
0

0

0

Part Number 800-1087-01
Revision: C or 1 November 1983

For: Sun System Release 1.0

Beginner's Guide to the

Sun Workstation

Sun Microsystems, Inc.,
2550 Garcia Avenue

Mountain View
California 94043
(415) 960-1300

Credits
Material in this Beginner', Guide to the Sun Work,tation comes from a number of sources: Intro
ducing the UNIX Sy,tem, Henry McGilton, Rachel Morgan, McGraw-Hill; UNIX For Beginner,,
Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; An Introduction to the C
Shell, William Joy, University of California, Berkeley; An Introduction to the Bourne Shell, S.
R. Bourne, Bell Laboratories, Murray Hill, New Jersey; Mail Reference Manual, Kurt Shoens,
revised by Craig Leres; How to Read the Network New,, Mark R. Horton, Bell Telephone
Laboratories, Columbus, Ohio; and A Dial-Up Network of the UNIX Sy,tem,, D. A. Nowitz and
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey. These materials are gratefully ack
nowledged.

Trademarks

Ethernet is a trademark of Xerox Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright© 1983 by Sun Microsystems Inc.
This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

0

0

0

0
Revision History

Revision Date Comments

A 15 May 1983 First release of the Tutorial for Beginners.
B 15 Septem her 1983 Updated and reorganized.
C 1 Nov em her 1983 Minor corrections.

0

0

0

0

0

0 Table of Contents

Preface ... 2

PART ONE - INTRODUCTION TO THE SUN SYSTEM 4

1. GETTING STARTED .. 4

1.1. Logging In ... 4

1.2. What to Do If Something Goes Wrong 7

1.2.1. Special Keys and Control Characters ... 7

1.2.2. Things That Go Bump in the Night ... 8

1.3. Changing Your Password - the 'passwd' Command ... 8

1.4. Logging Out .. 9

1.5. What is the Shell! 9

1.5.1. Login Profile 10

1.6. The File System .. 10
1.6.1. Changing to Other Directories with 'cd' ... 11

1.6.2. What Files Do I Have - the 'ls' Command ... 12

Making Directories with 'mkdir' 13
Removing Directories with 'rmdir' .. ,.. 13 0

1.6.3.
1.6.4.

1.6.5. Copying Files with 'cp' ... 14

1.6.6. Moving and Renaming Files with 'mv' ... 15
1.6.7. Removing Files with the 'rm' Command ... 17
1.7. Security ... 17

1.7.1. Changing File Permissions with 'chmod' .. 18
1.8. Finding Out What Is Going On In the System ... 19

1.8.1. Who Is Logged On - the 'who' Command 19

1.8.2. Who Is Using the Network - the 'rwho' Command ... 19
1.8.3. What Is the Network Status - the 'ruptime' Command 19

1.8.4. What Is the Date and Time - the 'date' Command ... ,....................................... 20

1.8.5. What Is the System Doing - the 'ps' Command .. 20
1.8.6. Who's Doing What - the 'w' Command ... 21

2. WORKING WITH FILES .. 22

2.1. Paging Through a File with 'more' .. 22

2.2. Browsing Through a File with 'view' ,... 24

2.3. Look at the First Few Lines of a File with 'head' ... 24
2.4. Look at the Last Few Lines of a File with 'tail' ... 25

2.5. Counting Characters, Words, and Lines in a File with 'we' 25

Searching for Patterns in a File with 'grep' ... 26
Regular Expressions in Text Patterns .. 28 0 2.6.

2.6.1.

2.6.2. Match Beginning and End of Line with A and S ... 28

• II •

2.6.3. Matching Any Character with'.'

2.6.4. Character Classes with [and J and -

2.6.5. Subsets of Regular Expressions

2.7. Sorting Text Files with 'sort' .. .

2.8. Finding Differences Between Files with 'diff' .. .

3. USING TIIE SIIELL .. .

29

29

30

31

33

34

3.1. Redirecting Standard Input and Standard Output ... 34

3.2. Connecting Processes with Pipes .. 37

3.3. Controlling Jobs ... 38

3.3.1. Foreground and Background Processes .. 38

3.3.1.1. Running Jobs in the Background with'&' ... 38

3.3.2. Stopping and Resuming Jobs .. 39

3.3.3. Placing Jobs in the Background ... 39

3.3.4. Bringing Jobs to the Foreground ·····································-"···································· 40
3.3.5. Killing Jobs and Processes with 'kill' .. 40

3.4. Recalling Previous Commands with 'history' .. 41

3.5. Substituting with 'alias' ... 43

.f. CREATING AND EDITING TEXT FILES - THE 'vi' EDITOR 45

4.1. Command and Insert Modes .. 45
4.2.

4.2.1.

4.2.2.

4.2.3.

4.2.4.

4.2.5.

4.3.

4.3.1.

4.4.

4.5.

4.6.

4.6.1.

4.6.2.

4.6.3.

4.7.

4.8.
4.9.

4.10.

4.11.

4.12.

Moving the Cursor

1, h, k, j - Forward, Backward, Up, and Down

A, 0 and S - Move to Beginning or End of Line .. .

H, M, L - Move to Home, Middle, and Last Line on Screen

w, b, e - Moving by Words .. .

(,), {, } - Moving by Sentences and Paragraphs .. .

Scrolling the Screen

Moving to Specific Lines in the File .. .

Inserting New Text .. .

Creating a New File .. .

Deleting or Changing Text .. .

Deleting Text with 'x' .. .

Deleting Words and Lines with 'dw' and 'dd'

Changing Text

Writing Your File and Quitting the Editor .. .

Correcting Mistakes with 'u' and 'U' .. .

Repeating a Command with '.'

Running Sun Commands from Inside the Editor

A Bit About the 'ex' Editor .. .

Other Text Editors .. .

45
46

46

46

47

47
47

48
48
49

50
50
50
50
50
51

51

51

52

52

0

0

0

0

0

0

- Ill -

5. PRINTING AND FORMATTING DOCUMENTS ... 53

5.1.

5.2.

5.3.

5.4.

5.4.1.

5.4.2.

5.4.3.

5.4.4.

5.4.5.

5.4.5.1.

5.4.5.2.
5.4.6.

5.4.7.

5.4.8.
5.4.9.

5.4.10.

5.5.

5.6.

5.7.

5.7.1.

5.7.2.

5.7.3.
5.7.4.

5.7.5.

Printing a File with 'pr' and 'lpr'

Simple Text Formatting with 'fmt' .. .

Running 'nroff'

A Package Deal - the '-ms' Macros .. .

Paragraphs - '.PP' and '.LP'

Quoted Paragraphs - '.QP' .. .

Lists and Descriptions - '.IP'

Relative Indents - '.RS' and '.RE'

Section and Paragraph Headings

Un-numbered Headings - '.SH'

Numbered Headings - '.NH'

The Date - '.ND' and '.DA' .. .

Displays - '.DS' and '.DE' .. .

Keeping Text Together - '.KS' '.KF' and '.KE' .. .

Titles and Cover Sheets

Overall Page Layout .. .

Laying Out Tables with 'tbl'

Formatting Mathematical Equations with 'eqn'

Formatting with 'nroff' or 'troff'

Page Breaks - '.hp'
Blank Lines - '.sp' .. .

Centering and Underlining - '.ce' and '.ul' .. .

Indentation - '.in'
Temporary Indents - '.ti'

53

54

54

55

55

56

57

58

58

59

59

60
60
61

M'
62

62

66

67

68

68

68

69
70

5.7.6. Filling - '.nf' and '.:6.' .. 70

8. COMMUNICATIONS .. 72

6.1. The Electronic 'mail' System .. 72

6.1.1. Reading Your Mail .. 72

6.1.2. Replying to Mail ,.. 74

6.1.2.1. Your Own Mailbox or 'mbox' ... 74

6.1.3. Sending Mail .. 7 4

6.1.4. Personalizing Your Mail in Your .mailrc File ... 75

6.1.4.1. Distribution Lists and Aliases ... 75

6.2. Writing to Other Users with 'write' ... 76

6.3. Preventing Message Interruptions with 'mesg' .. 79

6.4. Local Area Network Facilities .. 79

6.4.1. Making Connections with 'rlogin' and 'rsh' .. 79

6.4.2. Copying Files From Other Systems with 'rep' ... 80

6.5. Additional Communication Facilities ... 80

6.5.1. Network News ... 81

6.5.2. Dialing to Remote Systems with 'tip' ... 81

- IV e

7. SUN SYSTEM SUMMARY 82

0

0

0

0

0

- 2 -

Preface

Welcome to the Sun Workstation. This manual provides a tutorial introduction to help you get
used to the main ideas of the system and to begin to make use of them quickly and efficiently.
We assume that you are a first-time Sun system user, but that you already know something
about an operating system, a terminal keyboard, and a text editor. We provide explanations
and exercises for learning to use the Sun system and Sun Workstation in particular, however,
most of the information is also applicable to using Ur:,JIX on ASCII terminals.

We introduce many of the new ideas and terms to you in this Preface to give you an idea of
what the terminology is like. Explanations are provided in the following chapters.

The Sun Workstation is a desktop graphics computer designed to support a wide range of
engineering, scientific, and CAD/CAM applications. Sun software is based on the UNIX system
developed at the University of California at Berkeley (4.2bsd) and supports some of the most
powerful graphics and user-interface software packages available. It is compatible with other
versions of UNIX. The Sun system features include efficient networking, support for virtual
memory through demand-paging, a high-performance file system, and an advanced graphical
user interface.

This powerful graphics computer supports up to four megabytes of main memory, various disks
and tapes, and local area networking. It runs the Sun operating system, the basic resident code
on which everything else depends. It is an advanced version of the UNIX operating system origi
nally developed at Bell Laboratories. The operating system supports the system calls and main
tains the file system.

The Sun system capabilities include re-entrant code for user processes; 'group' access permis
sions for cooperative projects with overlapping memberships; alarm-clock timeouts; timer
interrupt sampling and interprocess monitoring for debugging and measurement; and multi
plexed 1/0 for machine-to-machine communication. It also provides powerful network protocols
for local nets.

The Sun system supports most of the available UNIX programs. The commands are self
contained and do not require extra setup. You can run interactive programs, that is, ones that
prompt you for information, from a prepared script or file simply by redirecting input. Most
programs intended for interactive use, the text editors for example, provide escapes to the com
mand level interpreter called the Shell. Most file processing commands can also go from stan
dard input to standard output through filters. You can use the piping facility of the Shell to
connect such filters directly to the input or output of other programs.

The Sun system provides the following classes of utility programs:

1. File Manipulation

2. The Shell

3. Programming Languages, such as C, Fortran77, and Pascal.

4. Text Editing and Document Processing, such as the vi editor and troff for photo
typesetting documents.

5. Information handling, networking, graphics, and games.

6. System Management

See the Sun System Summary for an overview.

If you already know something about UNIX, much of this material will look familiar, but its
organization may be somewhat foreign. This format provides exercises for learning to use the
system and does not explain the internals of the commands and programs. For more in-depth
information on the Sun system and the UNIX operating system in general, there is a plethora of

- 3 -

Sun documentation and literature, which is listed in the appendix. We refer to these manuals
from time to time in this tutorial to draw you a roadmap of where to go from here with your
education.

Part One of the Beginner', Guide to the Sun Workatation describes the basic tools you need to
learn to use the Sun system. Part Two provides information on how to use the Shells, the mail
facility, and the network news. Also included is a glossary and an annotated bibliography.

The chapters in Part One are:

1. Getting Started - Explains how to log in, the Sun system file directory structure, how to
use some basic system commands, and how to log out.

2. Working With Files - Describes commands for manipulating your files.

3. Using The Shell - Instructs you how to use the Shell commands to make your work
easier.

4. Creating and Editing Text Files - The 'vi' Editor - Provides instructions on the most
useful editor commands.

5. Printing and Formatting Documents - Explains how to use the most useful text for
matters and macro packages and how to display and print document copies.

6. Communications - Introduces the communication facilities and describes how to use the
mail system, how to talk to users on other systems, and how to use your local network.

7. Sun System Summary - Look here for a nutshell version of Sun hardware and software
features.

You should have a couple or other documents with you for easy reference as you begin. The

0

most important is the Uaer 'a Manual for the Sun Workatation; it's often easier to tell you to 0
read about something in the user's manual than to repeat its contents here. The user's manual . .
also lists all the manuals supplied with the Sun Workstation. The other useful document is the
Editing and Text Proceaaing on the Sun Workatation, which explains how to use the text for
matters and the vi editor.

0

0

0

0

- 4 -

PART ONE - INTRODUCTION TO THE SUN SYSTEM

1. GETTING STARTED
Sit down at your Sun Workstation. To use this tutorial, do the exercises and then experiment
with the suggested options. Look up the commands in the user's manual to get an idea of their
additional capabilities. If you don't get a desired response, poke around with the available
options and commands until you do. Don't be afraid to sample other commands described in the
user's manual; experimenting will quickly teach you how to work your way around the system.

1.1. Logging In

Examine the workstation screen. Since every system has a name, your screen displays some
thing like

tutorial login:

where 'tutorial' is the system's name or hoatname. Your installation may have a naming theme,
such as naming all systems after planetary bodies, but for our purposes, let's use the hostname
'tutorial.' It's important to remember your system's hostname and the names of your colleagues'
so you can communicate with them and share files over the network.

To begin, you also need a login name (also known as an account), which your system adminis
trator sets up for you along with your system. To set up your own account or add a user, refer
to the adduaer command in the Syatem Manager 'a Manual for the Sun Workatation.

Be aware that the Sun system has a strong orientation towards lower-caae characters and makes
a definite distinction between upper and lower case. Type your name in lower case if possible
- if you type in upper case, the Sun system assumes your terminal can't talk lower case and so
talks at you in upper case from here on. Sun system commands are almost always in lower case.
If we begin a sentence with a command name in this manual,_ the first letter is capitalized as a
courtesy to English.

After you have typed your login name, and pressed the RETURN key, the system prompts you
for a password if your account is set up with one. For example, your screen looks like:

tutorial login: evan
Password:

when it is waiting for your password. Type your password and press RETURN. The system
doesn't display or 'echo' your password, nor does the cursor even move as you type. This
keeps your password secret from anyone who is looking over your shoulder. If you don't have a
password, typing your login name and pressing RETURN gets you straight onto the system. If
you make a mistake typing in your login name, press the DEL key to back up over your mis
take, and retype the correct characters. You can also simply press the RETURN key several
times until you see the 'tutorial login:' prompt again and start over. Sometimes you...may mis
type your password, and see the same message as if you had mistyped your login name:

tutorial login: evan
Password:
Login incorrect
tutorial login:

Simply retype your login name and password to log in.

You know you've logged on successfully when the system displays some messages and then
displays a ready prompt. The display is either:

- 5 -

tutorial login: evan

Password: o
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 UNIX (Berkeley beta release) (GENERIC) #8: Wed Oct 23 13:45:52 PDT 1983
tutorial%

or

tutorial login: evan
Password:
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 UNIX (Berkeley beta release) (GENERIC) #8: Wed Oct 23 13:45:52 PDT 1983
$

The '%' and '$' prompts indicate that the UNIX command interpreter, the Shell, is waiting for
you to type commands at it. There are two versions of the Shell, the C-Shell and the Bourne
Shell. Which character you get as a prompt(% or$) depends on which Shell is listening to you.
We use the C-Shell, whose prompt is the '%' sign in all our examples, but refer to it simply as
the 'Shell' for simplicity's sake. The Bourne Shell's prompt is the '$' sign. The Shells are
described in the chapter Uaing the Shell and in more detail in Part Two of this manual. You
can also refer to the Uaer'a Manual for the Sun Workatation pages on cah for the C-Shell and on
ah for the Bourne Shell.

Now try the following; at the 'tutorial%' prompt, type:

tutorial% echo Hello there.
Hello there.
tutorial%

Don't forget to press RETURN (also called a carriage-return) after the command, or nothing
will happen. If you think you're being ignored, press RETURN, and something should happen.
We won't mention this again, but don't forget to press RETURN at the end of each line.

0

The first word you typed to the 'tutorial%' prompt on the command line is the Sun system
command echo. Echo does what it says, it 'echoes' or displays whatever follows it. When you
type something to the 'tutorial%' prompt, the first word is always a command, which is also \
called a program. At this point, you are asking the Shell to look for that command and execute
it.

Now substitute your name in place of yourname in the example below:

tutorial% echo Hello yourname
Hello ...
tutorial%

Always separate a command from whatever follows by a space. Now try:

tutorial% echo This is fun.
This is fun.
tutorial%

These are very simple examples. What follows a command is an argument. Often this argu
ment is the name of a file or filename, but in the simple example above, it's merely some text.

If you want to compile a program written in the C programming language, for instance, you
type: 0

0

0

0

tutorial% cc data.c
tutorial%

- 6 -

Here the command is cc, the C compiler program. The argument to cc is a file called data.c,
containing the program's source text.

You can name a file almost anything you want, but limit yourself to alphanumeric characters
and the period '.'. Other characters such as the asterisk(*), slash(/), and question mark(!)
have special meanings when the Shell reads them. These special characters called metacharac
tera are described later.

There is one more thing that you can type on the command line after the 'tutorial%' prompt.
This is called an option or flag argument. Type it after the command, but separate the two by a
space. Flag arguments modify the command. For example, if you want to suppress the load
phase of the compilation of your program data.c and produce an object file, you type the cc
command with the -c option:

tutorial% cc -c data.c
tutorial%

Sun system commands usually have several options.

Here's a good opportunity to open up the Uaer'a Manual for the Sun Work.,tation to learn more
about commands and about the user's manual itself. The user's manual contains information
on most of the commands used in this tutorial. Turn to the cc pages and glance through them.
You first see NAME, which gives you the command name as you type it at the Shell prompt
'tutorial%' and a brief phrase describing what the command does. Here, you see that cc is the
'C compiler.' Next you see the SYNOPSIS, which shows the command line format and all the
options. Yes, there are plenty of options for the C compiler. Most commands do not have this
many however.

Following is the DESCRIPTION, which explains in more detail what the command does.
OPTIONS lists and describes the 6.ag arguments. The remaining entries, EXAMPLE, FILES,
SEE ALSO, DIAGNOSTICS and BUGS provide additional information.

If you're interested in the wealth of information that the user's manual provides, turn to the
front of the manual and read on about the Sun system manuals in general to become familiar
with the other reference sources.

Note that important terms and command names in the text of this tutorial are printed in ital
ics, cc for example, and options in bold, like -c. In the exercises, bold face type like this
indicates what you should type at your workstation.

In general, when you type characters to the Sun system, they are gathered up until you type
RETURN or a newline (also called LINEFEED). Up to the point you type RETURN, you have
the opportunity to correct typing mistakes - you can back up over characters or words, or you
can kill the entire line typed so far and start over. Once you have typed a RETURN, though,
the line is passed on to whatever program you asked for (or maybe none at all if you misspelled
the program's name).

If you make a mistake typing the command name, and refer to a non-existent command, you
will be told. For example, type 'whom':

tutorial% whom
w horn: not found
tutorial%

Clearly, 'whom' is not a command. Of course, if you inadvertently type the name of some other
command, it will run with more or less mysterious results.

• 7 ~

The Sun system handles the keyboard and screen in /ull-duplez - it has Cull read-ahead, mean
ing that you can continue typing even while the system is displaying output on the screen. Of
course, this means that what you type in as input is all mixed up with what the system displays
- this may or may not bother you. However, what you type is saved up and interpreted in
correct sequence.

Try one more command; type the who am i command:

tutorial% who am i
tutorial!evan console Jun 28 14:19
tutorial%

The first name, 'tutorial,' is the system hostname; the second is the user's login name, 'evan' in
this case.

Briefly, what's happening when you run a program on the Sun system by typing the command
name and pressing RETURN is this: the executing program takes input or data and produces
output or results. A program usually expects to read the input from your keyboard, which is
called the standard input, and the program usually writes its output to your workstation called
the standard output. You can change these standards by redirecting the input and output to
come from and go to other places, such as files, line printers, and so. This is explained in Uaing
the Shell.

1.2. What to Do If Something Goes Wrong

Sometimes your system may not respond correctly. Here are two brief sections on what to do.

1.2.1. Special Keys and Control Characters

If you make a typing mistake, and see it before you press RETURN, there are several ways to
recover using the following keys and control characters. You can also use some of these charac
ters to start and terminate programs. Glance over the list now to become familiar with them.

DEL Called the eraae character, DEL! backs up over and eraaea the previously typed
character. Successive uses of DEL erase characters back to the beginning of the line,
but not beyond.

Called the kill character, AU erases the entire line you just typed.* If the line is
fouled up, type a AU and start over.

This wipes out the previous word you typed. (A word is a sequence of characters
delimited by space(s) and/or tab(s).)

AC aborts or interrupts a currently running program. Use AC to stop a long prin
tout, for example. (Program:,, like editors, can either ignore AC altogether or be
notified when it is typed instead of being terminated.)

This stops output from a running program. It is useful for preventing text being
displayed from zipping off your workstation screen.

AQ resumes output from a program whose display was suspended with AS.

This throws output away without interrupting the program.

l On older keyboards, use the BACKTAB key as the DEL key.

0

0

0

0

0

0

Tab

- 8 -

The Quit character quita a program and saves an image of that program in a file
called core. This is mostly used by programmers debugging programs.

Tabs are used freely in the Sun system source programs. If your terminal does not
have the tab function, use the atty command (described in the user's manual) to turn
tab characters into spaces during output, and to be echoed as spaces during input.
Tabs are set every eight columns.

You can find out what the control characters are anytime with the atty command:

tutorial% stty all
new tty, speed 9600 baud; tabs
crt
erase kill werase rprnt flush Inext
AH Au Aw AR Ao Av

tutorial%

susp intr quit stop eof
·zry Ac A\ AsrQ AD

Some of these, like AZ, are explained later on.

1.2.2. Things That Go Bump in the Night

Sometimes you can get into a state where your workstation or terminal acts strangely. For
example, you may not be able to move the cursor, your cursor may disappear, there is no echo
ing of what you type, or typing RETURN may not cause a linefeed or return the cursor to the
left margin. Try the following solutions:

•

•

First, type AQ to resume possibly suspended output. (You might have typed ·s,
freezing the screen.)

Another possibility is that you accidentally typed a NO SCRL key (also called SET
UP /NO SCROLL on some terminals) on your keyboard. This also freezes the key-
board like typing a AS. Try typing ·q, which toggles you back to proper operation if
you did indeed type the NO SCRL key in the first place.

• Try typing AC to interrupt the currently running program.

• Next, try pressing the LINEFEED key, followed by typing 'reset', and pressmg
LINEFEED again.

• If that doesn't help, try logging out and logging back in (see Logging Out). If you are
using a terminal, try powering it off and on to regain normal operation.

1.3. Changing Your Password - the 'passwd' Command

Paaawd is the command that changes your password or installs one for you if you don't already
have one. Paaawd is interactive so that when you type paaawd, it prompts you for input as fol
lows:

tutorial% passwd
Changing password for evan
Old password: zzzzzz
New password: zzzzzz
Retype new password: zzzzzz
tutorial%

The system doesn't echo what you type (shown by the x's and z's above), but it does ask you to

•We use the convention ,. 111hatever' to mean control-whatever - that is, hold down the CONTROL (or
CTRL) key while typing a 111hate11er character. •·o• means hold down the CONTROL key while typing 'd'.

- 9 -

type your new password twice to prevent typographical accidents and to provide better secu
rity. You will have to provide a reasonably long password unless you are persistent.

1.4. Logging Out

When you have finished your login session, there are several ways to log out. One way is to use
the logout command:

tutorial% logout
tutorial login:

You can type an end-or-file indication, • D (the EOF character). Your system responds:

tutorial% ("D) logout
tutorial login:

Finally, you can also change users directly with the login command and another login name:

tutorial% login jerry
Password:
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 UNIX (Berkeley beta release) (GENERIC) #8: Wed Oct 23 13:45:52 PDT 1983
tutorial%

Try these logout methods now.

Note that ir you are using a terminal, it is usually not sufficient just to turn off the terminal to
log out. Most Sun systems do not use a time-out mechanism, so you'll still be logged in unless

0

you logout explicitly. 0
1.5. What is the Shell?

As discussed earlier, arter you log in and the 'tutorial%' prompt appears, a utility program
called the Shell listens to what you type. In general, what you type to the Shell is a command
line. A command always consists or the command name, such as the cc, which compiles C pro
grams. This is always the first thing on the line. This command name can be followed by
optional argument,, such as the -c option or a filename. A command's arguments are
separated rrom the command, and from each other, by spaces and/or tabs. The Shell searches
ror the command in several well-known places, starts up the command, and passes the argu
ments on to it. When the command has completed its job, the Shell regains control and again
listens to what you type.

Most commands are simply executable programs that the Shell looks ror, but some commands
are 'built-in' to the Shell, and the Shell interpret:, such commands directly. The Shell has many
other capabilities, which are detailed in the usel''s manual in the cah (C-Shell) and ah (Shell)
entries. These are the two main Shells that you can run.

The Shells are different ror all but the most simple terminal usage. For instance, the C-Shell
has hiatory and aliaa reatures, which greatly enhance its power when used interactively. The
C-Shell also supports a set of job-control facilities. See the reference material on Shells in Part
Two ror more detailed inrormation.

0

0

0

0

- 10 -

1.5.1. Login Profile
When you log in to the Sun system, you are logging in to the C-Shell. The Shell looks for files
called .login and .cshrc. If there are such files in your home directory, (described later) it runs
any commands it finds in them.

You only execute the .login file when the Shell is called up as part of the process of logging in.
A sample .login file is:

setenv EXINIT 'set noai wrapmargin=8'
set path=(./ /bin /usr/bin /usr/local /usr/ucb /usr/hosts)
set mail=(/usr /spool/mail/$USER)

We won't explain now what all these entries mean; see Using the C-Shell in Part Two for
details.

The file .cshrc is executed any time the Shell is invoked; for example, when you fork a new
Shell. A sample .cahrc file is:

if(! $!prompt) exit
set history=36
alias If ls -F
alias cursor echo '· [ls'
alias pq 'lpq -P'
alias tutorial cd supplements/tutorial/tut

The history and alias entries are described later. Again, see Using the C-Shell for more details.

1.6. The File System

Sun system files are arranged in a hierarchy of directories. This hierarchy resembles an inverted
tree structure: the file system begins at the root directory and branches to the limits of the
available mass storage. Root is the name of the directory at the 'beginning' of the file system;
this is called 'slash.' root contains references to files and subdirectories which contain other files
and subdirectories and so on. Each directory is thus like a node on the tree - directories con
tain files (which contain data) and subdirectories (which contain files). Here is a picture which
makes this clearer:

You can either move to another directory to work on the files held there, or you can gain access
to those files from where you are, but you need to know where you are and what the direction
or pathname is to the directory you want. If you are in /uar for example, and want to work on
a file in evan, then you need specify only the relative pathname as the directories are on the
same branch. Look at this as a sort of 'how to get there from here' situation. Ir you are in uar
and want to gain access to something in /bin, you need to indicate the absolute or full pathname,
which specifies 'how to get there from the system root.'

- 11 ~

You can always find out where you are in this structure. Use the pwd (print working directory)
command and type:

tutorial% pwd
/usr/evan/intro
tutorial%

to get your current or working directory. Here we are in /usr/evan/intro. There is a special
notation that indicates, among other things, the current directory. This is the '.' or 'dot'.
Two dots ' .. ' means the parent directory, that is, the directory that the current directory ('. ') is
a subdirectory of. This convention is constant wherever you are in the directory hierarchy.

The initial slash '/' in the response to the pwd command above names root, and successive
slashes separate directory names. Here the current working directory is intro, which is a sub
directory of the directory evan, which is in usr, which is in '/'. The pwd command displays the
full pathname to your directory.

Your system administrator sets up your account by creating a directory, normally using the
same name as your login name. This is called your home directory. Everytime you log in, your
working directory will be set to your home directory. You own your home directory. This
means you have full permission to read, write, or destroy its contents. You can also create new
files and subdirectories within your home directory as needed, and do with them as you please.
Access to files that others own is carefully controlled.

There are two kinds of directories, ayatem directories and user directories. System directories
contain files and subdirectories that apply to the whole system. You and your fellow users can

0

make user directories as needed as we show below. We describe how to do this later. For
example, earlier you saw a user directory for Evan, /uar/evan. There can be lots of user direc- o
tories; it depends on how big the system is and on how many people can use it. You can have
/usr/henryfor user Henry, and /usr/gang, for a particular project's user directory, for example.

There are also system directories, such as / bin, which holds most of the executable system com-
mands, / etc which contains system directories, and / usr, which contains other directories. Your
login name, encrypted password, and other information are contained in the paaawd file in the
/ etc system directory for instance.

That's enough detail - let's move· on to how yoUi can use files and directories.

1.6.1. Changing to Other Directories with 'cd'

To look at other directories, use the cd (change working directory) command. If you're in your
home directory now at / uar / evan, and you want to change to the / etc directory, type:

tutorial% cd /etc
tutorial%

You've moved to / etc. If you then check your working directory with pwd, you'll see:

tutorial% pwd
/etc
tutorial%

A cd command without any argument always returns you to your home directory. So if you get
lost, type cd to get home:

0

0

0

0

tutorial% cd
tutorial% pwd
/usr/evan
tutorial%

- 12 -

And to change to the directory directly above the one you are currently in, type:

tutorial% cd ..
tutorial%

Try changing to some of the other directories noted above, such as / bin.

1.8.2. What Files Do I Have - the 'ls' Command
You can see what a directory contains using the la or 'list' command. See what files are con
tained in the root directory '/'. Type the la command:

tutorial% ls/
bin etc mnt sys usr
boot lib pub testfile vmumx
dev
tutorial%

lost+ found stand tmp

You see several columns of files and directories. Try changing to some of these directories and
using la to list the contents.

Now change back to your home directory and use la to list files there.

tutorial% cd
tutorial% 111
tutorial%

You don't have any files in your home directory so la doesn't list anything. There are, however,
some 'hidden' files, which the la command with the -al option reveals. First try:

tutorial% ls -al
total 14
drwxr-xr-x
drwxr-xr-x
tutorial%

2 evan 32
12 root 240

Mar 12 20:31 .
Jul 7 15:22 ..

The -a option lists 'all' files. The -1 asks for a 'long' listing, for without it, only the filenames
and subdirectory names are listed. Details on what all the parts of the -I listing mean are pro
vided later. You'll also notice here that you can combine flags as a sort of shorthand.

Again, the'.' is your home directory, and the' .. ' your parent directory or /uar.

There is another variant la -F, which marks which files contain executable programs, which files
are directories, and which files are symbolic links (link a file or directory to another file or direc
tory). Try listing the contents of the root directory with the -F option:

tutorial% ls -F /
bin/
boot*
dev/
tutorial%

etc/
lib/
lost+ found

mnt/
pub/
stand/

sys/
testfile .·
tmp/

usr/
vmunix@

An entry without any following mark is a simple file. Those entries marked with an asterisk

- 13 -

sign '*' are executable. Those marked with a slash character '/' are directories and contain
more files or subdirectories. Those marked with an 'at' sign '@' are symbolic links.

1.6.3. Making Directories with 'mkdir'
Let's assume you now want to create some subdirectories to hold documentation and related
memos for a customer demonstration of your new product. These will be user directories m
/usr/evan. Return to your home directory and make sure you know where you are:

tutorial% cd
tutorial% pwd
/usr/evan
tutorial%

Use the mkdir command to create (or 'make') directories for this project:

tutorial% mkdir docs letters
tutorial% cd docs
tutorial% mkdir specs price.list prod.announce
tutorial% ls -1
total 3
drwxr-xr-x 2 evan
drwxr-xr-x 2 evan
drwxr-xr-x 2 evan
tutorial% cd .. /letters

24 Aug 19 09:12 price.list
24 Aug 19 09:12 prod.announce
24 Aug 19 09:12 specs

tutorial% mkdir meet.min memos
tutorial% ls -1
total 2
drwxr-xr-x 2 evan
drwxr-xr-x 2 evan
tutorial% cd
tutorial%

24 Aug 19 09:15 meet.min
24 Aug 19 09:15 memos

The file system tree structure here looks like:
(root)

II\ 1,\ ur }j~
evan

/~
letters docs

// /\~
meet.min memos specs price.list prod.announce

1.6.4. Removing Directories with 'rmdir'
Use rmdir to remove directories. The directory must not contain any files or subdirectories if it
is to be removed. For example, try to remove the lettera directory:

0

0

0

0
tutorial% rmdir letters
rmdir: letters: Directory not empty
tutorial%

- 14 -

What happened! The letters directory still has subdirectories in it. To remove it, you have to
clear it out first with:

tutorial% rmdir letters/meet.min letters/memos letters
tutorial%

Rmdir also lets you know if you try to remove a non-existent directory:

tutorial% rmdir void
rmdir: void: No such file or directory
tutorial%

1.6.5. Copying Files with 'cp,

As you know from your programming experience, the easiest way to write a program is to start
with a copy of another program and develop it from there. To make a copy of another file, use
the cp (copy) command on the / etc/ hoata.equiv file:

tutorial% cp /etc/hosts.equiv hosts.machines
tutorial%

This copies hoata.equiv file in the / etc directory into a file called hosts.machines in your current
working directory. Use this simple command to make as many copies of any file you want. 0 Check your current working directory with the la command to see what it now contains.

0

tutorial% ls -1
total 6
drwxr-xr-x
-rw-r--r-
tutorial%

5 evan
1 evan

512 Aug 19 09:12 docs
480 Aug 19 09:23 hosts.machines

Remember the order of the cp command: cp copies the first file (or 'argument') to the second:

tutorial% cp this that
tutorial%

To copy the same named file into your own directory, mention the filename twice:

tutorial% cp /etc/hosts.equiv hosts.equiv
tutorial%

This puts a copy of the file called hosts.equiv into the current directory.

If the second argument is an existing directory, you can use cp to copy the file named as the
first argument into that directory and retain the same filename. It's a little faster too.

tutorial% cp /etc/hosts.equiv .
tutorial%

This copies /etc/hods.equiv into your current directory; the 'dot' (.) agam stands for the
current directory.

You can copy a file into another file in your current directory or into one of your subdirectories
as follows:

• 15 •

tutorial% cp /etc/hosts.equiv docs
tutorial%

Or you can copy as many files as you need into a directory:

tutorial% cp docs/specs docs/price.list .
tutorial% ls -I
total
drwxr-xr-x 5 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rwxr-xr-x 1 evan
-rwxr-xr-x 1 evan
tutorial%

512 Aug 19 09:28 docs
480 Aug 19 09:27 hosts.equiv
480 Aug 19 09:23 hosts.machines
24 Aug 19 09:29 price.list
24 Aug 19 09:29 specs

Several words of warning when using cp:

There im 't any warning if you try to copy a file to another that already exists. The exist
ing file is written over, and you lose that version.

If a file is protected from being written on for security reasons, or if you try to copy into a
non-existing directory, you see the message:

tutorial% cp notes intro/lessons
cp: cannot create intro/lessons
tutorial%

And if for security reasons, you do not have read permission on the source file, write per
mission to the directory, or if again, the source file or directory does not exist, you see:

tutorial% cp data/today tomorrow
cp: cannot open data/today
tutorial%

1.6.6. Moving and Renaming Files with 'mv'

To move files and directories from one place in the file system to another, use the mv (move)
command. Mv renames a file. Moving differs from copying in that the original file disappears.

Try using mv as follows:

tutorial% ls -1

total
drwxr-xr-x 5 evan 512 Aug 19 09:28 docs
-rw-r--r-- 1 evan 480 Aug 19 09:27 hosts.equiv
-rw-r--r-- 1 evan 480 Aug 19 09:23 hosts.machines
-rwxr-xr-x I evan 24 Aug 19 09:29 price.list
-rwxr-xr-x 1 evan 24 Aug 19 09:29 specs

tutorial% mv hosts.equiv hosts
tutorial% ls -1

total
drwxr-xr-x 5 evan 512 Aug 19 09:28 docs
-rw-r--r-- 1 evan 480 Aug 19 09:27 hosts

0

0

0

0

0

0

-rw-r--r--
-rwxr,-xr-x
-rwxr-xr-x
tutorial%

1 evan
1 evan
1 evan

- 16 -

480 Aug 19 09:23 hosts.machines
24 Aug 19 09:29 price.list
24 Aug 19 09:29 specs

The file hoata.equiv has been renamed hoata. Note: If you move a file to a name that already
exists, the second file contents are removed without warning:

tutorial% mv hosts hosts.machines
tutorial% Is -1

total
drwxr-xr-x
-rw-r--r--
-rwxr-xr-x
tutorial%

5 evan
1 evan
1 evan

512 Aug 19 09:28 docs
480 Aug 19 09:27 hosts.machines
24 Aug 19 09:29 specs

If the target file is write-protected, mv asks you if you really want to write over the file. If you
respond with y (yes), the file is moved. Otherwise, nothing happens.

To move a file from one directory to another, make the second argument to mv the name of the
target directory, if the target directory exists:

tutorial% ls -I
total
drwxr-xr-x 5 evan 512 Aug 19 09:28 docs
-rw-r--r-- 1 evan 480 Aug 19 09:27 hosts.machines
-rwxr-xr-x 1 evan 24 Aug 19 09:29 specs
tutorial% mv hosts.machines docs/specs
tutorial% ls -I
total
drwxr-xr-x 5 evan
-rwxr-xr-x 1 evan
tutorial% Is -I docs/specs
total 1
-rw-r--r-
tutorial%

1 evan

512 Aug 19 09:28 docs
24 Aug 19 09:29 specs

480 Aug 19 09:27 hosts.machines

You can move as many files as you like.

You can also move an entire directory to another name, but unlike files, you can only move
directories if the second name does not already exist. See the user's manual on mv for details on
all the facilities.

You can't move or rename a file that doesn't exist. You'll see the message:

tutorial% mv illusion delusion
mv: cannot access illusion
tutorial%

- 17 -

1.8.7. Removing Files with the 'rm' Command
The rm command removes files from a directory. See what is in one of your directories, and
remove a file of little importance:

tutorial% cd docs
tutorial% 11 -1 docs
total 3
-rw-r--r-- 1 evan
drwxr-xr-x 2 evan
drwxr-xr-x 2 evan
tutorial% rm hosts.equiv
tutorial% ls -1 docs
total 2
drwxr-xr-x
drwxr-xr-x
tutorial%

2 evan
2 evan

480 Aug 19 09:28 hosts.equiv
24 Aug 19 09:12 price.list

512 Aug 19 09:45 specs

24 Aug 19 09:12 price.list
512 Aug 19 09:45 specs

Again, like the cp command, you can work on more than one file at a time. And if any file is
write-protected, rm asks you whether you really want to remove a file. Responding y tells rm
'yes,' and rm removes the file. Ir you don't have write permission on a directory, you cannot
remove a file from it, even if you own the file and have write permission on it.

Ir you are worried about removing files that you really don't want to remove, use the -i option
to rm to get an 'interactive' prompt on every file. There is also the -f option that 'forces' the
rm command to remove a file, even if it is write-protected.

With -r (recursive) option, the rm command searches down the directory tree, removing all files o
it finds. When a subdirectory is empty, rm then removes that subdirectory. This command
does this for every file in every subdirectory (and so on) that it finds in the specified directory.

Make copies of some of the files in / uar or etc and try these options. Use the la -F command to
copy text files, not executable files or directories.

A word of warning: there are several special characters called metacharactera in the Sun system.
We'll describe them in more detail later, but for now be careful about using the metacharacter
'*' with rm, and especially with the -r recursive option.

tutorial% rm -r •
tutorial%

removes everything from the current directory on down as does the rm -r . command, so be
careful!

Trying to remove a non-existent file results in:

tutorial% rm nobody .home
rm: nobody.home non-existent
tutorial%

1.7. Security
If you are worried about all the freedom that the Sun system provides to copy files, change
directories, and such, rest assured that it also supplies a security system to control access to files
and directories. For every file and directory, there are three classes of users who may have
access, and for each of these classes, there are three 'permissions,' allowing or prohibiting access
to a particular file.

0

0

0

- 18. -

The three classes are:

l. Owner - the person who created the file.

2. Group - the group of users who share ownership of a file. (This is set up in the
/ etc/ paaawd file along with your login name and in the /etc/group file.)

3. Public - all other system users.

For each of these classes, the three permissions are:

1. Read - allows reading the file.

2. Write - allows changes to the file.

3. Execute - allows listing files in a directory, and execution of programs and Shell
scripts.

Consider some of the files and directories Crom before:

drwxr-xr-x
-rw-r--r--

5 evan 512 Aug 19 09:28 docs
1 evan 480 Aug 19 09:27 hosts.machines

-rwxr-xr-x 1 evan 24 Aug 19 09:29 specs

Here's how you interpret all that stuff at the beginning of the lines. Consider the doca direc
tory:

drwxr-xr-x 5 evan 512 Aug 19 09:28 docs

The 'drwxr-xr-x' order shows 'user, group, public.' The first 'rwx' belongs to the user 'evan'
who has read-write-execute permission. The second 'r-x' belongs to the 'group' which has read
execute permission for the file. The third 'r-x' belongs to the 'public' which also has read
execute permission. Hyphens indicate the absence of a permission. The leading 'd' indicates
that it is a directory.

1.7.1. Changing File Permissions with 'chmod'

Suppose you need to change the permissions on a file or directory so others can access them to
do work. The chmod command changes those permissions or the 'mode' or the file. There are
four common modes that set the permissions. The following numbers are based on the octal
number format. (Read more about chmod in the user's manual if there doesn't seem to be any
rhyme or reason.)

• 644 indicates '-rw-r--r--'. The owner can read and write the file, but everyone else can
only read it.

• 755 indicates 'rwxr-xr-x'. The owner can read, write, and execute the file, and every
one else can read and execute it.

• 600 indicates 'rw-------' for a file (use 700 for a directory). The owner can read and
write the file, and everyone else has no access.

• 444 indicates 'r--r--r--'. Everybody can only read the file.

Suppose you have some directories like 'evan' above, and you decide that only you should be
able to read and write the doca directory, while everyone else cannot do anything. As it is now,
the permissions are:

tutorial% ls -1
drwxr-xr-x 5 evan
tutorial%

512 Aug 19 09:28 docs

Using the chmod command with the '700' permission, type:

tutorial% chmod 700 docs
tutorial% ls -1

- 19 -

drwx------ 5 evan 512 Aug 19 09:28 docs
tutorial%

The '755' permission is the default.

You can't change the mode or a file that doesn't exist, nor can you change the mode or a file
that you don't own (remember ownership is indicated by the login name, 'evan' .in the example
above).

1.8. Finding Out What Is Going On In the System

You now have a basic understanding or your personal directory. Let's take a step outside and
see what the system can do for you.

