REFERENCE MANUAL%

NaturalLink
Window Manager

uuuuuuuuuu

TEXAS INSTRUMENTS

MANUAL REVISION HISTORY

NaturalLink™ Window Manager Reference Manual (2240317-0001)

Original ISSUE......cc.vvviiiiiiiiiie e December 1983
REVISION . ..ot April 1984
ReVISION....ooiiiiiiiiii e November 1984
REVISION .oiiiiiiiiiiee ittt ettt eree e raeerenaeanees August 1985

© 1983, 1984, 1985, Texas Instruments Incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or other-

wise, without the prior written permission of Texas Instruments Incorporated.

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including
TI computers—cannot replace sound judgment nor make the manager's business decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer

application. The manager must rely on judgment of what is best for his or her business.

The system-defined windows shown in this manual are examples of the software as this
manual goes into production. Later changes in the software may cause the windows on

your system to be different from those in the manual.

Printed in U.S.A.

ABOUT THIS MANUAL

This reference manual describes the NaturalLink™ Window Manager and
its associated utilities: Screen Builder, Message Builder, and Message Man-
ager. It also provides an overview of screen management and explains
how to use it.

This manual includes an index and is organized into the following sections
and appendixes.

Chapter 1: Introduction — Introduces the concept of a menu-based, inter-
active interface for the computer user and describes the major compo-
nents and capabilities of the Window Manager and Screen Builder utilities.

Chapter 2: Window Manager Features — Provides explanations of the
formats, attributes, and features associated with windows and items within
windows.

Chapter 3: Window Attributes — Discusses the various attributes that can
be assigned to windows and items and describes their characteristics.

Chapter 4: Screen Builder — Discusses the Screen Builder utility. This sec-
tion also lists the Screen Builder commands and explains how they are
used.

Chapter 5: Message Builder — Discusses the Message Builder and Message
Manager utilities used to create and display text messages.

Chapter 6: Window Manager Callable Routines — Lists the callable rou-
tines that invoke Window Manager, describes the nature of each routine,
and explains the effect each call has on your windows.

Chapter 7: Application Validation Routine — Explains why and when edit
field validation is done and how Window Manager uses the application val-
idation routine.

Chapter 8: User-Defined Windows — Describes user-defined windows and
user-defined messages, gives examples of uses, and explains the applica-
tion calls for these features.

Chapter 9: Internal Phrase Editing — Defines what a NaturalLink internal

phrase is and how the internal phrases can be modified using the Phrase
Editor utility.

NaturalLink is a trademark of Texas Instruments Incorporated.

NaturalLink Window Manager

About This Manual iii

Chapter 10: Window Manager Input Devices — Discusses the Window
Manager keyboard and the functions invoked by it. Explains how to use
the Function Key Change utility to assign Window Manager functions to
specified keys. Also describes input to Window Manager from other input
devices via an application Input routine.

Appendix A: Equipment Requirements — Lists the hardware and soft-
ware required to use Window Manager.

Appendix B: Helpful Hints — Provides further explanations, examples,
and hints on how to use Window Manager features.

Appendix C: Computer-Specific Information — Describes the computers
supported by Window Manager, along with special considerations for each
computer.

Appendix D: C Interface — Presents Lattice C Compiler™ coding transla-
tion tables, routines, and sample link streams.

Appendix E: Pascal Interface — Presents MS™-Pascal coding translation
tables, routines, and sample link streams.

Appendix F: FORTRAN Interface — Presents MS-FORTRAN coding trans-
lation tables, routines, and sample link streams.

Appendix G: Compiled BASIC Interface — Presents coding translation
tables, routines, and sample link streams to be used with the MS-BASIC
Compiler.

Appendix H: Error Codes — Lists error code numbers and messages.

Lattice C Compiler is a trademark of Lattice Incorporated.

MS is a trademark of Microsoft Corporation.

iv About This Manual

NaturalLink Window Manager

The following documents contain information about the Texas
Instruments Professional Computer, the Naturallink software, and the

MS-DOS operating system.

Document Title

Texas Instruments Professional Computer:

Getting Started

Texas Instruments NaturalLink Toolkit
Reference Manual

NaturalLink Technology Workbook

Texas Instruments Professional Computer
Operating Instructions

Texas Instruments Professional Computer
Technical Reference Manual

MS-DOS Operating System

Part Number

2223203-0001

2240316-0001

2243736-0001

2223116-0001

2223216-0001

2223133-0001

NaturalLink Window Manager

About This Manual v

CONTENTS

Paragraph Title Page
1 Introduction
1.1 Menu-Based Interactive Interfacescoocveeiioiiieeciiiiiiiiei e 1-3
1.1.1 Different Types 0f MENUS......cccocoiiiiiiiiiieiceee e 1-3
1.2 WiINAOW MaNAZeYc.coviriiiiiiieciiniient e 1-5
1.2.1 WINAows and [teIMScoovvviriiiiiieieeee e, 1-5
1.2.2 DISPLAYS 1.t 1-6
1.2.3 SCLEEIIS oottt e e e et e e e et e e e e e e e e e eatve e e e e e 1-6
1.3 Screen BUIIAEL ovvveeeeeceieeeeeee et 1-7
1.4 Message Builder.............coooiiiiiiiiiiiii e 1-7
1.5 MesSage MANAZEY ..coovviiiiiiiiiiiiiic et 1-7
1.6 ComtrOl FIOW ..o 1-7
2 Window Manager Features
2.1 INtrodUCHIONooiii e 2-3
2.2 WINAOW TYPES..uteiiiiiieiiiieit ettt ettt eeee sttt sera e nree s 2-3
2.2.1 LISt WINAOW....ooiiiiiiiiiiiiiei et e e ea e e teeereaaeeeseneeens 2-3
2.2.2 TeXt WINAOW ..oiiiiiiiieieeeee ettt eeeeeeeeeeeees 2-3
2.2.3 Display WINAOWcoooiiiiiiiiiiiii et 2-3
2.2.4 Edit WINAOW ...t 2-3
2.2.5 File WINOW ...oiviiiiiii et 2-3
2.2.6 User-Defined WindOWoooviiiiiiee e 2-4
2.3 WINAOW FOIMAtS ...oviiiiiiiiiiiii ettt 2-4
2.4 ABTIDULES oo 2-4
2.5 Controlled Cursor MOVEMENLcoovuviiiiiiiiiiiiiiiieeee e 2-4
2.6 SEArCh FEAUYE ovvvviiiiii et 2-4
2.7 SCrOHING coveiiiiiie et 2-4
2.8 HelD KeY oo e 2-5
2.9 Application-Assigned Function Keys...........ccccoeviiiiiiinininiiiicn e, 2-5
3 Window Attributes
Bl AT DULES e e 3-3
3.2 Window Attributes With String Values...........ccccooieiiiviiniiniiceccee, 3-3
3.2.1 WINAow Label ... et 3-3
3.2.2 File Window Pathname...............c.ccccooiiiiieeeeeeee . 34
3.3 Window Attributes With Numeric Valuesoocoveveoieeeoeeeeeeeeeve . 3-4
3.3.1 WINdow POSItION ..ot 396
3.3.2 WINAOW FOIMAL ..o e 3-6

NaturalLink Window Manager

Contents vii

Paragraph Title Page

3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.25

._
-3

0 00 L0 L8 Lo e Lo L0
wivls e wiv ot L

S nww
— 0N UTL R W N = U W

3.3.
3.3.6.2
3.3.6.3
3.3.6.4
3.3.6.5
3.3.6.6
3.3.6.7
3.3.7
3.3.7.1
3.3.7.2
3.3.7.3
3.3.74
3.3.7.5
3.4

3.5
3.5.1

o

WINAOW TyPe...cooiiiiiiiiii e 3-6
Number of COIUMNSvvviii e 3-7
WIRAOW Priority....ooooiiiioi e 3-8
Multiple-Selection Windowcccccoiiiiiiiiniiiieeee e, 3-8
Pop-Up WINAOWoooiiiiiiiiii e 3-9
Special Repaint on Receivecccooviioiiiiiiiiccccce 3-9
First Item to Be Displayedcccooceiiiiiiiiiiccceceeee 3-9
Show Last ltem When Painted...................ccoooviiiieee 3-9
Center AILTEEMIS oo, 3-10
Don’t Redisplay Current Itemscoccoeeiiviiiiiiiieiieec e 3-10
Disable Multiple-Line [t€msccccoooiiiiviiiiiir e 3-10
Allow Cursor to Enter Windowoooouiiiiiieeeee 3-10
Multiple-Column Orderc.oooveviiioiiioieeie e 3-11
Maximum Item Label Lengthcccooooiiiii 3-11
Item Label Justification...............oooiiiiiiii e, 3-11
Active WINOW ..o 3-11
Number of ltems in Windowcocccoiiiiiiii e, 3-11
Active Window Attributes ... 3-12
Inactive Window Attributes. ... 3-12
Window Label Attributes..........cooovviiiiiiiiiiii e 3-12
Invisible Label ..o 3-12
Label POSIION ...eviiiee e 3-13
Centered Label. ... 3-13
Blinking Label ..o 3-13
Underlined Label ... 3-13
Reverse Video Label................ccccovvieeiiiiiiiiie, SUUUUUUUUTU 3-13
Label Intensity /Colorcccooriiiiiii e 3-13
Use Item INEeNSItYoovieeeiieieeeeeeee e 3-13
Cursor AHTIDULES.....oviiiiiie e 3-14
Size and TYPe...cceeoiiiiiiiciee s 3-14
BInKing CUrSOr ..c...ooiiiiiiiiiiiiiiicicc e 3-14
Underlined CUYSOYoiimeieee e 3-14
Reverse VIdeo CUFSOTooiiiiieeiiiieeeeeeeeeeeeee e 3-14
Cursor Intensity /ColOrcooviviiniiiiiiiinc e 3-14
Use [tem [INTenSItYcoovriiiiiiiiiiiiiiiic e 3-14
Don't Delete CUISOY .uvvvveieeeeieeiieceeeeee e 3-15
Border Attributesveeeeeeeeeeeeeeee e 3-15
Bordered WINAOW........eeeeeeeeee e 3-15
Border Takes UP SPaceoccueeiiiiiiiiiiiiii ettt 3-15
Display Scroll Markerscccovvvviriiieniieiniieeeieenie et 3-15
Reverse Video Border........ooooviiiiiiieiiiiieeee e 3-15
Border Intensity/Colorcccoviviriiiiieniiiiiecienieee e 3-16
Item-Level AtriDUtesoooiiieeeeeeeeee e 3-16
Item-Level Attributes With String Values.............ccooccoiiiiiii, 3-16
Jtem Label. e 3-16

viii Contents

NaturalLink Window Manager

Paragraph Title Page
3.5.2 eI T Xt e 3-16
3.6 Item-Level Attributes With Numeric Values............ccccccoovvicemmiie, 3-16
3.6.1 [tem-Format Attributes...........ccooiiiiiiie e 3-17
3.6.1.1 VISIDIE .o e 3-17
3.6.1.2 UNSElECtable.o 3-17
3.6.1.3 Displayed. ... s 3-18
3.6.14 Maximum Edit Field Lengthcccccooiiiiii e, 3-18
3.6.1.5 Edit Field Datatypec.cooveviieieieeecee e 3-18
3.6.1.6 Required Edit Field ..o 3-18
3.6.1.7 Echo Edit Field INput.........c.ccoooiiiiiiiieeec et 3-18
3.6.1.8 Chosen/Enable Attributecccovvvvviiiiiiiii e 3-19
3.6.2 Item-Chosen AttribULESooiiiiiiei e 3-19
3.6.2.1 Blinking Chosen Item..........ccooovieiiiiiiiiieieesee e, 3-19
3.6.2.2 Underlined Chosen HemMcccooiviiiiiiiiiieeeeeeeee e 3-19
3.6.2.3 Reverse Video Chosen Itemcccocoooveiiiiiiiieciii e 3-19
3.6.2.4 Chosen [tem Intensity /Color........covevviiviiioieeiiie e 3-19
3.6.3 Item Label Attributesccovvvvvieiiiiieieie et 3-19
3.6.3.1 Blinking Label ... 3719
3.6.3.2 Underlined Label ...t 3-19
3.6.3.3 Reverse Video Label ..o 3-19
3.6.3.4 Label Intensity/Color ..ot 3-19
3.6.3.5 Use [tem INTENSIEY .eooovveeiiiiieeie ettt 3-19
4 Screen Builder
4.1 Using Screen BUuilder ..ot 4-3
4.2 Screen-Level COMMANASccooviiiieiiiiiiicieeeceee et 4-4
4.2.1 Edit WINAOW ..ottt eeeae e 4-4
4.2.2 Add WINAOW ..o, 4-5
4.2.3 COPY WINAOW ..ottt 4-5
4.2.4 INSErt WINAOWooooiiiiiiiiiiieee e 4-5
4.2.5 Delete WINAOW.....ooooiiviiiiiiiieeeeeeeee e, 4-5
4.2.6 Change Help File.....oooiii e 4-5
4.2.7 DYQW SCIEEIM....ooiiiiiiiiieieeee e 4-6
4.2.8 T @St SCI@EIM ..o et en et ae 4-7
429 LOAA SCIEEM ..o e 4-7
4.2.10 SAVE SCIEEIN ...evvviieiee ettt e e e e e e e e e et et e s e e e e e e e e s naen 4-8
4211 List Screen AtYIDULES........vvviiiiieiieeee e, 4-8
4.2.12 B X e e 4-8
4.3 Window-Level COmmMAaNdS...........ooeiivviiiiieeee e eee e 4-9
4.3.1 Set WIindow PoSItiON ..., 4-10
4.3.2 Set WIindow FOrmatcooooiiiiiie e 4-10
4.3.3 Set Inactive Window Attributes.......ooooomveieeeeeeeee e 4-10
4.3.4 Set Active Window Attributesc.ooovviviieiiiiee e 4-10
4.3.5 Edit WIindow Label ... eeee e eerins 4-11

NaturalLink Window Manager

Contents ix

Paragraph Title Page
4.3.6 Set Window Label Attributes..........cccooviiiiinieiiccccec i, 4-12
4.3.7 Set Cursor Attributes........cccooeviiiiriiic e 4-12
4.3.8 Set Border Attributesccccoooiiiiiiiieei e 4-12
4.3.9 Attach Help to WIndOW..........ooociviiiiiiiiiccecccc e, 4-12

4.3.10 Edit [tem Table.....c.ccooiiiiiiii e 4-13
4.3.11 Draw WINAOWoooiiiiiiiieiee et ev s 4-13
4.3.12 Test WINAOW ...oooiiiiiiiniiicieee et s 4-13
4.4 Ttem-Level CommMandsccccoceviiiieviiiiiiiii et 4-13
4.4.1 Edit tem TeXt....ccoiiiiiiiieee e 4-14
4.4.2 Set [tem AttFIDULESooviiiiiiieii e 4-15
4.4.3 Edit [tem Labelc.cooiiiiiiie e 4-15
444 Set Item Label AHributesoccoeeiieeiiiiieiecc e 4-16
4.4.5 Add, Copy, Insert, and Delete Itemccccoeuveereeiiiiiieciieecee e 4-16
4.4.6 Attach Help to Item.......cooovviiiiiie 4-16
4.5 The HelP File coviiieieci et 4-16
4.5.1 Changing the Help Filecocoooviiiiii e 4-16
4.5.2 Setting a Path for the Help Filecc.cooovviiiiiiiicce e, 4-17
4.6 Attaching Help to Windows and ltemscc.ccoeoiiiiiiniinncicce 4-18
4.6.1 Add Help Message to List........ccooiiiirireiiiiinieeiee e ...4-19
4.6.2 Insert Help Message Into Listccoccooiiiiiiiiiiniie e, 4-20
4.6.3 Delete Help Message From Listcooceeooiriiiniiiiiii e, 4-20
4.6.4 View Help MeSSAZEe ...ccccvvieiiiiiiiieeie ettt et 4-20
4.6.5 Specify Help MeSSage.........ccivvviiiieiiiieii ittt ettt 4-20

5 Message Builder

3.1 Using Message Buildercccoociiiiiiiiiiiiccee e 5-3
5.2 Message Builder OpHONS.........ccoeviiiiiiiieecieie e 5-3
5.2.1 Add MESSAGEevveeeiiiieiiie et e e e rtre ettt e str e et eene e eeans D7D
5.2.2 MOAIfy MESSALEcoviiiiieieieeiiecie ettt 5-6
5.2.3 Rename MesSage......ccoooviiiiiiiiiiiie e 5-6
5.2.4 Change Message Type/Classc..ccvocueeeiiriieiiiecieeie et 57
5.2.5 COPY MESSAZE......eeiuiieeiiiiiiiiteeee ettt stee et st sebeee e sieeeeennaeeen s D= T
5.2.6 ReUSE MESSAZEoovuiieiiiiiiiieite ettt ettt s 5-7
5.2.7 Specify Window Coordinates..........coceovveecieiinenicnenenceeeenceieee 5-7
5.2.8 Delete MESSAZE.c.vviieiieeiit ittt e st e s sbaee s ra e seen s 5-8
529 VIEW MESSAZE ..cniiiiiiiieeiiiiie ettt ettt et et e 5-8
5.2.10 LISt MESSAZES . envieiiieiie ittt sttt et s e e teebee e as 5-8
5.2.11 QUIL ettt ettt s be et e st eene et e ennenneas 5-9
5.3 Default MesSage.....cooii ittt ne e D7D
5.4 Using Message Managercocucvuieiirieiiiieienciiesreeee st site s eenens 59
5.4.1 Variable TeXt......coviiieeiieicee et st 5-10
5.4.2 Message Manager EXTOrSccccovcviiiiiiriinie e srneecnee e e e eeeeeeines 5-11

x Contents

NaturalLink Window Manager

Paragraph Title Page

6 Window Manager Callable Routines
6.1 Procedure Calls..........coooviiiiiiiiieeeeieeee et 6-3
6.1.1 Initialize Window Manager...........cccoveiiirirniennie e 6-3
6.1.2 Load SCreen File......oooiiieee ettt 6-4
6.1.3 AdA WINAOW ..ot e 6-4
6.1.4 SElECT WIIAOW ...evviiviiiii ittt eeeeeesree e e e e e esear e e e e e e e eeeiasaseaeeesaans 6-4
6.1.5 Refresh WINAOWoooveiiiiieeie e 6-5
6.1.6 Display WINAOWoouiiiiiiiieiiiiicceeee ettt s ee e e 6-5
6.1.7 Receive From WINAOWoooviiiiiiiiiiieieceeeee et 6-5
6.1.8 Release WINAOW..........oooiiiiiiiiiiie ettt e 6-6
6.1.9 Delete WINAOW.......oooviviiieiiieieiitieeivtvvitenarseeeeeeeseneeessssreeessaseeenees 6-7
6.1.10 SAVE SCIEEIN ...ttt e e e e eee e e e s e sees e aaasansssasesnstasnsnnsessennnnranes 6-7
6.1.11 UNIOAA SCIEEIM ..ovvveieiiiiiie et e 6-7
6.1.12 Reset Window Managerccoeoiieiiiiiieieneeeeece et 6-7
6.1.13 J- N s N £ <1 s DR USRS USUREUTRUUURSTURURN 6-7
6.1.14 INSEIt IEEIMI oo e e e6-8
6.1.15 DElete IEEIM ..coiiiiiiiiiieee ettt 6-8
6.1.16 Create [tem Table........ooovii e 6-8
6.1.17 Create WINAOWeoeiiiei et e e e eaens 6-9
6.1.18 Get Attribute Value ...t 6-9
6.1.19 Get String ValUe ..ot 6-9
6.1.20 Set AtEIDULE VAlUC......oooiiiiiiiiiiieeeeeeeee e 6-9
6.1.21 Set String ValUueoooiiiiiiie ettt 6-9
6.1.22 ClEAL SCIEEI c..eeeivvveiee ettt eesaet e e e e e s et barae s e s s s eesabrreeses 6-9
6.1.23 Display Message From Message Managerc.ccoccceeevereevveceennnnen. 6-10
6.1.24 Reset NaturalLink MemOYY........ccvviviveeiiiiiiieiiieeccece e 6-10
6.2 Typical Calling SEQUENCEccccviiiiiiiriieiiieeit ettt eee e sbe e s e 6-11

7 Application Validation Routine

% I B <3 11114 (o) ¢ DR O RO PP SOTURRR RPN 7-3
7.2 Usesfor the ROULINE ...cooovvviiiiiiiiiieeee et 7-3
7.3 When Validation [SDONEc.ooiieeiiiiiie e 7-4
T4 HOW JEWOTKS...ooiiiiiiiiieccrei ettt ettt stae e sae s eae e enes 7-4
7.5 Parameters and Return SAtUSc.ovvviiiieeiiieeee et 7-5
7.5.1 Datatype Parameter.........ccocoeviiiviriienniieeiiecie et 7-5
7.5.2 Return Status for Validation Processc.cooovvvvviiiiiviiicciiiieiieieeeeeenen, 7-5
7.5.3 [tem Number Parameter............ccoovvvveiiiieiiee e 7-6
7.5.4 Typical Algorithm for Validation Codecccoeeiivviiiicvvinicciiniene, 7-7
7.6 Restrictions on Use of Validation Routineccccooovviveiiioccoiieeen., 7-8
7.7 Dummy Validation Routineccccooviiiiniiniiiiiec e, 7-8

NaturalLink Window Manager

Contents xi

Paragraph Title Page
8 User-Defined Windows
8.1 INtrodUCHION ..ottt 8-3
8.2 FUNCHONALILY .oovviieiiii e et 8-3
8.2.1 Specifying @ UDWcccoiiiiiiiiiic ettt 8-3
8.2.2 How UDWs Work With Window Manager Run Time...........c................ 8-4
8.2.2.1 Receive Call.......covieiieeeieeieecree e 8-4
8.2.2.2 Display Callcooiiiiiiiiiee e e 8-6
8.2.2.3 Delete Call....cooiiiiii e 8-6
8.2.2.4 Other WM calls.......co. ittt e 8-7
8.3 User-Defined MeSSAZEScccccveviiereeiie ittt e e e 8-7
8.3.1 Specifying the MeSSagecccvvvvviireriieiiiecieeec et 8-7
8.3.2 How the UDM WOIKScooiiiiiiieeeeeeeee ettt 8-7
8.4 Uses for UDWS/UDMS.........cooiiieeiiieeiiecite ettt rae st stee e 8-8
8.4.1 Graphic Title WIndOWcoocueeiiiiiiiiiiiiieeceeceee e 8-8
8.4.2 Command WINAOWcoociiiiiiiiiii et e 8-8
8.4.3 Selection From [CONS........ocoiviiiiiiie e 8-8
8.4.4 Graphical Help MeSSagescoviiiieiiiiiiiieceeecee et 8-8
8.5 UDW/UDM Application Callscccecvveviiiiiieiiiiiiiiieceecie e 8-9
8.5.1 Application Receive Call........ccoooiiiviiiiniiiiecr e 8-9
8.5.2 Application Display Call..........cccooceriiiiniiiieiieeee e, 8-10
8.5.3 Application Delete Callcccooiiiiiiiiieiieeee e 8-10
8.5.4 Application Message Manager Call..........cccccoooiiviiiiiiiiiniie e, 8-11
8.6 Making Window Manager Calls Inside a UDW Routinec.......... 8-11
9 Internal Phrase Editing

9.1 INtFOAUCHION ..ottt et ettt 9-3
9.2 Examples of Internal Phrases...........cccoccoiiiiiiiiiiiniice, 9-3
9.3 Modifying Internal Phrasesc.cccccoceevieiiieiiininiiciiiiiiccicicc e, 9-4
9.3.1 Modifying Phrases Before Linking the Applicationcccc.co.... 9-4

9.3.2 Modifying Phrases Using a Phrase Input File
(Phrase Editor ULility)........cccovviiiiniicnininiiiiicicc 9-4
9.4 USING PBUILDcotiiiiieeieee ettt et s 9-5
9.4.1 Phrase Editor COmMMAandscocvieerirrniiiieniee i seeeeeiee et e s e 9-5
9.4.1.1 Edit a PRraseoooovviiieiiiiiiieeeecec e 9-6
9.4.1.2 Restore Default Phrases...........ccovvvvveeeiiiieeniiiieieieeieeece e 9-6
9.4.1.3 Print Phrases to Filecovveiriiiiiceccec e 9-6
9.4.1.4 Save Phrases to Filecccoviiiiiiiriieeeitee e 9-7
94.1.5 EXIt oottt ettt er ettt et et s e ere e enn e b et n 9-7
9.5 Usage of the NLXPHRAS.INMS$ Fileccoooiiiiinii 9-7
9.6 Listing of Internal Phrases.......c..c..coccevvvvinivinininiiiineieenen, 9-7

xii Contents

NaturalLink Window Manager

Paragraph Title Page
10 Window Manager Input Devices
TO.T OVEIVIEW ettt ettt ettt e e st e st eete e saseesareeentreannnes 10-3
10.2 Window Manager Keyboard Inputc..cccovvviiiviiiniie i 10-3
10.2.1 Window Manager Keyboard Input Valuesccccooveiinvnnnniiinnnnn 10-4
10.3 Window Manager Input Default Functions...........cccoccoevieniiniicvincccnne, 10-4
10.3.1 Select — Default: ENTER KEYooeevveiveiiiiiieccincecceene e 10-7
10.3.2 Proceed — Default: FIOKeYccccoovvirienieniececeeerece e 10-7
10.3.3 Page Scroll — Default: F1 and F2 Keys..........cccocveviecvennicriineninee e 10-7
10.3.4 Help — Default: FTKeY.....c.ccoccovviiiiiiieeeesteeece e 10-8
10.3.5 Backup — Default: F8 Keycccoevieinieiiiiininiisencereeee e 10-8
10.3.6 Next Item/Line Scrolling — Default: Arrow Keysc..cccoovevennne. 10-8
10.3.7 Move Right/Left One Item — Default: TAB/SHIFT-TAB key 10-9
10.3.8 Top/Bottom — Default: HOME K€yccccoovviiviieciccicirecir e 10-9
10.3.9 Next Window — Default: CTRL-L/R Arrow Keys and
CTRL-PUp/PGDn Keys....ccvvieieiieeeececcce e 10-9
10.3.10 Next Active Window — Default: CTRL-HOME Key...........c..ccoeevnn..n. 10-9
10.3.11 Move to Start/End of Line — Default: CTRL-F1/F2 Keys..................... 10-9
10.3.12 Move Left or Right One Word — Default: CTRL-F3/F4 Keys 10-9
10.3.13 Insert — Default: INS Key.....cccoooiiiiiiiieee et 10-10
10.3.14 Delete — Default: DEL Keyccccceeiiieniinieieece e, 10-10
10.3.15 Delete From the Cursor Out — Default: CTRL-F5 Key....................... 10-10
10.3.16 Backspace — Default: BACKSPACE Key...........cccoceeeieciiiveceerecnene. 10-10
10.3.17 Printable Keys — Default: Keys With Key Codes Between
O0H and FFH ..o 10-10
10.3.18 Using Printable Keys in the Search Mode..............cccccoviviiinnnnnnnn, 10-11
10.3.19 Input Unknown to Window Managerccccocevieerieecicecneeneeneann. 10-11
10.4 Changing Function Key Assignments...............cccccooveeveemieecicenrecen, 10-11
10.5 Application Input ROUtine..........ccoccuevvieviioieciiiiiceecececee e, 10-13
10.5.1 Definition and USE.........ccccoeviviiiiiiiiie et 10-14
10.5.2 APPINP Return Codeoocovieeiiiiiiiiieeeeeee e 10-14
10.5.3 Dummy APPINP Routine.........ccccccoovvieniiiiiiceciceceeeeeee 10-14

NaturalLink Window Manager

Contents xiii

Paragraph Title Page

A Equipment Requirements
A.l Equipment Requirements..........cccocciiiieiiininiiieeecis e A-3
Al.l Equipment Necessary for Interface Developmentc...ccoevveenne.. A-3
A.l.2 Equipment Necessary for User Operation..........ccccceeveveeeeiieeccnieeeenneennns A-4
B Helpful Hints

B.l INtrOAUCHION ..ottt ve e sttt enee B-3

B.2 WINAOW TYPES oottt ae e evae e B-3
B.2.1 LiSt WIRAOWS.....oeeiiiiie ettt e et B-3
B.2.2 TeXt WINAOWS....ooiiiieeiieeiiceeiiceit ettt ettt e eaveseenaees B-4
B.2.3 Display WINAOWSooviiiiiiiieieieec ettt B-4
B.2.4 Edit WINAOWS ...iiceiieeiiieeiee ettt e eavae s B-4
B.2.4.1 Maximum Edit Field Length................occooiiiiinnn. s B-4
B.2.4.2 Required Edit Field.........ccoevieeiiiciecceeeece e B-5
B.2.4.3 Echo Edit Field INputcoooooiiiiii e B-5
B.24.4 Multiple Selection in an Edit Windowccccccoeevivivviieiic i, B-5
B.2.5 File WINAOWS ...ooveiiiieiiie ettt B-5
B.3 WIndow Labels.........ccooiiiiiiiii e B-6
B.3.1 Top Window Label ..., B-6
B.3.2 Bottom Window Label...........ccoocoiiiiiiiniiie e B-7
B.3.3 Left Window Label.........cocooiiiiiiii e B-7
B.3.4 Right Window Labelcccc.coooiiiiiiiniiieeteee e B-7
B4 Window FOrmats.......cooouiiiiiiiiiiiiiececte e B-8
B.4.1 Single-Column FOrmat........ccooouiviiiiiiiiiiiiec e B-9
B.4.2 Multiple-Column Formatcccooiiiiiiiiiiiieccee e B-9
B.4.3 Free FOrmatt B-10
B.5 Item Labels.....ccovioiiiiiieieeec e e B-11
B.5.1 Maximum Item Label Length ..o, B-12
B.5.2 Left-Justified Labelscccooviiiiiiieee e B-12
B.5.3 Right-Justified Labels...........ccocciiiiiiiiieee e, B-12
B.5.4 Free-Format Labelsccccooiiiiiiiiiiiiiiecr e B-12
B.6 Special Window Manager Features...........c.ccoocevveiniiniienicenri e B-13
B.6.1 Use of Borderless Windows and Multiple Window Effects................... B-13
B.6.1.1 Adding Multiple Windows in Orderc.ccooveeriiiiineiinnienniicnnne B-14
B.6.1.2 Reasons for Using Multiple Windows.........ccccccveevvviiiniiiiecennnnnne. B-14
B.6.2 Use of Display WinAOWScoeiioiiiiiiiiiiecieee ettt B-15
B.6.3 Creating and Using Blank Linesc.cccocoiiiininininniicecen. B-16
B.6.4 Unselectable [TeMS.......oooiiiiiiii e B-16
B.6.5 Use of Invisible [tems ..o B-17
B.6.6 When to Use Multiple-Selection Windowscccceevieneenieeneennieene B-17
B.6.7 Simulating a Multiple-Selection Windowccceccevvivciennnniiennncnne. B-18
B.6.7.1 Using the Chosen/Enable Item Attributeccccoeeiiniinnnnne B-18
B.6.7.2 Simulating Cursor MOVementccocccevvieeiniienieiniieneereeeee e B-19

xiv Contents NaturalLink Window Manager

Paragraph Title Page
B.6.7.3 Using the Don’t Redisplay Current ltems Attribute........................ B-19
B.6.7.4 Using the Displayed Attribute.............cccoconiiiiniiiee B-20
B.6.7.5 First Item to Be Displayed..........cccooeiviieeiiniiiieiieiece e, B-20

B.6.8 Using Windows for More Than One Purpose...........cccccoovviciinnnenn. B-21
B.6.9 Special Repaint on Receivecccoiiiiiiiiiiiiiencec, B-21
B.7 Designing Screen Files..........co.coooiiiiiiniiiiiii e B-22

C Computer-Specific Information

C.1 INtroduUCtionooveeciiiii et C-3

C.2 Computers SUPPOIted.........ccoceviiiiiiiiiiiiiiitrcrere e C-3
C21 List Of COMPULEIScccvviiiiiiiieiieiete et C-3
C2.2 Machine Detection.........coccviiieiieiiecct e C-3
C.3 TICOMPULELS...cuiieieiit ettt et ettt eenas C4
C.3.1 TI BUSINESS-PRO™ COMPULEYc.cooiiiiirieiiieieeeieiece e C4
C3.2 TIPC/TIPPC Function Key Differences.................ccccccccevvvicnnniice.C-5
C.3.3 TIPC Character Codes..........ocviriiiriiieieeieeeeceeeeeeeee e C-5
C34 TIPRO-LITE™ COMPULETc..ooiiiiiiiiiieiieiecieceeeie e C-9
C.3.4.1 Considerations for TI PRO-LITE Computerccccoeeeniinnne.n C-11
C.3.4.2 LCD FLAG .ottt C-12
C.4 IBM® PC,PC/XT™, and Personal Computer AT™cccovvevveviennes C-12
CA4.1 UnNderliningcoocveiiiiiiie e C-12
C4.2 Reverse VIOcocuiiiiiiiiii et C-13
CA4.3 Intensity /Colorcooiiiiiiiiie e C-13
C44 Cursor AttriDULESc..ooviiiiieie et C-13
C4.5 KeY COALS ...t C-13

D C Interface

Dl INtrOdUCON c..oouiiiieiiiece e et D-3

D.2 Parameter CharacteristiCs..........ccocovveiiiiieioiiiiiceececeeece e D-3
D.2.1 Zero-Base Values...........c.cocooiviriininiiieieeecceeeeeeee e D-3
D.2.2 INEEGOIS .. D-3
D.2.3 Character Strngs.........coooiiiiiiieece e D-3
D.2.3.1 Passing Strings to Window Manageroccooeeveoviviiiiiiiec. D-4
D.2.3.2 Strings Returned by Window Managercocooovvoeoveneneen. D-4
D.3 Callable ROUNEScooiiiiiiiiiiiccc e D-5
D.3.1 Function Return Codes.........o.cooviiioiiiiiiicicicccceee e, D-5
D.4 Routines Called by Window Managerc.ocoooveeeeeeooeeeeeeeserae D-14
D.5 CCompiling Requirements.............cccoocooivioiiiieeoeeeeeeeeeeeeeeeeeeeeee D-17
D.5.1 Include File ..o D-17
D.6 Memory Considerationsc.coceovoieiiieiiiieeies e D-19
D.7 Linking Considerations..............oc.oooviviiioiiioeeeeeeeeeeeeeeeeeeeeeeeeeee e, D-20

NaturalLink Window Manager

Contents xv

Paragraph Title Page
D.7.1 Memory Model Differences.............cccooveeviiiiioiiiiieceeeeee e, D-21
D.7.2 Dummy Routines Library...........ccocooevviiiiioniiiieecce e, D-21
D.7.3 WMKEYDEF.OBJ and WMSTRDEF.OBJ Filesccocoovvvvvinennennl. D-21
D.7.4 Object Code Segmentscccoeeiiiieiienieieeieceeeete et D-22

D.8 ReStHICHONS «eooiiiiiiiiieitee et D-22

E Pascal Interface

E.l Introduction........oooiiiii e E-3

E.2 Parameter Characteristicscoociviiiiiiiiinie e E-3
E.2.1 Zer0-Base Valuesccoooiiiiiiiiiiii e E-3
E.2.2 INEEGOIS oot e E-3
E.2.3 Character Strings ettt ettt et et e e e b e e s e e taeerraeetbeeereeenneens E-3
E.2.3.1 Passing Strings to Window Manager...........c.cccccovvveivviiiicccecnneecnn, E-4
E.2.3.2 Strings Returned by Window Manager...........ccoccooovviiieiiiiiiee e, E-4
E.3 Callable ROUINESoooviiiiiiiciie e E-5
E.3.1 Function Return Codesccooiiiiiiiiiiiiiin e E-5
E.4 Routines Called by Window Managerc.cccccccovvvviniiiecciee e E-14
E.5 Pascal Compiling Requirements........ccc.ccoceviiiiiniiniiniiiiiecccens e, E-17
E.5.1 Include Files ... E-17
E.6 Memory Considerations........ccoccveeeeciiieiniiir e e E-19
E.7 Linking Considerationscccccccviviiieciiiiniiie e eteeesiee e e e E-20
E.7.1 Dummy Routines Libraryccccoooivriciiie e E-20
E.7.2 WMKEYDEF.OBJ and WMSTRDEF.OBJ Files........c..ccococviiniiieiinnnn, E-21
E.7.3 Object Code SEgMENtS......cccciiiiiiiiiiieerieiiee ettt srree b E-21
E.8 ReSIIICHONS ...iiiiiiii ettt e e e s bea e e E-21

F FORTRAN Interface

F.l INtrOQUCHION ..ottt ettt sbae e s e e s easaeeenvae e srtaeenn F-3

F.2 Parameter CharacteristiCsccoccooriiniiineniiiic et F-3
F.2.1 ONe-Base ValUescccooiiiiiiiiee ettt F-3
F.2.2 Y 1Yo T OSSPSR U PSS F-3
F.2.3 Character STHNGS ...ooovuiiiiiiieie et F-3
F.2.3.1 Passing Strings to Window Managerccccoovveviiiiienicnnniiiiniien, F-4
F.2.3.2 Strings Returned by Window Managercccccoccniiniiiiinnnnnnn F-4
F.3 Callable ROUNES.......oooiieiieeie ettt F-5
F.3.1 Function Return Codesouiiiiiniiiiiiiieeieinee e F-5
F.4 Routines Called by Window Managerc..ccccoceeiniiniinininniinnnnn, F-14

F.5 FORTRAN Compiling Requirements............c.c.cccecvevinnininninininiinnnne F-17
F.5.1 Common Blocks and Include Filescccocovevinincinenneniciiicinns F-17
F.5.2 Initialization of Window Managercccccevveevienienenienienniccieinennnns F-17
F.6 Memory Considerations...........ccccoooviiiiiiiiiiiiiiieccic e F-20

F.7 Linking Considerationsccccccooiiiiiiiiiiniiiiiceee F-21
F.7.1 Dummy Routines Library ... F-21
F.7.2 WMKEYDEF.OBJ and WMSTRDEF.OBIJ Files........cccccocieeiinninninin F-21
F.7.3 Object Code SEZMENTScccuerieiiiiiiiiiiiiiiiieee e F-21
F.8 RESLIECHONS .c.viieteiiiieitiiccieeetteeie et ie ettt et cvee e e srassbe s sia e siassan e F-22

xvi Contents

NaturalLink Window Manager

Paragraph

Title Page

G Compiled BASIC Interface
Gl INtrOdUCHON ...ooiiiiiiiiieee et et e G-3
G.2 Parameter CharacteristiCscccoeeruiririieneenierieieieee e G-3
G.2.1 7.e10-Base ValUesccceeeiiiiiiiiiiiiii ettt G-3
G22 Names of Variables...........ocoooviiiiiiiii e G-3
G.2.3 INEEGEIS ..ottt G3
G.2.4 Character Stringsccoociiiiiiie et G-3
G.24.1 Passing Strings to Window Managercccocoevvvvvvievennsieeeeienenne G4
G.2.4.2 Strings Returned by Window Manager..........c..cccoevveiievecrieneenen, G4
G.3 Callable ROULNESccccvveiiieiiieieeiecr e e G-5
G.3.1 Procedure Return Codesccooviiiiiiiiiiiiicceeee e G-5
G.4 Routines Called by Window Managerccccevevvevvieviieceniccceeereeenenn G-15
G.5 BASIC Compiling Requirementscccceecevvvivieeinienienieieceeceeeeeine G-22
G.5.1 INCIUAE FileS....ooioiiiiiiiiir ettt e G-22
G.6 Memory Considerationscccvivvvieiiiiriniiieeiee e et G-25
G.7 Linking Considerations.........cc.ccovcveriiiierieeiicie et G-26
G.7.1 Dummy Routines Library..........ccooeiiiiiiiiiieee e, G-26
G.7.2 WMKEYDEF.OBJ and WMSTRDEF.OBJ Filescccccveveviveiennnee. G-26
G.7.3 Object Code Segments...........cocceeiiiiiieiieiie et G-26
G.8 RESHICHONS .ottt e G-26
H Window Manager Error Codes
Index

NaturalLink Window Manager

Contents xvii

Figure Title Page
Figures 1-1 Example Menu — Window Manager Reference Manual Topics................ 1-4
1-2 Example WINAOWcooviiiiiiiiinii ettt sree s e s e ean e 1-5
1-3 Screen and Message Definitionccccccvveriiniiiinniiennicc e 1-8
1-4 Interactive Screen Management.......c...cccveivvciiriiiiiineenniiiee s eeccereee e 1-9
4-1 Screen Builder Main Menu — Screen Commandsccocccoeceeeovreninennne. 4-4
4-2 WiIndow LevVel MEMUccccovviiiiiiiiii ettt see s snnee s 4-9
4-3 Ttem-Level MENU......ccccoviieeiiieeciiiecieeeere ettt sttee e re e st vaeesasbee e aaeas 4-14
4-4 Attach Help Messages Menucccoceeennennnne e 4-19
5-1 Message Builder UtIYc.cooiiiiiiiiiiiii e 5-4
9-1 Internal Error MeSSage.cocueiieiiiiiiiiiiniie ettt 9-3
-2 HelP MESSAZGEvieceiviiiiieeiiee ettt ettt es et v e st e e s e e sbeaessereeasabeessane 9-4
9-3 Phrase Editor Commands SCreeNcceccuvrieieiiireiiireeiiee v eeseessvneesans 9-5
9-4 Enter Phrase Pop-Up WINdOWccoociiiiiiiiiiiinri e 9-6
10-1 KBUILD ULty MENU....ccocciieeeeiiiiiiieeceiee ettt a e 10-12
B-1 Window Label POSItIONSccooooiiiiiiiiiiiiiiieiiie e B-6
B-2 Window Column Formats..........ccoeceiiiiiniiiiiicc e B-8
B-3 Item LabelS......ccoooiiiiiiiiie e e B-11
B-4 Window Label AHIibULES......occoeiiiiiiiieeiie e B-13
B-5 Invisible BOrdersccocoooiiiiiieiiieeceee e B-14
C-1 TIBUSINESS-PRO™ Professional Computer U.S. Keyboard...................... C4
C-2 TIPCU.S. Keyboard Layout and Scan Codescccceceereenrinieniiinnniicnins C9
C-3 TIPRO-LITE™ Computer U.S. Keyboard..........c.cccconiiiiciinnniiiiinnnnne. C-10
C-4 IBM® PCand PC/XT™ U.S. Keyboard.......ccccoooiriiieniieniiniieccniceneeen C-14
C-5 IBM Personal Computer AT™ U.S. Keyboardccocovvviveiiniiiininnn. C-14

xviii Contents

NaturalLink Window Manager

Table

Title Page

Tables

WINAOW-LeVel ATIDULESeeeeeeeeeeieeeeeeeeee e e e eeeeseeeeeeeseenaes 3-6
[tem-Level AHYTDULEScovvviieiieeeeee et 3-17
Window Manager Internal Phrases That Can Be Modified......................... 9-8
Default Keys in [nactive Windowscccoocviciieciiniieciccieeceesiecee e 10-4
Default Keys in Active Windowscccocoeveevmniiiieniciceceeeeseeeeeen 10-6
TI Computer Function Key Differencesc..cccc...... SRR C-5
Standard U.S. Keyboard Character Codesccoeoenereneinnieneneneencnn, C-7
Key Codes for the IBM Personal Computer.............occeovenivienininennnnnns C-16
CINterface ROULINESuvvviiiiiiiiiiiiicceceee ettt eeeeeeee e e e eves e e e reaee D-6
Application-Provided ROULInESccoeriieeiieiiecieieecec e D-14
C Data Declarations for Window Attributesccceeeeeeeeeevoieeeeeeeeeeeen. D-17
Pascal INterface ROULIMES......uuveeeeeeeeeeeeeee et e e e e eeeeeeeeeaans E-6
Application-Provided Routines...........ccccoccvveeeecieiiiiicciieeceee e E-14
Pascal Data Declarations for Window Attributes.........cccoevvveeeeevevveennnn.. E-17
FORTRAN Interface ROULINES ...cooveeviiiieeieeeeeeieeeeee e eeeeeeeeeeane e e e F-6
Application-Provided Routines............ccccocuveevninenincnincininiccceeeeni F-14
Data Declarations for the FORTRAN Interface......occcoveeeeevveeeeeeveennann, F-18
Compiled BASIC Interface Routines.............ccccoceevieiiviiieieiieiciccceen G-6
Application-Provided Routinesc.ccccoevevviiiciiniiiieceeecee G-19
Data Declarations for the Compiled BASIC Interface..........c..cccocuo........ G-23

NaturalLink Window Manager

Contents xix

INTRODUCTION

Paragraph Title Page
1.1 Menu-Based Interactive Interfacesccoceveiiniiiieciiiniccieceee, 1-3
1.1.1 Different Types of MENUS.........cooceeiiiiiiiiiie e 1-3
1.2 WiIndOW Managercocceieiiiiiiiiiniieiteicnitcsrent ettt a e s 1-5
1.2.1 Windows and [temMS...........oeeevieiiireiieeeeeceeeee et 1-5
1.2.2 DISPIAYS «eeteeieee et 1-6
1.2.3 SCIEEMIS ...ttt r s b et e 1-6
1.3 Screen BUildercoocoioiiriiiiiiiiiiiei e 1-7
1.4 Message BUIler.........coocieiiiiieeeeceeeere e et 1-7
1.5 Message Managercccooviiicrieieeiieeeie ettt ettt e 1-7
1.6 Control FIOWcoooiiiiiiiee ettt 1-7

NaturalLink Window Manager

Introduction 1-1

Menu-Based
Interactive
Interfaces

Different Types
of Menus

1.1 NaturalLink Window Manager and its associated utilities,
NaturalLink Screen Builder and NaturalLink Message Builder, are software
tools that can be used to create and control menu-based interfaces to appli-
cation programs in an interactive computing environment. Although the
use of menus is common in interface design, the Window Manager and
Screen Builder utilities simplify both the creation and use of menus.

1.1.1 A variety of menus can be produced with these NaturalLink soft-
ware tools. The simplest menu presents a list of options to the user from
which items can be selected by placing the cursor on the choice desired
and pressing the ENTER key. Window Manager passes the selection to the
application program, and the application program performs the action
requested.

More sophisticated NaturalLink menus can request a user to type specific
data or to construct a command sentence using nouns, verbs, objects, or
other sentence elements selected from interactive menu lists. Areas in the
menu can be used to display information for improved user understanding.
The application designer can add a Help message to the menu and Win-
dow Manager will display that message at the touch of a key. In addition,
Window Manager can display special messages, designed with the aid of
Message Builder.

Window Manager is also flexible in the way it can present menus. The full.
use of color and special attributes, such as blinking, underlining, and
reverse video, are available.

The menu in Figure 1-1 illustrates how you could use Window Manager
and Screen Builder to present the topics in this manual.

NaturalLink Window Manager

Introduction 1-3

Figure 1-1 Example Menu — Window Manager Reference Manual Topics

WINDOW MAWAGER REFERENCE MANLAL

Chapter Topic

1 Introduction

¢ Window Manager Features

3 Window Attributes

4 Screen Builder

] Message Builder

B Window Manager Callable Routines
7 Window Manager Validation Routine
B Uzser Defined Windows
S Internal Phrase Editing

1 Window Manager Input Devices

Put the curzor on the desired topic and press the ENTER key to select it.

You can design, view, and test this menu using Screen Builder. Window
Manager, in turn, controls the interaction between the user and the
application program for which the menu was created. This includes cursor
movement, scrolling of the window contents, topic selection, and
displaying of messages built with the aid of Message Builder. The menu
can easily be modified to achieve the results desired for a specific
interactive environment. In short, Window Manager, Screen Builder, and
Message Builder are versatile tools for producing NaturalLink Interfaces.
The rest of this chapter describes the specific elements of these tools in
greater detail.

1-4 Introduction NaturalLink Window Manager

Window
Manager

Windows
and Items

1.2 NaturalLink Window Manager is a screen management system that
controls the interaction between an application program and a user. Win-
dow Manager accepts input from the user through windows, window dis-
plays, and screens, and either sends data to the application program for
further processing or displays a response to the user.

1.2.1 The window, a rectangular area displayed on a video device, is the
principal unit controlled by Window Manager. The characteristics of a
window can vary considerably. A window can be either bordered or
borderless. It can contain text and/or graphics, or it can be completely
empty. Each part of a window can be displayed in a different intensity/
color. A single window can fill the entire video display or only part of it.
The display can also contain a number of windows, each a different size
and each having different attributes (attributes are discussed in detail in
Chapter 3, Window Attributes). The number of windows displayed is gov-
erned by the needs of the application program to which Window Manager
provides the high-level interface.

A window can contain a label and one or more window items. Window
labels are frequently used for window identification, while window items
are the words and phrases used to communicate with the user and the
application program. For example, Figure 1-2 illustrates a basic window.

Figure 1-2

Example Window

EXANPLE WINDOW

Item three
Item four
[tem five
[tem six
[tem seven

NaturalLink Window Manager

Introduction 1-5

Displays

Screens

EXAMPLE WINDOW is the window label, and the phrases (Item one, Item
two, and so on) are the actual window items. Window items can be
selected, edited, or scrolled, depending on the characteristics of the win-
dow. Window Manager contains logic necessary to execute the following
functions:

m Display windows on a video device

B Move a cursor from item to item within a window and from one window
to another

m Scroll the window contents
M Select a window item

B Modify the window contents
M Redraw a window

B Delete a window

In order to perform these functions, Window Manager must know the
characteristics of a window. Window characteristics are recorded in a data
structure called the window description (also referred to as the window
definition), which can be created and recorded in a file prior to application
program execution using Window Manager. Window descriptions are
specified when the windows are initially defined with Screen Builder and
can be modified by the interaction between application software and
Window Manager during program execution.

1.2.2 A display is a set of windows simultaneously displayed on a video
device. Although a display can consist of more than one window, input can
be processed from only one window at a time. That window must be active
before Window Manager permits a user to select data.

1.2.3 A screen is a collection of logically related windows. A window
normally belongs to a screen if there is a possibility that the window will
need to be displayed during the course of an interactive session. It is not
necessary that all windows of a screen be displayed simultaneously. The
number of windows in a logically related collection varies depending upon
the needs of the application.

1-6 Introduction

Naturallink Window Manager

Screen Builder

1.3 Screen Builder is an interactive utility that facilitates development of
a window description. This utility elicits information about each window,
such as its size and location, and stores this descriptive information in a file
for use by Window Manager during execution of the application software.
Screen Builder can also be used to modify window descriptions as required
in the course of developing or enhancing a user interface.

Message Builder

1.4 Message Builder is an interactive utility that aids the application
designer in constructing messages for use in an application program. Four
types of messages can be constructed:

m Help

W Error

B Warning

B Please Note

Each message can be classified as either a text message or a user-defined

message. Once constructed, these messages are stored in a file and can be
selectively displayed by Message Manager.

Message
Manager

1.5 Message Manager is a utility that displays the messages constructed
with the aid of Message Builder. Message Manager reads the binary file
created by Message Builder and displays a requested message inside a
window. If coordinates are specified for a message, those coordinates are
used to position the window on the screen. If coordinates are not specified,
Message Manager shrinks the window to fit the message and places the
window in the center of the screen.

Control Flow

1.6 Figures 1-3 and 1-4 illustrate the major processes and data structures
involved in developing and using an interactive interface. As shown in
Figure 1-3, an application developer uses Screen Builder to create a screen
description and Message Builder to create a set of messages. The screen
descriptions and message text are stored in separate files for use during
execution of an application program.

NaturalLink Window Manager

Introduction 1-7

Figure 1-3

Screen and Message Definition

Message file containing
Builder message text

A

system
analyst

A

\

Screen

file containing
Builder

screen description

As illustrated in Figure 1-4, an application software program can call upon
Window Manager to handle interactive dialogue with the user. In doing
this, Window Manager reads window descriptions from a file and displays
the windows on the video device in accordance with the procedure calls
issued by the application program. Both Window Manager and the
application program can call on Message Manager to display message text.

1-8 Introduction

NaturalLink Window Manager

Figure 1-4 Interactive Screen Management

application
program

video
device

Y

Window
Manager

A

user

file containing screen
description built by
Screen Builder

In a typical application, the calls proceed as follows:

1.

2.

Load screen description from a file into memory.
Display selected windows on the video device.
Activate one or more of the windows.

Receive input from an active window.

Display a result in a window.

Repeat, if desired, from Step 2.

NaturalLink Window Manager

Introduction 1-9

WINDOW MANAGER FEATURES

Paragraph Title Page
2.1 INErOAUCHION ...cooiiiiiiiii ettt eeeeeeeeeeeeessreesaesnees 2-3
2.2 WINAOW TYPES..coiiiiiiirieeieiie ettt e 2-3

2.2.1 LISt WINAOW......c.vviiiiieeeeeeeeee ettt 2-3
222 Text WINAOW ...t 2-3
2.2.3 Display WINAOWoooviiiiiiieicicteee e 2-3
224 Edit WINAOW ...t 2-3
225 FILE WINAOW ..ottt s 2-3
2.2.6 User-Defined WINAOWoveviiiiiiiiiiiiee e 2-4
2.3 WINAOW FOIMAtS ..ovveiviiieiceeiiiiiiieeee et s s 2-4
2.4 ABIDULES ..ottt ettt et e e 2-4
2.5 Controlled Cursor MOVEMENLcoovvviiiiiiiieiiiieeee e 2-4
2.6 SearCh FEALUIEoooveviiiiiiii e 2-4
2.7 SCIOINE ettt ettt ta e e etv e e areeebbe s e eabeeereeenes 2-4
2.8 HelP KEY ..ottt e s 2-5
2.9 Application-Assigned Function Keys.........cccccoovimmiininiiiniiiieee e, 2-5

NaturalLink Window Manager

Window Manager Features 2-1

Introduction

2.1 Several features make Window Manager a powerful software
development tool. These include the availability of six window types, two
categories of window formats, numerous window and item attributes, full
cursor control, built-in help capability, and application-assigned function
keys. This chapter provides an overview of these features.

Window Types

List Window

Text Window

Display Window

Edit Window

File Window

2.2 Window Manager performs certain functions on the basis of window
type. The type of window in which an item is displayed determines
whether that item can be edited, selected, scrolled, or displayed.

2.2.1 The list window is the basic window type. It contains a list of items
in various formats through which the cursor can be moved and from
which items can be selected.

2.2.2 A text window has the same appearance as a list window. Items in
a text window can only be scrolled, however. The cursor is not visible in a
text window and text selection is not permitted. Text can be scrolled
either one line at a time or a window at a time.

'2.2.3 As its name implies, a display window is used for display purposes

only. The essential difference between a display window and other types
of windows is that the cursor can never enter a display window. A display
window provides information for the user while preventing manipulation
of window contents.

2.2.4 An edit window contains items having text that can be edited. The
user can interactively modify, delete, or add to the item text in an edit
window. In addition, the application designer can specify one or more
required fields (alphanumeric fields in which the user is required to enter
data before a procedure can be completed) in an edit window. Data
entered in these edit fields can be either echoed to the screen or sup-
pressed from view for data security.

2.2.5 A file window differs from a text window in that it can be used to
display text files not associated with Window Manager. When a file path-
name is supplied, Window Manager makes the necessary format adjust-
ments to display the file in a window. Text files displayed in this manner
can be scrolled for viewing, but are not available for selection.

NaturalLink Window Manager

Window Manager Features 2-3

User-Defined
Window

2.2.6 User-defined windows (UDWs) provide unlimited flexibility in
Window Manager. They display information in ways that Window Man-
ager does not directly provide. This includes the display of graphical pic-
tures and the display and selection of graphical text and icons. Control of
UDWs is shared jointly by Window Manager and the application. For more
explanation, see Chapter 8, User-Defined Windows.

Window
Formats

2.3 Window Manager supports two categories of window formats:

® Columnar format — Single or multiple columns spaced evenly within
the window.

W Free format — Items displayed one after another with one space
between each item. Window formats are discussed further in Chapter 3,
Window Attributes.

Attributes

2.4 Window Manager enables you to set attributes at different levels.
Basic attributes include blinking, underlining, reverse video, and screen
intensity. The specific screen attributes supported may vary, depending on
the hardware. For specific attributes supported on different hardware, see
Appendix C, Computer-Specific Information. Additional attributes include
centering, justification, visibility, and selectability. Attributes can be set for
active and inactive windows, window labels, window border, item labels,
items, and the cursor.

Controlled
Cursor
Movement

2.5 Window Manager controls cursor movement. The cursor can be
moved vertically and horizontally from item to item, window to window,
or active window to active window. Faster cursor movement is provided
by application-assigned keys which move the cursor to the top or bottom
item in a window or scroll through items a window length at a time.

Search Feature

2.6 A search feature is available for rapid movement of the cursor to a
specific item in a list window. The search capability is invoked by entering
the beginning character(s) of the desired item. When any displayable char-
acter is pressed, the cursor is placed on the first item that begins with that
character. The search can go further by typing additional characters. Win-
dow Manager remains in the search mode until an unprintable key, such as
an arrow key or the HOME Kkey, is pressed.

Scrolling

2.7 Windows can be scrolled either one item (line scrolling) or one win-
dow (page scrolling) at a time. Automatic scrolling occurs when the cursor
reaches the top or bottom of a window and more items remain than can be
displayed at one time.

2-4 Window Manager Features NaturalLink Window Manager

Help Key

2.8 A Help key can be designated to provide the user with further infor-
mation about windows or window items. Window Manager performs all
processing of the designated Help key. Help messages are stored in sepa-
rate files, and any number of Help messages can be chained to an item or
window. When the user presses the Help key, Window Manager displays
the first Help message chained to the item or window. If the Help key is
pressed again while a Help message is currently displayed, the next Help
message appears. The user can back out of Help messages one step at a
time or cancel the Help messages immediately with the aid of application-
assigned keys.

Application-
Assigned
Function Keys

2.9 Window Manager supports a prescribed set of operations that can be
invoked with function keys. However, you can assign the key to be used
for a particular function. For example, if the application software does not
permit the use of F1 and F2 keys as window scrolling keys, you can assign
other keys instead.

