
' j

f '-

...

TEXAS INSTRUMENTS
Bringing Affordable Electronics To Your Fingertips

Home Computer

Software Development System
Programmer's Guide

ORIGINAL ISSUE 16 AUGUST 1979

REVISEO e NOV:MSEM 1979

Personal Computer Division

-.-

-----------~ --

Nove-mbe"r 6, 1979

Tne :ontents of this manual have been reviewed by members
of the Personal Computer Division for clarity, correctness and
completeness If you find contradictions to any claims made in
this manual, or have any suggestions or corrections, please let
us know on the UseT's Response Sheet found in the back of this
manual.· Send your response to:

Texas Instruments Incorporated
Personal Computer Software Manager
RE: Personal Computer Division Manuals
P. 0. Box l050S, MIS 5990
Lubbock, Texas 79409

Thank you.

~ome Computer Software Development System

" 0

2. 0

3. 1

- 0
.a. 1
4. 2

5 C
= 1
5 2
i:; ~ ._ .. -'

5. 4

e. o

Ir,t'!"oduction

Applicable Documents

The GPL Assembler
GPLASM Command
GFLXREF Command

~raphics Language Linker
Operation
Error Indications

0 90/10" Graphics Language Emulator
Operation
Debug Features
KeyboaT'd Codes
Error Messages

990/10 Gr~phics Language Debugger

1

2

5
5
5

6
6
8

10
1 1

12

7 0 BASIC Program Conver£ion for GROM 13
7. 1 Functional Description 13
7. 2 Use 14
7. 2 1 General Operation 14
7 2. 2 Extended Feature, 15
7. 2. 2 1 Program Name 15
7. 2. 2. 2 Duplicate Lines of Basic 15
7. 2. 2. 3 Large Programs 16
7. 2. 2. 4 Custom Start-Up Code 16
7. 2 2. 5 Disable Vari~ble Name Replacement 17
7. 3 Factors of Program Size 19

06N0V 79

.-.--

"

~om~ Com~uter Software Development System

The Gr~phics Language Assembler, Linker and Simulator are
used to create Gr~phi:s Language programs and to test them. The
Assembler is used to translate GPL source code into a machine
executaole obJect code and to produce a listing for the
pro;rammer. The Graphics Language Linker is used to concatenate
two or more Graphics Language CGPL> obJect modules together.
The linked obJect module or a single obJect module can be tested
with the GPL simulator on the 990/10 to detect errors. ·

After the software has been prepared with the GPLASM or
BASGRO"'i command, the GPL det,ugger is used to load, ext.cute, and
debug the software on a GROM simulator. The BASGRDM command is
used tc prepare a BASIC program to erecute in a GROM simulator.

PAGE 1

------~----

=--

~ome Computer Software Development System

2. 0 ..;oolicable Documents
Graphics Programming Language

Programmer's Guide

Graphics Programming Language
Debugger Operation Guide

PAGE 2

06N0V 79

~cme Computer Software Development S~stem 06NOV 79 '

3. 0 The GPL Aes~mbler

The GPL Assembler is written in a mixture of FORTRAN and
,Hsemoly language, and is available foi- use on the 990/10. The
assembler translates a GPL source program into an executable
~bJe,~ code ano also proouces a listing file. The assem0ler is
e~ecu~ed via the GPLASM command. The prompts for the GPLASM
commano are described in the following section. A cross
~eference program is also available to provide a listing of all
symbols defined in a GPL aisembly and all references to those
symbols. The GPL cross reference program is invoked by the
GPLXREF command and is also described in a later section.

The GPLASM command,
following prompts:

when enttor-ed,

G~APH!CS LANGUAGE ASSEMBLER
SOURCE FILE:
OBJECT FILE:

LIST !='ILE:
PAST/CURRENT/FUTURE CP,C,F}:

UNIT21
UNIT20
UNIT22
C

ti.till display the

The SOURCE FILE should bt the Qraphics Language source file
created using the 990/10 text editor. The OBJECT FILE is the
file which is to r-eceive the obJect code from the assembler.
The LrST FILE is the file which is to receive the listing
generated by the assembler. !f the obJect and/or listing files
do not exist, they ar-e cr-eated by the assembler. If either file
~xists, it is replaced by the new file gener-ated by the
assembler-.

UN!T20, UN!T21, and UNIT~ are synonyms supplied by the
GPLASM procedure file and will be changed when the source,
obJect and listing files ar-e specified.

