
, .:.: . · 1W:>~1ie > .. : · 
:- . ·_' :· , .... ·. ... . .... ." '.:.· .. \~,.,.~-': '._": ,. . l._,, ..... · .. ' , , 

S.un Will<low .$~stem. 
. . ~ ·;:: . ; . . . 

't' ~- --:,· 

·.· ~f, 

-~-

· · -···· Clilliff ., ,, . .,;.ia -"l:4fl.tl . . . . /-(',l:Sf .... :·f~ .. 
. ~/ ,\J:f,), . >: ; ·:. 3~"~~ .. 

-~- ,;.).:: . :;, ' \.,~ · .. t .. 



~ '°t'~ 

9: <·~ .;~-~ ~ 

Acknowledgeme ts 
. ,. ', .. ' . ' '~ ,;,. 

A. preliminary-implementation -of .. the Sun Window Systempras· written ··ai'Stib'. ~iitosystems, 
ltte. in De~ember. .. 1982 and. Januaey 1983, .. .ft -incor,porated-••Lnui*~~f1-l~+le{.el'oper.t.ti'ons and 
d,ata, including_~~~~r _o_perations .,n«l .(on~s,. pmyided_ by Tom. Dllff. of..Lucadhn, Inc. The 
present version is a major rework of the preliminary implem nt~~icm,.~i111ed.-.,te-A1'rality, exten-
sibility; and reliability.' ,. ' . " . . . . " . . .. •" .. , . .. 
,. .,,_.... . .. " . , ... ., ...................... ek'tJJr,? 

C; ••• ,. i.fH'.~1J.&1~ {~r.-0 r 'l(ll . (~':..'.: ,2 >:nk :!~~·:.:.,l!:·~Jr. il!"\h,l1~., ,r-~ 

., ,,. '.i 

·,.-,w~• :.·;k• •~: .. h~', :: (. 
"'' "' ,. 1 • I . ,., , .., 

,., • ~- ~ :, -~ • .. .... ~-" • ... ' , < •• • 

.--;utd\·,.;J,• 1.-'' }·.·;:I:_· ftD:/{ 1Ji~ ··5;: .~:>ilUJ~J\ j?'J)j:_,J}~)."if.J; 

..... , .. , -~,.' .. c; ,, ... ; , --l. ·-:ti,,.,,,,;·· .. ""'"\ l,i"ttc ····H:· ,· 
. , .,.,., , .• ~ .. ., r/'.; \.7 -: . .,. :., l'..I .• ,_..., .:-.··~ :. 'l"" • 1r-,.,.u ~ ·J> »"- · . · 

•... ·-· ;·· te,- J: w • {J. ,,; i:iiry,q1t".t -s1mi·•:r t'; · · 

.... ._,. .. . f';S?,u.1'-l P:'.>l,-\' f;~J'':IIP' :/ ~,;~ ':i.Ot?.1·v·:,·1 \. . 

.... , ~- - ....... , .. ' ~ .. ~ ...... ~ .. -~, - .. ~ .... ~ .~ ... ~. ..;~-:t~.,' 

·. i ·--··Gopyright·© 1982; 1983·by 'Sun Mi· td!f;Ystems~·----- · · ~0
'~' 

Tffor pu·blication··is protected by··Fedtral·C(jpyright·ta:w·, .. i~h:·ad'llrfg1i11°~s;ri;a:'.';,·No ~art of 
thi~. publication .DJay. be reprod,ueed,•5tored· in ·a• retri~fsh/ys~Ofri1:ttsla1fb~ itio~cribed, or 
tr~1'smi\~~ •. jn. ~PY f grm, .. or.·•· .by , any: means .· manual, . el tr-~, .. ,electroliicF'e-lect-,o;;magnetic, 
m~chanical, chemical, optical, or. otli.~rwi~ .• _witb<>qt,. Pr.iol". .. e plicitt,11·ri{ten:;~rmission from Sun 
Microsysfems: .. ":::.::: . . .. ~... . -· .. "''"' .. _,., .. .,, ... , , •s>. ,1:>D"l,l( ..... u,r, __ .; \ I' 

.,, t ' .. 

». 
;. .. ~ 

•• ~ ' J' .• ' 

....... ,_ .• e.,, ...... ,._ .. ,_ .......... , ... , .......... tt~,'31,U<'.'i JO; ~i,iiL:1 
-. 

. ... , . ,,,., .. _.;·, .... , ... : .. i ... ""' .... ,. ... ......... .. ...... e..lrze: ,:·, 

•• 

~· •, . ·, •, 
I ..... 

~,. 
•\ 

i ., ,, 

'· ;· 
'fl·. 

" .. , . ··' 
f'; 

t 



0 
,, 

0 

'· .P ,, t 

':' 
;, 

~ .( .. ' 

·..sut· 

Table of Contents 

. .,. 1!" ,'IN'!'J _,..,..,,.or:. -.::,,}~, ,/ ,·.:;:, ,_ rt ~ ·, .J\_ 
1"'.Atl~· .... ,I.Uit. "}'·""· .~ .. , .. .~,. . . . . 

1. IN'TRODUCTION ...................... _ ...... :·.:·~······································································· 1 
1.1. Desurn Goals ......• ,.~,,. ..... ,,,,.. ...... "~·~"'"'•·~····~··.i., .... ~.,; .. .,.1,r··~• .. io··l'll"~·'i··.,..• .. ~t .. .,...·9";~ •••• ; . .:.r,,;n, • t•; l' p','t,.t'l",-ff;f" !!-f{f7. ]£: 1_, .~ ,...,-~l~ ~ ':'11' tJ..J.•..- 1. ..,,. \ ' ! ,,. -~ ( • • ? 

1.2. ', •. , ,!I.,;.~ J hn ... 1 .. mentat,.ina --··-·i••••H"><•l'l$ •• ~ ...... 1; •••••• .a-1.~ • .'m.:~.t1 ..... t •• l;,1, ••• :~:.!: .. :.',;:;'n.-,.~.L~. "1,\ ·i(f 
r 'ft'~~'-!~ Ui',;;- ,.~,-:--"'ef' ·~ff~:u ,., :.. ' 

1.2 .1. Pbtite.cts: 1 .L. •• \ ••• l:J.f.,J ••• OJ..~·.1: •• ~(~ •• z.;;~;.~;-{!1~ •••• t:.~ ~·= t!) •• )J. v .. · •.•.• ~i~.: :.L.: •• : •• · ........ : :£: ... :.1
~'}}:~ : •• :, ;. • ,; 2·, 

1.2.2. 
1.2.3. 
1.3. Intended Audience and Scope o( This Manual ........................................................... 4 

1.4. Concepts and Terminology ............. _.,. ................................................ ,....... ................ ... 4 

2. PIXEL DATA AND OPERATIONS ........................................................................ 5 

2.1. Pixrects ............................................................. · ................................ .................... ..... 5 
2.1.1. Pixel Interpretation .......................................................................................... ..... 5 

2.1.2. Geometry Structs ..................•..........•........•........................................................... 6 

2.1.3. The Pixrect Struct ...................•..•............................. ............ .. ..... ... .• ... .. .. . . ... ... .. .. . 6 

2.1.4. Primary and Secondary Pixrects ......................... .. ...... .. ............ ..... .. .. ..... .... .. . . ...•. 7 
2.2. Pixrectops ...•....................•..•..•...•................................................................................ 7 

2.2.1. Create/Open ............. ~; ... -.;...................................................................................... 8 

2.2.2. Destroy/Close . . . . .••...... .. . .. . . . .. . .• . .. . .•• . . . .. .. . ...•. .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .• .. . . . . . . . . . . . . . . . .. . .. . . 8 

2.2.3. Raster Op .............................................................................................................. 9 

2.2.4. Batch Raster Op ............................................. ~..................................................... 9 
2.2.5. Constructing Op Arguments for Rop and Batcbrop ............................................ 10 

2.2.5.1. Constants (or Constructing Raster Ops ........................................•................. 1 O 
2.2.5.2. Controlling Clipping in the Raster Op ................................. ;.......................... 11 
2.2.5.3. Provision (or Inverted Video Pixrects ...............•............................................. 11 
2.2.6. Get ...........•..............•.......•......................•............•....................................... -........... 12 
2.2.7. Put ................................................................ 0......................................................... 12 
2.2.8. Vector ......................................•......................... ,................................................... 12 
2.2.9. 
2.3. 
2.3.1. 

Region ···············=1·t-·~t1:~·,,. • .,·,.~ ...... ; ...... .,..,. ... ~.,. •.•• G.••···•~:; •. ..,...~ •.• , .. _ .. ;:............................. 12 .,1"i;;i.), . .-; \.. .. t_;..,._.'Jfi": 1..rt!t. 'S,tJ •~ ·._. i;, ~,-, ..... ,, , ,,.:.:.:t ,.,.1,. ~-,, ... ·~ .,. 

Independ.ent .Procedures, ··~~~·· .. , ............... .,., .. n,••n·n···~·"""~'" ••.. .,,, .. '"'····-·-..................... , .. ..,f~.~ .. ,, f. J3 .... . 
~,_.,· ---;:-... -3\''''!~!.,-~· .. 1 ~-~{1"!",_r1 lt.t th•-'°~..,. ,,we~i .,~;•?.~/, ~-·""£·-~ 1W1: : .. .r~J·-' 1 ~~- ·~·· .· .- 1·.'l'·.J-.-,.~ -· ....... · - ··~· - ,, ·1 ·· -~ · 

_ -~~p,ica~}Pf.:t~~:§o~~~~t..,1,~-~~···~·~···~·~&.Jt··~~~'>:t•;.,. .. ,,.f,H··~t<··~··-';,.,.,.;~lt.~,ld,11q 14·, ' 
2.4. 
2.4.1. 
2.4.2. 

Memo- PIX ... _ _t_.. . ~ ---~ ' " "" ",-L~·,, .,,,._., ,,. : ',., , .... ,_.,- ._.,.,,, i ,;~ iJ,J.t\M'·'•;~;~ 
1c.. .• , -~ -Til.• ;., ·;,. :'<'1'!.~·"i',f'•Ji')-\io~••.•.;4~.J,~~_.t •• ~~.&~.•ll.t-•.;~.-••••••• .. e.•i•••••~ .• ~·•••••••••••,. .. ••••K••·•~-'••••·•"'l••••••••••'.•••••• .lO 

r ·,·T,L..;.M v· -~ "' ·~·7· ~ .. ~ ¥;·;,..f•a: riu:•dJ;_,,. -~t.s-"•t}/'"1.':H~.i'.,i; f: .)..r,:-1i;~~·=,.-:,: .. :):~ryi:_.-;f~.> t::"~(.J].ttd'"';•')fJj 
JP::,, . em];.)pps>ovJ'flCtll..1!..;.1..-.... ~.-............... ,............................................................... 14. , 

. ;-. .'\ .. J?'!f.<i:~~.,--;s~., 
The Mpr_data Struct ....•..............................................................•................. ~ ...... ·· 14 

2.4.3. Static· Memory Pixrects ......•...................•.•......•..........................................•.•..... .-.. 14 
2.5. Text Facilities for Pixrects ........................•..........•.......•............................................. 15 
2.5.1. Pixf onts ······································~····........................................................................ 15 
2.5.2. Operations on Pixfonts ......................................................................................... 16 
2.5.3. Pf_text ............................................................ ;...................................................... 16 



'.}:' 

,, 
,"!·· 

,/' 

:; .. -j 

.-·) 

.":h 

f'•. ~ 

• ii. 

3. OVERLAPPED WINDOWS: IMAGING FAC ITIES .................................... . 
3.J. . ... Window.Jssue:1: .. Controlled Display Generation .. • ................................... ·L'.J2L:~.;······ 

3~1.1. .. 

3 .. L2." 

.... Clippjng .. aud Locking ..•..•....••.•.•.•.....••••.•••.•.•••... ~ .••• ~ .• ::i • .1 .. '-::.! •• ., ..... -. • .i~,.· •••• :.:.. ••••••••••• 

. .. Damage. Repair and.Fixups ..........•..••..• u ........ . 

.. ,;- ... R.,et~aiIJed _Wip.dows, .. ····~··~··········· ... ·······················- .................. J;~~~ •.• ..-•• lt~-::.;; •• ~ •••••••••••••••• 
3 ... .1..""4,. fi:o~~.S:S ._StJ:.U<:t.Ute -·~~ •• ,;,,,.~··•~•-•••·•••• .... ..,. ....................... --·•••••••J..c;~,~:~ ••• i~.~i'~.t:-••••••••••••••••• ~ •••• 

3'!: l".Q.. ,,:{)Jl~giQ,g .,JIV..iib~ WiIJ.dOJVS .. ••-t".-... fl'.,.,.,.,,,. ... ,......_ •••• ..,.,. .......... _ ••• ~~i~) •• LuliJ.~,;Je:J~.•••••••••••o•••••••• 

3, J .f)..... . . . . . L iJ>.rJries .aJld .H~ad~.t, F.iles.. ,,. _ ...... -.,. ... :. •• --..... -·--··'~t.i.~.;;,.:Ii..ni.i:;v.;·.i ..................... . 

3.~, .. ., 

3.2.J ... 

3:~'.~ .. 

.. P lJ,ta, .s ir1.1.c;; t:V:r~ .............. , .. ,. ... ,.,..,.. ........ ,., ..... ..,..,,, .... ,..._ ...... ~ ........ . • .............. _ ...•... .';;-... ~~1 .. ~.,J.~.::i.-. •••••••••••••••• 
f .. ,.. • ~ 

...-._ ...... - -· ..... ,e.".t.:::,,;' -~ .... ~. :.~1.1~ ~ ••••••••••••••••• 

~ J:>J.~ '!! ins .. •.•.•• .. ••,,•-· .. ···-·.• .. • .. •••.it•• ... ·····~·--······.,.,.19 ...... ~ ............. ~··"'.............. .~ .......... {;'i,?;.,.:...i.JJ.;"..~"1..i •• ;.•.._ .. l:r •••••.•..•.••••• 

3.i.~ ...... . J:>.i.x:"' j;g. _c. f ~P.~~i~ .·.~· ., .••... • ... , .................... , .... ~ ...... , .. •Ji>.;., .... 1 ,.i-1:· .. J .t ...... ..,£.i.~ •. • ., •. i 1,) : •• ~ •• •r; .1 ••••••••••• 

P• . 1· - ~~r . 4 3:t1• .. 
3:~: 

3.4. 
3.4.1. 

3.4.2. ... 
3.5. 
3:s.L· 
3.5j:· 

3.6. 
3.6.1. 

. Ml)C9W ~•n_c; 4 IR91?', ~· ~ ·~,~~ ·~· ~i· ,. ••• , ... "!. • ~,. •• ,.,,,..,._ ..... ,,.._.,, .... , ... ~,,~.] .... ,~~Ill.Ill ..... ~ .... ~ •• .'§.; .............. ; •• ~.:...•• "fl,·················· 
.. f jx~i~ Q~ati~µ .~R-d .. P~~r:ucij~JJ. .. , ...... ~,.~·.-.········~··"'· .... -,~······• .... , •. ; • .;.., •• ; ... , •• ·.~~v. ................ . 

. L ~c~,ing '· ~1).4' Q\lpP,iq.g ,9:~~·~~-·~~~,·-···~"'-·,-· ... , ....... ,,, ... ,.ee ... , •. ~,~M.•~<!i .... ,~~, .. ~v.!i-,(.0~1.a,J~:.;.~,~~: ... ~,;.-.·,.i~ •••.•..••.. 

L oc king .............................. -~~ .,..i.1·~·!"~,···~'l·~•-i'i°fl'• ·--1i~ .. ·~ ··•;•• -1.,·~'"···~· ····rt-i• ··~··• ....... <I······ 
.. : ~ ..... ·c H ~~ ~ -~~ .. '. :;:::'.. :, : ·.:· '. :· ..... : ·:: ::: :.: :: ::~ ;.~:~:.:,;.::~.:::;: :;; j'.;:.z~~.;~ .. ;,:~~;s ~-i:.,,: r:., ··:·~ .... -:· .... · · · ·· .. 

A . p· . I p· I l ccess1ng a 1xw1n s 1xe s .......................... ~-·~····· ............ ~rtrp~rn·~~·.1·.·,1 :~··00
•

00
•••••••••••• 

-- · · ·write · R~utiiies :.:: ... ~::.:: .. :::::::.::: .. ~ ... :.:: .... ~ .. ::.: · :: .. : .. : .... : .. .; .... : ............. "!.1'·'!'························ 
.... ~ ... ~~·~· ··- '" ..... , ..... , .. ,, .. ~ ..... ,~ ~··-' • , ... ~·~., .. ,,,.,, .• ' :,. ... <>~""';'·'·'•·,•·'. -~ t.i,:.~· JI~- ,j,: -.~ ....c 

Read and Copy Routines ............................ ~····i·······~·~···~:.·~···r.~~,.~\···t~~-":~"··~;~'.·•············· 
·~--· ', .. ~ .. ·~--~,,., .... , •.. ·~···~""''·".'h• ..... ······1·~··' 

D aD1 a~~ . : • ::· ••••• : :· ''. ·::~ '. ~::. : .. ~. '. '. :· ••• : : :·:: :·: :: :·~· 0~.,~--r-· ,:1 ~-::':.r ;.·~·, ~t,·,m.~yz•" .. ;~ \':~i r-°"r;•-~· ............... . 

H.a.~d~!~g ~¥1 ?~~~ <?H -~~~:·~:·:::~:·~~:·~7~7·~·~··~~·~~-.~~ ~ ~~~~:::···.-···l'~··~l}·:·:~l~.,.1~f t'~~················· 
4. ~o~. ~~~~~ON.~ ·~!!'~.!~!:·:~::!~,t:·,·•·.JiT·• .. ~ ·.~v.;..J •. ~.-.~_ ••• ~.a.·~···-~"'-'-i·;l .•..•............ 
4.1. 

4.2. 

4.2.1. 

Window Data ........................................................ , .... l'P•••f•ii(,yiii!.l0 ,.: •• -.!!~-~.:; ••••••••••••••••• 
-~ ·~·' ~ ·-~.~,·,~ ····~ .... -.. ... , .•••• , ' ... ~1 .,, ... , .. ~ ••• , •• ,. •·•·· .,,.,,. .. ,.... ... • ' . ~ • • ' •• 

~nd<?! Cr~_a_ti~~, -~~~t!u~t~~·~-'-·~~~.Ref ~r~~$;~. m , ........ ~.);-,;:~;.";, •• ~,.J··"·-·'·•O················· 

;~:~~~~~1~~~~~~~ 
4.4. The Window Hierarchy ........................................................ lilif;i•••._...;,.;.J.__..i.,,:r:.~ ••••••••••••• 

• ~ ............. , ..... ~ • • ... .. ... ,~, .. , .......... ,.,,~ ........... ¥ ., ...... " ... ,~ ..... ...-:,. • • 

4.4.1. Setting Window Links ............................................. ~;(;.;.~,,..~.~.i<~".;r. .................. G 

,_, ........... ~ ... ,_ .... ,. ........... ~· ,.,. ,.,~.,~~, ...... , .... ~ .... ~ .... ,.,~,, .. ~ ...... ~~-, ~.... ' - ~ 

4 .4.2. Activating the Window. ····~-'"'"U!'~tr~·a-r,o~·:-·~·"• 
4.4:3. ........ M~difyi~·gWi~d~~ R~·iatio~hips ·······-m,• 

~,..- •• -.... ~ ................... ,. .... ,.~~"-.' .,...~. -,~ .......... ~ .. ~ ..... ~ .. , .... , ........ ~ •• , • ,1.\. 

4.5. User~ Data. ························Cl·····························--;•-,l:!!"•- t,;-.,~~;!ia, .. ····t~·····;'. .• t,~i.::i~~~ ••••••••.•••.•••• Y"~• ... -o, .. -'•·~~ .. ~~ '• ~ ., •"•• . ,, ... °'"'~" , ... ~ ..... ,~ ..... ,.,,..~, •n•~~ ..... G .... , •• •$' .. • • • 

~:~·., •v«o. ~M!~!~~! ~eP..~I~.~ ~~PP~~~- ······~·~·.·.~~.-.·-~~-·.,,.,.~~-.~,,-,•.•o~~···~~f· -~~-g.'~~-,-~-~~f·•:!1•1 ••·~:~~ ••••••••••••••••• 

4 .7. . .. ~t~,~~!~~s; ~<>, J~~ysJca.I.. ~cr~~~.i, .. ,••.·.~·.·iwm•.-., ....... ~,J~~. :.,f•~!;~.i~:.,.~ •• ~ .................................... . 
4 .8. .q_ur,s~~ . a,~~ ¥~~:',~; ~~nip~~~ti~~,..~~-~~·~•!,~••··~iH'•, · ·~<tl,.Ml;i.; •• ~ •• ,.. •••••••••••••••••••••••••.••••• 
4.8.1. 
4:8:2. 
4~9.' 

4.9'.L' 

. Cursors ~::·:~··:·~··~····::~·:~··~·:··~;rn:r;:.·:,r-~7?r·~ 'CJU1:.rr,.r1g:~·;······· .. ·············"····00

• 

Mouse Pos1t1on ····························~······-.·······r ......... , •.. , ..... r ..... , ••••••••••••••••••••••••••••••• 
.. ... ~~ , •. ~!'lL'.J"'!~Jn.1 tit(~. -.u' WO DG ,-,.~,r:_;r.,_._,.('- L... ·.;J. . .:. 

~ ~Pfflvidiil,t ·ror·,NaiV8""P?Ogj-allis' .................................................................................... . 
............................... ·-- ......... wul,D.1~· ,.J,\(' ·r.J 

·.'Wlii.Cli "WiiiaOW"'"'to·use ..•••..•..•••••••.•••.••••••••••••• ············':n·~·---:···~·~·· .. ··~, .... ~_-·i:·-················ 
4 

.. 
9 

.. 
2 
... _.,,..... T 1;·· •. 

0 
........ E ....... ···Wi··.:r··" ...... , ................. ,. .. wot JJ1~01.c r._11.q .. 

,. aa'.1ng' ver an x1st1ilg' 1nuow ............................ _ ...... .,., ................................. . 
• • ......... ~ v ... .,.,. •• ,~, ... ,.,., ... ,4 ...... ~~ ......... ~ w·ot>Of 1·~ ;,c;:_. i ~) .~1i 

..... Coverfoit' aii' Existing 'Window ................. " .......... :.~ ..................... ,.,,;.~· ...................... . 
4~10' '"Error'Handliiig' ..... ········ a,, .......... W'.'!JH/,V ~ Jjeo,:_'1 !Iii ,~.y:~, ~!Li:.ri.i. 

. _ ~ ~~ ~ ,~ ~- ~ ·~ . ~ ~ ~·-~·~·De_·.:~~·.·:::··:~:··.·~::·~·-:::·:.:.~·::~~.~:::·~~:~~--:~~,',:·:.::~ .. ·.~~.~ ·i, \t,\fi~l7~Jo~; ~lc~i~1r~···,· ...... .,, • 

4.0::t 

18 

18 

18 

10 

19 

19 

19 

20 

20 

20 

21 
21 
22 

23 

23 

24 

25 

26 
26 
27 
28 
28 

£0 
30 
30 
30 
31 

31 

32 
33 

33 

34 

34 

35 
35 
36 
37 

38 
38 

39 
39 
39 

40 
41 

0 . 



.. 

0 

0 

- iii. 
'f .~ . ' 

5 •.. ~INPUT, ...................................... ,,, •••• .t.'R..J.i;·~•····;·••···.···.:i ••• ;. •••• .:.'IJ,n:·.:e:i4:) ••• ~t.,~r.r;;; •• ""Ri-.;i~J.:::l-. ••••• ~ ••• :. ~, 

Th ,,. al I D . ~,n,-J·· ·, ',. ·,. ,,.,;, .. ~,:,~-, ' , , 5 .1. .. . . . e .. v .1rtu ... nput. eY1c.e ..•.•.••••.•••.•.•.•.•••.••...••••••.••.•• .,. ....... 1 ••••• ;;,.i;; ••.• _ _....,.o(~:,.y. •• , •••••••••••• ~.. • 

U ., ln E t ···~, •· ., .. ·• ··~·-,:.; -,,, .. , '·~ ' · ,, .n11orm. put. v.en. s ................................. · ..... :;;. .•. .,.,, .. .i. •• ,t, ............... , .... i.-.................. · -· 
Ev.ent .Codes . .' ....... --····-···· .. ·-··········-······· .............. '11.l,'1,e•••····,;~t::~ii.,uU: ••• l;~:.:·.-.r:.::.f. •••••••••••• 4>···· \ 

Event Flags., ......... .,-····-..... - ...... .,...._...-.-........... ~ ............. ~ .•. ill"- ........... ~ ............. -••• -:-!!Ji:ia~it:.-~.1•.'~ •• ~ •• ~~.1-: .......• J~. 

, Shilt .. C.odes, _ .................. - ..... - ............... ..,. .. ......,." ............................................................................ ~.::~~.~: .......•....•..• · 
- . ·' ' 

.. Reading, In.put. Ev.en ts ..... ., ........................................... "' ..... ," .. ~·····,·-••···•·•··•••······-~.-•• ~ • .,., .......... ::~·~r ... rf.,;.: •• ~ •••••••••••.••• ~. -r · 

5.1.J ... 
5.1.2. 
5.1.2.L. 
5.1.2.2 •. 
5.1.2.3 .. 
5.1.3. 
5.1.4. 
5.2. 
5.3. .. lnp ut . Serializ.ation .and .Distribution, -0,· •• M ..... w., ...................... ~-!1::.sm:; •• ~r.r:~.:1:~: .......... :..~~. • 
5.3.1. 
5.3.2. 

,In.put. Masks_.. '4//Jf¥11#"'4ti"ff~~-f/#fft••·•·,,i·~~-#···U•'••--······~-"··~····--···· ............... ~ ... ::~:.:~aH.-.·;.·~:;.1~;:~~ ........... ~ • .;.~., 
Seizing ,AJl .Inputs , ....... 1 •• ·.,u#•~·-··••········•'i•4••f~~~:~;~~i::.~t~:~·~ •• ~.;~.£ ... ~!~~:-~ .. ~~-:~;:.~~i~·~.~~~~1 ....... ;~:. , 

42 

43 
43 
43 
44 
44 
45 
45 
46 
46 

46 

47 
49 

5 .4. ,Event .Codes. .Defined ...................... , ..... ~ •••• m~ •••••• , •• ..:, •••• ;.i-!!i!!L::.-. •• ~:J:; .. '; ...• ,l ••• ~.: ••••••• ~~.. 50 

6. SUNT00L: ·TOOLS AND· SUBWINDOWS, · ~;.~: ..... ;~;;.~::;.~;; .. ; ... :~~~~ .... ; ............. ;..... 52 
. . • . .• . ,. '"""'' ......... "'" ...... _, .......... ~;11'1'';;: . ..':: ,, ; 6.1. 

6.1.1. 
6.1.2. 
6.2. 
6.2.1. 
6.2.2. 
6.2.3. 
6.2.4. 
6.2.5. 
6.2.6. 
6.2.7. 
6.2.8. 
6.2.9~. 
6.3. 
6.3.1. 
6.3.2. 
6.3.3. 
6.3.4. 
6.3.5-. 
6.3.6. 
6.3.7. 

.. Tools De-sign Phlto~ophy ·······································~····~~-·.···:········~·.::·················;·········:··.. 53 

· N~~.:: ~eemp ti~~ · :~;; ~ ::~·: ~::: ~ '.~~ :: : : ; ;::; ~: :·:;::; :~ '.: ".:;: ·~::: :: .. :. ::· :~{;;;f; :?. ·~ ~.:. ~-.. ~; ;l7~:~:~ ....... :~.·. ,. • 53 
·D1Y1Stott·df ·Labor ;.................................................................................................. 53 

Too I· · Cte'ati(jlf · ~~: ~-:: :: :: . ~~ •. ::::::::.:.:; ::: ~::; .: ~:: ~:::.: :. ~: ~ •. ::::~~:~:~:~~:.~:-~·!'~:~ ? .. :-~-~-... : .. :.:~: ........... :: .:~. 53 

P~1rsing · Param·eters to ·th'e · T 001 · ::~:~::~:::~::;::~.:: ..... ::::::.::::~ ... :~:.~ •• : ... :.: .. :~ ..... : ....••. ~ ..• 
; " .f ~ -r i'' .. i. .~ ;··g .. '. ';: i ;.1,· . ·, . ' 

Forking th~ Te101 · ~ .•. :~~:~.:::: ::: ~:~:::.:::::::: •• :~:~:: .•• ~~:: .. ~~.:~.:.;.~.~-~.:-::.:~.~~ ..•. :.::· .. :: ......•.•.•..••.. 
. . c t· tL . ~ 1 Wind ....... " ... ..... .. i:·:o.r·t'J":t:s:r; u :·.·. ·' .· :·,:<· 
.. ·· · • • Fea 1ng · ue •.1.·00 , ! OW ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

S b · d .. ro- •' .... ., .. , . .r:~·1~t,,J'..i onr ,rw, .. :Hc1.~e-.,,(, :1 ):Ji'~, ' · ... ):~:···,: . 
.. U· WID OW ~-eavJOR ••••••••••••••••••••••••••••••••,.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

S L • d L ... ,, ........ ., ................ ., ............. · ... wnh1.1it· ·;,:·.:~ /.. .. .':. 
UuWID OW ·· ayout .. ~ •'••••••···•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

,Subwindow. -Initialieation ~··~~~-~•·'-~~~'~;.~~~.-.~.-.~.:.~-.~~-~~:.~ ••• ~.;~::~L(:1 .. ~.~-~-i~: ... ;·I.~?:::~ .. ;-. ....... ~;.:.~; 
.. , Tool lnstaUatio~, ...................... -.~ ...• ~~·.~.-.~~.·~~~~ ..... :.:.~-.~~· .. ~· .. !:.:.:.-:):}:!.'~:.}:L:~~~~;·~~·~~ ................. ~·.~ ... . 
T--· D • . ·v ., ...... ;,. .. u ... · ... ········~~ .. ,.. .. ~ ......... , ... n.-.,, v,J~rt.20~~~·· -q:r.;·rHJ'f°ll , ....... :. , uw1.-, estr.uction ~ •••"••··-·.-. .... :. .... ~-. ......... ·;.. •••..•.•.••........•.•.•.••.. ; ••..••..•..•••..•........••.•...••...••• 

T IP • ', .. ,,,,. "'"''"•"• so•HO'""".. .• ",·,'t"U""t~;H ·~·,1.hn.·/i '.;· :-;· .1' "' .. ~ . oo . . rocess1ng- ............ ~ •.•.• ,.~ •. ~ .•••••.. · ••••.••.•••••••••••••••••.••••.•••••• .-•••••••••••••••••••••••••••••••••••••••••••••••• 

T _ .. -St t ··· ................ ., ................... , >:> .. J 'P'-,:~:ni",\ -:.,:;J.: .. ,? .. l f-.. ,... . .. Ou.lG·· Ne Ure· .... .-•••..•.......••..•.•.••.•••••.••..••••...•••••••...•..••••••••••••.•••...••••••••••••••••••••••• 

F·•-o . . d"'. ·N .fi . .. 11?,. /,\rf'3d.J~n;:~,·.;;:f: ... 1J 
s< -iae- · escn·p~r- an "r 1meo-ut ot1· :cations .......................................................... . 

Wi d CL N ·5 · ~-··,,. ~.nLd:~~~of.J:::e.S-i ;.t<.J.'-·.-~-" / ; . .-n~· .. ;d.·.·,~-/ .f, : ... ;. 1n ow~ - ·1:1:ange · ot1 cations ••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Ch.Id P M- ·-• ·. . ....... --·<"······· ,._ .... , .. ····· .... . .. ·· -~ ,··.C ··:·j;<· ,·.' 1 · , rooess· al'.ln,a1nence · ................................................................................. . 
Changing -the- T,ool's, Im-age · ·m.m ••••• w.:u • .-•••• :.; •• ::.:D.'itC~.L!:£.L .. :.~~£.!f i:.1. .•••.. ~::.~ 
T · · T In · ~-. ............ ~. ·~·- .~ ....... r . .i:··-:?"" .. ::? fs~.ru-.v;;? t,-1 · ~~ .,:·sr..i~J.H .·· l erm1nat1ng. oo · F•Focessang ................................................................................ . 

R I · "' 1· () -·· .. ,mo; ;,r.'v,nnrM :;>em '/ tJiJ[ '1.o,,H1;:> .. :-,..; ep 3Cl·Dg · ;1: 00 10" ·' petaelOU "e·:: •• ·.~~;;.;: •••••••••••••••••••••••• ~ •••••••••••••••••••••••••••• _••••••••••-••• 

54 

56 

55 
56 
57 
58 

58 

59 
59 
59 
60 

61 
61 

61 

62 

62 

62 

7. SUNTOOL:.SUBWINDOWP:A.CKAGES··::::~ .. ::.:~~~::~::.:~:~;~~~ .. · ... :.:~~.-::~: ............. :::~ 
''\-·')I·'"'"'( · i 4r•. iQt"V · .~l· • 

Minim um Stanaard 'S iil>wiiidow. lnierf aee ·::~~:.:::.:.~~: .. :~: .. ~::.~::.:::~.:.:: ... -.:···<>·· ... ~:~~~~ 
63 

63 
64 

66 

66 

67 

7.1. 
7.2. 
7.3. 
7.3.1. 
7.3.2. 
7.4 

... h ......... ~., .. ~ ...... ,.H,-~ .. , .• , ....... ~ ....... ,; ....... ,-,, ..... ~.H., .... 6.0..1.f.~7)?::'.:i". 1 ~·11::v ·1·f';! ;~r!.;t>:tr:r~; .. ~: ~::.. 