NaturalLink Window Manager

Window Manager Features 2-5

WINDOW ATTRIBUTES

Paragraph Title Page
il AEIDULES ottt ae e aean 3-3

3.2 Window Attributes With String Values............cccocoovvieiiinniniee, 3-3
3.2.1 WINAOW LabDEL ..ottt veveneeaeeeene 3-3
3.2.2 File Window Pathname............cccooviivioiiviiiiiieeeeeeeeeee e 3-4
3.3 Window Attributes With Numeric Valuescccoovvvviiveeiiviiccieciien, 3-4
3.3.1 WINAOW POSIHIONcoocviiiiiiiiccc e 3-6
3.3.2 WINAOW FOYMALovviiiiiieiecceee ettt e e 3-6
3.3.2.1 WINAOW TYPE.ceeiiitie ettt 3-6
3.3.2.2 Number of COIUMNSooooiieieieeeeeeeeeeeeeeeee e 3-7
3.3.2.3 WiIndow Priority........occoviiiiiiiiieriiee et 3-8
3.3.2.4 Multiple-Selection Window............ccceviiievienieniiiceceeeceeene 3-8
3.3.2.5 Pop-Up WINAOWooiiiiiiiiiii et 3-9
3.3.2.6 Special Repaint on Receiveccccoveviviiiieniieccciiccecccee e, 3-9
3.3.2.7 First Item to Be Displayedcccooovveviiiiiiiieieseceeerecee e, 3-9
3.3.2.8 Show Last ltem When Painted..............coooiviorieiiiineeeeeeee e, 39
3.3.2.9 Center AILTEEIMS ...ovveeeiiiiieieeeeeeeeee e e e e e e eeaaeas 3-10
3.3.2.10 Don't Redisplay Current [temsccceeevieiieiiiieceeeice e, 3-10
3.3.2.11 Disable Multiple-Line [temsccccccoooiveeiiiiiiieeeec e 3-10
3.3.2.12 Allow Cursor to Enter Windowoooovviiiviiiiciiieieeee e 3-10
3.3.2.13 Multiple-Column Order............coooeviiieoieniiieeee e 3-11
3.3.2.14 Maximum Item Label Lengthcccooooiiiriiiiiiii e, 3-11
3.3.2.15 Item Label Justification............oooviiiiiiiiieieeeeee e e, 3-11
3.3.2.16 ACtiVe WINAOW .o 3-11
3.3.2.17 Number of Items in WINAOW.......cccuovvvevviiieeneieeeeee e eveeeeeeeeeeeann 3-11
3.3.3 Active WIindow AtHDULESoooiieeiiiiiee e e 3-12
3.34 [nactive Window AttribULES..........oeiiiioereeeiieee et ee e 3-12
3.35 Window Label Attributes.........coooviiiiiiiiiiiieeeeeeeeeee e 3-12
3.3.5.1 INVISIble Label.......ooiieee e 3-12
3.3.5.2 Label POSTON..........ooooiiiieee e 3-13
3.3.5.3 Centered Label.........ccoiiviiiniiiciiiiii ettt s v s e 3-13
3.3.5.4 Blinking Labelcccccccoiininiiiiie e 3-13
3.3.5.5 Underlined Labelooooooiiiieeeee e, 3-13
3.3.5.6 Reverse VIdeo Label..........oooviiiiiiiiiiiieee oo, 3-13
3.3.5.7 Label Intensity /Colorcccocevirvmniniiieccecee e, 3-13
3.3.5.8 Use Item INtenSityccoevvivivieiieicecccee e 3-13
3.3.6 CUrSOT ALFIDULES ..ot e e e e 3-14
3.3.6.1 Size and TYPe......ooviiiiiiiiieie e 3-14

NaturalLink Window Manager

Window Attributes 3-1

Paragraph Title Page
3.3.6.2 BlNKINgG CUISOYcoooiiiiiiiiieieiitectee ettt st st 3-14
3.3.6.3 Underined CUYSOYuveiieieeeee et 3-14
3.3.64 Reverse VideO CUISOToovvviirmeeeieeeeceeeeeteeeeee e ee s 3-14
3.3.6.5 Cursor Intensity /Colorccccoverviririinieniniicneecceeereerenens 3-14
3.3.6.6 Use [tem INteNSItycocveeriecieeeeeeiee e 3-14
3.3.6.7 DOon’t Delete CUISOTuviviiiiiiieeieeeeeee et eeee s 3-15

3.3.7 Border AttrDULESooeeveiiieeeeeeeee et 3-15
3.3.7.1 Bordered Window............coooveeveeunnnnnnns treeeeeereeriei————r—arataaaeeraaaaannns 3-15
3.3.7.2 Border Takes UP SPACec.veecveviriveceeeieeeecee et 3-15
3.3.7.3 Display Scroll Markerscccoeoveeceerieniieirieeieeieeceereie e eeeeeeeenas 3-15
3.3.74 Reverse VIideo Border...........oovvvviiiieieeiiieieeee e 3-15
3.3.7.5 Border Intensity/Colorccoovviiiiiiiiiiieeeteee e e 3-16

3.4 [tem-Level AtIIDULESoveeeeiieiit e e s e e eeeeeeeseeeseeennans 3-16
‘3.5 Item-Level Attributes With String Values..........ccccoooviiiveeiiccnnnniiceiiiennnne 3-16
3.5.1 [EOIM LaADCL. ..ottt 3-16
3.5.2 JEEIM TOXL oottt et e e es b e e e e tree e e eessaseeeseabenasanans 3-16
3.6 Item-Level Attributes With Numeric Values...........c.ccooovveivvcvviiiccccnnennn. 3-16

3.6.1 [tem-Format Attributesvvvviveeeiiei i 3-17
3.6.1.1 VASIDL ettt e e e s 3-17
3.6.1.2 UNSElECtable...eeeeiiiiiiieieeeeeeeeeeeee et e e 3-17
3.6.1.3 Displayed......cccoooiiniiiiiiiiiiecr e 3-18
3.6.14 Maximum Edit Field Lengthccoocoeoviiiiiiniciiccececee 3-18
3.6.1.5 Edit Field Datatypeooveeieieniiiieieerecieeeeeeiesesveeece e 3-18
3.6.1.6 Required Edit Fieldccccocooinininniniiiiinc 3-18
3.6.1.7 Echo Edit Field INput.........cccooiiiieiinirceteeeee e 3-18
3.6.1.8 Chosen/Enable Attributeccueveeeovieeciieeeceeeeeeee e 3-19

3.6.2 [temn-Chosen AtIIDULESvvvvvviiiiieeeeeeereee et e e e e eee e evberaees 3-19
3.6.2.1 Blinking Chosen Item.........cccoouiviniiieieniniiininicce, 3-19
3.6.2.2 Underlined Chosen IteM.......cccuveiieeviiieciee ettt 3-19
3.6.2.3 Reverse Video Chosen Itemccccuvveeeiiiiecciieeee e 3-19
3.6.2.4 Chosen Item Intensity /Color........cvevveeveeeieieeeieeeeec e 3-19

3.6.3 [termn Label AtTIDULESoeveeieeeeeeeee e ee e e e e e e e e e e e e e e e s aaeeees 3-19
3.6.3.1 Blinking Labelccociviiiiniiiiiiiiiic 3-19
3.6.3.2 Underlined Labelooovoiiiiiiiieeeeeecteeeere et et s 3-19
3.6.3.3 Reverse VIideo Label ... 3-19
3.6.3.4 Label Intensity /Colorccooeiriievinnieiencenriiiie s 3-19
3.6.3.5 Use [tem INTENSILY c..ooeeeiireieeeeiencceccie e 3-19

3-2 Window Attributes

NaturalLink Window Manager

Attributes

3.1 Attributes are properties assigned to windows and components of
windows. Attributes include such characteristics as blinking, bordering,
intensity/color, and reverse video. They govern how Window Manager
displays and controls windows. Attribute values (character strings or
numeric strings) are specified either with the aid of the Screen Builder
utility during window construction or by direct command calls in an
application program. The collection of window attributes is termed a
window description. A collection of window descriptions constitutes a
screen description. Several attribute values can be set at the window level;
that is, they can be set at the level that defines a particular window. These
window-level attributes can have character string values as well as
numeric values. This chapter describes these attributes and their
associated alphanumeric values.

In addition to this chapter, it is recommended that you read Appendix B,
Helpful Hints. It provides more information on the function of window
attributes in an interface screen and gives several examples.

Window
Attributes With
String Values

Window Label

3.2 String value attributes at the window level can be used to label a
window, provide instructions to the user, identify window contents, and so
forth. The following attributes are specified using character string values.

3.2.1 The window label is a word, line, or multiple lines of text placed at
the top, bottom, left, or right side of a window. It is stationary in a window
during all cursor movements; that is, it cannot be scrolled out of the
window.

Window labels can consist of up to 25 lines, with each line containing a
maximum of 80 characters. Any label line wider than the boundaries of
the window will be truncated. If there are too many lines to fit into the
window, only the number of lines that fit will be displayed.

The window label is stored as one continuous string, even if it occupies
multiple lines. Each line of the label is separated by a line feed character
(hexadecimal 0A). When you specify the window label in Screen Builder,
these line feed characters are inserted for you. However, if you set the
window label in your application program, ensure that your string has the
line feed characters in the proper position to obtain the desired number of
lines.

NaturallLink Window Manager

Window Attributes 3-3

File Window 3.2.2 The file window pathname indicates to Window Manager the path-
Pathname name of the file which is to be displayed in a file window. The file window
pathname must be set to a text file pathname compatible with the operat-

ing system in use.

Window 3.3 Many window-level attributes are set using numeric values. Table
Attributes With 3-1 provides a list of these attributes and their value ranges. The para-
Numeric Values graphs following the table contain explanations of each.

Table 3-1 Window-Level Attributes

Window Attributes Value Description
Window Position:
Left-Most Column 0-78
Top Row 0-23
Right-Most Column 1-79
Bottom Row 1-24
Window Format:
Window Type 0-4, 0 = list, 1 = text,
10-99 2 = edit, 3 = file,
4 = display
10-99 = user-defined window
Number of Columns 0-80 0 = free format
Window Priority 0-16 defined by designer
Multiple Selection Window Oor1l 0 =no, 1 =yes
Pop-up Window Oorl 0 =no, 1 =yes
Special Repaint on Receive Oorl 0 =no, 1 =yes
First Item to be Displayed 0-N Where N = one less than the num-
ber of items. First item displayed
corresponds to value of N.
Show Last ltem When Painted Oorl 0 =no, 1 =yes
Center All Items Oor1 0 =no, 1 =yes
Don't Redisplay Current Items Oorl 0 =no,1 =yes
Disable Multiple Line Items Oorl 0 =no, 1 =yes
Allow Cursor to Enter Window 0-2 0 = always
1 = only when active
2 = never
Multiple Column Order Oorl 0 = column major,
1 = row major
Maximum Item Label Length 0-80
Item Label Justification 0-2 0 = left, 1 = right,
2 = free format
Active Window Oorl 0 =no, 1 =yes
read only field
Number of Items in Window 0-N read only field

3-4 Window Attributes

NaturalLink Window Manager

Table 3-1 Window-Level Attributes (Continued)

Window Attributes Value Description

Active Window Attributes:

Blinking Oorl 0 =no, 1 =yes
Underlining Oorl 0 =no,1 =yes
Reverse Video Oorl 0 =no, 1 =yes
Intensity/Color 0-7 0 = black (lowest),
1 = blue, 2 = red,

3 = magenta, 4 = green,
5 = cyan, 6 = yellow,
7 = white (highest)

Inactive (Normal) Window Attributes:

Blinking Oorl 0 =no, 1 =yes
Underlining Qorl 0 =no,1 =yes
Reverse Video Oorl 0 =no, 1 =yes
Intensity/Color 0-7 0 = black (lowest),

7 = white (highest)

Window Label Attributes:

Invisible Label Oorl 0 =no, 1 =yes
Label Position 0-3 0 =top, | = left,

2 =right, 3 = bottom
Centered Label Oorl 0 =no,1 =yes
Blinking Label Oorl 0 =no, 1 =yes
Underlined Label Oor1 0 =no, 1 =yes
Reverse Video Label Oorl 0 =no, 1 =yes
Label Intensity/Color 0-7 0 = black (lowest),

7 = white (highest)
Use Item Intensity Oorl 0 =no, 1 =yes

Cursor Attributes:

Cursor Size 0-4 0 = invisible,

1 = single char,

2 = full size,

3 = item and label,
4 = item only

Blinking Cursor Oorl 0 =no,1 =yes
Underlined Cursor Oorl 0 =no,1 =yes
Reverse Video Cursor Oorl 0 =no, 1 =yes
Cursor Intensity/Color 0-7 0 = black (lowest),
7 = white (highest)
Use Item Intensity Oorl 0 =no,1 = yes
Don’t Delete Cursor Oorl 0 =no, 1 =yes

Can only be set in the application.
Screen Builder default is 0.

NaturalLink Window Manager Window Attributes 3-5

Table 3-1 Window-Level Attributes (Continued)

Window Attributes Value Description
Border Attributes:
Bordered Window Oor1 0 =no, 1 =yes
Border Takes up Space Oorl 0 =yes,1 =no
Display Scroll Markers Oorl 0 =no, 1 =yes
Reverse Video Border Oorl 0 =no, 1 =yes
Border Intensity/Color 0-7 0 = green, 1 = blue,

2 =red, 3 = magenta,
4 = green, 5 = cyan
6 = yellow, 7 = white

Window Position

Window Format

Window Type

3.3.1 The window position values specify window column and row coor-
dinates. The NaturalLink Window Manager supports video devices capable
of displaying 80 columns and 25 rows of characters. The upper left coordi-
nates of the display are 0 and 0, and the lower right coordinates of the dis-
play are 79 and 24. You specify window size and position by entering the
upper left and lower right coordinates of the window. If item selection is
being done, the window must be long enough to display at least one item.
Default coordinates are O for the left-most column, 0 for the top row, 79 for
the right-most column, and 24 for the bottom row. These coordinates
create a window as large as the entire display area.

3.3.2 This set of attributes determines how Window Manager will treat
the items within a particular window; that is, the attributes determine how
the items will be displayed, whether they can be selected, and so forth.

3.3.2.1 The values selected in this field designate the type of window.
The default value is 0 (list window). Selectable values are as follows:

Value Type of Window

0 List Window

1 Text Window

2 Edit Window

3 File Window

4 Display Window
10-99 User-Defined Window

The window types are explained in Chapter 2, Window Manager Features;
user-defined windows are discussed in Chapter 8, User-Defined Windows.

3-6 Window Attributes

NaturalLink Window Manager

Number of Columns

The file window is used to display the text file specified by the file window
pathname. Window Manager reads this file and transforms the text into
window items that can be scrolled. Window Manager displays the file win-
dow items according to the other window attributes, such as format, inten-
sity, centering, and so on.

Some limitations are put on file window text files:

M The file must fit into memory. If it does not fit, an error is returned to the
application program, and if the window is displayed, no items appear.

B Window Manager uses the carriage return character as a delimiter for
the items it creates. If there are no carriage return characters in the file,
a single item is created. The results of scrolling such a window cannot be
guaranteed.

m If a file window pathname is not given for the file, the results are the
same as when the file does not fit into memory.

B ltems existing for the file window before the file is loaded are deleted
when the file is loaded.

M The file text is loaded into memory when an Add or Refresh call is made
and unloaded from memory when a Delete call is made. (See Chapter 6,
Window Manager Callable Routines, for more information on Window
Manager calls.)

m No item manipulation (adding, deleting, setting attributes, and so on) is
allowed for file windows.

3.3.2.2 The maximum number of columns allowed in a window varies
with the width of the window. You can have the same number of columns
as the window width, excluding the window’s vertical borders if the win-
dow is bordered (each vertical border takes up one column of space). For
example, if a bordered window is 50 columns wide (52 columns counting
the borders), you can have up to 50 columns in the window. If the window
is unbordered and the border takes up no space, the possible number of
columns is 52. The total number of columns specified determines the for-
mat of the window. The default value is 1. See paragraph 3.3.7, Border
Attributes, for additional information.

NaturalLink Window Manager

Window Attributes 3-7

Window Priority

Multiple-Selection
Window

A value of 0 (zero) indicates that the items are displayed in free-format
style (one right after the other, with one space separating them). If an
entire item cannot fit on the same line as the previous item, the entire item
is moved down to start the next line. Truncation occurs if a single item is
wider than the width of the window.

A value greater than 0 indicates that the items are displayed in columnar
format. In single-column windows, items wider than the width of the win-
dow become multiple-line items. However, a flag can be set to disable this
multiple-line feature. When this flag is set, the item is truncated if it is too
wide.

Multiple-column items are displayed in either row-major or column-major
order, depending on the value of the Multiple Column Order attribute. (See
Appendix B, Helpful Hints, for an explanation of how row-major and
column-major can be used in different applications.) Multiple-column items
are truncated if they are longer than the width of a column, where column
width is equal to the usable window width divided by the number of
columns.

3.3.2.3 The values for this attribute range from 0 to 16. This attribute is
not used by Window Manager, but can be used by an application program
for determining the priority of active windows. The default value is 0.

3.3.2.4 A value of 1 for this attribute indicates that this window is a
multiple-selection window. A user can select more than one item from a
multiple selection window. In a list window with this feature, the ENTER
key (which is the default key for the select function) acts as a toggle select-
ing (highlighting) or unselecting (removing the highlighting) an item. When
the item is selected or unselected, the Chosen/Enable attribute is set on or
off as well. Thus, when the item is selected, it is displayed with the Item-
Chosen attributes.

All selections are committed when the user presses the F10 key. This is the
default key for the Window Manager proceed function. The application
program must check the Chosen/Enable attribute of the items in the win-
dow to determine which ones the user has selected. The application pro-
gram is also in charge of turning off (setting to 0) the Chosen/Enable
attribute.

In a multiple-selection edit window, Window Manager permits you to edit
all fields in the window before returning to the calling routine. Pressing the
ENTER key moves the cursor to the next field. Pressing the ENTER key on
the last field commits all edits. Pressing the F10 key commits all edits at
any time. Multiple selection has no effect on text, file, display, or user-
defined windows. The default value is 0 (no).

3-8 Window Attributes

NaturalLink Window Manager

Pop-Up Window

Special Repaint
on Receive

First Item
to Be Displayed

Show Last Item
When Painted

3.3.2.5 A value of 1 for this attribute indicates that this window is a pop-
up window. There are only two differences between pop-up windows and
other windows. One difference is that border characters are not combined
with any other border characters; that is, the window is separate from the
other windows on the screen. Also, when this window is active and the
cursor is in it, the user cannot move the cursor to any other window until
processing of the pop-up window is complete. The default value is 0 (no).

3.3.2.6 Receive calls must be made from the application program to get
user responses to or from a window. All windows marked for repainting
are repainted when the Receive call is made. However, repainting all of
the flagged windows can be undesirable for certain applications. The Spe-
cial Repaint on Receive attribute can remedy this. If a window is flagged
for repainting and this window is specified in a Receive call, a value of 1
indicates that this will be the only window repainted even if other
windows have also been flagged for repainting.

This attribute is not valid for display windows. The default value is 0 (no).

3.3.2.7 The first item to be displayed is referred to as the offset value for
the list of items. The assigned offset value is the first item displayed in the
window. Window Manager always starts displaying items with this first
item or offset value. This offset value changes as the window is scrolled or
if other changes are made to the window that result in a different first item.
The default value is 0.

Screen Builder does not permit the offset value to be changed, and the first
item in the list (zero offset) becomes the default value for this attribute.
However, in your application program you can change this field to have
the window painted starting with a different offset value. Setting this attri-
bute value to -1 ensures that the window will be displayed starting with
the first visible item.

3.3.2.8 A value of 1 for this attribute indicates that when a free-format
window is painted, it will be painted so that the last item in the window is
showing. This feature is like having an automatic scrolling capability for
the window. It ensures that each time the window is painted, the last item
will be visible. This feature is available only for free-format windows. The
default value is 0 (no).

Naturallink Window Manager

Window Attributes 3-9

Center All Items

Don’t Redisplay

Current Items

Disable

Multiple-Line Items

Allow Cursor
to Enter Window

3.3.2.9 A value of 1 for this attribute indicates that the items in the win-
dow are to be centered. Centering is based on the maximum label length
plus the length of the item itself. Centering does not apply to free-format
windows. The default value is 0 (no).

3.3.2.10 A value of 1 for this attribute instructs Window Manager to dis-
play only new items in the window. In other words, if items are already
displayed in the window and the window gets repainted, only the items
not already displayed are painted. With this option, Window Manager does
not spend a lot of time repainting items whose appearance has not
changed. If this attribute is set, then no matter what Window Manager call
is made, the only time the window is completely repainted is when the
First Item to be Displayed attribute is set to —1. The default value is 0 (no).
This attribute is used in conjunction with the Displayed attribute.

3.3.2.11 Setting the value of this attribute to 1 disables multiple-line
items. When this attribute is set, items will be truncated if they are longer
than the width of the window, and Window Manager can scroll it much
faster than usual. This attribute is used only with single-column windows.
The default is 1 (yes).

3.3.2.12 This attribute is used for all window types except display win-
dows. It indicates to Window Manager when to allow the cursor to enter
the window. Normally the cursor can enter any nondisplay-type window
when window movement keys are pressed or when a Receive call is made
on the window. There are three options; the default option is 0 (aiways).

®m 0 (Always). There are no limitations as to when the cursor can enter the
window. When any window movement key is pressed to move into the
window or a Receive call is made on the window, the move will be
allowed.

M 1 (Only when active). The cursor will be allowed to enter the window
only when the window is active—that is, when the window has been
selected. ~

H 2 (Never). The cursor will never be allowed to enter this window. This
results in the equivalent of a display window.

This attribute was designed primarily for use with user-defined windows
(UDWs). Since the application controls all cursor movement in a UDW, the
application can limit the times this cursor movement can be done. Or the
application can use the never option and create a UDW that is like a dis-
play window.

3-10 Window Attributes

NaturalLink Window Manager

Multiple-Column
Order

Maximum Item
Label Length

Item Label
Justification

Active Window

Number of
Itemns in Window

3.3.2.13 This specifies the order in which multiple-column items are dis-
played and the order in which they are scrolled and selected. Two options
are available. The default value is 0 (column-major).

B Column-major — Top-to-bottom, left-to-right order (value = 0)
B Row-major — Left-to-right, top-to-bottom order (value = 1).

3.3.2.14 The value of this attribute specifies the maximum length of an
item label. A value of 0 prevents Window Manager from displaying any
item labels, even if text for the item labels has been specified, thus giving
you invisible item labels. A value greater than 0 specifies the field width
used for item labels in left- and right-label justification. No matter what
type of label justification is used, if the item label text is longer than the
specified maximum length, the excess label text is truncated. If the maxi-
mum item label length is greater than the column width, Window Manager
reduces the maximum item label width to equal the column width. The
default value is 0 (no item labels).

3.3.2.15 Specify 0 for this attribute to left-justify the label within the
Maximum Item Label Length field. Specify 1 to right-justify the label within
the Maximum Item Label Length field. Specify 2 for free-format item
labels. If you specify 2, the item text will immediately follow the item label,
and the Maximum ltem Label Length value will be ignored if the actual
label length is less than this maximum length.

Since the item label is written to the screen first, the item is truncated if the
specified column width is not great enough to contain both the label and
the item. The default value is 0 (left-justify).

3.3.2.16 A value of 1 for this attribute indicates that the window is
active. This is a read-only attribute field for the application. This attribute
is set to 1 when a Select call is made and to 0 when a Release call is made.
(Refer to Chapter 6, Window Manager Callable Routines.) When the value
of this attribute is 1, the items in the window are displayed using the active
attributes. When the value is 0, the items are displayed using the inactive
attributes. The defauit value is 0 (no).

3.3.2.17 This is a read-only attribute field for the application program.
This attribute indicates the current number of items in the window. This
number includes every item regardless of whether the item is invisible,
unselectable, or has no text. The default value is 0 (no items).

NaturalLink Window Manager

Window Attributes 3-11

Active
Window
Attributes

Inactive
Window
Attributes

Window
Label Attributes

Invisible Label

3.3.3 The following attributes are in effect when the window is active.

® Blinking — A value of 1 causes every character to blink. The default
value is 0 (no).

#m Underlined — A value of 1 underlines every character. The default
value is 0 (no).

B Reverse video — A value of 1 displays every character in reverse video.
The default value is 0 (no).

B Intensity/color — Values from 0 to 7 set eight levels of monochrome
intensity or color. The default value is 7 (white).

3.3.4 The following attributes are in effect when the window is inactive.

® Blinking — A value of 1 causes every character to blink. The default
value is 0 (no).

8 Underlined — A value of 1 underlines every character. The default
value is 0 (no).

W Reverse video — A value of 1 displays every character in reverse video.
The default value is 0 (no).

B Intensity/color — Values of 0 to 7 set eight levels of monochrome
intensity or color. The default value is 4 (green).

3.3.5 Window label attributes are used to control the way the window
label is displayed.

3.3.5.1 A value of 1 for this attribute indicates that the window label is
not visible (not displayed in the window). This attribute is useful when you
want the window label to identify the window in the screen file list but you
do not want it to show when the window is displayed. The default value is
0 (no).

3-12 Window Attributes

NaturalLink Window Manager

Label Position

Centered Label

Blinking Label
Underlined Label
Reverse Video Label
Label

Intensity/Color

Use Item Intensity

3.3.5.2 This attribute specifies the position of the window label within
the window. The default value is 0 (top). Selectable values are as follows:

Value Label Position

0 Top of Window

1 Left Side of Window
2 Right Side of Window
3 Bottom of Window

If Top of Window or Bottom of Window is chosen, the label occupies either
the top line(s) or bottom line(s) of the window, respectively; no item can
share the same line(s) with the label. If Left Side of Window or Right Side of
Window is chosen, the label occupies the corresponding side of the first
line(s) of the window; in this case, all items are shifted left or right (flush left
or flush right), and the items can share the same line(s) as the label. If the
window label occupies multiple lines, each line will be placed as far to the
left as possible for a left label position and as far to the right as possible for
a right label position. For uncentered top and bottom labels, all label lines
are left-justified.

3.3.5.3 A value of 1 for this attribute indicates that the label is to be
centered. This attribute is used only if the label is on the top or bottom of
the window. The default value is 0 (no). If the label has multiple lines, each
line is centered independently of one another.

3.3.5.4 A value of 1 for this attribute causes the window label to blink.
The default value is 0 (no).

3.3.5.5 A value of 1 for this attribute underlines the window label. The
default value is 0 (no). "

3.3.5.6 A value of 1 for this attribute displays the label in reverse video.
The default value is 0 (no).

3.3.5.7 One of eight levels of monochrome intensity or color can be set
for this attribute. The default value is 7 (white).

3.3.5.8 A value of 1 for this attribute indicates that the window label is
to be displayed with the same intensity as the items in the window. This
would be an active or inactive intensity, depending on whether the win-
dow is active or not. The default value is 0 (no).

NaturalLink Window Manager

Window Attributes 3-13

Cursor Attributes

Size and Type

Blinking Cursor
Underlined Cursor
Reverse

Video Cursor

Cursor
Intensity/Color

Use Item Intensity

3.3.6 You can use cursor attributes to specify different types and sizes of
cursors. The combination of these attributes determines the overall
appearance of the cursor. For example, if you specify the attributes for a
full-size reverse video cursor, a reverse video cursor which spans the
entire width of a column is displayed.

3.3.6.1 The value of this attribute field specifies the size and type of a
cursor. Default values for size/type cursor attributes force the cursor to be
invisible in text and file windows, and single-character size in edit
windows. The default value for list windows is 2 (full size). Selectable
values are as follows:

Value Size/Type

0 Invisible

1 Single character size

2 Full size (spans entire column width)

3 Label and item size (spans only item label and item)
4 Item size (spans item only)

3.3.6.2 A value of 1 for this attribute causes the cursor to blink. The
default value is 0 (no).

3.3.6.3 A value of 1 for this attribute results in an underlined cursor. The
default value is 0 (no).

3.3.6.4 A value of 1 for this attribute displays the cursor in reverse
video. The default value is 1 (yes).

3.3.6.5 Values of 0 to 7 for this attribute set the levels of monochrome
cursor intensity or color. A single-character cursor can assume only the
intensity of the character over which it is positioned. The default value is 5
(cyan).

3.3.6.6 This attribute sets an alternate intensity for the cursor. The cur-
sor, other than the single-character cursor, can have either its own unique
intensity or the same intensity as the item over which it is positioned. A
value of 1 indicates that it will share the same intensity as that of the item
the cursor is positioned over. The default value is 0 (no).

3-14 Window Attributes

NaturalLink Window Manager

Don’t Delete Cursor

Border Attributes

Bordered Window

Border
Takes Up Space

Display
Scroll Markers

Reverse
Video Border

3.3.6.7 An application receives a user’s response to items in a window
by making a Receive call. Window Manager returns to the application pro-
gram when ENTER, F10, or any undefined key is pressed. When a Receive
call is made, Window Manager puts the cursor in the window and, upon
returning to the application, deletes the cursor. Displaying and deleting the
cursor causes the cursor to flash if the application is looping until ENTER or
F10 is pressed. To stop this flashing, you can set the Don’t Delete Cursor
attribute to 1. This indicates that Window Manager should not delete the
cursor when returning from a Receive call unless ENTER or F10 has been
pressed. (This is only true when looping on a Receive call. If the window is
redisplayed in some manner between receive calls, the action of the cursor
cannot be guaranteed.) The default value is 0 (no).

3.3.7 Border attributes can be set for each window. Care should be
taken when choosing border attributes, as the same border attributes will
be used whether the window is active or inactive. Also, the use of different
border attributes for windows which share borders may not have the
desired outcome. Even though the borders themselves are combined, their
attributes are not. The common border will always retain the display
attributes of the last window painted.

3.3.7.1 A value of 1 for this attribute indicates that this window has a
border. Character graphics are used to draw the border. The default value
is 1 (yes). A space is reserved for the border whether or not the border is
displayed. Thus, if the window coordinates are 0,0,79,24, the maximum
length of a displayed character string on one window line is 78 characters.

3.3.7.2 When a window is unbordered, Window Manager will still
reserve space on the display for the border. If you would like to use this
space, set the Border Takes Up Space attribute to 1; this causes all text in
the window to start in the space normally reserved for the border. Thus,
lines of text can be up to 80 characters in length. Scroll markers cannot be
used with this window. If the attribute is set to 1 when the window is
bordered, the border will be cleared when text is put into the window. The
default is 0 (Border Takes Up Space). Note that the values 0 and 1 are used
in the opposite manner of the other calls.

3.3.7.3 A value of 1 for this attribute indicates that scroll markers should
be placed in the middle of the bottom border. The markers, two small
arrows, are used to indicate that there are more items to view: an up arrow
indicates that there are more items at the top of the window; a down arrow
indicates that there are more items at the bottom. The default value is 0
(no).

3.3.7.4 A value of 1 for this attribute causes the border to be displayed
in reverse video.

Naturallink Window Manager

Window Attributes 3-15

Border
Intensity/Color

3.3.7.5 One of seven different levels of monochrome intensity or color
can be set for this attribute. Note that a green (intensity level 4) border will
be displayed when this attribute is set to either 0 or 4. The default value is
4 (green).

Item-Level
Attributes

3.4 Eachitem has many attributes that describe it. The attributes deter-
mine how Window Manager will treat the items. As with window-level
attributes, item-level attributes can have character string values as well as
numeric values.

Item-Level
Attributes with
String Values

Item Label

Item Text

3.5 String value attributes at the item level can be used to label an item,
request the user to enter data, display textual material, and so forth.

3.5.1 Every item in the window can have a label. Item labels are espe-
cially useful for prompts in edit fields. They can be up to 80 characters in
length (if the window border takes up no space) and are truncated if they
are longer than the value specified for the Maximum Item Label Length. If
the Maximum Item Label Length is 0, the item label will not appear in the
window, even if item label text was specified.

3.5.2 The text of a single-line item can he up to 80 characters in length.
Truncation occurs if text is too wide to fit within the window boundaries. If
truncation occurs, the item text is truncated first and the item labels are
truncated second. For multiple-line items, word wrapping occurs if the
item text does not fit on a single line within the window boundaries.

In a list, text, or display window with columnar format, an item that has no
text shows up as a blank line in the window. To get the same results in an
edit window with columnar format, there must be no text specified and the
Maximum Edit Field Length attribute for the item must be set to 0. If the
itemn should not appear at all, the Visible Item attribute (refer to Table 3-2)
must be set to 0. In a free-format window, items without text are not visible
and occupy no space in the window.

Item-Level
Attributes with
Numeric Values

3.6 Most item-level attributes can be assigned numeric values. There are
two groups of attributes:

®m [tem format attributes, which are in effect all the time

® ltem-chosen attributes, which are effective only when the Chosen/
Enable attribute is set.

Table 3-2 presents a list of these attributes. The paragraphs following the
table contain a description of each.

3-16 Window Attributes

NaturalLink Window Manager

Table 3-2

Item-Level Attributes ‘

Field Description Value Description

Item Format Attributes:

Visible Item Oorl 0 =no, 1 = yes
Unselectable Item Oorl 0 =no, 1 =yes
Displayed Oorl 0 =no, 1 =yes

Can be set only within the
application. Screen Builder
defaults to 0

Maximum Edit Field Length 0-80

Edit Field Datatype 0-200 0 = no validation done
1-200 = application-defined

Required Edit Field Oorl 0 =no,1 =yes

Echo Edit Field Input Oorl 0 =no, 1 =yes

Chosen/Enable Attributes Oorl 0 =no,1 =yes

Item-Chosen Attributes:

Blinking Chosen Item Oorl 0 =no, 1 =yes
Underlined Chosen Item Oorl 0 =no, 1 = yes
Reverse Video Chosen Item Oorl 0 =no, 1 =yes
Chosen Intensity/Color 0-7 0= black (lowest),
7 = white (highest)
Item Label Attributes:
Blinking Label Oorl 0 =no, 1 =yes
Underlined Label Oorl 0 =no, 1 =yes
Reverse Video Label Oorl 0 =no, 1 = yes
Label Intensity/Color 0-7 0 = black (lowest),
7 = white (highest)
Use Item Intensity Oorl 0 =no, 1 = yes

Item-Format
Attributes

Visible

Unselectable

3.6.1 Item-format attributes are permanent item attributes. These attri-
butes are in effect at all times.

3.6.1.1 A value of 1 for this attribute makes the item visible. An item
may be in the item list but will not appear on the display unless this attri-
bute value is set to 1. The default value is 1 (yes).

3.6.1.2 Setting a value of 1 for this attribute makes the item unselect-
able. An unselectable item appears on the display, but the cursor cannot
be positioned over the item. Extensive use of this field can produce some
cursor placement problems; difficulties can occur if there is not at least one
selectable item in the window at all times. If an entire window of unselect-
able items is desired, the display window type should be used, or the Allow
Cursor to Enter Window attribute should be set to Never (0). The default
value is 0 (no).

NaturalLink Window Manager

Window Attributes 3-17

Displayed

Maximum Edit
Field Length

Edit Field
Datatype

Required
Edit Field

Echo Edit
Field Input

3.6.1.3 This attribute is used only when the value of the Don’t Redisplay
Current Items attribute is set to 1. Window Manager automatically sets the
value of the Displayed attribute to 1 after it displays the item. Thus, if the
application has set the Don’'t Redisplay Current Items attribute but requires
a particular item to be redisplayed, the value of the Displayed attribute
must be set to 0 for that particular item. This is useful when you want to
redisplay a highlighted item but you want to prevent the momentary blink
or screen flash that results from redisplaying all of the items. The default
value is 0 (no).

3.6.1.4 This attribute only pertains to edit windows. The value assigned
to this attribute determines the maximum number of characters that can
be entered for the item. If this value is 0 but the item is still selectable,
Window Manager does not allow any characters to be entered for the item.
The default value is 0.

3.6.1.5 An application can perform datatype checking on any item in an
edit window. When the cursor is moved off an edit field by pressing the
ENTER, F10. cursor movement, or any unknown keys, Window Manager
calls the application’s validation routine. The application uses the datatype
field to identify the type of validation to be done on the field. The applica-
tion designer defines all values. The assignable datatypes are 0 through
200. A value of 0 means Window Manager will not call the application’s
validation routine. The default value is 0 (no validation done). See Chapter
7, Application Validation Routine, for a full discussion of the edit field
validation process.

3.6.1.6 A value of 1 for this attribute indicates that a user must enter a
value in a window. This is only used for edit windows. Window Manager
checks this attribute only when the ENTER Kkey (to select item) is pressed
or when the F10 key (to move out of a multiple-selection window) is
pressed. The default value is 1 (yes).

3.6.1.7 A value of 1 in this field causes input into an edit field to be echo-
printed to the screen. This attribute pertains only to edit windows. It can
be used to prevent the display of sensitive information, such as passwords.
If the attribute has a value of 0 when the user enters data, the cursor will
move through the edit field, but no characters will be echo-printed to the
screen. The default value is 1 (yes).

3-18 Window Attributes

NaturalLink Window Manager

Chosen/Enable
Attribute

Item-Chosen
Attributes

Blinking
Chosen Item

Underlined
Chosen Item

Reverse Video
Chosen Item

Chosen Item
Intensity/Color
Item Label

Attributes

Blinking Label
Underlined Label
Reverse Video Label
Label

Intensity/Color

Use Item Intensity

3.6.1.8 This attribute is used primarily with multiple-selection list win-
dows. It is set to 1 when the item has been selected and must be checked
by the application program to determine the items chosen from this win-
dow. When this attribute is set to 1, the item appears using the item-chosen
attributes. If not set (value = 0), the way the item appears depends on
whether the window is active or inactive.

The Chosen/Enable attribute can also be used to achieve different effects
in the window; that is, the application program can set it whenever an item
should appear with different attributes than those in the rest of the
window. The default value is 0 (no).

3.6.2 The item-chosen attributes are used only when the Chosen/Enable
attribute is set.

3.6.2.1 A value of 1 for this attribute causes the chosen item to blink.
The default value is 0 (no).

3.6.2.2 A value of 1 for this attribute underlines a chosen item. The
default value is 0 (no).

3.6.2.3 A value of 1 for this attribute displays a chosen item in reverse
video. The default value is 1 (yes).

3.6.2.4 A value of 0 to 7 sets eight levels of monochrome intensity or
color for the chosen item. The default value is 7 (white).

3.6.3 These attributes determine the display characteristics of the item
label.

3.6.3.1 A value of 1 for this attribute causes an item label to blink. The
default value is 0 (no).

3.6.3.2 A value of 1 for this attribute underlines an item label. The
default value is 0 (no).

3.6.3.3 A value of 1 for this attribute displays the item label in reverse
video. The default value is 0 (no).

3.6.3.4 One of eight levels of item-label intensity or color can be set for
this attribute. The default value is 7 (white).

3.6.3.5 A value of 1 for this attribute indicates that the item label should
be displayed using the same intensity as the item itself. The default value is
0 (no).

NaturalLink Window Manager

Window Attributes 3-19

SCREEN BUILDER

Paragraph Title Page
4.1 Using Screen Buildercoocooiiiiiiiiiiiiicteee et 4-3
4.2 Screen-Level COMMANASccooooeeveeiieieeeeeeeeeeeee e 4-4

4.2.1 Edit WINAOW ...oooiiiiieeieeee et e e e 4-4
422 AdA WINAOW. ...t 4-5
4.2.3 COPY WINAOW ...ttt ve ettt s eee 4-5
4.2.4 INSErt WINAOW ...t aeve s 4-5
4.2.5 Delete WINAOWcocvvvieeieeeeeeeeeeeee et 4-5
4.2.6 Change Help File........cooiiiiiiii e 4-5
4.2.7 DIYAW SCEEEIM .ccuiiiiiiieeceeieeee ettt e e e ee st ee e e s e sranraaessenanes 4-6
42.8 TESt SCIEEM ...viiieiiieeeee ettt et e s 047
4.29 | Yo BN Ta 115 1 TR RUPORUUTTOT 4-7
4.2.10 SAVE SCIEOIM ...ttt e e s et et eeeenneas 4-8
4.2.11 List SCreen AttriDULES........ooovviiiiiiiieeeeeeeeeee ettt eeeeee e 4-8
4.2.12 | D4 | TSROSO RO SRR RTRUPPRRORRTR 4-8
4.3 Window-Level COmmandS.........cccoovvvviieiieiiiiiieieeee et 4-9
4.3.1 Set WIndOW POSIHIONovvieiiiiiiiee e 4-10
4.3.2 Set WIndow FOrmatcocooooiiiiiiiicicee e 4-10
4.3.3 Set Inactive Window AtrDULES.........ccvviivveiiiiieeeeee e 4-10
4.3.4 Set Active Window AtrIDULESoovvivviiiiiiiiieeee e 4-10
4.3.5 Edit WINAOW Label.......ccovviiiiiiiie e 4-11
4.3.6 Set Window Label Attributesoooovvviiiiieiiiceeeeeee e 4-12
4.3.7 Set Cursor AtTIbDULES........ocviiiiiee e 4-12
4.3.8 Set Border AtIDULESc.vviiiieeiiee ettt eeeeaeenn 4-12
4.3.9 Attach Help to WindOW.........ocooeiiiiiiiiiccec e 4-12
4.3.10 Edit Item Table ..o 4-13
4.3.11 Draw WInAOWooooiiiiiiic et 4-13
4.3.12 Test WINAOW .ot 4-13
4.4 Jtem-Level COmMMANASccooemeiiiiiiiiie et e e 4-13
4.4.1 Edit IEem TeXt. ..o et 4-14
442 Set Item AtFIDULESoeeeeiieeeeeeee e 4-15
44.3 Edit ltem Label........ oo e 4-15
444 Set ltem Label AttriDULESooovviiiiieeeeeeee e, 4-16
4.4.5 Aad, Copy T'nsert, and Delete Itemc.cocoeieiieciiiiiicicc 4-16

NaturalLink Window Manager Screen Builder 4-1

Paragraph Title Page
4.4.6 Attach Help to Itemooviiiiiee e 4-16
4.5 The HelPp File .oooieiiieiee e 4-16
4.5.1 Changing the Help Filecccocoiiiiiiinieceee 4-16
4.5.2 Setting a Path for the Help File ..., 4-17
4.6 Attaching Help to Windows and Itemsc.cccceviieveniiniinniinicnen, 4-18
4.6.1 Add Help Message t0 List.......ccccoiiiiiiiiiiiiiiceeee e 4-19
4.6.2 Insert Help Message Into Listccccoeviiiiininiinincniieecnieeenn 4-20
4.6.3 Delete Help Message From Listcccoooiiiiiniiiniiiiiiccee 4-20
4.6.4 View Help MESSAZEc..eivvieiiiiieiieieeni et 4-20
4.6.5 Specify Help MESSAZE......cocveviiriiiieriiiieierecieercsre et 4-20

4.2 Screen Builder

NaturalLink Window Manager

Using
Screen
Builder

4.1 Screen Builder aids in constructing screens for use with Window
Manager routines. The interactive menus in the Screen Builder utility are
used to set attributes described in Chapter 3 (Window Attributes). Refer to
that chapter for specific information about attributes. If you need help
while using Screen Builder, press the F7 key to display online Help
messages.

The SBUILD command invokes the Screen Builder utility. Before entering
the utility, you should first use the MS-DOS SET command to set up the
environment variable NLXTOOLS. NLXTOOLS must be set to the
directory pathname in which the screen files and message files for SBUILD
exist (the .PIC, .NS$, and .NM$ files). If NLXTOOLS is not set, SBUILD will
expect these support files to be on the default drive and directory. If you
are using a pre-2.0 version of the operating system, ignore NLXTOOLS and
make sure Screen Builder support files are on the default drive.

NOTE: All Window Manager utilities use the environment variable
NLXTOOLS to indicate the location of their support files. Therefore, it
would be best to place support files for all of the utilities on the same
directory.

If the file pathname of a screen to be loaded is included on the command
line following the SBUILD command, the screen file will be loaded at the
start of the Screen Builder utility. If this screen file does not exist or
SBUILD has problems loading the screen, a message will be displayed indi-
cating the problem before Screen Builder continues.

NaturalLink Window Manager

Screen Builder 4-3

Screen-Level

4.2 When you enter SBUILD, the main menu for the Screen Builder util-

Commands ity (Figure 4-1) is displayed. If no screen has been loaded and/or no
windows are added, only the Add Window, Load Screen, and Exit com-
mands are available. Once a window has been added or a screen loaded,
the rest of the commands appear. These commands are explained in the
following paragraphs.

Figure 4-1 Screen Builder Main Menu — Screen Commands

NATURALLINK SCREEN EUILDER UTILITY
CONMANDS |
] Edit Windouw Draw Screen
Add Window Test Screen
Copy Window Load Sereen
Insert Window Save Screen
Delete Window List Screen Attributes
Change Help File Exit
WINDOWS
0 Haturallink Access to ..
| (no label specified)
¢ Main Menu:
3 Press:
Select a command
Edit Window 4.2.1 To set or make any modifications to the window or item attributes,

the Edit Window command must be used. When the Edit Window com-
mand is chosen, the cursor is placed in the WINDOWS window, which lists
ali the windows associated with the current screen. When one of these
windows is selected, the Window-Level Menu (see Figure 4-2 later in this
chapter) is displayed to allow you to set window-level attributes. The edit
choice can be aborted by pressing the ESC key before a window is
selected. The cursor then returns to the COMMAND S window.

4-4 Screen Builder

NaturalLink Window Manager

Add Window

Copy Window

Insert Window

Delete Window

Change Help File

4.2.2 When creating a new screen file or adding windows to an existing
file, the Add Window command must be used. Add Window creates a new
window with all of the window attributes set to their default values. If you
are adding windows to a previously created screen, that screen must first
be loaded into SBUILD.

For each window added, a new window entry will be created at the end of
the list of windows displayed in the lower portion of the Screen Builder
Main Menu. Each new window is shown initially as a number and window
label. Windows that do not have window labels are listed as < no label
specified> . The accompanying number indicates the window index in the
screen structure. This window number will be used as input to the majority
of the Window Manager calls.

4.2.3 This command enables you to copy a previously specified window.
After Copy Window is selected, the cursor will be positioned on the list of
window names. The name of the master window should be selected first,
then the cursor should be moved to the name of the destination window.
When the destination window is selected, it is assigned the items, attri-
butes, and help numbers of the master window. If attributes have already
been specified for the destination window, they are replaced with the new
attributes. Pressing the ESC key before selecting the destination window
aborts the reassignment procedure.

4.2.4 This command allows a new window to be inserted into the list of
windows. The attributes of the newly created window will all be set to
their default values. When you select Insert Window, the cursor is placed
at the list of windows. A new window will be inserted above the selected
item. If you want to abort the procedure, press the ESC key before select-
ing the window position.

4.2.5 This command deletes a window from the window list. When a
window is selected, it is deleted, and the other windows in the list are
renumbered. Pressing the ESC key before the window is selected aborts
the operation.

4.2.6 This command is used to change the help file pathname associated
with a screen. Pressing the ESC key aborts this operation. More informa-
tion about the help file is presented later in this chapter.

NaturalLink Window Manager

Screen Builder 4-5

Draw Screen 4.2.7 This command allows you to see all or a subset of the windows you

have created without having to write any application code. When this
command is selected, a pop-up window is presented that asks you to
choose which windows in the current screen file you wish to draw.

Any one of the following options can be selected.

m ALL OF THEM — With this choice, all of the windows listed will be
drawn.

® NON-POPUPS ONLY — This choice will only draw windows which have
the pop-up attribute set to 0 (no).

B A SELECTED SUBSET — This allows you to select a subset of the
windows listed to be drawn. Use the ENTER key to select the windows
you wish drawn. Press the F10 key, and the selected windows will be
drawn.

When the windows are drawn, they are shown in their inactive state; that
is, the inactive attributes are used. The Draw Screen command is actually
performing an Add call followed by a Display call on all the desired win-
dows. (Refer to Chapter 6, Window Manager Callable Routines.) Therefore,
they will be drawn in order of their index in the screen file. If you want to
obtain a printout of the drawn windows, press the CTRL-PrtSc keys. If you
do not want a printout, press any key except CTRL-PrtSc to return to the
main menu.

If the CTRL-PrtSc keys are pressed, a prompt requests the location to
which you wish a copy of the screen to be sent—either to the printer or to
a file. If you select a file, you must enter a valid operating system path-
name. A text file with the screen picture in it is then created. This print
capability applies only to borders and text. Attributes such as intensity or
reverse video do not show up in the printout. If you want a list of all the
text and attributes in the screen, use the List Screen Attributes option. (See
paragraph 4.2.11.)

4-6 Screen Builder

NaturalLink Window Manager

Test Screen

Load Screen

4.2.8 The Test Screen command permits the testing of actual cursor
movement and display of help information for all windows being tested. As
with the Draw Screen command, you have the same choices as to which
windows listed will be tested. Once the windows have been displayed, the
cursor can be moved around this screen to test the features of all the win-
dows. You can test the Help function for any window as well. You can also
get a printout of the screen in the same manner as in the Draw Screen
command. After making a selection from any of the windows, the Screen
Builder main menu reappears.

When the screen is tested, all of the windows shown are in their active
state; that is, the active attributes are used. Screen Builder implements this
feature by making Add and Select calls on all of the specified windows.
The cursor is positioned on the first window in the list by means of a
Receive call on that window. Since all windows are active, an item can be
selected from any valid window. (Refer to Chapter 6, Window Manager
Callable Routines.) You can test other windows in the screen by pressing
the CTRL-HOME keys, the CTRL-Pg Up/Dn keys, or the CTRL-left/right
arrow keys to move the cursor into other windows.

NOTE: If only one window of several selected is displayed on a Test
Screen operation, check the value of the Special Repaint on Receive
attribute for the displayed window. When the value of this attribute is 1
(ves), only this single window will be displayed.

4.2.9 This command loads a screen that has been previously saved to
the disk. It presents a pop-up window in which you enter the pathname of
the screen file you want to load into Screen Builder. If there are any win-
dows currently being shown in the WINDOWS window, they are destroyed
when the screen is loaded. The Load Screen command should be used
when you want to modify or add to an existing screen file. The loading
operation can be aborted by pressing the ESC key.

NaturalLink Window Manager

Screen Builder 4-7

Save Screen 4.2.10 This command saves all the listed windows as one screen file on a

List Screen
Attributes

Exit

disk. They are saved in a screen structure in the order in which they are
listed. A pop-up window is presented in which you enter the pathname of
the file in which you want the current screen saved. The screen is saved in
the pathname specified. If the specified file already exists, it will be over-
written by the new file. Once the screen has been saved, only the Add,
Load, and Exit commands will be available again, since saving the screen
clears out all windows listed. Pressing the ESC key aborts the operation.

4.2.11 This option will produce a text file listing of the attributes for all
the windows in the screen you are currently working on. This file lists the
name of the help file for the screen, the window label, and all the attributes
currently set for each window. For each item in a window, the item label,
item text, and all the attributes currently set for each item are listed.

After List Screen Attributes is selected, a pop-up window prompts for the
pathname of the file where the listing should be stored. Once the
pathname has been specified, you are asked whether you want all attri-
butes listed or just the text. Selecting all attributes will cause both the text
and the currently set attributes to be listed to the file. Specifying just the
text will cause only the help pathname, window labels, item labels, and
item text to be listed to the file.

4.2.12 Selecting this option terminates Screen Builder. If any windows
are still specified at this time, a prompt asks if they should be saved before
the program terminates. You can abort the operation by pressing the ESC
key when the pop-up window is displayed.

4.8 Screen Builder

NaturalLink Window Manager

Window-Level
Commands

4.3 Choices from the Window Level Menu (Figure 4-2) trigger a series of
pop-up windows that request such information as whether items should be
centered, in reverse video, in high intensity, with or without labels, and so
on. Also at this level, as well as at the Screen-Command level, you have
draw and test options that enable you to see how each window looks and
how it behaves.

Figure 4-2

Window-Level Menu

NATURALLINK SCREEN BUILDER UTILITY

Window Operations

0 Set Window Position

Set Window Format
Set Inactive Window Atirihutes
Set Active Window Attributes
Edit Window Label
Set Window Lakel Attributes
Set Cursor Attributes
Set Window Border Attributes
Attach Help to Window
Edit Item Tahle

@ Draw Window

1 Test Window

—

[t el s B (o B s g A O SR Y e)

Press the F10 key to return to the screen level memu

Corrently editing window + 2 - Main Menu:

The screen shown in Figure 4-2 contains 12 options (operations) for
specifying the attributes of the window. The window identified at the
bottom of the screen indicates which window is being edited. Windows
that do not have window labels will be referenced by the window index
number. Otherwise, the windows will be referenced by the window index
number and the window label.

With the exception of Edit Window Label and Edit Item Table, all of the
options have default values listed in the windows that appear after you
select a given option. (These are explained with each option.)

All but the last four options in Figure 4-2 use multiple-selection pop-up
windows in which you enter the information for that option. None of the
fields in these pop-ups is required, so the F10 key can be pressed at any
time to exit. To return to the Screen Builder main menu, press the F10 key.

NaturalLink Window Manager

Screen Builder 4-9

Set Window Position

Set Window Format

Set Inactive
Window Attributes

Set Active
Window Attributes

4.3.1 This option enables you to specify the upper left and lower right
coordinates of a window. Default values produce a window the size of the
entire video screen.

4.3.2 Most of the window attributes are set using this format option.
Default values in the Set Window Format menu produce a window with
the following characteristics:

m Window Type — List window

® Column Format — Single column

W Disable Multiple Line Items — Yes

B Multiple Selection Window — No

B Allow Cursor to Enter Window — Always

@ Pop-up Window — No

B Special Repaint on Receive — No

B Don't Redisplay Current Items — No

® Center All Items — No

W Visible Item Labels — No

B Set Window Priority — Currently 0

4.3.3 Selecting this option enables you to set the attributes of the items
displayed when the window is inactive. The default value displays items in
intensity-level 4 (green).

4.3.4 Select this option when you wish to set the attributes of the items
displayed when the window is active. The default value displays items in
intensity-level 7 (white).

4-10 Screen Builder

NaturalLink Window Manager

Edit Window Label

4.3.5 When this option is selected, a pop-up window is presented in
which you can enter up to 25 lines, each 78 characters in length, of win-
dow label text. Each line entered in the pop-up window will become a
separate line of the window label. Special editing features have been
added to this window and are documented with Help messages attached to
the window. The editing keys include the following:

B INS — Enables you to insert a character or a string of characters.

B DEL — Deletes a single character.

B CTRL-F1 — Moves the cursor to the beginning of a line of text.

B CTRL-F2 — Moves the cursor to the end of a line of text.

B CTRL-F3 — Moves the cursor left one word at a time.

B CTRL-F4 — Moves the cursor right one word at a time.

B CTRL-F5 — Deletes text from the cursor position to the end of the line. If
the cursor is at the first character position, CTRL-F5 removes the entire
line from the window.

B CTRL-F6 — Inserts a new line into the label text. A new line cannot be
inserted if the last line in the window contains text. There is a limit of 25
lines per window label.

B F5 — Joins the line below the cursor with the line containing the cursor.

B F6 — Breaks the line at the cursor and places the remainder onto a new
line below the one containing the cursor. Since there is a limit of 25 text
lines for a window label, the break operation cannot be performed if
line 25 has text in it.

Blank lines can be part of the window label. To leave a blank line within

the label text, leave the edit line blank. However, if you want to leave one

or more blank lines at the end of the window label text, ensure that the last

line to be blank has a single space entered as the first and only character of
that edit line.

NaturalLink Window Manager

Screen Builder 4-11

Set Window
Label Attributes

Set Cursor
Attributes

Set Border
Attributes

Attach
Help to Window

When a window label with blank lines inserted is edited again, all blank
lines will show up as a line with a single space as the first character. This is
normal and is just another way to reserve a blank line. Any blank line in
the window label will not take on any of the window label attributes (that
is, it will never be underlined or shown in reverse video). If you want the
blank lines to take on attributes, you will have to pad the line with enough
spaces to get the desired effect.

When the window label is used as an item in Screen Builder (such as the
WINDOWS window in the main menu or the bottom window in the window-
level menu), a multiple-line window label will be shown as one line with a
vertical bar (|) indicating the end of each line of the label.

4.3.6 This option is selected when you wish to set the attributes of the
window label. The default value causes the label to be displayed left-
justified in intensity-level 7 (white) at the top of the window.

4.3.7 The cursor can be specified by selecting this item. The default
value specifies a full size, reverse video cursor, displayed in intensity-level
5 (cyan).

4.3.8 The Set Border Attributes option allows you to change the appear-
ance of the window border. The default border attributes result in a border
which will be drawn in intensity-level 4 (green) and have no scroll markers
associated with it.

If you decide to use different border intensities or a reverse video border
for adjoining windows in the same display, keep in mind that these two
display attributes will not be combined with the border attributes of
surrounding windows. If two windows share a common border, the inten-
sity and reverse video border attributes of the window which was drawn
last are used for the shared border.

4.3.9 Selecting this item causes the Attach Help Messages screen to
appear. This screen enables you to attach Help messages to the window.
This option is not available for display windows since the cursor can never
enter a display window. (See paragraph 4.6, Attaching Help to Windows
and Items, for more information.)

4-12 Screen Builder

NaturalLink Window Manager

Edit Item Table

Draw Window

Test Window

4.3.10 Selecting this item causes the Item-Level Menu (Figure 4-3) to
appear. On this screen you can specify item-level information such as item
text and item attributes.

4.3.11 This option is just like the Draw Screen command on the screen-
level menu, except that it only draws the window currently being edited. A
printout is not provided at this level.

4.3.12 This command is identical to the Test Screen command on the
screen-level menu, except that this option tests only the window currently
being edited. A printout is not provided at this level. Windows that cannot
be tested include the following:

® Display windows

® Windows with no items

m Windows with all unselectable items

®m Windows with the Allow Cursor to Enter Window attribute set to Never

B User-defined windows

Item-Level
Commands

4.4 The Item-Level Menu (Figure 4-3) is similar to the screen-level
menu. The COMMANDS window contains a list of the possible operations
(commands) that can be performed on the items in the window. The pro-
cess of selecting commands is similar to the screen level, except that these
operations act on the item level rather than the screen level. In the ITEMS
FOR WINDOW window, if the item has no text, <no text specified > is listed
for the item. The numbers before the items indicate the item index in the
window structure. This item number will be used as input to several Win-
dow Manager calls.