1.8.1. Who Is Logged On - the 'who' Command

See who is currently logged in with the who command:

tutorial% who
evan console Jan 16 09:11
smith ttypO Jan 16 09:25
tutorial%

The first entry is the user's login name, the second entry is the system's idea or what terminal
the user is on, and the date and time is when the user logged in.

1.8.2. Who Is Using the Network - the 'rwho' Command

Rwho produces output similar to the who command, but for all systems on your local network.
(The 'r' in rwho may seem cryptic, but it refers to those 'remote' hostnames that make up the
rest or your local network.) Rwho is somewhat more particular than who however, in that it
only reports on machines that have been active during the previous 60 minutes. Ir a user has
not typed to the system for a minute or more, rwho reports this idle time in minutes in the
rightmost column. A typical example is:

tutorial% rwho
bob krypton:ttyp2 Aug 2 14:19 :03

<etc.>
JOC venus:console Aug 2 08:57 :27
marty paper:ttypO Aug 2 14:34
tutorial%

Try the rwho command now to see who else is logged in on your network.

Use the -a option to show everyone logged in, even if they are not doing any active work.

1.8.3. What Is the Network Status - the 'ruptime' Command

To check on the status or each system on the local network, use the ruptime command. For
example, a typical display from the Sun Microsystems network is:

0

0

0

0

\
0

0

• 20 •

tutorial% ruptime
tutorial up 4:07 1 user, load 1.32, 0.92, 1.15
betasun down 12+ 14:40
datsun up 4:07, 1 user, load 1.02, 0.80, 1.19
sundial down 3+ 19:41
titan up 4:05, 2 users, load 1.42, 0.55 1.18
tutorial%

Normally the list is sorted alphabetically. Try this now on your system to see what everyone
else is up to on your local network. See the user's manual page for details. Note that here as
with the rwho command, you must have the proper network configuration to get similar results.

1.8.4. What Is the Date and Time - the 'date' Command

Another useful command is the date command. Use this one if you have forgotten your watch
at home. Try typing:

tutorial% date
Fri Aug 19 10:15:08 PDT 1983
tutorial%

and you get back not only the day and date, but also the time (that is, the system's idea of
what time it is).

1.8.5. What Is the System Doing - the 'ps' Command

Because this is a multi-tasking system, you can run several processes at once. (We'll explain
how to do this in Uaing the Shell.) When you do execute several commands at one time, you
may need to know how far along they are. Use the pa (process status) command for this:

tutorial% ps
PID TTY ST AT TIME CMD
2025 02 R 0:01 ps
tutorial%

This lists the processes belonging to you. PID indicates the 'process identification' number,
TTY the terminal from which the process was started, STAT the state of the process, TIME
the amount of computer time used so far, and CMD the command line that was typed to ini
tiate the process.

As you can see, there is one process in operation, the pa process.

With the -x option, the pa command displays all your processes:

tutorial% ps -x
PID
2028
2029
tutorial%

TTY
02
08

STAT
s
s

TIME
0:05
0:05

CMD
ps
-csh (csh)

Looking at the TTY column, note that in our example, you are logged on twice, once on tty02
and once on tty08. Pa displays all processes associated with the user, not those associated with
a particular workstation or terminal.

Also try the pa command with the -ax option, which tells about 'all' processes going on in the
system. For example:

- 21 -

tutorial% ps -ax
PID TTY STAT TIME COMMAND
0 ! D 2:33 swapper
1 ! I 0:20 /etc/init -
2 ! D 0:08 pagedaemon

<etc.>
5535 co s 0:22 -csh (csh)
5696 co R 0:03 ps -ax
tutorial%

1.8.6. Who's Doing What - the 'w' Command

If you get really nosey, try the w command to check whether there is anyone else logged in to
your system and what that user is doing. Try this now and decipher the abbreviations using
your knowledge of what the who and ps commands display.

tutorial% w
12:19pm up 1 day, 18:54, 1 users, load average: 1.36, 1.22, 1.24
User tty login@ idle JCPU PCPU what
evan console 7 :08am 2:31 2:16 w
tutorial%

Here, clearly, the user 'evan' is logged in to the 'console' and running the w command.

It's also polite to run w before using write to write a message to someone (we explain this in the
Communications chapter). Check what your colleague is doing first; it's not nice to interrupt

0

him in the middle of editing a file, for example. 0

0

0

0

0

- 22 -

2. WORKING WITH FILES

This chapter explains how to view your files and how to· do simple operations on them. First,
you need a file to play with. Step through the instructions to prepare the / usr /lib/units system
file for the exercises that follow. The / usr/ lib/ units file converts units of measure and is some
thing of a hodge-podge, but it's interesting to glance through. The instructions do not provide
explanations of each command here, but you can always refer to the user's manual if you're par
ticularly curious about something at this point. By the end of this tutorial, you will be able to
look back at this sequence and understand each step.

Remember: If you make a typing mistake, use the DEL key to back up and correct the error.
You can also type RETURN to which the system will respond 'Command not found' or
'Unmatched'. You can then retype the command.

1. Be sure you are in your home directory with cd:

tutorial% cd
tutorial% pwd
/usr/evan
tutorial%

2. Use the head command with the -30 line option on the /usr/lib/unita file, and
redirect it to a file called start.here:

tutorial% bead -30 /usr/lib/units > start.here
tutorial%

3. Use the tail command with the -30 line option on the /usr/lib/unita file and append
the results to the start.here file:

tutorial% tail -30 /usr/lib/units > > start.here
tutorial%

4. Use the tr (translate) command to change tabs to spaces in the start.here file so the
file is easier to work with. The sequence of keystrokes here is a little bit tricky; after
the first apostrophe, type the TAB key. This jumps the cursor one tab space, and
you can continue typing in the rest of the command line, putting spaces between the
apostrophes. Here you also create your practice file called playfile:

tutorial% tr '
tutorial%

' ' ' < start.here > playfile

5. Check your home directory with the la command to see that the playfile is there.

tutorial% Is
playfile start.here
tutorial%

The original start.here file is there too.

You are now ready to begin working with a file of data.

2.1. Paging Through a File with 'more'

The more command reads one or more text files and displays the contents a screenful at a time.
Try it on playfile, for instance:

tutorial% more playfile
/ dimensions
m *a*
kg •b•
sec *c*

<etc.>
wey 40 bu
weymass 252 lb
--More--(47%)

The '47%' message informs you what percentage of the current file's characters has been
displayed so far. A 0% percentage may be displayed if you are looking at a very large file
because more displays only integer percentages.

To display one more line at the bottom of the screen, press the RETURN key. To see the next
screenful, press the space bar. To see the next 11 lines, type 'd' or AD.

To terminate more, simply type 'q' for 'quit' and you return to the 'tutorial%' prompt:

strike 2 bu
surveyfoot british-ft
surveyorschain 66 ft

<etc.>
Xunit l.00202-13m
k 1.38047-16 erg/degC
--More--(97%)
tutorial%

More has options that help you get to a specific line or text pattern in a file. For instance, to
get to line 45 in the file playfile, type:

tutorial% more +45 playfile
tablespoon 4 fldr
teaspoon 413 fldr
tesla weber/m2

<etc.>
weymass 252 lb
Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

To start displaying text at the first line which contains a string, 'circle' for example, type:

tutorial% more +/'circle' playfile
... skipping

degree 11180 pi-radian
circle 2 pi-radian
slug lb-g-sec2/ft

<etc.>
weymass 252 lb
X unit 1.00202-13m
--More--(97%)

This is one of the few instances of prefixing an option with a '+ '. As you saw earlier, most

0

0

o.
f

f

0

0

0

options are prefixed with a '-'.

There is another command, the cat command (for 'concatenate' or join), which also displays a
file on the screen. However, if your file has more than one screenful of data (and yours does, as
it has two workstation screens or 60 lines), it zips off the screen before you can see it. Try using
cat now just to see what it does:

tutorial% cat playfile
< zip!! >

tutorial%

We simply mention cat here along with the other file viewing commands and describe its more
useful capabilities later in Uaing the Shell.

2.2. Browsing Through a File with 'view'

With the more command, you can page through a file by typing the space bar or move through
a file line by line by typing RETURN. When you want to scroll forward and backward through
a file, use the view command:

tutorial% view playfile
/ dimensions
m *a*
kg •b•

<etc.>
span 9 in
spat 4 pi sr
"playfile" [Read only] 60 lines, 959 characters

Use the following characters to move the screen:

• D scrolls down one half screen
• U scrolls up one half screen
·F moves forward one screenful
'B moves backward one screenful

Remember, the ,., means 'Hold down the CTRL key while typing the letter.'

To exit or 'quit' viewing the file, type :q, which is echoed at the bottom of the screen and
returns you to the 'tutorial%' prompt.

You 'II see in Creating and Editing Filea - The 'vi' Editor that the vi editor uses these same
characters.

2.3. Look at the First Few Lines of a File with 'bead'
When you need to check the first few lines of a file, use the head command. This is one of the
commands you typed to make the playfile. Head gives you the first ten lines if you don't specify
how many you want. Here let's specify the first three lines, for instance:

tutorial% head -3 playfile
/ dimensions
m *a*
kg •b•
tutorial%

Head also accepts a list of filenames and will then display the first few lines from each with a
special header to indicate the filename. You have two files, playfile and atart.here, so let's use

those.

- 25 -

tutorial% head -4 playfile start.here
== > playfile < ==
/ dimensions
m *a*
kg •b•
sec *c*

==> start.here <==
/ dimensions
m *a*
kg •b•
sec *c*
tutorial%

Here you have two separate files, showing the first four (if there are four) lines of each. Each
file has a separate entry and the filename is enclosed in == > < == as shown.

2.4. Look at the Last Few Lines of a File with 'tail'
The tail command is similar to the head command, but displays the tail-end of the file. Again,
if you do not specify a number, you see the last ten lines. For example, to see the last three
lines of the file, type:

tutorial% tail -3 playfile
weymass 252 lb
Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

Precede the number given to tail by a minus sign to indicate that the last x number of lines are
to be displayed. If you precede the number with a plus sign, tail shows all the lines from that
specified to the end of the file.

tutorial% tail +55 playfile
tun 8 barrel
water .2249112.54 kg/m2-sec2
wey 40 bu
weymass 252 lb
Xunit l.00202-13m
k 1.38047-16 erg/degC
tutorial%

2.5. Counting Characters, Words, and Lines in a File with 'we'

When you need to count the lines of source code in a program or the num her of liOrds in a
document, use the we (word count) command. Try it now on your file. For exampfo:

tutorial% we playfile
60 147 959 playfile

tutorial%

We provides the number of lines, words, and characters in the file. If you only want one of the
three counts, use the -1 option to count lines, the -w option to count words, and the -c option

0

0

0

0

0

0

- 26 -

to count characters. Try we with the -w option to count the number of words:

tutorial% wc -w playfile
147 playfile

tutorial%

Playfile has 147 words.

2.6. Searching for Patterns in a File with 'grep'

Grep searches one or more files for lines which contain strings of a certain pattern. Such lines
are said to match the pattern.

Grep looks for a pattern which consists of a fixed character string. It is also possible to describe
more complex patterns, called 'regular expressions.' (Grep stands for 'global regular expression
print,' if that helps).

To search for a character string, give grep a fixed character string. To find the string 'inch' in
the file, for instance, type:

tutorial% grep inch playfile
tutorial%

The 'tutorial%' prompt returns for the next command, indicating that there is no match in this
case. This can be a common occurrence; it is often a matter of trying several differents aspects
of a command to get the desired result.

Now try to find the string 'mercury' in the file. Type:

tutorial% grep mercury playfile
mercury 1.33322+ 5 kg/m2-sec2
hg mercury
tutorial%

This shows that there are two such strings in the file.

Or, if you are not sure which file contains the desired string, scan more than one file at the same
time:

tutorial% grep mercury playfile start.here
playfile:mercury 1.33322+ 5 kg/m2-sec2
playfile:hg mercury
start.here:mercury 1.33322+ 5 kg/m2-sec2
start.here:hg mercury
tutorial%

Here you see that grep labels 'mercury' with thre name of the file in which the string is con
tained.

If the filename is not important, suppress it with the -h (omit file header) option. Now consider
the example as:

- 27 -

tutorial% grep -h fuzz pla7file start.here
fuzz 1
c 2.997925+ 8 m/sec fuzz
au 1.49597871 + 11 m fuzz
mole 6.022169+ 23 fuzz
e 1.6021917-19 coul fuzz
fuzz 1
c 2.997925+ 8 m/sec fuzz
au 1.49597871 + 11 m fuzz
mole 6.022169+ 23 fuzz
e 1.6021917-19 coul fuzz
tutorial%

This gives you several references to the string 'fuzz'.

When you want to find a specific string and not a lot of extraneous references, type it exactly as
you want to find it. For instance, if you are generally interested in finding references to 'sur
vey', type:

tutorial% grep surve7 pla7file
surveyfoot british-ft
surveyorschain 66 ft
surveyorslink 661100 ft
tutorial%

You see three words containing the string 'survey'. However, if you want to find the specific
string 'surveyorschain ', type that string:

0

tutorial% grep surveyorschain playfile 0
surveyorschain 66 ft
tutorial%

If the pattern you're looking for contains spaces, '2 pi', for example, surround it with quote
signs (') so that it forms one argument.

tutorial% grep '2 pi' playfile
circle 2 pi-radian
tutorial%

A space is used to separate arguments, so a pattern which also contains spaces must be enclosed
in quotes.

If you want to find all the lines except those that match the string, use the -v (for invert)
option. We'll leave this up to you to experiment with.

At times you want to find a string regardless of whether it is in upper or lower case. Use the -i
grep option to 'ignore case'. As the playfile is almost solely lower case, here's an example of
using grep with the -i option to find the string 'bool' in the file optionaw.c:

tutorial% grep -i bool optionsw.c
#define OPT_BOOL I

case OPT_BOOL: optb_destroy(ip->oi_data);
struct optb_data
optsw_bool(struct optionsw *optsw; int line, left; char *label
optsw_bool(struct optionsw *optsw; struct rect r; char *label;

This finds all the lines containing 'bool' in either upper or lower case.
0

0

0

- 28 -

Use the -n (number) option to show the line numbers of lines that match the string or pattern,
for example:

tutorial% grep -n fuzz playfile
15:fuz'z 1
17:c 2.997925+ 8 m/sec fuzz
19:au 1.49597871+ 11 m fuzz
20:mole 6.022169+ 23 fuzz
21:e 1.6021917-19 coul fuzz
tutorial%

This helps when you are using an editor or some other command to process the file using line
numbers.

2.6.1. Regular Expressions in Text Patterns

To search for more complex strings than simple fixed character strings, give grep a pattern (or
template) of the text to search for. For example, 'find all words ending in ing,' or 'all 4-digit
numbers appearing at the end of a line.' Such a pattern or template is called a 'regular expres
sion.'

Grep uses certain characters called metacharactera that represent something other than them
selves and have a special meaning. We describe these below with examples, but what you need
to know now is that sometimes you may want to use these metacharacters to represent them
selves; that is, if you want to find a string with a dollar sign '$', you need to remove its special
metacharacter significance. ('$' matches the end ;of a line.) To remove the special significance of
metacharacters, precede them with the backslash ' \ ' eacape character. In this case then, grep
considers the '$' sign as a dollar sign, rather than the metacharacter that matches a line end.

Also, enclose the regular expression in quotes. Single quotes (') are safest, but often double
quotes (") are sufficient.

2.6.2. Match Beginning and End of Line with A and $

To match a string at the beginning of a line, use the 'A' character. For example, to find the
string 'fuzz' at the beginning of a line, type:

tutorial% grep ''fuzz' playfile
fuzz 1
tutorial%

The ' • ' finds only those lines starting with the word 'fuzz'.

To match a string at the end of a line, use ' $ '. For instance, to find 'fuzz' at the end of a line,
type:

tutorial% grep 'fuzz$' playfile
c 2.997925+ 8 m/sec fuzz
au 1.49597871 + 11 m fuzz
mole 6.022169+ 23 fuzz
e 1.6021917-19 coul fuzz
tutorial%

The ' $ 'selects only those lines ending with the word 'fuzz'. o Preceding an expression by' • 'and following it with '$ 'as in:

tutorial% grep ,·fuzz$' playfile
tutorial%

- 29 -

selects only those lines consisting of 'fuzz', and nothing else. This is called an 'anchored match'
because it is anchored at a specific place on a line. Here, grep doesn't find any string to match.

If you put the 'A' and ' $ ' characters in places other than the beginning of the pattern, or the
end of the pattern, respectively, they lose their special meanings.

Find blank lines in a file with the expression 'A$'. This pattern finds lines which have only a
newline, and no other text. It doesn't locate spaces, tabs or other non-printing characters on
the line. Use it with the -n line number option to specify where those blank lines are:

tutorial% grep -n ,.$, playfile
12:
14:
26:
28:
tutorial%

2.6.3. Matching Any Character with'.'

Use the period (or 'dot') metacharacter to match any character at all. So the string ' w ... '
selects all strings starting with the letter 'w ', and having three more characters. To find such
strings at the beginning of a line, use •·w ... '. To find such strings at the end of a line, use the
expression 'w ... $'. Remember that spaces are counted as part of the string.

As an example, 'w ... ' finds the patterns:

tutorial% grep '·w ... ' playfile
water .2249112.54 kg/m2-sec2
wey 40 bu
weymass 252 lb
tutorial%

To find a real period at the end of a sentence, use the ' \ ' escape character to remove any spe
cial significance. Thus, use the expression 'w ... \.'. The period metacharacter never matches the
newline at the end of a line. A consequence of this is that text patterns never match across
lines; they only match within a line.

2.6.4. Character Classes with [and] and -
To specify a set of characters, enclose them in brackets, '[]'. This matches any one of the char
acters inside the brackets. The expression •·[abcxyz]' finds all lines beginning with 'a' or 'b' or
'c' or 'x' or 'y' or 'z'.

Use the hyphen character' - 'to specify a range of characters inside '[]',for example,. [a-cx-z]'.
Here are the common regular expressions:

[a-z) all lowercase letters
[A-Z] all uppercase letters
[0-9] all digits

If you are looking for four-character strings that begin with 'I' or 'L' and contain only letters,
use the pattern '[Ll][a-z][a-z][a-z]', assuming that only the initial letter can be in uppercase.

0

0

0

0

0

0

- 30 -

In the example ''[a-cx-z]' note that the' • 'metacharacter (match the beginning of the line) is
outside the brackets. If it's inside '[]', it inverts the selection process. So the expression '
['Ll][a-z][a-z][a-z] ' specifies all four-letter words that begin with something other than 'L' or 'I',
and the pattern ,. ['a-z]' finds all lines except those that begin with lowercase letters.

It should be emphasized that ranges of characters pertain to the ASCII character set, so that
the pattern '[A-z]' gets you all upper and lowercase letters and the characters [] · '

This sort of confusion occurs most often when dealing with digits. The pattern '[1-30]' does
NOT mean 'numbers in the range one through 30'; it means 'digits in the range 1 through 3, or
0 '. It is the same as a pattern that looks like '[1230]' or '[0-3] '.

If you really wish to include ' - ' in the class of characters, it isn't necessary to escape it so long
as it is positioned such that it won't be confused with a range specification. For example, a
hyphen at the beginning of the pattern stands for itself: [-ab] means the pattern ' - ...Lor 'a' or
'b'. The same is true for the characters '[' and ')'.

2.6.5. Subsets of Regular Expressions
Here are some possible situations using regular expressions. You can find all but blank lines
from a file by:

tutorial% grep -v ''S' playfile
/ dimensions
m *a*
kg •h•

<etc.>
k 1.38047-16 erg/degC
tutorial%

The regular expression ''S' finds all the blank lines, and the -v saves all the other lines and
ignores the blank lines. Figure out what this really does; it gets rid of lines that are really
blank.

You can delete the apparently blank lines as well, with:

tutorial% grep -v ,. •S' playfile
/ dimensions
m *a*
kg •b•

<etc.>
k 1.3804 7-16 erg/ degC
tutorial%

The regular expression says, in effect, 'look for a beginning of line, followed by any number of
spaces (including no spaces), followed by an end of line.'

If the apparently empty line contains tabs as well as spaces, replace the simple space in the
above regular expression with an expression that says 'space or tab', shown here by the 'T
which means type 'I. This is the tab character, or TAB key. You used this tab character with
the tr command to set up the playfile. Your screen shows:

''(]•$'

Also add the -n option to list the line numbers of the blank lines.

tutorial% grep -n 'A (AI)•$' playfile
12:
14:
26:
28:
tutorial%

2.7. Sorting Text Files with 'sort'

- 31 -

To order the contents of a file alphabetically or numerically, use aort. There are many options
which control the sort order. The most useful ar~ described here. For more details, refer to the
aort utility description in the Uaer'a Manual for the Sun Workatation.

Sort does not expect fields on a line to appear in a fixed columnar layout. It just works on
field,, which are normally separated by spaces or tabs (you can specify any field-separator you
want). This provides a typewriter oriented approach, rather than the historical punched card
orientation.

Consider a file with a random list of classical music composers and their birthdates. Sort it as
follows:

tutorial% sort composers
Franz Haydn 1732
Franz Schubert 1797
Gustav Mahler 1860
Johannes Brahms 1833
Wolfgang Mozart 1756
tutorial%

Sort orders and displays the list alphabetically by first names. You can tell aort to sort on the
last name too. Each line in the file is considered to consist of fields, the fields being separated
by spaces. To get your file in order of last name, tell the program to skip one field, the first
names, and then start sorting:

tutorial% sort +1 composers
Johannes Brahms 1833
Franz Haydn 1732
Gustav Mahler 1860
Wolfgang Mozart 1756
Franz Schubert 1797
tutorial%

This works as long as there are only two fields, and no middle initials, for example. Plan your
sort accordingly to account for the number of fields. See the user's manual page on aort for
more details.

For numerically ordered sorting in this example, skip two fields before starting to sort. Type:

0

0

0

0

0

0

tutorial% sort -b +2 composers
Franz Haydn 1732
Wolfgang Mozart 1756
Franz Schubert 1797
Johannes Brahms 1833
Gustav Mahler 1860
tutorial%

- 32 -

The -b option tells aort to ignore blanks in all fields on the line. Without this option, each field
is considered to start immediately after the end of the previous field, so the spaces between the
last name and the birthdate count as part of the birthdate. Also, aort considers ASCII charac
ters, and the character for space has a lower value than any of the characters for the digits 0
through 9.

To restrict the effect o(ignoring blanks to only the numeric field, use the b option in this way:

tutorial% sort +2b composers
Franz Haydn 1732
Wolfgang Mozart 1756
Franz Schubert 1797
Johannes Brahms 1833
Gustav Mahler 1860
tutorial%

Here the +2b is called a 'flag,' rather than an option, and gives the same results as before.
However, in other situations, you will use one or the other depending on the desired results.

If you need to sort a file by numbers that do not have the same number of digits, tell aort that
the characters in the field are to be treated as numbers, and to sort according to the arithmetic
values of those numbers. Add the letter n (for numeric) after the number of the fields skipped
before the field that is to be treated in this way:

tutorial% sort +2n +1 composers
Johannes Brahms 4
Gustav Mahler 9
Franz Schubert 9
Wolfgang Mozart 41
Franz Haydn 104
tutorial%

Using the numeric option implies that spaces are ignored, so you don't have to use the b option.
Mahler and Schubert composed the same number of symphonies, and they are listed in alplla
betical order by ordering that field (by + 1).

To tell aort to reverse the order or sorting or a field, add the letter r (for reverse) after that
field:

tutorial% sort +2nr +l composers
Franz Haydn 104
Wolfgang Mozart 41
Gustav Mahler 9
Franz Schubert 9
Johannes Brahms 4
tutorial%

Reversing the sorting order with r is not restricted to numeric sorting, although that's where

- 33 -

you'll usually use it.

To save the output in a file, use the -o (for output) option followed by the name of the file that
is to contain the output. You can give all the filenames to join sorted files. And if your input
files are already sorted, you can simply merge them by using the -m (for merge) option. Refer
to the user's manual for more details on these options, and then experiment with them. The
-m option saves sort some work by indicating that the files are already sorted, and need only
be merged.

You can also get rid of possible duplications of names in files with the -u (for unique) option.

Normally sort assumes fields are separated by spaces or tabs, but they can be separated by
something else. Use the -t option to tell sort this. For example:

tutorial% sort -t: +s /etc/passwd
tutorial%

sorts the / etc/ passwd file, which uses the colon character ':' as its field separator.

2.8. Finding Differences Between Files with 'difl"

When you need to tell what differences there are between one version of a file and another, use
the ds:tf utility. For example, if you want to find the new ski team members between last year's
and this year's lists, type:

tutorial% diff' skiteams.82 skiteams.83
2c2
< Shelley Curtis

> Norman Travers
7d6
< Harry Cuthbertson
lOalO
> Karen Stevens
tutorial%

This indicates that there are three changes to the file. The second line has changed ('2c2'), but
it is still the same line number. The first file (or old version of the line in this case) is preceded
by a '< ', and the second file (the new version in this case) is preceded by a '> '. The '7 d6'
shows that line 7 of the original file has been deleted. And 'lOalO' indicates the third change,
the addition of a new line after line 10 in the original file.

Try the diff command on your two files, playfile and start.here:

tutorial% diff' playfile start.here

The results zip off the screen pretty quickly (we'll explain how to manipulate that display for
examination later), but you see that there are lots of differences. Try the diff command on some
other files and interpret the results.

There are several options to the diff command that you should read about in the user's manual.

0

0

0

0

0

0

- 34 -

3. USING THE SHELL
You have seen how the Shell is the interface between you and the various Sun system com
mands. Here we describe some more Shell facilities that you should experiment with to do your
tasks.

3.1. Redirecting Standard Input and Standard Output

When you run a program on the Sun system, it usually expects some input (data) and produces
some output (results). This input or atandard input is the place from which a program expects
to read its input, usually your keyboard. The output or atandard output is the 'file' to which
the program writes its results, usually your workstation screen.

You can change these defaults by telling the Shell that the standard input for a command is to
be taken from a file, or that the standard output of a command written to a file. This process
is called 'redirection' and uses those '>' and '<' characters you saw in some of the ex am pies in
the chapter on Working With Filea.

You can also take the standard input of a command directly from the standard output of
another command, and similarly to direct the standard output of one command straight to the
standard input of the next command. This feature is called piping, and a string of commands
hooked together in this way is called a pipeline.

Ir a filename argument to a command is prefixed by the '>' character, the standard output of
that command is redirected to that file instead of going to your workstation screen. For exam
ple, the ls command displays a list of the directory contents on your workstation screen, but if
you use '> filea' as a redirection indicator, the command line puts the contents listing of the
current working directory into a file called filea, which is placed into the current directory. Try
this now from your home directory as indicated in the following example:.

tutorial% cd
tutorial% ls -1 > files
tutorial% ls -1
total 202
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan

tutorial%

110 Aug 6 14:03 files
959 Aug 6 11 :20 playfile
959 Aug 6 11:18 start.here

You can also see that your directory now contains three files, playfile, at art.here, and filea, which
contains the long la listings of all the files. Ir the named file to which output is redirected
doesn't already exist, it is created.

You can now view the file at your leisure, or change it around for any useful purposes of your
own. Look in your new filea file with the more command:

tutorial% more files
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
tutorial%

0 Aug 6 11 :40 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

You have your current directory listing, including files, which is created before the command
runs.

- 35 -

Be careful, though, because if the file to which the Standard Output is redirected already exists,
the previous contents of the file are lost! The C-Shell has a noclobber variable that you can set o
to prevent this from happening. Read about this in the cah description in the user's manual.

If you don't want to lose the contents of an existing file, but want the output of a command
appended to the end of it, prefix the filename with two right chevron signs'>>'. You used this
notation before to prepare playfile. As another example, type:

tutorial% pwd > > files
tutorial% more files
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/usr/evan
tutorial%

0 Aug 6 11:40 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

which prints the name of the current working directory at the end of the contents listing of the
directory.

In many ways '> >' is safer to use than '>' because it doesn't destroy previous information.

Just as the '>' character or the '> >' sign redirects the Standard Output of a command to a
file, you can redirect the Standard Input for a command to come from a file, instead of your
workstation keyboard. Prefix the file name with a left chevron sign'<'. For example:

tutorial% mail < gossip
tutorial%

takes mail messages from the file goaaip, created previously by an editor.

You'll use redirection of Output more often than redirection of Input because a lot of commands
are designed to take their input from files anyway.

If you do not specify any files, commands use the Standard Input. The cat command, which we
mentioned briefly in Working with Filea as a file viewing command, is one:

tutorial% cat
Type what you want here.
Cat then displays it on the Standard Output,
your workstation screen.
·o
Type what you want here.
Cat then displays it on the Standard Output,
your workstation screen.
tutorial%

Typing a ·o tells cat that you have finished.

There are many commands which only act on the Standard Input, that is, what you type at
your keyboard. If you want these to work on a file instead, you have to redirect the input to be
from that file; for instance:

0

0

0

0

0

tutorial% cat < files
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/usr/evan
tutorial%

- 36 -

0 Aug 6 11:40 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

concatenates the contents of the file called filea to the Standard Output.

Also consider the tr (translate) command, which you can also redirect to operate on a file as
input instead of the Standard Input:

tutorial% tr a-z A-Z < files > FILES
tutorial% more FILES
-RW-R--R-- 1 EVAN
-RW-R--R-- 1 EVAN
-R W-R--R-- 1 EVAN
/USR/EVAN
tutorial%

0 AUG 6 11:40 FILES
959 AUG 6 11:20 PLAYFILE
959 AUG 6 11:18 START.HERE

As you saw above, the cat command can use the Standard Input or, with redirection, a file as
input. What cat really does best is indeed what it says, it 'concatenates' or joins files with the
appropriate redirection. For example, to join two files, filea and playfile, to form a third file
meaa that contains both, type:

tutorial% cat files playfile > mess
tutorial% more mess
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/usr/evan
/ dimensions

<etc.>
Xunit l.00202-13m

0 Aug 6 11:40 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

k 1.38047-16 erg/degC
tutorial%

You then have the meaa file that contains filea followed by playfile.

To add one file to the end of another, use cat and the double chevron redirection symbol '> > '.
If you want to add the contents of playfile to the end of filea, type:

tutorial% cat playfile > > files
tutorial% more files
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/usr/evan

<etc.>
Xunit l.00202-13m

0 Aug 6 11 :40 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

k 1.38047-16 erg/degC
tutorial%

You then have two files, the original playfile file and a new filea file that contains file, followed

- 37 -

by playfile.

Be careful that you do not use the same filename when redirecting both Standard Input and 0
Standard Output. The first thing that happens when you use '>' is that the file it points to is
created. If that file already exists and if there's something in it, the contents are lost. For
example:

tutorial% cat < now> then
tutorial%

works, but in the following cases, the files are clobbered:

tutorial% cat < thisdata > thisdata

or

cat: input - is output
tutorial%

tutorial% cat thisdata > thisdata
cat: input thisdata is output
tutorial%

The cat command warns you with 'cat: input - is output' that something is wrong, but contin
ues to overwrite or clobber your file anyway. Another such problem occurs if you try:

tutorial% cat ab > B
tutorial%

which clobbers b before running cat. See the cah 'noclobber' option to prevent this.

3.2. Connecting Processes with Pipes

You can run the Standard Output of one process (or program) as the Standard Input of another
process when you form a 'pipeline.'

Using the wc and who commands, and the 'I' (vertical bar) 'pipe' symbol, find out how many
people are logged in:

tutorial% who I we -1
1

tutorial%

Here who feeds its Standard Output to the Standard Input of the wc command, which counts
lines with the -1 option. And yes, that number 1 is you, if you are the only one on your system.

A pipeline is a flow of data that several programs (or processes) operate on in turn. If you write
the sequence:

tutorial% ls -1 /usr I grep evan I sort +3nr I lpr
tutorial%

you have a string of connected commands or a 'pipeline.' The Standard Output of the command
to the left of the 'I' becomes the Standard Input to the command on the right of 'l'-
Here the long I, listing of files and subdirectories in / u,r is passed to the grep command instead
of to the def a ult Standard Output, the workstation screen. Grep selects all lines containing the
string 'evan' from its Standard Input, and aort sorts the fourth field of all those selected lines in
reverse numerical order.

Lpr routes its input to a printer, so you get a print-out instead of seeing the results on the
screen. This, in fact, is the most common use of piping. Since all commands except lpr provide

0

0

0

0

0

- 38 •

output to the Standard Output, the only way to get a hard copy print-out of a file at the end of
such a pipe sequence is to pipe it to lpr.

You can type all the commands in the pipeline one at a time, but here the system does all the
intermediate work for you, and it's much quicker because you don't have to wait for each com
mand to finish.

Some commands are special. La does not accept the Standard Input because its 'input' is a
directory whose contents are to be listed. You can only use la as the first command in a pipe
line. The lpr command does not write to the Standard Output, instead its 'output' is to a
printer somewhere. You can only use lpr as the last command in a pipeline.

You can use both redirection of input and output with pipelines.

3.3. Controlling Jobs

Because the Sun operating system is a multi-tasking system, you can run more than one job or
'process' at a time. You can manipulate your jobs by running them in either the foreground or
the background, stopping, suspending, or killing them as we describe below.

3.3.1. Foreground and Background Processes

You saw what processes are running with the pa (process status) command. Everytime you ask
the Shell to run a command, it runs that command as a separate process. The process which
converses with your workstation is called a 'foreground' process because it is in the foreground
of your attention. Normally, each command you type, or each pipeline of commands, runs as
foreground processes, and they run at your workstation 'w bile you wait.'

This could mean a lot of waiting for processes to finish, so you can also run commands in the
'background.' Your system prompt re-appears immediately after you type the command, and
you can continue with another task while it completes. This is particularly useful for com
mands that take a long time to run.

3.3.1.1. Running Jobs in the Background with '&'
To run a command in the background, type an ampersand '&' at the end:

tutorial% sort files &
[1] 2042
tutorial%

The '[1]' is the job number and the '2042' number reply is the PID (or process identity number
you saw earlier with the pa command) that the operating system associates with the command
you typed. Sometimes the process you put in the background calls up other processes which
you don't know about, but only the number for the primary (or parent) process is shown when
you type the command. In this example, aort displays the sorted filea files on your screen.

You can then type another command to have the Sun system doing several things for you at the
same time. Or you can log off, and the background command continues running.

Avoid having too many things going on at the same time; your system has to play ringmaster in
your multi-ringed circus, so it might end up taking just as long to complete all your tasks as if
you had done them one by one at the keyboard waiting for the prompt each time in the fore
ground.

One word of caution: if your background process is taking input from a file, don't start another
command, either in the background or in the foreground, which will modify the contents of that
file. Results can be unpredictable.

- 39 -

To ensure that your output goes to the right place and is not mixed up with other files or lost,
redirect the output of the background command to a file:

tutorial% sort files > files.sorted &
[l] 2043
tutorial%

Now the output of your background command will not disturb you, or anyone else, who is exe
cuting commands in the foreground. And you can view it at your leisure with more:

tutorial% more files.sorted
-rw-r--r-- 1 evan 959 Aug 6 11:18 start.here
-rw-r--r-- 1 evan 959 Aug 6 11:20 playfile
/ constants

<etc.>
wey 40 bu
weymass 252 lb

tutorial%

Or you can pipe the results to the printer:

tutorial% sort files I lpr &
[l] 1043 1044
tutorial%

3.3.2. Stopping and Resuming Jobs

If you start a foreground job, you can stop it temporarily with a AZ and resume it later:

tutorial% spell playfile > mispell
AZ
Stopped
tutorial%

If you put a job .in the background, you can stop it with a atop command:

tutorial% sort playfile &
[2] 2345
tutorial% stop %2
[2]+ Stopped (signal) sort playfile

You need to type the job number prefixed by the'%' after the atop command to indicate which
job to suspend if you're running more than one. You can resume a stopped job later.

3.3.3. Placing Jobs in the Background

If you start a job in the foreground, and then decide you want to work on something else while
it is completing, use the following sequence:

tutorial% spell playfile > mispell
·z
Stopped
tutorial% bg
[l] spell playfile > mispell &
tutorial%

0

0

0

0

0

0

- 40 -

Here you start running the apell utility, which finds those ubiquitous spelling errors, then you
decide to work on something else, and stop it with ·z. Typing bg then puts that job in the
background for completion.

3.3.4. Bringing Jobs to the Foreground

If you put a job in the background, and then decide you need it back in the foreground, use the
following sequence:

tutorial% spell playfile > mispell &
[1] 321
tutorial% ls -F > mydir &
[2] 322
tutorial% who I we
·z
Stopped
[3] 323 324
tutorial% jobs
[1] - Running
[2] Running
[3] + Stopped
tutorial% f'g %2

spell playfile > mispell
ls -F > mydir
who I wc

ls -F > mydir
tutorial% more mydir

Typing the joba command displays a job table to remind you which job is which. It also gives
you the status: '+' for the current job and'-' for the previous job.

The fg 'foreground' command brings the background job la -F to the foreground. Note that to
bring a particular command to the foreground, you precede the job number with the '%' sign.
Note that you can also type the command you want to bring to the foreground; that is, in this
example '%ls' would mean the same thing as '%2'. You only need to type a unique part of the
full command, hence the ls, and not the whole sequence.

You can also use fg to restart a job previously suspended with '· Z'.

3.3.5. Killing Jobs and Processes with 'kill'

If you start a command running in the background, and then change your mind for some rea
son, you can stop the process with the kill command and the PID. From the other example, we
got 321, so to kill it you type:

tutorial% spell playfile > mispell &
[1] 321
tutorial% kill 321
(1] Killed spell playfile > mispell
tutorial%

You can also type kill %1 to kill the process running as job number 1.

A process can use several subprocesses called children. To kill them one by one may take some
time. To stop them all, find the subprocess' PID

1
~ with the pa command and stop them all with

the same kill. Some processes are clever enough to ignore the stop signal number that the sys
tem sends them. If this is the case, but you really want to kill a certain command, type:

tutorial% kill -9 321
[2] Killed spell playfile > mispell
tutorial%

The signal number 9 is a sure kill signal option. You can also use kill 0, to kill everything
that's either running in the background or stopped.

3.4. Recalling Previous Commands with 'history'

The C-Shell has a built-in history mechanism to keep track of some number of the commands
you type. This is handy for re-executing long commands and for changing parts of and re
executing previously typed commands,

You determine the number of commands by setting a variable called 'history' in your .c1Jhrc file
with an editor:

set history=30

After reading the chapter on the editor, come back to this part and create a .clJhrc file with the
history option. A typical display from the history buffer is:

tutorial% history
1 ls -I
2 cd /intro/lessons
3 history

tutorial%

Here you clearly have not been logged on very long because you've only typed three commands.
Note that the hiatory command also appears as the last command.

If the 'history' variable is set to 30, the hiatory command displays the last 30 commands you
typed during the current login session.

The first thing to look at is correcting the previous command. If you mistype something, such
as changing directories, and get the 'No such file or directory' message, you don't need to retype
the whole cd command and pathname. Simply use the ,., character to bracket the incorrect
and correct spellings and make the substition as follows:

tutorial% cd /u8r/evan/intro/lesons
/usr/evan/intro/lesons: No such file or directory
tutorial%

To correct this 'lesons' typo, type:

tutorial% • lesons ·lessons·
cd /usr/evan/intro/lessons
tutorial%

or even just:

tutorial% • 80 · 880 ·
cd / usr / evan/intro /lessons
tutorial%

Hiatory echoes the command it is executing.

0

0

The ,. ' characters act as delimiters to surround the two strings. The first string is the thing 0
you want changed. The second string is the thing you want to change it to. The corrected :
command is echoed back at you.

0

0

0

- 42 -

Use the history facility to see what happened to the commands:

tutorial% history
1 ls -1
2 cd intro/lessons
3 history
4 cd /usr/evan/intro/lesons
5 cd /usr/evan/intro/lessons
6 history

tutorial%

The two cd commands from the examples above, the erroneous one and the corrected one, now
appear in the history buffer.

To run the previous command again, simply type:

tutorial% !!
history

1 Is -1
2 cd intro/lessons
3 history
4 cd /usr/evan/intro/lesons
5 cd /usr/evan/intro/lessons
6 history
7 history

tutorial%

To avoid typing out a long command line that you have run previously, type an exclamation
mark in front of a unique number of characters from the previous command. For example,
assume you want to re-run the cd command noted before. Use the '!' character and cd to ask
the Shell to search backwards through the history file for a command beginning with the letters
'cd'.

tutorial% !cd
cd /usr/evan/intro/lessons
tutorial%

You don't have to to type the whole command name, just enough of the previous command to
make it unique. So you can also type the cd command like this:

tutorial% !c
cd /usr/evan/intro/lessons
tutorial%

and it will do just as well.

If you ask for a command that the Shell cannot find, an error message is displayed:

tutorial% !xd
xd: Event not found.
tutorial%

You can also ref er directly to a previous command in the history file, by typing the exclamation
mark followed by the number of the command in the history buffer. For example, you can re
run command number 1 in the buffer like this:

tutorial% !1
ls -1

- 43 -

< output from the la command >
tutorial%

The number must immediately follow the exclamation mark.

Another version of 'repeat a previous command' is to use the dollar sign '$' to refer to the last
argument of the previous command:

tutorial% mv /usr/evan/intro/lessons/notes extra
tutorial% pr !$ I lpr
pr extra I lpr
tutorial%

As well as simply repeating a previous command, you can make changes to the command at the
same time. Consider the history buffer after the last few changes:

tutorial% history
1 ls -I
2 cd intro/lessons
3 history
4 cd /usr/evan/intro/lesons
5 cd /usr/evan/intro/lessons
6 history
7 history

0

8 cd /usr/evan/intro/lessons o-_

9 cd /usr/evan/intro/lessons
10 ls -1
11 mv /usr/evan/intro/lessons/notes extra
12 pr extra I lpr
13 history

tutorial%

You can see the substitutions that were made in previous commands.

Assume that the file you want to move from Evan's directory was actually the data file, not the
note, file. To avoid all the tiresome typing of the whole pathname again, use the Shell substitu
tion capability:

tutorial% !11:s/notes/data
mv /usr/evan/intro/lessons/data extra
tutorial%

Note that this same syntax is used in the editors for making text substitutions.

3.5. Substituting with 'alias'

The Shell also provides a method of making shorthand names or aliaaea for frequently used hut
long-winded commands.