3. 2 GPLXREF Commang

The GPLXREF command is used to produce • cross r-eference
listing of the symbols used in a QPL program. When the QPLXREF
command is entered into the 990/10 the following prompt is
displayed:

GRAPHICS LANGUAGE CROSS REFERENCE
LIST FILE: UN!T27

The LIST FILE specified is the file to which the cr-oss
reference is to be written. The cross reference produced is for
the GPL program most recently assembled on the user's particular
ter-minal. Therefore, if a cross r-eference is desi'l'ed, it must
be done befor-e any other GPL assembly is done. It must also be

PAGE 3

--------- --------~~-------

Home Computer Software Development System

cone before the station is signed orr the system.

UNIT27 is a synonym supplied by the GPLXREF
is changed when the cross reference listing file

PAGE 4

06N0V 79

procedure and
is specified.

,

Home Computer Software Developme~t System 06N0V 79

Tre linker accepts a list of files containing Grapr.ics
~an9uage ObJect modules and concatenates those modules together
:o form one linked obJec~ module. This makes it possible to
cooe, assemble and, debu, a program in small or moderate sized
carts, and ther: combine the parts afterward. Also, a pT'ogram
must be linked tc the mo~itor before it can be run on tne 990/10
Emu la tor.

The list of files to be concatenated
control file which is created with the text
of the control file contains the name of

• obJect file name starts in column 1 of the
synon~ms. A sample contT'ol file follows:

. HCDEV. CONSOL..10
HC2. DEMO OBJ. SPOTLOOP
HC2. DEMO. OBJ. SALESMSQ
HC2. DEMO. OBJ GUIKDEMO
HC2. DEMO. OEJ. SUBDATA

is conteined on a
editor. Each record

one obJect file. The
record and cannot use

The linker is executed with the LINKGPL command. This
command asks for the name of the control file and the name of an
output obJect file.

LINK GRAFHICS L.ANGUA~E PROGRAMS
CONTROL FILE:

OB.JECi' FILE:
the output file need not be created before the linker is run.
lf it already exists, it will be replaced with the new output.
Synonyms may be used i~ the names of these two files as in other
SC I commands.

The GPL linker runs in the background mode to allow other
terminal activity during processing. Succest-ful execution is
indicated with the message "GPL LINKER NORMAL. COMPLETION". When
completed the output obJect file may be used by the simulator.

4. 2 ErroT' Intjications

Error conditions are reported with the termination message
"XXXX ERROR ENCOUNTERED". A description of the cause of the
eT'rOT'. code "XXXX" can be found in Volume VI. Chapter 6 of the
DXlO manuals.

PAGE 5

------------ -------------

Home Computer Software Development System Oc,NOV 79

~- 0 G-ephics La~oueoe Lin~er

The linker a::::::::epts a list of files containing Grapnics
_an;uage obJect module1 and concatenates those modules together
to form one linked obJect module. This makes it possible to
cooe, assemble and, debug a program in small or moderate si:ed
parts, and ther, combine the parts afterward. Also, a program
must be linked tc the monitor be&ore it can be run on tne 990/10
i::m u 1 at or.

The list of files to be concatenated
control file which is created with the teit
of the control file contains the name of
obJect file name starts in column 1 of the
synon~ms. A sample control file follows:

. HCDEV. CONSOL10
HC2. DEMO. OBJ. SPOTLOOP
HC2. DEMO. OBJ. SALESMSG
HC2. DEMO. OBJ. GUIKDEMO
HC2. DEMO. OBJ SUBDATA

is contained on a
editor. Each record

one object file. The
record and cannot use

The linker is elecuted with the LINKGPL command. This
command asks for the name of the control file and the name of an
output object file.

LINK QRAPHICS L~NGUAQE PRQ;RAMS
CONTROL FILE:

OBJECT FILE:
the output file need not be created before the linker is run.
lf it already exists, it will be replaced with the new output.
Synonyms may be used i~ the names of these two files as in other
SCI commands.

The QPL linker runs in the b~ckground mode to allow other
terminal activity C:uTing processing. Successful execution is
ir,dic:ated with the mu,sage "GPL LINKER NORMAL COMPLETION". When
completed the output obJect file may be used by the simulator.

4. 2 Error Indicat~ons

Error conditions are reported with the termination message
"XXXX ERROR ENCOUNTERED". A description of the cause of the
error - code "XXXX" can be found in Volume VI, Chapter c of the
DX10 manuals.

