 of line 14 to the first
tab stop in line 14.

NOTE

Line ~
Line 2

AFTER !TAB 4<CR>
Line 9 ~ CURSOR IN LINE 10,
~~ COLUMN 1

The TAB command, like the TAB key, performs a different action when the
4027 is in form ti/lout mode. See the Forms and Form Fi/lout section for
details.

4027 PROGRAMMER'S @ 6-15

CONTROLLING THE DISPLAY

BACKTAB COMMAND

6-16

BACKTAB Command

Syntax

!BACktab [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the BACKTAB key (SHIFT-BACKSPACE)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

!BAC <count> <CR>

is sent from the computer. This command moves the workspace cursor <count> tab
stops to the left. Each backtab moves the cursor one tab stop to the left, or to the left
margin if there are no tab stops to the left of the cursor position. The cursor does not
move to a preceding line of text, regardless of how large <count> is, but "sticks" at the
left margin of the current line.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY

BACKTAB COMMAND

Examples

Suppose tab stops are set at columns 10, 20, 30,
and 40 and the cursor is in column 35.

1. The command

!BAC<CR>

moves the cursor left one stop to column 30
of the current line.

2. Any of the subsequent commands

!BAC 3<CR>
!BAC 4<CR>

moves the cursor to column 1 of the current
line.

NOTE

Line N

Line N

1
CURSOR IN LINEN,

COLUMN 35

t
AFTER !BAC <CR>
CURSOR IN LINEN,

COLUMN 30

~ine N
-----AFTER !BAC 3<CR>,

IBAC 4<CR>, ETC.
CURSOR IN LINE N,

COLUMN 1

The BACKTAB command, like the BACKTAB key, performs a different
action when the 4027 is in form fillout mode. See the Forms and Form
Fi/lout section for details.

4027 PROGRAMMER'S @ 6-17

CONTROLLING THE DISPLAY

RUP COMMAND

6-18

THE SCROLLING COMMANDS

RUP (Roll Up) Command

Syntax

!RUP [<count>] <CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the up scrolling key (pad key 7, marked.A.)
<count> times.

This command rolls up the current scroll (workspace or monitor) <count> lines, or until
the last line of the scroll is visible at the bottom of the window. This command does not
create blank lines at the end of the scroll. If <count> is larger than the number of lines
remaining in the scroll, the scroll rolls up until the last line of the scroll is visible in the
window, then stops.

When the scroll rolls up, the cursor moves with it, remaining in the same line of text, at the
same column position, as long as that line of text remains visible. If that line of text passes
out of the window, the cursor "sticks" at the top of the window, with the column position
unchanged.

Examples

Suppose a workspace window of ten lines is
defined, the workspace scroll contains 30 lines, and
the cursor is in line 9, column 5.

@

Line 1
Line 2

Line 29
Line 30

4027 PROGRAMMER'S

1. The command

!RUP 8<CR>

leaves line 9 at the top of the workspace,
with the cursor in line 9, column 5.

2. The subsequent command

!RUP 10<CR>

leaves line 19 at the top of the workspace
window, with the cursor in line 19, column 5.

3. Any of the subsequent commands

!RUP 2<CR>
!RUP 3<CR>

leaves line 30 at the bottom of the work
space window, with the cursor in line 21,
column 5.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY

RUP COMMAND

Line 1
Line 2

~:~=•~:no----AFTER IRUP 8<CR>
CURSOR IN LINE 9, COLUMN 5

AT TOP OF WORKSPACE WINDOW

Line 1
Line 2
Line3

Line.1..2_
Line 20

Line 27

u

.... I
AFTER !RUP 10< CR>

LUMN 5
WINDOW

CURSOR IN LINE 19, CO
AT TOP OF WORKSPACE

Line 28 _ _ _ ________

~

Line 1
Line 2

Line.21
Line2~

-- ---.......____ AFTER !RUP 2<CR>,

Line 29
Line 30

!RUP 3<CR>, ETC.
CURSOR IN LINE 21, COLUMN 5

AT TOP OF WORKSPACE WINDOW

6-19

CONTROLLING THE DISPLAY

RDOWN COMMAND

6-20

RDOWN (ROLL DOWN) Command

Syntax

!RDOwn [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command rolls down the current scroll (workspace or monitor) <count> lines, or
until the first line of the scroll is at the top of the window. The RDOWN command cannot
be used to insert blank lines at the top of the workspace.

Giving this command is equivalent to pressing the down scrolling key (pad key 1, marked
-.,) <count> times.

When the current scroll rolls down, the cursor moves with it, remaining at the same row
and column position as long as that position is visible in the window. If that position
passes out of the window, the cursor "sticks" at the bottom line of the window, with the
column position remaining unchanged.

Examples

Suppose a workspace window of ten lines is
defined, with a workspace scroll of 30 lines and the
cursor positioned in line 21, column 5.

@

Line 1
Line 2

4027 PROGRAMMER'S

1. The command

!RDO 9<CR>

rolls the workspace down 9 lines, leaving the
cursor still positioned in line 21, column 5.

2. The subsequent command

!RDO 6<CR>

rolls the workspace down an additional six
lines, leaving the cursor in line 15, column 5,
at the bottom of the window.

3. Any of the subsequent commands

!RDO 5<CR>
!RDO 6<CR>
!RDO 7<CR>

rolls the workspace down five lines, with the
cursor in line 10, column 5, at the bottom of
the window.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY

RDOWN COMMAND

Line 1
Line 2

Line 12
Line 1 3

AFTER IRDO 9 <CR>
Line 20 ~SOR IN LINE 21, COLUMN 5
Line.~-d AT BOTTOM o: WOR~SPACE WINDOW

Line 29
Line 30

Line 1
Line 2

Line 6
Line 7

~~AFTER !RDO 6<CR>
Line 1 4 / CURSOR IN LINE 15, COLUMN 5
Line.1..s_j AT BOTTOM OF WORKSPACE WINDOW

Line 29
Line 30

Line 1
Line 2

AFTER !RDO 5<CR>,
IRDO 6<CR>, ETC.

Line g CURSOR IN LINE 10, COLUMN 5
Line.1 0 - ~ 1:,_B~T2~M _o~ ~O~K~PACE WINDOW

Line 29
Line30

6-21

CONTROLLING THE DISPLAY

ERASE COMMAND

6-22

ADDITIONAL COMMANDS

ERASE Command

Syntax

!ERAse [Workspace I Monitor]<CR>

Action

This command erases the specified scroll. The entire scroll, not just the portion visible in
the window, is erased. If text is currently directed into that scroll, the cursor quickly
reappears in the home position (line 1, column 1, in the upper left corner) of the window. If
text is not currently directed into that scroll, the next time that cursor appears, it appears
in the home position. This command does not affect the size of the workspace and
monitor windows.

If no parameter is specified, the source of the command determines which scroll is
erased. If the commmand is sent from the computer and no parameter is specified, the
scroll which receives text from the computer is erased. If the command is typed on the
keyboard and no parameter is specified, the scroll which receives text from the keyboard '-.
is erased.

Examples

1. !ERA W<CR>

2. !ERA M<CR>

3. !ERA<CR>

Erases the workspace scroll and returns the workspace
cursor to the home position. This destroys any graphic area
which has been defined.

Erases the monitor scroll and returns the monitor cursor to
the home position.

If sent from the computer, this command erases whichever
scroll receives text from the computer.

If typed on the keyboard, this command erases whichever
scroll receives text from the keyboard.

NOTE

The ERASE command can also be used to erase the contents of a

graphics region in the workspace by entering the command !ERA

G< CR>. See the Graphics section for details.

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY

BELL COMMAND

BELL Command

The 4027 contains a bell. This bell sounds automatically when certain conditions occur;
for example, the bell rings if the operator types beyond the right margin, or if an attempt is
made to enter a character in a protected field when the terminal is in form fillout mode.

The programmer may wish to sound the 4027 bell at various times during an applications
program - perhaps to remind the operator to enter data, or to press a function key. The
BELL command is used for this purpose.

Syntax

!BELl<CR>

or

!BEL<CR>

Action

This command sounds the 4027 bell. The bell also sounds when the ASCII BEL character,
CTRL-G, is sent to the terminal.

4027 PROGRAMMER'S @ 6-23

r

r

r

Section 7

4027 COLOR COMMANDS

The 4027 has a palette of 64 distinct colors. Of these 64, eight may be selected at any
one time to create graphics, to develop unique symbols and patterns, and to assign colors
(visual attributes) to the character fonts. These eight colors are assigned color numbers
CO, C1, ... , C7, respectively. This section explores the commands used to select and
invoke the various colors and how patterns may be created.

Appendix A, the Tektronix Color Standard, should be reviewed before using the
commands discussed in this section. The Tektronix 4027 Color Standard is a model used
to explain the relationship between hue, lightness, and saturation and how they are used
to achieve a particular color.

THE COLOR COMMANDS

There are five commands which control the selection and assignment of color on the
display. The COLOR command is used to assign one of the eight color numbers (C0-C7)
or one of 120 possible patterns (P0-P119) to be used in any subsequent graphic
displays. The MAP, RMAP, and MIX commands are used to determine which of the 64
possible colors will be assigned to the eight color numbers. The PATTERN command is
used to define any of 120 patterns. Each of these commands will be discussed in turn.

4027 PROGRAMMER'S @ 7-1

COLOR COMMANDS

COLOR COMMAND

7-2

COLOR Command

The COLOR command is used to designate the color of subsequent graphics.

Syntax

!COLor <vector color no.>l<vector pattern no.>[<boundary color
no.> I< boundary pattern no.> l <CR>

where

<vector color number> is one of CO, C1, ... , C7.

<vector pattern no.> is one of PO, P1, ... , P119.

<boundary color no.> is one of CO, C1, ... , C7.

<boundary pattern no.> is one of PO, P 1 , ... , P 11 9.

Action

The first parameter (<vector color no.>l<vector pattern no.>) specifies the color or
pattern which will be used to draw subsequent vectors or fill subsequent polygons. If a
boundary color or pattern is required, then the second parameter (<boundary color
no.>/<boundary pattern no.>) is given. The boundary parameter is optional. If no color
command is given, the default color for subsequent vectors and polygons is CO (default
white). Valid colors for both vectors and boundaries are CO-C7 and PO-P119.

Examples

!COLor C1 <CR>

All vectors and polygons will be color C1 (default color red).

!COL C1 C2<CR>

All vectors and polygons will be color C1 (default color red) and the polygons will have a
boundary color C2 (default color green).

!COL P1 <CR>

All vectors and polygons will be pattern P1.

!COL P1 C4<CR>

All vectors and polygons will be drawn in pattern P1. The polygons will have a boundary
of color C4. Pattern P1 must be defined by the PATTERN command prior to its use in a
COLOR command. Refer to the PATTERN command described later in this section.

@ 4027 PROGRAMMER'S

COLOR COMMANDS

MAP COMMAND

MAP Command

The 4027 provides a selection of 64 possible colors of which eight (CO-C7) may be
designated at any one time. If colors other than the eight default colors are desired, the
MAP command may be used to set the hue, lightness, and saturation to redefine any of
the eight color numbers. If a MAP command is not given, default colors for CO-C7 are
white, red, green, blue, yellow, cyan, magenta, and black, respectively.

Syntax

!MAP <Cn> <hue angle> <lightness> <saturation><CR>

where

<Cn> is one of eight color numbers (CO-C7).

<hue angle> is an integer from Oto 360.

<lightness> and <saturation> are integers from Oto 100.

Action

NOTE

Refer to Appendix A for further information on the Tektronix 402 7 Color
Standard.

The <Cn> indicates which of the eight color numbers (CO-C7) is being MAPped.

<Hue angle> is a gradation of color measured around a circle as an angle from Oto 360
degrees. Referring to the color cone in Appendix A, observe that a <hue angle> of 0
degrees always specifies one of several shades of blue, 60 degrees magenta, 1 20
degrees red, 180 degrees yellow, 240 degrees green, and 300 degrees cyan (360
degrees = 0 degrees). If a < hue angle> is given between two of these angles, an
intermediate color is produced. For example, specifying a <hue angle> between O and
60 gives a color between blue and magenta.

The <lightness> and <saturation> parameters determine which shade of the given hue
will be produced by a given <hue angle>. Again referring to the color cone in Appendix
A, notice that <lightness> is expressed as a value between O percent (black) at the
bottom of the cone and 1 00 percent (white) at the top. This means that any of the colors

4027 PROGRAMMER'S @ 7-3

COLOR COMMANDS

MAP COMMAND

7-4

selected by the <hue angle> parameter will be shaded according to the value given by
the <lightness> parameter. In addition, if the value of <lightness> is O percent, the
color produced will be black regardless of the <hue angle> or <saturation>.
Conversely, a < lightness> value of 100 percent always produces white.

The third parameter of the MAP command, <saturation>, sets the amount of gray to be
contained at a given <hue angle> and <lightness>. As the saturation approaches 100
percent, less gray is added and a purer hue is produced.

NOTE

Small changes in any of the HLS parameters may not produce a change in
the MAPped color. For example, if the < hue angle> of 120 degrees, which
produces red, is changed to 125 degrees, the red hue is still produced. The
same is true for small changes in the< lightness> and< saturation>
parameters. A total of 64 colors can be displayed. Each of these is
invariant over a finite range in each parameter.

The SYSTAT message displays the HLS (hue, lightness, saturation) parameters assigned
to each of the colors CO-C7, along with a color sample. All colors return to their default
parameters when the 4027 is powered off or RESET.

The default colors for CO-C7 and their respective default parameters are as follows:

CO (white) - 0, 100,100
C1 (red) - 120,50, 100
C2 (green) - 240,50, 1 00
C3 (blue) - 0,50,100
C4 (yellow) - 1 80,50, 1 00
C5 (cyan) - 300,50, 1 00
C6 (magenta) - 60,50, 1 00
C7 (black) - 0,0, 1 00

Examples

!MAP C1 0,50,1 OO<CR>

!MAP C4 240,50,50<CR>

Sets <color number> C1 (default red) to a <hue
angle> of O degrees (blue), a <lightness> of 50%,
and <saturation> of 100%. Color number C1 is
then blue.

Sets <color number> C4 (default yellow) to a
<hue angle> of 240 degrees, <lightness> of 50%,
and <saturation> of 50%. Color number C4 is then
green.

@ 4027 PROGRAMMER'S

COLOR COMMANDS

RMAP COMMAND

RMAP (Relative MAP) Command

The RMAP command changes a color's HLS parameters by amounts specified relative to

the current HLS parameters.

Syntax

!RMAp <Cn> <hue angle> <lightness> <saturation> <CR>

where

< Cn > is one of the color numbers CO, C1, ... , C7.

< hue angle> is a positive or negative integer from O to 360.

<lightness> and <saturation> are positive or negative integers from Oto 100.

Action

<Cn > is the color number to be redefined. The color may be redefined by changing the
< hue angle> a number of degrees or by changing the <lightness> or <saturation> a
given percentage. Any or all of the parameters may be changed in an RMAP command. If
zero (0) is entered for any of the parameters, then no change is made to that parameter.

NOTE

Small changes in the HLS parameters may not produce a visible change in
the displayed color. Refer to Appendix A for further information.

When a SYSTAT command is given, it will display the RMAPped color and the current
HLS parameters for that color. When the 4027 is powered off or RESET, all eight colors
return to their default values.

4027 PROGRAMMER'S @ 7-5

COLOR COMMANDS

RMAP COMMAND

7-6

The default colors for CO-C7 and their respective default parameters are as follows:

CO (white) - 0, 100, 1 00
C1 (red) - 120,50, 100
C2 (green) - 240,50, 1 00
C3 (blue) - 0,50, 100
C4 (yellow) - 1 80,50, 1 00
CS (cyan) - 300,50, 1 00
C6 (magenta) - 60,50, 1 00
C7 (black) - 0,0, 100

Examples

!RMAP C1 0,10,0<CR>

C1 has default HLS parameters 120, 50, 100. By entering the command above, the
<lightness> is changed 10 percent. The new HLS parameters for C1 are then
120,60,100. Notice that since O was entered for the <hue angle> and <saturation>
parameters, <hue angle> and <saturation> are not changed. The revised parameters
and a color sample will appear when a new SYSTAT message is displayed.

!RMAP C2 30,-25,-SO<CR>

C2 has default HLS parameters of 240,50,100. This command will change the <hue
angle> from 240 to 270 degrees, the <lightness> from 50 to 25 percent, and the
<saturation> from 100 to 50 percent.

@ 4027 PROGRAMMER'S

COLOR COMMANDS

MIX COMMAND

MIX Command

The MIX command provides an alternative to the MAP and RMAP methods of defining the
color assigned to a given color number. The MIX command combines proportionate
amounts of red, green, and blue to create one of the 64 possible colors.

Syntax

!MIX <Cn> <red> <green> <blue><CR>

where

<Cn> is one of the eight color numbers CO-C7.

<red>, <green>, and <blue> are positive integers from Oto 100.

Action

This command redefines the color Cn by mixing the basic colors of red, green, and blue.
The <red>, <green>, and <blue> parameters specify the amount of the corresponding
colors to be MIXed, in percentages of full intensity. Small changes in the percentages of
<red>, <green>, or <blue> may not cause the displayed color to change.

If a SYSTAT message is displayed, it will show the newly MIXed color but the HLS
parameters will be shown as 0,0,0.

Examples

!MIX C2 25,0,100<CR>

Color C2 will have a <red> component which is 25 percent of its full intensity, no
<green> component, and a <blue> component which is 100 percent of its full intensity.

!MIX C2 0,0,0<CR>

Color C2 is a mixture of red - 0%, green - 0%, blue - 0%. With this mixture, C2 is black.

!MIX C2100,100,100<CR>

Color C2 is a mixture of red - 100%, green - 1_00%, blue - 100%. With this mixture, C2
is white.

MIX C3 50,50,0<CR>

Color C3 will have: <red> and <green> components which are both 50 percent of their
full intensity, and zero <blue> component.

4027 PROGRAMMER'S @ 7-7

COLOR COMMANDS

PATTERN COMMAND

7-8

PATTERN Command

The PATTERN command is used to define a colored pattern for use in vector drawing,
polygon filling, and so forth. The 4027 can have 1 20 user-defined patterns in its memory
at any one time.

Syntax

!PATtern <Pn> [<background COL>] <foreground COL> [<value 1 >] ...
[<value 14>] [<foreground color> [<value 1 >]. .. [<value 14>]] ... <CR>

where

<Pn> is one of PO, P1, ... , P119.

<background COL>, <foreground COL>, and all occurrences of <foreground
color> are chosen from CO, C1, ... , C7.

All <value i> parameters are integers from Oto 255. If less than 14 <value i>
parameters are specified, the omitted ones default to zero.

Action

The pattern Pn is defined by setting the color of each dot in a color cell. If two colors are
given, the first is the <background color>, and the remainder of the command consists of
groups that specify a <foreground color> and the dots that are to be made that color.
Once a <foreground color> is set, all the dots which are designated by the following
<value number> will be made that color. Sets of dots within each row may be set to
different colors by giving additional <foreground colors> and specifying the dots to be
made that color by giving additional <value numbers>. In this manner, it is possible to
have each of the eight dots in each row be an individual color.

The dots which are turned on to create the pattern are set by giving a <value number>
which is an integer between 0 and 255. <value numbers> are decimal equivalents of
binary numbers and are assigned for each of the 14 rows of the color cell. If a <value
number> 0 or no <value> is given for any row, the <background color> is displayed.

Examples

!PATtern PO C2 C3 0,0,0,0,60,60,60,60,60,60,0,0,0,0<CR>

Pattern PO will have a < background color> C2, which will be the color for all of the rows
which have a <value> of 0. Rows 5 through 10, which are given a <value> of 60, will
have some of their dots turned on in the <foreground color> (C3) as shown. The
rest of their dots will be color C2.

@ 4027 PROGRAMMER'S

COLOR COMMANDS

PATTERN COMMAND

Integer

0
0
0
0

60
60
60
60
60
60

0
0
0
0

2657-8

A USER DEFINED PATTERN

Eight-Bit
Binary Equivalent

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Pattern Within
One Color Cell

Foreground Background
Color Color

!PAT P1 C1 C3 7,7,7,7,7,7,7,7,7,7,7,7,7,7 C2
24,24,24,24,24,24,24,24,24,24,24,24,24,24 <CR>

Pattern P1 will have a < background color> C1 (default red) which will fill the dots not
designated by the <foreground COL> parameter. The rightmost three columns of the
color cell are displayed in color C3 (default blue). Columns four and five (counting from
the right) are displayed in color C2 (default green). The remaining columns have not been
designated by this command and will therefore appear in the < background color> C1.

Notice that when a new <foreground color> is given, a <value number> is given for
each row, starting at row one (the topmost row). The illustration below shows the integers
used, the eight-bit binary equivalent, and the pattern.

Color 1
(<Background>)

No Integers
Assigned

4027 PROGRAMMER'S

Color 2

Integer

24
24
24
24
24
24
24
24
24
24
24
24
24
24

BINARY

A USER DEFINED PATTERN

Color 3

Integer

7
7
7
7
7
7
7
7
7
7
7
7
7
7

BINARY

Eight-Bit
Binary Equivalent

0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

00011000 00000111

@

Pattern

2657-9

7-9

r

r

r

Section 8

GRAPHICS

The 4027 has extensive color graphics capability. It can draw several styles of vectors
(line segments), intermix graphics with text and forms, and store special purpose
character fonts defined by the user. The 4027 can also draw circles, pies (filled circles),
and polygons. All these features include color capability.

THE GRAPHIC COMMANDS

There are seventeen commands designed for creating color graphic displays on the 4027.
This section contains a discussion of each of these commands, in the order in which they
are listed:

• Graphic • Circle
• Enable • Ink
• Disable • String
• Vector • Erase G
• RVector • Shrink
• Line • Symbol
• Poly • font
• RPoly • DFont
• Pie

4027 PROGRAMMER'S @ 8-1

GRAPHICS

GRAPHIC COMMAND

8-2

GRAPHIC Command

Graphics are displayed in the 4027 workspace. Before this can be done, the workspace
must be prepared to display graphs by defining a graphic region. The GRAPHIC command
is used for this purpose.

Syntax

!GRAphic <beg row> <end row>[<beg col>[<end col>]]<CR>

where all parameters are positive integers designating rows and columns in absolute
workspace coordinates. Thus <beg row> must be less than <end row>, <beg col>
must be less than <end col>, and <end col> must be less than or equal to 80. Also,
<end row> must not exceed <beg row> by more than 53 rows. The default values of
<beg col> and <end col> are 1 and 80, respectively.

Action

This command defines a graphic region in the 4027 workspace and erases all information
currently stored in this region. The graphic region thus defined consists of rows <beg
row> through <end row>, and columns <beg col> through <end col> in each of these
rows.

Examples

!GRAphic 1,33<CR>

Creates a graphic region in the workspace containing columns 1 through 80 of rows 1
through 33.

!GRA 1,33,30<CR>

Creates a graphic region in the workspace containing columns 30 through 80 of rows 1
through 33.

The structure of a graphic region is best illustrated by an example. The command

!GRA 10, 19,20,49<CR >

creates a graphic region which occupies rows 1 0 through 19, columns 20 through 49 in
each of these rows.

@ 4027 PROGRAMMER'S

GRAPHICS

GRAPHIC COMMAND

As illustrated in Figure 8-1, this graphic region is 1 0 cells (character cells) high and 30
cells wide. Each cell consists of a dot matrix 8 dots wide by 14 dots high. Each dot can be
turned on (lighted). Various commands discussed in this section create graphic displays
or display user-defined symbols by turning on patterns of these dots.

r---·
I

10 CELLS
tflGH

I
L---

3ocELLS----1
___ w10E I

I

Figure 8-1. A Graphic Region.

000000
00000000
00000000
000000••
ooooeeoo
ooeeoooo
••000000
00000000
00000000

000000

(2401) 2657-10

The columns of dots are numbered from left to right across the graphic region, starting
with 0 for the leftmost column, and from bottom to top, starting with 0 for the bottom row.
In Figure 8-1, the 240 columns of dots (30 cells, each cell 8 dots wide) are numbered
from Oto 239; the 140 rows of dots (1 0 cells, each cell 14 dots high) are numbered from
Oto 139. This establishes a coordinate system in the graphic region. For each dot in this
region there is a pair of numbers: its X- and Y-coordinates. The X-coordinate gives the
dot's horizontal position; the Y-coordinate gives the dot's vertical position. These
coordinates are used in the VECTOR, POLYGON, PIE, and CIRCLE commands.

This coordinate system is also used in the RVECTOR and RPOL YGON commands. In
these commands, however, each coordinate pair is relative to the last coordinate pair
given in the command.

It is possible to define more than one graphic region in the workspace. If this is done, new
graphic commands affect only the graphic region most recently defined. Different graphic
regions should not overlap.

4027 PROGRAMMER'S @ 8-3

GRAPHICS

ENABLE COMMAND

8-4

ENABLE Command

The ENABLE command places the 4027 in the Graphic Input (GIN) mode. This mode is
used to provide graphic beam position and color information to the host computer.

Syntax

!ENAble [<count>]<CR>

where <count> is a positive integer specifying the number of points to be sent to the
host computer. If <count> is not specified, it defaults to infinity.

NOTE

GIN mode may also be initiated by pressing the crosshair key.

Action

The ENABLE command causes the terminal to enter GIN mode. When GIN is first
ENABLEd, the crosshair is displayed at the graphic beam position. The crosshair can then
be manipulated with the cursor control and home keys.

When a key other than the crosshair control key is pressed, a report is sent to the host.
Thereportisintheform:

<cmd. chr.> DAT 03, <key>, <x pos>, <y pos> <color>;

where

<cmd. chr.> is the current command character. DAT 03 indicates the crosshair
device.

<key> is the ASCII decimal equivalent of the key value that generated this report.

<x pos> is a three-digit number indicating the location of the crosshair with respect
to the horizontal axis.

<y pos> is a three-digit number indicating the location of the crosshair with respect
to the vertical axis.

<color> is a three-digit number indicating the color of the point at that location.

@ 4027 PROGRAMMER'S

GRAPHICS

ENABLE COMMAND

The 4027 remains in GIN mode until one of the following occurs:

• the crosshair key is pressed.

• a DISABLE command is sent from the host or typed on the keyboard.

• the specified <count> number of points and the carriage return have been sent.
An end-of-line sequence is not sent between each point when multiple points are
sent.

