REFERENCE MANUAL %

NaturalLink"
Toolkit

0. -
uuuuuuuuuu

TEXAS INSTRUMENTS

MANUAL REVISION HISTORY

NaturalLink™ Toolkit Reference Manual (2240316-0001)

Original [SSUe.........coiiiiiiiiiiiiicec e December 1983
REVISION .ccuviiiiiiiiieiee ettt April 1984
ReVISION....ccoiiiiiiiiii November 1984
REVISION .ttt et August 1985

© 1983, 1984, 1985, Texas Instruments incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or other-

wise, without the prior written permission of Texas Instruments Incorporated.

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including

TI computers—cannot replace sound judgment nor make the manager's business decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer

application. The manager must rely on judgment of what is best for his or her business.

The system-defined windows shown in this manual are examples of the software as this
manual goes into production. Later changes in the software may cause the windows on

your system to be different from those in the manual.

Printed in U.S.A.

ABOUT THIS MANUAL

This manual describes the NaturalLink™ Toolkit, a set of utilities that sim-
plifies and speeds the development of NaturalLink natural language inter-
faces. The manual presents a broad overview of NaturalLink user software
and provides a detailed technical discussion of the Toolkit components
used to produce software packages. This manual is intended for the soft-
ware application programmer/designer.

This manual contains the following chapters and appendices.

Chapter 1: Introduction — Contains an overview of NaturalLink tech-
nology, NaturalLink Toolkit utilities, and user software.

Chapter 2: Using the NaturalLink Toolkit — Outlines the procedures for
creating a typical NaturalLink interface.

Chapter 3: Creating NaturalLink Sentences — Describes how to develop
sentences for a NaturalLink application.

Chapter 4: NaturalLink Grammar File — Describes a formal context-free
grammar and the NaturalLink grammar format, and explains how
NaturalLink software uses the grammar file.

Chapter 5: Creating an NLmenu Screen — Describes how to create the
main NaturalLink menu (the NLmenu screen from which the user builds
the sentences to be parsed and translated into the target language or
command).

Chapter 6: Using the NaturalLink Interface Builder — Provides an over-
view of the NaturalLink tools for building and testing interfaces.

Chapter 7: Testing the NaturalLink Grammar — Describes the five syntax-
checking tests performed on the grammar by the interface testing tools.

Chapter 8: Generating the NaturalLink Lexicon — Describes the inter-
active lexicon-building procedure and discusses each option in the Gener-
ate or Modify Lexicon menu.

Chapter 9: Application Control of User Options — Describes two methods
of controlling user options: user-defined experts and dynamic lexical
items. Discusses the types of problem each method is designed to solve
and provides step-by-step procedures for each.

NaturalLink is a trademark of Texas Instruments Incorporated.

NaturalLink Toolkit

About This Manual iii

Chapter 10: Generating NaturalLink Sentences — Describes the Generate
Representative Sentences option and explains the format of the resulting
generated sentences output file.

Chapter 11: Checking an Interface Screen Against Its Lexicon —
Describes the screen/lexicon consistency check utility. This utility looks
for incompatibilities between the screen and lexicon files that would pre-
vent the interface file from being successfully generated.

Chapter 12: Specifying Help and Window Coordinates for Sessioner
Windows — Describes the process of attaching Help messages and specify-
ing window coordinates for windows used by the Sessioner.

Chapter 13: Generating the Interface File and Testing Translations —
Explains how to generate the interface file and test the translations
returned for a set or subset of representative NaturalLink sentences.

Chapter 14: Other Interface Builder Options — Describes the three Inter-
face Builder options that display files and screens.

Chapter 15: The NaturalLink Sessioner — Discusses the operation of the
NaturalLink Sessioner (driver), describes the Sessioner’s command options,
and explains how to use the Toolkit’s high-level language interface rou-
tines to execute the Sessioner.

Chapter 16: Interface Customization Feature — Discusses how the user
can modify the interface by editing phrases and adding synonyms to win-
dows. Presents information for the user and application designer on the
use of this feature.

Chapter 17: Final Steps in Preparing the NaturalLink Interface — Dis-
cusses how to package the application after the interface file is built and all
code is linked, and lists the files to back up.

Appendix A: Equipment Requirements — Describes the NaturalLink
Toolkit hardware and software environment.

Appendix B: NaturalLink Error Codes — Lists and explains the Natural-
Link error messages.

Appendix C: High-Level Language Interface — Contains information
on calling and linking the NaturallLink software with the Lattice C™,
MS®-FORTRAN, MS-Pascal, and MS-BASIC Compilers.

Appendix D: NaturalLink Demonstration Program — Contains a Lattice C
program for tailoring a demonstration of the NaturalLink interface and
Window Manager.

Lattice C Compiler is a trademark of Lattice Incorporated.

MS is a registered trademark of Microsoft Corporation.

iv About This Manual

NaturalLink Toolkit

The following documents contain information relevant to the Texas
Instruments Professional Computer and the NaturalLink Toolkit.

Title Part Number
MS-DOS Operating System, Volume | 2243310-0001
MS-DOS Operating System, Volume Il 2243311-0001
NaturalLink Window Manager Reference Manual 2240317-0001
NaturalLink Technology Workbook 2243736-0001

NaturalLink Toolkit About This Manual v

CONTENTS

Paragraph Title Page
1 Introduction
1.1 NaturalLink Technologycccecoemeriiiieiiciiiceceeees e, 1-3
1.2 WINAOWS aNA MENUSooooeveiiiiiieeeciiieeccceieees e ertee et esitee e et s s esnaeesesanns 1-4
1.3 Toolkit COMPONENLS........coiiiiiiiiiriiiitete ettt 1-4
1.4 Creating the Interface Fileccccccco i 1-6
1.5 USer INtEraction....c.ccovivviiiiieireeccre sttt ettt et eaeas 1-8
2 Using the NaturalLink Toolkit
2.1 INtroducCtioncoeoiiiiiiiiii 0 2703
2.2 Interface Developmentccoccooviiniiniiiniiniteeeeeee e 2-3
3 Creating NaturalLink Sentences
R0 T (513 €0 Y0 11 Tt 470} o NN U PO 3-3
3.2 Creating Natural Language Sentencesccceevveevieneniecienesieneneene 3-3
3.3 Writing Unambiguous Sentencesc.ccoevvveiierienenenienecenerieseneeee 3-5
3.4 NaturalLink EXPertsc.ccccocooiiiiriiiiee et 3-6
4 The NaturalLink Grammar File
4.1 INErOAUCHION ...eevviiiiiieiiiieee et e e e e e e aaneeas 4-3
4.2 Context-Free GrammMaArccoccoovviiviiiieiiiieiieee e ee e eeeneee e eveeeans 4-3
4.2.1 How Grammar Rules Control Sentence Generationcccccoveeen...... 4-4
4.3 Abbreviatory CONVeNtionsccccerovecirieninieiniese et 4-7
4.3.1 Parentheses CONVEIONooiiiviiiiiiiiiiiieeecceeceee e 4-7
4.3.2 Braces CONVENIONcooviviiiiiiieeiecciee ettt e e eeeeeeseeeasaeans 4-7
4.3.3 Square Brackets Conventioncccccoevivvieniniiieeeneeseeecreens 4-8
4.4 NaturalLink Grammarcccccccooiiiimiiiiiiiiien et eeeeeeeeeeeeeeeeeeeereneens 4-10
4.4.1 Translation LIStSccc.ooiiiiiiiiiiieiie et eeetee e e s s eae s 4-11
44.2 Translation ProCESsooooviiiiiiiiieieeeeeeeeeeeeeeeeeee e ee et 4-14
4.5 How NaturalLink Uses the Grammar Fileccoccovvovevviomeeeeeeeeeennenn, 4-16
45.1 Grammar File and LeXiCOnccccoooiiiiiieeneeieeeeeee e eeeee e e eere e 4-16
NaturalLink Toolkit

Contents vii

Paragraph

Title Page

5 Creating an NLmenu Screen
5.1 INrOAUCHION ..ooiiiiiiiiiiiie ettt e et e eteeete e eareeeteseaeeeans 5-3
5.2 Development PrOCESScccocoiiiriiiieiriniciiciere et 5-4
5.2.1 Command WINOWcccoovuiiriieiiiieeeee et e et 5-6
5.2.2 Results WindOWooooiiiiiiiiiieen et et 5-7
5.2.2.1 Showing the Results Windowcoooiviiiiiicciecinicesceec e 5-8
5.2.2.2 Not Showing the Results Windowccccoevvevviiiiiininiiiicieec e, 5-8
5.2.3 Parse WindOWScccoiiiiieieiiiiieeeeeeece ettt e 59
5.2.3.1 Designing Parse Windowsccocciiiiiiiicnniiiineeceeecreesee e 5-9
5.2.3.2 Saving SCre€n SPACEc.eccveeviveiie ettt ereeerveeere e ere e ereecenes 5-10
5.2.4 Special WINAOWSoooiiiiiiiiiiceie et eer st 5-10
5.3 Setting Window Attributesccocoieiiiiiiieiieice e, 5-11
5.4 WINAOW OFderoooviimiiiiiriiiiieienieteeee et eaneas 5-12
5.5 User-Defined Windows in the NLmenu Screenccccocvveeveevviniennnnnn. 5-13
6 Using the NaturalLink Interface Builder
6.1 INtrOAUCHON ..ooviiiiiieii et et et 6-3
6.2 ProCedUurecoooiieiiiiiieieeeete ettt e eneas 6-3
6.2.1 Setting Environment Variablescccccccoeiiiiniiiniiiiiivienniee e, 6-3
6.2.2 Starting Interface Buildercccoocciiiiiniiiiiiiec et 6-3
7 Testing the NaturalLink Grammar
7.1 INtrOAUCHON ..ooiiiiieeeee ettt et st 7-3
7.2 Errors Reported by Each Testcccoovieviieiiiiieieeeceeee e 7-6
7.2.1 FOrmMat TESt ..covvviiiiiiieeieecitt ettt e sie e sre e st seee e eaeessbeaesans 7-6
7.2.2 Static Well-Formedness Testcceeieririieniiiniereeieeeeecee e 7-8
7.2.3 Common EXpansions Testcccccoviveiiiieniiniiniieeeenee e 7-9
724 Inconsistent Translations Testcccccooviriiicriniiniicicnecceene, 79
7.2.5 Infinite PArses TEStcc.oovvieiveiieeiiie ettt ettt 7-10

viii Contents

NaturalLink Toolkit

Paragraph Title Page

8 Generating the NaturalLink Lexicon
8.1 INtroduCtioncooiiiiiiiiee et 8-3
8.2 Getting In and Out of the Lexicon Builderccccooovivrievnnieeciininnnnns 8-5
8.3 Specify Command and Results Windowsccccooceeveevininiinnininieenenenn, 8-6
8.4 Specify All Lexical INformationcccceceveriineniniinnnnicnincneecieseeee 8-7
8.4.1 Specify Window Labelsccccoviriiiriiniiiecreerene e 8-9
8.4.2 Specify @ PRrasecocooiiiiiiii e 8-9
8.4.3 Specify a Translationccccceveeiiiieniieninieececceereee e 8-11
8.5 EXPEILS oottt 8-14
8.5.1 Alphanumeric EXPertccoovovimimiiniiieenneeecenceeecese e 8-15
8.5.2 NUMEFIC EXPErt ..oeoieiieieeeee et 815
8.5.3 Date EXPEIt ...oooeeiiiiieieeieteeceteerec ettt 8-15
8.5.4 LISt EXPEIT oottt sttt st et 8-17
8.5.5 User-Defined EXPErtocoviviiniriireeereeteceeitet et 8-18
8.6 Modify Lexical ItemScccccceviiiiiiiiiiiiiiiicieeiccrccrcireeceee e 8-19
8.7 Create Duplicate IEeImcccoeoiieiininiiieectecee et 8-20
8.8 Delete Duplicate Itemccueeieviiieniiiericrcenee e 8-21
8.9 Copy Translation or Expert Datac.ccoceeivviiininninininiiiiinciinns 8-21
8.10 Specify Help FOr EXpertcccccovvieviiiiniiiiciiiiiininciciccicnicnicnine 821
8.11 Specify Expert Text Delimiterscccoccevviviiniininiiniiiiniicis 8-23
8.12 Specify Expert Window Coordinatesccccoccoviiviiiinniniininnnniinnnn. 8-24
8.12.1 Alphanumeric, Numeric, and Date Expertsccccccoovviniiiinnnnnnn. 8-24
8.12.2 LiSt EXPEITS ..eoiieiiiiieieeieieeeteeesie ettt sttt 8-25
8.13 Alphabetize Phrases in Windowsccccocecievininiiiinnncncnincceniennnes 8-25
8.14 Remove Unused Phrases From Windowscccccocenininiiiniininnne, 8-26
8.15 View Expert WiNdOWc.cccovvvirieniniiiiiieciccrnecrcncicenes 8-27
8.16 Draw NaturalLink SCreenccocoeiiieeoiiiiiinienieiereee e 8-27
8.17 Quitting the Lexicon Builderccoocoiiiiiniinicecrcieees 8-28
8.18 Function Keysccooeoiiiiiieeeie ettt 8-28

NaturalLink Toolkit Contents ix

Paragraph

Title Page

9 Application Control of User Options
9.1 INtroduCHON ...oooeiiiiieie et 9-3
9.2 User-Defined EXPErtsccoooviiiieeiiiie ettt crreenir e ene e 9-3
9.2.1 Uses for User-Defined EXpertscccccccveiiriieeciiiiiniiineeeeeeie e, 9-3
9.2.2 PrOCEAULEooeiieeieee ettt et e 9-5
9.3 Dynamic Lexical Itemsc..ccccooieiiiiiiiiiniiiiiinictecteeee e 9-8
9.3.1 Uses for Dynamic Lexical [temscccccvvreviiiiiiieciieeniie e 9-8
9.3.2 Possible Modificationsccoccveviiriiniiiiiireccece e 9-8
9.3.3 Preparations for Using the Featurec.cc.cccoeimninnininnieiecicee, 9-8
9.3.4 PrOCEAUIE ...oeveeeiieiieeeee ettt b st eare s 9-9
9.3.5 Sending Information to the Sessionerccccoceeviicivecceiniciineceennn, 9-10
9.3.6 Information File for New Lexical Itemscccccoooviiviiiiiiiiiiecnnne, 9-13
9.3.7 Specifying Key Codes in Translationscccccoooveeeeieiiiiecneccieenens 9-14
9.3.8 Duplicate Lexical [t€msccceovreiiniiiiecice e 9-15
9.3.9 Using Dynamic Lexical Itemsccccoveiiiiiiiinciiice e, 9-15
9.3.10 Attaching Help to Items Createdccccocoovievieiciiiiieeee 9-16
9.3.11 EXAMPLES ...o.eviiiiiiiieceeceeeeeece et ettt et 9-16
9.3.12 SamPle Calls ...coccviieieiiieceee e e 9-21
9.3.12.1 Remove All Existing Entries and Create New Entries 9-21
9.3.12.2 Create New Entries and Leave Existing Entriesc.ccoveeunenne.. 9-21
9.3.12.3 Restore Original DTS Entry and Remove All Others....................... 9-21
9.3.12.4 Remove Al ENEYIEScoooiieiiiiieiieieeceee et 9-21
9.3.12.5 Create New Lexical [temscccccovmviiiiininniiiinieeecece 9-22
9.3.12.6 Information Sent; Leave Interface in Memorycc.cccoovueeneeeee, 9-23
9.3.12.7 Load Dynamic Lexical Items, Save Interface, and
Unload INterfaceocoovvevieeiieieece e 9-24
9.3.12.8 Unload Interface From Memory and Save to Diskccc.ccuu....... 9-24
9.3.12.9 Restore DTS Entries, Remove Lexical Items, and Save
Interface to Diskcccoovuiriiiiiiiieeceeee e 9-24
9.3.12.10 Clear From Memory Information Sent to Sessioner 9-24
10 Generating NaturalLink Sentences
10.1 INtrodUCIONooiiiiiiiciieecee ettt e tr e crare s e re e e et earenenn 10-3
10.2 ProCeAUIEoooooiviiiiiiiie ettt e s st ee e et eeara e e e e trae e e e e naes 10-3
11 Checking an Interface Screen Against its Lexicon
| T 09 Y ' T (1 Ut 0 o PSSO 11-3
11.2 Types Of MESSALESccoviruiiiiiiriiieicicieteietteteeeete st eeee e 11-3
11.2.1 EXror MESSAGES ...ccvvivviiiiiiieiriiennieiecressenesieesessaessenessneeesssaeesneassnns 11-3
11.2.2 Warning MeSSAZESccovviiivriiiriiiiiieritirrreessessseessssseesesenessssnesssnnes 114
11.2.3 Viewing an Exror File ... 114
x Contents NaturalLink Toolkit

Paragraph Title Page
12 Specifying Help and Window Coordinates for Sessioner Windows
12,1 INtrodUCHON ...oovveiieiiiieeeeete ettt et sanens 12-3
122 PrOCEAUIEooiiiieeiieeiiee ettt ere et s it s vte e st e see s ernassssa e snseessans 12-3
12.2.1 ChooSing WINAOWScooiiriiiiiiiieeeeieeicete ettt 12-3
12.2.2 Description of Sessioner Windowscccoccvvveriivinenenieecreeneeereenne 12-4
12.2.2.1 Interface Customization Windowscccceceveeveriieneneenienieniennnnne 12-4
12.2.2.2 Saved Sentences WindoOwscccoceevereireneeniienennenneee e ereeeeenens 12-5
12.2.3 SPECIY HEIP oottt 12-5
12.2.4 Specify Window Coordinatesccocceverrnrerieneneninenenenreeeenene 12-5
12.2.5 View Sessioner WindOowcc.ccceveiienieneninnieneneerecienesieeeseesseenees 12-6
12.2.6 QUIL ettt sttt b st b e 12-6
13 Generating the Interface File and Testing Translations
13,1 INErOdUCHION ...ooviiieiiciiecieetecet ettt ettt esb st 13-3
13.2 Generating the Interface Filec.cccoceviiinvnnninnncncinnccnnnnn213-3
13.3 Testing Translationsc.ccccvvrviiniininiinniniceeee e 13-4
13.3.1 Using the Generated Sentence Filec.ccccooeiiiiinincnnnnicnencenne 13-4
13.3.2 TESHING @ SUDSEL ..c.iveieieieiceteie ettt 13-5
13.3.3 Using Your Own Sentence Fileccccocevinininiiininicnniniciine. 13-6
13.3.4 Errors Reported ..ot 13-7
13.4 Translation Test RESUILScccocoeiiiviiiiniinicieeneeeecee e 13-7
13.4.1 J35:¢:1 111 o) (3 O OO PSS TORTURSRRUR 13-7
13.4.2 EXAMPIE 2 ..ottt e st e 13-13
14 Other Interface Builder Options
14.1 INtroducCtionccocieviiiiieiieieteteeeet et se et et a et s aeeneeas 14-3
14.2 List the LeXiCON ..cccooiiiiiiiiiiiiieieeetec et e 14-3
14.3 VieW the SCreencocceeiiiiiiiiciinie ettt rae e e re s 14-4
144 VIEW A FIle ..ottt 14-4
15 The NaturalLink Sessioner
15,1 INtrOdUCHON ..cccuiinmiiniieiieii ettt e r e eane s 15-3
15.2 Command and Function Key Optionscccceeeveveeiereeecricecrecicne. 15-3
15.2.1 Execute OPtionccccociviriiiiinieiieeseeceec et v 154
15.2.2 Customize OPHONccceeiirieiieieeeeeceeecee e 15-5
15.2.3 ShOW OPHION ettt s 15-5
15.2.4 Edit OPHON ..ouoiiiiieiieiee e 15-5
15.2.5 Sentences OPLiONcccoeieveeiieiiieieeeeeeeeeee et 15-6
15.2.6 HeIp OPtION ..c.covmiiiiiiiieeeee et 15-9

NaturalLink Toolkit

Contents xi

Paragraph Title Page
15.2.7 Back UP OPON ...coovieieiicieetee ettt e ereens 15-9
15.2.8 Start Over OPIONc.coceiiiriiierenieceetere et 159
15.2.9 QUIt OPLION ..ottt 15-9

15.2.10 User-Defined Command/Function Keyscc.ccccoovivvvieniinineennnn, 15-10
15.2.11 Invoking the Commandscccocvrvirrcneiiericeeeee e 15-10
15.2.12 Identifying Command Options to the Sessionercc.ccovvvveennnn. 15-11
15.3 NaturalLink Interface Callsc..ccccevinvivinicieiniiieeeeceeee e 15-12
15.3.1 Initialization and Terminationcccooeveveciniieienececceceereee 15-12
15.3.2 Loading the NaturalLink Interfaceccccoovvvevenininininiecen, 15-13
15.3.3 Invoking the NaturalLink Interfaceccccoeveneiivnevniiiicen, 15-14
15.3.4 Unloading the NaturalLink Interfacecccccocoeveviniiiiiicccne, 15-16
15.4 User-Defined Expert ROUHNEScccoeveviieiiceerieriieiicececeeeen 15-16
15.4.1 The NLXEXP Calloocveriiiiiieeeeceeeeeceeeeer e 15-17
15.4.2 The NLSETR Call ...ccooiiiiieieeceeeeeeeeeeeeee e 15-18
15.4.3 The NLXOLD Call ..coviiiiiiiiiieieiieteeeeeteeeeeee e 15-19
15.4.4 User-Defined Function Key Handlercccoovieieiiiiiniiceicns 15-19

16 Interface Customization Feature
16.1 INErOdUCHION c.ccviiiiieieceeeeee ettt et e e 16-3
16.2 Instructions for the USercccccovviiviieiiiiieeeeeeeee e 16-4
16.2.1 Add Synonyms to Visible Windowsccccccovveeviieiniiirceieeicec e, 16-5
16.2.2 Add Synonyms to Pop-Up Windowsccccceeeerecieneicnieciecneecnen, 16-6
16.2.3 Edit Phrases in Visible WIndOwsc.ccccvvivieiiiiiiiciieceiec e 16-6
16.2.4 Edit Phrases in Pop-Up Windowsccccccevviiieciiiccciecciie e 16-7
16.2.5 Remove Selected Synonyms or Edited Phrasesc..ccccccccvvevvennnnne. 16-7
16.2.6 Remove All Synonyms and Edited Phrasescccccovvvevecmninnnnnnne. 16-8
16.2.7 LoOK at the SCreenocovieiiiiiiiieere et 16-8
16.2.8 QUIL ettt ettt r e e be et e ae e beereereeeaeeereeas 16-8
16.2.9 Other Information for the Usercccooevieiiiiiicicieeeceeeeee, 16-9
16.3 Information for Application Programmersccccceeeevirunneiiiieiinneieccnennn, 16-9
16.3.1 Windows Used in Interface Customizationcccocooeeiieniinnnennnnn. 16-9
16.3.2 Interface Customization Filecccooiioiieciniiiiece e, 16-10
16.3.3 Interface Customization Callcccooveeeieiiiiiciienieececee e 16-10
16.3.4 Calling NLXEDT Directlycocveieveeieiieiieriese et 16-11
16.3.5 Letting the Sessioner Invoke the Featurecc.cccooocoiiininnnnn. 16-12
17 Final Steps in Preparing the NaturalLink Interface

17.1 Packaging the NaturalLink Interfacecccccconinininn. 17-3
17.2 Backing Up Files ...cocoovverieeiiiiiiieiciciccicc 17-4

xii Contents

NaturalLink Toolkit

Appendix Title Page
Appendixes A Equipment ReqUIrementscccocceevviiiriiiinnriiennieenie e e eveeen A-1
B NaturalLink Error Codesc.cocvieniriiniinininiene e B-1
C High-Level Language Interfacecccocveeveoiniecinicieiecceeee e C-1
D NaturalLink Demonstration Programcccccccceeviiiiiieivicccee e, D-1
Glossary
Index
Figure Title Page
Figures 1-1 NaturalLink Interface ..o 1-7
1-2 Typical NaturalLink Flow of Controlccceornirriciniiniireireieree 1-9
5-1 NLIMENU SCIEEIMccviiiuiieieeiieriieeieetteeteeseeseesreesseesseesseeseaesresssenseessaesnssens 5-4
6-1 Record a New Interface’s Information...........coccoeeiniiiiiniininniniiinnniee 6-4
6-2 Specify a New Interface........cccoovvveniininininiincnecteeeeneseees e 6-5
6-3 Main Interface Builder SCreenccoveviviveninicennnreneeeceeseenne 6-7
7-1 Create and Test an Interface........ccccocveeeevinieiiiiininineee e 7-3
7-2 Filename Pop-Up WINAOWcccoeiiiioiiiiiiiiieeeie et 7-4
7-3 Grammar Test POp-Up WINdOW........ccocviiiiiiiniiieiciec et 7-5
8-1 Generate or Modify LeXiCOMNcccvevviieiieciiciecieeeeceeeese e 8-3
8-2 Specify Command WindOW.........cccccoceevemiinininniiniineenenesteesr e 8-6
8-3 Specify Information Pop-Up WIndowcccoevvrmiiniirceeiiinieeee e, 8-7
8-4 Specify All Lexical Informationcccoocveviinieniecieiieceeceecee e 89
8-5 Phrase Selection Pop-Up Windowccccccooeieiiiiiieciinicieeeciecieceenns 8-10
8-6 Translation TYPEccvvveecereieieeee ettt ee s e s seeeens 8-11
8-7 Date FOrmat.......cccooiiriiriiiieiineeeetee ettt 8-16
8-8 Date Range Specifications.....c.ccceviiiviieierniieiiiiieeiiiieeeeete e eeeeeeeeriiiee e 817
8-9 Specify Values for List EXpert.......cccccoveeiieiiivirieiereceeee e 8-18
8-10 Modify Lexical ItemMSccceieiieiiiiiieiitieeeeceeeee e 8-19
8-11 Specify Help NUMDETS......cccccovvviiiiiiiiiienecireeeireesee st sveeenreesae e 8-22
8-12 Specify Expert Delimitersccooviiiiireiiiiriiiieiiicececeree e 8-23
8-13 Specify Expert Window Coordinates...........cccccevveeerrivencenneenieneesieenenns 8-24
8-14 Alphabetize Phrases in Windows.........cccoovvvieiiveiiiienniicecse e 8-25
8-15 Remove Unused Phrases.........ccccceciiiiieiienincieeeiecceeeieeciesie s 8-27
8-16 Draw NaturalLink SCreen..........cccceevvirieienieiiininireeeseeeeeese e 8-28

NaturalLink Toolkit

Contents xiii

Figure Title Page
11-1 Sample Consistency Check Error Screencccccooeiiincninnininennnn 11-5
12-1 Specify Help and Window Coordinates Screenccceceveevvcnienecnnnne. 12-4
13-1 Translation Test Input MenuU........cccoevivviiiiniiieieeeeerecceeecee e, 13-4
13-2 Testing a Subset of Generated Sentences............cccocevvvveecevirinecicenrennnnn 13-5
14-1 Enter File Pathname Pop-Up Windowccceeevciieeiiiciiecencrec e 14-4
15-1 Show Translation Pop-Up Window.........cccceeciviirieniciiiiceeee e, 15-5
15-2 Edit EXpert TeXtcocueoiiririiiieiireeecteseteietee ettt ne 15-6
15-3 Saving a Command SENtencCe............cccovvirerierieveerieieeeeee et 15-7
15-4 Naming the Sentence to Be Saved...........ccccooevvvnineneniceciceceeecce 15-7
15-5 Recalling or Deleting a Command Sentence..........cccccoeevveveeviieeeerennee. 15-8
15-6 Selecting a Sentence to Recallccoooveviiiiiiieicciiieeeee 15-8
16-1 Interface Customization MenU............cooveevveuiiviiceciieieccceeeeeeeeeceee, 16-4
16-2 Adding a Synonym to the Phraseccooovveiieiiiveciieeen 16-5
16-3 Editing the Phrase Pop-Up Window.........cccccoeiiiiiiiiieniciecee, 16-6
16-4 Expanded Interface Customization Menuc.ccocceovvuvevvenieiineeeeeenen.. 16-7
16-5 Remove All Synonyms and Edited Phrases Pop-Up Window 16-8
16-6 Quit Option Pop-Up WINAOWcceecueviiiieiiieieciceeteceeeeee e 16-9

Table Title Page
Table 15-1 NaturalLink Commandscccoccvevuemvieniinieiecieeieeeeceeeie e 15-11

xiv Contents

NaturalLink Toolkit

INTRODUCTION

Paragraph Title Page
1.1 NaturalLink Technologycccooiieviriiiiieceeeee e 1-3
1.2 WiIndows and MENUScc.eeriiriieiiiirieriensiteeitre e eeiseseesere s e eearesaeesaeesenens 1-4
1.3 Toolkit COMPONENLS.........ccceerrireeiereinienienieeee ettt esreseee et reeseeees 1-4
1.4 Creating the Interface Filecccocuoviiiiiniiiiniieeeeee 1-6
1.5 USer INteraction........ccceeiiieeieciieiesiecieeeeieeeer e st 1-8

NaturalLink Toolkit

Introduction 1-1

NaturalLink
Technology

1.1 Texas Instruments NaturalLink natural language technology is
designed to increase the productivity of computer users who have little or
no training or experience in programming. NaturalLink technology
accomplishes this by simplifying the interface between users and applica-
tion programs. With the software tools provided in the NaturalLink
Toolkit, you, the application designer, can produce windows, menus, and
menu items that enable users to interact with the computer by selecting
uncomplicated options. These options consist of familiar words or phrases
—the building blocks of all natural languages—that the user can assemble
to build command sentences or to issue instructions directly to an applica-
tion program.

Because the NaturalLink software is data-driven, you can tailor selection
options to the language and task requirements of specific users, whether
they are accountants, corporate vice-presidents, industrial plant workers,
lawyers, or secretaries. NaturalLink software can perform a variety of
computer-related tasks, such as database query, industrial systems control,
and electronic mailing.

An important feature of the NaturalLink software is that it controls the
order of words and phrases that a user selects from a menu. The user can
formulate only queries or sentences that produce valid commands for the
underlying system or application. System stability is enhanced because
applications cannot receive invalid directives. Time-consuming error
checks are reduced, and response time is improved.

NOTE: For reasons of clarity and consistency, English is the language
referred to throughout this manual in discussions of natural language
interfaces. It should be emphasized that the NaturalLink Toolkit can be
used to develop interfaces for any natural language; NaturalLink interfaces
have, in fact, been developed in French, German, Italian, and other
languages.

NaturalLink Toolkit

Introduction 1-3

Windows
and Menus

1.2 The NaturalLink software enables you to create a variety of win-
dows and menus. The simplest of these might consist of a single window
containing options the user can select to perform a computer-related task.

More complex menus, with multiple windows and various arrangements of
window items and labels, can be constructed to meet application
requirements. These menus might direct the user to type specific
information or to construct command sentences with nouns, verbs,
objects, or other sentence elements selected from the interactive menu
lists.

The NaturalLink software controls each step of menu selection and
sentence construction. The user makes menu selections from active win-
dows. To create a command sentence, the user places the cursor on the
appropriate word or phrase in each active window and presses the ENTER
key. The program then examines the sentence under construction and
decides which window(s) should be activated next and which choices
should be displayed. Because the choices are controlled in this way, the
user has no opportunity to make invalid selections. Thus, grammar, punc-
tuation, lexical, and typing errors are eliminated. The software translates
the error-free input into the application command language and sends it to
the application.

Toolkit
Components

1.3 Texas Instruments NaturalLink Toolkit is a set of interactive soft-
ware tools that helps you create the data files necessary to produce high-
level interfaces for almost any application. The NaturalLink Toolkit is
packaged on nine diskettes as follows:

m Window Manager Utilities diskette A — Contains two utilities:

m Screen Builder (SBUILD) — An interactive utility with which you can
specify the appearance and behavior of a NaturalLink screen.

m Message Builder (MBUILD) — An interactive utility that helps you
construct an error/Help message file for use with the NaturalLink
Message Manager.

m Window Manager Utilities diskette B — Contains two utilities:

m Function Key Change Utility (KBUILD) — An interactive utility with
which you can change the default function keys used by the Window
Manager and NaturalLink Sessioner.

m Phrase Editing Utility (PBUILD) — An interactive utility with which
you can change all the default phrases the NaturalLink run time uses
to display information and options to the user.

1-4 Introduction

NaturalLink Toolkit

® Window Manager Runtime Object diskette — Contains the object code
for a set of high-level language interface routines and the NaturalLink
object for the Window Manager.

® Window Manager Demonstration diskette — Contains the Window
Manager demonstration program, which illustrates several Window
Manager features and function calls. This diskette provides a demonstra-
tion that includes source, object code, and link streams for each of the
high-level languages supported by NaturalLink software.

m Toolkit Utilities diskette A — Contains the menu-driven Interface
Builder (IBUILD) utility with which you can test the interface grammar
for format errors and syntactic and semantic well-formedness, generate
and modify a lexicon, generate the interface file, and test the generation
of target language translations.

B Toolkit Utilities diskette B — Contains support files (screen and message
files) for the IBUILD utility.

® Toolkit Runtime Object diskette — Contains the object code for the
NaturalLink Sessioner. The object code on this diskette must be used in
conjunction with the Window Manager run-time object code.

W Toolkit Demonstration diskette A — Contains a NaturalLink driver
demonstration program that provides a means of testing any interface
you have created and illustrates the use of the NaturalLink Sessioner
(driver). The diskette contains the source, link streams, and a linked
.EXE file for this demonstration.

m Toolkit Demonstration diskette B — Contains a NaturalLink
demonstration program that is a complete working interface to a data-
base. This demonstration incorporates most of the NaturalLink features
provided by the Toolkit. The source code of the demonstration program
is provided on diskette A so you can see how these Toolkit features are
actually coded and used.

NaturalLink Toolkit

Introduction 1-5

Creating the
Interface File

1.4 The interface file (a binary file) drives the Naturallink software and
governs user input to the application. The interface file indicates to the
NaturalLink software which windows to activate and what data to display
in each window.

You can generate the interface file only after creating and testing the fol-
lowing files:

B Grammar file — Contains rules that specify how words and phrases in
the natural language can be combined, in what order they can appear,
and how they should be mapped to the target language of the applica-
tion program.

@ Lexicon file — Contains the elements from the NaturallLink grammar
file, the natural language words and phrases the user will select, the
labels of the windows in which those words and phrases will appear,
and the target language translations that will be sent to the application
program.

@ Screen description file — Contains the set of data structures that tell the
NaturalLink Window Manager how to design and place the windows.

Toolkit components help you develop the interface file by providing an
automated method to test and debug the grammar, produce a lexicon, and
create and control the screen description. Figure 1-1 illustrates how
NaturalLink software, linked with an application program, first accepts
input from a user, then translates that input into a target string, and,
finally, sends it to the application program.

1-6 Introduction

NaturalLink Toolkit

Figure 1-1

NaturalLink Interface

next set of valid choices

valid command

\

translation
to
system
language

application
program

—> user
Y
NaturalLink
software
interpretation
of user’s B N
phrase description
of user's
natural
language

NaturalLink Toolkit

Introduction 1-7

User Interaction

1.5 During execution of an application program that uses NaturalLink
software, four components handle the interaction between the user and an
application. They are:

® Window Manager — Controls the appearance of the screen, the
movement of the cursor, and the selection of items within windows.

B Parser — Keeps track of user choices and decides the next logical
choices.

B Translator — Constructs the target language string from the parsed
input sentence.

W Sessioner (driver) — Controls the interaction among the Window
Manager, the Parser, the Translator, and the application program.

Figure 1-2 illustrates how these components interact during the execution
of an application.

1-8 Introduction

NaturalLink Toolkit

Figure 1-2

Typical NaturalLink Flow of Control

NaturalLink is called by
application program;
user selects first option

execute

no

Window Manager passes the
key pressed or location

of item selected to

Parser via the Sessioner

Parser adds item to parse,
decides which items will
be available next, sends
data to Window Manager
via the Sessioner

\

user makes next selection

Translator receives
parse tree and builds the
target language string
that is returned to

the application program

NaturalLink Toolkit

Introduction 1-9

USING THE NATURALLINK TOOLKIT

Paragraph Title Page
2.1 INtrodUCHONccotiiieeeee ettt et 2-3
2.2 Interface Developmentcccoeieiiiiiievienieieccece et 2-3

NaturalLink Toolkit

Using Toolkit 2-1

Introduction

2.1 A series of steps and procedures must be followed to produce each
component in a complete NaturalLink interface. NaturalLink software
helps check the validity and compatibility of each interface component as
you develop it. Most components are interdependent and serve as input
for generating subsequent components. You may sometimes need to
return to a previous step in the development process, because the modifi-
cation of one component often affects a previously generated component.

Interface
Development

2.2 Atypical interface development procedure is as follows:

1. Copy all NaturalLink Toolkit diskettes to the Winchester disk. Assign
the Winchester drive as the default drive.

2. Create a set of sentences. Study the application, and write sentences
that best represent the capabilities of the application. Refer to Chapter
3, Creating NaturalLink Sentences, for guidelines.

3. Develop and test the screens. With the Screen Builder utility, develop
and test the window(s) and screen(s) needed for your interface. For
detailed information about the Screen Builder utility, refer to the
NaturalLink Window Manager Reference Manual. Chapter 5, Creating
an NLmenu Screen, of this manual contains information about Screen
Builder.

4. Write a grammar that defines the set of sentences created in step 2.
Refer to the Naturallink Technology Workbook for detailed
instructions on writing a grammar for the NaturalLink software.

5. Develop grammar translation information. Using the formats in Chap-
ter 4, The NaturalLink Grammar File, and the procedures outlined in
the NaturalLink Technology Workbook, develop the translation
information for the grammar created in step 4.

6. Enter the grammar, along with the translation information, into your

computer. Using a standard text editor, enter your grammar into a
sequential file on your disk.

7. Specify the new working interface. Invoke the Interface Builder utility,
and use the Record a New Interface’s Information option to define a
working interface for the grammar. Refer to Chapter 6, Using the
NaturalLink Interface Builder, for details.

8. Test the grammar. Use the Test the Grammar for the Interface option
in the Interface Builder utility to test the grammar. Refer to Chapter 7,
Testing the NaturalLink Grammar, for information about this
procedure.

NaturalLink Toolkit

Using Toolkit 2-3

10.

11

12.

13.

14.

15.

. Build the lexicon. Use the Generate or Modify the Lexicon for the

Interface option of the Interface Builder utility to construct the lexicon.
Refer to Chapter 8, Generating the NaturalLink Lexicon, for details.

Generate sentences. Use the Generate Representative Sentences for
the Interface option to produce a set of sentences you can analyze to
discover errors not found during the grammar testing procedure.

Check screen and lexicon consistency. Use the Check the Screen
Against the Lexicon option of the Interface Builder utility to ensure
that all windows referenced by the lexicon are in the NLmenu screen
file and contain the correct attributes. Refer to Chapter 11, Checking
an Interface Screen Against Its Lexicon, for details.

Specify Help and window coordinates for Sessioner windows. If you
want to attach Help messages or specify certain window coordinates
for the windows used by the Sessioner, you should do so before gener-
ating the interface file. Refer to Chapter 12, Specifying Help and Win-
dow Coordinates for Sessioner Windows, for details.

Generate the interface and test your translations. Use the Generate the
Interface File option of the Interface Builder utility to build your inter-
face. Then, using the Test the Interface’s Translations option, test the
translations for your generated sentences. Refer to Chapter 13, Gener-
ating the Interface File and Testing Translations, for details.

Link the application. After you have tested the interface, modify your
application to make the necessary calls to the NaturalLink software.
Refer to Chapter 15, The NaturalLink Sessioner, and Appendix C,
High-Level Language Interface, for details.

Build the user diskette and save your files. After you have linked the
application with the NaturalLink software, build the user diskette and
save the grammar, lexicon, expert, screen, and other files in case you
enhance your interface in the future. Refer to Chapter 17, Final Steps
in Preparing the NaturalLink Interface, for details.

The structure of this manual reflects the typical interface development
procedure just described. Information is presented in the order you will
need it as you create your NaturalLink interface. The NaturalLink Toolkit
can produce interfaces for a variety of computer applications, but for con-
sistency this manual presents an extended example of step-by-step proce-
dures for developing an interface to a relational database.

2-4 Using Toolkit

NaturalLink Toolkit

CREATING NATURALLINK SENTENCES

Paragraph Title Page
3.1 INtrOAUCHION ..cueieiiieieieeeei et 3-3
3.2 Creating Natural Language Sentences..........cocceveereerierieeceeneieeeeesceseeense 3-3
3.3 Writing Unambiguous Sentences............cccceevevenininnienireenenieneceeeenens 3-5
3.4 NaturalLink EXperts........c.ccoocvmiiniiiiiiniiiicccccec e 3-6

NaturalLink Toolkit Creating NaturalLink Sentences 3-1

Introduction

3.1 The first step in the interface development process is to study the
computer application carefully and then write a set of clear, natural
language sentences that reflect all the capabilities of the target language
for that application. In this case, the data manipulation language (DML) for
a relational database is the target language. This chapter describes some
factors you should consider and some problems you may encounter in
developing a set of natural language sentences for a particular data manip-
ulation language.

Creating 3.2 Assume your database consists of various tables that the user can
Natural access by typing in the proper DML commands. Tables can be linked, and
Language multiple tables can be accessed by a single command phrase. One table
Sentences contains information about cars, another contains demographic informa-
tion, and so forth.
Following are examples of DML commands and natural language
sentences. The numbers in parentheses identify examples. The first two
digits refer to the paragraph in which the examples occur, and the next
digit is the example number within the paragraph.
In the first example, assume you have the DML commands LIST and
COUNT, and you wish to create natural language sentences that will
enable a user to access information about cars:
(3.2.1)* (1) LIST field_name
(2) COUNT field_name
Here, LIST means to display values for the specified field, and COUNT
means to count the number of times a field value exists. In this case, LIST
CARS will show all the cars in the database; COUNT CARS will show the
number of cars in the database. The following sets of natural language
sentences can be created from this simple DML.:
(3.2.2) (1) Listall cars.
(2) Count the number of cars.
(3.2.3) (1) Display all cars.
(2) Display the number of cars.
(3.2.4) (1) Show all cars.
(2) Show the number of cars.
(3.2.5) (1) Find all cars.
(2) Find the number of cars.
* The numbers in parentheses identify examples. The first two digits refer to the paragraph in which
the examples occur, and the next digit is the example number within the paragraph.
NaturalLink Toolkit

Creating NaturalLink Sentences 3-3

An important factor to remember is that the simplest sentences are
generally the best sentences. Not only are simple sentences easier for a
user to understand, but you will find that writing grammar rules for them is
easier. Although all the preceding sentences are easy to understand, the
sentences in 3.2.2 require the use of two different verbs, while the
sentences in 3.2.3 through 3.2.5 use a single verb for both LIST and
COUNT. Thus, the last three sets of sentences are recommended because
they require fewer grammar rules.