PAGE

Heme Computer Software Development System 06N0V 79

5. 0 990/10 Graehics Lanouage Emulator

ihe GPL Emulator allows for the interactive debug of GPL
orograms on tne 990/10 computer. Before a program can be run on
tne emulator, it must be linked with the file. HCDEV. CONSOLlO
containing the console software. This file should b~ the first
one listed in the control file.

5. l Operation

The Graphics Language Emulator is executed
command. This command will request the name
containing the linked obJect code.

GRAPHICS LANGUAGE EMULATOR
OBJECT F'ILE:

with the GPL10
o~ the file

When execution begins, the first record of the obJect
module is displayed on the bottom line of the screen. When the
module is
TV screen.

loadec, the screen will be formatted to simulate the
Two columns of twelve lines are used on the 913
and one column of 24 lines on the 911 terminals In

either case t~e right side of the screen is used for debug
display.

The execution of GPL instructions is done as on the home
computer with the following exceptions;

1) MOVEs to the VOP registers •rt ignored.
2) Tne defined character set consists of both

tne upper and lower case ASCII character
set and c~nnot be changed <an attempt will
change VOP RAM but not the display),
although characters can be moved from one
portion of the character set to another.
See Table ~- l for a list of corresponding
he,adecimal values and ASCII characters.
Note that the lower case characters are
avail~ble only on the 990/10 emulator
and cannot be used on the 99/4.

3) The SCAN instruction does not return with
a no-key-down indication unless the debug
mode is entered. 1n1s means that timer
loops, etc. will not wor-k.

PAGE 6

06NO'-,.! 79

·- H::;,. CH,.::,,ri. ASCII H:: >< CHAE ,e..sc 11 HEX CHAR 1'>.SC I l

,......_,,,.., 40 AO fl
..,,.._

80 EO so;s.:e 60 co v~• c..,,_,

01 41 Al A 21 81 El 61 Cl =
02 42 A2 13 ...,.-, 82 E2 II 62 C2 b
03 43 t-.3 C 23 83 E3 ;I 63 C3 C

04 44 A4 D 24 84 E4 s 64 C4 d
05 45 A5 E 25 85 E5 '½ 65 cs e
06 4o A6 r= 26, 66 E6 t:~ 66 C6 f
(:r'7 47 A~ .~, 27 67 E7 67 C7 g • I ~

OS 48 AS H 28 88 ES 68 cs h
09 49 ~,e; . 29 89 E9 69 C9 i J.

OA 4A ,-,A J .., " ... ,., SA EA * 6A CA J
OE 4B AB II,, 2E BB EB + 6B CB k
oc 4C AC L 2C SC EC 6C cc 1
t)D 4!) ~,rt M 2D 80 ED 60 CD tr,

o:: 4E AE N 2E SE EE 6E CE T'l

OF 4F AF 0 2F SF EF / 6F CF 0

10 50 BO p 30 90 FO 0 70 DO p
1 1 51 Bl G 31 91 Fl 1 71 Dl q
12 52 B2 R 32 92 F2 2 72 D2 T·

l~ 53 !;;3 s 33 93 F'3 3 73 03 s
14 54 B4 .,.. 34 94 F4 4 74 D4 t I

15 55 B5 u 35 95 F5 5 75 D5 u
,...,,· ,., ~6 56 Ei6 'v' 36 96 F6 6 7 6 D6 V

17 57 B7 w 37 97 F7 7 77 D7 w , :, ·- 58 BS X 38 98 FB 8 79 D8 X

19 5Cr B9 y 39 99 F"9 9 79 D9 y
lA 5A BA z 3A 9A FA 7A DA z
lB SB BB C 3B 9B FB 7B DB { . ,..
.I.,., 5C BC \ 3C 9C FC .•·· 7C DC '•

lD 5D BD J 30 9D FD - 70 DP }

lE 5E BE 3E 9E FE ~:. 7E DE ...
lF' 5F BF' 3F 9F FF ·"? 7F OF space

Table 5. 1

PAGE 7

Home Computer Scltware Development Sy1tem 06:INOV 79

5. 2 Cebuo Features

The area on the right side of the CRT screen is used for
debvg interaction. The screen lines and their use is listed
below.