Assume that you are updating a series of plans for a large software project. Each plan and its
related meeting minutes are in a separate directory named / miac/ maater/ project/ document,.
The last element in the pathname is plana for project plan A, planb for project plan B, and so
on. Instead of typing these long pathnames everytime your group makes changes in a plan,
define an alias in your .cahrc file in your home directory:

0

0

0

0

- 44 -

alias plana cd /misc/master/project/documents/plana
alias planb cd /misc/master/project/documents/planb
alias plane cd /misc/master/project/documents/plane
alias pland cd /misc/master/project/documents/pland
alias plane cd /misc/master/project/documents/plane

Now you have some new commands, so all you have to do to change directory to one is type:

tutorial% planb
tutorial% pwd
/misc/master/project/documents/planb
tutorial%

You don't even have to define five separate alias lines; one suffices if you use '\!$':
I

alias plan cd /misc/master/project/documents/plan\!$

The '\!$' notation refers to the last argument typed on the command line. The ' \ ' (escape)
character prevents the '!$' from being expanded until a plan command is actually typed. Now
you can change to the plane directory like this:

tutorial% plan c
tutorial% pwd
/misc/master/project/documents/plane
tutorial%

The C-Shell constructs plane out of the argument you typed, e, and the plan that was defined in
the alias.

0:

0

0

0

0

0

- 45 -

4. CREATING AND EDITING TEXT FILES - THE 'vi' EDITOR
The Sun system supports several editors, vi (pronounced 'vee-eye') ez (pronounced 'ee-ex '), ed,
and aed. This chapter provides the basics for lei\rning to use the 'display' or 'screen' editor vi,
which is a screen-oriented version of ez. Many hf the more useful operations that can be per
formed in vi call upon ez functions, so in learning vi, you're also gaining an understanding of ez.
In addition, ez is based on the ed editor, but has many extensions and additional features. Here
you learn about the top of the line, and a little bit about the others too. Ref er to the Editing
and Text Processing on the Sun Work.,tation for more details.

Vi displays a portion of your file on your workstation screen. You can move the cursor around
on the screen to make changes by adding, deleting, or replacing text, and you can move the
screen itself around to edit different parts of the file.

Almost every key on the keyboard is a vi command. There are also combinations of the SHIFT
key and the other keys, and combinations of the CTRL key and other keys. Note that when
we say 'A,' we mean uppercase 'A'. Lowercase 'a' means something different.

4.1. Command and Insert Modes

There are two modes in vi, command mode and inaert mode. In command mode, you can move
the cursor around the screen, scroll the screen, search for patterns, save the file, and do other
operations which don't involve entering fresh text. To enter new text into the file you must be
in insert mode, which you get with the 'a', 'i', and 1

0
1 commands. You get out of insert mode

by typing the ESC (ESCAPE) key (or ALT on some keyboards). The significant characteristic
of insert mode is that commands can't be used, so anything you type (except ESC) is inserted
into the file. If you change your mind anytime using vi, pressing ESC cancels the command you
started and reverses to command mode. Also if you are unsure of which mode you are in, press
ESC until the screen flashes or the bell rings; this means that you are back in command mode.

Start working on your playfile. To use the vi editor, type:

tutorial% vi playfile

The screen displays something like:

/ dimensions
m *a*
kg *b*

<etc.>
spat 4 pi sr
"playfile" 60 lines, 959 characters

with the cursor at the upper lefthand corner.

Now practice using the following keys to move the cursor, scroll the screen, and so on.

4.2. Moving the Cursor

There are several ways of changing the position of the cursor. You can move it character by
character, word by word, sentence by sentence, forward, backward, from one screen to another,
and on and on. We present the more useful ways here, but you'll want to read further on vi to
learn all the facilities.

~ 46. -

4.2.1. I, h, k, j - Forward, Backward, Up, and Down

To position the cursor a character at a time, use the four keys h, j, k, I, which move the cursor
as follows:

h move the cursor one character to the left
I move the cursor one character to the right
k move the cursor up one line
J move the cursor down one line

After a little practice, you'll find these easy to use because they're right under your fingers.

The BACKSPACE key on your workstation keyboard has the same function as 'H; you can use
it to move the cursor to the left. Typing 'h' without holding the control key works too. Both
• J and • N move the cursor down to the next line. The LINEFEED key has the same function
as • J. Test out all these possibilities on your workstation or terminal.

You can move the cursor several lines or characters by pressing the key repeatedly, or you can
hold down the key as you go for an automatic repeat. (Some terminals have a key marked
REPEAT. If you hold this key down while typing some other character, that character is
repeated until you let go.) Use these features when you have long distances to move the cursor.

You can give the cursor positioning commands a preceding count to move the cursor a specified
number of characters or lines. For instance, '81' moves the cursor eight characters to the right.

If the cursor is towards the end of a line, and you move it down to a shorter line, then the cur
sor is placed at the end of that shorter line. However it reverts to its original horizontal posi
tion on any line that is long enough.

o·

Moving the cursor down one line past the last line of the screen scrolls the screen up one line. 0
You cannot go past the end of the file, there is no wrap around to the beginning. Moving the
cursor up one line from the top line of the screen scrolls the screen down one line.

Some of the vi commands use the bottom line of the screen, to display the command or its
result. The bottom line initially shows the filename and length.

4.2.2. ", 0 and $ - Move to Beginning or End of Line

For horizontal motions along the lines, three useful functions are:

move cursor to first non-blank character of line
0 move cursor to the real beginning of line
S move cursor to end of line

4.2.3. H, M, L - Move to Home, Middle, and Last Line on Screen
Three more basic cursor movements are:

H home
M middle
L last

The H command homes the cursor onto the top line of the screen, M moves the cursor to the
middle line of the screen, and L moves it to the last line of the screen. H and L take preceding
counts, for example, 3H moves to the 3rd line on the screen, 2L moves to the second line from
the bottom. If you have a key marked HOME on your terminal, this usually achieves the same o
as the H command.

0

0

0

- 47 -

4.2.4. w, b, e - Moving by Words
To move over the text a word at a time instead of only character-by-character, use the com
mands:

w move forward to beginning of next word
e move to end of this word
b move back to beginning of word

If you are already at the beginning of a word when you type a 'b', the cursor goes to the begin
ning of the previous word. If you are at the end of a word when you type an 'e ', the cursor
moves to the end of the next word.

A 'word' is anything consisting of letters, digits and underscores, surrounded by anything which
is not a letter, a digit or an underscore. This definition covers identifiers in most programming
languages, so the commands are useful for editing both programs and documentation.

If your file is shorter than the screen, on-screen lines not present in the file are indicated by the
tilde character C) to avoid confusion with blank lines in the file.

All the commands 'w', 'b', and 'e', move past the end of a line. If you use them to move past
the upper or lower limits of the screen, the lines scroll up the screen accordingly.

You can use a preceding count with these commands, so '5w' moves the cursor forward five
words, for example.

4.2.5. (,), {, } - Moving by Sentences and Paragraphs
The '(' and ')' commands move the cursor over sentences, ')' to the beginning of the next sen
tence, and '(' to the beginning of the previous sentence. These commands take counts too, so
'2)' moves forward 2 sentences; '3(' moves back three sentences. A sentence is defined as string
of words ending with one of the characters '.', '!' or '!' followed by two spaces, or occurring at
the end of a line.

The '}' (beginning of next paragraph) and '{' (beginning of previous paragraph) commands
work similarly to the '(' and ')' commands except they jump the cursor by paragraphs instead
of sentences. However, if your file is text to be input to the nroff text formatter using the
macro packages -ma or -mm, vi recognizes the 'start of paragraph' macros available in these
packages, and positions the cursor accordingly.

If the file you are editing contains text to be formatted using one of the nroff macro packages
described in Printing and Formatting Document,, you can also tell vi to move forward or back
ward whole sections by using']]' to move forward a section, and '[[' to move back a section.

If the text you are editing is C programming language source text, '[[' and ')]' move forward or
backward over whole procedures.

4.3. Scrolling the Screen

Try the following commands to scroll the screen:

AD scroll down half screen
AU scroll up half screen
AF scroll down a full screen
AB scroll up a full screen

With AF and AB, two lines from the 'old' screen are retained in the 'new' screen for continuity.
These are the same commands you use to scroll the screen with view.

- 48 -

4.3.1. Moving to Specific Lines in the File

When editing, you may wish to position the cursor at some specific line. The command you use
to do this is 'G' or 'go to' command. For example, to move to the beginning, type 'lG'. To
move to line 45, type '45G'. Typing the G command with no preceding line number moves the
cursor to the last line of the file.

To find a particular character string anywhere in the file, you use the standard '/' command. It
is echoed at the bottom line of the screen where you then type the string you want to search
for, either as a fixed character string, or as a regular expression. Vi uses the same regular
expressions you learned about with grep. To signal the end of the character string, type either
ESC, or RETURN.

Vi places the cursor at the start of the next string that matches what you typed, going forward
through the file.

If the string is not in the current screen, the screen is changed to display that part of the file
which contains the string. Try this now with a string that is not on the screen, and notice how
the screen moves to track it.

Searches wrap around the file, so if the string isn't found between the current position and the
end of the file, it wraps around and continues from the beginning of the file. If the string is not
found, 'Pattern not Found' is displayed on the bottom line of the screen.

Use the '!' command plus a string to search backward through the file instead of forward.
Again, what you type is echoed on the bottom line of the screen.

To repeat a forward search, type '//'. To repeat a backward search, use '!!'. Or use two other
commands:

n to find next occurrence of same string in same direction
N to find next occurrence of same string in reverse direction

4.4. Inserting New Text

The two basic commands to enter new text into a file are a, which appends text after the
current cursor position, and i which inserts text before the current cursor position. When you
give either of these commands, any following text you type gets put in the file. To stop text
entry, press the ESC key.

If you are using a dumb terminal, when you type in the additional text, it might look as if you
are over-typing the existing text. Typing ESC straightens it out.

If you make a mistake w bile entering new text, correct it in the usual way with the DEL,
BACKSPACE or 'H keys.

You can also use s for 'substitute' to enter new text; it replaces a single character with lots of
characters, until you type ESC.

There are two other simple commands for entering additional text:

I insert text at the beginning of the line
A append text at the end of the line

Regardless of where the cursor is positioned on a line, the I command inserts text at the begin
ning or that line;

Similarly, A adds text at the end of the line, regardless of the cursor position. Blank lines of
text can be inserted by using the A command and making the first character you enter a
RETURN.

0

0

0

0

0

0

- 49 -

Two other commands that can be used to add new lines of text are the 'open lines' commands,
o and 0. The o command opens up a blank line following the current line, and the cursor is
placed at the beginning of the new line. Anything you type from now on, until you type ESC,
becomes the new line or lines. To get just a blank line, type ESC immediately following the o.

The O command works like the o command, except that it opens a line above the current one,
instead of below. This is the easiest way to add lines before the beginning of a file.

The uppercase R command replaces (overtypes) characters until you tell it to stop by pressing
the ESC key. The R command is useful when you have a fixed format, for example, where you
want to preserve column alignment.

Lowercase r 'replaces' a single character. For example, if you misspelled 'character' as 'cherac
ter,' place the cursor on the 'e' typo, type the r, then type the correct 'a'. The 'r' command
does not require typing ESC, since you are replacing only one character.

4.6. Creating a New File

To create a new file, simply call up vi with the name of the file you want to create:

tutorial% vi stuff'

The screen goes almost completely blank:

The cursor is in the top left hand corner with a row of tildes,-, down the left hand edge of the
screen. The ,-,s indicate that there are no lines in the file corresponding to these lines on the
display. The bottom line displays the name of the file you are creating, and an indication that
it is a new file.

Type a or i and type in all the text you want.

When you have finished and want to write the file away and quit the editor, type :wq. A mes
sage like:

"stuff'' 50 lines, 3172 characters

appears at the bottom of the screen. After you have quit. the editor, you see the 'tutorial%'
hostname prompt again.

You can now use the editor to create a .cahrc file in your home directory to set the hiatory and
to contain aliaaea.

- 50 -

4.6. Deleting or Changing Text

There are several way to delete and change characters and text.

4.6.1. Deleting Text with 'x'

The simplest command to use is the 'delete character' command x. If you want to x-out five
characters, you can do it in two different ways. You can either repeat the x five times, or you
give the command a leading count and say 5x.

However, if you change your mind, and want the characters replaced, the command you gave in
the first place matters a lot. If you gave the 5x command, you can get them all back with an
undo command of u (described later). However, if you said xxxxx, the u command only undoes
the last x command. To restore the line to its original state, use U.

The difference bet ween xxxxx and 5x is also import ant if you are going to use '.' (also
described later) to repeat changes.

You cannot delete characters beyond the end of a line.

4.6.2. Deleting Words and Lines with 'dw' and 'dd'

To delete a whole word, position the cursor at the beginning of the word, and type dw. Again,
you can give this command a count and delete more than one word at a time by typing 5dw,
for instance.

To delete a whole line, position the cursor anywhere on that line and type dd. The dd com
mand also takes a count, 5dd for example, to delete five lines.

Uppercase D deletes from the cursor position to the end of a line.

4.6.3. Changing Text
To change just one word of text, 'dimensions' Crom playfile for example, put the cursor on the
beginning of the word and type cw. You see:

/ dimension$

with the cursor on the first letter of 'dimensions' for example. The '$' at the end of the word
marks which word you are changing. Then type the word you want to substitute and ESC.
This exchanges one word for the other and adjusts the space accordingly.

4.7. Writing Your File and Quitting the Editor
Consider the following ways to save all your good work. Remember that you have to be in
command mode to do this, otherwise you'll find yourselC entering these characters into the file.

To save your changes, type:

:w

We recommend typing :w every few minutes while editing to insure that your changes are
saved.

If you want to save your changes and exit the editor, type any of the following:

:wq
or
:x
or
zz

0

0

0

0

0

0

- 51 -

Note the subtle differences here: :wq always writes out the file and then quits. The others :x
and ZZ only write the file out if changes are made, and then quit. If no changes are made, they
quit without writing.

Note also that with ZZ, you do not have to type RETURN.

If you want to exit the editor without having made any changes, type:

:q

If you want to exit the editor without saving your changes, type:

:q!

The '!' overrides any warning. If you are going to edit a file but might want to get back to the
previous version, make a back-up copy of the file before running vi.

4.8. Correcting Mistakes with 'u' and 'U'

When you make mistakes while making changes or adding text, there are two 'undo' commands,
namely u and U, which make corrections easy. The lowercase u simply undoes the last change
you made. If you have moved the cursor away from the position at which you did the change,
the cursor is repositioned to its original place after the change has been undone. Similarly, if
the screen has been moved since you did the change, it is moved back to its original display.
The u command undoes any change to the edit buffer, even if that change affected many lines.

Be careful. Giving another u command undoes the original 'undo' command, thus applying the
change all over again, but you can undo that also if necessary.

The uppercase U command can undo several changes, but only those made on the same line.
Once you move the cursor off the line, however, you can no longer use a U on that line.

Beware of using u and U in succession; the one does not undo the effects of the other.
Remember that you can also use :q!.

4.0. Repeating a Command with'·'

Use ' .', the period character, called 'dot,' to repeat a change, either at the same position or at
the new position.

4.10. Running Sun Commands from Inside the Editor

When you need to return to the Shell temporarily to process a job or get some information, you
don't have to leave the editor. Simply type :!command where command is the name of the com
mand you want. For example, to display your current directory from vi type:

:!pwd
/usr/evan
Hit return to continue.

The system displays the results of the command at the bottom of the screen, then prompts you
with 'Hit return to continue.'

You can also use the ez editor commands from vi. The 'r' (read) command, for example, adds
or 'reads' another file into the one you are editing with vi. The 'r' command adds the second
file to the first after the current line, that is, the line where the cursor is in command mode. To
be sure you know where the current line is, type a z<CR> on the line after which you want
the second file to be placed. This marks the current line and repositions it at the top of the
screen. When you type the colon ':' character, it is echoed at the bottom of the screen. What
ever you type up to RETURN is interpreted as an ez command, and also echoed at the bottom

- 52 -

of the screen as you type it.

Use the ez 'r' command plus the name of the file you want to read in. For instance, to read in 0
the file file, into the existing playfile, type:

:r files

This puts file, after the current line, that is, the line on which the cursor was before you typed
:r files. Be sure you know what your current line is. The bottom line of the screen displays the
number of lines read in. This is a handy way to join files.

To read the results of a Sun system command into the edit buffer, type:

:r !Is -I

for instance. This reads the current directory listing into the current file.

You now have quite a bit of information in your playfile, so you can play around with several
screens full to become more facile with vi.

4.11. A Bit About the 'ex' Editor
For the most part, you'll probably use vi once you become handy with its facilities. However,
the ez editor does have local and global text substitution capabilities that you can use from vi.
For instance, if you decide to change the string 'dollar' in playfile to 'greenback', type:

:/dollar/ s/ dollar/ green back/

The first 'dollar' finds the string to change, and 's' says to substitute for 'dollar' the string
'greenback'. This only changes the first occurrence of the string in a file.

To change the first occurrence of the string 'dimension' to 'measure' in each line in the file, use
the global substitution command ':g':

:g/ dimension/ s/ dimension/ measure/

Check through the playfile to see the result. Note that not only is the first 'dimension' now
'measure', but the string 'dimensionless' is now 'measureless'. Be careful how you specify the
strings. This command does a global search for any string with the characters 'dimension' in it
and substitutes 'measure' for the Jirat occurrence in every line.

To substitute 'lint' for every occurrence of 'fuzz' in every line, use:

:g/fuzz/s/fuzz/lint/g

The first ':g' command searches globally, and the second 'g' makes the substitution called by
's/fuzz/lint/' global as well.

4.12. Other Text Editors
The Sun system also supports the ed and aed editors. Ed is the interactive line editor that
forms part of the basic UNIX system. Sed is the 'stream editor' that is similar to ed in the
operations it performs, but it is not interactive; it cannot move backwards in the edit file. You
don't use aed to make permanent changes in a file, but to 'filter' parts of a file as you do with
the grep, aort, and awk utilities for example.

Read more about these editors in Editing and Text Proceaaing on the Sun Workatation.

0

0

0

0

0

- 53 -

6. PRINTING AND FORMATTING DOCUMENTS
The most commonly used formatter on the Sun system is nroff. Nroff prepares neatly formatted
output for a variety of printers. Nroff reads an input file containing unformatted text, inter
spersed with formatting requests and produces a neatly laid out document. The troff text for
matter is an advanced program that produces output for a phototypesetter. Troff has fine con
trol over sizes of characters, multiple fonts, and so on. Troff and nroff are compatible, so it's
possible to prepare input acceptable to both.

Basically, nroff makes all output lines the same length, and adjusts the spacing to justify the
left and right margins. You can also select page size, number of lines on the page, length of the
lines, size of margins, control indentation, center headings, and underline things. With the help
of 'macros,' either one you make yourself or a package like -m, described later in this chapter,
you can get footnotes, automatic page numbering and titles, automatic paragraph numbering,
and automatic generation of table of contents. This manual was formatted using -m, macros
with troff.

When you want to print something without any fancy formatting, headers or footers, use the
/pr command. You used this before in piping the sorted p/ayfile to the line printer with:

tutorial% sort playfile I lpr
tutorial%

The result is raw, unformatted text.

The pr command 'prepares' a file for printing with running headers and footers, the filename,
and the date and time the job is run.

The /mt command is a simple text formatter that just fills lines up to about 72 columns, so your
text then looks more like something on a standard 8-1/2 x 11 piece of paper.

Brief descriptions of these follow,· but if you want something fancier, use nroff and troff.

5.1. Printing a File with 'pr' and 'lpr'

The contents of a file can be printed using the pr and /pr commands. The pr or 'print file' com
mand prints to the Standard Output, which is normally your workstation screen. An example
of running pr on your playfile file is and piping the output through more is:

tutorial% pr playfile I more
Aug 6 11:20 1983 playfile Page I
/ dimensions
m *a*
kg *h*
sec *c*

<etc.>
township 36 mi2
tun 8 barrel
water .2249112.54 kg/m2-sec2

<etc.>
Aug 6 11:20 1983 playfile Page 2
wey 40 bu
weymass 252 lb
X unit l .00202-l 3m
k 1.38047-16 erg/degC
tutorial%

- 54 -

Pr separates the output into pages and puts a five-line header at the top and a five-line trailer
at the foot of each page. The trailer at the foot of the page consists of blank lines. In the 0
header, one of the lines forms a title consisting of a date, the filename and a page number. The
date shown in the header is the date the file was last modified. You can change the header by
various options to the pr command.

What pr really does is 'prepare' a file for printing. Generally you use pr in conjunction with the
lpr 'line printer' command, which routes files to the printer. You call pr with the -p option of
the lpr command as fallows:

tutorial% IP.r -p music • tutorial%

Lpr routes the named file(s), or the Standard Input if there are no named files, to the printer. It
does nothing else, so your file is printed beginning at the very top of the page. Also, if your file
takes more than one page, the printing carries over the perforations (assuming you are using
continuous form paper) without a break. This is why you use lpr in conjunction with pr.

Only error messages are displayed on the workstation screen. The exact workings of this com
mand and its options vary from one installation to another, since they largely depend on the
number and the types of printers available. See the Uaer'a Manual for the Sun Workatation for
details on lpr.

Your system has variations of the lpr command, or options to the command, which give you the
capability of displaying the printer queue (usually the command variation lpq) and removing
requests from the queue (usually the command variation lprm).

The pr command has many options for preparing a file. See the pr details in the user's manual.

5.2. Simple Text Formatting with 'fmt'

Fmt is simple and fast. Try it on your playfile:

tutorial% fmt playfile
/ dimensions m *a* kg *b* sec *c* coul *d* candela *e*
dollar *f* radian *g* bit *h* erlang *i* degC *j*

<etc.>
m2/sec2 tonne 1 + 6 gm torr mm hg township 36 mi2 tun 8 barrel
water .2249112.54 kg/m2-sec2 wey 40 bu weymass 252 lb Xunit
1.00202-13m k 1.38047-16 erg/degC
tutorial%

Fmt makes the lines of text reasonably even in length.

5.3. Running 'nroff'

After creating your file containing text to be formatted interspersed with formatting requests,
format the output with nroff and pipe it through more for viewing on your workstation screen:

tutorial% nroff' file I more

Now you can proofread it. Or you can print it by piping the output to the printer.

0

0

0

- 55 -

5.4. A Package Deal - the '-ms' Macros

The -ma macro package provides an easier way to format documents than basic nroff if you
want something more than straight paragraphs. It provides indented block and itemized para
graphs, page headers and footers, and page numbering.

Some examples of calls on -ma macros are:

.DS

.PP

.NH 2

.IP 'first stanza' 14

.DE

As you will see, the -ma calls look very similar to nroff formatting requests. Each consists of a
'dot' followed by two characters, optionally followed by arguments to the macro. All letters are
upper case, and each macro call must be on a line of its own.

Create a new file with the editor, perhaps using the king.art text below, and sample the -ma
macros. Then format your file with nroff and the ma macro option:

tutorial% nroff' -ms filename I more
tutorial%

Here you have the most useful calls for basic document formatting. For the full selection, see
the Editing and Tezt Proceaaing on the Sun Workatation.

5.4.1. Paragraphs - '.PP' and '.LP'

Ma provides two basic paragraph forms, an indented paragraph (that is, the first line is
indented), and a block paragraph. A standard paragraph example, unformatted and formatted
1s:

tutorial% more king.art
.PP
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

tutorial%

And the formatted version looks like:

tutorial% nroff' -ms king.art

King Arthur was at Caerleon upon Usk; and one day he sat in his chamber, and
with him were Owain, the son of Urien, and Kynon, the son of Clydo, and Kay, the son
of Kyner, and Guenever and her handmaidens at needlework by the window. In the cen
tre of the chamber King Arthur sat, upon a seat of green rushes, over which was spread
a covering of flame-covered satin, and a cushion of red satin was under his elbow.
tutorial%

For a left block paragraph, use the '.LP' macro:

tutorial% more king.art
.LP
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

tutorial%

The formatted result is:

tutorial% nroff -ms king.art

King Arthur was at Caerleon upon Usk; and one day he sat in his chamber, and with
him were Owain, the son of Urien, and Kynon, the son of Clydo, and Kay, the son of
Kyner, and Guenever and her handmaidens at needlework by the window. In the centre
of the chamber King Arthur sat, upon a seat of green rushes, over which was spread a
covering of flame-covered satin, and a cushion of red satin was under his elbow.
tutorial%

If you don't like these paragraph layouts, you can change them. Refer to the Editing and Te~t
Proceaaing on the Sun Workatation for details.

5.4.2. Quoted Paragraphs - '.QP'

If you want a paragraph or paragraphs indented from the surrounding text at both the left and
right edges, use the '.QP' (quotation) macro:

tutorial% more mark.twain
As Mark Twain wrote:
.QP
We should be careful to get out of an experience only the wisdom that is
in it - and stop there; lest we be like the cat that sits down on a
hot stove lid.
She will never sit down on a hot stove like again - and that is
well; but also she will never sit down on a cold one any more.

When formatted, this yields the following:

tutorial% nroff -ms mark.twain
As Mark Twain wrote:

We should be careful to get out of an experience only the wisdom that is in it
- and stop there; lest we be like the cat that sits down on a hot stovelid.
She will never sit down on a hot stove like again - and that is well; but also
she will never sit down on a cold one, any more. C"
tutorial% .,I

Try this now.

0

0

0

- 57 -

5.4.3. Lists and Descriptions - '.IP'
Use the '.IP' macro to create the so-called 'hanging indent' type of paragraph, most commonly
used for lists. You can give '.IP' an argument, for instance, the number of a list item. To pro
duce a list, format your text as follows:

.IP 1.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents .
.IP 2.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents .
.IP 3.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

The formatted version looks like:

1. The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

2. The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

3. The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

You can also make a description list, where you see the name of something on the left of the
page, and a paragraph describing it on the right. In this case, you give '.IP' two arguments, the
first argument is the name that is to appear on the left, and the second argument is how far to
indent the text on the right. The unformatted version looks like:

.IP Monday 12
Finish debugging program .
.IP Tuesday 12
Meet with customers for demonstration .
.IP Wednesday 12
Discuss documentation plans .
.IP Thursday 12
Outline training class.
.IP Friday 12
Lunch with manager.

- 58 -

When formatted, this looks like:

Monday

Tuesday

Wednesday

Thursday

Friday

Finish debugging program.

Meet with customers for demonstration.

Discuss documentation plans.

Outline training class.

Lunch with manager.

5.4.4. Relative Indents - '.RS' and '.RE'
When you need to indent text in relation to previously indented text, use the '.RS' and '.RE'
(relative indent start and end) macros. For example:

JP 1.
pigs cows chickens ducks
.RS
.IP * 3
pigs cows chickens ducks
.IP * 3
pigs cows chickens ducks
.RE
.IP 2.
pigs cows chickens ducks
.RS
.IP* 3
pigs cows chickens ducks
.IP* 3
pigs cows chickens ducks
.RE

when formatted looks like:

1. pigs cows chickens ducks

* pigs cows chickens ducks

* pigs cows chickens ducks

2. pigs cows chickens ducks

* pigs cows chickens ducks

* pigs cows chickens ducks

This is particularly useful for outlines.

5.4.5. Section and Paragraph Headings
You can have numbered headings up to five levels and un-numbered headings. All headings are
underlined by default (headings are made boldface if you are using troff), and may occupy
several lines if required.

0

0

0

- 59 -

5.4.5.1. Un-numbered Headings - '.SH'

Use the '.SH' (section heading) macro to introduce an un-numbered heading. For instance, the
output:

text and more text at the end of a paragraph.

A Section Heading

A new paragraph of text and more text
that continues and continues and continues.

was generated by using the formatting macros:

text and more text at the end of a paragraph .
. SH
A Section Heading
.PP
A new paragraph of text and more text
that continues and continues and continues.

Put the macro on one line and the actual heading on the following line or lines of the input
text. Begin the first paragraph following the heading with a '.LP' or '.PP' macro to signal the
end of the heading.

5.4.5.2. Numbered Headings - '.NH'

To introduce a numbered heading, use '.NH'. '.NH' implies a level 1 heading, and '.NH n'
where 'n' is a number calls the corresponding level number. For instance, consider the format
ting of this chapter in outline form:

.NH
Printing and Formatting Documents
.LP
.NH 2
Printing a File with 'pr' and 'lpr'
.LP
.NH 2
Simple Text Formatting with 'fmt'
.LP
.NH 2
Running 'nroff'
.LP
.NH 2
A Package Deal - the '-ms' Macros
.LP
.NH3
Paragraphs - '.PP' and '.LP'
.LP

When formatted, it looks like:

- 60 •

5. Printing and Formatting Documents

5.1 Printing a File with 'pr' and 'lpr'

5.2 Simple Text Formatting with 'fmt'

5.3 Running 'nroff"

5.4 A Package Deal - the '-ms' Macros

5.4.1 Paragraphs - '.PP' and '.LP'

5.4.6. The Date - '.ND' and '.DA'

To avoid having the current date at the bottom of every page of your document, put the macro
call '.ND' at the beginning of your input text.

To change the date shown on the bottom of every page, put the '.DA' macro at the beginning of
your input text:

.DA 8 June 1982

This also allows you to specify the exact format of date that you want, for example:

.DA 1982-6-8

5.4.7. Displays - '.DS' and '.DE'

A 'display' is some text that you want to appear as you typed it without any filling of lines,
indented from the surrounding text, and kept together on the same page. Use the two macros (','i
'.DS' (display start) and '.DE' (display end); the text that appears between these forms the .I
display. Consider the following formatted text:

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

which was formatted by:

.DS
King Arthur was at Caerleon upon Usk;
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
Bame-covered satin,
and a cushion of red satin was under his elbow .
. DE

0

0

0

- 61 -

You can further format your displays with the macros '.DS B', which justifies the left margin,
then centers the whole display, '.DS L', which displays the text as is without indenting, and
'.DS C', which centers each line of text individually on the page.

We used the '.DS' and '.DE' macros throughout this manual to offset the screen displays.

5.4:.8. Keeping Text Together - '.KS' '.KF' and '.KE'
To keep lines of text together on one page, for~ quotation, for example, use '.KS' to mark the
start of the text to be kept together (keep start), and '.KE' (keep end) to mark the end of the
text to he kept together. This is particularly useful for keeping the text of a table or list
together for example. If there is not sufficient room on the current page for the formatted ver
sion of the text between these two macro calls, -m, starts a new page, leaving the remainder of
the current page blank. An example looks like:

.KS

.IP Monday 12
Finish debugging the compiler .
.IP Tuesday 12
Meet with customers for demonstration .
.IP Wednesday 12
Discuss documentation plans .
.IP Thursday 12
Outline training class .
.IP Friday 12
Lunch with manager.
.KE

If you are working with text that must be kept together, but that need not immediately follow
the reference to it, use the floating keep '.KF' and '.KE' macro pair. The text is kept together,
and the remainder of the current page is filled with the following text .

. KF

.IP Monday 12
Finish debugging the compiler .
.IP Tuesday 12
Meet with customers for demonstration .
.IP Wednesday 12
Discuss documentation plans .
.IP Thursday 12
Outline training class .
.IP Friday 12
Lunch with manager .
. KE

5.4:.9. Titles and Cover Sheets

If you want to include a title and an author, or maybe even several authors on your document,
use the '.TL' macro to specify the title of the document and the '.AU' macro to show the
author or authors. Only the '.DA' or '.ND' macro calls to change or suppress the date may
appear before these macros.

Here is an example of calling the macros:

.TL
Tutorial for Beginners
.AU
Sonny Systems
.NH
GETTING ST AR TED
.LP
Sit down at your Sun Workstation.

- 62 -

The first page of formatted text produced looks like:

Tutorial for Beginners

Sonny Syatema

I. GETTING STARTED

Sit down at your Sun Workstation.

5.4.10. Overall Page Layout

By default, -ma provides page numbers in the center at the top of each page of the form '-2-'.
The run date appears at the bottom of each page when run with nroff. The top and bottom
page margins are set to one inch. The line length is set to six inches, and there is no page
offset. Many of these default parameters can be changed. See Formatting Document with the ''
-ma Macro Package in the Editing and Text Proceaaing manual.

5.5. Laying Out Tables with 'tbl'

Assume you have material that you want to lay out in tabular format, in rows and columns of
text with captions, headers, and such. Numeric material requires column alignment different
from alphabetic material. For this, use the tbl utility, which is a pre-processor for troff and for
nroff. In general, the tbl capabilities can only be fully exploited when used in conjunction with
troff, but some of the simpler aspects work with nroff.

Use the '.TS' and '.TE' macros just as you do any other set of begin and end macros to bracket
the desired text:

.TS
Description of the Table Layout
Data to be Laid Out
.TE

Leaving out one or the other of this set can have all sorts of weird results on your output.

The tbl processor sees a table in terms of three distinct parts:

1. The overall layout or form of the table. For instance, whether the table is centered
on the page, or whether the table is to be enclosed in a box.

2. The layout of each line of data in the table. This part determines how each column
in the table is laid out. For instance, whether it is left-adjusted, or centered, or
whether numeric data must be aligned on the decimal point. c:,

0

0

0

- 63 -

3. The actual data (the textual material) of the table itself.

Study the following simple example:

.TS
tab(/) ;
I 11.
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797 /9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

The line with tab (/}; on it is the so called 'options' part of the table. This is the first part in
the list above. In this particular case, the only option to tbl is to tell it that the 'tab' character
is to be a slash character. Normally, tbl expects to see the columns of data in the data part of a
table separated by real tab (' I) characters. Our example uses a visible character that is not
part of the data, the slash character /, in this case because it's easier to see what's going on.
Terminate the options part of the table by a semicolon.

The next part of the table header is the description of how the actual columns of data are to be
laid out, part 2 from the list above. In this case, there are three left-adjusted columns, indi
cated by the I format letters. You can have many lines of format descriptions. Each line of for
mat description in part 2 of the table corresponds to a single data line in part 3, the data part
of the table. If, however, there are more lines of data in the data part of the table than there
are format description lines, the last line of the format description part applies to all the
remaining lines of the data. Here, the three letter I format letters apply to every line in the
data part of the table. Terminate the format descriptions with a period at the end of the last
one.

Then add the actual data of the table, each field of which is separated from the next by the /
character. Here you learn the birthdates and number of symphonies composed by several well
known classical composers.

Now create a file called muaic with this text, format the table and display it for viewing by typ
mg:

tutorial% tbl music I nroff' -ms I more

Franz Joseph Haydn
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Franz Schubert
Johannes Brahms
Gustav Mahler

1732 104
1756 41
1770 9
1797 9
1833 4
1860 9

You can of course also redirect the output to a file with'>', or give tbl a list of files, which are
processed one by one in the order in which you specified them on the command line. Here the
table appears on the left hand side of the page. You probably would prefer it centered in run
ning text, in which case you add a center option to the options part of the text:

.TS
center tab (/) ;
I I I.
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797 /9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

When formatted, this looks like:

• 64 -

tutorial% tbl music I nroff' -ms I more

Franz Joseph Haydn
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Franz Schubert
Johannes Brahms
Gustav Mahler

1732 104
1756 41
1770 9
1797 9
1833 4
1860 9

To align numerical entries, you must treat numbers as numbers, not just as any character.
Change the format specification letters for the birthdate and number of symphonies:

.TS
center tab (/) ;
I n n .
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797 /9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

The format specification part indicates that the second and third columns are numerically ('n')
aligned columns so the data in the second and third columns of each line is aligned properly to
the right. The formatted version looks like:

tutorial% tbl music I nroff' -ms I more

Franz Joseph Haydn
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Franz Schubert
Johannes Brahms
Gustav Mahler

1732
1756
1770
1797
1833
1860

104
41
9
9
4
9

To add captions for the individual columns, see what has been included in the following:

0

0

0

.TS
center tab (/) ;
C CC

Inn.

- 65 -

Composer/Birthdate/No. of Symphonies
.sp
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797 /9
Johannes Brahms/1833/ 4
Gustav Mahler/1860/9
.TE

The example above now shows an extra line in the format description part, and some extra
data in the data part. The first iine of the format descriptions indicates that there are to be
three columns of data, each one centered within its column. This format applies to the very
first line of the data. The second (and last) line of the format description part is the same as
before, and it applies to all the remaining data lines in the table.

This new layout looks like:

tutorial% tbl music I nroff' -ms I more

Composer

Franz Joseph Haydn
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Franz Schubert
Johannes Brahms
Gustav Mahler

Birthdate No. of Symphonies

1732
1756
1770
1797
1833
1860

104
41
9
9
4
9

By the way, when you describe a table, the format description part, part 2 of the table, must
always describe the largest number of columns which that table has. If there are some lines
which have fewer columns of data, you must indicate what to do with those specific lines.

You can also print a table with a centered overall heading line for the entire table. This is
called a 'spanned heading,' meaning that that a column of data spans across into the next
column.

.TS
center tab (/) ;
CS S

CCC

Inn.
Music Trivia
.sp

- 66 -

Composer/Birthdate/No. of Symphonies
.sp
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770 /9
Franz Schubert/1797 /9
Johannes Brahms/ 1833 / 4
Gustav Mahler/1860/9
.TE

Here the result is:

tutorial% tbl music I nroff' -ms I more

Music Trivia

Composer Birthdate

Franz Joseph Haydn 1732
Wolfgang Amadeus Mozart 1756
Ludwig van Beethoven 1770
Franz Schubert 1797
Johannes Brahms 1833
Gustav Mahler 1860

No. of Symphonies

104
41
9
9
4
9

The first line of the format description part now shows a centered, spanned column. A spanned
element can span as many or as few columns as you like.

Read the Editing and Text Proceaaing on the Sun Workatatin for the details of tbl's other capa
bilities.

5.6. Formatting Mathematical Equations with 'eqn'

The eqn and neqn packages aid preparation of documents containing mathematical equations.
Eqn is a preprocessor for troff, and neqn is a preprocessor for nroff. The preprocessors set the
mathematics while troff and nroff do the text of a document. These turn English-like descrip
tions of an equation into the formatting request for generating the mathematical symbols for
that equation. The capabilities are restricted by the limitations of typewriter-like printers.
Enclose equations with '.EQ' and '.EN' to tell eqn where the equations begin and end. A simple
example is:

.EQ
x=y+z
.EN

which produces:

0

0

0

- 67 -

z=y+z

You can print mathematical symbols and names and the Greek alphabet with eqn .

. EQ
x =2 pi int· sin (omega t)dt
.EN

which produces:

z=21r J sin(wt)dt

(Note that your printer may not handle these fancy fonts.) You can also produce superscripts
and subscripts for example with the words sup and sub:

.EQ
y = c sub 1 x sup 2 + c sub 2 x + c sub 3
.EN

which produces:

Eqn does not process '.EQ' and '.EN' other than to take care of the equation between them. So
you have to center, number, and justify the equations yourself or use eqn in conjunction with
the -ma macro package, which as you know, takes care of those things for you. See Editing and
Text Proceuing for details.

5.7. Formatting with 'nroff' or 'troff'
Prepare the input file, using an editor, and embed the nroff or troff requests in the text of the
document to be formatted. Put each request itself at the beginning of a line. A request cannot
appear on the same line as the text to be formatted, although sometimes part of the text to be
formatted can be given as an argument to a request. A formatting request consists of a basic
nroff instruction, (a period or 'dot' followed by one or two characters), or a call to an nroff
macro, optionally followed by one or more arguments separated by spaces.

Some examples look like:

.Sp

.po 8

.hp

.in 5

.ti -3

.in+ 5

.ce 4
'ul

Putting a space between the instruction and any numerical value that an argument may take
makes the requests easier to read, although it's not necessary.

An argument may also be a number preceded by a plus sign or a minus sign. This means a
change relative to the existing value of whatever it is you're altering. For example,'.in + 5'
means indent the margin 5 spaces more than what it is now, and similarly '.in -4' means back
off that indent by 4 spaces.

- 68 -

5.7.1. Page Breaks- '.hp'

To do your own page breaks, insert the '.hp' (break page) at strategic points in your document.
The macro package automatically does this, but sometimes you may want to force a new page.

5.7 .2. Blank Lines - '.sp'

You can put blank lines in the output by using the '.sp' request. The appropriate number or
blank lines are left in the output text. For example, to put three blank lines between sentences,
use '.sp 3':

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son or Urien,
and Kynon, the son or Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window .
. sp 3
In the centre o(the chamber King Arthur sat,
upon a seat or green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

which when formatted is:

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son or Urien,
and Ky non, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion or red satin was under his elbow.

An '.sp' request with no argument leaves one blank line in the output. Or you can produce a
blank line by just leaving blank lines in the input text. Using '.sp' is better because it is easier
to change later if you decide to add more or (ewer blank lines.

5.7 .3. Centering and Underlining - '.ce' and '.ul'

Use the '.ce' request to center lines or text. The '.ce' request without an argument centers one
line, (or example:

.ce
Tutorial for Beginners

centers the following line or text:

Tutorial for Beginners

To center more than one line of text, type:

0

0

0

.ce 3
ducks chickens
cows ducks chickens
pigs cows ducks chickens

centers the following three lines of text:

- 69 -

ducks chickens
cows ducks chickens

pigs cows ducks chickens

Filling is temporarily turned off when lines are centered, so each line in the input appears as a
line in the output, centered between the left and right margins.

If you don't want to count how many lines you want centered, say:

.ce 100
Some random number of text lines

<etc.>
.Ce 0

The '.ce O' request simply stops the centering process.

Note that the argument to the '.ce' request only applies to following text lines in the input.
Nroff request lines are not counted.

Underlining is somewhat misleading, for nroff underlines and troff italicize, the words. If you
want to 'underline' a heading for example, and format the text with nroff, use the '.ul' nroff
request, and type:

.ul
ducks

which underlines as:

You can use the same numbering count with '.ul' as with '.ce'.

You can of course also this to emphasize single words:

The best way to learn a new system is
not just to read about it, but to
.ul
use
the facilities it provides.

Troff produces: 'The best way to learn a new system is not just to read about it, but to uae the
facilities it provides.' Notice that you have to arrange your input so that the word you want
underlined appears on a line of its own.

5.7 .4:. Indentation - '.in'

To indent lines of text, use the '.in' request. For example, '.in 5' indents all following lines five
spaces.

- 70 ~

.in 5
King Arthur was at Caerleon upon Usk;
and one day he sat in his cham her,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window .
.in 0
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

Use '.in O' to turn off the indent.
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

5.7 .5. Temporary Indents - '.ti'

For a temporary indent in relation to the current, use the '.ti' (temporary indent) request. This
works on the following line only. For example:

.ti 5
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

produces:
King Arthur was at Caerleon upon Usk;

and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

5.7 .6. Filling - '.nf' and '.fi'
If you don't want lines filled in, use the '.nf' (no fill) request. Lines are still left justified. To
turn filling back on after you've entered text, type the '.fi' (filling) request. The formatted ver
sion follows the unformatted version here.

