

'

-.------

Home Computer- Software Development System 06NOV 79

-:adress is entered the 1.iser is r-e-prompted .Por the address. ,,.-..
When the address is entered the data for that location is
displayed. The user may change the data by entering new data,
may proceed to the next location (+ key) or the previous
location <- key). Entry of any other key will c:ause the
debugger to enter the "PAUSE" mode.

S. 3 Keyboard Codes

When keyboard O is SCANned, the ASCII characters on the
terminal key~oard <including lower case on the 911) may be
enter&d. When keyboards 1 or 2 are SCANned, only certain
characters are used. These characters and the codes produced by
them are li!ted in table 5. 3 below.

When tne second function flag is set <as indicated by line
4 of the debug display), certain keys on the keyboard are used
to provide special key codes. The second function characters on
keyboard O SCAN are as follows:

SC:COND
!,(EY C'UNCTION cope:

A Aid To Uter >Ol

C BASIC BREAK/Clear ;>Q;?

0 Forw.ard Space :=-09

r:: Up Arrow >OB

F Delete ChaT'acter >03

G In$ert Character)04

R Redo Screen >06

s Bae: k Space >OS

.,.. Clear Line >07 I

\.,/ Program Definable >OC

w Re-start GROM ?T'Og >OE

X Down Arrow >OA

z Previous Screen >OF

Table 5. 2

To simulate the handheld keyboards, certain keys are used

PAGE 10

. ~-~·

0-9

/

=

N

s

G

C

HANDHELD
KEV

C,-9

civicie

multiply

=

next

set,

go

:lea-r

iable 5.3

a SC~N inst'!"u:tion on
and ~he e~u1valen~

11..EY
CODE

0-9

10 c >O~.)

1 1 C>OE)

12 C>OC>

13 c>OD)

14 (>OE>

15 <>OF)

16 <:>10)

17 < > 11)

18 <>12)

1 c;, (>13)

--------~-

other tnar1
r,anohelci

If any othe-r k•y is entered when the handheld is being
SCANed, a nc-kty-down indication is retu-rned and the key is
i gnoT'ed.

GPL execution erT'oT' messages are desc-ribed in 5.2. Some
undetected GPL erroT'i cause abno-rmal te-rmination of the
simulato'r and the displaying of the"* ENO VECT *" mess.age.
When this occu-rs, all of the debug featu-res a-re still available;
howeve-r, if the prog-ram is -restarted by modifying the PT'og-ram
CounteT' and the er-roT' occu-rs again, the task will be abo-rted and
cont-rel will be returned to the SCI of the 990/10.

Othe-r error messages can be displayed if an erT'or is
encounte-red while the GPL p-rog-ram is being loaded into memory.
The message "XXXX ERROR ENCOUNTERED" indicates a supe-rvisoT' call
eT'T'0T'. The cause can be dete-rmined by -refeT'enc:e to Volume VI,
ChapteT' 5 of the DXlC manuals. The message "BAD DATA FORMAT"
T'efeT'$ to an e-r-ro-r -reading the GPL obJect. This error occu-rs
when the load file does not contain GPL obJect code.

PAGE 11

Home Ccmouter Software Development System 06NClV 79

6. 0 990/10 Graohics Language Debugaer

The GPL debugger provides the human interface necessary to
LOAD, EXECl!TE, and DEBUG GPL software in a GROM simulator. When
tr, e software has been prepared w i th the GP LASM C Section ::3. 1) or
BASGRQM (Section 7. 0) command, the programmer is ready to start
tne aeoug session. T,::i begin debug, the command DEBUG is entered.
This provides the user with the following prompt screen:

GPL DEBUGGER
USER MEMORY < K >: 8
COMMAND LIBRARY: . HCOEV. COMLIB

The default memory of 9K bytes is usually sufficient so that
only t~e ENT'ER key is necessary. The Command Library Module file
name is provided by default so you only need to press the ENTER
key The Command Library file is a source file of debugger PROCs
designed to aid the programmer in the debug process. Each
~rog~ammer may compose his own set of FROCs and enter that file
name after the COMMAND LIBRARY prompt. It is not necessary to
load a Command Library, but it is helpful to be able to use the
PROCs it provides. If a Command Library rile name is given,
there will b~ a pause before execution of the debugger begins.

The debugger then starts execution and the user is prompted
(with?) for commands to:

o Connect the debugger to a particular
system simulator.

o Load programs into simulat•d GROM.

o Oebug programs with HALT, RUN, BREAK,
UNBREAK, and inspect/modify memoT'y.