Certain characteristics of the graphic beam during GIN mode should be noted. When
ENABLE is given, the crosshair is displayed at the graphic beam position. If the crosshair
is moved, the graphic beam is moved to the crosshair position when a key is pressed.
Also, if INKing is on, a line is drawn from the previous graphic beam position to the
present crosshair position when a key is pressed. The key normally used to set the
graphic beam at the position of the crosshair is the pad terminator key. However, pressing
most of the alpha or numeric keys will have the same result. Keys which, when pressed,
do not set the graphic beam at the position of the crosshair are the BREAK, CROSSHAIR,
SHIFT, CONTROL, HOME, TTY LOCK, NUMERIC LOCK, and COMMAND LOCK OUT keys.

Examples

!ENAble <CR>

Places the 4027 in GIN mode and sets the crosshair at the graphic beam position.

!ENA S<CR>

I
~CROSSHAIR

A crosshair appears in the workspace
when the 4027 is ENABLED.

Places the 4027 in GIN mode for the specified number of points (5) and sets the
crosshair at the graphic beam position. An end-of-line sequence is sent, after five reports
have·been sent, which causes the crosshair to leave the screen and the 4027 to leave
GIN mode.

4027 PROGRAMMER'S @ 8-5

GRAPHICS

DISABLE COMMAND

8-6

DISABLE Command

Syntax

!DISAble <CR>

Action

The DISABLE command removes the 4027 from GIN mode. The crosshair is removed from
the graphic area and the crosshair control keys return to controlling the alpha cursor. An
end-of-line sequence is sent to the host as the terminator of the GIN messages, if any
have been sent.

@ 4027 PROGRAMMER'S

GRAPHICS

VECTOR COMMAND

VECTOR Command

When a graphic region of suitable size has been defined, vectors (line segments) can be
drawn in the graphic region using the VECTOR command.

Syntax

!VECtor <XO><Y0><X1 ><Y1 >[<X2><Y2> ... <Xn><Yn>]<CR>

where all <X> and <Y> parameters are positive integers.

Action

This command draws a vector from the point with graphic coordinates (<XO>, <YO>) to
the point with coordinates (<X1 >, <Y1 >). If additional pairs of coordinates are
specified, additional vectors are drawn from (<X1 >, <Y1 >) to (<X2>, <Y2>), from
(<X2>, <Y2>) to (<X3>, <Y3>), ... , and finally from (<X(n-1)>, <Y(n-1)>)
to(<Xn>, <Yn>). All vectors are drawn in the color currently defined by the COLOR
command.

The <X> and <Y> coordinates are graphic region coordinates. If the value of <X> or
<Y> is not within the graphic region, the vector is "clipped;" that is, a line is drawn to
the edge of the graphic region in the current direction. If another vector is drawn after this,
the new vector is also clipped as it comes back into the window.

Af-te, t> VLC..i-ov- k.OI.$ ba.LV\ d.v-A.c..on, tka. ~"'-ic. ~°'-IN'\ position ~ s

~t ~ t~ lC\S1 po,11\1 dir"'wn.

4027 PROGRAMMER'S @ 8-7

GRAPHICS

VECTOR COMMAND

8-8

Example

Suppose you have used the !GRA 10,19,20,49<CR> command to define the 240 X 140
graphic region described earlier. The command

!VEC 120,12091,30168,8572,85149,30120,120<CR>

creates the following display. (Axes are not shown on the display.) Note that, since either
a space or a comma serves as the separator, we have alternated these to emphasize the
VECTOR coordinate pairs.

Y-AXIS

(120,120)

"'
(72,85) (168,85) , _ __.,.__..,__{

.__ ______________________ X-AXIS

IVEC 120, 120,91,30, 168,85, 72,85, 149,30, 120,120

2402-13

Figure 8-2. The VECTOR Command.

@ 4027 PROGRAMMER'S

GRAPHICS

RVECTOR COMMAND

RVECTOR (Relative Vector) Command

It is possible to draw vectors by specifying relative coordinates - that is, coordinates
relative to the last graphic beam position. This is done using the RVECTOR command.

Syntax

!RVEctor <rel X0><rel Y0><rel X1 ><rel Y1 >
[<rel X2><rel Y2> ... <rel Xn><rel Yn>]<CR>

where <rel X> and <rel Y> are integers, not necessarily all positive. The parameters
are separated by spaces or commas.

Y-AXIS

START FINISH
(120+0,65+55) = (120,120) = (149-29,30+90)

"' (169-96,85+0) = (72,85) (168,85) = (91+77,30+55)

\..---....-.-ii

(1 20-29, 120-90) = (91,30)

ORIGINAL VECTOR BEAM
POSITIONED AT (120,65)

.... I ____ ____________________ X-AXIS

IRVE 0, 55,-29,-90, 77,55,-96,0, 77,-55,-29,90< CR>

2402-14

Figure 8-3. The RVECTOR Command.

4027 PROGRAMMER'S @ 8-9

GRAPHICS

RVECTOR COMMAND

8-10

Action

This command draws one or more vectors in the graphic region, as does the VECTOR
command. The pair <rel XO>, <rel YO> specifies coordinates relative to the current
graphic beam position. Each succeeding pair of <rel X>, <rel Y> parameters specifies
new coordinates relative to the preceding coordinate pair. All vectors are drawn in the
color currently defined by the COLOR command.

Example

Suppose that the current graphic beam position is at the point with absolute workspace
coordinates(1 20,65). The command:

!RVE 0,55 -29,-90 77,55 -96,0 77,-55 -29,90<CR>

draws the star in Figure 8-3. It is the same figure drawn by the earlier VECTOR command,
but now each pair of coordinates given is relative to the preceding pair of coordinates.

As in the VECTOR command, if a pair of coordinates specifies a point outside the graphic
region, the 4027 will draw the vector only to the edge of the graphic region where it will be
terminated or "clipped." The next line to be drawn will be drawn as though the entire
vector was present. The clipping action has no effect on subsequent vectors.

@ 4027 PROGRAMMER'S

GRAPHICS

LINE COMMAND

LINE Command

The 4027 can draw different styles of vectors. The style of vector is selected with the
LINE command and will be drawn in the current vector color by the VECTOR command.

Syntax

!LINe [<line type>]<CR>

where < line type> must be one of the following:

• A digit from 1 to 8, inclusive

• The letter P

• The letter E

If <line type> is not specified, it defaults to one.

Action

This command sets the type of line used to draw vectors in subsequent VECTOR,
RVECTOR, and CIRCLE commands. Line type 1 is a solid line, the default line type. Line
types 2 through 8 are various styles of dashed lines. Line types 1 through 8 are shown in
Figure 8-4.

1
2 ···
3 -------------
4 -·-·-·-·-·-·-·-·-·-·-·-·-·
5 -------------
6 --··-···-···-···-···-···-
7 -------
8 ---------------

Figure 8-4. Vector LINE Types.

2401-23

Line type P causes subsequent VECTOR and RVECTOR commands to plot isolated points
rather than connect the points with line segments.

Line type E causes subsequent VECTOR and RVECTOR commands to draw vectors in the
background color which effectively "erase" existing vectors. However, if a line that
crosses a polygon is erased in this way, it will leave a background color line across the
polygon.

4027 PROGRAMMER'S @ 8-11

GRAPHICS

POLYGON COMMAND

8-12

POLYGON Command

A large number of shapes and panels may be drawn in color by the 4027 using the
POLYGON command.

Syntax

!POLygon <X1 ><Y1 ><X2><Y2><X3><Y3>L<Xn><Yn>]<CR>

where

<X1 > is an integer indicating a point on the horizontal axis which will be one of the
coordinates for one vertex of the polygon.

<Y1 > is an integer indicating a point on the vertical axis which will be the second
coordinate for one vertex of the polygon. Additional parameters define the
succeeding vertices of the polygon. A minimum of 3 vertices are necessary to form a
polygon.

Action

This command draws a polygon whose vertices are defined by the given parameters. This
polygon is filled in with the current color (as defined by the COLOR command).
Boundaries of polygons are drawn in the current line type, as defined by the LINE
command. The vertices are given as in the VECTOR command; if the last vertex is not the
same as the first vertex, then a closing edge is automatically drawn. If any edges cross,
the polygon will still be filled correctly.

Since a maximum of 53 lines may be allotted to the graphic region, the largest possible Y
axis coordinate is 752 (14 X 53 = 752).

Refer to the GRAPHIC command discussion for further explanation of the graphic region
coordinate system.

@ 4027 PROGRAMMER'S

Example

! POLygon 1 00, 1 00,200, 100,200,200, 1 00,200< CR>

GRAPHICS

POLYGON COMMAND

Creates a polygon designated by the given vertices in the current color as shown below.

Y-AXIS

(100,200) (200,200)

(100,100) (200,100)

-------------------------X-AXIS

!POL 100,100,200,100,200,200,100, 200<CR>

2657-11

4027 PROGRAMMER'S @ 8-13

GRAPHICS

RPOL YGON COMMAND

8-14

RPOL YGON (Relative Polygon) Command

The 4027 can draw polygons using relative coordinates (as in the RVECTOR command).

Syntax

RPOLygon <X1 ><Y1 ><X2><Y2><X3><Y3>l...<Xn><Yn>]<CR>

where

<X1 > and <Y1 > are coordinates relative to the current position of the crosshair
and define the first point of the polygon.

< Xn > and < Yn > are subsequent coordinates which define the other vertices of
the polygon relative to the last given pair of coordinates.

Action

This command creates a filled polygon in the current vector and boundary color as does
the POLYGON command. But the vertices are given in relative coordinates, as in the
RVECTOR command. If the last vertex is not the same as the first, a closing edge is
automatically created. Like the POLYGON command, the resulting filled area covers
anything below it. If polygons overlap, the last one created is the one displayed in the
overlapping area.

Y-AXIS

I~ THIRD VERTEX (-50,50)

~ SECOND VERTEX (50,50)

---~ START (0,0) IS AT LOCATION
CROSSHAIR I OF THE CROSSHAIR.

I

X-AXIS

!RPOL 0,0 50,50-50,50<CR>

2657-12

Figure 8-5a. An RPOL V Command Using 0,0 as the First Coordinate Pair.

@ 4027 PROGRAMMER'S

GRAPHICS

RPOL YGON COMMAND

Example

!RPOLygon 0,0,50,50,-50,S0<CR>

Creates a triangle at the location of the crosshair in the current vector and boundary
colors, as shown in Figure 8-Sa.

!RPOL 150,0,50,50,-50,50<CR>

Creates a triangle. Its first coordinate pair is 150 points to the right of the crosshair
position on the X axis. Subsequent vertices of the triangle are drawn relative to the
position designated by the previous coordinate pair. Refer to Figure 8-5b.

Y-AXIS

150
POINTS

/ THIRD VERTEX (-50,50)

~ SECOND VERTEX
(50,50)

CROSSHAIR~I
I

START (150,0)

.._-------------------------1► X-AXIS

IRPOL 150,0 50,50 -50,50< CR>

Figure 8-5b. An RPOLY Command Using 150,0 as the First Coordinate Pair.

4027 PROGRAMMER'S @

2657-13

8-15

GRAPHICS

PIE COMMAND

8-16

PIE Command

The 4027 can draw filled circles, circle sectors, or equilateral polygons using the PIE
command.

Syntax

!PIE <radius> [<start angle>] [<end angle>] [<increment angle>]<CR>

where

<radius> is a positive integer representing the radius of the pie or polygon in raster
units. A raster unit is one dot within a character cell. Refer to the GRAPHIC command
(in this section) for further explanation of dots and character cells.

<start angle> is a positive or negative integer which states the angle at which the
first radius is drawn.

<end angle> is a positive or negative integer which states the angle at which the
last radius is drawn.

<increment angle> is a positive integer which represents the angle between points
on the circumference that become vertices of a polygon.

Action

The PIE command causes a pie shape to be drawn, centered at the current crosshair
position. The pie has a < radius> of the specified number of raster units and is filled with
the current vector color and outlined in the current boundary color from the <start
angle> to the <end angle>. If the <start angle> and <end angle> are not given, 0 and
360 degrees are the default values and a complete pie is drawn with the specified
<radius>.

If < increment angle> is given, the PIE command creates a polygon with vertices every
< increment angle> degrees. These points are joined and become the vertices of a
polygon. The default value for <increment angle> is 4 degrees. A polygon drawn with
vertices this close together looks like a circle.

All angles are measured with 0 degrees as the point of reference. Zero degrees is the
horizontal line segment which extends from the center point to the point on the right side
of the graphic area. Angle values increase in a direction moving counterclockwise.

@ 4027 PROGRAMMER'S

GRAPHICS

PIE COMMAND

Examples

!PIE 100 0 270<CR>

Causes a pie to be drawn as shown below. The < radius> is 100 raster units, <start
angle> is 0 degrees, and <end angle> is 270 degrees .

CENTER
POINT

...._ (0°) START ANGLE

~ (270°) END ANGLE

!PIE 100 0 270<CR>
2657-14

!PIE 100 0 360 45<CR>

This command draws a polygon as shown below. The <radius> is 100 raster units,
< start angle> is 0 degrees, and < end angle> is 360 degrees. Since the < increment
angle> of 45 degrees has been given, the pie is drawn as a polygon with 8 equal sides.

!PIE 100 0 360 45<CR>

4027 PROGRAMMER'S

/ (45°) INCREMENT ANGLE

@

_/ (0°) START ANGLE

" (360°) END ANGLE

CENTER
POINT

2657-15

8-17

GRAPHICS

PIE COMMAND

8-18

!PIE 100 0 360 90<CR>

When this command is given the polygon shown below is drawn in the current boundary
color and filled in the current vector color. The < radius>, <start angle>, and <end
angle> are the same as in the previous example. With the < increment angle> set at 90
degrees, a square polygon is drawn which is rotated 45 degrees from the X axis .

!PIE 100 0 360 90<CR>

@

...,- (0°) START ANGLE

....._ (360°) END ANGLE

CENTER
POINT

2657-16

4027 PROGRAMMER'S

GRAPHICS

CIRCLE COMMAND

CIRCLE Command

The CIRCLE command is used to create circles, circle sectors, and equilateral polygons,
just as the PIE command. These shapes, however, are not filled; instead just the boundary
is drawn in the current color.

Syntax

!CIRcle <radius> [<start angle>] [<end angle>] [<increment angle>]<CR>

where

<radius> is a positive integer representing the radius of the circle or polygon in
raster units.

<start angle> is a positive or negative integer which states the angle at which the
first radius of the circle will be drawn.

<end angle> is a positive or negative integer which states the angle at which the
last radius of the circle will be drawn.

<increment angle> is a positive integer which represents the number of degrees
between the vertices of the polygon.

Action

The CIRCLE command creates various shapes in the same manner as the PIE command.
The CIRCLE command causes a shape to be drawn around the beam position which,
unlike the PIE command, is not filled with the current vector color. Only the boundary of
the figure is made the current color.

The circle (or polygon) will be drawn from the <start angle> to the <end angle> at a
radius of <radius> raster units. If the <start angle> and <end angle> are not given,
they default to O and 360 degrees, respectively.

If <increment angle> is given, the CIRCLE command will mark vertices at intervals of
<increment angle> degrees. The vertices then are joined to form a polygon as in the Pl E
command. Default value for <increment angle> is 4 degrees.

All angles are measured with O degrees as the point of reference. Zero degrees is the
horizontal line segment which extends from the center point to the right side of the
graphic area. Angle values increase in a direction moving counter clockwise relative to
zero degrees.

4027 PROGRAMMER'S @ 8-19

GRAPHICS

CIRCLE COMMAND

8-20

Examples

!CIRcle 100 0 360<CR>
!CIR 1 00<CR>

Creates a complete circle in the current vector color with a <radius> of 100 raster units,
as shown below.

Rael.. _,.,..... (0°) ST ART ANGLE
~100Rasler....-

lnts (360°) END ANGLE

CENTER
POINT

CIRCLE CREATED BY !CIR 100 0 360<CR>

!CIR 100 0 360 45<CR>

2657-17

Creates a polygon in the current vector color with a <radius> of 100 raster units. As
shown below, including the <increment angle> of 45 degrees causes an eight-sided
polygon to be formed. <Start angle> and <end angle> must be given when <increment
angle> is used.

/ (45°) INCREMENT ANGLE

RacliM / (0°) START ANGLE
100Rasler .,._

..., ~' (360°) END ANGLE

CENTER
POINT

POLYGON CREATED BY !CIR 100 0 360 45<CR>

2657-18

@ 4027 PROGRAMMER'S

!CIR 100 90 360<CR>

GRAPHICS

CIRCLE COMMAND

Creates a sector of a circle with a <radius> of 100 raster units from the <start angle>
of 90 degrees to the < end angle> of 360 degrees, as shown below .

...- (90°) START ANGLE

Raclla

I.Wis /

.,_ 100R11&11ar ..,._ ...,_ (360°) END ANGLE

CENTER
POINT

SHAPE CREATED BY !CIR 100 90 360 <CR>
2657-19

4027 PROGRAMMER'S @ 8-21

GRAPHICS

INK COMMAND

8-22

INK Command

The INK command enables the drawing of lines between points in the graphic area
without typing in coordinates. The 4027 must be in the GIN mode to INK.

Syntax

!INK [Yes I No]<CR>

If no parameter is specified, Yes is assumed.

Action

When the INK or INK YES command is given, the 4027 can draw lines from the present
crosshair location to the previous location without designating the coordinates as in a
VECTOR or RVECTOR command. The 4027 must be ENABLED by giving the ENABLE
command or pressing the zero/crosshair key. After this has been done, pressing the pad
terminator key or any other non-cursor moving key causes a line to be drawn from the
present position of the crosshair to the previous position.

The INK NO command turns INKing off.

Example

!INK Yes<CR>

Refer to Figure 8-6. When drawing a line from crosshair position one to position two,
position one must first be established by moving the crosshair to the desired location and
pressing the pad terminator key. Remember that the cro_sshair is displayed by giving the
ENABLE command or pressing the crosshair key. When the crosshair first comes up, if
INKing is already on, a line is drawn from the previous beam position to the crosshair
position when the pad terminator key is pressed.

@ 4027 PROGRAMMER'S

GRAPHICS

INK COMMAND

4027 GRAPHIC AREA

PRESENT
CROSSHAIR POSITION

~ LINE DRAWN IN CURRENT
COLOR WHEN PAD TERMINATOR
KEY PRESSED.

2657-20

Figure 8-6. Drawing a Line in INK mode.

After the position of the crosshair has been established, give the INK command. Then,
each time the crosshair is repositioned and the pad terminator key is pressed, a line is
drawn between the present location of the crosshair and the previous one. Lines are
drawn in the current vector color. If no color has been specified, lines are drawn in color
number CO (default white).

!INK No<CR>

The INKing process is terminated. If INKing is off, then no vectors are drawn when points
are set in GIN mode.

If an ENABLE command for X points is given, after X points are entered, the crosshair
goes down and INKing appears to terminate. However, INKing is still in effect and
additional vectors will be INKed if the zero/crosshair key is pressed, returning the
crosshair to the graphic region. INKing is terminated only by giving the INK NO command.

4027 PROGRAMMER'S @ 8-23

GRAPHICS

STRING COMMAND

8-24

STRING Command

Text may be entered in a graphic region directly from the keyboard or by using the
STRING command. The STRING command allows text to be positioned relative to the
displayed graphics using graphic coordinates.

Syntax

!STRing <text> <CR>

where <text> may be:

1. One or more delimited ASCII strings.

2. A sequence of ASCII Decimal Equivalents.

3. Any combination of 1 and 2.

The string defined by <text> should not contain the command character.

Action

This command inserts the string defined by the <text> parameter into the graphic
region. The first character defined by <text> is displayed in the character cell containing
the graphic beam. Succeeding characters of <text> are displayed in succeeding
character cells. Any vectors or characters that were previously displayed in the character
cells where <text> is inserted are no longer visible, since each character of <text> fills
an entire character cell.

Example

!STRi ng/Triangle/ <CR>

where "Triangle" is a delimited ASCII string which will be displayed at the position of the
graphic beam.

@ 4027 PROGRAMMER'S

4027 PROGRAMMER'S

Triangle

! GRl=flHIC 1, 35
!'v'ECT~ 0,0 B,0 150,200 0,0
!'v'ECT~ 120,80
!STRit-«:; "Tr1an9le"

Figure 8-7. The STRING Command.

@

(2402) 2657-21

GRAPHICS

STRING COMMAND

8-25

GRAPHICS

ERASE G COMMAND

8-26

ERASE ·G Command

When the information displayed in a graphic region is no longer needed, it can be deleted
in one of two ways. You can delete the graphic region and all information stored in it from
the workspace display list. You can also erase the graphic information but leave the
graphic region defined to display new graphic information.

To delete the graphic region from the display list, give the ERASE WORKSPACE
command. The graphic region, along with all other information in the workspace, is
deleted from the display list. No further graphic commands can be executed until a new
graphic region is defined by a GRAPHIC command.

If you wish to reuse the same graphic region, the ERASE G command is used. The ERASE
G command can include a color number or pattern number which will cause the graphic
area to be flooded (erased) with the specified color or pattern.

Syntax

!ERAse [G [raphics] [<color number>l<pattern number>]]<CR>

Action

This command causes the graphic area to be erased. If the parameters include a color
number (C0-C7) or pattern number (P0-P119), the color or pattern becomes the
background color. The current vector and panel drawing color is not changed. The ERASE
GRAPHICS command does not reallocate the graphic memory cells at the top of Font 31.

NOTE

The ERASE command can also be used to erase the contents of the
workspace or monitor. Refer to the Controlling the Display section for
details.

@ 4027 PROGRAMMER'S

Examples

!ERA G<CR>

Erases the contents of the graphic area containing the graphic cursor.

!ERA G C1 <CR>

Erases the contents of the graphic area with color C1.

!ERA G P1 <CR>

Erases the contents of the graphic area with pattern P1.

4027 PROGRAMMER'S @

GRAPHICS

ERASE G COMMAND

8-27

GRAPHICS

SHRINK COMMAND

8-28

SHRINK Command

When using 4010-style graphics it is necessary for the 4027 to alter the coordinates of
graphic information in its display list.

The 4027 can accept 4010-style graphic commands from a host computer. In 4010-style
graphic commands, the X-coordinates can be as great as 1023. The X-coordinates in a
4027 graphic commands should not exceed 639 (in a graphic region occupying all 80
columns). It is necessary, therefore, to scale incoming 4010-style graphic commands for
display in the 4027 graphic region. (See discussion of 4010-style graphics in this
section.)

Syntax

!SHRink [Yes I Hardcopy I Both I No]<CR>

The default parameter is Yes.

Action

SHRINK YES. This command causes the 4027 to "shrink" X- and Y-coordinates in
subsequent VECTOR, RVECTOR, POLY, RPOL Y, CIRCLE and PIE commands, multiplying
them by a factor of approximately 5/8. This accommodates the 4027 to the range of
possible coordinates in 4010-style graphics commands.

To use the 4027 to execute a 4010-style graphic command file, first dimension the
graphic region to hold 35 rows of 80 columns. (!GRA 1,35, 1,80 or !GRA 1 0,44 are two
GRAPHIC commands which do this.) Then give a SHRINK YES command to put the 4027
in graphics shrink mode.

NOTE

SHRINK HARDCOPY and SHRINK BOTH commands are included only for
compatibility with programs written for the 4025. These commands are not
recommended for programs written for the 4027.

SHRINK NO. This command removes the 4027 from shrink mode.

@ 4027 PROGRAMMER'S

GRAPHICS

EFFECTS OF GRAPHIC REGION

EFFECTS OF A GRAPHIC REGION

The presence of a graphic region affects the action of some of the 4027 commands and
keys, summarized here:

DELETE CHARACTER: Inside a graphic region, the character is replaced by a space.

DELETE LINE: In a line which passes through a graphic region, only characters outside
the graphic region are deleted. Information inside the graphic region is not deleted.

ERASE & SKIP: In a line that passes· through a graphic region, only characters outside
the graphic region are deleted.

ERASE WORKSPACE: This erases the entire workspace, including the graphic region
definition. A new GRAPHIC command must be given before new graphics can be
displayed.

CURSOR MOVEMENT AND TYPING: The ASCII keys, the cursor movement keys and
commands, and the scrolling keys and commands are not affected by the presence of the
graphic region. If the cursor is moved into a graphic region and a character typed on the
keyboard, that character replaces graphic information previously stored in the character
cell. Entering GIN mode causes the cursor movement keys to control the movement of the
crosshair instead of the cursor.

FORM FILLOUT MODE: All locations within the graphic region are protected in form
fillout mode. If a graphic region is less than 80 columns wide and no form exists in the
side region(s), the area to the left of the form is unprotected (text may be entered) but all
other areas outside the form are protected and text may not be entered in them. To
prevent text from being entered into the unprotected area of the field, expand the graphic
area so that it will begin at column 1.

ATTRIBUTE CODES: Inside a graphic region, the 4027 inserts only font attribute codes
in the display list. All other attributes are ignored. Any visual attributes (enhanced, etc.)
which are in effect at the left edge of the graphic region affect the entire row of character
cells running through the graphic region. Logical attributes and font codes in effect at the
left edge of the graphic region do not affect the graphic region itself, but characters to the
right of the graphic region are given these same font and logical attributes.

THE SEND COMMAND: Graphic information in a graphic region is not transmitted by the
SEND command. Every character cell containing graphic information is transmitted as an
ASCII space. Text information is sent, however.

4027 PROGRAMMER'S @ 8-29

GRAPHICS

EFFECTS OF GRAPHIC REGION

8-30

Suppose the graph shown in Figure 8-8 is displayed in the workspace.

B
I
L
L
I
0
N
s

QJTLAYS F'CR TRAEPaUATICJ,1

-TOTFl...
15 ······· HIGtoRYS FH> OTI-ER TRAEiPCRTATICJ,1

-·-· l'RSS m:N:iIT FH> RAILROADS
- - i.RTER

10

.. -·····
,• ,,·
.,.

,. ,
5 ,···' _____ ...,,,. .. .,,,.-------

··••:.:.:::::::;:::::::::::::::::::::::.... _____ .-·-·-·-· - - - - - - -
1-a,..,, .. ,,.. ... :-- - - - - - - - - - - - ------- - -----

0 +----,---..---""T-"---r--..----,----,,---""T-"--"T---ir-------1

68 69 70 71 72 73 74 75
F'ISCA.... 'IURi

Figure 8-8. A Graphic Display.