Now, look at the following DML commands:

(3.2.6) (1) LIST field_name_1
BY field name_2

(2) LIST field_name_1
BY HIGHEST field_name_2

Here, the first DML command (3.2.6.1) means to display the value of
field_name_1 in ascending order of the value of field_name_2, while the
second command (3.2.6.2) means to display the value of field_name_1 in
descending order of the value of field name_2. With STATES for
field_name_1 and POPULATION for field_name_2, the following natural
language sentences can be written:

(3.2.7) (1) Show states in order of population,
showing the least populous states first.

(2) Show states in order of population,
showing the most populous states first.

(3.2.8) (1) Show states sorted by population
in ascending order.
(2) Show states sorted by population
in descending order.

3.2.9) (1) Show states in ascending order of population.
(2) Show states in descending order of population.

Although the sentences in 3.2.7 sound natural, it would be difficult to write
a grammar to generate such complicated sentences. The sentences in 3.2.8
cannot be recommended either, because it is not clear whether the
phrases “in ascending order” and “in descending order” refer to “states” or
to “population.” Ambiguous sentences are best avoided, because they are
confusing to the user and because they require special grammar rules to
resolve their meanings.

3-4 Creating NaturalLink Sentences NaturalLink Toolkit

The sentences in 3.2.8 have another drawback. Because the field_name
(“population”) splits the sort-phrase into two parts (that is, “sorted by”
field_name “in ascending order”), two separate windows may be
necessary, one to display each phrase. Screen space is limited and should
not be filled unnecessarily. The sentences in 3.2.9, on the other hand, are
both clear and concise, and they do not require unusual window
configurations. They are the best sentences for the purpose.

Writing
Unambiguous
Sentences

3.3 To avoid ambiguities, it is sometimes necessary to repeat two or
more elements in a sentence. Consider the following sentence:

(3.3.1) Find jobcards that list operations whose
operation number is equal to 50 and whose
order number is greater than 100.

Assume that both the JOBCARD table and the OPERATION table have
a field called order_number. In sentence 3.3.1, the phrase “whose
order number is greater than 100" could refer to either “jobcard order
number” or “operation order number.” The sentences in 3.3.2 clear up this
ambiguity.

(3.3.2) (1) Find jobcards that list operations whose
operation number is equal to 50 and whose
jobcard order number is greater than 100.

(2) Find jobcards that list operations whose
operation number is equal to 50 and whose
operation order number is greater than 100.

Following are further examples of unambiguous sentences:

(3.3.3) (1) Find workers who have jobcards whose
jobcard order number is 20 and whose
worker employee number is 150.

(2) Find workers who have jobcards whose
jobcard order number is 20 and whose
jobcard employee number is 150.

(3.3.4) (1) Find operations that are listed on jobcards
whose jobcard hours are 10 and whose
operation piece number is 200.

(2) Find operations that are listed on jobcards
whose jobcard hours are 10 and whose
jobcard piece number is 200.

(3.3.5) (1) Find workers whose worker name is Steve Jones.
(2) Find jobcards whose jobcard piece number is 300.

NaturalLink Toolkit

Creating NaturalLink Sentences 3-5

NaturalLink 3.4 Some of the sentences in the preceding examples require specific

Experts numeric values. The user must be able to fill in the values. To this end, the
NaturalLink software contains several expert fields in which the user can
enter values. For further information on the various expert routines
available in the NaturalLink software, refer to Chapter 8, Generating the
NaturalLink Lexicon, and to Chapter 9, Application Control of User
Options.

3-6 Creating NaturalLink Sentences NaturalLink Toolkit

THE NATURALLINK GRAMMAR FILE

Paragraph Title Page
7: 30 N § 010 0 Yo 11 1l 4 (o) 1 WU PR 4-3
4.2 Context-Free GraInMar.......c.ccoouviiiiiiieieeiieec et st e e st e e svreesaaessnaesanes 4-3
4.2.1 How Grammar Rules Control Sentence Generationcceeeeeevennennne 4-4

4.3 Abbreviatory CONVENtioNnSccccoveviiereeicrerieeeereeeereereseeeserseseeeresenes 4-7
4.3.1 Parentheses CONVENIONcccuviviviiiiiiiereiceceeee et eeeireeeesanee e 4-7
43.2 Braces CONVENtIONcoovieveiieiieiicteee et 4-7
4.3.3 Square Brackets Convention..........cccccecveveevenieviesece e 4-8

4.4 NaturalLink Grammar........cccccooceiviiiiieieeieiiec ettt eeareens 4-10
44.1 Translation LISESccveiiiiviiiiiicceieeeeiete et ete e sssavees s nneeaes 4-11
4.4.2 Translation PrOCESScoovvviiiiiecreeiiccieeceerte e cvee et cesnere s onseees 4-14

4.5 How NaturalLink Uses the Grammar File.........c.cccooovivviviiiiineiiiieenen. 4-16
4.5.1 Grammar File and LeXICONcoouvviiiiiiiiiiicieee et e e 4-16

NaturalLink Toolkit Grammar File 4-1

Introduction

4.1 Language is governed by rules. In the NaturalLink grammar file, the
rules of a natural language are expressed in a formal notation that a
computer can use to generate sentences for a NaturalLink interface. This
chapter discusses the basic rules and conventions for creating a Natural-
Link grammar file. For a more detailed explanation, refer to the
NaturalLink Technology Workbook.

The general procedure for writing a NaturalLink grammar consists of two
steps:

1. Write a context-free grammar defining the natural language.

2. For each rule, construct translation lists that tie together the grammar,
the lexicon, and the target string.

The rest of the chapter explains these steps and discusses how NaturalLink
uses the grammar file.

Context-Free
Grammar

4.2 Linguists have developed symbolic conventions for describing the
structure of language. Here is a representation of a context-free grammar,
that is, a grammar of the following form:

Grammar (1) (1.1) S —> NOUN VERB
(1.2) NOUN —> birds
(1.3) VERB —> fly

Each rule in a context-free grammar has a single element on the left side
connected by an arrow to one or more elements on the right side. The
element ‘S’ stands for “sentence.” The arrow is interpreted as meaning
“may consist of.” The preceding grammar rules are read as follows:

A sentence ‘S’ may consist of ‘NOUN’ followed by ‘VERB’; ‘NOUN’ may
consist of ‘birds’; ‘VERB’ may consist of ‘fly’.

Each element in the rule is called a rule element. ‘S’, ‘NOUN’, ‘VERB’,
‘birds’, and ‘fly’ are all rule elements. Elements that can appear on both the
left and the right sides of the rules are called nonterminal elements. ‘S’,
‘NOUN’, and ‘VERB'’ are nonterminal elements. Elements that can appear
only on the right side of the grammar rules are called terminal elements.
The elements ‘birds’ and ‘fly’ are terminal elements, since they do not
appear on the left side of any rule. (Terminal elements are also called lexi-
cal items or lexical elements because they are further defined in the lexi-
con, the language’s list of words and their definitions.) Throughout this
chapter, capital letters represent nonterminal elements and lowercase let-
ters represent terminal elements.

NaturalLink Toolkit

Grammar File 4-3

How Grammar
Rules Control
Sentence Generation

4.2.1 Grammar rules prescribe the structure of the sentences that can be
generated. Assume you have the following set of grammar rules for a
language:

Grammar (2) 2.1 S — ABC
(2.2) A — aC
2.3) B—b
(2.4) C—c

Following is an informal description of these grammar rules:

A sentence ‘S’ consists of nonterminal elements ‘A’, ‘B’, and ‘C’. ‘A’
consists of terminal element ‘a’ and nonterminal element ‘C’. ‘B’ consists
of terminal element ‘b’. ‘C’ consists of terminal element ‘c’.

The following example illustrates a systematic method of applying these
grammar rules to generate a sentence:

S

A BC if you apply rule (2.1)
aCBC if you apply rule (2.2)
aCbC if you apply rule (2.3)
acbec if you apply rule (2.4)

First, write the element ‘S’. Directly below that write the sequence of ele-
ments that appear on the right side of the S rule (2.1). If the grammar had
more than one rule with S on the left side, you could have picked any S
rule. On the third line, expand one of the nonterminal elements in the sec-
ond line. In the preceding example, the third line, ‘a C B C’, was derived
from the second line by replacing the element ‘A’ with the sequence of
elements ‘a C’ that appears on the right side of the A rule (2.2). Repeat this
procedure until there are no more rules to apply, that is, until all the non-
terminal elements have been expanded. The resulting derivation is in
table form.

When all nonterminal elements in a sentence have been expanded, it can
be said that a sentence has been generated by the grammar. Frequently,
more than one element in a given line can be rewritten to create the next
line. In the preceding example, three elements on the second line, ‘A’, ‘B’,
and ‘C’, can be expanded. The order in which you expand the elements
does not alter the ultimate outcome of the sentence, as you can see by
comparing the preceding example with the following one.

4.4 Grammar File

NaturalLink Toolkit

S %

C
c

T oTUTO W
sz R eoXe

if you apply rule (2.1)
if you apply rule (2.3)
if you apply rule (2.4)
if you apply rule (2.2)

if you apply rule (2.4)

Note that rule 2.4 had to be applied twice in order to reduce all elements to
terminal elements.

Whenever more than one rule in the grammar can be applied to a
particular element, the outcome of the expansion depends upon which
rule is chosen. For example, if you add a rule (2.5) to the grammar, the
grammar can generate either of the sentences shown in the next example.

Grammar (2)

2)

T VR N 7 S VI O O)
T T w N oY@

TT ®RWw
TN oo

T T ww
TN ool

o p— p— —
U QO DN
N S N N N

if you apply rule 2.1
if you apply rule 2.2
if you apply rule 2.3
if you apply rule 2.4

if you apply rule 2.1
if you apply rule 2.5
if you apply rule 2.3
if you apply rule 2.4

S — ABC
A—aC
B—b
C—c¢
A— aB

Sentence generation can best be represented in tree form, as the following
example illustrates.

NaturalLink Toolkit

Grammar File 4-5

M S

o
O
o
0

c
/A\ | i
a B b c

o

You can draw a tree by starting with the initial element S, then writing
below it the sequence of elements that appears on the right side of a rule
that begins with S. Next, draw branches from every element that can be
expanded. A tree is complete when each branch ends with a terminal
element. A grammar can generate a sentence only if all the branches of
the tree that represents the grammar end in terminal elements.

4-6 Grammar File

NaturalLink Toolkit

Abbreviatory
Conventions

Parentheses
Convention

Braces Convention

4.3 Abbreviatory conventions combine a number of related grammar
rules. If two grammar rules have the same rule element on the left side and
the same first rule element on the right side, you can use one or more of
the following abbreviatory conventions to combine the rules.

4.3.1 If two grammar rules are identical except that one contains an
element or a sequence of elements that the other does not, you can
collapse the two rules by writing out the longer rule and enclosing the
additional element(s) in parentheses. Consider the following pair of rules:

Grammar (3) (3.1) A—CDB
(3.2) A—>CB

The rules are the same except that the first contains one additional
element. Collapse these two rules into a single rule by enclosing the
additional element in parentheses:

(3.3) A—>C([D)B

This rule reads as follows:

The nonterminal element ‘A’ consists of ‘C’, followed by an optional
element ‘D’, followed by ‘B’.

4.3.2 Braces indicate an either/or option when a rule can be expanded
in more than one way. Consider the following rules:

Grammar (4) 4.1) S—> AB
4.2) S—>AC
4.3) S—>AD

The preceding rules state that a sentence consists of ‘A’, followed by ‘B’ or
‘C’ or ‘D’. You can collapse these three rules into one by applying the
braces convention:

(4.4) S—>A{BCD}

NaturalLink Toolkit

Grammar File 4-7

Square Brackets
Convention

You can apply the parentheses and braces conventions together to further
collapse a set of rules. For example, you can apply the parentheses con-
vention to collapse rules 5.1 and 5.2 into a single rule (5.4):

Grammar (5) (5.1) S—>ABC
(5.2) S—>AC
(5.3) S—> AE
v
(5.3) S—> AE
(5.4) S—> A(B)C

But notice what happens if you try to apply the braces convention to
collapse 5.3 and 5.4 into rule 5.5:

(5.5) S—>A{B)CE}

Rule 5.5 does not yet satisfy the criteria for collapsing all the rules (5.1
through 5.4), because it cannot generate 5.4. Another abbreviatory
convention is required — the square brackets convention.

4.3.3 Square brackets define groups of rule elements inside braces. Con-
sider the following two grammar rules:

Grammar (6) (6.1)
(6.2)

A—>BCD
A—>BEF

You can collapse these two rules into a single rule with braces and square
brackets. First, enclose the unshared elements within braces to indicate an
either/or option.
(6.3) A—B{CD EF}
Next, use square brackets within the braces to show that rule elements ‘C’
and ‘D’ constitute one group, while elements ‘E’ and ‘F’ constitute another.
(6.4) A—>B{[CD][EF]}
Rule 5.5 must be rewritten as 6.5 with square brackets, because the
sequence ‘(B) C’ constitutes one group:

(6.5) S—> A{[B)CJE }

4-8 Grammar File

NaturalLink Toolkit

These abbreviatory conventions are more than just a convenient
shorthand for stating rules. They express important grammatical
relationships and make computer processing of the grammar rules more
efficient. These conventions save processing time and memory space for
the Parser because they reduce the total number of rules that must be
applied. However, you must be very careful when applying abbreviatory
conventions. Suppose a grammar has the following two rules:

Grammar (7) (7.1) S—>ABCD
(7.2) S—> AECF

These rules state that either ‘B’ or ‘E’ follows ‘A’, and either ‘D’ or ‘F’ fol-

lows ‘C’. At first glance, it appears that you can use braces here to collapse
the two rules into a single rule:

(7.3) S—>A{BE}C{DF}

However, when you expand the S rule again, you generate not only the
two original rules but also two rules not in the original grammar:

(7.1) S— ABCD
(7.2) S—> AECF
(7.4) S—> ABCF
(7.5) S—> AECD

The correct way to combine rules 7.1 and 7.2 is:
(7.6) S—> A{[BCD]ECF]}

Following are further examples of how abbreviatory conventions can
result in meaningless rule expansions or inefficient computer processing.

@ Inefficient use of abbreviatory conventions. The rule
A—>B(Q)([D)(E)
can be simplifiéd, with no loss of meaning, to
A—>B(()(D)(E)

B Meaningless expansions. Consider the following grammar:

Grammar (8) (8.1) A—>B
8.2) A—>BC
8.3) A—>BD
(8.4) A—>BE

NaturalLink Toolkit

Grammar File 4-9

Suppose you first use the parentheses convention to collapse rules 8.1 and
8.2, giving rule 8.5.

(8.5) A—>B(Q)

Next, you use the braces convention to collapse rules 8.5, 8.3, and 8.4, giv-
ing rule 8.6.

(8.6) A—>B{(C)DE}

The braces convention indicates that one of the enclosed elements, and
only one, must be chosen. An enclosed element in parentheses, as in rule
8.6, means that in one expansion of this rule no element is chosen. This is a
meaningless use of the braces convention. If you wish to include the possi-
bility that no element will be chosen in a certain rule expansion, make
parentheses the outermost element, as in rule 8.7.

(8.7) A—>B({CDE})

NaturalLink
Grammar

4.4 The syntax of the NaturalLink grammar differs from standard
context-free grammar notations. These differences serve to further
enhance computer processing of the grammar. NaturalLink grammar rules
must follow this format:

@ <mother > <daughterl > ... <daughterN >
;< translation list] >; ... <translation listM >!

where:
@ flags the beginning of a rule.

< mother > is the left side of the rule (that is, the rule element to the
left of the arrow) in the context- free grammar format.

< daughter1 > is the first rule element on the right side of the rule (that
is, the first rule element to the right of the arrow) in the context-free
grammar format.

This element is also called the left corner. In the NaturalLink grammar
format, this element must not be enclosed within braces, brackets, or
parentheses.

4-10 Grammar File

NaturalLink Toolkit

Translation Lists

< daughterN > are the remaining elements (if any) on the right side of
the rule. Abbreviatory conventions can be used with these elements.

; flags the beginning of a translation list.

< translation list] > and < translation listM > specify the translation
list(s) for a rule (see paragraph 4.4.1, Translation Lists)

! marks the end of the rule and its translation list(s).
Rule elements in the NaturalLink grammar format, like those in the

context-free format, are either terminal elements or nonterminal ele-
ments. They are separated by one or more spaces or carriage returns.

4.4.1 Translation lists (the sets of numbers in parentheses that appear at
the end of each grammar rule) tell the Translator which expansion of the
rule was used in the parse and how to build the target language string. The
numbers in the first set of parentheses are the syntactic path list. They
describe how to form one expansion of that grammar rule. The numbers in
the second set of parentheses are the semantic substitution list. They tell
the Translator how to combine the individual translation strings to create
the correct target-language command. The target language string for each
terminal element in the grammar is contained in the lexicon.

So that it can tell which expansion of the grammar was used in the parse,
the NaturalLink software assigns an integer to each rule element. The left
side is assigned zero, and each succeeding element is incremented by one.
The next examples follow the context-free grammar format for clarity of
discussion. For example, the rule

X—> ABC
is assigned the values

X—> ABC
0 123

and the translation list is assigned the values
;(123) (x1..xN)

The expansion of this rule is represented by the sequence of the integers
(1 2 3)and (x1..xN). The first sequence of integers, (1 2 3), is the syntac-
tic path list; it indicates which path is taken through the right side of the
rule. The second set of integers, (x1..xN), is the semantic substitution list.

NaturalLink Toolkit

Grammar File 4-11

If the rule has more than one possible expansion, there will be more than
one translation list. Following is an example of a rule with more than one
possible expansion:

X— A{BC] [DE]}F
0 1 23 45 6

The translation lists are
:(1236) (x1..xN); (1456) (yl..yN) !

In this example, the syntactic path list (1 2 3 6) is the path for the
rule expansion X —> A B C F, and (1 4 5 6) is the rule expansion for
X—>ADEF.

The semantic substitution list indicates to the Translator how it should
build the target string for the rule. This list consists of the following parts:

B Predicate — The first integer of the list
B Arguments — The integers after the predicate
B Predicate’s string — A character string associated with the predicate

m Slots — Locations in the predicate’s string where the arguments are
placed (in the order by which they occur in the semantic substitution
list)

Each argument in the semantic substitution list also has a character string
associated with it. These strings are stored in the lexicon and are the target
language translations for the lexical items.

The slots in the predicate’s string are indicated by an at sign (@) followed
by an integer. The @1 indicates that the first argument is to be inserted in
the @1 position, the @2 indicates that the second argument is to be
inserted in the @2 position, and so on.

4-12 Grammar File

NaturalLink Toolkit

To develop the semantic substitution list, follow these steps:
1. For representative sentences in the language, draw the parse tree for
each. The NaturalLink Toolkit automatically generates these
sentences.

2. For each terminal node in a tree, determine the target language frag-
ment that corresponds to that lexical item.

3. Decide which target language fragments you wish to use as predicate
strings and which are to be argument strings.

4. Add the @< integer> slots to the predicate strings, and create the
semantic substitution lists to reflect how you want these strings
combined.

Refer to the NaturalLink Technology Workbook for an extended example
of how to develop the semantic substitution list for a specific grammar.

As an example, assume that the rule

X—> A {BC] [DE]}F
0 1 23 45 6

has the following translation lists:

;(1236)(2316);(1456)(4516)!

The predicates are 2 and 4. Assume 2’s predicate string is “@1 and @2 and
@3”, and 4’s predicate string is “@1 or @2 or @3". If the rule expansion
used is X —> A B CF, the string built by the Translator is:

< C's string> and < A’s string> and < F’s string>

Similarly, if the rule expansion used is X — A D E F, the string built by
the Translator would be:

< E’s string> or < A’s string> or < F’s string>

Rule elements can also be repeated so that the same string can be inserted
into several slots. For example, a valid predicate string is

@1 @1 little @2

If “twinkle” is the string of the first argument, and “star” is the string of the
second argument, the final string is

twinkle twinkle little star

NaturalLink Toolkit

Grammar File 4-13

Translation Process

Nesting is allowed in the semantic substitution list and is designated by an
additional set of parentheses. For example, the translation list

;(1236)(2(31)6)!

tells the Translator to first use predicate 3’s string and place daughter 1’s
argument string in the predicate’s slot, and then to fill the slots of
predicate 2’s string with the string built from daughters 3 and 1 and with
daughter 6’s argument string.

4.4.2 Understanding the translation process is important in constructing
correct translation lists in the grammar (and correct translations for lexical
items). See the NaturallLink Technology Workbook for examples of
constructing translation information for a sample application.

The translation process works as follows:

1. The Translator traverses the parse tree and finds the lowest, rightmost
subtree..

2. The Translator gets the translation list for the rule expansion that this
subtree represents. For example, if the subtree

/AR
B C D

is produced from the rule
A= B (C D;Mm@A) ;123)213)!

the Translator determines that the proper translation list for this
expansionis (12 3)(2 1 3).

3. The Translator gets the predicate and makes the substitutions into the
predicate string as prescribed in the semantic substitution list. In the
example, the predicate is daughter 2. Daughter 2’s string has two slots,
@! and @2. The Translator takes daughter 1's string and inserts it into
the first slot in daughter 2’s string; it then takes daughter 3’s string and
inserts it into the second slot.

4.14 Grammar File

NaturalLink Toolkit

4. The Translator moves up the tree to find the current subtree’s mother,
which s ‘A’.

5. The Translator repeats steps 2 through 4 until the root of the parse tree
is processed.

The preceding algorithm assumes a tidy set of translations and subtrees.
Some special cases that can appear in an application require further
explanation:

M If at any time the mother of a particular subtree has subtrees under it
that have not been processed, that subtree is processed before the
mother is processed. For example, if the subtree is

A
B C D
E

then the subtree ‘C’, which has ‘E’ as a daughter, is processed before the
whole.

m [f all the slots in the predicate’s string are not filled (that is, if the predi-
cate’s string has more slots than the number of arguments) in step 3, the
remaining slots are reset relative to 1. Thus a string containing @3 and
@4 would be reset to @1 and @2, as demonstrated in the following
example:

X—>ABC;(123)(123)!

The predicate in this rule is daughter 1, which has string “@1 and @2 and
@3 and @4.” In this case, the predicate has only two arguments, daughters
2 and 3. Therefore, @3 and @4, which have no arguments, are reset to @1
and @2, with the following result:

< B’s string> and < C’s string> and @1 and @2

Farther up in the tree, these slots must be replaced with other arguments;
otherwise, the final translation will have unresolved slots.

NaturalLink Toolkit

Grammar File 4-15

m If some rule elements do not have translations associated with them,
they do not appear in the semantic substitution list. In the following
example, B does not have an associated translation:

X—>BCD;(123)123)!
B Experts should not occur as predicates with arguments in the semantic
substitution list in any rules of the grammar. The reason is that experts

cannot contain slots.

m If the semantic substitution list contains only a single element, the string
that replaces that element is passed up the parse tree unchanged.

A—>B;(1)(1)!

How
NaturalLink
Uses the
Grammar File

Grammar File
and Lexicon

4.5 The grammar file is a key component in the development of a
NaturalLink interface. The grammar file provides input for the lexicon.
Together, the lexicon and the grammar file contain the information that
the Parser and the Translator need to manipulate the NaturalLink screen
and to develop the target language string from the English sentence.

4.5.1 The following paragraphs explain in detail the relationship
between the grammar file and the lexicon.

The lexicon defines the items listed on the screen and relates them to
items in the grammar; it also relates the terminal elements in the grammar
to the target language. Each lexical entry includes the following
information: .

B Terminal element in the grammar

® Screen position — Specified by the item text and the window in which
it appears

B Translation — Either the predicate or argument string

4-16 Grammar File

NaturalLink Toolkit

The lexicon contains at least one entry for each terminal element in the
grammar. Special cases can exist, as in the following examples:

M A terminal element can be associated with more than one English
phrase in the NLmenu screen. In this situation, the lexicon must contain
one entry for each English phrase corresponding to that terminal ele-
ment. It is possible that these multiple entries have different
translations.

W Several terminal elements in the grammar can map to the same screen
position with each having the same or different translations. The Parser
can determine by examining the grammar which terminal elements to
add to the parse. Note that each terminal element and screen position
must map to a single translation; otherwise, an ambiguity results that
will not be detected.

For information on constructing the lexicon, refer to Chapter 8§,
Generating the NaturalLink Lexicon.

NaturalLink Toolkit

Grammar File 4-17

CREATING AN NLMENU SCREEN

Paragraph Title Page
.1 INtrOAUCHON ..c..ciiiiiiiteet et 5-3

5.2 Development ProCess..........cccocooviiiiiirinininnienieicieeeeceieeee e 5-4

5.2.1 Command WINAOWcooeiiriiiiiiiciiceeeeeeeeeeeee e 5-6

522 Results WINAOW.......c..ooviiiiiiieiccieceeeer et 5-7

5.2.2.1 Showing the Results Windowccccoovveoieiicioiciceecece, 5-8
5222 Not Showing the Results Windowccccoeveviiiiiiiiiciccee, 5-8

523 Parse WINAOWS........c.ccoiiiiiiniiieeeecceete ettt 5-9

5.2.3.1 Designing Parse Windowsc..ccccocovvivininniininiiececeece e 59
5.2.3.2 Saving SCreen SPACEccovviieieiecieeeeeeeeeeeee e 5-10

524 Special WindOWsc.cocuiiiiiiiiiinieieteceeeeee et 5-10

5.3 Setting Window Attributes..............coovvrviveeveeeveeieeeeeeeeeeeeeeeeeeans ..5-11

5.4 WINAOW OFAEIiiiiiniiieiiieceeeee ettt e eee e 5-12

5.5 User-Defined Windows in the NLmenu Screenccocoeveeveeverenne.. 5-13
NaturalLink Toolkit Creating an NLmenu Screen 5-1

Introduction

5.1 This chapter explains how to design and create the interface screen
(NLmenu screen) using the Screen Builder utility, an interactive software
tool that enables you to design or modify windows. The Screen Builder
utility is documented in the NaturallLink Window Manager Reference
Manual. Before creating the NLmenu screen, you should read that manual
and become familiar with building and manipulating screen files.

Assume that you are creating a NaturalLink interface that will access
tables or files containing information about a company’s inventory,
personnel, production, operations, and so forth. The interface screen that
you design will consist of a set of windows containing natural language
words and phrases that the user can select to build the database queries or
command sentences. During execution of the interface, the NaturalLink
software translates a command sentence into the corresponding target
language string and sends the translation and the command sentence to
the application program.

The physical appearance of the NLmenu screen you design for a particular
interface strongly influences a user’s perception of the application. There-
fore, windows and the information they contain should be presented in a
logical and pleasing arrangement. This chapter discusses factors you
should consider when designing the NLmenu screen, including the
following:

® Types of windows needed

B Size of windows

B Placement of windows within a screen

Figure 5-1 illustrates a typical NLmenu screen for a NaturalLink interface
to a relational database. The top window (with the label I want to) is the
Results window. The seven windows displayed in the center of the screen

(labeled ACTIONS, FEATURES, and so forth) are parse windows. The bottom
window is the Command window.

NaturalLink Toolkit

Creating an NLmenu Screen 5-3

Figure 5-1 NLmenu Screen

[want to

ACTIONS: insert modify delete

FEATURES: CONNECTORS: |QUALIFIERS: COMPARTSONS:

hirthdate and that are listed on ()=

date filled |of that have (= A=

date hired or that list : hetueen

date received |the number |[that request)

hours of that were performed on

job date the total |that were requested for |ATTRIBUTES:

length that were turned in for |[(specific hirthdate)

name TABLES: who have (specific date filled

price Jjobcards whose birthdate is (specific date hired’

pieces done |operations |whose date filled is (specific date

rejects orders vhose date hired is received)

weight pieces whose date received is (specific description

uage rate workers whose descrip}ion is (specific J?b date?

|
EXECUTECF10) CUSTOMIZE(F3) SENTENCES(FE) EDIT(F3)
HELP(F7) BACK UPCFB) START QVER(F3) QUIT(ESC)

Development 5.2 An NLmenu screen usually consists of the following windows:

Process
B Command window (the bottom window in Figure 5-1) — Contains one or
more of the nine NaturalLink command options. Using Screen Builder,
you can select the following attributes for the command options in the
window:

m Visible or invisible
m Selectable or unselectable
You can also designate the window as a pop-up window. The

NaturalLink software does not display a Command window designated
as a pop-up window.

5-4 Creating an NLmenu Screen NaturalLink Toolkit

B Results window (the top window in Figure 5-1) — Displays the command
sentence as the user builds it. You can design this window to:

m Be displayed at all times and, optionally, show a flag indicating when
a command sentence is complete (executable)

m Appear only when the command sentence is executable or when the
user selects the NaturalLink option Edit Experts to modify specific
values in the command sentence

m Not appear (a pop-up window that never appears)

Do not use the last option if you have also designated the Command

window as a pop-up window, or the user will not be informed when the

command sentence under construction is executable.

@ Parse windows — Contain the words and phrases the user selects to
build NaturalLink command sentences. The parse windows in Figure 5-1
are:

m ACTIONS

m FEATURES

m CONNECTORS

s TABLES

m QUALIFIERS

s COMPARISONS

m ATTRIBUTES

B Special windows — Includes windows not used by the NaturalLink

Sessioner, Parser, or Translator, such as those designed only to display
titles or present descriptive information.

NaturalLink Toolkit Creating an NLmenu Screen 3-5

Command Window 5.2.1 This window contains the nine NaturalLink command options.
Only one of the nine options—Execute(F10)—is required and must be
selectable. You can include some or all of the other eight command
options in your NLmenu screen, depending on application requirements,
or you can define several of your own command options and function
keys.

Following is a list of the NaturalLink-supported command options and their
associated default function keys. See Chapter 15 (The NaturalLink
Sessioner, paragraphs 15.1 through 15.3) for additional information about
the way the NaturallLink software handles the command options.

® Execute/F10 — Causes the command sentence and its translation to be
sent to the application program.

B Customize/F3 — Allows the user to modify the phrases on the interface
screen.

B Show/F4 — Calls a pop-up window that displays the target-language
translation string of the current command sentence.

W Edit/F5 — Enables the user to edit the expert item(s) in the current
command sentence.

® Sentences/F6 — Calls a pop-up window that contains a subset of one or
more of the following commands (depending upon which commands in
the subset are currently valid):

= Save a command sentence
m Recall a command sentence
m Delete a command sentence
W Help/F7 — Calls Help message(s) to explain items or commands in the
NLmenu screen. This option works in two ways, depending on whether

it is invoked by the F7 key or selected as an item:

m Pressing the F7 key displays Help message(s) available for the item
the cursor is on.

m Placing the cursor on the Help/F7 option in the command window
and pressing the ENTER key displays a message that explains how to
use the Help/F7 option.

B Back Up/F8 — Erases the previous item or expert selection from the
command sentence being built and returns the cursor to the previous
active window.

5-6 Creating an NLmenu Screen NaturalLink Toolkit

Results Window

B Start Over/F9 — Erases the current command sentence and enables
construction of a new NaturalLink command.

W Quit/ESC — Ends the current NaturallLink session and returns to the
application program.

The NaturalLink software requires that a Command window be specified
for every NLmenu screen. You design the Command window with Screen
Builder, but you must designate the window as a Command window
through the Lexicon Builder utility for the Sessioner to recognize it (see
Chapter 8, Generating the NaturalLink Lexicon). The exact wording of the
items in the Command window can differ from the wording shown in the
example NLmenu screen (you could use Run instead of Execute, Stop
instead of Quit, and so on). The order can differ as well. The Command
window should be placed away from the other windows in the screen so it
is not confused with the parse windows. A position at the very top or bot-
tom of the screen is suggested.

Although the Command window is a required window, it need not be
displayed on the NLmenu screen in every application. For example, if the
application is to use only function keys for the command options, then the
Command window does not need to appear on the NLmenu screen. You
can make both the Command window and the required Execute command
invisible by specifying the Command window as a pop-up window. In this
case, you could use the Results window to inform the user when the com-
mand sentence is executable. (Refer to paragraph 5.2.2.1, Showing the
Results Window, for more information about setting the Results window
Execute flag.)

It is best that the Command window be visible and all the items
(commands) in the window be selectable. A user can then invoke a
NaturalLink command either by selecting the appropriate command
option or by pressing its default function key.

5.2.2 The Results window (the top window containing the I want to
label in Figure 5-1) shows the user the current command sentence as it is
being built. Like the Command window, the Results window is required by
the NaturalLink software, and you must designate it using the Lexicon
Builder utility. However, if you do not want this window to be displayed,
you can design it as a pop-up window that does not appear on the NLmenu
screern.

NaturalLink Toolkit

Creating an NLmenu Screen 5-7

Showing the 5.2.2.1 In most applications, the Results window should be displayed at
Results Window all times. If you intend to display this window, it is best to specify it as a
free-format display window. Then, as items are placed in the window, the

sentence follows a natural format (that is, left to right, line by line).

Position the Results window on the screen so that it can be seen easily and
is not confused with other windows. Market research has demonstrated
that the user’s attention is drawn to the top of the screen; this is the logical
place to position the Results window. The use of different colors or intensi-
ties also helps differentiate this window from the others.

The possible length of the sentences determines the size of the Results
window. Typically, room for three or four lines of text is sufficient. If the
window is a free-format display window, and if the text has too many lines
to fit within the window’s horizontal boundaries, set the Show Last Item
When Painted attribute to Yes (1) using Screen Builder. The text then
scrolls automatically to show the last item selected. The user can scroll text
manually if the Results window is a list or text window.

You can instruct the software to signal the user, by displaying a flag in the
Results window, when the command sentence under construction
becomes executable. Do this by specifying a title such as Run or Execute as
the window label and by accepting the default value of No (0) for the
Invisible Label attribute in Screen Builder. This label is automatically
displayed when the command sentence is complete. If you do not want this
flag to appear, set the value for the Invisible Label attribute to Yes (1).
Since the NaturalLink software requires that the Results window be
specified, you must specify some text for the Results window label even if
it will be invisible.

Because the window label for the Results window can be a flag, it cannot
identify the window to the user. You can create an identifying tag when
you build the window by specifying a word or phrase, such as “I want to”
(as in Figure 5-1), “Results,” “Find,” and so forth, as a window item. Items
specified in the Results window are never removed.

Not Showing 5.2.2.2 In some applications, you may prefer not to display the Results
the Results Window window at all times. You can accomplish this by specifying the Results
window as a pop-up window. In this case, you have the following options:

m Display Pop-up When Command is Executable/Editable — If you choose
this option, set the window’s priority to a nonzero value with Screen
Builder. The Results window then pops up to cue the user when the
command can be executed or edited.

m Never Display Pop-Up — If you choose this option, accept the default
window priority of 0 (zero) in Screen Builder. Do not choose this option
if you have also specified the Command window as a pop-up window,
because if you do there will be no way to signal the user when the
command sentence is complete.

5-8 Creating an NLmenu Screen NaturalLink Toolkit

Parse Windows 5.2.3 The parse windows contain the words and phrases a user selects to
build a NaturalLink command sentence. The NaturalLink software makes
these windows either active or inactive, depending upon which of them
contains the next logical item(s) to be selected.

Designing 5.2.3.1 Following are some guidelines for designing these windows with
Parse Windows Screen Builder.

1. Decide what phrases to use in building the sentences. The specific cate-
gories used in the grammar are your guide.

2. Arrange these phrases in logically related groups. Note the groups in
Figure 5-1: ACTIONS, FEATURES, CONNECTORS, TABLES, QUALIFIERS,
COMPARISONS, and ATTRIBUTES. Try not to group phrases in the same
window if they immediately follow each other in a sentence.

3. Determine how wide the window should be to contain the group, using
the longest phrase in each group as a criterion. Determine the length
of the window from the number of items in the group. Because the
user can scroll, the window does not have to be long enough to show
all the items. However, you should show as many as possible, because
the ability to look ahead for choices is an important factor in an
application’s ease of use. Vertical window borders take up one
character of space each, and horizontal borders take up one line each;
be sure to add this space to your calculations if you are using a bor-
dered window.

Also remember that all the items may not be visible at the same time.
When a window is active, NaturalLink shows only the valid choices.
Thus, a smaller window may serve. For example, if no more than 5 out
of 10 items will ever appear at one time as valid choices, the window
need only be large enough to display 5 items.

4. Position the windows on the screen. It is best to place the windows on
the screen in the order that the phrases are to be chosen during sen-
tence construction. This allows the user to move from left to right and
from top to bottom through the windows.

5. When designing the screen with Screen Builder, you may wish to place
words or phrases in the parse windows so that you can see how the
NLmenu screen will look after the interface is built. However, this is
not required, as you can specify these phrases when you build the
lexicon (see Chapter 8, Generating the NaturalLink Lexicon).

NaturalLink Toolkit Creating an NLmenu Screen 5-9

Saving Screen Space 5.2.3.2 If screen space becomes too limited, try one of the following

Special Windows

remedies:

B Make the windows smaller by using multiple-line items in single-column

windows. (Refer to the CONNECTORS and ATTRIBUTES windows in Figure
5-1 for examples.) To do this, set the window format Disable Multiple
Line Items? attribute to No (0) in Screen Builder.

Use multiple-column windows for short items. (Refer to the
COMPARISONS and ACTIONS windows in Figure 5-1.)

Use an expert window for selection from a list of specific items or for an
item that changes frequently. You define expert windows through the
Generate or Modify the Lexicon option in the Interface Builder utility.
For more information about expert windows, refer to Chapters 8,
Generating the NaturalLink Lexicon, and 9, Application Control of User
Options.

Combine two or more windows into one. If items do not appear at the
same time when the window is active, or if items do not follow each
other in a sentence, they can be grouped together by semantic or
syntactic characteristics. For example, the CONNECTORS window has and,
of, and or grouped with the number of and the total. These two sets of
items do not perform the same function, but they are never selectable
consecutively. They are thus good candidates to place in the same
window.

Specify the Command window as a pop-up window if it is seldom used in
building command sentences. Then the Sessioner can add and delete it
as necessary.

5.2.4 The NLmenu screen can contain windows other than parse, Com-
mand, and Results windows. These other windows can provide special
bordering effects or display titles and other descriptive information.
However, be careful not to clutter the screen or distract the user with
unnecessary visual elements. Typically, special windows are display win-
dows whose usual purpose is to present additional information. They are
displayed by the Sessioner (if they are not pop-up windows) along with
other NLmenu windows, but the user cannot make selections from them
and the application program cannot manipulate them.

5-10 Creating an NLmenu Screen NaturalLink Toolkit

Setting
Window
Attributes

5.3 The overall look of the NLmenu screen depends on individual appli-
cation and design requirements. However, several attributes for NLmenu
windows must be set:

® Windows from which items are selected (Command and parse windows,
for example) must be list windows or user-defined windows.

W Parse windows cannot be multiple-selection windows.
W The Results window can be a text, display, list, or user-defined window.

m The NaturalLink Interface Builder requires that all NLmenu windows
have window labels. However, the labels need not be displayed in the
windows. To prevent the labels from being displayed, set the Invisible
Label attribute when you define windows with Screen Builder.

B During NaturalLink processing, windows that contain selectable items
are active. To differentiate between active and inactive windows during
display, Screen Builder sets the intensity level of active windows to 7
(white) and of inactive windows to 4 (green). You can change these
intensities.

@ Do not set the Special Repaint on Receive attribute for any window that
appears in your NLmenu screen. The reason is that when the receive
call is made on the window with the Special Repaint on Receive attri-
bute, other windows in the NLmenu screen are not painted.

B If several windows in an NLmenu screen are made active at the same
time during the sentence-building process, the NaturalLink Sessioner
places the cursor in the window closest to the top of the screen, moving
from left to right. This is the default pattern for the Sessioner. If you
want the cursor to be placed in a different window, give that window a
higher priority than the other windows that will be active at the same
time. The Sessioner then places the cursor in the window with the high-
est priority. If all the windows have the same priority, the Sessioner
places the cursor in the window closest to the top.

NaturalLink Toolkit

Creating an NLmenu Screen 5-11

Window Order 5.4 The order of the windows in the NLmenu screen is not important.
However, when the interface file is generated, the windows are reordered
as follows:

1. All parse windows come first (same order as in the NLmenu screen, but
moved to the top)

2. Command window
3. Results window

4. All other windows (same order as in the NLmenu screen, but moved to
the bottom)

When you create the NLmenu screen, you may find it helpful to put the
windows in this order; then the order of the windows in the NLmenu
screen file and the interface file will be the same.

The screen number of the NLmenu screen to be used in Window Manager
callable routines is calculated by adding 20 to the interface number. The
interface number is determined when the interface is loaded (see Chapter
15, The NaturalLink Sessioner). The window number to be used in any call
must be the number of the window in the interface file, not in the NLmenu
screen file.

5-12 Creating an NLmenu Screen NaturalLink Toolkit

User-Defined
Windows in the
NLmenu Screen

5.5 Any of the windows that comprise an NLmenu screen—the Com-
mand window, the Results window, parse windows, and special windows—
can be user-defined. You create a user-defined window (UDW) for an
NLmenu screen the same as other windows. For example, a UDW used as
a Command window must have a window label and an Execute item.

A UDW used as a parse window must contain the phrases for all lexical
items assigned to it, as a list window would. All the same restrictions for
window attributes also apply. The application must control the display of
the items in the window; the Parser merely sets the item attribute to visible
or invisible.

One example of when it might be better to use a UDW (instead of a list
window) as a parse window is in auto-selection of expert items. If the only
item available for selection during the sentence-building process is an
expert item and the sentence is not executable, the Sessioner will
automatically select the item. This means that the window containing the
expert item is repainted with only the expert visible, but the user is not
required to select that item; the window to elicit the expert value is
displayed automatically. This repainting of the window that contains the
expert item can confuse the user. To avoid this confusion, assign to a UDW
all expert items that will automatically be selected. When Window Man-
ager calls your application display routine to display the UDW containing
your expert items, return a 0 (zero). The Sessioner will automatically select
the expert item and continue processing as expected.

CAUTION: If you use this procedure to handle auto-selection of
experts, be sure that only one expert item is available for selection
at any time. If more than one is available, the system could hang.

For more information on UDWs, refer to Chapter 2, Window Manager
Features, and Chapter 8, User-Defined Windows, in the Window Manager
Reference Manual.