Empty Subw1ndow ··················································n·········•t····"rr··r·······~·············-·· ....uH ... ..,,,~ ... , ........ ,~"h' ... -~·p·.,t c.J WOd!H li, t!J'H! -r·"t .. i ..... J .. t' 

Gra J>hiCS 'S"UtiW iiiQOW • "::.:::::::::::: •••••••••••• !9••..-··-····t············~4···········.-···········~············~·,1 ., 
~ ....... - ~ ~ ......... ~.H ... P,u-O• ............. ~. ·:(.f(HJi~{'~ f ~<j.~'J?').'/ ... _ ilt~ ~':',\~ .) ~f .~:.·: L ~:~.t.:-.·~~· 
In a Tool Window ........................•..•..•.... , •... ~ ...•.....•...•..••.•.......•. , ..•.... ,..., •.......... ~~····• 

. ~ ~• . · ·;r.?ril'!C:J ,.// '!'.; ... :, t:·:: -~ ... ;J.r; !'rf1~"1":.. '!~ ... ,. ·, 1.1 t· 

· ...... T~king·Over a·n Exis'tiiig"Window '. .......................................... , ...• ,-··········r····•~q: 
'*M~$S3e ,., ................. , ............................................. ,. .. l.11:h::t.'-;c','!'.L",... ''• 

g '"'Sulj:w1ndow ••••••••••••••••••••••••••••••••••••••••••••••••-. .... .,.~ .......... ~·Cff4..te·•·1o11,j;i.,.._. ...... •t•••••-•&.*• .68 



- iv -

7 .5. Option Subwindow ....................................................•................................................ 

7 .5.1. Option Subwindow Standard Procedures •...........•.•................................... ; ......... . 
7 .5.2. Option Items .......•...•.••......••.........•..•.•...................•..............................•................ 
~ .s.z.1:'· ' " ·· ~•, BMt~an ·ftems ... ~.,': ••• ;;: .• ·~-.~;~.;~:: ... ;.;;;·: .• ·;; .. ;;;::.".· .... ;;:.-.;;~; .. ;·:;~~~:E.!~:;.);~ .. ~;~ .... :L ..... . 
."!/ .5.2.2.. ,,Command Items ..........•.....•........•.... ., ................ : ...... >ClL)."f.;i.;;{'..1;;;;'.:·.t.; •• :.c; •• i:;,;.: •...... 
7.5.2.3. 
7.5.2.4. 

;, , 7.5.2·.5; 
7.5.3. 
7.5.4. 
7.5.5. 
7.5.6. 
7.6. 

Enumerated Items ;~ •.....•.•.......••...••.•................................................•................ 

Label Items ............................................... ~ ..................................................... . 
· · ,Text· ·Items · ·:::.~.-. .... ~·-~ •. ~~-.~,..~~-.• ·.;·;·:.;~~-;~~,. .. ;;~~~~~-~·;-;·.,.;;·~ .• ~· .. ~;·~ :·.;;.~ ..•• ;.·;.-.-. •.• · ..•... ;;;:1: ...•..••• 

Item Layout and Relocation (SIGWINCH Handling) ...••.•.......•..•.......•................ 

Client Notification Procedures .......•..•.•................................................................. 

Explicit Client Reading and Writing of Item Values ................................ : ......... . 
Miscellany ............•............•..•.•.•.................................•................................... ; ...... . 

Terminal Emulator Subwindow ....•.•....•.•............•.....••.•............................•................ 

7.6.1. TTY-Based Programs in TTY Subwindows ........................................................ . 

8. SUNTOOL: USER INTERFACE UTILITIES ..................................................... . 
8.1. 

8.2. 
8.3. 
8.3.1. 
8.4. 
8.5. 

Full Screen Access ............•............•.................•......................................•................... 
Icons ....•.........•................................•.•.......................................................................... 

Pop-up _Men11S ...•••••.••...•••••••...•.•.•.••..•..•••....•••••.•...•••...........••.•.•...•............•.................. 
Prompts ................................................................................................................ . 

Selection Management ...........•.•.•.•...................•...•........................................•............. 

Window Management ................................................................................................ . 

9. APPENDIX A: RECTS & RECTLISTS ............................................................... . 
9.1. Rects .......................................................................................................................... . 

9.1.1. 

9.1.2. 

·9.2. 

9.2.1. 

9.2.2. 

Macros on R ects ...•.......................•.•...................................................•.................. 

Procedures and Extern Data .......................................................................... =-···· 
Rectlists ················•·"-~··; ...........................................•.............................................. , ..... . 

Macros and Constants Defined on Reetlists ........................................................ . 

Procedures and Extern Data ................................................................................ . 

10. APPENDIX B: SAMPLE TOOLS .......................................................................... . 
10.1. gfxtool.c Code ............................................................................................................ . 

10.2. panetool.c Code ......................................................................................................... . 

11. APPENDIX C: SAMPLE GRAPmcs PROGRAMS ........................................ . 
11.1. bouncedemo.c Code .................................................................................................... . 

11.2. framedemo.c Code ...................................................................................................... . 

1 •. APPENDIX D: PROGRAMMING NOTES ........................................................ . 
12.1. What Is Supported? ... .._ .............................................................................................. . 
12.2. 
12.3. 

12.4. 
12.5. 
12.6. 
12.7. 

Program .By Example ................................................................................................ . 

Header Files Needed ........................................ ; ......................................................... . 

. Lint Libraries .............•....•.........•...............................................................•................. 

Library Loading Order .............................................................................................. . 

Shared Text ..... c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Error Message Decoding ............................................................................................ . 

69 

70 

71 

71 

72 
72 
72 
72 
73 
75 
75 
75 
76 
77 

79 
79 

80 

81 
83 
83 
85 

88 

88 
88 
89 
90 
91 

91 

94 

94 

98 

103 
103 

107 

112 

112 

112 

112 

113 

113 

113 

113 

0 



0 

0 

0 

,;_,, 

12.8 
qq_._.,_. .. ,,. ~tr .... ,f, rJ( ~·1,qc:· ~- ' 

. De~~g~~g ~!~t~ ... ~:·~.·.~~~···~·-~~~~-~~-·:·.~ .. ::··~.~~~::~~·-·-~~·~:~:.·!~·-·:•t":~~1i•t.ri~M!-s!t1•••••• • •"'"/ r )l4 

12.9. 

13. INDEX . ..... . .. ' 
: ~· ... :.~ .. ~:,~.: ~·~··~. ~-·· .··:·.·.~ .. ~:·.·~.~-~-~: ,·.~~·:::· :·: ~:::.~.~~!'!:·::.~.·,.·.··'!.·~·-· ... ·~~ ... /'.~,·.~,· ·-~ ... ·~·.:'~·· • .... ~~-· ~·~ ··~· •t·,.~~ ~ ••••••••••••• ··~·i. {. 

~ ·;_cit~ 
·-} ... ~ 

v• ., •. t 

6,C1.4;~.( _i 1f!.!:"r~~d 

. lJ\. 

~-. n, 't 
' . ~ ..... ~ 



0 

0 



0 

Revision History 

Rev Date Commenta 

A 15 July 1983 Preliminary draft release of this Programmer's Reference Manual. 

B 15 September 1983 0.9 release of this Programmer's Reference Manual. 

C 1 November U>83 , Additions to pixrect creation, input handling, and tool facilities. 

0 



0,. 
,-··f..; 

"''},f.:'' 

0 



0 1. INTRODUCTION 

0 

0 

The Sun Microsystems Workstation provides hardware and software support for the construc
tion of high-quality user interfaces. Hardware features include the following: 

• Provision of a processor for each user is a prerequisite for powerful, responsive., cost-
effective systems. "'~ · · 

• The bit-mapped display in the Sun allows arbitrary fonts and graphics to be used 
freely to make applications programs· easier to ·learn and use. 

• In addition, Sun's RasterOp hardware supports fast and convenient manipulation of 
image data. 

• The mouse pointing device can be used to select operations from menus or to point at 
text, graphics and icons. Similarly, objects to be operated on can be specified directly 
and conveniently. 

• The up-down encoded keyboard supports sophisticated function-key interfaces, at 
once simpler and more effective than most command languages. 

Sun software is similarly structured to support high-quality interactions. The software features 
are as follows: 

• A uniform interface is provided to varied pixel-oriented devices, which allows con
venient incorporation of new devices into the system, and clean access to all these 
devices by applications programs. 

• Device independence is extended on input to user-interface features such as function 
keys and locators. 

• A window management facility keeps track of multiple overlapping windows, allowing 
their creation and rearrangement at will. It arbitrates screen access, detects destruc
tive interactions, such as overlapping, and initiates repairs. It also serializes and dis
tributes user inputs to the multiple windows, allowing full type-ahead and mouse
ahead. 

• Built on all these facilities, an executive and application environment provides a sys
tem for running existing UNIX programs and new applications, taking advantage of 
icons, menus, prompts, mouse-driven selections, interprocess data exchange, a forms
oriented interface and useful cursor manipulations. 

1.1. Design Goala 

The Sun Window System is a tool boz and part• kit, rather than a closed, finished, end product. 
Its design emphasizes extensibility, accessibility at multiple layers, and provision of appropriate 
parts and development tools. Specific applications are provided both as examples and because 
they are valuable for further development. The system is designed to be expanded by clients. 

The system is explicitly layered, with interfaces at several levels for client programs. There is 
open access to lower levels, and also convenient and powerful facilities for common requirements 
at higher levels. For instance, it is always possible for a client to write directly to the screen, 
although in most circumstances it is preferable to employ higher-level routines. 



,; 1·L2.- l.;a.ye~ of Im'plementation · ·, . '· ' 1 

There ate' 'tb.'re~ broad di~isions of the window. syste'm., r~flected in' the the structure of this 
' cr~manuaJ.. These fayers may be identified by the libraries •li1~h contain their implementations: 
· ,. · '· ' .. <" 1 ·1. t ,t T~e' pi~~ect level provides a device-indepe~dent' interf ac~ to pixel operations. 
, ·.· ~I ·,;. ,. .·:. ,. ·, .. , .· .. ,; . . . 

.. ,,, ... ,.:; · ... 2: T4~:aunwin4ow level implements a manager :for ,overlapping windows, including imag
·"-'. •. ,;,.; ;; · .. w )µg co.ntrol, creation and manipulation of windows~ and distribution of user inputs. 

,·, • f ~ ' 

3. The auntoola level implements a multi-window executive and·· application environ
ment. In its user interface, it includes a number of relatively independent packages, 
supporting, for instance, menu, and ,election,. 

1.2.1. Pixrecta 
Chapter 2. describes the pizrect ,layer of the system.,· This·, level generalizes the RasterOP 
fe~tures of, the· hardware to arbitrary rectangl~ of pixels,; Peculiarities of specific pixel-oriented 
devices,' such as dimensions, addressing -s~hemes, and pixel size and interpretation, are encapsu
lated in device drivers;. these all presentAihe same uniform interface ·to clients. 

The concept of a pixrect is quite general; it is convenient for referring to a w'hole display, as well 
as to the image of a single character in a font.· It may also be'used to describe the image which 
tracks the mouse. 

Careful attention is paid to the balance between functionality and efficiency. All pixrects sup
port the same set of operations on their eoritents; ·These include general raster operations on 
rectangular areas, vectors, batch operations to handle,common. applications like text, and com
pact manipulation of constant .or regularly-patterned data. Where hardware support exists, it is 
taken advantage of, without sacrifici,ng g~nerality. ·.:r, ., , 

All pixrects will clip operations that e?(tend.beyond their-houndaries; since this may require sub
stantial overhead, clientiJ ,w hic.h c~n guarantee. to st,ay: within, bounds may disable this feature. 

1.2.2. Sunwindows 
Chapters 3 through 5 introduce window, and operations on ~hem. A window is a rectangular 
display area, along with the· process or processes responsible for its contents. This layer of the 
system maintains a database of windows ·w hicli may overlap in both time and space. These win
dows may be nested, providing for distinct aubwindowa within ,an application's screen space. 

Windows existing concurrently may all access,the display; the window system provides locking 
primitives to guarantee that these accesses do not conflict. 

Arbitration between windows is also provided in the allocation of display space. Where one 
window limits the space available to another, it is necessary to provide clipping, so that one win
dow does not interfere with another's image. One such conflict handled by aunwindou, 
(although not the only one) arises when windows share the same coordinates on the display: 
one overlap, the other. 

When one window impacts another window's image without any action on the second window's 
part, Sun's window system informs the affected window of the damage it has suffered, and the 

0: 

areas that ought to be repaired. Windows may either recompute their contents for redisplay, or 
they:::·may elect to have a full backup of ·their image in main memory, and merely copy the Q 
backup to the display when required. 

Windows may be created, destroyed, moved, stretched or shrunk, set at different levels in the 
overlapping structure, and otherwise manipulated. The aunwindow level of the system provides 



0 

0 

,-3-

facilities for performing all these operations. It also allows definition of,the itµage wh~h tracks 
the mouse while it is in the window, and inquiry and control over the mouse positio,~. 

User inputs are unified into ~ 'single stream at this level, so that actions, with, the m<,>.use,:and 
keyboard can be coordinated. This unified stream is then distributed to different windows, 
according to user or programmatic indications. Windows may be selective about which input 
events they will process, and rejected events will be offered to other windows· for processing. 
This enables old-fashioned terminal-based programs to run within windows which will handle 
mouse interactions for them. 

1.2.3. Suntools 

Chapters 6 through 8 of this manual describe the auntoola level of the system, whifh provides 
an actual user interface. ·· 

We refer to an application ,program which is a cfient of this level of the window system' as a 
tool. This term covers the one or more programs and processes which do the actual application 
processing. It also refers to the collection of (typically) several windows through which the tool 
interacts with the user, often'induding a special foon, which is a small form the tool may take 
to be unobtrusive but still identifiable. Simple examples of tools include a calculator, a bitmap 
editor, and a terminal emulator. Sun provides a few tools ready-built (several are illustrated in 
Appendix B), and more will be provided as time passes; customers are expected to provide more 
to suit their needs. 

Some common components of tools are provided,by the window system: 

• 

• 

• 

An executive framework which supplies the usual "main loop" of a program, and 
serves to coordinate, the activities of the various subwindows; 

A standard tool window, which frames the active windows of the tool, identifying it 
with a name stripe at the top and borders !ll'ound the subwindows. Each tool win
dow has a facility for' manipulating itself in the overlapped window environment, 
encompassing adjustment of its size and position (including layering), and inter
subwindow boundary movement; 

Several commonly-used aubwindow types, which can be instantiated in the tool; 

• A standard scheme f orlaying out those subwindows; and 

• A facility which provides a default icon for the tool. 

The auntoola program initializes the window environment. It provides for: 

• Automatic startup of a s·pecified collection of tools; 

• Dynamic invocation of standard tools; 

• Management of the default window ( called the root window) which underlies aU the 
tools; 

• The user interface for leaving the window system. 

Users who wish some other form of environment management can replace this program, while 
retaining the tools and supporting utilities. 

The facilities provided in the auntool library are relatively independent; they can be used with 
other window contexts than auntoola.' The icon, facility mentioned above falls in this ,category, 
as do the window manipulation facilities of ,untoola. There is also a package for presenting o menu, to the user and interpreting the·response. 



- 4-

1.3. Intended Audience and Scope of This Manual 
This document is intended for programmers of applications which use window system facilities. 
It is not intended as a user guide, nor as documentation of the internals of the window system. 
The user documentation is provided in manual pages for the window system, and for the partic
ular application programs. 

This document is primarily a reference manual. However, since no standard references are yet 
'available on window systems, some tutorial information is included. The material in the manual 
is presented in a roughly bottom-up fashion, with primitive concepts and facilities presented 
first. This approach minimizes forward references, at the possible cost of leaving what many 
readers may consider the most interesting material to the end. The manual is not intended to 
be read linearly front-to-back; an early look at the chapters on tools may serve to motivate 
much of the rest. Where early sections descend into uninteresting detail, readers ar~ encouraged 
to skip ahead, and to return only as the need becomes apparent. 

1.4. Concepts and Terminology 
A few terms are used in this manual with special meanings distinct from their common usage, or 
to introduce concepts which are specific to this window system. We discuss the most important 
here. 

We use the word client to indicate a program which uses facilities of the window system. This 
is in contrast to uaer, which generally refers to a human. 

Terms referring to display hardware, such as /ramebuJ!er, pizel, and ra,terop, are used in well- o- _·.,_-
established senses; novices who are confused should consult one of the standard texts (e.g. Foley 
and Van Dam, Fundamental, of Interactive Computer Graphic,). 

The position or the mouse is indicated by a curaor on the screen; this is any small image which 
is moved about the screen in response to mouse motions. (The term "cursor" is used elsewhere 
to indicate the location at which type-in will be inserted, or other editor functions performed; 
often the two concepts are not distinguished. We wish to keep these concepts distinct; if we 
need to refer to the type-in location, we will use the term caret.) 

A menu is a list of related choice items displayed on the screen in response to a user mouse
action, and in which the user chooses one item by pointing at it with the cursor. Such menus 
are called tranaient or pop-up; they are displayed only while a mouse button is depressed, and 
are typically used for invoking parameterless operations. 

Up-down encoded keuboarda are devices from which it is possible to receive two distinct signals 
when a key is pressed and then released. 

An icon is a small form of a window, which typically displays some identifying image rather 
than a portion of its contents; it is frequently used for dormant application programs. 

0 



o. 

0 

0 

• 5 ~ 

2. PIXEL DATA AND OPERATIONS 
This section discusses pixel data and operations in the lowest-level output facilities of the Sqn 
window system. These facilities will frequently be accessed indirectly, through higher-l~vel 
abstractions described in chapters 3 through 8. However, some client implementors will deal ~t 
this level, for instance to include new display devices in· the window system. The header {ile 
/ uar/ include/ pizrect/ pizrect_ha.la includes most of the header files that you need to work at this 
level of the window system. 

2.1. Pixrects 
The fundamental object of pixel manipulation in t.he window system is the pi:zrect. · Pixrects are 
designed along the model of object, in an object-oriented programming system such as Smalltalk 
or CLU. They combine both data and operations, presenting their clients with a simple inter
face in which a well-defined set of operations produce desired resqlts, and details of representa
tion and implementation are hidden inside the object. 

The pixrect presents only its dimensions, a pointer to its operations, and a. pointer to private 
data which those operations may use in performing their tasks. Further, the set of operations is 
the same across all pixrects, though of course their implementations must differ. This object
oriented style allows similar things which differ in small details to be gathered into a unified 
framework; it allows clients to use the same approach to all of them, and allows implementors 
to add new members or improve old ones without disturbing clients. 

A pixrect encapsulates a rectangular array of pixels along with the operations which are defined 
on that data. The pixrect facility is designed to satisfy two broad objectives: 

A uniform interface to a variety of device, provides independence from device characteris
tics where they are irrelevant. Such characteristics include the actual device (pixrects may 
exist in memory and on printers as well as on displays), the dimensions and addressing 
schemes of the device, and the definition of the pixels (how many hits in each, how they 
are aligned, and how interpreted). 

A proper balance of functionality and efficiency allows provision of a full range of pixel 
operations with performance close to that achieved by direct access to the hardware. Pix
rect operations include generalized rasterops, vectors, text and other batch operations, 
compact manipulation of uniform and regularly-patterned data, as--well as single-pixel 
reads and writes. All provide for clipping to the hounds of the rectangle if desired; this 
facility may he bypassed by clients which can perform it more efficiently themselves. 
Where specialized hardware exists and can he used for a particular operation, it is; but the 
generality of operations available is not sacrificed to peculiarities of the hardware. 

2.1.1. Pixel Interpretation 

A pixrect is characterized by a dept/a; this is the number of bits required to hold one pixel. A 
large class of displays use a single bit, to select black or white (or green, or orange, depending 
on the display technology). On such devices (and in memory pixrects 1 bit deep), a 1 indicates 

· foreground, a O background. No further interpretation is· applied to memory. The default 
interpretation on Sun displays is that the background is white and the foreground is black. 

Other· displays use several bits to identify a color or gray level. Typically, ( though not neces
sarily ), the pixel value is used as an index into a color map, where colors may be defined with 
higher precision than in the pixel. A common arrangement is to use an 8-bit pixel to choose one 



-6-

of 256 colors, each of which is defined in 24 bits, 8 each of red, green and blue. A pixrect may 0\ 
he any depth up to 32 hits; it need only specify a large enough color map to cover all possible 
values (2**n entries for an n-bit pixel). 

2.1.2. Geometry Structa 
Pixels in a pixrect are addressed in two dimensions, with the origin in the upper left corner, and 
z and y increasing to the right and down. 

As a preliminary to the discussion of pixrects, it is convenient to define a few structs which col
lect useful geometric information: 

atruct pr_J>Os { 
int · x, y; 

}; 

defines a position (x and y coordinates). 

struct pr_size { 
int x, y; 

}; 

defines the dimensions (width and height) of an area. Thus, the coordinates of a pixel in a pix
rect are integers between O and the pixrect's width (or height) - 1. 

Leaving a pixrect undefined for the moment, 

struct pr_prpos { 
struct pixrect *pr; 
struct pr_pos pos; 

}; 

defines a point within a pixrect: it contains a pointer to the pixrect, and a position within it. 

struct pr_subregion { 
struct pixrect *pr; 
struct pr_pos pos; 
struct pr_size size; 

}; 

defines a sub-area within a pixrect: it contains a pointer to the pixrect, an origin for the area, 
and its width and height. 

2.1.3. The Pixrect Struct 
The pixrect struct implements a rectangular array of pixels, along with the operations defined 
OD it: 

struct pixrect { 

}; 

struct pixrectops 
atruct 
int 
caddr_t 

prJize 
pr_depth; 
pr_data; 

•pr_ops; 
pr_size; 

0 



- 7 -

0 The width and height of the rectangle are given in pr_aize, and the number of bits in each pixel 
in pr_depth. For programmers more comfortable referring to "width" and "height", there are 
also two convenient macros: 

0 

0 

#define 
#define 

pr_width(pr) ((pr)->pr_size.x) 
pr_height(pr) ((pr)->pr_size.y) 

All other information about the pixrect is data private to it, accessed through the operations 
addressed in the pr _op, struct. In particular, the locations, values, and interpretations of pixels, 
if stored at all, are reached through pr _data. 

Memory pixrects have their pixels stored in memory, in a public format. This gives them a 
privileged position: they are the common representation to and from which all other pixrects 
may he converted. Thus pixrects of any two kinds may be interconverted by passing through 
an intermediate memory representation. Memory pixrects are described in section 2.4. 

2.1.4. Primary and Secondary Pixrect1 
More than one pixrect may refer to the same pixels. One pixrect is considered to "manage" the 
pixels, and is referred to as the primary pixrect. For devices that share a resource with many 
processes, such as the framehuffer, a primary pixrect might be responsible for mapping the 
shared resource into a process address space. For device that don't share a resource with other 
processes, such as a memory pixrect, a primary pixrect might be responsible for allocating the 
single resource. This includes other objects in the same process. 

A aecondary pixrect is formed from a subregion of either a primary or another secondary pix
rect. It provides finer clipping control when writing than is possible with a primary pixrect. It 
also indicates a limited source of pixels when reading. 

2.2. Pixrectopa 
A pixrectops struct is a collection of pointers to procedures, one for each of the operations 
defined on all pixrects: 

struct pixrectops { 
int (•pro_ropX); 
int (*pro_batchropX); 
struct pixrect *(*pro_createX); 
int ( •pro_destroyX); 
int (*pro_get)(); 
int (*pro_put)(); 
int (•pro_vector)(); 
struct pixrect *( *pro_region)(); 

}; 

With the exception of the create and regio~ operations, each procedure returns an int; by con
vention, a return value of -1 indicates an error. ( Create and region return NULL in case of 
error.) 

Every pixrect is expected to provide each of these operations. Of course the implementations 
will vary from device to device, but in describing the individual operations, we are interested in 
their external behavior, which should be the same across the various instantiations. Therefore, 
in the following sections, we will describe a model proc~dure, which differs in at least name 



-8-

from every implementation. This bears repeating: The pizrect-op deacribed at the top of each 0 
aucceeding aubaection i, a convenient fiction; there i, no aingle procedure with that name. '1111!1!!!1"') 

These routines will be used in fairly standard fashions, so macros are defined for more con-
venient invocation in the expected forms. These macros are described in the same section as the 
routine they apply to. 

In many of the macros which expand to subroutine calls, the argument(s) which point to a pix
rect are used several times int he macro expansion. Thus it will be cheaper to use register vari
ables as these arguments. Even though it only appears once in your source, it may get used 
four or five times in the generated code. 

2.2.1. Create/Open 
The properties of a non-memory pixrect are described by a UNIX device. Thus, when creating 
the first pixrect (or a device you need to open it by a call to: 

struct pixrect *pr_open( devicename) 
char •devicename; 

The only devicename currently supported is / dev/bwO. The returned pixrect covers the entire 
surf ace of the device. 

Memory pixrects are special and have their own create routine. 

struct pixrect •mem_create(w, h, d) 
int w, h, d; 

Create routines for a pixrect may also be found in an existing pixrect of the desired type. Mac
ros are defined to invoke Create given an existing pixrect; these will make a new instan.ce of an 
existing pixrect type. 

struct pixrect •pr_create(pr, w, h) 
struct pixrect *pr; · 
int I w, h; 

extracts the create procedure from pr's pixrectops, and applies it to the list of arguments; 

struct pixrect •prs_create(pr, size) 
1truct pixrect •pr; 
struct pr_size size; 

does the same, expandin.g its pr_,ize argument in the process. 

2.2.2. Destro7/Close 

pr_destroy(pr) 
atrud pixrect •pr; 

destroys the pixrect pointed to by pr, freeing any storage allocated for it. The procedure may 
be applied to either primary or secondary pixrects. If a primary pixrect is destroyed before 

0 

secondary pixrects which refer to its pixels, those secondary pixrects are invalidated; attempting o··. 
any operation but tlut,011 on them is an error. 



0 

0 

0 

- g -

#define prs_destroy(pr) 
struct pixrect *pr; 

pr_close(pr) 
struct pixrect *pr; 

does the same. (These are both defined so that either set of names may be used consistently 
across all operations.) 

2.2.3. Raster Op 

pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy) 
struct pixrect •dpr, *spr; 
int dx, dy, dw, dh, op, sx, sy; 

Rop performs the indicated raster operation from coordinates ( u, ay) in the source pixrect apr, 
into the rectangle whose origin is ( dz, dy) and whose dimensions are dw and dh in the destina
tion pixrect dpr. 

The interpretation of the op argument is discussed in section 2.2.5, below. 

If the source pointer is NULL, it is taken to indicate an infinite source of pixels all 0. 

#define prs_rop(dstregion, op, srcprpos) 
struct pr_subregion; 
int op; 
struct pr_prpos; 

expands its pr_aubregion and pr_prpo, arguments in the process. 

2.2.•. Batch Raster Op 
Some applications (e.g. displaying text) perform the same operation on a number of pixrects, in 
a fashion that is amenable to global optimization. The batchrop procedure is provided for 
these: 

pr_batchrop(dpr, dx, dy, op, items, n) 
struct pixrect •dpr; 
int dx, dy, op, n; 
struct batchitem itemsD; 

struct batchitem { 
struct pixrect • bi_pr; 
struct· pr_pos bi_pos; 

}; 

Batchrop takes an array of items addressed by the argument itema, each consisting of a pointer 
to a source pixrect, and a destination x- and y-offset; the size of the array is indicated by the 
argument n. It performs the raster operation indicated by op on each source pixrect, carrying it 
into a destination pixrect addressed by dpr. The whole of each source pixrect is used (unless it 
needs ·to be clipped to fit the destination pixrec:t). 



- 10 -

The destination position is initialized to the position given by dz and dy; then, for each batchi- 0'\ 
tem, the offsets given in bi_po, are added to the previous destination position before that bi_pr 
is operated on. That is, a destination position is updated for each item in the batch, and these 
adjustments are cumulative. (A batchitem is not simply a pr_prpo, to emphasize the fact that 
the position is not in the indicated pizrect.) 

The interpretation of the op argument is discussed in section 2.2.5, below. 

#define prs_batchrop(dstpos, op, items, n) 
struct pr_prpos dstpos; 
int op, n; 
struct batchitem items [ ); 

expands its destination pr _prpo, argument. 

2.2.S. Constructing Op Arguments for Rop and Batchrop 
The rop and batchrop procedures in the pixrectops vector perform raster operations on their 
source and destination pixrects, with the particular operation specified in the op argument to 
the procedure. A raster operation is one in which each destination pixel is computed as the 
result of a function of its previous value and of the value of a corresponding source pixel. 

For a depth-I pixrect, such as a black and white display, there are only 16 such functions logi
cally possible, so the operation may be encoded in four bits of the op argument. (See the SUN 
Programmer', Manual for a fuller discussion o. f raster ops.) The four bits used leave one more 
bit at the low-order end of the value for the clipping flag discussed in ControUing Clipping in the 0) 
Ruter Op; thus raster ops are encoded by even values O through 30. 

This encoding is generalized to pixels of arbitrary depth by specifying that the function is 
applied to corresponding bits of the pixels in parallel. This emphasizes that the pixrects must 
be of the same depth. 

2.2.S.1. Constante for Constructing Raster Ops 
The encoding of the operation into 4 bits is supported by the following defined constants: 

#define PIX_SRC Ox18 
#define PIXJ)ST Ox14 
#define PIX_NOT(op) (OxlE & rop)) 

These allow the functions to be specified by performing the desired logical operation on the 
appropriate constant. The explicit definition of PIX_NOT is required since other bits of the 
operation should not be inverted. When PIX_NOT is used, the full op must be specified before 
setting the PIX_DONTCLIP flag described in Controlling Clipping in the Raater Op. 

0\ 



I. 

0 

0 

0 

PIX_SRC 
PIX_DST 

Op with Value 

PIX_SRC I PIX_DST 
PIX_SRC & PIX_DST 
PIX_NOT(PIX_SRC) & PIX_DST 
PIX_SRC • PIX_DST 

• 11. 

Result 

Same as source argument (write) · 
Same as destination argument (no-op) 
OR of source and destination (paint) 
AND of source and destination ( mask) 
AND of negation of source with destination (erase) 
XOR of source and destination (invert) 

A particular application of these logical operations allows definition of ,et and clear operations: 

#define PIX_SET (PIX_SRC I PIX_NOT(PIX_SRC)) 

is always true, and hence sets the result; while 

#define PIX_CLR (PIX_SRC & PIX_NOT(PIX_SRC)) 

is always false, and hence clears the result. 

2.2.5.2. Controlling Clipping in the Ruter Op 

Clipping pixrects in transmission can be very expensive, and often can be done more efficiently 
by the client at a higher level. If the client can guarantee that only pixels which ought to be 
visible will be written, it may advise rop and batc/arop procedures to bypass clipping checks, 
thus considerably speeding their operation. This is done by setting the flag 

#define PIX_DONTCLIP Oxl 

in the op argument. 

2.2.S.3. Provision for Inverted Video Pixrecta 

Two arrays of opcodes provide translation for environments where either the source or the desti
nation data may be inverted: 

char pr_reversedst(32], 
pr_reversesrc(32); 

Indexing the array by an integer less than 32 ( op plus clipping flag) yields the corresponding op 
and an unchanged clipping flag for the inverted pixrect. The translation_ is transitive; that is, 
one may write 

pr_reversesrc(PIX_SRC) 

to copy pixels from an inverted source, and 

pr_reversedst[pr_reversesrc [PIX_SR C & PIX_DST]] 

to apply a mask from an inverted source to an inverted destination. · 



- 12 -

2.2.6. Get 

pr_get(pr, x, y) 
struct pixrect •pr; 
int x, y; 

returns the pixel value at coordinates (x, y) in pixrect pr a., a 32-bit unsigned result. 

#define prs_get(srcprpos) 
struct pr_prpos srcprpos; 

expands its ,rcprpo, argument. 

2.2.7. Put 

pr_put(pr, x, y, val) 
struct pixrect •pr; 
int x, y, val; 

stores the indicated pixel value at coordinates (x, y) in pr. 

#define prs_put(dstprpos, val) 
struct pr_prpos dstprpos; 
int val; 

expands its utprpo, argument. 

2.2.8. Vector 

pr_vector(pr, xO, yO, xl, yl, op, color) 
struct pixrect *pr; 
int xO, yO, xi, yl, op, color; 

draws a vector of unit width between two points in the indicated pixrect, using the indicated 
operation, and color a., a constant source; portions of the vector lying outside the pixrect are 
clipped. 

#define prs_vector(pr, posO, posl, op, color) 
etruct pixrect •pr; 
struct pr_pos posO, posl; 
int op, color; 

expands its po,O and pod arguments in the process. 

2.2.9. Region 

etruct pixrect pr_•region(pr, x, y, w, h) 
struct pixrect •pr; 
int x, y, w, h; 

creates a new (secondary) pixrect which refers to an area within an existing one. Tlie· pixrect 

Q 



0 

0 

which is to serve as the source is addressed by pr; the rectangle to be include in the new pixrect 
is described by z, 11, wand h, with its upper left pixel at coordinates (0, 0), as with all pixrects. 