More detail~d instructions can be found in "Qraphics Programming
Language Debugger Operation Guide. 11

PAGE 12

06NOV 79

7n!~ section oescr1oes tne capabilities of ~nd procecures
~c~ o~ecaration of a BASIC program to execute in a GROM
;1mulator on a Software Development System. This procedure
apcl:es to program development with a 990/10 computer and a Home
Computer Simulator (which may consist of a Home Computer and a
GRAM simulator> This section is specifically for use by a
~ersQ~ ceveloptng a BASIC program for a solid state Command
Module <GROM) .

These procedures allow a programmer to enter a BASIC
t'!"c,g,..am oT'\to a 9C?0/10 disk .t:ile and conver-t it into a form which
can be loaded into and erecuted from a GROM simulator. When
testing is complete, the resulting code can be placed in GROM
chips for mass distribution as a solid state Command Module.

Section 7.2 describes the use of the BASGROM command and
options provided to customiie the resulting GROM code and
eliminate copies of duplicate lines. Programs are stored most
efficiently if short variable names are used. The EASGROM
program will convert variatle names into short names so that the
progrilmmer can write r-eadable c:ode (see Section 7. 2. 2. c,)

The BASGROM command produces four segments of code:

o GROM header
o BAS!C text
o BASIC line number table
o Start-up code

The GROM header is alwa~s placed in OROM 3. The progr-ammer
has some control over the contents of the GROM header <Sections
7. 2. 2. 4, 7.2. 2. 5)

The BASIC text consists of the converted lines of BASIC
code prepared for the GROM. More detail of the contents of this
text is given in Sttction 7. 3. This BASIC text normall1,1 starts
immediately after the GROM header but the placement in memory
can be •ltered with the "REM+" st•tement described in Section
7. 2. 2 3.

The BASIC line number table follows the program text. This
consists of four bytes for- each BASIC program line •nd contains
the line number and a pointer to the text for that line. The
line number table must be contiguous and must not cross a GROM
boundary.

When a GROM BASIC program is selected on the Home Computer
menu, QPL code is execut•d before the BASIC Interpreter takes
co~trol. A default version of this start-up code is provided by

PAGE 13

Home Computer Software Development System

the BASGROM program unless an option is selected
7. 2. 2. 4 l.

7. 2 Use

06NQ'v' 79

<Section

The use of the BASGROM utility program is described and
various options are discussed in detail.

7. 2. 1 General Operation

The conversion of a BASIC program into GROM code is
accomplished with the BASGROM command on the 990/10 computer.
This command initiates a two phase process. The first phase is a
conversion of the BASIC source into a form which can be
assembled by the GPL assembler. The second phase is a GPL
assembly which produ~es an obJect module which can be loaded
into a simulator. This process is illustrated in Figure 7. 2. 1.

The BASGROM command prompts are as follows:

CONVERT BASIC FOR GROM
BASIC SOURCE FILE:

GPL SOURCE <OUTPUT):
OBJECT < OVTPUT >:

GPL LISTING (OUTPUT):

The BASIC SOURCE file must include line numbers starting in
column 1 and must ~e ordered in ascending line number order.
This is as a program listing would be. The END statement is not
required. REM sta~ements cannot be referenced in other
s-eate!Tlents such as GOTO, etc.

The GPL SOURCE rile is a temporary file used to pass data
from phase one to phase two.

The GPL OB~ECT file 1s the data that can be loaded into a
simulator for execution.

The GPL LISTING rile contains a listing result of phase
two. It is useful if any errors were encountered during pnase
two.

After entering all of the required file names, phase one of
the crunch will execute in the foreground mode. The GPL assembly
which follows executes in the background mode. The WAIT command
is convenient to wait for phase two completion. When the GPL
assembly is complete, a message is displayed on the CRT to
indicate if any errors have been encountered.

PAGE 14

I • ,

I

..

BASIC
SOURCE

GPL

FILE

FILE ,.
LOMD TO SIMULATOR

' Pi'-.SS l
<CRUNCH)

(G?LASM)

I

' DONE

LISTING
FILE

Action of BASGROM Command
Figure 7. 2. 1

06N0\-' 79

CHECK
FDR
ERRORS

Certain features are provided in BASGROM through the use of
REM statements. Certain types of REM !tatements control program
name, duplicate lines, placement of code, start-up c:ode, and
variable name repla~ement. Each of these REM statements has a
special character as the first character following the REM.
IMPORTANT NOTE: The ampersand <~> should never be used as the first

symbol in a REM statement.