76 77 78 79

2402-16

If you do a SEND operation to the computer, then SEND back from the computer to the
terminal, you obtain the display in Figure 8-9. No information generated by graphic
commands was sent to the computer. The display in Figure 8-9 is what is stored in the
computer.

@ 4027 PROGRAMMER'S

B
I

ClJTlAVS F'CR TIREP(RTATICtl

TOTR..
15 HIGHoAVS i:lt> On£R TIRtSPan'ATICtl

l'RSS TRFNSIT At> RAILROllS
""TER

L 10
L
I
0
N
s

s

0

68 69 70 71 72 73 74 75
F'ISCR. VEMS

GRAPHICS

EFFECTS OF GRAPHIC REGION

76 TT 78 ?'9

(2402) 2657-22

Figure 8-9. A Graphic Display After the SEND Command.

4027 PROGRAMMER'S @ 8-31

GRAPHICS

4010-STYLE GRAPHICS

8-32

4010-STYLE GRAPHICS ON THE 4027

The 4027 with standard Graphics Memory, accepts 4010-style graphic commands when
these commands are sent from the host. (The 4027 does not accept 401 0-style graphic
commands entered on the keyboard.) 4010-style graphics are characterized by
addressable screen coordinates and the use of ASCII characters to encode these
addresses.

To enable the 4027 to respond properly to 4010-style graphic commands, issue the
commands

!GRAPHIC 1,35<CR>
!SHRINK<CR>

These set up a graphics region which is correctly proportioned to display 4010-style
graphics. Specifically, the viewable graphic region is approximately 640X by 490Y, in
4027 workspace coordinates (1024X by 780Y in 401 0 coordinates). (See the SHRINK
command discussion earlier in this section.)

In 4010-style graphics, certain control characters are interpreted by the terminal as
graphic commands. The following 401 0-style commands from the host cause the 4027 to
change operating modes:

1. The GS command places the 4027 in 4010-style graph mode.

2. The US command exits the 4027 from graph mode and positions the cursor at the
character cell containing the graphic beam.

3. The ESC command notifies the 4027 that the next character should be
interpreted as a command.

4. The ESC-Form Feed command erases the graphic region if the terminal is not in
graph mode.

Addressing the Graphic Beam

The graphic beam is moved to a point in the graphic region by sending to the terminal the
binary equivalents of the Y address and the X address (401 0 coordinate addresses) of
the point. Each binary equivalent is separated into two parts: the five most significant bits
and the five least significant bits. The address 205Y, 1 48X translates to 0011001101 Y,
00100101 00X (binary). The 0011001101 Y becomes 00110 HiY and 01101 LoY; the
00100101 00X becomes 00100 HiX and 10100 LoX. In graph mode, these bytes cause

@ 4027 PROGRAMMER'S

GRAPHICS

4010-STYLE GRAPHICS

the beam to be moved to the 205Y, 148X position in the graphic region. To be sent to the
4027, these bytes must be encoded as ASCII equivalents. The 0011 0 HiY bit is encoded
as an ASCII "&" symbol, which has binary representation 0100110. The first two bits, 01,
instruct the terminal that this is a HiY address. The last five bits, 00110, form the HiY
segment of the Y address 0011001101. 205Y, 148X is encoded as "&m$T." Appendix C
is a Coordinate Conversion Chart for encoding X- and Y-coordinates as ASCII characters.

Graph Mode Memory

When an address is sent to the terminal, the HiY, LoY and HiX bytes are stored in a
register. If the next address sent to the terminal repeats some of these bytes, they need
not be retransmitted. LoX must always be sent, since the command is not executed until
LoX is received. Even if the 4027 leaves graph mode and reenters it later, these three
bytes are retained. The following table shows which bytes must be sent in response to
specific byte changes.

Table 8-1

4010-STYLE GRAPHICS REQUIRED BYTE TRANSMISSIONS

Bytes Bytes which must be transmitted
Which

Change HiY LoY HiX LoX

Hi Y # #

Lo Y # #

Hi X # # #

Lo X #

When the 4027 exits 4010-style graph mode, the communications port is returned to the
portion of display memory it was in before entering graph mode (workspace or monitor).

For a complete discussion of 4010-style graphics, see the 401 0 Series documentation.

4027 PROGRAMMER'S @ 8-33

GRAPHICS

ALTERNATE CHARACTER FONTS

8-34

ALTERNATE CHARACTER FONTS

The 4027 graphics memory may be used to store alternate character fonts, defined by the
user for special purposes.

With its full 192K of graphics memory (Option 29), the 4027 can accommodate up to 32
different fonts, each containing up to 128 characters. Thirty-one of these fonts may be
user-defined. (The standard font is Font O and cannot be modified by the 4027 operator
or by the computer.) In addition to the standard font, two other predefined fonts are
available: Ruling Characters (Option 32) and Math Characters (Option 34).

NOTE

Font 31 is used to store user-defined patterns. A FONT 31 command will
cause an error condition.

Alternate character fonts are defined by the FONT command or on a character by
character basis with the SYMBOL command.

@ 4027 PROGRAMMER'S

GRAPHICS

SYMBOL COMMAND

SYMBOL Command

Syntax

!SYMbol <number> [<background color no.>] [<foreground color no.>]
[<value 1 >] ... [<value 14>H<foreground color no.>H<value 1 >] ...
[<value 14>11<CR>

where

< number> is an integer between O and 127, inclusive, or any of the ASCII
characters.

 is an integer between 1 and 31, inclusive.

<background color no.> is a color number, CO-C7, which designates the color of
the dots which will not be a part of the symbol.

<foreground color no.> is a color number, CO-C7, which designates the color of the
dots which form the symbol.

Each <value n > is an integer from Oto 255 which specifies which dots in a
particular row will be the foreground color.

The parameter must specify a character font for which graphics memory is
installed. (The operator can discover which character fonts have graphics memory
installed with the GTEST command, discussed in the System Status and Initialization
section.) Each <value n > parameter def au Its to zero.

Action

This command defines a symbol in character font . The <number> parameter is
the ASCII decimal equivalent of some ASCII character. The ASCII character itself may be
used. The symbol defined by this command is displayed whenever the specified ASCII
character is entered in a field with font attribute .

The symbol is defined by specifying which dots in the 8 x 14 character cell matrix are
lighted in the <foreground color> when the symbol is displayed. Each <value n>
parameter is converted into an 8-bit binary equivalent. The zero/one pattern of this binary
equivalent determines which of the eight dots in the n-th row of the character cell are
lighted in the <foreground color> when this character is displayed.

Rows and dots within a row which are not used to form the symbol will be displayed in the
<background color> or, if none is specified, will default to color C7 (default black).

4027 PROGRAMMER'S @ 8-35

GRAPHICS

SYMBOL COMMAND

8-36

Example

The command

!SYM 97,30,c1 ,c2,o,o,o,o,2,52, 12,12,52,2,0,255 <CR>

or

!SYM a,3o,c 1 ,c2,o,o,o,o,2,52, 7 2, 72,52,2,0,255 <CR>

defines character 97 of font 30. The number 97 is the ASCII Decimal Equivalent of the
ASCII character "a". When the "a" character is entered in a field with font attribute 30, the
symbol defined by this command is displayed. The symbol is displayed in color C2 and all
dots which are not used to form the symbol are displayed in the <background color> C1.
Figure 8-1 O illustrates this symbol and how the SYMBOL command defines it.

Integer

0
0
0
0
2

52
72
72
52

2
0

255
Default
Default

Eight-Bit
Binary Equivalent

00000000
00000000
00000000
00000000
0000001,0
00110 1100
0100,100 1 0
01001000
00111011,00
0 0 0,0 0'0 1 1 0
0 0 0i0 0i0'0 0
1111,1 11 1111
0 010 0~Q 0,0
o o 010,0,0,o:o

Dot Pattern

i-- Non-Symbol Area is
~ < Background Color> I

I

i «--- Symbol Area is
I_ <foreground Color>

i i

1

I
I

:

(2402) 2657-23

Figure 8-10. A User-Defined Symbol.

If one wishes to clear symbol 97 from user-defined font 30, the command

!SYM 97,30,C7 <CR>

is given. All rows in the character cell matrix are set to zero, and this symbol is displayed
as a space, with all matrix dot color C7.

@ 4027 PROGRAMMER'S

GRAPHICS

FONT COMMAND

FONT Command

Syntax

!FONT [<hardware font>] [<background color>] [<foreground
color>]<CR>

where

<hardware font> is the number of the font to be copied. Default is the regular ASCII

font, font 0.

 is an integer between 1 and 31 which represents some font in
graphic memory.

<background color> is the color or pattern of the background.

<foreground color> is the color or pattern for the characters.

NOTE

Font 31 is reserved for user-defined patterns set by the PATTERN
command. Font 31 is illegal and if used an error condition will occur. The
terminal must be powered off or RESET to remove the error condition.

Action

This command copies the < hardware font> into the given font, if it exists, in the given
colors. If the < hardware font> is not specified, the regular ASCII font (font 0) is used.
This entry is only valid if the optional Character Set Expansion board (Option 31) is
installed. The two color numbers specify the colors to be used for background and
foreground. They may be either a color number (C0-C7) or a pattern number (P0-P119). If
the colors are omitted they default to the default foreground and background colors (CO
on C7). Fonts should be defined before drawing graphics to avoid altering the graphic
area.

The ATTRIBUTE command is used to display the font at the position of the alpha cursor.
Refer to the Forms and Form Fillout section for information describing the ATTRIBUTE
command.

Example

!FONt 0,30,C1 ,C4<CR>

Copies the hardware font (0) into font 30 in <background color> C1 and <foreground

' color> C4.

4027 PROGRAMMER'S @ 8-37

GRAPHICS

DFONT COMMAND

8-38

DFONT (Delete Font) Command

The graphics memory used to store symbol definitions in a user-defined character font
can be released for another use by giving the DFONT command.

NOTE

Font 31 should be deleted with care. Font 31 is used to store patterns
defined by the PATTERN command. Deleting Font 31 destroys any stored
patterns.

Syntax

!DFOnt <CR>

where is an integer between 1 and 31, inclusive.

Action

The DFONT command deletes the symbol definitions in the programmable font. The space
may be used for graphics when the font has been deleted. When the Character Set
Expansion board (Option 31) is installed, the ATTRIBUTE command allows specification
of a font number. Deleting font 31 does not affect the top eight characters. This allows the
user to reuse the low characters, but not disturb the palette of possible vector and panel
colors.

Example

The command

!DFO 30<CR>

Allows memory used to store symbol definitions now to be used to store graphics or
another character set.

@ 4027 PROGRAMMER'S

Section 9

FORMS AND FORM FILLOUT

From the operator's viewpoint, a form consists of several lines of text displayed in the
workspace and formatted in a particular way. A form is divided into blanks areas, which
the operator fills in, and labe~s. which identify the type of data to be entered in each blank.
There may also be horizontal and vertical ruling lines to emphasize the structure of the
form. The operator fills in the blanks with appropriate data and sends this data to the
computer for storage or processing.

A sample form used to store a customer's name and address is shown in Figure 9-1.

the blanks shaded gray. In typical applications, these blanks could be spaces or colored
areas on the screen.

Customer's Name

Street Rddres ~

City

State

FORM FILLOUT MODE

ZIP

2402-7

Figure 9-1. Sample Form.

A form is filled out and the data in the form sent to the computer while the 4027 is in form
fillout mode.

Form fillout mode has several features designed to make it easy to fill out and process
forms.

• Data can be entered only in the blanks of the form. These blanks are called
unprotected fields. If the operator attempts to enter a character in a protected
field, the terminal bell sounds and the character is inserted in the next
unprotected field in the form.

4027 PROGRAMMER'S @ 9-1

FORMS AND FORM FILLOUT

FORM FILLOUT MODE

9-2

• Several keys on the keyboard behave differently when the keyboard types into the
workspace. The TAB key moves the cursor to the beginning of the next
unprotected field of the form. The BK TAB key moves the cursor to the beginning
of the current field. The HOME key moves the cursor to the beginning of the first
unprotected field in the form, rather than to column 1 of row 1 of the workspace.
The ERASE key erases only the data in the unprotected fields; protected fields are
not erased.

• Several of the 4027 commands have effects other than the usual ones. When the
computer types into the workspace, the TAB, BACKTAB, and ERASE commands
have the same effects as the corresponding keys. The editing commands also
behave differently. These differences are detailed, command by command,
throughout this section and later sections.

A typical form fillout application includes the following steps:

• Insure that the terminal is not in form fillout mode.

• Display the form in the 4027 workspace. Either the operator creates the form from
the keyboard or, more often, a stored form is sent from the computer or tape unit to
the workspace. Both processes are the same from the terminal's viewpoint.

• Put the terminal into form fillout mode.

• Fill out the form.

• Send the data in the form to the computer (or a printer, a tape unit, or a hard copy
unit).

• Erase the unprotected fields of the form and fill it out again; then send the new
data in the form to the computer. Repeat this process as long as necessary.

• When the form is no longer needed, remove the terminal from form fillout mode
and erase the form itself from the screen.

The FORM command is used to place the 4027 in form fillout mode and to remove it from
form fillout mode.

@ 4027 PROGRAMMER'S

FORM Command

Syntax

!FORm [Yes I No]<CR>

If no parameter is specified, Yes is assumed.

Action

FORMS AND FORM FILLOUT

FORM COMMAND

If Yes is specified, the 4027 is placed in form fillout mode. If No is specified, the 4027 is
removed from form fillout mode.

Examples

!FOR<CR>
!FOR Y<CR>
!FORM YES<CR>

!FOR N<CR>
!FORM NO<CR>

4027 PROGRAMMER'S

Places the 4027 in form fillout mode.

Removes the 4027 from form fillout mode.

@ 9-3

FORMS AND FORM FILLOUT

CREATING A FORM

9-4

CREATING A FORM

From the 4027's viewpoint, there is more to a form than meets the eye. Consider the
sample form in Figure 9-2. This form consists of several lines of text. Each line is divided
into one or more sections called fields; each field is divided into individual character
positions.

Custo~r•s Na~

Street AddrHs

City

State

S I Street Address

Zip Code

s::~
,~--

City 1111 illMllilll .1a111111 r 1111\111✓
I)

State a IIUl■!l 11 Zip Code -[al~

___ ! (j] I Street Address I !- 11111 It I 111111 IU

~ \ ~
FIELDS

Figure 9-2. The Parts of a Form.

@

LINES

(2402) 2657-24

4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

CREATING A FORM

To display a form, the 4027 stores the information which defines the form in the portion of
memory called the workspace display list. In addition to the characters which are
displayed on the screen, the display list includes markers which are not displayed. These

markers are of two types:

• End-of-line markers which indicate where one line of text ends and the next
begins.

• Markers called attribute codes. Attribute codes divided a line into fields and
determine the properties, or attributes, of those fields.

The fourth line of the sample form appears on the screen as follows:

I Street Address

2402-20

To the workspace display list, however, the following information is stored:

<ATT> □ <ATT> rn <ATT> I Street Address I <ATT>

1st 2nd ~ /

<ATT> [O <END-OF-LINE>
MARKER

""" """ --------------~
ATTRIBUTE CODES

(NOT VISIBLE ON THE SCREEN

BUT INCLUDED IN THE DISPLAY LIST)

To create a form you must complete the following steps:

4th
FIELD

5th
FIELD

2402-21

• Decide what each line of the form is to look like-what attributes each field will
possess; what text, if any, will be printed in the protected fields.

• Attach attribute codes to each field so that when the 4027 displays the form, each
field will have the desired attributes and the form, as a whole, will have the desired
appearance.

• Type desired text into protected fields.

4027 PROGRAMMER'S @ 9-5

FORMS AND FORM FILLOUT

FIELD ATTRIBUTES

9-6

FIELD ATTRIBUTES AND FIELD ATTRIBUTE CODES

There are three classes of field attributes:

• Character font attributes: font zero, font one, font two, etc.

• Logical attributes: alphanumeric, numeric, protected, and protected modified.
Alphanumeric and numeric denote unprotected fields into which the operator can
enter data.

• Visual attributes: the characters and background may be assigned any of the
color numbers (C0-C7). Characters and background colors may be inverted and
also made to blink between colors. 4025-style visual attributes (standard,
enhanced, inverted, and underscored) may also be used.

Font Attributes

A 4027 font attribute is an integer between 0 and 31, inclusive. The integer designates
the character font from which characters are selected for display in the field. The default
font attribute is 0. Font 0 is called the standard font and consists of the 1 28 characters of
the ASCII code. Font 1 is always the Ruling Characters font (Option 32); Font 3 is the
Math Characters font (Option 34) if it is installed. On the 4027, other fonts may be
determined by ROMs inserted in the Character Set Expansion Board (Option 31), or may
be defined by the user with SYMBOL and FONT commands which are described in

the Graphics section.

NOTE

Font 31 is used to store user-defined patterns. A FONT 31 command (see
Graphics section) causes an error condition.

If a font attribute is specified for which no character font is defined, each character in the
font is displayed as a rectangle with all the dots in that character cell matrix turned on in
random fashion.

NOTE

Font attributes in the display list affect the display, whether the terminal is
in form ti/lout mode or not. A field with font attribute 1, for example,
displays characters from font 1 at all times (assuming Option 32 is
present).

REV A, JUL 1979 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

FIELD ATTRIBUTES

Logical Attributes

The logical attributes which a field can possess are as follows:

Symbol Used Attribute Meaning

A Alphanumeric The default logical attribute. Specifies an alphan-
umeric unprotected field into which any alphanu-
meric character may be entered.

N Numeric Specifies a numeric unprotected field. In form
fillout mode, only characters with ADEs 32-63
can be entered in a numeric field. (This includes
the numerals 0-9, and most punctuation sym-
bols.)

p Protected Specifies a protected field. In form fillout mode, a
protected field cannot be typed into or erased.

Note that the fields of the form to be filled in by the operator must be unprotected fields,
with logical attributes A or N; labels and areas in which the operator is not to type should
be protected.

Each field possesses one of these logical attributes. In addition, any field may possess
the logical attribute M, for "modified." The SEND MOD command sends to the computer
the data in those, and only those, fields which have been flagged as "modified" with the
logical attribute M. (See the discussion of the SEND command later in this section.)

A field may be flagged as "modified" in either of two ways:

• When the data in any unprotected field is changed, the terminal automatically
attaches the logical attribute M to that field. The next SEND MOD command sends
the data in that field to the computer and removes the M attribute. The data in this
field is not sent to the computer again until it has been modified again in some
way and the field once again flagged with the logical attribute M.

• The ATTRIBUTE command may specify the logical attribute PM, for "protected
modified." A SEND MOD command sends the data in such a field to the computer,
but does not remove the M attribute; thus a PM field is sent to the computer with
every SEND MOD command.

NOTE

Logical attributes have effect only when the 4027 is in form fillout mode.
When not in form ti/lout mode, the 402 7 ignores logical attributes.

4027 PROGRAMMER'S @ 9-7

FORMS AND FORM FILLOUT

FIELD ATTRIBUTES

9-8

Visual Attributes

On the 4027, the ATTRIBUTE command is used to give various visual attributes to the
characters and their backgrounds. Characters and backgrounds may be assigned any of
the eight color numbers (C0-C7), they may be inverted, or they may be made to blink
between two visual attributes.

Color Attributes

On the 4027, visual attributes are used to select the color of the characters and the color
of the background as listed below.

!ATT CO is color 0 (default white) on color 7. (default black)
!ATT C1 is color 1 (default red) on color 7.
!ATT C2 is color 2 (default green) on color 7.
!ATT C3 is color 3 (default blue) on color 7.
!ATT C4 is color 4 (default yellow) on color 7.
!ATT CS is color 5 (default cyan) on color 7.
!ATT C6 is color 6 (default magenta) on color 7.
!ATT C7 is color 7 (default black) on color 7. (Invisible)

Inverted Attributes

Characters and backgrounds may be inverted by using "I" and a color number as listed
below. Default colors for the color numbers are the same as listed under the color
attribute descriptions.

!ATT IC0 is color 7 on color 0.
!ATT IC1 is color 7 on color 1.
!ATT IC2 is color 7 on color 2.
!ATT IC3 is color 7 on color 3.
!ATT IC4 is color 7 on color 4.
!ATT ICS is color 7 on color 5.
!A TT IC6 is color 7 on color 6.
!ATT IC7 is color 7 on color 7. (Invisible)

The actual color displayed by each of the eight color names may be controlled by the
color commands; MAP, RMAP, and MIX.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

FIELD ATTRIBUTES

Blinking Attributes

The 4027 can blink between two colors or between inverted and non-inverted by putting a
hyphen (-) between the desired parameters. For example, the command

!ATT C2-C4

causes the characters to blink between color numbers C2 and C4 on a C7 background.
Blinking will not occur within a graphic area.

4025-Style Visual Attributes

4025-style attributes may be used to run a program on the 4027 which was written for the
4025. The 4025 uses visual attibutes designated S, E, U, and I, and these parameter
forms may be used on the 4027. The 4025 visual attributes correspond to 4027 color
attributes as listed below:

S (Standard) = CO
I (Inverted) = ICO
E (Enhanced) = C2
U (Underscore) = C4

IE (Inverted, Enhanced)
IU (Inverted, Underscore)
EU (Enhanced, Underscore)
IEU (Inverted, Enhanced,

= IC2
= IC4
= C6

Underscore) = IC6

NOTE

Like font attributes, visual attributes affect the display even when the 402 7
is not in form ti/lout mode.

Field Attribute Codes Within a Line

Unless instructed otherwise by an ATTRIBUTE command, the 4027 begins each line with
the default attribute in each class: font 0, alphanumeric logical attribute, and CO visual
attribute.

An attribute code may specify attributes from one, two or all three classes of field
attributes. As the 4027 scans each line in its display list, it searches for attribute codes.
When it encounters a new attribute code, it modifies only the class or classes of attributes
specified in this new code; the other class or classes of attributes are not modified.
Suppose, for example, the following line is stored in the display list:

-- -- - ---- - -- - - < numeric>--- - - - <CR>

Since the second attribute code specifies only the logical attribute numeric, the second
field is displayed in font 0, C2 (the font and visual attributes of the preceding field).

4027 PROGRAMMER'S @ 9-9

FORMS AND FORM FILLOUT

ATTRIBUTE COMMAND

9-10

CREATING FIELDS

Each field in a line is created by specifying the font, logical, and visual attributes which
the field possesses. The ATTRIBUTE command is used for this purpose.

ATTRIBUTE Command

Syntax

!ATTribute [] [<logical>] [<visual>[-<visual>U<CR>

where denotes a font attribute, <logical> denotes a logical attribute, and each
<visual> denotes one or more visual attributes.

Action

The ATTRIBUTE command inserts a field attribute code into the workspace display list at
the cursor position. This field attribute code marks the beginning of a new field and
designates the font, logical, and visual attributes of this field, as specified in the
ATTRIBUTE command. If this field is the first field in the line, the ATTRIBUTE command
specifies the attributes of the field which differ from the default attributes. If the field is
preceded by another field on the same line, the ATTRIBUTE command specifies the
attributes of the new field which differ from those of the preceding field. If two visual
attributes or sets of attributes are separated by a hyphen, the display blinks that field
between the two specified visual attributes or sets of visual attributes. The display will not
blink between visual attributes within a graphic area.

Restrictions on Syntax

For the 4027, is an integer between 0 and 31, inclusive. defaults to 0 (at
the beginning of a line) or to the font attribute of the preceding field.

For the 4027,

<logical> = [A I N I P I PM]

where A denotes alphanumeric, N denotes numeric, P denotes protected, and PM denotes
protected modified. These parameters must be given in this single letter form.

<Logical> defaults to A (at the beginning of a line) or to the logical attribute of the
preceding field.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

ATTRIBUTE COMMAND

For the 4027,

<visual> = [<color name> I l<color name>]
and
-<visual> = -[<color name> I l<color name>]

where <color name> is a color number C0-C7 and I denotes inverted. The order of the
color names does not affect the display. Also, the 4025-style attributes (S, E, I, and U)
may be used in place of <color name>.

If the -<visual> parameter is specified, the display blinks between the two attributes or
sets of attributes specified. For example, visual attributes of C2-C4 cause the field to
blink between C2 and C4 visual attributes.

For the 4027, <visual> defaults to CO (at the beginning of a line) or to the visual
attribute(s) of the preceding field.

When using 4025-style attributes (S, E, U, I), no spaces are allowed between alphabetic
parameters in the ATTRIBUTE command. To define a protected field with the enhanced
and inverted visual attributes, for example, give the command

!ATT PEl<CR>

To blink that field between the enhanced and inverted visual attributes, give the command

!ATT PE-l<CR>

Examples of ATTRIBUTE Commands

Font Attributes

!ATT0 <CR>
!ATT<CR>

!ATT 1 <CR>

4027 PROGRAMMER'S

Defines a new field beginning at the cursor position. When
characters are entered in this field, the field displays characters
from Font 0, the standard font.

Defines a new field beginning at the cursor position. When
characters are entered in this field, the field displays the
corresponding character from Font 1, the Ruling Characters font.
(Requires Option 32.)

@ 9-11

FORMS AND FORM FILLOUT

ATTRIBUTE COMMAND

!ATT 1 C4<CR> Defines a new field beginning at the workspace cursor position.

9-12

When characters are displayed in this field, it displays the
corresponding characters in color C4 from character Font 1
(ruling characters). (Requires Option 32.)

!ATT 30<CR> Defines a new field beginning at the workspace cursor position.

Logical Attributes

!ATT A<CR>

!ATT N<CR>

!ATT P<CR>

!ATT PM<CR>

Visual Attributes

!ATT C0<CR>

!ATT C2<CR>

!ATT IC0<CR>

When characters are entered in this field, the field displays
characters from Font 30. The characteristics of Font 30 must
first have been set by the FONT command which is described in
the Graphics section. Fonts 1 through 31 are user definable, but

Font 31 is reserved for patterns and, if used, results in an error
condition.

Defines an alphanumeric unprotected field beginning at the
cursor position.

Defines a numeric unprotected field beginning at the cursor
position. In form fillout mode, only characters with ADEs 32-63
can appear in this field.

Defines a protected field, beginning at the cursor position. In
form fillout mode, this field cannot be typed into or erased.

Defines a protected modified field beginning at the cursor
position. This field is transmitted to the computer with any
subsequent SEND MOD command.

Defines a new field beginning at the cursor position. Displays
that field with the standard visual attribute of color CO on color
C7.