#define prsJegion( su breg) 
struct pr_subregion subreg; 

expands its ,ubreg argument in the process. 

2.3. Independent Procedures 

2.3.1. Replicating the Source Pixrect 
Often the source for a raster operation consists of a pattern which is used repeatedly, even a 
single value which fills the whole destination. In these cases, it is easier (and usually faster) to 
specify the source programmatically than to create a special source pixrect of the exact size to 
fill the destination. This is done with the pr Jeplrop procedure, declared in pizrect.h. This pro
cedure is the same for all pixrects, and is referenced directly, rather than through the pixrectops 
vector: 

pr_replrop(dpr, dx, dy, dw, dh, op, spr, sx, sy) 
struct pixrect •dpr, •spr; 

. int dx, dy, dw, dh, op, sx, sy; 

Dpr indicates the destination pixrect, and the area affected is described by the rectangle ( dz, 
d11, dw, dh ). The source pixrect is indicated by ,pr, and an origin within it by u, 111. 

For instance, to write a solid color in a rectangular region, it suffices to give a single pixel of 
source, which is replicated throughout the destination. (For monochrome pixrects, this will be 
equivalent to either PIX_SET or PIX_CLR in the op argument to rop.) Similarly, a standard 
gray pattern may be painted across a portion of the screen by constructing a pixrect that con
tains exactly one tile of the pattern, and using it as the source pixrect. 

The alignment of the pattern on the destination is the same as though the source were a pixrect 
containing an infinite number of copies of the actual source, both across and down, in which the 
actual source origin is taken at the position indicated in ,pr. So, if ,z and 111 are both 0, the 
pattern will be aligned with the destination pixrect position. If, on the other hand, what is 
desired is alignment to some global framework (e.g. to keep a gray pattern aligned across all of 
a screen), the destination's origin may be copied into the source positions to maintain that 
alignment. 

2.4. Memory Pixrects 

Pixrects in memory hold a special position: their format is public, as are the standard opera
tions on them. Thus, a client may construct a memory pixrect using non-pixrect operations, 
and has access t.o the memory pixrect operations at all times. 

In memory, the pixel stored at the lowest address is the upper-left corner; it is followed by the 
remaining pixels in the top row, left-to-right. Pixels are stored in successive hits, without pad
ding or alignment. (For pixels more than 1 bit deep, it is possible for a pixel to cross a byte 
boundary). However, rows are rounded up to 16-bit boundaries. After any padding for the top 
row, pixels for the row below that are stored, and so through the whole rectangle. 



- 14 -

The declarations required for dealing with memory pixrects are found in the file memt1ar.h. 

2.4.1. The Mem_ops Struct 

The procedures pointed to by a memory pixrect 's pr _op, vector are available in a struct named 
predictably: 

struct pixrectops mem_ops = { ., 

}; 

mem_rop, 
mem_batchrop, 
mem_create, 
mem_destroy, 
mem_get, 
mem_put, 
mem_vector, 
mem_region 

The procedure declarations are completely consistent with the models described above. 

2.4.2. The Mpr _data Struct 

The pr_tlata element of a memory pixrect points to an mpr_tlata struct: 

struct mpr_data { 
int md_linebytes; 
short •mdjmage; 
struct pr_pos md_offset; 
int md_primary; 

} 

Linebyte, is the number of bytes stored in a row of the primary pixrect. This is the difference 
in -the addresses between two pixels at the same x-coordinate, one row apart. (Because multiple 
pixrects may include subregions of the same pixels, this quantity cannot be computed from the 
width of the pixrect - see Region.) Mtl_image is the address of the first pixel in the underlying 
array; it is guaranteed to lie at the beginning of a short word (16 bits). MtlJoa_off,et is the 
position of the first pixel of this pixrect within the array of pixels addressed by md_image. 
MtlJrimary is 1 if the pixrect is primary and had its image allocated by calloc. In this case, 
md_image will point to an area not referenced by any other primary pixrect. This flag is inter
rogated by the destroy routine: if it is 1 when that routine is called, the pixrect's memory will 
be freed. 

2.4.3. Static Memor1 Pixrects 
A memory pixrect may be created at compile time by 1ising the mpr_,tatic macro: 

#define mpr_static(name, w, h, d, image) 

where name is a token to be used in identifying the generated data objects; w, h, and d are the 

0 
' 

~; 
~ 

0 



0 
• 15 -

width and height in pixels, and depth in bits, of the pixrect; and image is the address of an 
(even-byte aligned) .data object which contains the pixel values in the correct format. 

The macro generates two static structs: 

struct mpr_data name_data; 

struct pixrect name ; 

The mpr _data is initialized to point to all of the image data passed in; the pixrect then refers to 
mem_opa and to name_data. · 

2.5. Text Facilities tor Pixrects 
Displaying text is an important task in many applications, so pixrect-level facilities are provided 
to address it directly. These facilities fall into two main categories: a standard display format 
for fonts, with routines for processing them; and routines which take a string of text and a font, 
and handle various parts of painting that string in a pixrect. 

2.5.1. Pixfonts 

The file / uar / include/ pizrect/ piz/ont.h defines the following two structs: 

struct pixchar { 
struct pixrect *pc_pr; 
struct pr_pos pc_home; 
struct pr_pos pc_adv; 

}; 

struct pixf ont 
struct 
struct 

}; 

pr_s1ze 
pixchar 

{ 
pf_defaultsize; 
pf_char[256); 

The pizchar defines the format of a single character in a font. The actual image of the charac
ter is stored in a pixrect (a separate pixrect for elach character) addressed by pc_pr. Characters 
that have no displayable image will have NULL 1in their entry in pr_char. Pc_home is the ori
gin of that image (its upper left corner) relative to the character origin. (Characters are nor
mally placed relative to a baaeline, which is the lowest point on characters without descenders. 
The leftmost point on a character is normally its origin, but kerning or mandatory letter spac
ing may move the origin right or left of that point.) Pc_adv is the amount the character origin is 
changed by this character; that is, the amounts in pc_adv added to the current origin will give 
the origin for the next character. While normal text only advances horizontally, rotated fonts 
may have a vertical advance. Both are provided for in the font. 

A pixfont consists of a size used for fonts whose characters are all the same size, and an array of 
pixchars, indexed by the character code. 



- 16 -

2.5.2. Operations on Pixfolits 
Before a process may use a font, it must ensure that it has been loaded into virtual memory; 
this is done with the pf _open procedure: 

struct pixfont •pf_open{name) 
char •name; 

opens the file with the given name, which should be a font file as described in v/ont(5). The file 
is converted to pixfont format, allocating memory for its associated structs and reading in the 
data for it from disk. A null is returned if the font cannot be opened. 

struct pixfont •pf_def ault{) 

performs the same function for the system default font, a fixed-pitch, 16-point sans serif font 
with upper-case letters 12 pixels high. 

When a process is finished with a font, it should call p/_cloae, to free the memory associated 
with it. If the environment parameter DEFAULT_FONT is set, it overrides the font file opened 
by •pf_de/ault. 

pf_close(pf) 
struct pixfont •pf; 

Note: The external font format is expected to change soon. 

2.5.3. Pf_text 
Characters are written into a pixrect with the p/_tezt procedure: 

pf_text(where, op, font, text) 
struct pr_prpos where; 
int op; 
struct pixfont •font; 
char •text; 

Where is the destination for the start of the text {baseline, nominal left edge); op is the raster 
operation to be used in writing the text, as described in Conatructing Op Argument, for Rop 
and Batchrop; font is a pointer to the font in which the text is to be displayed, and tezt is the 
actual string to be displayed. 

Auxiliary procedures used with p/_tezt include 

etruct pr_size pf_textbatch(where, lengthp, font, text) 
struct batchitem •where; 
int •lengthp; 
etruct pixf ont •font; 
char •text; 

struct pr_size pf_textwidth(len, font, text) 
int len; · 
etruct pixf ont •font; 
char •text; 

Pf_textbatch fills in the array of batchitems and its length, as required by batchrop {see 2.2.4). 
To do this, it requires a string and a font in which to find source pixrects for the characters. 

Q 



- 17 -

0 P(_textwidth returns a pr_size which contains the total dimension of the string of the first len 
characters in text, when formatted in the indicated font. 

0 

0 



- 18 -

3. OVERLAPPED WINDOWS: IMAGING FACILITIES 
This chapter and the following two deal with the next lay~r of the window system, which pro
vides facilities for managing windows with overlapping and concurrency. This chapter is 
specifically concerned with generating images in such an environment. Chapter 4 deals with 
control of the windows, manipulating their size, location, and other structural characteristics. 
Chapter 5 describes the facilities for serializing multiple input streams and distributing them 
appropriately to multiple windows. This layer of the window system is referred to as the 
aunwindow level, from the name of the library which contains its implementation. 

At this level of the system, a window is treated as a device: it is named by an entry in the / dev 
directory; it is accessed by the open(2) system call; and the usual handle on the window is the 
file deacriptor ( or /d) returned from that call. 

For this chapter, however, a window may be considered as simply a rectangular area with con
tents maintained by some process. Multiple wfndows, maintained by independent processes, 
may coexist on the same screen; the Sun window system allows them to overlap, sharing the 
same (z, y) coordinates, and proceeding concurrently, while maintaining their separate identities. 

Window system facilities may also be used to construct a non-overlapped environment. Most of 
the window system facilities are useful in this case as well. 

3.1. Window Issues: Controlled Display Generation 
Windows that overlap introduce two new issues, which may be broadly characterized as 
preventing the window from painting where . or when it shouldn't, and ensuring that it does o.·.),, 
paint whenever and wherever it should. The finit includes clipping and locking; the latter coven, . 
damage repair and fizup,. 

3.1.1. Clipping and Locking 
Clipping constrains a window to draw only within the boundaries of its portion of the screen. 
This area is subject to changes beyond the control of a window's process - another window 
may be opened on top of the first, covering part of its contents, or a window may be shrunk to 
make room for another alongside it. Thus, it is convenient for the window system to maintain 
up-to-date information on which portions of the screen belong to which windows, and for the 
windows to consult that information whenever they are about to draw on the screen. 

Locking prevents window processes from interfering with each other in several ways: 

• The raster hardware typically requires several operations to complete a change to the 
display; one process' use of the hardware should be protected from interference by 
others during this critical interval. 

• Changes to the arrangement of windows must be prevented while a process is paint
ing, lest an area be removed from a window as it is being painted. 

• Finally, a software cursor which is not controlled by the window process (the kernel is 
usually responsible for the cursor) may have to be removed so that it does not inter
fere with the window's image. 

0 



0 

- 19 -

3.1.2. Damage Repair and Fixups 
A window whose image does not all appear as it should on the screen is said to be damaged. A 
common cause of damage is being first overlaid, and then uncovered, by another window. When 
a window is damaged, a portion of the window's image must he repaired. Note that the require
ment for repairing damage may arise at any time; it is completely outside the window's control. 

When a process performs some operation which includes reading a portion of its window ( e.g. 
copying a part of the image from one region to another to implement scrolling), it may find the 
source pixels obscured. This necessitates a fizup, in which that portion of the image is regen
erated, similar to repairing damage. Fixups are provoked only in response to an action of the 
window's process, however. 

3.1.3. Retained Windows 
Either form of regeneration may be done by recomputing the image; this approach is reasonable 
for applications like text where there is some underlying representation from which the display. 
can be recomputed easily. For images which required considerable computation, Sun's window 
system provides a retained window, whose image is maintained in memory as well as on the 
display; such a window may have its image recopied to the display as needed to repair damage. 
The mechanism for making a window retained is described in Pizwin,. 

0 3.1.4. Process Structure 

0 

In Sun's window system, access to the screen is performed in the user process. This raises the 
possibility of a user process running amok and damaging not only its own data, but (at least the 
display of) other application processes as well. Several compensating factors justify this 
approach: 

• It is consistent with the philosophy espoused in Chapter 1, of providing an open sys
tem which clients may access at whichever level is most convenient. Clients who 
require the ultimate efficiency of direct screen access need not sacrifice the window 
management functions of the window system. 

• Leaving processing in user processes promotes efficiency in both implementation and 
execution: making and testing extensions and modifications is much easier in user 
code than in the kernel. 

• The vast majority of clients will use window system library routines which provide 
protection. 

3.1.5 •. Imaging with Windows 

We proceed now to a detailed discussion of imaging with windows. We begin with a description 
of the basic data structures which are used in this level of the Sun window system: a primitive 
geometric facility (the rect) for describing rectangles, and the basic structure which is used to 
describe a window on the screen (the pizwin), with its associated state and operation vectors. 

Creating and destroying pizwa'n, is a simple process, which gets a brief discussion. 

That is followed by a detailed description of the approach to locking and clipping, which leads 
naturally into a discussion of library routines which access a pixwin '• pixels. Detecting and 



- 20 -

repairing damage is treated next. 

3.1.6. Libraries and Header Files 
The procedures described in this chapter are p~vided in the aunwintlow library 
(/uarf libf libaunwindow.a). The header file /uar/include/aunwindow/wintlowJ,a.h contains all the 
include, that are required by a program using the facilities described in this chapter. 

3.2. Data Structures 

3.2.1. Reeta 
Throughout the window system, images are dealt with in rectangular chunks; where complex 
shapes are required, they are built up out of groups of rectangles. The basic description of a 
rectangle is the rect struct, defined in the header file / uar/ include/ aunwindow/ rect.h. The same 
file contains definitions of several useful macros and procedures for dealing with recta. 

Where a window is partially obscured, its visible portion generally cannot be described by a sim
ple rectangle; instead a list of non-overlapping rectangular fragments which together cover the 
visible area is used. This rectliat is declared, along with its associated macros and procedures, in 
the file / uar/ include/ aunwindow/ rectliat.h. Q 
At this point we only discuss the rect struct and its most useful macros; a full description of 
both rect, and rectli,t, may be found in Appendix A. 

#define coord short 

struct rect { 
coord 
coord 
short 
short 

}; 

rJeft; 
r_top; 
r_width, 
r_height; 

In the context of a window, the rectangle lies in a coordinate system whose origin is in the 
upper left-hand corner, and whose dimensions are given in pixels. Two macros determine an 
edge not given explicitly in the rect: 

#define 
#define 

struct 

rect_right(rp) 
rect_bottom( rp) 

rect •rp; 

These return the coordinate of the last pixel within the rectangle on the right or bottom, respec
tively. 



0 

0 

0 

• 21 -

3.2.2. Pixwina 
Pizwin, are the basic imaging elements or the overlapped window system. A client or the win
dow system has a rectangular window in which it displays information for the user. Because of 
overlapping, however, it is not always possible to display inrormation in all parts or a client's 
window; and parts or an image may have to be displayed at some point long arter they were 
generated, as a portion of the window is uncovered. Th~ clipping and repainting necessary to 
preserve the identity of the rectangular image across interference with other objects on the 
screen is handled by manipulations on pizwins. , 

The pi:zwin struct is defined in / uar / include/ aun~indow/ pi:zwin.la: 

atruct pixwin { 

}; 

atruct pixrectops •pw _ops; 
caddr_t pw _opshandle; 
int 
int 
atruct 
1truct 
atruct 
atruct 
1truct 

pw_opsx; 
pw_opsy; 
rectlist pw _fix up; 
pixrect •pw_pixrect; 
pixrect •pw _prretained; 
pixwin_clipops •pw _clipops; 
pixwin_clipdata • pw _clipdata; 

The pizwin refers to a portion of some device (typically a display); the device is identified by 
pw._,Pizrect. 

If the image displayed in the pizwin required a large effort to compute, it will be worth saving a 
backup copy of the whole image (making the window a retained window). This is done by 
creating an appropriate memory pizrect (as described in Memory Pizrect,), and storing a pointer 
to it in pw_prretained. 

Portions of the image which could not be accessed by an operation which attempted to read 
pixels from the pi:zwin are indicated by pw_ji:zup. 

Pw_opa is a pointer to a vector of operations in screen access macros to call either the pi:zwin 
software level or (as an optimization) the pizrect sortware directly. The structure pizrectopa was 
discussed in Pizrectopa. The pw_opahandle is the data handle passed to the operations of 
pw_op,. Pw_opaz and pw_opay are additional offset info.rmation used by screen access macros. 
These three fields are dynamically altered based on locking and clipping status. 

Pw_clipdata is a collection of inrormation or special interest to locking and clipping. Pw_clipop, 
points to a vector of operations which are used in locking and clipping. The declarations of 
these last two structs are given here, and then discussed more fully in subsequent sections. 

3.2.3. Pixwin_clipdata 



- 22-

struct pixwin_clipdata { 
int pwcd_windowfd; 
short pwcd_state; 
struct rec:tlist pwcd_clipping; 
int pwcd_clipid; 
int pwcd_damagedid; 
int pwcdJockcount; 
struct pixrect •pwcd_prmulti; 
struct pixrect •pwcd_prsingle; 
struct pixwin_prlist •pwcd_prl; 
struct rectlist pwcd_clippingsorted(RECTS_SORTS); 

} ; 

#define PWCD_NULL 0 
#define PWCD_MUL TIRECTS 1 
#define PWCD_SINGLERECT 2 
#define PWCD_USERDEFINE 3 

struct pixwin_prlist { 
struct pixwin_prlist •prl_next; 
struct pixrect •prl...J>ixrect; 
int prl_x, prl_y; 

} ; 

Pwcd_window/d is a file descriptor for the window being accessed; within the owning process, it 0) 
is the standard handle on a window. (The interplay between windows and pizwina is a continu- · 
ing story, which picks up again in section 3.3.) The portions of the window's area accessible 
through the pizwin is described by the pwctl_clipping rectli,t. Pwctl_clipitl and pwctl_tlamagetlitl 
identify the most recent rectliat, retrieved for a window. PwctlJockcount is a reference count 
used for nested locking, as described in section 3.4.1 below. Copies of this pwctl_clipping, sorted 
in directions convenient for copy operations, are stored in pwctl_clippingaortetl. 

Pwcd_atate can be one of PWCD_NULL (no part of window visible), PWCD_MULTIRECTS 
(must clip to multiple rectangles), PWCD_SINGLERECT (need clip to only one rectangle) or 
PWCD_USERDEFINE (the client program will be responsible for setting up the clipping). 
Pwcd_prmulti is the pizrect that is used for drawing when there are multiple rectangles involved 
in the clipping. Pwctl_praingle is the pizrect that is used for clipping when there is only one rec-
tangle visible. · 

Pwcd_prl is a list of pizrect, that may be used for clipping when there are multiple rectangles 
involved. For vector drawing, these clippers mu,t be used in order to maintain stepping 
integrity across abutting rectangle boundaries. The prl_z and prlJ fields in the pizwin_prli,t 
structure are offsets from the window origin for the associated prl_pizrect. 

3.2.4. Pixwin_clipops 



0 

0 

0 

- 23 • 

struct pixwin_clipops { 
int (•pwco_JockX), 
int ( •pwco_unlockX), 
int (•pwco_reset)(), 
int (•pwco_getclippingX); 

}; 

The pizwin_opa struct is a vector of pointers to system-provided procedures which implement 
correct screen access. These are accessed through macros described in the section entitled Lock
ing and Clipping. 

3.3. Pixwin Creation and Destruction 

In order to create a pizwin the window to which it will refer must already be created. This task 
is accomplished with procedures like win_getnewwindow and win_aetrect, described in the next 
chapter, or, at a higher level, tool_create and tool_createaubwindow, described in Suntool: Tool, 
and Subwindow,. The pizwin is then created for that window by a call to pw_open: 

struct pixwin •pw_open(fd) 
int fd; 

Pw_open takes a file descriptor for the window on which the pizwin is to write. A pointer to a 
pizwin struct is returned. At this point the pizwin describes the exposed area of the window. If 
the client wants a retained pi:iwin, pw_prretained should be set to point to an appropriately
sized memory pizrect after pw_open returns. 

When a client is finished with a window, it should be released by a call to 

pw _close(pw) 
struct pixwin •pw; 

Pw_cloae frees any dynamic storage associated with the pi:noin, including its pw_prretained piz
rett if any. If the pizwin has a lock on the screen, it is released. 

3.4. Locking and Clipping 

Before a window process writes to the screen, it must satisfy several conditions: 

• it should obtain exclusive use of the display hardware; 

• the position of windows on the screen should be frozen; 

• the window's description of what portions of its window are visible should be up-to
date; and 

• the window should confine its activities to those visible areas. 

The first three of these requirements are met by locking; the last amounts to clipping the image 
the window will write to the bounds of its ezpoaed area. All are handled implicitly by the access 
routines described in section 3.5. Some clients will use those routines, but, for efficiency's sake, 
lock explicitly around a body of screen access operations. 



3.4.1. Locking 

pw_lock(pw, r) 
struct pixwin •pw; 
struct rect •r; 

- 24 -

is a macro which uses the lock routine pointed to by the window's pw_clipop, to acquire a lock 
ror the user process that made this call. Pw addresses the pizwin to be used (or the ouput; r is 
the rectangle (in the window's coordinate system) which bounds the area to be affected. 
Pw_lock blocks ir the lock is unavailable ( e.g. ir another process currently has the display 
locked). 

Lock operations ror a single pizwin may be nested; inner lock operations merely increment a 
count or locks outstanding (pwctl_lockcount in the window's pw_cliptlata struct ); Their affected 
rectangles must lie within the original lock's. · 

pw _unlock(pw) 
struct pixwin •pw; 

is a similar macro, which decrements the lock count; ir this brings it to 0, the lock is actually 
released. 

Since locks may be nested, it is possible for a client procedure to find itselr ( especially in error 
handling) with a lock which may require an indefinite number of unlocks. To handle this situa
tion cleanly, another routine is provided: 

pw _reset( pw) 
struct pixwin •pw; 

is a macro which unlocks pw until its lockcount has gone to 0. Like pw_lock and pw_unlock, it 
calls a routine addressed in the pizwin,', pizwin_clipop, struct, in this case the one addressed by 
pwco_re,et. 

Acquisition of a lock has the following effects: 

• If the cursor is in conflict with the affected rectangle it is removed from the screen. 
While the screen is locked, the cursor will not be moved in such a way as to disrupt 
any screen accessing: 

• Access to the display is restricted to the process acquiring the lock. 

• Modification of the database that describes the positions of all the windows on the 
screen is prevented. 

• The id of the most recent clipping information for the window is retrieved, and com
pared with that stored in pwctl_clipitl in the window's pw_cliptlata. If they differ, the 
routine addressed by pwcoJetclipping is invoked, to make all the fields in pw_clipdata 
accurately describe the area which may be written into. 

• Once the correct clipping is in hand, the pwctl_,tate variable's value determines how 
to set pw_op,, pw_op,hantlle, pw_opaz and pw_op,y. This is done in anticipation of 
further screen access operations being done before a subsequent unlock. These values 
can often be set to bypass the pizwin software by going directly to the pizrect le~el. 

0 

Locking is both a) moderately expensive (it involves two system calls), and b) capable of 
impacting other processes. Clients with a recognizable group of screen updates to do can gain 
noticeably by surrounding the group with lock - unlock brackets; then the locking overhead will 
only be incurred once. An example of such a group might be a line of text, or a series of vectors Q 
which have all been computed. 



• 25 -

0 While it has the screen locked, a process should not: 

0 

0 

• do any significant computation unrelated to displaying its image; and 

• invoke any system calls (including other 1/0), which might cause it to block. 
In any case, the lock should not be held longer than about a quarter of a second, even fol-
lowing all these guidelines. , 

As a deadlock resolution approach, when a display lock is held for more than 10 seconds, the 
lock is broken, however the offending process is not notified via signal. The idea is that a pro
cess shouldn't be aborted for this infraction. However, the display may look bad after this 
action. 

3.4.2. Clipping 

Output to a window is clipped to the window's pwcd_clipping rectliat; this is a series of rectan
gles which, taken together, cover the area it is valid for this window to write to. There are two 
routines which set the pizwin's clipping: 

pw_exposed(pw) 
atruct pixwin •pw; 

pw _damaged(pw) 
struct pixwin •pw; 

Pw_damaged is discussed in section 3.6 below. Pw_ezpoaed is the normal routine for discovering 
what portion of a window is visible. It retrieves the rectliat describing that area into the 
pizwin 'a pwcd_clipping, and stores the id identifying it in pwcd_clipid. It also stores its own 
address in the pizwin 'a pwco__getclipping, so that subsequent lock operations will get the correct 
area description. 

Clipping, even more than locking, should normally be left to the library output routines. For 
the intrepid, the strategy these routines follow is , briefly sketched here; the rectliat data struc
tures and procedures in Appendix A are required reading. 

Some procedure will set the pizwin ', pwcd_clipping so that it contains a rectli,t describing the 
region which may be painted. (This is done by a lock operation which makes a call through 
*pwco__getclipping, or an explicit call to one of pw_open, pw_donedamaged, pw_ezpoaed or 
pw_damaged.) This rectli,t is essentially a list of rectangular fragments which together cover the 
area of interest. As an image is generated, portions of it which lie outside the rectangle list 
must be masked off, and the remainder written to the window through a pizrect. 

The clipping aid pwcd_prmulti is set up to be a pizrect which clips for the entire rectangular 
area of the window. Any clipping using this pizrect must utilize the information in 
pwcd_clipping to do the actual clipping to multiple rectangles. 

Pwcd_prl is set up to parallel each of the rectangles in pwcd_clipping. Thus, if one draws to 
each of the pizrect, in this data structure the image will be correctly clipped. Pwcd_atate is set 
by examining the makeup of the pwcd_clipping. If pwcd_,tate is PWCD_SINGLERECT then a 
pizrect is set up in pwcd__praingle also. When this case exists, after pwJock and before 
pw_unlock, most screen accesses will directly access the pizrect level of software. Thus, modulo 
locking, in this common case screen access is as fast in the window system as it is on the raw 
pizrect software outside of the window system. Also, pwcd_praingle is set up with a zero height 
and width pizrect when pwcd_atate is PWCD_NULL. 



- 26-

As an escape, none of the pi:irect set up described above takes place when ptocd_atate is 
PWCD_USERDEFINE. This means that clipping is the responsibility of higher level software. 

A client may write to the display with an operation which specifies no clipping (op I 
PIX_DONTCLIP). This means that it is doing the clipping at a higher level. Note that clip
ping data is only valid during the time the client may write to the screen, that is when the 
window's owner process holds a lock on the scree_n. If the clipping is done wrong, it is possible 
to clobber another window's image. 

3 .5. Accessing a Pixwin 's Pixels 

Procedures described in this section provide all the normal facilities for output to a window, and 
should be used unless there are special circumstances. Each contains a call to the standard lock 
procedure, described in section 3.4.1; each takes care of clipping to the rectliat in pw_clipping. 
(Since the routines are used both for painting new material in a window and for repairing dam
age, they make no assumption about what clipping information should be gotten. Thus, there 
should be some previous call to either pto_open, pto_donedamaged, pto_e:ipoaed or pto_damaged, to 
initialize ptoo_getclipping correctly.) 

The procedures described in this section will maintain the memory pi:irect for a retained pizwin. 
That is, they check the window's pw_prretained, and if it is not null, perform their operation on 
that data in memory, as well on the screen. 

3.5.1. Write Routines 

pw_write(pw, xd, yd, width, height, op, pr, xs, ys) 
struct pixwin *pw; 
int op, xd, yd, width, height, xs, ys; 
struct pixrect *pr; 

pw _writebackground(pw, xd, yd, width, height, op) 

Pixels are written to the pi:iwin pw, in the rectangle defined by :id, yd, width, and height, using 
rasterop function op (as defined in section 2.2.5); they are taken from the rectangle with its ori
gin at z,, ya in the source pizrect pointed to by pr. Pw_writebackground simply supplies a null 
pr which indicates that an infinite source of pixels, all of which are set to zero, is used. 

pw_put(pw, x, y, value) 
struct pixwin *pw; 
int x, y, value; 

draws a pixel of value at (x, y) in the addressed pizwin. 

pw_vector(pw, xO, yO, xi, yl, op, value) 
struct pixwin •pw; 
int op, xO, yO, xi, yl, value; 

draws a vector of pixel value from (xO, yO) to (xi, yl) in the addressed pi:r:rect, using rasterop 

0 \ 
' 

0 

• 0 



0 

0 

0 

• 27 -

pwJeplrop(pw, xd, yd, width, height, op, pr, xs, ys) 
struct pixwin *pw; 
int op, xd, yd, width, height; 
struct pixrect •pr; 
int xs, ys; 

This procedure uses the indicated raster op function to replicate a pattern (found in the source 
pizrect) into a destination in a pizwin. (For a full discussion of the semantics of this procedure, 
refer to the description of the equivalent procedure pr_replrop in Pizel Data and Operation,.) 

pw_text(pw, x, y, op, font, s) 
struct pixwin •pw; 
int x, y, op; 
struct pixf ont •font; 
char •s; 

pw_char(pw, x, y, op, font, c) 
struct pixwin •pw; 
int 
struct 
char 

x, y, op; 
pixf ont •font; 
c; 

These two routines write a string of characters, and a single character, respectively, to a pizwin, 
using rasterop op as above. Pw_tezt and pw_char are distinguished by their own coordinate sys
tem: the destination is given as the left edge and ba,eline o( the (first) character. The left edge 
does not take into account any kerning, so it is possible for a character to have some pixels to 
the left of the x-coordinate; and the baseline is the y-coordinate of the lowest pixel of characters 
without descenders (e.g. 'L', 'o'), so pixels will frequently occur both above and below the base-
line in a string. · 

A font to be used in pw_tezt is required to have the same pc_/aome.y and character height for all 
characters in the font. 

3.5.2. Read and Copy Routines 

The following routines use the window as a source of pixels. They may find themselves 
thwarted by trying to read from a portion of the pi:iwin which is hidden, and therefore has no 
pixels. When this happens, pw.faup in the pizwin structure will be filled in by the system with 
the description of the source areas which could not be accessed. The client must then regen
erate this part of the image into the destination. Retained pizwin', will always return rl_nuU in 
pw_jizup because the image is refreshed from pw_prretained. 

pw_get(pw, x, y, value) 
struct pixwin •pw; 
int x, y, value; 

returns the value or the pixel at (x, y) in the addressed pixrect. 



- 28 -

pw_read(pr, xd, yd, width, height, op, pw, xs, ys) 
struct pixwin •pw; 
int op, xd, yd, width, height, xs, ys; 
struct pixrect •pr; 

Pixels are read from the pixwin pointed to by pw, in the rectangle defined' by x,, g,, width, 
height, using rasterop function op; they are stored in the rectangle with its origin at xtl, yd in the 
pixrect pointed to by pr. 

pw_copy(dpw, xd, yd, width, height, op, xs, ys) 
struct pixwin •dpw; 
int op, xd, yd, width, height, xs, ys; 

Copy is used when both source and destination are in the same pixwin. 

3.8. Damage 

When a portion of a client's window becomes visible after having been hidden, it is damaged. 
This may arise from several causes; for instance, an overlaying window may have been removed, 
or the client's window may have been stretched to give it more area. The client is notified that 
such a region exists by the signal SIGWINCH; this simply indicates that something about the 
window has changed in a fashion that probably requires repainting. (It is possible that the win
dow shrank, and no repainting of the image is required at all, but this is a degenerate case). It 
is then the client's responsibility to repair the damage by painting the appropriate pixels into 
that area. The following section covers the proper approach to that task. 

3.8.1. Handling SIGWINCH 
There are several stages to handling a SIGWINCH: 

First, the procedure which catches the signal almost always should not immediately try to repair 
the damage indicated by the signal. Since the signal is a software interrupt, it may easily arrive 
at an inconvenient time, e.g. halfway through a window's repaint for some normal cause. Con
sequently, the appropriate action in the signal handler is usually to simply set a flag which will 
be tested somewhere else. Conveniently, a SIGWINCH (like any other signal) will break a pro
cess out of a ,elect system call, so it is possible for a client which was blocked to be awakened, 
and, by dint of a little investigation, discover the cause. (See the ,elect(2) system call and refer 
to the tool_,elect mechanism in Tool Proce11ing for an example of this approach.) 

Once a process has discovered that a SI GWIN CH has occurred and arrived at a state where it's 
. safe to do something about it, it must determine what exactly has changed, and respond 

appropriately. There are two general possibilities: the window may have changed size, and/or 
a portion of it may have been uncovered. 

Win_get,ize (described in the next chapter) can be used to inquire the current dimensions of a 
window. The previous size must have been remembered, e.g. from when the window was 
created, or last adjusted. These two sizes are compared to see if the size changed. Upon notic
ing that · its size has changed, a window containing other windows may wish to rearranged the 
enclosed windows, for example, by expanding one or more windows to fill a newly opened space. 

Whether a size change occurred or not, the actual images on the screen must he fixed up. It is Q: 
possible to simply repaint the whole window at this point - that will certainly repair any dam-
aged areas - but this is often a bad idea because it typically does much more work than 



0 

0 

0 

- 29 • 

necessary. 
There(ore, the window should retrieve the description o( the damaged area, re.pair that damage, 
and inform the system that it has done so: 

pw _damaged(pw) 
struct pixwin •pw; 

pw_damaged is a procedure much like pw_expoaed. It fills in pwcd_clipping with a rectliat 
describing the area or interest, stores the id or that rectliat in the pi:zwin 'a opadata (in 
pwcd_damagedid as well), and also stores its own address in pwco_getclipping, so that a subse
quent lock will check the correct rectliat. All the clippers are set up too. 