If no items have yet been specified, Add Item is the only legal choice. Once
you have added an item, the other options appear. The commands are
explained in the paragraphs following Figure 4-3. To return to the window-
level menu, press the F10 key.

NaturalLink Window Manager

Screen Builder 4-13

Figure 4-3 Item-Level Menu

NATURALLINK SCREEN BUILDER UTILITY

COMMANDS

Add Iten
Set Item Attributes Copy Item
Edit Item Label Insert Item
Set Lahel Attributes Delete Item
Attach Help to Item

TEMS FOR WINDOW & 2 - Main Menu:
(no text specified ?
Build Questions
Get Saved Questions
Use Terminal Mode
Select or Change Data Storage Options
(no text specified »
Create or Change User Profile
Create or Change Communications Profile
Take the Tutorial
{ no text specified)
0 Quit

— D OO0~ O O B Q) DO e SO

Select a Command. Press the F10 key to return to the window level menu.

EditItem Text 4.4.1 If you select this option, the cursor is positioned at the items por-
tion of the menu. Select the item whose text you wish to edit. When the
pop-up window appears, you can enter up to 78 characters of item text. If
item text already exists for the item, the existing text is the default text
and appears in the pop-up window. [f you edit the existing text but decide
not to use the new text, press the ESC key. This aborts the operation.

4-14 Screen Builder NaturalLink Window Manager

Set Item Attributes

Edit Item Label

4.4.2 After making this selection, the cursor is positioned at the items
portion of the menu. Select the item whose attributes you wish to set. The
cursor is moved to a menu in which attributes are set or selected for the
items. Default values in the item-level menu produce items with the follow-
ing attributes:

B Visible item — Yes

B Unselectable item — No

B Maximum edit field length — 0

m Edit field datatype — 0

B Required edit field — Yes

B Echo edit field input — Yes

B Chosen/Enable attributes — No

If the Chosen/Enable attribute value is changed to Yes, the following
additional default attributes are in effect:

M Reverse video chosen item — Yes
® Chosen intensity/color — 7 (white)
You can press the F10 key at any time to return to the COMMANDS window.

Pressing the ESC key before selecting an item aborts the Set Item Attri-
butes operation.

4.4.3 This option enables you to enter item label text or to edit existing
item label text. When this choice is selected, the cursor is positioned at the
items portion of the menu. Select the item whose label you wish to edit (or
press the ESC key to abort). A pop-up window appears in which you can
enter up to 78 characters of item label text. If an item label already exists
for the item selected, its text is the default text shown in the pop-up
window.

NaturalLink Window Manager

Screen Builder 4-15

Set Item
Label Attributes

Add, Copy,
Insert, and
Delete Item

Attach Help to Item

4.4.4 This option permits you to set the attributes of the item label.
When this choice is made, the cursor is positioned at the items portion of
the menu. Select the item whose label attributes you wish to modify. Press-
ing the ESC key before selecting the item aborts the operation. The item
label for an item is displayed in intensity level 7 (white) by default.

4.4.5 These commands work in exactly the same manner as those at the
screen level, except that they work on items instead of windows.

4.4.6 Selecting this option causes the Attach Help Messages screen to
appear. This screen allows you to attach Help messages to the item. The
option is not available for display windows. See paragraph 4.6, Attaching
Help to Windows and Items, for more information about attaching Help to
windows and items.

The Help File

Changing
the Help File

4.5 For every screen created by the Screen Builder utility, there may be
a file of Help messages associated with the screen. The first time you wish
to attach Help to a window or item, a prompt appears requesting you to
enter the pathname of the file which will contain the Help messages
associated with this screen. This pathname is then stored in the structures
referenced by Window Manager. If at some point you find it desirable to
change the name of the file associated with this screen, you can select the
Change Help File option from the Screen Builder main menu. The same
Help message file can be associated with more than one screen.

4.5.1 You can change the Help file associated with a screen by selecting
the Change Help File option from the Screen Builder main menu. Nor-
mally, you should change the Help filename if you wish to rename the file
or if you want to select a Help file from a different drive than the one pre-
viously specified. For example, if you specify A:HELP.TXT for the Help file
associated with the screen and then choose to move the Help file to the
default drive, you must select the Change Help File option and respecify
the Help filename HELP.TXT for the default drive.

4-16 Screen Builder

NaturallLink Window Manager

Setting a Path
for the Help File

Changing the Help file does not affect the help numbers previously
attached to the windows and items of the screen unless the Help filename
is deleted. If the Help filename is deleted in the Change Help File option, a
pop-up window prompts that all attached Help message numbers will be
removed. The pop-up window asks if all the Help message numbers should
be deleted. If Yes is selected, all Help numbers are removed. If No is
selected, another prompt requests a new help filename. If a different file is
entered as the new Help file, the Help numbers previously attached to the
windows and items will now correspond to the new file.

4.5.2 When the Help key is pressed (default: F7 key), Window Manager
references the Help file by using the name of the Help file stored with the
screen structure. If you know where the Help file will ultimately reside on
the disk, the pathname of the Help file can easily be specified in Screen
Builder. However, when the screen is designed, the location of the Help
file on the disk may not be known. To solve the problems of this latter
example, you can take advantage of the Window Manager path variable,
LIwmpath (wmpath for FORTRAN users).

Liwmpath is a string variable which may be set using a Set String Value
call. (See Chapter 6, Window Manager Callable Routines, for a full
discussion of all Window Manager calls.) If only the help filename is
specified in Screen Builder (no drive or directory pathname), the value of
the LIwmpath variable will be appended to the help filename to get the
total help pathname. This appended pathname indicates the file from
which Window Manager will get the Help message.

Thus the application could prompt the user for the path where the help file
was put on disk and then set LIwmpath to this value. Another method can
be for the application to make use of an environment variable and then set
LIwmpath equal to the value of the environment variable.

The LIwmpath variable can be set any time. LIwmpath will be appended to
all of the help filenames in the same application as long as the help
filename stored with the screen does not include a drive or directory
pathname. LIwmpath should contain only the value of a directory path-
name; a filename should not be included.

NaturalLink Window Manager

Screen Builder 4-17

Attaching Help
to Windows
and Items

4.6 Any number of Help messages can be attached to the items or win-
dows in a screen. When you are interacting with a screen during an appli-
cation program, you can move the cursor to a particular item and press the
F7 key to display the first Help message attached to that item. All other
Help messages for that item can be viewed by pressing the F7 key to view
the next message in the sequence, or by pressing the F8 key to view the
previous Help message. Pressing the ENTER key at any time will return
you to the screen. If an item has no attached Help message, the Help mes-
sages attached to the window are displayed in sequence. If no Help
messages are attached to either the item or the window, the following
message appears:

No help has been supplied for this topic

This default message is always the first message in every message file. You
can modify the default message by using the Message Builder utility. How-
ever, you will first be warned as to the use of the default message. The
default message cannot be deleted since Window Manager always expects
message number 0 to be the default Help message.

When the Attach Help to Window option is selected at the window level,
Help message numbers are attached to the window currently being edited.
When the Attach Help option is selected at the item level, the cursor
moves to the list of items and the help numbers are attached to the
selected item. It should be noted that window help is only displayed when
no item help is available. After selecting the Attach Help option at either
level, you are requested to enter the pathname of the help file if a file has
not been previously associated with this screen. The Attach Help Messages
menu (Figure 4-4) then appears with all the commands, a list of the mes-
sages previously stored in the message file, and the list of messages
previously attached to this item or window.

4-18 Screen Builder

NaturalLink Window Manager

Figure 4-4

Add Help
Message to List

Attach Help Messages Menu

ATTACH HELP MESSAGES

COMMANDS
Add Help Message To List

Insert Help Message Into List
Delete Help Message From List

Yiew Help Message
Specify Help Message

RTTACHED HELP MESSAGES FOR WINDOW : 2 - Main Menu

t 2
HELP MESOAGES
{ HELP MESSAGEL 2 HELP MESSAGEZ 3 HELP MESSAGE3
4 HELP MESSAGE4 3 HELP MESSAGES B HELP MESSAGEG
7 HELP MESSAGE? 8 HELP MESSAGES

Select a Command. Press the F10 key to return to the previous menu.

If the message file is a new file with no previously saved Help messages,
then Specify Help Message is the only option visible in the Command win-
dow. Once a Help message has been added to the file, the menu is
repainted with all of the options visible. The following paragraphs describe
these options.

When you have finished attaching help to a window or item, press the F10
key to return to the window-level or item-level screen.

4.6.1 This command is used to add another message to the list of mes-
sages attached to the window or item. The cursor will move into the list of
Help messages. The message which is to be attached can then be selected
and the number will appear in the list of attached Help messages. Pressing
the ESC key before selecting a message aborts this procedure.

NaturalLink Window Manager

Screen Builder 4-19

Insert Help
Message Into List

Delete Help
Message From List

View Help Message

Specify Help
Message

4.6.2 This option causes the cursor to move into the list of Help mes-
sages. Once the desired Help message is selected, the cursor moves into
the ATTACHED HELP MESSAGES FOR WINDOW window. The Help message
number from the Help messages list is inserted before the number selected
from the ATTACHED HELP MESSAGES FOR WINDOW window. Pressing the ESC
key at any time prior to selecting a position aborts this procedure.

4.6.3 This option causes the cursor to move into the ATTACHED HELP
MESSAGES FOR WINDOW window. The message number selected is then
deleted from the list of attached messages. If there are no attached mes-
sages, the cursor does not move from the Delete Help option.

4.6.4 This option causes the Help message selected from the list of Help
messages to be displayed on the screen. The message is placed in a win-
dow with a help label at the top. The window is positioned according to the
coordinates specified for this Help message. The window is centered on
the screen if coordinates have not been specified.

When you view a user-defined Help message, the message text is placed in
a window drawn to the specified coordinates, but no special formatting of
the message is done. See Chapter 8, User-Defined Windows, for more
information on user-defined messages.

4.6.5 This option permits a quick method of adding a new message to
the message file without leaving Screen Builder and entering Message
Builder. However, the capabilities of this option are much more limited
than those provided by Message Builder. It is recommended that Message
Builder be used for extensive specification and manipulation of messages.

After this option is selected, you will be presented with two pop-up
windows in which to specify the message text and message name only.
The message type will be forced to be a Help message, and the window
will be centered on the screen with a window size dependent on the size of
the message.

NOTE: Because of the way Screen Builder stores your help messages, it
is necessary to have enough room on the default disk drive for the utility to
store a temporary copy of your message file. If you receive an Error
message referencing MMTEMP.$$$ or MMTEMP2.$$$ while your messages
are being stored, you will need to make more room on your default disk. It
is recommended that this utility be run from a Winchester disk drive.

4-20 Screen Builder

NaturalLink Window Manager

MESSAGE BUILDER

Paragraph Title Page
5.1 Using Message Builderccccccceveninnnnnnnnnn. e e 5-3
5.2 Message Builder Options..........cccccceieienienienienieiceeeeeeee et 5-3

5.2.1 A MESSAGE ..ottt ettt ettt 5-5
5.2.2 MoOdify MESSAZEceevuiiiiiiiiiiiieiecee et 5-6
5.2.3 Rename MeSSage..........coviiiiiiiiiiiieeiiecitsteeee e eevt et 5-6
5.2.4 Change Message Type/Classccceeveueieieieieieieeceeeeeeeee e 5-7
5.2.5 COPY MESSAZE.......ceeeviiiiteieieeie ettt eve bt ne s 57
5.2.6 ReUSE MESSAZEccviiiiiiiiiiiieieeeeee et 5-7
5.2.7 Specify Window Coordinates............ccoocveeieiieiieicieciieiceeceee e 5-7
52.8 Delete MESSAZE.c.vicvieieeiieeieecteete ettt e 5-8
529 VIEW MESSAGE ..ottt sttt 5-8
5.2.10 LSt MESSAZES ..ottt ettt 5-8
5.2.11 QUIE .ttt ettt eaeene e 5-9
5.3 Default MESSAGE.eeeeeeieiieeieieeteeeeeeie ettt s 59
5.4 Using Message ManaGer............ccvcuevuevieciesiiieeeeetieteeeeee et eee e 5-9
5.4.1 Variable TeXt......coooiviiiiieeiee et 5-10
5.4.2 Message Manager Errorsccooeveviioieciciiciecececeeeeeeeeveeen 5-11

NaturalLink Window Manager

Message Builder 5-1

Using Message
Builder

5.1 Message Builder is an interactive utility that aids the application
designer in constructing messages for use in an application program. The
messages can be of four different types:

m Help

B Error

B Warning

W Please Note

Each message is classified as either a text message or a user-defined
message. Once constructed, these messages are stored in a file and can be
selectively displayed by making calls to Message Manager, discussed later
in this chapter. Also refer to Chapter 6, Window Manager Callable
Routines.

The MBUILD command invokes the Message Builder utility. Before
entering Message Builder, you should first use the MS-DOS SET command
to set up the environment variable NLXTOOLS. NLXTOOLS must be set to
the directory pathname in which the screen files and message files for
MBUILD exist (.PIC, .NS$, and .NM$). If it is not, MBUILD expects these
support files to be on the default drive and directory. If you are using a pre-
2.0 version of the operating system that does not support either directories
or the SET command, ignore NLXTOOLS and ensure that the Message
Builder support files are on the default drive.

Message
Builder
Options

5.2 Message Builder allows you to create and save messages in a format
that can be easily accessed by Message Manager. Therefore, in order for
this utility to execute, it must have a message pathname. There are two
ways to specify a message file for Message Builder:

B The most efficient way is to include the file pathname on the command
line after typing MBUILD. This allows an existing message file to be
loaded along with Message Builder or a new file to be automatically
initialized before the main menu appears.

B Another way is to type MBUILD, press the ENTER key, and wait for the
system to prompt for a message file pathname.

Once a valid filename has been entered, the Message Builder menu (Figure
5-1) appears. If you have specified an existing message file, the messages
contained in that file are listed in the lower half of the menu under the
command options. If the file you have specified does not exist, Message
Builder creates a default message (message number 0) to initialize the new
message file and lists the message number for you at the start of the utility.

NaturalLink Window Manager

Message Builder 5-3

Figure 5-1

Message Builder Utility
NATURALLINK MESSAGE BUILDER UTILITY

Commands

Add Message Specify Window Coordinates
Modify Message Delete Message

Rename Message Yiew Message
Change Message Type/Class List Meszages
Copy Message Quit

Reuse Message 2

Messagezs from meafile.txt
¢ Default Msg 1 First Message 3 Third Message
4 Fourth Message 5 Fifth Message

Select a Command

The command options available in Message Builder depend on the status
of the message file specified, as well as the changes made to it. If the
message file is a new file with no previously saved messages, all the
options except the Delete Message and the Reuse Message options are
displayed. Only after a second message has been added to a new file does
the Delete Message option appear. This is due to the fact that the default
message can never be deleted (as discussed in paragraph 5.3, Default
Message). For either a new or an existing message file, the Reuse Message
option becomes visible only after a message has been deleted, and remains
visible as long as there are numbers from deleted messages which have
not been reused.

5-4 Message Builder

NaturalLink Window Manager

Add Message 5.2.1 Selecting this option results in an edit window appearing, into
which you can enter the text of the message. Special editing features have
been added to this window and are documented with Help messages
attached to the window. The editing keys include the following:

® INS — Enables you to insert a character or a string of characters.

B DEL — Deletes a single character.

W CTRL-F1 — Moves the cursor to the beginning of a line of text.

B CTRL-F2 — Moves the cursor to the end of a line of text.

B CTRL-F3 — Moves the cursor left one word at a time.

B CTRL-F4 — Moves the cursor right one word at a time.

W CTRL-F5 — Deletes text from the cursor position to the end of the line. If
the cursor is at the first character position, CTRL-F5 removes the entire
line from the window.

B CTRL-F6 — Inserts a new line into the message text. A new line cannot
be inserted if the last line in the window contains text. There is a limit of
19 lines per message.

® F5 — Joins the line below the cursor with the line containing the cursor.

B F6 — Breaks the line at the cursor and places the remainder onto a new
line below the line containing the cursor. Since there is a limit of 19 lines
of text for a Help message, the break operation cannot be performed if
line 19 has text in it.

Each line of text is centered in the help window. To left justify a message,

you must pad each line with spaces. If you want blank lines between lines

of text, skip those lines as you enter the text. Press the F10 key to save the

text. Once the text has been entered, the system uses a second pop-up edit
window to prompt for a name to identify the new message.

NaturalLink Window Manager Message Builder 5-5

Modify Message

Rename Message

After you enter the message name, a third pop-up window allows you to
select the message type and to classify the message as a text message or a
user-defined message. The type of message selected determines the win-
dow label that will appear in the message window. The message classifica-
tion tells Message Manager what to do with the message (refer to
paragraph 5.4, Using Message Manager). If you classify the message as
user-defined, the system automatically pops up the window used by the
Specify Window Coordinates option, with the coordinates defaulted to a
full-screen window. You can modify the coordinates prior to pressing the
F10 key to save them. The number and name of the new message are
appended to the list of messages displayed under the command options on
the Message Builder menu.

Press the ESC key at any time to abort the Add Message procedure.

5.2.2 Selecting this option causes the cursor to be placed in the list of
messages. Once the message to be modified has been selected, the edit
window used by the Add Message option appears containing the current
message text. This text can then be modified.

There is one exception to the process just described. If you select the
default message (message (), the system intervenes with a message
informing you of the special significance of the default message. (Refer to
paragraph 5.3, Default Message.) After viewing this message, press the
ENTER key and the current message text appears. Pressing the F10 key
stores any new changes made to the text. Pressing the ESC key aborts the
Modify procedure.

5.2.3 When Rename Message is selected, the cursor is placed on the list
of messages. Once the message to be renamed has been selected, a pop-up
window containing the message name appears. The name can be changed
or modified.

The processing exception described in the Modify Message option applies
here also. When you select the default message (message 0) to be
renamed, the system intervenes with an informative message prior to
displaying the current message name. Pressing the ESC key aborts this
procedure.

5-6 Message Builder

NaturalLink Window Manager

Change
Message
Type/Class

Copy Message

Reuse Message

Specify Window
Coordinates

5.2.4 Selecting this option causes the cursor to be placed on the list of
message names. Once the desired message has been selected, the pop-up
window used by the Add Message option appears. The current message
type and classification are highlighted in reverse video. These attributes
can then be modified. Pressing the ESC key aborts this procedure.

5.2.5 This option enables a previously specified message to be copied to
another previously added message. When the option is selected, the cursor
is positioned in the list of message names. The name of the master mes-
sage should be selected first, then the cursor should be moved to the name
of the destination message. When the second selection is made, the text,
type, classification, and coordinates of the master message are assigned to
the destination message. Only the name of the destination message
remains the same. Pressing the ESC key before selecting the destination
message aborts this procedure.

5.2.6 This option is visible only after a message has been deleted from
the list. When the option is selected, the result is the same as the Add
Message option. You are given a pop-up window into which text can be
entered and then saved by pressing the F10 key. You are prompted for a
message name, type, classification, and, if the user-defined classification is
selected, window coordinates.

The system keeps track of the numbers which are available to be reused
and, when no more exist, it removes this choice from the list of options.
When this option is available, you are advised to use it rather than the Add
Message option to create a new message. Because of the way the message
file is stored, this procedure helps minimize the size of the message file.

5.2.7 Selecting this option causes the cursor to be placed in the list of
messages. From this list, you should select the message requiring specific
coordinates. A pop-up window then prompts you for the upper left and
lower right coordinates of the window in which the message will be dis-
played. If coordinates are not specified for a message, the window is
shrunk to fit the message text and placed in the center of the screen.
However, if the message you selected from the list is classified as user-
defined, coordinates of all zeros will not be accepted.

NaturalLink Window Manager

Message Builder 5-7

Delete Message

View Message

List Messages

To put a message into a window, the interior of the window must be at
least three lines long and six columns wide. When specifying coordinates
for the window border, it is necessary that the bottom row coordinate be
at least four units larger than the top row coordinate and that the right-
most column coordinate be at least seven units larger than the left-most
column coordinates. Additionally, text that does not fit into the specified
window is wrapped within the window, using the carriage return to indi-
cate a new line. Pressing the ESC key aborts this operation.

5.2.8 Selecting this option causes the cursor to be positioned at the list of
message names. The message selected is deleted from the list of messages.
Since the default message (message 0) should never be deleted, it is made
unselectable and the cursor is not permitted to move to it. Pressing the
ESC key before selecting a message aborts this procedure. Once a message
has been deleted, the Reuse Message command will become available and
can be selected to reuse the message number for another message.

.2.9 Selecting this option causes a message selected from the list of
message names to be displayed on the screen. For text messages, the mes-
sage is placed in a window with an appropriate label as if the message had
been displayed by Message Manager, except that any variable text (desig-
nated by @ followed by an integer — that is, @1) in the message is not
replaced.

When you view a user-defined message, the message text entered is
placed in a window drawn to the specified coordinates, but no special
formatting of the message is done.

5.2.10 By selecting the List Messages option, you can have a formatted
copy of the messages sent to a file. The listing can then be printed. This list-
ing file should not be confused with the file in which the messages are
stored for use by Message Manager. A pop-up window requests the path-
name of the file that is to receive the list of messages. The messages are
placed in the file in the following format:

1 MESSAGE NAME (MESSAGE TYPE)
(ULX=0, ULY=0, LRX=0, LRY=01
MESSAGE TEXT

Pressing the ESC key before entering the pathname aborts this procedure.

5-8 Message Builder

NaturalLink Window Manager

Quit

5.2.11 Selecting this option terminates Message Builder. All new mes-
sages are stored in the file specified when entering Message Builder.

NOTE: Because of the way the Message Builder utility stores your
messages, the default disk drive must have enough room for the utility to
store a temporary copy of your message file. If you receive an error
message referencing MMTEMP.$$$ or MMTEMP2.$$$ while your mes-
sages are being stored, you need to make more room on your default disk.
It is recommended that this utility be run from a Winchester disk drive.

Default
Message

5.3 Message files created with Message Builder or Screen Builder con-
tain a default message (message (). It is displayed when the Help key is
pressed and no help has been attached to the item the cursor is on or to the
window. It is also displayed when display of message number 0 is
requested. The default message reads as follows:

No help has been supplied for this topic

You can modify the default message by using MBUILD. However, you will
first be warned as to the use of the default message. The default message
cannot be deleted since Window Manager always expects message num-
ber 0 to be the default Help message.

Using Message
Manager

5.4 When the messages have been created and stored in a file, they can
be accessed from the application program. The application program uses
the Message Manager call to display the desired message during run time.
Message Manager reads the binary file created by Message Builder and
internally constructs a temporary window using the coordinates provided.

If no coordinates are specified (a situation that can exist only for text mes-
sages), Message Manager shrinks the window to fit around the message
and positions it to appear in the middle of the screen when it is
subsequently displayed. However, prior to displaying any message, Mes-
sage Manager checks the message classification to determine the action to
take next. If it is a text message, Message Manager displays it and waits for
you to press the ENTER key. After receiving this signal to continue, Mes-
sage Manager erases the message and returns to the calling procedure.
The windows covered by the message window will be flagged for repaint-
ing or optionally redisplayed by Message Manager before returning.

NaturalLink Window Manager

Message Builder 5-9

Variable Text

Message Manager does not display user-defined messages. Instead, a call is
made to an application routine, provided by you, to handle the message.
Like Message Manager handling a text message, your application assumes
responsibility for displaying the desired information and for deleting it. All
Window Manager calls are available to you from your application. Refer to
Chapter 8, User-Defined Windows, for a detailed discussion of the call to
the application.

If the requested message cannot be found in the message file, the following
appears:

An invalid message number has been supplied to message manager
The invalid number is: @1

The @1 will be replaced by the number of the requested message.

5.4.1 Messages constructed with Message Builder can contain variable
text. That is, there may be slots in the messages where other strings are to
be inserted. These slots are indicated by an at sign (@) followed by an inte-
ger. For example, @1 indicates that the first string is to be inserted here,
@? indicates that the second string is to be inserted here, and so on. These
can be repeated, so that the same string can be inserted into several slots.
Thus, a valid message text may be:

@1 @1 little @2
In the preceding example, if the string twinkle is the first string to be

inserted, and star the second, the message displayed by Message Manager
is as follows:

twinkle twinkle little star

The message appears in a window that can either be centered on the
screen or placed according to specified coordinates.

5-10 Message Builder

NaturalLink Window Manager

Message
Manager
Errors

5.4.2 An unformatted Error message appears if Message Manager can-
not correctly display a message. This message is as follows:

An error with the following code was encountered: XXX...
The message display system was unable to neatly process
this message for the following reason: XXX...

Following is a list of the error codes encountered and explanations of each:

M Message files read error — This means that the message has been
damaged or deleted, or that the filename passed to Message Manager
was not a message file.

B Couldn’t get memory for messages — This indicates that there was not
enough memory to display the message.

® Invalid filename passed to Message Manager — This indicates that the
name of the message file passed to Message Manager does not follow
correct operating system naming conventions.

NaturalLink Window Manager

Message Builder 5-11

WINDOW MANAGER CALLABLE ROUTINES

Paragraph Title Page
6.1 Procedure Calls.........ooouveiiiiiiiii ettt e et ae e 6-3
6.1.1 [nitialize Window Manager............cccooiviiiiiriircie et ceeene e 6-3
6.1.2 Load SCreen File ...t 6-4
6.1.3 A WINAOW ..o e e e e 6-4
6.1.4 Select WINAOW.......cooiiiiiiiiieeeee e v e eeeeaee e 6-4
6.1.5 RefresSh WINAOWooooieeieeeeeee et 6-5
6.1.6 Display WINAOWcccccoiiiiiiiiiiiriieieeiee ettt 6-5
6.1.7 Receive From WINAOWoooviiiiiiiiiie ettt eeeen e 6-5
6.1.8 Release WINAOWoooviiiiiieieeeeeeeeeee e e e e e 6-6
6.1.9 Delete WINAOW........oooviiiiiecece ettt erete e eeneee e aeeans 6-7
6.1.10 SAVE SCIEEIN ...ttt e ettt e et e et e esraeeeaeeeenes 67
6.1.11 UNIOAd SCIEENviiiiiiiicceeeeeeee ettt eeee e e eeee s e 6-7
6.1.12 Reset Window Manager..........ccoovveiviviiviei o 6-7
6.1.13 A BEIM ..ottt eee e e s e e e ean 6-7
6.1.14 INSEIT IEEIMI ..ottt e e s e e e e e e eeaeeeans 6-8
6.1.15 Dlete TEEIM ...t e e e ae e e e e rae e eeeaee e e 6-8
6.1.16 Create Hem Table. ..o e e e areeas 6-8
6.1.17 Create WIIAOWoooiiiiieicceeeee e e et e e e s e e e e eeereeene s 6-9
6.1.18 Get ATIDULE VAIUE ... e e e e et ese e 6-9
6.1.19 Get String ValUec.ooveieieieiciceceeeeeee et 6-9
6.1.20 Set AttFIDULE VAIUC.......ooeiiiieiieeeeee ettt e e e e eeee e e seeeses e 6-9
6.1.21 Set String Valuec..ooiiiiiiiieeceeeeeeeee et 6-9
6.1.22 ClEAY SCIEEI ...ttt e et e e e s e e e e 6-9
6.1.23 Display Message From Message Managerccccoocovveeveveveennnne.. 6-10
6.1.24 Reset NaturalLink Memory.........ccoooviieiiiiiiciiiccceceec e 6-10
6.2 Typical Calling SEQUENCEcooviieriieereeeeeteeeeeeeeeeee e 6-11

NaturalLink Window Manager Window Manager Callable Routines 6-1

Procedure
Calls

Initialize
Window Manager

6.1 Window Manager controls windows and associated text items and
can perform various functions on them. However, Window Manager must
be called upon by an application program in order to perform these func-
tions. Since the windows used by application programs are stored as
screen data files, each application program using Window Manager must
keep track of where and how the windows are to be used in the program.
The application program must then make certain procedure calls to Win-
dow Manager to invoke the functions. The nature of these procedure calls
is covered in this chapter. Tables listing the actual calls an application pro-
gram uses are presented in the appendixes.

An application program calls Window Manager through a high-level
language interface. How the calls are made depends on the programming
language used. An explanation of what kinds of calls are made is
summarized here.

6.1.1 Window Manager must know what hardware the application is
running on. The Initialize routine does this machine detection and sets the
flag LIpctype (pctype for FORTRAN) accordingly. If the internal phrase file
(NLXPHRAS.NMS) is present, it will be loaded during this initialization
time. (See Chapter 9, Internal Phrase Editing, for more information.)

Window Manager also requires that certain cursor and video display
attributes be set before it starts processing; on some machines it invokes its
own keyboard mapping if necessary. (See Appendix C, Computer-Specific
Information, for more information.) To perform these operations, your
application program must call the Initialize procedure before calling any
other Window Manager routines. This routine only has to be called once
before any other Window Manager routines are called.

If the Initialize procedure is not called, Window Manager will not run
properly.

NaturalLink Window Manager

Window Manager Callable Routines 6-3

Load Screen File 6.1.2 Window descriptions are stored in files built by Screen Builder.
These window descriptions must be entered into memory before Window
Manager can perform any other functions on them. The Load procedure
reads the screen file, allocates memory for each stored window descrip-
tion, and loads the window descriptions into memory. A maximum of 20
screen files can be loaded into memory at any one point.

Add Window 6.1.3 After all windows are loaded into memory, they must be added
before any Select, Receive, Refresh, Release, or Delete function can be
performed on them. The Add call makes a window known to Window
Manager. An added window is then flagged to have its text and border
painted. This procedure only adds the window; the window is not
displayed until a Receive call is made for any window on the screen or
until a Receive or Display call is specifically made for this particular
window. If the window was already added, this procedure returns a warn-
ing code and the Add procedure is not performed.

The file text for a file window is loaded at the time the Add call is made. If
for some reason the file window text cannot be loaded, the Add call
returns an error code, but the window is still added. In other words, the
window is added even though it has no items.

Once a window has been added, Window Manager remains aware of it
until it is deleted. Since adding a window flags the window to be painted,
windows should not be added until they are to become visible. Once the
window has been displayed (by either a Display call or a Receive call), it
remains showing unless it becomes covered by another window or is
deleted. If the window is covered by another window, the covered window
is still known to Window Manager and will be flagged for repainting when
the covering window is deleted.

Select Window 6.1.4 This procedure activates a window. It also flags the window to
have its text repainted. The window is repainted the next time a Receive
call is performed on any window. If the window was not added or if the
window is already active, this procedure returns a warning code and the
Select procedure is not performed.

6-4 Window Manager Callable Routines NaturalLink Window Manager

Refresh Window

Display Window

Receive From
Window

6.1.5 This procedure flags a window to have its text and borders
repainted. The window is redisplayed the next time a Receive call is made.
This procedure is used whenever the application has changed the window
and the change needs to be shown. If the window was not added or if the
window is already flagged to be repainted, this procedure returns a warn-
ing code and the Refresh procedure is not performed.

At the time the Refresh call is made, the file text for a file window is
reloaded. If for some reason the file window text cannot be loaded, the
Refresh call returns an error code, but the window is still refreshed. In
other words, the window no longer has any items in it but will still appear
on the display device.

6.1.6 This procedure repaints the text and border of the window without
any delay. This procedure is used whenever a window needs to be dis-
played, but having the display triggered by a Receive call does not work. It
follows the same procedure as Refresh, but there is no delay in the repaint-
ing process and the text for a file window is not reloaded. If the window
was not added, this procedure returns a warning and the Display operation
is not performed.

Once a window has been displayed (either by a Display call or by a
Receive call), it continues to be displayed unless it becomes covered by
another window or is deleted. If the window is covered by another win-
dow, the covered window is still known to Window Manager and will be
flagged for repainting when the covering window is deleted.

6.1.7 This procedure receives information from any currently active
window. The Receive procedure requires three main parameters.

@ Window — This is the window from which input is received. Window
Manager places the cursor in this window first. However, if this is not a
valid window from which to receive information, Window Manager
places the cursor in the first active window it finds among all the win-
dows currently added. A valid window is an active, nondisplay-type
window that has at least one selectable item in it. If there are no active
windows or if no windows at all are available, an error code is returned
by the procedure.

On return from the Receive call, this parameter generally contains the
window from which a selection has just been made. However, if there
are two or more active or inactive windows on the display, this parame-
ter can contain any one of them. A user always has the opportunity to
move to a different window if the appropriate keys are defined. Refer to
Chapter 10, Window Manager Input Devices, for further details on
changing the function keys.

NaturalLink Window Manager

Window Manager Callable Routines 6-5

If there are two active windows on the display, the user can move the
cursor to the other active window and make a selection. The window
from which the selection is made is returned to the application. A more
complicated case can occur. If a user moves to an inactive window and
then presses a key undefined to Window Manager, this inactive window
is returned. Therefore, it is recommended that the application program
check the returned window to ensure that it is the window expected by
the application program.

m ITEM — This is the item index. Window Manager uses this field as the
starting item for the cursor. If this field is out of the range of the items or
if the item referenced is invisible or unselectable, Window Manager
places the cursor on the item it was last on in that window. If the cursor
has never been in the window before, the first item in the window is
used. On return from Receive, this field contains the value of the item
the cursor was on; depending on the key pressed, this is usually the
selected item.

® KEY — This parameter contains a return value. It is the value of the key
that, when pressed, causes Window Manager to return.

Receive is the most powerful call of all Window Manager routines. If the
window specified in the Receive call does not have the Special Repaint on
Receive attribute set to 1, all windows flagged to be repainted are
repainted at this time. Redisplaying the screen only when a Receive call is
made eliminates excessive screen flashing caused in the repainting. It is
important to note that just specifying a window in a Receive call is not
enough to cause it to be repainted. The window must be flagged to be
repainted by one of the other Window Manager calls before the Receive
will trigger its repainting. When a Receive call is made, Window Manager
takes complete control of the interaction until a key is pressed which has
not been assigned to a Window Manager function.

The text in an edit window is padded with fill characters before a Receive
call is made and is stripped of these fill characters after the Receive. The
application program does not have to perform this function.

Release Window 6.1.8 A call to this procedure makes a window inactive and flags the
window to have only its text repainted. If the window was not added, or if
it is already inactive, this procedure returns a warning code and the
release operation is not performed.

6-6 Window Manager Callable Routines NaturalLink Window Manager

Delete Window

Save Screen

Unload Screen

Reset Window
Manager

Add Item

6.1.9 This procedure deletes a window from the screen and makes it
unknown to Window Manager. The deleted window is also made inactive.
A scan is performed to determine if the deleted window was covering any
other window(s) on the screen. If so, these windows are flagged to have
both their borders and text repainted. If the window was not added or if
the window was already deleted, this procedure returns a warning code
and the Delete procedure is not performed.

6.1.10 This procedure saves a screen to a file. It does not unload the
screen from memory, and any Window Manager procedure can be per-
formed on the windows in this screen after the Save procedure has been
performed. Screens do not have to be saved to their original files. How-
ever, if the screen is saved to the original file, the original will be over-
written. This procedure is useful if windows in a screen have been
modified and these modifications need to be saved for future use.

6.1.11 This procedure releases the memory used by Window Manager
to store the window descriptions of the screen file. The Unload procedure
does not save the window descriptions. If the windows in the screen being
unloaded have not been deleted yet, the Unload procedure automatically
deletes them.

6.1.12 This procedure restores the cursor and video display attributes
and the keyboard mapping values to their original state. The function it
performs is opposite to the function that the Initialize procedure performs.
Reset must be called before the application program terminates. It should
be the last Window Manager call made. If this call is not made, Window
Manager does not terminate correctly, causing the cursor and video
display attributes to be incorrect. Also, since the keyboard mapping
(performed by Initialize) will not be restored without this procedure, a
system reinitialization will be required.

6.1.13 This procedure adds a new item to the end of the list of items for
a given window. The item added has the default attributes of visible,
selectable, intensity level of 7, reverse video, required input, echo input,
and item label intensity of 7. The default value of all other item attributes
is 0.

NaturalLink Window Manager

Window Manager Callable Routines 6-7

Insertltem 6.1.14 This procedure inserts an item at a specified place into the list of
items for a given window. The attributes of the inserted item take on, as
default values, the same values as in the Add Item procedure. After
insertion, all items following the inserted item are renumbered.

DeleteItem 6.1.15 This procedure deletes a specified item from a given window. All
items following the deleted item are renumbered.

Create Item Table 6.1.16 This procedure creates an item table of a given size for a given
window. This is a very powerful call for item table manipulation because it
can be used in four different ways.

| If no items currently exist for the window, this procedure creates a
specific number of items. The values of their attributes take on, as
default values, the attributes used in the Add Item procedure.

| If the number of items to be created is greater than the current number
of items for the window, the item table is increased in size by the
difference between the two values. This is the equivalent of making
several Add Item calls.

® [f the number of items to be created is smaller than the current number
of items for the window, the item table is decreased in size by the
difference between the two numbers. This is equivalent to several
Delete Item calls on the last item in the list.

m [f the number of items to be created is 0, all of the items in the item table
are deleted.

The Create Item routine will return a warning code if any items are deleted
to make sure the application knows what is happening. The Create Item
routine is more efficient than separate Add or Delete Window calls. It
should be used if possible when creating or deleting several items.

6-8 Window Manager Callable Routines NaturalLink Window Manager

Create Window

Get Attribute Value

Get String Value

Set Attribute Value

Set String Value

Clear Screen

6.1.17 With the Create Window call, you can add a window to an exist-
ing screen or create a new window in a new screen. The Create Window
call takes both a screen and a window number as parameters. The screen
is used both for input and output, while the window is used only for output.
If the screen passed is currently loaded, a new window will be added to the
existing screen and the newly created window number will be passed back
to the application. If the screen does not exist, a new screen and window
will be created and the new values for both will be passed back.

The created window will have the same default attributes as a newly
added window in Screen Builder. Once you have created the window, all
the other Window Manager calls can be made using the new window. You
can create items for it, change its attributes, add it, select it, and receive
information from it.

6.1.18 This procedure gets the value of a numeric attribute for a given
window or item.

6.1.19 This procedure gets the value of a string attribute for a given
window or item. If the item text for an edit window is retrieved, Get String
Value will strip off the fill characters before returning the string value.

6.1.20 This procedure allows you to assign a value to a numeric attri-
bute for a given window or item. A Refresh call followed by a Receive call
or a Display call must be made to make Window Manager aware of the
change.

6.1.21 This procedure allows you to assign a string value to a string
attribute for a given window or item. A Refresh call followed by a Receive
call or a Display call must be made to make Window Manager aware of the
change.

6.1.22 This procedure clears the display area of any text currently dis-
played. This can be old text or even a window displayed by Window Man-
ager. This procedure only clears the display area itself; it is not the same as
making any of the other Window Manager procedure calls. Windows
removed from the display by the Clear Screen procedure are not deleted.
To redisplay them, the application program must make either a Display or
Refresh call followed by a Receive call. This call deletes only the text from
the screen. It will not clear any graphics.

NaturalLink Window Manager

Window Manager Callable Routines 6-9

Display Message 6.1.23 This procedure displays a given message created previously with

From Message the NaturalLink Message Builder utility. If the message contains slots for

Manager variable text, the text to be inserted must also be supplied. (See Chapter 5,
Message Builder, for more information about using Message Manager.)

Reset 6.1.24 The Window Manager and Toolkit (if you are using it) run-time
NaturalLink use a data area separate from your application program. During some
Memory applications, the NaturalLink memory area may become fragmented from
the loading and unloading of screens or from other operations which result
in memory usage. This could ultimately result in a Get Memory error,
where the NaturalLink run time cannot get the memory it needs. When a
memory error occurs, the NaturalLink data area will be cleared and reset.
This way the application can reload screens and other data, and
processing can continue.

For some applications, just allowing the NaturalLink run-time to run out of
memory without notice may cause an inconvenient delay while the
application reloads screens and processing resumes. In cases like these,
the Reset Memory call can be used to force a cleanup of the NaturalLink
data area at a more opportune time. The data area will be erased and reset
to the way it was before the application had been run. No screens or other
data will be saved; this must be done by the application before making the
Reset Memory call if it is desired. Once this call is made, any screens which
were loaded into memory are cleared and must be reloaded before the
windows in them can be accessed again. Remember, this call affects only
the NaturalLink data space; anything stored in the application data area
will not be affected.

6-10 Window Manager Callable Routines NaturalLink Window Manager

Typical
Calling
Sequence

6.2 A typical calling sequence is as follows:

1.

[nitialize Window Manager — Detects the machine on which the pro-
gram is running, sets cursor and video display attributes, and invokes
keyboard mapping (if used).

Load Screen File — Loads windows into memory.

Add Window — Adds the window, making it known to Window
Manager.

Select Window — Makes the window active and ready for a Receive
call.

Receive From Window — Gets information from an active window.
Release Window — Makes the window inactive.
Delete Window — Deletes the window.

Unload Screen — Releases the memory taken up by window
descriptions.

Reset Window Manager — Restores cursor and video display attributes
and any keyboard mapping.

NaturalLink Window Manager

Window Manager Callable Routines 6-11

APPLICATION VALIDATION ROUTINE

Paragraph Title Page
T.1 0 DEfINItION coccveeccieiccee ettt et eaes 7-3
7.2 Usesfor the ROULNEcc..oooiiiiiiiiieceee e 7-3
7.3 When Validation IS DOMNEooouviiiiiiieteieee et 7-4
T HOW IEWOTKS ..ottt et et e e eete e e e ereeeesseeaeeeenes 7-4
7.5 Parameters and Return SEatUSccovviieiiiieeeeeeeeeeee et eevessee e 7-5

7.5.1 Datatype Parameter...........cccocoiviviniiinininineeceeee e 7-5
7.5.2 Return Status for Validation Processccocvvivveveeieioieeeeieeeeerenen. 7-5
7.5.3 Itemn Number Parameter.........co.ooovviiiiiiieeiieee et seee e sreneean 7-6
7.5.4 Typical Algorithm for Validation Codeccoccvevviviieeeniiiiieenene, 7-7
7.6 Restrictions on Use of Validation Routinec.ocoevvvvemeeeeeeeeeeeeeneenn W 1-8
7.7 Dummy Validation ROULINEcccoceviiiiiiiiiiiicececececeeeee e 7-8

NaturalLink Window Manager

Application Validation Routine 7-1

Definition

7.1 Chapter 6, Window Manager Callable Routines, discusses all the calls
that the application program can make to Window Manager. This chapter
and Chapter 8, User-Defined Windows, discuss calls that Window Manager
makes to the application program. These calls allow the developer to
make the application more flexible.

The Application Validation routine provides a way to perform data
checking on information entered in edit windows. Datatypes may be set
for each item in the window, and the validation routine is called to do type-
checking based on this datatype. The validation routine, which must be
supplied by the application developer, is called when the cursor moves off
the current edit field. This can occur when the user presses the ENTER key
or any of the normal cursor movement keys.

Uses for
the Routine

7.2 In some Window Manager applications, specific information must be
obtained from the user. This is accomplished by using an edit window. The
data the user enters must be checked to ensure that a valid entry was
made. Since Window Manager does not perform data checks, this check
must be done by the application when control is returned to the applica-
tion program.

A problem occurs in doing validation on the data entered for any edit item.
Single-selection edit items are the only fields that can be type-checked
immediately following data entry. However, the user cannot move to
other fields in the window to change their values. Multiple-selection edit
windows allow the user to move around and change all fields, but the
application is unable to type-check anything until all editing is complete.
This arrangement does not provide all the functionality that is needed in
certain edit situations. Specifically, this causes problems in a data entry
application when a user must be able to change a previously entered field,
but the changes may affect other fields and must be type-checked
immediately.

This is where the validation routine is applied. Since the validation routine
is called each time the user completes or moves off an edit field, the appli-
cation can easily check the data before the user is allowed to enter infor-
mation for another field. If the data entered is incorrect, the validation
routine can display an error message and force the user to try again. If the
data entered has a direct effect on a previously entered field, the validation
routine can tell Window Manager to put the cursor on that previous field
so the user can reenter the data for that field.

NaturalLink Window Manager

Application Validation Routine 7-3

When 7.3 The validation routine is called when a key is pressed that would
Validation move the cursor off the current item to a new item. The new item may or
Is Done may not be in the same window. The following keys are included:

1.

2.

Ut

Select and Proceed — ENTER and F10
Next item — Up and down arrow, TAB and SHIFT-TAB

Page Scrolling — F1 and F2 (can be used only in multiple-selection
windows)

Top/Bottom Item — HOME (can be used only in multiple-selection
windows)

Next Active Window — CTRL-HOME
Next Window — CTRL-up and down arrows, CTRL-PgUp and PgDn

Any Unknown Key — Keys unknown to Window Manager that would
make Window Manager return to the application program.

How It Works 7.4 Validation is performed by taking the following steps:

1.

When the window is specified in Screen Builder, a datatype is set for
each item.

The developer writes the Window Manager application and also writes
a Validation routine to check the item for correct data based on the
datatype.

The application is then linked with the Window Manager run time.

The application is run, and a Receive call is made on the edit window.
When the cursor is moved off the current edit field, either by a cursor
movement key or by committal of the edit field with the ENTER or the
F10 key, the validation routine is called.

The validation routine checks the data entered, based on the datatype
of the item. When the check is complete, the validation routine returns
to Window Manager with the status of the validation.

Window Manager proceeds based on the status code returned and the
key pressed.

7-4 Application Validation Routine

NaturalLink Window Manager

Parameters and
Return Status

Datatype Parameter

Return Status for
Validation Process

7.5 The validation routine has the following parameters. (For the exact
calling sequence, refer to the appropriate appendix for the language you
are using.)

APPVAL(SCREEN#, WINDOW#, ITEM#, KEY, DATATYPE)

For the most part, these parameters are self-explanatory. SCREEN#,
WINDOW#, and ITEM# indicate the specific item being validated. The KEY
parameter indicates the key pressed to initiate the validation, and
DATATYPE is the datatype assigned to this item.

7.5.1 The datatype attribute is used to indicate to the validation routine
the kind of information that can be entered for the item. The valid data-
types are 0 through 200. The datatype can be assigned either in Screen
Builder or in the application program.

A datatype of 0 indicates that Window Manager is not to call APPVAL for
this item; the key pressed is processed as usual. This is useful if you do not
care what is entered for the item or if you want to check all the items at
one time (when Window Manager normally returns to the application).

The rest of the datatypes assigned to the items have meaning only to
APPVAL. Since only one validation routine is used for an application, if the
same datatype is assigned to more than one item (even if the items are in
different screens), the validation performed is the same for both items. For
example, if you wish to perform filename validation for several different
items, assign the same datatype number to each of the items. When you
detect this datatype in your validation routine, you can perform the same
filename validation regardless of the item or window the input came from.

7.5.2 APPVAL must return a status code to Window Manager indicating
the results of the validation process. The status code must be one of the
following:

1. INVALID/CLEAR — value —2. Type-check failed. Window Manager
clears the text from the field being checked and puts the cursor at the
start of the field so the user can try again. If any error message is
desired, APPVAL is responsible for displaying and deleting the
message.

2. INVALID/NO CLEAR — value —1. Type-check failed. Window
Manager places the cursor at the start of the field so the user can try
again. Any text entered prior to the validation call remains in the field.
If any error message is desired, APPVAL is responsible for displaying
and deleting the message.

NaturalLink Window Manager

Application Validation Routine 7-5

3. VALID — value 0. Type-check passed. Window Manager performs the
next functionality based on the key pressed and the selection mode —
such as move to another edit field or exit the Receive call.

4. IGNORE — value 1. Type-check not done. This code is used when the
validation routine did not bother to check the entered data. The
application may want to use this when APPVAL is called because an
unknown key is pressed (that is, a key that Window Manager does not
handle and that would normally cause Window Manager to return to
the application). Window Manager leaves the cursor where it was so
the user can continue typing text. When the call returns to Window
Manager, Window Manager does not return to the application even if
the check was generated by an unknown key or any key which nor-
mally causes Window Manager to return to the application.

5. EXIT — value 2. Type-check may or may not have passed. APPVAL
returns this code when it wants Window Manager to exit the Receive
call immediately. Window Manager will then return to the application
program with a special warning status to indicate what happened.

If a code other than one listed here is returned, a valid status is assumed by
Window Manager.

Item Number 7.5.3 One of the parameters for the validation call is the item number of
Parameter the item on which the validation needs to be done. The validation routine
needs this number to get the item text entered by the user.

The item parameter is also used by Window Manager when the validation
routine returns to Window Manager. Window Manager always puts the
cursor on the item specified by the item parameter if the item parameter
has been modified by the validation routine. Window Manager does this
regardless of which key was pressed.

The exception to this rule occurs if a status of EXIT(2) is returned. If the
exit status is returned, Window Manager returns to the application
regardless of which key was pressed.

7-6 Application Validation Routine NaturalLink Window Manager

The following illustrates the way Window Manager handles the return
from the validation routine.

case RETURN STATUS of

INVALID:

VALID:

IGNORE:

EXIT:

if INVALID and CLEAR edit field status,
clear out current edit field
if item parameter is different than one passed in,
find position of new item
place cursor on that item
else
put cursor at start of the current item
go get another key

if item parameter is different than one passed in,
find position of new item
place cursor on that item
go get another key
else
handle key that caused validation call

if item parameter is different than one passed in,
find position of new item
place cursor on that item

go get another key

return to application.

Typical Algorithm 7.5.4 Following is a typical algorithm for the validation code.

for Validation Code

handle any application-specific keys.
if the key is not one we want to deal with,
return(ignore).
get the entered data - Window Manager get string call.
case dataype of
1: do validation;
if error,
display error message.
return(invalid/clear or invalid/no clear).
if correct,
return(valid).
2: do validation

NaturalLink Window Manager

Application Validation Routine 7-7

Restrictions
on Use of
Validation
Routine

7.6 Almost any Window Manager call can be made from the Validation
routine. Windows can be added, displayed, received from, and deleted.
Message Manager calls can be made to display error messages. Following
are the only restrictions:

® A Receive call cannot be made on the same window that the validated
item is in.

M The position of the validated item cannot be changed. This includes
both the physical position on the screen and the item position/number.

M The maximum edit field length cannot be changed.

M Any windows displayed by the validation routine must be deleted by the
validation routine or by the application program when the receive on
the edit window is terminated. When the validation routine returns to
Window Manager, Window Manager assumes the user has an unclut-
tered view of the edit window and its items.

Dummy
Validation
Routine

7.7 A dummy validation routine has been provided with the Window
Manager run-time object code to resolve the reference to the validation
call. This dummy routine can be linked with the application if no validation
routine will ever be needed by the application, such as if all datatypes
are 0. The dummy routine is shipped as part of a library of dummy
routines. Consult the appropriate appendix for the language you are using
for details.

The dummy routine always returns a status of VALID (0), even if an item
has a datatype greater than 0.

7-8 Application Validation Routine NaturalLink Window Manager

USER-DEFINED WINDOWS

Paragraph Title Page
8.1 INtrodUCHIONooiiiiiiiieciccee s 8-3

8.2 Functionalitycccoeiiiriiieiiiiii e 8-3
8.2.1 Specifying @ UDWccooiiiiiiiieenieestesie sttt sae e e 8-3
8.2.2 How UDWs Work with Window Manager Run Time...........c..ccceueenee.e. 8-4
8.2.2.1 Receive Call.......cc.ooiiiiieeeeeeeee e 8-4
8222 Display Callcooovirieiiiiicietetete e 8-6
8.2.2.3 Delete Call.....cooiimiiiirieiieeee e 8-6
8.2.24 Other WM CallS......ccooeieiiiieeieee ettt ve e 87
8.3 User-Defined MeSSAZESccceiveeeiiecieeiieceeeee ettt et eerr et ens 8-7
8.3.1 Specifying the Messageccoceviieeiiivieecieesiecee et 8-7
8.3.2 How the UDM WOrKScccooiiiiiiiiiieeteece e 8-7
8.4 Uses for UDWS/UDMS......cccoiiiiiieeieeiierieeie st ste et e s sve e be e 8-8
8.4.1 Graphic Title WINAOWccoioieiiiiiieieeeeteeeeeete et e e 8-8
8.4.2 Command WINAOWccccoveiiiiiiiiniiieetecteee et s 8-8
8.4.3 Selection From [CONS.cocooviiiiiiiiiciiree et 8-8
8.44 Graphical Help MeSSagesc.ccovviieriiiiieriiiieeiteienie et 8-8
8.5 UDW/UDM Application CallSccoecuieviiiiiinieeieiircceeeee et 8-9
8.5.1 Application Receive Call........c.coocoiviiiniiiieeceee e 89
8.5.2 Application Display Call.........cccooiiiiiiieie e, 8-10
8.5.3 Application Delete Callc.ocoeviiiiniininiieeeecee e 8-10
8.54 Application Message Manager Call..........cccccoevvvevicieeiieieciceereee, 8-11
8.6 Making Window Manager Calls Inside a UDW Routine...........cc.cueeun.een. 8-11

NaturalLink Window Manager

User-Defined Windows 8-1

Introduction

8.1 This chapter describes another method of making your Window
Manager application even more flexible and elaborate. Window Manager
is a powerful tool for developing menus; it provides ready-made window
types and attributes to support the windowing needs of most developers.
The user-defined windows (UDWs) feature allows the developer to create
special windows while keeping the overall look of the application
consistent.

UDWs are specified in Screen Builder like any other type of window. The
only difference is that the application is in full control of any display,
receive, and delete functions performed on UDWs. This feature provides a
means of displaying data to and receiving it from the user in ways that
Window Manager does not. Examples are the display of graphics pictures
and selection of graphics text, icons, and items from a file.

Functionality

Specifying a UDW

8.2 The UDW works like any other window, with one major exception:
Window Manager and the application share control of the UDW. The UDW
is tracked and flagged for repainting by Window Manager when it is
added, selected, refreshed, released, or covered by another window. If the
user has moved the cursor into the UDW, the application is notified by
Window Manager. Display of the UDW is performed by the application
program.

With a UDM, the procedure is the same except that an application Message
routine is called to handle the display of the message, wait for user
response, and delete the message. Message Manager displays and deletes
the message window border, and flags for repainting or optionally
redisplays the underlying windows.

8.2.1 UDW:s are specified in Screen Builder the same as are other win-
dows. When setting window format attributes, the application developer
selects User-Defined for the window type. Screen Builder then prompts for
a UDW code ranging from 10 to 99. (This code is actually stored as the
window type.) Once marked as a UDW, the only attributes which affect the
appearance or performance of the window at run time are:

® Pop-up window attribute
B Special Repaint on Receive
B Allow Cursor to Enter Window

B All border attributes except scroll markers

NaturalLink Window Manager

User-Defined Windows 8-3

How UDWs Work
With Window Manager
Run Time

Receive Call

The other attributes are optional, depending on what the application plans
to do with the window; they are not checked by Window Manager.

The UDW code has no intrinsic meaning to Window Manager. A window
type number between 10 and 99 designates a UDW. The same code can be
used for many different UDWs. The developer might, for example, assign
the same UDW code to all windows that perform a particular function. All
UDWs with a particular code can then be treated one way, and those with
other codes can be handled another way.

The UDW cannot be tested inside Screen Builder because the application
must provide support routines to handle it.

§.2.2 Window Manager deals with UDWs at four different points (two of
which are in one call):

M Receive and display (in one call)

m Display (by itself)

M Delete

UDWs are loaded, added, selected, released, and refreshed the same as
other windows types. Differences occur when a Receive, Display, or
Delete call is made.

8.2.2.1 The Receive call is the application’s method of getting a
response from the user. However, this is not its only function. The Receive
call also triggers the painting of any window which has been flagged for
painting. The following actions flag a window to be painted:

N Add

B Select

W Release

M Refresh

m Delete (referring to a window covering other windows)

8-4 User-Defined Windows

NaturalLink Window Manager

When a Receive call is made on a window that is not a UDW, Window
Manager scans the list of added windows for all windows needing repaint-
ing and then draws them as usual. However, if a UDW has been flagged,
Window Manager clears the text from the screen area where the window
will be drawn. Window Manager draws only the window border (if there is
one) and calls the application’s UDW Display routine. The application
draws the window in whatever manner it desires and then returns to the
Receive call, which progresses as usual.

If a receive is being done on a valid UDW (one that has been added,
selected, and does not have the Allow Cursor to Enter Window attribute
set to Never), the display process is the same. When all flagged windows
are displayed, Window Manager calls the application’s Receive routine;
the application handles any cursor movement, scrolling, and the other
function keys. The only requirement is that the application Receive
routine return a valid window number, item number, and key pressed.
When these values are returned to the Window Manager Receive routine,
the key code is checked. If the key returned is neither a window move-
ment key nor the Help key, Window Manager returns to the application.

Window-to-Window Movement UDWs are affected by The Window
Manager capability to move the cursor from window to window until the
desired window is reached. When a next window function is performed
and the cursor enters the UDW, the application Receive routine is called.
This is done even if the cursor is passing through the UDW to get to
another window. The application Receive routine must be able to detect a
next window key (defaults are CTRL with HOME or with an arrow key) so
it can return right away. The Allow Cursor to Enter Window attribute can
be used to limit or eliminate the cursor’s ability to enter a UDW.

Processing Help If the Help key is pressed for a UDW, the application
Receive routine can handle it in one of two ways.

1. Call Message Manager with the proper help number and help file.

2. Return to Window Manager, passing to Window Manager the Help key
and the item the cursor was on. Window Manager then displays the
Help message for the item. If the item number returned is not a valid
item or if there is no help attached to the item, the Help message
attached to the window is displayed. When the user has finished view-
ing the help, Window Manager calls the application Receive routine
again to continue processing the Receive call.

NaturalLink Window Manager

User-Defined Windows 8-5

The following pseudocode shows what happens during a Window Manager
Receive call.