LINE
0
1
2
::3
4
5-10
11

USE
GPL program counter
program status
breakpoint address
itep mode indication
second keyboard function indication
debug command interaction
where cursor is positioned when

input is needed

The GPL program counter (on line O> is updated every 100
,:;PL instructions, whenever a scan is done, when a bre.akpoint is
taken, or when a program error it detected. Line 1 indicates
the program status with the following mess.ages:

PAUSE:)
BREAKPOINT
* ERR AODR +

* OP ERROR*

* ENO v'E.CT *
(blank)

waiting for input of debug key
breakpoint has been taken
OPL ~ddress error at the

instruction identified by the PC
undefined GPL instruction at the
addres, identifi•d by the PC

undete,ted QPL ♦rror - see S. 4
program is running Cif the cursor

is at tht lower right corner
of a 913 or center right edge
of a ~11, • SCAN instruction
is exec:uiring>

Certain keyboard keys are used for debug purposes. These
keys are tested every 100 GPL inst'ructions, whenever a SCAN
insti-uction is executed, and when tht debug mode is executing.
ihe debug mode is elecuting whe~ever line 1 o~ the debug column
is not. blank. The debug mode may be entered before program
execution begins by pressing one of the following debug keys
while the GPL program is being loaded <as evidenced by the
header record being display~d on the bottom line). The debug
keys ~nd their use are:

z.U.
FO
Fl
F2
F3
F4
F5
F6

911
CTRL l
Fl
F2
F3
F4
F5
F6

Ch>it simulation
Resume simulation
Second keyboard function
Modify program counter
Set breakpoint
Step one GPL insti-uction
Inspect and modi,y memory

PAGE 9

·..._..,.

Oc,NOV 7.9

When nexacecimal numbers are requested, the user enters a
!~~:n; o~ nelacecima: cnar;;cterf termin~ted Dy~ non-heiadecim~l
cr,a':"acter (L•sucll~ = space or new-line). The last 2 or 4
:haT'acters entered are used oepending on whetner one byte or two
are n~edea. Thus if an error is made entering a number, more
chaT';;Cters are entered to effectively throw away the previous
c-ne s ..

(CONTROL-1
sim~lator wti:n is 1nt1cated
NORr·-iA:... TERr1IN~.T!Or·-..:".

on the 911>
by the message

terminates the GPL
"GPL SlMULf"-.TOR

The Fl key is used to resume the simulation when line l of
the ce-~1..1 ; display shoo.•s the "PAUSED" message.

The F2 key sets the keyboard in the second function mode.
This mode allows a character set extension for control
characters and applies only to SCAN instructions to keyboard 0.
Tne oefined control characters are listed below (see 5. 3). The
second function mode is turned off when a ch£racteT is entered
on Keyboard O OT when the F2 key is entered again. Since the
second function key causes GPL simulation to resume immediately,
:are should be t=ken that this key is used only when a SCAN is
t-e:.ng cone.

The
Counter.
cr,ang1r1g
waits for

F3 key prompts foT a value for the GPL Program
If no value is entered the PC is not changed. After
the PC the emulator di~plaws the "PAUSED" message and
another function key.

The F4 key prompts the user for a breakpoint address. When
entered, the breakpoint address will be displayed on the
screen. !f no valJe is entered, the breakpoint is set to
location 0000 which is indicated by a blank breakpoint address
<line 2). After breakpoint entry the debugger will display the
"PAUSED" message and wait foT' enother function key. The
breakpoint address Cline 2> is compared to the GPL PC at each
instruction execution. When a match is found, • breakpoint is
taken and indicated in line 1. The match must be on the addre1s
of the first byte of an instruction.

The· F5 key will cause immediate execution of one Graphics
Language instruction after which a breakpoint will be taken
independent of the current breakpoint •ddress. The execution in
step mode is indicated by a "STEP MODE" message on line 3 of the
debug. display. If this message does not immediately go a~ay,
the program is executing a SCAN instruction, and a key must be
entered to the SCAN before the step mode will complete.

The F6 key will first ask the user whether Cl>CPUi
(processor RAM), (2iVDP (RAM>, or (3)QROM CROM> is to be
displayed. The user enters a 1, 2, or 3 accordingly. The user
is then prompted for the address to be displayed. If an invalid

PAGE

\

'

-.------

Home Computer- Software Development System 06NOV 79

-:adress is entered the 1.iser is r-e-prompted .Por the address. ,,.-..
When the address is entered the data for that location is
displayed. The user may change the data by entering new data,
may proceed to the next location (+ key) or the previous
location <- key). Entry of any other key will c:ause the
debugger to enter the "PAUSE" mode.