NaturalLink Toolkit

Creating an NLmenu Screen 5-13

USING THE NATURALLINK
INTERFACE BUILDER

Paragraph Title Page
6.1 INtrodUCHION..c...ioiiiiiee ettt 6-3

6.2 PrOCEAUIE ...coceeiiiiiiiii ettt sttt e 6-3

6.2.1 Setting Environment Variables.............ccccovvvininniniinieniiiceseeeen 6-3

6.2.2 Starting Interface Builder............ccoooiiiriniiiienineee e 6-3

NaturalLink Toolkit Using Interface Builder 6-1

Introduction

6.1 The NaturalLink Interface Builder (IBUILD) utility provides an auto-
mated means of building and testing NaturalLink interfaces. This is an
important capability because the NaturalLink Parser accepts only error-
free input from the interface, thus utilizing the computer’s processing
power and internal memory more efficiently than do many other natural
language systems.

The Interface Builder utility maintains a history of all interfaces currently
under development. Associated with each interface are grammar, lexicon,
expert information, and screen description files. As an interface is built,
tested, or modified, the status of its components is recorded in the history
file. Because the NaturalLink software keeps track of interface develop-
ment, it is able to guide you through the development process and to elimi-
nate errors that may occur if you attempt to generate an untested
interface.

Procedure

Setting
Environment
Variables

Starting
Interface Builder

6.2 The following paragraphs explain the Interface Builder utility.

6.2.1 Before entering the Interface Builder utility, you should first set up
two environment variables with the MS-DOS SET command. These vari-
ables are NLXTOOLS and NLXHIST. NLXTOOLS must be set to the direc-
tory pathname in which the screen files and message files for the IBUILD
utility exist. If NLXTOOLS is not set, IBUILD will expect these support files
(the .PIC, .NS$, and .NMS$ files) to be in the default drive and directory.
NLXHIST must be set to the directory pathname in which IBUILD will cre-
ate and maintain the history file. If NLXHIST is not set, IBUILD will create
the history file in the default drive and directory. If you are using a version
of MS-DOS that does not support directories, ignore NLXTOOLS and
NLXHIST.

6.2.2 Youinvoke the Interface Builder by typing IBUILD. If no interfaces
have been previously specified (that is, if no interfaces are currently under
development), the screen depicted in Figure 6-1 appears.

NaturalLink Toolkit

Using Interface Builder 6-3

Figure 6-1

Record a New Interface’s Information

Naturallink Interface Builder Utility

Operations:

Record a New Interface's Information

Seecified Interfaces:

PRESS: ENTER to Select F7 for Help ESC to Quit

When this screen appears, the cursor is on the Record a New Interface’s
Information option in the Operations window. Select this option by press-
ing the ENTER key. A pop-up window (Figure 6-2) appears in which you
can enter the necessary data for the new interface.

NOTE: Refer to Appendix G in the NaturalLink Window Manager
Reference Manual for information about function keys on specific
machines.

6-4 Using Interface Builder

NaturalLink Toolkit

Figure 6-2 Specify a New Interface
Naturallink Interface Builder Utility

Operations:

Specify a New Interface

Interface Name: 1 -

Directory Pathname:

Interface File! —ommmommeo—-
Grammar File: oo

Screen File: oo

Press F8 for Previous Item, F3 for First Item

PRESS: ENTER to Select F7 for Help ESC to Quit

You are prompted for the following information:

B Interface Name — A unique name that is entered in the history file and
used to refer to the interface under development.

@ Directory Pathname — The pathname of the directory in which all the
files for this specific interface reside.

This pathname is optional. However, if you leave it blank and then
attempt to execute IBUILD from another directory (other than the one
where the interface’s files are located), the interface will not be
available. With the aid of the NLXTOOLS and NLXHIST environment
variables, the directory pathname, and the MS-DOS PATH variable, you
can execute IBUILD from any drive or directory on your system; thus,
you are not restricted to any one directory or forced to change
directories repeatedly.

NaturalLink Toolkit Using Interface Builder 6-5

If you are using an operating system that does not support a hierarchical
directory structure, you should either leave the directory pathname
blank or enter a drive designator.

m Interface File — The output binary interface file that the application
program will use. Current operating system file-naming conventions
must be followed. The interface filename without the extension is used
for system-generated files (lexicon file, expert information file, and sen-
tence file).

8 Grammar File — The input grammar file.

B Screen File — The input screen description. This file is created with the
aid of the Screen Builder.

It is not necessary to enter a pathname or drive designator for the
interface, grammar, or screen files. If a drive designator is entered, it will
be ignored. The software locates these files through the directory
pathname or, if it is blank, in the current directory.

The grammar file and the screen file must be in the directory named by
Directory Pathname. After you specify the grammar file, a File Not Found
error message is displayed if the file is not in that directory.

Although the grammar file is the only file that must already exist before
you can record information about a new interface, you must respond to all
filename prompts before you can proceed to the next option in the
Operations window. After you enter this information, the NaturalLink
software adds an entry in the history file for the new interface. The main
NaturalLink Interface Builder utility screen (Figure 6-3) is then displayed.

6-6 Using Interface Builder

NaturalLink Toolkit

Figure 6-3

Main Interface Builder Screen

Naturallink Interface Builder Utility

(Operations:

Record a New Interface’s Information
Modify an Interface's Information
Create and Test an Interface
Check an Interface’s Status
Delete an Interface
_Recheck Availability of Specified Interfaces

Seecified Interfaces:

{name of interfacel)
{name of interfaced?

PRESS: ENTER to Select F7 for Help ESC to Quit

There are two parts to this screen:

B The Operations window lists the various operations that can be
performed on an interface.

B The Specified Interfaces window lists the interfaces currently under
development.

NaturalLink Toolkit

Using Interface Builder 6-7

In addition to Record a New Interface’s Information, the following
operations or options are available from this screen:

m Modify an Interface’s Information. This option enables you to specify dif-
ferent values for an interface in the Record a New Interface’s
Information pop-up window.

m Create and Test an Interface. This option enables you to select an
interface for testing from the list of interfaces under development (that
is, the interfaces listed in the Specified Interfaces window). You can
perform the following operations on the selected interface:

Test the Grammar for the Interface

Generate or Modify the Lexicon for the Interface

List the Lexicon for the Interface

Generate Representative Sentences for the Interface

Check the Screen Against the Lexicon for the Interface

View the Screen for the Interface

Specify Help and Window Coordinates for Sessioner Windows
Generate the Interface File

Test the Interface’s Translations

If a screen file does not exist, many of the options listed above will not
be available in the Create and Test an Interface screen. For example,
the View the Screen option and the Generate or Modify the
Lexicon for the Interface option will not be available.

6-8 Using Interface Builder

NaturalLink Toolkit

Each of these options represents a phase in the Create and Test an
Interface procedure, but not all of the options will be available for
selection at any given step in the procedure. Some options appear only
after the execution of previous phases upon which they depend. For
example, the lexicon cannot be generated until the grammar has been
tested. Likewise, the interface file cannot be generated until the lexicon
is complete and the screen has been checked against the lexicon.
Chapters 7, 8, 10, 11, 12, 13, and 14 describe each phase of the Create
and Test an Interface option in greater detail.

Check an Interface’s Status. This option displays the information in a
selected interface’s history file. It lists the directory pathname of the
selected interface, the names of existing files, the date and time each file
was last modified, and the status of each test. You can also use the F6
key in the Create and Test an Interface utility to check an interface’s
status.

Delete an Interface. This option removes an interface from the list of
interfaces under development in the history file. No files associated with
the interface are deleted, however,

B Recheck Availability of Specified Interfaces. This option determines the

currently available interfaces and updates the Specified Interfaces
window accordingly. The software performs this check each time the
Interface Builder is invoked. You can also select this option if you need
to recheck interface availability. For example, if you invoke the
Interface Builder with interfaces previously specified to be on a
particular diskette but you have the wrong diskette in the drive, the
interfaces will not be available. To correct this, insert the correct
diskette and select Recheck Availability of Specified Interfaces.

NaturalLink Toolkit

Using Interface Builder 6-9

TESTING THE NATURALLINK GRAMMAR

Paragraph Title Page
7.1 INEFOAUCHION Lovviviiiiiieeeeeeee ettt e e e eaeeeaens 7-3

7.2 Errors Reported by Each Testcccooiiiiiiiiiiiiieee e, 7-6

7.2.1 FOUMAL TSt oot ettt e e e e e e e e ene e e e e e eeanans 7-6

7.2.2 Static Well-Formedness TeStu ettt 7-8

7.2.3 Common Expansions Testccovviviirimiriinieieieee s 79

7.2.4 Inconsistent Translations TStueuereeieeieeeiieeeeeeeeeeee e 7-9

7.2.5 INFINITE PArSES TeSt ooooiieieieeeeiee ettt e e e eeeeaeas 7-10

NaturalLink Toolkit

Testing the NaturalLink Grammar 7-1

Introduction

7.1 After recording the interface information, test the interface gram-
mar. From the Operations window of the main Interface Builder screen,
select the Create and Test an Interface option. The cursor moves to the
Specified Interfaces window. If you have specified more than one inter-
face, select the interface whose grammar you wish to test by moving to its
name and pressing ENTER.

A screen similar to the one shown in Figure 7-1 appears. The options
available on this screen will differ from those shown, depending on the
state of the interface.

When you are using the Create and Test Interface <interface name>
screen, you can check the current interface status by pressing the F6 key.
The status listing will show the directory pathname of the current inter-
face, the name of current files, the size of each file, the date and time each
file was last modified, and the status of each test.

Figure 7-1

Create and Test an Interface

Create and Test Interface (interface name’

Test the Grammar for the Interface

Generate or Modify the Lexicon for the Interface
List the Lexicon for the Interface
Generate Representative Sentences for the Interface
Check the Screen against the Lexicon for the Interface
View the Screen for the Interface
Specify Help and Window Coordinates for Sessioner Windous
Generate the Interface File

Test the Interface’s Translations

PRESS: F5 to View a File F6 for Status F7 for Help ESC to Quit

NaturalLink Toolkit

Testing the NaturalLink Grammar 7-3

If you select Test the Grammar for the Interface, a pop-up window prompts
for an output filename for the grammar test results (Figure 7-2). The output
file you name is created in the directory specified by the interface’s direc-
tory pathname.

Figure 7-2 Filename Pop-Up Window

Create and Test Interface {interface name)

Test the Grammar for the Interface

Enter a Filename for:

Press the ESC key to abort

PRESS: FJ to View a File FB for Status F7 for Help ESC to Quit

If this file already exists, you have two options: (1) append the output to the
contents of the current file, or (2) replace the current file.

After you supply the output filename, the screen shown in Figure 7-3
appears.

7-4 Testing the NaturalLink Grammar NaturalLink Toolkit

Figure 7-3

Grammar Test Pop-Up Window

Create and Test Interface {interface name’

Test the Grammar for the Interface

Status of Grammar Tests for {grammar file name)

Format (status?
Static Well-Formedness {status?
Common Expansions (statug)
Inconsistent Translations (status?
Infinite Parses (status)

Proceed to the next phase?

No

PRESS: F3 to View a File F6 for Status F7 for Help ESC to Quit

The Test the Grammar for the Interface option consists of five parts: the
Format Test, the Static Well-Formedness Test, the Common Expansions
Test, the Inconsistent Translations Test, and the Infinite Parses Test.

Here are brief descriptions of each:

B Format Test — Checks that only valid characters appear in the grammar
and that there are no unbalanced brackets, braces, parentheses, or
other syntax errors.

m Static Well-Formedness Test — Checks that all left sides of the grammar
rules can be reached. It also tests whether all terminal elements in the
grammar have corresponding lexical items. If they do not, it reports that
the lexicon must be updated.

®m Common Expansions Test — Checks for rules that generate a duplicate
path when all abbreviatory symbols are expanded.

NaturalLink Toolkit

Testing the NaturalLink Grammar 7-5

B Inconsistent Translations Test — Checks whether each possible path
through a grammar rule has its own translation list and whether there
are any extra translation lists.

W Infinite Parses Test — Checks whether any sets of rules in the grammar
will lead to an infinitely looping path through the rules.

After each test, you can quit by responding negatively to the “Proceed to
next phase, Yes/No?” question.

The < status> entry beside each test entry in the window has one of the
following values:

B Not yet run. The test has not been run during this “Test the Grammar”
session.

@ Running. The test is in progress.

B Succeeded. The test has successfully completed.

B Failed. The test encountered a fatal error.

B Update Lexicon. The Static Well-Formedness Test returns this status if
the lexicon does not exist, is not yet complete, or does not agree with

the grammar.

If you are working with an especially large grammar, some of the
grammar tests may take several minutes to complete.

Errors
Reported by
Each Test

Format Test

7.2 Following is a discussion of the errors reported by each grammar
test and output to the specified output file. The listings of errors reported
do not include recommended remedial action. For this information, refer
to Appendix B, NaturalLink Error Codes.

7.2.1 The Format Test reports an error if it finds invalid characters in
any area of a grammar rule. The valid characters in a grammar rule are:

@ category_chars;translation_chars!
category_chars consists of letters, integers, spaces, underscores,
carriage returns, parentheses, braces, square

brackets, and slashes.

translation_chars consists of integers, spaces, carriage returns,
semicolons, and parentheses.

7-6 Testing the Naturallink Grammar NaturalLink Toolkit

If the Format Test encounters an error in the grammar, subsequent tests
cannot proceed. The types of errors that can occur are:

® No ‘!’ terminating previous rule.

B No ‘@’ flag at the beginning of the rule.

B Translation list missing.

@ Too many elements in the rule (the limit is 10 elements per rule).
Elements include only terminal and nonterminal symbols in the gram-

mar. Abbreviatory symbols are not considered elements.

® Not enough elements in the rule (for example, only one element; the
right side is missing).

® Unbalanced abbreviatory symbol.
B Invalid character encountered.

B Complex left corner encountered (an abbreviatory symbol encountered
as the first element on the right side of the grammar rule).

W Parenthesis immediately inside a brace. This produces an invalid
expansion of the brace. According to grammar rules, one element
within the brace must be chosen; an item enclosed in parentheses
allows the possibility that none can be chosen.

@ Integer in translation list greater than the number of elements in the
rule.

B Second set of integers in a translation list missing.

B Too many levels of nesting in the rule (the limit is 10 elements per rule)
W Braces immediately inside a brace (redundant construct).

@ All items optional within an abbreviatory construct.

® Missing translation list flag *;’.

m Nonintegers in the first sequence of integers in the translation list.

| Error encountered in closing the file.

NaturalLink Toolkit Testing the NaturalLink Grammar 7-7

For the Format Test to complete successfully, you must have a valid
translation list for each grammar rule. You may want your grammar to
pass the Format Test before you determine the translation lists, so that you
can see if the grammar will pass other tests (the Common Expansions and
Infinite Parses tests, for example). To make your grammar pass the Format
Test, you can enter ‘(1)(1)’ as the translation list for each grammar rule.
Note that the Inconsistent Translations Test will report errors when you do
this.

Static Well- 7.2.2 The Static Well-Formedness Test will report an error under the fol-
Formedness Test lowing conditions:

B There is an unreachable left side (other than the start symbol).

B All terminal elements in the grammar are not represented in the
lexicon.

B All lexical entries are not assigned to both a window and a phrase.

® There is no lexicon file (you have not created one, or it has been
deleted).

Unreachable left sides are elements in the grammar that appear only on
the left side of a rule, never on the right side. If the Static Well-Formedness
Test encounters any unreachable left sides other than the start symbol, the
grammar test will not proceed.

The start symbol is the symbol that appears on the left side of the first
grammar rule. Frequently an “s” (for sentence) is the start symbol, but it
may be any symbol. The start symbol is usually unreachable and does not
generate an error.

If the test encounters any of the conditions in the last three items listed
above, it simply tells you to update your lexicon. You will have to
determine the cause of the error and correct the condition.

7-8 Testing the NaturalLink Grammar NaturalLink Toolkit

Common 7.2.3 The Common Expansions Test reports an error if any rules gener-
Expansions Test ate the same path through the grammar. The following rules are an
example:
RuleA: S—>A {B C} {(D E};
which expands to:
1. S = A B D;
2. S = A B E;
3. S > AC D
4. S —> A C E;
RuleB: S—>A {Q C} {D F}
which expands to:
1. S = A Q D;
2. S = A QF
3. S —-> A C D; Same as Rule A, expansion 3
4. S A C F;
Identical paths through the grammar are wasteful for the Parser. Identical
paths can also affect the operation of the Infinite Parses Test. If the Com-
mon Expansions Test encounters identical paths, the grammar tests will
not proceed. The Common Expansions Test reports an error of this type:
Ruies with Common Expansions.
Inconsistent 7.2.4 The Inconsistent Translations Test reports an error if any paths
Translations Test through the grammar rules do not have translation lists or have extra
translation lists. For example:
Element #’s:
@S A{BC} {D E};(124)(124);(125)(125)!
01 23 45
The following expansions have translations lists:
S—>ABD(124)
and
S—>ABE(125)
NaturalLink Toolkit Testing the NaturalLink Grammar 7-9

The following expansions do not have translation lists:

S—>ACD

and

S—> ACE

Missing or extra translation lists will adversely affect the Interface Builder
utility, the Parser, and the Translator. Errors encountered by the Inconsis-
tent Translations Test must be fixed before the interface is built but will not
affect the rest of the grammar tests. The types of errors reported by this
test are:

m Grammar rule paths with no matching translation lists

@ Translation lists with no matching grammar rule path

Infinite Parses Test 7.2.5 The Infinite Parses Test reports an error if any set of rules in the
grammar can produce an infinitely looping path. For example:

S —> ABC;

’

> o

1

i

The path from A to B and back to A causes problems in the previous
rules. The Infinite Parses Test also catches such grammatical errors as the
following:

S —> ABC;
A —> Ba;
B —> bA;
C —> ¢

In this grammar, no sentences can be generated because of the rules that
have A and B as left sides (mothers). There is no termination of that path.
This test reports the following types of errors:

M Infinitely looping paths

@ Rules that will not produce sentences

7-10 Testing the NaturalLink Grammar NaturalLink Toolkit

GENERATING THE NATURALLINK LEXICON

Paragraph Title Page
8.1 INtroduCtionccoociiiiiii e e 8-3
8.2 Getting In and Out of the Lexicon Builderc.cccooiiiiiiiiiiiiien. 8-5
8.3 Specify Command and Results Windowsc.ccccceevevveinneniiieciceeen, 8-6
8.4 Specify All Lexical Informationccccoeviiivivniiniinn e, 8-7

8.4.1 Specify Window Labels ... 8-9
8.4.2 Specify @ Phrase ..o 8-9
8.4.3 Specify a Translationcccccoceririiniiniinieren e 8-11
8.5 EXPEILS oottt 8-14
8.5.1 Alphanumeric EXpPert ..ot 8-15
8.5.2 Numeric EXPertccocooiiiiiiiiiiinieeeseste e 8-15
8.5.3 Date EXPertcooociiiiii e e 815
8.5.4 LISt EXPEIt oottt 8-17
8.5.5 User-Defined EXPertcccccoviiiiiiiiiieieceeeeeceeeee e 8-18
8.6 Modify Lexical Itemsccccoeviiiiiniiie e 8-19
8.7 Create Duplicate [temccuevivieiiiieiieie e 8-20
8.8 Delete Duplicate Itemcccceeviviieneriieniiiiee et 8-21
8.9 Copy Translation or Expert Dataccccooeeveirivievieeeieiciccceeeeens 8-21
8.10 Specify Help for EXpertccooevemiiiiieeeeeeeeeeeeeee e 821
8.11 Specify Expert Text Delimiterscccccceervieieeeeiriccceeiceceecc, 8-23
8.12 Specify Expert Window Coordinatescccooovveveciceciiceicieeenen 8-24
8.12.1 Alphanumeric, Numeric, and Date Expertsccccecoovievinriinennnen. 8-24
8.12.2 LISt EXPEILS coeeiiieeeee et 8-25
8.13 Alphabetize Phrases in Windowsccccovviiiiiciecieeiicccccce 8-25
8.14 Remove Unused Phrases From Windowscccccocveviiiicvivcnenennen, 8-26
8.15 View EXpert Windowcccccoouiiiiiiiiiiiiicccceceeeeeeeeeeeeeeeee e 8-27
8.16 Draw NaturalLink SCreenccccooieiiiieiiiieiiiiececece e 8-27
8.17 Quitting the Lexicon Buildercocooovrieiiriiniiiecceceeeeee, 8-28
8.18 Function Keysccooioiiiiiiiiiiiiiceceee e 8-28

NaturalLink Toolkit Generating The NaturalLink Lexicon 8-1

Introduction

8.1 After you have tested the grammar and specified a screen file for the
current interface, an additional option—Generate or Modify the Lexicon
for the Interface—becomes available in the Create and Test Interface
<interface name> screen. This option is referred to as the Lexicon
Builder. When you select it, the screen shown in Figure 8-1 appears.

Figure 8-1 Generate or Modify Lexicon
Generate or Modify the Lexicon for Interface {interface name’
Actions:
Specify Al Lexical Information Specify Expert Window Coordinates
Modify Lexical Items Specify Command and Results Windows
Create Duplicate Item Alphabetize Phrases in Windows
Delete Duplicate Item Remove Unused Phrases from Windows
Copy Translation or Expert Data Yiew Expert Window
Specify Help for Expert Draw Naturallink Screen
Specify Expert Text Delimiters Quit
Lexical Item: Window: Phrase: Translation:
{terminal element? (lakel? (phrase) (string/expert)
(terminal element) (lakel? (phrase) (string/expert)
(terminal element> (laheld (phrase’ (string/expert)
(terminal element) <(lakel? (phrase) (string/expert)
PRESS: F6 to View Item F7 for Help ESC to Quit
This is a representative screen showing all the options in the Generate or
Modify the Lexicon for Interface < interface name> screen. Your screen
may differ, depending on the state of the files that make up the interface
you are building. For example, if you have not yet specified the Command
and Results windows for the current interface, only the following four
options appear:
B Specify Command and Results Windows
W Alphabetize Phrases in Windows
W Draw NaturalLink Screen
B Quit
NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-3

The lexicon is the semantic glue of the NaturalLink system. This file
contains all the information necessary to connect each terminal element in
the grammar to a natural language phrase, a screen location, and a
translation in the target language. It is built interactively with the aid of a
series of prompts supplied by the Generate or Modify the Lexicon for the
Interface option.

Using the sequential file that contains the grammar, the Lexicon Builder
determines which elements in the grammar are terminal elements (that is,
elements that cannot be expanded further). For instance, in the following
grammar,

A — BC((D)

C — DB(B)

B — EF)G

E —e

F — d{fh}

G—g

D —d

‘e’,‘'d’, 'f', ‘g’, and ‘h’ are all terminal elements because none occur on the
left side of a rule. Thus, they cannot be further expanded in the derivation
of a sentence from this grammar.

The Lexicon Builder needs the following information for each terminal
element in the grammar:

B The label of the window in the interface screen where the natural
language word or phrase for this terminal element is to appear.

B The natural language word or phrase that represents the terminal
element.

m The template or string the Translator will use to build the target string.
You must indicate whether you will specify the translation in the target
language or whether the user will provide a specific value (called an
expert) at run time. (The translation field is not a required field in every
case. If you do not specify a template or string in the translation field for
a particular terminal element, that element’s translation will be a null
string.)

m If you will specify the target language translation for the terminal
element, the Lexicon Builder prompts you for the desired translation.

m If the translation will be an expert, the Lexicon Builder prompts you
for certain expert item parameters. (Experts are discussed in Chapter
9, Application Control of User Options.)

8-4 Generating The NaturalLink Lexicon NaturalLink Toolkit

The lexicon is stored on disk in two separate files, the lexicon file
(K INTFILE > .NL$) and the expert information file (<INTFILE > .NP$),
where <INTFILE > is the interface file name without the extension. Do
not attempt to edit these files; changes should be made only through the
Lexicon Builder. To obtain a listing of the lexicon, select the List the Lexi-
con for the Interface option from the Create and Test Interface < interface
name > screen. You can then view or print the output file you specify.

As you develop an interface, you may wish to change your interface
screen after specifying manys, if not all, of the lexical items. While changing
the screen, you can change a window label. The Lexicon associates lexical
items with windows in the screen by saving a window label, item text, and
translation information for each item. The first thing the Lexicon Builder
does before displaying its main screen is load any previously specified lexi-
cal information from the interface’s lexicon file. If the Lexicon Builder
finds a window label that is no longer in the screen, you must enter the
window and phrase for all lexical items that were associated with that
window label.

Getting In and
Out of the
Lexicon Builder

8.2 You can quit the interactive lexicon-building procedure at any time
by choosing the Quit option. You can also quit from the Actions window by
pressing the ESC key. You can save the lexical information already speci-
fied and continue building the lexicon at a later time. You should do this
each time you specify a new lexicon or make substantial changes to an
existing lexicon. This reduces the possibility of losing lexical information
due to memory constraints of the software. (The Quit and Save procedures
are explained in paragraph 8.17, Quitting the Lexicon Builder.)

When you return to the Create and Test Interface < interface name >
screen (shown in Figure 7-1), the additional option List the Lexicon for the
Interface is visible. This option enables you to list the current state of your
lexicon to an output file. Refer to Chapter 14, Other Interface Builder
Options, for a description of the List the Lexicon option.

CAUTION: Before the NaturalLink software updates the lexicon, it
backs up the previous lexicon to the following files
<INTFILE > .BL$ and <INTFILE > .BP$. The updated, or current,
lexicon is saved to the files < INTFILE > .NL$ and < INTFILE > .NPS.
If the current lexicon files are damaged or destroyed, you can copy
the backup files, rename those copies using .NL$ and .NP$ filename
extensions, and recreate your lexicon. When making your own
backup copies of the NaturalLink interface files, however, you must
be careful to copy the current lexicon (the two files with the .NL$
and .NP$ extensions) instead of the old version.

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-5

Specify
Command
and Results
Windows

8.3 The Lexicon Builder requires you to identify the Command window
(the window in the NLmenu screen that contains the Sessioner commands
available to the user) and the Results window (the window that shows the
command sentence as the user builds it). You must specify the Command
and Results windows before you can enter the window, phrase, and trans-
lation information for each terminal element in the grammar. (For more
information about the Command and Results windows, see Chapter 5,
Creating an NLmenu Screen.) You need to specify the Command and
Results windows only once for each interface.

The Lexicon Builder prompts you for the names of the windows after you
select the Specify Command and Results Windows option. First the pop-up
window shown in Figure 8-2 appears, prompting for the specification of a
Command window.

Figure 8-2

Specify Command Window

Specify a COMMAND window.
(window lahel)

(window label)

{window lahel)

{window lahel}

This pop-up window lists labels of windows in the screen description file
that you identified during the Record a New Interface’s Information
procedure. The only labels displayed are those for list windows and user-
defined windows to which no lexical items are assigned.

Select the window you wish to assign as the Command window and press
the ENTER key. Remember that you cannot assign lexical items to a Com-
mand window.

After you have specified the Command window, a second pop-up window
prompts you to specify a Results window. Labels for list, text, display, and
user-defined windows are displayed; the Command window label is not
displayed. Select the window you wish to assign as the Results window.
Remember that you cannot assign lexical items to a Results window.

8-6 Generating The NaturalLink Lexicon NaturalLink Toolkit

Once you have specified the Command and Results windows, additional
options appear in the Generate or Modify the Lexicon for the Interface
< interface name > screen. The options that appear on this screen vary
according to the state of your lexicon. For the purpose of the following dis-
cussion, assume that all options in the Generate or Modify the Lexicon
screen depicted in Figure 8-1 are available.

Specify All 8.4 This option enables you to specify all the information the lexicon
Lexical needs for each terminal element in the grammar. This information
Information includes:
B The words or 'phrases the user can select to build a command sentence
B The windows (referred to as parse windows) in which those words or
phrases appear
@ The translation returned to the application program when the user
executes the completed command sentence
When you select the Specify All Lexical Information option, the pop-up
window shown in Figure 8-3 appears, prompting for specific lexical
information.
Figure 8-3 Specify Information Pop-Up Window
For all lexical items, or just new ones?
Ail lexical items
Only new items
What information do you vant to specify?
Window
Phrase
Translation
NaturalLink Toolkit Generating The NaturalLink Lexicon 8-7

If you have not previously specified any items for the current interface,
you will normally select the All Lexical Items option. If you have either
specified some items for the current interface or added new terminal ele-
ments to the grammar, you should select the Only New Items option. (If
you select All Lexical Items after you have already specified some items
for the lexicon, you will be prompted for information for previously speci-
fied items, as well as new ones.) The option you select is highlighted, and
the cursor moves to the Window option in the lower half of the pop-up
window. Select the Window, Phrase, and/or Translation option; you can
select one, two, or all three. Use the arrow keys to move among items,
pressing ENTER to select an item. Press ENTER again if you decide against
an item already selected. The F10 key commits the selections you have
made.

For the purpose of illustration, assume that your grammar file and screen
description contain lexical items and window labels similar to the
following list.

Lexical Item Window Labels
attr_and ACTIONS
equal_to NOUNS

find_rel CONNECTORS
for COMPARISONS
numeric_expert FEATURES
where_workers QUALIFIERS
whose_worker_date ATTRIBUTES

whose_worker_name
worker_date_hired_expert
worker_employee_name_expert

Further assume that you select the All Lexical Iltems option and the options
Window, Phrase, and Translation in the Specify Information Pop-up
Window (Figure 8-3). When you accept these selections, the screen shown
in Figure 8-4 appears.

NOTE: In the following illustrations, lexical items, window labels,
phrases, and translation strings or experts are added where appropriate to
illustrate how the actual screens and windows described may look when
you are conducting an interactive session with the Lexicon Builder. The
illustrations do not match exactly the NaturalLink windows and screens
displayed on your monitor. In this manual, the window in which these
lexical items, window labels, and phrases are displayed is referred to as the
Lexical Items window to distinguish it from the Actions window, which
contains the options you select to build your lexicon.

8-8 Generating The NaturalLink Lexicon NaturalLink Toolkit

Figure 8-4

Specify
Window Labels

Specify a Phrase

Specify All Lexical Information

Specify A1l Lexical Information
Lexical}Item: Window: Phrase: Translation:
find_rel
for
numeric_expert
where_workers
whose_worker_date
whose_worker _name What Windouw?
worker_date_hired ACTIONS:
worker_employee_n NOUNS:
CONNECTORS:
COMPARTSONS:
FEATURES:
QUALIFIERS:
ATTRIBUTES:
PRESS: F6 to Yiew Item F7 for Help ESC to Quit

The first lexical item is highlighted, and the cursor is on the first label in
the What Window? pop-up window. As you make selections, the
NaturalLink software guides you by highlighting items and displaying pop-
up windows that prompt you for the necessary lexical information.

8.4.1 Each terminal element in the grammar must be associated with a
window in the interface screen. The What Window? pop-up window
shown in Figure 8-4 contains the window labels of all list windows and
user-defined windows designated in the screen description for the current
interface. (The list excludes the Command and Results windows, which
cannot have lexical items associated with them.) Select the label of the
parse window you wish to associate with the highlighted lexical item. The

Window column in the screen is updated with your selection (in this case,
CONNECTORS).

8.4.2 After you have specified the window label, a new pop-up window
appears, prompting you to specify a word or phrase to be associated with
the highlighted lexical item (Figure 8-5).

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-9

Figure 8-5 Phrase Selection Pop-Up Window

Specify All Lexical Information

Lexical Item: Window: Phrase: Translation:
St CONNECTORS:
equal_to What Phrase?
find_rel {new phrase’

for {edit an existing phrase>
numeric_expert and

uhere_workers for

whose_worker _date : or

whose_worker_name
worker_date_hired | ...
worker_employee_n

PRESS: F6 to View Item F7 for Help ESC to Quit

Each terminal element in the grammar to which a window has been
assigned must also be associated with a natural language word or phrase in
the NLmenu screen. The Lexicon Builder elicits phrase information by
displaying the What Phrase? pop-up window (Figure 8-5). This window
contains a list of all items that are currently in the CONNECTORS window.
These include existing words and phrases, such as And, For, and Or, that
you specified when you originally designed the NLmenu screen (using the
Screen Builder utility) or during a previous lexicon-building session. Two
additional items, < new phrase > and < edit an existing phrase >, are also
listed. You have three choices:

@ Enter a new phrase for the current lexical item.

m Edit an existing phrase and associate the current lexical item with the
edited phrase. All lexical items associated with the original phrase will
then be associated with the new phrase.

B Associate the current lexical item with any existing phrase in the parse
window.

If you choose to enter a new phrase, select < new phrase > from the list of
options. A pop-up window appears soliciting the new phrase for the lexical
item.

8-10 Generating The NaturalLink Lexicon NaturalLink Toolkit

If you choose to edit an existing phrase in the list, select < edit an existing
phrase > from the list of options. Then select the existing phrase in the
What Phrase? window that you wish to edit. The phrase is then displayed
in a pop-up window so it may be edited. When you modify an existing
phrase, all other lexical items associated with that phrase are then asso-
ciated with the modified phrase.

If you wish to associate the current lexical item with an existing phrase in
the parse window, select the desired phrase.

After you have specified (or modified) the phrase information for the
current lexical item, the Phrase column in the screen is updated. The
NaturalLink software truncates phrase information that does not fit within
the phrase label boundaries. The full text is saved; to view it, press the
View Item/F6 key.

Specifya 8.4.3 When you have completed the phrase information, a new pop-up
Translation window appears, prompting you to choose the type of translation informa-
tion you wish to specify (Figure 8-6).
Figure 8-6 Translation Type
Specify All Lexical Information
Lexical Item: Windou: Phrase: Translation:
e CONNECTORS: and
equal_to
find_rel
for
numeric._expert
where_uorkers What type of tramslation?
whose_uorker _date
whose_worker _name translation string
worker _date_hired expert
uorker_employee_n
PRESS: F6 to View Item F7 for Help ESC to Quit
NaturalLink Toolkit Generating The NaturalLink Lexicon 8-11

Each terminal element in the grammar must be associated with a
translation. There are two types of translation:

B A target language string that you have specified (or a null string if you
do not enter a target language string)

B An expert value that the user supplies in the course of building a
NaturalLink command (experts are discussed in paragraph 8.5, Experts)

The translation string or the expert entry is returned to the application
program when the user executes a command sentence. If you select Trans-
lation String, a pop-up edit window appears, prompting you to enter the
target language translation string.

In some cases, the application program may require that a control
character be entered as part of the translation string. If this control
character is the ENTER key or one of the function keys, it must be entered
as a hexadecimal code between two CTRL-A delimiters. If you do not use
this special control-code sequence, Window Manager interprets the control
character as an end-of-input character and does not include it in the
translation field. Use the following control-code sequence to specify a
translation string that includes a control character:

< CTRL-A > < character code > < CTRL-A >

Each CTRL-A appears as a happy face U character. For example, for the
translation string

ABC< carriage return > 123< carriage return >

you would type the following into the translation string text field:
ABC<CTRL-A>0D<CTRL-A>123<CTRL-A>0D<CTRL-A>

This control code sequence would appear on the monitor as
asctBhootti123 ool

Only one character code can be included within the CTRL-A pair. Thus, for
the translation string

ABC< carriage return > < carriage return > 123
“you would enter the following into the translation string field:

ABC<CTRL-A>0D<CTRL-A><CTRL-A>0OD<CTRL-A>123

This would appear on the monitor as

asctiooritBhonrdinzs

8-12 Generating The NaturalLink Lexicon NaturalLink Toolkit

You need to use the paired control-code sequence only for those keys that
Window Manager intercepts. These include the ENTER, arrow, function,
and editing keys. (For more information about the keys Window Manager
intercepts, refer to Chapter 10, Window Manager Input Devices, in the
NaturalLink Window Manager Reference Manual.)

CTRL-A by itself (that is, unpaired) is not interpreted as a delimiter and can
be typed into the translation field. Other control-code characters can also
be typed directly into the translation string field. Thus, if the application
program requires the translation string

< CTRL-A > ABC< CTRL-B > 123
enter
<CTRL-A>ABC<CTRL-B>123

Stated differently, CTRL-A can be typed directly into a translation string
field if it is not followed by another CTRL-A. However, if the translation
string is '

< CTRL-A > < carriage return > < CTRL-A >

you need to delimit the first CTRL-A by typing a pair of CTRL-As with the
hexadecimal code for CTRL-A (01) between them, another pair of CTRL-As
with the hexadecimal code for carriage return (0D) between them, and
finally the last CTRL-A. The last CTRL-A is not paired, since you delimited
the first CTRL-A, so you can type it directly into the translation field. This is
what you would type for the sequence:

<CTRL-A>01<CTRL-A><CTRL-A>0OD<CTRL-A><CTRL-A>

On the monitor, this would be displayed as

t301 61 dh oo ¢ B

When you display translation strings containing control code/control
character configurations, be aware of the following peculiarities:

B If you select the View a File option to view a Translation Test output file,
that output file is displayed in a Window Manager file window. File win-
dows start a new line of display when Window Manager encounters any
of the following character codes or character code pairs:

0D, 0A, 0DOA, 0AOD

B If you display a translation containing a carriage return through the
NaturalLink Sessioner demonstration program, the carriage return is
displayed as a musical note character J'. If the window is not a file
window, Window Manager does not interpret the carriage return to
mean begin the next line.

NaturalLink Toolkit

Generating The NaturallLink Lexicon 8-13

® The MS-DOS TYPE command interprets control characters in the
strictest sense. This means that the carriage return character, 0D, alone,
causes the cursor to return to the beginning of the current line, not the
beginning of a new line.

B Do not use the character code 00 in a translation string. The NaturalLink
software ignores it, and you will lose the rest of your translation. In addi-
tion, the vertical bar character (|) and the exclamation point (!) are
reserved characters. They are mapped to hexadecimal values 1E (A)
and 1F (V), respectively. These special characters will be visible in your
lexicon file.

Experts

8.5 Experts require the user to enter specific values for particular ter-
minal elements at run time. The user enters this information into an expert
pop-up (except in the case of user-defined experts). When displaying the
expert pop-up window, the NaturalLink software prompts the user with a
phrase like the following: “Enter a specific number in the inclusive range
50-100” or “Enter a specific date.” The phrase specified for the lexical item
appears in the expert pop-up window. (In these examples, “specific num-
ber” and “specific date” are the phrases specified for the lexical items.)
NaturalLink expert routines perform validation checks on the specific val-
ues that are entered and pass these values to the Translator for inclusion in
the target language string.

You select the type of expert to present to the user. NaturalLink provides
five types of experts:

@ Alphanumeric — Accepts any alphanumeric value. Length must be
specified; range parameters are optional.

B Numeric — Accepts any numeric value. Length must be specified; range
parameters are optional.

B Date — Accepts date values only. Format must be specified; range
parameters are optional.

MW List — Enables the user to make a selection from a list of possible values,
for example, a list of countries or major cities. List experts reduce the
possibility of error by limiting the user’s options. Typing errors are also
reduced. When building a list expert, you must specify the number of
items that will be in the list, then specify the list.

®m User-Defined — Controlled by the application program. You must write
the necessary expert handling routines and specify an identifying code
for each of them in the NaturalLink user software. (Refer to Chapter 9,
Application Control of User Options, for more information.)

When you select Expert as the type of translation you wish to specify, a
pop-up window appears, displaying a list of the five expert types you can
select.

8-14 Generating The NaturalLink Lexicon NaturalLink ToolRit

Alphanumeric
Expert

Numeric Expert

Date Expert

If you select alphanumeric or numeric, you are prompted for the
maximum length of the expert. Alphanumeric experts cannot exceed 76
characters (the maximum length of a one-line field with one border
character and one space on each side of the expert). Numeric experts
cannot exceed 50 digits. Maximum length is not applicable for date, list, or
user-defined experts.

Next, a prompt asks if you want to specify a range. (Date experts also
require an answer to the Range? prompt.)

8.5.1 If you select Yes for the range option for alphanumeric expert,
a pop-up window prompts for the minimum and maximum range
specifications.

After specifying minimum and maximum range values for alphanumeric
experts, you must also indicate whether those values are, themselves, to
be valid entries. If they are, select Yes for the Inclusive? prompt that
appears at the bottom of the range specification pop-up window; other-
wise, select No.

8.5.2 The same general set of alphanumeric expert prompts appears if
you select the numeric expert option, but the prompting pop-up windows
are slightly different. With numeric experts, you have the additional
option of specifying an increment for a range. This provides greater con-
trol over user entries. For example, if you specify minimum and maximum
inclusive range values of 10 and 100, respectively, and an increment of 5,
the expert routine accepts only user entries of 10, 15, 20, and so forth.

The NaturalLink software does not support increments if the numeric
values consist of more than 9 digits. If you specify 10 digits or more as the
maximum length of the numeric expert, you are not prompted for an
increment value.

8.5.3 When you select the date expert option, you first select a date
format from the pop-up window shown in Figure 8-7.

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-15

Figure 8-7 Date Format

Specify All Lexical Information
Window: Phrase: Translation:
CONNECTORS: and
equal_to
find_rel Select a Date Format:
for
numeric_expert VY /MM/DD
where_workers MM/DD/YY
whose_worker_date DD/MMAYY
whose_worker_name YYYY/MM/DD
worker_date_hired MM/DD/YYYY
worker_employee.n DD/ZMMZYYYY
DDMONYY
YYDDD (Julian)
MON DD, YY
MON DD, YYYY
PRESS: F6 to View Item F7 for Help ESC to Quit

Next, you must respond Yes or No to a range specification prompt similar
to that for alphanumeric and numeric experts. Date range values are speci-
fied in the pop-up window shown in Figure 8-8, which also prompts you to
specify whether the range values are inclusive.

8-16 Generating The NaturalLink Lexicon

NaturalLink Toolkit

Figure 8-8 Date Range Specifications
Specify Al Lexical Information
exical Item: Window: Phrase: Translation:
5= CONNECTORS: and
equal_to
find_rel Date Range Specifications:
for
numeric.expert Minimum value
where_uorkers Month: L
whose_worker_date Day: _
whose_worker _name Year: ...
worker date_hired
worker_employee_n Maximum value
Month: __
Day: .
Year: ..
PRESS: Fb to View Item F7 for Help ESC to Quit
List Expert 8.5.4 After selecting the list expert option, you specify the number of
items to be displayed in the list. A pop-up window similar to the one shown
in Figure 8-9 prompts for the specific values that will appear in the
interface screen.
NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-17

Figure 8-9

User-Defined
Expert

Specify Values for List Expert

Specify ALl Lexical Information
Lexical Item: Windou: Phrase: Translation:
g CONNECTORS: and
equal_to
find_rel Enter List Values:
for
numeric_expert I ——
where_workers
whose_worker_date
whose_worker_name e
worker _date_hired —_—-
worker_enployee_n
PRESS: F6 to View Item F7 for Help ESC to Quit

NOTE: The NaturalLink software stores information about experts in the
file <INTFILE.NPS$ > . If you attempt to modify an existing lexicon and the
expert file does not exist, all experts specified in the lexicon default to
alphanumeric experts when you enter the Generate or Modify the Lexicon
utility.