Now is the time (or the client to repaint its window - or at least those portions covered by the 
damaged rectli,t; i( the regeneration is relatively expensive (ir the window is lai:ge, or its con
tents complicated), it may be worth restricting the amount of repainting before the clipping that 
the rectliat will en(orce. This means stepping through the rectangles or the rectli,t, determining 
for each what data contributed to its portion of the image, and reconstructing only that por
tion. See Appendix A for details about rectliat,. 

When the image is repaired, the client should inform the window system with a call to 

pw _donedamaged(pw) 
struct pixwin •pw; 

which allows the system to discard the rectli,t describing this damage. It is possible that more 
damage will have accumulated by this time, and even that some areas will be repainted more 
than once, but that will be rare. 

After calling pw_donedamaged, the pi:zwin describes the entire visible area of the window. 

A process which owns more than one window can receive a SIGWINCH for any of them, with 
no indication of which generated it. The only solution is to fix up aU windows. Fortunately, 
that should not be overly expensive, since the damaged areas are comletely and exactly specified 
by the returned value (or pw_damaged. 



- 30 -

4. WINDOWMANIPULATION 

This chapter describes the ,unwindow facilities for creating, positioning, and controlling win
dows. It continues the discussion begun in Ouerlapped Window,: Imaging Facilitie,, on this 
,unwindow level of the window system, that allows displaying images on windows which may be 
overlapped. 

The pizwin struct was the basic element of discussion in Chapter 3, encapsulating the informa
tion necessary for displaying an image on a window, including -clipping and damage repair. 
Another structure underlies the operations described in this chapter; but, since it is maintained 
within the window system, and is accessible to the client only through system calls (and their 
procedural envelopes), it will not be described here. The window is presented to the client as a 
device; it is represented, like other devices, by a file de,criptor returned by open; and it is mani
pulated by other i/o calls, such as ,elect, reatl, ioctl, and clo,e. ( Write to a window is not 
defined, since all the facilities of Chapter 3 are required to display output on a window.) 

Most of the window manipulations described in this chapter are performed by ioctl system calls. 
However, client programs should use the procedures described in this chapter because they are 
the supported interface. The header file / u,r/ include/ ,unwindow/ window_h,.h includes the 
header files needed to work at this level of the window system. 

4.1. Window Data 

The information about a window maintained by the window system includes: 

• 

• 

• 

two rectangles which refer to alternative ,ize, and po,itioru for the window on the 
screen; 

a series of links which describe the window's position in a hierarchical database, 
which determines its overlapping relationships to other windows; 
clipping 'information used in the processing described in chapter 3; 

• the image used to track the mouse when it is in the window; 
• the id of the process which should receive SIGWINCH signals for the window (this is 

the owner process); 

• a mask which indicates what user input actions the window should be .notified of; 

• another window, which is given any input events not used by this window; and 

• 32 bits of data private to the window client. 

4.2. Window Creation, Destruction, and Reference 

As mentioned above, windows are deuice,; as such, they are special files in the / deu directory 
(with names of the form "/ deu/winn", where n is a decimal number). A window is created by 
opening one of these devices, and the window name is simply the filename of the opened device. 

4.2.1. A New Window 

The first process to open a window becomes its owner. A process can obtain a window it is 
· guaranteed to by calling 

O '; 
/ 



0 

0 

0 

- 31 -

int win_getnewwindow() 

This finds the first unopened window, opens it, and returns a file descriptor which refers to it. 
If none can be found, it returns -1. A file descriptor, often called the windowfd, is the usual 
handle for a window within the process that opened it. 

When a process is finished with a window, it may close it. (This is the standard cloae system 
call, with the window's file descriptor as argument.) As with other file descriptors, a window 
left open when its owning process terminates wiU be closed automatically by the operating sys
tem. 

Another procedure is most appropriately described at this point, although in fact clients will 
have little use for it: to find the next available window, win_getnewwindow uses 

int win_nextfree(fd) 
int fd; 

passing it a file descriptor it got by opening / dev/winO. The return value is a window number, 
as described in 4.2.3 below; a return value of WIN_NULLLINK indicates there is no available 
unopened window. 

4.2.2. An Existing Window 

It is possible for more than one process to have a window open at the same time; section 4.9 
presents one plausible scenario for using this capability. The window wiU remain open until all 
processes which opened it have closed it. The coordination required when several processes have 
the same window open is non-trivial; see the discussion in section 4.9. 

4.2.3. References to Windows 
Within the process which created a window, the usual handle on that window is the file descrip
tor returned by open ( and winJetnewwindow). Outside that process, the file descriptor is not 
valid; one of two other forms must be used. We introduced the window name above; the other 
form is the window number, which corresponds to the numeric component of the window name. 
Both of these references are valid across process boundaries. The window number will appear in 
several contexts below. 

Procedures are supplied for converting the various window identifiers back and forth: 

win_numbertoname(winnumber, name) 
int winnumber; 
char *name; 

stores the filename for the window whose num her is winnumber into the buffer addressed by 
name, which should be WIN_NAMESIZE long ( as should all the name buffers in this section). 

int win_nametonumber(name) 
char •name; 

returns the window number of the window whose name is passed in name. 

win_fdtoname(windowfd, name) 
int windowfd; 
char *name; 

given a window file descriptor, stores the corresponding device name into the buffer addressed 



- 32 -

by name. 

int win_fdtonumber(windowfd) 
int windowfd; 

returns the window number for the window whose file descriptor is window/ti. 

4.3. Window Geometry 
Once a window has been opened, its size and position may be set. The same routines that are 
used for this purpose are also helpful for adjusting the screen positions of a window at other 
times, e.g. when user-interface actions indicate that it is to be moved or stretched. The basic 
procedures are 

win_getrect(windowfd, rect) 
int windowfd; 
struct rect *rect; 

win_getsize( windowfd, rect) 
int windowfd; 
struct rect *rect; 

short win_getheight(windowfd) 
int windowfd; 

short win_getwidth(windowfd) 
int windowfd; 

Win__getrect stores the rectangle of the window whose file descriptor is the first argument into 
the rect addressed by the second argument; the origin is relative to that window's parent. (Sec
tion 4.4.1 explains what is meant by a window's "parent.") 

Win__getaize is similar, but the rectangle is self-relative - that is, the origin is (0,0). 

Win__getheight and win__getwidth return the single requested dimension for the indicated window. 

win_setrect(windowfd, rect) 
int windowfd; 
struct rect •rect; 

copies the rect argument's data into the rect of the indicated window; this changes its size 
and/or position on the screen. The coordinates are in the coordinate system of the window's 

. parent. 

win_getsavedrect(windowfd, rect) 
int windowfd; 
struct rect •rect; 

win_setsavedrect(windowfd, rect) 
int windowfd; 
struct rect *rect; 

~ 
) 

A window may have an alternate size and location; this facility is useful for, e.g. icon, (see sec- 0) 
tion 8.1 ). The alternate rectangle may be read with win__getaavedrect, and written with 



,. 

0 

0 

0 

- 33 -

win_setsavedrect. As with win_getrect and win_setrect, the coordinates are relative to the 
window's parent. 

4.4. The Window Hierarchy 
Position in the window database determines the nesting relationships of windows, and therefore 
their overlapping and obscuring relationships. The third step in creating a window is to define 
its relationship to the other windows in the system. This is done by setting links to its neigh
bors, and inserting it into the window database. 

4:.4:.1. Setting Window Links 
The window database is a strict hierarchy. Every window (except the root) has a parent; it also 
has O or more sibling, and children. In the terminology of a family tree, age corresponds to 
depth in the layering of windows on the screen: parents underlie their offspring, and older win
dows underlie younger siblings which intersect them on the display. Parents also enclose their 
children, which means that any portion of a child's image that is not within its parent's rectan
gle is clipped. Depth determines overlapping behavior: the uppermost image for any point on 
the screen is the one that gets displayed. Every window has links to its parent, its older and 
younger siblings, and to its oldest and youngest children. 

Windows may exist outside the structure which is being displayed on a screen; they are in this 
state as they are being set up, for instance. 

The links from a window to its neighbors are identified by link ,electors; the value of a link is a 
window number. (An appropriate analogy is to consider the link selector as an array index, and 
the associated window number as the value of the indexed element.) To accommodate different 
viewpoints on ~the structure there are two sets or equivalent selectors defined for the links: 

WL_PARENT == WL_ENCLOSING 
WL_OLDERSIB == WL_COVERED 
WL_YOUNGERSIB == WL_COVERING 
WL_OLDESTCHILD == WL_BOTTOMCHILD 
WL_YOUNGEST == WL_TOPCHILD 

A link which has no corresponding window (a child link of a "leaf" window, for instance) has 
the value WIN_NULLLINK. 

When a window is first created, all its links are null. Before it can be used for anything, at least 
the parent link must be set. If the window is to be attached to any siblings, those links should 
be set in the window as well. The individual links of a window may be inspected and changed 
by the following procedures: 

int win_getlink(windowfd, link_selector) 
int windowfd, link..J1elector; 

returns a window number, which is the value of the selected link for the window associated with 
window/d. 

win_setlink(windowfd, link_selector, value) 
int windowfd, link..J1elector, value; 



- 34-

sets the selected link in the indicated window to be t1alue (which should be another window 
number). The actual window number to be supplied may come from one of several sources: If 
the window is one or a related group, file descriptors will be available for the other windows, 
and their window numbers may derived from the file descriptors via winJdtonumber. The win-
dow number for. the parent or a new window (or group of windows) is not immediately obvious, 
however. The solution is a convention that the WINDOW_PARENT environment parameter 
will be set to the filename or the parent. (See the section entitled Paaaing Parameter, to a Tool 
in the chapter on tools for an example of this environment parameter's usage). 

4.4.2. Activating the Window 
Once a window's links have all been defined, it is inserted into the tree of windows (and 
attached to its neighbors) by a call to 

win_insert( window(d) 
int windowfd; 

This call causes the window to be inserted into the tree, and all its neighbors to be modified to 
point to it. This is the point at which the window becomes available for display on the screen. 

Every window should be inserted after its rectangle(s) and link structure have been set, but the 
insertion need not be immediate: if a subtree of windows is being defined, it is appropriate to 
create the window at the root of this subtree, create and insert all or its descendants, and then, 
when the subtree is fully defined, insert its root window. This activates the whole subtree in a 
single action, which typically will result in a cleaner display interaction. 

Once a window has been inserted in the window database, it is available for input and output. 0 
At this point, it is appropriate to call pu,_open and access the screen. ) 

4.4.3. Modifying Window Relationships 
Windows may be rearranged in the tree; this will change their overlapping relationships. For 
instance, to bring a window to the top of the heap, it should be moved to the "youngest" posi
tion among its siblings. (And to guarantee that it is at the top of the display heap, each ol its 
ancestors must likewise be the youngest child or it, parent). 

To accomplish such a modification, the window should first be removed: 

win_remove( windowf d) 
int windowfd; 

After the window has been removed from the tree, it is safe to modify its links, and then re
insert it. 

A process doing multiple window tree modifications should lock the window tree before it 
begins. This prevents any other process from performing a conflicting modification. This is 
done with a call to 

win_Iockdata(windowfd) 
int windowfd; 

After all the modifications have been made and the windows reinserted, the lock is released with 
a call to 0 . . ,/ 



0 

Q 

0 

• 35 • 

win_unlockdata(windowfd) 
int windowfd; 

Most routines described in this chapter, including the four above, will block temporarily, if 
another process either has the database locked, or is writing to the screen and the window 
adjustment has the possibility of conflicting with the window that is being written. 

As a method of deadlock resolution, SIGXCPU is sent to a process which spends more that 10 
seconds of real time inside a window data lock and the lock is broken. 

4.5. User Data 
Each window has associated with it 32 bits of uninterpreted client data. This is not touched by 
the basic window system; typically it will be used by the client to store flags. Higher levels of 
the system may implement minimal inter-window status sharing through this facility. This 
data is manipulated with the following procedures: 

win_getuserftags(windowfd) 
int windowfd; 

win_setuserftags(windowfd, Bags) 
int windowfd; 
int flags; 

win_setuserflag(windowfd, flag, value) 
int windowfd; 
int flag; 
int value; 

Win_getuaerftaga returns the user data; win_aetuaerftaga stores its ftaga argument into the win
dow struct, and win_aetuaerftag uses flag as a mask to select one or more flags in the data word, 
and sets the selected flags on or off as value is TRUE or FALSE. 

4.8. Minimal Repaint Support 

[This section has strong connections to the preceding chapter and the appendix on rects and 
rectlists; readers should expect to refer to both from here.] 

Moving windows about on the screen may involve repainting large portions of their image in 
new places. Often, the existing image can be copied to the new location, saving the cost of 
regenerating it. Two procedures are provided to support this function: 

win_computeclipping(windowfd) 
int windowfd; 

causes the window system to recompute the e:rpoaed and damaged rectlists for the windows on 
the screen while withholding the SIGWINCH that will tell each owner to repair damage. 



.· 

- 36-

win_J>artialrepair(windowfd, r) 
int windowfd; 
struct rect •r; 

tells the window system to remove an area (the rectangle r) from the damaged area for the win
dow identified by windowfd. This operation is a no-op if windowfd has damage accumulated 
from a previous window database change that it hasn't.told the window system that it has fixed 
up. 
These facilities can be used by any window manager according to the following strategy: 

• The window database is locked and manipulated to accomplish the rearrangement. 
( win_lockdata, win_remove, win_aetlink, win_aetrect, win_inaert ... ) 

• The old exposed areas for the affected windows are gotten and cached. (pw_e:ipoaed) 

• The new area is computed, retrieved, and intersected with the old. 
( win_computeclipping, pw_e:ipoaed, rl_interaection) 

• Pixels in the intersection are copied, and those areas are removed from the subject 
window's damaged area. (pwJock, pr_copy, win_partialrepair) 

• The window database is unlocked, and any windows still damaged get their signals 
informing them of the (reduced) damage which must be repaired. 

•.7. Relation• to Physical Screen, 
Note: The deaign calla for multiple concurrent acreen aupport. Currently, only one acreen ia aup
ported at a time. Alao, thi, entire interface deacribing the acreen ia tenative and likely to change. 

Multiple displays may be attached to a processor at the same time, and clients may want win
dows on all of them. Therefore, the window database is a grove, with one tree of windows for 
each display. (Thus, there is no overlapping of window trees which belong to different screens.) 
The physical arrangement of the displays can be passed to the window system, and the mouse 
cursor will pass from one screen to the next as though they were continuous. 

1truct screen 
char 

}; 

int 
int 
1truct 
int 
int 
int 

{ 
scr_name[SCR_NAMESIZE); 
scr_type, 
scr_reverse; 
rect scr_rect; 
scr_pixeldepth, 
scr_pixelsperinch, 
scr_colormapsize; 

#define SCR_NAMESIZE 20 
#de~ne SCR_SUNIBW 1 

Ser _name is the device name of the screen ( e.g. . "/ dev/ bw<I'). Ser _type is the device type; 
currently defined types are FBTYPE-SUNIBW and FBTYPE-SUN2BW found an 
"/ uar/ include/ aun/ Jbio.h". Scr _rect is the size of the screen. 

The following fields are defined but the window system is ignoring them. Sc,_reverae is TRUE 
if the screen is inverted from Sun's default. (More easily remembered, it holds the value which 

/ 

0 

0 



0 

0 

0 

- 37 -

will appear white.) ScrJizeldepth, Scr_pizelaperinch, and Scr_colormapaize describe physical 
display characteristics, where pizeldepth is in bits, pizelaperinch assumes the display pixels are 
square, and colormapaize is the number of entries in the color lookup table (2 for black-and
white displays, with or without colormaps). 

win_screennew( windowf d, screen) 
int windowfd; 
struct screen *screen; 

is used to associate a window with a screen. Window/ti is a file descriptor for an existing win
dow; acreen addresses a screen struct in which the acr_name, acr_type, and acr_reverae entries 
have been set. A new deaktop (screen / window-tree combination) is set up, with the indicated 
window as the root window. 

win_screenget(windowfd, screen) 
int windowfd; 
struct screen *screen; 

fills in the struct addressed acreen with information for the screen with which the window indi
cated by window/ti is associated. (That can be any window in the tree; the root window is 
found by the procedure.) 

win_screendestroy( windowf d) 
int windowfd; 

completely destroys the desktop of which window/tis window is the root: it destroys the root 
window and all windows descended from it, terminating their owner processes (using 
SIGTERM), and breaks the association set up by win_acreennew. 

win_screenpositions( windowf d, neighbors) 
int windowfd, neighbors[SCR_POSITIONS); 

#define SCR_NORTH 0 
#define SCR_EAST 1 
#define SCR_SOUTH 2 
#define SCR_WEST 3 

#define SCR_POSITIONS 4 

is used to inform the window system of the physical layout of multiple screens, to enable the 
cursor to cross to the appropriate one. Window/tis window is the rpot for its desktop; the four 
slots in neighbor, should be filled in with the window numbers of the root windows for the 
screens in the corresponding positions. No diagonal neighbors are defined, since they are not 
strictly neighbors. Win_acreenpoaitiona, as stated above is not currently implemented. 

4.8. Cursor and Mouse Manipulations 



• 38 • 

4.8.1. Cursors 
The cursor is the image which tracks the mouse on the screen. 

struct cursor 
short 

{ 
cur_xhot, cur_yhot; 
cur_f unction; 
pixrect •cur_shape; 

}; 

int 
struct-

#define CUR_MAXIMAGEWORDS 16 

Cur_ahape points to a memory pixrect which holds the actual image for the cursor. The win
dow system supports a cur_ahape.pr_data->md_image up to CUR_MAXIMAGEWORDS words. 

The "hot spot" defined by ( cur _zhot, cur _ghot) is used to associate the cursor image, which has 
height and width, with the mouse position, which is a single point on the screen. The hot spot 
gives the mouse position an offset from the upper-left corner of the cursor image. 

Most cursors have a hot spot whose position is dictated by the image shape: the tip of an arrow, 
the center of a bullseye, the center of a cross-hair. Cursors can also be used as a status feed
back mechanism, e.g., an hourglass to indicate that some processing is occurring. This type of 
cursor should have the hot spot located in the middle of its image so that the user can still use 
it for pointing without having to guess where the hot spot is. 

The function indicated by curJunction is a rasterop (as described in section 2.2.5), which will be 
used to paint the cursor. (PIX_SRC I PIX_DST is generally effective on light backgrounds, e.g. 
in text, but invisible over solid black; PIX_SRC A PIX_DST is a reasonable compromise over o .. \·· 
many different backgrounds, although it does poorly over a gray pattern). 

win_getcursor(windowfd, cursor) 
int windowfd; 
struct cursor •cursor; 

stores into the buffer addressed by curaor a copy of the cursor which is currently being used on 
the screen. 

win_setcursor(windowfd, cursor) 
int windowfd; 
struct cursor •cursor; 

sets the cursor and function that will be used whenever the mouse position is within the indi
cated window. 

If a window process does not want a cursor displayed, the appropriate mechanism is to set the 
cursor to one whose dimensions are both 0. 

4.8.2. Mouse Position 
Determining the mouse's current position is treated under Input in the following chapter. We 
note here that the standard procedure for a process to track the mouse is to arrange to receive 
an input event every time the mouse moves; and in fact, the mouse position is passed with every 
user input a window receives. 

The mouse position can be reset under program control; that is, the cursor can be moved on the 
screen, and the position which is given for the mouse in input events can be reset, without the 
mouse on the table top being physically moved: 



0 

0 

0 

- 39 -

win_setmouseposition(windowfd, x, y) 
int windowfd, x, y; 

puts the mouse position at (x, y) in the coordinate system of the window indicated by windowfd. 
The effect is of a jump from the previous position to the new one, without touching any points 
between: input events occasioned by the move (window entry and exit, cursor changes) will be 
generated. This facility should be used with restraint; users are likely to lose a cursor that 
moves independently of their control. 

Occasionally it is necessary to discover which window underlies the cursor, usually because a 
window is handling input for all its children. The procedure used for this purpose is 

int win_findintersect(windowfd, x, y) 
int windowfd, x, y; 

where windowfd is the calling window's fd, and (z, !f) defines a screen position in that window's 
coordinate space (it need not actually lie within the window), and the returned value is a win
dow number. X and 1/ may lie outside the bonds of the window. 

4.9. Providing for Naive Programs 
There are a large class of applications which are relatively unsophisticated about the window 
system but want to run in windows anyway. For example, a simple-minded graphics program 
may want a window in which to run, but doesn't want to know about all the details of creating 
and positioning it. This section describes two ways of supplying for these applications. 

4.9.1. Which Window to Use 
An environment parameter defined by the window, system is of interest here. By convention, 
WINDOW_GFX is set to a string which is the device name of a window in which graphics pro
grams should be run. Routines exist to read and write this parameter: 

int we_getgfxwindow(name) 
char •name 

w e_setgf xw indow( name) 
char •name 

we_getgfzwindow returns a non-zero value if it cannot find a value. 

4.9.2. Taking Over an Existing Window 
Ezperience ha, ahown that the following method i, not 111 good a, the aecond approach deacribed in 
the nezt aection. However, thia approach i, documented becau,e higher level utilitie, (emptuaw 
and gfzaw) uae thia approach and haven't yet been changed to the better one. When theae utilitiea 
are converted it ahould be inviaible to their client, becauae the interface, ahouldn 't change. 

Windows may be opened more than once. This fact can be used to allow a process to tem
porarily "take over" a window from another. Several issues must be addressed in this sharing 
of windows: 



- 40 -

• The original owner (call it the executive) must inform the newcomer (call it the demo) 
what window it's getting. This is normally passed via the environment parameter 
WINDOW _GFX described above. 

• The demo, having opened the window (or its own use, should make itself the 
window's owner, so that it will be given relevant SIGWINCHes. See win_getowner 
and win_aetowner below. It should then proceed to set up the window as it would a 
newly-created one saving any window parameters that is changes. 

• It is possible (or either process to attempt to read from the window, or display on it 
at the same time; this should normally be avoided, since the results are unpredictable. 
The most common arrangement is for the executive to leave the window alone until 
the demo is finished. 

• Finally, the trickiest issue is to ensure that the executive gets back full ~ontrol when 
the demo is finished. The demo can reset the owner before exiting, or the executive 
can be catching SIGCHLD, and make itself owner again when the demo goes away. 
Other properties of the window should be reset upon returning control to the original 
owner, including the cursor, input mask and input redirection window. If the execu
tive has another window that it has not given up, it may accept user inputs in that 
window which instruct it to destroy a wayward demo, and recover the window. 

SIGWINCH signals are directed to the process which own, the window. Normally the owner is 
the process which created it; this may be read and written by the following procedures: 

int winJetowner(windowfd) 
int windowfd; 

win_setowner( windowf d, pid) 
int windowfd, pid; 

Win_getowner returns the process id of the owner of the indicated window. If the owner doesn't 
exist then zero is returned. Win_aetowner makes the process identified by pid be the owner of 
the window indicated by window/d. Win_aetowner causes an SIGWINCH to be sent to the new 
owner. 

4.9.3. Covering an Existing Window 
Another (and probably better) approach is to create a new window that becomes attached to, 
and covers, an existing window: 

• The invoking process (call it the executive) must inform the newcomer (call it the 
demo) what window ( call it the g(x window) to attach itself to. This would be passed 
via the environment parameter WINDOW _GFX described above. 

• The demo, having created a window, would make itself the same size as the g(x win
dow and install itself as the g(x window's top child. 

• The executive's only job would be to change its top child window's size whenever the 
g(x window changes size. 

• When the demo finished, the demo window would be destroyed thus leaving the gfx 
window uncovered. 

Q 
. ~ 

_,/ 

The main advantage of this scheme is that the problems of restoring the g(x window's state (see 
previous section) are avoided. Q 



0 

0 

0 

- 41 -

4.10. Error Handling 
Except as explicitly noted, the procedures described in this section do not return error codes. 
The standard error reporting mechanism used inside the aunwindow library is to call a procedure 
which prints a message (typically identifying the t'octl call which detected the error), after which 
the calling process resumes execution. 

This default error handling routine may be replaced by calling: 

int 
int 

( *win_errorhandler( w in_error) )() 
( *win_error)(); 

That is, win_errorhandler is a procedure which takes the address of one procedure (the new 
error handler) as an argument, and returns the address of another procedure (the old error 
handler) as a result. Any error handler procedure should be a function which returns an int. 

win_error( errnum, winopnum) 
int errnum, winopnum; 

Errnum will be -1 indicating that the actual error number is found in the global errno. Winop
num is the ioctl number that defines the window operation that generated the error. (See the 
section entitled Error Meaaage Decoding in the appendix about Programming Notea). 



- 42 -

5. INPUT 
In this third chapter devoted to the aunwintlow level of the Sun window system, we discuss how 
user input is made available to application programs. The structures and procedures discussed 
in this section (unless otherwise noted) are found in the header file 
/ uar/ include/ aunwindow/ win_input.A. 

The window system provides facilities which meet two distinct needs regarding input to an 
application program: 

A uniform interface to multiple input devices allows programs to deal with varying key
boards and positioning devices, ignoring complexities due to facilities which the programs 
do not use. 

Several different keyboards are available with Sun systems; they differ in the number 
and arrangement of keys. At a minimum, some clients will require ASCII characters, 
one per keystroke. More sophisticated clients will assign special values to non
standard keys (e.g. "META" characters in the range Ox80 and above). Some clients 
will assign functions to particular keys on the keyboard, and will distinguish key
down from key-up events. 

The standard positioning device on a Sun is the mouse, which reports a location and 
the state of three buttons. Alternatively, some clients may use a tablet and stylus, or 
in place of the stylus, a "puck" with as many as 10 buttons on it. 

In some client systems, the time between input events is. significant; for example, 
when smoothing a user's stylus trace, or assigning special meaning to multiple clicks 
of a button within a short period. 

The window system allows clients with only the simplest requirements to ignore all the 
complications, while providing more sophisticated clients the facilities they require. The 
mechanism for accomplishing this is the Virtual Input Device with its input events, 
described in the first section of this chapter. 

The second major section of this chapter describes how user inputs are collected from mul- . 
tiple sources, serialized, and distributed among multiple consumers. Multiple clients are 
able to accept inputs concurrently, and a slow consumer does not affect other clients' abil
ity to receive their inputs .. (Type-ahead and mouse-ahead are fully supported.) 

Client programs operate under the illusion that they have the user's full attention, 
leaving the window system to handle the multiplexing. Therefore, a client sees pre
cisely those input events that the user has directed to that application. 

Conversely, the client may require inputs from multiple devices, where the exact 
sequences across all those devices is significant. The order of mouse and function key 
events is likely to be significant, for instance. This is provided for via a single unified 
input stream, rather than requiring polling of multiple streams, which wouldbe unac
ceptable in a multi-processed environment. 

The distribution of input events take~ into acccmnt the window's indication of what 
events it is prepared to handle; other events are redirected, allowing a division of 
labor among the various components of a system. 

0 
\ 



0 

0 

0 

- 45 -

function keys. The mapping to physical keys on various keyboards 1s defined m 
/ uar/ include/ aun/ kbd.h and discussed in kbtl,_ 5). 

5.1.2.3. Pseudo Events 

#define VKEY _FIRSTPSEUDO 
#define VKEY _LASTPSEUDO 

Event codes in the pseudo class are events that involve locator movement instead or physical 
button striking. The physical locator constantly provides an (x, y) coordinate position in pixels; 
this position is transformed by the Virtual Input Device to the coordinate system or the window 
receiving an event. In order to watch actual locator movement (or lack thereof), the client must 
be enabled for the events with codes. 

#define LOC_MOVE 
#define LOC_MOVEWHILEBUTDOWN 
#define LOC_STILL 

A LOC_MOVE is reported only when the locator actually moves. Since fast motions may yield 
non-adjacent locations in consecutive events, the locator tracking mechanism reports the current 
position at a set sampling rate (currently 40 times per second). 

LOC_MOVEWHILEBUTDOWN is like LOC_MOVE but happens only when a button on the 
locator is down. 

A single LOC_STILL event is reported when the locator has been still for a moment (currently 
1/5 or a second). 

Clients can be notified when the locator has entered ( or exited) a window via the event codes: 

#define LOC_WINENTER 
#define LOC_WINEXIT 

S.1.3. Event Flags 
Only one event flag is currently defined: 

#define IE_NEGEVENT 

indicates the event was "negative". Positive events include depression of any button·(including 
buttons on the locator), motion of the locator device (while it is available to this client), and 
entry of the cursor into a window. The only neg~tive event is the release of a depressed button. 
Stopping of the locator and locator exit from the window are positive events, distinct from loca
tor motion and window entry. This asymmetry allows a client to be informed of these events 
without the performance penalty associated with receiving all negative events and then discard
ing all but these two. 

Caveat: The only negative event, currently reported are locator button, going up. 

Two macros are defined to inquire about the state or this flag: 

#define winjnputnegevent(ie) 
#define win_inputposevent(ie) 

struct inputevent •ie; 



- 46 -

These are TRUE if the IE_NEGEVENT bit is 1 or O respectively in the input event pointed to 
by ie. 

5.1.4. Shift Codes 

le_ah,ftmaak contains a set of bit flags which indicate an interesting state when an input event 
occurrs. The most obvious example is the state of the Shift or Control keys when some other 
key is pressed. · Eventually, clients will be able to declare any Virtual Input switch as an 
"interesting" shift switch. For now, only the following bits are reported: CAPSMASK 

SHIFTMASK CTRLMASK UPMASK These are defined in 
/uar/include/aun/kbd.h, and described in con,(4). 

5.2. Reading Input Events 

A library routine exists for reading the next input event for a window: 

int input_readevent(rd, ie) 
rd; int 

struct input_event •ie; 

This fills in the indicated struct, and returns O if all went well. In case of error, it sets the glo
bal variable errno, and returns -1; the client should check for this case. 

A window can he set to do blocking or non-blocking reads via a standard /cntl system call, as 
described in /ctn~2) and /cnt~S). A window is defaulted to blocking reads. The blocking status 
o( a window can be determined by the /cntl system call. 

The recommended normal style for handling input uses blocking 1/0 and the aelecl(2) system 
call to await both input events and signals such as SIGWINCH. This allows a signal handler to 
merely set a flag, and leave substantial processing to be performed synchronously when the 
select returns. The tool_aelect mechanism described in chapter 7 illustrates this approach. 
Using blocking 1/0 and reat(2) without a prior ,elect forces the client to process SIGWINCHes 
entirely in the asynchronous interrupt handler. This necessitates extra care to avoid race condi
tions and other asynchronous errors. 

Non-blocking 1/0 may be useful in a few circum~tances. For example, when tracking the mouse 
with an image which requires significant computation, it may be desirable to ignore all but the 
last in a queued sequence of motion events. This is done by reading the events, but not process
ing them until a non-motion event is found, or until all events are read. Then the most recent 
mouse location is displayed, but not all the points covered since the last display. When all 
events have been read and the window is doing non-blocking 1/0, input_readevent returns -1 
and the global variable errno is set to EWOULDBLOCK. 

5.3. Input Serialization and Distribution 

Oi 

With the exception or some or the pseudo-event codes, the Virtual Input Device described in 
preceding sections is not logically tied to the Sun window system; the scheme could be used by 
any system desiring that form of unification. This next section is more specific to the window 
system, since it discusses how events are selected and distributed among the various windows 
which might use them. 0:/ 



0 

0 

0 

- 47 -

Each user input event formatted into an inputevent, which is then assigned to some recipient. 
There are three ways a process gets to receive an input event: 

• Most commonly, it reads the window which lies under the cursor, and that window 
has an input maak which matches the event. (Input masks are described in the next 
section.) If several windows are layered under the cursor, the event is tested first 
against the input mask of the topmost window. 

• If the event does not match the input mask of one window, other windows will be 
given a chance at it, as described below. 

• Much less frequently, a window will be made the recipient of all input events; this is 
discussed under win_grabio, in section 5.3.2 below. 

Each window designates another window to be offered events which the first will not accept. By 
default this is the window's parent; another backstop may be designated in a call to 
win_aetinputmaak, described in the next section. If an event is offered unsuccessfully to the root 
window, it is discarded. Windows which are not in the chain of designated recipients never 
have a chance to accept the event. 

If a recipient is found, the locator coordinates are adjusted to the coordinate system of the reci
pient, and the event is appended to the recipient's input stream. Thus, every window sees a 
single stream of input events, in the order in which the events happened (and time-stamped, so 
that the intervals between events can also be computed), and including only the events that 
wind ow has declared to be of interest. 

5.3.1. Input Masks 
The input masks facilitate two things: 

• Events can be accepted or rejected by classes; for instance, a process may want only 
ASCII characters. 

• The times when events are accepted can be controlled, minimizing the processing 
required to accept and ignore uninteresting events. For instance, a process may track 
the mouse only when it is inside one of its windows, or when one of the mouse but
tons is down. 

Clients specify which input events they are prepared to process by setting the input mask for 
each window being read. ' 

struct inputmask { 
short im_flags; 
char im_inputcode[IM_CODEARRA YSIZE); 
short im_shifts; 
short im_shiftcodes(IM_SHIFTARRAYSIZE); 

}; 

#define 
#define 

IM_CODEARRAYSIZE (VKEY_CODE/((sizeof char)*BITSPERBYTE)) 
IM_SHIFTARRAYSIZE ((sizeof short)*BITSPERBYTE) 

lm.Jlaga specifies the handling of related groups of input events. 