S. 3 Keyboard Codes

When keyboard O is SCANned, the ASCII characters on the
terminal key~oard <including lower case on the 911) may be
enter&d. When keyboards 1 or 2 are SCANned, only certain
characters are used. These characters and the codes produced by
them are li!ted in table 5. 3 below.

When tne second function flag is set <as indicated by line
4 of the debug display), certain keys on the keyboard are used
to provide special key codes. The second function characters on
keyboard O SCAN are as follows:

SC:COND
!,(EY C'UNCTION cope:

A Aid To Uter >Ol

C BASIC BREAK/Clear ;>Q;?

0 Forw.ard Space :=-09

r:: Up Arrow >OB

F Delete ChaT'acter >03

G In$ert Character)04

R Redo Screen >06

s Bae: k Space >OS

.,.. Clear Line >07 I

\.,/ Program Definable >OC

w Re-start GROM ?T'Og >OE

X Down Arrow >OA

z Previous Screen >OF

Table 5. 2

To simulate the handheld keyboards, certain keys are used

PAGE 10

. ~-~·

0-9

/

=

N

s

G

C

HANDHELD
KEV

C,-9

civicie

multiply

=

next

set,

go

:lea-r

iable 5.3

a SC~N inst'!"u:tion on
and ~he e~u1valen~

11..EY
CODE

0-9

10 c >O~.)

1 1 C>OE)

12 C>OC>

13 c>OD)

14 (>OE>

15 <>OF)

16 <:>10)

17 < > 11)

18 <>12)

1 c;, (>13)

--------~-

other tnar1
r,anohelci

If any othe-r k•y is entered when the handheld is being
SCANed, a nc-kty-down indication is retu-rned and the key is
i gnoT'ed.

GPL execution erT'oT' messages are desc-ribed in 5.2. Some
undetected GPL erroT'i cause abno-rmal te-rmination of the
simulato'r and the displaying of the"* ENO VECT *" mess.age.
When this occu-rs, all of the debug featu-res a-re still available;
howeve-r, if the prog-ram is -restarted by modifying the PT'og-ram
CounteT' and the er-roT' occu-rs again, the task will be abo-rted and
cont-rel will be returned to the SCI of the 990/10.

Othe-r error messages can be displayed if an erT'or is
encounte-red while the GPL p-rog-ram is being loaded into memory.
The message "XXXX ERROR ENCOUNTERED" indicates a supe-rvisoT' call
eT'T'0T'. The cause can be dete-rmined by -refeT'enc:e to Volume VI,
ChapteT' 5 of the DXlC manuals. The message "BAD DATA FORMAT"
T'efeT'$ to an e-r-ro-r -reading the GPL obJect. This error occu-rs
when the load file does not contain GPL obJect code.

PAGE 11

Home Ccmouter Software Development System 06NClV 79

6. 0 990/10 Graohics Language Debugaer

The GPL debugger provides the human interface necessary to
LOAD, EXECl!TE, and DEBUG GPL software in a GROM simulator. When
tr, e software has been prepared w i th the GP LASM C Section ::3. 1) or
BASGRQM (Section 7. 0) command, the programmer is ready to start
tne aeoug session. T,::i begin debug, the command DEBUG is entered.
This provides the user with the following prompt screen:

GPL DEBUGGER
USER MEMORY < K >: 8
COMMAND LIBRARY: . HCOEV. COMLIB

The default memory of 9K bytes is usually sufficient so that
only t~e ENT'ER key is necessary. The Command Library Module file
name is provided by default so you only need to press the ENTER
key The Command Library file is a source file of debugger PROCs
designed to aid the programmer in the debug process. Each
~rog~ammer may compose his own set of FROCs and enter that file
name after the COMMAND LIBRARY prompt. It is not necessary to
load a Command Library, but it is helpful to be able to use the
PROCs it provides. If a Command Library rile name is given,
there will b~ a pause before execution of the debugger begins.

The debugger then starts execution and the user is prompted
(with?) for commands to:

o Connect the debugger to a particular
system simulator.

o Load programs into simulat•d GROM.

o Oebug programs with HALT, RUN, BREAK,
UNBREAK, and inspect/modify memoT'y.

