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1.1. Device Independence 

1 
Introduction 

This manual is a guide to adding drivers for new devices to the SunOS kernel. It 
comes in two parts. 

o Part One, Regular Device Drivers, discusses a variety of issues relevant to 
standard (non-STREAMS) device drivers. It is intended to be self
contained, and to include all necessary discussion of hardware and kernel 
topics. 

o Part Two, Non-STREAMS Appendices, includes reference material related to 
regular (non-STREAMS) drivers. 

Throughout the manual, statements that apply only to specific machines, e.g. 
Sun-3's, Sun-3x's, Sun-4's, SPARCstations or Sun386i's, will be clearly flagged 
to that effect. 

One of SunOS's major services to application programs is to provide a device
independent view of the 1/0 hardware. In this view, user processes (application 
programs), see devices as "special" types of files that can be opened, closed and 
manipulated just like regular files. The user process manipulates devices as it 
would files, by making system calls. 

Once a system call carries process execution into the SunOS kernel, however, it 
becomes clear just how "special" devices really are. The kernel distinguishes 
between real files and device special files, and translates operations on the latter 
into calls to their corresponding device drivers. These drivers control all device 
operations; devices do nothing until their drivers tell them to. 

System calls provide the interface between user processes and the SunOS kernel, 
while device drivers provide an interface between the kernel itself and its peri
pheral devices. Device drivers are therefore crucial elements in SunOS's overall 
device-independent scheme of things. Device-drivers are the only parts of the 
system that know, or care, if a device is OMA (Direct Memory Access), PIO 
(Programmed 1/0), or memory-mapped. 

The kernel supplied with the Sun system is a configurable kernel, meaning that it 
is possible to add new device driver modules to your system by rebuilding your 
kernel, even if you don't have access to the system source code. The loadable 
driver capability makes it possible to attach a driver to a system without rebuild
ing the kernel and rebooting the system. For more information on how to 
reconfigure your kernel to include new device drivers, see the Configuring the 
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2 Writing Device Drivers 

1.2. Types of Devices 

Kernel chapter of this manual, the SunOS STREAMS Topics chapter of the 
STREAMS Programming manual, the Adding Hardware to Your System chapter 
of Network Programming and the config ( 8) man page. 

This document is aimed at Sun users who wish to connect new VMEbus or 
ATbus devices to their system. It does not, however, explain how to write 
drivers for all possible Sun devices. 

For information specific to SPARCstation machines and to writing drivers for 
SBus-based devices, see Writing Device Drivers for the SBus, part number 800-
4455-01, which is one of the manuals in the SBus Developer's Kit, part number 
825-1219-01. 

We can classify devices into nine major categories: 

1. Co-processors. 

2. Disks and tapes. 

3. Network interface drivers such as Ethernet or X.25. 

4. SCSI devices. For more information see your Sun Representative for infor
mation on the two documents, "SCSI Implementation Guide" Part Number 
800-4700-10, Rev A of 15 November, 1989 and "SCSA: SUN Common 
SCSI Architecture" Part Number 800-4701-10, Rev A of 15 November, 
1989. 

5. Serial communications multiplexors. 

6. General DMA devices such as driver boards for raster-oriented printers or 
plotters. DMA devices contain their own processors and, once dispatched, 
perform 1/0 independently of the system CPU by stealing memory cycles. 

7. Programmed 1/0 devices, that is, devices which send and receive data on the 
main system bus under direct control of the system CPU. 

8. Frame buffers and other memory-mapped devices. Such devices are typi
cally mapped into user-process memory and then accessed directly. 

9. So called pseudo devices, which are actually drivers without associated 
hardware devices. 

This manual does not cover driver development for devices in categories l, 2, 3, 
4 and 5. Part one does discuss drivers for the devices in categories 6, 7, 8 and 9. 
STREAMS-related information of interest to programmers planning drivers for 
serial communications devices should see the STREAMS Programming manual. 
The majority of the devices which users will want to add to their systems, from 
categories 6 through 9, include: 

o input devices like mice, digital tablets and analog-to-digital converters, 
(though these are usually implemented as streams drivers independent of 
Sun View). 

o output and display devices like frame buffers, printers, and plotters, 
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Chapter 1 - Introduction 3 

o utility peripherals like array and graphics processors. 

This manual doesn't support the development of co-processor drivers for the sim
ple reason that co-processors, while certainly devices, are so intimately linked to 
the CPU that they are integrated below the driver level of the kernel. 

It also excludes disk drivers or drivers for any structured or block I/0 devices, for 
such drivers are quite difficult to write well. Besides, most customers will find 
that the structured-device drivers provided with the standard system software fill 
their needs quite adequately. The extensive use of standards within the Sun pro
duct line will allow them to use hardware interfaces already provided by Sun to 
drive whatever disk units they wish to use. If this turns out not to be the case, an 
experienced driver developer will have to be consulted. (You will also want to 
start with an existing driver, and will thus need a source-code license). For con
sultation, please see your Sun Representative who will put you in contact with 
Consulting Services. 