7. 2. 2. 1 Program N4me

ln REM *name <ln • line number)

The asterisk indicates that the next~~ characters are to
be used as the program name for the Home Computer menu.

7. 2 2 2 Duplicate Lines of Basic

ln REM/lr12

This statement specifies that the statement immediately
following the REM/ statement is identicel to the statement at

PAGE 15

------ ----------------------~--

---------- -~--

.
Home Computer Software Development System 06NOV 79

ln2. The 8;..SGROM program will not produce text .Por the ,,,.,...
succeeding statement. The line number table entry for the
succeeding line will point to the text for ln2. Refer to section
7. 3 for a description of the·memory representation of a GROM
BASIC program.

7. 2. 2. 3 Large Programs

ln REM+

The BASGROM command produces a GROM header in GROM 3. The
BASIC program will follow that GROM header. The REM+ statement
will cause subse~uent lines of the BASIC program to be placed in
the next se~uential GROM <the first REM+ will start at GROM 4,
ORG 0). The BASIC line number table (4 bytes for each BASIC
statement) is produced at the end of the BASIC program.

7. 2. 2. 4 Custom Start-Uc Code

l n REM ,,. a Cl d r es s

The ado'!"ess is a fi·.,e-c:haracter hex number <e.g., >8020).
BASIC programs in GROM are initiated by a short segment of GPL
code. Control returns to the G~L code after the program
completes tither normally or by an error. If an error has
occurred, the condition bit will be set on return from 13ASIC. If
the above statement is not included, BASGROM will include tne
following start-up co~e with the BASIC program.

STARTl BR START2
LOOP1 SCAN

BR LOOPl
S:X!T

START2 MOVE l FROM ROM(#H20) TO VDP (1)
MOVE 21 FROM ROM <#OMPMES) TO RAM C> 195)
l3 START3

OMPMES DATA : ONE MOMENT PLEASE ...
H20 DATA :>20

PAGE 16

"

..

System 06NC}✓

= REM incluo~o, following is

Tnen the programmer must supply st~rt-up :ode of the form:

STARTl

*
LOOP

Ef'~D2

-:::~ ;. --~ ..., 1 HI"\ I,::;

BR START2

BR END2
SCAN
BR :....OOP
E:XIT

(START UP CODE)
E >6010

ENTRY FOR START UP
ENTRY FOR END OF PROGRAM

TEST PGM ERROR FLAG
IF EROR,WAIT

GO TO CALL BASIC

Execution will be at STARTl before BASIC program execution
and at STA~T1+2 at BASIC program termination. Therefore, the BR
instruction at STAFTl is re~uired. The actucl code located at
START2 depends on the individual progr•m requirements.

7. 2 2. ~ D;setle Variablf Name Replacement

ln REM -

The REM statement will dis.ble the substitution of
minimal lengtn vari~ble names for the user's variable names.
This is valuable when using th~ program transfer feature
described i~ Section 7.2. 3. This statement must be entered
previous to any use of a variable name in the BASIC program. If
variables have been u~ed before this st•tement occurs, an error
will be produced and the statement will be ignored.

PAGE 17

Home Computer Software Development System 06N0V 79

7. ~ Factors of Program Size

The following items give an overview of tne space necessary
~or various items of BASIC syntax. This is to assist in keeping
BASIC programs as short as possible.

Each BASIC program line has 4 bytes of overhead in the line
number table. Each program line which is not a duplicate of
another has a text string representing the program line. This
text string has one byte of overhead to represent the end of
line The lengths of other items are:

Key words - 1 byte <GO TO are two key words but GOTO
is one).

Variables - 1 byte for each letter in the variable name.
The BASGROM command will convert user variable
names into short names.

Numeric constants 2 bytes plus the number of characters
in the constant. Because of this, it
can be more efficient to use variables
for often-used constants.

String Constants - 1 byte for each character including
q_uotes.

Line n 1Jmbers in GOSUB, GOTO, etc. - 3 bytes for each
line number

PAGE 18

-· I

'

1

- ., I

Telephone

:. otii;.a~,y ______________________ Date

~lease l:st =n~ discrepancy found in tnis manual by p~ge,
P a ,. .., ~ r a i:: r, , f 1 9 1..' - e , o " ta b l e n um ti e r i r, t r, e f o l 1 ow i n 9 s p a c e .
~dt:t:cnal sneets rna~ be attached If there are an~ ether
s~;gest:ons tnat ~01.. w15n tc rnaKe, ~eel free to include them

COMMENT/SUGGESTION