0

0

0

- 71 -

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were
.nf
Owain, the son of Urien,
and Kynon, the son of Clydo,
and Kay, the son of Kyner,
and Guenever
and her handmaidens at needlework by the window .
. fi
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

King Arthur was at Caerleon upon Usk; and one day he sat m his chamber, and with
him were
Owain, the son of Urien,
and Kynon, the son of Clydo,
and Kay, the son of Kyner,
and Guenever
and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat, upon a seat of green rushes, over which
was spread a covering of flame-covered satin, and a cushion of red satin was under his
elbow.

''

0

0

0

- 72 -

6. COMMUNICATIONS
The Sun system provides several facilities for communicating with local and remote hosts. You
can use mail to send messages, which your friends can read at their leisure, save and respond to
as necessary. For a quick message, there's thf write command that sends the message to
another user immediately. The network news provides a widely distributed network for com
municating news items. The tip utility provides dial-up phone access to other systems. For
more information on mail and the network news, refer to the Mail U8er '8 Guide and the Net
work New8 Uur 18 Guide in Part Two of this manual. For information on write and tip, see the
Uur '8 Manual for the Sun Worbtation.

For set-up instructions on either of these two facilities, refer to the Sy8tem Manager 'a Manual
for the Sun Workatation.

6.1. The Electronic 'mail' System

When you send mail to another user, the messages pile up in a 'mailbox.' If your recipient is
logged in and has 8et mail set in his .login file, he is notified that mail has arrived when he com
pletes whatever command he is using at the time. If he is not logged in, your message is saved
in the mailbox file, and the recipient is notified that he has mail the next time he logs in.

The mail program keeps track of what you do with your mail; it records whether you throw a
message away, save it in your mailbox, write it to a separate file, or respond to it, for example.

When you log in, or sometime during a work session, you will receive the message:

You have mail.

or

You have new mail.

indicating that you have mail in your 'mailbox.'

6.1.1. Reading Your Mail

To read your mail, type:

tutorial% mail
Mail version 2.17 12/26/82. Type! for help.
11/usr/spool/mail/evan": 1 message 1 unread
---+U 1 lori@tutorial Tue Oct 29 12:43
&

The system responds with a numbered list of messages. To read your mail, type either
RETURN for the next message or:

&p
From lori Fri May 4 21:20:03 1983
Date: 4 May 83 21:19:54 PDT (Fri)
From: lori (Lori Rosen)

- 73 -

Message-Id: <8307020419.AA01512@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA01512; 4 May 83 21:19:54 PDT (Fri)
To: evan
Status: R

Are you going to the birthday party this evening!
I need a ride.
&

for the current message, or pn where the number n is for the message of that number. The
example above is an approximate representation as the message heading varies with who sent
you the mail, from what system, and so on.

To save the message in a file for future reference, type:

& s filename

where filename is your chosen filename. Note that this appends the message to the named file
and does not overwrite any existing contents.

To quit the mail program and have your mail correspondence updated automatically on what
messages you have and have not read, type:

&q

To delete the message you just read, type:

&d

To delete a specific message, number 5 for instance, type:

& d5

Your mail is erased, unless you 'undelete' a specified message with the u command before you
leave mail.

And if you want to leave mail and get back to the Shell without making any changes to your
messages or reading any of your mail, type:

&x

for 'exit.' Any deleted messages are undeleted.

You can get help at any time during this correspondence by typing a '!' sign, and mail displays
a quick and dirty summary of the most helpful responses.

q
X

p
slfile)
wlfile)

&?

quit
exit without changing mail
print
save (default mbox)
same without header

0

0

0

d

+
muser
! cmd
!

print previous
delete
next (no delete)
mail to user
execute cmd

6.1.2. Replying to Mail

- 74 -

There are two ways to reply to mail. You can type an 'r', which sends a response to everyone
who received the original message. Or, you can type a 'R' to respond only to the sender of the
message and not to any of the names listed as Cc:'s (more on this later).

To reply to everyone, type:

& reply

at the mail prompt or just 'r' for short.

&r
To: lori

You see the message header 'To: lori' for example, and you can type m your response, ter
minated by a ·o.

6.1.2.1. Your Own Mailbox or 'mbox'

To save the mail in your mboz (mailbox) file, type:

&q

for 'quit' when you are done reading your mail. This appends any messages you have read, but
not deleted during the current session to the mboz file in your home directory or creates the file
the first time you use 'quit'.

6.1.3. Sending Mail

Assuming that you are using tl .. 2 Sun system network, and that you are sending mail to one of
your colleagues on another host system, use the mail command and indicate the recipient and
his hostname. For instance, to send mail to 'kathy' whose hostname is 'venus,' type:

tutorial% mail kathy@venus
We are moving the project due date up one week.
Let me know if this causes a problem.
·n
EOT
tutorial%

Ask your system administrator for the names of other users' hosts.

To send mail to someone with an account on the same system is even easier. Assuming you are
logged in to 'angel' and want to send mail to Steve, who also has an account on 'angel', simply
type:

- 75 -

angel% mail steve
Will you be out of town on business next week?
·o
angel%

Try sending mail to yourself. Be patient; mail delivery is not instantaneous, and it often takes
a few seconds for you to be notified that 'You have new mail.' (Mail is handled by a background
process.)

6.1.4. Personalizing Your Mail in Your .mailrc File

Just as you have a .login and a .cshrc file in which you can customize your account, you can
also create a .mailrc file in your home directory to prompt you for additional information in
messages and to provide the same kind of alias shorthand as in your .cshrc file.

If you would like to be prompted for a 'Subject:' header, include the 'ask' option in your .mailrc
file:

set ask

Now try sending yourself mail as follows:

tutorial% mail lori
Subject: Sending Mail
This shows how to get a 'Subject:' header
when sending mail.
'D
tutorial%

If you want to send copies of a letter to a distribution list, edit your .mailrc file to include:

set askcc

which will then prompt you with 'Cc:' when you terminate a message with ·o. Again, try it on
yourself:

tutorial% mail lori
Subject: Sending Copies
This shows how to send copies
of messages.
'D
Cc: Chris
tutorial%

6.1.4.1. Distribution Lists and Aliases

As you learned in the chapter on Using the Shell, you can set aliases for long lists of commands
or names. This is particularly useful here for distributing copies of letters to the various
members of a project group for instance.

Put an 'alias' in your .mailrc file, for example:

alias gang jon tom marty steve evan@venus

which specifies the members of a particular project.

0

0

0

0

0

tutorial% mail gang
Subject: Priorities

- 76 -

It is critical to get the product completed by November.
AD
tutorial%

Remember that all these message recipient names are really login names, but the alias may
include 'evan@venus' (or mailing to remote hosts.

6.2. Writing to Other Users with 'write'

The write command immediately sends a message to a specified user, when you type the mes
sage, provided that the recipient is log;:=cd in to the same system at the time. Use write only
when it's a real emergency because it does bother some people when messages start appearing
while they 're trying to type at the workstation.

If your recipient is logged in over a phone line, their phone will be continuously busy, so write is
the easiest way to reach them.

A typical example or how to use write is:

tutorial% write joann
Is the customer demo ready!
AD
tutorial%

You are not prompted after you type write and the login name, so simply type in the message
you want to send, as many lines as you like, and end it with the end-of-text character, AD. You
don't get any indication that your message has actually been received.

What the recipient, "joann", sees is:

Message from tutorial!lori on tty08 at 10:42 ...
Is the customer demo ready!
EOF

'tutorial' is the hostname of the system that Joann and Brad are usmg. The EOF indicates
that the message is finished, and Brad has quit writing.

This is a simple one-line message, but if you send more than one line, your recipient doesn't get
it all at once. He sees each line only after a RETURN is typed, so the EOF is the only indica
tion that the message is complete. This causes problems for a two-way conversation, which is
usually what you'll use. For example, suppose Brad tries to get in touch with Jay:

tutorial% write jay

but doesn't immediately enter the message to see i(Jay is logged on. Jay receives a message
that says:

Message from tutorial!brad on tty08 at 10:45 ...

At this point Jay gives his own write command:

titan% write brad
Hi. What?

Jay doesn't type AD, so now Jay and Brad are 'talking' to each other, until one of them types
AD to drop out of the conversation.

- 77 -

At the end of the conversation, Brad's screen might look like this:

tutorial% write jay
Message from tutorial!jay on tty04 at 10:45 ...
Hi. What!
How about discussing the project this afternoon?
There's a department meeting. Sorry.
Maybe tomorrow
morning!
Sounds good.
'D
tutorial%

What Brad has typed is shown boldface, Jay's replies are in normal type. Jay's screen looks
like:

tutorial% Message from tutorial!brad tty08 at 10:45 ...
write brad
Hi. What?
How about discussing the project this afternoon!
There's a department meeting. Sorry.
Maybe tomorrow
morning?
Sounds good.
EOF
'D
tutorial%

Here we have shown what Jay typed boldface, and Brad's contributions in normal type. Here
the dialogue consisted of simple one-line questions, but if you are going to provide several lines
of information rather than ask questions, use the protocol, which suggests that you terminate
each message with the character o, for 'over', and when you are about to quit the conversation,
type oo, for 'over and out'. You can also set up your personal protocol with your colleagues.

If you try to write to someone who is not logged in, you get a message:

tutorial% write sylvia
sylvia not logged in.
tutorial%

and write terminates. You get the same response if you try to write to someone who is not a
user, because write doesn't check for known system users, only for users logged in. Remember
that you can always use the who command to see who is logged in:

tutorial% who
susan ttyOO 08:30
henry tty03 08:31
jay tty04 09:05
susan tty06 09:15
hank tty07 09:15
brad tty08 09:10
tutorial%

If you have already started typing your message when the system finds that the user is not
logged in, and decides to ignore your command, cancel what you have typed using your line kill

0

01

0

0

0

0

- 78 -

character CU). This is not critical, but it can be disconcerting when the system tries to inter
pret your partial message as a command next time you press RETURN.

You may try to write to someone and get the response:

tutorial% write hank
Permission denied.
tutorial%

This means that the recipient is using one of the system commands that 'locks out' the write
command to prevent messages from messing up nicely formatted output. This is the same mes
sage you get if you try to write to a user who has used meag to prevent you writing to his
workstation. Meag is described later.

What's really happening here is that you are writing to the user's workstation or terminal, for
example, to tty08, where our who example shows Brad is logged in.

The example of the who command shows that the user 'susan' is logged in to the system twice,
once on ttyOO, and again on tty06. Choose one, and if you don't get a response, quit that write
and try to get the user on the other:

tutorial% write susan tty06
Are you there?
'D
tutorial% write susan ttyOO
Are you there?
Message from tutorial!susan ttyOO ...
Yes. What's up!
Working late?
Yes. See you tomorrow.
EOF
'D
tutorial%

If you don't specify a terminal, write chooses one for you:

tutorial% write susan
susan logged more than once
writing to ttyOO

Write chooses the lowest number terminal, so if you don't get a response there, specify the par
ticular tty num her to get messages sent to the other terminal.

If you have a long message to communicate, use a text editor to prepare the message in a file
and correct any mistakes before anyone else sees them. Send this message by redirecting the
Standard Input:

tutorial% write jay < message
tutorial%

The recipient receives the message all at once. There is no waiting between lines, as there is
when the message is typed following the write command. Use the mail command....described,
above to send very long messages so your recipient can choose his own time to read them.

Here as in the editor, you can use the exclamati<>n mark character ! to call a system command.
For instance, suppose you want to find the location of some files and let someone else know.
You change to the desired directory and start writing. If you forget the name of the directory,
you can find out in the middle of writing by saying:

- 79 -

tutorial% write joe
The files you want are in the directory:
!pwd
/dd/project/brad/docs/memos
!
/ dd/project/brad/ docs/ memos
AD
tutorial%

You still have to type in the output of the command called by '!'. Of course, the command you
give following '!' may have nothing to do with the message you are sending. You may also
redirect the Standard Output of the command, so you don't see any output on the screen. The
second '!' signals command termination.

6.3. Preventing Message Interruptions with 'mesg'

Ir you dislike being interrupted by your friends' messages while you are programming at your
workstation and especially when you are using a text editor, set the mesg command to 'n' to
stop incoming messages:

tutorial% mesg n
tutorial%

This 'no' tells the system to prevent someone else from writing to you. The message sender
sees:

Permission denied.

The default is 'yes', and you can check how yours is set by typing:

tutorial% mesg
IS y
tutorial%

As a first-time user, yours is undoubtedly still enabled. Setting mesg to 'no' only lasts for your
current login session unless you set it permanently. To do this, edit your your .login file to
include:

mesg n

6.4. Local Area Network Facilities
~i'

Your local network lets you log in to other systems or 'rhosts' (remote hosts) to do work, copy
files, or whatever.

6.4.1. Making Connections with 'rlogin' and 'rsh'

Use the rlogin (remote login) command to log in to another system. For example, to do a
remote login to the 'angel' system from your host 'tutorial,' use the rlogin command:

tutorial% rlogin angel
Last login: Mon Jul 11 22:23:40 am ttypO
Sun UNIX 4.2 (Berkeley beta release) (GENERIC) #8: Wed Oct 23 13:45:52 PDT 1983
angel%

You can then login as you normally do, although a password is not necessary if you log in as the
same user on an equivalent host. In both cases, your local user name must exist on the remote

0

0

0

0

0

0

- 80 -

host to allow remote command execution as there isn't any password prompt. Your system
administrator sets this up for you.

You can write to another user on the system or send mail without having to provide a hostname
if you 're on the same system.

Log out as you normally do:

angel% logout
Connection closed.
tutorial%

You can go on with your local work as before.

If you want to execute a single command on another system, use the rah (remote Shell) com
mand. For instance, to find out who is logged in on 'angel', say:

tutorial% rsh angel who
lori console Jul 28 09:48
tutorial%

6.4.2. Copying Files From Other Systems with 'rep'

Your local network also allows you to copy files from one system to another with the rep
(remote copy) command. For example, if you need one of your colleague's files from another
system, type:

tutorial% rep krypton:/usr/henry /misc/plan .
tutorial%

This copies from/uar/henry/miac on system 'krypton' the plan file into your current (or dot '.')
directory on your host 'tutorial'. If you need to copy a directory with its contents, use the -r
(recursive) option:

tutorial% rep -r krypton:/usr/henry/misc.
tutorial%

This copies all of the miac directory, including any subdirectories and files, into your current
directory.

Note that if you're using'[]', '*', '$', ,-,, '<', '> ', ''' or '!', as with rah, you must enclose the
path in quotes. For example:

tutorial% rep -r 'venus:/usr/kathy/misc/chap•'.
tutorial%

This quotation prevents some strange and undesirable filename expansion.

6.5. Additional Communication Facilities

The Sun system supports several additional communication facilites for which detailed descrip
tions are out of the scope of this manual. We introduce these facilities to you here and recom
mend that you read the indicated documentation and user's manual pages for instructions on
how to use them if you are interested.

The uucp (UNIX-to-UNIX copy) utility provides networking of machines over phone lines. The
mail facility uses it to send mail to users at remote sites and the network news facility described
below uses it to transmit news articles. The tip facility permits file transfers between machines.

- 81 ~

6.6.1. Network News

The network news, or simply netnew,, provides access to the USENET (User's Network). Net
newa is a communication facility for sharing information among a large number of users. It can
be described as an electronic bulletin board. You can send articles from one machine to another
for limited or very wide distribution, post an article to interested persons, browse through old
news, post follow-up articles, and send direct electronic mail replies to the author of an article.
You can select the articles, which are arranged in categories called newagroup,.

See the Network New, Uaer ,., Guide in Part Two of this manual for details.

6.5.2. Dialing to Remote Systems with 'tip'

With the tip utility, you can dial in with a phone hook-up to a remote system to transfer files
from one machine to another. You must have a login name on the remote machine. You can
use either the name of the remote system or the phone number with the tip command to make
the connection.

A typical example is:

tutorial% tip tymnet
dialing ... connected

Or you can use the phone number of the desired system by typing:

tutorial% tip XXX XXXXXXX
dialing ... connected

where XXX XXXXXXX is the phone number. Ask your system administrator for specific
details.

Occasionally, you may receive the response:

dialing ... no answer
EOT

or

all ports busy

which can mean a number of things, such as all outgoing lines are busy.

A tilde C) at the beginning of a line is the escape character.

To logout, type - •.

For a full description of tip, ref er to the user's manual.

0

0

0

0

0

0

- 82 -

7. SUN SYSTEM SUMMARY
This summary provides brief descriptions of the Sun system facilities.

General Characteristics

Device-independent If O and redirection

Highly efficient buffered stream 1/0 is integrated with formatted input and output.

Virtual memory

Supports processes up to 16 megabytes (given adequate disk space for paging) for greatly
enhanced amount of available main memory and reduced delays when running programs as
only the parts of the program needed to be loaded in core are in fact loaded.

Hierarchical File Syatem

The file system uses large blocks on the disk and incorporates knowledge of disk geometry
to maximize throughput and minimize seek time.

Job Control Facilitie,

Support for multiplexing of terminals between jobs; running several jobs at once, some in
the background and others in the foreground and moving running jobs from background to
foreground and vice-versa.

/nterproceaa Communication

Network communication using standard protocols. Inter-process communications
integrated into UNIX. User access to interprocess and network communication through
sockets. Arbitrary processes in the system may communicate in either a message or stream
oriented fashion. Provide remote logins, copies, and Shells over the local network.

Diakleaa Operation

The diskless workstation allows larger and more cost effective drives to be used by central
izing disk storage. In a clustered configuration, file-sharing is promoted by the existence of
file servers, which support all disk and paging traffic. Access protocol protects clients of
the server against server crashes, a server crash resulting only in interrupted service.

Networking

The 4.2 system includes an ISO-OSI model local networking subsystem. Fully supported is
the DARPA internet family of protocols and associated addressing. The datagram (UDP)
and stream (TCP) protocols are supported, as well as the error message protocol (ICMP)
and packet forwarding at the internet layer (IP). A routing information protocol allows
hosts to determine the shortest route to a destination within the local network.

C-Shell

Mail

A powerful interactive command interpreter, which provides foreground-background type
job control, a history mechanism to greatly reduce the amount of typing at the command
level, and a macro-like aliasing facility for personalizing the command environment. It
supports string variables, trap handling, structured programming, user profiles, settable
search paths, and multilevel filename generation.

User-friendly interactive mail facility that makes it easy to deal with large volumes of mail.

SunCore

- 83 -

An implementation of the ACM Siggraph standard package of graphics software, plus
extensions. SunCore is implemented to level 3C of the ACM Core specification for output
primitives and to level 2 of the ACM Core specification for input primitives. Extensions to
the Core include textured polygon fill algorithms, including 2D and 30 operations, raster
primitives, rasterop attributes, shaded surface polygon rendering and hidden surf ace elimi
nation.

SunWindowa

The Sun Windowa system emphasizes extensibility, accessibility at multiple layers, and pro
vision of appropriate parts and development tools. Specific applications are provided as
examples, and the system is designed to be expanded by clients. There is open access to
lower levels, and convenient and powerful facilities for common requirements at 01gher lev
els. Standard tool windows are available, such as shell tools and graphics tools. These win
dows may overlap and be manipulated via p!Op-up menus.

Languagea

Compilers for C, Pascal, and Fortran 77; symbolic debugger dbz for C and F77 programs.

Editing and Tezt Proceaaing

The vi/ ez pair of editors for use with either line-oriented or full-screen terminals; include
regular expression searching. Nroff/ troff document formatting facilities for line printer and
phototypeset output.

Program Development

The Sun operating system provides a solid base for a flexible program development environ
ment. A powerful set of utilities allows full use of the UNIX-based (Berkeley 4.2) operating sys
tem.

diff

make

dbz

adb

yacc

ar

aa

Compares two files and report differences. Checks C programs for syntax errors,
type violations, and portability problems.

Indispensable tool for making sure that large programs are properly compiled with
minimal effort through a control file specifying source file dependencies; knows about
cc, yacc, lez and so on. Source Code Control System for maintaining and controlling
multiple versions of text files.

A source level debugger for C programs.

Low-level symbolic debugger; examine arbitrary files with no limit on size; interac
tive breakpoint debugging with the debugger as a separate process; symbolic refer
ence to local and global variables; patching; stack trace for C programs; and output
formats of: 1-, 2-, or 4-byte integers in octal, decimal, or hex; single and double float
ing point; character and string; and disassembled machine instructions.

A parser generator for BNF grammars.

Maintain archives and libraries; combine several files into one for housekeeping
efficiency; create new archive; update archive by date; replace or delete files; print
table of contents; and retrieve from archive.

Call assembler to create object program consisting normally of read-only and shar
able code, initialized data or read-write code, uninitialized data; relocatable object
code is directly executable without further transformation; object code normally
includes a symbol table; 'conditional jump' instructions become branches or branches
plus jumps depending on distance; searching for integer, character, or floating pat
terns.

0

0

0

0

0

0

od

Id

nm

uze

atrip

time

- 84 -

Dump any file; output options include any combination of octal or decimal or hex by
words, octal by bytes, ASCII, opcodes, hexadecimal; range of dumping is controll
able.

Link edit; combine relocatable object files. Insert required routines from specified
libraries; resulting code is sharable by default.

Print the namelist (symbol table) of an object program; provide control over the
style and order of names that are printed.

Report the memory requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Report timing information on a command execution.

prof Construct a profile of time spent per routine from statistics gathered by time
sampling the execution of a program; subroutine call frequency and average times for
C programs.

Graphics Tools and the Window System

Pixrecta Device-independent interlace to pixel operations.

SunWindowa
A tool for overlapping windows, including imaging control, creation and manipula
tion of windows and distribution of user inputs.

Suntoola A multi-window executive and application environment supporting pop-up menus,
icons and combined text and graphics.

Icon Tool Simple bit-map editor.

Communication Facilities
The Sun system provides an electronic mail facility, access to the USENET network, and facili
ties for transferring files to and from remote machines. Some of these facilities include:

mail Mail a message to one or more users; read and dispose of each message individually;
the presence of mail is announced by login and optionally by cah; save messages in
files or forward them; and support for items such as 'Subject:' and 'Cc:' fields.

network newa
Access to USENET news articles.

tip Utility to establish full-duplex connection for logging in to remote UNIX systems via
dialup lines; provide transparent interface to remote machine; transmit files; take
remote input from local file or put remote output into local file.

uucp Perform spooled file transfers between two UNIX machines; provide automatic queu
ing until line becomes available and remote machine is up; copy between two remote
machines.

write Establish direct workstation or terminal communication with another user.

wall Write to all users.

meag Inhibit receipt of messages from write and wall.

calendar Provide automatic reminder service for events of today and tomorrow.

User Access Control Facilities
Commands include:

login

rlogin

rwho

- 85 -

Sign on as a new user; verify password and establish user's individual and group
(project) identity; adapt to characteristics of a terminal; establish working directory;
announce presence of mail; publish message of the day; execute user-specified profile;
start command interpreter or other initial program.

Log in to another machine.

See who is logged in on the local network.

paaawd Change a password; 11se:r can change his own password; passwords are encrypted for
security.

File Manipulation Facilities
Commands include:

cat Concatenate one or more files onto 5tandard output; U5ed for unadorned printing,
for inserting data into a pipeline, and for buffering output that comes in dribs and
drabs; and works on any file regardless of contents.

cp Copy one file to another, or a set of files to a directory; works on any file regardless
of contents; and can also copy directory hierarchies.

rep Copy files and directories from other machines.

cmp Perform binary comparison.

pr Prepare files for printing by a printer program; place title, date, and page number on
every page; provide multicolumn output and parallel column merge of several files.

lpr Spool arbitrary files to printer for off-line printing; usually used in conjunction with
pr.

head

tail

Display first 'n' lines or input.

Display last 'n' lines of input.

aplit Split a large file into more manageable pieces.

dd Translate physical file format for exchanging data with foreign systems.

aum Sum the words of a file, providing convenient checksum.

Directory and Filename Manipulation Facilities
Commands include:

rm Remove a file; only the name goes away if any other names are linked to the file;
step through a directory deleting files interactively; and delete entire directory
hierarchies.

In

mv

chmod

chgrp

mkdir

rmdir

cd

find

'Link' another name or 'alias' to an existing file.

Move a file or files; rename files or directories; and move whole directory hierarchies.

Change permissions on one or more files; executable by files' owner.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria; perform
specified command on each file found; criteria include: name matching a given pat
tern, creation date in given range, date of last use in given range, given permissions,
given owner, given special file characteristics, or boolean combinations of above.
Any directory may be considered to he the root.

0

0

0

0

0

0

Running Programs
Commands include:

cah A flexible user interface, featuring a C-like command syntax, macro facilities, a hia
tory facility for reissuing previous commands, and job control. The C-Shell, the
command language interpreter written at the University of California, Berkeley; sup
ply arguments to and run any executable program; redirect standard input, standard
output, and standard error files; execute simultaneously the output of one process
connected to the input of another through pipes; compose compound commands
using:

rah

ah

teat

expr

wait

echo

aleep

nohup

n,ce

kill

at

if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.

initiate background processes; perform Shell programs, that is, command scripts with
substitutable arguments; construct argument lists from all filenames satisfying
specified patterns; take special action on traps and interrupts; provide user-settable
search path for finding commands; execute user-settable profile upon login; option
ally announce presence of mail as it arrives; and provide variables and parameters
with default setting.

Execute command on another system.

The Bourne Shell, the UNIX version 7 command language interpreter.

Test for use in Shell conditionals; string comparison; file nature and accessibility;
and boolean combinations of the above.

Calculate command arguments with string computations; integer arithmetic; and
pattern matching.

Wait for termination of asynchronously running processes.

Display remainder of command line; useful for diagnostics or prompts in Shell pro
grams, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the workstation.

Run a command in low or high priority.

Terminate named processes.

Schedule a one-shot action for an arbitrary time.

tee Pass data between processes and divert a copy into one or more files.

System Manager's Tools

Automatic boot procedures to bring up Sun UNIX. Automatic reboot and file consistency checks
and repair in the event of system crash.
Commands include:

config Configure and create bootable UNIX kernels with non-standard hardware
configurations.

au Become the super-user temporarily with all the rights and privileges thereof.

chown

cron

mount

umount

mkf,

new/a

mknod

tar

dump

restore

~ 87 -

Change the ownership of one or more files.

Schedule regular actions at specified times; actions are arbitrary programs; and times
are conjunctions of month, day of month, day of week, hour and minute; ranges may
be specified for each.

Attach a device containing a file system to the tree of directories; protect against
nonsense arrangements.

Remove the file system contained on a device from the tree of directories; protect
against removing a busy device.

Make a new file system on a device.

Provide front-end to mkf,.

Make an i-node (file system entry) for a special file; special files are physical devices,
virtual devices, physical memory, etc.

Manage file archives on magnetic tape; collect files into an archive; update tape
archive by date; replace or delete tape files; print table of contents; and retrieve from
archive.

Dump the file system stored on a specified device, selectively by date, or indiscrim
inately.

Replaces the old reator for restoring a dumped file system, or selectively retrieving
parts thereof.

Jack Interactive file system check and repair program; supersedes dcheck, icheck, and
ncheck; print gross statistics: number of files, number of directories, number of spe-

0

cial files, space used, and free space; report duplicate use of space; retrieve lost space; o
report inaccessible files; check consistency of directories; and list names of all files.

aync Force all outstanding 1/0 on the system to complete; used to shut down gracefully.

Status Inquiry Commands
Commands include:

la List the names of one, several, or all files in one or more directories; alphabetic or
temporal sorting, up or down; and optional information: size, owner, group, date last
modified, date last accessed, permissions, i-node number.

file Determine what kind of information is in a file by consulting the file system index
and by reading the file itself.

date

df

du

quota

Display today's date and time; considerable knowledge of calendric and horological
peculiarities; used to set system date and time.

Report amount of free space on file systems.

Display a summary of total space occupied by all files in a hierarchy.

Display summary of disk usage and limits by user id.

who List presently logged in users, ports and login times; provide optional history of all
logins and logouts.

pa

iostat

Report on active processes; list your own or everybody's processes; and provide
optional status information: state and scheduling info, priority, attached terminal,
what process is waiting for, and size.

Display statistics about system 1/0 activity.

0

0

0

0

- 88 -

tty Display name of your terminal.

pwd Display name of your working directory.

System Accounting Facilities
Commands include:

ac Publish· cumulative connect time report; connect time by user or by day and for all
users or for selected users.

aa Publish Shell accounting report; give usage information on each command executed,
number of times used, total system time, user time and elapsed time, optional aver
ages and percentages, and sorting on various fields; note that the timing information
on which the reports are based can be manually cleared or shut off completely.

Workstation Handling Facilities
Commands include:

tset Establish terminal characteristics for the environment.

termcap

taba

Facility for customizing terminal parameters by terminal type.

Set tab stops appropriately for specified terminal type.

atty Set up options for optimal control of a terminal; determines half vs. full duplex, car
riage return plus line feed versus newline, tabs setting, parity, mapping of upper case
to lower, raw versus edited input, and delays for tabs, newlines and carriage returns.

Supported Languages and Related Programs

C Programming Language

The Sun operating system and most of the subsystems are written in C; (for a full description of
C, read The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Prentice
Hall, 1978); general purpose language designed for structured programming; generalized initiali
zation, block structure, long integers, unions, and explicit type conversions; enhanced to take
arbitrary length variable names, and has a substantially faster loader; supports definable data
types, which include character, integer, float, double, pointers to all types, functions returning
above types, arrays of all types, structures and unions of all types; operations intended to give
machine-independent control of full machine facility, including to-memory operations and
pointer arithmetic; macro preprocessor for parameterized code and inclusion of standard files; all
procedures recursive, with parameters by value; machine-independent pointer manipulation;
object code uses full addressing capability of the Sun Workstation; and runtime library gives
access to all system facilities.

cc Compile and/or link edit programs in the C language; C compiler has been enhanced
to take arbitrary length variable names, allowing readable names and supporting
other languages such as Pascal. It allows, for instance, the names from the standard
to be used to implement core graphics. A substantially faster loader is also included,
as well as tools to aid correction of errors which occur in programs by inserting the
error messages as comments into the source code so that the source can easily be
edited to remove the errors;

lint Verifier for C programs; reports questionable or nonportable usage such as
mismatched data declarations and procedure interfaces, nonportable type conversions,
unused variables, unreachable code, no-effect operations, mistyped pointers, and
obsolete syntax; full cross-module checking of separately compiled programs.

- 89 -

cb A beautifier for C programs; does proper indentation and placement of braces.

Fortran

de

be

Paacal

/77 A full compiler for the new ANSI Standard Fortran 77; compatible with C and
supporting tools at object level; optional source compatibility with Fortran 66;
free format source; optional subscript-range checking, detection of uninitialized
variables; all widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8-
and 16-byte complex.

Ratfor Ratfor adds rational control structure like C's to Fortran; compound
statements; if-else, do, for, while, repeat-until, break, next statements;
symbolic constants; file insertion; free format source; translation of rela
tionals like >, >=; produces genuine Fortran to carry away; may be
used with F77.

atruet Converts ordinary Fortran into Ratfor, a structured dialect usable with
/77, using statement grouping, if-else, while, for, and repeat-until.

Interactive programmable desk calculator; has named storage locations as well as
conventional stack for holding integers or programs; unlimited precision decimal
arithmetic; appropriate treatment of decimal fractions; arbitrary input and output
radices, in particular binary, octal, decimal and hexadecimal; reverse Polish opera
tors:

+ - * I
remainder, power, square root, load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interlace to the desk calculator de; all the capabilities of de with
a high-level syntax; arrays and recursive functions; immediate evaluation of expres
sions and evaluation of functions upon call; arbitrary precision eiementary functions
exp, sin, cos, atan; go-to-less programming.

An ANSI Pascal compiler and interpreter system.

pz

pzre/

Execution profiler

Cross-reference program for making cross-referenced listings of Pascal
programs.

Macroprocessing Utility

m4 A general purpose stream-oriented macroprocessor that recognizes macros anywhere
in text; syntax fits with functional syntax of most higher-level languages; can evalu
ate integer arithmetic expressions.

Compiler-compilers

yacc An LR(I)-based compiler writing system; during execution of resulting parsers, arbi
trary C functions may be called to do code generation or semantic actions; BNF syn
tax specifications; precedence relations; accepts formally ambiguous grammars with
non-BNF resolution rules.

lex Generator of lexical analyzers; converts specification of regular expressions and
semantic actions into a recognizing subroutine; arbitrary C functions may be called
upon isolation of each lexical token; full regular expression, plus left and right con
text dependence; resulting lexical analyzers interface cleanly with yacc parsers.

Text Editing and Document Formatting Tools

0

0

0

0

0

0

Vt

- 90 -

The screen-oriented display editor, providing 'what you see is what you get
editing' for either line-oriented or full screen terminals. Capabilities include
regular expression searching and user-specific settings.

ex The line-oriented parent of vi, based on the original ed editor; subsumes all
functions of ed.

awk A pattern scanning and processing language that makes it easy to specify many
data transformation and selection operations. Pattern scanning and processing
language; searches input for patterns, and performs actions on each line of
input that satisfies the pattern; patterns include regular expressions, arithmetic
and lexicographic conditions, boolean combinations and ranges of these; data
treated as string or numeric as appropriate; can break input into fields; fields
are variables; variables and arrays (with non-numeric subscripts); full set of
arithmetic operators and control flow; multiple output streams to files and
pipes; output can be formatted as desired; multi-line capabilities.

aed A non-interactive stream text editor version of ed for processing large files; can
perform a sequence of editing operations on each line of an input stream of
unbounded length; lines may be selected by address or range of addresses; pro
vides control flow and conditional testing, multiple output streams, and multi
line capability.

ed

ptx

apell

Interactive context editor; random access to all lines of a file; find lines by
number or pattern; patterns may include specified characters, don't care char
acters, choices among characters, repetitions of these constructs, beginning of
line, and end of line; add, delete, change, copy, move or join lines; permute or
split contents of a line; replace one or all instances of a pattern within a line;
combine or split files; escape to the Shell command language during editing; do
any of above operations on every pattern-selected line in a given range; optional
encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a
25,000-word list that includes proper names; handles common prefixes and
suffixes; collects words to help tailor local spelling lists.

look Search for words in dictionary that begin with specified prefix.

crypt Encrypt and decrypt files for security.

troff and nroff
Troff drives a phototypesetter and can be used with appropriate conversion
utilities to drive other types of devices; nroff drives ASCII terminals of all
types; troff and nroff accept the same input language and are capable of ela
borate formatting feats when appropriately programmed; completely definable
page format keyed to dynamically planted 'interrupts' at specified lines; main
tains several separately definable typesetting environments (for example, one
for body text, one for footnotes, and one for unusually elaborate headings);
arbitrary number of output pools can be combined at will; macros with substi
tutable arguments, and macros invocable in mid-line; computation and printing
of numerical quantities; conditional execution of macros; tabular layout facility;
positions expressible in inches, centimeters, ems, points, machine units or arith
metic combinations thereof; access to character-width computation for unusu
ally difficult layout problems; overstrikes, built-up brackets, horizontal and
vertical line drawing; dynamic relative or absolute positioning and size

- 91 -

selection, globally or at the character level; can exploit the characteristics of the

0 terminal being used, for approximating special characters, reverse motions, pro-
portional spacing, etc; typesetter has a vocabulary of several 102-character
fonts (4 simultaneously) in 15 sizes; troff provides terminal output for rough
sampling of final output; nroff produces multicolumn output on the workstation
(or terminal capable of reverse line feed), or through the col postprocessor.

-ma A standardized manuscript layout package of canned requests for use with nroff
and troff, provides page numbers and draft dates, automatically numbered sub
heads, footnotes, single or double column, paragraphing, display and indenta
tion, and numbered equations.

eqn A mathematical typesetting preprocessor for troff, translates easily readable for
mulas, either in-line or displayed, into detailed typesetting instructions; formu
las are written in a style like:

sigma sup 2 -=- 1 over N sum from i=l to N (x sub i - x bar) sup 2

to produce:

1 N
a2 = -E(z,-z)2

N,=1

automatic calculation of size changes for subscripts, sub-subscripts, etc.; full
vocabulary of Greek letters and special symbols, such as 'gamma', 'GAMMA',
'integral'; automatic calculation of large bracket sizes; vertical 'piling' of formu-
lae for matrices, conditional alternatives, etc.; integrals, sums, etc., with arhi-

0 trarily complex limits; diacriticals: dots, double dots, hats, bars, etc.; easily
learned by nonprogrammers and mathematical typists.

neqn

tbl

col

deroff

checknr

A version of eqn for nroff, accepts the same input language; prepares formulas
for workstation or terminal display; same facilities as eqn within graphical capa
bility of workstation.

A preprocessor for nroff and troff that translates simple descriptions of table
layouts and contents into detailed typesetting instructions; computes column
widths; handles left- and right-justified columns, centered columns and
decimal-point alignment; places column titles; table entries can be text, which is
adjusted to fit; can box all or parts of table.

Canonicalize files with reverse line feeds for one-pass printing.

Remove all troff commands from input.

Check document for possible mismatched opening and closing delimiters and
unknown commands.

-me Another package of canned formatting requests.

Information Handling Utilities
Commands include:

aort Sort or merge ASCII files line-by-line; no limit on input size; sort up or down; sort
lexicographically or on numeric key; multiple keys located by delimiters or by char
acter position; may sort upper case together with lower into dictionary order; option
ally suppress duplicate data.

0

0

0

0

taort

umq

tr

diJ!

comm

JOln

grep

look

WC

- 92 -

Topological sort converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line; publish lines that were origi
nally unique, duplicated, or both; may give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code; may coalesce
selected· repeated characters; may delete selected characters.

Report line changes, additions and deletions necessary to bring two files into agree
ment; may produce an editor script to convert one file into another; a variant com
pares two new versions against one old one.

Identify common lines in two sorted files; output in up to 3 columns shows lines
present in first file only, present in both, and/ or present in second only.

Combine two files by joining records that have identical keys.

Display all lines in a file that satisfy a pattern as used in the editor ed; may display
all lines that fail to match, count of matches, and first match in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, 'words' (blank-separated strings) and characters in a file.

Novelties, Games, and Miscellaneous
Commands include:

backgammon

bed

cal

canfield

fortune

unit,

arithmetic

qmz

wump

hangman

fiah

Provides competition against a player of modest ability.

Convert ASCII to card-image form.

Display a calendar of specified month and year.

Game of solitaire with betting.

Presents a random fortune cookie on each invocation; limited jar of cookies included.

Convert amounts between different scales of measurement; knows hundreds of units.

Speed and accuracy test for number facts.

Test your knowledge of Shakespeare, Presidents, capitals, etc.

Hunt the wumpus, a thrilling search in a dangerous cave.

Word-guessing game using a dictionary supplied with apell.

Children's card-guessing game.

Sun Workstation Manuals

System Manager', Manual for the Sun Work.dation - Model, JOOU/ 150U

Includes system installation, configuration, boot, and maintenance procedures, mail system
and networking facility set-up information, and a reference manual for commands and util
ities of use to system managers.

Syatem Manager', Manual for the Sun Workatation - Model 1eo
Includes system installation, configuration, boot, and maintenance procedures, mail system
and networking facility set-up information, and a reference manual for commands and util
ities of use to system managers.

Beginner 'a Guide to the Sun Workatation

- 93 -

A tutorial to the Sun system basics, along with user's guides to the Shells, the mail and
newa systems, a glossary, and a bibliography for additional UNIX references.

Editing and Tezt Proceaaing on the Sun Workatation

Contains user's guides and reference material for the text editors and utilities, and docu
ment formatting programs and macro packages.

Uaer 'a Manual for the Sun Workatation

Includes a documentation overview, user-oriented commands, demos, and games.

Programmer'a Reference Manual for the Sun Window Syatem

Contains reference material for programmers of applications which use window system
facilities.

Programmer'a Reference Manual for SunCore

Contains reference material for the SunCore graphics program.

Fortran and Paacal on the Sun Workaiation

Fortran 1/0 libraries, and descriptions of Fortran interfaces to the UNIX system (section
3F). Also includes the Pascal User's Guide.

Syatem Interface Manual for the Sun Workatation

Oriented towards programmers writing C-language programs. Contains descriptions of
system calls, subroutines from various libraries, characteristics of special files (devices), and
formats of files.

Programming Toola for the Sun Workatation

Information of general interest to anyone using the Sun system to write programs.

Syatem Intern ala Manual for the Sun Workatation

Contains papers on Sun system internals, including kernel debugging, network implemen
tation, and a device driver tutorial.

0

0

0

0

0

0

PART TWO - USER'S GUIDES
Part Two of the Beginner's Guide to the Sun Workstation includes user's guides to the Shells, the
mail facility, the network news, a glossary and an annotated bibliography. The user's guides pro
vide details, examples and explanations or many or those commands and facilities presented in
Part One.

The Sun system supports two Shells, the C-Shell and the Bourne Shell. These Shells are more or
less the same in basic essentials, but they vary a lot in detail. To provide complete, basic descrip
tions of both Shells, the Shell user's guides in Part Two contain some material that is similar and
even repetitious. For specific information on the Shells, see the csh and sh pages in the User's
Manual for the Sun Workstation. For detailed information on how to program the Shells, see the
Programming Tools for the Sun Workstation.

The chapters in Part Two are:

1. Using the C-Shell - Introduces the C-Shell command interpreter and some commonly
used Sun system commands.

2. Using the Bourne Shell - Introduces the Version 7 UNIX Shell, the Bourne Shell.

3. Mail User's Guide - Provides details on the electronic mail facilities.

4. Network News User's Guide - Describes what the network news is, how to establish
newsgroups, how to read the news, and how to post your own news.

5. Glossary - Provides brief definitions of terms and common commands.

6. Bibliography - Provides an annotated list or Sun system and UNIX reference
material.

For additional details on any or the information presented in Part Two, refer to the User's
Manual for the Sun Workstation and to the System Interface Manual for the Sun Workstation.

0

0

0

0

0

0

Table of Contents

PART TWO - USER'S GUIDES .. .

1. USING THE C-SHELL .. .
1.1. What is a Shell?
1.2. C-Shell Commands .. .
1.2.l. Specifying Optional Capabilities with Flag Arguments
1.2.2. C-Shell Metacharacters
1.2.3. Redirecting Output to Files with '>'
1.2.4. Redirecting Input from Files with '<'
1.2.5. Chaining Commands in a Pipeline .. .
1.2.6. Pathnames and Filenames .. .
1.2.7. Filename Expansion - '•' '?' 'I I' ,-, '{ }' .. .
1.2.8. Quoting Away the Metacharacters
1.2.9. How to Terminate C-Shell Commands
1.2.10. Changing Shells .. .
1.3. C-Shell Details .. ,
1.3. l. Starting and Terminating the C-Shell .. .
1.3.2. C-Shell Variables .. .
1.3.3. The History Mechanism .. .
1.3.4. The Alias Mechanism
1.3.5. The Redirection Notation '>>'and '>&:' .. .
1.3.6. Running Jobs in the Background, Foreground, or Suspended
1.3.7. The C-Shell's Working Directory .. .