More detail~d instructions can be found in "Qraphics Programming
Language Debugger Operation Guide. 11

PAGE 12

06NOV 79

7n!~ section oescr1oes tne capabilities of ~nd procecures
~c~ o~ecaration of a BASIC program to execute in a GROM
;1mulator on a Software Development System. This procedure
apcl:es to program development with a 990/10 computer and a Home
Computer Simulator (which may consist of a Home Computer and a
GRAM simulator> This section is specifically for use by a
~ersQ~ ceveloptng a BASIC program for a solid state Command
Module <GROM) .

These procedures allow a programmer to enter a BASIC
t'!"c,g,..am oT'\to a 9C?0/10 disk .t:ile and conver-t it into a form which
can be loaded into and erecuted from a GROM simulator. When
testing is complete, the resulting code can be placed in GROM
chips for mass distribution as a solid state Command Module.

Section 7.2 describes the use of the BASGROM command and
options provided to customiie the resulting GROM code and
eliminate copies of duplicate lines. Programs are stored most
efficiently if short variable names are used. The EASGROM
program will convert variatle names into short names so that the
progrilmmer can write r-eadable c:ode (see Section 7. 2. 2. c,)

The BASGROM command produces four segments of code:

o GROM header
o BAS!C text
o BASIC line number table
o Start-up code

The GROM header is alwa~s placed in OROM 3. The progr-ammer
has some control over the contents of the GROM header <Sections
7. 2. 2. 4, 7.2. 2. 5)

The BASIC text consists of the converted lines of BASIC
code prepared for the GROM. More detail of the contents of this
text is given in Sttction 7. 3. This BASIC text normall1,1 starts
immediately after the GROM header but the placement in memory
can be •ltered with the "REM+" st•tement described in Section
7. 2. 2 3.

The BASIC line number table follows the program text. This
consists of four bytes for- each BASIC program line •nd contains
the line number and a pointer to the text for that line. The
line number table must be contiguous and must not cross a GROM
boundary.

When a GROM BASIC program is selected on the Home Computer
menu, QPL code is execut•d before the BASIC Interpreter takes
co~trol. A default version of this start-up code is provided by

PAGE 13

Home Computer Software Development System

the BASGROM program unless an option is selected
7. 2. 2. 4 l.

7. 2 Use

06NQ'v' 79

<Section

The use of the BASGROM utility program is described and
various options are discussed in detail.

7. 2. 1 General Operation

The conversion of a BASIC program into GROM code is
accomplished with the BASGROM command on the 990/10 computer.
This command initiates a two phase process. The first phase is a
conversion of the BASIC source into a form which can be
assembled by the GPL assembler. The second phase is a GPL
assembly which produ~es an obJect module which can be loaded
into a simulator. This process is illustrated in Figure 7. 2. 1.

The BASGROM command prompts are as follows:

CONVERT BASIC FOR GROM
BASIC SOURCE FILE:

GPL SOURCE <OUTPUT):
OBJECT < OVTPUT >:

GPL LISTING (OUTPUT):

The BASIC SOURCE file must include line numbers starting in
column 1 and must ~e ordered in ascending line number order.
This is as a program listing would be. The END statement is not
required. REM sta~ements cannot be referenced in other
s-eate!Tlents such as GOTO, etc.

The GPL SOURCE rile is a temporary file used to pass data
from phase one to phase two.

The GPL OB~ECT file 1s the data that can be loaded into a
simulator for execution.

The GPL LISTING rile contains a listing result of phase
two. It is useful if any errors were encountered during pnase
two.

After entering all of the required file names, phase one of
the crunch will execute in the foreground mode. The GPL assembly
which follows executes in the background mode. The WAIT command
is convenient to wait for phase two completion. When the GPL
assembly is complete, a message is displayed on the CRT to
indicate if any errors have been encountered.

PAGE 14

I • ,

I

..

BASIC
SOURCE

GPL

FILE

FILE ,.
LOMD TO SIMULATOR

' Pi'-.SS l
<CRUNCH)

(G?LASM)

I

' DONE

LISTING
FILE

Action of BASGROM Command
Figure 7. 2. 1

06N0\-' 79

CHECK
FDR
ERRORS

Certain features are provided in BASGROM through the use of
REM statements. Certain types of REM !tatements control program
name, duplicate lines, placement of code, start-up c:ode, and
variable name repla~ement. Each of these REM statements has a
special character as the first character following the REM.
IMPORTANT NOTE: The ampersand <~> should never be used as the first

symbol in a REM statement.

7. 2. 2. 1 Program N4me

ln REM *name <ln • line number)

The asterisk indicates that the next~~ characters are to
be used as the program name for the Home Computer menu.