Defines a new field beginning at the cursor position. Displays
that field with the enhanced visual attribute of color C2 on color
C7.

Defines a new field beginning at the cursor position. Displays
that field with the inverted visual attribute of color C7 on color
CO.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

CREATING FIELDS WITH JUMP

!ATT C4<CR> Defines a new field beginning at the cursor position. Displays
that field with the underscored visual attribute of color C4 on
color C7.

!ATT C2-C0<CR> Defines a new field beginning at the cursor position and blinks
that field between the visual attributes C2 and C4. This provides
blinking between color CO and color C2 on colorC7.

!ATT IC2-C4<CR> Defines a new field beginning at the cursor position and blinks
that field between the visual attributes of inverted C2 with C4.
This provides characters blinking between C4 and C7 with
background blinking between CO and C2.

!ATT C3-IC4<CR> Displays the field beginning at the cursor position with the
inverted attribute and alternate blinking between the specific
colors. The dash before the inverted attribute creates the
blinking attribute. The attribute will appear as colors C3 and C7
on a background of colors C4 and C7.

!ATT PMS-C6<CR> Sets up a protected field, labels it "modified" for SEND MOD
operations, and causes it to be displayed as a blinking between
colors CO and C6.

Creating Fields with JUMP

The JUMP command can be used with the ATTRIBUTE command to create several fields
on one line. Suppose you want to create a protected C2 field 60 character positions in
length in row 3 of the workspace. The command

!JUM 3!ATT PC2;------(60 spaces)------<CR>

creates the desired field. However, the command

!JUM 3!ATT PC2!JUM 3,60!ATT PC0<CR>

creates the desired field more quickly and with more efficient coding.

4027 PROGRAMMER'S @ 9-13

FORMS AND FORM FILLOUT

CREATING FIELDS WITH JUMP

9-14

The JUMP command can be used to create several fields on one line of the workspace.
Suppose you want row 5 to appear as follows:

Fi~ld 1

1
PROTECTED

Color co

20
PROTECTED

Color c2

50
NUMERIC
Color c4

60

(2402) 2657-25

This can be done by transmitting the fields as series of spaces, as in our first example.
But the command sequence

!JUM 5!ATT PC0;Field 1 !JUM 5,20!ATT PC2!JUM 5,50!ATT NC4;Field 3---<CR>

gives the same display and transmits fewer characters than sending the first two fields as
series of spaces.

Suppose the workspace cursor is in the home position (row 1, column 1) and consider the
three command sequences:

1. !ATT P;Name !ATT AC2!JUM 1,25!ATT PC0<CR>

2. !ATT P;Name !ATT AC2!JUM 1,25!ATT C0!JUM 1,60!ATT PC0<CR>

3. !ATT P:Name !ATT AC2!JUM 1,25!ATT PC0!JUM 1,80!ATT PC0<CR>

When executed, each of these command sequences causes the same display:

2402-23

Each sequence, however, creates a very different "line" in the 4027 display list, and the
differences between them are important when the 4027 is in form fillout mode.

The line generated by sequence 1. ends in column 25; the display list contains nothing
beyond that column. If the operator moves the cursor right of column 25 in line 1 and
presses a key, the cursor moves to the beginning of the next unprotected field and prints
the typed character there. The terminal bell does not ring.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

CREATING FIELDS WITH JUMP

The line generated by 2. ends in column 60. Columns 26 through 60 constitute an
unprotected field. If the operator types in these columns, the text is printed just as it is
typed.

The line generated by 3. ends in column 80; all 80 columns of the screen are included in
this line. Columns 26 through 80 constitute a protected field. If the operator moves the
cursor into this field and types a character, the terminal bell rings, the cursor moves to the
beginning of the next unprotected field in the form, and the character is printed there.

When using the JUMP command to create fields, always "tie down" the
line with the !ATT PCO command, as shown in the preceding examples. If
this is not done, the display list may not include the last field created with
JUMP.

4027 PROGRAMMER'S @ 9-15

FORMS AND FORM FILLOUT

HRULE COMMAND

9-16

RULINGS

You can highlight the structure of a form by drawing rulings, or ruling lines. The 4027 with
the Ruling Characters font (Option 32) has two provisions for doing this. First, the basic
command set includes the HRULE (Horizontal Rule) and VRULE (Vertical Rule)
commands. Second, the Ruling Characters font (Option 32) itself provides additional
ruling characters for making junctions between horizontal and vertical rulings.

Horizontal and vertical rulings can be made any of the 64 colors by assigning a visual
attribute to each line or location at which the ruling appears. When making horizontal
rulings, assigning a visual attribute works well since the attribute can be made to color
the entire row in the display. When visual attributes are given to vertical rulings, however,
they must be given for each row in which the vertical ruling appears.

HRULE (Horizontal Rule) Command (Requires Option 32)

Syntax

!HRUle <row> <column> [<length> [<width>]]<CR>

where all parameters are positive integers. The <row> and <column> parameters give
absolute workspace coordinates (as in the JUMP command). Since there are only 80
columns, the <column> parameter must not exceed 80 and the sum of <column> and
<length> must not exceed 81. The <width> parameter, if specified, must be either 1 or
2. The default value for both <length> and <width> is 1.

Action

This command draws a horizontal ruling in the workspace. The first character of the ruling
is inserted at the row and column specified by the <row> and <column> parameters.
The ruling continues to the right for a total of <length> columns. This ruling is a single
line if <width> is 1 and a double line if <width> is 2.

Examples

!HRU 3,5,20<CR>
!HRU 3,5,20,1 <CR>

!HRU 3,5,20,2<CR>

Beginning at row 3, column 5 of the work
space, draws a horizontal ruling through 20
columns (columns 5 through 24). The ruling
is a single line.

Beginning at row 3, column 5 of the
workspace, draws a horizontal ruling through
20 columns (columns 5 through 24). The
ruling is a double line.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

VRULE COMMAND

VRULE (Vertical Rule) Command (Requires Option 32)

Syntax

!VRUle <row> <column> [<length> [<width>]]<CR>

where all parameters are positive integers. The <row> and <column> parameters are
absolute workspace coordinates (as in the JUMP command). The <column> parameter
may not exceed 80. The <width> parameter, if specified, must be either 1 or 2. The
default value of both <length> and <width> is 1.

Action

This command draws a vertical ruling in the workspace. The first ruling character is
inserted at the row and column specified by the <row> and <column> parameters. The
ruling continues downward for a total of <length> rows. If <width> is 1 (or omitted), the
ruling is a single line; if <width> is 2, the ruling is a double line.

Examples

!VRU 3,5,20<CR>
!VRU 3,5,20, 1 <CR>

!VRU 3,5,20,2 <CR>

Beginning at row 3, column 5 of the work
space, draws a vertical ruling through 20
rows (rows 3 through 22). This ruling is a
single line.

Beginning at row 3, column 5 of the work
space, draws a vertical ruling through 20
rows (rows 3 through 22). This ruling is a
double line.

NOTE

If the 4027 receives an HRULE or VRULE command but does not contain
Option 32, each character cell affected by the command is displayed as a
rectangle with all its matrix dots turned off (black).

4027 PROGRAMMER'S @ 9-17

FORMS AND FORM FILLOUT

JUNCTIONS

9-18

Making Correct Junctions

While the HRULE and VRULE command are convenient, vertical and horizontal rulings
drawn with these commands do not cross or join each other. Each ruling character
occupies an entire character cell on the display, and a character cell which contains a
vertical ruling character cannot contain a horizontal ruling character. For example,
suppose you give the following sequence of commands:

!VRU 3,20,10,1 <CR>
!VRU 3,30,10,1 <CR>
!VRU 3,40, 1 0, 1 <CR>
!VRU 3,50,10,1 <CR>
!VRU 3,60,10,1 <CR>
!HRU 3,20,41,1 <CR>
!HRU 5,20,41,2<CR>
!HRU 12,20,41,1 <CR>

At this point, the basic structure of the form has been created, but the junctions between
horizontal and vertical rulings need to be added. The workspace display appears as
follows:

The variety of ruling characters provided in the Ruling Characters Font (Option 32) allows
the programmer or operator to make neat, well-fitted junctions by selecting appropriate
font characters. The Ruling Junctions Chart (Figure 9-3) is a reference sheet for making
junctions on the 4027. With it you can make junctions for this sample form with the
sequence of commands:

!JUM3,20; @!J UM3,30;A!JUM3,40;A!JUM3,50;A!JUM3,60;B <CR>
!JUMS,20; \ !JUM5,30;K!JUM5,40;K!JUM5,50;K!JUM5,60; <CR>
!JUM12,20;P!JUM12,30;Q!JUM12,40;Q!JUM12,50;Q!JUM12,60;R<CR>

@ 4027 PROGRAMMER'S

Now the form looks like this:

FORMS AND FORM FILLOUT

JUNCTIONS

A complete table of ruling characters is given in Appendix D.

4024/4025 Rulings 4027 Rulings

Rulings Standard Rulings Standard
(Font 1) (Font 0) (Font 1) (Font 0)

d })c »~}})} H
eYYGYYAYYYYYB ? [? ?

[- [[xYYIYYoYYYYYz
,]]Ml]K]llll" ? [? ?
[- [[I) }k))m)))))n

HYYOYYIYYYYYJ ? [? ?
[- [[? [? ?
[- [[? [? ?
[- [[t))s} }u)))))v

PYYWYYQYYYYYR
h l llEl l l]]]] J

Dl JC]]Ell l l JF [- (

- [- - [- [

)if'(IYYOYY'YYYZ :)})y}}}(}}}""

- [- - [- (

LJ JK] lMl]]] lti [- [

- [- - plllllllUlllr

- [- -
- [- - alllll9lll]Jb
TJ JS] JU]] l] JV - ? -

- ? -
'>«Y'MioYYYYYX
- ? -
- ? -
qYYYYYwYYYYYI

2657-26

Figure 9-3. Rulings Junction Chart.

4027 PROGRAMMER'S @ 9-19

FORMS AND FORM FILLOUT

TYPING IN FORM FILLOUT

9-20

THE EFFECT OF FORM FILLOUT ON 4027 COMMANDS

Form fillout mode alters the action of some of the 4027 commands, but does not affect the
action of others. For commands discussed in later sections, any effects of form fillout
mode on a command are discussed when the command is introduced. Some of the display
control commands already discussed are affected by form fillout mode:

• The TAB, BACKTAB, and ERASE commands (and their corresponding keys) are
affected by form fillout mode.

• The UP, DOWN, RIGHT, LEFT, RUP, and RDOWN commands (and their corre
sponding keys) are not affected by form fillout mode. The JUMP command is not
affected by form fillout mode, but is still useful for working with forms.

The following discussion assumes that the 4027 is in form fillout mode, that commands
come from the computer, and that text from the computer is directed into the workspace.

Typing in Form Fillout

When the 4027 is in form fillout mode, text can be entered only in the unprotected fields
of the form. If the operator types a character while the 4027 is in form fillout mode, text
can be entered only in the unprotected fields of the form. If the operator types a character
while the workspace cursor is in a protected field, the terminal bell rings and the typed
character is inserted in the first column of the next unprotected field in the form.

If the cursor is in the last column of an unprotected field and the operator types a
character, the character is inserted in that column and the cursor moves to the first
column of the next unprotected field of the form.

If the cursor is moved beyond the last field in a line (using JUMP or a cursor key) and a
character is typed, the cursor moves to the beginning of the next unprotected field in the
form and the typed character is entered there. In this case, the terminal bell does not ring.
(See the Creating Fields with JUMP discussion earlier in this section.)

When a form is created, a line of the form may consist only of a carriage return, <CR>.
Such a line contains no protected or unprotected fields; it appears on the terminal screen
as a blank line, but in the workspace display list only a <CR> is stored. If the cursor is
positioned anywhere in such a line and a character is typed, the cursor moves to the
beginning of the next unprotected field in the form; the terminal bell does not ring.

If the cursor is moved beyond the last unprotected field in the form and a key is pressed,
the cursor moves to column 1 of the last line in the workspace window. The typed
character is not displayed.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

TAB IN FORM FILLOUT

TAB in Form Fillout

Each tab character advances the workspace cursor to the beginning of the next
unprotected field in the form. If the cursor is in the last unprotected field of the form, the
next tab character sends the cursor to the home position at the beginning of the first
unprotected field.

Examples

Suppose the sample form shown below is displayed in the workspace, with the cursor
positioned as shown.

Name
CURSOR

Age-yrs.

Height Weight

Social Security Nurooer -----

2402-24

1. The command

!TAB<CR>

moves the cursor to the beginning of the next unprotected field.

Name

Social Security Nurooer 111-111-lal
2402-25

4027 PROGRAMMER'S @ 9-21

FORMS AND FORM FILLOUT

TAB IN FORM FILLOUT

9-22

2. The subsequent command

!TAB 4<CR>

advances the cursor four unprotected fields and positions it as shown.

Name

Height -ft. ■in. Weight -lbs.

Social Security Number II!!:•-
3. The subsequent command

!TAB 3<CR>

CURSOR AFTER
ITAB4<CR>

2402-26

advances the cursor through the last two unprotected fields of the form and
back to the home position.

CURSOR IN HOME
POSITION AFTER

!TAB 3<CR> Height -ft. ■in. We19ht -lbs.

Social Security Number ----

@

2402-27

4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

BACKTAB IN FORM FILLOUT

BACKTAB in Form Fillout

A BACKTAB character moves the cursor to the beginning of the unprotected field in
which it is located. If the cursor is already at the start of an unprotected field, or if it is not
inside an unprotected field, a BACKTAB character moves the cursor to the start of the
preceding unprotected field. If the cursor is already at the start of the first unprotected
field in the form, a BACKTAB character leaves the cursor where it is.

Examples

Suppose the cursor is positioned in the last unprotected field of our sample form, as
shown.

Na.ire

Height -ft. ■in. Weight -lbs.

Social Security l'llmber ------....-CURSOR

2402-28

1. The command

!BAC<CR>

moves the cursor to the beginning of the unprotected field in which it is located.

Height -ft. ■in. Weight -lbs.

Social Security Number ---------CURSOR

2402-29

4027 PROGRAMMER'S @ 9-23

FORMS AND FORM FILLOUT

BACKTAB IN FORM FILLOUT

2. Any of the subsequent commands

!BAC 7<CR>
!BAC 8<CR>
!BAC 9<CR>

moves the cursor through all the preceding seven fields of the form, to the
beginning of the first unprotected field.

9-24

Name
CURSOR---~•

He19ht 1111ft. ■in. We19ht tallbs.

Social Security Number 111-111-1111

@

2402-30

4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

ERASE IN FORM FILLOUT

ERASE in Form Fillout

In form fillout mode, the ERASE command erases only the contents of the unprotected
fields in the form and leaves the cursor at the beginning of the first unprotected field.

Example

Suppose a sample form is filled out as shown and the information in the form is sent to the
computer.

The command

Name

Height

!ERAW<CR>

2402-31

erases the contents of the form and leaves the cursor positioned as shown.

Name
CURSOR ___ ,..

Height n. Weight bs.

Social Security Number

The command

!ERA<CR>

also does this if, as we assume here, the device issuing the command
(computer or keyboard) also types into the workspace.

4027 PROGRAMMER'S @

2402-32

9-25

FORMS AND FORM FILLOUT

HOME KEY AND JUMP

9-26

The HOME Key and JUMP in Form Fillout

When the 4027 is not in form fillout mode, the command

!JUM<CR>

has the same effect as pressing the HOME key. In each case, the workspace cursor
moves to row 1, column 1, the "home" position.

In form fillout mode, pressing the HOME key moves the cursor to the beginning of the first
unprotected field in the form, which generally does not begin in row 1, column 1. But the
JUMP command has no respect for form fillout mode. Giving the command

!JUM<CR> or
!JUM 1,1 <CR>

moves the cursor to row 1, column 1, whether or not that field is protected, unprotected, or
even part of the form.

The JUMP command can still be used, with the TAB command, to simulate the action of
the HOME key. As long as row 1, column 1 is a protected location, the sequence of
commands

!JUM!TAB<CR>

moves the cursor first to row 1, column 1 (!JUM), then to the beginning of the first
unprotected field in the form (!TAB).

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

SEND IN FORM FILLOUT

TRANSMITTING FORMS AND FORM DATA

Because of the formatted nature of forms and form data, special care must be taken when
transmitting either to the computer. The SEND command and the FIELD command have
been specially designed for transmitting form information.

SEND in Form Fillout

Syntax

!SENd [All I Mod]<CR>

The default parameter is All; that is, !SEN<CR> is equivalent to !SEN A<CR>.

There are two uses of the SEND command involving forms.

First, suppose the operator has constructed a form in the workspace and wishes to store
this form in the computer. (The 4027 with Option 4 can also store forms or form data on a
Tektronix 4924 Digital Cartridge Tape Drive. See the Peripherals section.) After making
sure that the 4027 is not in form fillout mode, the operator gives the SEND command. (If
the 4027 is not in form fillout mode, the SEND, SEND ALL, and SEND MOD commands are
equivalent.) This command sends all the information in the workspace to the computer.
Field attribute codes in the workspace display list are automatically encoded as
ATTRIBUTE commands; thus, when the form is sent back to the 4027 from the computer,
the 4027 has the information necessary to reconstruct the form.

Second, suppose a form is displayed, the terminal is placed in form fillout mode, and the
form is filled out. The operator now wishes to send the data in the form (not the form itself)
to the computer for storage or processing. With the 4027 in form fillout mode, the operator
uses either the SEND ALL command or the SEND MOD command.

The SEND ALL command sends to the computer the data in each unprotected field of the
form.

The SEND MOD command sends to the computer the data in just those fields flagged with
the logical attribute M (modified). In this case, the data in a field is sent to the computer if
and only if (1) the field is an unprotected field whose contents have been changed since
the last SEND or SEND MOD command, or (2) the field is a protected field permanently
flagged with the logical attribute PM (protected modified).

4027 PROGRAMMER'S @ 9-27

FORMS AND FORM FILLOUT

SEND IN FORM FILLOUT

9-28

When a SEND MOD command is given, then, consecutive blocks of data may not come
from consecutive unprotected fields in the form. For the applications program to process
the data correctly, however, it must know the form location from which each block of data
comes. Therefore, when a SEND MOD command is executed, the data from each modified
field is sent to the computer, preceded by a pair of three-digit numbers separated by a
comma. These numbers specify, in absolute workspace coordinates, the row (first
number) and column (second number) of the first character position of the field. Suppose,
for example, a modified field begins in row 5, column 3. When the data in this field is sent
to the computer, it is preceded by the string 005,003. Examples of transmissions using
the SEND MOD command appear later in this section.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

FIELD IN FORM FILLOUT

FIELD in Form Fillout

Syntax

!FIEid [<separator>]<CR>

where <separator> is a single printing ASCII character or a two- or three-digit ADE of an
ASCII character. If no <separator> is specified, it is assumed to be NUL, whose ADE is
00.

Action

The FIELD command sets the field separator. If any non-NUL field separator is specified,
that character precedes the data sent to the computer from each field; trailing spaces are
not transmitted.

If no field separator (or the NUL separator) is specified, all the data in each field is
transmitted to the computer by a SEND (ALL or MOD) command. If a field is not
completely filled out, all the spaces at the end of the field are treated as data and sent to
the computer, along with the rest of the data in the field.

The 4027 remembers its field separator when powered off or RESET.

Examples

!FIE @<CR>
!FIE 64<CR>

!FIE 9<CR>

!FIE 09<CR>

!FIE<CR>

4027 PROGRAMMER'S

Sets the field separator to the @ character,
whose ADE is 64.

Sets the field separator to the ASCII charac
ter 9.

Sets the field separator to the ASCII HT
(horizontal tab) character, whose ADE is 09.

Sets the field separator to NUL. When data
in a field is sent to the computer, no field
separator is used.

@ 9-29

FORMS AND FORM FILLOUT

SAMPLE TRANSMISSIONS

9-30

Some Sample Transmissions

Suppose the following form begins in row 1 of the workspace. The unprotected fields are
attribute C2 (shown here shaded gray); the last unprotected field has logical attribute
numeric. The end of each non-blank line is at the end of the last unprotected field in the
line. The three lines containing unprotected fields are separated from each other by blank
lines.

Name

Address

City

To store this form in the computer, give the command

!SEN<CR>

The following information is sent to the computer:

2402-33

!ATT P;--....:..-Name !ATT AC2;-------------------<CR>!ATT
P<CR>

!ATT P;-Address !ATT AC2;-------------------<CR>!ATT
P<CR>

!ATT P:----City !ATT AC2;---------!ATT PCO;-State:!ATT AC2;--
------!ATT PCO;-ZIP !ATT NC2;----<CR>

Transmitted spaces are shown here as dashes. Remember that the default logical
attribute of lines 2 and 4 (the blank lines) is alphanumeric. These lines must be protected
to prevent text from being entered in them.

Suppose now the 4027 is placed in form fillout mode and the form is filled out.

@ 4027 PROGRAMMER'S

FORMS AND FORM FILLOUT

SAMPLE TRANSMISSIONS

Name

Address

City StatL !lf8fl ZIP

1. If no field separator is specified, the command

!SEN A<CR>

sends the following data to the computer:

2402-34

John Doe------------<CR>1111-W.-First-St.---
< CR> Anytown- - -Oregon- -00000 <CR>

No field separator is used and each field is sent, including all trailing spaces. In
a programming language which can divide an incoming line into blocks of
predetermined length (such as COBOL), this is a convenient format.

2. Suppose the field separator is the number sign, (#). The command

!SEN A<CR>

now sends the following to the computer

#John-Doe<CR> #1111-W.-First-St.<CR> #Anytown#Oregon
#00000<CR>

The host program must use the # character to distinguish data from different
fields.

3. Suppose that the same form is filled out for John Doe's sister, Jane Doe, who
lives at a different street address in Anytown. Instead of erasing the form, the
operator presses the HOME key to return the cursor to the first unprotected
field, and simply types over the old information which must be changed.

4027 PROGRAMMER'S @ 9-31

FORMS AND FORM FILLOUT

SAMPLE TRANSMISSIONS

9-32

Address

City State ZIP

2402-35

Now the first two unprotected fields are flagged with the logical attribute M. The
SEND MOD command sends the data in these fields to the computer.

If no field separator is specified, the command

!SEN M<CR>

sends the following data to the computer:

001,010Jane-Doe---------------------
<CR>003,0109999W.-Ninth-St.<CR>

Note that no spaces or other characters separate the row and column
identifiers from the first character in the field.

4. Finally suppose the form is filled out for John's brother, Brad Doe, with no street
address information provided, and the City and ZIP information modified:

Address

2402-36

If the field separator is the # character, the command

!SEN M<CR>

sends the following data to the computer:

#001,01 0Brad-Doe<CR> #003,01 0<CR> #005,01 0Sometown #005,010
99999<CR>

@ 4027 PROGRAMMER'S

Section 10

TEXT EDITING

THE TEXT-EDITING COMMANDS

The 4027 recognizes four commands designed specifically for text editing: DCHAR
(Delete Character), ICHAR (Insert Character), OLINE (Delete Line), and ILINE (Insert Line).

NOTE

If an editing command is typed on the keyboard and text from the keyboard
is printed in the monitor, execution of the command inserts a blank line
just below the line on which the command is typed. All examples deal with
the workspace display.

DCHAR (Delete Character) Command

Syntax

!DCHar [<count>]<CR>

where <count< is a positive integer. If <count> is not specified, it defaults to one.

Action

This command deletes <count> characters, beginning with the character at the cursor
position. As each character is deleted, characters to the right of the cursor shift left to fill
the gap. The cursor does not move. If the terminal is in form fillout mode, only characters
to the right of the cursor in the same field shift left. If the terminal is not in form fillout
mode, all characters right of the cursor on the same line shift left.

This command is equivalent to pressing the DELETE CHARACTER key <count> times.

4027 PROGRAMMER'S @ 10-1

TEXT EDITING

DCHAR COMMAND

10-2

Examples

Suppose the following text is displayed in the workspace, with the cursor position as
indicated:

Everything seems seems in order.
■

The command

!DCH<CR>

or

!DCH1 <CR>

deletes the sat the cursor position, leaving the following display:

Everything seemsaems in order.

The subsequent command

!DCH5<CR>

leaves the desired display:

Everything seems in order.
■

Suppose a form contains incorrect information in an unprotected field; with the cursor
positioned as shown:

Name: Jane Doe DoeAge: 23
■

The command:

!DCH4<CR>

deletes the middle "Doe" and the extra space. Neighboring fields are not affected:

Name: Jane Doe■ Age: 23

@ 4027 PROGRAMMER'S

TEXT EDITING

ICHAR COMMAND

ICHAR (Insert Character) Command

Syntax

!ICHar<CR>

Action

The ICHAR command places the 4027 in insert mode. This command is equivalent to
pressing the INSERT MODE key.

In insert mode, when new text is sent from the computer or typed on the keyboard, the
cursor, the character at the cursor position, and characters to the right of the cursor are
shifted right to make room for the new text.

Suppose the text

is displayed in the workspace, with the cursor positioned as shown. If the string

!ICH;OF <CR>

is sent from the computer, it inserts the text OF (including a space) and displays the text

END OF PAGE •
in the workspace, with the cursor positioned to the left of the line.

If the string

!ICH;OF <CR>

is typed from the keyboard, the <CR> is sent to the workspace as text, and the cursor is
positioned at the beginning of the next line:

END OF PAGE

•

4027 PROGRAMMER'S @ 10-3

TEXT EDITING

ICHAR COMMAND

10-4

In form fillout mode, only characters in the unprotected field containing the cursor are
shifted right. Characters shifted past the rightmost position in that field are lost.

The DCHAR key can be used to delete unwanted characters at or to the right of the cursor
position, WITHOUT leaving insert mode.

Any other cursor movement, resulting either from giving a command or from pressing a
key, will cause the 4027 to leave insert mode.

Examples

Suppose the terminal is in form fillout mode and the following form is displayed, with the
cursor positioned as shown. The only unprotected fields are the three inverted fields; all
other fields are protected.