1.3.8. Useful Built-in Commands .. .
1.4. Programming the C-Shell .. .

1.4.1. Variable Substitution"
1.5. C-Shell Metacharacter Summary

z. USING THE BOURNE SHELL .. .
2.1.
2.2.

2.3.

2.4.
2.4.l.

2.4.2.
2.4.3.

2.4.4.

2.4.5.

2.5.
2.6.

What is a Shell?
Logging In
Changing the Shell Prompt

Simple Shell Commands .. .
Background Commands .. .
Input/Output Redirection .. .
Pipelines and Filters
Filename Expansion '•' '?' 'I J'
Quoting the Metacharacters with '· ' and ' \'

Programming the Shell .. .
Shell Metacharacter Summary

1

1
1
1

2
3
3

4
4

5

6
8

8

11

11

11

12
14

16

18
18

22

24
26

26

28

29
29
29

30

30
30
30
31
32

33
34
36

- ii -

3. MAIL USER'S GUIDE
3.1. Sending Mail

3.1.1. Sending Mail on the Local Network

3.1.2. Sending Mail on the Same Host .. .

3.1.3.

3.2.
3.3.
3.4.

3.4.1.
3.4.2.

3.4.3.

3.5.
3.6.

3.7.
3.8.

3.8.1.

3.8.2.

3.8.3.
3.8.4.

3.8.5.
3.8.6.
3.8.7.
3.8.8.
3.8.9.

3.8.10.

3.8.11.

3.8.12.
3.8.13.
3.9.

3.10.
3.10.1.

3.10.2.
3.10.3.
3.10.4.

3.11.

3.12.
3.12.1.

Sending Mail on the Network
Reading Your Mail .. .
Replying to Mail

Customizing Your Mail

Forwarding Your Mail from Other Accounts
Setting Your Options with 'set' .. .

Streamlining Your Mail with 'alias' .. .

More on Reading Mail
Quitting Mail

Collecting Groups of Messages in Folders .. .

Sending Mail with Tilde Escapes
Displaying the Message Text with ,-p•

Editing a Message - ,-e' and ·-v• .. .

Using the 'dead.letter' File with ,-d' .. .
Saving Message Text in a File with ,-w• .. .

Forwarding a Message with •-m• and ,-,.

Adding People to the Message List with ,-t' .. .
Adding a Message Subject with ·-s• .. .

Sending Copies with ·-c• and ,-b'

Editing the Header Fields with ,-h' .. .
Escaping to the Shell with 'T .. .
Escaping to 'mail' Command Mode with·-:•

Changing the Tilde Escape and Using a Tilde as a Tilde
Ir You Need Help - ,-?' .. .

Special Recipients

Additional Features
Message Lists
List of Commands for Receiving Mail .. .
Setting Custom Binary and Valued Options
Command Line Options

Message Format .. .

Summary of Commands, Options, and Escapes
'mail' Command Summary

3.12.2. 'set' Command Option Summary

3.12.3. Tilde Escape Summary
3.12.4. 'mail' Command Line Flags

4. NETWORK NEWS USER'S GUIDE .. .
4.1. Making the Connection with Your News Host System

4.2.

4.3.
4.4.

4.5.
4.6.

How to Read the News with 'readnews'

Reading News for the First Time
Changing Your Subscription List

Submitting Articles with 'postnews' and 'inews' .. .

Browsing Through Old News

38
38
38
39

39

40
41
42

42
42
43
43
44
45
46
46
47
47
47
48

48
48

48
49
49
50

50

51
51
51
52
52
56
58
59

60
60

61

62

62

63

63

63
64
65

65
67

0

0

0

- iii -

4.7. Getting News When You Log In - Your Morning Newspaper 67

0 4.8.

4.9.

Creating New Newsgroups .. 68

User Interfaces .. 68

4.10. From the ARP ANET 69

4.11. List or Newsgroups 69

4.11.1. Local Newsgroups 69

4.11.2. FA Newsgroups 69

4.11.3. Net Newsgroups 70

APPENDIX Ai GLOSSARY ... 13

APPENDIX B: BIBLIOGRAPHY .. 82

0

0

0

0

0

0

0

0

1. USING THE C-SHELL

Using the C-Shellt introduces the basics or the C-Shell first to give you a broad understanding its
operation. Second, this guide provides more detailed information for learning to use the different
C-Shell facilities.

1.1. What la a Shellr
A Shell is a program which provides you with interactive access to the operating system via a
combined command and programming language. A Shell's primary purpose is to translate com
mand lines typed at the workstation into system actions, such as the invocation of other pro
grams. Because a Shell is a user program, just like any you might write, there is more than one
available. The Shell you get when you log in is specified in your password file.

Shell features include control-flow primitives, parameter passing, and variable and string substitu
tion. The Shell supports constructs such as while, if-then-else, case, and for. Two-way communi
cation is possible between the Shell and commands. Sltring-valued parameters, typically filenames
or flags, may be passed to a command. Commands set a return code that may be used as Shell
input.

You can use the Shell to modify the environment in which commands run. You may redirect
input and output to files, call processes that communicate through pipes, and define a directory
searching sequence in the file system to call commands. Commands can be read either from the
workstation or from a file, so command procedures can be stored in a file for later use.

A Shell in the Sun operating system acts mostly as a medium through which other programs are
invoked. While it has a set of built-in functions that it performs directly, most commands cause
execution of programs that are external to the Shell. The Shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program, and by the
fact that it is used almost exclusively as a mechanism for invoking other programs.

The Sun. system supports two Shells, the C-Shell (csh-) developed by William Joy at the University
of California at Berkeley and the Bourne Shell (sh) developed by S. R. Bourne at Bell Labora
tories. After you log in to the Sun system, the C-Shell displays the '%' prompt to indicate it is
waiting for input. The Bourne Shell displays the '$' prompt; this is an easy way to tell which
Shell your system is running. The C-Shell permits its prompt to be modified and, in this guide,
we show the prompt as 'tutor-ial% '.

1.z. C-Shell Commands

Commands in the Sun system consist of a list of strings or words. They are interpreted as a com
mand name followed by arguments. Thus the command:

tutorial% mall aam

consists of two words. The first word mail names the command to be executed, in this case the
mail program, which sends messages to other users. The C-Shell uses the name of the command
in attempting to execute it for you. It looks in a number or directories for a file with the name
mail, which contains the mail program.

The rest of the words of the command are given as arguments to the command itself when it is
executed. In this case, the argument is sam, which is interpreted by the mail program to be the
name of a user to whom mail is to be sent. You can use the mail command as follows:

t The material in this chapter is derived from An Introduction to the C-S/aell, William N. Joy.

tutorial% mall earn
h the project meeting at 3:00?
I may have another appointment.

Joe
·o
EOT
tutorial%

- 2 -

Here Joe sent the user 'sam' a message and ended his message with a ·o,t which sent an end-o!
file to the mail program. The mail program then echoed the characters 'EOT' and transmitted
Joe's message. The C-Shell displays the 'tutorial% ' prompt before and after the mail command
to indicate that it is awaiting input.

Arter displaying the 'tutorial%' prompt, the C-Shell reads command input from your workstation.
When you type a complete command such as mail earn, the C-Shell executes the appropriate pro
gram, mail in this case, with an argument, eam. It then hands control over to the mail program
and waits for mail to complete. The mail program rctads input from your workstation until you
signal an end-of-file by typing a ·o. This causes mail to complete; the Shell notices that mail has
completed and displays another 'tutorial%' prompt to signal you that it is ready to read another
command Crom the workstation again.

This is the essential pattern or all interaction with the Sun system through the C-Shell. You type
a complete command that the C-Shell executes. When this execution completes, the C-Shell
prompts for a new command. Ir you run the editor for an hour, the C-Shell waits patiently for
you to finish editing and obediently prompts you again when you finish.

An example of a useful command you can execute now is the teet command, which sets the erase
and kill characters on your terminal - the erase character erases the last character you typed,
and the kill character erases. the entire line you have entered so far. By default, the erase charac
ter is 'DEL' or 'BACKTAB', and the kill character is •·u•. You may prefer to use the backspace
('H) character as your erase character. You can make this change by using the teet command
with the .--e option:

tutorial% teet --e
Erase set to Ctrl-H
Kill is Ctrl-U
tutorial%

This tells the program teet to set the erase character to 'H.

1.2.1. Specifying Optional Capabllltlee with Flag Arguments

While many arguments to commands specify filenames or user names, some arguments called flag
arguments specify an optional capability or a command that you wish to use. By convention,
such flag arguments begin with the character '-' (hyphen). So, to produce a simple list or the files
in the current working directory, use the le command:

tutorial% le
bin dead.letter disk.usage mbox misc
tutorial$

The flag option -e is the size option, which gives the size of each file in blocks of 512 characters;
for example:

tThe notation ·o is read 'control-D' and means that you should hold down the CONTROL (or CTRL) key
while pressing the D key. The shift key is ignored so that ,.d' and '"D' are equivalent.

0

0

0

0

0

0

tutorial% Is -a
total 9

1 bin 1 dead.letter
5 mbox 1 misc

tutorial%

-3-

1 disk.usage

shows the number of 512-character blocks in each file. Refer to the user's manual for available
options for each command. Some commands like the ls command have a large number or useful
options, while other commands have either no options or only one or two.

1.2.2. C-Shell Metacharactera

The C-Shell has a number or special characters called metacharacters that have special functions.
In general, most characters which are neither letters nor digits have special meaning to the C
Shell. There is a method of quoting that prevents the C-Shell from treating these metacharacters
in any special way. This notation is described in Quoting Away the Metacharacters.

Metacharacters normally have effect only when the C-Shell is reading your input. You need not
worry about placing C-Shell metacharacters in a letter you are sending with mail or when you are
typing in text or data to some other program, for example. Note that the C-Shell is only reading
input when it has prompted with 'tutorial%'. See the C-Shell Metacharacters Summary for a
complete list with meanings.

1.2.3. Redirecting Output to Fllea with '>'
Commands that normally read input from or write output to the workstation can instead be exe
cuted using a file rather than the workstation for input and output. The date command normally
displays the current date on your workstation screen because your screen is the default standard
output for the date command:

tutorial% date
Thu Aug 4 10:58:37 PDT 1983
tutorial%

Suppose you wish to save the current date in a file called today. You can redirect the standard
output or a command through a notation using the metacharacter '>' to the today file rather
than to the screen:

tutorial% date > today
tutorial%

This command places the current date and time into the file today. Note that the date command
does not know that its output is going to a file rather than to the workstation. The C-Shell sets
up this redirection before the command begins executing.

One other thing to note here is that the C-Shell creates the file if it does not exist. The file today
need not have existed before date was executed. And if the file does exist, its previous contents
are discarded. You can set the C-Shell option noclobber to prevent this from happening acciden
tally; see the C-Shell Variables section on noclobber.

The system normally keeps files that you create with '>' permanently. Ir you wish to create a
file which will be removed automatically, begin its name with a '#', the 'scratch' character, to
denote that the file will be a scratch file. The system removes such files after a couple of days, or
sooner if file space becomes very tight. So if you don't really want to save the output in the
example above permanently, use the notation:

tutorial% date > #today
tutorial%

- 4 -

1.2.4. Redirecting Input from Fllea with 1<'
In the same way that you can redirect the standard output of a command to a file with '> ', you
can also redirect the standard input or a command from a file with the '<' character. This is not
often necessary, however, since most commands read from a file whose name is given as an argu
ment. Redirection of input to the sort command looks like:

tutorial% sort < fruit

apples
bananas
blueberries
lemons
limes
nectarines
oranges
peaches
pears
plums
strawberries

tutorial%

where the command reads its input from the file fruit. You would more likely let sort open the
file fruit for input itself since this is less typing:

tutorial% sort fruit

apples
bananas
<etc.>

plums
strawberries

tutorial%

Note that if you just type sort and do not redirect the standard input, as in:

tutorial% sort

the sort program sorts lines from its standard input, the workstation, taking what you type as
data, until you type a 'D to indicate an end-of-file. The default standard inpur for programs
comes from the workstation keyboard.

1.2.5. Chaining Commands In a Pipeltne

In the C-Shell, you can connect the standard output or one command to the standard input of
another; that is, you can run the commands in a sequence known as a pipeline. For instance, the
ls command with the -s option normally produces a. list of the files in your directory with the size
of each in 512-character blocks:

tutorial% ls -a
total 388

1 Makefile
56 mail.all

tutorial%

286 doc.th) 40 gloss
5 refs.all

If you are interested in learning which of your files is largest, you want to sort the list by size.
You can look at the many ls options to see if there is an option to do this, but you would eventu
ally discover that there is not.

0

0

0

0

0

0

- 5 -

Instead you can use a couple or simple sort options and combine them with ls with the 'I' notation
to invoke the pipe mechanism to get what you want. Thus, you can pipe ls to sort by typing:

tutorial% Is -a j 11ort -n
total 388

1 Makefile 5 refs.all 40 gloss
56 mail.all286 doc.tbl

tutorial%

This runs the ls command with the option -a and pipes this ls output to the sort command with
the numeric option -n. Your list or files is sorted by size with the smallest first. You can then
use the -r reverse sort option and the head command in conjunction with the previous command:

tutorial% Is -a I sort -n -r I head -3
286 doc.tbl
56 mail.all
40 gloss
tutorial%

Here you take a list or your files sorted alphabetically, each with the size in blocks. You pipe this
to the standard input or sort asking it to sort numerically in reverse order, that is, largest first.
This output is then piped into the head command, which shows you the first rew lines. In this
case you ask head for the first three lines. Thus this pipeline gives you the names and sizes or
your three largest files.

The C-Shell connects commands separated by 'I' characters, and the standard output of each is
run into the standard input or the next. The leftmost command in a pipeline normally takes its
standard input from the workstation keyboard, and the rightmost normally sends its standard
output to the workstation screen. Other examples or pipelines are provided later in the descrip
tion of foreground and background jobs.

1.2.8. Pathnames and Filenames

Sun system pathnames consist or a number or components separated by a slash '/'. Each com
ponent, except the last, names a directory in which the next component resides, in effect specify
ing the path of directories to follow to gain access to the file. Thus the pathname:

/etc/motd

specifies a file in the directory / etc, which is a subdirectory of the root directory '/'. Within this
directory the file named is motd, the 'message of the day' file. A pathname that begins with a
slash is said to be an absolute pathname since it specifies a complete path from the absolute top of
the directory hierarchy of the system, the root. Pathnames which do not begin with '/' are inter
preted as starting in the current working directory, which is by default, your home directory and
which you can change dynamically with the cd (change directory) command. Such pathnames are
said to be relative to the working directory since they are found by starting in the working direc
tory and descending to lower levels of directories for each component of the pathname. Ir the
pathname does not contain any slashes at all, the file is contained in the working directory itselr,
and the pathname is merely the name of the file in this directory. Absolute pathnames have no
relation to the working directory.

Most filenames consist of a number of alphanumeric characters and '.'s (dots). In fact, filenames
can have all printing characters except '/'. Remember that it is inconvenient to have most non
alphabetic characters in filenames because many of these characters are metacharacters that have
special meaning to the C-Shell. The character '.' (dot) is not a C-Shell metacharacter and often
separates the extension of a filename from the base of the name. Consider the following four
related files:

data.c data.o data.errs data.output

The files share a base portion, 'data', of a name and have different extensions, 'c', 'o', 'errs', and

- 6 -

'output'. The file data.c might be the source for a C program, the file data.o the corresponding
object file, the file data. errs the errors resulting from a compilation or the program, and the file
data.output the output or a run or the program.

1.2.7. Filename Expansion - '•' '?' '[)' .-, '{ }'

If you want to refer to all four or these files in a com°land, use the '•' notation, which the C-Shell
expands to match any sequence, including the empty1 sequence, or characters in a filename. For
example, if you use:

data.•

the C-Shell expands this word into a list or names which begin with 'data' before executing the
command to which it is an argument. The names that match data.* are alphabetically sorted and
placed in the argument list or the command. Thus the echo command and this '•' notation
display the four related files as:

tutorial% echo data.•
data.c data.errs data.o data.output
tutorial%

Note that the names are in sorted order here and a different order than you listed them above.
The echo command receives four words as arguments, even though you only directly type one
word as an argument. Filename expansion or the one input word, data.* generates the four words.

As '*' matches any sequence or characters in a filename, the character '?' matches any single char
acter in a filename. So, to echo a line of filenames, type:

tutorial% echo ? ?? ???

This echoes first those with one-character names, then those with two-character names, and
finally those with three- character names. The names of each length are independently sorted.

Another mechanism matches any single character from a sequence or characters between 'I J'. So
to match:

data.c data.o

in the example above, use:

tutorial% echo data.[co)
data.c data.o
tutorial%

You can also place two characters around a '-' in the 'I J' notation to denote a range. Thus to
match:

chap.I chap.2 chap.3 chap.4 chap.5

if they exist, use:

tutorial% echo chap.(1-5)
chap.I chap.2 chap.3 chap.4 chap.5
tutorial%

This is shorthand for

chap.!12345J

and otherwise equivalent.

Note that if a list or arguments to a command, that is, an argument list, contains filename expan
sion syntax that fails to match any existing filenames, the C-Shell considers this to be an error
and displays the diagnostic:

0

0

0

0

0

0

-7-

No match.

and does not execute the command.

Another important point is that files with the character '.' (dot) at the beginning of their names
are specially treated. Neither '*', '?' nor the 'I J' mechanism matches it. This .special treatment
prevents accidental matching or the filenames'.' and ' • .' in the working directory; these files have
special meaning to the system.

Another filename expansion mechanism gives access to the pathname of the home directory or
other users. This notation consists of the character ,-, (tilde) followed by another user's login
name. For instance, - sam maps to the pathname / usr/ sam it the home directory for 'sam' is
/ usr/ sam. Use this notation when you need to gain access to other users' files in directories with
different prefix directory names. It's an easier and more reliable method than typing out the
entire pathname.

A special case of this notation consists of a ,- ' alone, such as - / mboz. The C-Shell expands this
notation into the file mboz in your home directory, that is, into / usr/ sam/ mboz for your fellow
user Sam. This is very useful if Sam uses cd to change to another directory and finds a file he
wants to copy to his home directory using cp. The C-Shell expands ,-, into /usr/sam, Sam's
home directory, and copies the file thatstuff there if 'sam' types:

tutorial% cd programa
tutorial% pwd
/usr /sam/programs
tutorial% cp thatstuff -
tutorial% cd
tutorial% la
thatstuff
tutorial%

Another form or filename expansion uses the characters '{ } '. Braces specify that the contained
strings, separated by a comma (,) are to be consecutively substituted into the containing charac
ters and the results expanded left to right. So, you can abbreviate a set of words that have com
mon parts but cannot be abbreviated by the above mechanisms because they are not files, or
because they are the names or files which do not yet exist. Thus:

A { strl ,str2, ... strn }B

expands to:

AstrlB Astr2B ... AstrnB

The contained strings 'strl,str2 ... strn' are consecutively substituted into the containing characters
'A' and 'B' and expanded left to right. This expansion occurs before the other filename expan
sions, and may be applied recursively, that is, nested. The results or each expanded string are
sorted separately, left to right order being preserved. Ir the resulting filenames don't exist, they
are created if you don't use other expansion mechanisms. You can use this mechanism to gen
erate arguments which are not filenames, but which have common parts. A typical use below
makes subdirectories docs, memos and letters in your home directory:

tutorial% mkdlr -, { docs,memos,Ietters}
tutorial% la
docs letters memos
tutorial%

This mechanism is most useful when the common prefix is longer than in this example, for
instance, to list all the directories below without typing each individually, use the '{ }' mechan
ism:

- 8 -

tutorial% la {/bin/, /usr/ucb/} {pl, wherels}
/bin/pi
/bin/whereis
/usr /ucb/pi
/usr /ucb/whereis
tutorial%

See the C-Shell Metacharacters Summary for a quick reference list of these characters.

t.Z.8. Quoting Away the Metacharactera

Because the C-Shell uses these metacharacters for special purposes, you cannot use them directly
as parts or words. Ir you try to use the echo command and '*' as its argument, it doesn't work
properly because or the special significance or '*'. Thus the echo command does not show the
character '*':

tutorial% echo •

It either echos a sorted list or filenames in the current working directory, or displays the message
'No match.' if there are no files in the working directory.

To place characters that are neither numbers, digits, '/', '.' nor '-' in an argument word to a com
mand, enclose them with single quotation characters '' '. For example, to quote away the special
meaning or'*', type:

tutorial% echo '• '
*
tutorial%

Here the echo command displays the '*' character, and ignores any special meaning.

There is one special character '!' that the history mechanism uses and that you cannot escape by
placing within '' ' characters. Precede '!' and the character '' ' itself by a single ' \' to prevent
their special meanings. So to echo '' !', use:

tutorial% echo \' \!
'!
tutorial%

With these two mechanisms, you can place any printing character into a word which is an argu
ment to a C-Shell command. You can combine the two mechanisms, as in:

tutorial% echo \ "* '
'*
tutorial%

The first '\' escapes the first '' ', and the '*' was enclosed between '' ' characters, so neither
retained its special meaning to the C-Shell.

1.2.9. How to Terminate C-Shell Commands
When the C-Shell is waiting for an executing command to complete, there are several ways to
stop that command. For instance, if you list all system users with the cat command:

tutorial% cat /etc/paaawd
bugs:nologin:7: 10: bug reporting:/ usr /bugs:/ dev / null
prot:ZSMXceOkDv9hw:11:10:Vic Prot:/usr/prot:/bin/csh

<etc.>
sam:lu2nX.wzcjYBo:953:10:Sam Brown:/usr/sam:/bin/csh
rjb:9r Yb UmD9Jr Jvw:954 :20:Robert Baker:/ usr / rj b: /bin/ csh
tutorial%

this list is likely to continue scrolling off your screen for several seconds unless you stop it. You

0

0

0

0

0

0

- 9 -

can send an INTERRUPT signal to the cat command by typing ·c (or the DEL or RUBOUT key
if that's the way your keyboard is set up). Since the cat command does not take any precautions
to avoid or otherwise handle this signal, the • C terminates cat. The C-Shell notices that cat has
terminated and prompts you again with 'tutorial%'. Ir you type a • C again, the Shell just
repeats its prompt since it ignores INTERRUPT signals and continues executing commands
rather than terminating like cat did. Terminating at this point would otherwise have the effect of
logging you out.

Many programs terminate when they get an end-of-file from their standard input. Thus, you ter
minated this mail program in the first example above by typing a ·D, which generates an end-of
file from the standard input. The C-Shell also terminates when it gets an end-of-file and displays
'logout'; the Sun operating system then logs you off the system. Since this means that typing too
many ·D's can accidentally log you off, the C-Shell provides a mechanism to prevent this. See
the ignoreeof description in the C-Shell Variables section.

If you redirect a command's standard input from a file, the command normally terminates when it
reaches the end of that file. So if you redirect input to the mail command with:

tutorial% mall aam < doc.text
tutorial%

mail terminates without your typing a ·D because it reads to the end-of-file of your file doc.text.
You can also use the pipe mechanism to pipe the standard output of the cat command to the mail
command:

tutorial% cat doc.text I mall aam
tutorial%

The cat command then writes the text through the pipe to the standard input of the mail com
mand. When cat completes, it terminates, closing down the pipeline, and the mail command
receives an end-of-file from it and terminates also. Using a pipe here is more complicated than
redirecting input, so use the first form. Typing ·c also stops both of these commands.

Another way to stop a command is to suspend its execution temporarily, with the possibility of
continuing execution later. Do this by sending a STOP signal with ·z. This signal suspends all
running commands, but there may be more than one if a pipeline is executing. The C-Shell
notices that the command(s) have been suspended, displays 'Stopped' and then prompts for a new
command. The previously executing command has been suspended, but is otherwise unaffected
by the STOP signal. Any other commands can be executed while the original command remains
suspended. You can then continue the suspended command using the Jg (foreground) command
without any arguments. The C-Shell redisplays the command to remind you which command is
being continued, and resumes the command execution. The suspension has no effect whatsoever
on the execution of the command unless the input files that the suspended command is using have
been changed in the meantime. Suspending commands can be very useful during editing, when
you need to look at another file before continuing. An example of command suspension follows:

- 10 -

tutorial% mall peter
You can copy the source from the directory named
'Z
Stopped
tutorial% la
data.c
data.o
muchstuff
tutorial% Jobs
[lJ + Stopped Mail peter
tutorial% fg
Mail peter
(continue)
data.c. Let's dlacuH the project later.
'D
EOT
tutorial%

In this example you send a message to Peter but forget the name of the file you want to mention.
You stop the mail command by typing 'Z. When the C-Shell notices that mail is suspended, it
displays 'Stopped' and prompts for a new command. You then use the ls command to find out
the name of the file. You then type the jobs command to see which command was suspended, mail
peter in this case. You type the Jg command to continue mail execution. Input to the mail pro
gram is then continued and ended with a 'D which indicates the end of the message. Mail
displays EOT for end-of-transmission.

Type · Z only at the beginning of a line since everything typed on that current line is discarded
when a signal is sent from the keyboard. This also happens with the 'C (INTERRUPT) and '\
(QUIT) signals. See the section on Running Jobs for more information on suspending and control
ling jobs.

If you write or run programs which are not fully debugged, it may be necessary to stop them
somewhat ungracefully. Send them a QUIT signal by typing a '\. This usually provokes the C
S hell to produce a message like:

Quit (Core dumped)

indicating that a file core has been created containing information about the program's state
when it was terminated by the QUIT signal. You can examine this core file yourself using a
debugger, or forward information to the maintainer of the program telling him where the core file
is.

When you run background commands, they ignore INTERRUPT and QUIT signals at the works
tation. To stop the background commands, you must use the kill command. See the Running
Jobs section for an explanation and examples.

If you want to examine the output of a command without having it zip off the screen as the out
put of the cat command below does:

tutorial% cat /etc/passwd

use the more paging command to display it a page at a time:

tutorial% more /etc/paaawd

The more program pauses after each complete screenful and displays '-More-' at which point
you can type a space to get another screenful, press RETURN to get another line, or type a 'q' to
end more. You can also use more as a filter through which to pipe the cat command:

tutorial% cat /etc/passwd I more

This works just like the simple more command above.

0

0

0

0

- 11 -

For stopping output of commands not involving more, use the ·s key to stop the typeout. The
typeout resumes when you type 'Q. Typing ·s and 'Q works well on low-speed terminals, but
use more iC you find it hard to type ·sand 'Q fast enough to paginate the output nicely.

You can also use the ·o flush output character. Typing ·o quickly throws away or 'flushes' all
output from the current command until the next input read occurs or until the next Shell prompt.
Use ·o to complete a command's execution without your having to suffer through the output on
a slow terminal. Typing · 0 toggles output flushing on and off.

1.2.10. Changing Shells

Ir you are running the C-Shell, log in normally and follow the examples provided in the C-Shell
Details section.

Ir you are not running the C-Shell when you log in, you are using the Bourne Shell, /bin/sh or sh.
In fact, much of the above discussion is applicable to /bin/sh, as is noted in Using the Bourne
Shell in Part Two.

Ir you are not using the C-Shell now, log in and change to the C-Shell with the csh command:

$ csh
tutorial%

To change back to the Bourne Shell, use the sh command:

tutorial% ah

•
1.3. C-Shell Details

This section describes more advanced features and details or the C-Shell.

1.3.1. Starting and Terminating the C-Shell

When you log in, the system starts the C-Shell running in your home directory. The C-Shell
begins by reading commands Crom the .cshrc file in this directory. All Shells which you may start
during your workstation session read Crom this file. You can put specific commands there that are
described later. For now, however, you do not need this file, and the C-Shell does not complain
about its absence.

This first C-Shell is called the login Shell. This login Shell reads commands from .cshrc, after
which it reads commands Crom a file called .login, also in your home directory. This .login file
contains commands which you wish to execute once each time you log in to the system. A .login
file looks something like:

set ignoreeof
setenv EXINIT 'set noai wrapmargin=8'
set path=(. /usr/ucb /bin /usr/bin)
set mail=(/usr/spool/mail/sam)

The first is a set command, which the C-Shell interprets directly. Set turns on the C-Shell vari
able ignoreeof, which prevents the C-Shell from logging you out if you type ·o. Rather, you use
the logout command to log off the system.

The setenv command sets the value or an environment variable, in this case to use the editors ex
and vi without automatic cursor indentation (set noai) and with an automatic cursor return or
'wrap' to the left side or the screen eight columns from the right screen edge (wrapmargin=B).

The path variable defines the search path through which the C-Shell looks for files and programs.
The mail variable sets the location of the user Sam's system mailbox. When the mail program
finishes checking for your mail, the C-Shell finishes processing your .login file and begins reading
commands Crom the workstation, prompting for each with 'tutorial%'. When you log off with ·o,

- 12 -

the C-Shell displays 'logout' and executes commands from the file .logout if it exists in your home
directory. After that the C-Shell terminates, and you are logged off the system. You then receive
a new login message. In any case, after you type logout, the C-Shell is committed to terminating
and will take no further input from your keyboard.

1.3.Z. C-Shell Variables

The C-Shell maintains a set of variables. Each C-Shell variable has an array of zero or more
strings as its value. Use the set command to assign values to C-Shell variables. Set has several
forms, the most useful or which was already given above in the .login example as:

set name=value

C-Shell variables may store values which are used in commands later through a substitution
mechanism. However, the most commonly used C-Shell variables are those which the C-Shell
itself refers to. By changing the values or these variables called built-in variables, you can
directly affect the C-Shell's behavior ..

One or the most important variables is path, which contains a sequence or directory names where
the C-Shell searches for commands. The set command without an argument shows the value of
all variables currently defined or 'set' in the C-Shell. You can see what the default value for path
is by typing the set command:

tutorial% set
argv ()

cwd/usr/sam
history 30
home /usr/sam
mail (/usr/spool/mail/sam)
path (. /usr/ucb /bin /usr/bin)
prompt tutorial%
shell /bin/csh
status 0
term sun
usersam
tutorial%

This output indicates that the variable path points to the current directory, symbolized by '.'
(dot) and then /usr/ucb, /bin and /usr/bin. Commands developed at the University of California
at Berkeley live in / usr/ ucb, while commands developed at Bell Laboratories live in / bin and
/usr/ bin.

A number or locally developed programs on the system live in the directory / usr/ local. Ir you
want all Shells which you invoke to have access to these new programs, place the command:

set path=(. /usr/ucb /bin /usr/bin /usr/local)

in your file .login in your home directory. Try doing this, and then log out and back in. Now
type the set command again to see that the value assigned to path has changed:

tutorial% set
argv ()
cwd/usr/sam

< etc.>
path (. /usr/ucb /bin /usr/bin /usr/local)

<etc.>
usersam
tutorial%

C>

0

0

0

0

0

- 13 -

Be aware that the C-Shell initially examines each directory in your path and determines which
commands are contained there. Except for the current directory '.', which the C-Shell treats spe
cially, this means that if commands are added to a directory in your search path after you have
started the C-Shell, the C-Shell will not necessarily find them. Ir you wish to use a command
which has been added in this way, use the rehash command to recompute the C-Shell's internal
hash table or command locations so that it finds the newly added command:

tutorial% rehash
tutorial%

If you do not run rehash, the hashing algorithm may tell the C-Shell that the command wasn't in
that directory when the hash table was computed. Since the C-Shell has to look in the current
directory '.' on each command, it can always find commands in the current working directory.

Other useful built-in variables are the variable home, which shows your home directory, cwd,
which contains your current working directory, and the variable ignoreeof, which can be set in
your .login file to tell the C-Shell not to exit when it receives an end-of-file from your keyboard.
The variable ignoreeof is one or several variables that only have the value set or unset. Thus, to
set this variable you simply type the following in your .login file:

set ignoreeor

If you type the character 'D accidentally, you get the message 'Use "logout" to logout.' Then use
the logout command to terminate the login Shell.

To unset the ignoreeof option temporarily for that login session, type:

tutorial% unset lgnoreeof
tutorial%

These actions do not give the ignoreeof variable a value, but none is desired or required.

Another useful built-in C-Shell variable is the noclobber variable. If you use the metasyntax:

> filename

to redirect the standard output or a command, you normally overwrite and destroy the previous
contents (if any) or the named file, here filename. Because or this, you may accidentally overwrite
a valuable file. Ir you want to prevent the C-Shell from overwriting files in this way, add the
noclobber variable to your .login file:

set noclobber

Then try to redirect date into the today file:

tutorial% date > today
today: File exists.
tutorial%

Noclobber warns you if today already exists. Ir you really want to overwrite the contents or today,
you can use the '!' character to force the action:

tutorial% date > ! today
tutorial%

The '>!' is a special metasyntax indicating that clobbering the file is allowed. The space between
the '!' and the filename today is critical here, as '!today' would be an invocation or the history
mechanism, and have a totally different effect.

See csh in the user's manual for set variables.

- 14 -

1.3.3. The History Mechanism

The C-Shell can maintain a history list into which it places the words or previous commands.
You can reuse these commands or words from them to form new commands. You can also use
history to repeat previous commands or to correct minor typing mistakes.

To use the history mechanism, edit your .cshrc file to contain:

set history=30

Then type:

tutorial% source .cahrc
tutorial%

to have the change take effect. Then after you have typed several commands, you see that typing
just history shows the contents or the history list:

tutorial% history
1 Is
2 mkdir misc
4 cd misc
5 vi tut.memo
6 spell tut.memo > mem.sp &
7 pwd
8 cd supplements/tutorial
9 history > hist.list

tutorial%

You can use the numbers given with the history events to refer to previous events, which are
difficult to refer to using the contextual mechanisms introduced above. For example, to reuse
command number 8, type simply:

tutorial% !8
cd supplements/tutorial
tutorial% pwd
/usr /sam/supplemen ts/tutorial
tutorial%

Figure 1 gives a sample session involving typical history mechanism commands.

0

0

0

0

0

0

tutorial% cat bug.c
main()

{

}
printf("hello);

tutorial% cc !$
cc bug.c

- 15 -

"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
tutorial% ed !$
ed bug.c
29
4s/);/"&/p

w
30
q

printf("hello");

tutorial% !c
cc bug.c
tutorial% a.out
hello tutorial% !e
ed bug.c
30
4s/lo/lo\ \n/p

printf("hello\n ");
w
32
q
tutorial% !c --o bu1
cc bug.c -o bug
tutorial% alze a.out bug
a.out: 2784+ 364+ 1028 = 4176b = Ox1050b
bug: 2784+ 364+ 1028 = 4176b = Ox1050b
tutorial% la -1 !•
ls -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
tutorial% bug
hello

3932 Dec 19 09:41 a.out
3932 Dec 19 09:42 bug

tutorial% num bug.c I •PP
spp: Command not found.
tutorial% ·app·asp
num bug.c I ssp

1 main()
3 {
4 printr("hello\n");
5 }

tutorial% !! I Ipr
num bug.c I ssp I Ipr
tutorial%

Figure 1. Sample history Uae

- 16 -

In this example you have a very simple C program, with a bug (or two) in the file hug.c, which
you cat out on your workstation. You then try to run the C compiler on it, referring to the file
again as '!$', meaning the last argument to the previous command. Here the '!' is the history
mechanism invocation metacharacter, and the '$' stands for the last argument, by analogy to '$'
in the editor, which stands for the end of the line. The C-Shell echoes the command, as it would
have been typed without use or the history mechanism, and then executes it. The compilation
yields error diagnostics, so you now run the editor on the file you are trying to compile, fix the
bug, and run the C compiler again. This time you refer to this command simply as '!c'. This
repeats the last command which started with the letter 'c'. Ir you have used other commands
starting with 'c' recently, you have to say '!cc'. Typing '!cc:p' prints the last command starting
with 'cc' without executing it, so you can check which previous command you want.

After this recompilation, you run the resulting a.out file, and then note that there still is a bug,
and run the editor again. After fixing the program you run the C compiler again, but tack onto
the command an extra '--o bug' telling the compiler to place the resultant binary in the file hug
rather than a.out. In general, you can use the history mechanism anywhere in the formation or
new commands, and you can place other characters before and after the substituted commands.

You then run the size command to see how large the binary program images you have created
are, and then an ls -l command with the same argument list, denoting the argument list '!•'.
Finally, you run the program hug to see that its output is indeed correct.

To make a numbered listing or the program, you run the num command on the file hug.c. To
remove blank lines in num output, you run the output through the filter ssp, but misspell it as
'spp'. To correct this you use a C-Shell substitute, placing the old text and new text between '''
characters. Note that the symbols 't' and ''' are the same thing. This is similar to the substitute
command in the editor. Finally, you repeat the same command with '!!', but send its output to
the line printer.

There are other mechanisms available for repeating commands. History displays a number or pre
vious commands with numbers by which they can be referenced. There is a way to refer to a pre
vious command by searching for a string which appeared in it, and there are other, ways to select
arguments to include in a new command. Refer to the C-Shell pages in the User's Manual for the
Sun Workstation for a complete description.

1.3.4. The Alla11 Mechanism

The alias mechanism substitutes one string for another before the C-Shell executes it. Use the C
Shell's alias mechanism to supply default arguments to commands, or to perform transformations
on commands and their arguments. The alias facility is similar to a macro facility. Some or the
features obtained by aliasing can also be obtained using C-Shell command files, but these take
place in another instance of the Shell and cannot directly affect the current Shell's environment or
involve commands such as cd, which must be done in the current Shell.

As an example, suppose that there is a new version or the mail program called newmail on the
system. You would rather use it than the standard mail program, which is called mail. Ir you
place the C-Shell command:

alias mail newmail

in your .cshrc file, the C-Shell transforms an input line or the Corm

tutorial% mall 11am

into a call on newmail. Suppose you want the command ls to always show which list entries are
subdirectories, which are files, and which are symbolic links to other directories, that is to always
use a -F option. Put the following alias in your .cshrc file:

alias ls ls -F

Ir you then type ls, you actually use ls -F:

0

0

0

0

0

0

tutorial% la
bin/ lint.mss mbox misc/
supplements/

You can also use:

alias If ls -F ·

- 17 -

to create a new command syntax if that calls la -F. So, using this alias on the home directory or
'sam ', you get:

tutorial% If -eam
bin/ dead.letter mbox misc/
supplements/
tutorial%

or a list of files and directories in /uar/aam with the -F indications or'/' for a directory.

Thus the alias mechanism creates short names for commands, provides default arguments, and
defines new short commands in terms of other commands. You can also define aliases which con
tain multiple commands or pipelines, showing where the arguments to the original command are
to be substituted using the facilities or the history mechanism. To call an ls command after each
cd (change directory) command, use the alias:

alias cd 'cd \!• ; ls •

Enclose the entire alias definition in '· ' characters to prevent most filename expansions from
occurring and the character ';' from being recognized as a metacharacter. The '!' here is escaped
with a '\' to make it apply to the argument list of the aliased cd command itself rather than
searching the history list for a previous command. The '\!•' here substitutes the entire argument
list to the pre-aliasing cd command without giving an error if there aren't any arguments. The ';'
separating commands indicates that one command is to be done and then the next. Remember to
run the source command on your .cahrc file to have any changes you make take effect:

tutorial% eource .cshrc
tutorial%

When you use this alias, it looks like:

tutorial% cd /u ... /gamee
abuse bed cribbage mille scifi worms
adventure boggle fish monop snake wump
arithmetic

<etc.>
tutorial%

This cd command not only changes directories, here to / usr/ games, but it also lists all the games
available.

Similarly to define a command which looks up its first argument in the password file, put in your
.cshrc file:

alias whois 'grep \! · /etc/passwd •

Then, when you type whois plus a username, the C-Shell calls grep to look in the / etc/ pasawd file:

tutorial% whola allce
alice:ffikUBIXESfxGY:55:2():Alice Smith:/usr/alice:/bin/csh
tutorial%

Use the unalias command at the 'tutorial%' prompt to remove aliases temporarily for that Shell
session.

- 18 -

Warning: the C-Shell currently reads the .cshrc file each time it starts up, so if you place a large
number of commands there, the C-Shell will tend to start slowly. Try to limit the number or
aliases to 10 or 15.

1.3.5. The Redirection Notation'>>' and'>&'

In addition to the standard output, commands also have a diagnostic output, which is normally
directed to the workstation screen even when the standard output is redirected to a file or a pipe.
You occasionally may want to direct the diagnostic output along with the standard output. For
instance, if you want to redirect the output or a long running command into a file and wish to
have a record or any error diagnostic it produces, you can type:

tutorial% command >& file
tutorial%

The '>&' here tells the C-Shell to route both the diagnostic output and the standard output into
file. Use the command form command >&! file if noclobber is set and file already exists to
overwrite file.

Similarly you can route both standard and diagnostic output through the pipe to the line printer
lpr by typing:

tutorial% command I & lpr
tutorial%

Finally, to place standard output at the end or an existing file, type:

tutorial% command > > file
tutorial%

Ir noclobber is set, an error message 'file: No such file or directory.' results if file for example, does
not exist; otherwise the C-Shell creates the named file. The form command > > ! file eliminates
the error condition if file does not exist when noclobber is set.

1.3.9. Running Jobs In the Background, Foreground, or Suspended

When one or more commands is typed together as a pipeline or as a sequence or commands
separated by semicolons, the C-Shell creates a single job consisting or these commands together as
a unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every
line typed to the C-Shell creates a job. Some lines that create jobs (one per line) are

tutorial% sort < data

tutorial% la -a I sort -n I head -5

tutorial% mall barold

The job is started as a background job if you type the metacharacter '&' at the end or the com
mands. This means that the C-Shell does not wait for the command to complete but immediately
prompts for another. The job runs in the background at the same time that the C-Shell continues
to read and execute normal jobs, called foreground jobs. Thus, to redirect the output of the du
program to a file called disk.usage, for instance, type:

tutorial% du > disk.usage &
llJ 503
tutorial%

Du reports on the disk usage or your working directory, as well as any directories below it. This
command sequence puts the output into the file disk.usage, and the Shell returns immediately
with a prompt for the next command without waiting for du to finish. The du program continues
executing in the background until it finishes, even though you can type and execute more com
mands in the meantime. When a background job terminates, the C-Shell displays a message just

0

0

0

0

0

0

- 19 -

before the next prompt telling you that the job has completed. In the following example, the du
job finishes sometime during the execution or the mail command and its completion is reported
just before the prompt after the mail job is finished.

tutorial% du > disk.usage &
IIJ 503
tutorial% mall sam
How do you know when a background Job la ftnlshedf
'D
EOT
III - Done du > disk.usage
tutorial%

Ir the job did not terminate normally, the 'Done' message might say something else like 'Stopped.'
Ir you want the terminations or background jobs to be reported at the time they occur, which
may interrupt the output or other foreground jobs, you can set the notify variable in your .cshrc
file. In the previous example this would mean that the 'Done' message might have come right in
the middle of the message to Sam. The STOP, INTERRUPT, or QUIT signals mentioned earlier,
when typed on the keyboard, do not affect background jobs.