7. 2 2 2 Duplicate Lines of Basic

ln REM/lr12

This statement specifies that the statement immediately
following the REM/ statement is identicel to the statement at

PAGE 15

------ ----------------------~--

---------- -~--

.
Home Computer Software Development System 06NOV 79

ln2. The 8;..SGROM program will not produce text .Por the ,,,.,...
succeeding statement. The line number table entry for the
succeeding line will point to the text for ln2. Refer to section
7. 3 for a description of the·memory representation of a GROM
BASIC program.

7. 2. 2. 3 Large Programs

ln REM+

The BASGROM command produces a GROM header in GROM 3. The
BASIC program will follow that GROM header. The REM+ statement
will cause subse~uent lines of the BASIC program to be placed in
the next se~uential GROM <the first REM+ will start at GROM 4,
ORG 0). The BASIC line number table (4 bytes for each BASIC
statement) is produced at the end of the BASIC program.

7. 2. 2. 4 Custom Start-Uc Code

l n REM ,,. a Cl d r es s

The ado'!"ess is a fi·.,e-c:haracter hex number <e.g., >8020).
BASIC programs in GROM are initiated by a short segment of GPL
code. Control returns to the G~L code after the program
completes tither normally or by an error. If an error has
occurred, the condition bit will be set on return from 13ASIC. If
the above statement is not included, BASGROM will include tne
following start-up co~e with the BASIC program.

STARTl BR START2
LOOP1 SCAN

BR LOOPl
S:X!T

START2 MOVE l FROM ROM(#H20) TO VDP (1)
MOVE 21 FROM ROM <#OMPMES) TO RAM C> 195)
l3 START3

OMPMES DATA : ONE MOMENT PLEASE ...
H20 DATA :>20

PAGE 16

"

..

System 06NC}✓

= REM incluo~o, following is

Tnen the programmer must supply st~rt-up :ode of the form:

STARTl

*
LOOP

Ef'~D2

-:::~ ;. --~ ..., 1 HI"\ I,::;

BR START2

BR END2
SCAN
BR :....OOP
E:XIT

(START UP CODE)
E >6010

ENTRY FOR START UP
ENTRY FOR END OF PROGRAM

TEST PGM ERROR FLAG
IF EROR,WAIT

GO TO CALL BASIC

Execution will be at STARTl before BASIC program execution
and at STA~T1+2 at BASIC program termination. Therefore, the BR
instruction at STAFTl is re~uired. The actucl code located at
START2 depends on the individual progr•m requirements.

7. 2 2. ~ D;setle Variablf Name Replacement

ln REM -

The REM statement will dis.ble the substitution of
minimal lengtn vari~ble names for the user's variable names.
This is valuable when using th~ program transfer feature
described i~ Section 7.2. 3. This statement must be entered
previous to any use of a variable name in the BASIC program. If
variables have been u~ed before this st•tement occurs, an error
will be produced and the statement will be ignored.

PAGE 17

Home Computer Software Development System 06N0V 79

7. ~ Factors of Program Size

The following items give an overview of tne space necessary
~or various items of BASIC syntax. This is to assist in keeping
BASIC programs as short as possible.

Each BASIC program line has 4 bytes of overhead in the line
number table. Each program line which is not a duplicate of
another has a text string representing the program line. This
text string has one byte of overhead to represent the end of
line The lengths of other items are:

Key words - 1 byte <GO TO are two key words but GOTO
is one).

Variables - 1 byte for each letter in the variable name.
The BASGROM command will convert user variable
names into short names.

Numeric constants 2 bytes plus the number of characters
in the constant. Because of this, it
can be more efficient to use variables
for often-used constants.

String Constants - 1 byte for each character including
q_uotes.

Line n 1Jmbers in GOSUB, GOTO, etc. - 3 bytes for each
line number

PAGE 18

-· I

'

1

- ., I

Telephone

:. otii;.a~,y ______________________ Date

~lease l:st =n~ discrepancy found in tnis manual by p~ge,
P a ,. .., ~ r a i:: r, , f 1 9 1..' - e , o " ta b l e n um ti e r i r, t r, e f o l 1 ow i n 9 s p a c e .
~dt:t:cnal sneets rna~ be attached If there are an~ ether
s~;gest:ons tnat ~01.. w15n tc rnaKe, ~eel free to include them

COMMENT/SUGGESTION