NAME: Ebenezer Scrooge Age: 77
Position Applied f~: Miser

If the string

!ICH; A

is sent from the computer the following display results

NAME: Ebenezer A ScroogeAge: 77
Position Applied for:• Miser

The subsequent string

!ICH;ber

sent from the computer results in the form fillout display

Name: Ebenezer Aber ScroAge: 77
Position Applied for: !iser

@ 4027 PROGRAMMER'S

TEXT EDITING

ICHAR COMMAND

Finally, the string:

!ICH;nathy

sent from the computer, moves the cursor past the end of the first unprotected field and
into the second unprotected field. The following first lines of the form will be seen in rapid
succession:

Name:
Name:
Name:
Name:
Name:

Ebenezer Abern ScrAge:
■ Ebenezer Aberna ScAge:

Ebenezer Abernaf SAge:
Ebenezer Abernaffl Age: • Ebenezer AbernathyAge:

77
77
77
77
77 .-

If the second unprotected field has the A (alphanumeric) attribute, any further insertion of
characters shifts characters in the second field to the right and the old characters are
lost. If the string

!ICH;B

is sent from the computer, the following display results:

Name: Ebenezer AbernathyAge: 87
Position Applied for: Miser -.

However, if the second unprotected field has the N (numeric) attribute, a subsequent
ICHAR command which inserts alphabetic characters moves the cursor to the first
position of the numeric field, rings the bell, and does not insert succeeding characters.

If the insert character operation moves the cursor past the last unprotected field on the
form, the cursor moves to the beginning of the first unprotected field which can accept the
new characters; the new characters are inserted in that field.

4027 PROGRAMMER'S @ 10-5

TEXT EDITING

OLINE COMMAND

10-6

OLINE (Delete Line) Command

Syntax

!Oline [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

If the 4027 is not in form fillout mode, this command deletes <count> consecutive lines
of text, including the line containing the cursor. If the cursor is in the middle of a line, the
entire line is deleted. As each line is deleted, the lines below roll up to fill the gap.

In form fillout mode, this command erases the contents of all unprotected fields in
<count> lines of the form. The line containing the cursor is counted as a deleted line,
whether or not it contains any unprotected fields. After this line, only lines containing at
least one unprotected field are counted as deleted lines. The cursor is positioned at the
beginning of the next unprotected field, after the last field is erased.

This command is equivalent to pressing the DELETE LINE key <count> times.

Examples

Suppose the terminal is not in form fillout mode, and
the workspace contains the text shown, with the
cursor in line 2, column 8:

The command

!DU 3<CR>

gives the workspace display shown here:

@

This is Line 1
This is.L"'"'in-"--ce 2e---~-CURSOR IN LINE 2,
This is Line 3 COLUMN 8
This is Line 4
This is Line 5
This is Line 6

4027 PROGRAMMER'S

TEXT EDITING

DLINE COMMAND

Suppose the terminal is in form fillout mode, and the workspace holds the form shown
here. The unprotected fields are enhanced (shown here shaded gray):

Position f1)plied For

References

If the cursor is positioned anywhere in the first line of the form, the command

!DLl<CR>

results in the display shown below.

Name

CURSOR AFTER __ Da_t-lle►•
IDLI <CR>

Position f1)plied For

References

4027 PROGRAMMER'S @

2402-37

2402-38

10-7

TEXT EDITING

DLINECOMMAND

10-8

The subsequent command

!DLI 3<CR>

results in the display shown here. Note that the line "References" is not counted as a
deleted line, since it contains no unprotected fields.

Name

Date

Position ~plied For

References

CURSOR AFTER __ _

IDL13<CR>

2402-39

Suppose you begin with the form shown below and the cursor positioned as shown:

Name

Date

Position ~plied For

CURSOR References -· POSITION

2402-40

@ 4027 PROGRAMMER'S

TEXT EDITING

DLINE COMMAND

The command

!DLI 3<CR>

results in the display shown here. Observe that the line which originally contained the
cursor has been counted as the first deleted line, even though it contains no unprotected
fields:

Nanr

Date

Position ~plied ror

References

LINES ERASED {

CURSOR AFTER
IDLE 3<CR> ----

4027 PROGRAMMER'S

2402-41

@ 10-9

TEXT EDITING

ILINE COMMAND

10-10

ILINE (Insert Line) Command

Syntax

!ILlne [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command inserts <count> blank lines into the text immediately below the line
containing the cursor. The cursor is positioned at the beginning of the newest line. Lines
of text below the cursor position are rolled down to make room for the inserted blank
lines, and the scroll is lengthened so that these lines are saved in the display list.

This command is equivalent to pressing the INSERT LINE key <count> times.

The ILINE command makes it easy to insert new text between lines of old text. Use the
ILINE command to create several blank lines at the desired location. Type the new
information into the blank lines; and use the DUNE command to delete any blank lines
left over.

NOTE

For text editing applications, the first line entered into the workspace
should always be blank. If new text must be inserted above the old text, the
cursor is moved to the beginning of the workspace and the /LINE
command is used to create space for the new text. If the first line of the
workspace already contains text, this procedure inserts blank lines below
the first line of old text, rather than above it.

Examples

Suppose the workspace contains the text shown
opposite, with the cursor positioned as shown:

@

Line 1

~:~=~----
Une4

4027 PROGRAMMER'S

The command

!ILi 3<CR>

inserts three blank lines between line 2 and line 3,
leaving the cursor in column 1 of the newest blank
line:

Line 1
Line 2
(blank)
(blank)

TEXT EDITING

ILINE COMMAND

U,":::lan"ifk) ____ AnER IILl3<CR>
Line 3
Line 4

When the 4027 is in form fillout mode, the ILINE command has no effect.

4027 PROGRAMMER'S @ 10-11

\

r

r

r

Section 11

PERIPHERALS

The 4027 supports the following peripherals:

• With Option 3 (RS-232 Peripheral Interface), the 4027 supports a Tektronix 4642
Printer and other compatible printers.

• With Option 4 (GPIB Interface), the 4027 supports up to four Tektronix 4924
Digital Cartridge Tape Drives and up to two Tektronix 4662 Interactive Digital
Plotters.

• With Option 42 (Hard Copy and Video Out), the 4027 supports the Tektronix 4632
Video Hard Copy Unit.

Throughout this section the term "devices" is used. This term always refers to one of the
following: a peripheral device such as the printer or a tape unit, the host computer, the
4027 monitor, or the 4027 workspace. These devices are specified by device mnemonics
as follows:

Device

Printer
Tape Units 1-4
Plotters 1 ,2
4027 Monitor
4027 Workspace
Host Computer

Mnemonic

Por PR
TA 1 -T A4 (TA 1 may be shortened to T)
PL1,PL2
Mor MO
WorWO
Hor HO

INITIALIZING THE 4027 FOR PERIPHERAL
COMMUNICA.TIONS

Before the 4027 can copy file information from one device to another, it must be correctly
informed about the status of the various peripheral devices attached to it. SET commands
are used to initialize the 4027 for communicating with peripheral devices. The SET
command should be given for those and only those peripheral devices present and
powered up.

4027 PROGRAMMER'S @ 11-1

PERIPHERALS

SET COMMAND

11-2

SET Command (Requires Option 3 or 4)

Syntax

!SET <device> <parameter>[<parameter>]<CR>

where

<device> is a one to three-letter device mnemonic, and <parameter> is a parameter
setting for the indicated device. The form of each <parameter> depends on which
peripheral device is specified.

Do not attempt to set parameters for devices which are not attached to the
402 7 and powered up. Giving such a SET command may disable all
communications to the 4027 and require the 4027 to be reset.

Printer Parameters (Requires Option 3)

The 4027 comes from the factory set for communicating with a Tektronix 4642 Printer.
There are two parameters, however, which can be set to allow the 4027 to communicate
with printers other than the 4642 Printer.

• Some printers recognize the ASCII form feed character (<FF>) as a signal to
begin a new page; other printers do not. On such printers a series of line feeds
(<LF> s) must be sent to begin a new page. The 4027 can be set to send either
the ASCII form feed (<FF>) character or the proper number of ASCII line feed
(< LF>) characters to cause the printer to begin a new page.

• The "carriage return, line feed" mechanical operation which the printer uses to
begin a new line is relatively slow, compared to 4027 data transmission speeds.
Thus the 4027 has "printer delay" parameter which can be set. After the 4027
sends a <CR> <LF> or <FF> to the printer, it waits a specified length of time
before sending another character. This gives the printer time to complete its
mechanical functions before having to cope with new text to be printed.

@ 4027 PROGRAMMER'S

PERIPHERALS

SET COMMAND

The command which SETs the 4027 for printer communications has the following form:

!SET PR [FI LH<delay>]<CR>

where:

• F stands for "form feed," and instructs the 4027 to use a <FF> character as a
page separator.

• L stands for "line feed," and instructs the 4027 to replace any < FF> character to
the printer by the number of <LF>s required to begin a new page.

• <delay> gives the printer delay. If <delay> is a positive integer, after the 4027
sends a <CR>, <LF>, or <FF> to the printer, it waits <delay> tenths of a
second before sending the next character. If <delay> =0, the 4027 communi
cates with the printer using "flagged simplex protocol." This means that after the
4027 has sent a <CR>, <LF>, or <FF> to the printer, it waits for the RS-232
DTR (Data Terminal Ready) signal to become true before sending the next
character.

II\ Examples

!SET PR F 3<CR>

!SET PR L<CR>

!SET PR 0<CR>

4027 PROGRAMMER'S

Instructs the 4027 to use a form feed
character (<FF>) as the page separator;
when the printer receives a <FF>, it begins
a new page. This command also sets the
printer delay to 0.3 seconds; after sending a
<CR>, <LF>, or <FF> to the printer, the
4027 waits 0.3 seconds before sending
another character.

Instructs the 4027 that the printer does not
treat a <FF> character as the page separa
tor. The 4027 replaces a <FF> with the
number of <LF> s required to begin a new
page.

Instructs the 4027 to communicate with the
printer using flagged simplex protocol. After
sending a <CR>, <LF>, or <FF>, the
4027 waits for a DTR (Data Terminal Ready)
signal from the printer before sending an
other character.

@ 11-3

PERIPHERALS

SET COMMAND

11-4

Tape Unit Parameters (Requires Option 4)

To prepare the 4027 to communicate with a 4924 Digital Cartridge Tape Drive (hereafter
referred to as a "tape unit"), three parameters must be set.

• Since the 4027 can have up to four tape units connected to it, each tape drive is
numbered: tape unit 1, tape unit 2, tape unit 3, or tape unit 4.

• The 4924 is a GPIB device; that is, the 4027 communicates with it using a GPIB
(General Purpose Interface Bus). Each tape unit has two GPIB addresses: a
command address and a data address. Since a tape unit's command address is
always numerically just one larger than its data address, only the data address
must be set. The GPIB data address of a tape unit must be set to an even number
between 2 and 28, inclusive. This address must be physically set by switches on
the back of the tape unit itself. But the 4027 must also be SET to send messages
to the proper GPIB address. (See the 4027 Operator's Manual Peripheral Devices
section for operating procedures.)

• The tape unit can record information in one of two formats. One format is
compatible with the Tektronix 4050 Series Graphic System internal tape drive.
This is the format normally used to store file information for the 4027, and is
called "4051-compatible format."

The other format is compatible with the Tektronix 4923 Digital Cartridge Tape
Recorder. This format should be used only if you must exchange tape cartridges
with a 4923.

The command which initializes the 4027 for communicating with a tape unit has the
following format:

!SET <device> <address> [4051 I 4923]<CR>

where:

<device> is one of the following: (TA1 I TA2 I TA3 I TA4). This identifies the given
device as tape unit 1, tape unit 2, etc.

<address> is an even number from 2 to 28, inclusive. This specifies the GPIB
address assigned to the tape unit in all GPIB communications.

The default [4051 I 4923) setting is 4051; if this parameter is not specified, 4051-
compatible format is assumed. The TA 1 parameter may be abbreviated to T, but T A2, T A3,
and T A4 may not be abbreviated.

@ 4027 PROGRAMMER'S

PERIPHERALS

SET COMMAND

A separate SET command must be given for each tape unit powered up and attached to
the 4027.

Examples

!SET TA1 8 4051 <CR>
!SETT 8<CR>

!SET TA2 10 4923<CR>

Plotter Parameters (Requires Option 4)

Instructs the 4027 that tape unit 1 is present
at GPIB address 8, and instructs the 4027 to
write data on tape unit 1 in 4051-compatible
format. The GPIB address for a tape unit
must be even. (Requires Option 4)

Instructs the 4027 that tape unit 2 is present
at GPIB address 10, and instructs the 4027
to write data on this tape unit in 4923-
compatible format. (Requires Option 4)

To prepare the 4027 to communicate with a 4662 Interactive Digital Plotter (hereafter
referred to as the plotter), two parameters must be set.

• Since the 4027 may have two plotters attached to it, each plotter present must be
numbered: plotter 1 or plotter 2.

• Since the plotter is a GPIB device, it must be assigned a GPIB address. This
address must be set physically by switches on the plotter; in addition, the 4027
must be instructed to send information to the proper GPIB address. The plotter
GPIB address may be any integer from 1 to 30 inclusive. It must not, however, be a
tape unit address plus one, since this would duplicate the tape unit's command
address. (See SETting the Tape Unit Parameters earlier in this section.)

The command which initializes the 4027 to communicate with a plotter has the following
format:

!SET <device> <address> <CR>

where:

<device> is PL 1 (for plotter 1) or PL2 (for plotter 2).

<address> is an integer from 1 to 30, inclusive; this integer specifies the GPIB
address of the plotter.

4027 PROGRAMMER'S @ 11-5

PERIPHERALS

SET COMMAND

11-6

If two plotters are present, a separate SET command for each plotter is required.

NOTE

If switch settings on the back of the plotter are changed while the plotter is
powered on, these switches are not read by the plotter until power is
cycled. If you change the plotter's address switches, go through the entire
GPIB power up procedure. (See 402 7 Operator's Manual, the Peripheral
Devices section.)

Example

!SET PL 1 15<CR> Instructs the 4027 that plotter 1 is present
at GPIB address 15. This must agree with
the address switch settings on the plotter.
GPIB addresses are specified for those, and
only those, devices present and powered up
on the GPIB. (Requires Option 4)

@ 4027 PROGRAMMER'S

PERIPHERALS

PERIPHERALS COMMAND

PERIPHERALS Command

The PERIPHERALS command allows you to examine the 4027 settings for communicating
with peripheral devices.

Syntax

!PERipherals [<device>] <CR>

where <device> specifies a non-GPIB device on which the 4027 peripheral settings are
to be listed. If <device> is not specified, it defaults to M (monitor).

Action

This command causes the 4027 to generate a peripherals data list. For each device
attached to the terminal and powered up, this list gives the <device> parameter
(explained in the SET discussion), the GPIB address (this field is blank for the printer),
and a data field listing the parameter settings for that device (explained in the SET
command discussion).

The last line in the peripherals data list gives the EOF (end-of-file) string. (Setting the
end-of-file string with the EOF command is discussed in System Status and Initialization.)

Example

!PER M<CR>
!PER<CR>

Outputs a peripherals data list to the 4027 monitor.

A sample peripherals data list is shown in Figure 11-1.

4027 PROGRAMMER'S

TAPE UNIT 1 RECORD DATA IN 4051
MNEMONIC GPIB ADDRESS COMPATIBLE FORMAT

SEND LINEFEEDS NOGPIB
ADDRESS TO PRINTER PRINTER DELAY = 0

NOGPIB
ADDRESS EOFSTRING

Figure 11 -1. Peripherals Data List.

@

2402-19

11-7

PERIPHERALS

REPORT COMMAND

11-8

The REPORT Command and Peripherals

The REPORT command has the following syntax:

!REPort <device> <CR>

The Host Programming for the 4027 section discusses the REPORT command and the
format of the ANSwer sent to the host for device 00 (System Status Block), and device 01
(workspace cursor), device 02 (graphic beam information), and device 03 (crosshair
information). The 4027 can also report the status of each peripheral device and whether
or not the given peripheral is present (attached to the 4027 and powered up on the GPIB).
This allows an applications program to investigate which peripherals are present at a
given time and branch or modify instructions accordingly.

The peripherals have the following <device> numbers assigned:

Tape Unit

<device>

04-07
12,13
14

When the command:

!REPort n<CR>

Peripheral(s)

Tape Units 1-4, respectively
Plotters 1 ,2, respectively
Printer

is given, and n is chosen from 04-07 (representing tape units 1-4, respectively), the
status of the designated tape unit is reported to the computer. This report has the
following format:

!ANS n,<p1 >,<p2>,<p3>;

where:

<p1 > = 1 if the tape unit is present; 0, if not.

<P2> is a two-digit decimal value indicating the last tape error code. (See Table
11-1.)

<p3> (4 bytes) = 4051 or 4923, indicating the format in which information is to be
written on the tape.

@ 4027 PROGRAMMER'S

Plotter

When the command:

!REP 12<CR>

Code

01
02
03
04
05
06
07
08
09
10
11
12

Table 11-1

TAPE ERROR CODES

Meaning

Domain error or invalid argument
File not found
Mag tape format error
Illegal access
File not open
Read error
No cartridge inserted
Over-read
Write-protected
Read-after-write error
End of medium
End of file

PERIPHERALS

REPORT COMMAND

is given, the status of plotter 1 is reported to the computer. This report has the following

format:

!ANS 12,<p1 >,<p2>;

where:

<p1 > = 1 if the plotter is present; 0, if not.

<p2> (6 digits) is the value or each bit of plotter status word 0.

The command:

!REP 13<CR>

causes a similar report for plotter 2 to be sent to the computer.

4027 PROGRAMMER'S @ 11-9

PERIPHERALS

REPORT COMMAND

11-10

Printer

When the command:

!REP 14<CR>

is given, the status of the printer is reported to the computer. This report has the following
format:

!ANS 14,<p1 >,<p2>,<p3>;

where:

< p1 > = 1 if the printer is present; 0, if not.

<P2> = L if the line feed option is used, F if the form feed option is used. (See the
Printer Parameters discussion in this section.)

<p3>(3 digits) is the ASCII integer value of the printer delay. (See the Printer
Parameters discussion in this section.)

@ 4027 PROGRAMMER'S

PERIPHERALS

ALLOCATE COMMAND

COMMUNICATING WITH PERIPHERALS

The remainder of this section discusses commands which enable the 4027 to
communicate with peripheral devices. The ALLOCATE, DIRECTORY, and KILL commands
are used to communicate with a tape unit; the PASS command is used to communicate
with a plotter; and the COPY command is used to copy files from one device to another.

ALLOCATE Command (Requires Option 4 and a 4924 Tape Unit)

Before information can be recorded on a tape in 4051-compatible format, files must be
created on the tape to hold the information. This is done by using the ALLOCATE
command.

Syntax

!Allocate <device> <beg file> <number> <size> <CR>

where:

<device> is a device mnemonic (T[A1], TA2, TA3, or TA4) which specifies the tape
unit used to record information.

<beg file> is a non-negative integer which specifies the number of the first file to
be created.

< number> is a positive integer which specifies the number of files to be created.

<size> is a positive integer which specifies the number of eight-bit bytes which
each newly created file is to contain. Each tape cartridge can store approximately
250K bytes of information.

Action

This command creates new files on a tape inserted in the tape unit specified by the
<device> parameter.

4027 PROGRAMMER'S @ 11-11

PERIPHERALS

ALLOCATE COMMAND

11-12

<beg file>=O. If the tape has not previously been used to record information, <beg
file> must be set to zero. This causes the tape to be properly initialized before a file
structure is recorded on it. If the tape has already been used to record information, setting
<beg file> to O destroys all information previously recorded on the tape, including the
file structure marked on the tape; then the tape is reinitialized. In either of these cases,
new files 1 through < number> are created. Each new file contains enough space to
store <size> eight-bit bytes of information.

<beg file> positive. If <beg file> is positive, this command creates <number>
consecutive new files on the tape. The first new file created is file number <beg file> and
each new file contains enough space to hold <size> eight-bit bytes of information.

Examples

INITIALIZING AN UNMARKED TAPE

!ALL TA1 0,2,5000<CR>
!ALL T 0,2,5000<CR>

Initializes the unmarked tape in tape unit 1
and creates two files (files 1 and 2) of 5000
bytes each. (If the tape has already been
marked, this command destroys all old infor
mation on the tape.)

ALLOCATING FILE SPACE ON A MARKED TAPE

!ALL TA1 1,2,5000<CR>
!ALL T 1,2,5000<CR>

!ALL TA1 7,4,8000<CR>

Creates two new files on tape unit 1, begin
ning with file 1. Each new file contains 5000
bytes.

Creates four new files on tape unit 1,
beginning with file 7. Each new file contains
8000 bytes.

@ 4027 PROGRAMMER'S

PERIPHERALS

ALLOCATE COMMAND

In addition to the <number> new files created, an ALLOCATE command attaches a file
called LAST immediately after the last newly created file. The LAST file is always 768
bytes long. It marks the logical end of the file structure on the tape. If new files are
allocated in the middle of an existing file structure, all the old information on the tape from
file < beg file> to the end of the tape is lost, even if the newly ALLOCATEd space is
shorter than previously ALLOCATEd space. Suppose you have 10 files of 5000 bytes
each on the tape in tape unit 1:

HEADER FILE 1 FILE 2 FILE 3 FILE 4 FILE 5 FILE 6 FILE 7 FILE 8 FILE9 FILE 10 LAST

The command

!ALL TA1 4,3,5000<CR>

creates new files 4,5, and 6 (destroying the old files 4, 5, and 6) and attaches a LAST file
immediately following file 6:

HEADER FILE 1 FILE 2 FILE3
(OLD) (OLD) (OLD) (OLD)

OLD FILES SAVED

... T--,--....,..--T--,
FILE4 FILES FILES LAST
(NEW) (NEW) (NEW)

7 I FILE 8 I FILE 9 II FILE 10 I LAST I
) I (OLD) I (OLD) (OLD) I (OLD) I

.,1. __ .J. __ j_ __ ~ __ ... (NEW:I> ...

NEW FILES CREATED OLD INFORMATION
NO LONGER ACCESSIBLE

The tape now contains six files. Even though old files 8-1 O and part of old file 7 are still
magnetically recorded on the tape, this information is no longer accessible.

4027 PROGRAMMER'S @ 11-13

PERIPHERALS

DIRECTORY COMMAND

11-14

DIRECTORY Command (Requires Option 4)

When information has been stored on a tape, it will be necessary at times to examine the
file structure on the tape (perhaps to recall how many files have already been created).
The DIRECTORY command allows you to do this.

Syntax

!DIRectory <tape device>[<output device>]<CR>

where:

<tape device> specifies a tape unit.

<output device> specifies a non-GPIB device. If this parameter is not specified, it
defaults to M (monitor).

Action

This command outputs file header information stored on the tape in the tape unit
specified by <tape device>. The information on this tape must be recorded in 4051-
compatible format. (Files recorded in 4923-compatible format do not contain file header
information.) This information is recorded on the device specified by the <output
device> parameter. This output device must be a non-GPIB device. Each file header lists
the file number, the file type, and the length of the file.

There are three types of files: a NEW file is one which has been marked on the tape, but
no information has yet been recorded in it; a file with information recorded in it is an
ASCII DATA file; the LAST file marks the logical end of the tape file structure.

Even though file lengths are ALLOCATEd in terms of bytes, the DIRECTORY command
lists file lengths in blocks. In 4051-compatible format, a block consists of 256 bytes.

@ 4027 PROGRAMMER'S

'

Examples

The command

!ALL TA1 0,5,S000<CR>

PERIPHERALS

DIRECTORY COMMAND

initializes the tape and creates five files of 5000 bytes each, as well as a sixth file, LAST.
Suppose data is entered in files 1, 2 and 3, and one of the following commands is given:

!DIR TA1 M<CR>

or

!DIR T<CR>

The following list is displayed in the monitor:

1 ASCII DATA 20
2 ASCII DATA 20
3 ASCII DATA 20
4 t£W 20
5 t£W 20
6 LAST 3

Note that a LAST file is always three blocks (768 bytes) long.

The command:

!DIR TA2 P<CR>

prints tape unit 2 file headers on the printer.

4027 PROGRAMMER'S @ 11-15

PERIPHERALS

KILL COMMAND

11-16

KILL Command

When a (4051-compatible) file is first created, its file header reads NEW, meaning that the
file exists but no information is recorded in it (except the file header information). When
information is stored in that file, its file header is changed to ASCII DATA.

An ASCII DATA file can be restored to its NEW status by the KILL command.

Syntax

!KILi <tape unit.file number> <CR>

Example

If you wish to restore file 6 on the tape in tape unit 1 to its NEW status, give the command:

!KIL TA1.6<CR>

This restores the file header for that file to NEW and any information stored in the file is
lost.

@ 4027 PROGRAMMER'S

PERIPHERALS

PASS COMMAND

PASS Command (Requires Option 4)

The 4027 can display graphs and text on a Tektronix 4662 Interactive Digital Plotter. The
4027 has a vocabulary of commands for creating graphic displays. (See the Graphics
section.) The plotter also has a vocabulary of commands for creating graphic displays.
This plotter language includes more graphic capabilities than the 4027 language, and the
formats of the two languages are different. Table 11-2 gives a summary of the plotter
command language.

Ultimately, any command to which the plotter responds must be in plotter command
language. The 4027 is designed so that the user can specify graphic commands destined
for the plotter in either of two ways.

1. Create a file of plotter-language commands and send that file to the plotter via the
4027.

This method has the advantage of using the full range of plotter commands;
however, it has two disadvantages. First, such a command file can be used only
for drawing graphs on the plotter. Since the 4027 does not understand plotter
language commands, this file is meaningless to it. Second (and more serious), the
plotter language uses the ASCll<ETX> (end-of-text) character. Being a control
character, it will not be displayed or inserted in the 4027 workspace unless the
4027 is in snoopy mode. The <ETX> character is also used frequently in
communications with the host computer. Transmitting a plotter-language com
mand file containing <ETX>s to or from some computers may cause unintended
results.

2. Create a command file of 4027 graphic commands and send that file to the plotter,
instructing the 4027 to translate these 4027 commands into plotter commands.

This method has the advantage that the command file thus created can be used to
display the same graph both in the 4027 workspace and on the plotter. Such a file
is easily transmitted to and from the computer with no troublesome control
characters.

This method has a disadvantage, however. Since the plotter's vocabulary of
graphic commands is larger and more versatile than that of the 4027, a command
file using only 4027 commands cannot use the full range of the plotter's graphic
capabilities.

To send 4027-style command files to the plotter, use the COPY command with the /P
switch setting. (See the COPY discussion later in this section.) To send plotter-style
commands which have no 4027 equivalents, use the PASS command.