8.5.5 If you select the user-defined expert option, a prompt asks for the
two-digit code that identifies the expert to the Sessioner. Enter only
numeric values for expert codes. Entering any nonnumeric character
causes the code to default to 0 (zero). (For more information about writing
user-defined expert routines, refer to Chapter 9, Application Control of
User Options.)

8-18 Generating The NaturalLink Lexicon NaturalLink Toolkit

CAUTION: If you plan to use more than one interface in a given
application, the codes that identify user-defined experts must be
unique in respect to both the application they are associated with
and all other interfaces in the application. A fatal error may result if
the same code identifies more than one user-defined expert in an
application.

Modify
Lexical
Items

8.6 The Modify Lexical Iltems option enables you to change any of the
entries you specified during a lexicon-building session. The screen shown
in Figure 8-10 appears when you select this option.

NOTE: In the following examples, additional window, phrase, and
translation items have been added for illustration purposes.

Figure 8-10

Modify Lexical Items
Modify Lexical Items

Lexical Item: Window: Phrase: Translation:
attr_and and @1 and €2
gqual_to COMPARTSONS: : :
find_rel ACTIONS: Find Select * from
for CONNECTORS: for
numer fc_expert ATTRIBUTES: (specific number? num range
uhere_workers NOUNS: workers 02 workers where
whose_worker date QUALIFIERS: whose date hired worker.date_hired
whose_worker_name GUALIFIERS: whose name is worker.name @1 @2
worker_date_hired ATTRIBUTES: (specific date> date range

worker_employee_n

PRESS: FE to View Item F7 for Help ESC to Quit

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-19

Each terminal element in the grammar is listed under the Lexical Item
heading. The other three headings list the window, phrase, and translation
information specified during the lexicon-building process. The cursor is
initially on the first label under the Window heading.

Select the item you wish to modify. The same series of pop-up windows
that appeared when you initially specified the item is displayed again. You
perform essentially the same steps to modify the lexical information as you
did to specify that information initially. The cursor remains in the Lexical
Items window until you press the ESC key or the F10 key to end the
Modify Lexical Items session. (To view the specified lexical information for
a particular item without the truncation that occurs in the Lexical Items
window, place the cursor on that item and press the Fé key.)

If you have already specified a window label and a phrase for some lexical
item and decide to change the window label, the old, unused phrase
remains in the original window. Similarly, if you have already specified a
phrase for some lexical item and decide to change that phrase, the old,
unused phrase remains in the window. For information about eliminating
unused phrases, see paragraph 8.14, Remove Unused Phrases From
Windows.

Create
Duplicate
Item

8.7 This option enables you to duplicate all items in a lexical entry
except its phrase. This is useful when multiple phrases map to the same
terminal element. Selecting this option causes the cursor to be placed in
the Lexical Items window. You can then select the item(s) for which you
wish to create duplicate lexical items.

The Create Duplicate Item option is highlighted, and the cursor is on the
first lexical item in the list. Select the item you wish to duplicate. The lexi-
cal item, window, and translation of the item you selected are duplicated
and inserted directly below the current lexical item. The phrase for the
duplicated item is left blank. You should select the Modify Lexical Items
option to enter new phrase information. You can create several duplicate
items in a session. The cursor remains in the Lexical Items window until
you press the ESC key or the F10 key.

CAUTION: Because of the way the NaturalLink software allocates
memory, you should quit the Generate or Modify the Lexicon opera-
tion and save the changes made to your lexicon after creating no
more than 8 to 10 duplicate items. Then exit the Create and Test
Interface screen and return to the main Interface Builder screen, at
which time memory is cleared. This is a precautionary measure to
protect your lexicon file. When you enter the Generate or Modify
the Lexicon screen again, memory is reallocated.

8-20 Generating The NaturalLink Lexicon NaturalLink Toolkit

Delete Duplicate 8.8 This option enables you to delete a duplicate item from the lexicon.

Item

You can delete only those items created with the Create Duplicate Item
option. The cursor remains in the Lexical Items window until you press the
ESC key or the F10 key to return to the Actions window or until you have
deleted all duplicate entries.

The phrase associated with the deleted duplicate item remains in the
window associated with that item but is no longer used by the Sessioner.
See paragraph 8.14, Remove Unused Phrases From Windows, for informa-
tion about removing unused phrases.

Copy
Translation

or Expert Data

8.9 This option enables you to copy translation or expert information
from one lexical item to another. When you select Copy Translation or
Expert Data, the cursor is placed on the first translation or expert in the
list. Select the translation or expert data you want to copy (the source
item). That translation information and its associated lexical item are then
highlighted. Next, select the translation item to which you want to copy
(the destination item). The source translation string or expert is copied to
the destination item. The cursor remains in the Lexical Iltems window until
you press the ESC key or the F10 key to return to the Actions window.

Specify Help
for Expert

8.10 This option enables you to attach Help messages to the experts
presented to the user in the interface screen. These Help messages are
created with Screen Builder or Message Builder and must be in the Help
message file attached to the interface screen. (Help messages for user-
defined experts must be specified in the application program.) When you
select this option, the cursor is placed in the Lexical Items window. You
can then choose an expert for which you wish to specify help.

The Specify Help for Expert option is highlighted, and the cursor is on the
first of the available experts in the Translation list. Select the
alphanumeric, numeric, date, or list expert for which you wish to specify
one or more Help messages. The screen shown in Figure 8-11 appears.

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-21

Figure 8-11

Specify Help Numbers

Generate or Modify the Lexicon for Interface {interface name?

Actions:
Specify ALl Lexical Information Specify Expert Window Coordinates
Modify Lexical Items Windows
Create Duplicate Item Enter help numbers: o0us
Delete Duplicate Item Windows
Copy Translation or Expert Data .

Lexical Item: Window: — n
attr_and CONNECTORS: —
equal_to COMPARISONS: —
find_rel ACTIONS: — rom
for CONNECTORS: —
numeric_expert ATTRIBUTES: —
where_workers NOUNS: where
whose_worker_date QUALIFIERS: whose date hired worker.date_hired
whose_worker_name QUALIFIERS: uhose name is worker.name €1 @2
worker_date_hired ATTRIBUTES: 1(specific date? date range

PRESS: F6 to View Item F7 for Help ESC to Quit

Enter the identifying numbers (up to 10 numbers) of the Help message(s)
you wish to associate with the expert item. The order in which you specify
Help messages is the order in which they will appear to the user. Press the
F10 key to accept the numbers you have entered, or press the ESC key to
abort this operation without accepting any identifying numbers you have
entered. Use the DEL key to delete numbers you no longer want. When
you press F10 or ESC, the cursor remains in the Lexical Items window
until you press ESC or the F10 key again to return to the Actions window.

Help messages cannot be tested through IBUILD. You can use the
demonstration program (NLLCDEMO.C) included with the package to test
these Help messages after the interface file is generated.

8.22 Generating The NaturalLink Lexicon NaturalLink Toolkit

Specify Expert
Text Delimiters

8.11 In some applications, expert text must be offset by specific charac-
ters (such as quotation marks or brackets). These delimiters vary accord-
ing to the application program and the type of information being
processed. An alphabetic string might need quotation marks, while the
application might be able to interpret a numeric string with no accompa-
nying delimiters. The NaturalLink software must have this information to
add these delimiters to the expert text automatically, as required. When
you select the Specify Expert Text Delimiters option, the pop-up window
shown in Figure 8-12 elicits the necessary information.

Figure 8-12

Specify Expert Delimiters

Generate or Modify the Lexicon for Interface (interface name)

Actions:
Specify Al Lexical Information
Modify Lexical Items
Create Duplicate Item
Delete Duplicate Item

Specify Expert Window Coordinates
Specify Command and Results Windows
Alphabetize Phrases in Windows
Remove Unused Phrases from Windous

Copy Translation ar £ indou
Specify Help og| Specify Expert Delimiters: |ink Screen
Alphanumeric: |1

Lexical Item: Win Translation:
attr_and CON Numeric: - @1 and @2
equal_to COM :
find_rel RCT Date: . Select * from
for CON
numeric_expert ATt List: . r) num range
where_workers NOU @2 workers where
whose_worker _date QUA Same for All: _ 4 worker.date_hired
whose_worker_name GQUA worker.name @1 @7
worker_date_hired ATT 1 date range

PRESS: F6 to View Item F7 for Help ESC to Quit

You can enter the specific beginning delimiter (such as quotation marks or
a bracket) that will be associated with an alphanumeric string, a numeric
value, a date, or a list value. (User-defined experts are not given delimiters.
If delimiters are required, they can be returned with the expert value for
the user-defined expert.) The closing delimiter is automatically associated
with the following delimiters:

([, <,or{

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-23

If the same pair of delimiters is to be associated with all types of expert
values, you can enter a value in the Same for All category. Press the F10
key to accept the delimiter(s) you have specified and return to the Actions
window, or press ESC to abort the operation. Use the DEL key to erase
options.

Specify Expert 8.12 This option enables you to specify the pop-up window position for

Window alphanumeric, numeric, date, and list experts. (Window coordinates for

Coordinates user-defined experts must be specified in the application program.) When
you select this option, the cursor is placed in the Lexical Items window.
You can then select the expert for which you wish to specify coordinates.

The Specify Expert Window Coordinates option is highlighted, and the
cursor is on the first appropriate expert in the Translation column. Select
the expert for which you wish to specify window coordinates.

Alphanumeric, 8.12.1 If you select an alphanumeric, numeric, or date expert, the
Numeric,and screen shown in Figure 8-13 is displayed. Alphanumeric and numeric
Date Experts experts always use five rows of space; date experts use seven rows. The

number of columns used depends on the length of the window label desig-
nated for the expert. You specify only the top left corner of the expert
window.

Figure 8-13 Specify Expert Window Coordinates

Generate or Modify the Lexicon for Interface (interface name)

Actions:
Specify All Lexical Information SpEC i o =
Modify Lexical Items Specify Command and Results Windous
Create Duplicate Item Alphabetize Phrases in Windows
Delete Duplicate Item Remove Unused Phrases from Windows
Copy Translation or Expert D
Specify Help for Expert Specify expert window top left corner:
Specify Expert Text Delimite
Top row: L.

Lexical Item: Windou: Left column: __

attr_and CONNECTORS

equal_to COMPARTSON

find_rel ACTIONS: Find Select % from

for CONNECTORS: for

numeric_expert ATTRIBUTES: (specific number) num range

where._workers NOUNS: workers 02 workers where

whose_worker_date QUALIFIERS: whose date hired worker.date_hired

whose_worker_name QUALIFIERS: whose name is worker.name €1 @2

worker_date_hired ATTRIBUTES: l(specific date? date range

PRESS: F6 to View Item F?7 for Help ESC to Quit

8-24 Generating The NaturalLink Lexicon NaturalLink Toolkit

List Experts

8.12.2 This type of expert allows specification of the top left corner and,
optionally, the bottom right corner window coordinates, because the
number of rows used depends on the number of items designated for the
list. The minimum number of rows required is four. If you do not specify
the bottom right corner, the NaturalLink software will expand the window
as needed to accommodate the list. The pop-up window in which you spec-
ify coordinates for list experts is similar to that for the other experts except
that you will be able to specify the bottom corner coordinates.

When you specify window coordinates for an expert window, the cursor
remains in the Lexical Items window. You can select another expert for
which to specify window coordinates, or you can return to the Actions
window by pressing the ESC key or the F10 key.

To delete window coordinates you have previously specified and accept
the default window coordinates supplied by the NaturalLink software, use
the DEL key.

Alphabetize
Phrases
in Windows

8.13 This option enables you to alphabetize the phrases in the parse
windows of the NLmenu screen. When you select this option, the pop-up
window shown in Figure 8-14 appears.

Figure 8-14

Alphabetize Phrases in Windows

Which windows do you want to alphabetize?
ALL PARSE WINDOWS A SELECTED SUBSET
Fress the ESC key to abort this operation.

If you select All Parse Windows, the phrases in all parse windows will be
alphabetized. If you choose A Selected Subset, a pop-up window will be
shown with a list of window labels to choose from. Select the window(s)
containing the phrases you wish to be alphabetized. Use the arrow keys to
move among items in this pop-up window, and press ENTER to select an
item. If you decide against an item already selected, press ENTER again.
Selected window labels are displayed in reverse video. Note that you can
alphabetize items in the Command window when you use the Selected
Subset option. Press the F10 key to execute the operation.

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-25

This procedure puts all the phrases in the specified window(s) into
alphabetical order, permitting more efficient use of the Window Manager
search feature in the final user interface screen. (See the NaturalLink Win-
dow Manager Reference Manual for information about the search feature.)

To view the alphabetized windows, select the Draw NaturalLink Screen
option described later in this chapter.

Remove Unused
Phrases From
Windows

8.14 This option enables you to remove unused phrases from the win-
dow(s) to which they were once assigned. There are four reasons why a
phrase may be unused:

B You change a window associated with a lexical item. In the course of
building or modifying your lexicon, you may change the window asso-
ciated with a lexical item. The phrase for that lexical item then appears
in two places: (1) in the new window with which the lexical item is now
associated, and (2) in the old window from which the phrase’s lexical
item has been removed. However, the phrase will not be used in the old
window since it is no longer associated with a lexical item assigned to
that window.

B You specify a new phrase to replace a phrase currently associated with
a lexical item. Both the new phrase and the old (unused) phrase will
appear in the window assigned to that lexical item.

m You use the Delete Duplicate Item option. If you use this option, the
phrase associated with the deleted duplicate item remains (because you
first created the duplicate item using the Create Duplicate Item option,
then entered the phrase information using the Modify Lexical Items
option).

B You specify a phrase that you do not associate with a lexical item. This
may happen when you design the NLmenu screen with the Screen
Builder utility.

The Remove Unused Phrases From Windows option enables you to delete
all unused phrases from windows in your NLmenu screen. When you
select this option, the pop-up window shown in Figure 8-15 appears.

8-26 Generating The NaturalLink Lexicon NaturalLink Toolkit

Figure 8-15

Remove Unused Phrases

Which windows do you want to remove unused phrases from?
INGEEGENS A SELECTED SUBSET
Press the ESC key to abort this operation.

If you choose A Selected Subset, a pop-up window appears, with a list of
window labels to choose from. Select the window(s) containing the
phrase(s) you wish to remove. Use the arrow keys to move among items,
and press ENTER to select an item. Selected window labels are displayed in
reverse video. Press ENTER again if you decide against an item already
selected. Press the F10 key to execute the operation.

View Expert
Window

8.15 Select this option if you wish to view an expert pop-up window.
(You must specify the phrase for that expert before you can view the win-
dow.) The cursor appears on the first of the available expert items in the
Lexical Items window. Select the expert item whose pop-up window you
wish to view; the designated pop-up window is displayed. You can enter
values for the expert window, but the NaturalLink software does not per-
form validation checks on these values.

Press the ENTER key, the F10 key, or the ESC key to return to the Lexical
Items window.Then press the F10 or the ESC key to return to the Actions
window.

You cannot test Help messages when viewing expert windows. After the
interface is generated, you can test Help messages for expert windows
using the demonstration program (NLLCDEMO.C) included with the
package.

Draw
NaturalLink
Screen

8.16 This option enables you to view the current NLmenu screen. When
you select this option, the pop-up window shown in Figure 8-16 appears.

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-27

Figure 8-16

Draw NaturalLink Screen

Which windows do you want draun?
SRR MON-POPUPS ONLY A SELECTED SUBSET

Press the ESC key to abort this operation.

Select the option you want and press the ENTER key. If you choose A
Selected Subset, an additional pop-up window appears, prompting you to
select the window(s) you wish to see. Use the arrow keys to move among
items, and press ENTER to select an item. Press ENTER again if you decide
against an item already selected. Press the F10 key to commit your selec-
tion. After you view the screen, press the ENTER key, the F10 key, or the
ESC key to return to the Actions window.

You cannot view Help messages when viewing the screen. You can view
Help messages using Screen Builder or the demonstration program
(NLLCDEMO.C) included with the package.

Quitting the
Lexicon Builder

8.17 You can continue the lexicon-building process until you have speci-
fied all the information required by the Lexicon Builder for all terminal
elements in the grammar, or you can quit at any time. During an Actions
window operation, you can return to the Generate or Modify the Lexicon
Interface < interface name > menu by pressing the ESC key (the number
of times you must press ESC depends on what step you are performing in
the operation).

Once you are in the main menu, you can select the Quit option. The
Lexicon Builder then asks if you want to save the changes made to the
lexicon. You can do this by selecting Yes, or you can quit without saving
by selecting No. If you select Yes, the screen file, the lexicon file, and the
expert file are updated.

Function Keys

8.18 The following list explains how function keys work during the
lexicon-building procedure.

B View ltem/F6 — When the cursor is on an item in the Lexical Items
window, press F6 to display all the lexical information specified for that
lexical item. The text of items viewed is not truncated but appears in
full. The F6 key is valid only when you have selected one of these
options:

m Specify All Lexical Information

m Modify Lexical Items

8-28 Generating The NaturalLink Lexicon NaturalLink Toolkit

m Create Duplicate ltem

m Delete Duplicate Item

Copy Translation or Expert Data

Specify Help for Expert

Specify Expert Window Coordinates

s View Expert Window

If the cursor is-in the Actions window and you wish to view the lexical
information specified for a particular item, simultaneously press the CTRL
key and the PgDn key to place the cursor in the Lexical Items window.
Then place the cursor on the lexical item for which you wish to view infor-
mation and press the F6 key.

Bm Help/F7 — Help messages are provided for all options in the Lexicon

Builder utility. Place the cursor on the option for which you wish to read
the Help message(s) and press the F7 key. If more than one Help
message is associated with a particular option, a statement at the
bottom of the Help screen prompts you to press the F7 key again for
more help. Press the ENTER key to return to the screen.

Quit/ESC — The ESC key enables you to quit the operation you are
currently performing. If you are performing one of the Actions
operations, the ESC key returns you to the previous screen. If you are in
the Generate or Modify the Lexicon for the Interface screen, the ESC
key returns you to the Create and Test Interface < interface name >
screen.

® F10 and ENTER — The F10 key accepts multiple-item selections. In gen-

eral, you select options with the ENTER key and accept or execute those
options with the F10 key.

NaturalLink Toolkit

Generating The NaturalLink Lexicon 8-29

APPLICATION CONTROL OF USER OPTIONS

Paragraph Title Page
1S S 0 16 o Yo L0 Ui 1) o DRSPS 9-3
9.2 User-Defined EXPErtsccccveoiiiiiiieiciie e ccreesrenee e e eraesneeanaeas 9-3
9.2.1 Uses for User-Defined EXperts..........cccoeiiviieiii e 9-3
9.2.2 PrOCEAUIE........oeiiiiiicee et ettt et 9-5
9.3 Dynamic LexXical ItemS........cceoieriiiiiniiiirieeceeee e 9-8
9.3.1 Uses for Dynamic Lexical [temsccccooiiiiiiiininiiiinnecccees 9-8
9.3.2 Possible Modifications...........cceiovieoiiriiirieccreece e 9-8
9.3.3 Preparations for Using the Featurecc.coccooniininiiiniiee, 9-8
9.34 PrOCEAUYE ...ttt 9-9
9.3.5 Sending Information to the Sessionerc.cccoeeevieviiiieciiccciecee, 9-10
9.3.6 Information File for New Lexical ltems............ccccooeeeiiiiiniiiniineenen. ..9-13
9.3.7 Specifying Key Codes in Translationsc...cccoeeviencvinnincnncnennn, 9-14
9.3.8 Duplicate Lexical lHems........ccccoviiiiiiiiieiiiineer e 9-15
9.3.9 Using Dynamic Lexical Itemsccccoviiniiniieiiiceeee e 9-15
9.3.10 Attaching Help to Items Createdcccoooveviniienieiienicieeceecee, 9-16
9.3.11 EXAMIPIES ...covieieiieiiee ettt et 9-16
9.3.12 SaMPIE Calls ...coovieiiiiiieii et 9-21
9.3.12.1 Remove All Existing Entries and Create New Entries 9-21
9.3.12.2 Create New Entries and Leave Existing Entriesc...c.cooocen. 9-21
9.3.12.3 Restore Original DTS Entry and Remove All Others 9-21
9.3.12.4 Remove All ENtII€S......cccooviieriiiiieie et 9-21
9.3.12.5 Create New Lexical [tems.........ccooviiiiiieciiiiiiieie e 9-22
9.3.12.6 Information Sent; Leave Interface in Memory.........ccccccoovvereennennnnn. 9-23
9.3.12.7 Load Dynamic Lexical Items, Save Interface, and
Unload Interfaceccocovieciiiiieieececeeeeeee e, 9-24
9.3.12.8 Unload Interface From Memory and Save to Diskcccoeeenen. 9-24
9.3.12.9 Restore DTS Entries, Remove Lexical Items, and
Save Interface to Diskcocoovoiieiiiiiiiiicce e, 9-24
9.3.12.10 Clear From Memory Information Sent to Sessioner 9-24
NaturalLink Toolkit Application Control of User Options 9-1

Introduction

9.1 At times it may be necessary or desirable to control user options
from the application program. You ¢an do this through two NaturalLink
options:

® User-defined experts
B Dynamic lexical items

Each option is designed to solve a specific type of problem. If both will
solve your problem, use user-defined experts; that option provides a faster
and more memory-efficient solution than dynamic lexical items.

This chapter explains how to use each of these methods to control user
options from the application program. User-defined experts are discussed
first, then dynamic lexical items. Next the chapter presents examples that
demonstrate how you decide which of these two options to choose.
Finally, sample calls for dynamic lexical items are listed at the end of the
chapter.

User-Defined
Experts

Uses for
User-Defined
Experts

9.2 This section explains the uses for user-defined experts and the proce-
dure for writing a user-defined expert routine.

9.2.1 With the NaturalLink Toolkit you can tailor expert-handling
routines to special needs. These experts are useful when the standard
NaturalLink type-in, date, and list experts are not sufficiently flexible for
certain application requirements. For example, in standard NaturalLink
experts, items and parameters are specified when the lexicon is built and
become a permanent part of the interface, while items in user-defined
experts can be added, deleted, or changed at your discretion.

This capability is often helpful. Assume you are creating a NaturalLink
interface to an online stock quote service. Users of the interface typically
would ask for stock quotes on only a small list of all the available stocks.
The stock list would, of course, be different for each user. Ideally,
each user should be able to create his or her own unique stock list and
change that list at any time. NaturalLink user-defined experts provide this
capability.

NaturalLink Toolkit

Application Control of User Options 9-3

When the user, in building a query, specifies the stocks for which quotes
are to be obtained, the application’s user-defined expert routine is called to
present the user’s stock list (along with an option to type in a different
stock). Each time the user changes the list, it is updated and saved as part
of the application. This eliminates the need for the user to memorize stock
symbols for the current stocks of interest and type them in each time the
query is made.

There are additional ways to change the options available to the user
through user-defined experts.

B In a relational database, a user-defined expert can present the user with
a list of all current values for a specific field. When the user-defined
expert routine is called, it queries the database for the values in that
field and displays them in a list window from which the user can choose
one or more.

B In a text database, the query process might require a list of synonyms to
be provided every time a specific word, such as car, is specified. The
application can enable the user to create lists of words that are syn-
onyms of each other. The user-defined expert elicits a word, probably
through an edit window, and attempts to match the value with the lists
of synonyms already specified. If the word appears in the lists, the user
can be given the choice of including all or part of the previously defined
synonyms in the query, instead of having to type them each time.

Like other experts, user-defined experts cannot contain slots. Therefore,
user-defined experts should not occur as predicates with arguments in the
semantic substitution list in any rules in the grammar. If they do, no substi-
tution will be performed.

For specific information about using the user-defined experts option, refer
to Chapter 15, The NaturalLink Sessioner, and Appendix C, High-Level
Language Interface.

9-4 Application Control of User Options NaturalLink Toolkit

Procedure 9.2.2 The NaturallLink software enables you to write a user-defined

expert routine that elicits the specific data directly from the user. When
the NaturalLink Sessioner encounters any item that has been specified as a
user-defined expert, it calls a routine in the application program called
NLXEXP and passes it a code specified in the lexicon-building portion of
the IBUILD utility, identifying which user-defined expert is being invoked.
The NLXEXP routine must determine how to elicit the specific data by
checking the identifying code. Then it must call its own routines to handle
the expert.

The application program controls everything involved in eliciting the user
data. You define all the windows or screens required with the aid of the
Screen Builder. Your own expert-handling routines make the necessary
Window Manager calls to display those windows and receive the informa-
tion from the user. If, as in the stock quote example, the data for the expert
window is to come from a file, the application routines must read the file,
load the screen to be used, put the data in the window, add the window,
receive the user’s choice, delete the window, and unload the screen.

Once the NLXEXP routine has elicited the data, it should call the special
NLSETR routine to pass the translation string and the English string back
to the NaturalLink Sessioner. The translation string becomes part of the
translation for the sentence, and the English string is placed in the Results
window. (The NLSETR routine is provided in the NaturalLink Toolkit soft-
ware.) NLXEXP then returns to the NaturalLink Sessioner, which proceeds
with the query-building process as usual. A step-by-step procedure for
implementing user-defined experts follows.

1. When you are using IBUILD to generate the lexicon for an interface,
specify a lexical item to be a user-defined expert.

2. Provide an identifying code (an integer) for Lexicon Builder to asso-
ciate with the lexical item.

3. Complete the interface and generate an interface file.
4. Design the windows that will elicit the user-defined expert data.

5. Write the application routines that will handle the user-defined expert
and the NLXEXP routine that the NaturalLink Sessioner will call.

6. Link the application with the NaturalLink object.

NaturalLink Toolkit

Application Control of User Options 9-5

If the user, when creating a command sentence from the NLmenu screen,
chooses the lexical item that was specified to be a user-defined expert, the
following sequence occurs:

1. The NaturalLink Sessioner calls NLXEXP with the identifying code for
the expert. (The identifying code for the expert must be unique within
the application if two or more interfaces are to be loaded or used.)

2. NLXEXP determines by the identifying code which expert is being
invoked and calls the application routines that handle that expert.

3. The application routines perform the operations that are necessary to
elicit the information, such as reading a file or making calls to Window
Manager, and return to NLXEXP.

Note that the NLmenu screen is displayed throughout the processing of
the user-defined expert. All the windows in the application program
necessary to elicit the expert information are displayed at the top of
the NLmenu screen. If you wish to display the user-defined expert
window at all times, place it so that it will not be covered by the
NLmenu screen. (User-defined expert windows must be in a separate
screen file from those of the NLmenu screen.) Add the user-defined
expert window before calling the NaturalLink Sessioner.

4. NLXEXP calls NLSETR to pass the translation string and English text
for the Results window back to the NaturalLink Sessioner.

5. NLXEXP returns to the NaturalLink Sessioner.

6. The NaturalLink Sessioner proceeds as usual to invoke the NaturalLink
Parser, which determines the choices available next.

The calling sequences for the NLXEXP and NLSETR routines are described
in Appendix C, High-Level Language Interface, along with the calling
sequence for the NaturalLink Sessioner, NLDRIV.

9-6 Application Control of User Options NaturalLink Toolkit

An example of the algorithms for dealing with user-defined experts
follows.

The application main program

Call NLLOAD with the name of the interface file.
Call NLDRIV with the number of the loaded
interface file.
If error,
Call the message manager to report the error.
Exit the program.

The NLXEXP routine

Call expert routine 1 if the identifying code is 1.
Call expert routine 2 if the identifying code is 2.
Call expert routine 3 if the identifying code is 3.
Call expert routine 4 if the identifying code is 4.
Call NLSETR with the translation string and the
English text returned from the expert routine
that was called.
Return to the NaturalLink Sessioner with proper return code.

A sample expert routine

Load the expert-handling screen.
Read the stock list file and put the stocks
in the stock list window.
Add and select the stock list window.
Receive the user’s choice from the window.
Release the stock list window.
If the choice was some other stock,
Add and select the specific stock symbol window.
Receive the user’s specific stock symbol.
Delete the specific stock symbol window.
Delete the stock list window.
Create an English text string containing
the stock symbol chosen.
Unload the expert-handling screen.
Return to NLXEXP with the translation string and the English
text string.

NaturalLink Toolkit Application Control of User Options 9-7

Dynamic
Lexical Items

Uses for Dynamic
Lexical Items

Possible
Modifications

Preparations for
Using the Feature

9.3 The Dynamic Lexical Items feature aliows for limited modifications
to the lexicon and the screen of an interface through an application pro-
gram. Modifications can be made on the copy of the interface in memory
only or saved to disk.

9.3.1 When something about your interface needs to be determined at
run time, such as whether or not a printer is available or what fields are in
the file being searched, you must modify the options available to the user.
In some cases user-defined experts solve the problem completely. In other
cases, such as those described later in this chapter, user-defined experts
provide a flawed solution at best and sometimes no solution at all. To
achieve the ideal solution, you must modify the lexicon directly.

9.3.2 You can remove terminal elements from the lexicon (and, there-
fore, from the screen). You can create new items, if you desire, to replace
the ones removed. These new items are lexical items that duplicate the
original element, but the original element no longer exists. (This situation
is similar to that discussed in paragraph 8.7, Create Duplicate Item.) For
the rest of this discussion, a terminal element that was removed or is to be
removed from the lexicon (the original element) will be called a dynamic
terminal symbol (DTS). You can create more than one item to replace each
DTS removed, and you can make modifications that remove, add to, or
replace items that were created earlier.

9.3.3 To use this feature, you must identify the DTS as a user-defined
expert when you create the lexicon in IBUILD. The expert code assigned
to the DTS will identify to the Sessioner the symbol you wish to remove or
replace. Once the interface file has been generated, you must modify the
application program by either of two methods:

m Call NLXSND for each DTS that is to be removed or replaced, and call
NLXCRE to perform the modifications to the interface in memory and,
optionally, to disk.

W Instead of calling NLXSND for each DTS, you can store all the
information required to modify the interface in a file and call NLXCRE
using the Information File option.

You can choose either method as long as the information is specified.
Calling NLXCRE without calling NLXSND first and not using the Informa-
tion File option produces an error.

9.8 Application Control of User Options NaturalLink Toolkit

Procedure 9.3.4 Two callsto the NaturalLink Sessioner handle the creation or dele-

tion of lexical items. The first call, NLXSND, sends the information that
tells the Sessioner what items to create or delete.

The second call, NLXCRE, modifies the interface. This call has the
following options:

Load Interface File — NLXCRE can load the interface file to be modified
if the application program has not already loaded it via an NLLOAD call.

B Load Information File — You can specify an information file so that
the NLXCRE call loads the information that would normally be sent
through NLXSND. You can use this option instead of or in addition to
the NLXSND call.

B Save Interface — You can save the modified interface file to disk either
under the same name as the original interface file or under a different
name. You can do this when you modify the interface, or you can do it
later by making another NLXCRE call and specifying the Save option.

B Unload Interface From Memory — The modified interface file can be
unloaded from memory so that the application does not have to make
the NLXUNL call.

m Restore — After making modifications to an interface using NLXCRE,
you can restore it to almost its original state by making another
NLXCRE call with the Restore option specified. You can do this even
after the interface has been saved to disk. The restored interface differs
in two ways from its original state:

s The phrase for the lexical item removed from the lexicon is not
returned to the same position in the window it came from but instead
becomes the last item.

m Any duplicate lexical items created through the Lexicographer
option in IBUILD and any items created through the dynamic lexical
items feature are removed from the lexicon.

When NLXCRE saves an interface to disk, the information for restoring the
interface is stored also. The NaturalLink software creates the name for this
modifications file by adding a different extension, .ND$, to the name of the
file to which the new interface file was written, such as NEWFILE.INT. The
result is a name like NEWFILE.ND$. This file must exist with its companion
interface if the new interface is to be modified or restored. Therefore, if
you rename the new interface file, you must also rename the saved infor-
mation file as < NEWNAME > .ND§$.

NaturalLink Toolkit

Application Control of User Options 9-9

IF THE MODIFICATIONS FILE IS LOST, THE MODIFIED INTERFACE CAN
NEVER AGAIN BE MODIFIED OR RESTORED. Therefore, the Sessioner
sets the read-only attribute for the modifications file so that users cannot
delete it accidentally.

The item text for a new lexical entry is added to the end of the list of items
for its window. However, if the new item text matches text already in the
window, the new item is assigned to the existing text.

If NLXCRE is unable to create a new lexical item because of an invalid
window label or a bad user-defined expert code (the DTS code), it returns a
warning to the application after creating all the entries that it can. The
application can proceed to build commands from this interface, but some
of the lexical entries that should have been created will be missing.

Sending 9.3.5 The calls described earlier, NLXSND and NLXCRE, pass informa-
Information tion to the Sessioner and make the modifications. Both these calls can be
to the Sessioner used several times within an application program. NLXCRE must not be
used while an NLDRIV call is in progress (when the Sessioner gives control
to the application to process a user-defined expert or a user-defined func-
tion key). The Dynamic Lexical Items feature modifies window item lists;
using the feature during an NLDRIV call can cause severe problems in the
NaturalLink software.

When you create the interface, you must create a terminal element (the
DTS) in the grammar for the new lexical items to replace. You must also
perform these tasks when you create the lexicon with the Lexicon Builder
option in IBUILD:

1. Assign the DTS to any window.
2. Assign the DTS to a phrase.
3. Make the DTS a user-defined expert and give it a unique expert code,

which must be different from the expert code for any other user-
defined expert or DTS in this interface.

9-10 Application Control of User Options NaturalLink Toolkit

After the interface file has been generated, the application program does
the following:

1. Loads the interface to be modified through the NLLOAD call (or, if you
wish, through the NLXCRE call).

2. Gathers the information to create the new lexical items. This informa-
tion can be stored in a file that the Sessioner loads through the
NLXCRE call, or it can be passed directly to the Sessioner using the
NLXSND call.

3. Issues the NLXCRE call to create the new lexical items.

In response to the NLXCRE call, the Sessioner does the following:

1. Loads the interface (if it is not already loaded)

2. If an information file was specified, loads the information to create the
new lexical items

3. Creates the new lexical items

4. If requested, saves the modified interface to a file and saves the infor-
mation about the DTS that was replaced in the modifications file asso-
ciated with this interface

5. If requested, unloads the interface from memory

6. Returns to the application

The syntax of the NLXSND call to send the new lexical items information
to the NaturalLink Sessioner is as follows:

STAT =NLXSND (dts_code, option, number , window_label_array,
item_text_array, trans_array)

All parameters are input only.

dts_code Integer; expert code assigned in the Lexicon Builder
to the terminal element to be affected.

option Integer; operation to be taken with the specified DTS.

NaturalLink Toolkit Application Control of User Options 9-11

The options are as follows:

Restore

Delete

Add

Replace

number

window_label_array

item_text_array

trans_array

(0) Remove all lexical items for this DTS;
restore the original entry to the lexi-
con and the item text to the screen. If
the number and array parameters are
not zero and null, an error is returned.

(1) Remove the DTS entry from the lexi-
con and the screen; remove any pre-
viously specified lexical entries, and
do not replace with anything. If the
number and array parameters are not
zero and null, an error is returned.

(2) Remove the DTS entry from the lexi-
con and the screen, and add lexical
entries from the information in the
three arrays.

(3) Remove the DTS entry from the lexi-
con and the screen; remove any
previously specified lexical entries,
and add lexical entries from the infor-
mation in the three arrays.

Integer; number of entries to be created;
should be zero in options 0 (Restore) and
1 (Delete).

Array of character strings containing the
window labels for the lexical entries;

should be null in options 0 (Restore) and
1 (Delete).

Array of character strings containing the
item text for the lexical entries; should

be nuli in options 0 (Restore) and 1
(Delete).

Array of character strings containing the
translation text for the lexical entries;
should be null in options 0 (Restore) and
1 (Delete).

The three arrays are assumed to line up horizontally (that is, the first entry
in each array creates the first lexical entry, the second entry in each array

creates the second, and so on).

9-12 Application Control of User Options

NaturalLink Toolkit

Information File for
New Lexical Items

Appropriate versions of this call exist for languages that do not easily sup-
port arrays of character strings. See Appendix C, High-Level Language
Interface, for specific information about issuing this call from your
language.

9.3.6 Following is the format of the information file if the information
for new lexical items is to be loaded from the disk.

v, <the version of the Toolkit that this file was created for>

n,<# of entries in the file>

c,<DTS code> , <option>, <number of lexical entries to create>
w,<window label>

i, <item text>

t,<translation>

* <a comment - may be inserted anywhere>

This file is a sequential file that can be created with any standard text edi-
tor or from a program. The maximum length of a line in this file is 80
characters.

The one-character identifiers followed by a comma at the beginning of
each line are called command markers. You can insert comments into the
file by preceding them with a command marker of *,.

The number of c, lines must equal the number of entries specified on the
n, line.

The w,, i,, and t, lines come in sets. They represent the window label,
item text, and translation for each entry that should be created, and they
must occur in the order specified. There must be one set of these lines for
each entry to be created, asindicated in the number of lexical entries to
create item on the preceding c, line.

A null translation is indicated by a t, line with no translation text
following the comma.

NaturalLink Toolkit

Application Control of User Options 9-13

Example File:

This entry adds 5 fields to whatever fields
, already exist for DTS number 12

c,12,2,5

w,FIELDS

i,employee name

t, EMPNAME

w,FIELDS

i,employee address

t ,EMPADDR

w,FIELDS

i,job level

t,JOBLVL

w,FIELDS

i,salary

t,EMPSAL

Ww,FIELDS

i,date hired

t,HIRDAT

*, This entry restores DTS number 15's original lexical

*, entry and removes any other lexical entries

c,15,0,0

*, This entry replaces whatever entries already exist for
*, DTS number 17 with a new item

c,17,3,1

w,0PTIONS

i,and send the output to a printer

t,a1 /P

If any errors are found in the file, NLXCRE returns with an error message
indicating the type of error encountered.

Specifying 9.3.7 You can enter a key code as part of a translation for lexical items
Key Codes to be created; enter a | character followed by a two-digit hexadecimal key
in Translations code for the key. If a | character is needed as part of a translation, enter ||.
Use this method to specify key codes in translations in the NLXSND call

and in the information file.

For example, if a lexical item is to have the translation
ABK carriage return> CD | EF
the translation text must be

AB|0DCD| | EF

9-14 Application Control of User Options NaturalLink Toolkit

Duplicate
Lexical Items

Using Dynamic
Lexical Items

9.3.8 Duplicate lexical items created for a DTS through IBUILD and the
Lexicographer option are allowed. However, when you specify option 0
(Restore), 1 (Delete), or 3 (Replace) for a DTS with duplicates, all lexical
entries for that DTS are stripped from the lexicon. This includes both
dynamically created entries and duplicate lexical items created through
IBUILD.

9.3.9 You should modify the lexicon as infrequently as possible. The
process can be slow, and in some cases the delay may be unacceptable.
The time needed depends on several factors: the size of the interface; the
number of lexical entries to be created; and the state of NaturalLink’s
memory space (the quantity of memory available and the amount of
fragmentation). Because various factors are involved, you need to try
dynamic lexical items before deciding if you can use them. If you have a
large interface, there may not be enough memory to allow creation of
lexical items. If there is not enough memory, you can separate the modifi-
cation process from the query-building process, since there is an option to
save the modified interface in a file.

Modified interfaces run as fast as other interfaces during the query-
building process, provided memory has not been greatly fragmented by
the procedure for creating lexical items. If a modified interface is saved in
a file, it can be loaded and used like any other interface. The
recommended method of using dynamic lexical items is to modify the
interface, save it in a file, flush NaturalLink’s memory through the
WMFLSH call (or quit and run another process that builds queries), load
the modified interface, and run as usual.

WMFLSH clears all screens and interfaces that have been loaded into
memory. All load calls must be performed again, and windows created
through the WMWCRE call prior to the WMFLSH call must be recreated.
Refer to Chapter 6 of the NaturalLink Window Manager Reference Manual
for more information on the WMFLSH call.

NaturalLink Toolkit

Application Control of User Options 9-15

CAUTION: The Dynamic Lexical Items feature and the Synonyms
portion of the Interface Customization feature (see Chapter 16,
Interface Customization Feature) both modify the position of items
in the interface screen by adding to and subtracting from the win-
dow item tables. DO NOT allow the user to save sentences (see
Chapter 15, paragraph 15.2.5, Sentences Option) from an interface
for which either of these features is provided. Recalling a saved
sentence when the interface screen items are not in the same posi-
tions WILL CAUSE A SYSTEM CRASH. The Edit Phrases portion of
the Interface Customization feature does not modify item positions
and can be used in conjunction with the saved sentences feature.

Attaching Help 9.3.10 If the DTS item being replaced had Help information attached to
to Items Created it, that Help information is attached to each of the new items created.

Examples 9.3.11 The following examples illustrate some of the factors that deter-
mine whether you should select user-defined experts or dynamic lexical
items to control user options.

Example 1 — Listing Fields in a File

Problem: Assume you are writing a NaturalLink interface to a database
with such files as an employee information file. Each file has fields within
it: employee name, address, job level, salary, and date hired. Here is a
sample grammar for querying a file within this database.

SENTENCE = open file file_expert

SENTENCE — look_at records of file where QUALIFIER
QUALIFIER — alpha_field {is is_not} alpha_expert

QUALIFIER — num_field COMPARISON_OPERATOR num_expert
QUALIFIER — date_field {of after before} date_expert
COMPARISON_OPERATOR — is_equal_to
COMPARISON_OPERATOR — is_not_equal_to
COMPARISON_OPERATOR — is_greater_than
COMPARISON_OPERATOR — is_less_than

9-16 Application Control of User Options NaturalLink Toolkit

This database requires that files be opened before they can be queried, and
only one file can be queried at a time. After the user has opened a file, you
want to find out from the database the fields in this file and put the fields in
a list for the user to choose from. (You do this only if the fields within a file
can change at any time or if you do not know about the files and the fields
when you create the interface.)

To put the fields in a list by means of user-defined experts, you need three
field types: one for alpha_field, one for num_field, and one for date_field.
These three field types cannot be combined into one expert, because dif-
ferent comparison operators follow them. The lexical entries for these
three experts would look like this:

terminal element — alpha_field
user-defined expert 1
window label — FIELDS
item text — < specific alpha field >

terminal element — num_field
user-defined expert 2
window label — FIELDS
item text — <specific numeric field >
terminal element — date_field
user-defined expert 3
window label — FIELDS
item text — <specific date field >

Since all three experts will be available at the same time, the user must
choose the type of field to query on before selecting the field.

If there are no date fields in the opened file, the following happens:
1. The user chooses < specific date field > .
2. A message appears saying that no date fields are in this file.