WMWRCV(SCREEN# ,WINDOW#, ITEM#,KEY, ITEMTEXT)
loop through added windows.
if window needs repainting,
call display routine.
nxtrecv:
if this is a user-defined window,
call the application receive routine.
if key returned is a next window key,
calculate which window to move to.
go to nxtrecv.
if key returned is help key,
if item exists and help is attached,
display item level help.
else
display window level help.
go to nxtrecv.
else
return to application.
else
window manager handles receive.
return to application.

Display Call 8.2.2.2 UDWs are affected by the Display call just as they are by the
Receive call repaint process. During a Display call, Window Manager
determines if the window is a UDW. If so, it calls the same application
Display routine that is invoked by the Window Manager Receive call. Pseu-
docode for this display process is as follows:

WMWDIS(SCREEN#,WINDOWH)
if bordered window,
display the border.
clear text area of window.
if user-defined window,
call application display routine.
else
display the window text.

Delete Call 8.2.2.3 Because the application displays the UDW, it must also delete it.
When the Delete call is made, Window Manager deletes the border (if
there is one) and the text area of the window, flags all windows covered by
the UDW to be repainted, and then calls the application’s Delete Window
routine for any part of the window that it cannot delete. Window Manager
deletes only text, not graphics. Pseudocode for the Window Manager
Delete call follows.

WMWDEL (SCREEN#,WINDOW#)
if bordered window,
delete the border.
delete the text area of the window.
flag all windows covered by the window.
if this is user-defined window,
call application delete window routine.

8-6 User-Defined Windows NaturalLink Window Manager

Other WM Calls

8.2.2.4 UDWSs are not treated differently for any of the other Window
Manager calls. Add, Select, Release, and Refresh calls all perform their
normal functions. All four calls flag the UDW for repainting. Select turns on
the active flag in the UDW; release turns it off. If the UDW is to be
displayed differently depending on whether it is active or inactive, the
application Display routine must check the active flag before doing the
display.

User-Defined
Messages

Specifying
the Message

How the UDM Works

8.3 Related to the UDW is the user-defined message (UDM). This feature
allows the application to control the messages displayed when the user
presses the Help key or when a call to Message Manager is made. Through
a user-defined message, a picture or diagram can be displayed with a Help
or Error message.

8.3.1 Using the Message Builder utility, specify a UDM the same as you
would any other message. Once you select message type (Help, Error,
Warning, or Please Note), Message Builder prompts for whether it is a
UDM. If you select yes, you must specify the coordinates for the message.

Specification of message text is optional for UDM. If text is specified, it will
be loaded into the message window before the application Message rou-
tine is called.

8.3.2 When the user presses the Help key or the application makes a
Display Message call, Message Manager is invoked. For Help messages,
Window Manager gets the Help message number and filename stored in
the window data structure and calls Message Manager with these
parameters. If the developer calls Message Manager directly, the call must
specify the message number and message filename as parameters. Mes-
sage Manager reads the requested message from the file into memory and
creates a window with the message text displayed. When the user presses
the ENTER key, the message is deleted from the screen and the underlying
windows are redisplayed.

With a UDM, the procedure is the same except that an application Message
routine is called to handle the display of the message, wait for user
response, and delete the message. Message Manager displays and deletes
the message window border, and flags for repainting or optionally
redisplays the underlying windows.

Message Manager looks for different input from the user, based on
message type. For Help messages, Message Manager looks for three keys
to be pressed: the Select key to terminate help; the Backup key to get the
previous Help message; and the Help key to get the next Help message.
For all other messages, only the Select key is sought to terminate the mes-
sage. If one of these keys is not returned to Message Manager from the
application Message routine, it assumes the Select key was pressed. Pseu-
docode for the Message Manager routine follows.

NaturalLink Window Manager

User-Defined Windows 8-7

MSGMGR (MSGNUM, VARTXT, MSGFILE)
nxtmsg:
read in requested message.
create window with message as its text.
display message window border.
if user-defined message,
call application to display message.
else
display the message.
if help message displayed,
wait for select, backup, or help keys.
else
wait for select key.
if the help key is pressed,
get the next help message.
goto nxtmsg.
if the backup key is pressed,
get previous help message.
goto nxtmsg.
delete message window.
return.

Uses for
UDWs/UDMs

Graphic Title
Window

Command Window

Selection From Icons

Graphical
Help Messages

8.4 There are several ways in which UDWs or UDMs can be used. Some
suggestions are presented in the following paragraphs.

8.4.1 In many Window Manager applications, a title window is displayed
at the top of every screen. A UDW could be used here to display graphics
(such as a logo). Also, the text that is usually displayed as the title could be
displayed in a different font by using a UDW.

8.4.2 One possible application is a Command window that consists of
selectable icons to do various functions such as quit and backup. This win-
dow has to be active at all times so the user can always select an icon.
Since the application never knows when the receive on the icon window
will be called, you should use a UDW.

8.4.3 UDWs can be created to display icons and allow selection of these
icons. This is useful in applications where words alone will not convey the
ideas to your users. A good example is the use of a map to indicate where
cities are and to allow a city to be selected from the map.

8.4.4 As in the above example, words do not always fully explain an
idea. For some Help messages, providing a picture along with the descrip-
tive text would be useful in getting an idea across to the user. UDMs can be
used for just such a purpose.

8-8 User-Defined Windows

NaturalLink Window Manager

UDW/UDM

Application
Calls
Application
Receive Call

8.5 This chapter details Window Manager calls the application must
support when using the UDW and UDM options. Any nonzero status
returned from one of these calls will cause Window Manager to return to
the application with the returned status.

8.5.1 The application Receive call is almost the same as the Window
Manager Receive call. When Window Manager calls the application
Receive routine, it identifies the UDW by passing the screen number, win-
dow number, and the UDW code. The application must pass back the item
selected, the key pressed, and the X and Y coordinates of the cursor.

The X and Y coordinates are used by Window Manager only if the key
returned is a window-to-window movement key. The window that the cur-
sor is moved into is based on the current position of the cursor. These
coordinates must be character coordinates, with the X coordinate ranging
from 0 to 79, and the Y coordinate ranging from 0 to 24.

Pseudocode for an application Receive routine follows.

APPRCV(SCREEN#,WINDOW#, ITEM#,KEY,UDWNBR, XP0OS, YPOS)
place the cursor on the initial item.
nextinput:
get user input.
case input of
cursor movement:
move the cursor.
go to next input.
item selection:
set item param = item selected.
set key param = key pressed.
return(0).
window movement:
set key param = key pressed.
set X,Y param = cursor coordinates.
return(0).
help key:
set key param = key pressed.
return{(0).

NaturalLink Window Manager

User-Defined Windows 8-9

Application
Display Call

Application
Delete Call

8.5.2 The application Display call is based on the window number or the
UDW code. Both numbers are passed to the application, along with the
screen number. There are two methods of handling this.

1. The developer can assign the same code to all UDWs displayed the
same way. That code, which determines how the window will be dis-
played, is checked in the Display routine.

2. The application Display routine uses the window number to determine
how the display is to be done.

The following Display call illustrates the first method.

APPDIS(SCREEN#,WINDOW#,UDWNBR)
get the window coordinates.
case UDWNBR of
10: display window contents.
20: display window contents.

return(0).

8.5.3 As with the Display call, the screen, window, and user-defined
numbers are passed to the application Delete call. Through this call, any-
thing displayed by the application Display routine is deleted from the
video device. See the example Delete Call routine that follows.

APPDEL(SCREEN#,WINDOW#,UDWNBR)
get the window coordinates.
case UDWNBR of
10: delete window contents.
20: delete window contents.

return(0).

8-10 User-Defined Windows

NaturalLink Window Manager

Application

8.5.4 The application Message routine requires several parameters to be

Message able to handle the different situations where it may be called. Regardless of
Manager Call when it is called, the message screen number and message window num-
ber will be passed. These two numbers provide a means of identifying the
actual window used to display the message. Also passed for every message
are the message number and the message type assigned in Message
Builder.
If APPMSG is called to handle a Help message, the screen, window, and
item numbers are passed in to identify where the cursor was when the
Help key was pressed. The item parameter will have a value of —1 if
window-level help is being displayed. These three parameters have no
meaning for Error, Warning, and Please Note messages.
When returning to Window Manager, the application Message routine
must pass back the key code for the key pressed by the user.
APPMSG (MSGSCR#,MSGWND# , KEY ,MSGNBR,MSGTYP, SCREEN#, WINDOW# , ITEM#)
get the help window coordinates.
case msgnbr of
25: display message.
26: display message.
get user input:
if select key,
key param = select key.
delete message window.
return(0).
if (backup key or help key) and (msg type = help),
key param = key pressed.
delete message window.
return(0).
go to get user input.
return(0).
Making 8.6 All the standard Window Manager calls can be made inside any of
Window the UDW routines. Other windows can be displayed, received from, and
Manager Changed..lt is recommended that you not make recursive calls on the UDW
Calls Inside (such as in APPRCV ca}lls, by mak.mg a WMWRCV' cal} on the‘same‘ win-
a UDW Routine dow). This can result in wasted time, as the application routine will be

called again.

Naturallink Window Manager

User-Defined Windows 8-11

INTERNAL PHRASE EDITING

Paragraph Title Page

9.1 INtrOAUCHION ..ccvii ettt sttt s eareesaae e 9-3

9.2 Examples of Internal Phrases............cccccoceviniinininininecseee 9-3

9.3 Modifying Internal Phrasescc...cooccoviiiiiiiiiniiicnic e 9-4

9.3.1 Modifying Phrases Before Linking the Application 9-4
9.3.2 Modifying Phrases Using a Phrase Input File (Phrase Editor

UBHIIEY) ettt ettt et 9-4

9.4 USING PBUILD ...ttt 9-5

9.4.1 Phrase Editor Commandsc.cocveeieeiiiiciieeicierece e 9-5

9.4.1.1 Edit @ PRrasecooooviviiiiiiieceeeeeeeceee e 9-6

94.1.2 Restore Default Phrases...........ccoooovvieiiiiiicicecccccc e, 9-6

9.4.1.3 Print Phrases to Filecoovviiiiiiiiicc e, 9-6

9.4.14 Save Phrases to Fileocvveiveiiiiiiiec e 9-7

9.4.1.5 EXIE it 9-7

9.5 Usage of the NLXPHRAS.NMS Fileccoooviiiiiiiiiieieciceeece e 9-7

9.6 Listing of Internal Phrases............ccccocoiiiiininininieceeeee 9-7

NaturalLink Window Manager

Internal Phrase Editing 9-1

Introduction

9.1 Window Manager (and Toolkit, if you are using it) display(s) several
windows not directly controlled by the application developer. These
windows include those used to display Help and error messages. The
developer can change the phrasing in these windows to suit the language
of the user or the developer’s tastes. Internal Phrase Editing allows this
capability. This chapter discusses the following:

W Phrases that can be modified
m Steps for modifying phrases before linking the application

B Steps for modifying phrases by using an input file at run time.

Examples of
Internal
Phrases

9.2 Internal phrases are those that the application developer cannot
create or edit through Screen Builder or through calls to Window Man-
ager. They consist of internal Error messages not usually accessed by the
developer, such as Help, Error, and Press-the-ENTER-key-to-continue
labels in Help and Error windows. See Figures 9-1 and 9-2 for examples.

Figure 9-1

Internal Error Message

k% ERROR ok
The message file

PBERRMSG, M13
could not he found in the current working
directory. To see the text for message
number

b

load a copy of the message file onto the
current working directory,

Press the ENTER key to continue

NaturalLink Window Manager

Internal Phrase Editing 9-3

Figure 9-2

Help Message

kkk HELP #kx
No help has heen supplied for this topic

Press the ENTER key to continue

Modifying
Internal
Phrases

Modifying Phrases
Before Linking the
Application

Modifying Phrases
Using a

Phrase Input File
(Phrase Editor
Utility)

9.3 There are two methods available for modifying internal phrases, one
for use when linking and the other at run time. The linking method, in
which one of the Window Manager source files is edited and reassembled,
is for use by developers who are limited in disk space, want to change the
phrase permanently, save load time or data space, or wish to control the
number of support files needed by their application. The run time method,
in which a special file is created, is for developers whose applications need
to be modified for different users but who do not wish to relink a special
version for each. The run-time method is good to use for modifying the
application in foreign languages, for example.

9.3.1 This option requires reassembly of the source file
WMSTRDEF.ASM, which is found on the Window Manager Run-time
Object disk. WMSTRDEF.ASM contains the text of all phrases listed in
Tables 9-1 and 9-2 (located at the end of this chapter). You can change the
text of the phrases within quotes, using a text editor. Comments in the
WMSTRDEF.ASM file will tell you where each phrase is used, and the max-
imum number of characters each phrase can contain. After assembling the
source, WMSTRDEF.OBJ should then be linked with the application. (See
the Appendix for the language you are using for information on linking
files.) This edited version will then be the reference for all internal phrases.

9.3.2 The Phrase Editor is an interactive utility that aids in constructing
a file of internal phrases. This internal phrase file is read at run time, and

the phrases contained in this file override the default phrases specified in
WMSTRDEF.OBJ.

The Phrase Editor utility can be used to modify any of the internal phrases.
You can modify only the subset of phrases used by Window Manager or
the entire range of Window Manager and Toolkit phrases.

9-4 Internal Phrase Editing

NaturalLink Window Manager

Using PBUILD

Phrase Editor
Commands

9.4 The Phrase Editor is invoked by the PBUILD command. Before
invoking PBUILD, you should use the MS-DOS SET command to set the
environment variable NLXTOOLS. NLXTOOLS should be set to the direc-
tory path where the screen files and message files for the PBUILD utility
have been placed (.PIC, .NS$, and .NM# files). If NLXTOOLS is not set, all of
the PBUILD support files must be placed in the default directory. Setting
NLXTOOLS to equal a MS-DOS directory path enables you to place the
support files in a separate directory.

When PBUILD is invoked, it looks in the default directory for the internal
phrase file NLXPHRAS.NMS. If it is present, PBUILD reads it and displays
the current set of phrases. If it is not present, a message is displayed to that
effect and the default English phrases are displayed for editing. The name
of the internal phrase file, NLXPHRAS.NM$, must not be changed since
this is the name searched for at run time. NLXPHRAS.NM$ must never be
altered except by PBUILD.

9.4.1 Once PBUILD has been invoked, a window appears asking you to
make a choice between Window Manager phrases and Toolkit/Window
Manager phrases. Your choice depends on your application. If you are not
using Toolkit, choose the smaller subset (that is, Window Manager
phrases). After you have made a choice, the screen shown in Figure 9-3
appears, displaying the various commands available for PBUILD.

Figure 9-3

Phrase Editor Commands Screen

NATURALLINK PHRASE EDITING UTILITY TOOLKTT/WINDOW MANAGER PHRASES

Edit a Fl Save Phrases to File
Restore Default Phrases Exit
Print Phrases to File

PHRASES
Kk HELP %ok
xxk ERROR Hkx
Xkk WARNING oxx
%k PLEASE NOTE ek
The message file
could not be found in the specified
working directory, To see the text for
message number
load a copy of the message file onto the
specified working directory.
No help has been supplied for this topic.
ENTER: Stop Help HELP KEY: More Help
Press the ENTER key to continue

An error with the following code was encountered:
|

Press ESC for command menu Press F7 for Help

NaturalLink Window Manager

Internal Phrase Editing 9-5

Edit a Phrase 9.4.1.1 When the Edit a Phrase command is chosen, the cursor is placed

in the PHRASES window. The PHRASES window can be scrolled to list all
of the phrases. When a phrase is selected, a pop-up window, Figure 9-4,
appears so you can edit the phrase. The Help messages attached to the
phrases will explain where the phrase is used in the NaturalLink run-time.

Pressing the ENTER key ends the editing of the phrase and returns the
cursor to the PHRASES window. Pressing the ESC key while in the
PHRASES window returns you to the Command window. Pressing F7
invokes the display of online Help messages.

Figure 9-4

Restore
Default
Phrases

Print Phrases to File

Enter Phrase Pop-Up Window
NATURALLINK PHRASE EDITING UTILITY TOOLKIT/WINDOW MANAGER PHRASES

Edit a Phrase Save Phrases to File
Restore Default Phrases Exit
Print Phrases to File

PHRASES
Kk HELP

Enter Phrase

@k PLEASE NOTE xx

Press £SC to Abort

message aumber
load a copy of the message file onto the
specified working directory.

No help has heen supplied for this topic.

ENTER: Stop Help HELP KEY: More Help

Press the ENTER key to continve

fn error with the following code was engountered:

v

Press ESC for command menu Press F7 for Help

9.4.1.2 When the Restore Default Phrases command is chosen, all of the
original default phrases are displayed. Regardless of the presence of the
NLXPHRAS.NMS file, edited phrases are not displayed, and changes made
and not saved are lost. The cursor remains in the Commands window.

9.4.1.3 This option can be used to get a text listing of all your internal
phrases. When the Print Phrases to File command is chosen, a pop-up win-
dow appears asking for the pathname to which the phrases will be printed.
This file is different from the NLXPHRAS.NM$ file in that the phrases are
output in text format.

9-6 Internal Phrase Editing

NaturalLink Window Manager

Save Phrases to File

Exit

9.4.1.4 When the Save Phrases to File command is selected, PBUILD
creates the NLXPHRAS.NM$ file in the default directory. A pop-up window
appears to inform you that this was done correctly. If a NLXPHRAS.NM$
file is already present, it will be written over rather than appended.

The saved NLXPHRAS.NM$ file contains only the phrases that have been
modified. This saves file size and time when the file is loaded at run time.

9.4.1.5 When the Exit command is selected, PBUILD checks to see if any
phrases have been changed. If they have, a pop-up window appears asking
if you wish to save these changes. Selecting yes causes the Save command
to be executed before PBUILD terminates. Selecting no causes PBUILD to
terminate without saving any changes. If no phrases have been changed,
PBUILD quits immediately.

Usage of the
NLXPHRAS.NMS$
File

9.5 At application run time, Window Manager will attempt to load the
NLXPHRAS.NM$ file when the INITIALIZE call is made. If the file is not
found, the phrases in the WMSTRDEF.OBJ module are used (the linked-in
phrases). If the NLXPHRAS.NMS$ file does exist, the phrases it contains are
substituted for the appropriate phrases in WMSTRDEF.

Window Manager, by default, will look for the NLXPHRAS.NMS$ file on the
default drive and directory. However, the application may place the
NLXPHRAS.NM$ file on another drive or directory and then tell Window
Manager where it is by setting the LIwmpath variable (wmpath for FOR-
TRAN users). Llwmpath is a string variable which may be set using the Set
String Value call. The Set String Value call must be made before the
Initialize call. Dummy screen, window, and item parameters may be
passed, as Window Manager will not check them when you are setting
Llwmpath. If Llwmpath is set, Window Manager will append the directory
path specified by LIwmpath to the NLXPHRAS.WM$ filename to get the
full pathname of the phrase file. Liwmpath should contain only the value
of a directory path; a filename should not be included. Also remember that
if LlIwmpath is set, Window Manager also looks for the help files associated
with the application’s screens in the directory specified by LiIwmpath.

Listing of
Internal
Phrases

9.6 Table 9-1 provides a list of Window Manager internal phrases that
can be modified, and their location. Table 9-2 provides a similar list for
Toolkit. These lists are in the same order as the phrases are displayed to
the developer when they are modified.

NaturalLink Window Manager

Internal Phrase Editing 9-7

Table 9-1 Window Manager Internal Phrases That Can Be Modified

Headers for Message Windows

*%k HELP *%%

k% ERROR **xx%

**x% WARNING **x

*%% PLEASE NOTE **x*

Default Message File Error Messages

The message file

could not be found in the specified

current working directory. To see the text for
message number

load a copy of the message file onto the
current working directory.

Default Help Message
No help has been supplied for this topic
Footers for Message Windows

ENTER: Stop Help HELP KEY: More Help
Press the ENTER key to continue

Default Message Processing Error Messages

An error with the following code was encountered:

The message display system was unable to

neatly process this message for the following reason:
message files read error

invalid error file name passed to Message Manager

The following information is known about the error:

An invalid message number has been supplied
to message manager.
The invalid number is:

9-8 Internal Phrase Editing

NaturalLink Window Manager

Table 9-2 Toolkit Internal Phrases That Can Be Modified

Labels and Text for Expert Windows

JAN
FEB
MAR
APR
MAY
JUN
JUuL
AUG
SEP
oCT
NOV
DEC
Enter

Day:

Month:

Year:

Enter @1 in the @2 range @3-@4@5
in an increment of @1:

inclusive

exclusive

new value

Text for Command Window Help Item

Help is available for any item on the screen.
To get help, move the cursor to the item and
press the Help key.

Text for Show Translation Window

Command translation:

Parser Memory Error Message

This sentence is too large for the available
memory space. Please use the Rubout/Backup
key to shorten your sentence to a point where
it is executable, or try to split the command
you want into two shorter sentences.

Busy Message

Working. Please wait...

NaturalLink Window Manager

Internal Phrase Editing 9-9

Table 9-2 Toolkit Internal Phrases That Can Be Modified (Continued)

Text for Saved Sentences Process

Select a sentence to recall or press the Quit key to abort

Select a sentence to delete or press
A name must be entered.

This name has already been used.
Enter a name for the saved sentence:
Press the QUIT key to abort

Do you wish to

Save

Recall

Delete

a sentence?

Date Expert Error Text

Date entered not within range.
Day entered not within range.
Month entered not within range.
Year entered not within range.

Text for Interface Customization Process
PRESS: F7 for Help F10 to Proceed

Editing the phrase:
Adding a synonym to the phrase:

the Quit key to abort

ESC to Quit

PRESS: F7 for Help ESC to Quit

I

want to

add synonyms to visible windows
add synonyms to pop-up windows
edit phrases in visible windows
edit phrases in pop-up windows

remove selected synonyms or edited phrases
remove all synonyms and edited phrases

look at the screen
quit

Remove all synonyms and edited‘phrases?

yes
no
Adding Synonyms or Editing Phrases

i

9-10 /nternal Phrase Editing

NaturalLink Window Manager

Table 9-2 Toolkit Internal Phrases That Can Be Modified (Continued)

Press ENTER to select the phrase that you wish
to edit or create a synonym of.
Use the CTRL-ARROW and CTRL-HOME keys to move
between windows.
Press F10 when you're through and want to
go back to the menu window or, if editing pop-up
windows, you want to proceed to the next window.
Press ESC when you want to quit what you're
doing.
Press ENTER now to get out of this window.
Removing Synonyms or Edited Phrases
The original phrase for
The phrase
is
is a synonym of
Press ENTER to select a synonym or edited phrase to be removed.
Use the CTRL-ARROW and CTRL-HOME keys to move between windows.
Press F10 when you're through and want to proceed to the next pop-up
window or, if there are no more pop-ups, return to the menu.
Press ESC when you want to quit what you're doing.
Press ENTER now to get out of this window.
Do you want to save your changes?
Saving Changes.
Please Wait.

NaturalLink Window Manager Internal Phrase Editing 9-11

WINDOW MANAGER INPUT DEVICES

Paragraph Title Page
JO.1 OVEIVIEW .ottt ettt s et ve s aaeete b eteenveenreens 10-3
10.2 Window Manager Keyboard Inputccc.ooeveeiiiieiciiiiicicc e, 10-3

10.2.1 Window Manager Keyboard Input Values.............ccccooovevieniiiiciiinennnns 10-4
10.3 Window Manager Input Default Functions..........c.cccoooviiiieiiiivicieecnnn, 10-4
10.3.1 Select — Default: ENTERKEYcccccviviieiieiiiieciee e, 10-7
10.3.2 Proceed — Default: FIOKeyoooiiiiiiiiieceeee 10-7
10.3.3 Page Scroll — Default: F1 and F2 Keys.........cccocvvveriieneiniiiiec 10-7
10.3.4 Help — Default: FTKey....cc.ccooiiiiinniieeee e, 10-8
10.3.5 Backup — Default: F8 Keycccccoviiviiiiiieiceceeeeeee 10-8
10.3.6 Next Item/Line Scrolling — Default: Arrow Keysccccccoiieininn. 10-8
10.3.7 Move Right/Left One Item — Default: TAB/SHIFT-TAB Key.............. 10-9
10.3.8 Top/Bottom — Default: HOME Keyc..ccoooovivinieiiieieceen, 10-9
10.3.9 Next Window — Default: CTRL-L/R Arrow Keys and
CTRL-PGUD/PEDN KEYS...ooiiiiiieieeeee et 10-9
10.3.10 Next Active Window — Default: CTRL-HOME Key...........c.cccccoveevena. 10-9
10.3.11 Move to Start/End of Line — Default: CTRL-F1/F2 Keys..................... 10-9
10.3.12 Move Left or Right One Word — Default: CTRL-F3/F4 Keys 10-9
10.3.13 Insert — Default: INS Key........oooovieienieieieeececeeceeeeee e 10-10
10.3.14 Delete — Default: DEL Keyccccocvvviiiiveniieeiciecee e 10-10
10.3.15 Delete From the Cursor Out — Default: CTRL-F5 Key....................... 10-10
10.3.16 Backspace — Default: BACKSPACE Key............coovevvvieiiiviiiiiiien 10-10
10.3.17 Printable Keys — Default: Keys With Key Codes Between
O0H and FFHoooiiiiiie e 10-10
10.3.18 Using Printable Keys in the Search Mode.............cccoooeiiiineinnnn 10-11
10.3.19 Input Unknown to Window Managerccccccocoeveevviniccenecnee, 10-11
10.4 Changing Function Key Assignments................c.ccooovvvviiiiiiiieeee, 10-11
10.5 Application Input ROUHINEccooviiiiieiiiiicecceeeeeee e, 10-13
10.5.1 Definition and USe..........ccocvveiiiiinieeiicceeeeeee e 10-14
10.5.2 APPINP Return €Codeccocooviviieiiiiiniieiesicseceeeee e 10-14
10.5.3 Dummy APPINP Routineccoccooviiiiiiii e, 10-14

NaturalLink Window Manager Window Manager Input Devices 10-1

Overview

10.1 Window Manager handles function key, cursor-movement key, and
control key input. This chapter explains the following items:

B Keyboard input

B Window Manager operations performed by keyboard input

B Function Key Change utility

W Application input routine

Tables are provided showing Window Manager operations for both

inactive and active windows. Tables showing key codes for specific
machines can be found in Appendix C, Computer-Specific Information.

Window
Manager
Keyboard Input

10.2 Window Manager uses only a subset of the keys available on any
computer. The code values of the keys in this subset are defined to Win-
dow Manager, and input from this subset is used to perform specific
Window Manager operations such as Select, Scroll, Proceed, and so on.
These keys are referred to as Window Manager function keys. Pressing
keys not defined to Window Manager (that is, keys whose key code values
are not recognized by Window Manager) causes a return to the application
program. These keys are referred to as unknown keys in the context of
Window Manager functionality.

Any key that the user presses is the fourth parameter of the Window
Manager Receive call. The value of any key that causes the Window Man-
ager Receive call to terminate is referred to as the key return value. In the
majority of cases, this is the value of the Select key (the default is the
ENTER key), but any unknown key value could be returned. It is very
important for the application program to check this key parameter after
every Receive call.

NaturalLink Window Manager

Window Manager Input Devices 10-3

Window Manager
Keyboard
Input Values

10.2.1 In order to interpret the key value correctly, it is necessary to
understand how Window Manager handles keyboard input. When Win-
dow Manager performs keyboard input/output (I/0), it makes every key
value unique and returns these unique key values to the application pro-
gram. Two rules apply:

1. If the key is a normal ASCII character (that is, if the key code is
returned in register AL with the key number in AH), Window Manager
returns the exact key value. For example, the key code for the ENTER
key is ODH. Thus, ODH is returned by Window Manager.

2. If the key is a special function (non-ASCII character) which returns an
extended code (that is, register AL = 0, with extended code in AH),
Window Manager returns the extended code plus 100H. For example,
the key code for the F10 key is the extended code 44H. Therefore,
Window Manager returns 144H if this key is pressed.

Window
Manager
Input Default
Functions

10.3 Tables 10-1 and 10-2 provide a quick reference list of the default
key assignments for both inactive and active windows. Display windows
and user-defined windows (UDWs) are not included in the tables. Display
windows are not listed because the cursor is not allowed in a display
window and information cannot be received from one. UDWs are not
listed because the application controls how keys in these windows are
used. The paragraphs following Tables 10-1 and 10-2 explain each of the
listed functions. The default keys vary depending on the computer you are
using. Consult Appendix C for a list of key differences.

Table 10-1 Default Keys in Inactive Windows

Function Keys List Window Edit Window Text and File Windows
ENTER (select) Invalid, beep Invalid, beep Invalid, beep
F10 (proceed) Return to calling routine Return to calling routine Return to calling routine

F1 and F2 (page scroll)

F7 (help)

F8 (backup)

Arrow Keys
{move cursor)

Scroll window

Help for item cursor is on
Show previous help
message or return

Move cursor to next item

Scroll window

Help for item cursor is on
Show previous help
message or return

Move cursor to next item

Scroll window

Help for window cursor
isin

Show previous help
message or return

Scroll window a line at a
time

10-4 Window Manager Input Devices

NaturalLink Window Manager

Table 10-1 Default Keys in Inactive Windows (Continued)

Function Keys List Window Edit Window Text and File Windows
HOME (top/bottom) Move cursor to Move cursor to Move text to show
top/bottom item top/bottom item top/bottom
CTRL L/R ARROW Move cursor to adjacent Move cursor to adjacent Move cursor to adjacent
CTRL PgUp/PgDn window window window
(move cursor)
CTRL HOME Move cursor to next Move cursor to next Move cursor to next
(move cursor) active window active window active window
CTRLF1/F2 Invalid, beep Invalid, beep Invalid, beep
(move cursor)
CTRLF3/F4 Invalid, beep Invalid, beep Invalid, beep
(move cursor)
TAB/SHIFT TAB Move cursor right/left Move cursor right/left Invalid, beep
(move cursor) one item one item
INS (insertion) Invalid, beep Invalid, beep Invalid, beep
DEL (deletion) Delete last key searched Invalid, beep Invalid, beep
for
CTRL F5 (deletion) Invalid, beep Invalid, beep Invalid, beep
BACKSPACE Invalid, beep Invalid, beep Invalid, beep
(move cursor)
Printable keys Enter search mode Invalid, beep Invalid, beep
Keys > 0x00
Keys < 0xFF
Any Other Key Return to calling routine Return to calling routine Return to calling routine

(return keys)

NaturalLink Window Manager

Window Manager Input Devices 10-5

Table 10-2 Default Keys in Active Windows

Function Keys

List Window

Edit Window

Text and File Windows

ENTER (select)
F10 (proceed)
F1 and F2 (page scroll)

F7 (help)

F8 (backup)

ARROW KEYS
(move cursor)

HOME (top/bottom)

CTRL L/R ARROW
CTRL PgUp/PgDn
(move cursor)

CTRL HOME
(move cursor)

CTRLF1/F2
(move cursor)

CTRLF3/F4
(move cursor)

INS (insertion)
TAB/SHIFT TAB
(move cursor)
DEL (deletion)

CTRL F35 (deletion)

Return to calling routine
Return to calling routine
Scroll window

Help for item cursor is on
Show previous help
message or return

Move cursor to next item
Move cursor to
top/bottom item

Move cursor to adjacent
window

Move cursor to next
active window

Invalid, beep

Invalid, beep

Invalid, beep

Move cursor right/left
one item

Delete last key search for

Invalid, beep

Return to calling routine
Return to calling routine
Scroll window

Help for item cursor is on
Show previous help
message or return

Move cursor to next item
Move cursor to
top/bottom item

Move cursor to adjacent
window

Move cursor to next
active window

Move cursor to the begin-
ning or end of line

Move cursor one word
left or right in line

Allow letters to be
inserted

Move cursor right/left
one item

Delete letter cursor is on

Delete line from cursor
out

Return to calling routine
Return to calling routine
Scroll window

Help for window cursor
isin

Show previous help
message or return

Scroll window a line at a
time

Move test to show
top/bottom

Move cursor to adjacent
window

Move cursor to next
active window

Invalid, beep

Invalid, beep

Invalid, beep

Invalid, beep

Invalid, beep

Invalid, beep

10-6 Window Manager Input Devices

NaturalLink Window Manager

Table 10-2 Default Keys in Active Windows (Continued)

Function Keys List Window Edit Window Text and File Windows
BACKSPACE Invalid, beep Move cursor backwards Invalid, beep

(move cursor) one character

Printable keys Enter search mode Character entered Invalid, beep

Keys > 0x00

Keys < OxFF

Any Other Key Return to calling routine Return to calling routine Return to calling routine

(return keys)

Select —
Default: ENTER Key

Proceed —
Default: F10 Key

Page Scroll —
Default:
F1 and F2 Keys

10.3.1 Select is probably the most important of all Window Manager
functions. It is the primary means of specifying commands to the applica-
tion program. This function is used to choose items from a window; it is
valid only in active windows. When Select is invoked either in text and file
windows or in single-selection list and edit windows, Window Manager
returns control to the application program. If the window is a multiple-
selection edit window, the cursor moves from item to item until it reaches
the last itern in the window, at which time it returns to the application pro-
gram. If Select is invoked in a multiple-selection list window, the Chosen/
Enable attribute of the item the cursor is on is set to yes (1) and the cursor
moves down to the next selectable item in the window.

10.3.2 The Proceed key causes Window Manager to return to the appli-
cation program from the window in which the cursor is located. Window
Manager uses this function to commit all selections in a multiple-selection
window, but an application can also use the Proceed key as a Quit key (if it
has been so defined), since Window Manager always returns to the applica-
tion program when the Proceed key is pressed.

10.3.3 These keys cause Window Manager to scroll the window contain-
ing the cursor by the number of lines in that window. For example, if a
window can display 10 lines of information, that information moves up or
down 10 lines when the page-scrolling function is invoked. The page-
scroll-up operation (default — F1 key) causes the text in the window to
move up. The page-scroll-down operation (default — F2 key) causes the
text in the window to move down.

NaturallLink Window Manager

Window Manager Input Devices 10-7

Help — 10.3.4 When the Help function is invoked, Window Manager first tries
Default: F7 Key to display the Help message attached to the item the cursor is on. If no
Help message exists for this item, Window Manager tries to display the
help message attached to the window. If more than one Help message is
attached to either an item or a window, pressing the Help key while a Help
message is shown causes the next attached message to appear. Pressing

the Backup key causes the previous Help message to be displayed.

If the first Help message is displayed, pressing the Backup function results
in return to the screen that was displayed before help was requested. The
Select function accomplishes the same results.

Backup — 10.3.5 The Backup function causes Window Manager to back up one
Default: F8 Key step in the current procedure. If this function is used in conjunction with a
series of Help messages attached to a single item or window, it causes the

previous Help message to be redisplayed.

NOTE: The Backup key has meaning to Window Manager only when a
Help message is displayed. If the Backup key is pressed at any other time,
Window Manager returns to the application program.

Next Item/Line 10.3.6 The arrow keys cause the cursor to either move item by item in a
Scrolling — window or, in text and file windows, to scroll the window line by line. The
Default: Arrow Keys cursor moves in the direction the arrow key points.

In edit windows, the left or right arrow keys move the cursor a character
at a time in an edit field. If the arrow keys move the cursor over an empty
edit field, the cursored spaces become fill characters. Before returning to
the application program, Window Manager converts the fill characters to
blanks when they are followed by text. However, trailing fill characters
(those following text) are removed.

10-8 Window Manager Input Devices NaturalLink Window Manager

Move Right/Left
One Item — Default:
TAB/SHIFT-TAB
Key

Top/Bottom —
Default: HOME Key

Next Window —
Default: CTRL-L/R
Arrow Keys and
CTRL-PgUp/PgDn
Keys

Next Active
Window — Default:
CTRL-HOME Key

Move to Start/End

of Line — Default:
CTRL-F1/F2 Keys

Move Left or Right
One Word — Default:
CTRL-F3/F4 Keys

10.3.7 The TAB key moves the cursor one item to the right; the SHIFT-
TAB key moves the cursor one item to the left. These keys are valid for
movement only in a multiple column or free-format window. They per-
form the same function for an edit window as the left and right arrow
keys perform for list windows. In edit windows these keys move the cursor
one item left or right, whereas the left or right arrow keys move the cur-
sor one character left or right.

10.3.8 This function key moves the cursor to the first item in the win-
dow; if it is already on the first item, it moves the cursor to the last item in
the window. For text and file windows, Window Manager moves the text
so the first or last line in the window is showing.

10.3.9 The Next Window function keys move the cursor from one win-
dow to another. The cursor is moved to the closest window in the direction
of the key pressed.

10.3.10 Several windows can be visible to the user at once, and more
than one of those windows can be active. The Next Active Window func-
tion provides a rapid means of moving from one active window to another.
When invoked, the cursor moves from active window to active window
based on the order in which the windows were added.

10.3.11 In edit windows it is useful to move quickly to the beginning or
end of the edit field. This can be performed in Window Manager with the
use of the CTRL-F1 key, which moves the cursor to the beginning of the
current edit field, and the CTRL-F2 key, which moves the cursor to the end
of the text in the current edit field. These functions are valid only in edit
windows.

10.3.12 This function causes the cursor to move through an edit field
one word at a time. The CTRL-F3 key moves the cursor one word to the
left in the current edit field; the CTRL-F4 key moves the cursor one word
to the right in the current edit field. These functions are valid only in edit
windows.

NaturalLink Window Manager

Window Manager Input Devices 10-9

Insert —
Default: INS Key

Delete —
Default: DEL Key

Delete From
the Cursor Out —
Default: CTRL-F5

Key

Backspace —
Default:
Backspace Key

Printable

Keys — Default:
Keys With Key
Codes Between
O0OH and FFH

10.3.13 The Insert key is valid only in an active edit window. When the
Insert key is pressed, Window Manager allows characters to be inserted in
front of the cursor. Window Manager remains in the insert mode until a
nonprintable character is pressed, such as an arrow key or the DEL key.

10.3.14 When used in an edit window, this function causes Window
Manager to delete the character on which the cursor is positioned. The
Delete key can also be used as part of the Window Manager search fea-
ture. In that case, the Delete key deletes the last key code entered in a
search string. For example, if the user types in the characters ABC and
then presses the Delete key, Window Manager searches for an item
beginning with only the characters AB.

10.3.15 Sometimes it is useful to delete several or all of the characters in
an edit field quickly. The CTRL-F5 key deletes all characters right of the
cursor to the end of the edit field, including the character the cursor is on.
If CTRL-F5 is pressed when the cursor is at the beginning of the edit field,
all text in that field is deleted but the edit field itself still exists and the cur-
sor remains in place.

10.3.16 The Backspace key is valid only in an active edit window.
When the Backspace key is pressed, the cursor moves backward one
character.

10.3.17 These keys are valid only in list and edit windows. In an edit
window, a printable key is entered as part of the current edit field. In a list
window, pressing a printable key causes Window Manager to enter the
search mode.

Printable keys also can be used to cause Window Manager to return
control to the application program. Ten such printable keys can be defined
using the Function Key Change utility.

10-10 Window Manager Input Devices

NaturalLink Window Manager

Using Printable Keys
in the Search Mode

Input Unknown
to Window Manager

10.3.18 In the search mode, Window Manager looks for an item that
starts with the character(s) pressed. It does this by building a search string
from the character keys pressed, putting the cursor on the first item that
starts with the characters in the search string. If no match is found, a beep
sounds. Window Manager continues to build upon the same search string
until an unprintable key (such as an arrow key) is pressed.

For example, if the user types A, Window Manager finds the first item
starting with A and puts the cursor on it. If B is then pressed, it continues
the search by looking for an item starting with AB. Now if the character
key C is pressed and an item that starts with ABC cannot be found, a beep
sounds and the character C is not added to the search string. Once an
unprintable character key is pressed, the search string is cleared and a
new search can start.

10.3.19 If input from the keyboard returns a value that is unknown to
Window Manager, Window Manager returns to the application program. -

Changing
Function Key
Assignments

10.4 Depending on application program requirements, you may wish to
change the default function keys used by Window Manager. To change the
assigned function key values, execute the function key change utility
KBUILD. As with the SBUILD and MBUILD utilities, the MS-DOS SET
command can be used to set the NLXTOOLS environment variable to the
directory path containing KBUILD support files.

This utility presents the list of assigned functions and allows you to specify
the keys to be assigned to various functions. When you make your assign-
ments and commit them, the utility generates the object file
WMKEYDEF.OBJ on the current drive and directory. You must then
explicitly include WMKEYDEF.OBJ in your link stream. The KBUILD Util-
ity Menu is shown in Figure 10-1. Refer to Appendix C, Computer-Specific
Information, for a listing of the computers referenced in the TIPC and
OTHER columns in Figure 10-1. '

NaturalLink Window Manager

Window Manager Input Devices 10-11

Figure 10-1 KBUILD Utility Menu

SET FUNCTION KEYS UTILITY

Which product are you setting the function keys for?
NATURALLINK TOOLKIT AND WM

TIRC Other
Select items @ @0 0D
Proceed to next step @ 144 144
Move curzor up one item : 148 148
Move cursor down one item : 150 150
Move cursor left one item : 148 14B
Move cursor right one item: 14D 14D
fove to the top/bottom item ¢ 147 147
Move cursor up one window @ 184 184
Move cursor down one window : 176 176
Move cursor left one window @ 173 173
fove cursor right one windaw ¢+ 174 174
Move to the next active window ¢ 177 177
Up page scroll @ 138 138
Down page scrall ¢ 13C 13C

{

Fress F7 for help, F1O to commii the entries, or ESC to ahort,

This is the only menu for the function key utility. Since the NaturalLink
Window Manager is related to other NaturallLink products, you must spec-
ify the NaturalLink product for which you are setting the function keys,
Window Manager only, or both Window Manager and Toolkit. Selecting
the NATURALLINK TOOLKIT AND WM option causes additional functions
specifically used by the NaturallLink Toolkit to be presented in the key-
codes window. Key codes can be assigned to these functions.

Once the option has been selected, the key-codes window displays the
functions that can be performed with the function keys. The values listed
in the TIPC and OTHER columns in Figure 10-1 will come from an existing
WMKEYDEF.OBJ file or will be initialized by the KBUILD utility itself.
The utility first looks for a WMKEYDEF.OBJ file on the default drive
and directory. If the file exists, the previously specified values in
WMKEYDEF.OBJ are presented. If the KBUILD utility has never been used
or if the previous values cannot be found, an error message is displayed
indicating that the file cannot be found or that there is a problem with the
file. The default values shown in Figure 10-1 (also listed in the Help
messages) are then used.

10-12 Window Manager Input Devices NaturalLink Window Manager

Values can be entered for both Tl and other computers. These values must
be the values of the keys that invoke the function you intend. Enter the
hexadecimal input values according to these guidelines:

m If the key you wish to assign to the function is a normal ASCII character
(that is, a key code returned in register AL with the key number in AH),
enter the exact key value. For example, the key code for the ENTER key
is ODH; thus 0D is entered as the value.

W If the key you wish to assign is a special function key (non-ASCII code)
which returns an extended code (that is, register AL = 0 with the
extended code in AH), enter the extended code plus 100H. For example,
the key code for the F10 key is the extended code 44H; therefore, enter
144 for the value.

| If you do not want Window Manager to perform a particular function,
enter 0 (zero) as the value for that function.

Once you have entered all the key codes, press the F10 key. The function
key utility then generates the object file WMKEYDEF.OBJ on the default
drive and directory.

IMPORTANT: If WMKEYDEF.OBJ already exists on the default directory,
it will be replaced by the new file being generated. After the file has been
created, you are returned to the operating system level.

To put your function key changes into your application, link the version of
WMKEYDEF.OBJ that was generated by KBUILD rather than the default
version included in the Window Manager run-time library (WM.LIB) on the
NaturalLink object diskette. Once linked, the new function key assign-
ments are used by Window Manager and the NaturalLink software until
you change them and relink.

Application
Input Routine

10.5 The Window Manager primary means of getting input from the
user is through the keyboard. The developer, however, may want to pro-
vide an alternative method of user input, such as a mouse, lightpen, or
speech. Window Manager does not directly support these input devices.
Instead, a generic application input routine can be used.

NaturalLink Window Manager

Window Manager Input Devices 10-13

Definition and Use

APPINP Return Code

Dummy APPINP
Routine

10.5.1 The application input routine takes the following form:
KEY = APPINPQ)

This routine must be provided by the developer. APPINP is called during
the Receive call. If no key is returned (a value of zero is returned) from
APPINP, the keyboard is polled. This polling goes back and forth between
input methods until one of them has a key to input. The pseudocode for
Window Manager input is as follows:

GETINPUTQ)
key = 0
while (key == 0)
key = appinpQ)
if (key == 0)
if keyboard has key ready
get key from keyboard
return(key)

10.5.2 Any input method can be used by the application for input to
Window Manager. However, the application must first translate the input
into the form Window Manager expects. Window Manager always expects
APPINP to return a value in the form of a key code. This means that the
APPINP routine will act as another version of the keyboard, a transparent
keyboard if you will.

Also, the key codes returned must be the same as the codes assigned to the
Window Manager functions via the KBUILD utility. If they are not,
Window Manager assumes the key is unknown and returns to the applica-
tion program. For example, if the application receives a Select function
from the input device it is controlling, the key code for the Select function
from the keyboard must be returned by the application input routine.

If APPINP has no input ready when Window Manager calls it, a value of
zero (0) should be returned to indicate that no key is ready. Window
Manager then polls the keyboard for input. If a 0 is not returned from
APPINP, Window Manager will wait indefinitely for input from the
application input routine.

10.5.3 A dummy application input routine has been provided with the
Window Manager run-time object code to resolve the reference to the
APPINP call. This dummy routine can be linked in with the application if
no special input routine will ever be needed by the application. The
dummy routine is shipped as part of a library of dummy routines. Consult
the appropriate appendix for the language you are using for details.

The dummy routine always returns a value of 0 (zero) indicating there is
no input ready.

10-14 Window Manager Input Devices NaturalLink Window Manager

EQUIPMENT REQUIREMENTS

Paragraph Title Page
A.1 Equipment Requirements..........c...cccveervirniieiiieniiinie et A-3

Al Equipment Necessary for Interface Developmentc.c.ccccocennennnnne. A-3

A.1.2 Equipment Necessary for User Operation..........ccccceevveeeviiecicnirnnennnen. A-4

NaturalLink Window Manager Equipment Requirements A-1

Equipment
Requirements

Equipment
Necessary
for Interface
Development

A.1 The equipment requirements for using Window Manager differ
depending upon whether an interface application is being developed or is
merely being run.

A.1.1 To use Window Manager and associated utilities for interface
development, the application designer needs the following equipment.

B Texas Instruments Professional Computer (TIPC), Texas Instruments
Portable Professional Computer (TIPPC), Texas Instruments BUSINESS-
PRO™ Professional Computer, IBM® PC, IBM PC/XT™, or IBM Personal
Computer AT™, with at least two disk drives and a minimum of 256K
RAM, where K equals 1024 bytes

m MS-DOS (up to and including Version 3.xx)
W The MS-DOS link editor or a compatible link editor
@ One of the following programming languages:
m Lattice C Compiler (up to and including Version 2.14)

m MS-FORTRAN (up to and including Microsoft Version 3.2 or a
compatible version for the machine you are using)

m MS-Pascal (up to and including Microsoft Version 3.2 or a compatible
version for the machine you are using)

m MS-BASIC Compiler (TI Version 1.0 or a compatible version for the
machine you are using)

BUSINESS-PRO is a trademark of Texas Instruments Incorporated.
IBM is a registered trademark of International Business Machines Corporation.

IBM PC/XT and IBM Personal Computer AT are trademarks of International Business Machines
Corporation.

NaturalLink Window Manager

Equipment Requirements A-3

Equipment A.1.2 If the application requires Window Manager only, the user needs
Necessary for the following equipment:
User Operation
m TIPC, TIPPC, TI BUSINESS-PRO, Texas Instruments PRO-LITE™ Profes-
sional Computer, IBM PC, IBM PC/XT, or IBM Personal Computer AT.

B MS-DOS (up to and including Version 3.xx).

B A minimum of 80K bytes of RAM (this allows for a Window Manager
data space of approximately 32K bytes; your application may need
more or less space than-this), plus any additional memory required by
the application itself. Whether the user’s machine needs a Winchester
drive depends on the application software, not the presence of Natural-
Link software.

PRO-LITE is a trademark of Texas Instruments Incorporated.

A-4 Equipment Requirements NaturalLink Window Manager

HELPFUL HINTS

Paragraph Title Page
B.1 INtroductionoccoooiiiiieiie e B-3
B2 WINAOW TYPES ettt B-3

B.2.1 List WINAOWS.....oeiiiiiie ettt B-3
B.2.2 Text WINAOWS ...ttt B-4
B.2.3 Display WINAOWScooiiiiiiiiiiiiii ettt B-4
B.2.4 Edit WINAOWS ..ottt sve e s B-4
B.2.4.1 Maximum Edit Field Length........c.cccoooiiiiiiiiii B-4
B.2.4.2 Required Edit Field........c.coooiiviiiiiii e B-5
B.2.4.3 Echo Edit Field Inputcccoooiiiiiiieeeeeceeee e B-5
B.2.4.4 Multiple Selection in an Edit Windowcccceeeeviiiiieeeci, B-5
B.2.5 File WINAOWS ...ooiiiiie ettt B-5
B.3 Window Labels.........ccccooiiiiiiiiiicc e B-6
B.3.1 Top Window Labelccocvviiiiiieiiiceeeee e B-6
B.3.2 Bottom Window Label...........c.occcoiiiiiiiiiii e B-7
B.3.3 Left Window Label..........ccoocciiiiiiiii e B-7
B.3.4 Right Window Labelccccccovviiiiiiciecie e B-7
B.4 Window FOormats......c.ccooviiiiiiiiiieet e B-8
B.4.1 Single-Column FOrmat.......cccoccvoeiiiiieciiiiiciieeccc e B-9
B.4.2 Multiple-Column Formatccocooiiiiieiiiieeeice e B-9
B.4.3 Free FOrmat ... B-10
B.5 Item LabelS...cccooiiiiiiieieiiceee e B-11
B.5.1 Maximum Item Label Length.............cc.cccoooviiiii, B-12
B.5.2 Left-Justified Labelsc..coooieiiiiiiiiiiciceceece e B-12
B.5.3 Right-Justified Labels............c..ccccoiiiiiiinineece B-12
B.5.4 Free-Format Labelsccccooviiiiiiiic e B-12
B.6 Special Window Manager Features...............ccccooeuvreeiiiiciieeee e, B-13
B.6.1 Use of Borderless Windows and Multiple Window Effects................... B-13
B.6.1.1 Adding Multiple Windows in Ordercccocooovvvievieiieeec. B-14
B.6.1.2 Reasons for Using Multiple Windows...............cccccoooiiiiiiiciie, B-14
B.6.2 Use of Display WINAOWScccooiiiiiiiiiiiiccceee e B-15
B.6.3 Creating and Using Blank Linesc.ccccoooeviiviiiiiiieee e, B-16
B.6.4 Unselectable [tems.ooooiveiiiiiii e B-16
B.6.5 Use of Invisible ItemMS........cooiiviiiiii e B-17
B.6.6 When to Use Multiple-Selection Windowscccccooevvivvveeeeeeeenn, B-17

NaturalLink Window Manager

Helpful Hints B-1

Paragraph Title Page
B.6.7 Simulating a Multiple-Selection Windowccooeeeceveveverennennen. B-18
B.6.7.1 Using the Chosen/Enable Item Attributecccocoeveviviiinnnnnen. B-18
B.6.7.2 Simulating Cursor Movementcccccceeverecienieniieccereereere e B-19
B.6.7.3 Using the Don’t Redisplay Current Items Attribute......................... B-19
B.6.7.4 Using the Displayed Attribute...........cccocoovviriieiviniieeeeeeee B-20
B.6.7.5 First Item to Be Displayed.........ccccooeviriieeiiiiiieeeeeeeeeceeceae B-20
B.6.8 Using Windows for More Than One Purpose..........cccccceoveeeviviinncrecnnnns B-21

B.6.9 Special Repaint on Receive.............ccoiovvniiiiniiiiniininniiciiicciieens B-21

B.7 Designing Screen FIles........cccoviriiiiinieeiinnierieestenie v st sre s B-22

B-2 Helpful Hints

NaturalLink Window Manager

Introduction

B.1 This appendix contains further explanations, examples, and hints on
how to use the various Window Manager features. All of the example win-
dows in this chapter can be created with Screen Builder. For practice you
may want to try to recreate the windows.

Window Types

List Windows

B.2 Window Manager works with six different types of windows:

| List

m Text

m Display

m Edit

| File

B User-defined

These six different types of windows can be used to display a wide variety
of information. Suggestions on how to use list, text, display, edit and file

windows are provided in the following paragraphs; user-defined windows -
are explained in Chapter 8, User-Defined Windows.

B.2.1 The list window should be used whenever a list of items is pre-
sented from which selections will be made. It is the most frequently used
window type. When designing user interfaces, you should utilize list win-
dows as often as possible because it is much easier for a user to select items
from a list than to type information. For example, earlier versions of
Screen Builder prompted for attribute values by using edit windows. This
process required memorization of all the different values. In the latest ver-
sions, the edit windows have been changed to list windows. This makes
setting the attributes much easier and eliminates the need to memorize
specific numbers.

Window Manager is very flexible in the way it can manipulate list
windows. All the different formats and cursor types can be used with list
windows. Window labels and item labels can also be used to display special
information. When a Receive call is made on a list window, Window Man-
ager can return to the application after one item is selected. If the Multiple
Selection attribute is set to 1, Window Manager allows several items to be
selected; then all selected items can be committed at the same time.

NaturalLink Window Manager

Helpful Hints B-3

Text Windows

Display Windows

Edit Windows

Maximum Edit
Field Length

B.2.2 A text window is useful for displaying the results of a selection
series from list windows. In such a case, there are no items to select, but
there may be too many items to fit into the window at one time. A text
window is perfect for this purpose because, while it does not allow a user
to select items, the text can be scrolled. When the arrow keys are pressed,
the text scrolls one line at a time. When the page scroll keys are pressed,
the text scrolls one window at a time.

Text windows have the same appearance as list windows. All of the
different formats, as well as window and item labels, can be used. An
invisible cursor is used in text windows so that a user will not think that
itemn selection is possible.

B.2.3 When information needs to be displayed but there is no reason for
a user to manipulate window items in any way, a display window should
be used. This type of window is used for display purposes only. The cursor
cannot enter a display window, nor can a Receive call be made. Because
display windows cannot be scrolled, they must be made large enough to
contain all the items desired. Further information on display windows is
provided later in this appendix.

B.2.4 Edit windows enable users to type specific information. Edit win-
dows can use all the different formats and can have window and item
labels. Either a cursor or an invisible cursor is used in an edit window.
Window Manager does not perform any data validation in edit windows. If
validation is desired, the developer can provide an application validation
routine which Window Manager will call. (See Chapter 7, Application Vali-
dation Routine, for more information.) Edit windows are more complex
than other window types, since there are more attributes to set for items.
These attributes determine how the items are displayed and manipulated.

B.2.4.1 An application typically has a maximum number of characters it
allows a user to enter for an item. This maximum number is the value to
which you set the Maximum Edit Field Length attribute. This item attribute
tells Window Manager how many characters can be entered for the item. If
this value is 0, the cursor can be placed on the item but no characters can
be entered. Any item with a maximum length of 0 cannot be padded with
fill characters. Blank lines (items) in edit windows can be created by
specifying an item with no text and a maximum edit field length of 0.

B-4 Helpful Hints

NaturalLink Window Manager

Required Edit Field

Echo Edit
Field Input

Multiple Selection
in an Edit Window

File Windows

B.2.4.2 The Required Edit field attribute can be utilized to force a user to
enter characters for an item. When the attribute is set to 1, Window Man-
ager does not allow the user to move the cursor to another item until at
least one character has been entered for the item. This attribute is checked
when the ENTER, F10, or down arrow keys are pressed. If an undefined
key is pressed (one that will make Window Manager return from a Receive
call), the required flag will be ignored.

B.2.4.3 Sometimes an application program may require a user to enter
sensitive information such as user IDs or passwords. Since these should not
be seen, Window Manager can keep them confidential by using the Echo
Edit Field Input attribute. When this attribute is set to 1, Window Manager
displays the typed characters. If the value is 0, the cursor moves through
the edit field but none of the typed characters appear.

B.2.4.4 At times it is desirable for several edit items to be presented in a
single window. The user can then enter information for all items and
commit all of the entries at the same time using the Multiple Selection
attribute.

When the Multiple Selection attribute is set to 1 for an edit window,
Window Manager permits all fields in the window to be edited before
returning to the application. Pressing the ENTER key moves the cursor to
the next item. Pressing the ENTER key on the last item commits all edits.
Pressing the F10 key commits all edits at any time.

B.2.5 There are many times when an application program has a text file
that the user must view. Instead of the application reading the file and cre-
ating window items from the text, file windows can be used so Window
Manager can perform the processing necessary to display the file in a win-
dow. All of the different formats can be used with file windows, but
because of the nature of text files, the use of a single-column window is
suggested. File windows can have window labels, but no item labels are
allowed.

Window Manager reads the file and builds items from the text. The length
of each item is determined by looking for carriage return characters in the
file. When a carriage return is encountered, a new item will begin. If no
carriage return characters exist in the file, the results of the file window
cannot be guaranteed. Other restrictions also pertain to file windows. See
Chapter 2, Window Manager Features, for more information on window
types.

NaturalLink Window Manager

Helpful Hints B-5

Window Labels

B.3 Window labels are typically used as titles of one or more lines (in
uppercase letters as in Figure B-1) for a window. The window label can
appear either flush left, centered, or flush right on the top line inside a
window, or flush left and centered on the bottom line inside a window. The
label remains in the position selected regardless of any scrolling within the
windows. If the window label is invisible (that is, the Invisible Label attri-
bute value is set to 1), it does not take up space in the window and it does
not appear when the window is displayed. Figure B-1 shows four single-
column list windows, each with the window label in a different position.
Three of the windows shown have multiple-line labels. Even though only
one window type and format is shown, all of the different window types
and window formats can have window labels in each of the four positions.