4027 PROGRAMMER'S @ 11-17

PERIPHERALS

PASS COMMAND

11-18

The PASS command allows you to transmit plotter style commands to the plotter, without
the 4027 trying to interpret them as 4027 commands and translating them.

Syntax

!PASs <string> <CR>

where <string> can be:

• A delimited ASCII string.

• One or more ADE values.

• A combination of the above.

Table 11-2 gives a summary of the plotter command vocabulary. Table 11-3 illustrates
how various plotter commands are transmitted using the PASS command.

Command

H<CR>

M 50,75<CR>
or

M50,75<ETX>

D 100,50<CR>
or

0100,50<ETX>

D 100,50 0,0 50,1 0<Cr>
or

0100,50,0,0,50, 1 0<ETX>

Table 11-2

PLOTTER LANGUAGE COMMANDS

Action

Home. Moves the pen to the upper left
corner of the plotting area.

Move. Moves the pen to the point (50,75)
in the plotter system of coordinatesb.

Draw. Draws a line from the current pen
position to the point (1 00,50) in the plotter's
system of coordinates.

Draws a line from the current pen position to
the point (100,50); from there, to the point
(0,0); and from there, to (50, 1 0).

@ 4027 PROGRAMMER'S

PERIPHERALS

PASS COMMAND

Command

PTh is is a test.< ETX >

S 1.5,3.0<CR>
or

S1 .5,3.0<ETX>

R 10<CR>
or

R10<ETX>

F 2<CR>
or

F2<ETX>

A<CR>
or

A<ETX>

T 0<CR>
or

T0<ETX>

T 1 <CR>
or

T1 <ETX>

Table 11-2 (Cont.)

PLOTTER LANGUAGE COMMANDS

Action

Print. Prints on the plotter, starting at the
current pen position, the message "This is a
test."

Alpha Scale. Sets the size of each charac-
ter cell to 1.5 graphic display units in the X-
direction and 3.0 graphic display units in the
Y-direction. (The "graphic display unit" is a
measure of length used by the plotter. In the
X-direction, it is 1 /1 50 the length of the
plotting area; in the Y-direction, it is 1/100
the height of the plotting area.)

Alpha Rotate. Sets the angle at which
alphanumeric characters are printed on the
plotting surface. Characters printed after
this command is executed slant upwards at
ten degrees with respect to the positive X-
axis.

Alpha Font. Selects printing font number 2
from among the plotter's seven fonts.

Alpha Reset. Resets the alphanumeric
printing parameters (Alpha Scale, Alpha Ro-
tate, Alpha Font) to their default values.

Prompt Light. Turns off the PROMPT light
on the plotter's front panel.

Turns on the plotter's PROMPT light.

aTo send an <ETX> or <CR> in a PASS command, it must be put in as an ADE value, since control
characters are not allowed in delimited strings.

bThe plotter's coordinate system is not the same as the 4027's coordinate system. The plotter's X-axis
always runs from Oto 150, and its Y-axis runs from Oto 100.

4027 PROGRAMMER'S @ 11-19

PERIPHERALS

PASS COMMAND

11-20

Table 11-3

TRANSMITTING PLOTTER COMMANDS USING PASS

Command
Name Plotter Language 4027 Language

HOME H<CR> !PASS "H",13<CR>
H<ETX> !PASS"H",3<CR>

MOVE M 50,75<CR> !PASS "M 50,75",13<CR>
M50,75<ETX> !PASS "M50,75",3<CR>

DRAW D100,50<ETX> !PASS "D100,50",3<CR>
D100,50,0,0<ETX> !PASS "D100,50,0,0",3<CR>

MOVE,
followed !PASS "M50,75" "D100, 100",3
by DRAWa M50,75 D100,100<ETX> !VEC 213,30,427,479<CR>

PRINTb PThis is a test.<ETX> !PASS"PThis is a test.",3<CR>
!STRING "This is a test."< CR>

ALPHA SCALE S 1 .5,3.0 < ETX > !PASS "S1 .5,3.0",3<CR>

ALPHA ROTATE R10<ETX> !PASS "R10",3<CR>

ALPHA FONT F2<ETX> !PASS "F2",3<CR>

ALPHA RESET A<ETX> !PASS "A",3<CR>

PROMPT LIGHT T0<ETX> !PASS "T0",3<CR>
T1 <ETX> !PASS "T1 ",3<CR>

aThe coordinates in the 4027-language VECTOR command differ from those in the plotter-language MOVE
and DRAW commands. In translating VECTOR commands, the 4027 assumes a graphics area with a
maximum X-coordinate of 639 and maximum Y-coordinate of 4 79 is to be mapped onto a plotter work area
with maximum X-coordinate of 1 50 and maximum Y-coordinate of 100.

bonly PRINT requires the< ETX> character. All other commands take< ETX> or <CR>

@ 4027 PROGRAMMER'S

PERIPHERALS

COPY COMMAND

COPY Command (Requires Option 3 or 4)

The 4027 can transfer files of information from one device to another by means of the
COPY command.

Syntax

!COPY <source> [<switches>] [<destination>] [<switches>] <CR>

Action

This command copies the information contained in <source> to <destination>. If the
<switches> parameter is present, the 4027 receives or transmits information according
to certain conventions determined by the value of <switches>. The <source> and
<destination> parameters are shown in Table 11-4.

Table 11-4

4027 COPY PARAMETERS

Mnemonic
Used As Used As Used As

Device Parameter <source> <destination>

4027 Workspace WorWO X X

4027 Monitor Mor MO X X

Host Computer Hor HO X X

Printer Por PR X

4662 Plotter 1 and 2 PL1,PL2 X X

A file on a given tape unit TAn.k X X

A particular file on a tape is designated TAn.k (see Table 11-4). In this notation, n is the
number of a tape unit (1 <n<4) and k is the number of a file on the given tape unit (e.g.,
TA1 .3 or TA3.15). The TA1 mnemonic can be shortened to T; for example, TA1 .3 can be
written T.3.

4027 PROGRAMMER'S @ 11-21

PERIPHERALS

COPY COMMAND

11-22

If <destination> is not specified, it defaults to W (Workspace).

Examples

!COP W H<CR>

!COP H W<CR>

!COP W TA1.3<CR>
!COP W T.3<CR>

!COP TA3.5 W<CR>
!COP TA3.5<CR>

!COP TA3.5 P<CR>

!COP TA2.15 PL 1 <CR>

Copies the contents of the workspace to the
host.

Copies the contents of the host file to the
workspace.

Copies the workspace contents to file 3 of
tape unit 1.

Copies file 5 of the tape in tape unit 3 to the
workspace.

Copies file 5 of tape unit 3 to the printer.

Copies file 15 of tape unit 2 to plotter 1.

NOTE

The COPY operation is non-destructive. The command !COP TA 1.3
W< CR> copies the contents of file 3, tape unit 1 to the workspace,
leaving that information still stored in file 3 of tape unit 1.

The <switches> parameter consists of one or more slashes (/), each followed by a single
letter. Each letter serves as a "switch" which, if present, instructs the 4027 to receive or
transmit information in a certain way. Each switch is given for a specific purpose and is,
strictly or loosely, associated with a specific <source> or <destination>. The switches
and their uses are summarized in Table 11-5:

Switch

/N

Table 11-5

4027 COPY SWITCHES

Use

When <source> is the workspace, this switch instructs the 4027 to
ignore all attribute codes stored in the workspace display list and convert
all ruling characters to asterisks. In this way, a form containing ruling
characters can be copied to the printer.

@ 4027 PROGRAMMER'S

Switch

/N

/U

ID

/P

4027 PROGRAMMER'S

PERIPHERALS

COPY COMMAND

Table 11 -5 (Cont.)

4027 COPY SWITCHES

Use

When <destination> is the workspace, this switch instructs the 4027 to
treat all information coming from <source>, including the command
character, as text to be displayed. This allows the 4027 operator to display
a file containing commands in the workspace for examination and
modification. Setting this switch is equivalent to pressing COMMAND
LOCKOUT while the 4027 receives text from the host computer. Once the
file is displayed in the workspace, however, the 4027 again recognizes the
command character. To send such a file from the workspace to some other
<destination> one can do either of two things:

1. Initiate a file transfer from the workspace (COPY or, if <destination>
is the host computer, SEND).

2. If the host is going to echo the data back, simply change the
command character to a symbol which does not appear in the
displayed file. Then COPY or SEND as usual.

When <source> is the workspace and the workspace holds a form, this
switch instructs the 4027 to copy data in the unprotected fields only. If a
form is being filled out repeatedly and you wish to store just the data in the
form, use this switch. If the workspace holds a form and this switch is not
set, a COPY operation copies the entire form, including attribute codes and
data in protected fields.

If the workspace does not contain a form (no attribute codes inserted in
the display list), the /U switch has no effect.

When <source> is the host computer and <destination> is neither
workspace nor monitor, this switch instructs the 4027 to display the
copied file in the workspace. Without this switch set, a file copied from the
host to file TA 1.3, for example, would not be displayed on the screen. /D is
legal only if <source> is the host.

When a file containing 4027 graphic commands is copied with the /P
switch set, the 4027 translates all VECTOR, RVECTOR, STRING, and PASS
commands into plotter-command language. Only the boundary of a panel
created with the POLYGON or RPOL YGON command is drawn on the
plotter. This enables the same file to be used to create graphs on both the
4027 and the plotter. /Pis legal only if <source> is host or tape.

@ 11-23

PERIPHERALS

COPY COMMAND

11-24

Examples

!COP WIN P<CR>

!COP HIN W<CR>

!COP WIU TA1 .4<CR>

!COP HID T A2.5 <CR>

!COP TA1.7IP PL1

Copies the workspace contents to the prin
ter, ignoring attribute codes and converting
all ruling characters to asterisks. (Requires
Option 3)

Copies the host file to the workspace, print
ing commands as text rather than executing
them.

If the workspace holds a form, copies data
from the unprotected fields only to file 4 of
tape unit 1. (Requires Option 4)

Copies the host file to file 5 of tape unit 2,
displaying this file in the workspace as it is
copied. (Requires Option 4)

Copies file 7 of tape unit 1 to the plotter,
translating all VECTOR, RVECTOR, STRING,
and PASS commands into plotter-command
language. (Requires Option 4)

It is possible to set more than one switch in a COPY command. The command

!COP HIDIP PL 1 <CR>

copies the host file to plotter 1, displaying this file in the workspace and translating 4027
graphic commands into plotter-command language.

@ 4027 PROGRAMMER'S

PERIPHERALS

COPY COMMAND

Auto-Incrementing the Tape Unit

When a particular file on a tape unit is designated in a COPY command, the 4027
remembers that file number until it is replaced by another file number (or until the 4027 is
RESET or powered off). If the file number is omitted in a subsequent COPY command, the
4027 automatically increments the file number in its memory by one and copies to or from
that file on the tape.

This feature is useful in text editing or form fillout. Suppose the operator has created a
form in the workspace and stored the form on tape unit 1 with the command

!COP W TA1 .1 <CR>

Suppose the PT (Pad Terminator) key has been programmed to give the command

!COP W/U TA1 !ERA W<CR>

The operator fills out the form and presses PT. The 4027 stores the data from the
unprotected fields in the next available file (file 2) of tape unit 1 and erases the
workspace. (With the 4027 in form fillout mode, only the data in the unprotected fields is
erased.) The operator fills out the form again, with different data, and again presses PT.
Again the 4027 stores the data from the unprotected fields in the next available file (now
file 3) of tape unit 1 and erases the blanks of the form. The operator proceeds in this way
as long as necessary.

As another example, suppose successive pages of text to be edited are stored in files 12-
27 of tape unit 2. To get the first page into the workspace, give the command

!COP TA2.12<CR>

To get each succeeding page, give the command

!COP TA2<CR>

Copying the Workspace to the Plotter

If the workspace holds a graph, it is tempting to try copying this graph directly to the
plotter. This cannot be done. The workspace display list does not contain sufficient
information to translate the graphic information displayed into commands which can
recreate the graph. If the 4027 is commanded to copy the workspace to the plotter,
graphic information does not copy. (This is similar to the SEND command.) To obtain
graphs, you must store somewhere (on a tape or in the host) a command file containing
the necessary commands to recreate the graph. These cannot be derived from the display
list.

4027 PROGRAMMER'S @ 11-25

PERIPHERALS

HCOPY COMMAND

11-26

COPYING ON A HARD COPY UNIT

If the 4027 contains Option 42 (Hard Copy and Video Out), a Tektronix 4632 Video Hard
Copy Unit (Option 6, Enhanced Gray Scale required) can be used to make copies of the
workspace, the monitor, or the screen.

This 4632 Video Hard Copy Unit produces pages of copy approximately 8-1 /2 inches by
11 inches in size. These copies can show whatever can be displayed on the screen:
text, control characters in snoopy mode, rulings, alternate character fonts, visual
attributes (except blinking), and graphs. One or several 34-line "pages" from the
workspace or the monitor can be copied. The 4632 produces gray-scale reproductions of
the displayed copy aligned with the short axis of the 4027's display.

Hard copies are made on the 4632 Video Hard Copy Unit with the HCOPY command.

HCOPY (Hard Copy) Command (Requires Option 42)

Syntax

! HCOpy [<count>] [Workspace I Monitor I Screen]< CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

If M (monitor) or W (workspace) is specified, this command copies <count> "pages"
from the specified scroll to a Tektronix 4632 Video Hard Copy Unit. The copy begins with
the first visible line in that scroll. Each "page" of copy continues until it includes 34 lines
of text or until an ASCII <FF> character appears in column 1 of a line. The line of text
containing such a form feed is not copied. If the specified scroll contains fewer than
<count> pages, only the number of pages in the scroll is copied. If one attempts to make
a hard copy of a blank scroll, one (blank) page of hard copy will be produced.

If S (screen) is specified, <count> is ignored and one copy of the visual screen display,
both workspace and monitor windows, is made.

If the HCOPY command comes from the computer and neither W nor M nor S is specified,
pages are copied from whichever scroll receives text from the computer.

If the HCOPY command is typed on the keyboard and neither W nor M nor S is specified,
pages are copied from whichever scroll receives text from the keyboard.

@ 4027 PROGRAMMER'S

Examples

!HCO 3 W<CR>

!HCO M<CR>

!HCO S<CR>

!HCO<CR>

4027 PROGRAMMER'S

PERIPHERALS

HCOPY COMMAND

Copies three "pages" from the workspace to
the Hard Copy Unit. The first page copied
begins with the first line visible in the
workspace.

NOTE

This means one copy each of three consec
utive pages in the workspace scroll, not
three copies of the same page. If the work
space contains only one page, then only one
sheet of copy is produced.

Copies one page from the monitor to the
Hard Copy Unit. This page begins with the
first line visible in the monitor.

Copies all information displayed on the
screen to the Hard Copy Unit.

If this command comes from the computer,
copies a page from the scroll which receives
text from the computer.

If this command is typed on the keyboard,
copies a page from the scroll which receives
text from the keyboard.

@ 11-27

Appendix A

TEKTRONIX
4027
COLOR
STANDARD

HUE (H) 0-360°
LIGHTNESS (L) 0-100%
SATURATION (S) 0-100%

Example 1:
!MAP C2 240 50 33

(H) (L) (S)

*Note:

180'

180'

120' 60'

180'

180'

The lightness planes (L) shown on the scale are for
S = 100%. If S = 0% the lightness planes will be:

L = 71 - 100 (white)
L = 43 - 70 (light grey)
L = 14 - 42 (dark grey)
L = 0 - 13 (black)

4027 PROGRAMMER'S Figure A-1. 402 7 Col()r Standard.

@

L= 100\ white

L=86j

L=85

o·

o·

o·

L=71

L=70

0° Blue

L=14

L=13 7
L=0 jblack

L=56

L=43

A-1

COLOR STANDARD

TEKTRONIX
4027
COLOR
STANDARD

Overview:

The world of color is filled with ambiguous
terminology, i.e. intensity, purity, value, etc.
Many color users feel that "color theory" is a
prerequisite to operating color systems; T.V.,
Videotaping, Photography, Computer Graph
ics.

In order to end this confusion, Tektronix has
developed a color language and function
based on human engineering, rather than
machine engineering. Below is a description
of this system, which will provide a clear
and concise means for understanding how
color is defined and how our syntax was
derived.

4027 Color Concepts:

Color selection is specified by hue, light
ness and saturation which is the HLS
method. The definitions are as follows:

Hue:

Lightness:

A-2

The characteristic associ
ated with a color name
such as red, yellow, green,
blue, etc. Hue is a grada
tion of color advanced by
degrees, thus represented
as an angle from Oto 360.

The characteristic that al
lows the color to be
ranked on a scale from
dark to light. Lightness is
expressed as a parameter
ranging from O to 100%
with black being O (bot
tom of cone) and white
being 100% (top of cone).

@

Saturation: The characteristic which
describes the extent to
which a color differs from
a gray of the same light
ness. Saturation is ex
pressed as percentage,
ranging from 0% (maxi
mum white content at that
lightness level) to 100%
(full saturated).

Geometrically, colors can be described in
terms of a double cone (see Figure 1).
Variations in lightness are represented
along the axis, with white at the apex of
the cone and black at the opposite apex.
Variations in saturation are represented by ~
radial distances from the lightness axis, in r
constant lightness planes. Hue is repre
sented as an angular quantity from a known
reference point.

The 64 colors available in the 4027 are
discrete samples from this continuous color
space. They are obtained by intersecting the
cone into several planes of constant light
ness.

4027 PROGRAMMER'S

COLOR STANDARD

A better understanding of the color standard can be had by looking at a cross section of
the double-ended cone (Figure A-2). There are four gray levels along the middle of the
cone. At 0% saturation the four levels of gray are black, dark gray, light gray, and white. At
any other value of saturation, different hues (color mixtures) are obtained. Hue has no
effect at 0% saturation. A maximum of seven different "planes" of color can be obtained at
any value of saturation except 0%.

100%

70%

42%

13%

0%
LIGHTNESS

4027 PROGRAMMER'S

------WHITE

0%
SATURATION

Figure A-2. Cross Section of the 4027 Color Standard.

@

LIGHT GRAY

0% SATURATION

50% SATURATION

100% SATURATION

2656-99

A-3

Appendix B

THE ASCII CODE

Table B-1

ASCII CODE CHART

B7 B6B5 00
0

00
1

0 1
0

0 1
1

1 0
0

1 0
1

1 1
0

1 1
1

BITS
HIGH X & V

B4 B3 B2 Bl
CONTROL GRAPHIC INPUT LOWX LOWY

0 0 0 0 NUL OLE SP 0 @ p \ p
0 16 32 48 64 80 96 112

0 0 0 1 SOH DCl I 1 A Q 81
a q

1 17 33 49 65 97 113

0 0 1 0 STX DC2 If 2 B R b r
2 18 34 50 66 82 98 114

0 0 1 1 ETX DC3 # 3 C s C s
3 19 35 51 67 83 99 115

0 1 0 0 EQT DC4 $ 4 D T d t
4 20 36 52 68 84 100 116

0 1 0 1 ENQ NAK % 5 E u e u
5 21 37 53 69 85 101 117

0 1 1 0 ACK SYN & 6 F V f V
6 22 38 54 70 86 102 118

0 1 1 1 BEL ETB I 7 G w g w
7 23 39 55 71 87 103 119

1 0 0 0 BS CAN (8 H X h X
8 24 40 56 72 88 104 120

1 0 0 1 HT EM) 9 I y I y
9 25 41 57 73 89 105 121

1 0 1 0 LF SUB * . J z J z .
10 26 42 58 74 90 106 122

1 0 1 1 VT ESC + . K [k {
' 11 27 43 59 75 91 107 123

1 1 0 0 FF FS
' < L \ I I

I

12 28 44 60 76 92 108 124

1 1 0 1 CR GS - - M] m } -
13 29 45 61 77 93 109 125

1 1 1 0 so RS . > N I\ n ~
14 30 46 62 78 94 110 126

SI us I 7 0 0
RUBOUT

1 1 1 1 - (DEL)
15 31 47 63 79 95 111 127

4027 PROGRAMMER'S @ B-1

ASCII CODE

Table B-2

ASCII CONTROL CHARACTERS

Usual
ASCII

Mnemonic Abbrev. Name of Character Keys to Press

N NUL Null CRTL-@ u
s SOH Start of Heading CTRL-A H

s STX Start of Text CTRL-B X

E ETX End of Text CRTL-C X
E EOT End of Transmission CTRL-D T

E ENO Enquiry CTRL-E Q

A ACK Acknowledgement CTRL-F K

B BEL Bell CTRL-G L

B BS Backspace CTRL-H s
H HT Horizontal Tab CTRL-I T
L LF Line Feed CTRL-J F

V VT Vertical Tab CTRL-K T
F FF Form Feed CTRL-L F

C CR Carriage Return CTRL-M R

s so Shift Out CTRL-N 0

s SI Shift In CTRL-O I

D OLE Data Link Escape CTRL-P L

D DC1 Device Control 1 CTRL-Q 1

D DC2 Device Control 2 CTRL-R 2

D DC3 Device Control 3 CTRL-S 3
D DC4 Device Control 4 CTRL-T 4

N NAK Negative Acknowledgement CTRL-U K

s SYN Synchronization Character CTRL-V y

E ETB End of Transmission Block CTRL-W B
C CAN Cancel CTRL-X N

E EM End of Medium CTRL-Y M

s SUB Substitute CTRL-Z B

E ESC Escape CTRL-[C

F FS Field Separator CTRL-\ s
G GS Group Separator CTRL-] s
R RS Record Separator CTRL-T s

CTRL- /\
(CTRL-up arrow or
CTRL-circumflex

accent)
u us Unit Separator CTRL--s

(CTRL-underscore)

B-2 @ 4027 PROGRAMMER'S

Appendix C

4010-STYLE GRAPHICS CODES

Table C-1

401 0-STYLE GRAPHICS CODE CHART

Low Order X Low Order Y

ASCII DEC. X or Y Coordinate DEC. ASCII

@ 64 0 32 64 96 128 160 192 224 96 '
A 65 1 33 65 97 129 161 193 225 97 a
B 66 2 34 66 98 130 162 194 226 98 b
C 67 3 35 67 99 131 163 195 227 99 C

D 68 4 36 68 100 132 164 196 228 100 d
E 69 5 37 69 101 133 165 197 229 101 e
F 70 6 38 70 102 134 166 198 230 102 f
G 71 7 39 71 103 135 167 199 231 103 g
H 72 8 40 72 104 136 168 200 232 104 h
I 73 9 41 73 105 137 169 201 233 105 i
J 74 10 42 74 106 138 170 202 234 106 j
K 75 11 43 75 107 139 171 203 235 107 k
L 76 12 44 76 108 140 172 204 236 108 I

M 77 13 45 77 109 141 173 205 237 109 m
N 78 14 46 78 110 142 174 206 238 110 n
0 79 15 47 79 111 143 175 207 239 111 0
p 80 16 48 80 112 144 176 208 240 112 p
a 81 17 49 81 113 145 177 209 241 113 q
R 82 18 50 82 114 146 178 210 242 114 r
s 83 19 51 83 115 147 179 211 243 115 s
T 84 20 52 84 116 148 180 212 244 116 t
u 85 21 53 85 117 149 181 213 245 117 u
V 86 22 54 86 118 150 182 214 246 118 V

w 87 23 55 87 119 151 183 215 247 119 w
X 88 24 56 88 120 152 184 216 248 120 X

y 89 25 57 89 121 153 185 217 249 121 V
2 90 26 58 90 122 154 186 218 250 122 z
[91 27 59 91 123 155 187 219 251 123 {

\ 92 28 60 92 124 156 188 220 252 124 '
'

J 93 29 61 93 125 157 189 221 253 125 }

A 94 30 62 94 126 158 190 220 254 126 ~
- 95 31 63 95 127 159 191 223 255 127 A~JRf

DEC.
ASCII

32 33 34 35 36 37 38 39
SP ! .. # $ % &

,

High Order X & Y

INSTRUCTIONS: Find coordinate value In body of chart; follow that column to bottom of chart to find decimal value or

ASCII character which represents the High Y or High X byte; go to the right in the row containing the coordinate value to

find the Low Y byte, or go to the left to find the Low X byte. EXAMPLE: 200Y, 48X equals 38 104 33 80 in decimal code,

and equals & h ! P in ASCII code.

4027 PROGRAMMER'S @ C-1

401 0 GRAPHICS

Low Order X

ASCII DEC.

@ 64 256
A 65 257
B 66 258
C 67 259
D 68 260
E 69 261
F 70 262
G 71 263
H 72 264
I 73 265
J 74 266
K 75 267
L 76 268
M 77 269
N 78 270
0 79 271
p 80 272
Q 81 273
R 82 274
s 83 275
T 84 276
u 85 277
V 86 278
w 87 279
X 88 280
y 89 281
z 90 282
[91 283
\ 92 284
J 93 285
A 94 286
- 95 287

DEC. 40
ASCII (

C-2

Table C-1 (cont)

4010-STYLE GRAPHICS CODE CHART

X or Y Coordinate

288 320 352 384 416 448
289 321 353 385 417 449
290 322 354 386 418 450
291 323 355 387 419 451
292 324 356 388 420 452
293 325 357 389 421 453
294 326 358 390 422 454
295 327 359 391 423 455
296 328 360 392 424 456
297 329 361 393 425 457
298 330 362 394 426 458
299 331 363 395 427 459
300 332 364 396 428 460
301 333 365 397 429 461
302 334 366 398 430 462
303 335 367 399 431 463
304 336 368 400 432 464
305 337 369 401 433 465
306 338 370 402 434 466
307 339 371 403 435 467
308 340 372 404 436 468
309 341 373 405 437 469
310 342 374 406 438 470
311 343 375 407 439 471
312 344 376 408 440 472
313 345 377 409 441 473
314 346 378 410 442 474
315 347 379 411 443 475
316 348 380 412 444 476
317 349 381 413 445 477
318 350 382 414 446 478
319 351 383 415 447 479
41 42 43 44 45 46
) * + -

High Order X & Y

@

Low Order Y

DEC. ASCII

480 96 -
481 97 a
482 98 b

483 99 C

484 100 d

485 101 e

486 102 f

487 103 g

488 104 h

489 105 i
490 106 j

491 107 k
492 108 I
493 109 m
494 110 n
495 111 0

496 112 p
497 113 q
498 114 r
499 115 s
500 116 t
501 117 u
502 118 V

503 119 w
504 120 X

505 121 y
506 122 z
507 123 {

508 124
'

509 125 }

510 126 ~
511 127 A~Jf8T
47
I

4027 PROGRAMMER'S

Low Order X

ASCII DEC.