Until they terminate, jobs are recorded in a table inside the C-Shell. The C-Shell remembers the
command names, arguments and the process numbers or all commands in the job in this table as
well as the working directory where the job was started. Each job in the table is either running
in the foreground with the C-Shell waiting for it to terminate, running in the background, or
suspended. Only one job can be running in the foreground at one time, but several jobs can be
suspended or running in the background at once. As each job is started, it is assigned a small
identifying number called the job number which you can use later to refer to the job in the com
mands described below. Job numbers remain the same until the job terminates and then are re
used.

Before prompting you for another command, the C-Shell displays the background job's number,
as well as the process numbers or all its top-level commands. For example, if you run the follow
ing command in the background by typing the ampersand '&' character at the end:

tutorial% a. -11 I sort -n > ftle.llat &
121 2034 2035
tutorial%

the ls program runs with the -s option, pipes this output to the sort program with the -n option,
which puts its output into the file file.list. The '&' at the end or the line starts these two pro
grams together as a background job. After starting the job, the C-Shell displays the job number
in brackets, 2 in this case, followed by the process number or each program started in the job.
Then the C-Shell immediately prompts for a new command, leaving the job running simultane
ously.

As mentioned in the How to Terminate C-Shell Commands section, typing 'Z suspends currently
running foreground jobs. You can suspend a background job by using the stop command described
below. When jobs are suspended, they merely stop any further progress until started again, either
in the foreground or the background. The C-Shell notices when a job becomes stopped and
reports this fact, much like it reports the termination or background jobs. Stopping a foreground
job looks like:

tutorial% du > disk.usage
'Z
Stopped
tutorial%

The C-Shell displays the 'Stopped' message when it notices that the du program stopped. For
background jobs, using the stop command, it is:

tutorial% sort disk.usage &
111 2345
tutorial% stop %1
Ill + Stopped (signal) sort disk.usage
tutorial%

- 20 -

The '(signal)' indicates that the job has been stopped by an indirect signal, as opposed to being
stopped by • Z. Suspending background jobs can be very useful when you need to temporarily
change what you are doing, that is, execute other commands, and then return to the suspended
job. Also, you can suspend foreground jobs and then continue them as background jobs using the
bg command. Thus, you can continue other work and stop waiting for the foreground job to
finish. For example:

tutorial% du > disk.usage
·z
Stopped
tutorial% bg
Ill du > disk.usage &
tutorial%

starts du in the foreground, stops it before it finishes, then continues it in the background so you
can execute more foreground commands. The bg command runs a suspended job in the back
ground. It is usually used after stopping the currently running foreground job with the ·z STOP
signal. The combination of the STOP signal and the bg command changes a foreground job into
a background job. This is especially helpful when a foreground job ends up taking longer than
you expected, and you wish you had started it in the background in the beginning.

All job control commands can take an argument that identifies a particular job. Begin all job
name arguments with the character '%', since some of the job control commands also accept pro
cess numbers, as displayed by the ps command. If you do not specify a job, a job control com
mand uses the default job, that is, the current job. This current job is identified by a '+ ' in the
output or the jobs command, which shows which jobs you have. When only one job is stopped or
running in the background as is the usual case, it is always the current job, so no argument is
needed. If a job is stopped while running in the foreground, it becomes the current job and the
existing current job becomes the previous job, identified by a '-' in the jobs output. When the
current job terminates, the previous job becomes the current job. When given, the argument is
either '%-', which indicates the previous job, '%#' where # is the job number, '%pref' where
pref is some unique prefix of the command name and arguments or one or the jobs, or '%?' fol
lowed by some string found in only one or the jobs.

The jobs command displays the table or jobs, giving the job number, status ('Stopped' or 'Run
ning') and command name for each background or suspended job:

tutorial% du > disk.usage &
Ill 3398
tutorial% Is -s I sort -n > myflle &
121 3405
tutorial% mail bill
·z
Stopped
tutorial% Jobs
Ill - Running
[2J Running
!3J + Stopped
tutorial%

du > disk.usage
ls -s I sort -n > myfile
mail bill

With the -1 option the process numbers are also displayed:

0

0

0

0

0

0

- 21 -

tutorial% Jobs -1
Ill 3398 - Running du > disk.usage
121 3405 Running ls -s I sort -n > myfile
131 + Stopped mail bill
tutorial%

Continuing with the same series, you can use the fg command to bring the Is job to the fore
ground:

tutorial% fg %Ia
ls -s I sort -n > myfile
tutorial% more myftle

The fg (foreground) command runs a suspended or background job in the foreground. It restarts a
previously suspended job or changes a background job to run in the foreground, allowing signals
or input from the workstation. In the above example you use f g to change the Is job from the
background to the foreground since you want to wait for it to finish before looking at its output
file.

The stop command suspends a background job.

tutorial% stop %1
[11- Stopped (signal) du > disk.usage
tutorial%

You can use the kill command to terminate a background or suspended job immediately. In addi
tion to job numbers, you can give it process numbers as arguments, as displayed by ps. Thus, in
the above example, you can terminate the running du command with kill:

tutorial% kW %1
Ill Terminated du > disk.usage
tutorial%

The notify command (not the set command variable mentioned earlier) reports termination or a
specific job at the time the job finishes instead or waiting for the next prompt.

Ir a job running in the background tries to read input from the workstation, it is automatically
stopped. You can give input to the job, when you return such a job to the foreground. Ir
desired, you can return the job to the background until it requests input again. This is illustrated
in the following sequence where the s (substitute) command in the text editor might take a long
time:

tutorial% ed blgftle
120000
l,$s/thisword/thatword/
·z
Stopped
tutorial% bg
[1} ed bigfile &
tutorial%
. . . some foreground commands

[lJ Stopped (tty input)ed bigfile
tutorial% fg
ed bigfile
w
120000
q
tutorial%

After you called the s command, you stopped the ed job with ·z, and then put it in the

- 22 -

background using bg. Sometime later when the s command was finished, ed tried to read another
command and was stopped because jobs in the background cannot read from the workstation.
Typing the Jg command returned the ed job to the roreground where it could once again accept
commands rrom the terminal.

To stop all background jobs when they are about to write output to the workstation, use the atty
(set terminal output) command:

tutorial% atty toatop
tutorial%

This prevents messages rrom background jobs Crom interrupting foreground job output so you can
run a job in the background without losing workstation output. You can also use it for interac
tive programs that sometimes have long periods without interaction. Thus each time a back
ground job prompts for more input, it stops berore the prompt. You run the job in the fore
ground using Jg, give it more input and, ir necessary, stop and return it to the background. This
atty command is a good thing to put in your .login file ir you do not like output rrom background
jobs interrupting your work. It can also reduce the need ror redirecting the output or background
jobs ir the output is not very big:

tutorial% atty toatop
tutorial% we hugeflle &
!l] 10387
tutorial% ed text
. . . some time later
q
!lJ Stopped (tty output) wc hugefile
tutorial% fg %we
wc hugefile

13371 30123 302577
tutorial% atty -toatop
tutorial%

Thus arter some time the we command, which counts the lines, words and characters in a file, had
one line or output. When it tried to write this to the workstation it stopped. By restarting it in
the foreground, it writes on the workstation exactly when you are ready to look at its output.
Stty tostop allows bg job output to go to the workstation. Programs which attempt to change the
mode or a terminal will also stop, whether or not toatop is set, as it would be very unpleasant to
have a background job change the state or a terminal.

Since the jobs command only displays jobs started in the currently executing C-Shell, it knows
nothing about background jobs started in other login sessions or within C-Shell files. Use the ps

command in this case to find out about background jobs not started in the current C-Shell.

1.3.7. The C-Shel1'1 Working Directory

As mentioned in Filenames and Pathnames, the C-Shell is always in a particular working direc
tory. The cd (change directory) command changes the working directory or the C-Shell, that is,
changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related
to that project in that directory. The mkdir command (make directory) creates a new directory.
The pwd (print working directory) command reports the absolute pathname or the working direc
tory or the C-Shell, that is, the directory you are located in. Thus in the example below, Sam
creates and moves to the directory newpaper, where he might place a group or related files:

0

0

0

0

0

0

tutorial% pwd
/usr/sam
tutorial% mkdlr newpaper
tutorial% cd newpaper
tutorial% pwd
/usr /sam/newpaper
tutorial%

- 23 -

No matter where you move to in a directory hierarchy, you can return to your home login direc
tory by typing cd without any arguments:

tutorial% cd
tutorial% pwd
/usr/sam
tutorial%

The name • • .' (dot dot) always means the directory above the current one in the hierarchy, so to
change the C-Shell's working directory to the one directly above the current one, use:

tutorial% cd ..
tutorial% pwd
/usr
tutorial%

The name • • .' can be used in any pathname. To change to the directory programs contained in
the directory above the current one, type:

tutorial% cd .. /program•

Ir you have several directories for different projects under, say, your borne directory, use this
shorthand notation to switch easily between them.

The C-Shell always remembers the pathname or its current working directory in the variable cwd.
You can also request that the C-Sbell remember the previous directory when you change to a new
working directory. Ir you use the pushd (push directory) command in place or the cd command,
the C-Shell saves the name or the current norking directory on a directory stack before changing
to the new one. You can see this directory stack at any time by typing the directories command
dirs:

tutorial% puahd newpaper /referencea
- /newpaper/rererences -
tutorial% puahd /uar/llb/tmac
/usr/lib/tmac -/newpaper/references -
tutorial% dlrs
/usr/lib/tmac -/newpaper/references -
tutorial%
tutorial%

The list is displayed in a horizontal line, reading left to right, with a tilde r) as shorthand for
your home directory - in this case /usr/ sam. The directory stack is displayed whenever there is
more than one entry in it and it changes. Dirs is usually raster and more informative than pwd
since it shows the current working directory as well as any other directories remembered in the
stack. The pushd command without any arguments alternates the current directory with the first
directory in the list.

The popd (pop directory) command without an argument returns you to the directory you were in
prior to the current one, discarding the current directory from the stack and forgetting it. Typing
popd several times in a series takes you backward through the directories you had changed to
with the pushd command:

tutorial% popd
- /newpaper /references -
tutorial% popd

tutorial%

- 24 -

There are other options to pushd and popd to manipulate the contents of the directory stack and
to change to directories not at the top or the stack; see the csh user's manual page for details.

Regardless or what directory changes you make, the C-Shell remembers the working directory in
which each job was started. It warns you if you try to restart a job in the foreground which has a
different working directory than the current C-Shell working directory. Thus if you start a back
ground job, change the C-Shell's working directory, and then run the background job in the fore
ground, the C-Shell warns you that the working directory or the currently running foreground job
is different from that or the C-Shell:

tutorial% dlr1 -1
/doc/sam
tutorial% cd myproJect
tutorial% dire
- /myproject
tutorial% ed prog.c
1143
·z
Stopped
tutorial% cd .•
tutorial% la
myproject
textfile
tutorial% fg
ed prog.c (wd: - /myproject)

The C-Shell warns you that the working directory or the ed program is - / myproject, not the
current working directory or doc/ sam. The ed job was still in / doc/ sam/ project even though the
C-Shell had changed to / doc/ sam.

You get a similar warning when such a foreground job terminates or is suspended using the • Z
STOP signal, since returning to the C-Shell again implies a change or working directory.

tutorial% fg
ed prog.c (wd: - /myproject)
... after some editing

q
(wd now:-)
tutorial%

These messages are sometimes confusing if you use programs that change their own working
directories. The C-Shell only remembers which directory a job is started in, and assumes the job
stays there. The jobs -I option displays the working directory of suspended or background jobs
when it is different from the current working directory of the C-Shell.

1.3.8. Useful Bullt-ln Commands

This section describes several or the more useful built-in C-Shell commands. For a complete list,
see csh in the user's manual.

The echo command plays back its argument list to the screen. It is often used in Shell scripts or
as an interactive command to see what filename exp3i°sions will produce. We saw this earlier in
Filename Expansion. To determine the effect or a COll\mand such as rm, type:

0

0

0

0

0

0

- 25 -

tutorial% echo rm (ca)•
rm a aA aB aC cl clO ... c5 c6 c7 c8 c9
tutorial%

Using echo here is a good way to learn the effects or the metacharacters without affecting any files
or directories.

The limil command restricts the use of resources. With no arguments, it displays the current lim
itations:

tutorial% llmlt
filesize unlimited
datasize 1984 k.bytes
stacksize 512 kbytes
coredumpsize unlimited
memory use unlimited
tutorial%

Limits can be set, for instance:

tutorial% llmlt coredumpslze U8k
tutorial%

for the current login session. Most reasonable units abbreviations work.. See the csh user's manual
page for more details.

Use repeat to repeat a command several times. To make four copies of the file data in the file
four, type:

tutorial% repeat 4 cat data > > four
tutorial%

The setenv command sets variables in the environment. For example:

setenv TERM sun

or

setenv TERM adm3a

This sets the value of the environment variable TERM to 'sun' or 'adm3a', depending on your
terminal. Unsetenv removes variables from the environment.

The printenv user program displays the environment. It might show:

tutorial% prlntenv
HO ME=/ usr /lori
SHELL=/bin/csh
PA TH=.:/ :/bin:/usr /bin:/usr /tori/bin :/usr /local:/usr /local/bin:/usr /ucb:/ etc:/usr /hosts
TERM=sun
USER=lori
EXINIT=set noai wrapmargin=8
tutorial%

Use the source command noted before to force the current Shell to read commands from a file:

tutorial% aource .cahrc
tutorial%

Running source on the .cshrc file makes any changes you made take effect immediately, that is,
before the next time you login.

Use the time command to time a command no matter how much CPU time it takes:

- 26 -

tutorial% time cp /etc/re /uar/eam/rc
O.Ou O. ls 0:01 8% 2+ lk 3+ 2io lpf + Ow
tutorial% time we /etc/re /uer/eam/rc

52 178 1347 /etc/re
52 178 1347 /usr/sam/rc

104 356 2694 total
O.lu O.ls 0:00 13% 3+ 3k 5+ 3io 7pr+ Ow
tutorial%

The first indicates that the cp command used a negligible amount of user time (u) and about
I/10th of a second system time (s); the elapsed time was 1 second (0:01); 8% of CPU cycles over
period when active; there was an average memory usage of 2k bytes of program space and lk
bytes of data space over the CPU time involved (2+ lk); the program did three disk reads and
two disk writes (3+ 2io), took one page fault and was not swapped (lpf+ Ow). The word count
command wc on the other hand used 0.1 seconds of user time and 0.1 seconds of system time in
less than a second of elapsed time. The percentage '13%' indicates that over the period when it
was active, wc used an average of 13 percent of the available CPU cycles of the machine.

1.4. Programming the C-Shell

You can use the C-Shell to read and execute C-Shell command scripts. C-Shell scripts are files
that contain a group or csh commands.

A command script may be interpreted by saying:

tutorial% ceh ecrlpt ...

where script is the name of the file containing a group of csh commands and ' .. .' is replaced by a
sequence of arguments. The C-Shell places these arguments in the variable argv and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other C-Shell variables.

You can make the file executable with the chmod command:

tutorial% chmod 755 ecrlpt
tutorial%

Ir you place a C-Shell comment at the beginning of the Shell script as well, that is, begin the file
with a '#' character, then / bin/ csh is automatically invoked to execute script when you type:

tutorial% ecrlpt

Ir the file does not begin with a '#' then the standard Shell /bin/eh executes it. In this way, J4U
can convert your older shell scripts to use csh.

1.4.1. Variable Subetltutlon

After each input line is broken into words and history substitutions are done on it, the input line
is parsed into distinct commands. Before each command is executed a mechanism known as vari
able substitution is done on these words. Keyed by the character '$' this substitution replaces the
names of variables by their values. Thus

echo $argv

when placed in a command script echoes the current value or the variable argv to the output of
the shell script. You must have argv set at this point; otherwise, it is an error.

A number of notations are provided for accessing components and attributes of variables. The
notation

$?name

expands to 'l' if name is set or to 'O' if name is not set. This is the fundamental mechanism used

0

0

0

0

0

0

- 'rl -

for checking whether particular variables have been assigned values. All other Corms or reference
to undefined variables cause errors.

The notation

$#name

expand~ to the number or elements in the variable name. Thus

tutorial% aet &l'gv=(a b c)
tutorial% echo $?&1'gv

. 1

tutorial% echo S#argv
3
tutorial% unaet &l'(rV
. tutorial% echo S?argv
0
tutorial% echo $&1'gv
Undefined variable: argv.
tutorial%

It is also possible to access the components or a variable which has several values. Thus

hrgvllJ

gives the first component or argu or in the example above 'a'. Similarly

hrgv l$#argv J

would give 'c', and

hrgvjl-2J

would give 'ab'. Other notations useful in shell scripts are:

*n
where n is an integer as a shorthand for

hrgvlnJ

the nth parameter and

••
which is a shorthand for

hrgv

The Corm

expands to the process number or the current Shell. Since this process number is unique in the
system it can be used to generate unique temporary filenames. The Corm

S<
is quite special. It is replaced by the next line or input read from the Shell's standard input, not
the Shell script it is reading. This is useful for writing Shell scripts that are interactive, reading
commands from the workstation or terminal, or even writing a Shell script that acts as a filter,
reading lines from its input file. Thus the sequence

eeho·n'yes or no?•
set a=(S<)

writes out the prompt 'yes or no?' without a newline and then reads the answer into the variable

- 28 -

'a'. In this case '$#a' would be 'O' if either a blank line or end-of-file fD) is typed.

There is one minor difference between '$n' and '$argvln)'. The form '$argvln)' will yield an error
if n is not in the range '1-S#argv', while 'Sn' will never yield an out of range subscript error.
This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form 'n-'; if there
are less than n components of the given variable then no words are substituted. A range of the
form 'm-n' likewise returns an empty vector without giving an error when m exceeds the number
of elements of the given variable, provided the subscript n is in range.

See Programming Tools for the Sun Workstation for more information on programming the C
Shell.

1.5. C-Shell Metacharacter Summary
The following table lists the special csh and Sun system characters. A number of these characters
also have special meaning in expressions. See the csh manual section for a complete list.

Syntactic Metacharacters

separates commands to be executed sequentially
I separates commands in a pipeline
() brackets expressions and variable values
& follows commands to be executed without waiting for completion

Filename Metacharacters

I
!
•
11
{ }

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Quoting Metacharacters

\ . prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like ·, but allows variable and command expansion

Input/output Metacharacters

< indicates redirected input
> indicates redirected output

Expansion/substitution Metacharacters

$ indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

Other Metacharacters

%

"

begins scratch file names; indicates Shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

0

0

0

0

0

0

- 29 -

I. USING THE BOURNE SHELL
Using the Bourne Shellt describes the UNIX system version 7 Shell called the Bourne Shell (sh).
The design or the Bourne Shell, here referred to simply as the 'Shell,' is based in part on the origi
nal UNIX Shell and the PWB/UNIX Shell. Similarities also exist with the command interpreters
or the Cambridge Multiple Access System and of CTSS.

See the User's Manual for the Sun Workstation for more details on sh. Also see the references in
the appendix for more information.

1.1. What la a Shell?
A Shell is both a command language and a programming language that provides an interface to
the operating system and interprets commands which you type. The Shell's primary purpose is to
translate command lines typed at the workstation into system actions, such as the invocation or
other programs. Because the Shell is a user program, just like any you might write, there is more
than one available. The Shell you get when you log in is specified in your password file entry
field, which contains the pathname to it.

The Shell's features include variables, control-flow primitives, parameters passing, subroutines,
interrupt handling, and string substitution. The Shell supports control structures such as while,
if-then-else, case, and for. Two-way communication is possible between the Shell and commands.
String-valued parameters, typically filenames or flags, may be passed to a command. Commands
set a return code that may be used as Shell input.

You can use the Shell to modify the environment in which commands run by redirecting input
and output to files, by calling processes that communicate through pipes, and by defining a direc
tory searching sequence in the file system to call commands. Commands can be read either from
the workstation or from a file, so command procedures can be stored for later use.

A Shell in the Sun operating system acts mostly as a medium through which other programs are
invoked. The Shell is thus distinguished from the command interpreters or other systems both by
the fact that it is just a user program, and by the fact that it is used almost exclusively as a
mechanism for invoking other programs.

The Sun system supports two shells, the Bourne Shell and the C-Shell, which are available as the
programs csh and sh respectively. The Shell you get when you log in is specified in a field in your
password file entry, which contains the pathname to the Shell to be used. Ir your system is run
ning the Bourne Shell, it displays the '$' prompt. The C-Shell displays the '%' prompt.

I.I. Logging In
The Shell is a program that runs automatically when you log in to the Sun system. When you log
in, the Shell reads any commands from the file .profile, if you have such a file in your login direc
tory before reading any commands from the workstation.

It reads each command that you type and interprets what you've asked for. The Shell expands
any file-matching metacharacters you use. Ir you redirect the standard input and output, or the
diagnostic output, the Shell handles that too. The Shell examines the command you type in, calls
up the command from wherever it lives, and passes all the arguments to that program and starts
it up.

The Shell is the interface between you the user, and the Sun system utility programs. Because it
is just an ordinary program, you can use it by typing the command sh followed by an argument,
which is the name of a file containing Sun system commands. See Programming the Shell for some
simple examples.

tThe material in this chapter is derived from An lnlroduction lo 1/ae Bourne Shell, S. I. Bourne.

- 30 -

Z.3. Changing the Shell Prompt

The Shell displays a prompt before reading a command. By default this prompt is '$ '. Or you
can change it to the string 'yesdear', for example:

PSI=yesdear

Ir a newline is typed and further input is needed, the Shell displays the prompt '> '. Sometimes
mistyping a quote mark causes this. Ir it is unexpected, an INTERRUPT ('C) returns the Shell
to read another command. You can change this '>' prompt by saying, for example:

PS2=more

Z.4. Simple Shell Command•

Simple Shell commands consist or one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the com
mand. These arguments can be flag arguments or filenames. For example, to print the names or
users logged in, type the who command:

$ who
lori console Jul 26 07:40
$

This shows user 'lori' is logged in on the console.

To show a detailed list of files in the current directory, use the ls command with the -I option:

$ la-I
total 1064
-rw-r-r- 1 lori
-rw-r-r- 1 lori

181
460654

<etc.>
-rw-r-r- 1 lori 67
-rw-r-r- 1 lori 22980
$

Jul 25 17:14 Makefile
Jul 24 17:16 doc.cat

Jul 23 12:31 tabs
Jul 17 15:42 uucp

The argument -1 tells ls to print status information, size and the creation date for each file.

Z.4.1. Background Command•

To execute a command, the Shell normally creates a new process and waits for it to .finish. You
may run a command in the background without waiting for it to finish. For example, to put a call
to the C compiler in the background, you type the cc command line with an ampersand '&' at the
end of the line:

$ cc pgm.c &
321
$

This compiles the file pgm.c. The trailing & is the operator that instructs the Shell not to wait
for the command to finish. To keep track of a process, the Shell reports its process number, 321
in this case, following its creation. You can obtain a list of currently active processes using the ps
(process status) command.

Z.4.Z. Input/Output Redirection

Most commands produce output on the standard output, that is your workstation or terminal.
You can send this output to a file instead of the standard output by typing, for example:

$ la -I > ftle.llat
$

0

0

0

0

0

0

- 31 -

The Shell interprets the notation > fiJe.liet and does not pass it as an argument to le. It fiJe.liet
does not exist, the Shell creates it; otherwise the output from le replaces the original contents or
file.list. You can append output to a file with the '> >' notation:

$ ls -1 > > file.list
$

A second le -1 directory contents listing is appended to the first in file.list. In this case file.list is
also created if it does not already exist.

A command can take the standard input from a file instead of the workstation by typing the '<'
redirection character as in:

$ WC < file.list
30 234 1546 file.list

•
The command we reads its standard input, in this case redirected from fiJe.liet, and displays the
number or characters, words and lines found. It only the number or lines is required, use the -1
option:

$ WC -1 < flle.llst
30 file.list

•
1.4.3. Plpellnee and Flltera
Two or more commands connected by the pipe operator 'I' form a pipeline. A filter is a command
that reads its standard input, transforms it in some WJt.Y, and displays the result as output. Pipe
lines and filters are often used together.

Use the pipe operator, 'I' to connect the standard output or one command to the standard input
of another. In the example above, the two commands le -1 > file.list and we -I < fiJe.liet were
run to get one desired result. You can run both together; that is, you can process the le output
with the we command by typing:

$ la -1 I WC

19 146 963

•
Here, the output of the le command is piped as input to we. Two commands connected in this
way constitute a pipeline, and the overall effect is the same as:

$ la -I > flle.llst; wc < file.list
$

except that no fiJe.liet is used. Instead a pipe connects the two processes, which are run in paral
lel. Pipes are unidirectional and synchronization is achieved by halting we when there is nothing
to read and halting le when the pipe is full.

A filter command transforms its standard input in some way. One such filter, grep, selects from
its input those lines that contain some specified string. For example, to list those lines, if any,
from le that contain the string 'all', type:

$ Is I grep all
mail.all
news.all
refs.all
shell.all
summ.all
$

• 32 •

Grep takes the output of ls and searches for the string 'all'. Another useful filter is sort, which
orders or 'sorts' a file in several different ways. For example, to display an alphabetically sorted
list of names in the file name.list, type:

$ sort name.list

Dan
Joe
Mary
Mike
Susie

•
Read more about sort in the user's manual.

A pipeline may consist of more than two commands. You can pipe ls to grep and then to we, for
example:

$ Is I 1rep all I we -1
5

$

to display the number of filenames in the current ditectory containing the string 'all' as in the
example above.

Z.4.4. Filename Expansion '•' 'f' '[)'

As described in the Simple Shell Commands section, the first word or a command is the name of
the command to be executed. Other words on the command line are arguments to that com
mands. Many commands accept arguments that are filenames. For example, use the ls command
with the -1 option to display information relating to the file main.c:

$ Is -1 maln.c
-rw-r-r- 1 lori
$

136783 Jul 26 11:10 main.c

The file main.c is the argument to the ls command.

The Shell provides a mechanism for generating a list of filenames that match a pattern. For
example, to generate, as arguments to ls, all filenames in the current directory that end in '.all',
type:

$ Is -1 •.all
-rw-r-r- 1 lori 57022 Jul 23 12:15 mail.all
-rw-r-r- 1 lori 25643 Jul 23 12:15 news.all
-rw-r-r- 1 lori 4965 Jul 25 16:50 refs.all
-rw-r-r- 1 lori 136783 Jul 26 11:10 shell.all
-rw-r-r- 1 lori 34121 Jul 25 17:14 summ.all

•
The Shell expands '*' to match any string including the null string, that is, all the files whose
names end with '.all' in the working directory. In general patterns are specified as follows:

• Matches any string of characters including the null string.

f Matches any single character.

[] Matches any one of the characters enclosed. A pair of characters separated by a
minus matches any character lexically between the pair.

To match all names in the current directory beginning with one of the letters a through z, use:

0

0

0

0

0

0

$ la -1 [a-z]•
mailref:
total 121
-rw-r-r- 1 lori
-rw-r-r- 1 lori

460654
292152

<etc.>
-rw-r-r- 1 lori 58334
-rw-r-r- 1 lori 201

•

- 33 -

Jul 24 17:16 doc.cat
Jul 24 16:47 doc.tbl

Jul 20 17:42 mail.all
Jun 30 23:18 mailO.nr

The Shell expands the '[a--zJ•' argument to all files beginning with any lower-case letter. Be care
ful; this may display a very long list of files.

The '?' character matches all names that consist of a single character in the directory. So you can
use the ls command with'?' on /usr/fred/test and say:

$ la /uer/fred/teet/r
/usr /fred/test/a
/usr /fred/test/b

•
to match the files a and b. If no filename is found that matches the pattern, the pattern is passed
unchanged as an argument, and 'No match.' is displayed.

This filename expansion notation saves typing and provides name selection according to some pat
tern. It makes finding a file easy. For example, to find and display the names of all core files in
subdirectories of / usr //red, say:

$ echo /uar/fred/• /core
/usr/fred/misc/core /usr/fred/test/core

•
The '*' finds the files core in subdirectories misc and test. As you saw before, echo is a standard
command that displays its arguments, separated by blanks. This last search feature however, can
be expensive, requiring a scan of all subdirectories of/ usr/fred.

There is one exception to the general rules given for patterns. The character '.' ('dot') at the
start of a filename must be explicitly matched. For instance, using '*' to match any character
does not match a '.' at the beginning or a filename:

$echo•
Makefile doc.tbl file shell.all uucp

•
Instead, it echos all filenames in the current directory not beginning with '.' even if the current
directory is your home directory, which contains your .profile file. To match the '.' character at
the beginning or a filename, type:

$echo.•

•
This echos all those filenames that begin with '.' including the names '.' and ' • .' which mean 'the
current directory' and 'the parent directory' respectively.

See the Shell Metacharacter Summary section for a quick reference list of the metacharacters.

1.4.5. Quoting the Metacharactere with '· ' and ' \'
Characters that have a special meaning to the Shell, such as ' < > ', '*', '?' I '&', are called meta
characters. Any character preceded by a ' \' is quoted or escaped and loses its special meaning, if
any. The ' \' is called the escape character and elided so that to echo a single '?', type:

$echo\!
?

•
And to echo a single'<', type:

$echo\<
<

•
The '\' prevents the Shell from using the special meanings or'?' and '<'.
To continue long commands over more than one line, the sequence \newline is ignored.

The ' \' is convenient for quoting single characters, but when more than one character needs
quoting, it is clumsy and error prone. Enclose the string of characters between single quotes. For
example, to quote a series of four asterisks so that they lose their special matching capability,
type:

$ echo xx'••••'xx
xx••••xx

•
The quoted string may not contain a single quote, but may contain newlines, which are preserved.
This quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes prevents interpretation or some but not all meta
characters.

2.5. Programming the Shell

Use the Shell to read and execute commands contained in a file. A file containing commands is
called a command procedure or Shell procedure.

A simple Shell procedure uses the echo command:

$ cat > welcome
echo Good morning!
·o
•

To call the Shell to read commands from welcome, use the sh command:

$ ah welcome
Good morning!

•
In general, this format looks like:

$ ah file f args ... J
in which sh calls commands Crom file.

You can either execute a Shell procedure with sh or make the procedure executable. The chmod
(change mode) command can make a file readable, writable and executable.

For example, to make welcome executable, type:

$ chmod +x welcome

Following this, the command:

$ welcome
Good morning!

•
is equivalent to:

0

0

0

0

0

0

$ ah welcome
Good morning!

•

• 35 •

You can also use the chmod command in the following format:

S chmod 755 welcome
$ welcome
Good morning!

•
which has the same effect as the first. See the user's manual for details on the chmod command.

An executable command is noted with an asterisk '•' m an ls -F directory listing. So if you were
to list the directory contents now, it would show among other things:

S Ia-F
<etc.>

welcome•

•
The Shell also has the capability to define a named variable and assign a value to it. The sim
plest way to set a Shell variable is to use an assignment statement:

variable=value

You can then use the assigned value by preceding the name of the variable with a dollar sign:

$variable

Now make a file called biles which contains the assignment statements:

food=bread
drink=wine
person=thou
echo Stood, $drink, $person Ah!

Make bliss executable with chmod, and execute it:

S chmod 755 bllaa
$bllaa
bread, wine, thou Ah!
$

As another example, make a string-searching file called lag (for 'ls-grep') that contains:

ls I grep $1

Make it executable with chmod and use it to find filenames containing the string 'all' in the
current directory:

$ chmod 755 lag
• lag 'all'
allnames
allx
mail.all
$

You can thus use Shell procedures and programs interchangeably.

As well as providing names for the positional parameters, the number or positional parameters in
the call is available as $#. You can refer to the name of the file being executed as $0.

- 36-

There are some predefined Shell variables, some or which are modifiable and some or which sre
read-only. You have already seen:

HOME - Set to the user's home directory,

PATH - Set or directories that the Shell searches in order to find commands.

PSl - Primary prompt string, here the'$'.

You can also set a Shell variable from the output or a command. For example:

$ now='date•
$ echo $now
Fri Aug 12 08:23: 12 PST 1983
$

Note that the characters surrounding the command are grave accents, not apostrophes.

To set a Shell variable equal to a value contained in a file, use:

todo='cat plan'

This calls the cat command with the argument plan, where the plan file contains:

Eat breakfast.
Go to work.

The resulting value or '$todo' is:

$ echo $todo
Eat breakrast. Go to work.
$

A different type or Shell variable is one which is passed to the Shell procedures when it is called.
These arguments called positional parameters and are referred to by number, $1, $2, ... Consider
the following simple Shell procedure:

$ cat > reverse
echo $1 $5 $4 $3 $2 $1
'D
$ chmod 755 reverse
$ reverse do re mi ra so la
la so ra mi re do
$

You can also use the flow control programming constructs if .. else, while .. do, and others to con
trol the action taken by the procedure. See the Programming Tools for the Sun Workstation for
more information on programming the Shell.

2.9. Shell Metacharacter Summary

Syntactic Metacharacters

pipe symbol

command separator

& background commands

() command grouping

<
>

input redirection

output creation

0

0

0

0

0

0

- 37 -

Filename Expansion Metacharacters

• match any character(s) including none

? match any single character

[...] match any or the enclosed characters

Substitution Metacharacters

${ ... } substitute Shell variable

substitute command output

Quoting Metacharacters

\

" " ...

quote the next character

quote the enclosed characters except for •

quote the enclosed characters except for $ • \ "

0

0

01

0

0

0

- 38 -

3. MAIL USER'S GUIDE

The Mail User's Guidet describes how to use the mail program to send and receive messages. It
assumes you are familiar with the C-Shell, a text editor like vi or ez, and some of the common
Sun system commands. Ir you are not, read the Introduction to the Sun System in Part One or
this manual. For additional details on Sun system commands, consult the User 'e Manual for the
Sun Workstation. Set-up information for the mail facility is in the System Manager's Manual for
the Sun Workstation.

Mail provides a communication facility for sending and receiving mail among users on the same
host, users on different hosts linked to your local network, and users linked to the ARP ANET,
UUCP, and Berkeley networks. You use a set or editing commands to manipulate messages, and
to define and send mail to names which label user groups.

Briefly, here is how mail handles messages: mail divides incoming mail into its constituent mes
sages so you can deal with them in any order you please. The mail system collects the messages
for you from other people in a file, called your system mailboz. When you login, the system
notifies you if there are any messages waiting in this system mailbox. When you read your mail
using mail, it reads your system mailbox and separates that file into the individual messages that
have been sent to you. You can then read, reply to, delete, or save these messages. Each mes
sage is marked with its author, the date sent, and the message subject among other things.

3.1. Sending Mall

The mail command has three ways to send mail, depending on where your recipient has a login
account. Ir he has a host machine linked to your local network, use the method described in
Sending Mail on the Local Network. Ir he has a login account on the same host as yours, use the
method described in Sending Mail on the Same Host. Ir your recipient logs in on a machine con
nected to yours by UUCP, use the method described in Sending Mail on the Network.

3.1.1. Sending Mall on the Local Network
To send mail to users on other hosts linked to yours on the local network, use the mail command
followed by the login name and the host machine name or your recipient; for example, type:

tutorial% mall Joe@venu•
h the meeting planned for this afternoon f
'D
EOT
tutorial%

This sends mail to 'joe', which is the login name of the person you 're sending mail to. Joe's host
name is 'venus', which is where he has an account and logs in. End your message with a ·o (an
EOT) at the beginning of a line. Mail echoes EOT and returns you to the Shell.

The message 'joe' reads consists or the message you typed, preceded by several header lines telling
who sent the message (your login name), the date and time it was sent, and various other details.

Ir, while you are composing the message you decide that you do not wish to send it after all, you
can abort the letter with your current interrupt character (the default is 'C). Typing a single
INTERRUPT causes mail to display:

(Interrupt - one more to kill letter)

Typing a second INTERRUPT saves your partial letter in the file dead.letter in your home direc
tory and aborts the letter. Once you have sent mail to someone, there is no way to undo the act,
so be careful.

tThe ma.teria.l in this guide is derived from the Mail Reference Manual, Kurt Shoens, Cra.ig Leres.

- 39 -

3.1.2. Sending Mall on the Same Host

Sending mail to a plain login name without a hostname sends mail to that person assuming he has
an account on your machine. To send a message to 'roger', who has a login account on your host,
type:

tutorial% mall roger
Let'• play tennis this afternoon.
'D
EOT
tutorial%

End your message with a 'D (an EOT) at the beginning of a line as before. Mail echoes EOT and
returns you to the Shell. Later, the user 'roger' to whom you sent mail receives the message:

You have mail.

or

You have new mail.

or

New mail has arrived.

to tell him he has a message waiting.

If you want to send the same message to several other people, you can list their login names on
the command line. For instance:

tutorial% mall John marty davld
Meeting at three o'clock.
Please be on time.
'D
EOT
tutorial%

sends the reminder to John, Marty, and David.

3.1.3. Sending Mall on the Network

If your recipient logs in on a machine connected to yours by the telephone line network called
uucp (unix to unix copy), you must know the list of machines through which your message must
travel to arrive at his site. So, if his machine is directly connected to yours, you can send mail to
him using his hostname, the '!' or 'bang' character, and his login name. If you are using the C
Shell as our example shows, you must also escape the special '!' character with a backslash ' \'.
For example:

tutorial% mall venus\!Joe

sends mail to the user 'joe' whose uucp hostname is 'venus'. The general syntax is:

tutorial% mall hostname\!name

If your message must go through an intermediate system first, use the syntax:

tutorial% mall intermediate\!hostname\!username

Ask your system administrator about a 'map' of all the systems in the network connected to your
site.

There are several advanced facilities to learn about in the section Sending Mail with Tilde
Escapes.

0

0

0

0

0

0

• 40 •

3.2. Reading Your Mall
If, when you log in, you see the message:

Last login: Tue Aug 6 13:42:21 on console
Sun UNIX 4.2 (Berkeley beta release) (GENERIC) #8: Oct 23 13:45:52 PDT 1983
You have mail.
tutorial%

you can read the mail by typing simply:

tutorial% mall

Mail responds by displaying its version number and date and then listing the messages you have
waiting. Then it prompts you and waits ror your command. The messages are assigned numbers
starting with 1, so you rerer to the messages with these numbers. Consider the following:

Mail version 2.17 12/26/82. Type? for help.
"/usr/spool/lori": 2 messages 2 new
>N 1 steve Wed Sep 21 09:21 12/277 "Weekly Meeting"

N 2 wendy Tue Sep 20 22:55

Mail keeps track or which messages are 'new', that is, have been sent since you last read your
mail, and which messages are 'read', that is, that you have read. New messages have an N next
to them in the header listing and old, but unread messages have a U next to them. Mail keeps
track or new /old and read/unread messages by putting a header field called 'Status' into your
messages.

To look at a specific message, use the print command, which may be abbreviated to simply p.
You can examine the first message above by typing:

& print 1
Message 1:
From steve Tue Aug 2 10:28:33 1983
Date: 2 Aug 83 10:28:27 PDT (Tue)
From: steve (Steve Smith)
Subject: Weekly Meeting
Message-Id: <8308021728.AA05502@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA05502; 2 Aug 83 10:28:27 PDT (Tue)
To: henry
Status: R

Meeting at three o'clock.
Please be on time.
&

Many mail commands that operate on messages take a message number as an argument like the
print command. These commands have a notion or a current message. When you enter the mail
program, the current message is initially the first new message. Thus, you can orten omit the
message number and use simple p to display the current message:

&p

Another shorthand method is to display a message by simply giving its message number. To
display the first new message, say:

&1

Frequently, it is useful to read the messages in your mailbox in order, one after another. You can
read the next message in mail by simply typing a newline. As a special case, you can type a new
line as your first command to mail to type the first unread message.

- 41 -

3.3. Replying to Mall

If you wish to send a reply immediately after reading a message, you can do so with either the
reply or the Reply command. There is a distinct difference between the two commands.

Sometimes you will receive a message that has been sent to several people and wish to reply only
to the person who sent it. In this case, use a capital R to reply to the sender only. Reply, like
type, takes a message number as an argument. To reply to the sender and to everyone who
received the original message, use the reply command. Type in your reply, followed by a 'D at
the beginning or a line, as before. Mail displays EOT and the ampersand prompt to indicate its
readiness to accept another command. In our example, if you wish to reply to the first message
after reading it, use the command:

& reply
To: steve
Subject: Re: Weekly Meeting

and enter your letter. You are now in the message collection mode, and mail gathers up your
message up to a 'D. Note that it copies the header from the original message to make it easy to
recognize. If there are other header fields in the message, that information will also be used. For
example, if your letter has a 'To:' header listing several recipients, mail sends your reply to those
same people as well. Similarly, if the original message contained a 'Cc:' (carbon copies to) field,
your reply goes to those users, too. Mail is careful, though, not to send the message to you, even
if you appear in the 'To:' or 'Cc:' field, unless you ask to be included explicitly. More on this
later.

When you use the reply command to respond to a letter, there is a problem or figuring out the
names or the users in the 'To:' and 'Cc:' lists 'relative to the current machine.' Ir the original
letter was sent to you by someone on the local machine, then this problem does not exist, but if
the message came from a remote machine, the problem must be dealt with. Mail uses a heuristic
to build the correct name for each user relative to the local machine. So, when you reply to
remote mail, the names in the 'To:' and 'Cc:' lists may change somewhat. After typing in your
letter, your correspondence looks like:

& reply
To: steve
Subject: Weekly Meeting

Thanks for the reminder
'D
EOT
&

The reply command is especially useful for sustaining extended conversations over the message
system, with other 'listening' users receiving copies or the conversation. Abbreviate the reply com
mand to r once you get the hang or things.

If you wish, while reading your mail, to send a message to someone, but not as a reply to one or
your messages, send the message directly with the mail command, which takes as arguments the
names or the recipients you wish to send to. For example, to send a message to Wendy, type:

& mall wendy
Your presentation yesterday was very Informative.
EOT
&

Normally, each message you read is saved in your mailbox or mbox file in your login directory at
the time you leave mail. Often, however, you will not want to save a particular message you
have received because it is only of passing interest. To avoid saving a message in mbox, delete it
by typing:

0

0

0

0

0

0

- 42 -

& delete 1

This makes message 1 from Steve disappear altogether, along with its number. Abbreviate the
delete command to d.

3.t. Customizing Your Mail

There are several ways to customize the mail facility. Ir you have accounts on several systems
and want to direct your mail to a single account, you need a .forward file in the home directories
of those other accounts. You can also use the set and alias commands to tailor many mail
features to your personal uses.