3. The user must go back and choose a different field type.

NaturalLink Toolkit Application Control of User Options 9-17

Solution: Use dynamic lexical items. When you find out from the database
what fields and field types the file contains, you can create lexical items to
replace the lexical entries for alpha_field, num_field, and date_field. Your
lexicon looks the same as when you specify the information in IBUILD.
After you create the new lexical items, the lexicon looks like this:

terminal element — alpha_field
translation string — EMPNAME
window label — FIELDS
item text — employee name

terminal element — alpha_field
translation string — EMPADDR
window label — FIELDS
item text — employee address

terminal element — num_field
translation string — JOBLVL
window label — FIELDS
item text — job level

terminal element — num_field
translation string — EMPSAL
window label — FIELDS
item text — salary

terminal element — date_field
translation string — HIRDAT
window label — FIELDS
item text — date hired

This example assumes that the database under discussion supports both a
descriptive field name and the actual name assigned to the field (that is,
employee name as well as EMPNAME). The descriptive name is not
required, but it looks nicer to the user.

Now when the user wants to choose a field, he or she is presented with a
list of the fields in the file, rather than with a list of types of fields.

An Additional Benefit: When a terminal element in the grammar is an
expert, it can have no slots (“@1”) in its translation string. In the target
language translation, another terminal element’s translation string must
contain a slot into which the expert can be plugged. There can be as many
slots as desired in the translation. The application controls the translation
by using the Dynamic Lexical ltems feature to replace an expert in the lex-
icon with items that have translations. For example, EMPNAME might be
given the translation “EMPNAME@1@2.”

You need not assign the newly created lexical items to the same window
as the DTS they replace. You can assign them to any parse window in the
interface screen.

9-18 Application Control of User Options NaturalLink Toolkit

Call Sequence: Assume the following lexical entry is to be modified, as well
as the three field entries:

terminal element — look_at
user-defined expert 4
window label — OPERATIONS
item text — look at

This lexical modification will allow the application to force the user to
open a file before looking at the information.

Following is the sequence of calls for making modifications to the interface
for Example 1:

Call NLLOAD to load the interface.
Until the user quits,
If no file is open,
Call NLXSND and NLXCRE to remove the look_at terminal element
from the lexicon so the user cannot choose it.
Call NLDRIV to allow the user to build a command.
Execute the command.
If the command was to open a file,
Find out what fields are available for the opened file.
For each type of field (alpha, numeric, or date),
Call NLXSND, specifying the information for creating a
lexical entry for each field of that type.
Call NLXSND to fill in the appropriate lexical entry for the
look_at terminal element.
Call NLXCRE to create the new lexical entries.
Set a flag indicating that a file is open.
If the command was to close a file,
Set the flag indicating that there are no files open.
When the user quits, call NLXUNL to unload the interface file.

Quit.

Example 2 — Creating Optional Interfaces

Problem: Assume you are creating a NaturalLink interface to a software
package that can send data to a printer if one is attached to the user’s ter-
minal. Here is a sample grammar rule:

S — display data (and_send_to_printer)
When you create the lexicon through IBUILD, make the following entry:

terminal element — and_send_to_printer
user-defined expert 5
window label — OPTIONS
item text — and send it to the printer

NaturalLink Toolkit Application Control of User Options 9-19

When your application is installed, it asks the user if a printer is attached to
the user’s machine. If one is attached, the option to send data to the printer
should be available; if one is not attached, the option should not be avail-
able. However, your application has no way of changing the grammar,
and the grammar says that the option is always available.

Solution: When your application is installed and you find that a printer is
not available, use the Dynamic Lexical Items feature to delete the item
from the lexicon. You need not create a replacement. If a printer is avail-
able, use dynamic lexical items to create a lexical entry with the appropri-
ate translation. For example:

terminal element — and_send_to_printer
translation string — @1 /p
window label — OPTIONS
item text — and send it to the printer
This technique also works well for optional disk drives.

Example 3 — Limiting Path Availability

Problem: Assume you have a path in your grammar that is to be available
only under specific circumstances. For example, only certain people are
allowed to create files on your database. Following is the sample grammar:

S — print REPORT
S = find QUERY_SPECIFICATION
S — create FILE

Without dynamic lexical items, you have two choices:

B Create a different interface file for those who are not allowed to create
files so that the Create path is not available.

m Allow all users to build a Create command and prevent unauthorized
users from executing it.

Solution: Using the Dynamic Lexical Items feature, delete the Create item
from the lexicon when users not authorized to create files start the applica-
tion. Since the option will no longer exist, they will be unable to select it.

9-20 Application Control of User Options NaturalLink Toolkit

Sample Calls 9.3.12 The following paragraphs provide sample calls you use with the
Dynamic Lexical Items feature. These calls send new lexical items infor-
mation to the Sessioner.

Remove All 9.3.12.1 This sample call indicates that all existing entries for DTS 23
Existing Entries and should be removed and five new ones created. This call specifies the
Create New Entries Replace option.

STAT = NLXSND(23, 3, 5, WINDOW_ARRAY, ITEM_ARRAY, TRANS_ARRAY);
if (STAT != 0)
{
printf('error %d from NLXSND\n'',STAT);
exit();
}

Create New 9.3.12.2 This sample call creates five new entries for DTS 23 and leaves
Entries and Leave existing entries (except for the DTS, which is removed if it still exists). It
Existing Entries specifies the Add option.

STAT = NLXSND(23, 2, 5, WINDOW_ARRAY, ITEM_ARRAY, TRANS_ARRAY);
if (STAT != 0)
{

printf("error %d from NLXSND\n',STAT);
exit();
>

Restore Original 9.3.12.3 This sample call restores the original DTS entry and removes
DTS Entry and all other entries. It specifies the Restore option. Note that the number of
Remove All Others entries to create is zero and the three array parameters are null.

STAT = NLXSND(23, 0, 0, NULL, NULL, NULL);
if (STAT =)
{
printf(error %d from NLXSND\n'",STAT);
exitQ;
>

Remove All Entries 9.3.12.4 This sample call indicates that all entries for DTS 23 (including
the DTS) should be removed and not replaced. It specifies the Delete
option. Again, the number of entries to create is zero and the three array
parameters are null.

STAT = NLXSND(23, 1, 0, NULL, NULL, NULL);
if (STAT = 0)
{
printf('error %d from NLXSND\n'",STAT);
exit();
}

NaturalLink Toolkit Application Control of User Options 9-21

CAUTION: Be extremely careful not to remove a symbol and
replace it with nothing (delete it) unless other items will be available
at the same time. Doing this can cause the system to crash. As an
example, assume that the following two rules are the only rules in
your grammar.

X — AB(C)
X — DE

You can delete C because it is optional. You can delete either A or D
because the other could be chosen instead, but do not delete both:
no selections would be available. Neither B nor E can be deleted
unless the preceding element is deleted also; if A is chosen, B is the
only possible choice, and if D is chosen, E is the only possible
choice. You can also replace any symbol with something else.
DELETING A SYMBOL THAT IS THE ONLY POSSIBLE CHOICE AT A
GIVEN POINT IN THE GRAMMAR WILL CREATE A SITUATION IN
WHICH NO WINDOWS ARE ACTIVE FOR SELECTION BUT THE
QUERY IS NOT EXECUTABLE.

Create New 9.3.12.5 This is the syntax for the NLXCRE call to create new lexical
Lexical Items items:

STAT = NLXCRECint file, int_number, info_file, out_file, unload,
option)

int_file Input; a character string; the name of the interface file
to be loaded. This should be null if the interface file is
already in memory; if it is not null and the interface is
already in memory, the interface will not be reloaded.

int_number Input/output; the address of an integer; the number of
the interface as returned from a NLLOAD call. If
int_file is not null and the interface is not already in
memory, the initial value is ignored and the value is

set to the interface number to be used in subsequent
NLDRIV or NLXUNL calls (unless unload is specified;

if unload is specified, the value is set to —1).

info_file Input; a character string; the name of the file that con-
tains information for creating the lexical items. If the
information was previously sent through the NLXSND
call, both sets of information are used in creating new
lexical items.

9-22 Application Control of User Options NaturalLink Toolkit

Information
Sent; Leave
Interface in Memory

out_file Input; a character string; the name of the interface file
to be created. The name can be the same as that of
the original interface file or different. The value
should be null if the interface is not to be saved at this
time.

unload Input; an integer; this is ignored if out_file is null. The
options are:

0—Leave the interface in memory.

1—Unload the interface before returning to the
application.

option Input; an integer. The values are:
None (0) No special options.

Save Only (1) This call is saving an interface already
modified by a previous NLXCRE call.
All parameters except int_number,
out_file, and unload are ignored.

Restore (2) This call is restoring the interface to
its original state. Info_file parameter
is ignored, and any DTS information
about this interface is deleted from
memory.

Clear (3) This call is clearing any information
sent earlier with the NLXSND call. All
other parameters are ignored; the
interface in memory is not affected.

NLXCRE uses all modification information sent by NLXSND after the last
NLXCRE call that modified the interface. An NLXCRE call with the option
parameter set to 1 (Save Only) does not modify the interface; therefore,
the modification information is not cleared. If you wish to clear from
memory modification information that has been sent to the Sessioner,
make an NLXCRE call with the option parameter set to 3 (Clear).

9.3.12.6 This sample call indicates that the interface is loaded, the infor-
mation has been sent through NLXSND, and the interface is not to be
saved into a file and should be left in memory. The call actually applies the
information sent by NLXSND. Since the out_file parameter is null, modifi-
cations are made only in memory.

STAT = NLXCRE(NULL, &INT_NUMBER, NULL, NULL, 0, 0);
if (STAT != 0)
{
printf(''error %d returned from NLXCRE\n'",STAT);
exit();
>

NaturalLink Toolkit

Application Control of User Options 9-23

Load Dynamic
Lexical Items,

Save Interface, and
Unload Interface

Unload Interface
From Memory
and Save to Disk

Restore DTS Entries,
Remove Lexical
Items, and Save

Interface to Disk

Clear From Memory
Information
Sent to Sessioner

9.3.12.7 This sample call indicates that the interface has not been
loaded, the dynamic lexical items information should be loaded from an
information file, and the interface is to be saved into a file and unloaded
from memory.

STAT = NLXC RE("file. int'*, &INT_NUMBER, "info.dat", 'neuwfile. int",
1, 0);
if (STAT 1= 0)
{
printf('"error %d returned from NLXCRE\n',STAT);
exitQ);
}

9.3.12.8 This sample call indicates that the interface is already loaded
and modified, and that it should be saved to disk and unloaded from
memory; no new modifications are required.

STAT = NLXCRE(NULL, &INT_NUMBER, NULL, "newfile.int", 1, 1);
if (STAT = 0)
{
printf('error %d returned from NLXCRE\n'",STAT);
exit();
}

9.3.12.9 This sample call indicates that the interface is already loaded
and that all DTS entries should be restored, all lexical items created by the
application should be removed, and the resulting interface should be saved
to disk but not unloaded from memory.

STAT = NLXCRE(NULL, &INT_NUMBER, NULL, "newfile.int'*, 0, 2);
if (STAT 1= 0)
{
printf("error %d returned from NLXCRE\n',STAT);
exit(Q);
}

9.3.12.10 This sample call indicates that all information sent to the Ses-
sioner through the NLXSND call is to be cleared from memory.

STAT = NLXCRE(NULL, &INT_NUMBER, NULL, NULL, O, 3);
if (STAT = 0)
{
printf("error %d returned from NLXCRE\n",STAT);
exitQ);
)

9.24 Application Control of User Options NaturalLink Toolkit

GENERATING NATURALLINK 1 0
SENTENCES

Paragraph Title Page
) IO T {41500 Yo ¥ (ol 4 (o) s FN ORI 10-3
JO.2 PYOCEAUIE ..ottt ettt e e e e e es st eeeaeeaeneaeaaenas 10-3

NaturalLink Toolkit Generating Sentences 10-1

Introduction

10.1 After your lexicon is complete, a new option—Generate Represent-
ative Sentences for the Interface—appears on the Create and Test
Interface main screen. Use this option to test the sentence types your
grammar produces.

NOTE: Two other options—List the Lexicon for the Interface (discussed
in Chapter 14) and Check the Screen Against the Lexicon for the Interface
(discussed in Chapter 11)—are also now available. If they are not available,
press the F6 key to check the status of your lexicon.

When you select the Generate Representative Sentences option, the
NaturalLink sentence generator utility tests all paths through your
grammar and produces a set of sentences representative of those paths.
This option is important because even though your grammar passed the
initial grammar tests—Format, Static Well-Formedness, Common
Expansions, Inconsistent Translations, and Infinite Parses—it may not
produce all the sentences, and only the sentences, required by your
application program. When you examine the generated sentences, you
can see certain errors that the grammar tests could not find. These errors
include superfluous sentences, semantically incorrect sentences, sentences
in which the word order is wrong, and sentences that are missing certain
contextually important words or phrases.

Procedure

10.2 The Generate Representative Sentences option loads and processes
the necessary rule information, generates a representative set of sen-
tences, and places those sentences in an output file. The following filename
is assigned to the output file:

< interface file > NG$

where:
< interface file > is the first part of the name (without its extension) that
you designated initially as the interface filename. (For example, if you

designated JOBSHOP.INT as the interface filename, the system would
name the generated sentence file JOBSHOP.NGS$.)

NaturalLink Toolkit

Generating Sentences 10-3

The generated sentences have the following format:

I <string of integers for sentence 1 >
#sentence 1

!'<string of integers for sentence 2 >
#sentence 2

where:
!' is the flag indicating a string of integers.
is the flag indicating a sentence.

The string of integers represents a mapping of the lexical items and is used
by the Translation Test. The sentence string represents the actual
sentence. You can look at this sentence file using the View a File function
key discussed in Chapter 14, Other Interface Builder Options. Here is an
example of the sentences in a typical generated sentences file.

Representative Sentences

117131915
Find workers whose name is equal to
< specific name >

117161917
Find workers whose employee number is equal to
< specific number >

'1713191518161917
Find workers whose name is equal to < specific name >
and whose employee number is equal to < specific number >

131057131915
Find name of workers whose name is equal to
< specific name >

131057161917
Find name of workers whose employee number is
equal to < specific number >

If an examination of the generated sentences file reveals problems in your
grammar, you must correct the grammar and retest it, modifying your lex-
icon if necessary. Then run the NaturalLink sentence generator utility
again to produce a new set of representative sentences. Repeat this proce-
dure until the sentences generated represent all the sentences, and only
the sentences, required by the application program.

10-4 Generating Sentences

NaturalLink Toolkit

CHECKING AN INTERFACE
SCREEN AGAINST ITS LEXICON

Paragraph Title Page
11,1 INtroduction......ccocii it e 11-3

11.2 Types Of MESSAZESocccvvieeiiieriieeieeeerteeiieerte e sre et e eereeenreeereeeeaeeeennee s 11-3

11.2.1 Error MeSSages........c.ccoeeiiniiiiieniinieniiiirteteseeeete e 11-3
11.2.2 Warning MeSSAZESceueuiruerririeriieieirieieteiesetss ettt 114
11.2.3 Viewing an Error File......c.coooiiiiiiiiiieeece e 114

NaturalLink Toolkit Checking an Interface Screen Against its Lexicon 11-1

Introduction

11.1 After the NaturalLink lexicon is complete, an additional option,
Check the Screen Against the Lexicon for the Interface, becomes available
in the Create and Test Interface main screen. This screen/lexicon consis-
tency check tests whether all windows referenced by the lexicon are, in
fact, in the screen file specified for the interface, and whether the windows
have been designed correctly with regard to their attributes and functions.
You can perform this test either before or after selecting the Generate
Representative Sentences for the Interface option (described in Chapter
10, Generating NaturalLink sentences). The screen/lexicon consistency
check is not optional; it must be run or you cannot generate the interface
file.

When you select the Check the Screen Against the Lexicon option, a pop-
up window appears requesting the name of a message output file. You can
view this file after the test by pressing the View a File function key
described in Chapter 14, Other Interface Builder Options.

The Check the Screen Against the Lexicon option returns two types of
messages:

B Error messages — Point out error conditions in the screen file that must
be corrected before you can generate the interface file.

B Warning messages — Point out error conditions in the screen file that
should be corrected as soon as possible. The test will not fail as a result
of these error conditions. The Generate Interface File routine corrects
these errors in the interface file but not in the screen file. You should
correct the screen file at the earliest opportunity.

Types of
Messages

Error Messages

11.2 The following paragraphs discuss the two types of messages
returned by the Check the Screen Against the Lexicon option.

11.2.1 The following errors cause the consistency check test to fail and
cause the appropriate error message to be sent to the specified output file.

B A window referenced by the lexicon is missing from the screen file.
B A Command window is not specified for the lexicon.

B A Results window is not specified for the lexicon.

B An Execute item is not specified in the Command window.

B The window identified as the Command window is no longer in the
screen file.

NaturalLink Toolkit

Checking an Interface Screen Against its Lexicon 11-3

B The window identified as the Results window is no longer in the screen
file.

B Lexical items are specified for the Command or Results windows.
B An inaccurate item label is specified for a command or function key in

the Command window. Refer to Chapter 15, The NaturalLink Sessioner,
for information on item labels.

Warning Messages 11.2.2 The following errors are reported as warning messages. The
entries also identify the measure that will be taken to correct the error in
the interface file. '

B A window containing lexical items is not defined as a list window or a
user-defined window. It will be changed to a list window.

B The Command window is not defined as a list window or a user-defined
window. It will be changed to a list window.

B The Results window is defined either as an edit window or a file
window. It will be changed to a display window. Text, list, and user-
defined windows are also valid types for the Results window.

B A lexical item is not already in the window to which it was assigned.
The item will be added to the end of that window’s item table.

® Any of the following attributes is set to 1 (Yes) for a window containing
lexical items, or these attributes are set to 1 (Yes) for the Command
window: Multiple Selection, Special Repaint on Receive, or Don’t Redis-
play Current Items. The appropriate attributes will be reset to 0 (No).

W Either of the following attributes is set to 1 (Yes) for the Results window:
Multiple Selection or Special Repaint on Receive. The appropriate
attributes will be reset to 0 (No).

Viewingan 11.2.3 Figure 11-1 shows an example of the pop-up window that
Error File appears after the screen/lexicon consistency check has been run. To look
at the output file, press the View a File function key from the Create and

Test Interface main screen and enter the name of the output file.

11-4 Checking an Interface Screen Against its Lexicon NaturalLink Toolkit

Figure 11-1 Sample Consistency Check Error Screen

Create and Test Interface {interface name)

Test the Grammar for the Interface

%k PLEASE NOTE xk

4 errors and
¢ warnings

were found in checking the screen against the lexicon
for this interface. Any errors or warnings found have
been reported to the specified output file and may be
viewed using the "View a File" function key. If none
were found, the interface file for this interface may
now be generated.

Press the ENTER key to continue

PRESS: F5 to View a File FB for Status F7 for Help ESC to Quit

NaturalLink Toolkit Checking an Interface Screen Against its Lexicon 11-5

SPECIFYING HELP AND
WINDOW COORDINATES
FOR SESSIONER WINDOWS

Paragraph Title Page
12,1 INtrOAUCHION e 12-3
12.2 PrOCEAUIE ...ttt e st 12-3

12.2.1 ChooSiNG WINAOWSeoiciiiiiiiieciiecc ettt e 12-3
12.2.2 Description of Sessioner Windowsccoccovceeeieiinnicciieieeie e, 12-4
12.2.2.1 Interface Customization Windowscoecveviviviiiieeiiceie e 12-4
12.2.2.2 Saved Sentences WindOWScoccviviiiieeiiiieiiccee et 12-5
12.2.3 SPECHfY Help ..cooniiiiiieeee e 12-5
12.2.4 Specify Window Coordinates............coceevvererieneninieenene e 12-5
12.2.5 View Sessioner WindOWccoooivviiiiiiiiiieceiie et 12-6
12.2.6 QUIL L e et e ettt 12-6

NaturalLink Toolkit Specifying Help and Window Coordinates 12-1

Introduction

12.1 The Specify Help and Window Coordinates for Sessioner Windows
option appears in the Create and Test Interface main screen after you have
checked your screen against the lexicon and fixed any problems. This
option enables you to attach Help messages to certain windows controlled
by the Sessioner that you think the user may need help with. This option
also enables you to position these windows anywhere on the screen, so
that you can avoid covering up important information. The windows to
which this option applies are for the Interface Customization feature (see
Chapter 16, Interface Customization Feature) and the Saved Sentences fea-
ture (see Chapter 15, The NaturalLink Sessioner).

Procedure

Choosing Windows

12.2 If you want to use the Specify Help and Window Coordinates for
Sessioner Windows option, you must select it before generating the inter-
face file, because any information specified will be stored in that file. The
information specified is permanently stored in the expert information file
(K INTFILE.NPS$ >); therefore, this file and the history file are updated
when you use this option.

12.2.1 When you choose the Specify Help and Window Coordinates for
Sessioner Windows option, the screen shown in Figure 12-1 appears. You
are prompted for the information you want to specify and given a choice
of windows. These are the windows created and used by the NaturalLink
Sessioner; each has a descriptive label to indicate which window is refer-
enced. If you are not sure which window is referenced, you can use the
Help feature for more information.

NaturalLink Toolkit

Specifying Help and Window Coordinates 12-3

Figure 12-1

Description of
Sessioner Windows

Interface
Customization
Windows

Specify Help and Window Coordinates Screen

Specify Help and Window Coordinates for Sessioner windows

Options:

Specify Hel

Specify Window Coordinates
Yiew Sessioner Window

Quit

Sezsioner Windows

Interface Customization Windows:
Menu,
Adding a synonym or editing a phrase.
Remove Rll Changes?

Saved Sentences Windows:
Do you wish to Save, Recall, or Delete a sentence?
Enter a name for the saved sentence.
Select a sentence to recall/delete,

Press: ENTER to Select F7 for Help ESC to Quit

Each of the options (except Quit) allows you to select one of the Sessioner
windows from the list.

12.2.2 Following is a description of the Sessioner windows you can
select.

12.2.2.1 The Interface Customization Windows are as follows:

B Menu — This is the “I want to” window that contains a list of options
available to the user. It is displayed when the user selects the Interface
Customization feature described in Chapter 16.

B Adding a Synonym or Editing a Phrase — This window prompts the user
to enter a synonym or phrase. It is displayed when the user selects
either Add Synonyms or Edit Phrases from the Menu window.

® Remove All Changes? — This window prompts the user to remove or
leave all synonyms and edited phrases; it can be answered Yes or No. It
is displayed when the user selects Remove All Synonyms and Edited
Phrases from the Menu window.

12-4 Specifying Help and Window Coordinates NaturalLink Toolkit

Saved Sentences
Windows

Specify Help

Specify Window
Coordinates

12.2.2.2 The Saved Sentences windows are as follows:

®m Do You Wish to Save, Recall, or Delete a Sentence? — This window
prompts the user to save, recall, or delete a sentence. It is displayed
when the user selects the Sentences option.

® Enter a Name for the Saved Sentence — This window prompts the user
to enter a name for the current command sentence to be saved. It is
displayed when the user selects the Sentences option and chooses to
save a sentence.

W Select a Sentence to Recall/Delete — This window prompts the user to
choose a sentence to either recall or delete. It is displayed when the user
selects the Sentences option and chooses to recall or delete a sentence
that was previously saved.

12.2.3 If you choose the Specify Help option from the Specify Help and
Window Coordinates screen, you are prompted for specific Help numbers.
Enter the identifying numbers (the limit is 10) of the Help message(s) you
wish to associate with the chosen window. These Help messages are cre-
ated with Screen Builder or Message Builder and must be in the Help
message file attached to the interface screen.

The order in which you specify Help messages is the order in which they
will be presented to the user. Press the F10 key to commit the numbers
you have entered, or press the ESC key to abort this operation without
committing any numbers you have entered. Use the DEL key to delete
numbers you no longer want. After pressing F10 or ESC, youare returned
to the Sessioner Windows menu to select the next window for which you
wish to specify Help. Press ESC to return to the Options window.

12.2.4 If you choose Specify Window Coordinates, you are prompted for
specific window coordinates. Enter the top row and left column for the
area where you want the window to appear on the NLmenu screen. Press
the ESC key if you wish to abort this operation without modifying the coor-
dinates that have already been specified. If you do not specify coordinates,
the Sessioner centers the window on the screen, using default coordinates.

NaturalLink Toolkit

Specifying Help and Window Coordinates 12-5

View Sessioner 12.2.5 If you choose to view a window, the interface screen appears
Window first, then the Sessioner window you selected. The Sessioner window’s
position depends on the coordinates designated for the window; the win-

dow is displayed in this same position during interface execution.

Once the window has been displayed, press the ENTER, F10, or ESC key to
return to the Sessioner Windows menu. You can then select another win-
dow to view or press the ESC key to return to the Options window.

You cannot view Help while viewing windows. You can view Help
after the interface is generated, using the demonstration program
(NLLCDEMO.C) provided with the Toolkit package.

Quit 12.2.6 To quit the Specify Help and Window Coordinates for Sessioner
Windows option, choose the Quit option or press the ESC key from the
Options window. Press ESC twice to quit from Sessioner Windows.

12-6 Specifying Help and Window Coordinates NaturalLink Toolkit

GENERATING THE INTERFACE

FILE AND TESTING TRANSLATIONS

Paragraph Title Page
13,1 INtrOdUCHON . ..ottt e e s s 13-3

13.2 Generating the Interface Filecocooiviiinininnincece, 13-3

13.3 Testing Translations...........cccceverviirieniereniericeeceeee et 13-4

13.3.1 Using the Generated Sentence File...........ccococovivieiiinneneieincee 13-4
13.3.2 TeSting @ SUDSEL........coviieiieeierieee et 13-5
13.3.3 Using Your Own Sentence Fileccooviviinninniiiiiieeece 13-6
13.3.4 Errors Reported........cccooovviiiiiiiiiiiiceeceecreecie st 13-7

13.4 Translation Test ReSults.........ccccoceviiiiniiniininiiieeeseercceeceee e 13-7

13.4.1 Example 1 ..o 13-7

13.4.2 EXAMPIE 2.t e 13-13

NaturalLink Toolkit Generating the Interface File and Testing Translations 13-1

Introduction

13.1 After you have successfully performed the screen/lexicon consist-
ency check described in Chapter 11, a new option—Generate the Interface
File—appears on the Create and Test Interface main screen. This utility
compiles the grammar and lexicon files and stores them, along with the
screen description, in a binary interface file. When this task is complete,
another option—Test the Interface’s Translations—appears on the Create
and Test Interface main screen. This utility uses the newly generated inter-
face file and a sentence file to test the translations specified in your
grammar and lexicon files. The sentence file can be one of the following
files:

B The representative sentence file described in Chapter 10, Generating
NaturalLink Sentences

W A file containing a subset of those sentences

B A sentence file you have developed

Generating the
Interface File

13.2 The Generate the Interface File option requires no interaction.
When you select this option, the system processes the necessary rule
information from the grammar and lexicon files and produces the binary
interface file. (You specified this file in the Record a New Interface’s Infor-
mation pop-up window described in Chapter 6, Using the NaturalLink
Interface Builder.) You must regenerate this file each time you change any
of the following:

8 The NLmenu screen

B The lexicon

B The grammar

When the interface file is generated, the windows in the NLmenu screen

are reordered. For the specific ordering, see Chapter 5, paragraph 5.4,
Window Order.

CAUTION: After executing the Generate the Interface File utility,
you should exit from the Create and Test Interface screen to
the main IBUILD screen before you execute this utility a second
time. Failure to do so could cause a system crash due to memory
fragmentation.

NaturalLink Toolkit

Generate Interface Test/Translations 13-3

Testing
Translations

Using the Generated
Sentence File

13.3 The Translations Test enables you to test the translations specified
by your grammar. While this test is optional, it can save time by helping
you locate errors before you produce the user interface. You can perform
this test with sentences representative of the whole grammar or focus on a
subset. Working with representative sentences is helpful in initial testing to
locate problem areas or in verifying that changes made to translation
information do not adversely affect the interface. Focusing on a particular
subset of sentences is useful in working out interface bugs in isolated areas.

13.3.1 When you select Test the Interface’s Translations, the pop-up
window shown in Figure 13-1 prompts for the type of input you wish to use
for the Translation Test. This pop-up window appears only if you have
previously run the NaturalLink sentence generator utility described in
Chapter 10, Generating NaturalLink Sentences. The translation-testing util-
ity uses the generated sentence output file to produce the NaturalLink
translations. If there is no system-generated sentence file, you will be
prompted for a sentence file that you must generate.

Figure 13-1

Translation Test Input Menu

Tranglation Test Input

Would you like to use the generated
sentence file, or one of your oun?

Use the generated sentence file

Use my sentence file

Press the ESC key to abort

The cursor is on the Use the Generated Sentence File option. If you select
this option, you are prompted for an output filename to which the
Translation Test results will be sent.

The translation-testing utility uses as the input file the sentence file desig-
nated by the system during the Generate Representative Sentences phase
—< INTFILE.NGS$ > . The system loads the necessary rule information and
processes each sentence according to the translation information specified
in your grammar and lexicon files. The results of the Translation Test are
placed in the designated output file. If this file already exists, you can
choose to append the Translation Test results to the existing file or replace
the existing file contents with the new results.

13-4 Generating the Interface File and Testing Translations NaturalLink Toolkit

Testing a Subset

The output file, which you can see using the View a File function key, lists
the sentences and the results of the Translation Test of each sentence. The
test results have the following format:

sentence: <sentencel>
no input translation, translation generated:
< target language translation>

The no input translation message appears because no translations
were provided in the generated sentence file that was used as input. The
translation generated message indicates that the system generated the
target language translation.

13.3.2 If you want to run the Translation Test on a subset of the system-
generated sentences, exit from the Interface Builder utility and make a
copy of the system-generated sentence file. Using a standard text-editing
program, delete the sentence string and the corresponding integer string
for each sentence you do not want tested in the copied file. The system can
generate translations from either of these strings, so you must delete both.
Rerun the Translation Test with this modified file by selecting the Use My
Sentence File option in the Translation Test Input pop-up window.
Another pop-up window (Figure 13-2) prompts you for the name of your
sentence file and for an output file to which the Translation Test results
will be sent.

Figure 13-2

Testing a Subset of Generated Sentences

Enter a Filename for:

Sentence File: Voo ______

Qutput Files oo

Press the ESC key to abort

If the output file already exists, you can choose to append the results to the
existing file or replace the contents of the existing file with the new results.

If you know what types of sentences your corrected grammar will
produce, you can also copy the generated sentence file, edit the copy, and
run the Translation Test on the edited sentences. If you decide on this
course, be sure to delete the integer string.

NaturalLink Toolkit

Generating the Interface File and Testing Translations 13-5

There are two reasons for this: (1) the integer string does not match the
new lexicon, and (2) if both strings are in the file, the system ignores the
sentence string and uses the integer string as input for developing the tar-
get language translations. Therefore, any changes you have made to the
sentence file will not be reflected in the Translation Test output. If you
have deleted the integer string, however, the system uses the sentence
string as input for developing the target language translations. Thus, your
changes to the sentence string will be reflected in the Translation Test
output.

CAUTION: Do not attempt to modify the integer string. Any
modification to the integer string could cause the system to crash.

Using Your Own 13.3.3 Another alternative in translation testing is to run the test on a
Sentence File sentence file you have produced. This procedure is useful for finding
specific problems or for isolating errors that would not appear in a file of
representative sentences. You can create your sentence file using any

standard text-editing program. It must have the following format:

input sentence 1
| translation for input sentence 1 (optional)

input sentence 2
| translation for input sentence 2 (optional)

where:

#is the flag indicating a sentence.
| is the flag indicating a translation.

The translation associated with a sentence is optional. If you add an
expected translation, the system compares its results with the results you
have indicated and reports its findings. If you do not add an expected
translation, the system reports the target string it generated from the
input.

Next, select the Use My Sentence File option from the Translation Test
Input menu (Figure 13-1). A pop-up window prompts you for the name of
your sentence file and for an output file in which the Translation Test
results will be placed. If the output file already exists, you can choose to
append the results to the existing file or replace the contents of the
existing file with the new results.

13-6 Generating the Interface File and Testing Translations NaturalLink Toolkit

Errors Reported

13.3.4 The following types of errors are reported by the Translation
Test.

B System encountered a word or phrase for which no lexical item exists
(includes misspelled words).

B System could not execute the input sentence (the grammar does not
generate the sentence).

® Input translation does not match generated translation.

NOTE: Each time you modify the grammar, you must run each step of
the Create and Test an Interface procedure again, starting with the five
grammar tests.

Translation 13.4 Two examples of Translation Test results follow.
Test Results
Example 1 13.4.1 Following is an example of the Translation Test results obtained
from a file of representative system-generated sentences. Four listings are
presented to show how the Translation Test results were derived:
B Grammar
@ Lexicon
B Representative Sentences
B Translation Test Results
NaturalLink Toolkit

Generating the Interface File and Testing Translations 13-7

Grammar

@S find WORKER_NP
;(12)(1 2)!

@S find_attr WORKER_ATTR_CONSTR of WORKER_NP
(123 4)1(324)

@WORKER_NP workers
(D)

@WORKER_NP mod_workers WORKER_MOD_ CONSTR
(12)12) ‘

@WORKER_ATTR worker_name
(D)

@WORKER_ATTR worker_employee_number
(D)

@WORKER_MOD whose_worker_name_is COMPARISON_PRED
worker_name_expert
;(123)(123)

@WORKER_MOD whose_worker_employee_number _is
COMPARISON_PRED worker_employee_number_expert
;(123)(123)

@WORKER_ATTR_CONSTR WORKER_ATTR (and
WORKER_ATTR_CONSTR)
(1)(1);5(1 2 3)2 1 3)!

@WORKER_MOD_CONSTR WORKER_MOD (and
WORKER_MOD_CONSTR)
(1)1 2 3)2 13)

@COMPARISON_PRED equal_to
;)

13-8 Generating the Interface File and Testing Translations NaturalLink Toolkit

Lexicon

Terminal Window English Translation
Element Phrase
Lexical Item
and CONNECTORS and @1 and @2
equal_to COMPARISONS equal to =
find ACTIONS Find select * from @1
find_attr ACTIONS Find select @1
mod_workers NOUNS workers workers

where @1
of CONNECTORS of @1 from @2
whose_worker QUALIFIERS whose employee employee
_employee number is number
_number _is @1 @2
whose_worker QUALIFIERS whose name is name @1 @2
_name_is
worker_employee FEATURES employee employee
_number number number
worker_employee ATTRIBUTES < specific no.> num type-in
_number_expert < expert text >
worker_name FEATURES name name
worker ATTRIBUTES < specificname > alpha type-in
_name_expert < expert text >
workers NOUNS workers workers

This grammar and lexicon produce the representative sentences shown
next during the Generate Representative Sentences for the Interface
phase.

NaturalLink Toolkit Generating the Interface File and Testing Translations 13-9

Representative Sentences

() '16
Find workers

2) '17131915
Find workers whose name is equal to < specific name >

3) '17161917
Find workers whose employee number is equal to < specific
no. >

(4 '1713191518161917
Find workers whose name is equal to < specific name > and
whose employee number is equal to < specific no. >

(5) 131056
Find name of workers

6) !'31156
Find employee number of workers

(1) 1310181056
Find name and name of workers

8 '31057131915
Find name of workers whose name is equal to < specific
name >

9 131057161917
Find name of workers whose employee number is equal to
< specific no. >

(10) '3105713191518161917
Find name of workers whose name is equal to < specific
name > and whose employee number is equal to < specific
no. >

The seventh sentence above reads “Find name and name of workers”
because it was generated from the recursive grammar rule

@WORKER_ATTR_CONSTR WORKER_ATTR
(and WORKER_ATTR_CONSTR)

and the grammar rule
@WORKER_ATTR worker_name.

The Translation Test produces the output shown next from the system-
generated sentence file.

13-10 Generating the Interface File and Testing Translations NaturalLink Toolkit

Translation Test Results

***** hegin Translation Test *****

sentence: Find workers
no input translation, translation generated:
select * from workers

sentence: Find workers whose name is equal to < specific name >
no input translation, translation generated:
select * from workers where name = < expert text >

sentence: Find workers whose employee number is equal to
< specific no. >
no input translation, translation generated:
select * from workers where employee
number = < expert text >

sentence: Find workers whose name is equal to
< specific name > and whose employee number
is equal to < specific no. >
no input translation, translation generated:
select * from workers where name = < expert text >
and employee number = < expert text >

sentence: Find name of workers
no input translation, translation generated:
select name from workers

sentence: Find employee number of workers
no input translation, translation generated:
select employee number from workers

NaturalLink Toolkit Generating the Interface File and Testing Translations 13-11

sentence: Find name and name of workers
no input translation, translation generated:
select name and name from workers

sentence: Find name of workers whose name is equal to
< specific name >
no input translation, translation generated:
select name from workers where name = < expert text >

sentence: Find name of workers whose employee number
is equal to < specific no. >
no input translation, translation generated:
select name from workers where employee
number = < expert text >

sentence: Find name of workers whose name is equal to
< specific name > and whose employee number is
equal to < specific no. >
no input translation, translation generated:
select name from workers where name = < expert text >
and employee number = < expert text >

After the Translation Test has run, you can press the View a File function
key to look at the output of the Translation Test. This helps you locate
major problems in the grammar or in the translations.

For isolated problems, you can perform further testing on a subset of the
generated sentence file or on a sentence file you have produced.

13-12 Generating the Interface File and Testing Translations NaturalLink Toolkit

Example 2 13.4.2 Following is an example of the Translation Test results obtained
from an edited version of a system-generated sentence file. The sentence
file is the same as the one used in the previous example, except that it has
been edited to contain errors that the Translation Test traps.

Edited Sentence File

() # Find wrkers

(2) # Find workers whose name is equal to < specific name >
(select * from workers where name = < expert text >

(3) # Find workers whose employee number is equal to
< specific no. >
| select all from workers where employee
number = < expert text >

4) *# Find workers whose name is equal to < specific name >
and whose employee number is equal to
< specific no. >

() # Find name of workers
(6) #* Find employee number of workers
(7) # Find name and employee number

(8) # Find name of workers whose name is equal to
< specific name >

(99 # Find name of workers whose employee number
is equal to < specific no. >

(10) # Find name of workers whose name is equal to
< specific name > and employee number is
equal to < specific no. >

Various errors are now in the input file: workers is misspelled (wrkers) in
the first sentence; the input translation in sentence 3 is not the correct
translation; sentences 7 and 8 are not complete and are, therefore, not
executable. The Translation Test gives the results shown next for this file.

NaturalLink Toolkit Generating the Interface File and Testing Translations 13-13

%* begin Translation Test **

sentence: Find wrkers

T0002 - test could not assign grammatical category,
skipping to next sentence

T0001 - the input sentence was not executable, no
translation generated

sentence: Find workers whose name is equal to
< specific name >
\ input translation same as one generated:
select * from workers where name = < expert text >

sentence: Find workers whose employee number is equal
to < specific no. >
T0004 - input translation of:
select all from workers where employee
number = < expert text >
not same as one generated:
select * from workers where employee
number = < expert text >

sentence: Find workers whose name is equal to
< specific name > and whose employee
number is equal to < specific no. >
no input translation, translation generated:
select * from workers where name = < expert text >
and employee number = < expert text >

sentence: Find name of workers
no input translation, translation generated:
select name from workers

sentence: Find employee number of workers
no input translation, translation generated:
select employee number from workers

sentence: Find name and employee number
T0001 - the input sentence was not executable, no
translation generated

13-14 Generating the Interface File and Testing Translations NaturalLink Toolkit

sentence: Find name of workers whose is equal
to < specific name >
T0002 - test could not assign grammatical category,
skipping to next sentence
T0001 - the input sentence was not executable, no
translation generated

sentence: Find name of workers whose employee
number is equal to < specific no. >
no input translation, translation generated:
select name from workers where employee
number = < expert text >

sentence: Find name of workers whose name is equal
to < specific name > and employee number
is equal to < specific no. >

-—- Translation Test complete --—-

The numbered statements (T0002 and so on) reflect errors the test
encountered in processing the sentence. The unnumbered statements pro-
vide further information. By examining the output file, you can determine
where the errors are—in the input sentence file, in the grammar, or in the
lexicon. After making the appropriate corrections to the grammar and
retesting it, rerun the Translation Test until it generates the proper target
language translations for the interface.

NaturalLink ToolRkit

Generating the Interface File and Testing Translations 13-15

OTHER INTERFACE BUILDER OPTIONS

Paragraph Title Page
T4] INEOAUCHION et 14-3
14.2 LISt the LEXICOM oaeeeeeeee e eee e e 14-3
4.3 VIEW the SCIEEM...eeeeeeeeeeeeee e 14-4
144 ViewacFile...... et te e e e e e et eeraeer e eeaate st eaater ot aaraeenaes 14-4

NaturalLink Toolkit Other Interface Builder Options 14-1

THE NATURALLINK SESSIONER

Paragraph Title Page
500 S 0 110 o L1 Ut o 101 o AU TUPPO 15-3
15.2 Command and Function Key Options...........coceoeivivincnncnencnncccenenns 15-3

15.2.1 Execute OPHONc.ooiiiiieeeeeeeeee e 15-4
15.2.2 Customize OPHON.....cc.eiciiiieriirieeeeeeeee e 15-5
15.2.3 SHOW OPHOM c..eiviiiieee et 15-5
15.2.4 Edit OPHON ..ottt 15-5
15.2.5 Sentences OPHONccvivviveieei et 15-6
15.2.6 HeIp OPtion ..o 15-9
15.2.7 Back Up OPtiONoeiiiiiiieee ettt e 15-9
15.2.8 Start Over OPtion.......c.ccooeriiiieiirieie e e 15-9
15.2.9 QUIt OPHION ..ottt ra et e 15-9
15.2.10 User-Defined Command/Function Keys............coooeeveiiiivenenencncns 15-10
15.2.11 Invoking the Commands............ccocveieriiniiienieeeeeeee e 15-10
15.2.12 Identifying Command Options to the Sessioner.............ccc.ccoeeveennenne. 15-11
15.3 NaturalLink Interface Callscccocoeeeiiiiiiiiiienieieriees et 15-12
15.3.1 Initialization and Termination..........cccccovirvieninininnineeecee 15-12
15.3.2 Loading the NaturalLink Interfacec.ccccooerviveicinieciiieceeeee 15-13
15.3.3 Invoking the NaturalLink Interface............cocooveveninieniniiiiies 15-14
15.3.4 Unloading the NaturalLink Interface..........cccooeevinenninnniniiiienns 15-16
15.4 User-Defined Expert ROUtINEScccovveeeeeiiiiieeie e, 15-16
15.4.1 The NLXEXP Call....cooovoiiiiieeieieeeeee et 15-17
15.4.2 The NLSETR Call......ooiiiiiieiiieeeeeiceeee et 15-18
15.4.3 The NLXOLD Call.....ccovoiiiiiieieieeeeeeeeee e 15-19
15.4.4 User-Defined Function Key Handlerccoocooiiiiiininiiiniee 15-19

NaturalLink Toolkit

The NaturalLink Sessioner 15-1

Introduction

15.1 The NaturallLink Sessioner serves as the coordinator between the
application program and the NaturalLink software during construction of a
command sentence. To bring up the NLmenu screen, the application pro-
gram calls the Sessioner with the interface filename and the saved sen-
tences filename. The saved sentences filename must be supplied, even
though it will not be used unless the user selects the Sentences option.