@ 64 512
A 65 513
B 66 514
C 67 515
D 68 516
E 69 517
F 70 518
G 71 519
H 72 520
I 73 · 521
J 74 522
K 75 523
L 76 524
M 77 525
N 78 526
0 79 527
p 80 528
a 81 529
R 82 530
s 83 531
T 84 532
u 85 533
V 86 534
w 87 535
X 88 536
y 89 537
z 90 538
[91 539
\ 92 540
] 93 541
A 94 542
- 95 543

DEC 48
ASCII 0

4027 PROGRAMMER'S

Table C-1 (cont)

4010-STYLE GRAPHICS CODE CHART

X or Y Coordinate

544 576 608 640 672 704
545 577 609 641 673 705
546 578 610 642 674 706
547 579 611 643 675 707
548 580 612 644 676 708
649 581 613 645 677 709
550 582 614 646 678 710
551 583 615 647 679 711
552 584 616 648 680 712
553 585 617 649 681 713
554 586 618 650 682 714
555 587 619 651 683 715
556 588 620 652 684 716
557 589 621 653 685 717
558 590 622 654 686 718
559 591 623 655 687 719
560 592 624 656 688 720
561 593 625 657 689 721
562 594 626 658 690 722
563 595 627 659 691 723
564 596 628 660 692 724
565 597 629 661 693 725
566 598 630 662 694 726
567 599 631 663 695 727
568 600 632 664 696 728
569 601 633 665 697 729
570 602 634 666 698 730
571 603 635 667 699 731
572 604 636 668 700 732
573 605 637 669 701 733
574 606 638 670 702 734
575 607 639 671 703 735
49 50 51 52 53 54
1 2 3 4 5 6

High Order X & Y

@

4010 GRAPHICS

Low Order Y

DEC. ASCII

736 96 '
737 97 a

738 98 b

739 99 C

740 100 d

741 101 e
742 102 f

743 103 g

744 104 h

745 105 i

746 106 j

747 107 k
748 108 I
749 109 m
750 110 n
751 111 0

752 112 p
753 113 q
754 114 r
755 115 s
756 116 t
757 117 u
758 118 V

759 119 w
760 120 X

761 121 y

762 122 z
763 123 {

764 124 '
'

765 125 }

766 126 ~
767 127 RPcf>~
55
7

C-3

401 0 GRAPHICS

Low Order X

ASCII DEC.

@ 64 768
A 65 769
B 66 770
C 67 771
D 68 772
E 69 773
F 70 774
G 71 775
H 72 776
I 73 777
J 74 778
K 75 779
L 76 780
M 77 781
N 78 782
0 79 783
p 80 784
Q 81 785
R 82 786
s 83 787
T 84 788
u 85 789
V 86 790
w 87 791
X 88 792
y 89 793
z 90 794
[91 795
\ 92 796
J 93 797
/\ 94 798
- 95 799

DEC 56
ASCII 8

C-4

Table C-1 (cont)

4010-STYLE GRAPHICS CODE CHART

X or Y Coordinate

800 832 864 896 928 960
801 833 865 897 929 961
802 834 866 898 930 962
803 835 867 899 931 963
804 836 868 900 932 964
805 837 869 901 933 965
806 838 870 902 934 966
807 839 871 903 935 967
808 840 872 904 936 968
809 841 873 905 937 969
810 842 874 906 938 970
811 843 875 907 939 971
812 844 876 908 940 972
813 845 877 909 941 973
814 846 878 910 942 974
815 847 879 911 943 975
816 848 880 912 944 976
817 849 881 913 945 977
818 850 882 914 946 978
819 851 883 915 947 979
820 852 884 916 948 980
821 853 885 917 949 981
822 854 886 918 950 982
823 855 887 919 951 983
824 856 888 920 952 984
825 857 889 921 953 985
826 858 890 922 954 986
827 859 891 923 955 987
828 860 892 924 956 988
829 861 893 825 957 989
830 862 894 926 958 990
831 863 895 927 959 991
57 58 59 60 61 62
9

' < = >
High Order X & Y

@

Low Order Y

DEC. ASCII

992 96 '
993 97 a
994 98 b

995 99 C

996 100 d

997 101 e

998 102 f

999 103 g

1000 104 h

1001 105 i

1002 106 j

1003 107 k

1004 108 I

1005 109 m
1006 110 n
1007 111 0

1008 112 p
1009 113 q
1010 114 r
1011 115 s
1012 116 t
1013 117 u
1014 118 V

1015 119 w
1016 120 X

1017 121 y

1018 122 z
1019 123 {

1020 124
'

1021 125 }

1022 126 ~
1023 127 A~J'&
63
?

4027 PROGRAMMER'S

Appendix D

ALTERNATE CHARACTER FONTS
Table D-1

4027ALTERNATECHARACTERFONTS

Character Ruling Math Character Ruling Math Character Ruling Math Character Ruling Math I ASCII I 4027 I I ASCII I 4027 I I ASCII I 4027 I I ASCII I 4027 I
(Font 0) (Font 1) I (Font 2) (Font 0) (Font 1) I (Font 2) (Font 0) (Font 1) I (Font 2) (Font 0) (Font 1) I (Font 2)

63 I @J ?
79 H ~ 0

95 D rn - 111 I ~ 0

64

~ rnJ @
80 ~ ~ p \ 96 :J □

112 ~ ~ p

65 tJj ~ A
81

~ [e] a 97 i [I] a
113

~ ~ q

66 @ ~ B
82

~ ~ R
98 n ~ b

114 ~ ~ r

67 i li1 C
83 ~ ~ s 99 i ~ C

115 ~ ~ s

68 i ~ D
84 ~ ~ T

100 i ~ d
118 ~ ~ t

69 e ~ E
85

~ ~ u 101 - OJ e
117 ~ ~ u

70 ii ~ F
86 ~ ~ V

102 i] [3 f
118 ~ ~ V

71

~ @ G
87 ~ @ w

103

■ § g
119 ~ ~ w

72 lE ~ H
88 H ~ X

104 lE ~ h
120 I ~ X

73 tE ~ I
89 B ~ y 105 ~ lD i

121 ~ ~ y

74 ti] ~ J
90 H ~ z 106 ~ ~ j

'.______J

122 I § z

75 i ~ K
[91 [I] ~ 107 i ~ k

(123 ii m
76 I ~ L \ 92 I B 108 I ~ I

124 I ~ I
I

77 II ~ M
93 § a 1 109 I ~ m

} 125 ~ rn
78 I ~ N

94 I IT] I\
110 I rn n

126 I ~ -

4027 PROGRAMMER'S @ D-1

ALTERNATE FONTS

D-2

Table D-2

RULING JUNCTIONS CHART

Rulings
(Font 1)

@

Standard
(FontO)

eYYGYYAYYYYYB
[- [[

\.]]Ml]Klllll"
(- [[
HYYOYYIYYYYYJ
[- [[
[- [[
[- [[

PYYWYYQYYYYYR

DJJCllElllllF
- [-
'><:'r'YIYYOYYWYZ
- [-
LJ JKJJMJJ J JJN
- [-
- [-
- [-
TJ JSJ JU) l l J JV

d »c »~ }} }} H
? [? ?

xYYIYYoYYYYYz
? [? ?
l))k))m)))))n

? [? ?
? [? ?
? [? ?
t))s))u)))))v

hJJJEJJJJJJJJ
[[

[- [
!}})y}}){}})""

[[
[[

plllllllUlllr

aJJJJJ9JJJllb
?
?

')l;'('(YY'(oYYYYYX
?
?

q YYYYY111YYYYY 1

4024/4025
RULINGS

4027
RULINGS

4027 PROGRAMMER'S

Appendix E

SAMPLE PROGRAMS

This appendix contains three sample programs for the 4027 Color Graphics Terminal. The
first is a program written in BASIC which allows the operator to sample the 64 colors of
the terminal. The second is a short program (actually a segment of a larger program) in
PASCAL which processes the input to the host from a !REP 00 command. The third is a
complete COBOL program which displays a form in the terminal workspace and stores
the data from the form in a file.

THE BASIC PROGRAM

The program which follows is written to demonstrate the 64 color mixtures available on
the terminal. The program allows the operator to move the graphic cursor to any position
on the center plane of the color cone. Any one position on this plane represents the
<hue>, <lightness>, and <saturation> parameters of a MAP command. The second
parameter, <lightness>, varies the color created by the other two parameters. The
program displays all seven variations on the lightness plane with <hue> and
<saturation> remaining constant.

1 11= 20
4 X: 168
5 y:200
6 r:100
7 t=5
9 !goto setup subroutin
10 gosub 8000
16 12=34
17 13=48
18 14:62
19 15=74
990 rem Enable cross-hair,turn off ink, and input a point
998 print "!ena"
999 print "!ink n"
1000 print"!era m!rep 03"
1005 input d1$,k1,x1,d2$
1006 on error goto 1000
1007 y1=val(left(d2$,(len(d2$)-1)))
1009 if x1=0 then goto 9000
1010 x2=x1-x
1015 y2:y1-y
1020 if x2=0 then x2:.001
1022 rem If cross-hair is not in the circle then get another point
1025 if sqr((x2*x2)+(y2*y2))>r then goto 1000
1030 h=fix(atn(y2/x2)/k)
1031 if x2<0 then h=h+180
1032 if h<0 then h:h+360
1035 s:fix(sqr((x2*x2)+(y2*y2))*100/r)
1050 gosub 2000
1055 goto 1000

4027 PROGRAMMER'S @ E-1

SAMPLE PROGRAMS

E-2

2000 !color output routine
2005 print"!map c1 ";h;l1;s
2010 print"!map c2 ";h;l2;s
2015 print"!map c3 ";h;l3;s
2020 print"!map c4 ";h;l4;s
2025 print"!map c5 ";h;l5;s
2030 print"!wor h!jum 8 8"
2032 print"Hue=";h,"Saturation=";s
2035 print"!mon h"
2040 return
8000 !seup routine
8001 print"!map cO O O O!map c7 0 50 O!map c6 0 100 O"
8002 print"!wor 30!gra 1 30"
8003 k:6.28/360
8005 !draw circle
8009 print "!col cO"
8021 print "!vec ";x;y;"!cir ";r
8022 print "!cir ";r/2
8023 print "!line 2"
8024 for i=15 to 345 step 30
8025 print"!vec";fix(r/2*cos(i*k))+x;fix(r/2*sin(i*k))+y;
fix(r*cos(i*k))+x;fix(r*sin(i*k))+y/1
8026 next i
8027 print "!line 1"
8028 for i=10 to 350 step 20
8030 print "!vec ";
8035 print fix(r/2*cos(i*k))+x;fix(r/2*sin(i*k))+y;
8040 print fix((r+t)*cos(i*k))+x;fix((r+t)*sin(i*k))+y
8041 next i
8042 for i=30 to 330 step 60
8043 print"!vec";x;y;fix(r*cos(i*k))+x;fix(r*sin(i*k))+y
8044 next i
8047 t1=y-r-75
8048 t2=y-r-25
8050 for i=O to 6
8055 printt1!col c";chr$(i+48); 11 c0 11

8060 print 11 !pol 11 ;336;t1+i*50;600;t1+i*50;600;t2+i*50;336;t2+i*50
8065 next i
8099 print 11 !wor h 11

8100 print 11 !jum 2 38;Lightness 11

8 1 0 5 pr i n t 11 ! j um 4 3 9 ; 1 0 0 11

8 1 1 0 pr i n t 11 ! j um 7 4 0 ; 8 3 11

8 1 1 5 p !" int 11 ! j um 1 1 4 0 ; 6 7 11

8120 p!"intt1!jum 14 40;55 11

8125 p!"int 11 !jum 18 40;41t1
8130 p!"intt1!jum 21 40;27 11

8 1 3 5 pr int ti ! j um 2 5 4 0 ; 1 3 ti
8140 p!"int 11 !jum 29 41;0t1
8145 p!"int"!mon h 11

8150 print 11 !jumt1
8999 ?"etu!"n
9000 p!"int t1!disat1
9001 stop
9999 end

@ 4027 PROGRAMMER'S

SAMPLE PROGRAMS

THE PASCAL PROGRAM

The following PASCAL program issues a !REP 00; command to the terminal, analyzes the
ANSwer to the host, and returns the terminal status indicated by ANSwer. (See the
REPORT command discussion in the Host Programming for the 4027 section.)

{$t-,d-}
{*** REPORT ***

This will read the data returned from the terminal for the
various REPort commands}

VAR No more to do : boolean;

PROCEDURE Convert number(VAR number:integer);
{ This wiil convert the ASCII character string being input

by the terminal to INTEGER format. Any non-numeric character
terminates the conversion process. The default value is O}

BEGIN
number := O;
WHILE ttyA in

number :=
get(tty)

{setup default value}
['0' .. '9'] DO BEGIN
number*10 + (ord(ttyA)-48);

E ND ; { o f wh il e }
END; { converting a number}

PROCEDURE Report 1;
{ This w1ll inquire about the system itself}

VAR Blocks

BEGIN

, Bytes
,i
, Status

: integer;

Write (tty,'!rep 00;');
Break; Reset(tty);

{ Issue report request}

WHILE ttyA # '!' DO get(tty);
FOR i := 1 to 6 DO get(tty);
IF ttyA # '0' THEN Writeln (tty,'<<

{ Search for command character}
{ Skip over to the type of ans}
ANS not of proper type>>')

ELSE BEGIN
get(tty); get(tty); { skip commas}
convert number(blocks); { get blocks free}
write (tty,blocks:4,'=Blocks/');
bytes := blocks*16; { convert blocks to bytes}
write (tty,bytes:5,'=Bytes Available');
get(tty); { skip comma
convert number(status);
CASE status OF

1 Write (tty,' <
2 Write (tty,' <
3 Write (tty,' <
4 Write (tty,' <
5 Write (tty,' <
6 Write (tty,' <
7: Write (tty,' <

Buffered >');
Form Fill out>');
Buffered & Form Fill out>');
Monitor Present>');
Buffered & Monitor Present >');
Form Fill out & Monitor Present
Monitor, Form, & Buffered>')

END; { of CASE }
END {If then ELSE}

END; {report 1}

4027 PROGRAMMER'S @

) I) j

E-3

SAMPLE PROGRAMS

E-4

* * * *
BEGIN

Rewrite (ttyoutput);
No more to do := true;

REPEAT
Report 1;
no more to do :: true

UNTIL no more to do

END.

M A I N

THE COBOL PROGRAM

* * * *

{ Open tty communications}
{ initz }

The program which follows is written in COBOL and demonstrates the use of form fillout
and buffering. The program could have been written in any language which supports
some way of writing to and reading from the display character type information.

Design Objectives

Because COBOL works best with defined fields of fixed length and because the 1968
COBOL standard has no string handling verbs, this program was set up to process a field
at a time instead of a line at a time.

To make the terminal do this, buffered mode is used and the PROMPT character is
defined to be the same character used as the line terminator. Here the PROMPT was set
equal to carriage-return. In this manner the ACCEPT always gets one field. Each field
contains 7 characters of fixed and always present information about row and column, and
a variable amount of form data. The amount of form data is variable because trailing
blanks are not sent.

This field is ACCEPTED into TERMINAL-DATA which is PICTURed large enough to
contain the largest data field from the form plus seven more characters.

Analyzing the Input

The program examines TD-ROW. Once the row is identified, a routine is PERFORMED to
examine TD-COLUMN. Once the column is identified, a routine is PERFORMED to analyze

the data. In this program the data analysis simply stores the data in a file. Because data is
being moved from a larger to smaller field, the compiler will generate warning messages
telling you of this fact.

@ 4027 PROGRAMMER'S

SAMPLE PROGRAMS

End of Data From the Terminal

Since this form does not require all of its fields to be entered and since the information is
received and processed a field at a time, line 23 was set up as a protected modified field.
Therefore, this field is always sent to the host and is sent last. When this field is received,
the end of the screen has been reached and everything on that screen has been
processed. An appropriate indicator is set to indicate the end of the buffer.

Exiting the Program

To provide an orderly exit from the program, the keyword QUIT is entered into the first
field of a new screen. The column processor for that line detects QUIT and sets an end of
job indicator which signals the end to the rest of the program. An exit is made after the
terminal is returned to a reference state for the next job.

Synchronous Protocol

This program was run using asynchronous protocol. If you use a synchronous protocol
which transmits large amounts of data at once, the program or some routine in the system
should be assigned the task of reading all the data and placing it into the proper places.
In this case, the program looks different because the data is all present at once (in a
manner similar to reading a file).

000100
000020
000300
000400*
000500**
000600**
000700**
000800**
000900
001000**
001100**
001200**
001300**
001400**
001500**
001600**
001700**
001800**
001900**
002000**
002100**
002200**
002300**
002400**

IDENTIFICATION DIVISION.
PROGRAM-ID. FORM.

REMARKS.

THIS IS A SAMPLE PROGRAM WHICH SENDS A FORM
TO THE TERMINAL AND PROCESSES THE DATA RETURNED.

<< INPUT/OUTPUT ASSUMPTIONS>>

THIS PROGRAM USES THE 'ACCEPT' AND 'DISPLAY' VERBS TO
COMMUNICATE WITH THE VIDEO TERMINAL. FILE OUTPUT
IS AS PER USUAL.

THE INPUT FROM THE TERMINAL IS VARIABLE IN LENGTH WITH
THE FIRST 7 CHARACTERS ALWAYS PRESENT AND IN THE SAME
FORMAT.

FROM TERMINAL: ROW,COL •..... DATA
A A A

END OF DATA
START OF DATA

-------- COLUMN DATA STARTS IN
ROW DATA STARTS IN

4027 PROGRAMMER'S @ E-5

SAMPLE PROGRAMS

E-6

002500** THIS PROGRAM WAS ORIGINALLY DEVELOPED ON A DECSYSTEM-10
002600** AND WITH MODIFICATIONS TO THE 'SELECT' AND 'FD' STATEMENTS AND
002700** CHANGING THE 'DISPLAY-7' TO WHATEVER DISPLAY ALLOWS INPUT OF
002800** OF UPPER AND LOWER CASE CHARACTERS SHOULD CONVERT IT TO
002900** ANOTHER SYSTEM.
005200 ENVIRONMENT DIVISION.
005300 INPUT-OUTPUT SECTION.
005400 FILE-CONTROL.

SELECT TEK-FORM
ASSIGN TO DSK

005500
005600
005700
005800
005900
006000
006500

ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL.

006600 DATA DIVISION.
006700
006800
006900
007000 FILE SECTION.

TEK-FORM
IS 'DATA SEQ'

007200
007300 FD
007400
007500
007600 01
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
011000

VALUE OF ID
DATA RECORD

TEK-FORM-DATA
IS TEK-FORM-DATA.

02 TF-REF
02 TF-CUST.

03 TF-CUST-1
03 TF-CUST-2

02 TF-INSTRUMENT
02 TF-VALUE
02 TF-TYPE
02 TF -FC-AMOUNT
02 TF-RATE
02 TF-DOLLARS
02 TF-OUR-ACCT
02 TF-CONTRACT-NR
02 TF-CREDIT-REFERENCE
02 TF-CHECK-OK

USAGE IS DISPLAY-7.
PIC X(10).

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X (4) •
X(10).
X (8) •
X(8).
X(5).
X(13).
X(12).
X(15),
X(4).
X(8).
X(12).
X (1) •

011900 WORKING-STORAGE SECTION.
012000
012200
012300 01 TEK-FORM-FILL-OUT
012400*-----------------------

USAGE IS DISPLAY-7,

012500
012600
012700
012800
012900
013000
013100
013200
013300
013400
013500
013600
013700
013800
013900*

02 TFF0-0 PIC X(33) VALUE IS
'! FOR N; ! BUF; ! WOR 24 K H; ! JUM; ! ERA'.
02 TFF0-1 PIC X(12) VALUE IS
'!JUM;!ATT IP'.

02 TFF0-1A PIC X(19) VALUE IS
• ! J UM 1 , 11 ; T C2 K

02 TFF0-1B PIC X(33) VALUE IS
'!JUM 1,27;SAMPLE OF FORM FILL OUT'.

02 TFF0-1C PIC X(27) VALUE IS
'!JUM 1,79; !ATT PCO;!JUM 3,1'.

@ 4027 PROGRAMMER'S

014000
014100
014200
014300
014400
014500
014600
014700
014800
014900
015000
015100
015200
015300
015400
015500
015600
015700
015800*

02 TFF0-3
I !ATT P;REF

02 TFF0-3A
'!ATTC2A;

!JUM 3, 6'.

!JUM 3 1 16 I•

PIC X(19) VALUE IS

PIC X(27) VALUE IS

PIC X(36) VALUE IS 02 TFF0-38
I! ATT PCO; CUST !ATT C2A; ! ATT PCO I.

02 TFF0-3C PIC X(27) VALUE IS
' !ATT C2A;!JUM 3,39; !ATT PCO'.

02 TFF0-3D
' INSTRUMENT !ATT C2A;

02 TFF0-3E
'VALUE DT !ATT C2A;

PIC X(46) VALUE IS
!ATT PCO;!JUM 3,61 1 •

PIC X(33) VALUE IS
!ATT PCO'.

015900*L INE 5

02 TFF0-5 PIC X(55) VALUE IS

SAMPLE PROGRAMS

016100*
016200
016300
016400
016500
016600
016700
016800
016900
017000
017100
017200
017300
018000*

• ! J UM 5; ! ATT PC O; TYPE ! ATT C 2A ; ! J UM 5, 17; ! ATT PC O' .

02 TFF0-5A PIC X(45) VALUE IS
' F/C AMT !JUM 5,27; !ATT AC2; !JUM 5,40; !ATT PCO'.

02 TFF0-58 PIC X(33) VALUE IS
' RATE !ATT C2A;!JUM 5,60; !ATT PCO'.

02 TFF0-5C PIC X(30) VALUE IS
$!ATT C2N!JUM 5,79; !ATT PCO'.

018100* LINE 7
018200*
018400*
018500
018600
018700
018800
018900
019000
019100
019200
019300
019400
019500
019600
019700
030100*

02 TFF0-7
'!JUM 7; !ATT PCO;

02 TFF0-7A
• CONT# !ATT AC2;

PIC X(45) VALUE IS
OUR ACCT !ATT AC2; !ATT PCO'.

PIC X(30) VALUE IS
! ATT PCO I.

02 TFF0-78 PIC X(46) VALUE IS
CREDIT REFERENCE# !ATT AC2;!JUM 7,62; !ATT PCO'.

02 TFF0-7C PIC X(29) VALUE IS
CHECK OK !ATT AC2; !ATT PCO'.

030200* LINE 23: SPECIAL END OF SCREEN DATA FLAG
030300*
030400
030500
030600*

02 TFFO-EOD-FLAG
'!JUM 23;!ATT PM;01'.

030700* FORM END
030800*
030900
031000
031100

4027 PROGRAMMER'S

02 TFFO-END
• !JUM 3,6; !FOR'.

PIC X(45) VALUE IS

PIC X(13) VALUE IS

@ E-7

SAMPLE PROGRAMS

031200 01 TERMINAL-DATA
031300*----------------

USAGE IS DISPLAY-7.

031400
031500
031600
031700
031800
031900
032000

02 TD-LOCATION.
03 TD-LOC-ROW
03 FILLER
03 TD-LOC-COL

02 TD-DATA

032100 01 INDICATORS.
032200*--------------
032300
032400
032500
032600
032700
032800
032900

02 END-OF-JOB-IND
88 END-OF-JOB

02 LINE-IS-EMPTY-IND
88 LINE-IS-EMPTY

033000 01 CONSTANTS.
033100•-------------
033200
033300
033400

02 PROMPT-4025

033500 01 VARIABLES.
033600*-------------
033700
033800
034090*

02 TIMES-SCREEN-RESET

034100 PROCEDURE DIVISION.
034200*
034400
034600 INITIALIZATION.

OPEN OUTPUT TEK-FORM.

PIC X(3).
PIC X.
PIC X(3).
PIC X(40).

PIC X(3).
VALUE IS 'EOJ'.

PIC X(3).
VALUE IS 'EOL'.

PIC X VALUE IS

PIC 9(2).
*

034800
034900
035000
035100
035200
035400
035500

MOVE SPACES TO TEK-FORM-DATA.
PERFORM TERMINAL-SET-UP.
PERFORM DISPLAY-THE-FORM.

035700 MAIN-PART.
035900
036000 MOVE SPACES TO END-OF-JOB-IND.

'?'.

*

036100
036200* FLUSH
036300

PERFORM PROCESS-THE-TERMINAL-DATA UNTIL END-OF-JOB.

E-8

036310
036320
036330
036400
036500
036600
036700*
037000

THE LINE 23 FIELD STILL BUFFERED UP
DISPLAY PROMPT-TERMINAL.
ACCEPT TERMINAL-DATA.
DISPLAY PROMPT-TERMINAL.
ACCEPT TERMINAL-DATA.
CLOSE TEK-FORM.
PERFORM TERMINAL-SET-DOWN.
STOP RUN.

<< LOGICAL END OF PROGRAM>>
PROCESS-THE-TERMINAL-DATA.

037200* -------------------------
037200
037300
037400
037500
037600
037700
037800

MOVE SPACES TO TERMINAL-DATA.
PERFORM GET-BUFFER-LINE.

MOVE SPACES TO LINE-IS-EMPTY-IND
PERFORM DISASSEMBLE-TERMINAL-INPUT UNTIL

LINE-IS-EMPTY

@ 4027 PROGRAMMER'S

SAMPLE PROGRAMS

037900
038000
038100
038200
038300
038400
038500
038600
038700*
038800
039010*
039000
039120*
039130*
039100*
039200*
039300*
039400*
039500
039600
039700
039800
039900
040000
040200
040210*
040400
040500*
040600*
040700*
040800*
040900*
041000*
041100*
041210*
041220*
041200
041300
041400
041500
041600
041800
041810*
042000*
042010*
042020*
042300
042400
042500
042510
043000
043010*
043200
043300*
043400*
043500*
043600*
043700*
043800*
043900*
044100*

IF NOT END-OF-JOB

ELSE

WRITE TEK-FORM-DATA
DISPLAY PROMPT-TERMINAL
MOVE SPACES TO TEK-FORM-DATA
DISPLAY PROMPT-TERMINAL

NEXT SENTENCE.
DISPLAY '!ERA;!BEL'.

TERM INAL-S ET-UP.