Figure B-1

Top Window Label

Window Label Positions

TOP WINDOW LRBEL LEFT WINDOW LABEL Item one
Item one SECOND LINE OF LEFT LABELItem two
Item tuo Item three
Item three Item four
Item four Item five
Ttem five Ttem six
Item six [tem seven

Item one Item one RIGHT WINDOW LABEL
Item two Item tuo SECOND LINE OF RIGHT LABEL
Item three [ten three
Item four Iten four
Item five Item five
BOTTOM WINDOW LABEL Iten six
SECOND LINE OF BOTTOM LABEL Item seven

B.3.1 The top window label always appears on the first line or lines of
the window. It can be centered or flush left. If the label is centered, it is
centered over the entire width of the window. If a multiple-line window
label is centered, each line is individually centered over the width of the
window. This is true even if the window is either a single-column or
multiple-column window. When using a top window label, the items will
follow on subsequent lines. The first item(s) in a window that uses a top
window label cannot appear on the same line(s) with that label. Items can
be centered or flush left as shown in Figure B-1. Flush left is the default
position for a top window label.

B-6 Helpful Hints

NaturalLink Window Manager

Bottom
Window Label

Left Window Label

Right Window Label

B.3.2 The bottom window label has the same characteristics as the top
window label, except that it occupies the last lines in the window. The last
items in a window that uses a bottom window label cannot appear on the
same lines with that label. In Figure B-1, both the bottom label and the
items are centered.

B.3.3 The left window label always appears flush left on the first line(s)
and in the first character position of the window. Window items are posi-
tioned immediately to the right of the left window label with no space
separating the label and the first item. Unlike top and bottom window
labels, no items can be displayed in the area beneath a left window label.
Thus, usable window space is substantially reduced. Centered items are
centered within this reduced area. If you do not wish to center items but do
want space between the window label and the items, the label itself must
be manually padded with the number of spaces desired. Padding with
blanks allows great flexibility when designing the windows. Left or right
window labels are typically used to label single-line windows or to provide
the prompt in a single-line window.

Because of their reduced usable area, the column width of multiple-column
windows is calculated by subtracting the width of the left or right window
label from the overall width of the window, and dividing the result by the
number of columns.

If a multiple-line left window label is used, each line appears flush left in
the window, and the usable area of the window is based on the longest line
in the window label. The Centering attribute has no effect on left window
labels.

B.3.4 The right window label has essentially the same characteristics as
the left window label, except that it occupies the right side of the window
on the top line(s). [tems are positioned to the left of a right window label,
and space below the label is unusable. Centered items are centered
between the usable space to the left of the label.

If a multiple-line right window label is used, each line appears flush right in
the window, and the usable area of the window is based on the longest line
in the window label. The Centering attribute has no effect on right window
labels.

NaturalLink Window Manager

Helpful Hints B-7

Window
Formats

B.4 Window Manager provides two formats in which the items can be
displayed in a window: columnar and free-format. A columnar window can
have either single-column or multiple-column items. Items are handled dif-
ferently depending on the format selected and the size of the item. Figure
B-2 illustrates four variations that occur using these two window formats.
The four windows shown in this figure are list windows, but all window
types can have these formats.

Figure B-2

Window Column Formats

SINGLE COLIMN WINDOW
Item one
Item twn
Ttem three iz too wide for one line. It has been made into a
milti-line item,

MULTIFLE COLUMN WINDOW - ROW MATOR ORDER

Item one [tem tuo Item three
Item four Item five Item six will he trun
Item zeven Item eight Item nine
Item ten [tem eleven
MULTIRLE COLUMN WINDOW - COLUMN MAJOR ORDER
Tten one Item five Iten nine
Item tuo Item six will ke trunltem ten
[tem three Item seven I[tem eleven
Ttem four Item eight

FREE FORMAT WINDOW
This is item one. This is item tuo,
Item three beging a new line, it didn't fit on previcus line.
Item four is wider than the width of the window; it will be tru
The rest are all short items. Item six. Item seven. Item eight.

B-8 Helpful Hints

NaturalLink Window Manager

Single-Column
Format

Multiple-Column
Format

B.4.1 Items in single-column windows are displayed one per line. The
items can be either flush left or centered as shown in Figure B-2. Items
wider than the width of the window are made into multiple-line items (for
example, Item three in the single-column window of Figure B-2). Multiple-
line items start at the left side of the window and are wrapped at the right
side of the window. The next line of the item is indented two spaces. When
an item-only size or larger-size cursor is placed on a multiple-line item, the
cursor automatically expands in size to encompass the entire item.

If no multiple-line items are desired, the Disable Multiple Line Items attri-
bute can be set to 1. When this is done, any item that is too long is trun-
cated. Window Manager scrolls the items in windows that have the Disable
Multiple Line Items attribute value set to 1 much faster than if the attribute
value is 0.

B.4.2 Multiple-column format is a simple variation of the single-column
theme. Items are displayed in more than one column. The width of a col-
umn is determined by dividing the usable width of the window (window
width is explained in Chapter 3, Window Manager Features) by the num-
ber of columns specified for the window. Normally, this would be the over-
all width of the window unless a left or right window label is used. The
width of each column is the same. If the usable window width does not
divide evenly between the columns, the extra width is left unused after the
last column in the window.

The items can be left-justified as in the column-major window, or centered
as in the row-major window. When multiple-column items are centered,
they are centered over the width of the column. Items longer than the
width of a column are truncated as shown by item six in both multiple-
column windows of Figure B-2.

Window Manager does not put any spaces between the columns. This
allows the screen designer maximum flexibility. If an item is as wide or
wider than the width of the column, it runs into the next column. This is
shown by Item six in the column-major window of Figure B-2. Two of the
examples in Figure B-2 are multiple-column windows. They are the same
except for the order in which the items are listed. In a row-major ordered
window, the items are placed in the window one after another, filling up
one row before moving down to start the next row.

In a column-major ordered window, the items are displayed in just the
opposite order. The columns are filled first. The items are divided equally
between the columns.

NaturalLink Window Manager

Helpful Hints B-9

Free Format

Cursor movement between items in a multiple-column window varies with
the order in which the items are displayed. Left and right cursor move-
ment in a row-major ordered window causes the cursor to move to the
previous or next item in numeric order even if the item is on the previous
or next line in the window. For example, if the cursor is on Item three in
the row-major window of Figure B-2 and the right arrow key is pressed,
the cursor moves to the next line and is positioned on Item four. Up and
down cursor movement in a row-major window makes the cursor move
only through the column in which it is positioned. It does not go to the
previous or next column.

Cursor movement in a column-major ordered window is just the opposite
of that in a row-major ordered window. In a column-major window, the up
and down movement moves the cursor to the previous or next item. For
example, if the cursor is on Item four in the column-major window of
Figure B-2 and the down arrow key is pressed, the cursor moves to Item
five in the next column. Left and right cursor movement can only be per-
formed within a row. The cursor will not go to the previous or next row.

B.4.3 In a free format window, the items follow one after the other on
the same line with one space placed between them. In Figure B-2, each
item in the free format window ends with a period. If an item cannot fit on
the same line following the previous item, the item wraps to the next line
(see Item three). If a single item is longer than the width of the window, the
item is truncated (as in Item four).

Cursor movement in a free-format window is very similar to cursor
movement in a row-major ordered, multiple-column window. Left and
right movement moves the cursor to the previous or next item. Up and
down movement moves the cursor to the first item in the previous or next
line. For example, if the cursor is on the third item in a line and the up
arrow is pressed, the cursor moves to the first item in the previous line,
even if there appeared to be an item directly above the item on which the
cursor was positioned.

B-10 Helpful Hints

NaturalLink Window Manager

Item Labels

B.5 Item labels are typically used as prompts for edit items; however,
they can be used in all window types except file windows. Window Man-
ager associates the item label with the item text itself in determining how
the window is displayed. Labels can be left- or right-justified, or free-
format. Items, with or without labels, can be either centered or
uncentered. Figure B-3 shows how a window appears using certain label
characteristics in conjunction with specific item attributes.

Figure B-3

Item Labels
' LEFT-JUSTIFIED ITEM LABELS - EDIT WINDOW
Uncentered Items Centered Items

Label 1 Item one____ Label 1: Item one____

Lakel 22 _____ Lakel 20 _____

Label 3: Ttem three will be trun|lakel 3: Item three will be trun

Item four- Item four-
Labe] S Item five_____ Lakel 5: Item five_____

RIGHT-JUSTIFIED ITEM LABELS - EDIT WINDOW

Uncentered Items Centered Items
Lakel 1:Item one____ Label 1:Item one____
Label ¢ioeeee Lakel 2:_____
Label 3:Item three will be trun Label 3:Item three will be trun
Item four. Iten four
Label S:ltem fiveo——o Label 9:Item five_____

FREE-FORMAT ITEM LABELS - LIST WINDOW

Uncentered Items Centered Items

Lake! 1:Item one Labe] 1:Item one

Lahel ¢ Labe]l ¢:

Labz] 3:Item three will he a multiple lLabel 3:Item three will be a multiple
ling item. line item,

Item four Item four

NaturallLink Window Manager

Helpful Hints B-11

Maximum Item
Label Length

Left-Justified Labels

Right-Justified
Labels

Free-Format Labels

B.5.1 To display a label, you must specify the Maximum Item Label
Length attribute. All justification takes place within this specified length.
The item labels can be left or right justified, or free-format. If the maximum
item label length is 0, no item labels appear even if text exists. This feature
can be very useful if there is text you wish to store with the item but do not
wish to display. The maximum item label length for the example windows
is 13. If the maximum item label length is greater than the column width,
Window Manager forces it to equal the column width.

B.5.2 The top window in Figure B-3 illustrates left-justified item labels.
The item labels are left justified within the maximum item label length,
and the items are positioned immediately following this maximum length.
When no label text exists, as in Item four, the item is still positioned after
the maximum item label length. This is useful because it allows all items in
a window to be spaced over an equal distance in the window without
having to pad items with blank spaces or specify item label text to obtain
the proper spacing. If the label text is longer than the maximum length,
the item label is truncated.

In multiple-column windows, free-format windows, edit windows, or
windows with the Disable Multiple-Line Items attribute set to 1, the item is
truncated first (before the label, as shown in Item three), if the item length
plus the maximum item label length is wider than the width of the window.
If multiple-line items are allowed, the item is word wrapped to the next
line, indenting two spaces from the beginning of the item (as shown in the
third item of the free-format example window in Figure B-3).

Items with left-justified labels are centered over the total length of the item
text and the Maximum Item Label Length field.

B.5.3 Right-justified labels work in exactly the same manner as left-
justified labels, except, of course, that the label is right justified within the
Maximum Item Label Length field.

B.5.4 With free-format item labels, the item immediately follows the
item label itself. The maximum item label length is ignored for a free-
format label, except if the item label text is longer than this maximum
length. In this case, the label is truncated to fit the maximum length. If no
label text exists for the item, the item label is ignored (as shown in Item 4
of Figure B-3). A free-format item label and an item are centered over the
length of the item and the actual length of the label text.

B-12 Helpful Hints

NaturalLink Window Manager

Special Window
Manager
Features

B.6 This section discusses some of the more complicated window attri-
butes and how these features can be used to create special effects not
described elsewhere in the manual. Even though each of the following
paragraphs focus on a different topic, it is recommended that the whole
section be read through carefully to obtain a good overall understanding
of how Window Manager functions.

Window Manager has many features which allow special window effects to
be created. Figure B-4 illustrates these features. The Window Label
Attributes menu is used to set the window label attributes for the
NaturalLink Screen Builder utility. Refer to this figure as you read the
following paragraphs in order to better understand the concepts presented
here.

In the following discussion, Figure B-4 is referred to as a screen even
though it does not take up the entire display area.

Figure B-4

Use of Borderless
Windows and
Multiple

Window Effects

Window Label Attributes

et Window Lakel Attributes

5
LEFT RIGHT BOTTOM

Iovisible lakel :
Lakel position E
Centered lahel : YES

Use item intensity : YES i
Intenzity/color : 0/BLACK 1/BLUE ¢/RED
4/GREEN 9/CYAN B/YELLOW
Underlined : YES
Blinking : YES
Reverse video @ YES

Press the F19 key to commit your selections

B.6.1 The example screen in Figure B-4 is actually three windows made
to appear as one. This Window Manager capability is a very powerful aid
in displaying information. This effect is created by placing two borderless
windows on top of a larger, bordered window. The double-ruled lines in
Figure B-5 indicate where the invisible borders are.

NaturalLink Window Manager

Helpful Hints B-13

Figure B-5

Adding Multiple
Windows in Order

Reasons for Using
Multiple Windows

Invisible Borders

Set Window Label Attributes

Tnvisible label : YES
Label position @ LEFT RIGHT BOTTOM
Centered label : YES
lse item intensity : YES
Intensity/color : 0/BLACK 1/BLUE ¢/RED 3/MAGENTA
4/GREEN 5/CYAN B/YELLOW
Underlined : YES
Blinking - YES
Reverse video @ YES i

Press the F10 key to commit your selections

One of the two borderless windows contains the prompts (Invisible label,
Label position, and so on), while the other contains the items to be selected
(the Yes or No items). In the following discussion, these windows are
referred to as the prompt window and the item window, respectively. The
large bordered window, which encompasses the prompt and item win-
dows, is referred to as the label window.

B.6.1.1 The order in which these three windows are displayed is very
important. The label window must be added first, followed by the prompt
window, and then the item window. If this order is not followed, the label
window would cover the two smaller windows.

This applies not only to the use of multiple-window effects, but to the use
of windows in general. The order in which windows are added (by making
a Window Manager Add Window call) is the order in which the windows
are displayed by Window Manager.

B.6.1.2 Multiple windows can be used to achieve the following effects:

M The simultaneous display of a variety of information.

M Combined flexibility and greater functionality of several window
formats with the simplicity of single-window use.

m Enhanced menu appearance.
Some background information regarding the design of the Set Window

Label Attributes screen may be helpful in explaining these points and is
presented in the following paragraphs.

B-14 Helpful Hints

NaturalLink Window Manager

Use of
Display
Windows

The purpose of the Set Window Label Attributes screen is to present
prompts for window attributes and allow a user to select the answers to
these prompts. A title is required for the screen as well as information
telling the user what to do after making all of the selections.

One multiple-column window is ineffective for presenting all this
information because the column width for each column in a multiple-
column window must be the same. Long prompts cannot fit in the area
available in such a window. In addition, one multiple-column window can
only have one window label. At times it is necessary to have a title at the
top as well as an information line at the bottom. This can be done using a
single multiple-column window, but not easily.

In one free-format window, the items can be spaced to give the impression
of a multiple-column window. However, cursor movement in a free-format
window is not the same as in a multiple-column window. Thus, a user may
become confused because the window appears to be a multiple-column
window. Another drawback is that spacing items in a free-format window
takes time and is not easy to update. If possible, it is always best to design
windows so that Window Manager handles all item formatting.

Therefore, three windows are used to display the screen.

B A single-column window used to display the prompts. The prompts can
be any size and are not tied to the column width of a multiple-column
window.

B A four-column window used to display the items to be chosen.

A large single-column window, which provides the border as well as the
title and information line desired, to encompass the other two windows.

B.6.2 Another reason to use three separate windows concerns cursor
movement. The cursor should be placed only on selectable items. The cur-
sor should not be able to move all over the screen. This is easily controlled
by the use of display type windows for the label and prompt windows. The
cursor can never enter display windows, and items inside the windows
cannot be selected. Therefore, you can have unselectable items without
having to set the Unselectable Item attribute for every prompt.

NaturalLink Window Manager

Helpful Hints B-15

Creating and
Using Blank Lines

Unselectable Items

B.6.3 Spacing plays a very important role in making the information
look good and in making it easier to read. Spacing is easily controlled by
the use of blank lines (items) in the window. For example, the blank spaces
between the Intensity/color and Underlined prompts, as well as the blank
areas in the items window, are all created by using blank items.

These blank items are created by defining an item but not specifying any
text for this item. Spaces only need to be specified for blank lines in free-
format windows. In a columnar format, Window Manager leaves a blank
space for an item that has no text specified.

As previously discussed, the blank lines in the items window are actually
items without any text. These are needed because the window is a
multiple-column window and, in order to reserve space, an item must be
present. Thus, the lines that appear to have just Yes and No in them
actually have two values and two blank items. This provides the spacing
needed to make the lines look as if some prompts have two choices while
others have four or more.

When using blank lines, you should consider whether there are enough
items in the window so that the items can be scrolled; blank lines are
scrolled along with any other items.

B.6.4 Blank items are commonly used in conjunction with unselectable
items. Window Manager never positions the cursor on items that have the
Unselectable Item attribute set to 1. The blank items used to space the
multiple-column item window have the Unselectable Item attribute set to
1; therefore, the cursor is positioned only on items that should be selected.

Cursor movement in a multiple-column window with unselectable items
may work quite differently than expected. When an up or down arrow key
is pressed, the cursor moves to the previous or next selectable item,
respectively, in that same column. If the window is in column-major order
and no selectable item is found, the cursor goes to the next column. A simi-
lar movement occurs for left and right movement within a row. (The cur-
sor goes on to the next row in a row-major ordered window.) In Figure B-5,
if the cursor is on the RIGHT item and a down arrow is pressed, the cursor
moves to the 2/RED item, skipping over the unselectable items in
between.

B-16 Helpful Hints

NaturalLink Window Manager

Use of
Invisible Items

When to Use
Multiple-Selection
Windows

B.6.5 Making items invisible (by setting the Visible Item attribute to 0)
has great advantages. If items in a window should be visible some of the
time, define those items initially and then set the Visible Item attribute on
and off as needed. This option is far superior to creating and deleting
items.

In Figure B-4, invisible items are used extensively. Initially, all of the items
used in the Set Window Label Attributes screen are shown. However, if
Yes is selected in response to the Use Item Intensity prompt, all items deal-
ing with Intensity/color disappear. This is accomplished by setting the
Visible Item attribute for these items to 0 and redisplaying the window.

If you decide to change the window label attributes and select No in
response to the Use Item Intensity prompt, the Visible Item attribute is
used in the opposite manner to bring the items back into view. The
invisible items have their Visible Item attribute set to 1 and the window is
redisplayed.

After setting the Visible Item attribute, the window must be redisplayed by
making either a Display or a Refresh call followed by a Receive call. This is
because the attribute changes do not show up on the display until the win-
dow is repainted again. This is true not only for the Visible Item attribute
but for any attribute set.

B.6.6 Multiple-selection windows are very helpful when a user needs to
select several items of the same type. For example, in the Draw Screen
command of the Screen Builder utility, if a subset of the windows is
desired, the window from which the user is making a selection is a
multiple-selection window. When each item is selected, Window Manager
sets the Chosen/Enable attribute to 1. When this attribute is set to 1, the
item is displayed using the Item Chosen attributes. Selecting an item which
was previously selected results in the Chosen/Enable attribute being tog-
gled. In other words, if an item has been selected, it is unselected if chosen
again.

NaturalLink Window Manager

Helpful Hints B-17

Simulating a
Multiple-Selection
Window

Using the
Chosen/Enable
Item Attribute

B.6.7 Sometimes a multiple-selection window is not a good choice
because of the background tasks necessary in this type window, as is the
case for the Set Window Label Attributes screen. The effects that a
multiple-selection window provides (that is, the toggling of selected items
and the display of selected items, using the Item Chosen attributes) are
desired, but the fact that a user stays in a multiple-selection window until
the F10 key is pressed is not desired. The Screen Builder has to know what
is chosen, so it can make certain items visible or invisible after each selec-
tion. Thus, other Window Manager features can be used to simulate a
multiple-selection window. The ways to accomplish this process are
described in the following paragraphs.

B.6.7.1 To simulate a multiple-selection window, the selected items
must be displayed in a different manner than the unselected items. This is
done by setting the Chosen/Enable Item attribute. When this attribute
value is 1, Window Manager displays the item using the values of the Item
Chosen attributes. When set to 0, the item is displayed using active or inac-
tive window attributes (depending on the state of the window). Window
Manager sets the Chosen/Enable Item attribute and redisplays the item
automatically in multiple-selection windows; the same effect can be
achieved by setting the Chosen/Enable attribute and redisplaying the item
manually in single-selection windows.

In Figure B-4, the Item Chosen attribute values are set to the default values
of Reverse video (1) and Intensity/color (7/WHITE).

When an item is selected (for example, No), its Chosen/Enable Item
attribute is set to 1; the Chosen/Enable Item attribute of its counterpart
(Yes) is set to 0, and the window is redisplayed. Thus the chosen item is
displayed in reverse video and the unselected item is displayed using the
active attributes. For example, when Yes is selected for the Centered Label
prompt, the Chosen/Enable Item attribute for the Yes item is set to 1 and
the Chosen/Enable Item attribute for the No item is set to 0. Thus Yes is in
reverse video and No is not.

The Chosen/Enable Item attribute can be used whenever an item is to be
displayed with different attributes from other items in the window.

lemember, to display any attribute changes, the window must be redis-
played by making a Display call or by making a Refresh call followed by a
Receive call. In Figure B-4, the items shown in reverse video gray indicate
items with the Chosen/Enable attribute set.

B-18 Helpful Hints

NaturalLink Window Manager

Simulating
Cursor Movement

Using the Don’t
Redisplay Current
Items Attribute

B.6.7.2 In a multiple-selection window, the cursor automatically goes to
the next item in the window once an item is selected. This can easily be
simulated by specifying the item on which you wish the cursor to be posi-
tioned in the Receive call. Window Manager always tries to place the cur-
sor on the item passed on the Receive call. If the item number passed is
either out of range or not a valid item (either unselectable or invisible),
Window Manager tries to return the cursor to its previous position. If this
position does not contain a valid item, the cursor is placed on the first valid
item displayed in the window.

In Figure B-4, every time a Receive call is executed on the Items window,
the item that the cursor should be placed on is explicitly specified. After a
label position has been selected, the next Receive call is made by passing
in either the Yes or No item for the Centered Label prompt.

B.6.7.3 Redisplaying a window just to change the appearance of one or
two items in that window causes a flashing effect on the video display. This
is because all the items are being repainted as well as the ones which are
changing. This unnecessary repainting of all items and excessive screen
flash can be controlled by using both a window attribute and an item
attribute.

The window attribute that must be used is the Don’t Redisplay Current
Items attribute. When it has a value of 1, only items which have not been
displayed yet are displayed. This eliminates the flash caused by every item
in the window being repainted. This attribute can be used by itself for situ-
ations in which items are added to the end of a list of items in a window
during processing. When the window is repainted, only those new items
added to the end of the list are displayed. Window Manager does not redis-
play the items currently in the window.

Care must be taken when using this attribute because Window Manager
assumes that the order of the items has not changed since the last time the
window was painted. If the order of items has been changed, the entire
window must be repainted. To accomplish this when the Don’t Redisplay
Current Items attribute is set, a different First Item to Be Displayed
attribute must be set for the window. A value of —1 guarantees that the
entire window is repainted.

NaturalLink Window Manager

Helpful Hints B-19

Using the
Displayed
Attribute

First Item
to Be Displayed

B.6.7.4 The Don’t Redisplay Current Items attribute is most powerful
when used with the Displayed Item attribute. The Displayed Item attribute
is set to 1 by Window Manager after the item is displayed. Thus when the
Don’t Redisplay Current Items attribute is set to 1, Window Manager only
displays those items whose Displayed attribute has a value of 0.

Screen Builder uses this Displayed attribute in all screens similar to the
example. Both the prompt window and the items window have the Don’t
Redisplay Current ltems attribute set to 1. Whenever an item is selected
(for example, No), Screen Builder completes the following:

W Sets the Chosen/Enable attribute for the selected item.

® Turns off the Chosen/Enable attribute for the corresponding item (the
Yes item).

M Sets the Displayed [tem attribute for both items to 0.

W Redisplays the window. This way, only the items whose attributes
change are redisplayed, not the entire window.

It is important to note that when the Don’t Redisplay Current Items
attribute is set, Window Manager will display only the items that have not
yet been displayed. This is true no matter which Window Manager call is
made. The only way to have Window Manager redisplay all of the items is
either to change the value of the First Item to Be Displayed attribute or to
set the Displayed attribute of all items to 0.

B.6.7.5 The First Iltem to Be Displayed attribute can be used to deter-
mine the first item Window Manager displays in a window. It can be set to
any item in the window, and Window Manager starts displaying items
from this point the next time the window is displayed.

This attribute also has a very important use in windows that have the
Don’t Redisplay Current Items attribute set to 1. Because Window Manager
does not redisplay all of the items, there must be some way to signal
Window Manager that the entire window shoul! be repainted. This is
accomplished by setting the First Item to Be Displayed attribute to a value
different from what is currently set. It is recommended that a value of —1
be used. If the First ltem to Be Displayed is valued —1, Window Manager
starts displaying the window with the first visible item in the item list.

Screen Builder uses the First Item to Be Displayed attribute when it has
made some items invisible in the Set Window Label attributes screen and
wants to make them visible again. Just setting the Displayed attribute to 0
causes those items to be repainted but does not reorganize all of the items.
If this is done with Intensity/color items, these items cover up any items
currently showing at that spot in the window. However when the First
Item to Be Displayed attribute is set to —1, Window Manager knows to
repaint the entire window, and the Intensity/color items fall into place.

B-20 Helpful Hints

NaturalLink Window Manager

Using Windows
for More Than
One Purpose

Special Repaint
on Receive

B.6.8 So far in this discussion, only prompt and item windows have been
considered. A discussion of some of the design issues relating to the large
label window follows. The label window is used as the background
window for prompt and item windows. In Figure B-4, a bottom window
label is used as the instruction line and an actual item is used for the title
line. This was done because placing an item at the bottom of the window
would be more difficult, requiring enough items to be defined to space the
desired item out to the bottom line.

The set of three windows in Figure B-4 is used in more than one place in
the Screen Builder utility. The screens to set active, inactive, window label,
and cursor attributes are all similar except for a few items. Therefore, the
same three windows can be used and different items can be made visible
depending on how the windows are being used.

It is necessary to have different titles in various locations in the Screen
Builder utility label window. For this reason, an item is used for the title in
the label window. Four items are actually defined for this large window,
and a different one is made visible for each place that this window is used.
Four different titles could not be easily produced by using the window
label since a window can have only one window label at a time.

B.6.9 The best way to explain this attribute is by example. When setting
the window format in Screen Builder, you are presented with a large
screen of choices. This screen is actually comprised of three windows in
the same way as Figure B-4. However, when setting window formats,
there are times when small pop-up windows appear in which you must
type specific values. Once the value is entered, windows covered by the
pop-up window are repainted.

All of these functions are easily performed by making Window Manager
calls. Window Manager handles the display of any windows marked for
repainting the next time a Receive call is made. When the pop-up window
is deleted, the covered windows are marked for repainting. In the Set
Window Format screen, this means that all three of the windows are
marked for repainting.

NaturalLink Window Manager

Helpful Hints B-21

When the next Receive call is executed on the items window, all three of
these windows are redisplayed. This redisplay of all windows produces an
undesirable effect. The large label window takes a long time to redraw,
and since its only vital information (the title and the bottom line) are not
covered by the pop-up screen, it does not need to be repainted.

This is why the Special Repaint on Receive attribute is useful. This
attribute can be set to 1 for the items window. When the Receive call is
executed on the items window, only that window is repainted. Although
the prompt window is also covered by the pop-up window, the prompt
window can be explicitly repainted by making a Display call. This results
in the screen being repainted quickly with only the information that needs
to be redisplayed.

Designing
Screen Files

B.7 When using Screen Builder to design and create screens for an appli-
cation program, you should follow a few guidelines.

[t is best to put logically related windows in the same screen file. If a series
of windows is used in the same place, these windows are likely candidates
for placement in the same screen file. It is undesirable to have one window
per file because loading the screen into memory takes longer than almost
any of the other Window Manager functions.

Having too many windows per screen file can be as problematic as having
too few. A screen file with more than twenty windows is hard to manage.
Typically, such a screen file can be split into one or more logically related
units.

A good working screen file is one that contains all windows for one display
as well as any related pop-up windows. This way the screen files are easy
to keep track of and can be named according to where they are used in the
application program.

B-22 Helpful Hints

NaturalLink Window Manager

COMPUTER-SPECIFIC INFORMATION

Paragraph Title Page
Cl INtroduCtioN Lo C-3

C.2 Computers SUPPOILEdccooiiiiiiiiiiieiece et C-3
C.2.1 List Of COMPULETS ...ooociiiiiiiiie e C-3
C22 Machine Detection........ccooeeiviiiiiiiii e C-3
C.3 TICOMPULETS....eiiiiiiiietieie ettt ettt eae e eres e C-4
C.3.1 TI BUSINESS-PRO CompuUter.........cccoveiiviiiiiicieececcecreeveeee e, C4
C.3.2 TIPC/TIPPC Function Key Differences.........cccccoeoeeevviveiiiiiiiiicc C-5
C.3.3 TIPC Character CoAes.......ooovviiiiiiiiieeiiieeceeee e, C-5
C34 TIPRO-LITE COMPULETeeiiiiiiiiiiiieieeee et C9
C.34.1 Considerations for TI PRO-LITE Computerccccooovveeinennnn. C-11
C.3.4.2 LCD FIAZ o C-12
C.4 IBMPC, PC/XT, and Personal Computer ATc...oooviieiieiiieenn. C-12
C4.1 UNderlining ...coooeeeeeiieee e C-12
C4.2 ReVErse VIdEOccvviiiiiieiiiiee e C-13
CA4.3 INteNSItY /COLOY i C-13
C44 Cursor AHEIDULESoooiiii e C-13
C.4.5 Key Codes ..o C-13

NaturalLink Window Manager

Computer-Specific Information C-1

Introduction C.1 This appendix describes the different computers on which the
NaturalLink Window Manager software can run. It also describes any func-
tionality differences between the computers, such as video attributes,
function keys, and so on.

Computers C.2 The NaturalLink software has been tested and verified to run on the
Supported following computers.

Texas Instruments IBM

BUSINESS-PRO Computer PC

Professional Computer PC/XT

Portable Professional Computer Personal Computer AT

PRO-LITE Professional Computer

List of Computers C.2.1 The use of TIPC in this manual refers to the Texas Instruments
Professional Computer family, which includes the TI BUSINESS-PRO Com-
puter (TI mode), TI Professional Computers (TIPC and TIPPC), and TI PRO-
LITE Computer. The use of the phrase “other computers” refers to the IBM
family of computers, including the IBM PC, PC/XT, and Personal Com-
puter AT, and to the TI BUSINESS-PRO Computer (PC-AT mode).

Machine Detection C.2.2 A flag called Llpctype (pctype for FORTRAN users) has been
provided and can be used to determine whether your NaturalLink applica-
tion is running on a Tl or IBM computer. Llpctype is set by the first
WMINIT call and has one of the following values once it is set.

Value Definition

10 TIPC/TIPPC

11 TI PRO-LITE

12 TI BUSINESS-PRO (T1 mode)

20 IBM PC

21 IBM PC/XT

22 IBM Personal Computer AT

23 TI BUSINESS-PRO (PC-AT mode)

Llpctype is set only once, no matter how many WMINIT calls are made. It
is a read-only attribute, meaning that a WMSETYV call cannot be used to
set it.

NaturalLink Window Manager Computer-Specific Information C-3

TI Computers C.3 The following paragraphs discuss the differences between the mem-
bers of the TI Professional Computer family when they are using the

NaturalLink Window Manager.

TIBUSINESS-PRO C.3.1 A keyboard layout is shown in Figure C-1. The TI BUSINESS-PRO
Computer Computer has been designed to run in two different modes (TI and IBM

PC-AT). The mode is determined by the type of CRT controller board used.

The IBM AT controller board enables the TI BUSINESS-PRO Computer to

run in IBM AT mode, with compatibility with the IBM Personal Computer

AT. The TIPC controller board enables it to run in TI mode, with compati-

bility with the TI Professional Computer.

Both the Window Manager and the Toolkit manuals have been written to
reflect the keys used on the TI BUSINESS-PRO Computer in PC-AT mode.
Refer to paragraph C.4, IBM PC, PC/XT, and Personal Computer AT, for
information concerning video attributes and key codes when the TI
BUSINESS-PRO Computer is running in PC-AT mode.

When the TI BUSINESS-PRO Computer is running in TI mode, the Send
key can be mapped to be different from the ENTER key by assigning a
code of 190H to any function, using the Function Key Change (KBUILD)
utility. This mapping is in effect between the time the Initialize (WMINIT)
procedure and the Reset (WMRSET) procedure are called: When the Send
key is mapped, the SHIFT-ENTER key combination is also mapped to
return a code of 190H in Window Manager. Refer to paragraph C.3.2,
TIPC/TIPPC Function Key Differences, and paragraph C.3.3, TIPC Charac-
ter Codes, for more information concerning key codes used on the

BUSINESS-PRO in TI mode.

Figure C-1 TI BUSINESS-PRO Professional Computer U.S. Keyboard

~

|

Fi1 |F12 ms [oer | Bk | pring
= A * — + Back S
e N S A AT A o O O = P b fea [ee ftum s for
. 3 - =
F3 |Fs — Q W I[E |R |T Y (U | o P [t } A 7 8, |9 Prscr
— [] Home Py Up
F5 |Fe i] |A }S iD IF IG |H lJ |K 'L l I" \AIEmsr<—' < [Home | » |4« [® 6,
; ’
2
7 |F8 {3 shift Z X |C \ B N M i< > ? {3 shift ¥ 1 ¥ 3
s . / End Pg Dn +
F9 |Fi0 Alt ;‘é‘;] Send Egcoks ?n . oo

C-4 Computer-Specific Information

NaturalLink Window Manager

TIPC/TIPPC C.3.2 All the references to function keys in the manual relate to the TI

Function Key BUSINESS-PRO Computer running in PC-AT mode. There are some differ-

Differences ences in the keys used when running on the TIPC, TIPPC, and TI PRO-LITE
Computer. Table C-1 indicates these differences:

Table C-1 TI Computer Function Key Differences

Use on TIPC/TIPPC/
Documented Keys TIPRO-LITE

ENTER RETURN
CTRL-PgUp CTRL-Up Arrow
CTRL-PgDn CTRL-Down Arrow
CTRL-PrtSc PRNT

The ENTER key can be mapped to be different from the RETURN key by
assigning a code of 190H to any function, using KBUILD. This mapping is
in effect between the time the Initialize (WMINIT) procedure and the Reset
(WMRSET) procedure are called. When the ENTER key is mapped, the
SHIFT-RETURN key combination is also mapped to return a code of 190H
in Window Manager.

TIPC C.3.3 The key codes for the TI Professional Computer are documented
Character in Table C-1. A TIPC United States keyboard layout is shown in Figure C-2.
Codes For an in-depth discussion of the keys, consult the Texas Instruments
Professional Computer Technical Reference Manual. Following are some

general notes for reference when you are using the table:

1. In each column, both the graphic and the hexadecimal values of the
characters are given in the form: ggg hh.

2. Entries consisting of one long dash followed by one short dash (— -)
indicate that the combination is suppressed within the keyboard
Device Service Routine (DSR). These keys have no effect on Window
Manager; that is, Window Manager does not return to the application
program when any of these keys are pressed.

NaturalLink Window Manager Computer-Specific Information C-5

3. Entries consisting of xxx * * indicate special handling in the form of
direct action by the keyboard DSR.

a.

BRK/PAUS — The DSR performs the pause function uncondition-
ally. This does not adversely affect Window Manager. When
another key is pressed, Window Manager resumes normal opera-
tion. Window Manager does not return to the application program
when PAUS is pressed.

. SHIFT-PRNT — The SHIFT-PRNT (print screen) DSR function is

performed unconditionally. This does not adversely affect Window
Manager. Once the print screen function has finished, Window
Manager resumes normal operation. Window Manager does not
return to the application program when the SHIFT-PRNT keys are
pressed.

. SHIFT-BRK/PAUS — Window Manager returns to the application

program. The key code returned is 100H. If the application then
makes any call related to the operating system, the DSR program
break function is performed.

The application can redirect the system interrupts to perform the
application’s own version of these three functions. Window Man-
ager still handles the keys in the same manner, but the application’s
version of the function is performed instead of the normal system
function.

4. Entries consisting of xxx yy * indicate that this key returns the
extended code yy. If such a key is pressed and it is unknown to Win-
dow Manager (that is, does not invoke a Window Manager function),
Window Manager returns this extended code, plus 100H, to the appli-
cation program.

5. All other entries are normal ASCII keys, and if they are unknown to
Window Manager, the exact normal code is returned.

C-6 Computer-Specific Information

NaturalLink Window Manager

Table C-2 Standard TIPC U.S. Keyboard Character Codes

Scan Code Normal SHIFT CTRL ALT Comments

01 f5 3F » sf5 58 % cf5 62 af5 6C F5

02 f6 40 % sf6 59 % cf6 63 % af6 6D % F6

03 f7 41 % 7 5A cf7 64 % af7 6E » F7

04 f8 42 % sf8 5B* cf8 65 % af8 6F x F8

05 f9 43 sf9 5Cx cf9 66 % af9 70 % F9

06 f10 44 % sf10 5D cf10 67 % af10 1% F10

07 f11 45% sfll 08 cfll 0A » afll 0Cx F11

08 f12 46 % sf12 09 % cf12 0B * af12 0D * F12

09 1 31 ! 21 — - altl 78%

10 2 32 @ 40 Fnul 03« alt2 79 %

11 3 33 # 23 — - alt3 TA %

12 4 34 $ 24 — - alt4 TBx

13 5 35 % 25 — - alt5 7Cx

14 6 36 5E RS 1E alt6 D*

15 7 37 & 26 — - alt? TE %

16 8 38 * 2A —_ - alt8 TF

17 9 39 (28 — - alt9 80 %

18 0 30) 29 — - alt0 81

19 - 2D - 5F US 1F alt- 82 %

20 = 3D + 2B _ - alt= 83 %

21 BS 08 BS 08 DEL 7F — - Backspace

22 ‘ 60 - 7E — - — -

23 = 3D = 3D = 3D pfl 8Cx Numeric =

24 + 2B + 2B + 2B pf2 8D x Numeric +

25 SP 20 SP 20 SP 20 pf3 8E* Numeric
SPACE

26 HT 09 Bktab OF % HT 09 pfd 8F % Numeric TAB

27 1 31 1 31 1 31 — - Numeric 1

28 — - — - — - — - (Unused)

29 0 30 0 30 0 30 — - Numeric 0

30 CR 0D CR 0D CR 0D — - Numeric ENTER

31 4 34 4 34 4 34 — - Numeric 4

32 5 35 5 35 5 35 — - Numeric 5

33 9 39 9 39 9 39 — - Numeric 9

34 - 2D - 2D - 2D — - Numeric —

35 2 32 2 32 2 32 — - Numeric 2

36 — - — - — - — - (Unused)

37 — - — - — - — - (Unused)

38 - - - - - - — - (Unused)

39 7 37 7 37 7 37 — - Numeric 7

40 8 38 8 38 8 38 — - Numeric 8

41 6 36 6 36 6 36 — - Numeric 6

42 , 2C , 2C , 2C —_ - Numeric ,

43 3 33 3 33 33 - - Numeric 3

44 2E 2E 2E — - Numeric .

45 — - — - — - — - (Unused)

NaturalLink Window Manager

Computer-Specific Information C-7

Table C-2 Standard TIPC U.S. Keyboard Character Codes (Continued)

Scan Code Normal SHIFT CTRL ALT Comments
46 C-rt 4D % sCrt 8Ax cCrt T4x aCrt 4E » Right arrow
47 Ins 52 % slns 28 % clns 29 alns 2A % INS

48 Del 53 % sDel 38« cDel 39 % aDel 3Ax DEL

49 HT 09 Bktab OF » HT 09 — - TAB

50 q 71 Q 51 DCl1 11 altQ 10 %

51 w 77 Y 57 ETB 17 altW 11

52 e 65 E 45 ENQ 05 altk 12 %

53 r 72 R 52 DC2 12 altR 13%

54 t 74 T 54 DC4 14 altT 14 %

55 y 79 Y 59 EM 19 alty 15%

56 u 75 U 55 NAK 15 altU 16%

57 i 69 I 49 HT 09 altl 17 %

58 0 6F 0 4F SI OF alto 18%

59 p 70 P 50 DLE 10 altP 19%

60 [5B { 7B ESC 1B — -

61] 5D } 7D GS 1D — -

62 LF 0A LF 0A cLF 75% aLF 4F % Line feed
63 — - — - — - — - (Unused)
64 Cup 48x sC-up 88x cCup 84x aCup 49 « Up arrow
65 ESC 1B ESC 1B ESC 1B — - ESC

66 a 61 A 41 SOH 01 altA 1E%

67 s 73 S 53 DC3 13 altS 1F %

68 d 64 D 44 EOT 04 altD 20 %

69 f 66 F 46 ACK 06 altF 21 %

70 g 67 G 47 BEL 07 altG 22 %

71 h 68 H 48 BS 08 altH 23 %

72 j 6A J 4A LF 0A altJ 24 %

73 k 6B K 4B VT 0B altk 25%

74 1 6C L 4C FF 0C altL 26%

75 ; 3B : 3A — - - -

76 ’ 27 N 22 — - — -

71 CR 0D CR OD CR OD — -

78 \ 5C | 7C FS 1C — -

79 C-If 4B % sC-If 8B« cC-If 73 % aClf 4Cx Left arrow
80 Home 47x sHome 86 cHome 77x aHome 85 HOME
81 SP 20 SP 20 SP 20 SP 20 Space bar
82 z 7A Z 5A SUB 1A altZ 2Cx

83 X 78 X 58 CAN 18 altX 2D %

84 1 63 C 43 ETX 03 altC 2E %

85 v 76 \Y% 56 SYN 16 altv 2F

86 b 62 B 42 STX 02 altB 30%

87 n 6E N 4E SO OE altN 3%

88 m 6D M 4D CR 0D altM 32«

89 , 2C < 3C — - — -

90 Ptogl 72x *kk Kk — - — - PRINT

C-8 Computer-Specific Information NaturalLink Window Manager

Table C-2 Standard TIPC U.S. Keyboard Character Codes (Continued)
Scan Code Normal SHIFT CTRL ALT Comments
91 . 2E > 3E — - — -
92 / 2F ? 3F — - — -
93 — - — - — - — - (Unused)
94 — - — - — - — - (Unused)
95 — - — - — - — - (Unused)
96 C-dn 50% sC-dn 89« cC-dn 76« aC-dn 51x Down arrow
97 — - — - — - — - (Unused)
98 — - — - — - — - {Unused)
99 — - - - — - — - (Unused)
100 Ppau x«* Pbrk x«* — - — - BRK/PAUS
101 f1 3B« sfl 54 % cfl S5Ex afl 68 * Fl
102 f2 3Cx sf2 55% cf2 5F % af2 69 % F2
103 f3 3D« sf3 56 % cf3 60 % af3 6A % F3
104 f4 3Ex sf4 57 % cf4 61x af4 6B F4
Figure C-2 TIPC U.S. Keyboard Layout
-)
ns | pew | BRK [prat
F1 |F2 F3 |F4 F5 |6 |F7 |F8 Fo |Fo [F11 }Fi2 PAUS
ESC : (2@ g f 05/° g % g g g - : Sack ~ = | fseac| e
=—TJa W [R [T [¥ Ju it [opP ! e A 7 18 |0 |-
—] FEED
cTAL Eé\gi A IS [D IF LG lH J IK IL [, IRETURN ‘I\ Y 4 5 6
ar | ser {d Z X [C [V B N M (< > ’/) st {3 v 2 B H
0 .
R
- J

TIPRO-LITE C.3.4 A keyboard layout for the TI PRO-LITE Computer is shown in Fig-

Computer ure C-3. Certain considerations must be taken into account when a
NaturalLink application is run on the TI PRO-LITE Computer. Only applica-
tions linked with Version 1.75 or greater of the NaturalLink run-time object
code will run correctly. Applications linked with earlier versions will run,
but there will be no distinction between active and inactive windows on
the liquid crystal display (LCD).

NaturalLink Window Manager

Computer-Specific Information C-9

Figure C-3 TI PRO-LITE Computer U.S. Keyboard

CTRL

SHIFT

AL

ESC LINE DEL BRK
F1 |[F2 |F3 |F4 rs |rs {Fr |8 |Fe |F0 |Fn [Fi2 |FEEP e PaUs | PN
EIR 3 S O S =
1 2 3 4 5 6 7 8 9 0 - = SPACE

= + SPAC TAB
IEA;B— Q w []]E R T Y U | 5) P { }
g | l I l l ‘ l []

N e =

v EIEE I E R e
I) L =

The TI PRO-LITE Computer can use either the built-in LCD or an external
monitor, but not both at once. Support for the LCD is automatic, as the
NaturalLink software makes all checks necessary to function properly.
When an external monitor is being used, NaturalLink functions the same
as it does on the TIPC.

When the LCD is used, the following is forced to happen:
B Reverse video is used for the following:

m All borders

u Items in active windows

m Window labels in active windows

m Item labels in active windows
B The cursor in active windows is black (not reverse video)

@ The chosen item attribute of reverse video, if used in active windows, is
turned off

All other attributes remain the same, with the exception that all intensities
are equal on an LCD.

C-10 Computer-Specific Information NaturalLink Window Manager

Considerations for
TI PRO-LITE
Computer

C.3.4.1 When designing a NaturalLink application that will be run on the
TI PRO-LITE Computer, you must keep several facts in mind to ensure that
the application runs and looks good.

Inactive Windows Inactive windows must not have the Reverse Video
attribute set.

Multiple-Window Displays Multiple-window displays whose combined
effect is to look like one window must have the Window Manager Select
and Release operations executed on all windows involved. For example, in
Screen Builder, the screens used to set attributes are actually comprised of
three windows: (1) a large background display window, (2) a display win-
dow on the left side, and (3) the window on which receive is executed. To
achieve the one-window look, all three windows must be made active.
This ensures that all three will be in reverse video on the TI PRO-LITE
Computer.

Special Repaint Attribute In the Set Window Format option of Screen
Builder, there are three windows comprising the screen. At various points
a pop-up window is used to get specific information (number of columns,
and so on). When the pop-up is deleted, an explicit Display call is made on
the left window and a Receive call is made on the right window. The
receive window has the Special Repaint attribute set, which means that the
big background window is not repainted following deletion of the pop-up.
This results in a black line where the two windows on top meet. Because
the two top windows are unbordered, the border is ignored when they are
repainted. Since the background window is not repainted, the black line is
left for the border in the spot where the pop-up used to be. In situations
like this, either make an explicit Display call on the large background win-
dow following deletion of the pop-up, or turn off the Special Repaint
attribute.

Highlighted Items Items which are currently highlighted by using the
Chosen/Enable Intensity attribute may not look right when the window is
active. Since NaturalLink does not do anything with Chosen/Enable Inten-
sity on the TI PRO-LITE Computer LCD, the item displays in normal video
while the rest of the window is reverse video when the window is active.
This results in the one item sticking out more than may have been desired.

SHIFT-RETURN and ENTER Keys Both the SHIFT-RETURN and the
ENTER keys act the same as on the TIPC; they are mapped to return an

extended code of 190H if any function has been assigned the value of 190H
using KBUILD.

NaturalLink Window Manager

Computer-Specific Information C-11

LCD Flag C.3.4.2 A flag called Lllcdon (lcdon for FORTRAN users) has been

provided to signal NaturalLink that it is running on a liquid crystal display.
This flag is set by the WMINIT call when Window Manager detects that it is
running on a TI PRO-LITE Computer with an LCD. Lllcdon is set only once,
no matter how many WMINIT calls are made. The application may read
the value of Lilcdon by making a WMGETV call. A value of 1 indicates
Window Manager is running on an LCD, while a value of 0 indicates a
normal display.

Lllcdon may be used by an application for debugging purposes to fool the
NaturalLink software into thinking it is running on a TI PRO-LITE
Computer LCD. This is useful if an application is being developed for the TI
PRO-LITE Computer when TI PRO-LITE Computer hardware is not avail-
able. The flag is set using the WMSETYV call and, if used, must be set after
the first WMINIT call has been made. When Lllcdon has a value of 1,
NaturalLink thinks it is running on an LCD and displays any windows in
the same way it would on the TI PRO-LITE Computer LCD.

IBM PC, PC/XT,
and Personal
Computer AT

Underlining

C.4 Window Manager software was originally designed for use on the TI
Professional Computer. Therefore, certain video attributes used by Win-
dow Manager are hardware-specific to Tl equipment. The differences
between the IBM computers and the TI computers are relatively minor,
having to do only with the following:

B Underlining

B Reverse video

® Intensity/color

® Cursor attributes

C.4.1 There are two situations in which underlining is different on an
IBM computer and on a Tl computer.

1. When underlining and reverse video are set to function simul-
taneously, the Reverse Video attribute overrides underlining

2. IBM computers do not support underlining on a color monitor.

C-12 Computer-Specific Information NaturalLink Window Manager

Reverse Video

Intensity/Color

Cursor Attributes

Key Codes

C.4.2 IBM computers support only one intensity level of reverse video
on a monochrome monitor. When an item is displayed in reverse video on
an IBM computer with a monochrome monitor, it is displayed in low inten-
sity, regardless of which Intensity/color attribute has been set in the win-
dow description.

C.4.3 The colors used on Tl computers are the same as the colors for
IBM computers. Differences in this attribute appear when a monochrome
monitor is used. IBM supports only two levels of intensity on its mono-
chrome monitor. Thus, if an item’s Intensity attribute is set in the range of
0 through 4, the item appears in low intensity on an IBM computer. A
range of 5 through 7 produces high intensity.

C.4.4 A single-character cursor on the IBM computers will always blink,
regardless of how the Blinking Cursor attribute is set. Also, since
underlining is not possible on a color monitor, full-size, item-and-label, and
item-only cursors cannot be just an underline on an IBM color monitor.

C.4.5 When running on an IBM computer, Window Manager returns key
codes to the application in the same way as it does for TI computers. If the
key is a normal ASCII character (that is, the key code is returned in register
AL with the key number in AH), Window Manager returns this normal
code. If the key is a special function key (non-ASCII code), which returns
an extended code (that is, register AL = 0 with the extended code in AH),
Window Manager returns the extended code plus 100H.

A keyboard layout for the IBM PC and PC/XT is shown in Figure C-4; a
layout for the IBM Personal Computer AT is shown in Figure C-5.

NaturalLink Window Manager

Computer-Specific Information C-13

Figure C-4 IBM PC and PC/XT U.S. Keyboard

E‘f 1; :

! @ |# $ % |~ & * () - |+ -— Num Scroll
Fro|F2 Bely 2 |3 [a |5 |6 |7 [8 |9 |o |- |= Lock Lock
l— |Q W IE (R T |¥Y (U | o [P [{ } 7 |8 |9
F3 | F4 — | J Home| 4 |Pgup | —
A |S D |F |G |H |J K L : " ~ 4 5 6
F5 | F6 Ctr ; s . -— —_—
1 Z X (C |V |B N M |< > {7 Prse |1 2 3
F7 1 F8 @ \ , / @ . gd |+ |poon| Tt
Fo | F10 Alt Caps "?s o
\— _

Figure C-5 IBM Personal Computer AT U.S. Keyboard

Of =
~ @ |# |8 % A~ |& |+ |(R E Num | Scrol

Fi| P2 102 {3 [4 |5 fe |7 f8 fs fo |- |= |\ € | Look | Look | &%°

F3 Fa =—1Q W E R T Y U | (6] P { } 7 8 9 PrtSc
[] Home | # PaUp | «

F5 F6 Ctrl A S D F G H J K L ,: Enter «—J i__ s ?-. -
? T |2 |3

F7 | F8 1} shitt Z X |C vV |B [N M ,< > / 1t st gnd | ¥ PgDn .

Fo | F10 Alt Core - el

. W,

C-14 Computer-Specific Information NaturalLink Window Manager

Table C-3 shows the key codes for the IBM Personal Computer. When
referring to these tables, keep these notes in mind:

1.

In each column, both the graphic and the hexadecimal value of the
characters are given in the form ggg hh.

Entries consisting of — - indicate that the combination is suppressed
within the keyboard DSR. These keys have no effect on Window Man-
ager; that is, Window Manager does not return to the application
program when any of these are pressed.

Entries consisting of xxx * * indicate special handling in the form of
direct action by the keyboard DSR. There are three of these keys.

a. SHIFT-PRTSC — The print screen function DSR is performed
unconditionally. This does not adversely affect Window Manager.
Once the print screen function has finished, Window Manager
resumes normal operation. Window Manager does not return to the
application when the SHIFT-PRTSC keys are pressed.

b. CTRL-NUM LOCK — The DSR performs the pause function
unconditionally. This does not adversely affect Window Manager.
When another key is pressed, Window Manager resumes normal
operation. Window Manager does not return to the application
when the CTRL-NUM LOCK keys are pressed.

c. CTRL-BREAK — Window Manager returns to the application
program. The key code returned is 100H. If the application then
makes any call related to the operating system, the DSR program
break function is performed.

The application can redirect the system interrupts to perform the
application’s own version of these three functions. Window Man-
ager still handles the keys in the same manner, but the application’s
version of the function is performed instead of the normal system
function.

Entries consisting of xxx yy* indicate that this key returns the
extended code yy. If this type of key is pressed and it is unknown to
Window Manager (not defined in Table C-2), Window Manager returns
this extended code plus 100H.

All other entries are normal ASCII keys. If they are unknown to Win-
dow Manager, the usual code is returned.

NaturalLink Window Manager

Computer-Specific Information C-15

Table C-3 Key Codes for the IBM Personal Computer

Scan Code Normal SHIFT CTRL ALT Comments
01 ESC 1B ESC 1B ESC 1B —_ - ESC
02 1 31 ! 21 — - altl 78

03 2 32 @ 40 NUL 03 % alt2 79 %

04 3 33 # 23 - - alt3 TA%

05 4 34 $ 24 — - alt4 7B *

06 5 35 % 25 — - alt 7Cx

07 6 36 5E RS 1E alt6 D%

08 7 37 & 26 — - alt7 TE %

09 8 38 * 2A - - alt8 TF »

10 9 39 (28 —_ - alt9 80«

11 0 30) 29 — - alto 81 x

12 - 2D _ 5F US 1F alt— 82 %

13 = 3D + 2B — - alt= 83

14 BS 08 BS 08 DEL 7F — - BACK SPACE
15 HT 09 Bktab OF« — - — - TAB
16 q 71 Q 51 DC1 11 altQ 10%

17 w 77 w 57 ETB 17 altw 11%

18 e 65 E 45 ENQ 05 altE 12%

19 r 72 R 52 DC2 12 altR 13%

20 t 74 T 54 DC4 14 altT 14

21 y 79 Y 59 EM 19 altY 15%

22 u 75 U 55 NAK 15 altu 16%

23 i 69 | 49 HT 09 altl 17 %

24 o 6F ¢ 4F SI OF altoO 18%

25 p 70 P 50 DLE 10 altP 19%

26 [5B { 7B ESC 1B — -

27] 5D } 7D GS 1D — -

28 CR (18] CR 0D LF 0A - - ENTER
29 — - - - — - —_ - CTRL
30 a 61 A 41 SOH 01 altA 1E%

31 S 73 S 53 DC3 13 altS 1F %

32 d 64 D 44 EOT 04 altD 20 %

33 f 66 F 46 ACK 06 altF 21 %

34 g 67 G 47 BEL 07 altG 22 %

35 h 68 H 48 BS 08 altH 23 x

36 i 6A J 4A LF 0A altJ 24

37 k 6B K 4B VT 0B altk 25%

38 1 6C L 4C FF 0C altL 26%

39 ; 3B : 3A — - — -

40 ’ 27 * 22 — - — -

41 ‘ 60 - 7E _ - — -

49 — - — - — - — - SHIFT
43 \ 5C | 7C FS 1C _ -

44 z TA Z 5A SUB 1A altZ 2Cx

45 X 78 X 58 CAN 18 altX 2D %

46 c 63 C 43 ETX 03 altC 2E »

C-16 Computer-Specific Information NaturalLink Window Manager

Table C-3 Key Codes for the IBM Personal Computer (Continued)

Scan Code Normal SHIFT CTRL ALT Comments

47 v 76 \% 56 SYN 16 altv 2F

48 b 62 B 42 STX 02 altB 30«

49 n 6E N 4E SO OE altN 31

50 m 6D M 4D CR 0D altM 32

51 , 2C < 3C — - — -

52 . 2E > 3E — - — -

53 / 2F ? 3F — - - -

54 — - - - — - — - SHIFT

55 * 2A * %k * % Ptogl 72 % — - * /PRTSC

56 — - — - — - — - ALT

57 SP 20 SP 20 SP 20 SP 20 Space bar

58 — - — - —_ - —_ - CAPS LOCK

59 f1 3B« sfl 54 cfl 5E % afl 68 % F1

60 f2 3Cx sf2 55 % cf2 5F % af2 69 % F2

61 f3 3Dx sf3 56% cf3 60 % af3 6A % F3

62 f4 3Ex sf4 57 % cf4 61x% af4 6B % F4

63 5 3F % sf5 58 % cf5 62 % af5 6C F5

64 f6 40 % sf6 59 % cf6 63 % af6 6D x F6

65 f7 41 » sf7 5A % cf7 64 % af7 6E » F7

66 f8 42 % sf8 5B % cf8 65 % af8 6F F8

67 f9 43 % sf9 5Cx cf9 66 % af9 70 % F9

68 f10 44 % sf10 5D % cf10 67 % af10 71 % F10

69 — - — - Ppau * * — - NUM LOCK/
PAUSE

70 — - — - Pbrk * % — - SCRL LOCK/
BRK

71 Home 47x 7 37 cHome 77x — - HOME/NUM 7

72 C-upp 48« 8 38 — - — - Up arrow/
NUM 8

73 Pgup 49« 9 39 cPgup 84« — - Page up/
NUM 9

74 - 2D - 2D — - — - NUM -

75 C-f 4B 4 34 cC-If 73% — - Lf arrow/
NUM 4

76 — - 5 35 — - — - NUM 5

77 C-rt 4D » 6 36 cC-rt 74 % —_ - Rt arrow/
NUM 6

78 + 2B + 2B — - — - NUM +

79 End 4F 1 31 cEnd 75% — - END/NUM 1

80 C-dn 50 % 2 32 —_ - — - Dn Arrow/
NUM 2

81 Pgdn 51 % 3 33 cPgdn 76« — - Pg Down/
NUM 3

82 INS 52 % 0 30 — - — - INS/NUM 0

83 DEL 53 % . 2E — - — - DEL/NUM .

NaturalLink Window Manager Computer-Specific Information C-17

C INTERFACE

Paragraph Title Page
D.1 INtroductionc.cooeiiiiiiiiniicieeceeet e D-3
D.2 Parameter CharacteristiCs........c.ccoverviiriiniiiiiininieneeiece e D-3

D.2.1 Z2er0-Base ValUes..........cccooiiiiiiiiiiiiii ettt D-3
D.2.2 INEEGEYS .ottt D-3
D.2.3 Character SHHNGScccceevivieiriiieeiie e siee et treeebe e e reeeetreesbeeebeeenes D-3
D.2.3.1 Passing Strings to Window Managerc.cccccovvvevenieneneenieneennne D-4
D.2.3.2 Strings Returned by Window Managerccccoeeeeeievieenereiennnenn, D-4
D.3 Callable ROUHNEScoiiiiiiieiieieeee et D-5
D.3.1 Function Return Codes.........cc.coviiiiininiiiiiieetee e D-5
D.4 Routines Called by Window Managerccccceeceevviniinniniiennnnienieene D-14
D.5 C Compiling Requirements...........c.ccocueriieriiiiieniinieeeeeeece e D-17
D.5.1 INCIUAE File ..coneiiiie e D-17
D.6 Memory Considerationsccocecccrierieneniiineniieieeieceeeeenre e D-19
D.7 Linking Considerations...........ccocccviervieriiinieeniieniieieestene e D-20
D.7.1 Memory Model Differences..........ccocceeveenvieninioinineiienneeee e D-21
D.7.2 Dummy Routines Library........ccccccooviiniiiiiii e D-21
D.7.3 WMKEYDEF.OBJ and WMSTRDEF.OBJ Filescccccoiviiiniininnnen. D-21
D.74 Object Code SEGMENLScc.eeviieiiecieeiiecee ettt et D-22
D.8 ReSIICHONS ..ottt e D-22

NaturalLink Window Manager

C Interface D-1

Introduction

D.1 This appendix provides the information and procedures required to
use the NaturalLink Window Manager with a C application. The C interface
supports all models of the Lattice C Compiler. Generally, the parts of the
NaturalLink package referenced from C procedures are linked with the C
application program and act as an application program extension.