Upon entry, the Sessioner places the cursor on the first selectable item in
the NLmenu screen and initializes the Parser. As the user builds and exe-
cutes commands, the Sessioner coordinates the interaction among the
Parser, the Translator, and Window Manager, passing control among these
NaturalLink components and the application program.

Command
and Function
Key Options

15.2 Nine NaturalLink command options are available for any NLmenu
screen. Each command option is associated with a command statement,
such as Back Up, Start Over, Quit, and so forth, and a corresponding
default function key. The associated function keys are F3 through F10 and
the ESC key, which acts as the Quit key. ‘

Once invoked, commands are under the direct control of the NaturalLink
Sessioner. You cannot modify the operation of any of these NaturalLink
command options; you can modify only the keys by which they are
invoked.

The number of command options available to the user in the NLmenu
screen depends on your application requirements. Only the Execute
command is required by the NaturalLink Sessioner. The other eight com-
mands are optional and can be either specified or left out, depending on
the requirements of the application. You can also define your own
command/function keys using ALT-function key combinations.

Following are the commands that you can specify for the Command
window, with their default function keys.

W Execute/F10 — Invokes the Translator; sends the NaturalLink com-
mand sentence and its translation to the application program.

m Customize/F3 — Allows the user to make modifications to the phrases
on the interface screen.

W Show/F4 — Displays a pop-up window that shows the target-language
translation string of the current command sentence.

W Edit/F5 — Enables the user to edit the expert item(s) in the current
command sentence.

NaturalLink Toolkit

The NaturalLink Sessioner 15-3

B Sentences/F6 — Invokes the saved-sentence processing function, which
displays a pop-up window that contains a subset of one or more of the
following commands (depending upon which commands in the subset
are currently valid):

m Save a command sentence
m Recall a command sentence
m Delete a command sentence

m Help/F7 — Displays Help message(s). This option works in two ways,
depending on whether it is invoked by the F7 key or selected as an item:

m Pressing the F7 key causes display of the Help message(s) available
for the item the cursor is on.

m Placing the cursor on the Help/F7 option in the command window
and pressing the ENTER key causes display of a message that
explains how to use the Help (F7) option.

W Back Up/F8 — Erases the previous item or expert selection from the
command sentence being built and returns the cursor to the previous
active window.

W Start Over/F9 — Erases the current command sentence and enables
construction of a new NaturalLink command.

B Quit/ESC — Ends the NaturalLink session and returns to the application
program.

® User-defined command/function keys — Special function and command
key operations not supported internally by the NaturalLink Sessioner.

The following paragraphs describe the commands in detail.

Execute Option 15.2.1 Execute is the only NaturalLink command option required by the
Sessioner. The default function key is F10. The NaturalLink Sessioner
makes this command invisible in the NLmenu screen until the user has
constructed a complete sentence (an executable NaturalLink command
sentence). When a command sentence can be executed, the Sessioner dis-
plays Execute/F10 in the command window. When Execute/F10 is
selected, the Sessioner terminates the command-building process, pro-
duces a translation string for the current command sentence, and returns
that string, as well as the command sentence, to the application program
for processing.

15-4 The NaturalLink Sessioner NaturalLink Toolkit

Customize Option

Show Option

15.2.2 This feature enables the user to make limited modifications to the
interface screen. The default function key for this feature is F3. Two kinds
of modifications are possible: editing phrases and adding synonyms. This
function is also available as a routine that the application itself can call. See
Chapter 16, Interface Customization Feature, for more information.

To allow use of the Customize option, you must explicitly link it in. Refer to
Appendix C, High-Level Language Interface, for more information.

15.2.3 This command option enables the user to see the translation that
will be returned to the application. The default function key for this feature
is F4. Show is available only for an executable sentence; the Sessioner
keeps this command window option invisible until the sentence becomes
executable. When Show is selected, a pop-up window similar to the one
shown in Figure 15-1 appears.

Figure 15-1

Edit Option

Show Translation Pop-Up Window

Command translation:
(target language translation)

Press the ENTER key to continue

15.2.4 This command option enables the user to edit expert text fields in
a NaturalLink command sentence either during construction of that sen-
tence or after recalling a previously saved sentence. This option is of
particular value when a number of command sentences have the same
format but require different expert text. The default function key for this
feature is F5.

When Edit is invoked, the cursor is placed on the first expert text field in
the current command sentence. The user selects the expert field to edit by
moving the cursor to that field and pressing the ENTER key. A pop-up win-
dow appears in which the user can modify the expert text. This is the same
pop-up window in which the user originally specified the expert text. (If it
is a user-defined expert, the application routine NLXEXP is called.) Press
the ENTER key to accept the edited expert text, update the command sen-
tence, and return the cursor to the Command window. If there is more
than one expert in the sentence, the cursor returns to the Results window.
Pressing the F10 key ends the Edit session.

NaturalLink Toolkit

The NaturalLink Sessioner 15-5

Here is an example of the editing process in an NLmenu screen. Assume
that the personnel department of a company frequently uses the following
command sentence format to query its database:

Find all workers whose salary is greater than 12000 and whose
productivity output is less than 1000 units per month.

The values 12000 and 1000 are the expert items. If Edit is selected, these
items are highlighted. Using the arrow keys, the user can then place the
cursor on a value to be edited. If the value 12000 is selected for editing, a
pop-up window similar to the one shown in Figure 15-2 appears. If this is a
date expert, the old value does not appear.

Figure 15-2 Edit Expert Text

Enter {specitic value?

The new value entered in this pop-up window is checked for proper format
(alphanumeric, minimum and maximum length, range, and so on), and the
command sentence is updated to reflect the new expert value. The user
can change only the value of the expert item(s), not the structure of the
command sentence itself. During the construction of a NaturalLink com-
mand sentence, Edit interrupts the building process. The user can resume
command sentence construction after editing. The NaturalLink Sessioner
does not make the Edit option visible unless an expert item is available for
editing in the current command sentence.

Sentences Option 15.2.5 Invoking the Sentences option provides the user with access
(through a pop-up window) to the Sessioner’s three functions for manipu-
lating saved sentences: Save, Recall, and Delete. The default function key
for the Sentences option is F6. The availability of these functions is contin-
gent upon the state of the command sentence files. If no command sen-
tences have been saved, only the pop-up window shown in Figure 15-3
appears when Sentences i$ selected.

15-6 The NaturalLink Sessioner NaturalLink Toolkit

Figure 15-3

Saving a Command Sentence

Do iou wish to

a sentence?
Press the QUIT key to ahort

Do not allow use of the Sentences option unless you pass a saved sentences
filename to the Sessioner in addition to the interface file name.

To allow use of the Sentences option, you must explicitly link it in. Refer to
Appendix C, High-Level Language Interface, for more information.

If the user elects to save the current command sentence (this must be done
before the command sentence is executed), another pop-up window
(Figure 15-4) appears requesting the name under which the sentence is to
be saved.

Figure 15-4

Naming the Sentence to Be Saved

Enter a name for the saved sentence: |

Press the QUIT key to ahort

The name that identifies the saved sentence can be up to 30 characters
long. To save the sentence, press the ENTER key after entering the name.
If the name entered for a sentence matches an existing name, the message
This name has already been used appears in the window just below
the prompt line. The user is required to provide a unique name that is not
null; the message Please enter a name appears if the ENTER key is
pressed but the response field is empty. The maximum number of sen-
tences that can be stored in a saved sentence file is 100. If the user
attempts to save more than 100 sentences, an error message is displayed.

If a command sentence has been previously saved, the pop-up window
shown in Figure 15-5 appears when the Sentences option is invoked.

NaturalLink Toolkit

The NaturalLink Sessioner 15-7

Figure 15-5 Recalling or Deleting a Command Sentence

Do you wish to

Recall Delete

a sentence?
Press the QUIT key to abort

If Recall or Delete is selected, a pop-up window similar to the one shown in
Figure 15-6 appears.

Figure 15-6 Selecting a Sentence to Recall

Select a sentence to recall or press the QUIT key to abort
(command sentence 1)

(command sentence 2
{command sentence 3

To perform the Recall procedure, the user positions the cursor over the
name of the sentence to be recalled (in this example, <command
sentence 1>, <command sentence 2>, or <command sentence 3>) and
presses the ENTER key. The Delete operation works the same way except
that the prompt inside the pop-up window says Select a sentence to
delete or press the QUIT key to abort.

CAUTION: The Dynamic Lexical Items feature and the Synonyms
portion of the Interface Customization feature (see Chapter 16,
Interface Customization Feature) both modify the position of items
in the interface screen by adding to and subtracting from the win-
dow item tables. DO NOT allow the user to save sentences from an
interface for which either of these features is provided. Recalling a
saved sentence when the interface screen items are not in the same
positions WILL CAUSE A SYSTEM CRASH. The Edit Phrases portion
of the Interface Customization feature does not modify item posi-
tions and can be used in conjunction with the Saved Sentences
feature.

15-8 The NaturalLink Sessioner NaturalLink Toolkit

Help Option

Back Up Option

Start Over Option

Quit Option

15.2.6 This option, when invoked with a function key, displays Help
message(s) specified for the item the cursor is on. The default function key
is F7. Several Help messages can be chained to a single item. Each time the
Help function key is pressed, the next Help message for an item is
displayed until all have appeared. If item Help is not available, the Help
message for the current window is displayed. When multiple Help
messages are displayed, the user presses the Back Up function key (the
default is the F8 key) to return to the previous Help message. Pressing the
ENTER key when a Help message is displayed returns the user to the
NLmenu screen.

When invoked as an item selection (that is, the user places the cursor on
the Help option in the Command window and presses the ENTER key), this
option displays a Help message explaining how to use the Help function
key.

15.2.7 This command option enables the user to go back one step in the
current selection sequence. If a NaturalLink command is under construc-
tion, Back Up erases the previously selected item or expert from the cur-
rent command sentence. When the user invokes Back Up while reviewing
a series of Help messages, the last Help message displayed is removed
from the screen and the previous Help message is displayed. The default
function key for Back Up is F8.

15.2.8 This command option erases all selections for the current com-
mand sentence and enables the user to restart the NaturalLink command-
building sequence. The default function key for Start Over is F9.

15.2.9 This command option ends the NaturalLink command-building
session and causes the program to exit the Sessioner. If the user invokes
Quit before the command sentence under construction is executed, a null
value is returned to the application program. The default function key for
Quit is the ESC key.

The default function keys for Back Up, Start Over, and Quit do not work
with user-defined experts unless you design them into the NLXEXP
routine. Refer to paragraph 15.4, User-Defined Expert Routines.

NaturalLink Toolkit

The NaturalLink Sessioner 15-9

User-Defined 15.2.10 You can define your own command and function keys. Using
Command/Function the NLXFUN routine, you can add item-selectable and function key-
Keys selectable options that are handled like the nine NaturalLink-supported
command options. You can use ALT-key combinations to define function

keys.

To define your own command option or function key, you first create an
NLXFUN routine (see paragraph 15.4.4, User-Defined Function Key
Handler). The Sessioner calls this routine when the user selects the item or
presses the function key. (Unlike the NaturalLink-supported command and
function key options, the function key for a user-defined function cannot
be disabled through KBUILD.) After the routine has run, NLXFUN returns
to the Sessioner.

A function key code must be associated with the defined command/func-
tion even if the key will not be used. Any extended hexadecimal key code
will do (103H to 18FH) except those used by the Window Manager or the
Sessioner. To make the user-defined command option item-selectable,
include it as an item in the Command window and specify the associated
hexadecimal key code as the item label text for that item. When the item is
selected, the hexadecimal key code is sent to NLXFUN for processing.

Invoking the 15.2.11 NaturalLink commands can be invoked by item selection, func-
Commands tion key selection, or both. (The command Customize may be invoked in
additional ways; see Chapter 16, Interface Customization Feature, for
details.) In the NLmenu screen, the user executes an item-selectable com-
mand by placing the cursor on the command and pressing the ENTER key.
To execute a function key-selectable item, the user simply presses the des-
ignated function key at the appropriate time. The default for the Sessioner
is both item selection and function key selection (that is, the Sessioner
accepts both command selection methods, unless you specify otherwise
when you are building the interface).

If you do not want a particular command to be item selectable, it is
recommended that you leave that command out of the NLmenu screen; do
this by not including it as an item when you build the Command window
or by setting the Unselectable Item attribute for that item to Yes when you
build the window. (Remember, the Execute command must be specified
and must be selectable.)

If you do not want a command to be function key selectable, set the default
function key for that command to zero (0) using KBUILD, the function key
change utility. Include the resulting function key object file in the link
stream for your interface. (Refer to Chapter 10, Window Manager Input
Devices, in the NaturalLink Window Manager Reference Manual for more
information.)

15-10 The NaturalLink Sessioner NaturalLink Toolkit

Identifying
Command
Options to

the Sessioner

15.2.12 A special item label code is required for each command in the
designated Command window. This code is set through the Edit Item Label
option in Screen Builder. It enables the Sessioner to identify the command
selected and to determine what action to perform. Table 15-1 shows each
available command, along with its associated item label and default func-
tion key.

Table 15-1

NaturalLink Commands

Default

Command Function Key Item Label Text
Execute F10 *X

Customize F3 *C

Show F4 *S

Edit F5 *E

Sentences F6 *M

Help F7 *H

Back Up F8 *R

Start Over F9 *0

Quit ESC *Q

User-defined command/ ALT-function key Extended hexadecimal

function keys combinations key codes

NOTE:

The extended hexadecimal key codes for the NaturalLink software are listed in
Appendix C (Computer-Specific Information) in the NaturalLink Window Manager
Reference Manual.

When setting the window format attributes for the Command window in
Screen Builder, do not change the value for the Visible ltem Labels option
from the default value No to Yes. It may seem confusing to leave this value
set to No when you have, in fact, designated item labels of *X, *Q, *H, and
so forth, for the commands in the Command window. However, the value
No for the Visible Item Labels option prevents the Sessioner from
displaying the item labels in the NLmenu screen.

Function keys remain operable even if no corresponding item-selectable
command is available in the designated Command window. To disable
function keys, use KBUILD.

NaturalLink Toolkit

The NaturalLink Sessioner 15-11

NaturalLink 15.3 The general call sequence for the NaturalLink Interface is as
Interface Calls follows:

1. The application program calls the NaturalLink Window Manager
initialization routine — WMINIT.

2. The application program loads the interface — NLLOAD.

3. The application program invokes the NaturalLink Sessioner (driver) —
NLDRIV.

4. The application prografn unloads the NaturalLink Interface after a ses-
sion has been completed — NLXUNL.

5. The application program calls the NaturalLink Window Manager
keyboard reset routine — WMRSET.

The specific calls required for the languages supported by the NaturalLink
Toolkit are described in Appendix C, High-Level Language Interface. For
more information on parameter passing, status codes, and memory consid-
erations, see the following appendixes in the NaturallLink Window
Manager Reference Manual: Appendix D, C Interface; E, Pascal Interface;
F, FORTRAN Interface; and G, Compiled BASIC Interface.

The Sessioner returns a status code for all calls described below. These sta-
tus codes indicate whether an error or an abort call caused the Sessioner to
terminate. It is the responsibility of the application program to check all
returned status codes and to take the necessary action based on those
codes. A return code of 0 (zero) indicates normal completion. For informa-
tion about other error codes, refer to Appendix B, NaturalLink Error
Codes, in this manual, and Appendix H, Window Manager Error Codes, in
the NaturalLink Window Manager Reference Manual.

Initialization 15.3.1 When interacting with either the NaturalLink Sessioner or Win-
and Termination dow Manager, you must use the NaturalLink initialization and termination
routines to ensure proper system behavior. To perform the necessary sys-
tem initialization, call WMINIT before invoking any other NaturalLink rou-
tine. This routine sets up key mapping and cursor initialization. If you use
Window Manager and/or the NaturalLink Sessioner, you need to make
these calls only once in a program. When the application has made all calls
to NaturalLink routines, call WMRSET to reset key mapping and cursor
initialization. Refer to the NaturalLink Window Manager Reference
Manual for more information about these routines. An explanation of the
calls and parameters used for a NaturalLink interface follows.

The descriptions of calls in this section are generic. The order of the para-
meters may be different for each language.

15-12 The NaturalLink Sessioner NaturalLink Toolkit

Loading the 15.3.2 Before invoking a NaturalLink interface, the application program
NaturalLink must first preload the interface through the NLLOAD call sequence. This
Interface preloading procedure enables the software to handle the overhead of
loading when the application is initially executed. Up to 10 interfaces can
be loaded at one time (depending on interface size). This feature gives you
the additional capability of splitting a complex application program into
logical sections. The NaturalLink Sessioner assigns the numbers 0 through
9 (1 through 10 for FORTRAN) to the interfaces. Each interface is referred

to by its assigned number until it is unloaded.

CAUTION: While the NaturalLink software accepts up to 10 inter-
faces at a time, the actual number of interfaces you can load
depends on the size of each interface and the amount of data space
available. Fatal errors will occur if you exceed memory limitations.
Consult the Memory Considerations section in the appendix for
your application program language in the NaturalLink Window
Manager Reference Manual.

The NLLOAD call sequence is as follows:

Name: NATURALLINK INTERFACE LOADER

Call Sequence: NLLOADCINTFILE, INTLEN, SAVEFILE, SAVELEN,
INTNUM)>

Description: Loads the specific interface file, if it is not already

loaded. Returns INTNUM (a number 0-9, but 1-10 for
FORTRAN), which is subsequently used to
reference the loaded interface.

Parameters:

INTFILE: Input, a string. The interface file pathname. Must be a
valid MS-DOS pathname. The file is loaded and used to
determine the appearance of the screen, the available
selections, and the translation of those selections while a
command sentence is being built.

INTLEN: Input, an integer. The length of the interface file path-

name.

NaturalLink Toolkit The NaturalLink Sessioner 15-13

SAVEFILE: Input, a string. The saved sentences file pathname. Must
be a valid MS-DOS pathname. This is the actual path-
name; it is used for the storage and retrieval of any sen-
tences saved during the building of a command
sentence.

SAVELEN: Input, an integer. The length of the saved sentences file
pathname.

INTNUM: Output, an integer. The interface number returned by
NLLOAD. Used to access the loaded interface in other
calls.

Argument INTFILE — Interface File Pathname. The interface file path-
name identifies the interface file to be loaded. This string must be a valid
MS-DOS pathname.

Argument SAVEFILE — Saved Sentences File Pathname. The saved sen-
tences file pathname must also be a valid MS-DOS pathname. The file is
used when the user invokes one of the commands for manipulating saved
sentences: Save, Recall, or Delete. The Sessioner performs all saved sen-
tence file maintenance (including creating the file). If you are not using the
Sentences option, pass a null string for the SAVEFILE parameter. The file
should not be modified or created by other programs, and it is not valid for
any interface except the one with which it is created.

Argument INTNUM — Interface Number. The interface number is assigned
by NLLOAD to identify the interface during later NLDRIV (NaturalLink
Sessioner) and NLXUNL (Interface Unload) calls. Up to 10 interfaces can be
loaded at any one time (within memory constraints).

Invoking the 15.3.3 The application program invokes the NaturalLink interface with
NaturalLink the NLDRIV call. This function returns an error status code as the function
Interface value.

The NLDRIV call is as follows:

Name: NATURALLINK DRIVER

Call Sequence: NLDRIVUNTNUM, XLATION, XLATLEN, RESTEXT,
RESLEN)

Description: Controls the building of NaturalLink sentences using the

interface number returned by NLLOAD. Also handles
saved sentence file manipulation.

15-14 The NaturalLink Sessioner NaturalLink Toolkit

Parameters:

INTNUM: Input, an integer. The interface to be used. The number
was assigned by NLLOAD.

XLATION: Output, a string. The buffer used to return the transla-
tion of the constructed sentence. Returned when the
user invokes the Execute command. This buffer should
be large enough to hold the longest possible translation
string that can be generated by the current grammar.

XLATLEN: Input, an integer. The length of the XLATION buffer that
will contain the returned translation string.

RESTEXT: Output, a string. The buffer used to return English text
that appears in the Results window as the command sen-
tence is generated.

RESLEN: Input, an integer. The length of the RESTEXT buffer that
will contain the returned English text.

It is recommended that you place a null in the RESTEXT parameter if you
do not want to save the actual text of the command sentence. This frees
memory space.

Argument INTNUM — Interface Number. The interface number is assigned
by NLLOAD to identify the interface during later NLDRIV (NaturalLink
Sessioner) and NLXUNL (Interface Unload) calls.

Argument XLATION — Translation String. This is the string containing the
Sessioner’s translation of the sentence chosen by the user. The buffer
length parameter XLATLEN should never be less than the length of the
longest possible translation. The string is returned when the user invokes
the Execute command. A null string is returned if the user aborts the
Sessioner.

Argument RESTEXT — Results Window Text String. This string contains
the text that was in the Results window when the Execute command was
invoked. The buffer length parameter RESLEN should never be less than
the longest possible Results window sentence. A null string is returned if
the user aborts the Sessioner.

NaturalLink Toolkit

The NaturalLink Sessioner 15-15

Unloading the 15.3.4 The application can unload an interface with the NLXUNL call,
NaturalLink thereby reclaiming the memory used by the interface. Unloading an inter-
Interface face does not change any other interface number or its order.
The NLXUNL call is as follows:
Name: NATURALLINK INTERFACE UNLOADER

Call Sequence: NLXUNLUNTNUM)

Description: Unloads and releases memory for the interface specified
by INTNUM.
Parameters:
INTNUM. Input, an integer. The number of the interface to be
unloaded. INTNUM was assigned to the interface by
NLLOAD.

Argument INTNUM — Interface Number. The interface number is assigned
by NLLOAD to identify the interface during later NLDRIV (NaturalLink
Sessioner) and NLXUNL (Interface Unload) calls.

User-Defined 15.4 The calling sequences for user-defined experts are explained in

Expert Routines general here, and in language-specific form in Appendix C, High-Level
Language Interface. Chapter 9 (Application Control of User Options)
discusses the purposes of these routines and the process involved in gener-
ating a user-defined expert. The calling routines for user-defined experts
are as follows:

m NLXEXP — Written by the application designer and called by the
NaturalLink Sessioner when a user-defined expert is encountered.

m NLSETR — Called by the NLXEXP routine to pass the expert value and
English results text for the value back to the NaturalLink Sessioner.

m NLXOLD — Called by the NLXEXP routine to retrieve the old value of
the expert for editing purposes. Must be called before an NLSETR call is
made.

15-16 The NaturalLink Sessioner NaturallLink Toolkit

The NLXEXP Call

Status
Returned:

-1 Indicates that an error was encountered in
handling the user-defined expert. When NLXEXP
returns to the NaturalLink Sessioner with a —1 value,
the Sessioner returns to the application program with a
Fatal Error Encountered status code.

0 Indicates success.

1 Has the same effect as the Sessioner Back Up option.
- When NLXEXP returns with a 1 value, the Sessioner
removes the last choice from the command sentence

being built.

2 Has the same effect as the Sessioner Start Over option.
When NLXEXP returns with a 2 value, the Sessioner dis-
cards the command sentence being built and allows the
user to start building a new one.

3 Has the same effect as the Sessioner Quit option. When
NLXEXP returns with a 3 value, the Sessioner returns to
the application with a User Aborted status code.

15.4.1 The NaturalLink User-Defined Expert Handler (NLXEXP) routine
is called by the NaturalLink Sessioner, not by the application program. The
application programmer writes the NLXEXP routine that will be called.
The following paragraphs explain the parameters the application’s
NLXEXP routine will receive and what return values will be expected.
Because the NaturalLink Sessioner calls the NLXEXP routine, the applica-
tion must include a routine of that name in order for the NaturalLink
application to link successfully.

A library containing a dummy NLXEXP routine has been provided to
resolve the external reference from the NaturalLink Sessioner if no
application NLXEXP routine has been explicitly linked in.

Following is the general form of the NLXEXP call made by the NaturalLink
Sessioner; this is the form in which the routine must be defined in the appli-
cation program.

NaturalLink Toolkit

The NaturalLink Sessioner 15-17

Name:
Call Sequence:

Description:

Parameters:

EXPTYP:

NATURALLINK USER-DEFINED EXPERT HANDLER

NLXEXP(EXPTYP)

Called by the NaturalLink Sessioner when the user

selects a user-defined expert item from the NLmenu
screern.

Input, an integer. The code assigned to the user-defined
expert item during the lexicon-building process. This
code should be used by the NLXEXP routine to deter-
mine which expert item was chosen and, therefore, how
to elicit the expert information.

The NLSETR Call 15.4.2 The Set NaturalLink User-Defined Expert Value and Results Text
(NLSETR) call passes back to the Sessioner the application’s expert value
translation and the English text to be placed in the Results window. The
form of the call follows.

Name:

Call Sequence:

Description:

Parameters:

TRANS:

TRLEN:

RESULT:

RESLEN:

SET NATURALLINK USER-DEFINED EXPERT
VALUE AND RESULTS TEXT

NLSETR(TRANS, TRLEN, RESULT, RESLEN)

Transfers the expert text and results text for a
user-defined expert to the NaturalLink Sessioner;
called by NLXEXP before it returns to the
Sessioner.

Input, a string. The translation of the expert to be
substituted into the translation string returned to
the application.

Input, an integer. The length of the translation
string.

Input, a string. The results text of the expert to be
placed in the Results window.

Input, an integer. Length of the results text.

A nonzero value returned from NLSETR indicates that an error was
encountered in transferring one or both of the text strings. A zero value
indicates success. If the first byte of the input English string is null, or if the
length is zero, the translation string is used for both the translation and the
Results window text.

15-18 The NaturalLink Sessioner

NaturalLink Toolkit

The NLXOLD Call

User-Defined
Function Key
Handler

15.4.3 The Set NaturalLink User-Defined Expert Value (NLXOLD) call is
used by the application’'s NLXEXP expert handler to retrieve the expert
text (the TRANS parameter) from the previous NLSETR call. This allows
the application to display the old value of the expert (using the Window
Manager set string call WMSETS). See paragraph 15.2.4., Edit Option. This
call must be made before an NLSETR call, because the old value is
destroyed when the NLSETR call is made.

Name: GET NATURALLINK USER-DEFINED EXPERT VALUE.
Call Sequence: NLXOLD (OLDVAL, OLEN)
Description: Allows user-defined expert handling routines to edit old

values of the expert. OLDVAL's first byte will be set to
zero if this routine is called when the sessioner is not in

Edit mode.
Parameters:
OLDVAL: Output, a string. The buffer to receive the old value of
the expert’s translation text.
OLEN: Input, an integer. The size of the OLDVAL bulffer. If the

length of the translation is greater than OLEN, the trans-
lation text will be truncated and an error returned.

15.4.4 This routine handles function keys not recognized by the
NaturalLink Sessioner or Window Manager. This allows the application to
perform functions while a command sentence is being built. The NLXFUN
routine is accessed two ways:

B The Sessioner calls NLXFUN when the user presses a function key that
is not handled by the Sessioner or Window Manager or when a selected
item in the Command window has a label that is not handled by the
Sessioner.

B The application program calls NLXFUN if the Window Manager routine
WMWRCV (Window Manager receive call) returns a key code that is not
handled by Window Manager.

NaturalLink Toolkit

The NaturalLink Sessioner 15-19

The NLXFUN routine is as follows:
Name: NATURALLINK DEFINED FUNCTION KEY HANDLER

Call Sequence: NLXFUN(KEYCOD)

Description: Called by the NaturalLink Sessioner when the Sessioner
and the Window Manager do not recognize a key code
received.

Parameters:

KEYCOD: Input, an integer. This is the key code of the unrecog-
nized key. It is the extended key code plus 100H. (See
Chapter 10, Window Manager Input Devices, in the
NaturalLink Window Manager Reference Manual.)

Status Same as status code returned for NLXEXP. (Refer to par-
Returned: agraph 15.4., User-Defined Expert Routines.)

A library containing a dummy NLXFUN routine has been provided to
resolve the external reference from the NaturalLink Sessioner if no
application NLXFUN routine has been explicitly linked in.

15-20 The NaturalLink Sessioner NaturalLink Toolkit

INTERFACE CUSTOMIZATION FEATURE

Paragraph Title Page
16,1 Introductioncooeiiiiiiii e 16-3
16.2 Instructions for the USErcccccoiviiiiiiiiiiiiiecreeitcciee e 16-4
16.2.1 Add Synonyms to Visible Windowsccccocoveeveviiiiiieeieciecene 16-5
16.2.2 Add Synonymis to Pop-Up WIindowscccceieenniiiiininiiieiiecieee 16-6
16.2.3 Edit Phrases in Visible Windowscccocoiiiieiiiiiiiiee e, 16-6
16.2.4 Edit Phrases in Pop-Up Windowscccccoeiviiiiiiiiiiieeiec e 16-7
16.2.5 Remove Selected Synonyms or Edited Phrasesc.ccccccoeeine. 16-7
16.2.6 Remove All Synonyms and Edited Phrasesccccccoeeviiinniinnen. 16-8
16.2.7 LOOK at the SCreencccvevvieiiiiieieeices ettt 16-8
16.2.8 QUIL eveeiieie ettt et r e et e s e e taeeareeeteereeeraeeare e 16-8
16.2.9 Other Information for the USerccccccvviiiiiievienie e, 16-9

16.3 Information for Application Programmersccccccovvvieeeireeccneennnnn, 16-9
16.3.1 Windows Used in Interface Customizationcccccoevvevvinvieiennnnne 16-9
16.3.2 Interface Customization Fileccocoeeiiiiiiiiniiiccc e, 16-10
16.3.3 Interface Customization Callc.cooiiiiiiiieiiiiiiececeecc 16-10
16.3.4 Calling NLXEDT Directlyccooovviiiieiiiiiieiecireeeee e 16-11
16.3.5 Letting the Sessioner Invoke the Featureccccccoooeeiiiiinnnn. 16-12

NaturalLink Toolkit

Interface Customization Feature 16-1

Introduction

16.1 The Interface Customization feature enables the user to modify the
interface screen. Users may find the program easier to use if they can
change the language to their own wording.

Users can modify the interface in two ways:
m Edit words or phrases
m Create synonyms of words or phrases

The user can select the Edit Phrases option to change a phrase on the
screen. For example, a user who prefers the term locate to find can change
the “Find” phrase to “Locate.”

The user can select the Add Synonyms option to add another phrase that
will invoke a particular function. For example, if one user likes the term
change but another prefers modify, the first user can create a new item,
“Change,” as a synonym of “Modify.” Thereafter, when the user selects
either “Change” or “Modify,” the same path through the interface will be
taken.

You can set up the Interface Customization feature in several ways,
according to your preference:

B As a Command window option like Saved Sentences (refer to Chapter
15, The NaturalLink Sessioner)

B As a function key (default F3) (again, refer to Chapter 15)

B As a different part of the application, called directly by the application
(refer to paragraph 16.3.4, Calling NLXEDT Directly)

B As a separate utility (refer to paragraph 16.3.4, Calling NLXEDT
Directly)

Because the Add Synonyms option adds another item to the interface
screen and also adds a duplicate entry to the lexicon, the Add Synonyms
option may not be desirable for large interfaces that have memory or
speed problents. You can link in both options, Edit Phrases only, or nei-
ther. The Add Synonyms option cannot be linked in without the Edit
Phrases option.

NaturalLink Toolkit

Interface Customization Feature 16-3

CAUTION: The Dynamic Lexical Items feature and the Synonyms
portion of the Interface Customization feature both modify the posi-
tion of items in the interface screen by adding to and subtracting
from the window item tables. DO NOT allow the user to save sen-
tences from an interface for which either of these features is
provided. Recalling a saved sentence when the interface screen
items are not in the same positions WILL CAUSE A SYSTEM CRASH.
The Edit Phrases portion of the Interface Customization feature
does not modify item positions and can be used in conjunction with
the Saved Sentences feature.

Instructions
for the User

16.2 If you decide to make both Interface Customization options avail-
able, you need to instruct the user on this feature. Figure 16-1 shows the
Interface Customization menu (pop-up window) over an example Natural-
Link menu.

Figure 16-1

Interface Customization Menu

[want to
ACTIONS: fi delete
I vant to
FERTURES: ¢ ONS;
birthdate BY| add sunonyms to visible windows)=
date filled |o| add synonyms to pop-up windows A
date hired of edit phrases in visible windows hetween
date received [t| edit phrases in pop-up windows
hours look at the screen
job date t| quit ES:
length - _ ¢ birthdate)
name T PRESS: F7 for Help ESC to Quit c date filled>
price J ¢ date hired)
pieces done [operations |whose date filled is (specific date
rejects orders whose date hired is received)
ueight pieces whose date received is (specific description)
wage rate workers whose descrip}ion is (specific J?b date?
l \d
EXECUTE(F1Q) CUSTOMIZE (F3) SENTENCES(FE) EDIT(F9)
HELP(F7) BACK UPCFB) START OVER(FS) QUIT(ESC)
16-4 Interface Customization Feature Naturallink Toolkit

Add Synonyms to
Visible Windows

16.2.1 If the user selects the first option, Add Synonyms to Visible
Windows, the cursor is placed on the first item in the first visible win-
dow. The CTRL-HOME, CTRL-PgUp, CTRL-PgDn, CTRL-Left Arrow, and
CTRL-Right Arrow keys move the cursor from window to window. After
the user selects the item for which a synonym is desired, the pop-up win-
dow shown in Figure 16-2 appears, displaying that item.

Figure 16-2

Adding a Synonym to the Phrase

Adding a synonym to the phrase:
(phrase?

PRESS: F7 for Help F10 to Proceed ESC to Quit

Two lines are available for completion in the display. The user starts typ-
ing over the word or phrase displayed and can continue until there is no
more room. The Down Arrow or the ENTER key moves the cursor to the
next line. This allows the addition of a synonym consisting of one or more
words. When the new phrase is committed, it is added to the proper win-
dow, directly below the original phrase.

When all synonyms have been added to visible windows, pressing the
Proceed key or the Quit key causes the cursor to return to the Interface
Customization menu.

Note that users cannot create synonyms for items in the Command
window, in the Results window, or in nonparse windows.

When a phrase is edited or a synonym added, the current value of the
phrase being edited can take up no more than 23 lines in its window. A
phrase longer than 23 lines will be truncated. For example, assume a
phrase of 200 characters was somehow assigned tc a window that is only 5
characters wide (can hold only 5 characters per line). If this long phrase
were edited with the Edit Phrases option, only 115 characters (5 x 23)
would appear in the window. The remaining 85 characters would be
truncated. If you press the Quit key to abort the edit, no truncation will
take place.

NaturalLink Toolkit

Interface Customnization Feature 16-5

Add Synonyms to
Pop-Up Windows

Edit Phrases in
Visible Windows

No synonyms can be created or phrases edited in user-defined windows
that are part of the interface screen, whether or not the windows are parse
windows. User-defined windows will not be displayed by the Interface
Customization feature unless they were already displayed when the
feature was invoked (as they are when the user presses the Customize
function key). The user cannot move into these windows to edit or assign
synonyms to any of the items in them.

16.2.2 This option allows the addition of synonyms to parse windows
designated as pop-ups. If the Add Synonyms to Pop-Up Windows option is
selected, the cursor is displayed on the first item of the first pop-up win-
dow. After the item is selected, a pop-up window displays the item, with
space for typing the desired synonym.

When the user completes the changes desired for that item and commits
the window, the cursor returns to the same pop-up parse window; pressing
the Proceed key brings up the next pop-up window. All pop-up windows
are presented according to their order in the interface screen file. After
they have all been presented, pressing the Proceed key causes the cursor
to return to the Interface Customization menu.

16.2.3 This option allows editing of items in parse windows, the Com-
mand window, the Results window, and any other windows that appear in
the interface screen. If this option is selected, the cursor is placed in the
first visible window; when the word or phrase to be changed is selected,
the pop-up window shown in Figure 16-3 appears.

Figure 16-3

Editing the Phrase Pop-Up Window

Editing the phrase:
{phrase?

PRESS: F?7 for Help F10 to Proceed ESC to Quit

This window displays the phrase to be edited, with the cursor on the first
letter. The user changes the word or phrase as desired; after the window
is committed, the new phrase replaces the old one. The CTRL-HOME,
CTRL-PgUp, CTRL-PgDn, CTRL-Left Arrow, and CTRL-Right Arrow keys
move the cursor from one visible window to another.

16-6 Interface Customization Feature NaturalLink Toolkit

Edit Phrases in
Pop-Up Windows

Remove Selected

Synonyms or

Edited Phrases

16.2.4 With this option the user can edit words or phrases in the win-
dows designated as pop-ups and edit the Results window label, if the label
is being used as a flag that a sentence is executable (see Chapter 5, Using
Screen Builder to Create an NLmenu). To enable editing of the Results
window label, the Interface Customization feature treats it as a pop-up
window. If the Edit Phrases in Pop-Up Windows option is selected, the
cursor is placed first on the Results window label, if there is one. When the
user selects the phrase to be modified, a pop-up window shows the phrase,
with space for changes. After the desired changes are completed and the
window committed, the Results window label disappears and each pop-up
window is presented for editing in the order you designated in the screen
file. If the user does not want to change the Results window label, pressing
the Proceed key causes the first pop-up window to appear.

16.2.5 This option is not available until at least one synonym is added or
one word or phrase is edited; it is then added to the Interface Customiza-
tion menu (Figure 16-4).

Figure 16-4

Expanded Interface Customization Menu

[want to
ACTIONS: fi delete
[want to

FEATURES: ¢ ONS:
hirthdate B add synonums to vizible windous)=
date filled |o| add synonyms to pop-up windous Az
date hired ol edit phrases in visible windous hetueen
date received |t| edit phrases in pop-up windows
hours remove selected synonyms or edited phrases
job date t| remove all synonyms and edited phrases ES:
length | look at the screen ¢ birthdate)
name T{ quit c date filled
price J , ¢ date hired>
pieces done |o| PRESS: F7 for Help ESC to Quit ¢ date
rejects 0 ed?
weight pieces uhose date received is (specific description’
wage raEe workers whose descrip}ion is (specific job date’

|

EXECUTE(F10) CUSTOMIZE(F3) SENTENCES(FB) EDIT(F)
HELP(F?7) BACK UP(FE) START OVER(FS) QUIT(ESC)

NaturalLink Toolkit

Interface Customization Feature 16-7

Remove All
Synonyms
and Edited Phrases

When the user selects the Remove Selected Synonyms or Edited Phrases
option, all visible windows containing synonyms and edited phrases are
displayed with all new items visible. To select the synonym or edited
phrases to be removed, the user places the cursor on each one and presses
ENTER. The CTRL-HOME, CTRL-PgUp, CTRL-PgDn, CTRL-Left Arrow,
and CTRL-Right Arrow keys allow movement between visible windows.
To access pop-up windows with newly created synonyms or edited
phrases, the user presses the Proceed key. The Proceed key is also used to
move between successive pop-up windows.

16.2.6 This option is not available until at least one synonym is added or
one word or phrase is edited. When the option is selected, the pop-up win-
dow shown in Figure 16-5 appears, and the user must select Yes or No.

Figure 16-5

Look at the Screen

Quit

Remove All Synonyms and Edited Phrases Pop-Up Window

Remove all synonyms and edited phrases?

1o

16.2.7 The user can view the entire screen at once by selecting this
option. This may be desirable after the user has edited phrases or added
synonyms. First all visible windows are shown, including the Results win-
dow label (which is treated as a pop-up only for editing phrases). Pressing
the Proceed key causes each pop-up window to be displayed in succession.
To return to the Interface Customization menu after viewing all windows,
the user presses the Proceed key again.

16.2.8 The user can select this option at any time to leave the Interface
Customization feature. When the option is selected, the pop-up window
shown in Figure 16-6 appears. Making a selection from this window
terminates the Interface Customization feature.

16-8 Interface Customization Feature NaturalLink Toolkit

Figure 16-6

Other Information
for the User

Quit Option Pop-Up Window

Do you want to save your changes?

1o

16.2.9 FolloWing is additional information for the user.

B Synonyms can be added only to items in the lexicon that are not expert
items.

B Both uppercase and lowercase can be used for adding synonyms or
editing words or phrases.

B Synonyms can be added to the newly created synonyms as well as to
those already in the application program.

B When newly created synonyms or edited phrases are added to a win-
dow that has an alphabetical list, they may cause the list to be out of
order.

Information for
Application
Programmers

Windows Used
in Interface
Customization

16.3 Following is additional information for application programmers.

16.3.1 You can modify the text shown in all the Interface Customization
windows either by using the Phrase Builder utility (PBUILD) or by editing
the global phrase file (WMSTRDEF). See Chapter 9 of the NaturalLink
Window Manager Reference Manual, Internal Phrase Editing, for further
information.

NaturalLink Toolkit

Interface Customization Feature 16-9

Interface 16.3.2 As modifications to the interface are made, the Sessioner builds a
Customization File data structure that keeps track of the changes. When the user completes
the modifications, quits the Interface Customization option, and specifies
that the changes be saved, the interface file is updated with the

modifications, and an Interface Customization file is written to the disk.

This Interface Customization file is linked to the interface file by name
(< INTFILE> .NE$) and must not be deleted if the interface is ever to be
restored to its original state. The Sessioner sets the Read-Only attribute for
the Interface Customization file to discourage the user from deleting the
file.

Interface 16.3.3 The call for invoking the Interface Customization feature from an
Customization Call application is NLXEDT. All windows should be deleted before this call is
made unless they are part of the interface screen. The NLXEDT call does
the following:
1. Loads the interface (if it has not already been loaded)

2. Adds the interface screen windows (if they have not already been
added)

3. Allows the user to make any modifications wished

4. Saves to disk Interface and Interface Customization files (if the user
wishes)

5. Deletes interface screen windows (if they were added by NLXEDT)
6. Returns to the application
The interface is not unloaded by the NLXEDT call. A separate NLXUNL

call must be made when the application wishes to unload the interface
from memory.

16-10 Interface Customization Feature NaturalLink Toolkit

Calling NLXEDT
Directly

The syntax of the NLXEDT call is:
STATUS = NLXEDT(int_file_name, int_number, output_file_name)

int_file_name Input; a character string; the name of the inter-
face file to be modified; if null, it is assumed that
the interface has already been loaded and
int_number specifies the interface to modify.

int_number Input/output; the address of an integer; the
number of the interface loaded in memory; if the
interface is loaded by the NLXEDT call, NLXEDT
will set this parameter; otherwise, it is used as
input to determine which interface to modify.

output_file_name Input; a character string; the name of the file to
save the modified interface to; this filename is
also used to create the Interface Customization
filename (< output_file_name > NES$).