IT IS BEST TO SET THE TERMINAL TO A KNOWN STATE
RATHER THAN TO ASSUME WHAT STATE IT IS IN.
SET PROMPT := <?><CARRIAGE-RETURN><LINE-FEED>
SET F1 := <CARRIAGE-RETURN><LINE-FEED>
SET PT := <SEND MODIFIED>
SET FIELD-SEPERATOR :: <CARRIAGE-RETURN>

DISPLAY '!PRO 63,13,10'.
DISPLAY '!LEA F1 13,10'.
DISPLAY '!LEA PT /!REP 1;!SEN MOD/13'.
DISPLAY '!FIE 13'.

TERMINAL-SET-DOWN.

PURPOSE:

RETURN THE TERMINAL TO COMMUNICATION WITH THE HOST,
THE KEYBOARD TO THE MONITOR SPACE, NON-FORM FILL OUT,
UNBUFFERED, ALL FUNCTION AND OTHER KEYS UN-LEARNED, AND
DISPLAY IN THE MONITOR SPACE OF THE TERMINAL A MESSAGE SAYING
WHAT HAS BEEN DONE.

IN THIS WAY, IT IS POSSIBLE FOR THE USER TO COMMUNICATE
WITH THE COMPUTER WITHOUT LOSING THE LAST SCREEN.

DISPLAY '!FOR N;!BUF N;!MON K H'.
DISPLAY '!CLEAR'.
DISPLAY'<< END OF TEK FORM FILLOUT EXAMPLE>>'.

GET-BUFFER-LINE.

SINCE INFORMATION IS 'BUFFERED' , IT IS NECESSARY TO
'PROMPT' THE TERMINAL TO SEND THE DATA AND THEN WAIT FOR IT TO
BE SENT.

DISPLAY PROMPT-TERMINAL.
ACCEPT TERMINAL-DATA.

DISASSEMBLE-TERMINAL-INPUT.

THIS SECTION IS A 'CASE' STATEMENT THAT EXAMINES
THE DATA FROM THE TERMINAL AND PERFORMS A ROUTINE
WHICH FURTHER EXAMINES THE LINE.

CASE TD-LOC-ROW OF
'003' PERFORM ROW 3 PROCESSING
'005' PERFORM ROW 5 PROCESSING
'023' : PERFORM ROW 23 PROCESSING

4027 PROGRAMMER'S @ E-9

SAMPLE PROGRAMS

E-10

044300*
044400*
044500*
044600*
044700*
044800

WHEN THE PROTECTED MODIFIED FIELD ON LINE 23 IS PROCESSED, EOL IS
SET TRUE AND THE BUFFER CONSIDERED PROCESSED. THE WHOLE PROCESS
STARTS OVER AGAIN AND A NEW BUFFER IS PROCESSED.

044900
045000
045100
045200
045210
045220
045230
045300
046800* NOTE:

IF TD-LOC-ROW = '003'
PE RF ORM ROW-3

ELSE IF TD-LOC-ROW = '005'
PERFORM ROW-5

ELSE IF TD-LOC-ROW = '023'
PERFORM ROW-23.

IF ADDITIONAL LINES EXIST ON THE FORM
ADDITIONAL 'ELSE IF' LINES MAY BE CODED.

HOWEVER, THERE IS A LIMIT TO THE DEPTH TO WHICH
MOST COMPILERS WILL ALLOW IF'S TO BE NESTED.

046900*
047000*
047100*
047200*
047300* OTHER
049800
049900
050000
050200
050300
050500*

TO OVERCOME THE NESTING LIMIT, START UP AN
' IF ... THEN ... ELSE I •

IF LINE-IS-EMPTY
NEXT SENTENCE

ELSE PERFORM GET-BUFFER-LINE.

050600* WORK ROUTINES
050700*
050800*
050900*
051000*
051100*
051200*
051700*
051800*
051900

THESE ROUTINES FURTHER BREAK DOWN THE DATA JUST RECEIVED
FROM THE TERMINAL. EACH OF THE ROUTINES THAT FOLLOW
IS DEDICATED TO ONE ROW FROM THE TERMINAL. THESE ROUTINES WILL
EXAMINE THE COLUMN NUMBER AND TAKE APPROPRIATE ACTION.
IN THIS PROGRAM THE DATA IS JUST SAVED IN A DISK FILE
BUT ADDITIONAL PROCESSING COULD HAVE BEEN DONE.

052000*******
052100 ROW-3.
052200*******
052300
052400
052500
052600
052700
052800
052900
053000
053100
053200
053300
053400
053500
053600
053700
053800
053900
054000
054100
054200
054300
054400

IF TD-LOC-COL = '006'
MOVE TD-DATA TO TF-REF

ELSE IF TD-LOC-COL = '025 I

MOVE TD-DATA TO TF-CUST-1

ELSE IF TD-LOC-COL = '030'
MOVE TD-DATA TO TF-CUST-2

ELSE IF TD-L OC-C OL = '053'
MOVE TD-DATA TO IF-INSTRUMENT

ELSE IF TD-LOC-COL = I 071 I

MOVE TD-DA TA TO TF-VALUE

ELSE
NEXT SENTENCE.

IF TF-REF = 'QUIT'
MOVE 'EOL' TO LINE-IS-EMPTY-IND
MOVE 'EOJ' TO END-OF-JOB-IND

@ 4027 PROGRAMMER'S

054500
054600
054700
054800*******
054900 ROW-5.
055000*******
055100
055200
055300
055400
055500
055600
055700
055800
055900
056000
056100
056200
056300
056400
056500
056600
056700*******
056800 ROW-7.
056900*******
057100
057200
057300
057400
057500
057600
057700
057800
057900
058000
058100
058200
058300
058400
058500
068100
068200********
068300 ROW-2 3.
068400********
068500
068600

ELSE
NEXT SENTENCE.

IF TD-LOC-COL = IO 11 I

MOVE TD-DATA TO TF-TYPE

ELSE IF TD-LOC-COL = '027'
MOVE TD-DATA TO TF-FC-AMOUNT

ELSE IF TD-LOC-COL = '048'
MOVE TD-DATA TO TF-RATE

ELSE IF TD-LOC-COL = '066 I

MOVE TD-DATA TO TF -DOLLARS

ELSE
NEXT SENTENCE.

IF TD-LOC-COL = '012'
MOVE TD-DATA TO TF-OUR-ACCT

ELSE IF TD-LOC-COL = 1 023 I

MOVE TD-DATA TO TF-CONTRACT-NR

ELSE IF TD-LOC-COL = I 051 I

MOVE TD-DATA TO IF-CREDIT-REFERENCE

ELSE IF TD-LOC-COL = '076 I

MOVE TD-DATA TO IF-CHECK-OK

ELSE
NEXT SENTENCE.

MOVE 'EOL' TO LINE-IS-EMPTY-IND.
068700
068800 DISPLAY-THE-FORM.
071300* ----------------
071400
071500
071600
071700
071800
071900
072000
072100
072200
072300
072400
072500

4027 PROGRAMMER'S

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

TFF0-0.
TFF0-1.
TFF0-1 A.
TFF0-1 B.
TFF0-1C.
TFF0-3.
TFF0-3A.
TFF0-3B.
TFF0-3C.
TFF0-3D.
TFF0-3E.

@

SAMPLE PROGRAMS

E-11

SAMPLE PROGRAMS

DISPLAY TFFO-5.
DISPLAY TFF0-5A.
DISPLAY TFFO-5B.
DISPLAY TFFO-5C.
DISPLAY TFFO-7.
DISPLAY TFF0-7A.
DISPLAY TFFO-7B.
DISPLAY TFFO-7C.
DISPLAY TFFO-EOD-FLAG.

DISPLAY TFFO-END.

072600
072700
072800
072900
073100
073200
073300
073400
075600
075700*
075800*
075900
076000*
076100* << PHYSICAL END OF PROGRAM>>

E-12 @ 4027 PROGRAMMER'S

Appendix F

MEMORY CONSIDERATIONS

It is possible for the terminal to use all of its display memory. Likewise, the terminal may
use up all of its graphics memory. The comments in this appendix should help the
programmer judge how much of each type of information can be sent to the terminal
before running out of memory.

DISPLAY MEMORY

On the screen, a full line of text (a character displayed in every column) plus ten attribute
codes uses 112 bytes (in the display list). A full screen of such lines (34 lines X 112
bytes/line) uses about 3800 bytes. As a rule of thumb, then, you get about one full screen
of display for every 4K bytes of display memory. Usually, of course, one does not use the
full 80 columns of a line for display. A rough calculation of line length will give the proper
adjustment factor. For example, if the program uses roughly 50% of each line for display, a
16K byte display memory will store approximately:

16K bytes x 1 screen x 2 = 8 34-line screens
4K bytes

The workspace and the monitor both use memory out of the same "pool" of display
memory. When the terminal has used most of its display memory and you attempt to
display more information, the result depends on which scroll is receiving information.

If the terminal runs low on memory while you are sending information to the workspace,
the terminal bell rings as a warning to the operator, and the terminal overprints a portion
of the current line with incoming data. If information continues to come, the terminal soon
refuses to print and the cursor sticks at its current location.

If the terminal runs low on memory while you are sending information to the monitor, the
cursor simply sticks at its current location and the terminal refuses to print new
information. The terminal still processes a carriage return, however, and enough memory
is saved to give at least one command. (If the monitor has scrolled information up past the
top of the monitor window, the terminal discards this information as needed, line by line.
In this case, you may keep sending information to the monitor, and the terminal will keep
discarding scrolled up information.)

4027 PROGRAMMER'S @ F-1

MEMORY CONSIDERATIONS

F-2

An applications program may keep track of the amount of unused display memory by
occasionally giving the command

!REP 00<CR>

This command causes the terminal to return a report to the computer in the following

format:

!ANS 00,<p1 >,<p2>;

where <p1 > is a four-digit decimal number specifying the number of unused blocks of
display memory. (A block consists of 16 8-bit bytes.) When <p1 > falls below a given
level, the program can instruct the terminal to erase information by sending an ERASE,
DUNE, or DCHAR command or, if the information displayed is not needed, a WORKSPACE
or MONITOR command. To recover display memory from the computer, you must give
some command which erases text.

GRAPHICS MEMORY

The terminal can contain 48K, 96K, 144K, or 192K bytes of graphics memory. The amount
of graphics memory which a given graph requires depends on the density of information
in the graph. The following is an estimate of how much graphics memory is required for
graphic display. The term "pie chart" refers to a pie chart with 1 0 pieces. The term
"graph" refers to a line graph of approximately the same density as the graph in Figure 8-8.

Table F-1

GRAPHIC MEMORY CAPACITY

Amount of Graphic Memory

48K bytes
96K bytes

144K bytes
192K bytes

@

Display Capacity

2+ pie charts, or 2 line graphs
4 pie charts, or 3 to 4 line graphs
6 pie charts, or 6 to 7 line graphs
8 pie charts, or 7 to 8 line graphs

4027 PROGRAMMER'S

Appendix G

PROGRAMMER'S REFERENCE TABLE

Please record the following settings for future reference:

Transmitting Baud Rate

Receiving Baud Rate

Command Character

Prompt String

End-of-line String

Duplex (Full or Half)

Echo (Remote or Local)

Parity (None, Even, Odd, High, or Data)

Field Separator

End-of-File String

Send Key String

Display Memory Capacity

Graphics Memory Capacity

Fonts Installed

Options Installed

4027 PROGRAMMER'S @

TB=

RB=

CC=

PR=

EL=

DU=

EC=

PA=

FS=

EF=

G-1

r r r

Appendix H

OPTION SUMMARY

Option 1 : Half Duplex

Permits half duplex normal and supervisor modes in addition to the full duplex
communications provided as standard equipment.

Option 2: Current Loop

Permits the 4027 to communicate with the host computer or another device by means of a
20 mA current loop rather than the standard RS-232 interface.

Option 3: RS-232 Peripheral Interface (Requires Option 36)

Permits the 4027 to transmit to RS-232 compatible peripheral devices such as the
Tektronix 4642 Printer. With this option, data from the host computer or the workspace
can be printed on the 4642 Printer. Includes current loop board and L-bracket.

Option 4: GPIB Peripheral Interface (Requires Option 36)

Permits the 4027 to communicate with and control the Tektronix 4924 Digital Cartridge
Tape Drive and 4662 Interactive Digital Plotter. These devices communicate with the
4027 over the General Purpose Interface Bus (GPIB), which is defined in IEEE Standard
488-1975. Allows the 4027 to save data or command files on the 4924, and retrieve them
later without the need for intervention by the host computer.

Option 10: Polling Interface (Includes Option 2)

Permits the 4027 to function in a polling environment, as one of several display stations
communicating with the host computer through a polling controller. (See Option 11.)

Option 11: Polling Controller

The Tektronix polling system permits multiple terminals to be connected to a single host
communications port. The Polling Controller (Option 11) provides for control of up to eight
additional display stations via a 20 mA current loop interface. Full duplex interface is
provided at up to 4800 baud.

4027 PROGRAMMER'S @ H-1

OPTION SUMMARY

H-2

The Option 11 Polling Controller communicates with the host computer through an RS-
232 port, using IBM 3271 /3277 Bisynchronous EBCDIC protocol.

In addition to the RS-232 port for communicating with the host and the current loop port
for communicating with the display stations, the Option 11 Polling Controller includes a
third communication port. This is an RS-232 transmit-only port for driving a printer.

Options 21 and 22: Added Display Memory

The standard 4027 includes 8192 bytes of display memory. (Each byte is 8 binary bits,
and can hold one ASCII character.) Options 21 and 22 expand this, permitting larger
quantities of text to be stored in the workspace and monitor.

Option 21 : A total of 16,384 (16K) bytes of display memory.

Option 22: A total of 32,768 (32K) bytes of display memory.

Options 27, 28, and 29: Color Graphics Memory

Permits the 4027 to draw a variety of geometric shapes and panels in any of 64 possible
colors. Solid lines and seven types of dashed lines can be drawn, and individual points
can be plotted. Individual lines can be erased by drawing over them with "erase vectors."

In addition, the Graphics Memory options permit the user to create alternate character
fonts for displaying text in the workspace, to create individual symbols and 120 user
defined patterns.

These options differ only in the amount of graphics memory they include. Larger amounts
of graphics memory permit the 4027 to perform more complex tasks in its workspace, and
to create more alternate character sets.

Option 27: 96K (total) bytes of graphics memory.

Option 28: 144K (total) bytes of graphics memory.

Option 29: 192K (total) bytes of graphics memory.

@ 4027 PROGRAMMER'S

OPTION SUMMARY

Option 31 : Character Set Expansion.

Permits the addition of ROMs (Read Only Memories) containing alternate character fonts.

Option 32: Ruling Characters (Requires Option 31)

Adds the "ruling" character font, permitting single and double lines to be drawn on forms
in the workspace, as well as ruling junctions characters.

Option 34: Math Characters (Requires Option 31)

Adds a set of "math" characters to permit mathematical symbols to be displayed in the
workspace. Includes standard mathematical symbols, Greek letters, and superscripts.

Option 36: Peripherals ROM

Provides instructions for the 4027 processor, allowing it to communicate with RS-232 or
' GPIB peripheral devices. (Required for Option 3 or Option 4.)

Option 42: Hard Copy and Video Out

Permits the 4027 to copy the contents of its workspace, monitor, or screen on a Tektronix
4632 Hard Copy Unit. The copies are each about 8 1 /2 by 11 inches in size, and can
show 34 lines of the workspace or monitor contents. One or several 34-line pages may be
copied. The copies can show rulings, special characters, and graphics, as well as
ordinary text.

Also permits the 4027 display to be viewed on a standard video monitor.

Option 48: 220 Volt Power

Enables the 4027 to operate from 220 volt 50 or 60 Hz power lines.

4027 PROGRAMMER'S REV A, JUL 1979 H-3

,--~---------------

Appendix I

ROUTINE EXTERNAL CONVERGENCE BOARD
ADJUSTMENTS

E3
Routine external convergence board adjustments should be made by
qualified personnel only.

The external convergence board may need to be adjusted occasionally. Convergence
should be checked when the terminal is first installed or whenever it is relocated.

Proper convergence means that the red, green, and blue beams come to a point on the
screen. If the convergence is not properly adjusted, red, green, and blue colors will appear
on the perimeter of any white areas on the screen. If convergence appears to be out of
adjustment, the following procedure should be used to adjust the external convergence
board.

Procedure for Routine Convergence Adjustments

1. Type the CAL command (!CAL<CR>).

This will cause a message to be displayed which assigns each of the function keys
(F1 through F8) to a color and F9 to an alignment grid. Go through the function keys
from F1 to F8 and check that the following colors appear: white, red, green, blue,
yellow, cyan, magenta, and black.

2. Remove the two screws securing the external convergence board tray and slide out
the tray (Figure 1-1).

The external convergence board contains 27 adjustments arranged in groups of
three. Looking at the board from the front of the terminal, there is a direct
correspondence between each of these groups and an area on the screen. For
example, upper left on the board corresponds to upper left on the screen. In addition,
the adjustments are color coded. Thus, the red adjustments control the red beam, the
green adjustments control the green beam, and the blue adjustments control the
blue beam.

Refer to Figure 1-1 for the direction of beam movement produced by the convergence
adjustments. For a particular area, the red and green are converged first, then the
blue is converged with them.

4027 PROGRAMMER'S @ 1-1

ADJUSTMENTS

1-2

RED

BEAM MOVEMENTS
PRODUCED BY

THE CONTROLS

GREEN

1-1. Adjusting the External Convergence Board.

3. After the terminal has warmed up for 30 minutes, press the "degauss" button on the
rear panel for 2 or 3 seconds. Press function key F9 to display the alignment grid.

4. Begin adjusting in the center (first the red and green, then the blue) and continue in
the following order: top center, bottom center, right center, left center, top right,
bottom right, top left and bottom left.

5. Once satisfactory convergence has been obtained, restore the external convergence
board to its compartment.

@ 4027 PROGRAMMER'S

Appendix J

COMMAND LISTING

Table J-1

COMMAND LISTING

Action
Different in

Discussed Options Form Fillout Other
Command on Page Required Mode Comments

ALLOCATE 11-11 4

ATTRIBUTE 9-10 Logical attributes Workspace Only
effective only in
Form Fillout Mode

BACKTAB 6-16, 9-23 X
BAUD 5-13

BELL 6-23
BUFFERED 5-19

CIRCLE 8-19

CLEAR 4-9

COLOR 7-2

COMMAND 2-9,5-2

COPY 11-21 3 or 4 X

DCHAR 10-1 X

DELAY 5-25

DIRECTORY 8-38
DISABLE 11-14

DISCONNECT 8-6 1

DFONT 5-31
OLINE 10-6 X

DOWN 6-8
DUPLEX 5-29 1

ECHO 5-17
EOF 5-28 3 or 4

EOL 5-21
ENABLE 8-4
ERASE (Workspace 6-22, 9-25

and Monitor) X

ERASE (Graphics) 8-26

4027 PROGRAMMER'S @ J-1

COMMAND LISTING

Command

EXPAND
FIELD
FONT
FORM
GRAPHIC
GTEST
HCOPY
HRULE
ICHAR
ILINE
INK
JUMP
KILL
LEARN
LEFT
LINE
MAP
MARGINS
MIX

MONITOR
PARITY
PASS
PATTERN
PERIPHERALS
PIE
POLY
PROMPT
REPORT

RDOWN
RIGHT
RMAP

J-2

Discussed
on Page

4-7
5-26, 9-29
8-32
5-10, 9-3
8-2
5-37
11-26
9-16
10-3
10-10
8-22
6-2, 9-13, 9-26
11-16
4-2,4-7
6-12
8-11
7-3
5-7
7-7
5-5
5-15
11-1 7
7-8
11-7
8-16
8-12
5-23
3-11, 11-8

6-20
6-10
7-5

Table J-1 (cont)

COMMAND LISTING

Options
Required

42
32

4

4

4

@

Action
Different in
Form Fillout Other

Mode Comments

X

X

Workspace only

Workspace only

From the host only.
Some forms require
options.

4027 PROGRAMMER'S

Discussed
Command on Page

RPOLY 8-14
RUP 6-18
RVECTOR 8-9
SEND 3-8, 9-27
SET 11-2
SHRINK 8-28
SNOOPY 5-11
STOPS 5-9
STRING 8-24
SYMBOL 8-35
SYSTAT 5-32
TAB 6-14, 9-21
TEST 5-35
UP 6-5
VECTOR 8-7
VRULE 9-17
WORKSPACE 5-3

4027 PROGRAMMER'S

Table J-1 (cont)

COMMAND LISTING

Options
Required

3 or 4

32

@

COMMAND LISTING

Action
Different in

Form Fillout Other
Mode Comments

X

X

J-3

INDEX

ALLOCATE Command ... 11-11
ANSWER .. 3-11, 11-8
ASCII Code Chart. ... 8-1
ASCII strings, delimited .. 2-4
ATTRIBUTE Command ... 9-1 0
Attributes

alphanumeric ... 9-7
codes .. 8-29, 9-9
field .. 9-6
font. .. 9-6, 9-11
logical .. 9-7, 9-12
numeric .. 9-7
protected ... 9-7
visual ... 9-8, 9-1 2
4025-Style ... 9-9

BACKTAB Command ... 6-16, 9-23
BAUD Command ... 5-13
BELL Command ... 6-23
BUFFERED Command ... 5-9

CIRCLE Command ... 8-19
CLEAR Command .. 4-9
COLOR Command ... 7-2
Color

background ... 7-8,8-35,8-37
boundary ... 7-2
foreground .. 7-8,8-35,8-37
vector .. 7-2

Color Standard, Tektronix 4027 A-1
COPY Command ... 11-21
COMMAND Command ... 2-9, 5-2
Command, descriptions of syntax 2-6
Command file, displaying ... 3-7
Commands, format. .. 2-2
Commands, invalid ... 3-5

COPY Switches ... 11 -22
Crosshair ... 6-1, 8-4, 8-29
Cursor .. 1-7, 6-1, 8-29

4027 PROGRAMMER'S @ IDX-1

INDEX

DCHAR (Delete Character) Command 8-29, 10-1
DELAY Command .. 5-25
DFONT Command ... 8-38
DISABLE Command .. 8-6
DISCONNECT Command ... 5-31
DIRECTORY Command .. 11-14
Display unit ... 1-2
DUNE (Delete Line) Command 8-29, 10-6
DOWN Command .. 6-8
DUPLEX Command .. 5-29

ECHO Command .. 5-17
ENABLE Command .. 8-4
End angle ... 8-16, 8-19
EOF (End-of-File) Command 5-28
EOL (End-of-Line) Command 5-21
ERASE Command, workspace and monitor 6-22, 9-25
ERASE G Command ... 8-26
EXPAND Command .. 4-7

FIELD Command ... 5-26
Field attribute codes ... 9-6
Fields

creating with JUMP .. 9-13
Form Fillout Mode ... 9-29
unprotected ... 9-30

FONT Command ... 8-37
Fonts, alternate character .. 8-34
FORM Command .. 5-1 0, 9-3
Form, creating ... 9-4
Form Fillout Mode ... 9-1, 9-20
Forms, Transmitting ... 9-27, 9-30

GIN (Graphic Input) Mode .. 8-4
Graphic beam ... 8-4, 8-32
GRAPHIC Command ... 8-2
Graphic region

coordinate system ... 8-2
Graphic

color ... 8-1
memory ... F-2
4010-Style ... 8-32

GTEST Command .. 5-37

IDX-2 @ 4027 PROGRAMMER'S

INDEX

HCOPY (Hard Copy) Command 11-26
HRULE (Horizontal Rule) Command 9-16
Hue angle ... 7-3, 7-5

ICHAR (Insert Character) Command 10-3
ILINE (Insert Line) Command 10-10
INK Command ... 8-22
Increment angle ... 8-16, 8-19
Interfaces, optional .. 1 -4, H-1

JUMP Command ... 6-2, 9-13, 9-26
Junctions, making correct. ... 9-18

Key definitions, clearing .. 4-9
Key Programming .. 4-1, 4-8
Keyboard ... 1-7, 1-11
Keys

ASCII ... 1-8
Cursor/Numeric Pad ... 1-8
Function .. 1-9

KILL Command .. 11-16

LEARN Command .. 4-2, 4-7
LEFT Command ... 6-12
LINE Command .. 8-11
Lightness ... 7-3, 7-5

Macros .. 4-6
MAP Command .. 7-3
MARGINS Command ... 5-7
Memory

display ... F-1
graphic ... F-2

MIX Command ... 7-7
Monitor ... 1-5
MONITOR Command ... 5-5

Numeric parameters ... 3-3

PARITY Command ... 5-15
PASS Command ... 11-17
PATTERN Command ... 7-8
PERIPHERALS Command .. 11-7
Peripherals Data List. .. 11-7
Peripherals supported ... 11-1

4027 PROGRAMMER'S @ IDX-3

INDEX

PIE Comm~nd ... 8-16
Plotter Language Commands 11-18
Polling .. H-1
POLYGON Command .. 8-1 2
PROMPT Command .. 5-23

Raster unit .. 8-16
RDOWN (Roll Down) Command 6-20
REPORT Command .. 3-11, 11-8
RGB (Red-Green-Blue) .. 7-7
RIGHT Command .. 6-10
RMAP Command .. 7-5
ROM checksums .. 5-35
RPOL YGON (Relative Polygon) Command 8-1 4
Rulings ... 9-16
RUP (Roll Up) Command ... 6-18
RVECTOR (Relative Vector) Command 8-9

Saturation ... 7-3, 7-5
Scrolling .. 6-1 8
SEND Command ... 3-8, 8-29, 9-27
SET Command .. 11-2
SHRINK Command ... 8-28
SNOOPY Command .. 5-11
Split screen ... 1 -5
Start angle .. 8-16, 8-19
Status messages .. 5-32
STOPS Command ... 5-9
STRING Command ... 8-24
Switches, COPY ... 11-22
SYMBOL Command .. 8-35
SYST AT (System Status) message 5-32

TAB Command .. 6-14, 9-21
TEST Command ... 5-35
Text and commands ... 3-1

UP Command .. 6-5

VECTOR Command .. 8-7
Vector LINE types : ... 8-11
Visual enhancements (attributes) 9-8, 9-1 2
VRULE (Vertical Rule) Command 9-17

Workspace .. 1-5
WORKSPACE Command ... 5-3

IDX-4 @ 4027 PROGRAMMER'S