#define IM_UNENCODED 

indicates that no translation of physical devic_e events should be performed (that is, that the 
Virtual Input Device not intervene between the window and the user input). In this case, the 
most significant byte of the code is the id number of the device that generated the event, and 



- 48 -

the least significant byte contains the physical keystation number of the keystation that the 
user struck. The current device ids are those assigned to the supported keyboards and the id 
assigned to. the mouse ( 127). For mouse input, locator motion and locator button events place in 
the l~ast significant byte of the code the event code used in the corresponding unencoded case 
minus 512. Note that the pseudo-events are associated with the physical locator; that is, a 
button-push on a tablet puck will generate a different code from a corresponding button-push 
on a mouse. 

#define IM_ASCII 

indicates that the Virtual Input Device translation should occur. 

#define IM_ANSI 

indicates that the process wants keystrokes to be interpreted as ANSI characters and escape 
sequences: normal ASCII characters are represented by their ASCII code in ie_code; function 
keys with a standard interpretation (e.g., cursor control keys) are represented by a sequence of 
input events, whose ie_codes are ASCII characters starting with ESC. (See /kb<J...5) for further 
details.) 

#define IM_POSASCII 

indicates that the client only wants to be notified of positive events for ASCII class events, even 
though IM_NEGEVENT is enabled. 

Caveat: The current implementation automatically enable, both IM_ANSI and IM_POSASCII 
when IM_A CSII i, apecified. 

Requesting a particular function event in addition turns off any ANSI escape-coding for that 
function event. 

#define IM_MET A 

indicates that META-translation should occur. This means ASCII events that occur while the 
MET A key is depressed are reported with codes in the MET A range. Note that IM_MET A does 
not make sense unless IM_ASCII is enabled. 

#define IM_NEGEVENT 

indicates that the client wants to be notified of negative events as well as positive ones. (See 
5.1.3 above for a discussion of positive and negative events.) 

lm_inputcode is an array of bit flags indexed by biased event codes. A 1 in the it/a position of 
the bit array indicates that the event with code VKEY _FIRST+ i should be reported. This 
filter applies in both IM_UNENCODED and IM_ASCII modes. 

There are two routines which are of interest here. 

win_setinputmask( windowf d, acceptmask, 8.ushmask, designee) 
int windowfd; 
etruct inputmask •acceptmask, •flushmask; 
int designee; 

sets the input mask for the window identified by windowfd. Acceptmaak addresses the new 
mask - events it passes will be reported to this window after the call to win_,etinputmaak. 

0 ) 
/ 

0, 
.· J 

Flu,hmaak specifies a set of events which should he flushed from this window's input queue. Q 
These are events which were accepted by the previous mask, and have already been generated, , , 
but not read, by this window. This is a dangerous facility; type-ahead and mouse-ahead will 



0 

0 

0 

- 49 -

often be lost if it is used. The most obvious application is for confirmations, but these can be 
better implemented by requiring the confirmation within a short time-out. 

Caveat: If Jluahmaak ia non-NULL, the current implementation fluahea all eventa from the queue, 
not juat thou: apecified in Jluahmaak. 

Deaignee is the window number, which specifies the next potential recipient for events rejected 
by this window. If it is set to WIN_NULLLINK (defined in 
/uar/include/aunwindow/win_atruct.h), it is interpreted as designating the window's parent. 

Caveat: Changing maaka in reaponae to aome input ahould be done with caution. There will be a 
lapae of time between the event which perauadea the client it wanta a new maak and the time the 
ayatem interpreta the reaulting call to win_aetinputmaak. Eventa which occur in thia interval will 
be paaaed or diacarded according to the old input maak. Thua, it ia probably not appropriate to 
wait for a button down before requeating the correaponding button-up; the button-up may arrive 
and be diacarded before the maak ia changed. /t'a leaa dangeroua to wait until a button goea down 
to atart tracking the mouae, aince the client will be caught up aa aoon aa the firat motion event 
arrivea. Better atill, though, ia to aak for the LOC_MOVEWHILEBUTDOWN event, and never 
change the maak. 

The input mask for a window is read with 

win_getinputmask(windowfd, im, designee) 
int windowfd; 
struct inputmask •im; 
int •designee; 

The input mask for the window identified by windowf d is copied into the buffer addressed by 
im. The number of the window that is the next possible recipient of input is copied into the int 
addressed by designee. 

We return to win_input.h for three routines useful for manipulating input masks. The first two 
are macros: 

#define 
struct 
char 

win_setinputcodebit(im ,code) 
inputmask •im; 
code; 

sets the bit indexed by code in the input mask addressed by im to I; 

#=define winjnputcodebit(im, code) 
struct inputmask •im; 
char code; 

returns true or false as the bit indexed by code in the input mask addressed by im is I or not. 

input_imnull( mask) 
struct inputmask *mask; 

is a procedure which initializes an input mask to all zeros. It is critical to initialize the input 
mask explicitly when the mask is defined as a local procedure variable. 

S.3.2. Seizing All Inputs 

Normally, input events are directed to the window which underlies the cursor at the time the 
event occurs. Two procedures modify that behavior. A window may temporarily seize all 
inputs by calling: 



- 50 -

win_grabio(windowfd) 
int windowfd; 

The caller's input mask still applies, but it receives input events from the whole screen; no win
dow other than the one identified by window/ti will be offered an input event (or allowed to 
write on the screen) after this call. 

win_releaseio(windowfd) 
int windowfd; 

undoes the efl'ect of a winJrabio, restoring the previous state. 

S.4. Event Codes Defined 

The actual names of codes which appear in the ie_cotle field of an inputevent are: 

#define ASCII_FIRST 
#define ASCII_LAST 
#define MET A_FIRST 
#define MET A_LAST 

#define VKEY _CODES 
#define VKEY _FIRST 

(0) 
(127) 
(128) 
(255) 

(128) 
(512) 

#define VKEY _FIRSTPSEUDO (VKEY ..FIRST) 
#define LOC_MOVE (VKEY_FIRSTPSEUDO+ 0) /• No neg event•/ 
#define LOC_STILL (VKEYJIRSTPSEUDO+ 1) /• No neg eunt •/ 
#define LOC_WINENTER (VKEYJIRSTPSEUDO+ 2) /• No neg event•/ 
#define LOC_WINEXIT (VK~Y _FIRSTPSEUDO+ 3) /• No neg event •/ 

0~ 
\ 

0\ 

#define LOC_MOVEWHILEBUTDOWN (VKEY Ji'IRSTPSEUDO+ 4) /• No neg eyti 
#define VKEY _LASTPSEUDO (VKEY _FIRSTPSEUDO+ 15) 

#define VKEY _FIRSTFUNC (VKEY _LASTSHIFT+ 1) 

#define BUT _FIRST (VKEY _FIRSTFUNC} 
#define BUT(i) ((BUT_FIRST}+ (i}-1) 
#define BUT _LAST (BUT_FIRST+ 9) 

#define KEY _LEFTFIRST ((BUT_LAST)+ l} 
#define KEY _LEFT(i) ((KEY_LEFTFIRST)+ (i)-1) 
#define KEY _LEFTLAST ((KEY _LEFTFIRST)+ 15} 

#define KEY_RIGHTFIRST ((KEY_LEFTLAST)+ 1) 
#define KEY_RIGHT(i} ((KEY _RIGHTFIRST)+ (i)-1} 
#define KEY_RIGHTLAST ((KEY _RIGHTFIRST}+ 15) 

#define KEY _TOPFIRST ((KEY_RIGHTLAST)+ 1) 

Q #define KEY _TOP(i) ((KEY _TOPFIRST)+ (i)-1) 
#define KEY _TOPLAST ((KEY _TOPFIRST)+ 15} 



0 

0 

0 

- 51 -

#define KEY _BOTTOMLEFT 
#define KEY _BOTTOMRIGHT 

((KEY _TOPLAST)+ 1) 
((KEY_BOTTOMLEFT)+ 1) 

#define VKEY _LASTFUNC 

#define VKEY _LAST 

(VKEY _FIRSTFUNC+ 101) 

VKEY_FIRST+ VKEY_CODES-1 

There are 3 synonyms for the common case of a 3-button mouse: 

#define MS_LEFT 
#define MS_MIDDLE 
#define MS_RIGHT 

BUT{l) 
BUT(2) 
BUT{3) 



8. SUNTOOL:TOOLSANDSUBWINDOWS 
This chapter introduces the third and highest level of the Sun window system. It is at this level 
that facilities or the lower levels are actually used to build user interlaces. We describe a model 
for building applications, a number of components which implement commonly-needed portions 
of such applications, an executive and operating environment which supports that model, and 
some general-purpose utilities which can be used in this and similar environments. 

We refer to an application progam which is a client of this level of the window system as a tool. 
This term covers the one or more processes whjch do the actual application work. Tool also 
refers to the collection or (typically) several win4ows through which the tool interacts with the 
user. Simple tools might include a calculator, a bitmap editor, and a terminal emulator. Sun 
provides a few tools ready-built (several are illustrated in Appendix B), and more will be pro
vided as time passes; customers are expected to provide more to suit their particular. needs. 

Common components or tools that the window system provides indude: 

• An executive framework which supplies the usual "main loop" of a program, and 
which serves to coordinate the activities of the various subwindows; 

• A standard tool window, which frames the active windows of the tool, identifying it 
with a name stripe at the top and borders around the subwindows. Each tool win
dow has facilities for adjusting its size and position (including layering), and sub win

. dow boundary movement. 

• several standard aubwindow,, which can be instantiated in the tool; 

• 
• 

a standard scheme for laying out those subwindows; and 

a facility which provides a default icon, which is a small form the tool may take to be 
unobtrusive but still identifiable. 

The ,untool, program initializes and oversees the window environment. It provides for: 

• automatic startup of a specified collection of tools; 

• dynamic invocation of standard tools; 

• management of the default window (called the root window) which underlies all the 
tools; 

• the user interlace for leaving the window system. 

Users desiring another interlace to these (unctions can replace this program, while retaining 
specific tools. 

This chapter discusses how to write a tool: it covers creation and destruction or a tool and its 
subwindows, the strategy for dividing up work among them, and the use of routines provided to 
accomplish that work. 

Chapter 7 is a discussion of aubwindow,, as building blocks in the construction of a tool. It cov-
. ers the subwindows currently existing, and also discusses the approach to be followed in creat
ing new kinds or subwindows. We expect the library of available subwindow types to grow, 
with contributions from both Sun and our customers. 

Chapter 8 covers user interface utilities. These are relatively independent packages which can 
be used with the ,untool, environment, or a similar replacement. They include the actual win
dow manipulation routines used by tool window,, the icon facility, the ,election manager (useful 
for inter-process data exchange), the /uU,creen access mechanism, and menu, and prompt,. 

The procedures which support all these facilities are found in the auntool library (that is, o··.· 
/uar/lib/lib,untool.a). They and their data structures are declared in a number or distinct 
header files, all or which can be included in / u,r/include/ ,untool/ tool_h,.h. 



0 

0 

0 

- 53 -

Appendices B and C are an annotated collection of some simple tools, to be used both as illus
trations and as templates for client programmers. 

Appendix D is a collection of progamming notes and advice. 

6.1. Tools Design Philosophy 
A typical tool is built as a fairly light-weight tool window, and contained within that, a set of 
aubwindowa, which incorporate most of the user interface to the tool's facilities. Each subwin
dow is a "window" in the sense of chapter 4; the subwindows form a tree rooted at the tool 
window, and the various tool windows are all children of the root window associateawith the 
screen. 

6.1.1. Non-Preemption 
In general, tools should be designed in a non-preemptive style: they should wait without consum
ing resources until given something to do, perform the task expeditiously, and return control to 
the user promptly. If some task requires extensive processing, a separate process should be 
Corked to run it without blocking the user interface. 

This non-preemptive style implies that the tool is built as a set of independent procedures, 
which are invoked as appropriate by a standardized control structure. The basic advice to 
client programs is, "Wait right there; we'll let you know as soon as we have somet,hing for you 
to do." From a programming point of view, the main function that the tool mechanism provides 
is the provision of the control structure to implement this non-preemptive programming style. 
The tool window and its subwindows all have the same interface to this control mechanism. 

8.1.2. Division of Labor 

The tool window performs a few functions directly. These are the user interface functions, 
which are common to all tools (outlined at the beginning of this chapter). 

Subwindows are the workhorses of the auntool environment, but most of the work they do is 
specific to their own tasks, and so of little interest here. It is important to understand that a 
subwindow corresponds to a data type: there will be many instantiations of particular subwin
dows, quite possibly several in a single tool. 

Various types of suhwindows are developed as separate packages that can be assembled at a 
high level. In addition to programmer convenience, this approach promotes a consistent user 
interface across applications. 

The remainder of this chapter divides a tool's existence into two large areas: creation and des
truction, and tool-specific aspects of processing. 

6.2. Tool Creation 

All of the following processing must be done as a tool is started: 

• Parameters for this invocation of the tool must be passed to it. Every tool must be 
given the name of its parent window; other parameters that may be given to the tool 
include a position for it on the screen, whether it should be open or iconic, 
specification of data files (e.g. fonts) to be used in this invocation, and initializations 



to be performed. 

• The tool should be given its own process and process group. In contrast to the usual 
procedure when a program is invoked under the shell, the parent p~ocess should gen
erally be allowed to go on its way. 

• The tool window should be created, with space allocated for it and its various options 
defined; similarly, its subwindows should be created and positioned in the tool win
dow. 

• The UNIX signal system should be initialized to pass appropriate signals to the tool. 

• The tool's window should be installed into the display structure. 

• Finally, the tool may start its normal processing. 

6.2.1. Passing Parameters to the Tool 
There are at least three ways parameters may be1passed to a tool that is starting up: 

• It may have command-line arguments. 

• Relatively stable options may be stored in a file (like a user profile). 

• Environment parameters may be used for well-established values. They have the 
valuable property that they can communicate information across several layers or 
processes, not all or which have ·to be involved. 

The first two parameters passing mechanisms need no special attention here, since they are used 

0\ 

just as in non-window UNIX programs. However, the Sun window system itself uses a few Q\,, 
environment variables for tool startup. WINDOW_PARENT is set to a string which is the dev- _-· 
ice name of a window's parent; for a tool, this will usually be the name of the root window of 
the window system. WINDOWJNITIALDATA is set to the coordinates of two rectangles plus 
one flag; these are the regions for the window while open and closed, and a boolean which is 
non-zero if the tool should start out iconic. 

we_setparent window( windevname) 
char •windevname; 

sets WINDOW _PAR ENT to the name of the parent's window. 

int we_getparentwindow(windevname) 
char •windevname; 

gets the value of WINDOW _PARENT into ws"ndevname. The length of this string should be at 
least WIN_NAMESIZE (a constant found in /uar/include/aunwindow/win_atruct.h) characters 
long. A non-zero return value means that the WINDOW_PARENT parameter couldn't be 
round. 

The process that is starting the tool should set WINDOW_INITIALDATA before it forks 
( wmgrJorktool does this; see Suntools: Uaer Interface Utilitiea). After the fork, the newborn tool 
may interrogate these variables. The routines to do this are m the library 
/ uar/lib/ libsunwindow.a. 

we_setinitdata(rnormal, riconic, iflag) 
struct rect •rnormal, •riconic; 
int iflag; 

sets the environment variable in the parent process, and 



0 

0 

0 

- 66 -

we_getinitdata(rnormal, riconic, iftag) 
struct rect •rnormal, •riconic; 
int . •iftag; 

reads those values in the child process. A non-zero return value means that the 
WINDOW_INITIALDATA parameter couldn't be found. 

For tools which are going to be providing windows to other processes to run in, a procedure is 
provided for unsetting the variable, lest a wayward child process be confused by it: 

we_clearinitdata() 

6.2.2. Forking the Tool 
A tool will normally have its own process. The creation of that process does not differ 
significantly from the normal paradigm. If it is to be started by a menu command or some 
other procedural interface, it is appropriate for the creating process to do the fork and return 
from the procedure call. When the child process dies, the parent process should catch the 
SIGCHLD signal and clean up (see the wait3 system call). 

6.2.3. Creating the Tool Window 

The pair of procedures tool_create and tool_createaubwindow carry out the main work of creat
ing a tool with its subwindows. These take a series of parameters which define the object to be 
created, and return a pointer to an object which encapsulates the interesting information about 
the tool or its subwindow, as the case may be. That pointer is then passed to a number of 
other routines which manipulate the object; the client is usually not concerned with the exact 
definition of the structure. 

These create routines include a large part of the processing described in the earlier parts of this 
manual, so that client programmers need not necessarily concern themselves much with the 
details of pizrect, and pizwin,. 

A tool is created by a call to 

where 

struct tool •tool_create(name, Bags, normalrect, icon) 
char •name; 
short flags; 
struct rect •normalrect; 
struct icon •icon; 

#define TOOL_NAMESTRIPE OxOl 
#define TOOL_BOUNDARYMGR Ox02 

name is the name · of the tool (this is what will be displayed in the tool's name stripe if 
TOOL_NAMESTRIPE is set in the flags argument; it also appears on the default icon); 

flag, has the flags TOOL_NAMESTRIPE and/or TOOL_J30UNDARYMGR set as those 
properties are desired (TOOL_BOUNDARYMGR enables boundaries that the user can 
move between subwindows); 



• 56 • 

Norma/reel describes the inital position and size in which the tool in it normal (open) state 
is to be displayed, in the coordinate system of the tool's parent (typically, the window for 
the screen); and 

icon is a pointer to an icon struct, if the client wants a special icon. 

Normalrect and the icon may be defaulted by passing NULL for their arguments. The default 
icon is described, along with considerations on making custom icons, in chapter 8; thLchoice is 
strictly a matter of convenience vs. ambition. A tool's starting position should almost always be 
left NULL; it is better to communicate it via t~e environment parameter-passing mechanisms 
described above. 

Creating the tool does not cause it to appear on the screen; a separate step is used for that pur
pose after the full tool structure is constructed, as described in Tool Inatallation below. Most 
tool programmers can skim down to Subwindow Initialization below and ignore the details of the 
tool and tool,w data structures without missing anything of direct interest. 

8.2.,. The Tool Struct 
The tool struct is defined in /uar/include/auntool/tool.h: 

1truct tool { 
short 

} 

int 
char 
1truct 
1truct 
1truct 
1truct 
1truct 

tl_flags; 
tl_windowfd; 
•tl_name; 
icon •tl_icon; 
toolio tl_io; 
toolsw •tl_sw; 
pixwin •tl._pixwin; 
rect tlJectcache; 

Tl_flag, holds state information; currently, 6 flags are defined: 

#define TOOL_NAMESTRIPE OxOl 
#define TOOL_BOUNDAR YMGR Ox02 
#define TOOL_ICONIC Ox04 
#define TOOL_SIGCHLD Ox08 
#define TOOL_SIGWINCHPENDING OxlO 
#define TOOL_DONE Ox20 

TOOL_NAMESTRIPE indicates that the tool is to be displayed with a black stripe holding its 
name at the top of its window. TOOL_BOUNDARYMGR indicates that the option to allow 
the user to move inter-subwindow boundaries is to be enabled. TOOLJCONIC indicates the 
current state of the tool: 1 = small (iconic); 0 = normal ( open). 

TOOL_SIGCHLD and TOOL_SIGWINCHPENDING mean that the tool has received the indi
cated signal and has not yet performed the processing to deal with it. TOOL_DONE indicates 
the tool should exit the tool_,elect notification loop. These three flags are used during 
tool_aelect processing (see below) and should be considered private to the tool implementation. 

Tl_window/d holds the file descriptor for a tool's window. This is used for both input and out
put; it also identifies the window for manipulations on the window database, such as modifiying 
its position or shape. The uses of window/tis are discussed in chapters 3 through 5 of this 
manual. 

0 

0 



0 

0 

0 

• 57 • 

Tl name addresses the string which can be displayed in the tool's namestripe and default icon. 

Tl rectcache holds a rectangle which indicates the size o( the tool's window. (Because- the rec
ta;gle is in the tool's coordinate system, the origin will always be (0, 0).) This information is 
cached so that the tool c,an tell when its size has ~hanged by comparing the cached rect with the 
current rect. 

Tl_icon holds a pointer to the icon struct Cor this tool. 

Tl_pizwin addresses the window's pixwin, which is the structure through which the tool accesses 
the display. 

Tl_aw points to the first (oldest) of the tool's subwindows. These structs are discussed in the 
following section. 

Tl_io is used by the tool to control notification of input and window change events to itself. 
This structure type is discussed in detail in Toolio Structure. During tool creation, the fields o( 
this structure are set up with values to do default tool processing. 

8.2.&. Subwindow Creation 

atruct toolsw •tool_createsubwindow(tool, name, width, height) 
atruct tool •tool; 
char •name; 
short width, height; 

#define TOOL_SWEXTENDTOEDGE -1 

makes a new subwindow, adds it to the list or subwindows for the indicated tool, and returns a 
pointer to the new toolaw struct. The width and height parameters are hints to the layout 
mechanism as to what size the windows should be if there is enough room to accommodate 
them. There are no guarantees about maintaining subwindow size because changing window 
sizes can ruin any scheme. TOOL_SWEXTENDTOEDGE may be passed for width and/or 
height; it allows the subwindow to stretch with its parent in either or both directions. Details or 
subwindow layout are discussed in section 6.2.6 below. The name is currently unused; it may 
eventually support the capability to refer to subwindows by name. 

The remainding subwindow initialization requires re(erence to the data structure: 

atruct toolsw { 
~truct toolsw •ts_next; 

/ int ts_window(d; 
char •ts_name; 
abort ts_width; 
short ts_height; 
struct toolio tsjo; 
int ( •ts_destroy X); 
caddr_t ts_data; 

}; 

The subwindows o( a tool are chained on a list, with ta_nezt in one subwindow pointing to the 
next in line, until the list is terminated with a null pointer. 

Like the tool window, each subwindow must have an associated open window device; the file 
descriptor is stored in ta_10indo10/d by tool_create1u610indo10. 



- 58 -

Ta_name, t,_width and ta_j,eight are exactly as in' the call to tool_create,ubwindow. 

The tool uses T,_io to control notification of input and window change events to the subwin
dow. Upon subwindow creation, this structure has null values in it that need to be set; this is 
normally doen by the create routine for a standard subwindow type. This structure is discussed 
in detail in Toolio Structure. 

Ta_deatroy gets called when the tool is being destroyed (tool_deatroy) so that the subwindow 
may terminate cleanly. 

T,_data provides 32 bits of uninterpreted data private to the subwindow implementation. Typ
ically, it will be a pointer to information for this instance of the subwindow. That is, all 
subwindows of the same type will share common interrupt handlers and layout characteristics; 
window contents and other information specific to one particular window will all be accessed 
through this pointer. (This is discussed at more length in Requirement, for Subwindow, in 
Chapter 7.) 

6.2.6. Subwindow Layout 

By default, subwindows are laid out in their tool's area in a simple left-to-right, top-to-bottom 
fashion, in the order they are created: a subwindow is placed as high as it can he, and in that 
space, as far to the left as it can be. 

Subwindows that should be arranged in a more controlled fashion may be rearranged after they 
have all been created, using the rectangle manipulation facilities described in Window Geometru. 
Three functions return numbers useful to tools doing their own subwindow layout explicitly: 

short tool_stripeheight( tool) 
struct tool •tool; 

returns the height in pixels of the tool's name stripe. 

short tool_borderwidth( tool) 
struct tool •tool; 

returns the width (in pixels) of the tool's outside border 

short tool_subwindowspacing( tool) 
struct tool •tool; 

':} 

returns the number of pixels that should be left as a margin between subwindows of a tool 
( currently the same as the outside border of the tool). 

6.2.7. Su bwindow Initialization 
By the time tool_create,ubwindow has returned, the subwindow is already· inserted in the tree 
growing out of the tool window; however, the subwindow will not perform any interesting func
tion until t,_io and t,_data have been initialized. Normally, tool_createaubwindow is not directly 
called. Instead, the tool subwindow creation procedure for a subwindow type is called. This 
will call tool_createaubwindow and then initialize t,_io and t,_data. 

~ 
) 

/ 



0 

Q 

0 

- 59 -

6.2.8. Tool Installation 

Once the tool is created and its subwindows have been created and installed, the software inter
rupt system should be turned on via a call to ,ignal as described in 6.3.3. At least SIGWINCH 
should be caught; if there are inferior processes in any of the subwindows, SIGCHLD should he 
added, with any others as appropriate. Finally, the tool is installed into the display window 
tree by a call to: 

tool_install( tool) 
struct tool •tool; 

At this point, the tool is operating; in fact, it will probably shortly receive a SIGWINCH (asyn
chronously) to paint its window(s) for the first time. 

6.2.9. Tool Destruction 

Explicitly destroying a tool as it reaches the end of its processing allows the system to reclaim 
resources and remove the windows gracefully. The procedure to invoke this cleanup is 

tool_destroy( tool) 
struct tool •tool; 

Tool_deatroy will destroy every subwindow of the indicated tool as part of its processing, so the 
subwindows need not he destroyed explicitly. Each subwindow's t,_tle,troy procedure gets 
called, so they can clean up gracefully. Care should he taken that the pointer passed to 
tool_deatroy is never dereferenced after that call, since it is no longer valid. 

A single subwindow can he destroyed by an explicit call to 

tool_destroysubwindow( tool, subwindow) 
struct tool •tool; 
struct toolsw •subwindow; 

A tool may use this procedure to change its subwindows, while continuing to run. 

6.3. Tool Processing 

The main loop of a normal tool is encapsulated inside a call to 

tool_select( tool, wait processesdie) 
struct tool •tool; 
int waitprocessesdie; 

This procedure is the notification distributer used for event-driven program control flow. When 
some input event, timeout or signal interrupt is detected inside tool_aelect, a call to a 
notification handler is made, passing in the toolio structures of the tool and its subwindows. 
When the handler returns, tool_,elect awaits another event. 



- 60-

8.3.1. Toolio Structure 
The toolio data structure holds what is needed for a window to wait (or something to happen in 
the ,elect system call. It is defined in / uar/ include/ auntool/ tool.h. 

struct toolio { 
int tiojnputmask, 
int tio_outputmask, 
int tio_exceptmask; 
struct timeval •tio_timer; 
int ( •tio_handlesigwinch) (); 
int ( •tio_selected) (); 

}; 

Tio_inputmaak, tio_outputmaak, tio_exceptmaak and tio_timer fields are exactly analogous to the 
last (our arguments to the ,elect system call. Tio_inputmaak has the hit "1 < </" set for each 
file descriptor / on which a window wants to wait Cor input. Similary, tio_outputma,k and 
tio_exceptma,k indicate an interest in / being ready (or writing and having an exceptional condi
tion pending, respectively. There are currently no "exceptional conditions" implemented; this 
field provides compatability with the ,elect system call. 

Ir tio_timer is a non-zero pointer, it specifies a maximum interval to wait for one or the file 
descriptors in the masks to require attention. IC tio_timer is a zero pointer, an infinite timeout 
is assumed. To effect a poll, the tio_timer argument should be non_zero, pointing to a zero 
valued timeval structure. 

Toolio also contains pointers to the procedures that are called when some notification has been Q'.:.; 
received by the tool. Tio.J,andle,igwinch addresses the procedure which responds to the . 
SIGWINCH signal. This procedure handles repaint requests and window size changes. The 
general Corm (or such a procedure is: 

sigwinch_handler( data) 
caddr _t data; 

Such procedures take a single argument data whose type is context-dependent. For the tool this 
data is a pointer to the tool. For a subwindow this data is the t,_data value. 

Tio_aelected addresses the procedure which responds to notifications Crom the ,elect system call. 
Its general Corm is: 

io_handler(data, ibits, obits, ebits, timer) 
caddr_t data; 

int 
int 
int 
struct 

•ibits, 
•obits, 
•ehits, 
timeval utimer; 

In such procedures, the data argument is like that or the sigwinch handlers described above. 
The three integer pointers indicate which file descriptors are ready for reads ( iibit,), writes 
( *obit,), or exception-handling ( *ebita). IC timer is NULL, this window was not waiting on any 
timeout. Ir timer points to a valid struct timeval then this window is waiting (or a timeout. Ir 
both the ( itimer )-> tv_aec and (*timer)-> tv_u,ec are zero then the timeout has just happened 
Cor this window and should be serviced. The data in the file descriptor masks is not defined if a 
timeout has occured. 

Before returning Crom a procedure or this type, the masks and timer must be reset by storing 
through the pointers passed in the arguments; the values should be consistent with the 

0 



0 

0 

·o 

- 61 -

discussion o( the masks and timer pointer above. You may not want to reset the timer if you 
are using it as a countdown timer, and it still has time remaining on it. 

8.3.2. File Descriptor and Timeout Noti&cations 
Tool_aelect generates three composite masks from the three toolio masks from each of the toolio 
structures in the tool. The input mask is special in that if all the masks in a particular toolio 
structure are zero, then an entry in the composite input mask is made for the associated win
dow anyway. Tool_aelect also determines the shortest timeout that any of the windows is wait
ing on. The composite masks and shortest timeout are passed to the ,elect system call. 

When the ,elect system call returns normally, windows that have a match between their masks 
and the mask of ready file descriptors, that have timed out, are notified via their tio_,elected 
procedure. The tio_,elected procedures are called with the complete ready masks, not just the 
intersection of its own ma.,ks and the ready ma.,ks. However, a tio_,elected procedure is called 
with its own window's timer value. 

It should be noted that timers in this implementation are only approximate. When the ,elect 
system call returns and a timeout hasn't occured, the duration of the ,elect is assumed to have 
been instantaneous. Also, the time taken up with handling notifications is not deducted from 
the timers. 

8.3.3. Window Change Notifications 
Clients of the tool interlace must catch the SIGWINCH signal. A signal catcher is set up via 
the aignal system call. That catcher is then responsible for notifying the tool package that the 
signal has arrived. This is done by calling: 

tool_sigwinch(tool) 
struci tool *tool; 

This procedure simply sets the TOOL_SIGWINCHPENDING flag in tool. The receipt of any 
signal has the side effect of causing the ,elect system call in tool_aelect to return abnormally. 
The TOOL_SIGWINCHPENDING flag is noticed and the tool's tio_handle,igwinch procedure is 
called. The default tio_handleaigwinch procedure does some processing (which m~ include 
changing the subwindow layout) and eventually calls all its subwindows' tio_handle,igwinch pro
cedures. 

8.3.j. Child Process Maintainence 
Tool_aelect also gathers up dead children processes of the tool. The waitproce11e,die argument 
to tool_aelect is provided for tools which have separate processes behind some of their subwin
dows. Such tools must explicitly catch SIGCHLD (the signal that indicates to a parent process 
that a child process has changed state); then the signal handler (parallel to a SIGWINCH 
catcher and toot_,igwinc/a) should call 

tool_sigc hid( tool) 
struct tool *tool; 

This causes tool_,elect to try to gather up a dead child process (via a waits system call). When 
as many child processes have been gathered up as indicated by the waitproceaaeadie argument to 
tool_aelect, tool_aelect returns. 



6.3.5. Changing the Tool's Image 

During processing, a call to 

tool_display( tool) 
struct tool •tool; 

- 62 -

redisplays the entire tool. This is useful if some change has been made to the image of the tool 
itself - its name or its icon's image have been changed, for instance. Normal repaints in 
response to size changes or damage should not use this procedure; they will be taken care of by 
SIGWINCH events and their handlers. 

8.3.8. Terminating Tool Processing 

During the time that tool_aelect is acting as the main loop of the program, a call to 

tool_done( tool) 
atruct tool •tool; 

causes the flag TOOL_DONE to be set in tool Tool_aelect notices this flag, and then returns 
gracefully. 

8.3.'1. Replacing Toolio Operations 

Since the toolio structure contains procedure pointers in variables, it is possible to customize the 
behavior of a window by replacing the de(ault values. 

Icons that resond to user inputs, or that update their image in response to timer or other 
events, may be implemented by replacing the tool's tool_aelected procedure. A different subwin
dow layout scheme may be implemented in a replacement procedure for tioJandle aigwinc/a. 
Note that these modifications do not require changes to existing libraries; the address of the 
substitute routine is simply stored in the appropriate slot at run-time. 

O", 
i 

0) 

o, 



0 

0 

0 

- 63 -

7. SUNTOOL: SUBWINDOW PACKAGES 
This chapter describes aubwindow packagea, the building blocks used to construct a tool.· It 
presents a guide for constructing new subwindow packages of general. utility, and describes the 
available standard subwindow packages for use with auntool,. (Refer to the preceding chapter 
for a description of the overall structure of tools and the general notion of a subwindow.) 

Subwindows, as presented here, are designed to be independent of the particular framework in 
which they are used. That is, a subwindow is a merger of window handling and application 
processing which should be valid in frameworks other than the tool structure and auntool 
environment described in the preceding chapter; the design avoids any dependence on those con
structs. Thus, a subwindow package can be used in another user interface system written on 
top of the aunwindow basic window system. However, subwindow packages all provide a utility 
for creating a subwindow in the tool context. 

7 .1. Minimum Standard Subwindow Interface 
This section describes the minimum programming interface one should define when writing a 
new subwindow package. A subwindow implementation should provide all the facilities 
described in this section. This section presents the arguments to the following standard pro
cedures. Each subwindow package need only document any additional arguments passed to its 
create/init procedures. There is a set of naming conventions that provides additional con
sistency between subwindow package interfaces. 

For the purpose of example, we use Joo as the prefix. Other prefixes used in existing subwin
dow packages include tty, g/z and mag. 