3.t.1. Forwarding Your Mall from Other Accounts

Ir there is a large number of systems at your site or if you are linked to USENET, you may have
accounts on several machines. To forward your mail to a single account where mail will notify
you that you have mail, create a .forward file in the home directories of all the accounts from
which you want mail forwarded. For example, you may have an account on 'venus' where other
users sometimes send you mail, but you usually log in to your account on 'tutorial'. Create a
.forward file on your account on 'venus' and add:

sam@tu to rial

substituting your login name for 'sam.' Mail sent to your account on 'venus' will then be for
warded to your account on 'tutorial'.

Another way of forwarding mail is to use aliases. See Streamlining Your Mail with 'alias' for
details.

3.t.2. Setting Your Options with 'set'

Set has two forms, one for setting a binary option and one for a valued option. Binary options are
either on or off. A complete list of mail options appears in Additional Features.

As a C-Shell (csh) user, you will be notified when new mail arrives if you inform the C-Shell of
the location of your system mailbox in the directory /usr/spool/mail in a file with your login
name. Ir your login name is 'karen', you can make csh notify you of new mail by including the
following line in your .login file in your home directory:

aet mall=/usr/spool/mall/karen

Another useful option is ask, which informs mail that each time you send a message, you want
mail to prompt you for a subject header to be included in the message. To set the ask option in
mail, type:

& set ask

Another useful option is hold, which tells mail to keep your messages in the system mailbox
instead of moving them to your mbox file in your home directory as it normally does when you
leave mail.

Use valued options to adapt mail to your personal use. For example, the SHELL option tells
which Shell you like to use, and is specified by:

& set SHELL=/bln/sh

Note that no spaces are allowed in 'SHELL=/bin/sh.' A default Shell is used if none is specified.

Another important valued option is crt, which prevents long messages from flying by too quickly
for you to read them. Setting the crt option sends any message longer than a given number of
lines through the paging program more. Try setting this option for your workstation as:

& set crt=3t

- 43 -

(or 24 ir you are using a terminal) to paginate messages that will not fit on your screen. More
displays a screenful or information, then shows -MORE-. Type a space to see the next screenful
or RETURN to see the next line. It is not necessary to type in these set commands each time
you run mail. See the discussion or . mailrc in Streamlining Your Mail with 'alias'.

3.4.3. Streamlining Your Mall with 'allaa'

Mail has an alias adaptation, similar to the C-Shell. An alias is simply a name which stands for
one or more real user names. When you send mail to an alias, you are really sending it to the list
or real users associated with it. For example, define an alias for the members or a project, so that
you can send mail to the whole project by sending mail to just a single name. Suppose that the
users in a project are named Dan, Rick, Tom, and John. Define an alias 'project' for their project
group by typing:

& alias project dan rick tom John

You can then send mail to all or them by typing:

& mall project
<etc.>

·o
EOT
tutorial%

Use alias to provide a convenient name for someone whose user name is inconvenient. For exam
ple, if a user named Margaret Cunningham has the login name 'margaret', you can set an alias
with:

& alias mar margaret

so that you can send mail to the shorter name, 'mar'.

The alias and set commands let you customize mail, but you wouldn't want to have to retype
them each time you enter mail. To make them more convenient to use, put the eet options and
aliases you want in your . mailrc file in your home directory. For example, a . mail re file can look
like:

set ask nosave crt=24 SHELL=/bin/csh
alias project dan rick tom john

What happens here is that mail always looks for two files when it is invoked. It first reads a
system-wide file /usr/lib/Mail.rc, then your user-specific file, .mailrc in your home directory. The
system administrator at your site maintains the system-wide file, which contains set commands
that are applicable to all users or the system.

The mail delivery system send mail provides a system-wide aliases file called / usr/ lib/ aliases which
provides a more efficient way to keep a large database or mail aliases. For details, refer to the
Sendmail Installation and Operation Guide in the System Manager's Manual for the Sun Worksta
tion.

3.5. More on Reading Mall

You have seen that you can invoke mail with command line arguments that name people to send
the message to, or with no arguments to read mail. Specifying the -f flag on the command line
causes mail to read messages from a file other than your system mailbox. For example, if you
have a collection or messages in the file letters, use mail to read them with:

0

0

0

0

0

0

tutorial% mall -f letters
"letters": 3 messages
&n

- 44 -

-+ 1 tori Tue Jul 26 14:55 11/102 "Company Party"
<etc.>

&l
From lori Tue Jul 26 14:55:09 1983
Date: 26 Jul 83 14:55:04 PDT (Tue)
From: tori (Lori Rosen)
Subject: Company Party
Message-Id: <8307262155.AA04140@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA04140; 26 Jul 83 14:55:04 PDT (Tue)
To: steve
Status: R
Please make plans for the company
party in October.
?

You can use all the mail commands described in this manual to examine, modify, or delete mes
sages from your letters file, which is rewritten when you leave mail with the quit command
described below.

Since mail that you read is saved in the file mhox in your home directory by default, you can read
it by using simply:

tutorial% mall -f
"/usr/Iori/mbox": 7 messages
&

Normally, messages that you examine using the print command are saved in the mhox file in your
home directory if you leave mail with the quit command described below. Ir you wish to retain a
message in your system mailbox you can use the preserve command to tell mail to leave it there.
Preserve accepts a list or message numbers, just like print and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your system
mailbox automatically. Ir you wish to have such a message saved in mhox without reading it, use
the mbox command to save it. For instance:

& mbox 2
& quit
Saved 1 message in mbox
Held 1 message in /usr/spool/mail/Iori
tutorial%

saves the second message in mbox when you give the quit command. The mhoz command is also
the way to direct messages to your mbox file if you have set the hold option described above. You
can abbreviate mbox to mb.

3.8. Quitting Mall
When you have read all the interesting messages, you can finish the mail session with the quit
command. Quit does different things with the messages depending on whether you read a mes
sage, skipped over it, or deleted it:

• Messages that you read but didn't delete are appended to mboz in your home direc
tory.

- 45 -

• Messages which you simply skipped over and didn't delete are kept in the system
mailbox so you can read them the next time you use mail.

• Deleted messages are gone forever.

Note that you can retrieve deleted messages with the u (undelete) command as long as you are
still in mail. Once you quit the mail program however, deleted messages are irretrievable.

To quit mail, type:

& quit
Saved 1 message in mbox
Held 1 message in /usr/spool/mail/lori
tutorial%

You can abbreviate the quit command to q.

Ir you wish for some reason to leave mail quickly without altering either your system mailbox or
mbox, type:

&x
tutorial%

(short for exit) which immediately returns you to the Shell without changing anything.

Ir, instead, you want to execute a Shell command without leaving mail, type the command pre
ceded by an exclamation point, just as in the text editor. For instance:

& !date
Tue Jul 26 12:32:12 PDT 1983

displays the current date without leaving mail.

Finally, type a question mark '?' to get a brief summary of the mail command abbreviations.

3.7. Collecting Group• of MeHagea ln Foldera

Mail includes a simple facility for maintaining groups of messages together in folders.

To use the folder facility, put a line like:

set folder=lettera

in your . mailrc file to indicate where your folder directory should be kept. Each folder of mes
sages is a single file, and all or your folders are kept in that directory. Ir, as in the example
above, your folder directory does not begin with a '/,' mail assumes that your Colder directory is
to be round starting from your home directory. Thus, if your home directory is /usr/person the
above example puts your folder directory in /usr/person//etters.

Anywhere a filename is expected, you can use a folder name, preceded with '+ '. For example, to
put a message into a folder with the save command, use:

& save +records
"/usr/username/letters/records" [New fileJ 13/272
&

This saves the current message in the records Colder. Ir the records Colder does not yet exist, it is
created. Note that messages which are saved with the save command are automatically removed
from your system mailbox.

To copy a message into a folder without removing it from your system mailbox, type:

0

0

0

0

0

0

- 46 -

& copy +records
"/usr/username/lettters/records" !AppendedJ ll/'282
&

This copies the current message into the records folder and leaves a copy in your system mailbox.
The 'appended' message indicates that you already have a message in the records folder. Copy is
identical in all other respects to eave.

Use the folder command to read the contents or a different folder. For example:

& folder +record•

causes mail to close the file it is currently reading (as if you had typed q) and direct its attention
to the contents or the records folder. All of the commands that you can use on your system mail
box are also applicable to folders, including print, delete, and reply. To inquire which folder you
are currently editing, use simply:

& folder

To list your current set or folders, use the folders command:

& folders

Ir you want to start reading one or your folders, use the -f option described previously. For exam
ple:

tutorial% mall -f +record•

reads your records folder without looking at your system mailbox.

3.8. Sending Mall with Tilde Escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the text edi
tor on the partial message, display the message, execute a Shell command, or do some other auxi
liary function. Mail provides these capabilities through 'tilde escapes,' which consist or a tilde ,-,
at the beginning or a line, followed by a single character which indicates the function to be per
formed.

3.8.1. Displaying the Message Text with •-p•

Ir you are typing in a long message and want to to display the text or the message so far, use the
•-p• escape:

tutorial% mall lorl
A very long message ...

p

Message contains:
To: lori
Subject: Company Party
A very long message ...
(continue)

The •-p' displays a line or dashes, the recipients or your message, and the text or the message so
far. Since mail requires two consecutive 'C's (RUBOUT's, INTERRUPTs, DELETE's) to abort a
letter, you can use a single 'C to abort the output or ,-p' or any other ,-, escape without killing
your letter.

- 47 -

3.8.Z. Editing a Message - .-e' and •-v•

If you are dissatisfied with the message as it stands, you can use a text editor on it. To use the
default line editor ex, type:

-e

The ,-e' escape copies the message into a temporary file for editing. After modifying the message
to your satisfaction, write it out and quit the editor. Your screen displays:

(continue)

arter which you may continue typing text which will be appended to your message, or type 'D at
end the message. Mail provides a standard text editor, but you can override this default by set
ting the valued option 'EDITOR' to something else. For example, you might prefer to use the vi
display editor from Berkeley instead of the ex editor. Edit your .login file to contain:

setenv EDITOR /usr/ucb/vl

Mail also defines a default visual display editor, va. To use vi for editing your current message,
use the escape:

V

The ·-v• escape works like ,-e', but invokes the visual rather than the text editor. If it does not
suit you, you can set the valued option 'VISUAL' to the pathname of a different editor.

If you want to include the contents of some file in your message, the escape:

-r datafile
"datafile" 14/512

appends the named file, datafile in this case, to your current message. Ir the read is successful, the
number of lines and characters appended to your message is printed, after which you may con
tinue appending text. Mail complains if the file doesn't exist or can't be read; for example:

tutorial% mall lorl
Subject: Company Party
-r budget
budget: No such file or directory.

The filename may contain Shell metacharacters like '*' and '?', which are expanded according to
the conventions of your Shell.

3.8.3. Using the 'dead.letter' File with ,-d'
Similar to the ·-r· escape is the ,-d' escape which reads the file dead.letter in your home directory.
For instance:

-d
"/ usr /lori /dead .letter" 2 /24

reads in dead.letter to your current message. You can use ,-d' to recycle a message you aborted
with ·c, since mail copies the text of aborted messages into dead.letter.

3.8.4. Saving MeHage Text In a Flle with •-w•

To save the current text of your message in a file, use the •-w• escape:

-w itinerary
"itinerary": 7 /180

Mail displays the number of lines and characters written to the file, after which you may continue
appending text to your message. You can use Shell metacbaracters in the filename, as with •-r•.

0

0

0

0

0

0

- 48 -

3.8.5. Forwarding a Me1111age with •-m• and •-r
Ir you are sending mail from within maifs command mode, you can read a message sent to you
into the message you are writing with the escape:

& mall lorl
Subject: Company Party
& -m4
Interpolating: 4
(continue)

which reads message 4 into the current message, shifted right by one tab stop. You can name any
non-deleted message, or list of messages.

You can also forward messages without having them indented by a tab stop in the text with the
,-f' escape.

& mall lorl
Subject: Company Party
& -, 4
Interpolating: 4
(continue)

3.8.&. Adding People to the Message Llat with •-t•

If, in the process of composing a message, you decide to add additional people to the list of mes
sage recipients, you can do so with the escape:

-t namel name2 ...

You may name as few or many additional recipients as you wish. Note that the users originally
on the recipient list will still receive the message; you cannot remove someone from the recipient
list with ·-t'.

3.8.7. Adding a Me1111age Subject with •-11•
If you wish, you can pick a subject for your message or change the one you originally chose if you
have the ask option set, by using the •-s' escape:

-• New Me1111age Subject

The •-s' replaces any previous subject with 'New Message Subject.' The subject, if given, is
placed in the 'Subject' heading near the top of the message. It's a good idea to use the ,-p'
escape to see what the message will look like if you make a lot of changes which are not immedi
ately displayed as you type in text.

3.8.8. Sending Coples with •-c• and ,-b'

If you want to 'copy' people on a message, use the ·-c' escape:

- c namel name2 ...

The •-c• escape adds the named people to the 'Cc:' list.

To add blind copy recipients to a message, that is, people who will receive a copy of your message
but whose names will not be listed on the message, use the ,-b' escape:

-b name 1 name2 ...

Again, use •-p' to see what the message will look like.

tutorial% mall lorl
Subject: Company Party
text
-c Joe dan
-b shelley
p

Message contains:
To: Jori
Subject: Company Party
Cc: joe dan
Bee: shelley

text
(continue)

- 49 -

3.8.9. Editing the Header Fields with ,-h'

The recipients or the message together constitute the 'To:' field, the subject the 'Subject:' field,
and the carbon copies the 'Cc:' field. Ir you wish to edit these fields in ways impossible with the
·-t', •-s·, and ·-c• escapes, you can use the ,-h' escape, which displays each or the fields in turn:

-h
To: lori
Subject: Company Party
Cc:
Bee:
(continue)

The ,-h' escape first displays 'To:' followed by the current list or recipients and leaves the cursor
at the end or the line. Typing in ordinary characters appends them to the end of the current list
or recipients. You can also use your erase character DEL to erase back into the list of recipients,
or your kill character 'U to erase them altogether. Typing a newline, advances to the 'Subject'
field, where the same rules apply. Another newline brings you to the 'Cc:' field, and so on.
Another newline leaves you appending text to the end or your message. You can use •-p' to
display the current text or the header fields and the body or the message.

3.8.10. Escaping to the Shell with ,-!'

To escape to the Shell temporarily to execute a command, use the 'T escape:

-!pwd
/usr /Jori/tutorial
!

You can use a Shell command and return to mailing mode without altering the text or your mes
sage. Ir you wish, instead, to filter your message through a Shell command, you can use the 'T
escape:

-I command
(continue)

which pipes your message through the command and uses the output as the new text or your mes
sage. Ir the command does not produce any output, mail assumes that something is amiss and
retains the old version or your message. A frequently-used filter is the command /mt, which
justifies the message text. For example, you can type a message like the following and run it
through /mt:

0

0

0

0

0

0

tutorial% mall steve
Subject: Company Party
Please make plans for
the company party In October.
We have a
lot of scheduling and
budgeting to do.
I wlll be on vacation
for three weeks In
September,
so we should firm up
the plans before I leave.
-lfmt
(continue)
'D
EOT
tutorial%

- 50 -

to send your recipient 'steve' the formatted version:

From lori Fri Aug 5 16:18:02 1983
Date: 5 Aug 83 16:17:55 PDT (Fri)
From: lori (Lori Rosen)
Subject: Company Party
Message-Id: < 8308052317 .AA00232@sun. uucp>
Received: by sun.uucp (3.320/3.14)

id AA00232; 5 Aug 83 16:17:55 PDT (Fri)
To: steve
Status: R

Please make plans for the company party in October. We have a lot
or scheduling and budgeting to do. I will be on vacation for three
weeks in September, so we should firm up the plans before I leave.

3.8.11. Escaping to 'mall' Command Mode with•-:•

To escape to mail command mode temporarily, use the•-:' escape:

- :mail command

This is especially useful for reshowing the message you are replying to by using for example:

-:t

It is also useful for setting options and modifying aliases.

3.8.U. Changing the Tilde Escape and Using a Tilde as a Tilde

Ir you want or need to change the escape character to something other than the tilde ,-,, use the
'escape' option. For instance:

set escape=)

lets you use a right bracket instead or a tilde. Changing the escape character removes the special
meaning or the tilde,-,.

Ir you wish for some reason to send a message that contains a line beginning with a tilde, you
must double it. Thus, for example:

- -This line begins with a tllde.

sends the line:

-This line begins with a tilde.

- 51 -

If you ever need to send a line beginning with your new escape character, such as the right
bracket as suggested above, double it, just as for ,-,.

3.8.13. If You Need Help - ,-!'

If you forget which tilde escape does what and need a quick reminder while you are sending some
one a message, type the ,-?' escape:

The ,-?' displays a brier summary or the available tilde escapes.

3.0. Special Recipients

As described previously, you can send mail to either user names or alias names. Special conven
tions provide the capability or sending messages directly to files or to programs. If a recipient
name has a '/' in it or begins with a'+', it is assumed to be the pathname or a file to which to
send the message. If the file already exists, the message is appended to the end or the file. If you
want to name a file in your current directory (that is, one Cor which a '/' would not usually be
needed) you can precede the name with './'. So, to send mail to the file memo in the current
directory, type:

tutorial% mall ./memo

If the name begins with a '+ ', it is expanded into the full pathname of the folder name in your
folder directory. Sending mail to files can be used for a variety of purposes, such as maintaining a
journal and keeping a record of mail sent to a certain group or users. You can keep a record
automatically by including the run pathname of the record file in the alias command for the
group. Using our previous alias example, you can say:

alias project dan rick tom John /usr /proJect/mall_record

Then, all mail sent to 'project' is saved in the file /usr/project/mail_record as well as being sent
to the members of the project. You can examine this file using mall -f.

When you need to send mail directly to .a program, preface the program name with a 'I'. Mail
treats recipient names that begin with a 'I' as a program to send the mail to. For example, you
might write a project billboard program and want to access it using mail. To send messages to
the billboard program, send mail to the special name 'I billboard'. You can set up an alias to
refer to a 'I' prefaced name if desired.

Caveats: Because the Shell treats 'I' specially, you must quote the 'I program' on the command
line to present it as a single argument to mail. Surround the entire name with quotes. This also
applies to use with the alias command. For example, if you want to alias '/usr/Iocal/bugfiler' to
'bugfiler', say:

alias bugftler 'I /usr/local/bugftler'

3.10. Additional Features

This section describes some additional commands ror handling lists of messages, receiving your
mail, and setting options.

0

0

0

0

0

0

- 52 -

3.10.1. Message Lista

Several mail commands accept a message list as an argument. Along with type and delete,
described above, there is the from command, which displays the message headers associated with
the message list passed to it. Use from in conjunction with some or the message list features
described below.

A message list consists or a list of message numbers, ranges, and names, separated by spaces or
tabs. Message numbers may be either decimal numbers, which directly specify messages, or one
of the special characters '· ', '.' or '$' to specify the first relevant, current, or last relevant mes
sage, respectively. 'Relevant' means 'not deleted' for most commands, and 'deleted' for the
undelete command.

A range or messages consists or two message numbers separated by a hyphen. So, to display the
first four messages, use:

& type 1-4

and to display all the messages from the current message to the last message, use:

& type.-$

A name is a user name. The user names given in the message list are collected, and each message
selected by other means is checked to make sure that one or the named users sent it. Ir the mes
sage consists entirely or user names, then every message that is relevant and sent by one or those
users is selected. Thus, to display every message that peter sent to you, type:

& type peter

As a shorthand notation, you can specify simply '•' to get every 'relevant' (same sense) message.
So to display all undeleted messages, type:

& type•

To delete all undeleted messages, type:

& delete•

And to undelete all deleted messages, type:

& undelete•

You can search for the presence of a word in subject lines with '/'. For example, to display the
headers or all messages that contain the word 'PASCAL', say:

& from /pucal

Note that subject searching ignores upper/lower case differences.

3.10.2. List of Command• for Receiving Mall

This section describes all the mail commands available when receiving mail.

& !command
Escape to the Shell to process command.

& - Go to the previous message and display it.

& ? Display a brier help summary about mail commands. Same as help.

allu Define a name to stand for a set of other names. Use this when you want to send mes
sages to a certain group of people and want to avoid retyping their names. For exam
ple:

alias gang jon marty steve evan darryl

creates an alias gang, which expands to the five people 'jon', 'marty', 'steve', 'evan',

cd

copy

delete

dp

dt
edit

else

endlf

exit

ftle

- 53 -

and 'darryl'. If the given alias already exists, the listed names are added to it.

Change current directory. Cd takes a single argument, the pathname of the directory
to change to. If no argument is given, cd changes to your home directory.

Copy messages into a file without deleting them when you quit. See save.

Delete a list of messages. Reclaim deleted messages with the undelete command.

Delete the current message and display the next message. The dp command is useful
for quickly reading and disposing of mail.

Same as dp.

Edit individual messages using the text editor. Edit takes a list of messages as
described under the type command and writes each into the file Messagex (where 'x' is
the message number being edited) for editing. When you have edited the message,
write the message and quit. Mail reads the message back and removes the file. You
may abbreviate edit to e.

Mark the end of the then-part of an if statement and the beginning of the part to take
effect if the condition of the if statement is false.

Mark the end of an if statement.

Leave mail without updating the system mailbox or the file you were reading. Thus,
if you accidentally delete several messages, use exit to avoid scrambling your mailbox.

List the names of the folders in your folder directory. Same as folder.

folder or folders

from

Switch to a new mail file or folder. With no arguments, folder tells you which file you
are currently reading. If you give it an argument name, it writes out changes (such as
deletions) you have made in the current file and reads the new file. Use these special
conventions for the name:

Name

%
%name
&
+ folder

Meaning

Previous file read
Your system mailbox
Name's system mailbox
Your -/mbox file
A file in your folder directory

Display header lines for each message in a list. To display all the message headers
from 'lori' for example, type:

from lorl
l lori Fri Jul 22 10:10:38 10/1'28 "Subject"
2 Jori Wed Jul 27 10:15:20 11/120
5 Jori Fri Jul 29 10:16:52 13/150

headers Reprint the current list of message headers. When you start up mail to read your
mail, it lists the message headers that you have. These headers tell you who each
message is from, when it was sent, bow many lines and characters each message bas,
and the 'Subject:' header field if present. In addition, mail tags the message header of
each message that bas been the object or the preserve command with a 'P'. A '*' flags
messages that have been saved or written. Finally, deleted messages are not shown at
all. Headers (and thus the initial header listing) only lists the first so many message
heade.rs. The number or headers listed depends on the speed of your system. You can
override this by specifying the number or headers you want with the screen command.
Mail maintains a notion or the current 'window' into your messages for the purpose or
displaying headers. Use the z command to move forward and back a window. You
can change the notion or the current window directly to a particular message by using,
for example:

0

0

0

0

0

0

help

hold

If

Ignore

llat

mall

mbox

next

- 54 -

& headers 40

to move maifs attention to the messages around message 40. You can abbreviate the
headers command to h.

Display a brief help message about the mail commands.

Hold a list of messages in the system mailbox, instead of moving them to the mbox file
in your home directory. Ir you set the binary option hold, this will happen by default.
Same as preserve.

Execute commands in your .mailrc file conditionally depending on whether you are
sending or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and send.

Add the list or header fields named to the 'ignore list.' Header fields in the ignore list
are not shown on your screen when you display a message so you can suppress the
display or certain machine-generated header fields, such as Via which are not usually
of interest. Use the Type and Print commands to display a message in its entirety,
including ignored fields. Ir ignore is executed without arguments, it lists the current
set or ignored fields.

List the valid mail commands.

Send mail to one or more people. Ir you have the ask option set, you are prompted for
a subject to your message. Then you can type in your message, using tilde escapes as
described earlier to edit, display, or modify your message. To send your message, type
AD at the beginning or a line, or a '.' alone on a line if you set the option dot. To
abort the message, type two interrupt characters re) in a row or use the ,-q• escape.

Send a list of messages to mbox in your home directory when you quit. This is the
default action for messages if you do not have the hold option set.

Go to the next message and show it. Ir given a message list, next goes to the first such
message and shows it. For example, to go to the next message sent by steve and show
it, type:

& next steve

You can abbreviate the next command to simply a newline, which means that you can
go to and type a message by simply giving its message number or one of the magic
characters 't', '.',or'$'. So, to display the current message, type:

&.
And to display message 4, say:

&4

- 55 -

preserve Keep a list or messages in your system mailbox when you quit. Same as hold.

Print Like print, but also displays ignored header fields. See also print ignore.

print

quit

Reply

reply

Display each message your on workstation. Abbreviate top. Same as type.

Leave mail and update the file, Colder, or system mailbox you were reading. Messages
that you have examined are marked as 'read' and messages that existed when you
started are marked as 'old.' Ir you were editing your system mailbox and if you have
set the binary option hold, all messages which have not been deleted, saved, or
mboxed are retained in your system mailbox. Ir you were editing your system mail
box and you did not have hold set, all messages which have not been deleted, saved, or
preserved are moved to the mboz file in your home directory.

Reply to a one or more messages. The reply (or replies if you are using this on multi
ple messages) is sent ONLY to the person who sent you the message (respectively, the
set or people who sent the messages you are replying to). You can add people using
the ·-t• and ·-c• tilde escapes. The subject in your reply formed by prefacing the sub
ject in the original message with 'Re:' unless it already begins so. Ir the original mes
sage included a 'reply-to' header field, the reply goes only to the recipient named by
'reply-to.' You type in your message using the same conventions available through the
mail command. The Reply command is especially useful for replying to messages that
were sent to enormous distribution groups when you really just want to send a mes
sage to the originator.

Reply to a single message. The reply is sent to the person who sent you the message
to which you are replying, plus all the people who received the original message,
except you. You can add people using the -t and - c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with 'Re:' unless it
already begins so. If the original message included a 'reply-to' header field, the reply
only goes to the recipient named by 'reply-to.' Type in your message using the same
conventions available through the mail command.

aave Save messages on related topics in a file. Save takes as an argument a list or message
numbers, followed by the name or the file in which to save the messages. The mes
sages are appended to the named file, so you can keep several messages in the file,
stored in the order they were put there. You can abbreviate the save command to s.
You can save messages 1 and 2 in good.mail for example, by typing:

& s 1 2 good.mall

Saved messages are deleted and not automatically saved in mboz at quit time. They
are not selected by the next command described above unless explicitly specified.

set Customize mail with options or with valued options. See the Setting Custom Binary
and Valued Options information that follows. Options can be binary, in which case
they are on or off, or valued. To set a binary option on, do:

Shell

set option

where option is the option name. To give a valued option a value, say:

set option=value

Several options can be specified in a single set command.

Escape to the Shell to type commands to it. When you leave the Shell, you return to
mail. Mail assumes the default Shell, but you can override this default by setting the
valued option SHELL:

set SHELL=/bin/sh

0

0

0

0

0

0

source

top

Type

type

undelete

unset

visual

write

- 56 -

Read mail commands from a file. It is useful when you are changing your . mailrc file
and you need to read in the changes.

Display the first five Jines of each addressed message in a message list. It may be
abbreviated to t. If you wish, you can change the number of lines that top displays by
setting the valued option toplines. On a CRT terminal, you might prefer:

set topllnes=lO

Displays each message with header fields. Identical to the Print command.

Display a list of messages on your screen. Ir you have set the crt option to a number,
and the total number of lines in the messages you are displaying exceeds that specified
by crt, the messages are displayed by a paging program such as more. (Same as
print).

Restore a deleted message. Only messages that have been deleted may be undeleted.
This command may be abbreviated to U:

Reverse the action of setting a binary or valued option.

Invoke a display-oriented editor. The operation of the visual command is otherwise
identical to that of the edit command. Both the edit and visual commands assume
some default text editors. You can override these default editors with the valued
options EDITOR and VISUAL for the standard and screen editors. The defaults are:

EDITOR=/usr /ucb/ex VISUAL=/usr /ucb/vl

Write the message into a file. Just like save, except that write deletes the first (nor
mally 'From:' line) and last (normally blank) lines. Write has the same syntax as save
and can be abbreviated to simply w. Thus, you can write the second message by
doing:

& w Z flle.save

& Move the message header window forward. Type:

&z+
Analogously, you can move to the previous window with:

& •-

3.10.3. Setting Custom Binary and Valued Options

This section describes each of the options in alphabetical order, including some that you have not
yet seen. To avoid confusion, please note that the options are either all lowercase letters or all
uppercase letters. We begin sentences with capitalized option names as a courtesy to English.
Unless otherwise stated, the default value of all binary options is false (unset).

EDITOR Define the pathname of the text editor to be used in the edit command and •-e'. If
not defined, ex is used. A valued option.

SHELL Give the pathname of your Shell. This Shell is used for the '!' command and 'T
escape. In addition, it expands filenames with Shell metacharacters like '*' and '?' in
them. Default is csh. A valued option.

VISUAL Define the pathname of your screen editor for use in the visual command and ·-v•
escape. Invokes vi unless otherwise defined. A valued option.

append Appends messages to the end of your mbox file rather than to the beginning. Nor
mally, messages are put in mbox in the same order that the system puts messages in
your system mailbox. A binary option. This option is set in the system file
/ usr/ lib/ Mail.re. So by default, messages are appended to the end of the system

ask

- 57 -

mailbox and, your mboz file. You may override it in your . mailrc or your system
administrator may remove it, if desired.

Prompt you for the subject or each message you send. Ir you respond with simply a
newline, no subject field is sent. A binary option.

askcc Prompt you for additional 'carbon copy' recipients at the end of each message.

autoprlnt

Responding with a newline shows your satisfaction with the current list. A binary
option.

Cause the delete command to behave like dt. After deleting a message, the next one is
displayed automatically. This is useful for quickly scanning and deleting messages in
your mailbox. A binary option.

debug Display debugging information. Same as using the -d command line Hag. A binary
option.

dot

escape

folder

Cause mail to interpret a period alone on a line as the terminator or a message you are
sending. A binary option. This is set in the default system file /usr/lib/Mail.rc. It
may be removed or overridden in your . mailrc.

Allow you to change the escape character used when sending mail. Only the first
character or the escape option is used, and it must be doubled if it is to appear as the
first character of a line or your message. Ir you change your escape character, then ,-,
loses all its special meaning, and need no longer be doubled at the beginning of a line.
A valued option.

Determine the name or the directory to use for storing folders or messages. Ir this
name begins with a '/' mail considers it to be an absolute pathname; otherwise, the
folder directory is found relative to your home directory.

hold Hold messages that have been read but not manually dealt with in the system mailbox
to prevent them from being automatically swept into your mboz. A binary option.

Ignore Ignore 'C's (or RUBOUT) characters from your system and echo them as '@'s' while
you are sending mail. The 'C characters retain their original meaning in mail com
mand mode. Setting the ignore option is equivalent to supplying the -l Hag on the
command line. A binary option.

lgnoreeof
Make mail refuse to accept your current EOF character rD by default) as the end of
a message. /gnoreeof also applies to mail command mode, and is related to dot.

keep Truncate mail system mailbox instead or deleting it when it is empty. This is useful if
you elect to protect your mailbox, which you do with the Shell command:

keepsave

metoo

tutorial% chmod 800 /usr /spool/mall/ yourname

where yourname is your login name. Ir you do not do this, anyone can probably read
your mail.

Retain all saved messages. When you save a message in a file, mail usually discards it
when you quit.

Include yourself as a recipient when sending mail to an alias. Otherwise, mail does not
send you a copy if you are included in the alias. A binary option.

nosave Prevent mail from copying a partial letter to the dead.letter file in your home directory
when you abort a message with two 'C's (RUBOUT's). A binary option.

0

0

0

0

0

0

quiet

record

screen

sendmall

topllnea

- 58 -

Suppress the display of the mail version when mail is first invoked and the message
number from the type command. A binary option.

Name a record file to save your outgoing mail. Each new message you send is
appended to the end of the file. A valued option.

Override any terminal speed consideration that may affect how mail prints the mes
sage headers. Usually, the faster your terminal, the more it displays. The value of
screen specifies how many message headers you want displayed. This number is also
used for scrolling with the z command. A valued option.

Use an alternate delivery system. Set the sendmail option to the full pathname of the
program to use. Note: this is not for everyone! Most people should use the default
delivery system. A valued option, set to the full pathname of the program to use.

Define the number of lines that the top command displays instead of the default five
lines. A valued option.

verbose Invoke sendmail with the -v flag to use verbose mode and announce expansion of
aliases, etc. Equivalent to invoking mail with the -v flag. A binary option.

3.10.4. Command Line Options

This sectlon describes the use of mail command line options.

-N Suppress the initial printing of headers. For example, to get into mail, type:

-d
-t file

-l

tutorial% mall -N
&

Turn on debugging information. Not of general interest.

Show the messages in file instead of your system mailbox. If file is omitted, mail reads
mbox in your home directory.

Ignore tty interrupt signals while typing in a mail message. You can still use ' -q' to
interrupt the .message. Useful on noisy phone lines, which generate spurious RUBOUT
or DELETE characters. This is usually unnecessary if your INTERRUPT character is
the default ·c or if you're not logged in over a phone line. (See the stty Shell com
mand in the user's manual for details.)

-n Inhibit reading of/ usr/ lib/ Mail.re.

-11 string
Denote the subject of a message when sending mail. If string contains blanks, sur
round it with quote marks.

-u name Read names's mail instead of your own. Unwitting others often neglect to protect
their mailboxes, but discretion is advised.

-T file Arrange to print on file the contents of the article-id fields of all messages that were
either read or deleted. -Tis for the readnews program and should NOT be used for
reading your mail.

-v Use the -v flag when invoking sendmail. This feature may also be enabled by setting
the option verbose. Useful for diagnosing mail delivery problems.

3.11. Message Format

A sample message format is:

From lori Wed Jul Z"/ 10:16:52 1983
Date: 27 Jul 83 10:16:45 PDT (Wed)
From: lori (Lori Rosen)
Subject: Company Cruise

- 59-

Message-Id: <8307Z"/1716.AA05188@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA05I88; 27 Jul 83 10:16:45 PDT (Wed)
To: alison
Status: R

Messages begin with a from line, which consists or the word 'From' followed by a user name, rol
lowed by anything (usually null), rollowed by a date in the rormat returned by the clime library
routine described in the user's manual. The ctime date may be optionally followed by a single
space and a time zone indication, which should be three capital letters, such as PDT.

Following the from line are zero or more header field lines. Each header field line is or the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning. The
recognized header fields are: article-id, bee, cc, from, reply-to, sender, subject, and to. Other
header fields are also significant to other systems; see, tor example, the current ARPANET mes
sage standard tor more on this topic. A header field can be continued onto following lines by
making the first character on the following line a space or tab character.

Ir any headers are present, they must be followed by a blank line. The part that follows is called
the body of the message, and must be ASCII text, not containing null characters. Each line in the
message body must be terminated with an ASCII newline character and no line may be longer
than 512 characters. Ir binary data must be passed through the mail system, it is suggested that
this data be encoded in a system which encodes six bits into a printable character. For example,
you could use the upper and lower case letters, the digits, and the characters comma and period
to make up the 64 characters. Then, you can send a 16-bit binary number as three characters.
Pack these characters into lines, prererably lines about 70 characters long as long lines are
transmitted more efficiently. The file /usr/bin/unencode and /usr/bin/undecode are userul for
encoding and decoding binary data into the recommended form.

The message delivery system always adds a blank line to the end of each message. This blank
line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message each
time it is forwarded through a machine.

Note that some network transport protocols enforce limits on the lengths of messages.

0

0

0

0

0

0

- 60 -

3.12. Summary of Commands, Options, and Escapes

This section gives a quick summary or the mail commands, binary and valued set options, and
tilde escapes.

3.12.1. 'mall' Command Summary

The following table describes the commands.

Command

Print
Reply
Type
alias
alternates ·
cd
copy
delete
dt
endif
edit
else
exit
file
Colder
folders
from.
headers
help
hold
if
ignore
list
mail
mbox
next
preserve
print
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

mail Commands

Description

Single command escape to Shell
Back up to previous message
Show message with ignored fields
Reply to author or message only
Show message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or Colder
Delete a list of messages
Delete current message, type next message
End or conditional statement; see if
Edit a list or messages

. Start or else part or conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your Colder directory
List headers or a list or messages
List current window of messages
Print brier summary or mail commands
Same as preserve
Conditional execution or mail commands
Set/examine list or ignored header fields
List valid mail commands
Send mail to specified names
Arrange to save a list of messages in mboz
Go to next message and show it
Arrange to leave list or messages in system mailbox
Show messages
Leave mail; update system mailbox, mhoz as appropriate
Reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive Shell
Show first so many (5 by default) lines or list or messages
Show messages
Undelete list or messages
Undo the operation of a set command
Invoke visual editor on a list or messages
Append messages to a file, not including headers
Scroll to next/previous screenful or headers

- 61 -

3.U.2. 'set' Command Option Summary

The following table describes the options. Each option is shown as being either a binary or
valued option.

Binary and Valued Options

Option Type Description
EDITOR valued Pathname of editor for ·-e• and edit
SHELL valued Pathname of Shell for shell, 'T and '!'
VISUAL valued Pathname of screen editor for ·-v•, visual
append binary Always append messages to end of mboz
ask binary Prompt user for 'Subject:' field when sending
askcc binary Prompt user for additional 'Cc's' at end of message
autoprint binary Print next message after de/rte
crt valued Set minimum number of lines before using more
debug binary Display debugging information
dot binary Accept '.' alone on line to terminate message input
escape valued Escape character to be used instead of,-,
folder valued Set directory to store folders in
hold binary Hold messages in system mailbox by default
ignore binary Ignore "C's (RUBOUT) while sending mail
ignoreeof binary Don't terminate letters/command input with D
keep binary Don't unlink system mailbox when empty
keepsave binary Don't delete saved messages by default
metoo binary Include sending user in aliases
nosave binary Don't save partial letter in dead.letter
quiet binary Suppress printing of mail version
record valued File to save all outgoing mail in
screen valued Size of window of message headers for &, etc.
sendmail valued Choose alternate mail delivery system
toplines valued Number of lines to print in top
verbose binary Invoke sendmailwith the -v flag

0

0

0

0

0

0

- 62 -

3.12.3. Tilde Escape Summary

The following table summarizes the tilde escapes available while sending mail.

Escape

m

V

w

Arguments

command
name ...

messages

messages

filename
string
name ...

filename
command
string

Tilde Escapes

Description

Execute Shell command
Add names to 'Cc:' field
Read dead.letter into message
Invoke text editor on partial message
Read named messages
Edit the header fields
Read named messages, right shift by tab
Display message entered so Car
Abort entry or letter; like INTERRUPT ('C or RUBOUT)
Read file into message
Set 'Subject:' field to string
Add names to 'To:' field
Invoke screen editor vi on message
Write message on file
Pipe message through command
Quote a ,-, in front or string

3.U.4. 'mall' Command Line Flags

The following table shows the command line flags that
mail accepts.

Flag

-N
-T file
-d
-r file
-i
-n
-s string
-u name
-v

mail Command Line Flags

Description

Suppress the initial printing or headers
Article-id's or read/deleted messages to file
Turn on debugging
Show messages in file or - / mboz
Ignore tty interrupt signals
Inhibit reading or /usr/lib/Mail.rc
Use string as subject in outgoing mail
Read name's mail instead or your own
Invoke sendmail with the -v (verbose) flag.

Notes: Do not use -T and --d for normal operation.

0

0

0

0

0

0

- 63 -

4. NETWORK NEWS USER'S GUIDE

The network news, or simply netnews, is the set or programs that provide access to the User's
Network called USENET. With netnews, you can post news articles for limited or very wide dis
tribution on the USENET. You can post an article, which will be sent out to the network to be
read by others interested in that topic. There are facilities for browsing through old news, posting
follow-up articles, and sending direct electronic mail replies to the author or an article.

Whenever you read the news, you are presented with interesting articles that you have not yet
read. These are divided into topics or newsgroups. You can specify which topics you are
interested in with a subscription list. At the end or this guide, there is a list or newsgroups to
help you determine which newsgroups you may want to subscribe to. Netnews keeps old articles
around until they expire, which is usually about two weeks, so you can browse through old news
from time to time.

USENET is a bulletin board shared among many computer systems in the computer science com
munity, around the United States, Canada, Europe, and Australia. USENET is a logical network,
sitting on top or several physical networks, including uucp, BLICN, and Berknet. Sites on
USENET include many universities, private companies and research organizations.

USENET is useful in a number or ways:

• to share useful information,

• to report bugs and fixes without mass mailings, and

• to have discussions involving many people at different locations without having to get
everyone together.

For additional options and details on the network news, refer to the user's manual on readnews,
checknews, postnews, and inews.

4.1. Making the Connection wltb Your News Host System

To use netnews, a host system at your site (the news host) must connnect regularly by uucp to
another site from which news can be forwarded. This must be arranged directly between your
system administrator and the forwarding site. See the System Manager's Manual for the Sun
Workstation for more information. Ir your system itselr is the news host, you can run readnews
directly. Ir the news host is another machine on your local Ethernet, you must do a remote login
(rlogin). Let's assume your news host system is called 'mercury'. Log in to 'mercury' by typing:

tutorial% rlogln mercury
Last login: Tue Aug 5 13:41:36 on ttypO
Sun UNIX 4.2 (Berkeley beta release) (GENERIC) #8: Oct 23 13:45:52 PDT 1983
mercury%

You are now ready to read the news.

For additional information on how to connect your system to the USENET, refer to the System
Manager's Manual for the Sun Workstation.

4.1. How to Read the News with 'readnews'

The following assumes that your system 'tutorial%' is directly hooked up to USENET via uucp.

Use the readnews command to read the news:

tutorial% readnews

For each newsgroup to which you subscribe is displayed, one article at a time will be presented.
You will be shown the article header, containing the name or the author, the subject, and the

The ma.teria.l in this guide is derived from Ho111 to Read the Network Ne111s, Ma.rk R. Horton, Bell Telephone La.
bora.tories.

length or the article. You are asked if you want to read more. The three most common responses
are:

• Type y for 'yes' (or simply press RETURN) to display the rest of the message. (If the
message is long, it may stop before it runs off the top or the screen. Type a space or
press RETURN to see more of the message.)

• Type 'n' for 'no' to indicate you are not interested in the message; it will not be
offered to you again.

• Type 'q' for 'quit' to make a record of which articles you read (or refused) and to exit
netnews. When you have read all the news, this happens automatically. The quit
command is useful if you are in a hurry and don't have time to read all the news right
now.

To see a complete list or possible responses, type '?' for help.