Parameter
Characteristics

Zero-Base Values

Integers

Character Strings

D.2 The only types of parameters used in the Window Manager call rou-
tines are integers and character strings. Integer parameters can be passed
by either single-level reference (the address) or value. A string parameter
is actually a copy of the pointer to the string since strings are never passed
by value in C. The exact order of the parameters for each call is shown in
Table D-1.

D.2.1 For all C Window Manager calls that use a screen, window, or
itemn identifier, the value of any of these identifiers is zero-base relative. In
other words, the first valid screen, window, or item number is 0. The
values correspond to the values assigned by Screen Builder.

D.2.2 Integers passed from C to the Window Manager routines can be
declared as either integer or long integer. If long integers are passed, the
upper 16 bits are ignored; it is recommended that long integers not be
used.

Any integer parameters which are used for output are passed by reference
(the address). These parameters are indicated by the ampersand (&)
in front of the variable name in the procedure calls listed in Tables D-1
and D-2.

D.2.3 Window Manager strings are stored as eight-bit ASCII characters
in sequential bytes of memory. A string pointer points to the first
character, and the string is delimited by a null character (0 binary) or its
maximum length.

When passing strings from C to the Window Manager interface, two
arguments are required:

M The variable name of a string literal or character array

B The maximum length of the literal or array

NaturalLink Window Manager

C Interface D-3

Passing Strings
to Window Manager

Strings Returned
by Window Manager

Since C passes string arguments by address, the array name or string
literal serves as the first argument. The following is an example of passing
a character string.

STAT = WMSETS(SCR,WIND,ITEM, FIELD,''sample string'",13);
The following example also illustrates the passing of a character string.

char SARRAY[801;

SARRAY[0] = 't';
SARRAY[1] = ‘'e';
SARRAY[2] = 's';
SARRAY[3] = 't';
SARRAY[4] = '\0';

STAT = WMSETS(SCR,WIND,ITEM,FIELD,SARRAY,80);

D.2.3.1 The length parameter plays an important role when strings are
passed to and from Window Manager. For reasons of speed, the length
parameter always indicates the number of characters copied. Window
Manager allocates the number of characters specified plus one character
for a null terminator. After the copy is made, a check for the null terminat-
ing byte is made to find the real length of the string. If the string contains a
null terminator, the null will indicate the end of the string; otherwise, the
null appended to the string at length+1 by Window Manager will signify
the string end.

In the first example in paragraph D.2.3, 13 characters are copied into the
Window Manager data area. This is also the length of the string. In the sec-
ond example, 80 characters are copied, but the null terminator indicates
the string is actually only 4 characters long.

D.2.3.2 The length parameter is of extreme importance when strings
are passed back to the application program. Here again, Window Manager
will copy back to the application the number of characters specified by the
length parameter. The string will still be null terminated so a scan of the
string will result in finding its true value. The length specified must take
into account room for a null terminator.

This means that the buffer reserved by the application to hold the returned
string must be as long or longer than the specified length parameter. If it is
not, the application will risk having its data area written over. This means
if you have an allocated buffer 10 characters long and specify a length of
20, even if the string to be returned is only 5 characters long, 20 characters
will be returned and 10 bytes of memory will be trashed.

If the length parameter is not specified large enough for the string to be
returned, an error will occur and Window Manager will pass back only the
number of characters specified by the length parameter. The truncated
string is still null terminated. This check is made only on the length
parameter, not the buffer itself.

D-4 Clnterface

NaturalLink Window Manager

Callable
Routines

Function
Return Codes

D.3 Table D-1 correlates generic procedure calls to the corresponding C
function calls. These are all of the calls that the application can make to
Window Manager. For a summary of the calls that Window Manager
makes to the application, see paragraph D.4, Routines Called by Window
Manager. Table D-2 provides a specification of the C calling sequence, a
description of the function, and the function parameters.

D.3.1 All of these function calls return a status code. The returned value
from each C function is zero if no error was encountered or nonzero if an
error condition occurred.

These nonzero codes are broken into two levels of severity. A negative
code is a warning code. Warning codes are returned when the call did not
complete as expected, but no harm was done. These codes can be ignored,
but they indicate incorrect use of Window Manager and should be checked
during the development process.

Positive codes indicate serious error conditions. When an application
detects a positive code, the problem must be identified and corrected.
Positive codes indicate that a parameter required to process the call was in
error, processing was halted, and future calls will probably fail as well.

A message for any of the nonzero return codes can be displayed by calling
the Display Message From Message Manager routine. The messages are
stored in the LIERRMSG.NM$ file. This filename must be supplied in the
Message Manager call along with the code returned from the Window
Manager call. LIERRMSG.NMS is included on the Window Manager object
disk.

The Add Window, Select Window, Refresh Window, Display Window,
Release Window, and Delete Window operations cannot return a detailed
status code when operating on all of the windows in a screen. To be more
specific, when the window number parameter of these calls is set to —1,
the status code returned indicates that an error or warning was encoun-
tered during operations on one or more windows. This status code implies
a success or failure for the operations on all of the windows. When the
window number parameter is set to a value equal to or greater than 0, a
nonzero return status is a specific error condition.

The only operation performed on pop-up windows when the window
number is set to ~1 is the Delete operation. All other operations on pop-up
windows must be performed with an individual call for each pop-up
window.

NaturalLink Window Manager

C Interface D-5

Table D-1 C Interface Routines

Name:
Call Sequence:

Description:

INITIALIZE WINDOW MANAGER
WMINIT()

Detects which machine the application is running on, initializes the video display attri-
butes, installs keyboard mapping if needed, and loads the run-time version of the internal
phrase file (NLXPHRAS.NM$), if used. This routine must be called before any other
Window Manager routines to ensure that Window Manager works correctly.

Parameters: None.
Name: RESET WINDOW MANAGER
Call Sequence: WMRSET()

Description:

Parameters:

Restores the values set by the WMINIT procedure. It must be called to ensure the program
terminates correctly.

None.

CAUTION: WMRSET must be called prior to program termination. If it is not called, a system crash is
likely to occur when the next program is executed. This is because WMRSET restores any keyboard
mapping invoked by WMINIT and resets the cursor and video attributes. In addition to calling
WMRSET before normal program termination, the application program should provide a way to call
WMRSET in the event of a critical MS-DOS error in order to prevent a crash. For details on how to
read the termination addresses, see the information on DOS Interrupts 22H and 23H in the MS-DOS
Operating System manual.

Name:
Call Sequence:

Description:

LOAD SCREEN FILE
WMLOAD(&SCREEN, PATHNAME, LENGTH)

Loads the screen description from the pathname into memory. A screen must be loaded
before any of its windows can be manipulated by Window Manager.

Parameters:
SCREEN: Output. Equal to — 1 — Load failed. Integer greater than or equal to 0 — Integer assigned
by Window Manager to identify screen.
PATHNAME: Input. Character string that specifies the pathname of the screen description file.
LENGTH: Input. Maximum length reserved for the pathname string.
Name: ADD WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:

WMWADD(SCREEN, WINDOW)

Makes a window known to Window Manager for subsequent operations.

Input. Integer assigned by WMLOAD to identify the screen.

Input. Integer equal to —1 — Adds all windows for a screen, except pop-up windows. Inte-
ger greater than or equal to 0 — Window number to add.

D-6 CInterface

NaturalLink Window Manager

Table D-1 C Interface Routines (Continued)

Name:

Call Sequence:

SELECT WINDOW
WMWS EL(SCREEN, WINDOW)

Description: Makes a window active and flags the window for repainting, which will be performed with
the next Receive call.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to — 1 — Select all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to select.
Name: REFRESH WINDOW

Call Sequence:

WMWRE F(SCREEN, WINDOW)

Description: Flags the window for text and border repainting. The window is redisplayed the next time
a Receive call is performed.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify screen.
WINDOW: Input. Integer equal to —1 — Refreshes all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to refresh.
Name: DISPLAY WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:

WMWD I S(SCREEN, WINDOW)

Repaints the window text and border without delay. A Receive call is not required for the
Display procedure to execute.

Input. Integer assigned by WMLOAD to identify the screen.

Input. Integer equal to — 1 — Displays all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to display.

NaturalLink Window Manager

C Interface D-7

Table D-1 C Interface Routines (Continued)

Name:

Call Sequence:

RECEIVE FROM WINDOW
WMWRCV(&SCREEN, &WINDOW, &ITEM, &KEY, ITEXT, LENGTH)

Description: Receives user responses from an active window. Window Manager retains control until an
item is selected or until an undefined key is pressed. At that time, Window Manager returns
control to the application routine.

Parameters:

SCREEN: Input and output. The input integer is assigned by WMLOAD to identify the screen. The
output integer specifies the screen of the window from which the response is received.

WINDOW: Input and output. The input integer specifies the window from which user response is
desired. The output integer specifies the window of the item selected, or the window the
cursor was in when an unknown key was pressed.

ITEM: Input and output. The input integer specifies the item upon which the cursor is initially
placed. The output integer specifies the item selected.

KEY: Output. Code for the key pressed by the user.

ITEXT: Output. Character string to receive text of the selected item.

LENGTH: Input. Maximum length reserved for string (item text).

Name: RELEASE WINDOW

Call Sequence:

WMWRE L(SCREEN, WINDOW)

Description: Renders the window inactive and flags the window to have only text repainted. The win-
dow is redisplayed the next time a Receive call is performed.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equals —1 — Releases all active windows for a screen, except pop-up win-
dows. Integer greater than or equal to 0 — Window number to release.
Name: DELETE WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:

WMWDE L(SCREEN, WINDOW)

Deletes the window from the screen and makes it unknown to Window Manager. If a
window that covers other windows is deleted, the covered windows are flagged to have
their borders and text repainted.

Input. Integer assigned by WMLOAD to identify the screen.

Input. Integer equals — 1 — Deletes all windows for a screen, including pop-up windows.
Integer greater than or equal to 0 — Window number to delete.

D-8 Clnterface

NaturalLink Window Manager

Table D-1 C Interface Routines (Continued)

Name:

Call Sequence:

SAVE SCREEN
WMWSAV(SCREEN, PATHNAME, LENGTH)

Description: Saves a screen to a file. This does not unload a screen from memory and any operation can
be performed on any window in that screen after the SAVE procedure has been com-
pleted. This is useful if windows have been modified and they need to be saved.

Parameters:

SCREEN: Input integer assigned by WMLOAD to identify screen file to be saved.
PATHNAME: Input. String that specifies the pathname of the file where the screen is to be saved.
LENGTH: Maximum length reserved for the pathname string.

Name: UNLOAD SCREEN

Call Sequence: WMUNLD(SCREEN)

Description: Releases the screen description from memory.
Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
Name: ADD ITEM

Call Sequence:

WMIADD(SCREEN, WINDOW, &ITEM)

Description: Adds an item to the end of the table and increases the size of the item table by 1.
Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

ITEM: Output. ltem number of the added item.
Name: INSERT ITEM

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
ITEM:

WMI INS(SCREEN, WINDOW, ITEM)

Inserts a new item into the item table in front of the item position specified. All subsequent
items are renumbered.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number in the screen description.

Input. Position in the item table where the item is to be inserted.

NaturalLink Window Manager

CInterface D-9

Table D-1 C Interface Routines (Continued)

Name:
Call Sequence:

Description:

DELETE ITEM
WMIDEL(SCREEN, WINDOW, ITEM)

Deletes an item from the item table. All subsequent items are renumbered.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number in the screen description.
ITEM: Input. Number of the item to be deleted.

Name: CREATE ITEM TABLE

Call Sequence:

Description:

WMICRE(SCREEN, WINDOW, NBR)

Creates an item table with the specified number of items. An item table can be created dur-
ing initial window definition or during program execution. An item table is created when
the current number of items is 0. It manipulates the item table based on the relationship
between NBR and the current number of items in the window as follows:

B Current number of items equals 0 — Creates an item table with NBR of items.

B NBR less than current number of items — Deletes items (current number items minus
NBR) from the end of the item table. This condition returns a warning.

@ NBR greater than current number of items — Adds items (NBR minus current number of
items) to the end of the item table.

B NBR equal to 0 — Deletes the entire item table. This also returns a warning.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number in the screen description.
NBR: Input. Desired number of items to be created for the window.
Name: CREATE WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:

WINDOW:

WMWCRE(&SCREEN, &WINDOW)

This routine creates a new window and adds it to the screen specified. If an invalid screen
number is specified, a new screen will be created.

Input and output. Input integer assigned by WMLOAD to identify the screen to which the
new window should be added. The output integer specifies the screen number of the new
screen created if the input value was an invalid screen.

Output. Window number of the window which was created.

D-10 Clinterface

NaturalLink Window Manager

Table D-1 C Interface Routines (Continued)

Name:

Call Sequence:

Description:

GET ATTRIBUTE VALUE
WMGETV(SCREEN, WINDOW, ITEM, FIELD, &I VALUE)

References the window structure and retrieves a value for the requested numeric attribute.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.
WINDOW: Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.
ITEM: Input. Item number of the item containing the field from which information is being
requested. The value is ignored if the field is not associated with an item.
FIELD: Input. Name of the attribute constant desired. See Table D-3 for a listing and description of
the valid attribute constant names.
IVALUE: Output. Current value of the requested attribute.
Name: GET STRING VALUE

Call Sequence:

Description:

Parameters:

SCREEN:

WINDOW:

ITEM:

FIELD:

STRING:
LENGTH:

WMGETS(SCREEN, WINDOW, ITEM, FIELD, STRING, LENGTH)

References the window structure and retrieves the string value for the requested string
attribute.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item containing the field from which information is being requested.
The value is ignored if the field is not associated with an item.

Input. This parameter uses one of the following attribute constant names:

LIwlabel
LIwshowf
Llitlabl
LIwmpath
Llittext

See Table D-3 for a description of the valid attribute constant names.
Output. Character variable to receive returned string.

Input. Maximum length reserved for the string.

Naturallink Window Manager C Interface D-11

Table D-1 C Interface Routines (Continued)

Name:

Call Sequence:

Description:

Parameters:
SCREEN:

WINDOW:
ITEM:
FIELD:

IVALUE:

SET ATTRIBUTE VALUE
WMSETV(SCREEN, WINDOW, ITEM, FIELD, IVALUE)

References the window structure and sets the numeric attribute to the specified value.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Item number of the item having the attribute for which information is being
specified. The value is ignored if the field is not associated with an item.

Input. Name of the attribute constant desired. See Table D-3 for a listing and description of
the valid attribute constant names.

Input. Integer value for the specified field.

CAUTION: No validation checks are performed on the IVALUE parameter in the WMSETV call. This
reduces the code size of the high-level language interface. It is assumed that the value is in the
correct range for the attribute being set. The other parameters—SCREEN, WINDOW, ITEM, and
FIELD—are validated and error codes are returned if they are incorrect. See Section 3, Window
Attributes, for the legal attribute values.

Name:

Call Sequence:
Description:
Parameters:

SCREEN:
WINDOW:
ITEM:

FIELD:

STRING:
LENGTH:

SET STRING VALUE
WMSETS(SCREEN, WINDOW, ITEM, FIELD, STRING, LENGTH)

References the window structure and sets a string attribute to the specified string.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Item number of the item having the attribute for which information is being
specified. The value is ignored if the attribute is not associated with an item.

Input. This parameter uses one of the following attribute constant names:

Liwlabel
Liwshowf
Llitlabl
LIwmpath
Llittext

See Table D-3 for a description of the valid attribute constant names.
Input. Character string constant containing the defined text.

Input. Length of the string being entered.

D-12 Clinterface

NaturalLink Window Manager

Table D-1 C Interface Routines (Continued)

Name:

Call Sequence:

CLEAR SCREEN
WMCLRS()

Description: Clears the text from the display area.
Parameters: None.
Name: DISPLAY MESSAGE FROM MESSAGE MANAGER

Call Sequence:

Description:

DISMSG(MSGNUM, VARTXT, TXTLEN, VARSEP, MSGFIL, LENGTH)

Displays the message associated with a message number from a message file and inserts
the variable text, if any is given, into the message.

Parameters:

MSGNUM: Input. Integer message number of the message that is to be displayed. The message num-
ber can be either a status from NaturalLink or a message built by the software designer
using Message Builder.

VARTXT: Input. String that contains a maximum of three variable text substrings to be inserted in
the actual text message by Message Manager. If there is no variable text, the string is a null
string. Each variable text substring must be separated by the character specified in the
separator parameter. The separator character used cannot be a part of the variable text
itself. For example, using the tilde as a separator would give: “1st variable text~2nd
variable text~ 3rd variable text”

TXTLEN: Input. Length of the variable text string.

VARSEP: Input. Integer indicating the ASCII character which is used as the variable text separator.
For example, a decimal value of 126 is passed to indicate the tilde ~ character.

MSGFIL: Input. String that contains the message file pathname from which the text is to be
retrieved.

LENGTH: Input. Maximum length reserved for the message file pathname.

Name: RESET NATURALLINK MEMORY AREA

Call Sequence:

Description:

Parameters:

WMFLSH()

This routine clears out the memory area used by the NaturalLink run time. Any screens
loaded or other data in this memory area will be lost and must be reloaded before
NaturalLink processing can continue.

None.

NaturalLink Window Manager

C Interface D-13

Routines Called D.4 Table D-2 correlates generic procedure calls to the corresponding C

by Window
Manager

function calls. These routines are supplied by the application and are
called by Window Manager. If the functionality provided by these calls is
not desired, the dummy routines provided on the Window Manager Run-
time Object disk can be used instead. All of the application-provided calls
except the validation call and the input call can return error status codes to
Window Manager. If the status returned is nonzero, Window Manager will
return to the application program with the status code.

Table D-2 Application-Provided Routines

Name:

Call Sequence:

APPLICATION VALIDATION ROUTINE
APPVAL(SCREEN, WINDOW, &ITEM, KEY, DATATYPE)

Description: This routine is provided by the developer. Window Manager calls this routine when an edit
field needs to be type-checked. It must return the status of the validation check. The
defined statuses are as follows:

—2 — Invalid/clear, type check failed, clear out edit field
—1 —Invalid/no clear, type check failed, field untouched
0 — Valid, type check passed, continue
1 — Ignore, type check not done, return to edit field
2 — Exit, return to application immediately
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the window containing the item being validated.
ITEM: Input and output. The input integer specifies the item to be validated. The output integer
indicates the item the cursor should be placed on upon return to Window Manager.
KEY: Input. Integer code for the key pressed by the user.
DATATYPE: Input. Datatype assigned this item in the Set ltem Attributes option in Screen Builder.
Name: APPLICATION DISPLAY WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
UDWNBR:

APPDIS(SCREEN, WINDOW, UDWNBR)

This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be displayed. This routine must display all aspects of the window except
the window border.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number of the user-defined window to display.

Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).

D-14 Cinterface

NaturalLink Window Manager

Table D-2 Application-Provided Routines (Continued)

Name: APPLICATION RECEIVE WINDOW
Call Sequence: APPRCV(SCREEN, WINDOW, &ITEM, &KEY, UDWNBR, &XPOS, &YPOS)
Description: This routine is provided by the developer. Window Manager calls it when information must

be received from a user-defined window. This routine must handle all user input for the
given window.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the user-defined window to receive information from.
ITEM: Input and Output. The input integer specifies the item upon which the cursor should be ini-
tially placed. The output integer specifies the item selected.
KEY: Output. Integer code for the key pressed by the user.
UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).
XPOS: Output. Integer indicating the X character coordinate of the cursor. It is used only if the
KEY parameter returned is a window movement key code.
YPOS: Output. Integer indicating the Y character coordinate of the cursor. It is used only if the
KEY parameter returned key code.
Name: APPLICATION DELETE WINDOW
Call Sequence: APPDEL(SCREEN, WINDOW, UDWNBR)
Description: This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be deleted. This routine must delete all nontext portions of the window.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the user-defined window to delete.
UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format

option in Screen Builder (the window type).

NaturalLink Window Manager CInterface D-15

Table D-2 Application-Provided Routines (Continued)

Name:

Call Sequence:

APPLICATION DISPLAY MESSAGE
APPMSG(MSGSCR, MSGWND, &KEY, MSGNBR, MSGTYP, SCREEN, WINDOW, ITEM)

Description: This routine is provided by the developer. It is called when a user-defined message needs
to be displayed. This routine must handle the display of the message, response from the
user to the message, and the deletion of the nontext portion of the message from the
screen.

Parameters:

MSGSCR: Input. Integer assigned by Window Manager to identify the screen containing the message
window.

MSGWND: Input. Window number of the user-defined message window.

KEY: Output. Integer code for the key pressed by the user.

MSGNBR: Input. Number of the message to be displayed. This is the number assigned to the message
by the Message Builder utility.

MSGTYP: Input. Integer indicating the type of message being displayed. The integer is one of the fol-
lowing values:

5 — Help

6 — Error

7 — Warning

8 — Please Note

SCREEN: Input. Integer assigned by WMLOAD to identify the screen containing the window the cur-
sor was in when the Help key was pressed. It is used only for Help messages.

WINDOW: Input. Window number of the window the cursor was in when the Help key was pressed. It
is used only for Help messages.

ITEM: Input. Input integer specifies the item the cursor was on when the Help key was pressed. A
value of —1 is passed when window-level help is being displayed. It is used only for Help
messages.

Name: APPLICATION INPUT ROUTINE

Call Sequence:

Description:

Parameters:

APPINP()

This routine is provided by the developer. Window Manager calls it when input from the
user is needed. It can be used to provide an alternative input method to the keyboard. This
routine, if used, must still return valid key codes. A value of 0 must be returned if there is
no key code ready to be returned.

None.

D-16 Cinterface

NaturalLink Window Manager

C Compiling D.5 Window Manager requires the use of an Include file that defines the
Requirements attribute constants used by the application program. This is provided with

the Window Manager package.

Include File D.5.1 A #define file containing attribute names for the WMSETV,
WMGETV, WMSETS, and WMGETS Window Manager routines is provided
to keep hard-coded constants out of the C code. These constants are likely
to change or at least expand with future releases of Window Manager. The
filename is WMFIELD.H, and the contents are given in Table D-3.

Table D-3 C Data Declarations for Window Attributes

/* Window coordinates: */

#define LIwposux 1 /* Left-most column
#define LIwposuy 2 /*x Top row

#define LIwposlx 3 /x Right-most column
#define LIwposly 4 [/ Bottom row

/* Window format: */

#define LIawdtyp 5 /*x Window type

#define LIwincol 38 /* Number of columns

#define LInwprio 10 /*x Priority (for application use only)
#define LInwmusl 11 /* Multiple selection window

#define LInwpopu 12 /* Pop-up window

#define LIinpant &6 /* Special repaint on receive

#define LIwofset 21 /* First item to be displayed

#define LIliautsc 40 /* Show last item when painted

#define LIicentr 45 /x Center all items

#define Llinorep 43 /* Don't redisplay current items
#define LIinomul 42 /* Disable multiple line items

#define LIcursin 75 /x Allow cursor to enter window
#idefine LIidirct 44 /* Multiple column order

#define LIilmlen 41 /* Maximum item label Llength

#define LIiljust 47 /* 1Item label justification

#define LIwshowf 20 /* Pathname of window file

#define LInwactv 13 /* Window is active (read only access)
#define LIwitmnb 39 /* Number of items (read only access)

/* Active window attributes: */

#define LIablink
#define Llaunder
#idefine Llarever
#define LIactint

/* Blinking

/* Underline

/* Reverse video
/* Intensity/color

O 00 N O~

/* Inactive window attributes: */

#define LInwblnk 16 /* Blinking
#define LInwundr 17 /* Underline
#define LInwrevr 18 /* Reverse video
#define LInwintn 19 /* Intensity/color

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

NaturalLink Window Manager

C Interface D-17

Table D-3 C Data Declarations for Window Attributes (Continued)

/* Window Label attributes: =/

#define
#define
Hdefine
#define
#define

LIwlabel 22 /*
LIwlvsbl 23 /%
LIwlpos 24 /x
LIwlcent 25 /«*
LIwlblnk 27 /=*

#define LIwlundr 28 /=*
#Hdefine Llwlrevr 29 /x
#define LIwlint 30 /«*
#define LIwlaint 26 /x

/* Cursor attributes:

#define
#define

LIcrsize 31 [/*
LIcblink 33 /x*

#define Llcunder 34 /%
#define LIcrever 35 /x*
#define LIcurint 37 /=*
#define LIcalint 32 /«x

#define LIcstays 36 [/«*

/* Border attributes:

#define
#define
#define
#define
#define

LInwbord 14 /=*
LIbdrtsp 72 /*
LInwscmk 15 /%
LIbdrrv 73 /*
LIbdrint 74 /*

/* Item attributes: =*/

#idefine LIittext 66 /*
#define Llitchos 56 /=
#define LIitvsbl 63 /=
#define Llitunsl 59 /=
#define LIitdspl 55 /=
#define LIitmlen 48 /+*

#define
#define
#define

LIitreqr 57 /+*
Llitecho 58 /+*
LIdattyp 65 /*

Window Llabel
Invisible label
Label position
Centered label
Blinking Llabel
Underlined label
Reverse video label
Intensity/color

Use item intensity

Cursor size

Blinking cursor

Underlined cursor

Reverse video cursor

Cursor intensity/color

Use Item intensity

Cursor remains on a receive abort

Bordered window

Border takes up space (0 = yes)
Display scroll markers

Reverse video border

Border intensity/color

Item text

Chosen/enable attributes
Visible item

Unselectable item
Displayed

Maximum edit field length
Required edit field

Echo edit field input
Edit field datatype

/* Item chosen active attributes: =*/

#idefine LIitblnk 60 /=*
#define LIitundr 61 /¥
#define LIitrevr 62 [/*
#define LIitint 64 /*

Blinking chosen item
Underlined chosen item
Reverse video chosen item
Chosen item intensity/color

*/
*/
*/
*/
*/
*/

*/
*/

*x/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*x/

*/
*/
*/
*/

D-18 Clnterface

NaturallLink Window Manager

Table D-3 C Data Declarations for Window Attributes (Continued)

/* Item label attributes: */

#define
#define
#define
#define
#define
#define

LIitlabl
LIilblnk
LIilundr
LIilrevr
LIilint

LIilaint

/* Item label *x/
/* Blinking label *x/
/* Underlined label */
/* Reverse video label */
/* Label intensity/color */
/* Use item intensity */

/* Other miscellaneous attributes: */

#define LIwmpath 71
#define LIpctype 76

#define

LIlcdon

77

/* Window Manager help/phrase file path */
/* Machine type (read only access) */
/* PRO-LITE lcd screen indicator */

Memory

Considerations

D.6 Since the NaturalLink Window Manager and the C application pro-
gram coexist in memory, sufficient memory to accommodate the code and
data areas of each is required.

To achieve correct ordering of the code and data areas for the C
application program and Window Manager object, a set of routines has
been added (one for each C model implemented for the application pro-
gram) that defines the memory organization. Each of these routines places
the application code in low memory, followed by the Window Manager
code, the Window Manager data area, and finally the application’s data
area. Each routine also declares the Window Manager stack and heap size,
which must be statically allocated. Since the application’s stack and heap
area occurs last, it can expand up to the physical memory limits of the
machine. The routine names are LILCSSH (smaill program model),
LILCPSH (large program model), LILCDSH (large data model), and
LILCLSH (large model). Only one routine is selected to be included in the
link stream.

Get-memory errors appear when the Window Manager heap management
routines run out of memory. The only way to prevent these errors, if they
occur, is to increase the size of the Window Manager heap area or to
reduce the number of screens (or screen sizes) loaded into memory at the
time the error occurred.

The default stack and heap sizes for Window Manager are as follows:

2K stack = hexadecimal 800 bytes
32K heap = hexadecimal 8000 bytes

NaturalLink Window Manager

C Interface D-19

The maximum size of the Window Manager stack and heap is the size in
bytes determined by the difference of hexadecimal FFF0 and the size of
the Window Manager data segment (called NL__DATA and found in the
application’s link map). It is recommended that at least hexadecimal 800
bytes be allocated for the Window Manager’s stack size. Using this mini-
mum recommendation for the stack size, the maximum amount of
memory that can be allocated for the heap area is hexadecimal F7F0
minus the size of the data segment NL__DATA. This will be approximately
hexadecimal ED0OO bytes for application programs that use only the Win-
dow Manager object and slightly less for those that additionally use the
Natural Language object. A change in the Window Manager stack and
heap size will require changing the source file for one of the above-
mentioned memory modules, reassembling the routine, and relinking the
application program.

Linking
Considerations

D.7 An example of a link control file used to link a simple C application
program is as follows. Most of the NaturalLink runtime has been placed in
libraries. The order of the libraries is significant. They must be placed in
the order shown.

LILC?SH + Memory organization module. This must occur first.
C?+ C program entry/exit module.
mymain + The C application’s main program.
Any application subroutines used.
demo /M The .EXE file.
demo.MAP The .MAP file.
mylib+ Any application libraries used.
LILC? + Library of language interface routines to Window
Manager for the Lattice C compiler.
WM+ Window Manager object library.
APP??7? + Dummy Window Manager called application routines.
LC? C run-time library.

D-20 CInterface

NaturalLink Window Manager

Memory
Model Differences

Dummy
Routines Library

WMKEYDEF.OBJ
and
WMSTRDEF.OBJ
Files

D.7.1 Note that where a single question mark (?) appears in the module
names, it is replaced by a letter designating which memory model is used
by the application program, as follows:

® S for the small code/small data model

B P for the large code/small data model

& D for the small code/large data model

L for the large code/large data model

The question marks in the APP??? library are also replaced by letters
designating which memory model is used. If you are using the S model,

APPLCS is used. APPLCD is used for the D model and APPOTH is used for
both the P and the L model.

D.7.2 The APP??? library contains dummy routines for all application
routines which are called by Window Manager. These include APPVAL,
APPRCV, APPDIS, APPDEL, APPMSG, and APPINP. If you do not use the
features provided by one or more of these routines, the reference to them
will be resolved by the dummy modules in this library. If you have your
own versions of these routines they must be explictly linked; if they are in
a library, the library must come before APP??? in the link stream. If you
create any libraries of your application routines, these libraries must come
before any NaturalLink libraries in the link stream.

D.7.3 The key definition file WMKEYDEF.OBJ) and the internal phrase
file (WMSTRDEF.OBJ) are included as part of the Window Manager library
(WM.LIB). If you have created your own version of these files (by using the
KBUILD utility for WMKEYDEF or by reassembling the source file for
WMSTRDEF), you must explicitly link your own version. Your version of
the files should be placed in the link stream following any application
subroutines that you may have. The linker will then use your versions
instead of the files in the library.

NaturalLink Window Manager

C Interface D-21

Object Code D.7.4 The object code for Window Manager is divided into two groups.
Segments Segments with the name NL_PROG contain executable code, whereas

segments with the name NL_DATA contain static data, heap, and the Win-
dow Manager run-time stack.

NOTE: Users who will be using PRE-2.00 versions of the Lattice C Com-
piler must use C.OBJ instead of C?.OBJ and LC.LIB instead of LC?.LIB in
their link streams. Also, the memory module, language interface library,
and the dummy library for small model Lattice C Compiler (that is,
LILCSSH, LILCS, and APPLCS) should be used.

Restrictions

D.8 The maximum number of screens loaded from files is set to 20. A
screen can have up to 255 windows and each window can have up to
65,536 items. Since screens are stored in the Window Manager heap, a
screen which contains excessive windows and items can cause a get-
memory error when loaded.

D-22 ClInterface

NaturalLink Window Manager

PASCAL INTERFACE

Paragraph Title Page
E.l INtrodUuCHON.coiiirieii e ettt E-3

E.2 Parameter CharacteristiCsccoveeiiieiiiiiciccie e E-3
E.2.1 7:e10-Base VAlUEScccoviiiiiiiiet ettt E-3
E.2.2 Integers ettt eateeehteeeanere e et re ettt a s be e e bt e e st b e e tbeeseraeerttesaneareean E-3
E.2.3 Character STHNGSocovveeeierieiirceeeee et et ere st E-3
E.2.3.1 Passing Strings to Window Managercccocvevvvveeiiveccnecvreecncee, E-4
E.2.3.2 Strings Returned by Window Manager..........cccceeevveevceeenercevecnenn, E-4
E.3 Callable ROUHINESoooiiieiiiiee v E-5
E.3.1 Function Return Codescooovevieiiiiiieeieieieece e E-5
E.4 Routines Called by Window Managercccoecvrvieninienencececeeeenn, E-14
E.5 Pascal Compiling Requirements............ccceeeeeveeeiiviieveeeneeceee e E-17
E.5.1 INCIUAE FileS ..o e E-17
E.6 Memory Considerations.............ocovieiiiieeiieceiieeeiee e E-19
E.7 Linking Considerationsccooeveviiiiiiioriiiicce e E-20
E.7.1 Dummy Routines Librarycccccooiiiiiiininiiee e E-20
E.7.2 WMKEYDEF.OBJ and WMSTRDEF.OBJ Files.......ccccccoveevioiiiieiennne. E-21
E.7.3 Object Code SegMENtS.........ccoeciiiiiieieieiee e E-21
E.8 ReSIIICHONS . ..ciiiiiiiiceee e e E-21

NaturalLink Window Manager

Pascal Interface E-1

Introduction

E.1 This appendix provides the information and procedures required to
use the NaturalLink Window Manager with an MS-Pascal application pro-
gram. Generally, the parts of the NaturalLink package referenced from
Pascal procedures are linked with the Pascal application program and act
as an application program extension.

Parameter
Characteristics

Zero-Base Values

Integers

Character Strings

E.2 The only types of parameters used in the Window Manager call rou-
tines are integers and character strings. Integer parameters can either be
passed by single level reference (the address) or by value. A string parame-
ter is actually a copy of the pointer to the string, so strings will never be
passed by value in Pascal calls. The exact order of the parameters is shown
in Table E-1.

E.2.1 For all Pascal Window Manager calls that use a screen, window, or
item identifier, the value of any of these identifiers is zero-base relative. In
other words, the first valid screen, window, or item number is 0. The
values correspond to the values assigned by Screen Builder.

E.2.2 Integers passed from Pascal to the Window Manager routines can
be declared as either integer or long integer. If long integers are passed,
the upper 16 bits are ignored. It is recommended that these integers not be
used.

E.2.3 Window Manager strings are stored as eight-bit ASCII characters
in sequential bytes of memory. A string pointer points to the first
character, and the string is delimited by a null character (0 binary) or its
maximum length.

When passing strings from Pascal to the Window Manager interface, two
arguments are required:

B The address of the first character in the string literal or array

B The value of the maximum length of the literal or array

Since Pascal must pass the address of the first character in the array, the
array name subscripted with the index of the first character serves as the

first argument. The following is an example of passing a character string.

SARRAY: PACKED ARRAY [1..80] OF CHAR;

SARRAY[11 := 't';
SARRAY[2] := 'e';
SARRAYI[3] := 's';
SARRAY[4]1 := 't';
SARRAYL[5]1 := CHR(0);

STAT := WMSETS(SCR,WIND,ITEM,FIELD,SARRAY[1],4);

NaturalLink Window Manager

Pascal Interface E-3

Passing Strings
to Window Manager

Strings Returned
by Window Manager

The following example also illustrates the passing of a character string.

LENGTH := 80;
STAT := WMSETS(SCR,WIND,ITEM,FIELD,SARRAY[11,LENGTH);

The Microsoft extensions to Pascal include two character array types,
STRING and LSTRING. At present, the language interface does not support

these types; hence, they cannot be used as parameters to the Window
Manager Routines.

E.2.3.1 The length parameter plays an important role when strings are
passed to and from Window Manager. For reasons of speed, the length
parameter always indicates the number of characters copied. Window
Manager allocates the number of characters specified plus one character
for a null terminator. After the copy is made, a check for the null terminat-
ing byte is made to find the real length of the string. If the string contained
a null terminator, the null will indicate the end of the string; otherwise, the
null appended to the string at length+1 by Window Manager will signify
the string end.

In the first example in paragraph E.2.3, four characters are copied into
Window Manager’s data area. This is also the length of the string. In the
second example, 80 characters are copied, but the null terminator
indicates the string is actually only four characters long.

E.2.3.2 The length parameter is of extreme importance when strings are
passed back to the application program. Here again, Window Manager will
copy back to the application the number of characters specified by the
length parameter. The string will still be null terminated so a scan of the
string will result in finding it's true value. The length specified must take
into account room for a null terminator.

This means that the buffer reserved by the application to hold the returned
string must be as long or longer than the specified length parameter. If it is
not, the application will risk having its data area written over. This means
if you have an allocated buffer 10 characters long and specify a length of
20, even if the string to be returned is only 5 characters long, 20 characters
will be returned and 10 bytes of memory will be trashed.

If the length parameter is not specified large enough for the string to be
returned, an error will occur and Window Manager will only pass back the
number of characters specified by the length parameter. The truncated
string is still null terminated. This check is made only on the length
parameter, not on the buffer itself.

E-4 Pascal Interface

NaturalLink Window Manager

Callable
Routines

Function
Return Codes

E.3 Table E-1 correlates generic procedure calls to the corresponding
Pascal function calls. These are all the calls the application can make to
Window Manager. For a summary of the calls that Window Manager

‘makes to the application, see paragraph E.4, Routines Called by Window

Manager. The table provides a specification of the Pascal calling sequence,
a description of the function, and the function parameters. All routines are
Pascal functions and must be declared and used as such.

E.3.1 All of the function calls return a status code. The returned value
from each Pascal function is zero if no error was encountered or nonzero if
an error condition occurred.

These nonzero codes are divided into two levels of severity. A negative
code is a warning code. Warning codes are returned when the call did not
complete as expected, but no harm was done. These codes can be ignored,
but they indicate incorrect use of Window Manager and should be checked
during the development process.

Positive return codes indicate serious error conditions. When an
application detects a positive code, the problem must be identified and
corrected. Positive codes indicate that something required to process the
call was in error, processing was halted, and future calls will probably fail
as well.

A message for any of the nonzero return codes can be displayed by calling
the Display Message From Message Manager routine. The messages are
stored in the LIERRMSG.NM$ file. This is the filename that must be
supplied in the Message Manager call along with the code returned from
the Window Manager call. LIERRMSG.NM$ is included on the Window
Manager object disk.

The Add Window, Select Window, Refresh Window, Display Window,
Release Window, and Delete Window operations cannot return a detailed
status code when operating on all windows in a screen. To be more
specific, when the window number parameter of these calls is set to —1,
the status code returned indicates that an error or warning was encoun-
tered during operations on one or more windows. This status code implies
a success or failure for the operations on all the windows. When the win-
dow number parameter is set to a value equal to or greater than 0, a non-
zero return status code indicates a specific error condition.

The only operation performed on pop-up windows when the window
number is set to —1 is the Delete operation. All other operations on pop-up
windows must be performed with an individual call for each pop-up
window.

NaturalLink Window Manager

Pascal Interface E-5

Table E-1 Pascal Interface Routines

INITIALIZE WINDOW MANAGER
WMINIT()

Name:

Call Sequence:

Description: Detects which machine the application is running on, initializes the video display attri-
butes, installs keyboard mapping if needed, and loads the run-time version of the internal
phrase file NLXPHRAS.NM$), if used. This routine must be called before any other Win-
dow Manager routines to ensure that Window Manager works correctly.

Parameters: None

Name: WMRSET WINDOW MANAGER

Call Sequence: WMRSET()

Description: Restores the values set by the WMINIT procedure. It must be called to ensure that the pro-

gram terminates correctly.

Parameters: None

CAUTION: WMRSET must be called prior to program termination. If it is not called, a system crash
is likely to occur when the next program is executed. This is because WMRSET restores any key-
board mapping invoked by WMINIT and resets the cursor and video attributes. In addition to calling
WMRSET before normal program termination, the application program should provide a way to call
WMRSET in the event of a critical MS-DOS error in order to prevent a crash. For details on how to
trap the termination addresses, see the information on DOS Interrupts 22H and 23H in the MS-DOS

Operating System manual.

Name:

Call Sequence:

LOAD SCREEN FILE
WMLOAD(SCREEN, PATHNAME] 1], LENGTH)

Description: Loads the screen description from the pathname into memory. A screen must be loaded
before any of its windows can be manipulated by Window Manager.
Parameters:
SCREEN: Output. Equal to — 1 — Load failed. Integer greater than or equal to 0 — Integer assigned
by Window Manager to identify screen.
PATHNAME: Input. Character string that specifies the pathname of the screen description file.
LENGTH: Input. Maximum length reserved for the pathname string.
Name: ADD WINDOW

Call Sequence:

Description:

WMWADD(SCREEN, WINDOW)

Makes a window known to Window Manager for subsequent operations.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Adds all windows for a screen, except pop-up windows.

Integer greater than or equal to 0 — Window number to add.

E-6 Pascal Interface

NaturalLink Window Manager

Table E-1 Pascal Interface Routines (Continued)

Name:

Call Sequence:

SELECT WINDOW
WMWSEL(SCREEN, WINDOW)

Description: Makes a window active and flags the window for repainting, which will be performed with
the next Receive call.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Select all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to select.
Name: REFRESH WINDOW

Call Sequence:

WMWREF(SCREEN, WINDOW)

Description: Flags the window for text and border repainting. The window is redisplayed the next time
a Receive call is performed.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify screen.
WINDOW: Input. Integer equal to — 1 — Refreshes all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to refresh.
Name: DISPLAY WINDOW

Call Sequence:

WMWD I S(SCREEN, WINDOW)

Description: Repaints the window text and border without delay. A Receive call is not required for the
Display procedure to execute.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Displays all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to display.
Name: RECEIVE FROM WINDOW

Call Sequence:

Description:

WMWRCV(SCREEN, WINDOW, ITEM, KEY, ITEXT[1}, LENGTH)

Receives user responses from an active window. Window Manager retains control until an
item is selected or until an undefined key is pressed. At that time, Window Manager returns
control to the application routine.

NaturalLink Window Manager

Pascal Interface E-7

Table E-1 Pascal Interface Routines (Continued)

Parameters:
SCREEN: Input and output. The input integer is assigned by WMLOAD to identify the screen. The
output integer specifies the screen of the window from which the response is received.
WINDOW: Input and output. The input integer specifies from which window user response is desired.
The output integer specifies the window of the item selected, or the window the cursor was
in when an unknown key was pressed.
ITEM: Input and output. The input integer specifies the item upon which the cursor is initially
placed. The output integer specifies the item selected.
KEY: Output. Code for the key pressed by the user.
ITEXT: Output. Character string to receive text of the selected item.
LENGTH: Input. Maximum length reserved for string (item text).
Name: RELEASE WINDOW

Call Sequence:

WMWRE L(SCREEN, WINDOW)

Description: Renders the window inactive and flags the window to have only text repainted. The win-
dow is redisplayed the next time a Receive call is performed.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equals —1 — Releases all active windows for a screen, except pop-up win-
dows. Integer greater than or equal to 0 — Window number to release.
Name: DELETE WINDOW

Call Sequence:

WMWDE L(SCREEN, WINDOW)

Description: Deletes the window from the screen and makes it unknown to Window Manager. If a
window that covers other windows is deleted, the covered windows are flagged to have
their borders and text repainted.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equals — 1 — Deletes all windows for a screen, including pop-up windows.
Integer greater than or equal to 0 — Window number to delete.
Name: SAVE SCREEN

Call Sequence:

Description:

Parameters:

SCREEN:

PATHNAME:

LENGTH:

WMWSAV(SCREEN, PATHNAME(1], LENGTH)

Saves a screen to a file. This does not unload a screen from memory; any operation can be
performed on any window in that screen after the SAVE procedure has been completed.

- This is useful if windows have been modified and they need to be saved.

Input integer assigned by WMLOAD to identify the screen file to be saved.
Input. String that specifies the pathname of the file where the screen is to be saved.

Maximum length reserved for the pathname string.

E-8 Pascal Interface

NaturalLink Window Manager

Table E-1 Pascal Interface Routines (Continued)

Name:

Call Sequence:

Description:

UNLOAD SCREEN
WMUNLD(SCREEN)

Releases the screen description from memory.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
Name: ADD ITEM

Call Sequence:

WMIADD(SCREEN, WINDOW, ITEM)

Description: Adds an item to the end of the table and increases the size of the item table by 1.
Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

ITEM: Output. Item number of the added item.
Name: INSERT ITEM

Call Sequence:

WMIINS(SCREEN, WINDOW, ITEM)

Description: Inserts a new item into the item table in front of the item position specified. All subsequent
items are renumbered.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number in the screen description.
ITEM: Input. Position in the item table where the item is to be inserted.
Name: DELETE ITEM

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
ITEM:

WMIDEL(SCREEN, WINDOW, ITEM)

Deletes an item from the item table. All subsequent items are renumbered.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number in the screen description.

Input. Number of the item to be deleted.

NaturalLink Window Manager

Pascal Interface E-9

Table E-1 Pascal Interface Routines (Continued)

Name:

Call Sequence:

CREATE ITEM TABLE
WMICRE(SCREEN, WINDOW, NBR)

Description: Creates an item table with the specified number of items. An item table can be created dur-
ing initial window definition or during program execution. An item table is created when
the current number of items is 0. It manipulates the item table based on the relationship
between NBR and the current number of items in the window as follows:

B Current number of items equals 0 — Creates an item table with NBR of items.

B NBR less than current number of items — Deletes items (current number items minus
NBR) from the end of the item table. This condition returns a warning.

B NBR greater than current number of items — Adds items (NBR minus current number of
items) to the end of the item table.

B NBR equal to 0 — Deletes the entire item table. This also returns a warning.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

NBR: Input. Desired number of items to be created for the window.
Name: CREATE WINDOW

Call Sequence:

WMWCRE(SCREEN, WINDOW)

Description: This routine creates a new window and adds it to the screen specified. If an invalid screen
number is specified, a new screen will be created.
Parameters:

SCREEN: Input and output. This is the input integer assigned by WMLOAD to identify the screen to
which the new window should be added. The output integer specifies the screen number of
the new screen created if the input value was an invalid screen.

WINDOW: Output. Window number of the window which was created.

Name: GET ATTRIBUTE VALUE

Call Sequence:

Description:

WMGETV(SCREEN, WINDOW, ITEM, FIELD, IVALUE)

References the window structure and retrieves a value for the requested numeric attribute.

E-10 Pascal Interface

NaturalLink Window Manager

Table E-1 Pascal Interface Routines (Continued)

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.
WINDOW: Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.
ITEM: Input. Number of the item containing the field from which information is being requested.
The value is ignored if the field is not associated with an item.
FIELD: Input. Name of the attribute constant desired. See Table E-3 for a listing and description of
the valid attribute constant names.
IVALUE: Output. Current value of the requested attribute.
Name: GET STRING VALUE

Call Sequence:

Description:

WMGETS(SCREEN, WINDOW, ITEM, FIELD, STRING[1], LENGTH)

References the window structure and retrieves the string value for the requested string
attribute.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen
WINDOW: Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.
ITEM: Input. Item number of the item containing the field from which information is being
requested. The value is ignored if the field is not associated with an item.
FIELD: Input. This parameter uses one of the following attribute constant names:
Llwlabel
Liwshowf
Llitlabl
Llwmpath
Llittext
See Table E-3 for a description of the valid attribute constant names.
STRING: Output. Character variable to receive returned string.
LENGTH: Input. Maximum length reserved for the string.
Name: SET ATTRIBUTE VALUE

Call Sequence:

Description:

WMSETV(SCREEN, WINDOW, ITEM, FIELD, IVALUE)

References the window structure and sets the numeric attribute to the specified value.

NaturalLink Window Manager Pascal Interface E-11

Table E-1 Pascal Interface Routines (Continued)

Parameters:

SCREEN:

WINDOW:

ITEM:

FIELD:

IVALUE:

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Item number of the item having the attribute for which information is being
specified. The value is ignored if the field is not associated with an item.

Input. Name of the attribute constant desired. See Table E-3 for a listing and description of
the valid attribute constant names.

Input. Integer value for the specified field.

CAUTION: No validation checks are performed on the IVALUE parameter in the WMSETV call. This
reduces the code size of the high-level language interface. The value is assumed to be in the correct
range for the attribute being set. The other parameters — Screen, Window, Item, and Field — are
validated and error codes are returned if they are incorrect. See Chapter 3, Window Attributes, for
the legal attribute values.

Name:

Call Sequence:
Description:
Parameters:

SCREEN:

WINDOW:

ITEM:

FIELD:

STRING:
LENGTH:

SET STRING VALUE
WMSETS(SCREEN, WINDOW, ITEM, FIELD, STRING[1], LENGTH)

References the window structure and sets a string attribute to the specified string.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Iltem number of the item having the attribute for which information is being
specified. The value is ignored if the attribute is not associated with an item.

Input. This parameter uses one of the following attribute constant names:

Liwlabel
LiIwshowf
Llitlabl
Liwmpath
Llittext

See Table E-3 for a description of the valid attribute constant names.
Input. Character string constant containing the defined text.

Input. Length of the string being entered.

E-12 Pascal Interface

NaturalLink Window Manager

Table E-1 Pascal Interface Routines (Continued)

Name:

Call Sequence:

CLEAR SCREEN
WMCLRS()

Description: Clears the text from the display area.
Parameters: None
Name: DISPLAY MESSAGE FROM MESSAGE MANAGER

Call Sequence:

Description:

DISMSG(MSGNUM, VARTX[1], TXTLEN, VARSEP, MSGFIL[1], LENGTH)

Displays the message associated with a message number from a message file and inserts
the variable text, if any is given, into the message.

Parameters:

MSGNUM: Input. Integer message number of the message that is to be displayed. The message num-
ber can be either a status from NaturalLink or a message built by the software designer
using Message Builder.

VARTXT: Input. String that contains a maximum of three variable text substrings to be inserted in
the actual text message by Message Manager. If there is no variable text, the string is a null
string. Each variable text substring must be separated by the character specified in the
separator parameter. The separator character used cannot be a part of the variable text
itself. For example, using the tilde as a separator would give: “1st variable text~2nd
variable text~ 3rd variable text”.

TXTLEN: Input. Length of the variable text string.

VARSEP: Input. Integer indicating the ASCII character which is used as the variable text separator.
For example, a decimal value of 126 is passed to indicate the tilde ~ character.

MSGFIL: Input. String that contains the message file pathname from which the text is to be
retrieved.

LENGTH: Input. Maximum length reserved for the message file pathname.

Name: RESET NATURALLINK MEMORY AREA

Call Sequence:

Description:

Parameters:

WMFLSH()

This routine clears out the memory area used by the NaturalLink run time. Any screens
loaded or any other data in this memory area will be lost and must be reloaded before
NaturalLink processing can continue.

None.

NaturalLink Window Manager

Pascal Interface E-13

Routines
Called by
Window

Manager

E.4 Table E-2 correlates generic procedure calls to the corresponding C
function calls. These routines are supplied by the application and are
called by Window Manager. If the functionality provided by these calls is
not desired, the dummy routines provided on the Window Manager Run-
Time Object disk can be used instead. All of the application-provided calls
except the validation call and the input call can return error status codes to
Window Manager. If the status returned is nonzero, Window Manager will
return to the application program with the status code.

Table E-2 Application-Provided Routines

Name:
Call Sequence:

Description:

APPLICATION VALIDATION ROUTINE
APPVAL(SCREEN, WINDOW, ITEM, KEY, DATATYPE)

This routine is provided by the developer. Window Manager calls this routine when an edit
field needs to be type-checked. It must return the status of the validation check. The
defined statuses are as follows:

-2 — Invalid/clear, type check failed, clear out edit field
-1 — Invalid/no clear, type check failed, field untouched
0 — Valid, type check passed, continue
1 — Ignore, type check not done, return to edit field
2 — Exit, return to application immediately

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the window containing the item being validated.
ITEM: Input and output. The input integer specifies the item to be validated. The output integer
indicates which item the cursor should be placed on upon return to Window Manager.
KEY: Input. Integer code for the key pressed by the user.
DATATYPE: Input. Datatype assigned this item in the Set Item Attributes option in Screen Builder.
Name: APPLICATION DISPLAY WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
UDWNBR:

APPDIS(SCREEN, WINDOW, UDWNBR)

This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be displayed. This routine must display all aspects of the window except
the window border.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number of the user-defined window to display.

Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).

E-14 Pascal Interface NaturalLink Window Manager

Table E-2 Application-Provided Routines (Continued)

Name:

Call Sequence:

APPLICATION RECEIVE WINDOW
APPRCV(SCREEN, WINDOW, ITEM, KEY, UDWNBR, XPOS, YPOS)

Description: This routine is provided by the developer. Window Manager calls it when information must
be received from a user-defined window. This routine must handle all user input for the
given window.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number of the user-defined window from which to receive information.

ITEM: Input and Output. The input integer specifies the item upon which the cursor should be
initially placed. The output integer specifies the item selected.

KEY: Output. Integer code for the key pressed by the user.

UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).

XPOS: Output. This is the integer indicating the X character coordinate of the cursor. It is used
only if the KEY parameter returned is a window movement key code.

YPOS: Output. This is the integer indicating the Y character coordinate of the cursor. It is used
only if the KEY parameter returned is a window movement key code.

Name: APPLICATION DELETE WINDOW

Call Sequence:

APPDEL(SCREEN, WINDOW, UDWNBR)

Description: This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be deleted. This routine must delete all nontext portions of the window.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the user-defined window to be deleted.
UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).
Name: APPLICATION DISPLAY MESSAGE

Call Sequence:

Description:

APPMSG(MSGSCR, MSGWND, KEY, MSGNBR, MSGTYP, SCREEN, WINDOW, ITEM)

This routine is provided by the developer. It is called when a user-defined message needs
to be displayed. This routine must handle the display of the message, response from the
user to the message, and the deletion of the nontext portion of the message from the
screen.

NaturalLink Window Manager

Pascal Interface E-15

Table E-2 Application-Provided Routines (Continued)

Parameters:

MSGSCR: Input. Integer assigned by Window Manager to identify the screen containing the message
window.

MSGWND: Input. Window number of the user-defined message window.

KEY: Output. Integer code for the key pressed by the user.

MSGNBR: Input. Number of the message to be displayed. This is the number assigned to the message
by the Message Builder utility.

MSGTYP: Input. Integer indicating the type of m'essage being displayed. The integer is one of the fol-
lowing values:

5 — Help

6 — Error

7— Warning

8 — Please Note

SCREEN: Input. Integer assigned by WMLOAD to identify the screen containing the window the cur-
sor was in when the HELP key was pressed. It is used only for Help messages.

WINDOW: Input. Window number of the window the cursor was in when the HELP key was pressed.
It is used only for Help messages.

ITEM: Input. Input integer specifies the item the cursor was on when the HELP key was pressed.
A value of —1 is passed when window level help is being displayed. It is used only for Help
messages.

Name: APPLICATION INPUT ROUTINE

Call Sequence:

Description:

Parameters:

APPINP()

This routine is provided by the developer. Window Manager calls it when input from the
user is needed. It can be used to provide an alternative input method to the keyboard. This
routine, if used, must still return valid key codes. A value of 0 must be returned if there is
no key code ready to be returned.

None.

E-16 Pascal Interface NaturallLink Window Manager

Pascal
Compiling

Requirements

Include Files

E.5 Window Manager requires the use of Include files which define the
attribute constants used by the application program and the Window Man-
ager routine declarations. This is provided with the Window Manager
package.

E.5.1 The declarations for each of the Window Manager routines can
be found in the WMEXTRNS.PAS file and must be included in the Pascal
application.

A constant declaration file containing attribute names for the WMSETV,
WMGETV, WMSETS, and WMGETS Window Manager routines is provided
to keep hard-coded constants out of the Pascal code. These constants are
likely to change or at least expand with future releases of Window
Manager. The filename is WMFIELD.CON, and the contents are given in
Table E-3.