Each subwindow package has a structure definition that contains all the data required by a sin
gle instance of the subwindow. 

etruct foosubwindow { 
int fsw _windowfd; 
1truct pixwin •fsw__pixwin; 

}; 

The structure definition typically has a pizwin (for screen access) and a window handle (for 
identification) as part of this data. The information that the subwindow's procedures need 
should be stored in this data structure; this may entail redundantly storing some data that is 
contained in the associated containing data structure, such as the toolaw struct. Having an 
object per subwindow allows multiple instantiations of a subwindow package in a single-user 
process. 

atruct foosubwindow •fooswjnit(windowfd, ... ) 
int windowfd; 

creates new instances of a foo subwindow. Window/dis to be a foo subwindow. The " ... " indi
cates that many s~bwindow packages will require additional set-up arguments. This routine 
typically opens a pizwin, sets its input mask as described in Chapter 5, and dynamically allo
cates and fills the subwindow's data object. 

foosw _done(foosw) 
1truct foosubwindow •foosw; 

destroys subwindow instance data. Once this procedure is called, the /ooaw pointer should no 



- 64 ~ 

longer be re(erenced. 

(oosw _handlesigwinch( f oosw) 
struct foosubwindow •foosw; 

This procedure handles repaint requests and must also detect and deal with changes in the win
dow size. It is called as a result of some other procedure catching a SIGWINCH. 

f oosw _selected( f oosw, ibits, obits, ebits, timer) 
struct foosubwindow •foosw; 
int •ibits, 
int •obits, 
int •ebits, 
struct timeva.l * •timer; 

handles event notifications. Subwindow packages that don't accept input may not have a pro
cedure of this type. The semantics of this procedure are fully described in the preceding 
chapter in the section entitled Toolio Structure. 

struct toolsw •foosw_createtoolsubwindow(tool, name, width, height, ... ) 
struct tool •tool; ·· 
char •name; 
abort width, height; 

creates a struct too/aw that is a foo subwindow.
1 

Fooaw_createtoolaubwindow is only applicable 
in the tool context. It is often the only call that, an application program need make to set up a 
subwindow of a given type. Tool is the handle on the tool that has already been created. Name 
is the name that you want associated with the subwindow. Width and height are the dimensions 
of the subwindow as wanted by the tool_createaubwindow ca.II. The " ... " indicates that many 
subwindow packages will require additional arguments. These additional arguments should 
parallel those in /oo,w_init. 

Fooaw_createtoolaubwindow takes the window file descriptor it gets from tool_createaubwindow, 
passes it to /oo,w_init, and stores the resulting pointer in the tool subwindow's t,_data slot. 
The addresses of /ooaw_handleaigwinch and /ooaw_,elected are stored in the appropriate slots of 
the toolio structure for the tool subwindow, and the address of /ooaw_done is stored in the tool 
subwindow 's t,_tle,troy procedure slot. 

or course, most subwindow packages define functions that perform application-specific process
ing; the ones described here are merely the permissible minimum. 

7.2. Empty Subwindow 
· The emply subwindow package simply serves as a place holder. It does nothing but paint itself 
gray. It expects the window it is tending to be taken over by another process (see Graphic, 
Subwindow). When the other process is done with the empty subwindow package, the caretaker 
process resumes control. 

A private data definition that contains instance-specific data defined in 
/ ur/ include/ auntool/ empty,w.A is: 

' 

Q) 

0 



\ 

0 

0 

0 

- 65 -

etruct emptysubwindow { 
int em_windowfd; 
etruct pixwin •em_pixwin; 

}; 

Em_window/d is the file descriptor of the window that is tended by the empty subwindow. 
EmJJizwin is the structure for accessing the screen. 

etruct toolsw * 
esw_createtoolsubwindow(tool, name, width, height) 

etruct tool •tool; 
char •name; 
short width, height; 

sets up an empty subwindow in a tool window. Since eaw_createtoolaubwindow takes care of set 
up of the empty subwindow, the reader may not be interested in the remainder of this section. 

etruct emptysubwindow •eswjnit(windowfd) 
int windowfd; 

creates a new instance of an empty subwindow. 'Window/dis the window to be tended. 

~w _handlesigwinch( esw) 
struct emptysubwindow •esw; 

handles SIGWINCH signals. If the process invoking this procedure is the current owner of 
eaw->em_window/tl, gray is painted in the window. If it is not the current owner, it checks to 
see if the current owner is still alive. If the current owner is dead, this process takes over the 
windows again and paints gray in the window. 

esw _done( esw) 
struct emptysubwindow •esw; 

destroys the subwindow's instance data. 

Processes that take over windows should follow guidelines discussed in Chapter 3 concerning the 
use of the win_getowner and win_,etowner procedures. Preferably, the graphics subwindow 
interlace ( described below) should be used for this activity. 

7 .3. Graphics Subwindow 
The graphics subwindow package is for programs that simply need a display area in which to 
run. Using this subwindow package insulates programmers of this type of program from much 
of the complexity of the window system. This subwindow package is unique among subwindow 
packages in that it doesn't generate the bits for its image. Instead, it provides a mechanism 
that programs can use to manage their own display area. 

The graphics subwindow can also manage a retained window for the programmer. The pro
grammer need not worry about the fact that he is in an overlapping window situation. A 
backup copy of the bits on the screen is maintained from which to service any repaint requests. 

The graphics subwindow can be used in tool building like any of the other subwindow packages 
described in this chapter. However, the ability for a program to take over an existing window 
from another process is also provided by the graphics subwindow. · 



- 66 -

The data definition for the instance-specific data defined in / uar / include/ ,untool/ g/z,w.h is: 

struct gfxsubwindow { 
int gfx_windowfd; 
int gfx_flags; 
int gf x_reps; 
struct pixwin •gfx_J>ixwin; 
struct rect gfx_rect; 
cadd r _t gf x_takeoverdata; 

}; 

#define 
#define 

GFX_RESTART 
GFX_DAMAGED 

OxOl 
Ox02 

Gfz_windowf d is the file descriptor of the winJow that is being accessed. Gfz_rep, are the 
number of repetitions that cyclic continuously running programs are to execute. Gfz_pizwin is 
the structure for accessing the screen. G/z_rect is a cached copy of the window's current self 
relative dimensions. G/z_takoverdata is described in the following section. 

Gfz_flaga contains bits that the client program interprets. The GFX_DAMAGED bit is set by 
the graphics subwindow package whenever a SIGWINCH has been received. In addition the 
GFX_RESTART bit is set if the size of the window has changed or the window is not retained. 
The client program examines these flags at the times described below. 

GFX_DAMAGED means that gfz,w_handle,igwinch should he called. This flag should be exam
ined and acted upon before looking at GFX_RESTART. GFX_RESTART is often interpreted 
by a graphics program to mean that the image should be scaled to a new window size and that o .. ) 
the image should he redrawn. Many continuous programs (e.g., graphics demos) will redraw 
from the beginning of a cycle. Other event driven programs (e.g., graphics editors, status win-
dows) will redraw from their underlying data descriptions. The GFX_RESTART bit needs to 
be reset to Oby the client program before actually doing any resetting. 

7 .3.1. In a Tool Window 

A graphics subwindow in a tool context is only applicable for event driven programs that use 
the tool_aelect mechanism. Any subwindow in a tool must ·use this notification mechanism so 
that all the windows are able to cooperate in the same process. 

struct toolsw • 
gfxsw_createtoolsubwindow(tool, name, width, height, argv) 

struct tool •tool; 
char •name; 
short width, height; 
char uargv; 

sets up a graphics subwindow in a tool window. If argv is not zero then this array of character 
pointers is processed like a command line in a standard way to determine whether the window 
should be made retained "-r" and/or what value should be placed in g/zJep, "-n ####". 
Toolaw-> t,_io.tio_aelected is set up with the client's own routine. 

Toolaw-> t,_fo.tio_handleaigwinch is replaced with the client's own routine. This is so that the 
client is notified when something about his window changes. The client tio_handle,igwinch will Q) 
call gfz,w_interpret,igwinch (which is described below). 



0 
- 67 -

gfxsw _getretained(gfxsw ); 
struct gfxsubwindow •gfxsw; 

can be called to make a graphics subwindow retained if you choose not to do the standard com
mand line parsing provided by g/xaw_createtoolaubwindow. It should be called immediately after 
the graphics subwindow is created. Destroying g/zaw->gfz_prretainetl has the effect of making 
the window no longer retained. 

gfxsw _interpretsigwinch(gfxsw) 
struct gfxsubwindow •gfxsw; 

is a procedure that is called from the client tio_/aandle,igwinc/a to give the graphics subwindow 
package a chance to set the bits in g/uw-> gfz..flag,. The code in the client tio_/aandle,igwinc/a 
then checks the flags and responds appropriately, perhaps by calling: 

gf xsw _handlesigwinch(gfxsw) 
struct gfxsubwindow •gfxsw; 

This procedure handles SIGWINCH signals. If the window is retained and the window has not 
changed size, this routine fixes up any part of the image that has been damaged. IC the window 
is retained and the window has changed size then this routine will free the old retained pixrect 
and allocate one of the new size. If the window is not retained the damaged list associated with 
the window is thrown away. GFX_DAMAGED flag is reset to zero in this routi_ne. 

gfxsw _done(gfxsw) 
struct gfxsubwindow •g(xsw; 

0 destroys the subwindow's instance data. 

0 

7 .3.2. Taking Over an Existing Window 

The ability for a program to take over an existing window from another process is provided by 
the graphics subwindow. The empty subwindow (described above) is designed to be taken over. 

struct gfxsubwindow •gfxswjnit(windowfd, argv) 
int windowfd; 
char **argv; 

This procedure creates a new instance of a graphics subwindow in something other than the tool 
context. Windowfd should be zero; the assumption is that there is some indication in the 
environment as to which window should be taken over. (See we_getg/zwindow in Chapter 4.) 
A rgv is like argv in g/zaw_createtoolaubwindow. 

Gfx_takoverdata in the returned gfz,ubwindow data structure is not zero in this case. The struc
ture of the data that this pointer refers to is private to the implementation of the graphics 
subwindow. Part o( this, however, is cached data Crom of the original owner window: input 
mask, cursor image, input redirection window and original owner process identifier. 

gf xsw _catchsigwinch() 

When a graphics subwindow has taken over a window from another process, this procedure is 
set up as the signal catcher of SIGWINCH. It, in turn, calls g/z,w_interprete,igwinch. 

gfxsw_cleanup() · 

Also, when a graphics subwindow has taken over a window from another process, gfz,w_cleanup 
is the signal catching routine used to catch SIG INT and SIGHUP. This routine resets the 



original owner window's state. from the graphics subwindow 's cached private data. 

Continuous programs that never use a select mechanism should examine g/z,w-> g/~_flag, 111 

their main loop. Other programs that would like to use a select mechanism should call 

gfxsw_select(gfxsw, selected, ibits, obits, +its, timer) 
struct gfxsubwindow •gfxsw; 
int ( •selectedX), ibits, obits, ebits; 
struct timeval •timer; 

as a substitute for the tool_,elect. Selected is the routine that is called when some input or 
timeout is noticed. Its calling sequence is exactly like /oo,w_,electetl described at the beginning 
of this chapter. The only difference in the semantics of this routine and /oo,w_,elected is that 
the gfz,w->gfz_Jlag, should be examined and acted upon in ,elected. 

/bit,, obit,, ebit, and timer (as well as g/z,w and ,elected) can be thought of as inftializing an 
internal toolio structure, which is then fed to the tool_,elect mechanism. 

gfxsw _selectdone(gfxsw) 
struct gfxsubwindow •gfxsw; 

is a substitute for the tool_done. g/z,w_,electdone is called from within the ,elected procedure 
passed to g/z,w_,elect. 

7 .4. Message Subwindow 

This subwindow package displays simple ASCII strings. 

A private data definition that contains instance-specific data defined Ill 

/ uar/ include/ ,untool/ m,g,w.h is: 

struct msgsubwindow { 
int msg_windowfd; 
char •msutring; 
struct pixf ont •msgJont; 
struct rect msuectcache; 
struct pixwin •msg_pixwin; 

}; 

M,g_window/d is the file descriptor of the window that is the message subwindow. M,g_,tring is 
the string being displayed using m,gJont. Only printable characters and blanks are currently 
properly dealt with; please no carriage returns, line feeds or tabs (yet). The implementation 
uses M,g_rectcache to help determine if the size of the subwindow has changed. M,g_pizwin is 
the structure that accesses the screen. 

struct toolsw * 
msgsw_createtoolsubwindow(tool, name, width, height, string, font) 

struct tool •tool; 
char •name; 
short width, height; 
char •string; 
struct pixf ont •font; 

is the call that sets up a message subwindow in a tool window. String is the string being 
displayed using font. Since m,g,w_createtoolaubwintlow takes care of the set-up of the message 

0 

0 



0 

0 

- 69-

subwindow, the reader may not be interested in the remainder of this section, except for 
m,g,w_,et,tring. 

struct messagesubwindow !l'msgswjnit(windowfd, string, font) 
int windowfd; 
char •string; 
struct pixfont •font; 

creates a new instance of a message subwindow. Window/d identifies the window to be used. 
String is the string being displayed using /ont. 

msgsw _setstring(msgsw, string) 
struct messagesubwindow •msgsw; 
char •string; 

changes the existing magau,-> m,g_,tring to atring and redisplays the window. 

msgsw _display( msgsw) 
struct messagesubwindow •msgsw; 

redisplays the window. 

msgsw _handlesigwinch( msgsw) 
struct messagesubwindow •msgsw; 

is called to handle SIGWINCH signals. It repairs the damage to the window if the window 
hasn't changed size. Ir the window has changed size, the string is reformatted into the new size. 

msgsw _done(msgsw) 
etruct messagesubwindow •msgsw; 

destroys the subwindow's instance data. 

'1.5. Option Subwindow 

An option subwindow (optionsw) presents a mouse-and-display-oriented user interface for set
ting parameters and invoking commands in an application program. It is the window system 
analog to entering command-line arguments and typing mnemonic commands to an application. 

An option subwindow contains a number of items of various types, each of which corresponds to 
one parameter. Existing item types include labels, booleans, enumerated choices, text parame
ters, and command buttons. New item types and extensions to these existing types are both 
contemplated. 

The program optiontool is provided as a simple example of the features discussed here. Fami
liarity with the behavior of the program, and with its source file /uar/ ,untool/ arc/ optiontool.c, 
is helpful in reading this section. 

The declarations for the optionsw package are found in the header file 
/ u,r/ include/ ,unwtool/ optionaw.h. / u,r / include/ ,untool/ tool.I, can he included to provide the 
support header files for option,w.h. Option,w.h includes declarations of all the public pro
cedures, as well as the following structures and iheir associated defined constants: 



typedef struct typed_pair { 
u_jnt type; 
caddr_t value; 

} typed_pair; 

#define IM_UNKNOWN O 
#define IM_GRAPHIC 2 
#define IM_TEXT 3 
#define IM_TEXTVEC 4 

typedef struct opt_item { 
struct opt_jtem •oi_next; 
ujnt oi_flags; 
struct rect oi_rect; 
caddr_t 01_ops; 
caddr_t oi_data; 

} opt_jtem; 

#define LAY _XFIXED Ox80 
#define LAY _YFIXED Ox40 
#define LAY _WFIXED Ox20 
#define LAY _HFIXED Ox IO 

For a typed_pair, type indicates what kind of object t1alue points to. ·The cUffent choices are: 

Type 

IM-GRAPHIC 
IM_TEXT 
IM_TEXTVEC 

Value should be ' 
(struct pixrect•) 
(char•) 
(char u) 

In the TEXTVEC case, value points to the first element of an array of string pointers; the:hst 
element of the array should be a NULL pointer. These are currently used only in enumerated 
items (described below). 

The four layout flags indicate an aspect of an option item's layout which should not be adjaed 
(left edge, top edge, width, height). Their use is discussed under Item Lagoul anti Relocfllion 
below. 

7 .5.1. Option Subwindow Standard Procedures 

This section describes the routines needed to conform to subwindow package norms. These mu
tines follow the general procedures provided in section 7 .1. 

struct toolsw *optsw_createtoolsubwindow(tool, name, width, height) 
struct tool •tool; 
char •name; 
short width, height; 

~ 
. ) 

creates a option subwindow within a tool. The handle toolaw-> ta_data is used for the oplaw 
argument in calls to other procedures of the optionsw package to identify the affected window O 
and its private data. The remainder of this section is of interest only to clients outside the tool . · 
system. 



0 

0 

0 

- 71 -

In contexts other than a tool, opt,w_init must be called explicitly. Similarly, provisions must be 
made (or using the rest or the routines in this section. 

caddr_t optsw jnit((d) 
int rd; 

Optaw_init takes an /d which identifies the window to be used for the optionsw, and returns an 
opaque pointer, which identifies the created optionsw in future calls to the package. 

optsw _handlesigwinch( optsw) 
caddr_t optsw; 

is called to handle SIGWINCH signals. It repairs the damage to the window, and if the window 
has changed size, reformats the options as described below. 

optsw _selected(optsw, ibits, obits, ebits, timer) 
caddr_t optsw; 
int •ibits, •obits, •ebits; 
etruct timevalue • •timer; 

is called to handle user inputs. 

optsw _done( optsw) 
caddr_t optsw; 

is the cleanup routine (or an optionsw. It frees all storage allocated for the subwindow and its 
items. or course, the client should not attempt to use any pointer associated with the optionsw 
or its items after a call to this routine. 

7 .5.2. Option Items 

Once an optionsw is created, it may be populated with option items. Each item is created by a 
call to the create routine for th_e desired type; this creates the item, adds it to the items for the 
optionsw, and returns a pointer to the opt_item which describes it. 

In some general aspects, all items in the optionsw exhibit the same behavior. The left or middle 
mouse button indicates an item to be manipulated; the right button is left to the menu func
tion. Pressing one or the two buttons gets the optionsw's attention, and releasing it actually 
completes a user-input event to which some item may respond. While the button is held down, 
the cursor may be slid around over the window, and each item it passes over will indicate its 
readiness to respond (typically by inverting); but any such indication may be cancelled simply 
by moving the cursor off the item before. letting up on the button. 

7 .5.2.1. Boolean Items 

optjtem •optsw_bool(optsw, label, init, notify) 
caddr_t optsw; 
struct typed..J>air * label; 
int init; 
int (•notifyX); 

creates an item which maintains a boolean (TRUE or FALSE) value. Its label contains a 
pointer to a string (type is IM_TEXT) or to a pixrect (type is IM_GRAPHIC); this is what is 
displayed in the window for the item. The label is displayed in reverse video whenever the item 
is TRUE. The value of the item is initially set to init, and is changed whenever the user selects 



- 72 -

the item. Whenever the value ot the item is changed by user action, the procedure notify is ~ 
called with the new value, as described in section 7.6.4. 

'/ .5.2.2. Command Items 

optjtem •optsw_command(optsw, label, notify) 
caddr_t optsw; 
struct typed_pair •label; 
int (•notify)(); 

creates an item which invokes the client procedure notify when selected by the user; the item 
has no value. Label is as described for a. boolean item above~ 

7 .5.2.3. Enumerated Items 

struct opt_item •optsw_enum(optsw, label, count, init, choices, notify) 
caddr_t optsw; 
struct typed_pair •label; 
struct typed_pair •choices; 
int count; 
int init; 
int (*notify)(); 

creates an item in which exactly one ot a set of choices is in effect at any time. The value is 
interpreted as an index (0-based) into the choices tor the selection. Optsw, label, and notify are 
ass above. Choices is a vector ot images to be displayed tor the choices; for now, they must be 
strings (type is ITEM_VEC). Init is the initial value of the item; it should be at most the size 
of the choices array - 2 (to avoid the null pointer which terminates the array). Flags will even
tually indicate layout options, but for now should be 0. 

'/ .5.2.4. Label Items 

struct opt_item •optswJabel(optsw, label) 
caddr_t optsw; 
struct typed_pair •label; 

creates an item which does nothing but paint itself. Optsw and label are as above. This item 
type may be used for including labelling information in the option subwindow. 

7 .5.2.5. Text Items 

struct optjtem •optswJabel(optsw, label, default_value, flags) 
caddr_t optsw; 
struct typed_pair •label; 
char •default_value; int flags; 

#define OPT_TEXTMASKED 

creates an item which holds a text value. Optsw and label are as above. Default_value is the 
initial value of the string. Flags specify attributes of the created item; currently, only the 
masked attribute is supported. If the OPT _TEXTMASKED flag is set in the call, each 

0: 



0 

0 

0 

- 73-

character of the text item will be displayed as an asterisk. This feature is useful for text 
parameters which should not be displayed,such as passwords. The true value of the item is 
returned by optaw_getvalue, described below. 
There may be multiple text items in an option subwindow. At any time, one of them is active; 
any keystrokes directed to the option subwindow will be appended to the current active text 
item. Only displayable characters will be accepted in the item (ASCII codes 040-0176 inclusive). 
Other characters will be discarded. This is initially the first item created in the option subwin
dow; the user may select another item to receive keystrokes by clicking either the left or middle 
mouse button while the cursor is pointing at the new item's label. 

The user's erase (character delete) and kill (line delete) characters are available for editing exist
ing text in a text item. The first will delete the last character of the text; the latter will delete 
the whole string. 

Text items do NOT notify their client when their value changes; this would imply calling the 
client on every keystroke as the user enters data. Rather, clients should use optsw_getvalue to 
interrogate a text item when the value is needed. 

Text items will expand to fit the remainder of their option subwindow 's width. This may be 
more polymorphism than clients desire; see the discussion under Item Layout below. 

Caveat: This is a preliminary release of text items. The user interface will become noticeably 
less awkward in future releases. For now, the following restrictions apply: 

Currently, the only way of changing which item is active is by selecting the label of 
the new "active item." There is no feedback to indicate which item is current. 

Values of text parameters are restricted to a single line of text, less than 1000 charac
ters long. Characters which ·extend beyond the item's right edge will not be 
displayed, although they are entered and edited the same as visible characters. 

Text items may be edited only at their ends; the available operations are: add a 
character to the end, delete a character from the end, and delete the whole value. 

While significant extension to the functionality of text items are planned, the actual interface 
(external procedure definitions and data structures) are designed to accommodate those exten
sions without change. 

7 .5.3. Item Layout and Relocation (SIGWINCH Handling) 
As each item is created, its width and height are determined and stored in the oiJect element 
of the item's opt_item struct. No left and top positions are assigned at this time. 
LAY _WFIXED and LAY _HFIXED are set in the item's oi_Jlag,, to indicate that the width and 
height have been set to a value that should not be changed in the layout process. Later, when
ever a signal is received which indicates that the size of the subwindow has changed (in particu
lar, when the tool is first displayed, and the size grows from O to the inital window), a layout 
procedure determines positions for all the items in the window. 

At any time after an item has been created and before it is destroyed, the client may set any 
elements or the item's rectangle by a call to: 



- 74 -

optsw_setplace(optsw, ip, rp, reformat) 
caddr_t optsw; 
opt_item 
struct 
bool 

•ip; 
rect •rp; 
reformat; 

Optsw is the handle returned by optsw_init. Ip is the pointer to an opt_item struct returned by 
the item's create routine. Rp is a pointer to a rect struct which specifies the modifications to be 
performed. Any value other than -1 is copied into the corresponding element of the item's 
oi_rect and the corresponding LAY _!FIXED flag is set in the item's oi...flaga to prevent its being 
changed by the layout routine. A value of -1 indicates the existing value and flag are to be left 
unchanged. If re/ormat is TRUE, the whole window will be re-laid-out, taking the changed item 
into account; this is appropriate if the window is already displayed. On a batch of changes, it 
is appropriate to reformat only after the last change. 

The rectangle is expressed in standard window-system fashion: pixel coordinates, with (0, 0) the 
first pixel in the upper left corner. For convenience in laying out string items, two functions 
convert character columns and lines to the appropriate pixel coordinate: 

int optsw_coltox(optsw, col) 
caddr_t optsw; 
int col; 

int optsw_linetoy(optsw, line) 
caddr_t optsw; 
int line; 

The dimensions used in calculating these coordinates are the width of the character 'n' in the 
optionsw 's def a ult font, and the nominal height of that font (that is, the distance between base
lines of successive unleaded lines of text). Both columns and rows start at 0. 

The default layout procedure starts in the upper-left corner of the subwindow and places items 
in successive positions to the right, and then in successive rows down the window. This pro
cedure does not set the LAY _XFIXED or LAY _YFIXED flags for the item; this allows the item 
to be repositioned if the window is later laid out again with a different size. 

If an item is encountered with either of its top or left edges fixed, that specification is accepted 
without further consideration - it is possible to lay one item down on top of a previously posi
tioned item, or to position it out of sight to the right or below the subwindow boundary. 

Positioning of subsequent items after an item with a fixed position may be affected in three 
ways: 

the top of the row in which the item appears may move down (but not up) for the rest of 
the items in the row; 

subsequent items in the same row will not be positioned to the left of the item's right edge; 
and 

items in subsequent rows will not be positioned above the bottom of the fixed item. 

If an item is encountered which does not have fixed width (currently, only a text item), an 
attempt will be made to expand the item to fill the remaining width in the option subwin-
dow. This is done through a rather simple-minded negotiation between the general layout 
procedure and the flexible item. If both the position and width of the item are flexible, the O·· 
result of this negotiation may not be very satisfactory to observers; in most cases, the posi-
tion or the width (or both) should be fixed. · 



0 

0 

0 

- 75 -

7 .5.4. Client Notification Procedures 
Most item types provide a mechanism for notifying clients that the value of an item has been 
changed by the user" The same general mechanism is used for specifying the procedure to be 
invoked in response to selection of a command button. 

In any case, a pointer to a procedure is passed to the item-creation routine, and stored with the 
item. This procedure pointer may be zero, in which case there is no client notification. When 
appropriate, this notification procedure is invoked by optionsw code, with arguments to identify 
the affected subwindow and item, and the new value assigned to the item. The general form for 
these procedures is 

notify( optsw, item, value) 
caddr_t optsw; 
optjtem •item; 
int value; 

{ ... item has just changed to value; do what you want with it. 
} 

Procedures to be invoked in response to a command button-push have the same form, except 
there is no value parameter. 

Note the notification procedure is provided by the client, and invoked by the option,w package. 

7 .5.5. Explicit Client Reading and Writing of Item Values 

int optsw_getvalue(ip, dest) 
struct optjtem •ip; 
caddr_t dest; 

Ip is the item pointer returned by the item's create routine. De,t is the address where the value 
should be stored; it will be cast to the proper type by the specific routine for the item. 
Optsw_getvalue also returns an integer value. For all but text items, this is the same as the 
value stored in •dest; for text, it is the length or the value stored. Items which do not have a 
meaningful value (labels and commands) store and return -1. 

optsw _set value( optsw, ip, value) 
caddr_t optsw; 
struct optjtem •ip; 
caddr_t value; 

Opt,w is the opaque handle on the option subwindow; it enables repainting of the modified item. 
Ip indicates the item to be modified, and value ( appropriately cast) the new value to be assigned 
to the item. 

7 .5.6. Miscellany 

optsw _sedont( optsw, font) 
caddr_t optsw; 
struct pixlont •font; 

resets the font used to paint text labels and values in the option subwindow. Fonts for these 
objects are determined at the time the item is created, so to be effective, this routine should be 



- 76 -

called after creation of the option subwindow and before creation of the items to be affected. 
Different items may use different fonts. 

The two procedures remaining in the optionsw interface are of secondary interest. For assis
tance in implementing applications which use option subwindows, two routines are provided 
which print a formatted display of the optionsw and/or its items, on an fd of the client's choice: 

optsw_dumpsw(fd, optsw, verbose) 
int fd; 
caddr_t optsw; 
hoof verbose; 

optsw_dumpitem(fd, ip) 
int fd; 
opt_item •ip; 

For each procedure, the client says where to write the dump with the /d argument, and 
identifies the object to be dumped with the opt,w or ip argument. If verbo,e is true, 
opt,w_dumpaw will dump all the items of the optionsw. 

'1.8. Terminal Emulator Subwindow 
This is the subwindow package that provides a Sun Terminal emulator. 

The private data definition that contains instance-specific data defined in 
/ uar/ include/ auntool/ ttgaw./a is: 

struct ttysubwindow { 
int ttysw _placeholder; 

}; ' 

(Note: Only one TTY ,ubwindow per proce,a.) 

struct toolsw * ttysw_createtoolsubwindow(tool, name, width, height) 
1truct tool •tool; 
char •name; 
short width, height; 

is the call that sets up a terminal emulator subwindow in a tool window. 
Ttgaw_createtool,ubwindow takes care of all of the set up of the terminal emulator subwindow 
except for the forking of the program. Thus, clients of this routine may want to ignore the 
remainder of this section except for the discussion of ttg,wJork and perhaps 
ttgaw_becomecom ole. 

struct ttysubwindow •ttysw_init(windowfd) 
int windowfd; 

creates a new instance of a tty subwindow. Windowfd is the window that is to be used. 

ttysw _becomeconsole( ttysw) 
struct ttysubwindow •ttysw; 

.. 

0\ 

o::) 

sets up the terminal emulator to receive any output directed to the console. This should be 
called after calling ttgaw_init. · O; 



0 

0 

0 

- 77 -

ttysw _hai;idlesigwinch(ttysw) 
struct ttysubwindow •ttysw; 

is called to handle SIGWINCH signals. On a size change, the terminal emulator's display space 
is reformatted. Also, its process group is notified via SIGWINCH that the size available to it is 
different (See the following section). If there is display damage to be fixed up the terminal emu
lator redisplays the image by using character information from its screen description. 

ttysw_selected(ttysw, ibits, obits, ebits, timer) 
struct ttysubwindow •ttysw; 
int •ibits, •obits, •ebits; 
struct timeval • •timer; 

reads input and writes output for the terminal emulator. •!bit,, •obit, and •timer. are modified 
by ttyau,_aelected. See the general discussion of tio_,elected type procedures in section 7.1. 

int ttyswJork(ttysw, argv, inputmask, outputmask, exceptmask) 
struct ttysubwindow •ttysw; 
char ••argv; 
int •inputmask, •outputmask, •exceptmask; 

Corks the program indicated by •argv. There are the following possibilities: 

• 

• 

If •argv is NULL, the user SHELL environment value is used. Ir this environment param
eter is not available, /bin/ah is run. 

Ir •argv is "-<", this flag and argv[l] are passed to a shell as arguments. The shell then 
runs argv[l]. (The arg list for this case becomes shell/-c/•(argv+ + )/0). IC •argv is not 
NULL, the program named by argv[O) is run with the arguments given in the rest of argv. 

ttysw _done(ttysw) 
struct ttysubwindow •ttysw; 

destroys the subwindow 's instance data. 

'1.6.1. TTY-Based Programs in TTY Subwindows 
TTY-based programs, such as cd, ah, and vi, which use the termcap to determine the size of 
their screen need not know about windows in order to run reasonably under the terminal emula
tor. The termcap library will return the current number of lines and columns of the terminal 
emulator. However, if the user changes his window's size while one of these programs is run
ning, the terminal emulator and the program may disagree about what the terminal size is. 

In the case of a size change, the terminal emulator sends a SIGWINCH signal to its process 
group. If a child process doesn't catch the signal then there is no harm done because the 
default action for SIGWINCH is that it be ignored. A child process can catch the signal, and 
then requery the termcap library for the correct terminal size. Unfortunately, no TTY-based 
programs do this now. 

The terminal emulator and a termcap library communicate size information through ioctl sys
tem calls on the pseudo-tty shared by both. The terminal emulator makes a TIOCSSIZE ioctl 
call to set the size of the pseudo-tty. The termcap library (or some other TTY-based program) 
makes a TIOCGSIZE ioctl call to get the size of the pseudo-tty. These constants and the data 
that they pass in the ioctl call are further defined in / uar/ include/ ,ya/ ioctl.la. 



- 78 -

int we_getmywindow(windowname) 
char •windowname; 

can be called by programs running under a window system pseudo-tty to find out the terminal 
emulator's window name. This information is passed from the terminal emulator process to a 
child process through the environment variable WINDOW_ME, which is set to be the 
subwindow's device name (e.g. /dev/win5). We_getmywindow reads WINDOW_ME's value into 
windowname; a return value of O indicates success. This information could be the handle needed 
for a program to perform some sort of special window management function not provided by 
the default window manager. 

0) 

o, 



0 

0 

0 

- 79-

8. SUNTOOL: USER INTERFACE UTILITIES 

A variety of separate packages implement the user interface of suntool. These utilities are not 
tied to the notions of tool and ,ubwindow described in a previous chapter. Thus, these packages 
could be used, as is, in another user interface system written on top of the aunwindow basic win
dow system. For convenience, these utilities are associated directly with the ,untool software 
layer. This chapter describes the programming interface to these packages. 

8.1. Full Screen Access 

To provide certain kinds of feedback to the user, it may be necessary to violate window boun
daries. Pop-up menus, prompts and window management are examples of the kind of opera
tions that do this. The /ullacreen interface provides a mechanism for gaining access to the 
entire screen in a safe way. The package provides a convenient interface to underlying ,unwin
dow primitives. The following structure is defined in /uar/include/ ,untool/full,creen.la: 

struct fullscreen { 
int fs_windowfd; 
struct rect fs_screenrect; 
struct pixwin •fs_pixwin; 
atruct cursor fs_cachedcursor; 
struct inputmask fs_cachedim; 
int fs_cachedinputnext; 

}; 

F,_window/d is the window that created the /ull,creen object. F,_,creenrect describes the entire 
screen's dimensions. Fa...JJi:iwin is used to access the screen via the pixwin interface. The coor
dinate space of fullscreen access is the same as /,_window/J's. Thus, pixwin accesses are not 
necessarily done in the screen's coordinate space. Also, /a_,creenrect is in the window's coordi
nate space. If, for example, the screen is 1024 pixels wide and 800 pixels high, /a_window/d has 
its left edge at 300 and its right edge at 200 {both relative to the screen's upper left-hand 
corner), then f,_,creenrect is {-300, -200, 1024, 800}. 