If you implement the Interface Customization feature as a Command
window option or as a function key in the sentence-building process, the
Sessioner will make the call to the appropriate procedure when the user
invokes the feature; the application does not need to make any additional
program calls.

16.3.4 When NLXEDT is called directly from an application, the applica-
tion controls the point at which the interface information is unloaded from
memory. A user may choose to customize the interface and make changes
to it, and then abort the changes rather than save them to disk. In this case,
NLXEDT returns to the application without saving the changes on disk but
leaves in memory the modifications made to the interface information.

An error code of 99 is returned from the NLXEDT call if the user makes
changes to the interface but chooses to abort rather than save the changes
to disk. The application program must check for this code. If you have indi-
cated that you want a clean copy in memory, the application should now
make the NLXUNL and NLLOAD calls required to restore to its previous
state the interface information in memory. However, since it is best for the
Interface Customization feature to be invoked in a separate utility, the
application does not need a clean copy of the interface in memory; the
usual NLXUNL call before leaving the program is the only call that needs
to be made.

NaturalLink Toolkit

Interface Customization Feature 16-11

Letting the 16.3.5 The Interface Customization feature should never be invoked
Sessioner Invoke from the interface screen through a user-defined function key. This feature
the Feature can be used only if no sentence is being built by the user; however, the
application’s user-defined function key routine has no way of knowing
whether or not a sentence is being built when the user presses the function
key. Because the Sessioner can control the availability of the Interface
Customization feature based on the state of the sentence, have the Ses-
sioner invoke the feature if you want to include it on the interface screen.
Having the Sessioner invoke the feature, rather than calling NLXEDT
directly, lessens overhead (in memory, for instance) and, because the Ses-

sioner can control the feature’s availability, avoids many problems.

When the Interface Customization feature is included as a function of the
Sessioner (the Customize function key is not disabled and/or the
Customize option is included in the Command window of the interface),
the Sessioner handles reloading the interface information to restore the
interface to its previous state. The interface retains its interface number to
avoid confusion for the application.

The Customize option will not be available when the user is in the process
of building a sentence.

16-12 Interface Customnization Feature NaturalLink Toolkit

FINAL STEPS IN PREPARING
THE NATURALLINK INTERFACE

Paragraph Title Page
17.1 Packaging the NaturalLink Interface.........c.ccccccoivniiiniieiiniiee 17-3
17.2 Backing Up FilesS.....coooiiieeee et 17-4

NaturalLink Toolkit Final Steps in Preparing The NaturalLink Interface 17-1

Packaging the
NaturalLink
Interface

17.1 At this point, an application program linked with the NaturalLink
software and Window Manager should be running with an interface you
built with the NaturalLink Toolkit. These files must be put on the user’s dis-
tribution disk:

W The application EXE program file

B Data or configuration files the application may require

W Screens the application uses through the Window Manager

B Help files associated with the screens used by the application program
® One or more interface files built by the Interface Builder utility

B Message files the application uses through the Window Manager

® The LIERRMSG.NMS$ error definition file or equivalent (if used)

The user’s distribution disk cannot be write-protected if the user will use
that disk for execution and if any of the following conditions are met:

B You implement the Saved Sentences option.
B You implement the Interface Customization option.

B You implement the Dynamic Lexical Items option and choose to save
the interface file to disk.

NaturalLink Toolkit

Final Steps in Preparing The NaturalLink Interface 17-3

Backing Up
Files

17.2 After you have built the interface file, linked the application, and
completed the distribution disk, you may want to delete files on the
Winchester drive that were used during interface development. Before
deleting any of those files, back up the grammar, lexicon, expert, screen
description, help, and message files used in creating the interface file. Save
any other screens, message files, or code you used in creating the
application for possible later use. An application often needs modification;
also, if you want to create an interface for another application functionally
similar to the one you have just worked on, modifying the existing inter-
face is much quicker than starting from scratch.

Make backup copies of the following:

B Grammar file.

B Screen definition (NLmenu screen).

B Lexicon and expert files. These files were created interactively with the
Interface Builder. The name assigned to the lexicon file is

< INTFILE> NL$. Expert information is stored in < INTFILE> .NP$.

® Interface file. While this file is easily recreated from the previous four
files, it may be useful to retain a copy of it.

B Help file for the NLmenu screen.

@ Any other screens and help files used with the application.

17-4 Final Steps in Preparing the NaturalLink Interface NaturalLink Toolkit

EQUIPMENT REQUIREMENTS

Paragraph Title Page
Al INtrOdUCHON .ottt s e A-3
A.2 Equipment Necessary for Interface Development ... A-3
A.3 Equipment Necessary for User Operationc.ccocceveevienenveninniencnnens A-4

NaturalLink Toolkit Equipment Requirements A-1

Introduction

A.1 The equipment requirements for using NaturalLink Toolkit differ,
depending on whether an interface application is being developed or
merely run.

Equipment
Necessary
for Interface
Development

A.2 To use the NaturalLink Toolkit utilities for interface development,
you need the following equipment:

B Texas Instruments Professional Computer (TIPC), Texas Instruments
Portable Professional Computer (TIPPC), Texas Instruments
BUSINESS-PRO™, IBM® PC, IBM PC/XT™, or IBM Personal Computer
AT™ with at least two disk drives, one of which is a Winchester

B A minimum of 512K bytes RAM (where K equals 1024)

B MS-DOS (up to and including Version 3.xx)

B The MS-DOS link editor or a compatible link editor

@ One of the following high-level languages:

m Lattice C Compiler (up to and including Version 2.14)

s MS-FORTRAN (up to and including Microsoft Version 3.2 or a version
compatible with the machine you are using)

m MS-Pascal (up to and including Microsoft Version 3.2 or a version
compatible with the machine you are using)

m MS-BASIC Compiler (TI Version 1.0 or a version compatible with the
machine you are using)

BUSINESS-PRO is a trademark of Texas Instruments Incorporated.

IBM is a registered trademark and IBM PC/XT and IBM Personal Computer AT are trademarks of Inter-
national Business Machines Corporation.

NaturalLink Toolkit

Equipment Requirements A-3

Equipment
Necessary for
User Operation

A.3 The user, who will be executing the NaturalLink application, will
need the following equipment:

m TIPC, TIPPC, TI BUSINESS-PRO, Texas Instruments PRO-LITE™
Professional Computer, IBM PC, IBM PC/XT, or IBM Personal Computer
AT.

® MS-DOS (up to and including Version 3.xx).

B A minimum of 128K bytes of RAM. Add the memory requirements of
the application itself to determine how much RAM is required for the
user’s machine. Whether the user’s machine needs a Winchester drive
depends on the application software, not the presence of NaturalLink
software.

PRO-LITE is a trademark of Texas [nstruments Incorporated.

A-4 Equipment Requirements

NaturalLink Toolkit

NATURALLINK ERROR CODES

Paragraph Title Page

2 70 N 0315 0 Yo L1 Ut 0 7o) o RERURRURURO TR O OO TSRO B-3

B.2 Grammar TeSES.......coouvreeeeeiii ittt e et e e et s s s s ibasteeeeeseesessnnnnneaeas B-3

B.2.1 Grammar Tests Error Messages.ccocvveveeriiiieecieeneicreeieeeree e B-3

B.3 Translation TeStS. ..ottt ettt st ee e e s re e aeereeeeeeeesns B-7

B.3.1 Translation Test Exrror Messagescccceviiiviieniiiiinicnniie e B-7

B.4 NaturalLink Run-Time SOftWare..........ueeeuuemeueeeeeeee e B-9

NaturalLink Toolkit Error Codes B-1

Introduction B.1 This appendix contains three lists of error messages provided by the
NaturalLink software.

@ Those reported in the grammar tests
W Those reported in the Translation Test
W Those reported by the NaturalLink run-time software

The error-reporting software uses the same template logic as that used in
building translations.

Grammar Tests B.2 The grammar tests return the following errors. The template slots
are filled as follows:
@1 — Always replaced with a character
@2 — Always replaced with an integer representing a rule number
@3 — Always replaced with a column number
@4 — Always replaced with a location string

@5 — Always replaced with the first element in the grammar rule

Grammar Tests B.2.1 The messages reported in the grammar tests are as follows.
Error Messages

FO0001 -- Rule #a2 (begins with the string @5) in the grammar
file has noterminating symbol.

User Action: Examine the rule specified, and add the missing “!”.

F0002 -- Rule #32 (begins with the string a5) in the grammar
file has nobeginning symbol.

User Action: Examine the rule specified, and add the missing “a".

FO0003 -- Rule #a2 (begins with the string @5) in the grammar
file has notranslation list.

User Action: Examine the rule specified, and add the missing translation
list.

NaturalLink Toolkit Error Codes B-3

FO0004 -- Rule #@2 (begins with the string &85) in the grammar
file has too many elements.

User Action: A rule must have fewer than 11 rule elements. Examine the
rule specified, and rewrite the rule as two or more rules.

FO005 -- Rule #32 (begins with the string @5) in the grammar
file has too few elements. Each grammar rule must refer to a
mother and a left side element.

User Action: Examine the rule specified. This rule has no right side, which
is an illegal construct in a context-free grammar. Review the grammar-
writing tutorial, and correct the rule syntax.

FO006 -~ Rule #32 (begins with the string @5) in the grammar
file has unbalanced abbreviatory symbols in location @4 in
position a3.

User Action: Examine the rule specified for unbalanced abbreviatory
symbols and proper nesting order. Review the discussion on abbreviatory
symbols, and correct the rule.

FO007 -- Rule #@2 (begins with the string @5) in the grammar
file has abad character @1 in location @4 in position 3.

User Action: Rule specified has an illegal character. Review the grammar
rule format, and correct the rule.

FO008 -- Rule #a2 (begins with the string a@5) inthegrammar
file has a complex left corner.

User Action: The rule specified has an abbreviatory symbol as the first
element of the right side. Review the grammar rule syntax, and correct the
rule.

F0009 -- Rule #a2 (begins with the string @5) in the grammar
file has parentheses immediately inside braces in position a3.

User Action: The rule specified has a construct that results in a
meaningless rule expansion. Review the discussion on abbreviatory
elements, and correct the rule syntax.

B-4 Error Codes

NaturalLink Toolkit

FO010 -- Rule #d2 (begins with the string a@5) in the grammar
file has an invalid translation list number in position a3.

User Action: The rule specified has a translation list that contains an inte-
ger greater than the number of elements in the rule or has a sequence of
integers that does not reflect a possible rule expansion. Review the discus-
sion of translation list syntax, and correct the rule.

FO0011 -- Rule #a2 (begins with the string a5) in the grammar
file has no semantic substitution list in its translation
information.

User Action: The translation list of the rule specified does not contain the
required two sequences of integers. Review the discussion of translation
list syntax, and correct the rule.

F0012 -- Rule #@2 (begins with the string @5) the grammar
file has too many levels of nesting at position a3.

User Action: The rule specified contains more open abbreviatory symbols
“", “I”y or “{” than the allowed number of rule elements per rule. The
current limit is 10. To have a meaningful rule expansion, at least one rule
element must be present for each open abbreviatory symbol. Therefore,

more than 10 unclosed abbreviations are not allowed. Correct the rule.

F0013 —- Rule #a2 (begins with the string a5) in the grammar
file has braces immediately inside braces in position 23.

User Action: The rule specified has a wasteful construct. Simplify the rule
as discussed in the grammar syntax section.

FO014 -- Rule #a2 (begins with the string @5) in the grammar
file has a missing @4 in position a3.

User Action: The rule specified has failed the syntax check because part of
the rule, such as the translation list, is missing. Review the grammar
syntax, and correct the rule.

FO0015 -- Rule #a2 (begins with the string @5) in the grammar
file has only optional elements inside abbreviatory symbols
in position @3.

User Action: The rule specified has a meaningless rule expansion. Review
the abbreviatory symbol discussion, and correct the rule.

NaturalLink Toolkit

Error Codes B-5

F0016 —- Rule #a2 (begins with the string a5) in the grammar
file has a missing translation list delimiter (;).

User Action: The rule specified has failed the syntax check because of the

missing “;”. Review the grammar syntax discussion, and correct the rule.

F0017 -- Rule #a2 (begins with the string @5) in the grammar
file has parentheses inside the syntactic path Llist in its
translation information.

User Action: The first sequence of integers in the translation list of the rule
specified contains nested parentheses. Nesting is not allowed in this
sequence. Review the discussion of translation list syntax, and correct the
rule.

F0021 -- Rule #a2 (begins with the string a@5) in the grammar
file is missing the first open parenthesis in its translation
information.

User Action: The translation list for the rule specified is missing the first
parenthesis. Review the translation list syntax, and correct the rule.

F0022 -- Rule #a2 (begins with the string a5) in the grammar
file is missing a closing parenthesis in its translation
information.

User Action: The translation list for the rule specified is missing the last
parenthesis. Review the translation list syntax, and correct the rule.

F0023 -- Rule #@2 (begins with the string a5) in the grammar
file has translation list numbers in the syntactic path Llist
that are not in ascending order.

User Action: The first sequence of integers for a rule expansion is
incorrectly entered in the translation list for the rule specified. This first
sequence specifies the path taken through the rule and, therefore, must be
in ascending order. Review the translation list discussion, and correct the
rule.

B-6 Error Codes

NaturalLink Toolkit

F0026 -- Rule #a2 (begins with the string @5) in the grammar
file has a bad semantic substitution list. One of the numbers
in the list either doesn't exist in the syntactic path Llist
or is duplicated in the semantic substitution list.

User Action: The second sequence of integers for a rule expansion is incor-
rectly entered in the translation list for the rule specified. This second
sequence must be in agreement with the first set of integers; no integer can
appear that does not appear in the first set. Review the translation list dis-
cussion, and correct the rule.

Translation Test

Translation Test
Error Messages

B.3 The Translation Test returns the following errors. Strings are
inserted in the template as follows:

@1 — Always replaced with input translation

@2 — Always replaced with generated translation

B.3.1 The messages reported in the Translation Test are as follows.

T0001 -- The input sentence was not executable; no
translation generated.

User Action: The Translation Test completed parsing the sentence and
determined it was not executable. Reexamine the grammar to ensure that
the statement is complete, and correct the sentence.

T0002 -- Test could not assign grammatical category, skipping
to next sentence.

User Action: The Translation Test encountered a category during sentence
parsing that was not in the set of categories the Parser expected next.
Reexamine the sentence to ensure that it conforms to the grammar, and
correct the sentence.

T0003 -- Test found completed sentence before end of
complete sentence.

User Action: During the parse of the input sentence, the Translation Test
found a complete, noncontinuable sentence before the whole input
sentence was processed. Reexamine the sentence to ensure that it
conforms to the grammar, and correct the sentence.

NaturalLink Toolkit

Error Codes B-7

T0004 -- Input translation of @1 not same as generated
translation: aZ2.

User Action: The translation expected by the user is not the same as the
one generated by the Translation Test. Check the input translation and
grammar and lexicon translation information. Make corrections as
needed.

NaturalLink
Run-Time
Software

Run-Time
Error Codes

B.4 Errors encountered in the NaturalLink run-time software are
returned to the calling application program. Refer to Appendix H, Window
Manager Error Codes, Window Manager Reference Manual, for error
codes returned from the Window Manager. The following codes are
returned. Some of these codes are simply informative; these are identified
as FYI (For Your Information). Others are nonrecoverable errors; these are
identified as FATAL.

B.4.1 The run-time error codes are as follows.

26—Unrecognized function (FATAL)

The NaturalLink Parser received an unrecognized request code. The
executable module has been irreparably damaged. Recopy your
executable module from the distribution disk and reexecute the
program.

27—Bad translation node (FATAL)

The NaturalLink Translator encountered an error while construct-
ing translations. The interface file has been irreparably damaged.
Have your software analyst generate a new interface file for this
application.

28—Bad data in interface file

The interface file @1 has been damaged. Make a new copy of it, or, if
this was your only copy, regenerate the interface file. If the problem
persists, check the status of your disk to be sure that it has not been
damaged.

30—Not an interface file

The file @1 is not an interface file. The file may have been damaged,
the wrong pathname may have been specified, or a different type of
file may have been copied over the interface file desired.

B-8 Error Codes

NaturalLink Toolkit

62—User aborted (FYI)

The user aborted the NaturalLink Sessioner using the ABORT key, a
user-defined expert, or a user-defined function key.

63—Sessioner error (FATAL)

The NaturalLink Sessioner has encountered an error. Check for dam-
age to your program and try again. \

64—Create sa.ved sentences file error (FATAL)

The NaturalLink Sessioner was unable to create the saved sentences
file. Check your disk for directory and disk space and for damage.

65—Damaged saved sentences file

The saved sentences file has been damaged. Possibly a file of a
different type was copied over the saved sentences file. If you have
another copy of this file, replace it. Otherwise, delete the file and
resave any sentences that were in the file.

66—Topic directory full (FYI)

The saved sentences file is full. Only 100 questions can be saved in
one saved sentences file.

70—Saved sentences read error

An error was encountered in trying to read the saved sentences file.
The file has probably been damaged. Get a new copy of it if you can;
otherwise, delete the file and resave your queries.

71—Not a saved sentences file

The file designated as a saved sentences file is invalid. There are two
possible causes: 1) the wrong file pathname was specified 2) the file
was associated with a different interface, and 3) a file of a different
type was copied over the saved sentences file desired.

72—Invalid variable text separator error

An invalid variable text separator was received by the DISMSG call.
Valid ASCII values for variable separators are 0 through 127.

NaturalLink Toolkit

Error Codes B-9

73—Interface loader full (FYI)

Ten interfaces have already been loaded. To load another interface,
unload a current interface using the interface unload routine.

74—Invalid interface number

An invalid interface number was given to either the Sessioner (driver)
or the interface unloader. Make sure that the number specified for the
routine is valid.

75—Interface file not found

The interface loader cannot find a file designated as the interface file.
Check the file pathname for the interface file.

—T76—Interface file already loaded (FYI)

The interface file given to the interface loader has already been
loaded into memory.

77—Invalid string pointer passed

A string pointer passed into this routine points to an invalid or other-
wise inappropriate string. Check the string type and length.

78—NLXFUN error

An error code was returned from the user-defined function key
routine. Handle this error as appropriate for your routine.

79—NLXEXP error

An error code was returned from the user-defined expert routine.
Handle this error as appropriate for your routine.

80—Invalid saved DTS information file error

The saved Dynamic Lexical Items Information file associated with
this interface is not a valid saved information file. Another file may
have been copied over this file, or the file may have been damaged.
Check the file, and try again.

B-10 Error Codes NaturalLink Toolkit

81—Invalid version number error

The version number in the Dynamic Lexical Items Information file
specified to NLXCRE is invalid. Check the manual for the correct
version number, and correct the file.

82—Invalid command marker error

The Dynamic Lexical Items Information file specified has an invalid
command marker. Check the manual, and correct the file.

83—Missing window label error

The Dynamic Lexical Items Information file is missing a window
label. Check the manual, and correct the file.

84—Missing item error

The Dynamic Lexical Items Information file is missing an item. Check
the manual, and correct the file.

85—Invalid command line error

The Dynamic Lexical Items Information file has an invalid command
line. Check the manual, and correct the file.

86—Invalid number of entries line error

The Dynamic Lexical Items Information file has an invalid number of
entries line. Check the manual, and correct the file.

87—Invalid array pointer error

One of the information array pointers passed to NLXSND is invalid.
Check the manual, and correct the error.

88—Invalid number of entries error

The number of dynamic lexical entries to create that was specified
either to NLXSND or in the Dynamic Lexical Items Information file is
invalid. Check the manual for the correct syntax, and correct the call
or the file.

NaturalLink Toolkit

Error Codes B-11

89—Save without output file error

The Save or Unload option was specified to NLXCRE when an output
file was not specified. Correct the error, and retry the operation.

90—No information specified error

A call was made to NLXCRE with no information about what to do.
Either a call must tell NLXSND what entries to create or remove, or
an information file must be specified to NLXCRE.

91—Invalid option error

An invalid option was specified to NLXSND or NLXCRE. Check the
manual, and correct the error.

—92—Invalid window label warning

NLXCRE was unable to create an entry because of an invalid window
label. All other entries were created as specified. Check the Dynamic
Lexical Items information specified, and correct the error.

-93—Invalid DTS code warning

NLXCRE was unable to create an entry because of an invalid DTS
code. All other entries were created as specified. Check the Dynamic
Lexical Items information specified, and correct the error.

94—Cannot create error

Information was specified for dynamic lexical items to be created, but
the Restore or Delete option was specified. Lexical items can be
created only when the Add or Replace option is specified.

95—Line too long error

A line over 80 characters long was encountered in the Dynamic
Lexical Iltems Information file. The maximum line length for this file is
80 characters. Correct the error, and try again.

B-12 Error Codes

NaturalLink Toolkit

96—Error on file attribute error

An error was encountered in trying to set or clear the Read-Only
attribute on either the Saved Dynamic Lexical Items Information file
or the Saved Editing Phrases Information file. Check for problems
with your disk.

97—Conflicting options error

Conflicting options were specified to NLXSND or in the Dynamic
Lexical Items Information file for the same dynamic terminal symbol
(DTS) code. Check the manual, and correct the error.

-98—Restore with no modifications warning

The RESTORE option was specified to NLXCRE when no Dynamic
Lexical Iltems modifications file was found for this interface. Either no
modifications have been made to this interface or the modifications
file (with the .ND$ extension) was not copied into the same directory
as the interface file. The RESTORE option has been ignored.

99—User aborted edit error

The user quit the Interface Customization session and chose not to
save the changes that were made to the interface. To remove the
changes from the copy of the interface in memory, unload the inter-
face from memory and reload it. The interface file on disk has not
been modified.

100—No editable windows error

None of the windows in this interface can be edited. See Chapter 16,
Interface Customization Feature, for a discussion of this feature.

~101—Memory flushed warning

The WMFLSH call erased NaturalLink’s memory. All screens and
interfaces have been unloaded from memory. You must reload any-
thing you need to use.

NaturalLink Toolkit Error Codes B-13

102—Invalid operation on NLmenu screen

An invalid operation was attempted on the Command window, the
Results window, or a parse window in the NLmenu screen. The oper-
ation was probably an attempt to change a window attribute or the
item table of one of these windows. The operation attempted cannot
be performed on the Command window, the Results window, or any
parse window in the NLmenu screen.

B-14 Error Codes NaturalLink Toolkit

HIGH-LEVEL LANGUAGE INTERFACE

Paragraph Title Page
C.l INtroduCHionc.oooviiieecieiece et et C3
C.2 Calling and Linking With the NaturalLink Software............c.ccccceeenine. C-3
C.3 Callable Routines — Lattice C Interfacecoccoevevvvevveviiveieciiicie e, C4
C3.1 Calling SYNEAX ..ccvveiiriieiiitee e C-4
C.3.2 LinK SErEamM....ci ittt C-6
C.4 Callable Routines — Pascal Interfacecccocooovevieviveeeciciicieeeee, C-7
C4.1 Calling SYNEAX ...ccviiviiiiiieiceeeeee et C-7
C4.2 LinK Streami.....cccuieiiiiiciieeeie ettt C-10
C.5 Callable Routines — FORTRAN Interfacecccccoevveiviviiiiniieie e, C-11
C5.1 Calling SYNEAX ..c.veviiviiriiiireet et C-11
C5.2 LIiNK Str@AM....cviiiieieietcieecte e C-13
C.6 Callable Routines — BASIC Compiler Interface.........cccooovvvvveveccveinnenee.. C-14
C.6.1 Calling SYNEAX ..eveeeieiieeiiieerei ettt ere e C-14
C.6.2 Application Assembly Language Routines—NLXEXP
and NLXFUN ..ottt st C-15
C.6.6 Link Streami......coooo v C-17
NaturalLink Toolkit High-Level Language Interface C-1

Introduction

C.1 This appendix contains information on calling and linking the
NaturalLink software for the Lattice C, MS-FORTRAN, MS-Pascal, and
MS-BASIC compilers. The calling sequences for the following routines are
described.

B Sessioner routines NLLOAD, NLDRIV, NLXUNL, NLSETR, and NLXOLD
(discussed in Chapter 15, The NaturalLink Sessioner)

B Dynamic lexical items routines NLXSND and NLXCRE (discussed in
Chapter 9, Application Control of User Options)

W Interface customization routine NLXEDT (discussed in Chapter 16,
Interface Customization Feature).

Also described are the application expert and key function routines
(NLXEXP and NLXFUN)] called by NaturalLink (discussed in Chapters 9 and
15).

Calling and
Linking
With the
NaturalLink
Software

C.2 An explanation of the characteristics of the NaturalLink High-Level
Language Interface (HLL), including the way strings are passed for each of
the languages supported, can be found in Appendices D, E, F, and G of the
NaturalLink Window Manager Reference Manual.

One particularly important characteristic of the HLL for an application
program using the NaturalLink Sessioner (driver) is the manner in which
memory is assigned to the NaturalLink software. The amount of memory
assigned is determined by a module that is linked with the software and
the application. The default amount of memory is 2K bytes of stack and
32K bytes of heap. This is usually sufficient for an application using the
NaturalLink Window Manager. However, the NaturalLink Sessioner and
Parser may require more than 32K bytes of heap. If a get-memory error is
reported while you are building a query, you should increase the heap
space allocated to the NaturalLink software to a maximum of 55K and try
again.

You can increase or decrease the amount of memory by modifying the
memory allocation module. The name of the file you must modify, as well
as other information about memory, can be found in the NaturalLink
Window Manager Reference Manual. Refer to the Memory Considerations
paragraph in the appendix for your specific language.

NaturalLink Toolkit

High-Level Language Interface C-3

Callable C.3 The following paragraphs describe the specific calling sequence and
Routines — linking information for Lattice C.

Lattice C
Interface

Calling Syntax C.3.1 Following is an example of the call for the NaturalLink Sessioner
from Lattice C:

char *topic = "database.int" ;
char *userqgs = ''saves.svs' ;
char xlation[128] ;

char restext[256] ;

int stat ;

int intnum ;

stat = ntload(topic, 12, userqgs, 9, &intnum) ;

stat = nldriv(intnum, xlation, 128, restext, 256) ;

stat = nlxunlGintnum) ;

It is recommended that you specify a null pointer for the restext
parameter and a length of 0 (zero) if you do not want the actual text of the
command sentence. This will free memory space that would be used to
store this string.

Example:
stat = nldriv(intnum, xlation, 128, null, 0) ;

The NLXEXP routine should be defined as follows:

int nlxexp(exptyp)
int exptyp ;

The NLXEXP support calls should be coded as follows:

int stat;
char xlation[80] ;
char restext[801 ;

stat nlxold(xlation, 80) ;

stat nlsetr(xlation, 80, restext, 80) ;

C-4 High-Level Language Interface NaturalLink Toolkit

The NLXFUN routine should be defined as follows:

int ntxfun(keycod)
int keycod ;

A library containing dummy routines for NLXEXP and NLXFUN has been
provided. If you do not use these routines, the dummy routines resolve the
NaturalLink references to them.

Following is an example of Lattice C calls for the dynamic lexical items

feature:

char *topic = ''database.int';
char *outfil = "newdata.int';
int stat;

int intnum;

char *win_arr(3];
char *item_arr(3];
char *tran_arrl[3];

win_arr{0] = "FIELDS:";
item_arr(0] "employee number';
tran—arr(0] "EMPNUM'';
win_arr[1] = "FIELDS:";
item_arr(1] ""address'';
tran_arr(1] "EMPADD'";
win_arr[2] = "FIELDS:";

item—arrl[2] = '"name";
tran_arr[2] = "EMPNAM";
stat = nlxsnd(14,2,3,win_arr,item_arr,tran—arr);

stat

nlxcre(topic,12,&intnum,NULL,0,0utfil,11,0,0);

Following is an example of the Lattice C call for the Interface
Customization feature:

char *topic = ''database.int" ;
char *outfil = "newdata.int" ;
int stat ;

int intnum ;

stat = nlxedt(topic, 12, &intnum, outfil, 11);

NaturalLink Toolkit High-Level Language Interface C-5 -

Link Stream C.3.2 To link a Lattice C application program with the NaturalLink Ses-
sioner, you must include both the NaturalLink Window Manager and the
NaturalLink Sessioner software. Following is an example of a link control
file for the MS-DOS Linkage Editor. The question mark (?) appearing in the
module names should be replaced with an S (small model), a P (large pro-
gram model), a D (large data model), or an L (large program and data
model), depending on the Lattice C compiler used for the application

software.
LILC?SH + Memory organization module must occur first
C?+ C program entry/exit module
mymain + The C application’s main program
et Any application subroutines used
ot Any NaturalLink called application routines used

Modules for optional NaturalLink features
mymain /M The .EXE file
mymain.MAP The .MAP file

mylib + Any application libraries used

LILC? + Library of High-Level Language Interface
routines to NaturalLink

NL + NaturalLink Sessioner object library

WM+ Window Manager object library

APP??? + Dummy NaturalLink called application routines

LC? C run-time library

If you are using a version of the Lattice C compiler earlier than 2.00, you
must use C.OBJ instead of C?.OBJ and LC.LIB instead of LC?.LIB in your
link stream.

The APP??? library contains dummy routines for all application routines
called by NaturalLink. These include NLXEXP, NLXFUN, APPVAL,
APPRCV, and so on. If you do not use all the features provided by these
routines, the dummy modules in this library will resolve the NaturalLink
references to them. If you have your own versions of these routines, they
must be explicitly linked in following your main program. If you create
libraries for any of your application routines, these libraries must be
included before any NaturalLink libraries in the link stream. Replace the
question marks in the APP??? library as follows:

m LCS for S model Lattice C
m LCD for D model Lattice C

B OTH for P or L model Lattice C

C-6 High-Level Language Interface NaturalLink ToolRkit

If you choose to implement the Saved Sentences feature, you must include
the module NLSAVQRY.OBJ in your link stream.

If you implement the Dynamic Lexical Items feature, include the modules
NLDTLIB.OBJ and NLISLIB.OBJ in the link stream.

If you plan to include the Interface Customization feature, include the
modules NLEDLIB.OBJ, NLSYLIB.OBJ, and NLISLIB.OBJ. If you do not
wish to support Adding Synonyms but only the Editing Phrases function of
the Interface Customization feature, do not include the NLSYLIB.OBJ
module. If you do not wish to support the Interface Customization feature
at all, do not include any of these three modules.

NLISLIB.OBJ is used for both the Dynamic Lexical Items feature and the
Interface Customization feature. You must include this module if you use
either of these features.

The order of this link stream is extremely important. Do not alter the order
of the modules and libraries shown in the example when linking your
application. All modules in this link stream must be included, regardless of
the NaturalLink features implemented. Refer to Appendix D, C Interface,
in the Window Manager Reference Manual, for more information on
linking.

Callable
Routines —
Pascal Interface

C.4 The following paragraphs describe the specific calling sequence and
linking information for MS-Pascal.

Calling Syntax C.4.1 The routine declarations for the NL routines are located in the file
called NLEXTRNS.PAS. You must include them in the application prior to
using calls to the routines.

An example of a call to the NaturalLink Sessioner from Pascal follows.
VAR
infile : PACKED ARRAY [1..12] OF CHAR ;
sqfile : PACKED ARRAY [1..9] OF CHAR ;
xlation : PACKED ARRAY [1..1281 OF CHAR ;
restext : PACKED ARRAY [1..2561 OF CHAR ;
stat : INTEGER ;
intnum : INTEGER ;
infile := 'database.int' ;
sgfile := 'saves.svs' ;
stat := nlload(infilel1], 12, sqgfilel1], 9, intnum) ;
stat := nldriv(intnum, xlationE1], 128, restext[1], 256) ;
stat := nlxunlGintnum) ;
Naturallink Toolkit High-Level Language Interface C-7

It is recommended that you place an array of size 1 in the restext
parameter and a length of 0 (zero) if you do not want the actual text of the
command sentence. This will free memory space that would be used to
store this string.

The NLXEXP routine should be defined as follows:

function nlxexp(exptyp : integer) : integer [publicl;
Calls to the NLXEXP support routines appear as follows:

VAR

xlation : PACKED ARRAY[1..80] OF CHAR
restext : PACKED ARRAY[1..80] OF CHAR
stat: INTEGER ;

.
!

1

stat nlxold(xlation[1]1, 80) ;

stat := nlsetr(xlation[1], 80, restext[1], 80)

The NLXFUN routine should be defined as follows:

function nlxfun(keycod : integer) : integer [publicl;

A library containing dummy routines for NLXEXP and NLXFUN has been
provided. If you do not use these routines, the dummy routines resolve
NaturalLink references to them.

Following is an example of the MS-Pascal call for the Dynamic Lexical
[tems feature:

VAR
infile : PACKED ARRAY [1..121 OF CHAR ;
otfile : PACKED ARRAY [1..11]1 OF CHAR
iffile : PACKED ARRAY [1..2] OF CHAR
stat : integer ;

intnum : integer ;

window : PACKED ARRAY [1..7] OF CHAR
item : PACKED ARRAY [1..15] OF CHAR
tran : PACKED ARRAY [1..6]1 OF CHAR

’
’

14

window := 'FIELDS:' ;

item := 'employee number' ;

tran := 'EMPNUM' ;

stat := nlxsnd(14,2,window(1], 7, item(1], 15, tran(1], 6) ;

C-8 High-Level Language Interface NaturalLink ToolRkit

item := 'address' ;

tran := 'EMPADD' ;

stat := nlxsnd(14,2,windowl1], 7, item(1], 7, tran(1], 6) ;
item := 'name' ;

tran := 'EMPNAM' ;

stat := nlxsnd(14,2,window(1], 7, item(1], 4, tranl1l, 6) ;
infile := 'database.int' ;

otfile := 'newdata.int' ;

stat = nlxcreCinfilel11,12,intnum,iffilel1],0,
otfilel11,11,0,0);

NOTE: The NLXSND call in Pascal differs from the call in C because an
array of character pointers cannot be passed in Pascal. A separate
NLXSND call must be made for each dynamic lexical item to be created.

Following is an example of the MS-Pascal call for the Interface
Customization feature:

VAR

infile : PACKED ARRAY [1..12] OF CHAR ;
otfile : PACKED ARRAY [1..11] OF CHAR ;
stat : INTEGER ;

intnum : INTEGER ;

infile := 'database.int' ;
= 'newdata.int' ;

stat := nlxedt(infilel1l, 12, intnum, otfilel11, 11) ;

NaturalLink Toolkit

High-Level Language Interface C-9

Link Stream C.4.2 To link a Pascal application program with the NaturalLink Ses-
sioner, you must include both the NaturalLink Window Manager and the

NaturalLink Sessioner software. Following is an example of a link control
file for the MS-DOS Linkage Editor.

LIMSPSH + Memory organization module must occur first
mymain + The Pascal application’s main program

et Any application subroutines used

vt Any NaturalLink called application routines used

Modules for optional NaturalLink features
mymain /M The .EXE file
mymain.MAP The .MAP file

mylib + Any application libraries used

LIMSP + Library of High-Level Language Interface
routines to NaturalLink

NL + NaturalLink Sessioner object library

WM + Window Manager object library

APPOTH+ Dummy NaturalLink called application routines

Pascal Pascal run-time library

The APPOTH library contains dummy routines for all application routines
called by NaturalLink. These include NLXEXP, NLXFUN, APPVAL,
APPRCV, and so on. If you do not use all the features provided by these
routines, the dummy modules in this library will resolve the references to
them. If you have your own versions of these routines, they must be
explicitly linked in following your main program. If you create libraries for
any of your application routines, these libraries must be included before
any NaturalLink libraries in the link stream.

If you choose to implement the Saved Sentences feature, you must include
the module NLSAVQRY.OBJ in your link stream.

If you implement the Dynamic Lexical Items feature, include the modules
NLDTLIB.OBJ and NLISLIB.OBJ in the link stream.

If you plan to include the Interface Customization feature, include the
modules NLEDLIB.OBJ, NLSYLIB.OBJ, and NLISLIB.OBJ. If you do not
wish to support Adding Synonyms but only the Editing Phrases function of
the Interface Customization feature, do not include the NLSYLIB.OBJ
module. If you do not wish to support the Interface Customization feature
at all, do not include any of these three modules.

C-10 High-Level Language Interface NaturalLink Toolkit

NLISLIB.OBJ is used for both the Dynamic Lexical Items feature and the
Interface Customization feature. You must include this module if you use
either of these features.

The order of this link stream is extremely important. Do not alter the order
of the modules and libraries shown in the example when linking your
application. All modules in this link stream must be included, regardless of
the NaturalLink features implemented. Refer to Appendix E, Pascal Inter-
face, in the Window Manager Reference Manual for more information on

linking.

Callable C.5 The following paragraphs describe the specific calling sequence and
Routines — linking information for MS-FORTRAN,

FORTRAN

Interface

Calling Syntax C.5.1 The routine declarations for the NL routines are located in the file
called NLEXTRNS.FOR. You must include them in the application program
prior to using calls to the routines.

An example of a call to the NaturalLink Sessioner from FORTRAN follows.

character xlatn(128)
character restxt(256)
integer*?2 stat
integer*2 intnum

stat = nlload('database.int', 12, 'saves.svs', 9, intnum)
stat = nldriv(intnum, xlatn, 128, restxt, 256)
stat = nlxuntCintnum)

It is recommended that you place an array of size 1 in the restext para-
meter and a length of 0 (zero) if you do not want the actual text of the
command sentence. This will free memory space that would be used to
store this string.

The NLXEXP routine should be defined as follows:

integer*2 function nlxexp(exptyp)
integer*2 exptyp

NaturalLink Toolkit High-Level Language Interface C-11

Calls to the NLXEXP support routines appear as follows:

integer*2 stat
character xlatn(80)
character restext(80)

stat nlxold(xlatn, 80)

stat = nlsetr(xlatn, 80, restxt, 80)

The NLXFUN routine should be defined as follows:

integer*2 function nlxfun(keycod)
integer*2 keycod

A library containing dummy routines for NLXEXP and NLXFUN has been
provided. If you do not use these routines, the dummy routines resolve
NaturalLink references to them.

Following is an example of the MS-FORTRAN call for the Dynamic Lexical
Items feature:

character*12 infile
character*12 otfile
characterxt iffile
integer*?2 stat
integer*2 intnum
character*7 window
character*15 item
character*é tran

window = 'FIELDS:'

item = 'employee number'

tran = 'EMPNUM'

stat = nlxsnd(14,2,window, 7, item, 15, tran, 6)
item = 'address'

tran = 'EMPADD’

stat = nlxsnd(14,2,window, 7, item, 7, tran, 6)
item = 'name'

tran = 'EMPNAM'

stat = nlxsnd(14,2,window, 7, item, 4, tran, 6)
infile = 'database.int'

otfile = 'newdata.int'

stat = nlxcre(infile,12,intnum,iffile,0,0tfile,11,0,0)

C-12 High-Level Language Interface NaturalLink Toolkit

Link Stream

NOTE: The NLXSND call in FORTRAN differs from the call in C because
an array of character pointers cannot be passed in FORTRAN. A separate
NLXSND call must be made for each dynamic lexical item to be created.

Following is an example of the MS-FORTRAN call for the Interface
Customization feature:

integer*2 stat
integer*2 intnum

stat = nlxedt('database.int', 12, intnum, 'newdata.int', 11)

C.5.2 To link a FORTRAN application program with the NaturalLink
Sessioner, you must include both the NaturalLink Window Manager and
the NaturalLink Sessioner software. Following is an example of a link con-
trol file for the MS-DOS Linkage Editor.

LIMSFSH + Memory organization module must occur first
mymain+ The FORTRAN application’s main program

et Any application subroutines used

et Any NaturalLink called application routines used

et Modules for optional NaturalLink features
WMCINI FORTRAN subroutine to init WMCOM

mymain /M The .EXE file
mymain.MAP The .MAP file

mylib + Any application libraries used

LIMSF + Library of High-Level Language Interface
routines to NaturalLink

NL + NaturalLink Sessioner object library

WM + Window Manager object library

APPOTH + Dummy NaturalLink called application routines

FORTRAN FORTRAN run-time library

The APPOTH library contains dummy routines for all application routines
called by NaturalLink. These include NLXEXP, NLXFUN, APPVAL,
APPRCV, and so on. If you do not use all the features provided by these
routines, the dummy modules in this library will resolve the references to
them. If you have your own versions of these routines, they must be
explicitly linked in following your main program. If you create libraries for
any of your application routines, these libraries must be included before
any NaturalLink libraries in the link stream.

NaturalLink Toolkit

High-Level Language Interface C-13

If you choose to implement the Saved Sentences feature, you must include
the module NLSAVQRY.OBJ in your link stream.

If you implement the Dynamic Lexical Items feature, include the modules
NLDTLIB.OBJ and NLISLIB.OBJ in the link stream.

If you plan to include the Interface Customization feature, include the
modules NLEDLIB.OBJ, NLSYLIB.OBJ, and NLISLIB.OBJ. If you do not
wish to support Adding Synonyms but only the Editing Phrases function of
the Interface Customization feature, do not include the NLSYLIB.OBJ
module. If you do not wish to support the Interface Customization feature
at all, do not include any of these three modules.

NLISLIB.OBJ is used for both the Dynamic Lexical Items feature and the
Interface Customization feature. You must include this module if you use
either of these features.

The order of this link stream is extremely important. Do not alter the order
of the modules and libraries shown in the example when linking your
application. All modules in this link stream must be included, regardless of
the NaturalLink features implemented. Refer to Appendix F, FORTRAN
Interface, in the Window Manager Reference Manual for more information
on linking.

Callable
Routines —
BASIC Compiler
Interface

Calling Syntax

C.6 The following paragraphs describe the specific calling sequence and
linking information for the MS-BASIC compiler.

C.6.1 The calling sequences for the NaturalLink routines are defined
here.

CAUTION: The BASIC compiler does not require external declara-
tions of routines. You must be very careful that the calls to the
NaturalLink routines are coded correctly, with the proper number
of variables, and that each is in the correct position. BASIC does not
check these factors, as other high-level languages do.

C-14 High-Level Language Interface NaturalLink Toolkit

Application
Assembly Language
Routines—NLXEXP
and NLXFUN

An example of a call to the NaturalLink Sessioner from the MS-BASIC
compiler follows.

DEFINT A-Z
XLATION$=SPACE$(128) ' override DEFINT with explicit "$"
RESTEXT$=SPACE$(256) ' appended to variable

CALL NLLOAD("database.int', ''saves.svs', INTNUM, STAT)
CALL NLDRIV(INTNUM, XLATION$, RESTEXT$, STAT)

CALL NLXUNLCINTNUM, STAT)

It is recommended that you place a length of 0 in the RESTEXT$ parameter
if you do not want the actual text of the command sentence. This will free
memory space that would be used to store this string. To do this, use the
following command:

RESTEXT $=" "

C.6.2 Details of how to write assembly language routines called by
NaturalLink can be found in Appendix G, Compiled BASIC Interface, of the
Window Manager Reference Manual.