Table E-3 Pascal Data Declarations for Window Attributes

CONST

{* Window Coordinates: *}

LIwposux
LIwposuy
LIwposlx
LIwposly

{* Window

LIawdtyp
LIwincol
LInwprio
LInwmusl
LInwpopu
LIinpant
LIwofset
LIiautsc
LIicentr
LIinorep
LIinomul
LIcursin
LIidirct
LIilmlen
LIiljust
LIwshowf
LInwactv
LIwitmnb

—
(o]
3
3
)
~+

~e ws we we

SUEN -

{*
{*
{*
{*
{*
{*
{*
{*
{*
{*
{*
{*
{x
{*
{*
{*
{*
{*

Left-most column *}
Top row *}
Right-most column *}
Bottom row *}
*}
Window type *}
Number of columns *}
Priority (for application use only) *3}
Multiple selection window *}
Pop-up window *}
Special repaint on receive *}
First item to be displayed *}
Show last item when painted *}
Center all items *}
Don't redisplay current items *}
Disable multiple Lline items *)}
Allow cursor to move into window *}
Mutltiple column order *}
Maximum item label Llength *}
Item label justification *}
Pathname of window file *}
Window is active (read only access) *}
Number of items <(read only access) *}

NaturalLink Window Manager

Pascal Interface E-17

Table E-3 Pascal Data Declarations for Window Attributes (Continued)

{* Active window attributes: *}

LIablink = 6;
Llaunder = 7;
Llarever = 8;
Llactint = 9;

Blinking
Underlined
Reverse video
Intensity/color

{* 1Inactive window attributes: *}

LInwblnk = 16;
LInwundr = 17;
LInwrevr = 18;
LInwintn = 19;

{* Window Label

LIwlabel = 22;
LIwlvsbl = 23;
LiIwlpos = 24;
LIwtcent = 25;
LIwlblnk = 27;
LIwlundr = 28;
LIwlrevr = 29;
LIwlint = 30;
LIwlaint = 26;

{* Cursor attributes:

Licrsize = 31;
LIcblink = 33;
LIcunder = 34;
LIcrever = 35;
LiIcurint = 37;
LiIcalint = 32;
LIcstays = 36;

{* Border attributes:

LInwbord = 41
LIbdrtsp = 72
LInwscmk = 15
Llbdrrv = 73
LIbdrint = 74

Blinking
Underlined
Reverse video
Intensity/color

attributes: *}

{*
{*
{*x
{*
{*
{*
{*
{*
{*

{*
{*
{*
{x
{*
{*
{*

{*
{*
{*
{*
{*

{* Item attributes:

LIittext = 66;
LIitchos = 56;
LIitvsbl = 63;
LIitunsl = 59;
LIitdspl = 55;
LIitmlen = 48;
LIitreqr = 57;
LIitecho = 58;
LIdattyp = 65;

{*
{*
{*
{*
{*
{*
{*
{*
{*

Window Llabel
Invisible label
Label position
Centered label
Blinking label
Underlined label
Reverse video label
Intensity/color

Use item intensity

*2}

Cursor size

Blinking cursor

Underlined cursor

Reverse video cursor

Cursor intensity/color

Use Item intensity

Cursor remains on a receive abort

*)

Bordered window

Border takes up space (0 = Yes)
Display scroll markers

Reverse video border

Border intensity/color

%}

Item text

Chosen/enable attributes
Visible item

Unselectable item
Displayed

Maximum edit field length
Required edit field

Echo edit field input
BEdit field datatype

*}
*}
*}
*}

*3}
*3}
*2
*}
*3}
*}
*}

*3}
*3}
*}
*}
*}

*}
*}
*}
*}
*}
*}
*}
*}
*}

E-18 Pascal Interface

NaturalLink Window Manager

Table E-3 Pascal Data Declarations for Window Attributes (Continued)

{* 1Item chosen active attributes: *}

LIitblnk = 60;
LIitundr = 61;
LIitrevr = 62;
LIitint = 64;

{*
{*
{*
{*

Blinking chosen jtem *}
Underlined chosen item *}
Reverse video chosen item *}
Chosen item intensity/color *}

{x 1Item label attributes: *}

LIitlabl = 54;
LIilblnk = 50;
LIilundr = 51;
LIilrevr = 52;
LIilint = 53;
LIilaint = 49;

{*
{*
{*
{*
{*
{*

Item label *}
Blinking label *}
Underlined label *}
Reverse video label *}
Label intensity/color *3}
Use item intensity *}

{* Other miscellaneous attributes: =*}

LIwmpath = 71; {* MWindow Manager help/phrase file path *}

LIpctype = 76; {* Machine type (read only access) *}

LIlcdon = 77; {* PRO-LITE lcd screen indicator *}
Memory E.6 Since the NaturalLink Window Manager and the Pascal application
Considerations program coexist in memory, sufficient memory to accommodate the code

and data areas of each is required.

To achieve correct ordering of the code and data areas for the Pascal
application program and Window Manager object, a routine called
LIMSPSH has been added that defines the memory organization. This rou-
tine places the application code in low memory, followed by the Window
Manager code, the Window Manager data area, and finally the applica-
tion’s data area. This routine declares the Window Manager stack and
heap size, which must be statically allocated. Since the application pro-
gram’s stack and heap area occurs last, it can expand up to the physical
memory limits of the machine.

Get-memory errors appear when the Window Manager heap managment
routines run out of memory. The only way to prevent these errors, if they
occur, is to increase the size of the Window Manager heap area or to
reduce the number of screens (or screen sizes) loaded into memory at the
time the error occured.

The default stack and heap sizes for Window Manager are as follows:

2K stack = hexadecimal 800 bytes
32K heap = hexadecimal 8000 bytes

NaturalLink Window Manager

Pascal Interface E-19

The maximum size of the Window Manager stack and heap is the size in
bytes determined by the difference of hexadecimal FFFO and the size of
the Window Manager data segment (called NL_DATA and found in the
application’s link map). At least hexadecimal 800 bytes should be allocated
for the Window Manager stack size. Using this minimum recommendation
for the stack size, the maximum amount of memory that can be allocated
for the heap area is hexadecimal F7F0 minus the size of the data segment
NL_DATA. This will be approximately hexadecimal EDOO bytes for appli-
cations that use only the Window Manager object and slightly less for
those that additionally use Natural Language object. A change in the Win-
dow Manager stack and heap size will require changing the LIMSPSH
source file, reassembling the routine, and relinking the application
program. '

Linking
Considerations

Dummy
Routines Library

E.7 An example of an MS-DOS link control file used to link a simple Pas-
cal application program follows. Most of the NaturalLink runtime has been
placed in libraries. The order of the libraries is significant, and they must
be placed in the order shown.

LIMSPSH + Memory organization module. This must occur first.

mymain + The Pascal application’s main program.

Any application subroutines, if used.

demo /M The .EXE file.

demo.MAP The .MAP file.

mylib + Any application libraries, if used.

LIMSP + Library of language interface routines to Window
Manager for Pascal.

WM+ Window Manager object library.

APPOTH + Dummy Window Manager called application routines.

PASCAL Pascal run-time library.

E.7.1 The APPOTH library contains dummy routines for all application
routines which are called by Window Manager. These include APPVAL,
APPRCV, APPDIS, APPDEL, APPMSG, and APPINP. If you do not use the
features provided by one or more of these routines, the reference to them
will be resolved by the durnmy modules in this library. If you have your
own versions of these routines, they must be explicitly linked; if they are in
a library, the library must come before APPOTH in the link stream. If you
create any libraries of your application routines, these libraries must come
before any NaturalLink libraries in the link stream.

E-20 Pascal Interface

NaturalLink Window Manager

WMKEYDEF.OBJ
and
WMSTRDEF.OBJ
Files

Object Code
Segments

E.7.2 The key definition file (WMKEYDEF.OBJ) and the internal phrase
file (WMSTRDEF.OBJ) are included as part of the Window Manager library
(WM.LIB). If you have created your own version of these files (by using the
KBUILD utility for WMKEYDEF or by reassembling the source file for
WMSTRDEF), you must explicitly link your own version. Your version of
the files should be placed in the link stream following any application
subroutines that you may have. The linker will then use your versions
instead of the files in the library.

E.7.3 The object code for Window Manager is divided into two groups.
Segments with the name NL_PROG contain executable code, while seg-
ments with the name NL_DATA contain static data, heap, and Window
Manager run-time stack.

Restrictions

E.8 The maximum number of screens loaded from files is set to 20. A
screen can have up to 255 windows and each window can have up to
65,536 items. Since screens are stored in the Window Manager heap, a
screen that contains excessive windows and items can cause a get-memory
error when loaded.

NaturalLink Window Manager

Pascal Interface E-21

FORTRAN INTERFACE

Paragraph Title Page
F.1 Introduction..........ccooviviiiiioiecee e F-3

F.2 Parameter Characteristicsccocvveriirienininiiiiresecceeseseceece F-3
F.2.1 One-Base VAlUEScccevviviiiiiiiiiciccricie ettt F-3
F.2.2 INEEGEYS. ..ot F-3
F.2.3 Character StrNGSccccoeveirireeneece e F-3
F.2.3.1 Passing Strings to Window Managercccceeeveieviiecieiccecene, F-4
F.2.3.2 Strings Returned by Window Managerccccooveveeveiiciecncnenne, F-4
F.3 Callable ROUINES.......cccooieiiiriiiiiiiicicicri e F-5
F.3.1 Function Return Codesccooeniveninininininese e F-5
F.4 Routines Called by Window Managercccccocevvrivnnerciennnieveeseeienns F-14
F.5 FORTRAN Compiling Requirements.................ccccoevveeeveeeecevricricernnn, F-17
F.5.1 Common Blocks and Include Filescccccoovieiiiiiccciiriccee, F-17
F.5.2 Initialization of Window Managerccccceveeeiivienieeecriceeeeee F-17
F.6 Memory Considerations.............ccccocrenininininenienesiecereee s F-20

F.7 Linking Considerationsc.ccocvinineninineneneneneeseeieece e F-21
F.7.1 Dummy Routines Librarycccccoceeveiiiiieeieiiiicececceeece, F-21
F.7.2 WMKEYDEF.OBJ and WMSTRDEF.OBJ Files.........c.cccocevevevevennnnne. F-21
F.7.3 Object Code SegmEents..........c.couecueieieiinieierieeieeeee e F-21
F.8 ReStriCtionS.....ccoovveviiiiiiiiiieicceeeee e F-22

NaturalLink Window Manager

FORTRAN Interface F-1

Introduction

F.1 This appendix presents the information and procedures required to
use the NaturalLink Window Manager with an MS-FORTRAN application
program. Generally, the parts of the NaturalLink package referenced from
FORTRAN procedures are linked with the FORTRAN application program
and act as an application program extension.

Parameter
Characteristics

One-Base Values

Integers

Character Strings

F.2 The only types of parameters used in the Window Manager call rou-
tines are integers and character strings. The exact order of these parame-
ters is shown in Table F-1, FORTRAN Interface Routines.

F.2.1 For all FORTRAN Window Manager calls that use a screen, win-
dow, or item identifier, the value of these identifiers is one-base relative. In
other words, a screen, window, or item number that is 0 is illegal, and
results in an error being returned by the interface. This one-base indexing
is different than the zero-base indexing used by Screen Builder and other
high-level languages. The smallest possible screen, window, or item num-
ber is 1. This corresponds to window 0 and item 0 as assigned by Screen
Builder.

F.2.2 Integers passed from FORTRAN to the Window Manager interface
can be either INTEGER*2 or INTEGER*4. If INTEGER*4 integers are
passed, the upper 16 bits are ignored. It is recommended that these inte-
gers not be used.

F.2.3 Window Manager strings are stored as eight-bit ASCII characters
in sequential bytes of memory. A string pointer points to the first
character, and the string is delimited by a null character (0 binary).

When passing strings from FORTRAN to the Window Manager interface,
two arguments are required:

B The variable name of a string literal or character array

B The maximum length of the literal or array

Since FORTRAN passes function arguments by address, the array name or
string literal serves as the first argument. The following example illustrates

the passing of a character string.

STAT = WMSETS(SCR,WIND,ITEM,FIELD, 'sample string', 13)

NaturalLink Window Manager

FORTRAN Interface F-3

Passing Strings
to Window Manager

Strings Returned
by Window Manager

The following example also illustrates the passing of a character string.

CHARACTER*1 SARRAY (80)
SARRAY(1) = 't!
SARRAY(2) = 'e'
SARRAY(3) = 's!

SARRAY (4) = 't
SARRAY(5) =0

STAT = WMSETS(SCR,WIND,ITEM,FIELD,SARRAY,80)

F.2.3.1 The length parameter plays an important role when strings are
passed to and from Window Manager. For reasons of speed, the length
parameter always indicates the number of characters copied. Window
Manager allocates the number of characters specified plus one character
for a null terminator. After the copy is made, a check for the null terminat-
ing byte is made to find the real length of the string. If the string contained
a null terminator, the null will indicate the end of the string; otherwise, the
null appended to the string at length+1 by Window Manager will signify
the string end.

In the first example in paragraph F.2.3, 13 characters are copied into the
Window Manager data area. This is also the length of the string. In the sec-
ond example, 80 characters are copied, but the null terminator indicates
the string is actually only four characters long.

F.2.3.2 The length parameter is of extreme importance when strings are
passed back to the application program. Here again, Window Manager will
copy back to the application the number of characters specified by the
length parameter. The string will still be null terminated so a scan of the
string will result in finding its true value. The length specified must take
into account room for a null terminator.

This means that the buffer reserved by the application to hold the returned
string must be as long or longer than the specified length parameter. If it is
not, the application will risk having its data area written over. This means
if you have an allocated buffer 10 characters long and specify a length of
20, even if the string to be returned is only 5 characters long, 20 characters
will be returned and 10 bytes of memory will be trashed.

If the length parameter is not specified large enough for the string to be
returned, an error will occur and Window Manager will pass back the
number of characters specified by the length parameter. The truncated
string is still null terminated. This check is made only on the length
parameter, not on the buffer itself.

F-4 FORTRAN Interface

NaturalLink Window Manager

Callable
Routines

Function
Return Codes

F.3 Table F-1 correlates generic procedure calls to the corresponding
FORTRAN function calls. These are all the calls the application can make
to Window Manager. For a summary of the calls that Window Manager
makes to the application, see paragraph F.4, Routines Called by Window
Manager. The table provides a specification of the FORTRAN calling
sequence, a description of the function, and the function parameters. All
routines are FORTRAN functions and must be declared and used as such.

F.3.1 All of the function codes return a status code. The returned value
from each function is zero if no error was encountered or nonzero if an
error condition occurred.

These nonzero codes are divided into two levels of severity. A negative
code is a warning code. Warning codes are returned when the call did not
complete as expected, but no harm was done. These codes can be ignored,
but they indicate incorrect use of Window Manager and should be checked
during the development process.

Positive codes indicate serious error conditions. When an application
program detects a positive code, the problem must be identified and
corrected. These positive codes mean that something required to process
the call was in error, processing was halted, and future calls will probably
fail as well.

A message for any of the nonzero codes can be displayed by calling the
Display Message From Message Manager routine. The messages are stored
in the LIERRMSG.NMS file. This is the filename that must be supplied in the
Message Manager call along with the code returned from the Window
Manager call. LIERRMSG.NM$ is included on the Window Manager object
disk.

The Add Window, Select Window, Refresh Window, Display Window,
Release Window, and Delete Window operations cannot return a detailed
status code when operating on all windows in a screen. To be more
specific, when the window number parameter of these calls is set to —1,
the status code returned indicates that an error or warning was encoun-
tered during operations on one or more windows. This status implies a
success or failure for the operations on all the windows. When the window
number parameter is set to a value equal to or greater than 1, a nonzero
return status is a specific error condition.

The only operation performed on pop-up windows when the window
number is set to —1 is the Delete operation. All other operations on pop-up
windows must be performed with an individual call for each pop-up
window.

NaturalLink Window Manager

FORTRAN Interface F-5

Table F-1 FORTRAN Interface Routines

INITIALIZE WINDOW MANAGER
WMINIT()

Name:

Call Sequence:

Description: Detects which machine the application is running on, initializes the video display attri-
butes, installs keyboard mapping if needed, and loads the run-time version of the internal
phrase file (NLXPHRAS.NM$), if used. This routine must be called before any other Win-
dow Manager routines to ensure that Window Manager works correctly.

Parameters: None

Name: RESET WINDOW MANAGER

Call Sequence: WMRSET()

Description: Restores the values set by the WMINIT procedure. Must be called to ensure program ter-

minates correctly.

Parameters: None

CAUTION: WMRSET must be called prior to program termination. If it is not called, a system crash is
likely to occur when the next program is executed. This is because WMRSET restores any keyboard
mapping invoked by WMINIT and resets the cursor and video attributes. In addition to calling
WMRSET before normal program termination, the application program should provide a way to call
WMRSET in the event of a critical MS-DOS error in order to prevent a crash. For details on how to
trap the termination addresses, see the information on DOS Interrupts 22H and 23H in the MS-DOS

Operating System manual.

Name:

Call Sequence:

LOAD SCREEN FILE
WMLOAD(SCREEN, PATHNAME, LENGTH)

Description: Loads the screen description from the pathname into memory. A screen must be loaded
before any of its windows can be manipulated by Window Manager.
Parameters:
SCREEN: Output. Equal to 0 — Load failed. Integer greater than or equal to 1 — Integer assigned by
WM to identify screen.
PATHNAME: Input. Character string that specifies the pathname of the screen description file.
LENGTH: Input. Maximum length to be reserved for the pathname string.
Name: ADD WINDOW

Call Sequence:

WMWADD(SCREEN, WINDOW)

Description: Makes a window known to Window Manager for subsequent operations.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to — 1 — Adds all windows for a screen, except pop-up windows.

Integer greater than or equal to 1 — Window number to add.

F-6 FORTRAN Interface

NaturalLink Window Manager

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:

SELECT WINDOW
WMWSE L(SCREEN, WINDOW)

Description: Makes a window active and flags the window for repainting, which will be performed with
the next Receive call.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to — 1 — Selects all windows for a screen, except pop-up windows.
Integer greater than or equal to 1 — Window number to select.
Name: REFRESH WINDOW

Call Sequence:

WMWRE F(SCREEN, WINDOW)

Description: Flags the window for text and border repainting. The window is redisplayed the next time
a Receive call is performed.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to — 1 — Refreshes all windows for a screen, except pop-up windows.
Integer greater than or equal to 1 — Window number to refresh.
Name: DISPLAY WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:

WMWD IS(SCREEN, WINDOW)

Repaints the window text and border without delay. A Receive call is not required for the
Display procedure to execute.

Input. Integer assigned by WMLOAD to identify the screen.

Input. Integer equal to — 1 — Displays all windows for a screen, except pop-up windows.
Integer greater than or equal to 1 — Window number to display.

NaturalLink Window Manager FORTRAN Interface F-7

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:

RECEIVE FROM WINDOW
WMWRCV(SCREEN, WINDOW, ITEM, KEY, ITEXT, LENGTH)

Description: Receives user responses from an active window. Window Manager retains control until an
item is selected or until an undefined key is pressed. At that time Window Manager returns
control to the application call routine.

Parameters:

SCREEN: Input and output. The input integer is assigned by WMLOAD to identify the screen. The
output integer specifies the screen of the window from which the response is received.

WINDOW: Input and output. The input integer specifies the window from which user response is
desired. The output integer specifies the window of the item selected or the window the
cursor was in when an unknown key was pressed.

ITEM: Input and output. The input integer specifies the item upon which the cursor is initially
placed. The output integer specifies the item selected.

KEY: Output. Code for the key pressed by the user.

ITEXT: Output. Character string to receive text of the selected item.

LENGTH: Input. Maximum length reserved for string (item text).

Name: RELEASE WINDOW

Call Sequence:

WMWRE L(SCREEN, WINDOW)

Description: Renders the window inactive and flags the window to have only text repainted. The win-
dow is redisplayed the next time a Receive call is performed.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Releases all active windows for a screen, except pop-up win-
dows. Integer greater than or equal to 1 — Window number to release.
Name: DELETE WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:

WMWDE L(SCREEN, WINDOW)

Deletes the window from the screen and makes it unknown to Window Manager. If a
window that covers other windows is deleted, the covered windows are flagged to have
their borders and text repainted.

Input. Integer assigned by WMLOAD to identify the screen.

Input. Integer equal to —1 — Deletes all windows for a screen, including pop-up windows.
Integer greater than or equal to 1 — Window number to delete.

F-8 FORTRAN Interface

NaturalLink Window Manager

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:

SAVE SCREEN
WMWSAV(SCREEN, PATHNAME, LENGTH)

Description: Saves a screen to a file. This does not unload a screen from memory, and any operation
can be performed on any window in that screen after the SAVE procedure has been com-
pleted. This is useful if windows have been modified and they need to be saved.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen file to be saved.
PATHNAME: Input. String that specifies the pathname of the file where the screen is to be saved.
LENGTH: Maximum length reserved for the pathname string.

Name: UNLOAD SCREEN

Call Sequence: WMUNLD(SCREEN)

Description: Releases the screen description from memory.
Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
Name: ADD ITEM

Call Sequence:

WMIADD(SCREEN, WINDOW, ITEM)

Description: Adds an item to the end of the item table and increases the size of the item table by 1.
Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

ITEM: Output. ltem number of the added item.
Name: INSERT ITEM

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
ITEM:

WMTIINS(SCREEN, WINDOW, ITEM)

Inserts a new item into the item table in front of the item position specified. All subsequent
items are renumbered.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number in the screen description.

Input. Position in the item table where the item is to be inserted.

NaturalLink Window Manager

FORTRAN Interface F-9

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:

Description:

DELETE ITEM
WMIDEL(SCREEN, WINDOW, ITEM)

Deletes an item from the item table. All subsequent items are renumbered.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

ITEM: Input. Number of the item to be deleted. The item number must be greater than zero.
Name: CREATEITEM TABLE

Call Sequence:

WMICRE(SCREEN, WINDOW, NBR)

Description: Creates an item table with the specified number of items. An item table can be created dur-
ing initial window definition or during program execution. An item table is created when
the current number of items is 0. It manipulates the item table based on the relationship
between NBR and the current number of items in the window as follows:

B Current number of items equals 0 — Creates an item table with NBR of items.

B NBR less than current number of items — Deletes items (current number items minus
NBR) from the end of the item table. This condition returns a warning.

B NBR greater than current number of items — Adds items (NBR minus current number of
items) to the end of the item table.

B NBR equals 0 — Deletes the entire item table. This also returns a warning.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

NBR: Input. Desired number of items to be created for the window.
Name: CREATE WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:

WINDOW:

WMWCRE(SCREEN, WINDOW)

This routine creates a new window and adds it to the screen specified. If an invalid screen
number is specified, a new screen will be created.

Input and output. Input integer assigned by WMLOAD to identify the screen to which the
new window should be added. The output integer specifies the screen number of the new
screen created if the input value was an invalid screen.

Output. Window number of the window which was created.

F-10 FORTRAN Interface

NaturalLink Window Manager

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:

GET ATTRIBUTE VALUE
WMGETV(SCREEN, WINDOW, ITEM, FIELD, IVALUE)

Description: References the window structure and retrieves a value for the requested numeric attribute.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific window.
WINDOW: Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.
ITEM: Input. Number of the item containing the attribute about which information is being
requested. The value is ignored if the field is not associated with an item.
FIELD: Input. Name of attribute constant desired. See Table F-3, Data Declarations for the
FORTRAN Interface, for a listing and description of the valid attribute constant names.
IVALUE: Output. Current value of the requested attribute.
Name: GET STRING VALUE

Call Sequence:

Description:

Parameters:
SCREEN:

WINDOW:

ITEM:

FIELD:

STRING:
LENGTH:

WMGETS(SCREEN, WINDOW, ITEM, FIELD, STRING, LENGTH)

References the window structure and retrieves the string value for the requested string
attribute.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item containing the attribute about which information is being
requested. The value is ignored if the attribute is not associated with an item.

Input. This parameter uses one of the following attribute constant names:

wlabel
wshowf
itlabl
wmpath
ittext

See Table F-3 for a description of the valid attribute constant names.
Output. Character variable to receive returned string.

Input. Maximum length reserved for the string.

NaturalLink Window Manager FORTRAN Interface F-11

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:
Description:
Parameters:

SCREEN:

WINDOW:

ITEM:

FIELD:

IVALUE:

SET ATTRIBUTE VALUE
WMSETV(SCREEN, WINDOW, ITEM, FIELD, IVALUE)

References the window structure and sets the numeric attribute to the specified value.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item having the attribute about which information is being specified.
The value is ignored if the attribute is not associated with an item.

Input. Name of the attribute constant desired. See Table F-3 for a listing and description of
the valid attribute constant names.

Input. Integer value for the specified attribute.

CAUTION: No validation checks are performed on the IVALUE parameter in the WMSETYV call. This
reduces the code size of the high-level language interface. It is assumed that the value is in the cor-
rect range for the attribute being set. The other parameters—Screen, Window, Item, and Field—are
validated and error codes are returned if they are incorrect. See Section 3, Window Attributes, for
the legal attribute values.

Name:

Call Sequence:
Description:
Parameters:

SCREEN:

WINDOW:

ITEM:

FIELD:

STRING:
LENGTH:

SET STRING VALUE
WMSETS(SCREEN, WINDOW, ITEM, FIELD, STRING, LENGTH)

References the window structure and sets a string attribute to the specified string.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item having the attribute for which information is being specified.
The value is ignored if the field is not associated with an item.

Input. This parameter uses one of the following attribute constant names:

wlabel
wshowf
itlabl
wmpath
ittext

See Table F-3 for a listing and description of the valid attribute constant names.
Input. Character string constant containing the defined text.

Input. Length of the string being entered.

F-12 FORTRAN Interface NaturalLink Window Manager

Table F-1 FORTRAN Interface Routines (Continued)

Name:

Call Sequence:

CLEAR SCREEN
WMCLRS()

Description: Clears the text from the display area.
Parameters: None
Name: DISPLAY MESSAGE FROM MESSAGE MANAGER

Call Sequence:

Description:

DISMSG(MSGNUM, VARTXT, TXTLEN, VARSEP, MSGFIL, LENGTH)

Displays the message associated with a message number from a message file and inserts
the variable text, if any is given, into the message.

Parameters:

MSGNUM: Input. Integer message number of the message that is to be displayed. The message num-
ber can be either a status from NaturalLink or a message built by the software designer
using Message Builder.

VARTXT: Input. String that contains a maximum of three variable text substrings to be inserted in
the actual text message by Message Manager. If there is no variable text, the string is a null
string. Each variable text substring must be separated by the character specified in the
separator parameter. The separator character used cannot be a part of the variable text
itself. For example, using the tilde as a separator would give: **1st variable text ~ 2nd vari-
able text ~ 3rd variable text”.

TXTLEN: Input. Length of the variable text string.

VARSEP: Input. Integer indicating the ASCII character which is used as the variable text separator.
For example, a decimal value of 126 is passed to indicate the tilde ~ character.

MSGFIL: Input. String that contains the message file pathname from which the text is to be
retrieved.

LENGTH: Input. Maximum length reserved for the message file pathname.

Name: RESET NATURALLINK MEMORY AREA

Call Sequence:

Description:

Parameters:

WMELSH()

This routine clears out the memory area used by the NaturalLink run time. Any screens
loaded or other data in this memory area will be lost and must be reloaded before
NaturalLink processing can continue.

None.

NaturalLink Window Manager

FORTRAN Interface F-13

Routines
Called by
Window

Manager

F.4 Table F-2, Application-Provided Routines, correlates generic proce-
dure calls to the corresponding FORTRAN function calls. These routines
are supplied by the application and are called by Window Manager. If the
functionality provided by these calls is not desired, the dummy routines
provided on the Window Manager Runtime Object disk can be used
instead. All of the application-provided calls except the validation call and
the input call can return error status codes to Window Manager. If the sta-
tus returned is nonzero, Window Manager will return to the application
program with the status code.

Table F-2 Application-Provided Routines

Name:
Call Sequence:

Description:

APPLICATION VALIDATION ROUTINE
APPVAL(SCREEN, WINDOW, ITEM, KEY, DATATYPE)

This routine is provided by the developer. Window Manager calls this routine when an edit
field needs to be type-checked. It must return the status of the validation check. The
defined statuses are as follows:

—2 — Invalid/clear, type check failed, clear out edit field
—1 — Invalid/no clear, type check failed, field untouched
0 — Valid, type check passed, continue
1 — Ignore, type check not done, return to edit field
2 — Exit, return to application immediately

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the window containing the item being validated.
ITEM: Input and output. The input integer specifies the item to be validated. The output integer
indicates which item the cursor should be placed on upon return to Window Manager.
KEY: Input. Integer code for the key pressed by the user.
DATATYPE: Input. Datatype assigned this item in the Set Item Attributes option in Screen Builder.
Name: APPLICATION DISPLAY WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
UDWNBR:

APPDIS(SCREEN, WINDOW, UDWNBR)

This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be displayed. This routine must display all aspects of the window except
the window border.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number of the user-defined window to display.

Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).

F-14 FORTRAN Interface NaturalLink Window Manager

Name:

Call Sequence:

APPLICATION RECEIVE WINDOW
APPRCV(SCREEN, WINDOW, ITEM, KEY, UDWNBR, XPOS, YPOS)

Description: This routine is provided by the developer. Window Manager calls it when information must
he received from a user-defined window. This routine must handle all user input for the
given window.

Parameters:

SCREEN: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number of the user-defined window from which to receive information.

ITEM: Input and Output. The input integer specifies the item upon which the cursor should be ini-
tially placed. The output integer specifies the item selected.

KEY: Output. Integer code for the key pressed by the user.

UDWNRBR: Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).

XPOS: Output. This is the integer indicating the X character coordinate of the cursor. It is used
only if the KEY parameter returned is a window movement key code.

YPOS: Output. This is the integer indicating the Y character coordinate of the cursor. It is used
only if the KEY parameter returned is a window movement key code.

Name: APPLICATION DELETE WINDOW

Call Sequence:

Description:

Parameters:
SCREEN:
WINDOW:
UDWNBR:

APPDEL(SCREEN, WINDOW, UDWNBR)

This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be deleted. This routine must delete all nontext portions of the window.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number of the user-defined window to be deleted.

Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).

NaturalLink Window Manager FORTRAN Interface F-15

Table F-2 Application-Provided Routines (Continued)

Name:

Call Sequence:

APPLICATION DISPLAY MESSAGE
APPMSG(MSGSCR, MSGWND, KEY, MSGNBR, MSGTYP, SCREEN, WINDOW, ITEM)

Description: This routine is provided by the developer. It is called when a user-defined message needs
to be displayed. This routine must handle the display of the message, response from the
user to the message, and the deletion of the nontext portion of the message from the
screen.

Parameters:

MSGSCR: Input. Integer assigned by Window Manager to identify the screen containing the message
window.

MSGWND: Input. Window number of the user-defined message window.

KEY: Output. Integer code for the key pressed by the user.

MSGNBR: Input. Number of the message to be displayed. This is the number assigned to the message
by the Message Builder utility.

MSGTYP: Input. Integer indicating the type of message being displayed. The integer is one of the fol-
lowing values:
5 — Help
6 — Error
7 — Warning
8 — Please Note

SCREEN: Input. Integer assigned by WMLOAD to identify the screen containing the window the cur-
sor was in when the HELP key was pressed. It is used only for Help messages.

WINDOW: Input. Window number of the window the cursor was in when the HELP key was pressed.
Used only for Help messages.

ITEM: Input. Input integer specifies the item the cursor was on when the HELP key was pressed.
A value of —1 is passed when window level help is being displayed. It is used only for Help
messages.

Name: APPLICATION INPUT ROUTINE

Call Sequence:

Description:

Parameters:

APPINP()

This routine is provided by the developer. Window Manager calls it when input from the
user is needed. It can be used to provide an alternative input method to the keyboard. This
routine, if used, must still return valid key codes. A value of 0 must be returned if there is
no key code ready to be returned.

None.

F-16 FORTRAN Interface NaturalLink Window Manager

FORTRAN
Compiling
Requirements

Common Blocks
and Include Files

Initialization of
Window Manager

F.5 Window Manager requires the use of common blocks and Include
files. These are provided with the Window Manager package. Certain ini-
tialization steps for the common block must also be performed before mak-
ing any Window Manager interface calls.

F.5.1 A common block containing attribute names for the WMSETYV,
WMGETV, WMSETS, and WMGETS Window Manager routines is provided
to keep hard-coded constants out of the FORTRAN code. These constants
are likely to change or at least expand with future releases of Window
Manager. The common name is /WMCOM/ and can be included with an
INCLUDE: WMFIELD.COM statement. In any procedures which call the
Window Manager routines to use window attributes (for example,
WMGETV, WMSETS, and so on), you must include WMFIELD.COM as well
as in the main program. The common block is initialized by the
WMCINLFOR routine included in this package. The external declarations
of the Window Manager routines are in WMEXTRNS.FOR and should also
be included in FORTRAN source modules. A listing of the common block is
given in Table F-3.

F.5.2 An application program needs to call the WMCINI routine (CALL
WMCINI) to initialize the /WMCOM/ common block before the application
program calls a WMGETV, WMGETS, WMSETV, or WMSETS routine.

NaturalLink Window Manager

FORTRAN Interface F-17

Table F-3 Data Declarations for the FORTRAN Interface

Name

Type Value Description for Nonzero or True Condition

WpOSUX
wposuy
wpos Lx
wposly

awdtyp
wincol
nwprio
nwmus L
nwpopu
inpant
wofset
jautsc
icentr
inorep
inomul
cursin
idirct
ilmlen
iljust
wshowf
nwactv
witmnb

ablink
aunder
arever
actint

Inactive
nwb Lnk
nwundr
nwrevr
nwintn

wlabel
wlvsbl
wlpos

wlcent
wlblnk
wlundr
wlrevr
wlint

wlaint

OO0 0000000000000 O0O00000000000O000000000000000000O0O000O0

int
int
int
int

Window format:

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
str
int
int

Active window

int
int
int
int

Window position:

HSUWN -

Left-most column
Top row
Right-most column
Bottom row

Window type
Number of columns

Window priority (for application use only)

Multiple selection window

Pop-up window

Special repaint on receive

First item to be displayed (1 based)
Show last item when painted

Center all items

Don't redisplay current items
Disable multiple Lline items

Allow cursor to enter window
Multiple column order

Maximum item label length

Item label justification

Pathname of window file

Active window (read only access)
Number of items (read only access)

attributes:

6
7
8
9

Blinking
Underline
Reverse video
Intensity/color

window attributes:

int
int
int
int

str
int
int
int
int
int
int
int
int

16
17
18
19

22
23
24
25
27
28
29
30
26

Blinking
Underline
Reverse video
Intensity/color

Window Label attributes:

Window label
Invisible Llabel

Label position
Centered label
Blinking label
Underlined label
Reverse video label
Label intensity/color
Use item intensity

F-18 FORTRAN Interface

NaturalLink Window Manager

Table F-3 Data Declarations for the FORTRAN Interface (Continued)

Name

Type Value Description for Nonzero or True Condition

Cursor attributes:

Cursor size

Blinking cursor

Underlined cursor

Reverse video cursor

Cursor intensity/color

Use Item intensity

Cursor remains on item if receive abort

Bordered window

Border takes up space (0 = Yes)
Display scroll markers

Reverse video border

Border intensity/color

Item text

Chosen/enable attributes
Visible item

Unselectable item
Displayed

Maximum edit field length
Required edit field

Echo edit field input
Edit field datatype

Blinking chosen item
Underlined chosen item
Reverse video chosen item
Chosen item intensity/color

Item label

Blinking label
Underlined Llabel
Reverse video label
Label intensity/color
Use item intensity

Other miscellaneous attributes:

Window Manager help/phrase file path
Machine type (read only access)
PRO-LITE lcd screen indicator

c

c

c crsize int 31
c cblink int 33
c cunder int 34
c crever int 35
c curint int 37
c calint int 32
c cstays int 36
c

¢ Border attributes:
c nwbord int 14
c bdrtsp int 72
c nwscmk int 15
c bdrrv int 73
c bdrint int 74
c

¢ Item format attributes:
c ittext str 66
c itchos int 56
c itvsbl int 63
c itunsl 1int 59
o itdspl int 55
c itmlen 1int 48
c itreqr int 57
c itecho int 58
c dattyp int 65
c

¢ Item-chosen attributes:
c itblnk int 60
c itundr int 61
c itrevr int 62
c itint int 64
c

¢ Item label attributes:
c itlabl str 54
c ilblnk int 50
c ilundr int 51
o ilrevr int 52
c ilint int 53
c ilaint 1nt 49
c

c

c wmpath int 71
c pctype int 75
c Lcdon int 76

NaturalLink Window Manager

FORTRAN Interface F-19

Memory
Considerations

F.6 Since the NaturalLink Window Manager and the FORTRAN applica-
tion program coexist in memory, sufficient memory to accommodate the
code and data areas of each is required.

To achieve correct ordering of the code and data areas for the FORTRAN
application program and Window Manager object, a routine called
LIMSFSH has been added. This routine defines the memory organization.
It places the application program code in low memory, followed by the
Window Manager code, the Window Manager data area, and finally the
application program’s data area. The routine declares the Window Man-
ager stack and heap size, which must be statically allocated. Since the
application program’s stack and heap area occurs last, it can expand up to
the physical memory limits of the machine.

Get-memory errors appear when the Window Manager heap management
routines run out of memory. The only way to prevent these errors, if they
occur, is to increase the size of the Window Manager heap area or to
reduce the number of screens (or screen sizes) loaded into memory at the
time the error occurred.

The default stack and heap sizes for Window Manager are as follows:

2K stack = hexadecimal 800 bytes
32K heap = hexadecimal 8000 bytes

The maximum size of the Window Manager stack and heap is the size in
bytes determined by the difference of hexadecimal FFFO and the size of
the Window Manager data segment (called NL_DATA and found in the
appplication program’s link map). At least hexadecimal 800 bytes should
be allocated for the Window Manager stack size. Using this minimum
recommendation for the stack size, the maximum amount of memory that
can be allocated for the heap area is hexadecimal F7F0 minus the size of
the data segment NL_DATA. This will be approximately hexadecimal
EDOO bytes for application programs that use only the Window Manager
object and slightly less for those that additionally use Natural Language
object. A change in the Window Manager stack and heap sizes will require
changing the LIMSFSH.ASM source file, reassembling the routine, and
relinking the application.

F-20 FORTRAN Interface

NaturalLink Window Manager

Linking
Considerations

Dummy
Routines Library

WMKEYDEF.OBJ
and
WMSTRDEF.OBJ
Files

Object Code
Segments

F.7 An example of a link control file used to link a simple FORTRAN
application program follows. Most of the NaturalLink runtime has been
placed in libraries. The order of the libraries is significant and they must be
placed in the order shown.

LIMSFSH + Memory organization module. This must occur first.
mymain + The FORTRAN application’s main program.
WMCINI + FORTRAN subroutine to initialize WMCOM.
Any application subroutines, if used.
demo /M The .EXE file.
demo.MAP The .MAP file.
mylib + Any application libraries, if used.
LIMSF + Library of language interface routines to Window
Manager for FORTRAN.
WM+ Window Manager object library.
APPOTH + Dummy Window Manager called application routines.
FORTRAN FORTRAN run-time library.

F.7.1 The APPOTH library contains dummy routines for all application
routines which are called by Window Manager. These include APPVAL,
APPRCV, APPDIS, APPDEL, APPMSG, and APPINP. If you do not use the
features provided by one or more of these routines, the reference to them
will be resolved by the dummy modules in this library. If you have your
own versions of these routines, they must be explicitly linked; if they are in
a library, the library must come before APPOTH in the link stream. If you
create any libraries of your application routines, these libraries must come
before any NaturalLink libraries in the link stream.

F.7.2 The key definition file (WMKEYDEF.OBJ) and the internal phrase
file WMSTRDEF.OBJ) are included as part of the Window Manager library
(WM.LIB). If you have created your own version of these files (by using the
KBUILD utility for WMKEYDEF or by reassembling the source file for
WMSTRDEF), you must explicitly link your own version. Your version of
the files should be placed in the link stream following any application
subroutines that you may have. The linker will then use your versions
instead of the files in the library.

F.7.3 The object code for Window Manager is divided into two groups.
Segments with the name NL_PROG contain executable code, while seg-
ments with the name NL_DATA contain static data, heap, and the Window
Manager run-time stack.

NaturalLink Window Manager

FORTRAN Interface F-21

Restrictions F.8 The maximum number of screens loaded from files is set to 20. A
screen can have up to 255 windows and each window can have up to
65,536 items. Since screens are stored in the Window Manager heap, a

screen which contains excessive windows and items can cause a get-
memory error when loaded.

F-22 FORTRAN Interface NaturalLink Window Manager

COMPILED BASIC INTERFACE

Paragraph Title Page
G.1 INtrOdUCHION (oot G-3
G.2 Parameter CharacteriStiCs........ccccveviiiiiiieeniiieiie e se e e G-3

G.2.1 2er0-Base ValUescooociiiiiiiiiiiiieiie ettt G-3
G.2.2 Names of Variables........ccoocoriiiiiiii e G-3
G.2.3 IIEEGEIS ettt st G-3
G.24 Character StrINGS.......oovvieeiereeieeiie ettt et eere e evees G-3
G.24.1 Passing Strings to Window Managerc..cccoooceeviiviecrencicnennennn, G-4
G.2.4.2 Strings Returned by Window Manager............ccccccoevveiniiinnecnnnnne, G4
(.3 Callable ROULINESooocviiiiiieiree et G-5
G.3.1 Procedure Return Codescccoevvviiiviieciiiieeeeieeeeeecee e G-5
G.4 Routines Called by Window Manager..........cccooeveeevveeneeeniee e G-15
G.5 BASIC Compiling Requirementsccccoeeeeiieieenieiieceeece e G-22
G.5.1 INCIUAE FIleS.....viiiieiiieiiieee ettt G-22
G.6 Memory Considerationsccceereriiieriinniiniesee e e, G-25
G.7 Linking Considerations..........ccocvecierieriieniinient ettt et er e G-26
G.7.1 Dummy Routines Library.......c.ccccooevirinniininiiieeeeeesceens G-26
G.7.2 WMKEYDEF.OBJ and WMSTRDEF.OBJ Filesccccooveeiiiiivniinnns G-26
G.7.3 Object Code SegmEnts...........coceeiiiiirriieiie e G-26
G.8 ReSIIICHOMS vttt ettt e et eeeareaeeans G-26

NaturalLink Window Manager

Compiled BASIC Interface G-1

Introduction

G.1 This appendix presents the information and procedures required to
use the NaturalLink Window Manager with an MS-Compiled BASIC
application program. Generally, the parts of the NaturalLink package ref-
erenced from Compiled BASIC procedures are linked with the Compiled
BASIC application program and act as an application program extension.

Parameter
Characteristics

Zero-Base Values

Names of Variables

Integers

Character Strings

G.2 The only types of parameters used in the Window Manager call
routines are integers and character strings. The exact order of these para-
meters is shown in Table G-1, Compiled BASIC Interface Routines.

G.2.1 For all Compiled BASIC Window Manager calls that use a screen,
window, or item identifier, the value of these identifiers is zero-base rela-
tive. The smallest possible screen, window, or item number is 0. This cor-
responds to window 0 and item 0 as assigned by Screen Builder.

G.2.2 Certain variable names commonly used in calls to Window Man-
ager routines are not applicable when writing in Compiled BASIC because
they conflict with Compiled BASIC reserved words such as KEY and
SCREEN. In the examples in Table G-3, Data Declarations for the Compiled
BASIC Interface, these words have been replaced with KEY1 and
SCREEN1 to minimize the differences from the examples in the
appendixes for other high-level language interfaces.

G.2.3 Integers passed from Compiled BASIC to Window Manager should
be defined as INTEGERS, using either the DEFINT command or the integer
override % character.

G.2.4 Window Manager strings are stored as eight-bit ASCII characters
in sequential bytes of memory. A string pointer points to the first
character, and the string is delimited by a null character (0 binary).

When passing strings from BASIC to Window Manager and back, only one
argument is required. Use the name of a string variable, such as
FILENAMES.

NaturalLink Window Manager

Compiled BASIC Interface G-3

Passing Strings
to Window Manager

Strings Returned
by Window Manager

G.2.4.1 When passing strings to Window Manager, a length parameter
should not be specified because the BASIC string descriptor contains the
length allocated for the string. Note that this differs from other high-level
languages that require a length parameter for strings.

The first example illustrates the passing of a character string as a constant.

CALL WMSETS(SCREEN1,WIND,ITEM,FIELD,"sample string',STATUS)

The second example illustrates the passing of a string variable. Note that
the assignment allocates memory for the string.

STRVAL$="'sample string"
CALL WMSETS(SCREEN1,WIND,ITEM,FIELD,STRVAL$,STATUS)

Compiled BASIC passes the address of the string descriptor to the WMSETS
(Set String Value) call. Window Manager uses the length contained in the
string descriptor to indicate how many characters need to be copied from
the BASIC application’s data area to the Window Manager data area.
Window Manager allocates the number of characters specified by the
length plus one character for a null terminator, which is always appended
to the string.

In both examples, 13 characters are copied.

G.2.4.2 For strings passed from Window Manager to BASIC, the
maximum length of the string must be allocated. One way to do this is
shown in the following example:

STRVAL$ = SPACE$(maxlength)

The length contained in the string descriptor as a result of this allocation is
of extreme importance when strings are passed back to the application
program. Window Manager will copy back the number of characters speci-
fied by this length to the application.

Window Manager will place an ASCII null byte at the end of the string as a
terminator. When you return from a Window Manager routine, you can
use the following command to correct the length of the string descriptor,
which indicates the position of the null character.

STRVAL$=LEFT$(STRVALS, INSTR(STRVALS,CHR$(0))).

G-4 Compiled BASIC Interface

NaturalLink Window Manager

To test whether a null string was passed from Window Manager, use the
following command sequence:

STRVAL$=LEFT$(STRVALS, INSTR(STRVALS$,CHR$(0))).
if STRVAL$=CHR$(0) goto XXX

The allocated string must take into account room for the null terminator. If
the allocated string buffer is not large enough for the string to be returned,
an error will occur and Window Manager will pass back only the number
of characters specified by the length contained in the string descriptor. The
truncated string is still null terminated.

Callable
Routines

Procedure
Return Codes

G.3 Table G-1, Compiled BASIC Interface Routines, correlates generic
procedure calls to the corresponding Compiled BASIC function calls. These
are the calls that the application can make to Window Manager. The table
provides a specification of the Compiled BASIC calling sequence, a descrip-
tion of the procedure, and the procedure parameters. All routines are
external subroutines and must be invoked using the CALL statement. For a
summary of the calls that Window Manager makes to the application, see
paragraph G.4, Routines Called by Window Manager.

G.3.1 All the procedures return a status code. The status is always sent
as the last parameter in the list for every call, regardless of the number of
parameters sent. This is because Compiled BASIC does not support exter-
nal function calls. This last parameter is treated the same as a return
function value in the other high-level language interfaces.

The returned value from each procedure is zero if no error or warning was
encountered or nonzero if an error or warning condition occurred.

These nonzero codes are divided into two levels of severity: negative
codes and positive codes. A negative code is a warning code. Warning
codes are returned when the call did not complete as expected but no
harm was done. These codes can be ignored; they indicate incorrect or
inefficient use of Window Manager and should be checked during the
development process.

Positive codes indicate serious error conditions. When an application
program detects a positive code, the problem must be identified and
corrected. These positive codes mean that something required to process
the call was in error, processing was halted, and future calls will probably
fail as well.

NaturalLink Window Manager

Compiled BASIC Interface G-5

A message for any of the nonzero codes can be displayed by calling the
Display Message From Message Manager routine. The messages are stored
in the LIERRMSG.NMs$ file. This is the filename that must be supplied in the
Message Manager call, along with the code returned from the Window
Manager call. LIERRMSG.NM$ is included on the Window Manager object
disk. A listing of all error codes and messages can be found in Appendix H,
Window Manager Error Codes.

The Add Window, Select Window, Refresh Window, Display Window,
Release Window, and Delete Window operations cannot return a detailed
status code when operating on all windows in a screen. To be more
specific, when the window number parameter of these calls is set to —1,
the status code returned indicates that an error or warning was encoun-
tered during operations on one or more windows. This status implies a
success or failure for the operations on all the windows. When the window
number parameter is set to a value equal to or greater than 0, a nonzero
return status is a specific error condition.

The only operation performed on pop-up windows when the window
number is set to —1 is the Delete operation. All other operations on pop-up
windows must be performed with an individual call for each pop-up
window.

Table G-1 Compiled BASIC Interface Routines

Name: INITIALIZE WINDOW MANAGER
Call Sequence: CALL WMINIT(STATUS)

Description: Detects which machine the application is running on, initializes the video display attri-
butes, installs keyboard mapping if needed, and loads the run-time version of the internal
phrase file (NLXPHRAS.NMS$), if used. This routine must be called before any other
Window Manager routines to ensure that Window Manager works correctly.

Parameters:
STATUS: Output. Call return status.
Name: RESET WINDOW MANAGER
Call Sequence: CALL WMRSET(STATUS)
Description: Restores the values set by the WMINIT procedure. It must be called to ensure program
terminates correctly.
Parameters:
STATUS: Output. Call return status.

CAUTION: WMRSET must be called prior to program termination. If it is not called, a system crash is
likely to occur when the next program is executed. This is because WMRSET restores any keyboard
mapping invoked by WMINIT, and resets the cursor and video attributes. In addition to calling
WMRSET before normal program termination, the application program should provide a way to call
WMRSET in the event of a critical MS-DOS error to prevent a crash. For details on how to trap the
termination addresses, see the information on DOS Interrupts 22H and 23H in The MS-DOS Oper-
ating System manual.

G-6 Compiled BASIC Interface NaturalLink Window Manager

Table G-1 Compiled BASIC Interface Routines (Continued)

Name:
Call Sequence:

Description:

LOAD SCREEN FILE
CALL WMLOAD(SCREEN1, PATHNAMES, STATUS)

Loads the screen description from the pathname into memory. A screen must be loaded
before any of its windows can be manipulated by Window Manager.

Parameters:
SCREEN1: Output. Equal to — 1 — Load failed. Integer greater than or equal to 0 — Integer assigned
by Window Manager to identify the screen.
PATHNAMES$: Input. Character string that specifies the pathname of the screen description file.
STATUS: Output. Call return status.
Name: ADD WINDOW

Call Sequence:

Description:

CALL WMWADD(SCREEN1, WINDOW, STATUS)

Makes a window known to Window Manager for subsequent operations.

Parameters:
SCREENT1: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Adds all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to add.
STATUS: Output. Call return status.
Name: SELECT WINDOW
Call Sequence: CALL WMWSEL(SCREEN1, WINDOW, STATUS)

Description:

Parameters:
SCREEN1:
WINDOW:

STATUS:

Makes a window active and flags the window for repainting, which will be performed with
the next Receive call.

Input. Integer assigned by WMLOAD to identify the screen.

Input. Integer equal to —1 — Selects all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to select.

Output. Call return status.

NaturalLink Window Manager

Compiled BASIC Interface G-7

Table G-1 Compiled BASIC Interface Routines (Continued)

Name:

Call Sequence:

Description:

REFRESH WINDOW
CALL WMWREF(SCREEN1, WINDOW, STATUS)

Flags the window for text and border repainting. The window is redisplayed the next time
a Receive call is performed.

Parameters:
SCREENT1: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Refreshes all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to refresh.
STATUS: Output. Call return status.
Name: DISPLAY WINDOW

Call Sequence:

Description:

CALL WMWDIS(SCREENI1, WINDOW, STATUS)

Repaints the window text and border without delay. A Receive call is not required for the
Display procedure to execute.

Parameters:
SCREEN1: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Displays all windows for a screen, except pop-up windows.
Integer greater than or equal to 0 — Window number to display.
STATUS: Output. Call return status.
Name: RECEIVE FROM WINDOW

Call Sequence:

Description:

Parameters:
SCREENT:

WINDOW:

ITEM:

KEY1:
ITEXTS:

STATUS:

CALL WMWRCV(SCREEN1, WINDOW, ITEM, KEY1, ITEXT$, STATUS)

Receives user responses from an active window. Window Manager retains control until an
item is selected or until an undefined key is pressed, then returns control to the application
call routine.

Input and output. The input integer is assigned by WMLOAD to identify the screen. The
output integer specifies the screen of the window from which the response is received.

Input and output. The input integer specifies the window from which user response is
desired. The output integer specifies the window of the item selected or the window the
cursor was in when an unknown key was pressed.

Input and output. The input integer specifies the item upon which the cursor is initially
placed. The output integer specifies the item selected.

Output. Code for the key pressed by the user.

Output. Character string to receive text of the selected item. Space must be allocated for
this string before making the call.

Output. Call return status.

G-8 Compiled BASIC Interface

NaturalLink Window Manager

Table G-1 Compiled BASIC Interface Routines (Continued)

Name:

Call Sequence:

RELEASE WINDOW
CALL WMWREL(SCREEN1, WINDOW, STATUS)

Description: Renders the window inactive and flags the window to have only text repainted. The win-
dow is redisplayed the next time a Receive call is performed.
Parameters:
SCREEN1: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to — 1 — Releases all active windows for a screen, except pop-up win-
dows. Integer greater than or equal to 0 — Window number to release.
STATUS: Output. Call return status.
Name: DELETE WINDOW

Call Sequence:

CALL WMWDEL(SCREEN1, WINDOW, STATUS)

Description: Deletes the window from the screen and makes it unknown to Window Manager. If a
window that covers other windows is deleted, the covered windows are flagged to have
their borders and text repainted.

Parameters:

SCREEN1: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Integer equal to —1 — Deletes all windows for a screen, including pop-up windows.
Integer greater than or equal to 0 — Window number to delete.
STATUS: Output. Call return status.
Name: SAVE SCREEN

Call Sequence:

Description:

Parameters:
SCREEN1:

PATHNAMES:

STATUS:

CALL WMWSAV(SCREEN1, PATHNAMES, STATUS)

Saves a screen to a file. This does not unload a screen from memory, and any operation
can be performed on any window in that screen after the SAVE procedure has been com-
pleted. This is useful if windows have been modified and need to be saved.

Input. Integer assigned by WMLOAD to identify the screen file to be saved.
Input. String that specifies the pathname of the file where the screen is to be saved.

Output. Call return status.

NaturalLink Window Manager

Compiled BASIC Interface G-9

Table G-1 Compiled BASIC Interface Routines (Continued)

Name:

Call Sequence:

Description:

UNLOAD SCREEN
CALL WMUNLD(SCREEN1, STATUS)

Releases the screen description from memory.

Parameters:
SCREEN1: Input. Integer assigned by WMLOAD to identify the screen.
STATUS: Output. Call return status.

Name: ADD ITEM

Call Sequence:

CALLWMIADD(SCREENI, WINDOW, ITEM, STATUS)

Description: Adds an item to the end of the item table and increases the size of the item table by 1.
Parameters:

SCREEN1: Input. Integer assigned by WMLOAD to identify the screen.

WINDOW: Input. Window number in the screen description.

ITEM: Output. [tem number of the added item.

STATUS: Output. Call return status.
Name: INSERT ITEM

Call Sequence:

CALL WMIINS(SCREENI, WINDOW, ITEM, STATUS)

Description: Inserts a new item into the item table in front of the item position specified. All subsequent
items are renumbered.
Parameters:
SCREENT: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number in the screen description.
ITEM: Input. Position in the item table where the item is to be inserted.
STATUS: Output. Call return status.
Name: DELETE ITEM

Call Sequence:

Description:

Parameters:
SCREENT:
WINDOW:
ITEM:
STATUS:

CALLWMIDELSCREENI], WINDOW, ITEM, STATUS)

Deletes an item from the item table. All subsequent items are renumbered.

Input. Integer assigned by WMLOAD to identify the screen.
Input. Window number in the screen description.
Input. Number of item to be deleted. The item number must be greater than zero.

Output. Call return status.

G-10 Compiled BASIC Interface

NaturalLink Window Manager

Table G-1 Compiled BASIC Interface Routines (Continued)

- Name:

Call Sequence:

Description:

CREATE ITEM TABLE
CALL WMICRE(SCREEN1, WINDOW, NBR, STATUS)

Creates an item table with the specified number of items. An item table can be created
during initial window definition or during program execution. An item table is created
when the number of items is 0. Manipulates the item table based on the relationship
between NBR and the current number of items in the window as follows:

M Current number of items equals 0 — Creates an item table with NBR of items.

B NBRless than current number of items — Deletes items (current number items
minus NBR) from the end of the item table. This condition returns a warning.

B NBR greater than current number of items — Adds items (NBR minus current
number of items) to the end of the item table.

B NBRequals 0 — Deletes the entire item table. This also returns a warning.

Parameters:
SCREENI1: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number in the screen description.
NBR: Input. Desired number of items in the table.
STATUS: Output. Call return status.
Name: CREATE WINDOW

Call Sequence:

Description:
Parameters:

SCREEN1:

WINDOW:
STATUS:

CALL WMWCRE(SCREEN1, WINDOW, STATUS)

This routine creates a new window and adds it to the screen specified. If an invalid screen
number is specified, a new screen will be created.

Input and output. Input integer assigned by WMLOAD to identify the screen to which the
new window should be added. The output integer specifies the screen number of the new
screen created if the input value was an invalid screen.

Output. Window number of the window which was created.

Output. Call return status.

NaturalLink Window Manager Compiled BASIC Interface G-11

Table G-1 Compiled BASIC Interface Routines (Continued)

Name:

Call Sequence:

GET ATTRIBUTE VALUE
CALL WMGETV(SCREEN1, WINDOW, ITEM, FIELD, IVALUE, STATUS)

Description: References the window structure and retrieves a value for the requested numeric attribute.
Parameters:
SCREENI: Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.
WINDOW: Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.
ITEM: Input. Number of the item containing the attribute about which information is requested.
The value is ignored if the field is not associated with an item.
FIELD: Input. Name of attribute constant desired. See Table G-3, Data Declarations for the Com-
piled BASIC Interface, for a listing and description of the valid attribute constant names.
IVALUE: Output. Current value of the requested attribute.
STATUS: Output. Call return status.
Name: GET STRING VALUE

Call Sequence:

Description:

Parameters:

SCREENT:

WINDOW:

ITEM:

FIELD:

STRVALS:

STATUS:

CALL WMGETS(SCREEN1, WINDOW, ITEM, FIELD, STRVALS$, STATUS)

References the window structure and retrieves the string value for the requested string
attribute.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item containing the attribute about which information is requested.
The value is ignored if the attribute is not associated with an item.