The original cursor, /a_caclaedcuraor, input mask, /a_cacAedim, and the window number of the 
input redirection window, f,_caclm:linputnezt, are cached and later restored when the fullscreen 
access object is destroyed. 

struct fullscreen •fullscreenjnit{windowfd) 
int windowfd; 

gains full screen access for windowf d and caches window state that is likely to be changed during 
the lifetime of the fullscreen object. Window/ti is set to do blocking 1/0. A pointer to this 
object is returned. although a global pointer named Sunwindow will keep multiple processes 
from gaining f ullscreen access at the same time. 

During the time that the full screen is being accessed, no other processes can access the screen, 
and all user input is directed to /•-> f,_windowfd. Because of this, use fullscreen access infre
quently and for only short periods of time. 

f ullscreen_destroy( fs) 
atruct f ullscreen •f s; 

restores fa's cached data, releases the right to access the full screen and destroys the fullscreen 
data object. Fa->f,_windowfd's input blocking status is returned to its.original state. 



- 80 -

8.2. Icons 
This section describes an icon display racility. The icon structure is simply a stylized descrip
tion or an userul class or images. Icons normally serve more to identiry an object than display 
its contents. A typical use or an icon would be to identiry a currently unused but available tool. 
Another use might be to graphically depict an object (document, data~ase element, resource) 
that a user might want to point at with his mouse. The icon structure is declared in the file 
/ uar/ include/ ,untool/ icon.la: 

{ 
ic_width; 
ic_height; 

struct icon 
short 
short 
struct 
struct 
atruct 
atruct 
char 
1truct 
int 

pixrect •ic_background; 

}; 

rect ic_gt'xrect; 
pixrect •ic_mpr; 
rect ic-_textrect; 
•ic_text;. 
pixfont•ieJont; 
ic_flags; 

fdefine ICON_BKGRDPAT 
#define lCON_J3KGRDGRY 
#define ICON_J3KGRDCLR 
#define ICON_J3KGRDSET 

Ox02 

Ox08 
OxlO 

Ox04 

Ic_width and ic_laeight describe the run size of the icon. lc_6ackground is an optional pattern 
with which to prepare the image background. lc4fzrect and ic_teztrect describe two subareas 
of the icon (icon relative), which may overlap. Ic_mpr addresses a memory pixrect (as described 
in section 2.4) which has the graphic portion or the icon; ic_tezt points to a string, and icJ0,nt a 
font in which to display it. The bits of ic_Jlag, are defined above and indicate different ways to 
prepare the background of the image before adding ic_mpr and the text: 

ICON_BKGRDPAT use ic_6ackg,ound, 

ICON_BKGRDGRY use a standard gray pattern used by the background window, (this 
background is the memory pixrect tool_bkg,d defined in / u,r / include/ auntool/ tool.la). 

ICON_BKGRDCLR clear (white out) the image, or 

ICON_BKGRDSET set (solid black) the image. 

icon_display(icon, pixwin, x, y) 
struct icon •icon; 
1truct pixwin •pixwin; 
int x, y; 

is used to display icon offset ( z, u) from the origin of pizwin. The background is prepared 
according to icon->ic_Jlag,. The graphic portion of the icon is displayed next, followed by the 
text; thus, if they overlap, the text will come out on top. 

There are no strict restrictions on the size of an icon. However, the facility becomes relatively 
pointless if the icon is too large; and non-uniform icons have esthetic and placement defects. 

Q) 

Therefore a set of standard dimensions should be provided for any particular class of icons. ~) 
Here are the standards used by clients of tools (defined in /uar/include/auntool/tool.h): -., 



0 

0 

0 

#define TOOL_ICONWIDTH 
#define TOOL_ICONHEIGHT 
#define TOOLJCONMARGIN 

- 81 -

64 
64 
2 

#define TOOLJCONIMAGEWIDTH 
#define TOOLJCONIMAGEHEIGHT 
#define TOOL_ICONIMAGELEFT 
#define TOOLJCONIMAGETOP 

#define TOOL_ICONTEXTWIDTH 
#define TOOLJCONTEXTHEIGHT 
#define TOOLJCONTEXTLEFT 
#define TOOL_ICONTEXTTOP 

These constants put the icon in a 64-pixel square, including a 2-pixel margin all around. The 
graphics and text regions are defined relative to the size of the icon and its margin; the graphics 
area covers the whole icon inside the margin, and the text overlies the bottom 3/ 4 of that 
region. 

8.3. Pop-up Menus 

A pop-up menu is a collection of items that a user can choose among by pointing the cursor at 
the desired item. It is quickly displayed (in response to a button push), remains visible as long 
as the user holds the button down, and disappears as soon as the button is released. 

Several menus can be presented at once; they appear to the user as a stack of images, with the 
header of each menu visible, along with the items of the top menu in a vertical list. The user 
can bring other menus to the top by the same mechanism as choosing an item in the top menu. 

A single menu is described by the following structure (defined in / uar/ include/ ,untool/ menu.h): 

1truct menu { 
int mjmagetype; 
caddr_t mjmagedata; 
int mjtemcount; 
1truct menuitem •mjtems; 
1truct menu •m_next; 
caddr_t m_data; 

}; 

#define MENU _IMAGESTRING OxO 

M_imagetgpe describes the data type of m_imagetlata. M_imagedata is a pointer to the data 
displayed in the header of the menu. MENU_IMAGESTRING is the only currently defined 
image data type and is a character pointer. M_nezt addresses the next menu in a stack; it is 
NULL if this menu is the last or only one in the stack. M_tlata is private data utilized by the 
menu package while displaying menus. M_item, is an array of menuitems whose length is 
m_itemcount. 



- 82 -

struct menuitem { 
int mijmagetype; 
caddr_t mUmagedata; 
caddr_t mi_data; 

}; 

A menuitem consists of a display token/data pair. Mi_imagetype describes the data type of 
mi_imagedata. Mi_imagedata is a pointer to the data displayed in this item. 
MENU_IMAGESTRING is the only currently defined image data type and is a character 
pointer. Mi_data is private to the creator of the item. Typically, it is an 'identifier that 
differentiates this item from others. 

A client of the menu package constructs a stack of menus (or several, for different situations). 
This is done by allocating menu structures and menuitem arrays and initializing all the fields in 
them. This involves hooking up all the data structures by setting the various pointers. (An 
example of a menu set is found in Sample Tool, in the panetool program.) Then when a user 
action initiates menu processing (button-down on the right mouse button is the standard invo
cation), the client calls 

struct menuitem •menu_display(menuptr, event, iowindowfd) 
struct menu **menuptr; 
struct inputevent •event; 
int iowindowfd; 

Menuptr is the address of a menu pointer that points to the first (top) menu structure in a 
menu stack. This indirection allows the menu) package to leave the new top of the stack (if the 

0 
.. : 

user causes the stack order to be rearranged in *menuptr upon returning from menu_di,play. . 
The stack's m_nezt values are shuffled by the menu package to rearrange the stack order. This 
enables the menu stack to be redisplayed in the <fder it was left in the last invocation. 

Event is the inputevent which provoked the menu; the location information (event->ieJocz, 
event->ie_locy) in the event controls where the menus will be displayed. Event->ie_code is the 
event that is treated as the "menu button;" that is, the menu is displayed until this button goes 
up. (The right menu button is the usual menu button. The left mouse button is always used 
as the accelerator to bring rear menus forwards). If it wasn't an explicit user action that pro
voked the call to menu_di,play these three event fields must be loaded with the desired values 
beforehand. 

/owindowfd is the file descriptor for the window that is displaying the menu. It is also the_ win
dow that is read for user input. The event location values are relative to this window. 

Menu_diaplay currently uses the mechanism described in Full Screen Acee,,. Menu_di,play tem
porarily modifies iowindowfd's input mask to allow mouse motion and buttons to be placed on 
this window's input queue. All the menus in the stack are displayed and there can only be one 
stack on the screen at a time. The font used for strings is that returned from pw_p/ay,open. 

Menu_diaplay returns the menuitem which was under the cursor when the user released the 
mouse button, or NULL if the cursor was not over an item. 

0 



0 

0 

0 

- 83 -

8.3.1. Prompts 
A prompt facility is sometimes used with menus to tell the user to proceed from his current 
state. Prompting can also be done without menus. The definitions for the prompt facility are 
found in / uar/ include/ ,untool/ menu.h. 

struct prompt { 
struct rect prtJect; 
struct pixf ont •prtJont; 
char *prt_text; 

}; 

#define PROMPT_FLEXIBLE -1 

Prt_rect is the rectangle in which the text addressed by prt_tezt will be displayed using prtJont. 
Only printable characters and blanks are currently properly dealt with, no carriage returns, line 
feeds or tabs (yet) please. If any of prt_rect's fields are PROMPT_FLEXIBLE that dimension is 
automatically chosen by the prompt mechanism to accommodate the number of characters that 
fix using the given font. 

menu_prompt(prompt, event, iowindowfd) 
struct prompt •prompt, 
struct inputevent •event; 
int iowindowfd; 

MenuJJrompt displays the indicated prompt (prompt->prt_rect is iowindow/d relative), and 
then waits for any input event other than mouse motion. It then removes the prompt, and 
returns the event which ended the prompt's existence in event. lowindow/d is the window from 
which input is taken while the prompt is up. The /u/l,creen access method is used .during 
prompt display. 

8.4. Selection Management 
A common style of operation/operand command specification is a non-modal one in which the 
operand is specified first. In the window system, the operand is called the ,election since it usu
ally requires that the user select something with the pointing device. A selection is highlighted 
in some way and persists until an operation removes it programmatically or the user does some 
action which causes the selection to be removed. 

This section describes an interface to a ,election manager that is used to coordinate access to a 
single data entity called the current ,election. The current selection is globally accessible by any 
process, thus providing an inter-tool data exchange mechanism. 

The header file / u,r/ include/ 1untool/ 1election.h contains the definition necessary for using selec
tions: 



etruct selection { 
int sel_type, 
int seljtems, 
int seljtembytes, 
int selJubfl.ags; 
caddr_t selJrivdata; 

}; 

#define 
#define 

SELTYPEJ,IULL 
SEL TYPE_CHAR 

0 
1 

- 84 -

is the object that describes a selection. Sel_type indicates the type of the selection. Currently, 
SEL TYPE_NULL (no selection) and SELTYPE_CHAR (ASCII characters) are the only selec
tion types defined. Sel_itema is the number of items in the selection data. Sel_itembytea is the 
number of bytes each item occupies in the selection data. Sel_pubftaga is used to contain pub
licly understood flags that further describe the selection. Sel_privdata is used to... contain 
privately understood data (32 bits worth) that is only understood between implementations of a 
particular selection type. I 
The selection structure is not to be confused with actual selection data itself, e.g. the characters 
in a SEL TYPE_CHAR selection. 

selection_set(sel, sel_write, sel_clear, windowf d) 
atruct selection •sel 
int (•sel_write)(); 
int ( •sel_clearX); 
int windowfd; 

sel_write(sel, file) 
etruct selection •sel; 
FILE •file; 

sel_clear(sel, windowfd) 
etruct selection •sel; 
int windowfd; 

Selection_aet is used to change the current selection. Sel describes the selection. Sel_write is a 
procedure that is called to store information into the selection. (Currently, only aelection_aet 
calls ael_write, but in the future ael_write might be called at any time). The ael_write procedure 
takes as arguments ael, the selection description handed to aelection_aet, and file, an stdio FILE 
pointer. The stdio library is used to write the selection data to file. Windowfd is the window 
that is making the selection. 

Se(clear is a procedure that the selection manager would call when it wanted the selection 
currently being set tQ be dehighlighted. This could happen when another selection had been 
made. ( Thia clear feature ia not currently implemented. When implemented thia call could come 
at any time after returning from aelection_aet). 

selection_clear( windowf d) 
int windowfd; 

is called when windowfd wants to clear the current selection. Ideally, there is only one selection 0, 
on the screen at a time so that the user doesn't become confused about which operand will be 
affected by his next command. ( Since t/ae ael_clear feature i, not currently implemented faee 



0 

0 

0 

-------------------------------

a 85 • 

above/, it i, the ,election maker', deci,ion a, to when to dehilight hi, ,election feedback. The only 
eziating uae of the ,election mechaniam wait, /or the uaer to move M, cur,or out of the window 
that made the ,election before dehilighting it). 

selection_get( sel_read, windowed) 
int ( •sel_readX); 
int windowfd; 

sel..read(sel, file) 
struct selection •sel; 
FILE •file; 

Selection_get is used to find out the current selection. Se/Jead is a procedure that ,election_get 
calls to enable the client to retrieve the selection. Windowfd is the window that ·wants to find 
out about the selection. 

The ael_read procedure takes as arguments ael, the selection description of the current selection, 
and file, a standard io FILE pointer. The standard io library is used to read the selection data 
from file. Sel .... read should check the type of the selection and make sure that it is a type with 
which it can deal. 

8.5. Window Management 
The following procedures implement common functions for adjusting window relationships. 
They may be used to provide a window management user interface different from that provided 
by tools. If a series of calls are to be made to these procedures, the whole sequence should be 
bracketed by winJockdata / win_unlockdata, as described in section 4 .4. 

bool wmgr_changelevelonly(windowed, parentfd, top) 
int windowed, parentfd; 
booltop; 

moves a window to the top or bottom of the heap of windows that are descendants of its 
parent. Window/d identifies the 'window to be moved; parent/d is the file descriptor of that 
window's parent, and top controls whether the window goes to the top (TRUE) or bottom 
(FALSE). 

wmgr_com pletechangerect( 
windowfd, rectnew, rectoriginal, parentprleft, parentprtop) 
int windowfd; 
struct rect •rectnew, •rectoriginal; 
int parentprleft, parentprtop; 

does the work involved with changing the position or size of a window's rect. This involves sav
ing as many bits as possible (by copying them on the screen) so they don't have to be recom
puted. Window/dis the window being changed. Rectnew is the window's new rectangle. Rec
toriginal is the window's original rectangle. Parentprle/t and parentprtop are the parent of 
window/tis upper-left screen coordinates of the 

wmgr_changelevel(windowfd, parentfd, top) 
int windowfd, parentf d; 
bool top; 



- 86 -

is like wmgr_changelevelonly, except that no optimization is performed to reduce the amount of 0 
repainting. This is used in conjunction with other window rearrangements, which make repaint-
ing unlikely. For example, when the tool window manager makes a tool iconic, it puts it at the 
bottom of the tool window stack after changing its state. 

wmgrJefreshwindow(windowfd) 
int windowfd; 

causes window/d and all its descendant windows to repaint. 

wmgr_changestate( windowfd, rootfd, close) 
int windowfd; 
int rootfd; 
bool close; 

#define 
#define 

WMGR_SETPOS 
WMGR_ICONIC 

-1 
WUF_WMGRl 

changes the window identified by window/d to be cl~sed (iconic) or open, depending on whether 
cloae is TRUE or FALSE. The user data of window/ti reflects the state of the window via the 
WMGR_ICONIC flag (WUF _WMGRl is defined in /uar/include/aunwindow/win_ioctl.h and 
WMGR_ICONIC is defined in /uar/include/auntool/wmgr.h). 

The following procedures are used to resolve position/size undefined situations for the window's 
new rectangle: 

wmgr_figuretoolrect(rootfdt rect) 
int rootfd; 
struct rect •rect; 

wmgr_figureiconrect(rootf d, rect) 
int rootfd; 
atruct rect •rect; 

The root/d window maintains a "next slot" position for both normal tool windows and icon win
dows. This allows windows to be assigned initial positions that don't pile up on top of one 
another. These procedures assign the next slot to the rect if rect->rJeft or rect->r_top is 
equal to WMGR_SETPOS. A new slot is chosen and is then available for the next window with 
an undefined position. These procedures also assign a default width and height if 
WMGR_SETPOS is given, again for both tool windows and icon windows. 

Wmgr_Jiguretoolrect currently assigns tool window slots that march from near the top middle of 
the screen towards the bottom left of the screen. It assigns a window size correct for an 80-
column by 34-row terminal emulator window. Wmgr_Jigureiconrect currently assigns icon slots 
that march from the left bottom towards the right of the screen. It assigns icon sizes that are 
64 by 64 pixels. 

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic) 
char •programname, •otherargs; 
atruct rect •rectnormal, •recticon; 
int iconic; 

is used to fork a new tool that has its normal rectangle set to rectnormal and its icon rectangle 

o; 

set to recticon (both of which may have undefined fields). If iconic is not zero then the tool is 0 
created normal size. Programname is the name of the file that is to be run (a path search is 
done to locate the file) and otherarg, is the command line that you .want to pass to the tool. 



0 

0 

0 

- 87 -

Args that have em bedded white space should be enclosed by double quotes. 

wmgr_iswindowopen( window(d) 
int window(d; 

tests the WMGR_ICONIC flag (see above) and returns TRUE or FALSE as the window is open 
or dosed. 

wmgr_winandchildrenexposed(pixwin, rl) 
struct pixwin •pixwin; 
struct rectlist •rl; 

can be used with your own window management routines to compute the visible portion or 
pizwin-> pw_clipdata.pwcd_window/d and its descendants and store it in rl. 



- 88 -

9. APPENDIX A: RECTS & RECTLISTS 
This appendix describes the geometric structures used with sunwindow and a full description of 
the operations on these structures. Throughout the sunwindow, images are dealt with in rec
tangular chunks; where complex shapes are required, they are built up out of groups of rectan
gles. A rect is a structure that defines a rectangle. A rectliat is a structure that defines a list of 
rects. 

The header files rect.h and rectliat.h are found in / uar / include/ ,unwind ow/. The library that 
provides the implmentation of the functions of these data types are part of 
/ uar/ lib/ libaunwindow. a. 
Although these structures are presented in terms of sunwindow usage with pixel units, they are 
really separate and can he thought of as a rectangle algebra package. Any application that 
needs such a facility should consider using rects and rectlists. 

9.1. Reeta 

The rect is the basic description of a rectangle, and there are macros and proceduress to per
form common manipulations on a rect. 

#define coord short; 

struct rect { 
coord 
coord 
short 
short 

}; 

rJeft; 
r_top; 
r_width; 
r_height; 

The rectangle lies in a coordinate system whose origin is in the upper left-hand corner, and 
whose dimensions are given in pixels. 

9.1.1. Macros on Reeta 

The same header file defines some interesting macros on rectangles. To determine an edge not 
given explicitly in the rect: 

#define rect_right( rp) 
#define rect_bottom( rp) 
struct rect •rp; 

return the coordinate of the last pixel within the rectangle on the right or bottom, respectively. 

0) 

0 



0 

0 

0 

- 89-

Useful predicates (returning TRUE or FALSE) are: 

#define boo) unsigned; 
#define TRUE 1 
#define FALSE O 

rect_isn ull( r) 
rect,jncludespoint(r ,x,y) 
rect_equal(rl, r2) 
rect_includesrect(rl, r2) 
rect_intersectsrect( r 1, r2) 

struct rect •r, •rl, •r2; 
coord x, y; 

r's width or height is 0 
(x,y) lies in r 
r1 and re coincide exactly 
every point in re lies in r 1 
at least one point lies in both r1 and re 

Macros which manipulate dimensions of rectangles: 

rect_construct(r, x, y, w, h) 
etruct rect •r; 

fills in r with the indicated origin and dimensions. 

rect_marginadjust(r, m) 
struct rect •r; 

adds a margin of m pixels on each side of r; that is, r becomes 2•m larger in each dimension. 

rect_passtoparent(x, y, r) 
rect_passtochild(x, y, r) 

coord x, y; 
atruct rect •r; 

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child 
rectangle, so that its points are now located relative to the parent or child's origin. X and y are 
the origin of the parent or child rectangle within it, parent; these values are added to (resp. 
subtracted from) the origin of the rectangle pointed to by r, thus transforming the rectangle to 
the new coordinate system. 

9.1.2. Procedures and Extern Data 
A null rectangle (one whose origin and dimensions are all 0) is defined tor convenience: 

extern struct rect rect_null; 

The following procedures are also defined in rect.h: 

struct rect rect_bounding(rl, r2) 
etruct rect •rl, •r2; 

returns the minimal rect which encloses the union of r1 and re. The returned value is a struct, 
not a pointer. 

rect_intersection(rl, r2, rd) 
struct rect •rl, •r2, •rd; 



- 90-

computes the intersection of the r1 and re, and stores that rect into rd. 

bool rect_clipvector(r, xO, yO, xl, yl) 
atruct rect •r; 
coord •xO, •yO, •xi, •yl; 

modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that 
excludes the whole vector, else TRUE. Note: This procedure shouldn't be used to clip a vector 
to multiple abutting rectangles; it may not cross the boundaries smoothly. 

bool rect_order(rl, r2, sortorder) 
atruct rect •rl, •r2; 
int sortorder; 

returns TRUE if r 1 precedes or equals re in the indicated ordering: 

#define 
#define 
#define 
#define 

RECTS_TOPTOBOTTOM O 
RECTS_BOTTOMTOTOP . I 
RECTS_LEFTTORIGHT 2 
RECTS_RIGHTTOLEFT 3 

Two related defined constants are: 

#define RECTS_UNSORTED 4 

indicating a "don't-care" order, and 

#define RECTS_SORTS 4 

giving the number or sort orders available, for use in allocating arrays, etc. 

8.2. Rectlista 
A number of rectangles may be collected into a list which defines an interesting portion of a 
larger rectangle. An equivalent way of looking at it is that a larg_e rectangle may be fragmented 
into a number of smaller rectangles, which together comprise all the larger rectangle's interest
ing portions. A typical application of such a list is to define the portions of one rectangle 
remaining visible when it is partially obscured by others. 

atruct rectlist { 
coord rl_x, rl_y; 
atruct rectnode •rl_liead; 
atruct rectnode •rl_tailt 
atruct rect rl_bound; 

}; 

atruct rectnode { 

}; 

atruct rectnode •rn_next; 
atruct rect m_rect; 

0) 

Each node in the :rectlist contains a rectangle which covers one part or the visible whole, along o-,, 
with a pointer to the next node. Rl_6ountl is the minimal bounding rectangle of the union of all 
the rectangles in the node list. All rectangles in the rectlist are described in the same coordinate · 



• 
- 91 -

0 system, which may be translated efficiently by modifying rl_z and rl.JJ. 

0 

0 

The routines that manipulate rectlists do their own memory management on rectnodes, creating 
and freeing them as necessary to adjust the area described by the rectlist. 

9.2.1. Macros and Constants Defined on Rectlists 
Macros to perform common coordinate transformations are provided: 

rl_rectoffset(rl, rs, rd) 
struct rectlist •rl; 
struct rect •rs, •rd; 

copies r, into rd, and then adjusts rtl's origin by adding the offsets from rl. 

rl_coordoffset(rl, x, y) 
struct rectlist •rl; 
coord x, y; 

offsets z and 1/ by the offsets in rl; e.g., it converts a point in one of the rects in the rectnode list 
of a rectlist to the coordinate system of the rectlist's parent. 

Parallel to the macros on rect 's, we have 

rl_passtoparent(x, y, rl) and 
rl_passtochild(x, y, rl) 

coord x, y; 
struct rectlist •rl; 

which add (subtract) the given coordinates from the rectlist's rl_z and rl_JJ to convert the ·rl into 
its parent's (child's) coordinate system. 

9.2.2. Procedures and Extern Data 
An empty rectlist is defined, which should be used to initialize any rectlist before it is operated 
on: 

extern struct rectlist rl_null; 

Procedures are provided for useful predicates and manipulations. The following declarations 
apply uniformly in the descriptions below: 

struct 
struct 
coord 

rectlist •rl, •rll, •rl2,lltld; 
rect •r; 
x, y; 

Predicates return TRUE or FALSE. Refer to the following table for specifics. 



Macro 
rl_empty( rl) 
rl_equal( rll, rl2) 

rljncludespoint(rl,x,y) 
rl_equalrect(r, rl) 

rl_boundintersectsrect(r, rl) 

- 92 -

Returns TRUE if 
contains only null rects 
the two rectlists describe the 
same space identically - same 
fragments in the same order 
( z, y) lies within some rect or rl 
rl ha., exactly one rect, which is 
the same a., r 
some point lies both in r and in 
rfs boundin,t rect 

Manipulation procedures operate through side-effects, rather than returning a value. Note that 
it is legitimate to use a rectlist as both a source and destination in one of these procedures (the 
source node list will be freed and reallocated appropriately for the result). 

w 

0 \ 
/ 

Q) 



0 Ref er to the following table for specifics. 

0 

0 

Procedure 
rljntersection(rll, rl2, rid) 

rl_union(rll, rl2, rid) 

rl_difference(rll, rl2, rid) 

rl_coalesce(rl) 

rl_sort(rl, rid, sort) 
int sort; . 

rl_..rectintersection(r, rl, rid) 

rlJectunion(r, rl, rid) 

rlJectdifference(r, rl, rid) 

rljnitwithrect(r, rl) 

rl_copy(rl, rid) 
rlJree(rl) 
rl_normalize(rl) 

- 93 -

Effect 
stores into rid a rectlist which 
covers the intersection of rll 
and rlJ!. 
stores into rid a rectlist which 
covers the union of rll and rlJ!. 
stores into rid a rectlist which 
covers the area of rll not 
covered by rlJ! 
An attempt is made to shorten 
rl by coalescing some of its 
fragments. An rl whose bound
ing rect is completely covered 
by the union of its node rects 
will be collapsed to a single 
node; other simple reductions 
will be found; but the general 
solution to the problem is not 
attempted. 

rl is copied into rid, with the 
node rects arranged in aort 
order. 
rid is filled with a rectlist that 
covers the intersection of r and 
rl. 
rid is fiHed with a rectlist that 
covers the union of r and rl. 
rid is fiHed with a rectlist that 
covers the portion of rl which is 
not in r. 
fiHs in rl so that it covers the 
rect r 
fi.Hs in rid with a copy of rl. 
frees the storage aHocated to rL 
resets rf s offsets ( rl_z, rlJ) to 
be O after adjusting the origins 
of an rects in rl accordingly. -



- 94-

10. APPENDIX B: SAMPLE TOOLS 

These are sample tools that can be used as starting points for tools of your own. The source 
files for these and other tools are found on /uar/ auntool/ arc/ -tool.c. 

10.1. gfxtooLc Code 

0 



0 

0 

0 

- 95 -

#ifnder lint 
static char sccsidU = "@( # )gfxtool.c 1.6 83/10/18 Sun Micro"; 
#endif 

I* 
* Sun Microsystems, Inc. 

*I 

/• 
* 
* 
*/ 

Overview: Graphics Window: A shell subwindow and an empty 
subwindow inw hich graphics programs can run. 

#include <sys/types.h> 
#include <signal.h> 
#include "pixrect/pixrect.h" 
#include "pixrect/pixfont.h" 
#include "pixrect/pr_util.h" 
#include "pixrect/memvar.h" 
#include "sunwindow /rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "sunwindow /win_struct.h" 
#include "sunwindow /win_environ.h" 
#include "suntool/icon.h" 
#include "suntool/tool.h" 
#include "suntool/emptysw.h" 
#include "suntool/ttysw .h" 

static short icjmage(256)={ 
#include "gfxtool.icon" 
}; 
mpr_static(gfxic_mpr, 64, 64, 1, icjmage); 

static struct icon icon= {64, 64, (struct pixrect •)O, 0, 0, 64, 64, 
&g(xic_mpr, 0, 0, O, 0, (char •)O, (struct pixfont •)O, 
ICON_BKGRDGRY}; 

static int sigwinchcatcher(), sigchldcatcher(); 

static struct tool •tool; 

gfxtool_main( argc, argv) 

{ 

int argc; 
char **argv; 

char •toolname = "Graphics Tool LO"; 
struct toolsw •ttysw, •emptysw; 
char name(WIN....NAMESIZE); 



- 96 -

/• 0\ 
• Create tool window 
•! 

tool= tool_create(toolname, TOOL_NAMESTRIPEITOOL_BOUNDARYMGR, 
(struct rect • )0, &icon); 

!• 
• Create subwindows 
•/ 

ttysw = ttysw_createtoolsubwindow(tool, "ttysw", 
TOOL_SWEXTENDTOEDGE 200); 

emptysw = esw_createtoolsubwin~ow(tool, "emptysw", 
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE}; 

I• 
• Setup gfx window environment value . . , 

win_fdtoname(emptysw->ts_windowfd, name); 
we_setgfxwindow(name ); 
/• 
• Install tool in tree of windows 
•! 

signal(SIGWINCH, sigwinchcatcher); 
signal(SIGCHLD, sigchldcatcher); 
tooljnstall(tool); 
I• 
• Start tty proce• 0 
•I 

} 

if (ttyswJork{ttysw->ts_data, + + argv, &ttysw->tsjo.tiojnputmask, 

} ,. 
&ttysw->tsjo.tio_outputmask, &ttysw->tsjo.tio_exceptmask) ==== -1) { 

perror(" gf xtool" ); 
exit(l); 

• Handle input 
•I 

tool_select(tool, 1 / * means wait for child process to die•/); 
I• 
• Cleanup 
•/ 

tool_destroy(tool}; 
exit(O); 

static 
sigchldc:atcher() 
{. 

tool_sigchld(tool); 
} 

static 
sipinchcatcher() 

0 



0 

0 

{ 

} 

• 97 • 

tool_sigw inch( tool); 



- 98-

10.2. panetool.c Code 0: 

0 



0 

0 

- 99-

#ifndef lint 
static char sccsidll = "@(#)panetool.c 1.8 83/10/18 Sun Micro"; 
#endif 

!• 
• Sun Microsystems, Inc. 
•/ 

!• 
• 
• 
•/ 

Overview: Pane Tool: Sample program to illustrate multiple 
sub windows . 

#include <sys/types.h> 
#include <sys/time.h> 
#include <signal.h> 
#include "pixrect/pixrect.h" 
#include "pixrect/pixfont.h" 
#include "sunwindow/rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "sunwindow /winjnput.h" 
#include "sunwindow /win_struct.h" 
#include "suntool/icon.h" 
#include "suntool/tool.h" 
#include "suntool/msgsw .h" 
#include "suntool/menu.h" 

static int sigwinchcatcher(); 

static struct tool •tool; 

static char charbuf(4); 

struct menuitem m3_items0 == { MENUJMAGESTRING, "Menu Item", O}; 
struct menu m3_menubody == { 

MENU_IMAGESTRING, "M3", sizeof(m3jtems) / sizeof(struct menuitem), m3_iteaf 
struct menuitem m2_items0 == { MENUJMAGESTRING, "Menu Item", O}; 
struct menu m2_menubody == { 

MENUJMAGESTRING, "M2", sizeof(m2jtems) / sizeof(struct menuitem), 
m2jtems, &m3_menubody, O}; 

struct menuitem ml_itemsO == { MENU_IMAGESTRING, "Menu Item", O}; 
struct menu ml_menubody == { 

MENU_IMAGESTRING, "Ml", sizeof(mljtems) / sizeof(struct menuitem), 
mljtems, &m2_menubody, O}; 

struct menu •stacklmenutop == &ml_menubody; 

struct menuitem m4_items0 == { MENU_IMAGESTRING, "Menu Item", O}; 
struct menu m4_menubody == { 

MENU_IMAGESTRING, "M4", sizeof(m4jtems) / sizeof(struct menuitem), 



- 100 -

m4jtems, 0, 0 } ; 
struct menuitem m6_itemsD = { MENUJMAGESTRING, "Menu Item", O}; 
struct menu mS_menuhody = { 

MENUJMAGESTRING, "MS", sizeof(mSjtems) / sizeof(struct menuitem), 
m5jtems, &m4_menuhody, O}; 

struct menuitem m6_items0 = { MENUJMAGESTRING, "Menu Item" ,O}; 
struct menu m6_menuhody = { 

MENUJMAGESTRING, "M6", sizeof(m6jtems) / sizeof(struct menuitem), 
m6jtems, &mS_menubody, O}; 

struct menu •stack2menutop = &m6_menuhody; 
int menutoggle; 

main(argc, argv) 

{ 

int argc; 
char **argv; 

char •toolname = "Pane Tool 1.0 (A sample tool)"; 
struct toolsw •paneNW, •paneNE, *paneSW, •paneSE; 
extern struct pixf ont •pf_sys; 

!• 
• Create tool window 
•I 

" 

O·: 

tool = tool_create(toolname, TOOL_NAMESTRIPEITOOL_BOUNDARYMGR, 
(struct rect *) O, (struct icon •) O); Q: 

I* J 

* Create msg suhwindows 
•I 

paneNW = msgsw_createtoolsubwindow(tool, "paneNW", 
100, 100, "Raw keyboard input", pf_sys); 

paneNE = msgsw _createtoolsuhwindow( tool, "paneNE", 
TOOL...$WEXTENDTOEDGE, 100, 
"Key input here redirected to NW subwindow", pf_sys); 

paneSW = msgsw_createtoolsubwindow(tool, "paneSW", 
100, TOOL_SWEXTENDTOEDGE, "Display alternating menu stacks" ,pf_sys); 

paneSE = msgsw_createtoolsubwindow(tool, "paneSE", 
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE, 
"Try moving suhwindow boundaries", pf_sys); 

I• 
• Raw input and flushing 
•/ 

{ 
struct inputmask im; 
int paneNW _selected(); 

inputjmnull(&im); 
im.im_flags I= IM_UNENCODED; 
win_setinputmask(paneNW->ts_windowfd, &im, &im, WIN_NULLLINK); 
paneNW->tsjo.tio_selected == paneNW Jelected; 
} 

0 



0 

0 

0 

} 

- 101 -

I• 
* Input redirection 
•I 

{ 
struct inputmask im; 

win_getinputmask(paneNE->ts_windowfd, &im, O}; 
win_setinputmask(paneNE->ts_windowfd, &im, (struct inputmask •) 0, 

winJdtonumber(paneNW- >ts_windowfd)); 
} 
I• 
• Multi menu stacks 
•! 