Calls to the NLXEXP support routines appear as follows:

DEFINT A-Z
OLDEXP$=SPACE$(256)
XLATION$=SPACE$(256)
RESTEXT$=SPACE$(256)

CALL NLXOLD(OLDEXP$,STAT)

CALL NLSETR(XLATIONS$,RESTEXTS$,STAT)

A library containing dummy routines for NLXEXP and NLXFUN has been
provided. If you do not use these routines, the dummy routines resolve
NaturalLink references to them.

NaturalLink Toolkit

High-Level Language Interface C-15

Following are examples of the MS-BASIC compiler call for the Dynamic
Lexical Items feature.

-- NLXSND call --
DEFINT A-Z
WIND$=""FIELDS:"
ITEM$="employee number"
TRANS="'EMPNUM"
CALL NLXSND(14, 2, WIND$, ITEMS$, TRANS$, STAT)

ITEM$=""address"
TRANS='"'EMPADD"

CALL NLXSND(14, 2, WINDS, ITEM$, TRANS, STAT)

ITEM$=""name"
TRANS=""EMPNAM"

CALL NLXSND(14, 2, WIND$, ITEM$, TRANS, STAT)

-- NLXCRE call --
Information sent; Leave Interface in Memory

DEFINT A-Z
NULLS=" '

CALL NLXCRE(NULLS$, INTNUM, NULLS$, NULLS, O, 0, STAT)

Load Dynamic Lexical Items, Save Interface, and Unload
Interface

DEFINT A-Z

INTFILE$=""database.int"
INFOFIL$=""database.dat"
OUTFILE$=""newfile.int"

CALL NLXCRECINTFILES, INTNUM, INFOFIL$, OUTFILES, 1, O,
STAT)

NOTE: The NLXSND call in BASIC differs from the call in C because an
array of character pointers cannot be passed in BASIC. A separate
NLXSND call must be made for each dynamic lexical item to be created.

C-16 High-Level Language Interface NaturalLink Toolkit

Link Stream

Following is an example of the MS-BASIC compiler call for the Interface
Customization feature.

DEFINT A-Z
INTFILE$=""database.int"
OUTFILE$=""newdata.int"

CALL NLXEDTCINTFILE$, INTNUM, OUTFILES$, STAT)

C.6.3 To link a compiled BASIC application program with the Natural-
Link Sessioner, you must include both the Window Manager and the
Sessioner software. Following is an example of a link control file for the
MS-DOS Linkage Editor.

LIMSBSH + Memory organization module must occur first
mymain + The BASIC application’s main program

ot Any application subroutines used

ot Any NaturalLink called application routines used

Modules for optional NaturalLink features
mymain /M The .EXE file
mymain.MAP The .MAP file

mylib + Any application libraries used

LIMSB + Library of High-Level Language Interface
routines to NaturalLink

NL + NaturalLink Sessioner object library

WM+ Window Manager object library

APPOTH+ Dummy NaturalLink called application routines

BASCOMG Compiled BASIC run-time library (or BASRUNG)

The APPOTH library contains dummy routines for all application routines
called by NaturalLink. These include NLXEXP, NLXFUN, APPVAL,
APPRCV, and so on. If you do not use all the features provided by these
routines, the dummy modules in this library will resolve the references to
them. If you have your own versions of these routines, they must be
explicitly linked in following your main program. If you create libraries for
any of your application routines, these libraries must be included before
any NaturalLink libraries in the link stream.

If you choose to implement the Saved Sentences feature, you must include
the module NLSAVQRY.OBJ in your link stream.

If you implement the Dynamic Lexical Items feature, include the modules
NLDTLIB.OBJ and NLISLIB.OBJ in the link stream.

NaturalLink Toolkit

High-Level Language Interface C-17

If you plan to include the Interface Customization feature, include the
modules NLEDLIB.OBJ, NLSYLIB.OBJ, and NLISLIB.OBJ. If you do not
wish to support Adding Synonyms but only the Editing Phrases function of
the Interface Customization feature, do not include the NLSYLIB.OBJ
module. If you do not wish to support the Interface Customization feature
at all, do not include any of these three modules.

NLISLIB.OBJ is used for both the Dynamic Lexical Items feature and the
Interface Customization feature. You must include this module if you use
either of these features.

The order of this link stream is extremely important. Do not alter the order
of the modules and libraries shown in the example when linking your
application. All modules in this link stream must be included, regardless of
the NaturalLink features implemented. Refer to Appendix G, Compiled
BASIC Interface, in the Window Manager Reference Manual for more
information on linking.

C-18 High-Level Language Interface NaturalLink Toolkit

NATURALLINK DEMONSTRATION PROGRAM

Paragraph Title Page
D1 INtroductioncooooiiiiiii et s D-3

D.2 Toolkit and Window Manager Demonstration Program...............c.......... D-3

D.2.1 How to Modify the Available Topics Windowc.ccccooeiviinniinenn D-4

D.2.2 Demonstration Program Algorithmccccooeeiiiiiiiiice D-5

D.2.3 Linking NLLCDEMOc.coiiiiiiiiiiiieeceeeee et D-6

D.2.4 Defining the QUit Key.......coooiviiiiiii e, D-8

NaturalLink Toolkit NaturalLink Demonstration Program D-1

Introduction

D.1 The NLLCDEMO program provided with your NaturalLink Toolkit
software is a Lattice C program that demonstrates how to use the Natural-
Link interface and the Window Manager. It will run with any interface file
generated by IBUILD and can be used as an interface testing program.

Toolkit and
Window
Manager
Demonstration
Program

D.2 The screen associated with this program, NLLCDEMO.NS$, contains
six windows:

0) Header window — Identifies the program
1) Available Topics window — Determines the interface file to load

2) Press window — Identifies the function keys available within the
NaturalLink Sessioner, aside from the usual Window Manager keys

3) Translation window — Displays the translation generated

4) Sample Application window — Shows what an application might do
upon receiving the translation from the NaturalLink Sessioner

5) File Information window — Requests filenames when the Specific
Topic of Your Choice item is chosen from window 1

You can use this program to tailor your own demonstration by
manipulating the Available Topics window and the Sample Applications
window. You can modify the latter window, using the Screen Builder util-
ity (SBUILD), to show what your specific application program will return
upon receiving a translation. Be sure that at least one selectable item is
visible in the window so that the Receive call will work correctly. If you
want only to display data, change the window’s type to text.

The Available Topics window has a special purpose in this program: it can
be modified to load specific interfaces. As shipped, the window contains
three items:

m 0, which is the label Available Topics

B 1, which has no text specified

® 2, which has the text < a specific topic of your choice >

NaturalLink Toolkit

NaturalLink Demonstration Program D-3

How to Modify D.2.1 Follow these steps if you have interface files that you want to
the Available demonstrate:
Topics Window
1. Run SBUILD and load the screen NLLCDEMO.NSS.

2. Add only two items per interface file to the item table in the Available
Topics window. You can add them before or after item 2 < a specific
topic of your choice > .

3. Make the first item you added invisible and unselectable with no item
text.

4. Make the second item you added selectable with the item text
describing the topic you wish to demonstrate (for example, “Jobshop™).

5. Edit the item label of the first item you added to be the name of the
saved sentences file for the interface you want to demonstrate (for
example, JOBSHOP.SVQ).

6. Edit the item label of the second item you added to be the name of the
interface file you want to demonstrate (for example, JOBSHOP.INT).

Thus, the items for the Available Topics window should resemble the
following:

0) Available Topics

1) unselectable, no item text, no item label

2) unselectable, no item text, item label: JOBSHOP.SVQ

3) selectable, item text: Jobshop, item label: JOBSHOP.INT

4) selectable, item text: < a specific topic of your choice >, no item label

You can add as many interfaces as necessary to the list of available topics
using this method.

When you bring up the demonstration program, the interfaces you want to
demonstrate should be listed along with the <a specific topic of your
choice > item. If you select the < a specific topic of your choice > item, a
window will be displayed prompting you for the interface filename and the
saved sentences filename for that interface. After you specify the interface
and saved sentences filenames, the program will call the NaturalLink Ses-
sioner and start the sentence-building process. If you select one of the
interfaces you specified, the program will not ask for the interface and
saved sentence filenames; the program will use the filenames already spec-
ified for the chosen interface.

D-4 NaturalLink Demonstration Program NaturalLink Toolkit

Demonstration
Program Algorithm

D.2.2 The algorithm of the program is as follows:

Make the necessary WM initialization call
Load the demonstration program screen
Until it’s time to stop
Add the demo program main screen (windows 0 through 2)
Select the Available Topics window
Receive from the Available Topics window
Release the Available Topics window
If the topic chosen didn’t have interface and saved
sentences filenames already associated with it
(the < a specific topic of your choice> item)
Add the File Information window
Select the File Information window
Receive from the File Information window
Delete the File Information window
Delete the main screen windows
Call the NaturalLink interface loader
Call the NaturalLink Sessioner
If a translation was returned and the user didn’t press
the Quit key
Add the Translation window (window 3)
Select the Translation window
Receive from the Translation window
Delete the Translation window
Add the Sample Application window (window 4)
Select the Sample Application window
Receive from the Sample Application window
Delete the Sample Application window

— End of the “Until it’s time to stop” loop —
Unload the screen

Call the NaturalLink interface unloader
Make the required WM reset call

Clear the screen

Exit

NaturalLink Toolkit

NaturalLink Demonstration Program D-5

The NLLCDEMO.C source file also contains a routine called NLXEXP,
which is the routine the Sessioner calls if a user-defined expert is
encountered. A routine called NLXEXP must be present in any application
using the NaturalLink Sessioner, whether or not any user-defined experts
were used, to resolve external references. A library containing a dummy
NLXEXP routine has been provided and should be linked in to resolve the
external references if an application NLXEXP is not present. The NLXEXP
routine algorithm is:

Load the expert handling screen (NLLCEXP.NS$)
Get the window label for the Expert window
Put the expert code parameter into the window label
Add the Expert window
Select the Expert window
Receive from the Expert window
Delete the Expert window
Restore the original window label to the Expert window
Unload the expert handling screen
If a special-purpose function key was pressed
ENTER the appropriate status code
Call NLSETR to pass the expert value received to the NaturalLink
Sessioner
Return to the NaturalLink Sessioner

Linking NLLCDEMO D.2.3 NLLCDEMO is provided in Lattice C source and EXE form
(NLLCSDEM.EXE). If you want to compile the NLLCDEMO program your-
self, use the Lattice C compiler. The compiler will require the two files
STDIO.H and WMFIELD.H during compilation. Any of the four Lattice C
models—S (small), P (program), D (data), or L (large)—can be used. Replace
the question mark (?) in the link stream and EXE file pathnames with the
letter corresponding to the model used in compiling the NLLCDEMO.C
source file—for example, S, if the small model was used.

D-6 Naturallink Demonstration Program NaturalLink Toolkit

To link the NLLCDEMO object with the Window Manager and NaturalLink
Sessioner object, use the NLLC?DEM.LNK link control file with the MS-DOS
linker to produce NLLC?DEM.EXE. The linker requires that the following
files be present during the linking process:
m Toolkit object files
a NLSAVQRY.OBJ
s NLSYLIB.OBJ
s NLEDLIB.OBJ
= NLISLIB.OBJ
= NLDTLIB.OBJ
® Window Manager object file
m LILC?SH.OBJ
® Window Manager and Toolkit Libraries
= NL.LIB
s WM.LIB
s LILC?.LIB
m APP???.LIB (LCS, LCD, OTH—for P and L models)
® NLLCDEMO.OBJ file
m Lattice C C?.0BlJ file
m Lattice C run-time library LC?.LIB,
The following commands invoke the linker.
m LINK @NLLCSDEM.LNK (for small model)
m LINK @NLLCPDEM.LNK (for program model)
® LINK @NLLCDDEM.LNK (for data model)

m LINK @NLLCLDEM.LNK (for large model)

NaturalLink Toolkit NaturalLink Demonstration Program D-7

Once you have accessed the NLLC?’DEM.EXE file, either by linking up the
NLLCDEMO program yourself or by copying the file directly from the
Toolkit object disk, the following commands invoke the program.

m NLLCSDEM (for small model)

B NLLCPDEM (for program model)

® NLLCDDEM (for data model)

m NLLCLDEM (for large model)

Be sure that the following files are on the default disk when you run the
NLLC?DEM program.

m NLLCDEMO.NS$
m NLLCEXP.NS$

® LIERRMSG.NM$

Defining D.2.4 The Quit key is mentioned in several of the windows for the
the Quit Key NLLCDEMO program. In the Window Manager Function Key Change util-
ity, this key is called the Quit or Abort key. If you link the demo program
with the default WMKEYDEF.OBJ module included in the Window Man-
ager library WM.LIB (the NLLCSDEM.EXE file provided is linked with the
default), the Quit key will be defined as the ESC key. If you use the
Function Key Change utility to modify the key used for Quit and link that
object file with the demonstration program, the new key that you define
will be the Quit key for the NaturalLink Sessioner portion of the demon-
stration only; the rest of the demo will still use the ESC key, since the key is
defined in the NLLCDEMO program code. To change the Quit key for the
rest of the demonstration program, change the following define statement
to show the key code for your new Quit key:

#idefine QUIT_KEY 0x018B.

D-8 NaturalLink Demonstration Program NaturalLink Toolkit

GLOSSARY

a

abbreviatory symbol

One of the three types of symbols used to collapse a number of rules, each
sharing the same mother and left corner, into a single rule. The
abbreviatory symbols used by NaturalLink grammars are parentheses,
braces, and square brackets. In the expansion of a grammar rule:

W Parentheses mean that the application of the rule elements within is
optional.

B Braces mean that one of the elements within must be applied.

B Brackets mean that the rule elements within are to be applied as a
group.

C

Command window
committing a
window

context-free
grammar

A window that contains one or more of the nine NaturalLink command
options (for example, Execute, Customize, Quit, and so on).

Pressing the Proceed key in a multiple-selection window or ENTER from
the last line of a multiple-selection edit window.

In a context-free grammar every rule has the form of: A —> X
where:

A is a single nonterminal element and X is a non-null string of elements.
A —> X may be read as ‘A’ consists of ‘X’.

NaturalLink Toolkit

Glossary 1

d

daughter

DTS (dynamic
terminal symbol)

Dynamic Lexical
Items feature

In each grammar rule in the NaturalLink grammar format, all rule ele-
ments that appear after the mother are daughters:

@< mother > < daughterl > ...< daughterN >

A terminal element that was removed or is to be removed from the lexicon
by means of the Dynamic Lexical Items feature.

The NaturalLink feature that allows the user to make limited modifications
to the lexicon and the screen of an interface through an application
program.

expert

A routine that handles a specific task—such as input and validation of
literal values. NaturalLink software enables the use of four standard
experts: alphanumeric type-in, numeric type-in, date, and list. A fifth type
of expert—the user-defined expert—can be defined within an application
and associated with the NaturalLink menu screen (NLmenu screen).

f

fatal error

A nonrecoverable error. You should stop processing and resolve the
problem.

S

grammar

The set of rules that govern how words can be put together to form
sentences. The grammar used with NaturalLink software must produce all,
and only, the sentences required by a particular application.

i

IBUILD

interface file

item

The NaturalLink Interface Builder utility. This utility aids in creating and
testing the NaturalLink grammar, lexicon, and interface.

A binary file that contains the grammar, lexicon, and screen description
for a NaturalLink application.

An entry within a NaturalLink window.

2 Glossary

NaturalLink Toolkit

k

KBUILD

The Window Manager Function Key Change utility. This utility lets you
change the default function keys used by Window Manager.

1

left corner

lexical item

The first rule element on the right side of a grammar rule (also called
daughter 1). The NaturalLink grammar format does not permit the left
corner to be enclosed by abbreviatory elements.

A terminal element in the grammar that will be further defined in the
lexicon.

lexicon The dictionary of the NaturalLink system. It relates each terminal element
in the grammar to a particular natural language word or phrase, to a
location on the screen, and to a translation in the target language.

m

MBUILD The NaturalLink Message Builder utility. This utility aids in constructing
messages for use in an application program.

mother In the NaturalLink grammar format, the first rule element in a grammar
rule is the mother.

NLmenu The interface screen that presents the words and phrases the user can
select to build a command sentence.

n

nonterminal element

A grammar element that appears on the left side of rules and usually
appears on the right side also.

NaturalLink Toolkit

Glossary 3

P

Parser

parse tree

parse window

PBUILD

predicate

The component of the NaturalLink software that resolves a user’s choice of
a word or phrase from a menu into its correct grammatical element and
determines, based on the grammar, what the user’s next legal choice(s)
will be.

A graphic representation of the structure of a sentence. Each rule used in
the parse is depicted as a subtree that has the mother as the root node and
the daughters as the child nodes. The root of the parse tree is the start
symbol of the grammar, and the leaf nodes (those nodes with no children)
are the terminal elements in the sentence.

A window that contains the words and/or phrases the user selects to build
NaturalLink command sentences.

The NaturalLink Phrase Editor utility. This utility lets you change the
internal phrases of NaturalLink.

The first integer following the opening parenthesis in the semantic path
list. The predicate has a character string associated with it called the
predicate’s string. The predicate’s string contains “slots” in which
arguments in the semantic substitution list are placed.

r

Results window

A window that displays the command sentence as the user builds it.

S

SBUILD

screen

screen description

select

The NaturalLink Screen Builder utility. This utility aids in constructing
screens for use with Window Manager.

A collection of NaturalLink windows.
The binary file that contains all the information necessary for the
NaturalLink Window Manager to draw and manipulate a collection of

windows.

A function of the NaturalLink menu screen. The user places the cursor on
the item desired and presses the ENTER key.

4 Glossary

NaturalLink Toolkit

semantic
substitution list

semantics

Sessioner

slots

start symbol

syntactic path list

syntax

The sequence of integers that represents the ordering of the target
language translation. It is the second sequence of integers appearing in a
grammar rule’s translation list.

The study of meanings. Semantic rules determine whether sentences are
meaningful.

The main driver of the NaturalLink user software. It handles all interaction
among the Window Manager, the Parser, the Translator, and the target
application.

Locations in the predicate’s string where arguments are placed. Slots are
indicated by an at sign (@) followed by an integer in the predicate’s string.

The first element of the first rule in a NaturalLink grammar. In the
example NaturalLink grammars, the symbol ‘S’ is used as the start symbol.

The sequence of integers that identifies which expansion of a grammar
rule is to be translated. It is the first sequence of integers appearing in a

grammar rule’s translation list.

The set of rules that governs the legal order of words within a language.

t

target language

target string

terminal element

translation lists

Translator

The language used by the application behind the NaturalLink séftware,
such as the command control language in a computer-controlled industrial
system or the data manipulation language of a database.

The target translation of a terminal element in a NaturalLink grammar.
A grammar element that appears only on the right side of the rule.

The sets of numbers in parentheses that appear at the end of each
grammar rule. There is a separate translation list for each expansion of a
grammar rule. Each translation list consists of a semicolon and two sets of
parentheses. The numbers in the first set of parentheses are the syntactic
path list; they describe how to form one expansion of the grammar rule.
The numbers in the second set of parentheses are the semantic substitu-
tion list; they tell the translator how to combine the individual translation
strings to create the correct target-language command.

The component of the NaturalLink software that, by consulting the lexi-
con, resolves a completed parse tree into the target language command.

NaturalLink Toolkit

Glossary 5

u

UDW (user-defined
window)

A special window specified in Screen Builder. The application has full
control of any display, receive, and delete functions performed on a UDW.

w

warning code

well-formed
grammar

window

Indicates incorrect use of some NaturalLink feature. The code can be
ignored, but you should check the problem during the development
process.

A term for a grammar that is free of syntactic and semantic errors.

A rectangular area on the video display terminal. Windows in a Natural-
Link screen can be bordered or unbordered.

6 Glossary

NaturalLink Toolkit

INDEX

a
abbreviatory conventions 4-7
braces convention 4-7
parentheses convention 4-7
square brackets convention 4-8
Add Synonyms to Pop-Up Windows
option 16-6
Add Synonyms to Visible Windows
option 16-5
Add Synonyms option 16-3
algorithm, demonstration program D-5
Alphabetize Phrases in Windows
option 8-25
alphanumeric expert 8-14, 8-15, 8-24
ambiguity 3-5
ambiguous sentences 3-4, 3-5
application execution 1-8
argument 4-12
attaching Help to DTS item 9-16
attributes:
invisible label 5-11
window 5-4, 5-11
auto-selection of expert item 5-13

b

Back Up, Sessioner Command
option 15-3, 15-9

Back Up/F8 command 154

backing up NaturalLink files 17-4

binary interface file 1-6, 13-3

borders, window 5-9

braces convention 4-7

C
call:
Clear From Memory Information Sent to
Sessioner 9-24
Create New Entries and Leave Existing
Entries 9-21
Create New Lexical Items 9-22
Information Sent; Leave Interface in
Memory 9-23
Interface Customization 16-10
NLLOAD 15-13
NLXCRE 9-9, 9-10, 9-22
NLXSND 9-8, 9-9, 9-10, 9-11
Remove All Entries 9-21

Remove All Existing Entries and Create
New Entries 9-21
Restore DTS Entries, Remove Lexical
Items, and Save Interface 9-24
Restore Original DTS Entry and Remove
All Others 9-21
Unload Interface From Memory and Save
to Disk 9-24
WMFLSH 9-15
calling/linking with:
Lattice C C+4
MS-BASIC C-14
MS-FORTRAN C-11
MS-Pascal C-7
calling NLXEDT directly 16-11
calling sequences:
NLDRIV 15-12,15-14
NLLOAD 15-12,15-13
NLSETR 15-18
NLXCRE 9-8,9-9, 9-10,9-11, C-16
NLXEDT 16-10, 16-11
NLXEXP 9-7,15-17, 15-18,
C4,C8,C-11,C-15
NLXFUN 15-19, 15-20, C-8, C-12
NLXHIST 6-3
NLXOLD 15-19
NLXSND 9-8,9-9,C-9, C-13,C-16
NLXTOOLS 6-3
NLXUNL 15-12,15-16
calling syntax for NL routines C-7,C-11, C-14
calls, NaturalLink interface 15-12
changing interface screen 8-3
character code 00 8-14
check status of an interface 6-9
Check the Screen Against the Lexicon
option:
error messages for 11-3, 114
warning messages for 11-3, 11-4
Clear From Memory Information Sent to
Sessioner call 9-24
command/function keys,
user-defined 15-4, 15-10
command options, Sessioner
Back Up 154, 15-9
Customize 15-3,15-5
Edit 5-6,15-3, 15-5
Execute 15-3,15-4

NaturalLink Toolkit

Index 1

Help 15-4,15-9

Quit 15-4, 159

Sentences 15-4, 15-6

Show 15-3,15-5

Start Over 15-4,15-9
Command window:

placement 5-4, 5-6, 5-7, 8-6, 15-3

pop-up 5-10
commands:

invoking 15-10

NaturalLink window 5-6
Common Expansions Test 7-5, 7-9
compiler:

Lattice C C-6

MS-BASIC C-17
complex left corner 7-7
computers, IBM A-3, A4
computers, Texas Instruments A-3, A-4
context-free grammar 4-3, 4-10
control character in translation

string 8-12

control code 8-12
control of user options, examples 9-16
coordinates, window 8-24
Copy Translation or Expert Data

option 8-21
corner:
complex left 7-7
left 4-10

create a sentence file, howto 13-6
Create and Test an Interface
option 6-8, 7-3
Create Duplicate Item option 8-20
Create New Entries and Leave Existing
Entries call 9-21
Create New Lexical Items call 9-22
Customization feature See Interface
Customization Feature
Customize command option 15-5
customize/F3 command 15-3
CUSTOMIZE, Sessioner Command
option Appendix C, 15-3, 15-5

d
date expert 8-14, 8-15, 8-24
daughter 4-10
defining the Quit key D-8
Delete an Interface option 6-9
Delete Duplicate Item option 8-21, 8-26
demonstration program D-3
algorithm D-5
Toolkit 1-5, D-3
Window Manager 1-5, D-3
designing parse windows 5-9

directory pathname, interface 6-5

diskette:
Toolkit Utilities 1-5

Window Manager Utilities 1-4

display of Results window 5-7

display window, free-format 5-8

Draw NaturalLink Screen option
driver See Sessioner

8-27, 8-28

DTS See dynamic terminal symbol
DTS item, attaching Helpto 9-16
duplicate lexical items 8-20, 9-15

Dynamic Lexical Items
feature 9-8
lexicon 9-8
sample calls for 9-21
dynamic terminal symbol
(DTS) 9-8,9-15,9-16

e
Edit:
command option 15-5

Sessioner Command option 15-3

edit/F5 command 5-6, 15-3, 15-
Edit Phrases option 16-3

in pop-up windows 16-7

in visible windows user option
element:

grammatical 4-4

lexical 4-3

nonterminal 4-3

rule 4-3,4-10

terminal 4-3, 7-8, 8-4, 8-7
ENTER function key 8-29
entries, lexical 7-8
environment variables 6-3

NLXHIST 6-3

NLXTOOLS 6-3

5

16-6

equipment requirements Chapter 17,

Appendix A
error codes Chapter 17
grammar test B-3
run-time software B-9
Translation Test B-7
user software B-9
error file, viewing 11-4

error messages for Check the Screen Against

the Lexicon option 11-3
error reports 7-6

Common Expansions Test 7-9

Format Test 7-5, 7-6
Grammar Test 7-6, B-3
Inconsistent Translations Test
Infinite Parses Test 7-10
Static Well-Formedness Test

7-9
7-8

2 Index

NaturalLink Toolkit

Translation Test 13-7, B-7
examples for control of user options
Execute command option 15-4
Execute/F10 command 15-4
expansion, rule 4-4,4-11
Expert Handler (NLXEXP) routine,

NaturalLink User-Defined expert:

alphanumeric 8-14, 8-15, 8-24

date 8-14, 8-15, 8-24

entry 8-12

fields 3-6

file 174

information file (NP$) 8-5

item 5-13

item, auto-selection 5-5

list 8-14, 8-17, 8-25

numeric 8-14, 8-15, 8-24

pop-up window, view 8-27

range 8-14, 8-15

9-16

text delimiters 8-23
user-defined 8-14, 8-18, 9-3, 9-5
f
feature:

Interface Customization
Chapter 16, 9-16
invoking the Interface

Customization 16-12
sample calls for Dynamic Lexical
Items 9-21

user instructions for Interface
Customization 16-4
windows used in Interface
Customization 16-9
file:
binary interface 1-6
expert information 6-3, 8-5

generated sentences 10-3
grammar 1-6, 4-3, 6-3, 17-4
Help 17-4

history 6-3

interface Chapter 13, Appendix D, 17-4
Interface Customization 16-10
interface history 6-3

lexicon 1-6,6-3,7-8, 8-3,17-4

link control Appendix C

modifications of interface 9-9

NLmenu screen 17-4

screen description 1-6, 6-3
user-defined expert 17-4
viewing an error 11-4

files, backing up NaturalLink 17-4
formal grammar notation 4-10
format, generated sentences 10-3

Format Test 7-5, 7-6
free-format display window 5-8
function key:

ENTER 8-29

F10 8-29

Help/F7 8-29

Quit/ESC 8-29

View Item/F6 8-28
Function Key Change utility 1-4
Function Key Handler routine,

User-Defined 15-19

function keys in Lexicon Builder
functions, Sessioner Command
F10 function key 8-29

8-28
15-3

Generate or Modify the Lexicon for the
Interface option 8-3
Generate Representative Sentences for the
Interface option Chapter 10
generate sentences 2-2
Generate the Interface File
option 13-3
generated sentences:
file 10-3,13-4
format 10-3
grammar 2-3
context-free 4-3,4-10
elements 4-4
file 1-6,4-3,6-3,17-4
NaturalLink 4-10
tests 7-3
grammar rules:
left side of 4-3
right side of 4-3
Grammar Test:
error codes B-3
error reports 7-6

h
Handler:
routine, User-Defined
Function Key 15-19
(NLXEXP) routine, NaturalLink
User-Defined Expert 15-17
Help:
attaching to DTS item 9-16
command option 15-9
file 17-4
F7 function key 5-6, 8-29
messages 12-5,15-9
messages, testing 8-22
Sessioner Command options
history file 6-3

154

NaturalLink Toolkit

Index 3

1
IBM computer A-3
IBUILD See Interface Builder utility
identifying Command options to the
Sessioner 15-11
Inconsistent Translations Test 7-6, 7-9
increment for arange 8-15
Infinite Parses Test 7-6, 7-10
infinitely looping path 7-10
information file for new lexical items 9-13
information, saving lexical 8-5
Information Sent; Leave Interface
in Memory call 9-23
initialization routine, NaturalLink 15-12
intensity level 5-11
interface Chapter 6, Chapter 13, 15-12
components 2-3
development Chapter 6, 2-3
directory pathname 6-5
file Chapter 13, 17-4, D-4
file, binary 13-3
file, history 6-3
invoking 15-14
modified 9-15
name 6-5
optional 9-19
packaging 17-3
preloading 15-13
restore 9-9
save 9-9
- screen, changing 8-5
unloading 15-16
user modification 16-3
Interface Builder utility 6-3, 14-3
command 6-3, D-3
screen 6-3
Interface Customization feature: 16-3
application programmer
information 16-9
invoking through the Sessioner 16-12
user instructions 16-4
windows used 16-9
invisible window label attribute 5-11
invoking:
commands 15-10
interface 15-14
Interface Customization feature through
the Sessioner 16-12
item:
expert 5-13
lexical 4-3, 89, 8-26, 9-5, 14-3

k
KBUILD See Function Key Change utility
Key Handler routine,
User-Defined Function 15-19
key codes, specifying 9-14
keys:
in Lexicon Builder, function 8-28
user-defined command/
function 15-10

label window 1-4, 89
Lattice C Appendix C
calling/linking with C-3, C-4
compiler A-3
left corner 4-10
complex 7-7
left side:
of grammar rule 4-3, 4-10
unreachable 7-8
level, intensity 5-11

lexical:
element 4-3
entries 7-8

information, saving 8-5
item 4-3, 8-9, 8-26, 9-5, 14-3
items, new 9-13
Lexicon Builder utility 8-3, 9-5
function keysin 8-28
lexicon 4-3, 8-3,9-10,11-3
dynamic lexical items 9-8
file (NL$) 1-6,6-3,7-8,17-4
listing of 14-3
modifying 9-15
link control file C-6
link stream C-6, C-10, C-13,C-17
linking NLLCDEMO D-6
list:
expert 8-14, 8-17, 8-25
semantic substitution 4-12
syntactic path 4-11
translation 4-11, 7-9
window type 5-11
List the Lexicon for the Interface
option 8-5, 14-3
lists, translation 7-8
Load Dynamic Lexical ltems, Save Interface,
and Unload Interface call 9-24
Look at the Screen option 16-8
looping path, infinitely 7-10

4 Index

NaturalLink Toolkit

m
MBUILD See Message Builder utility
menus 1-4
Message Builder utility 1-4
messages:

error 7-6

Help 12-5,15-9

specify Help Chapter 12, 2-4
modification of interface, user 16-3
modifications of interface file 9-9, 9-15
Modify an Interface’s Information

option 6-8 ,

Modify Lexical Items option 8-19
modify the available topics window,

howto D-4
modifying the lexicon 9-15
mother 4-10
MS-BASIC:

calling/linking with C-3, C-17
compiler A-3,C-14
MS-DOS A-3
MS-FORTRAN A-3,C-11
calling/linking with C-11, C-13
MS-Pascal A-3, C-7
calling/linking with C-7, C-10
multiple-selection window 5-11
My Sentence File option, Use 13-6

n
name, interface 6-5
natural language 1-3
rules 4-3
sentences 3-3
NaturalLink:
commands 5-6
files, backingup 17-4
grammar 4-10
initialization routine 15-12
interface 3-3,5-3
interface calls 15-12
Sessioner 15-3
software, equipment requirements
for Chapter 17
termination routine 15-12
User-Defined Expert Handler (NLXEXP)
routine 15-17
nesting 4-14
new lexical items 9-13
new lexical items, information
file for 9-13
NLDRIV, calling sequences C-3
NLLCDEMO:
linking D-6
program D-3

NLLOAD:

call 15-13

calling sequences C-3
NLmenu screen 5-3

file 2-3,17-4
NLSETR 15-16, 15-18
calling sequences C-3
NLXCRE 9-8,9-9, 9-10, 9-22
calling sequences C-3
NLXEDT 16-10, 16-11
calling sequences C-3
calling directly 16-11
NLXEXP 9-5, 15-16, C-4, C-8,C-11,C-15
calling sequences C-3
NLXFUN 15-19, C-5, C-8, C-12
calling sequences C-3
NLXHIST 6-3
NLXOLD 15-16,15-19
calling sequences C-3
NLXSND 9-8,9-9, 9-10, C-9, C-13, C-16
calling sequences C-3
NLXTOOLS 6-3

NLXUNL 15-16

calling sequences C-4
nonterminal element 4-3, 4-4
number:

screen 5-12

window 5-12

numeric:

expert 8-14, 8-15, 8-24
values 3-6

(0]

option:

Add Synonyms to Pop-Up
Windows 16-6
Add Synonyms to Visible
Windows 16-5
Alphabetize Phrases in Windows 8-25
Check an Interface’s Status 6-9
Check the Screen Against the Lexicon for
the Interface 11-3
Copy Translation or Expert Data 8-21
Create and Test an Interface 6-8
Create Duplicate Item 8-20
Delete an Interface 6-9
Delete Duplicate Item 8-21, 8-26
Draw NaturalLink Screen 8-27
Edit Phrases 16-3
Edit Phrases in Pop-Up Windows 16-7
Edit Phrases in Visible Windows 16-6
Editing Phrases 16-6
Generate or Modify the Lexicon for the
Interface 8-3

NaturalLink Toolkit

Index 5

Generate Representative Sentences for
the Interface 10-3

Generate the Interface File 13-3

List the Lexicon for the
Interface 8-5, 14-3

Look at the Screen 16-8

Modify an Interface’s Information 6-8

Modify Lexical Items 8-19

Quit 8-5, 8-29

Recheck Availability of Specified
Interfaces 6-9

Record a New Interface’s
Information 6-7

Remove All Synonyms and Edited
Phrases 16-8

Remove Selected Synonyms or Edited
Phrases 16-7

Remove Unused Phrases From
Windows 8-26

Saved Sentences 12-5

Specify All Lexical Information 8-7

Specify Expert Text Delimiters 8-23

Specify Expert Window
Coordinates 8-24

Specify Help 12-5

Specify Help and Window Coordinates for

Sessioner Windows 12-3
Specify Help for Expert 8-21
Specify Window Coordinates 12-5
Test the Interface’s Translations 13-4
Use My Sentence File 13-5, 13-6
Use the Generated Sentences File 13-4
View a File 144
View Expert Window 8-27
View the Screen 14-4

optional interface 9-19
order of windows 5-12

P
packaging the interface 17-3

parentheses convention 4-7
parse tree 4-14
parse windows 5-3, 5-5, 5-11

designing 5-9
placement 5-9
spacing 5-10

Parser 1-8, 4-16, 6-3
path, infinitely looping 7-10
Phrase Editing utility (PBUILD) 1-4

phrases, unused 8-26
placement of:

Command window 5-7
parse windows 5-9
Results window 5-7
window 5-3

pop-up window: 5-4, 5-7
Command window 5-10
Results window 5-8
Specify a Phrasein 8-9
Specify a Translationin 8-11
Specify Window Labelsin 8-9

predicate string 4-12, 4-14

preloading the interface 15-13

program, NLLCDEMO D-3

q
Quit:
command option 15-9
option 8-5, 8-28
Sessioner Command option 15-4
Quit/ESC:
command 5-7
function key 8-29
Quit key, defining D-8
quit the Lexicon Builder 8-28
Quit option 16-8

r
range:
expert 8-14
increment 8-15
Recheck Availability of Specified Interface’s

option 6-9
Record a New Interface’s Information
option 6-4

relational database 3-3
user-defined expert for 9-4
Remove All Entries call 9-21
Remove All Existing Entries, Create New
Entries call 9-21
Remove All Synonyms and Edited Phrases
option 16-8
Remove Selected Synonyms or Edited
Phrases option 16-7
Remove Unused Phrases From Windows
option 8-26
reports, error 7-6
representative sentences 13-4
requirements for NaturalLink software,
equipment Chapter 17
Restore DTS Entries, Remove Lexical ltems,
and Save Interface call 9-24
restore interface 9-9
Restore Original DTS Entry and Remove All
Others call 9-21
results, Translation Test 13-4, 13-7
Results window 5-3, 5-5, 5-7, 8-6
display 5-8
not showing 5-8
placement 5-7

6 Index

NaturalLink Toolkit

pop-up 5-8
showing 5-8
size 5-7

right side of grammar rule 4-3, 4-10
routine (NaturalLink):
initialization 15-12
termination 15-12
User-Defined Expert
Handler (NLXEXP) 15-17
User-Defined Function
Key Handler 15-19
rule:
element 4-3
expansion of 4-11
left side of grammar 4-10
right side of grammar 4-10
rule expansion 4-4
rules, natural language 4-3
run-time software error codes B-9

S
sample calls, Dynamic Lexical
[tems feature 9-21
save interface 9-9
saved sentences:
filename 15-6

option 12-5
windows 12-5
saving:

lexical information 8-5

screen space 5-10
SBUILD See Screen Builder utility
screen:

description file 1-6, 6-3

draw 827

file 6-3,17-4

NLmenu 5-3

number 5-12

space, saving 5-10

view 14-4
Screen Builder utility 1-4, 5-3, 5-9, 9-5
semantic substitution list 4-11
sentence file:

generated 13-4

how to create 13-6
Sentence File option, Use My 13-6
sentence generated by grammar 4-4
sentence generator utility 10-3
sentence structure 4-4
sentences:

ambiguous 3-4, 3-5

command option 15-6

complicated 3-4

F6 command 5-6

Natural Language 3-3

representative 13-4

saved 12-5
Sessioner Command option 15-3
simple 3-4
unambiguous 3-5
Sessioner 9-5, 12-3, 15-3
command functions 15-3
function keys 15-3
identifying command optionsto 15-11
invoking the Interface Customization
feature through 16-12
NaturalLink 15-3
status codes 15-12
view window 12-6
window 12-4
Sessioner command options:
Back Up 15-4,15-9
Customize 15-3,15-5
Edit 15-3, 15-5
Execute 15-3,154
Help 15-4,15-9
Quit 154, 159
Sentences 15-4, 15-6
Show 15-3,15-5
Start Over 15-4,15-9
Show:
command option 15-5
F4 command 15-3
Results window 5-7, 5-8
Sessioner Command option 15-3
side, unreachable left 7-8
size of:
Results window 5-8
window 5-3, 5-9
spacing of parse windows 5-9
special windows 5-5, 5-10
uses of 5-10
Specify:
a Phrase pop-up window 8-9
a Translation pop-up window 8-11
All Lexical Information option 87
Expert Text Delimiters option 8-23
Expert Window Coordinates
option 8-24
Help and Window Coordinates for
Sessioner Windows option 12-3
Help for Expert option 8-21
Help option 12-3, 12-5
Window Coordinates option 12-5
Window Labels pop-up window 8-9
specifying key codes 9-14
square brackets convention 4-8
Start Over:
command option 15-9
F9 command 5-7
Sessioner command option 15-4
Static Well-Formedness Test 7-5, 7-8

NaturalLink Toolkit

Index 7

status codes, Sessioner 15-12

string:
predicate 4-3
target 4-3

target language 5-3, 84
structure, sentence 4-4
subset of system-generated

sentences 13-5
subtree 4-14,4-15
syntactic path list 4-11
syntax 4-10
system-generated sentences,

subset of 13-5

t
target language string 4-3, 8-4
target string 4-3, 4-11
terminal element 4-3, 4-16, 7-8, 8-7
termination routine, NaturalLink 15-12
Test:
Common Expansions 7-5, 7-9
Format 7-5,7-6
Grammar 2-3,7-3
Help messages 8-22
Inconsistent Translations 7-6, 7-9
Infinite Parses 7-6, 7-10
Static Well-Formedness 7-5, 7-8
Translation, results 13-7
Translations Chapter 13
test interface grammar 2-3
Test the Interface’s Translations
option 13-4

Texas Instruments computers Appendix A

text:
database, user-defined expert for 9-3
window 5-7,5-11
Toolkit:
demonstration program 1-4
utilities 1-5
translation:
list 4-11,7-9
process 4-14
string, control charactersin 4-11
Translations Test Chapter 13
error codes B-7
Inconsistent 7-6, 7-9
Translator 4-11
tree, parse 4-6,4-14,4-15

u
Use My Sentence File option 13-6
Use the Generated Sentences File
option 134
user-defined:
command/function keys 15-4, 15-10
expert 8-14,8-18,9-3, 9-5
user options:
examples for control of 9-16
Edit Phrases in Pop-up Windows 16-7
Edit Phrases in Visible Windows 16-6
Remove All Synonyms and Edited
Phrases 16-8
Remove Selected Synonyms or Edited
Phrases 16-7
user software error codes B-9
utility:
Edit Phrases 1-4
Function Key Change 1-4
Interface Builder 6-3, 6-5
Lexicon Builder 8-28
Message Builder 1-4
Screen Builder 5-3, 5-9
sentence generator 10-3

Vv

View:
a File option 14-4
Expert Window option 8-27
the Screen option 14-4

w

warning messages for Check the Screen
Against the Lexicon option 11-4
window:
active 5-9,5-11
attributes 5-4,5-11
Command 5-3, 5-4, 5-6, 8-6
inactive 5-9, 5-11
order 5-12
parse 5-3, 5-5, 5-11
Results 5-5, 5-7, 5-8, 8-6
size 5-3,5-7
special 5-5, 5-10
type 5-3,5-11
Window Manager demonstration
program 1-4

8 Index

NaturalLink Toolkit

USER RESPONSE SHEET

Our manuals are written for you. Please help us improve them by
completing and mailing this form. List any discrepancy or other problem
that you found in this manual by page, paragraph, figure, or table number
in the space provided, and add any suggestions you have. Thank you.

Manual Title:
Manual Date: Today’s Date:
Your Name: Telephone:
Company: Department:
Company Address:

Product Purchased

From:
Company City State

Location in Manual Comment/Suggestion

The manual’s good
points:

What needs to be
improved:

No postage necessary if mailed in U.S.A.
Fold on two lines (located on reverse side), tape and mail

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

Cover Part No. 2310002-0001

i
Texas
INSTRUMENTS