Input. One of the following attribute constant names:

Llwlabel
Llwshowf
Llittext
Llitlabl
Llwmpath

See Table G-3, Data Declarations for the Compiled BASIC Interface, for a listing and
description of the valid attribute constant names.

Output. String variable to receive returned string. Space must be allocated for this string
before making the call.

Output. Call return status.

G-12 Compiled BASIC Interface NaturalLink Window Manager

Table G-2

Application-Provided Routines (Continued)

Name:

Call Sequence:

Description:
Parameters:
SCREENT1:

WINDOW:

ITEM:

FIELD:

IVALUE:
STATUS:

SET ATTRIBUTE VALUE
CALL WMSETV(SCREEN1, WINDOW, ITEM, FIELD, IVALUE, STATUS)

References the window structure and sets the numeric attribute to the specified value.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item having the attribute about which information is specified. The
value is ignored if the attribute is not associated with an item.

Input. Name of the attribute constant desired. See Table G-3 for a listing and description of
the valid attribute constant names.

Input. Integer value for the specified attribute.

Output. Call return status.

CAUTION: No validation checks are performed on the IVALUE parameter in the WMSETYV call. This
reduces the code size of the high-level language interface. It is assumed that the value is in the cor-
rect range for the attribute being set. The other parameters — SCREEN1, WINDOW, ITEM, and FIELD
— are validated, and error codes are returned if they are incorrect. See Section 3, Window Attri-
butes, for the legal attribute values.

Name:

Call Sequence:

Description:

Parameters:
SCREEN1:

WINDOW:
ITEM:

FIELD:

STRVALS:
STATUS:

SET STRING VALUE
CALL WMSETS(SCREEN1, WINDOW, ITEM, FIELD, STRVALS$, STATUS)

References the window structure and sets a string attribute to the specified string.

Input. Integer assigned by WMLOAD to identify the screen. The value is ignored if the field
is not associated with a specific screen.

Input. Window number in the screen description. The value is ignored if the field is not
associated with a specific window.

Input. Number of the item having the attribute for which information is specified. The
value is ignored if the field is not associated with an item.

Input. This parameter has one of the following attribute constant names:

Liwlabel
LIwshowf
Llittext
Llitlabl
Llwmpath

See Table G-3 for a listing and description of the valid attribute constant names.
Input. Character string constant containing the defined text.

Output. Call return status.

NaturalLink Window Manager Compiled BASIC Interface G-13

Table G-1 Compiled BASIC Interface Routines (Continued)

Name:

Call Sequence:

Description:

CLEAR SCREEN
CALL WMCLRS(STATUS)

Clears the text from the display area.

Parameters: None
STATUS: Output. Call return status.
Name: DISPLAY MESSAGE FROM MESSAGE MANAGER

Call Sequence:

Description:

CALL DISMSG(MSGNUM, VARTXTS$, VARSEP, MSGFIL$, STATUS)

Displays the message associated with a message number from a message file and inserts
the variable text (if any is given) into the message.

Parameters:

MSGNUM: Input. Integer message number of the message that is to be displayed. The message
number can be either a status from NaturalLink or a message built by the software
designer using Message Builder.

VARTXTS$: Input. String containing a maximum of three variable text substrings to be inserted in the
actual text message by Message Manager. If there is no variable text, the string is a null
string. Each variable text substring must be separated by the character specified in the
separator parameter. The separator character used cannot be a part of the variable text
itself. For example, using the tilde as a separator would give: “1st variable text ~ 2nd vari-
able text ™ 3rd variable text”.

VARSEP: Input. Integer indicating the ASCII character which is used as the variable text separator.
For example, a decimal value of 126 is passed to indicate the tilde ~ character.

MSGFIL$: Input. String that contains the message file pathname from which the text is to be
retrieved.

STATUS: Output. Call return status.

Name: RESET NATURALLINK MEMORY AREA

Call Sequence:

Description:

Parameters:
STATUS:

CALL WMFLSH(STATUS)

This routine clears out the memory area used by the NaturalLink run time. Any screens
loaded or other data in this memory area will be lost and must be reloaded before
NaturalLink processing can continue.

Output. Call return status.

G-14 Compiled BASIC Interface

NaturalLink Window Manager

Routines G.4 The following is an example for coding assembly language routines

Called by called by the NaturalLink software (Window Manager and Sessioner). This
Window code example is not meant to be a complete working routine. It is intended

only to show the important points you need to know when writing your
Manager assembly language routine. Following the code are paragraphs that begin

with numbers referring to the numbers in the example code. The num-
bered paragraphs discuss coding details.

)
(2)

3)
(3)

4)
4)

(4)
(%)
(6)
(7)

(8)
9

10)

“an
“an

12)

NAME

DGROUP
DATA
SCREEN
WINDOW
ITEM

TEMP
STRING1
STRINGPTR
STRINGOFF
STAT
MODITEM
RETCODE
LIittext
DATA

VALSEG

UDWNBR
APPVAL

APPVAL

PUBLIC APPVAL

EXTRN WMSETS:FAR
EXTRN APPDIS:FAR

GROUP
SEGMENT
bW ?

’
’

’

?
?
?
1
?
DW ?
?
?
?
6

5

SEGMENT
ASSUME

DwW
PROC FAR
PUSH
MOV
MoV
MoV
MoV
PUSH
Mov
PUSH
MoV
PUSH
Mov
MoV
MOV
PUSH
Mov
Mov
MoV
MoV
PUSH
MOV
PUSH
CALL

DATA
BYTE PUBLIC 'DATA'
parameter passed to APPVAL by WMWRCV

; window number

; item number

; for passing offset of immediate variables
text for string2'

; string descriptor: first word is length,

second word contains offset from DS.

WMSETS function return code

parameter passed to GIVEPARMS from BASIC main
APPVAL return code

item text field constant for WMSETS call

'VALSEG'
CS:VALSEG,DS:DGROUP,ES:DGROUP,SS:NOTHING

?

BP

BP,SP

BX,[BP+16] ;save input parameter
SCREEN, BX

AX,OFFSET DGROUP:SCREEN
AX

AX,OFFSET DGROUP:WINDOW
AX

AX,OFFSET DGROUP:ITEM

AX

AX,LIittext

TEMP, AX

AX,OFFSET DGROUP:TEMP
AX

AX,OFFSET DGROUP:STRING1
STRINGOFF,AX
STRINGPTR,12

AX,OFFSET DGROUP:STRINGPTR
AX

AX,OFFSET DGROUP:STAT
AX

WMSETS

NaturalLink Window Manager

Compiled BASIC Interface G-15

MOV AX,SCREEN

PUSH AX
MoV AX,WINDOW
PUSH AX
13 MOV AX,CS:UDWNBR ; user-defined window number
PUSH AX
CALL APPDIS
(14) POP CX
POP CX
POP CX
PUSH ES
“s LES BX,[BP+10]1 ; rewrite item passed by reference
MoV AX,MODITEM
MoV ES:[BX],AX
POP ES
16) Mov AX,RETCODE
POP BP
RET

(7) APPVAL ENDP

(17) GIVEPARMS PROC FAR

PUSH BP

MoV BP,SP

MoV BX,[BP+8] ; get value from BASIC main program
MOV AX,[BX] ; make value known for APPVAL
MOV MODITEM, AX

POP BP

RET 2%2

GIVEPARMS ENDP

(5) VALSEG ENDS

END

(1), (2), (5), (6), (7) — These statements must be in your assembly routine.
You will have to replace the routine name and segment name, depending
on the routine for which you are writing the code. If coding the APPRCV
routine, replace APPVAL with APPRCV and VALSEG with RCVSEG.

(3) — You must declare any NaturalLink routines that will be called from
your assembly language routine to be EXTRN:FAR. If calling WMSETS
from the APPVAL routine, the WMSETS routine must be declared EXTRN:
FAR. Also, any assembly language routines outside of the VALSEG that are
called from your APPVAL routine must also be declared as EXTRN:FAR.

(4) — These statements must be in your assembly routine as written. Note
that this defines the variables to be in the shared DATA data segment. The
total data area shared by the BASIC main program and all the assembly
language routines called by NaturalLink is 64K bytes.

G-16 Compiled BASIC Interface NaturalLink Window Manager

(5) — The name of your segment will always be the last three letters of the
routine name, followed by SEG. See the LIMSBSH.ASM source file included
on the Window Manager Run-Time Object diskette for the segment names
of all the application assembly language routines called by NaturalLink.
Having each routine in a separate segment gives you up to 64K bytes of
code space for each routine. Since overlaying is not possible for the BASIC
high-level language interface, you can circumvent this restriction by call-
ing other assembly language routines defined in different segments.

(6) — This statement must be in your assembly routine. You must assume
CS to be the name of the segment discussed in (5), and assume DS to be
DGROUP.

(8) — Input (value) parameters will be one word (16 bits) and output
(address) parameters will be a long word (32 bits). Since a far call was made
by NaturalLink to this routine, after pushing BP the first parameter can be
accessed by [BP +6]. Since the parameters are pushed in reverse order, the
parameter at [BP+6] will be the last parameter shown in the calling
sequence. In the case of the APPVAL routine, this would be the datatype
parameter, followed by the KEY parameter at [BP + 8]. The item parameter
for the APPVAL routine is an output parameter; thus, because it is a long
word, it can be accessed by [BP+10] and [BP + 12]. Finally, the window and
screen parameters are at [BP +14] and [BP + 16], respectively.

(9) — All parameters to NaturalLink calls must reside in and be pushed as
OFFSETs from DGROUP. All parameters must push addresses of variables,
not values, to maintain compatibility with the way the CALL statement
compiles in the BASIC main program.

(10) — EQU’s do not need a segment override prefix, but since an offset
must be passed, load the constant into a memory location and pass the off-
set of that memory location.

(11) — When passing a string to a NaturalLink routine, use a two-word
string pointer. Move the length of the string (or the maximum size of the
string buffer when sending a parameter to be written to by NaturalLink)
into the first word of the pointer. Move the offset of the string buffer into
the second word of the string pointer. Push the address (the offset only) of
the string pointer as the parameter. Note that there is no separate length
parameter as in the other languages, because the length is included in the
string pointer.

(12) — When calling NaturalLink routines (such as WMLOAD, WMWADD,
and so on) from your assembly language routine, you should not pop the
parameters off the stack after returning from the call. This is automatic,
since the NaturalLink software is coded in C.

(13) — To save space in the BASIC data segment, you can use variables
declared in your CS by using a CS: override prefix. However, all
parameters passed to NaturalLink must reside in DGROUP.

NaturalLink Window Manager

Compiled BASIC Interface G-17

(14) — If calling assembly language routines normally called by
NaturalLink (such as APPMSG, APPRCV, and so on), you must pop the
parameters after the call. Do not pop the parameters in the called routine
because, when that routine is called by NaturalLink, the popping of the
stack is handled by the high-level language interface.

(15) — Output parameters are two words; therefore, a segment and an off-
set must be used.

(16) — The function return code must be put into the AX register before
returning from the routine.

(17) — This is an example routine that will let you access and modify
variables from your BASIC main program in your assembly language
routine. The call in your BASIC main program is as follows:

CALL GIVEPARMS(MODITEM)
The parameters in the call are the variables in your assembly language

routine. This call must be made before NaturalLink calls the application
assembly language routine.

NOTE: The application assembly language routines called by Natural-
Link (that is, APPVAL, APPRCV, and so on) should not be called from your
BASIC main program. They will not work correctly, and undesirable
results may occur.

Table G-2, Application-Provided Routines, correlates generic procedure
calls to the corresponding C function calls. These routines are supplied by
the application and are called by Window Manager. If the functionality
provided by these calls is not desired, the dummy library (APPOTH)
provided on the Window Manager Run-Time Object diskette can be used
instead. All of the application-provided calls, except the validation call and
the input call, can return error status codes to Window Manager. If the sta-
tus returned is nonzero, Window Manager will return to the application
program with the status code.

BASIC does not provide the ability to define functions that can be called by
external routines. Thus all called routines that the application must pro-
vide must be written in assembly language.

G-18 Compiled BASIC Interface NaturalLink Window Manager

Table G-2 Application-Provided Routines

Name: APPLICATION VALIDATION ROUTINE
Call Sequence: APPVAL(SCREEN, WINDOW, ITEM, KEY, DATATYPE)
Description: This routine is provided by the developer. Window Manager calls this routine when an edit

field needs to be type-checked. It must return the status of the validation check. The
defined statuses are as follows:

—2 — Invalid/clear, type check failed, clear out edit field
—1 —Invalid/no clear, type check failed, field untouched
0 — Valid, type check passed, continue
1 — Ignore, type check not done, return to edit field
2 — Exit, return to application immediately

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the window containing the item being validated.
ITEM: Input and output. The input integer specifies the item to be validated. The output integer
indicates which item the cursor should be placed on upon return to Window Manager. .
KEY: Input. Integer code for the key pressed by the user.

DATATYPE: Input. Datatype assigned this item in the Set Item Attributes option in Screen Builder.

Name: APPLICATION DISPLAY WINDOW
Call Sequence: APPDIS(SCREEN, WINDOW, UDWNBR)

Description: This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be displayed. This routine must display all aspects of the window except
the window border.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the user-defined window to display.
UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format

option in Screen Builder (the window type).

NaturalLink Window Manager Compiled BASIC Interface G-19

Table G-2 Application-Provided Routines (Continued)

Name: APPLICATION RECEIVE WINDOW
Call Sequence: APPRCV(SCREEN, WINDOW, ITEM, KEY, UDWNBR, XPOS, YPOS)
Description: This routine is provided by the developer. Window Manager calls it when information must

be received from a user-defined window. This routine must handle all user input for the
given window.

Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the user-defined window from which to receive information.
ITEM: Input and Output. The input integer specifies the item upon which the cursor should be ini-
tially placed. The output integer specifies the item selected.
KEY: Output. Integer code for the key pressed by the user.
UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format
option in Screen Builder (the window type).
XPOS: Output. This is the integer indicating the X character coordinate of the cursor. It is used
only if the KEY parameter returned is a window movement key code.
YPOS: Output. This is the integer indicating the Y character coordinate of the cursor. It is used
only if the KEY parameter returned is a window movement key code.
Name: APPLICATION DELETE WINDOW
Call Sequence: APPDEL(SCREEN, WINDOW, UDWNBR)
Description: This routine is provided by the developer. Window Manager calls it when a user-defined
window needs to be deleted. This routine must delete all nontext portions of the window.
Parameters:
SCREEN: Input. Integer assigned by WMLOAD to identify the screen.
WINDOW: Input. Window number of the user-defined window to be deleted.
UDWNBR: Input. User-defined window code assigned to this window in the Set Window Format

option in Screen Builder (the window type).

G-20 Compiled BASIC Interface NaturalLink Window Manager

Table G-2 Application-Provided Routines (Continued)

Name:

Call Sequence:

APPLICATION DISPLAY MESSAGE

APPMSG(MSGSCR, MSGWND, KEY, MSGNBR, MSGTYP, SCREEN,
WINDOW, ITEM)

Description: This routine is provided by the developer. It is called when a user-defined message needs
to be displayed. This routine must handle the display of the message, response from the
user to the message, and the deletion of the nontext portion of the message from the
screen.

Parameters:

MSGSCR: Input. Integer assigned by Window Manager to identify the screen containing the message
window.

MSGWND: Input. Window number of the user-defined message window.

KEY: Output. Integer code for the key pressed by the user.

MSGNBR: Input. Number of the message to be displayed. This is the number assigned to the message
by the Message Builder utility.

MSGTYP: Input. Integer indicating the type of message being displayed. The integer is one of the fol-
lowing values:

5— Help

6 — Error

7 — Warning

8 — Please Note

SCREEN: Input. Integer assigned by WMLOAD to identify the screen containing the window the cur-
sor was in when the Help key was pressed. It is used only for Help messages.

WINDOW: Input. Window number of the window the cursor was in when the Help key was pressed. It
is used only for Help messages.

ITEM: Input. Input integer specifies the item the cursor was on when the Help key was pressed.
Value of —1 is passed when window level help is being displayed. It is used only for Help
messages.

Name: APPLICATION INPUT ROUTINE

Call Sequence:

Description:

Parameters:

APPINP()

This routine is provided by the developer. Window Manager calls it when input from the
user is needed. It can be used to provide an alternative input method to the keyboard. This
routine, if used, must still return valid key codes. A value of 0 must be returned if there is
no key code ready to be returned.

None.

NaturalLink Window Manager Compiled BASIC Interface G-21

BASIC G.5 Window Manager requires the use of Include files. These are
Compi]ing provided on the Window Manager Run-Time Object diskette.

Requirements

Include Files G.5.1 An Include file containing attribute names for the WMSETV,
WMGETV, WMSETS, and WMGETS Window Manager routines is provided
to keep hard-coded constants out of the Compiled BASIC code. These con-
stants are likely to change or at least expand with future releases of Win-
dow Manager. The Include filename is WMFIELD.BAS and can be included
with the following statement:

REM $INCLUDE: 'WMFIELD.BAS'

The BASIC compiler checks all REM statements for these metacommands.
Remember that the $INCLUDE metacommand must be the last metacom-
mand in a REM statement if other metacommands are used. In any pro-
grams that call the Window Manager routines to use window attributes (for
example, WMGETV, WMSETS, and so on), you must include
WMFIELD.BAS. If you include the WMFIELD.BAS file, you must compile
the program with the =N option.

CAUTION: External declarations of routines are not required by
the BASIC compiler. You must be very careful that the calls to the
Window Manager routines are coded correctly with the proper
number of variables, and that each is in the correct position. This is
not checked as it is for other high-level languages. Be sure to con-
sult Table G-1 for the calling sequences.

G-22 Compiled BASIC Interface NaturalLink Window Manager

Table G-3 Data Declarations for the Compiled BASIC Interface

Type Value Description for Nonzero or True Condition

Left-most column
Top row
Right-most column
Bottom row

Window type
Number of columns
Priority (for app

lication use only)

Multiple selection window

Pop-up window

Special repaint on receive
First item to be displayed
Show last item when painted

Center all items

Don't redisplay current Items

Disable multiple

line items

Allow cursor to enter window
Multiple column order

Maximum item labe

L length

Item label justification
Pathname of window file

Window is active

Name
REM Window Coordinates:
LIwposux = 1 !
LIwposuy = 2 !
LIwposlx = 3 !
LIwposly = 4 !
REM Window format:
LIawdtyp = 5 !
LIwincol = 38 !
LInwprio = 10 !
LInwmustl = 11 !
LInwpopu = 12 !
LIinpant = 46 !
LIwofset = 21 !
LIjautsc = 40 !
LIicentr = 45 !
LIinorep = 43 '
LIinomul = 42 '
LIcursin = 74 '
LIidirct = 44 '
LIilmlen = 41 '
LIiljust = 47 !
Liwshowf = 20 !
LInwactv = 13 !
LIwitmnb = 39 !

REM Active window

Number of items

attributes:

LIablink = 6 !
LIaunder = 7 !
LIarever = 8 !
Llactint = 9 '
REM Inactive window
LInwblnk = 16 '
LInwundr = 17 !
LInwrevr = 18 '
LInwintn = 19 !

Blinking
Underline
Reverse video
Intensity/color

attributes:

Blinking
Underline
Reverse video
Intensity/color

REM Window Label attributes:

LIwlabel = 22
LIwlvsbl = 23
LIwlpos = 24
LIwlcent = 25
LIwlblnk = 27
LIwlundr = 28
LIwlrevr = 29
LIwlint = 30
LIwlaint = 26

Window Llabel
Invisible Llabel
Label position
Centered label
Blinking label
Underlined Label

(read only access)
(read only access)

Reverse video label

Intensity/color

Use item intensity

NaturalLink Window Manager

Compiled BASIC Interface G-23

Table G-3 Data Declarations for the Compiled BASIC Interface (Continued)

Name Type Value Description for Nonzero or True Condition

REM Cursor Attributes:

LIcrsize = 31 ' Cursor size

LIcblink = 33 ' Blinking cursor

LIcunder = 34 ' Underlined cursor

LIcrever = 35 ' Reverse video cursor

LIcurint = 37 ' Cursor intensity/color

LIcalint = 32 ' Use Item intensity

LIcstays = 36 ' Cursor remains on a receive abort

REM Border Attributes:

LInwbord = 14 ' Bordered window

LIbdrtsp = 72 ' Border takes up space (0 = Yes)
LInwscmk = 15 ' Display scroll markers

LIbdrrv = 73 ' Reverse video border

LIbdrint = 74 ' Border intensity/color

REM Item attributes:

LIittext = 66 ' Item text

LIitchos = 56 ' Chosen/enable attributes
LIitvsbl = 63 ' Visible item

LIitunsl = 59 ' Unselectable item
LIitdspl = 55 ' Displayed

LIitmlen = 48 ' Maximum edit field length
LIitreqr = 57 ' Required edit field
LIitecho = 58 ' Echo edit field input
LIdattyp = 65 ' Edit field datatype

REM Item chosen active attributes

LIitblnk = 60 ' Blinking chosen item
LIitundr = 61 ' Underlined chosen item
LIitrevr = 62 ' Reverse video chosen item
LIitint = 64 ' Chosen item intensity/color

REM Item label attributes:

LIitlabl = 54 ' Item label

LIilblnk = S0 ' Blinking label
LIilundr = 51 ' Underlined label
LIitrevr = 52 ' Reverse video label
LIilint = 53 ' Label intensity/color
LIilaint = 49 ' Use item intensity

REM Other miscellaneous attributes:

LIwmpath = 71 ' Window Manager help/phrase file path
LIpctype = 75 ' Machine type (read only access)
LIlcdon = 76 ' PRO-LITE lcd screen indicator

G-24 Compiled BASIC Interface NaturalLink Window Manager

Memory
Considerations

G.6 Because the NaturalLink Window Manager and the Compiled BASIC
application program coexist in memory, sufficient memory to accommo-
date the code and data areas of each is required.

To achieve correct ordering of the code and data areas for the Compiled
BASIC application program and Window Manager object, a routine has
been added called LIMSBSH that defines the memory organization. This
routine places the application program code in low memory, followed by
the assembly language routines called by Window Manager, followed by
the Window Manager code and the Window Manager data area. The appli-
cation program’s data area is in the same segment as the code for a Com-
piled BASIC-compiled program. The routine also declares the Window
Manager stack and heap size, which must be statically allocated.

Get-memory errors appear when the Window Manager heap management
routines run out of memory. The only way to resolve these errors, if they
occur, is to increase the size of the Window Manager heap area or to
reduce the number of screens (or screen sizes) that were loaded into
memory at the time the error occurred.

The default stack and heap sizes for Window Manager are as follows:

2K stack = hexadecimal 800 bytes
32K heap = hexadecimal 8000 bytes

The maximum size of the Window Manager stack and heap is the size in
bytes determined by the difference of hexadecimal FFF(Q and the size of
the Window Manager data segment (called NL._DATA and found in the
application program’s link map). It is recommended that at least hexadeci-
mal 800 bytes be allocated for the Window Manager stack size. Using this
minimum recommendation for the stack size, the maximum amount of
memory that can be allocated for the heap area is hexadecimal F7F0
minus the size of the data segment NL_DATA. This will be approximately
hexadecimal EDOQ bytes for application programs that use only the Win-
dow Manager object and slightly less for those that also use Natural Lan-
guage object. A change in the Window Manager stack and heap sizes will
require changing the LIMSBSH.ASM source file, reassembling the routine,
and relinking the application.

NaturalLink Window Manager

Compiled BASIC Interface G-25

Linking G.7 An example of a link control file used to link a simple Compiled

Considerations BASIC application program is as follows. Most of the NaturalLink run time
has been placed in libraries. The order of the libraries is significant, and
they must be placed in the order shown.

LIMSBSH + Memory organization module. This must occur first.

mymain + The BASIC application’s main program.

Any application subroutines, if used.

demo /M The .EXE file.

demo.MAP The .MAP file.

mylib + Any application libraries, if used.

LIMSB + Library of language interface routines to Window
Manager for Compiled BASIC.

WM + Window Manager object library.

APPOTH + Dummy Window Manager called application routines.

BASCOMG BASIC run-time library (or BASRUNG).

Dummy G.7.1 The APPOTH library contains dummy routines for all application
Routines Library routines which are called by Window Manager. These include APPVAL,
APPRCV, APPDIS, APPDEL, APPMSG, and APPINP. If you do not use the
features provided by one or more of these routines, the reference to them
will be resolved by the dummy modules in this library. If you have your
own versions of these routines, they must be explicitly linked; if they are in
a library, the library must come before APPOTH in the link stream. If you
create any libraries of your application routines, these libraries must come
before any NaturalLink libraries in the link stream.

WMKEYDEF.OBJ G.7.2 The key definition file (WMKEYDEF.OBJ) and the internal phrase
and file WMSTRDEF.OBJ) are included as part of the Window Manager library
WMSTRDEF.OBJ (WM.LIB). If you have created your own version of these files (by using the
Files KBUILD utility for WMKEYDEF or by reassembling the source file for
WMSTRDEF), you must explicitly link your own version. Your version of
the files should be placed in the link stream following any application
subroutines that you may have. The linker will then use your versions

instead of the files in the library.

Object Code G.7.3 The object code for Window Manager is divided into two groups.
Segments Segments with the name NL_PROG contain executable code, while seg-
ments with the name NL_DATA contain static data, heap, and Window

Manager run-time stack.

Restrictions G.8 The maximum number of screens loaded from files is set to 20. A
screen can have up to 255 windows and each window can have up to
65,536 items. Since screens are stored in the Window Manager heap, a
screen that contains excessive windows and items can cause a get-memory
error when loaded.

G-26 Compiled BASIC Interface NaturalLink Window Manager

WINDOW MANAGER ERROR CODES H

NaturalLink Window Manager Window Manager Error Codes H-1

The following is a list of the error codes returned to the application from
Window Manager and the high-level language interfaces. The codes are
listed by number, followed by the error name and type. Note that the
warning codes are negative numbers and error codes are positive
numbers. The @1 symbol in an error message indicates where variable
text, such as a file name, is to be inserted.

1

Get memory error type: ERROR
The program was unable to get enough memory for its processing.
When you press the ENTER key, you will be returned to the operat-
ing system. If several processes were run before receiving this
error, reenter the program and run the process that reported the
error first.

Release memory error type: ERROR
The program was unable to release memory that it had allocated.
If several processes were run before receiving this error, exit the
program, reenter, and choose the process that reported the error
first.

Screen load error type: ERROR
An error was encountered while trying to load the @1 screen file.
Exit and ensure that the screen file exists on the diskette and that it
has not been damaged.

Open file error type: ERROR
An error was encountered while trying to open the @1 file. If the
file is new, check the availability of directory and disk space on
your diskette. If the file is one that should exist on the diskette,
check to be sure that it does exist and that the file has not been
damaged.

Close file error type: ERROR
An error was encountered while trying to close the @1 file. Check
the directory and disk space on your diskette. Verify that your
diskette has not been damaged.

Read file error type: ERROR
An error was encountered while trying to read the @1 file. Check
to be sure that the file exists on the diskette and that the diskette
and file have not been damaged.

Write file error type: ERROR
An error was encountered while trying to write to the @1 file.
Check your available disk space to ensure that your diskette has
not been damaged.

NaturalLink Window Manager

Window Manager Error Codes H-3

._10 -

..12 -

13 -

14 -

15 -

Window not found type: WARNING
Window Manager could not find the window specified, so the
request was ignored. This situation is probably the result of the
window not being added. Windows must be added before Window
Manager can do any processing.

Window already exists type: WARNING
The window specified to be added has already been added.
Window Manager will not add a window more than once, so the
request was ignored.

Window already active/inactive type: WARNING
The window to be selected or released is already active or inactive;
the request was ignored.

Window flagged to repaint type: WARNING
The window to be refreshed was already flagged to have its text
and border repainted; the request was ignored.

Receive from first active window type: WARNING
The Window Manager was unable to receive from the specified
window and used the first valid, active window. A valid window is
any active, nondisplay window that the cursor can enter, contain-
ing at least one selectable item.

Invalid coordinates type: ERROR
The window specified has invalid position coordinates and cannot
be added. Valid coordinate ranges are as follows:

B Leftmost column 0-78
® Top row 0-23
® Rightmost column 1-79
® Bottom row 1-24
No valid windows type: ERROR

Window Manager could not find any valid windows from which to
receive information. A valid window is any active, nondisplay
window that the cursor can enter, containing at least one select-
able item.

Window type invalid type: ERROR
The window specified has an invalid window type and cannot be
added. Valid window types are 0 through 4 and 10 through 99.
Types 0 through 4 correspond to list, text, edit, file, and display
windows, respectively. Types 10 through 99 are user-defined
windows.

H-4 Window Manager Error Codes

NaturalLink Window Manager

16

19

20

21

=22

23

-24

29

-51

52

No windows added type: ERROR
There have been no windows added yet. Windows must be added
before Window Manager can do any processing.

Cannot load file type: ERROR
The file text cannot fit into memory. The entire text of a file to be
displayed in a file window must fit in memory before Window
Manager will display the text. The window can still be displayed,
but it will be blank and have no text associated with it.

No file pathname type: ERROR
A file pathname was not supplied for the file window, so text was
not placed in the window. The window can still be displayed, but it
will be blank and will not have text associated with it.

Empty show file type: ERROR
The file to be viewed contains no text and cannot be displayed.
The window can still be displayed, but it will be blank and will not
have text associated with it.

Receive from inactive window type: WARNING
The Receive call is returning from an inactive window. Either the
Proceed to Next Step key or an unknown key was pressed by the
user when the cursor was in an inactive window.

Window size problem type: ERROR
The window is not big enough. If a cursor is to be put in the win-
dow and the window has items defined, there must be room in the
window to display at least one selectable item. A visible top or bot-
tom window label occupies at least one line of the window. Check
the top and bottom row coordinates of the window to ensure that
they are a correct distance apart.

Exit status from APPVAL type: WARNING
Window Manager receives a status of 2 (exit) from the application
validation routine APPVAL.

Not a screen type: ERROR
The @1 file is not a screen file. The file may have been damaged,
the wrong file pathname may have been specified, or a different
type of file may have been copied over the screen file desired.

Items deleted type: WARNING
The item table just created has had items deleted from it.

Fatal error type: ERROR
A fatal error has occurred. NaturalLink will no longer work, and
subsequent calls to the interface will return with this error. This
may be because NaturalLink could not access enough memory
when copying strings from the application.

NaturalLink Window Manager

Window Manager Error Codes H-5

53

54

55

56

57

58

59

60

72

Buffer error type: ERROR
The high-level language interface could not copy the string from
NaturalLink or Window Manager back to the originating buffer
because the buffer is not large enough. The string will be truncated
at the length specified in the call.

No more screens type: ERROR
There are no more entries available for additional screens. The
screen cannot be added. The maximum number of screens that
can be loaded at the same time is 20.

Invalid screen number type: ERROR
The screen number specified was not a valid screen number. The
screen number may be out of range.

Unused screen number type: ERROR
The screen number specified does not have an active screen
associated with it in memory at this time.

Invalid window number type: ERROR
The window number specified in the call to Window Manager is
invalid. The window number may be out of range.

Invalid item number type: ERROR
The item number specified in the call to Window Manager is not a
valid item number. The item number may be out of range.

Invalid field name type: ERROR
The field name specified for getting or setting window attributes is
invalid.

Invalid field type type: ERROR
The type of field specified (string or integer) does not match the
parameter type of the Window Manager routine that was called to
return or set the value for the field.

Invalid string type: ERROR
The string field specified or the length of the field is invalid.

H-6 Window Manager Error Codes

NaturalLink Window Manager

INDEX

a
active window attributes
active window
active windows See window
Add Help Message to List command 4-19
Add Item: _
call 6-7
command 4-16
Add Message command 5-5
Add Window:
call 6-4
command 4-5
algorithm, application validation
routine 7-7
Allow Cursor to Enter Window
attribute 3-10

See attributes,

APPDEL, delete call 8-10, D-15, E-15,
F-16, G-20

APPDIS, display call 8-10, D-14, E-14,
F-15,G-19

APPINP, application input routine 10-14

application:

calls to Window Manager 8-11

Delete call 8-10

Display call 8-10

input routine 10-13

Message Manager call 8-11

program termination 6-10

Receive call 8-9

user-defined message calls 8-9

user-defined window calls 8-9

validation routine See validation

routine, application

application-defined function keys 2-5
application input routine:

APPINP 10-14, D-16, E-16, F-17, G-21
dummy 10-14
APPRCV, receive routine 8-9, D-15, E-15,
F-15, G-20
APPVAL, validation routine 7-5, D-14,
E-14, F-15, G-19
APP??? library D-21
ASCII characters D-3, E-3, F-3, G-3

assembly language routines G-15
Attach Help Messages menu 4-18
Attach Help to Item

command 4-16, 4-18

Attach Help to Window
command 4-12,4-18
attributes, active window:
Blinking 3-12
Intensity/Color 3-12
Reverse Video 3-12
Underlining 3-12
attributes, border:
Border Intensity Color 3-16
Border Takes Up No Space 3-15
Bordered Window 3-16
Display Scroll Markers 3-15
Reverse Video Border 3-15
attributes, cursor:
Blinking Cursor 3-14
Cursor Intensity/Color 3-14
Cursor Size and Type 3-14
Don’t Delete Cursor 3-15
Reverse Video Cursor 3-14
Underlined Cursor 3-14
Use Item Intensity 3-14
on IBM computers C-13
attributes, inactive window:
Blinking 3-12
Intensity/Color 3-12
Reverse Video 3-12
Underlining 3-12
attributes, item-chosen:
Blinking Chosen Item 3-19
Chosen Item Intensity/Color 3-19
Reverse Video Chosen Item 3-19
Underlined Chosen Item 3-19
attributes, item format:
Chosen/Enable 3-19
Displayed 3-18
Echo Edit Field Input 3-18
Edit Field Datatype 3-18
Maximum Edit Field Length 3-18
Required Edit Field 3-18
Unselectable Item 3-17
Visible Item 3-17
attributes, item label:
Blinking Label 3-13, 3-19
Label Intensity/Color 3-19
Reverse Video Label 3-19
Underlined Label 3-19
Use Item Intensity 3-19

NaturalLink Window Manager

Index 1

attributes, other 2-4
Allow Cursor to Enter Window 3-10
Blinking Chosen Item 3-19
Centered Items 3-10
Disable Multiple-Line Items
Don’t Redisplay Current
Items 3-10, 3-18, B-19
First Item to Be
Displayed 3-9, 3-10, B-20
Item Label Justification 3-11
Item Label Length 3-11
[tem-Level 3-11
Item Text 3-16
Multiple-Column Order 3-11
Multiple-Selection Window 3-8
Number of Items in Window 3-11
Numeric Value 3-16
Pop-Up Window 3-9
Show Last Item When Painted 3-9
Special Repaint on
Receive 3-9, B-21, C-11
String Value 3-16
window 2-4, 3-3, 4-10
Window Label 3-3
Window Priority 3-8
Window-Type 3-6
attributes, window label:
Blinking Label 3-13
Centered Label 3-13
Invisible Label 3-12
Label Intensity/Color
Label Position 3-13
Reverse Video Label 3-13, 3-19
Underlined Label 3-13, 3-19
automatic scrolling 3-9

b

Backspace function 10-10

Backup function 10-8

BASIC program language See MS-BASIC
Compiled program language

blank lines B-16

Blinking Chosen Item attribute 3-19

Blinking Cursor attribute 3-14

Blinking Label attribute 3-13, 3-19

border attributes See attributes, border

borderless windows B-13

borders, shared 3-15

3-10

3-13, 3-19

C
C program language See Lattice C program
language
call:
AddItem 6-7
Add Window 6-4
application See application

Clear Screen 6-9
Create Item Table 6-8
Create Window 6-9
Delete Item 6-8
Delete Window 6-7
Display Message From Message
Manager 6-10
Display Window 6-5
Get Attribute Value 6-9
Get String Value 6-9
Initialize Window Manager 6-3
Insert ltem 6-8
Load Screen File 6-4
looping on Receive 3-15
Receive 3-9, 6-5
Receive From Window 6-5
Refresh Window 6-5
Release Window 6-6
Reset NaturalLink Memory 6-10
Reset Window Manager 6-7
Save Screen 6-7
Select Window 6-4
Set Attribute Value 6-9
Set String Value 6-9
Unload Screen 6-7
user-defined windows 8-4
Window Manager Receive 10-3
callable routines, Window Manager 6-3
callable routines:
LatticeC D-5
MS-BASIC Compiled G-5
MS-FORTRAN F-5
MS-Pascal E-5
calling sequence, typical 6-11
calls to Window Manager, application 8-11
carriage return characters B-5
Centered Items attribute 3-10
Centered Label attribute 3-13
Change Help File command 4-5, 4-16
Change Message Type/Class
option 5-7
character strings, C program
language D-3
characters:
fill 6-6
graphic values C-13
hexadecimal values C-13
checking, datatype 3-18, 7-3
Chosen/Enable attribute 3-8, 3-19, B-18
Chosen/Enable Item Intensity
attribute C-11
Chosen Item Intensity/Color
attribute, 3-19
Clear Screen call 6-9
code, user-defined window 8-3
columnar format 2-4, 3-7

2 Index

NaturalLink Window Manager

column-major items 3-11
columns, number of 3-7
command, Message Builder utility:

Add Message 5-5

Change Message Type/Class 5-7
Copy Message 5-7

Delete Message 5-8

List Messages 5-8

MBUILD 5-3

Modify Message 5-6

Quit 5-9

Rename Message 5-6

Reuse Message 5-7

Specify Window Coordinates 5-7
View Message 5-8

command, Phrase Builder utility:

Edit a Phrase 9-6

Exit 9-7

PBUILD 9-5

Print Phrases to File 9-6
Restore Default Phrases 9-6
Save Phrases to File 9-7

command, Screen Builder utility:

Add Help Message to List 4-19
AddItem 4-16

Add Window 4-5

Attach Help to Item 4-16, 4-18
Attach Help to Window 4-12,4-18
Change Help File 4-5, 4-16

Copy Item 4-16

Copy Window 4-5

Delete Help Message From List 4-20
Delete Item 4-16

Delete Window 4-5

Draw Screen 4-6

Draw Window 4-13

Edit Item Label 4-15

Edit [tem Table 4-13

Edit Item Text 4-14

Edit Window 4-4

Edit Window Label 4-11

Exit 4-8

Insert Help Message into List 4-20
Insert Iltem 4-16

Insert Window 4-5

List Screen Attributes 4-8

Load Screen 4-7

Save Screen 4-8

Set Active Window Attributes 4-10
Set Border Attributes 4-12

Set Cursor Attributes 4-12

Set Item Attributes 4-15

Set Item Label Attributes 4-16

Set Inactive Window Attributes 4-10

Set Window Format 4-10
Set Window Label Attributes 4-12
Set Window Position 4-10
Specify Help Message 4-20
Test Screen 4-7
Test Window 4-13
View Help Message 4-20
command, Set Function Keys utility 10-11
common blocks, MS-FORTRAN program
language F-18
compiler, Lattice C D-3
compiling requirements:
LatticeC D-17
MS-BASIC Compiled G-22
MS-FORTRAN F-18
MS-Pascal E-17
computer:
IBM C-3,C-12
Texas Instruments C-4
TI BUSINESS-PRO C+4
TIPRO-LITE C-5,C-9
TIPC C-5
TIPPC C-5
computer hardware Appendix C
coordinates, window 3-6
Copy Item command 4-16
Copy Message command 5-7
Copy Window command 4-5
Create Item Table call 6-8
Create Window call 6-9
cursor attributes See attributes, cursor
Cursor Intensity/Color attribute 3-14
cursor, invisible B-4
cursor movement 2-4, B-15, B-16, B-19
testing 4-7
user-defined windows 3-10, 8-4
Cursor Size and Type attribute 3-14

d
datatype checking 3-18, 7-3
datatype parameter, application validation
routine 7-5
default:
function keys, how to change 10-11
keys 10-4, 10-5, 10-6, 10-7
message 5-9
definition, application validation
routine 7-3
Delete call 8-6, 8-10
Delete From the Cursor Out
function 10-10
Delete function 10-10
Delete Help Message From List
command 4-20

NaturalLink Window Manager

Index 3

Delete Item:
call 6-8
command 4-16
Delete Message command 5-8
Delete Window:
call 6-7
command 4-5
detection, machine C-3
Disable Multiple-Line Items
attribute 3-10
DISMSG Display Message call 6-10,
D-13, E-13, F-13, G-14
display:
call 8-5, 8-6
user-defined messages 5-10
window 2-3, B4, B-15
Display Message From Message Manager
call 6-10
Display Scroll Markers attribute 3-15
Display Window call 6-5
Displayed Item attribute 3-18, B-20
displays, multiple-window C-11
Don’t Delete Cursor attribute 3-15
Don’t Redisplay Current Items
attribute 3-10, 3-18, B-19
Draw Screen command 4-6
Draw Window command 4-13
drawn screen printout 4-6
dummy:
application input routine 10-14
application validation routine 7-8
dummy routines library:
Lattice C D-21
MS-BASIC compiler G-26
MS-FORTRAN F-22
MS-Pascal E-20

e
Echo Edit Field Input attribute 3-18
Edit a Phrase command 9-6
Edit Field Datatype attribute 3-18
Edit Item Label command 4-15
Edit [tem Table command 4-13
Edit ltem Text command 4-14
edit window 2-3,B-4
Edit Window command 4-4
Edit Window Label command 4-11
edit windows, multiple-selection 7-3
editing keys 4-11, 5-5
environmental string, NLXTOOLS 4-3,
5-3, 9-5, 10-11

equipment requirements Chapter 10
error:

get memory 6-10

message 1-7, 5-3

error codes:
Message Manager utility 5-11

Window Manager run-time Appendix H

Exit:
command 4-8
Phrase Editor command 9-7

f

geatures, Window Manager B-13

ile:

Help Message 4-16

message 4-20, 5-3

NLXPHRAS.NM$ 9-7

window 2-3, B-5

window pathname 3-4

window text files 3-7

WMKEYDEF.OBJ 10-11, D-21, E-21,
F-22,G-26

WMSTRDEF.OBJ D-21, E-21, F-22, G-26

fill characters 6-6
First Item to Be Displayed attribute 3-9,
3-10, B-20
free-format window 2-4, 3-8, 3-9, B-8
function:
Backspace 10-10
Backup 10-8
Delete 10-10
Delete From the Cursor Out 10-10
Help 10-8
Insert 10-10
Move Left or Right One Item 10-9
Move Left or Right One Word 10-9
Move to Start or End of Line 10-9
Next Active Window 10-9
Next Item/Line Scrolling 10-8
Next Window 10-9
Page Scroll 10-7
Printable Keys 10-10
Printable Keys in Search Mode 10-11
Proceed 10-7
Select 10-7
Top/Bottom 10-9
function key change utility 10-11, C-4
function keys:
application-defined 2-5
default, how to change 10-11
differences C-5
Window Manager 10-3

get Attribute Value call 6-9

get memory error 6-10, D-19, E-19
F-21, G-25

Get String Value call 6-9

graphic title windows 8-8

4 Index

NaturallLink Window Manager

h
Help:
attach 4-16
file, setting a path for 4-17
function 10-8
key 2-5
message file 4-16
message, user-defined 4-20
messages 1-7,5-3, 8-11, 10-8
messages, graphical 8-8
helpful hints, Window Manager
Appendix B
hexadecimal values of characters C-13

1
IBM computers C-3, C-12
icons 8-8
inactive windows:
attributes See attributes,
inactive windows
on the PRO-LITE C-11
Include file:
LatticeC D-17
MS-BASIC Compiled G-22
MS-FORTRAN F-18
MS-Pascal E-17
initialize procedure 6-3
input routine, application 10-13
Insert function 10-10
Insert Help Message into List
command 4-20
Insert [tem:
call 6-8
command 4-16
Insert Window command 4-5
integers:
Lattice C D-3
MS-BASIC Compiled G-3
MS-FORTRAN F-3
MS-Pascal E-3
Intensity/Color attribute on IBM
computers C-13
interface routines, MS-Compiled
BASIC G-5
Internal Phrase Editing Chapter 9
internal phrases:
definition 9-3
how to modify 9-4
invisible:
cursor 3-14, B-4
item 3-17,B-13
label 3-12,B-6
Window item label 3-11, B-12

item:

attributes 4-15
column-major 3-11
index field 6-6
invisible 3-17, B-17
label length 3-11
labels 3-16, B-11
multiple-column 3-7
row-major 3-11
truncation 3-11
unselectable 3-17, B-16
window 1-5
item-chosen attributes See attributes, item-

chosen

item format attributes See attributes, item
format)

item label attributes See attributes, item
label

[tem Label Justification attribute 3-11
Item Label Length attribute 3-11
item-level attributes 3-16

[tem-Level Commands menu 4-13
[tem Text attribute 3-16

k

KBUILD 10-11; See also Set Function Keys
utility

key:

codes C-5,C-7,C-13,C-16
default 10-4
editing 4-11
Help 2-5
printable 10-10, 10-11
Window Manager return 6-5
keyboard input values, Window
Manager 10-4
Keyboard layout:
BUSINESS-PRO C+4
IBM PC and PC/XT C-14
IBM Personal Computer AT C-14
PRO-LITE C-10
TIPC/TIPPC C-9
keys used, application validation

routine 7-4
1
label attributes See attributes, item label
label:

invisible 3-12, B-6
item 3-16,B-11
window 1-5, 3-3, B-6
Label Intensity /Color attribute
(window) 3-13, 3-19

NaturalLink Window Manager

Index 5

Label Position attribute (window) 3-13
languages:
Lattice C Appendix D
MS-BASIC Compiled Appendix G
MS-FORTRAN Appendix F
MS-Pascal Appendix E
Lattice C program language:
application routines D-14
callable routines D-5
character strings D-3
compiler D-3
compiling requirements D-17
dummy routines library D-21
include file D-17
integers D-3
linking considerations D-20
memory considerations D-19
memory model differences D-21
parameters D-3
restrictions D-22
zero-base values D-3
LCD Flag, Lllcdon/lcdon C-12
line scrolling 2-4
linking considerations:
LatticeC D-20
MS-BASIC Compiled G-26
MS-FORTRAN F-22
MS-Pascal E-20
List Messages command 5-8
List Screen Attributes command 4-8
list window 2-3, B-3
Llwmpath, string variable 4-17,9-7
Load Screen command 4-7
Load Screen File call 6-4
looping on Receive call 3-15

m
machine detection LIpctype/pctype
flag C-3
Maximum Edit Field Length
attribute 3-18
MBUILD command 5-3; See also Message
Builder utility
memory considerations:
Lattice C D-19
MS-BASIC Compiled G-25
MS-FORTRAN F-21
MS-Pascal E-19
memory model differences, C program
language D-21
menu:
Attach Help Messages 4-18
Item-Level Commands 4-13
Screen Builder Utility 4-4

Screen Level Commands 4-4
Set Function Keys Utility 10-11
Window Level Commands 4-9
message:
default 5-9
editing keys 5-5
Error 1-7,5-3
file 4-20
file pathname 5-3
Help 1-7,5-3,8-11, 10-8
Help, graphical 8-8
options 5-3
Please Note 5-3
text 5-3
type 5-5
types 1-7
user-defined 5-3, 5-9, 8-7, 8-8
variable text 5-10
Warning 1-7, 5-3
message application calls,
user-defined 8-9
Message Builder utility 1-7, 4-18, 4-20,
Chapter 5
Message Manager utility 1-7, 5-9, 8-11
call, application 8-11
error codes and messages 5-11
Modify Message command 5-6
Move Left or Right One Item
function 10-9
Move Left or Right One Word
function 109
Move to Start or End of Line
function 10-9
MS-BASIC Compiled program language:
application-provided routines G-18
callable routines G-5
character strings G-3
compiling requirements G-22
dummy routines library G-26
Include files G-22
integers G-3
interface routines G-5
linking considerations G-26
memory considerations G-25
parameters G-3
restrictions G-26
zero-base values G-3
MS-DOS A-3
MS-DOS Link Editor A-3
MS-FORTRAN program language A-3
application-provided routines F-14
callable routines F-5
character strings F-3
common blocks F-18

6 Index

NaturalLink Window Manager

compiling requirements F-18
dummy routines library F-22
Include files F-18
integers F-3
linking considerations F-22
memory considerations F-21
one-base values F-3
parameters F-3
restrictions F-23
MS-Pascal program language A-3
application-provided routines E-14
callable routines E-5
character strings E-3
compiling requirements E-17
dummy routines library E-20
Include files E-17
integers E-3
linking considerations E-20
memory considerations E-19
parameters E-3
restrictions E-21
zero-base values E-3
multiple-column:
items 3-7
window format B-9
Multiple-Column Order attribute 3-11
multiple-selection window B-17
edit windows 7-3
simulating B-18
Multiple-Selection Window
attribute 3-8
multiple-window:
displays C-11
effects B-13
multi-purpose windows B-21

n
NaturalLink menus 1-3
Next Active Window function 10-9
Next Item/Line Scrolling function 10-8
Next Window function 10-9
NLXPHRAS.NMS$ file 9-7
NLXTOOLS 4-3,5-3,9-5
Number of Items in Window

attribute 3-11
Numeric Value attributes 3-16

o

offset value 3-9

one-base values, MS-FORTRAN program
language F-3

P
Page Scroll function 10-7
page scrolling 2-4
parameters:
LatticeC D-3
MS-BASIC Compiled G-3
MS-FORTRAN F-3
MS-Pascal E-3
Pascal See MS-Pascal program language
pathname:
message file 5-3
phrase file 9-7
window file 3-4
PBUILD command 9-5; See also Phrase
Editor utility
Phrase Editor utility 9-4
Edit a Phrase 9-6
Exit 9-7
Print Phrases to File 9-6
Restore Default Phrases 9-6
Save Phrases to File 9-7
Please Note messages 1-7, 5-3
Pop-Up Window attribute 3-9
Print Phrases to File command 9-6
printable keys 10-10, 10-11
Printable Keys function 10-10
Printable Keys in Search Mode
function 10-11
procedure calls, Window Manager 1-8
Proceed function 10-7
pseudo code, Window Manager Receive
call 86

Quit command 5-9

r
Receive calls 3-9, 6-5
application 8-9
loopingon 3-15
pseudo code, Window Manager 8-6
user-defined windows 8-4
Window Manager 10-3
Receive From Window call 6-5
Refresh Window call 6-5
Release Window call 6-6
Rename Message command 5-6
Required Edit Field attribute 3-18
Reset NaturalLink Memory call 6-10
Reset Window Manager call 6-7
Restore Default Phrases Command 9-6

NaturalLink Window Manager

return status code
application validation routine 7-5
Window Manager callable routines
D-5, E-5, F-5, G-5
Reuse Message command 5-7
Reverse Video attribute 3-12, C-10, C-13
Reverse Video Border attribute 3-15
Reverse Video Chosen Item attribute 3-19
Reverse Video Cursor attribute 3-14
Reverse Video Window Label attribute
3-13
routines:
APPINP (application input) 10-14
application input 10-13
assembly language G-15
dummy appplication input 10-14
Window Manager callable 6-3
row-major items 3-11

S
Save Phrases to File command 9-7
Save Screen:
call 6-7
command 4-8
SBUILD command 4.1; See also Screen
Builder utility
screen 1-6
file design B-22
Screen Builder utility 1-7, Chapter 4;
See also commands, Screen Builder
menu 4-4
Screen-Level Commands menu 4-4
scrolling:
automatic 3-9
line 2-4
one item at a time 2-4
one window at atime 2-4
page 2-4
search 2-4
Select function 10-7
Select Window call 6-4
Set Active Window Attributes
command 4-10
Set Attribute Value call 6-9
Set Border Attributes command 4-12
Set Cursor Attributes command 4-12
Set Function Keys utility 10-11
Set Item Attributes command 4-15
Set [tem Label Attributes command 4-16
Set Inactive Window Attributes
command 4-10
Set String Value call 6-9
Set Window Format command 4-10

Set Window Label Attributes
command 4-12
Set Window Position command 4-10
shared borders 3-15
Show Last Item When Painted
attribute 3-9
single-column window format B-9
Special Repaint on Receive
attribute 3-9, B-21, C-11
Specify Help Message command 4-20
Specify Window Coordinates
command 5-7
String Value attribute 3-16

t

Test Screen command 4-7
Test Window command 4-13
Texas Instruments computers C-4
text:

message 5-3

window 2-3,B-4

window files 3-7

TI BUSINESS-PRO computer C-4
TI PRO-LITE computer C-5, C-9
TIPC computer C-5
TIPPC computer C-5
Top/Bottom function 10-9
truncation 3-10, 3-11, 3-16

- typical calling sequence 6-11

u
UDM See user-defined message
UDW See user-defined window
Underlined Chosen Item attribute 3-19
Underlined Cursor attribute 3-14
Underlined Label attribute 3-13, 3-19
Underlining attributes

active windows 3-12

inactive windows 3-12

on IBM computers C-12
Unload Screen call 6-7
Unselectable Item attribute 3-17
unselectable items 3-17, B-16
Use Item Intensity attribute 3-14
user-defined message 5-3, 5-5, 8-7

application calls 89

display 5-10

Help message 4-20

uses 8-8

view 5-8
user-defined windows:

application calls 8-9

code 8-3

8 Index

NaturalLink Window Manager

control by application 8-3
control by Window Manager 8-4
cursor movement 8-4
Delete call 8-6
Display call 8-6
how to specify 8-3
processing help 8-4
Receive call 84
uses 8-8
utility:
Message Builder 1-7, 4-18, 4-20,
Chapter 5
Message Manager 1-7, 5-9, 8-11
Phrase Editor 9-4
Screen Builder 1-7, 4-3, Chapter 4
Screen Builder menu 4-4
Set Function Keys 10-11

A%
validation routine, application:
algorithm 7-7
application Chapter 7
datatype parameter 7-5
definition 7-3
dummy application 7-8
item number parameter 7-6
keysused 7-4
parameters 7-5
restrictions 7-8
return status code 7-5
steps 7-4
when touse 7-3
value, offset 3-9
variable, string 9-7

item 1-5

label 1-5, 3-3, B-6

list 2-3,B-3

multi-purpose B-21
multiple-selection B-17
pathname, file 3-4

size 3-6

text 2-3,B-4

types 2-3, 3-6, B-3
user-defined 2-4, Chapter 8
window attributes See attributes, other
window format 2-4, B-8
attributes 3-6

free-format B-10
multiple-column B-9
single-column B-9
window label attributes 3-3, 3-12
Window Level Commands menu 4-9
Window Manager:

callable routines 6-3
description of 1-5

features Chapter 2, B-13
function keys 10-3

helpful hints B-3

keyboard input 10-4
procedure calls 1-8, 6-3
Receive call 10-3

Receive call pseudo code 8-6
returnkey 6-5

routines, application-provided D-14,

E-14, F-14, G-15

strings D-3, E-3, F-3, G-3
window position attributes 3-6
Window Priority attribute 3-8

Variable Text messages 5-10 WMCLRS 6-9, D-13, E-13, F-13, G-14
View Help Message command 4-20 WMFLSH 6-10,D-13, E-13, F-13, G-14
View Message command 5-8 WMGETS 6-9,D-11, E-11,F-11, G-12
Visible Item attribute 3-17 WMGETV 6:9, D-11, E-10, F-11, G-12
WMIADD 6-7,D-9, E-9, F-9, G-10
w WMICRE 6-8, D-lO, E-10, F-10, G-11
Warni 17 5. WMIDEL 6-8. D-10, E-9, F-10, G-10
warning messages 1-7, >-3 WMIINS 6-8, D-9, E-9, F-9, G-10
active 1-6, 3-5, 3-10, 3-11, 3-19 WMINIT 6-3, D-6, E-6, F-6, G-6
borderless B-13 WMKE;DEFGO;%J ile 10-11,D-21, E-21,
code, user-defined 8-3 2
columnar-format 3-7, B-8 WMRSET 6-7, D-6, E-6, F-6, G-6
coordinates 3-6 WMSETS 6- 9 D- 12, E-12, F-12, G-13
description 1-5, 3-3 WMSETV 6- 9 D-12,E-11, F-12, G-13
display 2-3, B4, B-15 WMSTRDEF.OBI file D-21, E-21,F-22, G-26
edt 53 B WMUNLD 67, D-9, E-9, F-9, G-10
file 2-3.B-5 WMWADD 6-4, D-6, E-6, F-6, G-7
free-format 3-8. 3-9. B-8 WMWCRE 6-9, D-10, E-10, F-10, G-11
graphictitle 88 WMWDEL 6-7, D-8, E-8, F-8, G-
inactive on PRO-LITE computer C-11 WMWDIS 6-5,D-7,E-7,F-7,G-8
NaturalLink Window Manager Index 9

WMWRCV 6-5, D-8, E-7, F-8, G-8 z

WMWREF 6-5, D-7, E-7, F-7, G-8 zero-base values:
WMWREL 6-6, D-8, E-8, F-8, G-9 Lattice C D-3
WMWSAV 6-7, D-9, E-8, F-9, G-9 MS-BASIC G-3
WMWSEL 6-4, D-7, E-7,F-7, G-7 MS-Pascal E-3

10 Index NaturalLink Window Manager

USER RESPONSE SHEET

Our manuals are written for you. Please help us improve them by
completing and mailing this form. List any discrepancy or other problém
that you found in this manual by page, paragraph, figure, or table number
in the space provided, and add any suggestions you have. Thank you.

Manual Title:
Manual Date: Today’s Date:
Your Name: Telephone:
Company: Department:
Company Address: |

Product Purchased
From:

Company City State

Location in Manual Comment/Suggestion

The manual’s good
points:

What needs to be
improved:

No postage necessary if mailed in U.S.A.
Fold on two lines (located on reverse side), tape and mail

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

Cover Part No. 2310002-0001

i
Texas
INSTRUMENTS