{ 
struct inputmask im; 
int paneSW _selected(); 

input_imnull( &im); 
win_setinputcodebit( &im, MENU _BUT); 
win_setinputmask(paneSW->ts_windowfd, &im, &im, WIN_NULLLINK); 
paneSW->tsjo.tio_selected - paneSW_selected; 
} 
/• 
• Install tool in tree of windows 
•I 

signal(SIGWINCH, sigwinchcatcher); 
tool_install( tool); 
I• 
• Handle input 
•/ 

tool_select(tool, O); 
/• 
• Cleanup 
•I 

tool_destroy( tool); 
exit(O); 

paneNW _selected(msgsw, ibits, obits, ebits, timer) 
struct msgsubwindow •msgsw; 

{ 

int •ibits, •obits, •ebits; 
struct timeval * •timer; 

struct inputevent event; 
int error; 

error - input_readevent(msgsw->msg_windowfd, &event); 
if (error < 0) { 

perror(" panetool" ); 
return; 



} 

} 
charbuf(O) = 'c '; 
charbuf(l] = ':'; 

• 102 • 

charbuf(2] = (char) event.ie_code&OX7f; 
charbuf(3) = ' '; 
msgsw _setstring( msgsw, charbuf); 
•ibits = •obits+ •ebits + O; 

paneSW _selected(msgsw, ibits, obits, ebits, timer) 
struct msgsubwindow •msgsw; 

{ 

} 

int •ibits, •obits, •ebits; 
struct timeval * •timer; 

struct inputevent event; 
int error; 
extern struct menuitem •menu_display(); 

error= input_readevent(msgsw->msg_windowfd, &event); 
if (error < 0) { 

} 

perror(" panetool" ); 
return; 

(void) menu_display((menutoggle)? &stacklmenutop: &stack2menutop, 
&event, msgsw- >msg_windowfd); 

menutoggle == !menutoggle; 
•ibits = •obits + •ebits + O; 

static 
sigwinchcatcher() 
{ 

tool_sigw inch( tool); 
} 

Q: 

0 



0 

0 

0 

- 103 -

11. APPENDIX C: SAMPLE µRAPIDCS PROGRAMS 

These are sample graphics programs that can be used as starting points for graphics programs 
o( your own. The source files for these and other graphics demos are found on 
/ uar/ auntool/ arc/ •demo.c. 

11.1. bouncedemo.c Code 



- 104 -

#if ndef lint 
static char sccsidD = "@( :/I= )bouncedemo.c 1.6 83/08/26 Sun Micro"; 
#endif 

!• 
• Sun Microsystems, Inc. 
•! 

/• 
• Overview: Bouncing ball demo in window 
•/ 

#include <sys/types.h> 
#include "pixrect/pixrect.h" 
#include "sunwindow /rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "suntool/ gfxsw .h" 

main(argc, argv) 

{ 

int argc; 
char **argv; 

short x, y, vx, vy, z, ylastcount, ylast; 
short Xmax, Ymax, size; 
struct rect rect; 
struct gfxsubwindow •gfx = gfxswjnit(O, argv); 

Restart: 
win_getsize(gfx- > gfx_windowfd, &rect ); 
Xmax = rect_right(&rect); 
Ymax = rect_bottom(&rect); 
if (Xmax < Y max) 

size= Xmax/29+ l; 
else 

size = Ymax/29+ 1; 
x =rect.rJeft; 
y=rect.r_top; 
vx=4; 
vy.:._O; 
ylast=O; 
ylastcount=O; 
pw _writebackground(gfx-> gfx_pixwin, O, 0, rect.r_width, rect.r_height, 

PIX_SRC); 
while (gfx->gfx_reps) { 

if (gfx->gfx_flags&GFX_DAMAGED) 
gfxsw _handlesigwinch(gfx ); 

if (gfx->gfx_flags&GFX_RESTART) { 
gfx->gfx_flags &= -GFX_RESTART; 
goto Restart; 

0 



0 

0 

Reset: 

0 
} 

- 105 -

} 
if (y== ylast) { 

if (ylastcount+ + > 5) 
goto Reset; 

} else { 

} 

ylast == y; 
ylastcount == O; 

pw_writebackground(g(x->g(x_pixwin, x, y, size, size, 
PIX_NOT(PIXJ)ST)); 

x==x+vx; 
if (x>(Xmax-size)) { 

I• 
• Bounce ol the right edge 
•! 

x==2•(Xmax-size)-x; 
vx== -vx; 

} else if (x <rect.rJeft} { 
I• 

} 

• bounce o• the left edge ., 
x=-x; 
vx= -vx; 

vy==vy+ l; 
y==y+vy; 
if (y>==(Ymax-size)) { ,. 

• bounce ol the bottom edge ., 
y= Y max-size; 
if (vy <size) 

vy==l-vy; 
else 

vy=Ty / size - vy; 
if(vy==O) 

goto Reset; 
} 
for (z=O; z<=IOOO; z+ + ); 
continue; 

if (-gfx->g(x_reps <== 0) 
break; 

x ==rect.rJeft; 
y==rect.r_top; 
vx==4; 
Ty==O; 
ylast==O; 
ylastcount==O; 



- 106 -

gfxsw _done{gfx ); 
} 

o} 

0 



• 

• 107 -

0 
11.2. rramedemo.c Code 

0 

Q 



- 108 -

#if ndef lint 
static char secsidO = "@(#)framedemo.e 1.7 83/09/30 Sun Micro"; 
#endif 

/• 
• Sun Microsystems, Inc. 
•I 

/• 
• 
• 
• 
• 

Overview: Frame displayer in windows. Reads in all the 
files of form "frame.xxx" in working directory 6t 
displays them like a movie . 
See constants below for limits . 

•/ 

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/file.h> 
#include <sys/time.h> 
#include "pixrect/pixrect.h" 
#include "pixrect/pr_util.h" 
#include "pixrect/bwlvar.h" 
#include "pixrect/memv81'.h" 
#include "sunwindow /rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "sunwindow /winjnput.h" 
#include "sunwindow /win_struct.h" 
#include "suntool/gfxsw .h" 

#define 
#define 
#define 
#define 
#define 

MAXFRAMES 
FRAMEWIDTH 
FRAMEHEIGHT 
USECJNC 50000 
SECJNC 

1000 
256 
256 

1 

static struct pixrect •mpr(MAXFRAMES); 
static struct timeval timeout = {SEC_INC,USEC_INC}, timeleft; 
static char sO = "frame.xxx"; 
static struct gfxsuhwindow •gfx; 
static int frames, framenum, ximage, yimage; 
static struct rect rect; 

main(argc, argv) 

{ 

int argc; 
char uargv; 

int fd, framedemoJelected(); 
struct inputmask im; 

,. 

0) 

0 



C 

0 

0 

0 

} 

- 109 -

for (frames= O; frames < MAXFRAMES; frames++} { 
sprint(( &sf6J, "o/od", frames + 1 ); 
fd = open(s, O_RDONL Y, O); 
if (fd == -1) { 

break; 
} 
mpr[framesJ = mem_create(FRAMEWIDTH, FRAMEHEIGHT, 1); 
read(fd, mpr_d(mpr(frames])->md_image, 

FRAMEWIDTH •FRAMEHEIGHT /8}; 
close(fd); 
} 

if (frames=== O} { 

} 
I• 

printf("Couldn't find any 'frame.xx' files in working directoryO); · 
return; 

• Initialize g(xsw ("take over" kind) 
•! . 

g(x == g(xswjnit(O, argv); ,. 
• Set up input mask 
•/ 

inputJmnull(&im}; 
im.im_flags I== IM_.ASCII; 
win_setinputmask(g(x->g(x_windowfd, &im, &im, WIN_NULLLINK); ,. 
• Main loop ., 

framedemo_nextframe(l); 
timeleft == timeout; 
g(xsw_select(g(x, framedemo_selected, O, 0, 0, &timeleft); 
I• 
• Cleanup ., 

g(xsw _done(g(x ); 

framedemo_selected(g(x, ibits, obits, ebits, timer) 
struct g(xsubwindow •g(x; 

{ 

int •ibits, •obits, •ebits; 
struct timeval • •timer; 

if ((•timer && ((•timer)->tv_sec ==== 0) && ((•timer)->tv_usec == 0)) II 
(g(x->g(x_flags & GFX_RESTART)) { ,. 

• Our timer expired or restart is true so show next frame ., 
if (g(x->g(x_reps) 

framedemo_nextframe( 0 ); 
else 



- 110-

gfxsw _selectdone(gfx ); 
} 
if (•ibits & (1 < < gfx->gfx_windowfd)) { 

struct inputevent event; 

/• 
* Read input from window 

*I 
if (input_readevent(gfx->gfx_windowfd, &event)) { 

perror(" framedemo" ); 
return; 

} 
switch (event.ie_code) { 
case 'f': /• faster usec timeout •/ 

if (timeout.tv_usec >= USEC_INC) 
timeout.tv_usec -= USEC_INC; 

else { 

} 
break; 

if (timeout.tv_sec >== SEC_INC) { 
timeout.tv_sec -== SEC_INC; 
timeout.tv_usec == 1000000-:USEC_INC; 

} 

case's':/• slower usec timeout*/ 
if (timeout.tv_usec < 1000000-USECJNC) 

timeout.tv_usec + == USEC_INC; 
else { 

} 
break; 

timeout.tv _usec == O; 
timeout.tv _:iec + == 1; 

case 'F': /• faster sec timeout •/ 
if (timeout.tv_sec >== SECJNC) 

timeout.tv_sec -== SEC_INC; 
break; 

case 'S': /• slower sec timeout •/ 
timeout.tv_sec + ==; SECJNC; 
break; 1 

case'!':/• Help •/ 
printf('"s' slower usec timeoutor faster usec timeoutOS' slower sec timeou 
/• 
* Don't reset timeout 
•/ 

return; 
default: {} 
} 

} 
•ibits == •obits == •ebits == O; 
timeleft == timeout; 
•timer == &timeleft; 

0 



« • 

0 

0 

- 111 -

} 

framedemo_nextframe( first time) 

{ 

} 

int first time; 

int restarting= gf'x->gf'x_flags&GFX_RESTART; 

if (firsttime II restarting) { 

} 

gfx->gf'x_flags &= -GFX_RESTART; 
win_getsize(gf'x->gf'x_windowfd, &rect); 
ximage = rect.r_width/2-FRAMEWIDTH/2; 
yimage = rect.r_height/2-FRAMEHEIGHT /2; 
pw _writehackground(gf'x->gfx_pixwin, 0, 0, 

rect.r_width, rect.r_height, PIX_CLR ); 

if (framenum >= frames) { 
framenum == O; 

· gfx- >gf'x_reps-; 
} 
pw_write(gfx->gfx_pixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT, 

PIX_SRC, mpr(framenum), 0, O); 
if (!restarting) 

framenum+ + ; 



- 112 -

12. APPENDIX D: PROGRAMMING NOTES 
Here are useful hints for programmers that use any or the pixrect, sun window or suntool 
libraries. 

12.1. What Is Supported? 
The code is the ultimate description of what programs actually do, but the documentation is 
the description or what is supported. Client programmers who use facilities discovered in 
header files or through the grapevine may have useful applications running much sooner than it 
they operated by the book; but they do so at the risk of having their work invalidated:-

In early releases such as this, there may be significant discrepancies between the design ( and the 
documentation derived from it), and what is act~ally implemented. In general, we have tried to 
indicate where features are only partially implemented, and in which directions future exten
sions may be expected. 
Even in completed portions of the system, the possibility remains that even defined interfaces 
will change in response to new requirements or newly-discovered constraints. Such 
modifications will not be undertaken lightly, and should generally be accompanied by a descrip
tion of the nature of the changes, and appropriate responses to them. 

12.2. Program By Example 
We recommend that you try to program by example whenever possible. Take an existing pro
gram similar to what you need and modify it. Appendix B contains some sample tools and 
Appendix C contains some sample graphics programs. The source for these and other sample 
tools and graphics programs are available on / u,r f ,untool/ ,rc / *· c. 

12.3. Header Files Needed 
It can sometimes be hard to find the header files needed to compile your program. This can be 
particularly hard in the window system because of the multiple layers of software and the large 
numbers of header files. Programming by example helps in some respects because a lot of 
header files are included already. 

To alleviate the problem a bit, certain header files exist that include most of the header files 
necessary for working at a certain level. These header files are: 

• / u,r / include/ pi-zrect/ pi-zrect_h,./a - include this header file if you are working at the 
pixrect display primitives layer. 

• / u,r / include/ ,unwind ow/ UJindow_h,./a - include this header file if you are working at 
the sunwindow basic window facilities layer. This will include headers needed to 
work at the pixrect layer as well. 

• / u,r / include/ ,untool/ tool_/a,./a - include this header file if you are working with the 
suntool tool building facilities. This will include headers needed to work at the more 
primitive layers as well. 

0 
\ 

0 



0 

Q 

0 

~ 113 ° 

• /uar/include/auntool/g/z_h,./a • include this header file if you are working with the 
suntool (standalone or "take over") graphics subwindow facilities. This will include 
headers needed to work at the more primitive layers as well. 

The idea is to include only one of the above header files plus whatever extra header files you 
need. In particular, you'll need to add the header file for each subwindow type that you use, 
the menu header file if you use menus, the selection header file if you are going to use selections, 
etc. However, you'll probably only have to add a single header file for each additional incre
ment of high level functionality. 

12.4. Lint Libraries 
You can do better type-checking than the C compiler and catch argument mismatches in your 
program by running lint over your program source. The Sun window system provides lint 
librarie, to allow you to do this. Llib-lpizrect, Uib-1,unwindow, and llib-1,untool are the source 
files to make the actual binary lint libraries: Uib-lpizrect.ln, llib-1,unwindow.ln, and Uib-
1,untool.ln. These files are found on f u,r/lib/lint/. 

12.5. Libraey Loading Order 

When loading programs remember to load higher level libraries first, i.e. -launtool -uunwindow 
-lpizrect. 

12.8. Shared Text 
The tools released with ,untool, rely on text sharing to reduce the memory working set. This is 
accomplished by placing the entire collection of tools in a single object file. This has the effect 
of letting each separate process share the same object code in memory. With many windows 
active at once this can achieve significant memory savings. 

There are trade-offs using this approach. The main one is that the maxim um number of per
process (non-sharable) initial data pages tends to be larger. However, the paged virtual memory 
tends to reduce the effect of this by only having the working set paged in. 

The upshot of this discussion is that you may want to either add the tools that you create to 
the released shared object file or to bundle a few tools together into their own object file. 

12.7. Error Menage Decoding 

The default error reporting scheme described at the end of Window Manipulation prints out a 
long hex number which is the ioctl number associated with the error. You can tum this number 
into a more meaningful operation name by: 

• turning the two least significant digits into a decimal number; 

• searching /u,r/include/1unwindow/win_ioctl.h for occurrences of this number; and 



- 114 -

• noting the ioctl operation associated with this number . 

Doing this can give you a quick hint as to what is being complained about without resorting to 
a debugger. 

12.8. Debugging Hints 

When debugging non-terminal oriented programs in the window system there are some things 
that you should know to make thing:, easier. 

First, the program being debugged breaks to adb when a signal is received. This can be annoy
ing with window programs because SIGWINCH is used to notify windows of certain changes in 
its state. A db, however, has a way of disabling breaking to the debugger when a particular sig
nal is received. To disable this, type" lc:i" followed by RETURN. le is the hex number for 28 
which is SIGWINCH's number. Re-enable signal breaking by typing "lc:t" followed by return. 

Another window system specific situation is that various forms of locking are done that can get 
in the way of smooth debugging w bile working at low levels of the system. There are variables 
in the sunwindow library that disable actual locking; these can be turned on from a debugger: 

• int pixwindebug - When not zero will immediately release the display lock after locking 
so that the debugger is not continually getting hung by being blocked on writes to 
screen. Display garbage can result because of this action. 

• 

• 

int win_lockdatadebug - When not zero will not acquire data lock so that the debugger 
is not continually getting hung by being blocked on writes to screen. Unpredictable 
things can result because of this action that can't properly be described in this con
text. However, this is unlikely. 

int win_grabiodebug - When not zero will not actually acquire exclusive io access 
rights so that the debugger wouldn't get hung by being blocked on writes to screen 
and not able to receive input. The debugged process will only be able to do normal 
display locking and be able to only get input in the normal way. 

Change these variables only during debugging, when not changing them becomes a problem and 
when you know what you 're doing! 

12.9. Sufficient User Memor7 

To use the suntool environment comfortably with the released set of tools requires about 600K 
of user memory after booting UNIX. Comfort means acceptable response from vi while make is 
running a compilation in another window for example. This is achievable in the current 0.9 
release on model IOOU's with 1 megabyte of memory. You have to reconfigure your own kernel, 
deleting unused device drivers. The procedure is documented in the Syatem Manager', Manual. 
For a workstation on the network with a single disk drive you will be able to reclaim about 60K 
of usable memory. 

The recommended amount of memory is 2 megabytes. This gives excellent performance with. 
room to accommodate future releases. 

• 

0) 



• 

0 

0 

0 

- 115 -

13. INDEX 
The following index provides references to 
programming variables, constants, types, 
macros, programs, and function and pro
cedure names used in the Sun window sys
tem. It gives section numbers where the 
best documentation of the term may be 
round. 

adb 
ASCII_f'IRST 
ASCII_LAST 
batchitem 
bool 
bouncedemo.c 
BUT(i) 
BUT_• 
coord 
cursor 
CUR_MAXIMAGEWORDS 
emacs 
emptysubwindow 
errors 
esw _createtoolsubwindow 
esw_done 
esw _handlesigwinch 
esw_init 
EWOULDBLOCK 
FALSE 
FBTYPE_SUN1BW 
FBTYPE_SUN2BW 
f oosubwindow 
Coosw _createtoolsubwindow 
Coosw_done 
f oosw _handlesigw inch 
foosw_init 
f oosw _selected 
framedemo.c 
fsglobal 
fullscreen 
f ullscreen_destroy 
f ullscreenjnit 
gfxsw _createtoolsubwindow 
gfxsw_done 
gfxsw _getretained 
gfxsw _handlesigwinch 
gfxswjnit 
gfxsw _interpretesigwinch 
gfxsw _select 

12.8. 
5.1.2.1. 
5.1.2.1. 
2.2.4. 
9.1.1. 
11.1 
5.1.2.2. 
5.4. 
9.1. 
4.8.1. 
4.8.1. 
7.6.1. 
7.2. 
12.7. 
7.2. 
7.2. 
7.2. 
7.2. 
5.2. 
9.1.1.. 
4.7 
4.7 
7.1. 
7.1. 
7.1. 
7.1. 
7.1. 
7.1. 
11.2 

. 8.1. 
8.1. 
8.1. 
8.1. 
7.3.1. 
7.3.1. 
7.3.1. 
7.3.1. 
7.3.2. 
7.3.1. 
7.3.2. 

gfxsw _selectdone 
gfxtool.c 
GFX_DAMAGED 
GFX_RESTART 
graphicssubwindow 
icon 
ICON_J3KGRDCLR 
ICON_BKGRDGRY 
ICON_J3KGRDPAT 
ICON_BKGRDSET 
icon_display 
IE_NEGEVENT 
IM_ANSI 
IM_ASCII 
IM_CODEARRA YSIZE 
IM_META 
IM_NEGEVENT 
IM_POSASCII 
IM_SHIFTARRAYSIZE 
IM_TEXT 
IM_TEXTVEC 
IM ..... UNENCODED 
IM_UNKNOWN 
inputevent 
inputmask 
inputjmnull 
input_readevent 
KEY_• 
Id 
lint 
LOC_• 
LOC_MOVE 
LOC_STILL 
LOC_WINENTER 
LOC_WINEXIT 
max 
memory 
mem_ops 
menu 
menuitem 
menu_display 
MENU _IMAGESTRING 
menu_prompt 
META_FIRST 
META_LAST 
min 
more 
mpr_data 
mpr_static 

7.3.2. 
10.1 
7.3. 
7.3. 
7.3. 
8.2. 
8.2. 
8.2. 
8.2. 
8.2. 
8.2. 
5.1.3. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
7.5. 
7.5. 
5.3.1. 
7.5. 
5.1.1. 
5.3.1. 
5.3.l; 
5.2. 
5.4. 
12.5. 
12.4. 
5.4. 
5.1.2.3. 
5.1.2.3. 
5.1.2.3. 
5.1.2.3. 
9.1.1. 
12.9. 
2.4.1. 
8.3. 
8.3. 
8.3. 
8.3. 
8.3.1. 
5.1.2.1. 
5.1.2.1. 
9.1.1. 
7.6.1. 
2.4.2. 
2.4.3. 



" 
- 116 -

0\ 
msgsubwindow 7.4. prs_batchrop 2.2.4. ' 

msgsw _createtoolsu bwindow 7.4. prs_close 2.2.2 
· msgsw _display 7.4. prs_create 2.2.1. 
msgsw_done 7.4. prs_destroy 2.2.2. 
msgsw _handlesigwinch 7.4. prs_get 2.2.6. 
msgswjnit 7.4. prs_open 2.2.1 
msgsw Jetstring 7.4. prs_put 2.2.7. 
MS_LEFT 5.4. prsJegion 2.2.9. 
MS_MIDDLE 5.4. p?S.JOP 2.2.3. 
MS_RIGHT 5.4. pr_batchrop 2.2.4. 
optsw_bool 7.5.2.1. pr_create 2.2.1. 
optsw _coltox 7.5.3. pr_destroy 2.2.2. 
optsw _command 7.5.2.2. pr_get · 2.2.6. 
optsw _createtoolsubwindow 7.5.1. pr_height 2.1.3. 
optsw_done 7.5.1. pr_pos 2.1.2. 
optsw _dum pitem 7.5.6. pr_prpos 2.1.2. 
optsw _dumpsw 7.5.6. pr_put 2.2.7. 
optsw _enum 7.5.2.3. pr_region 2.2.9. 
optsw _get value 7.5.5. pr_replrop 2.3.1. 
optsw _handlesigwinch 7.5.1. pr_reversedst 2.2.5.3. 
optswjnit 7.5.1. pr_reversesrc 2.2.5.3. 
optsw _Jinetoy 7.5.3. pr_rop 2.2.3. 
optsw _selected 7.5.1. pr_s1ze 2.1.2. 0:1 optsw Jet place 7.5.3. pr_subregion 2.1.2. 
optsw _setvalue 7.5.5. pr_vector 2.2.8. 
optjtem 7.5. pr_vector 2.2.8. 
panetool.c 10.1 pr_width 2.1.3. 
p(_default 2.5.2. PWCD _MUL TIRECTS 3.2.3. 
p(_open. 2.5.2. PWCD_NULL · 3.2.3. 
p(_text 2.5.3. PWCD_SINGLERECT 3.2.3. 
p(_textbatch 2.5.3. PWCD_USERDEFINE 3.2.3. 
p(_textwidth 2.5.3. pw_char 3.5.1. 
pixchar 2.5.1. pw_close 3.3. 
pixfont 2.5.1. pw_copy 3.5.2. 
pixrect 2.1.3. pw_damaged 3.6.1. 
pixrectops 2.2. pw _donedamaged 3.6.1. 
pixrect_hs.h 12.3. pw_exposed 3.4.2. 
plXWIIl 3.2.2. pw_Jock 3.4.1. 
pixwindebug 12.8. pw_open 3.3. 
pixwin_clipdata 3.2.3. pw_put 3.5.1. 
pixwin_clipops 3.2.4. pw_read 3.5.2. 
pixwin_prlist 3.2.3. pw_replrop 3.5.1. 
PIX_CLR 2.2.5.1. pw_reset 3.4.1. 
PIX_pONTCLIP 2.2.5.2. pw_text 3.5.1. 
PIX_DST 2.2.5.1. pw_unlock 3.4.1. 
PIX_NOT 2.2.5.1. pw_vector 3.5.1. 
PIX_SET 2.2.5.1. pw_write 3.5.1. 

0 PIX_SRC 2.2.5.1. pw _writebackground 3.5.1. 
prompt 8.3.1. rect 9.1. 
PROMPT_FLEXIBLE 8.3.1. rectlist 9.2. 



'• - 117 -

0 rectnode 9.2. SCR_SOUTH 4.7. 
RECTS_BOTTOMTOTOP 9.1.2. SCR_SUN1BW 4.7. 
RECTS_LEFTTORIGHT 9.1.2. SCR_WEST 4.7. 
RECTS_RIGHTTOLEFT 9.1.2. selection 8.4. 
RECTS_SORTS 9.1.2. selection_clear 8.4. 
RECTS_TOPTOBOTTOM 9.l.2. selection~et 8.4. 
RECTS_UNSORTED 9.1.2. selection.,JJet 8.4. 
rect_bottom 9.1.1. SEL TYPE_CHAR 8.4. 
rect_bounding 9.1.2. SEL TYPE_NULL 8.4. 
rect_clipvector 9.1.2. sel_clear 8.4. 
rect_construct 9.1.1. selJead 8.4. 
rect_equal 9.1.1. sel_write 8.4. 
rect_includespoint 9.1.1. sharedtext 12.6. 
rect_includesrect 9.1.1. SHIFT_• 5.4. 
rectjntersection 9.1.2. SIGCHLD 6.2.2. 
rect_intersectsrect 9.1.1. SIGXCPU 4.4.3. 
rect_isnull 9.1.1. termcap 7.6.1. 
rect_marginadjust 9.1.1. TIOCGSIZE 7.6.1. 
rect_null 9.1.2. TIOCSSIZE 7.6.1. 
rect_order 9.1.2. tio_handlesigwinch 6.3.1. 
rect_passtochild 9.1.1. tio_selected 6.3.1. 
rect_passtoparent 9.1.1. tool 6.2.4. 
rect_right 9.1.1. toolio 6.3.1. 
rl_boundintersectsrect 9.2.2. toolsw 6.2.5. 

0 rl_coalesce 9.2.2. tool_borderwidth 6.2.6. 
rl_coordoffest 9.2.1. TOOL_BOUNDARYMGR 6.2.3. 
rl_copy 9.2.2. tool_create 6.2.3. 
rl_difference 9.2.2. tool_createsubwindow 6.2.5. 
rl_empty 9.2.2. tool_destroy 6.2.9. 
rl_equal 9.2.2. tool_destroysu bwindow 6.2.9. 
rl_equalrect 9.2.2. tool_display 6.3.5. 
rl_free 9.2.2. TOOL_DONE 6.2.4. 
rUncludespoint 9.2.2. tool_done 6.3.6. 
rljnitw ithrect 9.2.2. tool_hs.h 12.3. 
rljntersection 9.2.2. TOOL_ICON• 8.2. 
rl_normalize 9.2.2. TOOL_ICONIC 6.2.4. 
rl_null 9.2.2. tooljnstall 6.2.8. 
rl_passtochild 9.2.1. TOOL_NAMESTRIPE 6.2.3. 
rl_passtoparent 9.2.1. tool_select 6.3. 
rl_rectdifference 9.2.2. TOOL_SIGCHLD 6.2.4. 
rl_rectintersection 9.2.2. tool_sigchld 6.3.4. 
rl_rectoffset 9.2.1. tool_sigwinch 6.3.3. 
rl_rectunion 9.2.2. TOOL_SIGWINCHPENDING 6.2.4. 
rl_sort 9.2.2. tool_stripeheight 6.2.6. 
rl_union 9.2.2. tool_subwindowspacing 6.2.6. 
screen 4.7. TOOL_SWEXTENDTOEDGE 6.2.5. 
SCR_EAST 4.7. TRUE 9.1.1. 

0 
SCR_NAMESIZE 4.7. ttysubwindow 7.6. 
SCR~ORTH 4.7. ttysw _becomeconsole 7.6. 
SCR_POSITIONS 4.7. ttysw _createtoolsu bwindow 7.6. 



"i • 
- 118 -

ttysw_done 7.6. winJockdata 4.4.3. 0 
ttyswJork 7.6. winJockdatadebug 12.8. 
ttysw _handlesigwinch 7.6. WIN_NAMESIZE 4.2.3. 
ttyswjnit 7.6. win_nametonumber 4.2.3. 
ttysw _selected 7.6. win_nextfree 4.2.1. 
typed_pair 7.5. WIN_NULLLINK 4.2.1. 
VI 7.6.1. win_numbertoname 4.2.3. 
VKEY_* 5.4. win_partialrepair 4.6. 
VKEY_CODES 5.1.2. win_releaseio 5.3.2. 
VKEY_FIRST 5.1.2. winJemove 4.4.3. 
VKEY _FIR STPSEUDO 5.1.2.3. win:_screendestroy 4.7. 
VKEY_LAST 5.1.2. win_screenget 4.7. 
VKEY _LASTFUNC 5.1.2.2. win_screennew 4.7. 
VKEY _LASTPSEUDO 5.1.2.3. win_screenpositions 4.7. 
we_clearinitdata 6.2.1. win_setcursor 4.8.1. 
we_getgfxwindow 4.9.1. win_setinputcodebit 5.3.1. 
we_getinitdata 6.2.1. winJetinputmask 5.3.1. 
we_getparentwindow 6.2.1. win_setlink 4.4.1. 
we_setgfxwindow 4.9.1. win_setmouseposition 4.8.2. 
we_setinitdata 6.2.1. win_setowner 4.9.2. 
we_setmywindow 7.6.1. win_setrect 4.3. 
we_setparentwindow 6.2.1. win_setsavedrect 4.3. 
WINDOW_GFX 4.9.1. win_setuserflag 4.5. 
window _hs.h 12.3. win_setuserflags 4.5. 0 WINDOW _INITIALDATA 6.2.1. win_unlockdata 4.4.3. 
WINDOW .).fE 7.6.1. WL_BOTTOMCHILD 4.4.1. 
WINDOW J> ARENT 6.2.1. WL_COVERED 4.4.1. 
win_com puteclipping 4.6. WL_COVERING 4.4.1. 
wm_error 4.10. WL_ENCLOSING 4.4.1. 
w in_errorhandler 4.10. WL_OLDERSIB 4.4.1. 
win_fdtoname 4.2.3. WL_OLDESTCHILD 4.4.1. 
win_fdtonumber 4.2.3. WL_PARENT 4.4.1. 
win_findintersect 4.8.2. WL_TOPCHILD 4.4.1. 
win_getcursor 4.8.1. WL_YOUNGERSIB 4.4.1. 
win_getheight 4.3. WL_YOUNGERSIB 4.4;1. 
w in_getinputmask 5.3.1. WL_YOUNGEST 4.4.1. 
win_getlink 4.4.1. wmgr_changelevel 8.5. 
win_getnewwindow 4 .. 2.1. wmgr_changelevelonly 8.5. 
win_getow ner 4.9.2. wmgr_changestate 8.5. 
win_getrect 4.3. wmgr_com pletechangerect 8.5. 
w in_getsavedrect 4.3. wmgr_figureiconrect 8.5. 
win_getsize 4.3. wmgr_figuretoolrect 8.5. 
w in_get userflags 4.5. wmgrJorktool 8.5. 
win_getwidth 4.3. WMGR_ICONIC 8.5. 
win_grabio 5.3.2. wmgr_iswindowopen 8.5. 
win_grabiodebug 12.8. wmgrJefreshwindow 8.5. 
win_inputcodebit 5.3.1. WMGR_SETPOS 8.5. 
win_inputnegevent 5.1.3. wmgr_winandchildrenexposed 8.5. 0 win_inputposevent 5.1.3. WUF_WMGRl 8.5. 
win_insert 4.4.2. 

----~--



0 

Q 

0 

READER COMMENT SHEET 

Dear Customer, 
We who work here at Sun Microsystems wish to provide the best possible documentation for our 
products. To this end, we solicit your comments on this manual. We would appreciate your tel
ling us about errors in the content or the manual, and about any material which you feel should 
be there but isn't. 

Typographical Errora: 
Please list typographical Errors by page number and actual text or the error. 

Technical Errora: 
Please list errors or fact by page number and actual text of the error. 

Content: 
Did this guide meet your needs? Ir not, please indicate what you think should be added 
or deleted in order to do so. Please comment on any material which you reel should be 
present but is not. Is there material which is in other manuals, but would be more con
venient if it were in this manual? 

Layout and Style: 
Did you find the organization of this guide useful? Ir not, how would you rearrange 
things? Do you find the style or this manual pleasing or irritating? What would you like 
to see different? 



~· ... 

0 



• • ,1 .. 

0 

0 

0 



0 

0 