4.3. Reading News for the First nme

If you are reading news for the first time, you may find yourself swamped by the volume or
unread news, especially if the subscription list default is 'all'. Decide which newsgroups you want
to read about. If you are getting newsgroups in which you have no interest, you can change your
subscription list as we show below. Also, bear in mind that what you see is probably at least two
weeks accumulation or news. If you want to just get rid or all old news and start anew, use the
readnews command with the -p and -n options, which throw away all articles and any diagnostic
output into / dev/ null. Note that this take a long time, so it's best to run the command in the
background by typing an '&' at the end or the command line:

tutorial% readnewe -p -n all > & / dev /null &
111 2345
tutorial%

This throws away all old news, recording that you hav'e seen it.

Once you catch up or ignore all the old news, the news comes in daily at a more manageable rate.
Ir the daily rate is still too much you may wish to change your subscription list to exclude some
or the high volume newsgroups. Finally, note that while you are displaying an article, you can
type a ·c (an INTERRUPT or DELETE) to throw away the rest or the article.

Other commands you can type after seeing the article header are:

u Unsubscribe from this newsgroup. Goes on to the next group. You will never
see this newsgroup again unless you edit your .newsrc file (see below).

x Exit readnews. Unlike quit, does not update the record of which articles you have
read and pretends you never started readnews.

N Go on to the next newsgroup. The remaining articles in the current newsgroup
are considered 'unread' and are offered to you again the next time you read
news.

e filename

r

Save the article in a disk file with the given filename. What usually happens is
that an article is displayed, and then readnews goes on to display the header of
the next article before you get a chance to type anything. To write out the pre
vious message, that is, the last one you have read in full, use the form e
filename.

Reply to the author or the message. Type in your message, and end it with ·o.
This sends mail addressed to the author. You then get back to readnews. Use
r- to reply to the previous message. Beware that this may sometimes generate
an incorrect address. Check the address and correct it withh -h if necessary.

0

0

0

0

0

0

f

- 65 -

Post a follow-up message to the same newsgroup. Type in the body of your
reply and type ·o. This posts an article on this newsgroup with the same title
as the original article. Be sure your article is worthy of posting; many follow-up
articles should be replies. Use '-' to follow up the previous message. IC you type
this by accident, type ·c (an INTERRUPT) to abort the follow-up. Note that
the people who administer the machines on USENET are concerned about people
sending news to inappropriate newsgroups. We suggest you read several week's
worth of news and read up on network etiquette before posting any news.

+ Skip the article for now. The next time you read news, you are offered this arti
cle again.

Go back to the previous article.

r Display a summary of valid commands. The '?' is also displayed if you type any
unrecognized command.

4.4. Changing Your Subscription List

If you don't take any special action, you will subscribe to a default subscription list. This default
varies locally. To find out your local default, type:

tutorial% readnews -•
Subscription list: general,all.general,general

Typically this list includes all newsgroups ending in 'general', such as 'general', and 'net.general'.

To change this, create a file in your home directory named .newsrc and type as its first line:

options -n newsgroup newsgroup newsgroup ...

Continue long lines on subsequent lines by beginning with a space. The netnews system updates
this file to record which articles you have read. Ignore these lines unless you want to edit them.
For example, if you are creating a subscription list for the first time, and have already read news,
you will find some update text in your .newsrc file, rtcording which articles you have read. Put
your options line before the first line of the file. For instance, a .newsrc file can look like:

option• -n general net.al fa.telecom
net.chess: 1-224
net.games.rogue: 1-45
net.games.trivia: 1-234

The update text shows three articles and the options lines that subscribes to the three news
groups, 'general,' 'net.ai', and 'fa.telecom.'

Type:

!newsgroup

to exclude certain newsgroups and add the word 'all' as a wild card to represent any newsgroup.
You can also use 'all' as a prefix or suffix to match a class of newsgroups. For example:

option• -n all !fa.all !netJokea !all.unlx-all

subscribes to all newsgroups except for ARPANET news, jokes, and any UNIX information. The
metacharacter '.' is like '/' to the Shell, and 'all' is like '•'.

4.5. Submitting Article• with 'postnewa' and 'lnewa'

To submit a news article, use the postnews command, which then prompts you for an article title,
newsgroup(s), and your news.

tutorial% postnews
Title:
Newsgroups (general):
Type news, end with control D
body of article
·o
EOT
tutorial%

- 66 -

Typing RETURN after the 'newsgroup' prompt uses the default newsgroup, 'general.' You can
also use:

tutorial% postnews fiiename

in which case postnews uses the specified fiiename as the article.

Ir the environment variable EDITOR is set to the pathname of an editor, you can use that editor
to type in your article. When creating a new article, specifying the newsgroup controls the level of
distribution.

For something fancier than a short note, use the inews command, which has several options,
such as specifying an article expiration date and the name or the sender.

tutorial% lnews -t title -n newsgroup (-e expiration date) (-f sender)
body of article
'D
EOT
tutorial%

/news does not prompt you like postnews does.

You can also use an editor with inews to prepare thq body of your article. Edit your file, then
type:

tutorial% lnew11 -t title [-n newsgroupJ < fiie

to use sent the edited file as your news article. A sample command line looks like:

tutorial% lnews -t seminar -n net.micro -e next frlday < semlnfo

This article announces a seminar to the 'net.micro' newsgroup readers. This expiration date
option is useful if you are announcing a meeting for a particular date after which the announce
ment will no longer be valid.

On some systems, it is possible to post news articles by sending mail. See the section on mail in
User Interface in this guide or refer to mail in the user's manual.

The network news provides a unique method of communication for many people. Please consider
the following guidelines when using USENET and the network news:

0

0

0

0

0

0

•
•
•
•
•
•
•
•
•
•
•
•
•

- 67 -

Put all items in an appropriate group.

Use mail instead of a followup news item .

Be careful when preparing articles for submission .

Read followups before responding .

Use an editor to prepare items for submission .

Don't be rude or abusive .

Avoid sarcasm and facetious remarks .

Use descriptive titles .

Whenever possible, cite references .

Make a summary of the original item in followups .

In posting summaries or replies, do make a summary .

Don't force people to read the same thing more than once .

Be as brief as possible .

4.8. Browsing Through Old News
Readnews command line options that help you find an old article again are:

-n newsgroups
Restricts your search to certain newsgroups.

-x Ignores the record of articles read kept in your .newsrc file. This displays all articles
in all newsgroups to which you subscribe, even those which you have already seen. It
also prevents readnews from updating the .newsrc file.

-a date Asks for news received since the given date. Note that even with the -a option, only
articles you have not already seen are displayed, unless you combine it with the -x
option. Articles are kept on file until they expire, typically after two weeks.

-t keyworde
Restricts the query to articles mentioning one of the keywords in the title of the arti
cle. Ir you try:

tutorial% readnewa -n net.unix-wizards -x -a last friday-t setuid

you see all articles in newsgroup net.unix-wizards since last Friday about the setuid
feature. The -t option finds articles about the specific keyword; it does not find arti
cles about 'suid', 'Setuid ', nor articles with no title or whose author did not use the
word 'setuid' in the title.

-I Lists only the headers of articles - a useful form for browsing through lots of mes
sages.

-p Prints the messages without asking for any input.

-r Produces articles in reverse order, from newest to oldest.

4.7. Getting News When You Log In - Your Morning Newaps:per

To be told if there is any news when you first log in, put checknews or readnews in your .login or
.profile file. This way you are reminded of news, but are not interrupted by it during the day.

The readnews command tries to find all unread news (assuming you are going to read it), and
takes a lot or time to do it, so it's better to use the smaller, faster checknews, which tells you if
there is any news. It was designed especially for a login file. There are also options to be silent if
there is (or is not) news, and to start up readnews automatically if there is news.

The checknews options are:

-y

-v

- 68 -

Print 'There is news' if there is any news arrives during a login session.

Ir -y is also given, instead of printing 'There is news', print 'News: newsgroup ... ' giv
ing the name of the first newsgroup containing unread news.

-n Print 'No news' if there is no unread news.

-e Start up readnews i(there is any unread news. Any additional arguments after the -e
are pa.5sed to readnews.

Thus, checknews -yn tells you whether there is any unread news. Checknews -y tells you if there
is news, and is silent if there is no news.

4.8. Creating New Newsgroup•

To create a newsgroup, post an article to an appropriate 'general' newsgroup suggesting the new
newsgroup, (for example, for a new 'net' or 'fa' newsgroup, post to 'net.general', for a new local
newsgroup, post to 'general') with another copy to 'ne\.news.group', for example:

tutorial% lnewa -t suggested new newsgroup -n net.general,net.news.group

Other users will follow-up to 'net.news.group', giving opinions about whether the suggested news
group makes sense, should have a different name, etc.

When agreement is reached and it is established that there is interest in the topic, ask your local
netnews administrator to create the newsgroup. It can actually be created by any netnews
administrator anywhere on the net, within the scope of the newsgroup. Once the newsgroup is
created and the first article has been posted, the newsgroup is available for all interested persons
to post to.

4.9. User Interfaces

The user interface of a program is the face it presents to the user, that is, what it displays and
what it allows you to type. Readnews has options allowing you to use different user interfaces.
These are: ·

• The -c option displays the the entire message, header and body, and prompts you at
the end or the message. The command options are the same as the msgs interface, but
it is usually not necessary to use the '-' suffix on the reply, save, or followup com
mands. This interface is called the '/bin/mail' interface, because it mimics the UNIX
program of that name.

• The mail interface, available with the -M option, invokes the mail program directly,
and allows you to read news with the same commands as you read mail. This inter
face may not work on your system - it requires a special version of mail with a -T
option.)

• Use your favorite mail system as an interface, including /bin/mail and mail. Any
mail system with an option to specify an alternative mailbox can be used to read
news. For example, to use mail without the -M option, type:

tutorial% readnewa -c "mall -f %"

The Shell command in quotes is invoked as a child or readnews. The -f option to mail names the
alternative mailbox. Readnews puts the news in a temporary file, and gives the name of this file
to the mailer in place of the '% '. There is an important difference when using this kind or inter
face. The mailers do not give any indication of which articles you read and which ones you
skipped. Readnews assumes you read all the articles, even if you didn't, and marks them all read.
By contrast, the -M option uses the -T option to mail, asking mail to tell readnews which arti
cles you read.

0

0

0

0

0

0

- 69 -

4.10. From the ARP ANET

The 'FA' (from the ARP ANET) newsgroups have a different convention for posting news. Rather
than using inews, postnews, or the /ollowup command, send mail to a particular electronic mailing
address along the return address found in the From line of the article. Although it is possible to
post news directly to the newsgroup, don't do it.

The correct way to post news to an 'FA' newsgroup is to send electronic mail to
ucbvax!C70:newsgroup. (You will have to route your mail to ucbvax - inquire locally how to do
this or check the return address on any 'FA' article.) For this reason, all articles in 'FA' news
groups have a return address or the form ... !ucbvax!C70:newsgroup.

'Fa' newsgroups are electronic mailing lists on the ARPANET. A number of people on toe
ARP ANET get the mailings directly from the mailing lists. One entry on each mailing list is of
the form post-newsgroup@Berkeley which is fed intQ a program that posts the article on news
group ta.newsgroup. From there it is distributed to the other sites on USENET. Ir you post an
article directly to the newsgroup, you will reach all the readers of that newsgroup on USENET,
but you will miss all the people getting the direct mailing on the ARP ANET.

To follow up an 'FA' article, use the reply command of readnews, not the follow-up command.
This insures that ARP ANET members also see the reply.

Ir you are a USENET site on the ARPANET, the corresponding mailing address is
newsgroup@Berkeley, although it also works to send mail directly to the ARP ANET list, if you
know the proper address. The address at Berkeley only forwards to the real ARP ANET mailing
list. Thus, for example, sending mail from the ARPANET to either CSV AX.unlx
wlzards@Berkeley or unlx-wlzards@SRI-W ARF is correct, but sending mail to
CSV AX.post-unlx-wlzards@Berkeley is wrong, since only USENET readers will see it.

4.11. List of Newsgroups

This lists the active newsgroups to help you decide which you want to subscribe to. Note that
the list is constantly changing. Note also that this list is specially tailored for the Berkeley sites.
Check with your netnews administrator for a local list.

There are two basic subcategories of netwide newsgroups:

1. The 'net.all' group consists of USENET bulletin board newsgroups that are circulated
around the entire net.

2. The 'fa.all' group is a set of groups that are gatewayed to USENET from the ARPANET.
These groups consist mainly of digests, although there are some bulletin boards.

Some of the 'net.all' and 'fa.all' groups are gatewayed between the networks, that is, items sub
mitted from the ARP A side to the digest are split up and submitted to the USENET group, while
articles submitted on the USENET side are bundled up and submitted to the digest.

4.11.1. Local Newsgroups

Local groups are kept on the current machine only. Local names can be identified by the lack of
a prefix, that is, there are no periods in local newsgroup names.

general News and important announcements to be read by everyone on the local
machine. This newsgroup is usually mandatory. The list of mandatory news
groups varies locally. csmsgs.)

4.11.1. FA Newsgroups

FA groups are 'from the ARPANET' and are mostly copies of mailing lists or 'digests' distributed
on that network. A digest is a collection of mail, much like a newsletter, that is put together by
an editor and sent out every so often. A special convention applies to submissions to FA news
groups. As previously described, you should not post directly to the newsgroup, since this will be
seen by people on USENET but not by the people on the ARPANET who get the list directly
mailed to them. Instead, send mail to the return address on any article, by using the reply

- 70 -

command to readnews. For example, to post to fa.human-nets, the reply command might mail
to ucbvax!C70:human-nets

FA groups and their corresponding mailing lists can reach a very large user community, including
USENET sites on UUCP, Berknet, BLN, and the ARPANET, as well as sites on the ARPANET
which are not on USENET, who get the news via direct electronic mailing.

Ca.arms-d People worried about nukes.

Ca.arpa-bboard Announcements that are posted to all arpanet boards are also fed into this
newsgroup.

Ca.digest-p People who deal with digests. Mostly the people who moderate them.

Ca.editor-p Interest group in computer editors, both text and program.

fa.energy Topics relating to alternate energy production, conservation, etc.

Ca.human-nets A daily moderated digest with discussions of computer-aided human-to-human
communications. Probably the most widely read ARPANET publication.

fa.info-cpm CP /M and other operating systems for micro computers.

fa.info-micro Microprocessor discussions.

fa.info-terms Opinions/queries about what's a good/bad computer terminal.

fa.info-vax VAX interest group. Seems to be mostly VMS issues, but some hardware dis
cussions too.

fa.poli-sci Political Science discussions digest.

fa.sf-lovers Science Fiction book/movie reviews, etc.

fa.space

fa.tcp-ip

fa.telecom

fa.teletext

fa.unix-cpm

Ca.works

Digest containing comments on the space program and outer space in general.

Digest relating to the TCP and IP network protocols.

Technical topics relating to telecommunications, especially the telephone sys
tem. A digest recently spun off from fa.human-nets.

Teletext discusses all aspects of "esoteric" data systems. This includes teletext,
viewdata, closed-captioning, and digicasting.

CPM/UNIX discussions.

Interest group on personal workstations (e.g. Apollo, Perq, Sun, Xerox Star,
etc).

4.11.3. Net Newsgroups

Net groups are intended to be available to all people on the entire network who read netnews.
This does not mean they go to every machine, since some machines restrict the type or news that
comes in. Net groups reach all of USENET (including USENET sites on the ARP ANET) but do
not reach any sites that are not on USENET. That is, USENET is defined as all sites that receive
'net.general'.

net.general

net.applic

net.auto

net.auto.vw

net. aviation

net.bugs

Articles to be read by everyone on the whole net.

Functional programming (applicative) languages.

Notes of interest to owners of particular cars. Main subgroup is

for owners of Volkswagen Rabbits.

Private pilots.

Bug reports and fixes. Subscribing to 'net.bugs' gets all bug reports, but bugs
are normally posted to one of 'net.bugs.2bsd', 'net.bugs.4bsd', 'net.bugs.v7', or
'net.bugs.u3', for the 2nd and 4th Berkeley Software Distribution, Version 7, or
UNIX system III, as appropriate.

0

0

0

0

0

0

net.chess

net.columbia

net.cooks

net.cycle

net.eunice

net.games

net.ham-radio

net.jokes

net.Ian

net.lsi

net.misc

net.movies

net.music

net.news

net.oa

net.periphs

net.rec

net.records

net.rumor

net.sf-lovers

net.sources

net.space

net.sport

net.taxes

net.test

- 71 -

Interest group for computer chess. This newsgroup is connected into an
ARPANET mailing list but appears as a normal newsgroup to USENET, so it
is called 'net.chess' instead or 'fa.chess'.

Newswire items and comments on the Space Shuttle, and on the space program
in general.

Food, cooking, cookbooks, and recipes.

Motorcycle interest group.

Topics or interest to sites running SRl's Eunice system, which simulates UNIX
on VMS.

Discussion or computer games (or the /usr/games/variety). Subgroups include
'net.games.rogue', 'net.gamesJrp' (for fantasy role playing games,) and
'net.games.trivia'.

Topics or interest to amateur radio operators.

The latest good joke you've heard.

Local area network interest group.

Large Scale Integrated Circuit discussions.

Miscellaneous discussions that start in net.general but are not permanent
enough for their own newsgroup.

Movie reviews by members or USENET.

Computer generated music.

Discussion or netnews itselr. Subgroups discuss or post various a.5pects or net
news, including 'net.news.b' for the B version or netnews, 'net.news.directory' to
post all or part or the USENET directory, 'net.news.group' for discussions
about proposed new newsgroups, 'net.news.map' to post maps or USENET or
additions/corrections to previously posted maps, 'net.news.newsite' to announce
a new site. 'net.news' itselr is used for discussions relating to USENET policies
and the like, rather than any specific software.

Office Automation/Word Processing interest group.

Queries and discussions about particular peripherals. ("Does anyone have a
driver for a rrammis-11?")

Recreational games. This differs from 'net.sport' in that 'net.rec' discusses
games where one generally participates, but 'net.sport' is for spectator sports.
'net.games' is for computer type games. Subgroups or 'net.rec' include
'net.rec.bridge' for contract bridge discussions, 'net.rec.scuba' for scuba divers,
and 'net.rec.ski' for skiers.

Discussions or phonograph records, albums, record stores, etc.

For posting or rumors.

For science fiction lovers.

For posting source code for software distribution.

Undigested, immediate distribution version or fa.space.

Spectator sports. Subgroups include 'net.sport.baseball', 'net.sport.football',
and 'net.sport.hockey'.

Tax advice and queries.

Test messages are posted here. Generally this is not interesting to ordinary
readers.

- 72 -

net.travel Requests, suggestions, and opinions about traveling.

net.ucds Circuit drawing system.

net.unix-wizards ARPANET mailing list for UNIX Wizards. Anything and everything relating
to UNIX is discussed here. This list is connected to the ARP ANET mailing list
but appears like a regular 'net' newsgroup to USENET.

net.wines Information and recommendations about wines and alcoholic beverages.

0

0

0

0

0

0

- 73 -

APPENDIX A: GLOSSARY
This glossary lists the most important terms in this introduction to the Sun system.

a.out

The name or your current directory displayed by the command pwd; also see dirs.
Usually the first component of the search path contained in the variable path, so com
mands in '.' are found first. At the beginning of a component of a pathname, '.' is
treated specially and not matched by the filename expansion metacharacters '?', '*',
and 'I' 'J' pairs. The character '.' is also used in separating filename components.

Each directory has a file ' . .' in which is a reference to its parent directory. After
changing into a directory with cd, you can return to the parent directory by typing cd
• •. Then check the current directory with pwd.

The default file that contains the executable images that compilers create.

absolute pathname
A pathname which begins with a '/' is absolute since it specifies the path o(directories
from the beginning or the entire directory system - called the root directory. Path
names which are not absolute are called relaiive (see relative pathname).

alias An alias specifies a shorter or different name for a Sun system command, or a com
mand transformation to be performed in the Shell. The Shell has an alias command
that establishes aliases and can show their current values. The command unalias
removes ,aliases.

argument
Commands in the Sun system receive a list or argument words. Thus the command
echo a b c consists or the command name echo and three argument words 'a', 'b' and
'c'. The set or arguments after the command name is the argument list of the com
mand.

background
Commands started without waiting for them to complete.

base That part of a filename before any '.' character. See also filename and extension.

bg The bg command causes a suspended job to continue execution in the background.

bin A directory containing binaries of programs and Shell scripts to be executed. The
standard system bin directories are / bin, containing the most heavily used commands
and / usr/ bin, which contains most other user programs. Programs developed at UC
Berkeley live in / usr/ ucb, while locally written programs live in / usr/ local. Games are
kept in the directory / usr/ games. You can place binaries in any directory. Ir you
wish to execute them often, the name or the directories should be a component or the
variable path.

bullt-ln A command that the Shell executes directly. Most commands in the Sun system are
not built into the Shell, but rather exist as files in bin directories.

cat The cat program concatenates a list or specified files on the standard output.

cd The cd command changes the working directory. With no arguments, cd changes your
working directory to be your home directory.

chsh The chsh command changes the Shell which you use on the Sun system. By default,
you use the C-Shell which resides in / bin/ csh.

command
A function performed by the system, either by the Shell (a built-in command) or by a
program residing in a file in a directory within the Sun system.

command name
When a command is issued, it consists or a command name, which is the first word or
the command, followed by arguments. The convention is that the first word or a com
mand names the (unction to be performed.

- 74 -

component
The part or a pathname between '/' characters. A variable which has multiple strings
as a value is said to have several components; each string is a component or the vari
able.

continue The built-in command that causes execution or the e:iclosing foreach or while loop to
cycle prematurely. Similar to the continue command in the programming language C.

control- Certain special characters, called control characters, are produced by holding down the
CONTROL key on your terminal and simultaneously pressing another character,
much like the SHIFT key is used to produce upper-case characters. To produce
control-c (or 'C), hold down the CONTROL key while pressing the C key. Usually
the Sun syste.i1 shows a caret (') followed by the corresponding letter when you type a
control character.

core dump
When a program terminates abnormally, the system places an image or its current
state in a file named core. This core dump can be examined with the system debugger
adb or dbx to determine what went wrong with the program. The Shell may produce a
message or the form 'Illegal instruction (core dumped)' where 'Illegal instruction' is
only one or several possible messages.

cp The cp (copy) program copies the contents or one file into another file.

cab The name or the Shell program for the C-Shell.

.cshrc

cwd

The file .cshrc in your home directory that each Shell reads as it begins execution. It
is usually used to change the setting of the variable path and to set alias parameters
which are to take effect globally.

The cwd variable in the Shell that holds the absolute pathname or the current working
directory. The Shell changes it whenever your current working directory changes, and
it should not be changed otherwise.

date The date command prints the current date and time.

debugging
The process or correcting mistakes in programs and Shell scripts. The Shell has
several options and variables which may be used to aid in Shell debugging.

DELETE The DELETE or RUBOUT key on a terminal normally sends an INTERRUPT to the
current job. The workstation default is 'C.

detached

diagnostic

directory

A process that continues running in the background after you logout.

An error message produced by a program. Most error messages are written to the
diagnostic output, which may be directed away from the workstation, but usually is
not, so diagnostics usually appear on the workstation.

A structure which contains files. At any time you are in one particular directory
whose name can be shown by the command pwd. The cd command changes you to
another directory, and makes the files in that directory visible. The directory which
you .are in when you first log in is your home directory.

directory stack
The C-Shell saves the names or previous working directories in the directory stack
when you change your current working directory with the pushd command. To display
the directory stack use the dirs command, which includes your current working direc
tory as the first directory name on the left.

0

0

0

0

0

dlrs

du

echo

EOF

- 75 -

The dirs command displays the C-Shell's directory stack.

Short for 'disk usage,' the du program shows the number or disk blocks in all direc
tories below and including your current working directory.

The echo command displays its arguments.

An end-of-file is generated by a 'D, and whenever a command reads to the end of a
file which it has been given as input. Commands receiving input from a pipe receive
an end-of-file when the command sending them input completes. Most commands ter
minate when they receive an EOF.

escape A character ' \' that prevents the special meaning or a metacharacter; it escapes the
metacharacter from its special meaning.

/etc/paaswd

expansion

extension

The file containing information about the accounts currently on the system. The
/etc/passwd file consists of a line for each account with fields separated by ':' charac
ters. See passwd.

The replacement or strings in the Shell input which contain metacharacters by other
strings. The replacement or the word '•' by a sorted list or files in the current direc
tory is a 'filename expansion.' Similarly the replacement or the characters '!!' by the
text or the last command is a 'history expansion.'

Filenames often consist or a base name and an extension separated by the character '.'.
By convention, groups or related files often share the same root name. Thus if prog.c
were a C program, then the object file for this program would be stored in prog.o.
Similarly a paper written with the -ms nroff macro package might be stored in
paper.ms, while a formatted version or this paper might be kept in paper.out and a list
or spelling errors in paper.errs.

fg The job control command that runs a background or suspended job in the foreground.

filename
Each file in the Sun system has a name consisting of characters, not including the
character '/', which is used in pathname building. Most filenames do not begin with
the character '.', and contain only letters and digits with perhaps a '.' separating the
base portion or the filename from an extension.

filename expansion
Filename expansion uses the metacharacters '•', '?' and 'I' and 'J' to provide a con
venient mechanism for naming files. You can name all the files in the current direc
tory, or all files which have a common root name. Other filename expansion mechan
isms use the metacharacter ,-, and allow files in other users' directories to be easily
named.

flag Many Sun system commands accept arguments which are not the names of files or
other users, but modify the action or the commands. These are referred to as flag
options, and by convention consist or one or more letters usually preceded by the char
acter '-'. Thus the ls (list files) command has an option --e to list the sizes or files.

foreground

grep

When commands are executing in the normal way such that the Shell is waiting for
them to finish before prompting for another command they are said to be foreground
jobs or running in the foreground, as opposed to background. Typing different control
characters at the keyboard stops foreground jobs.

The grep command searches through a list or argument files for a specified string.
Grep scans for regular expressions in the sense or the editors ed and ex. Grep stands
for 'global regular expression print.'

- 76 -

head The head command shows the first few lines of one or more files. Head also describes
the part o(a pathname before and including the last '/' character.

header field
At the beginning of a message, a line that contains information that is part o(the
structure or the message. Header fields include to, cc, and subject.

history The history mechanism or the Shell repeats previous commands, possibly after
modification to correct typing mistakes or to change the meaning or the command.
The Shell has a history list where these commands are kept, and a history variable
which controls how large this list is.

home directory

lgnoreeof

Input

Interrupt

Each user has a home directory, which is defined in his entry in the password file,
/ etc/ passwd. This is the directory which you are placed in when you first log in. The
cd command with no arguments takes you back to this directory, whose name is
recorded in the Shell variable home. You can also access the home directories of other
users by forming filenames using a filename expansion notation and the character ,-, .

Normally, your Shell will exit, displaying 'logout' if you type a 'D at a prompt of
'tutorial%'. This is the way you usually log off the system. You can set the ignoreeo/
variable if you wish in your .login file and then use the command logout to logout.
This is useful if you sometimes accidentally type too many 'D's characters, logging
yourself off.

The information that many Sun system commands take from the workstation or from
files and act on. Commands normally read for input from their standard input which
is, by default, the workstation or terminal. This standard input can be redirected
from a file using the Shell metanotation character '<'. Many commands also read
from a file specified as argument. Commands placed in pipelines read from the output
of the previous command in the pipeline. The leftmost command in a pipeline reads
from the terminal if you neither redirect its input nor give it a filename to use as stan
dard input. Special mechanisms exist for supplying input to commands in Shell
scripts.

A signal to a program that is generated by typing 'C (or the RUBOUT or DELETE
key on some terminals), which causes most programs to stop execution. Certain pro
grams, such as the Shell and the editors, handle an interrupt in special ways, usually
by stopping what they are doing and prompting for another command. While execut
ing another command and waiting for it to finish, the Shell does not listen to inter
rupts. Typing an interrupt often wakes up the Shell as many commands die when
interrupted.

Job One or more commands typed on the same input line separated by 'I' or ';' characters
and run together. Simple commands run by themselves without any 'I' or ';' charac
ters arc the simplest jobs. Jobs are classified as foreground, background, or suspended.

Job control
The built-in functions that control the execution of jobs. These (unctions are bg, Jg,
stop, kill.

Job number
When each job is started it is assigned a small job number, which is displayed next to
the job in the output of the jobs command. Use this number, preceded by a '%' char
acter, as an argument to job control commands to indicate a specific job.

Jobs The jobs command displays a table showing jobs that are either running in the back
ground or are suspended.

0

0

0

0

0

0

- 77 -

kill A command which sends a signal to a job causing it to terminate.

.login The file .login in your home directory is read by the Shell each time you log in to the
Sun system, and the commands contained there are executed. A number of commands
are usually placed in .login, especially set commands to the Shell itself.

login Shell
The Shell that is started on your terminal when you log in. It is different from other
Shells which you may run (such as on Shell scripts) in that it reads the .login file
before reading commands from the workstation or terminal, and it reads the .logout
file after you logout.

logout The logout command causes a login Shell to exit. Normally, a login shell exits when
you type 'D generating an end-of-file, but if you have set ignoreeof in your .login file,
this will not work and you must use logout to log off the Sun system .

. logout When you log off the Sun system, the Shell executes commands from the file .logout in
your home directory after it displays 'logout.'

lpr The line printer daemon command. The standard input of lpr is spooled and printed
on the line printer. You can also give lpr a list of filenames as arguments to be
printed.

la With no argument filenames, Is shows the names or the files in the current directory.
It has a number of useful flag arguments, and can also be given the names of direc
tories as arguments, in which case it lists the names of the files in these directories.

mall The mail program sends and receives messages from other system users.

mailbox The place where your mail is stored, typically in the directory / usr/ spool/ mail.

meHage A single letter from someone, initially stored in your mailbo:e.

meBBage 11st
A string used in mail command mode to describe a sequence of messages.

metacharacter

mkdlr

modifier

The characters that are neither letters nor digits that have special meaning either to
the Shell or to the Sun system. Enclose them in quotes if it is necessary to place these
characters in arguments to commands without them having their special meaning. An
example of a metacharacter is the character '>' which indicates placement or output
into a file. For the purposes or the history mechanism, most unquoted metacharacters
form separate words.

The mkdir command creates a new directory.

Substitutions with the history mechanism, keyed by the character '!' or of variables
using the metacharacter '$', are often subjected to modifications, indicated by placing
the character ':' after the substitution and following this with the modifier itself.

more The program more shows a file on your workstation and allows you to control how
much text is displayed at a time. More can move through the file screenful by screen
ful, line by line, search forward for a string, or start again at the beginning or the file.

noclobber
The Shell variable that prevents accidental destruction or files by the '>' output
redirection metasyntax or the Shell if set in the file .login

noglob The Shell variable that suppresses the filename expansion of arguments containing the
metacharacters ,-,, '*','?','I' and 'J'.

notify The notify variable tells the Shell to report on the termination or a specific background
job at the exact time it occurs as opposed to waiting until just before the next prompt
to report the termination. Ir set, the notifyfP variable causes the Shell to always report
the termination of background jobs e:eactly when they occur.

- 78 -

output The lines or text resulting from many Sun system commands. This ou"tput is usually
placed on what is known as the standard output, which is normally connected to the
user's workstation. The Shell has a syntax using the metacharacter '>' for redirecting
the standard output or a command to a file. Using the pipe mechanism and the meta
character 'I' it is also possible for the standard output of one command to become the
standard input of another command. Certain commands such as the line printer dae
mon lpr do not place their results on the standard output but rather on the line
printer. Similarly the write command places its output on another user's workstation
rather than its own standard output. Commands also have a diagnostic output where
they write their error messages. Normally these go to the workstation even if the
standard output has been sent to a file or another command, but it is possible to direct
error diagnostics along with standard output using a special notation.

pushd The pushd command, which means 'push directory', changes the Shell's working direc
tory and also remembers the current working directory before the change is made, so
you can return to the same directory with the popd command later without retyping
its name.

path The Shell variable that gives the names of the directories in which it searches for the
commands which it is given. Path always checks first to see if the command it is
given is built into the Shell. Ir it is, then it need not search for the command as it can
do it internally. Ir the command is not built in, the Shell searches for a file with the
name given in each of the directories in the path variable, left to right. Since the nor
mal definition or the path variable is. /usr/ucb /bin /usr/bin, the Shell normally looks
in the current directory, and then in the standard system directories / usr/ ucb, / bin
and / usr/ bin for the named command. Ir the command cannot be found the Shell
displays an error diagnostic. Scripts of Shell commands are executed using another
Shell to interpret them if they have 'execute' permission set. Ir you add new com
mands to a directory in the path, use the command rehash.

pathname

plpellne

popd

port

pr

prlntenv

A list or names, separated by '/' characters. Each component of a pathname, between
successive '/' characters, names a directory in which the next component file resides.
Pathnames which begin with the character '/' are interpreted relative to the root
directory in the filesystem. Other pathnames are interpreted relative to the current
directory as reported by pwd. The last component or a pathname may name a direc
tory, but usually names a file.

A group or commands connected together, the standard output or each being con
nected to the standard input of the next. The Shell metacharacter 'I' indicates the
pipe mechanism.

The popd command changes the Shell's working directory to the directory you most
recently left using the pushd command. It returns to the directory without having to
type its name, forgetting the name of the current working directory before doing so.

The part of a computer system to which each terminal is connected is called a port.
Usually the system has a fixed number or ports, some or which are connected to tele
phone lines for dial-up access, and some or which are permanently wired directly to
specific terminals.

The pr command prepares listings of the contents or files with headers giving the name
or the file and the date and time at which the file was last modified.

The printenv command prints the current setting of variables in the environment.

0

0

0

0

0

0

- 79 -

proce1111 An instance of a running program. The system assigns each process a unique process
id number when it is started. Use process id numbers to stop individual processes
using the kill or stop commands when the processes are part of a detached background
job.

program Usually synonymous with command; a binary file or Shell command script that per
forms a useful function.

prompt The indication by a program on the screen that it is ready to accept input. The Shell
prompts for input with 'hostname% ' and occasionally with '?' when reading com
mands Crom the workstation. The Shell has a variable prompt which may be set to a
different value to change the Shell's main prompt. This is mostly used when debug
ging the Shell.

p• The ps command shows processes you are currently running, each process being shown
with its unique process number, an indication of the terminal name it is attached to,
an indication of the state of the process (whether it is running, stopped, awaiting some
event (sleeping), or whether it is swapped out), and the amount of CPU time it has
used so far. A command is identified by printing some of the words used when it was
invoked. Shells, such as the csh you use to run the ps command, are not normally
shown in the output.

pwd The pwd command displays the Cull pathname of the current working directory, simi
lar to the dire built-in command.

quit The signal generated by a control-\ r\), that terminates programs which are behaving
unreasonably. Quit normally produces a core image file.

quoting The process by which metacharacters are prevented their special meaning, usually by
using the character '· ' in pairs, or by using the character '\'.

redirection

rehash

The routing of input or output from or to a file.

The rehash command tells the Shell to rebuild its internal table or which commands
are found in which directories in your path. This is necessary when a new program is
installed in one of these directories.

relative pathname
A pathname that does not begin with a '/' since it is interpreted relative to the
current working directory. The first component of such a pathname refers to some file
or directory in the working directory, and subsequent components between '/' charac
ters refer to directories below the working directory. See also absolute pathnames.

repeat The repeat command iterates another command a specified number or times.

root The directory that is at the top oC the entire directory structure; it is the 'root' or the
entire tree structure of directories. The '/' indicates the root name in pathnames.
Pathnames starting with '/' are absolute since they start at the root directory. Root
is also used as the part of a pathname that is left after removing the extension. See
filename Cor a further explanation.

scratch file
Files whose names begin with a '#' and are automatically removed by the system
after a couple of days of non-use, or more frequently if disk space becomes tight.

aet The built-in command that assigns new values to Shell variables and shows the values
of the current variables. Many Shell variables have special meaning to the Shell itseIC,
so using the set command can affect the behavior of the Shell.

•etenv The built-in command that changes variables in the environment 'environ'. The prin
tenv command displays the value of the variables in the environment.

ahell

signal

aort

aource

- 80-

A command language interpreter. It is possible to write and run your own Shell, as
Shells are no different than any other progr.ams as far as the system is concerned.

A short message that is sent to a running program which affects that process. Signals
are sent either by typing special control characters on the keyboard or by using the kill
or stop commands.

The sort program sorts a sequence or lines in ways that you can control with argument
flags.

The source command reads commands from a specified file. It is most useful for read
ing files such as .cshrc after changing them.

apeclal character

atandard

status

atop

atrlng

See metacharacters.

Used as in the standard input and standard output or commands. See input and output.

A command normally returns a status when it finishes. By convention a status or zero
indicates that the command succeeded. Commands may return non-zero status to
indicate that some abnormal event has occurred. The Shell variable status is set to
the status returned by the last command. It is most useful in Shell command scripts.

The stop command suspends a background job.

A sequential group of characters taken together. Strings can contain any printable
characters.

atty The stty program changes certain parameters inside the Sun system to determine how
your terminal is handled. See stty in the user's manual for a complete description.

aubatltutlon
The Shell implements a number or substitutions where sequences indicated by meta
characters are replaced by other sequences. Notable examples or this are history sub
stitution keyed by the metacharacter '!' and variable substitution indicated by '$'.
We also refer to substitutions as expansions.

auapended
A job becomes suspended after a STOP signal is sent to it, either by typing a 'Z (for
foreground jobs) or by using the stop command (for background jobs). When
suspended, a job temporarily stops running until it is restarted by either the / g or bg
command.

termination
Occurs when a command which is being executed finishes. Commands normally ter
minate when they read an end-of-file from their standard input. It is also possible to
terminate commands by sending them an interrupt or quit signal. The kill program
terminates specified jobs.

time Measures the amount or CPU and real time used by a specified command as well as
the amount or disk 1/0, memory utilized, and number of page faults and swaps taken
by the command.

taet The tset program sets standard erase and kill characters and tells the system what
kind of terminal you are using. It is often invoked in a .login file.

tty The historical abbreviation for 'teletype' which is frequently used in the Sun system to
indicate the port to which a given workstation is connected. The tty command
displays the name of the tty or port to which your workstation or terminal is presently
connected.

unallu The unalias command removes aliases.

0

---r---
fc• "r--

0

0

0

UNIX

unset

- 81 -

The operating system on which the Sun system is based.

The unset command removes the definitions or Shell variables.

variable expansion
See variables and expansion.

variables
Contain one or more strings as value and control the behavior or the Shell.

verbose A Shell variable that echoes commands after they are history expanded. This is often
useful in debugging Shell scripts. The verbose variable is set by the Shell's -v com
mand line option.

we The we program counts the number or characters, words, and lines in the files whose
names are given as arguments.

word A sequence of characters which forms an argument to a command. Many characters
which are neither letters, digits, '-', '.' nor '/' form words all by themselves even iC
they are not surrounded by blanks. Any sequence or characters may be made into a
word by surrounding it with '' ' characters except for the characters ' ' ' and '!' which
require special treatment. This process or placing special characters in words without
their special meaning is called quoting.

working directory

write

The particular directory you are in at any given time. Pwd displays this directory's
name and ls lists its files. You can change working directories using ed.

The write command communicates with other users who are logged in to the system.

0

0

0

APPENDIX B: BIBLIOGRAPHY

General Sun System Reference

- 82 -

User's Manual for the Sun Workstation, Sun Microsystems Inc. The Sun system command refer
ence manual.

The UNIX System, S. R. Bourne, Addison-Wesley Publishing Co., 1982. A comprehensive practi
cal introduction for users from novices to experts.

The UNIX Operating System, Kaare Christian, John Wiley and Sons, 1983. Geared to the begin
ning user in Part One and the advanced user in Part Two, provides system basics as well as
extensive coverage or the Version 7 Shell, internal system organization, information for program
mers and managers, and introductions to several utility programs.

Introducing the UNIX System, Henry McGilton and Rachel Morgan, McGraw-Hill Book Company,
1983. An introduction to UNIX for beginners and more sophisticated users. Covers the usual,
plus communication facilities, editors, document formatting, software tool development, Berkeley
UNIX, and system management. Packed with helpful examples.

UNIX Primer Plus, Mitchell Waite, Donald Martin, Stephen Prata, Howard W. Sams and Co.,
Inc., 1983. Provides hands-on examples for both Berkeley and Bell Labs UNIX.

A User Guide to the UNIX System, Jean Yates and Rebecca Thomas, Osborne/McGraw-Hill,
1982. A tutorial introduction to the 40 most used system commands.

The UNIX Time-sharing System, D. M. Ritchie and K. L. Thompson, CACM, July 1974. An
overview or the UNIX system for people interested in operating systems and worth reading by
anyone who programs. Contains a remarkable number or one-sentence observations on how to do
things right.

The Bell System Technical Journal (BST J) Special Issue on UNIX, July/ August, 1978. Contains
many papers describing recent developments, and some retrospective material.

The 2nd International Conference on Software Engineering (October, 1976). Contains several
papers describing the use or the Programmer's Workbench (PWB) version or UNIX.

Document Preparation

Editing and Text Processing on the Sun Workstation, Sun Microsystems Inc. Tutorial and refer
ence material on the editors and text processors.

Software Development Toola

System Interface Manual for the Sun Workstation, Sun Microsystems Inc. Contains system calls,
library functions, and file formats and is of particular interest to programmers.

Programming Tools for the Sun Workstation, Sun Microsystems Inc. Contains information or gen
eral interest to anyone using the Sun system to write programs.

Fortran and Pascal for the Sun Workstation, Sun Microsystems Inc. Information specific to the
Fortran and Pascal programming languages.

SunCore for the Sun Workstation, Sun Microsystems Inc. Describes the Sun Core graphics pack
age.

The C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978. Con
tains a tutorial introduction, complete discussions of all language features, and a reference
manual.

Shell Reference

The UNIX Shell, S. R. Bourne, Bell System Technical Journal, July-August 1978, Volume 57,
Number 6, Part 2. An introduction to the Bourne Shell and how to program it.

(:, i

0

0

0

- 83 -

READER COMMENT SHEET

Dear Customer,
We who work here at Sun Microsystems wish to provide the best possible documentation for our
products. To this end, we solicit your comments on this manual. We would appreciate your tel
ling us about errors in the content of the manual, and about any material which you feel should
be there but isn't.

Typographical Errora:
Please list typographical Errors by page number and actual text or the error.

Technical Errora:
Please list errors or fact by page number and actual text or the error.

Content:
Did this guide meet your needs? Ir not, please indicate what you think should be added
or deleted in order to do so. Please comment on any material which you feel should be
present but is not. Is there material which is in other manuals, but would be more con
venient if it were in this manual?

Layout and Style:
Did you find the organization or this guide useful? Ir not, how would you rearrange
things? Do you find the style or this manual pleasing or irritating? What would you like
to see different?

0

0

0

-----~--

0

0

·o

0

0

0