Finally, this manual doesn't really discuss the issues relevant to serial communi
cations and local network interface driver development. Again, such drivers are 
rather involved, and users will almost certainly find the Sun product line to con
tain devices adequate to their task. (And again, you will need a source license to 
go it alone). 

This manual is primarily concerned with unstructured or character (as opposed 
to structured or block) devices. This distinction is often made, but seldom 
clearly, and it may be helpful then to consider structured devices as only those 
upon which SunOS filesystems can be mounted. Such devices (almost always 
disks) support random-access 1/0 by way of the system buffer-caching mechan
ism. They almost always support a second, character-oriented style of 1/0, often 
called raw I/0, but this doesn't make them character devices. Their drivers tend 
to implement raw 1/0 with the same mechanisms constructed for the main task of 
supporting block 1/0. 

Character devices, on the other hand, do not support random-access 1/0, and 
filesystems cannot be mounted upon them. Their drivers typically support read 
and/or write operations, but these operations are fundamentally different than in 
block devices. Sometimes character drivers use mechanisms, routines and struc
tures that are primarily intended/or block drivers, but this shouldn't be allowed 
to confuse matters; they use them only because it's convenient to do so. I 

The techniques described in this manual can also be used to build pseudo-device 
drivers. Such drivers can be useful in a variety of ways. They can be used to 
implement virtual devices (for example, windows that behave as virtual tenni
nals) or for extending the capabilities of the kernel in highly localized and 

1 To jump ahead for a moment, the kernel routines which, though written for block drivers are also used for 
character drivers are physic(), mbsetup () and mbrelse (). The driver .ustrategy () routine is also 
intended primarily for block devices, though it can be used in character drivers which buff er their 1/0 (typically 
those which don't support a tty-style interface). In such cases it's not, as it is in block drivers, an entry point, 
and it doesn't implement any strategy to speak of. But physic () requires its existence, as it does make use of 
the bu f structure, and so they are used. The main point to keep in mind is that character drivers use block
driver mechanisms because it's convenient for them to do so, but this doesn't make them block drivers. In 
particular, character drivers never have anything to do with the kernel buffer cache. 
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4 Writing Device Drivers 

1.3. System V 
Compatibility 

1.4. Major Development 
Stages 

portable fashions (for example, by building a pseudo device to implement a 
specific kind of semaphore facility). What they all have in common is the 
absence of hardware; the driver actually implements and controls virtual software 
devices. 

The SunOS applications interface is almost completely compatible with that of 
AT&T's System V UNIX system. The driver/kernel interface, however, is not. 
In general, though, drivers that were written for System V (or V7 or 4.1BSD, 
which have driver interfaces similar to System V) will be easily ported to SunOS, 
because, with the exception of drivers for pseudo devices, drivers are far more 
sensitive to the architectural details of the machines upon which they run than to 
the details of the kernels to which they interface. 

Sun device drivers differ from typical System V drivers because the Sun operat
ing system has evolved from 4.2BSD and, in 4.2BSD, the kernel driver interface 
was significantly restructured. This doesn't mean that programmers with experi
ence developing System V drivers will find Sun drivers to be altogether foreign. 
In fact, the overall structure of Sun drivers is largely identical to the structure of 
System V drivers. Nevertheless, there are differences, and from some perspec
tives~they are quite significant. See the Overall Kernel Context chapter of this 
manual for the details of the Sun driver/kernel interface. 

The greatest differences between Sun drivers and drivers for other systems are 
due not to operating system differences but rather to differences between the Sun 
Memory-Management Unit (MMU) and the MMUs of other systems. Conse
quently, drivers which map addresses require a lot of Sun-specific code. 

To add a new device and its driver to the system you must: 

1. Get the device hardware into a state where you know it works as advertised. 
It is extremely difficult to debug the driver software if the device hardware 
isn't first working properly. 

2. Write the device driver itself. 

3. Add the driver to a kernel's configuration file to specify a system containing 
the new driver, and compile this system. If you have written the driver as a 
loadable driver, then compile the driver and use the modload ( 1) com
mand to load the driver into a running system. 

4. Debug the driver. 

5. Repeat steps 2 to 4 as necessary. Drivers are often written (and debugged) 
by stages, with development proceeding long after early versions are 
configured into the kernel. 
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1.6. Address-Space 
Terminology 

Table 1-1 
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Sun computers are virtual-address machines, and, as such, their addressing 
schemes are far more complex than anything that microcomputer programmers 
typically confront. In virtual-address machines, physical addresses have a com
plex and rapidly changing relationship to the virtual addresses which user pro
grams manipulate. The kernel continually maps, remaps and unmaps pages of 
virtual memory to accommodate the limits of system physical memory. This 
means that the kernel (including its device drivers) cannot assume that any physi
cal address in user memory will not be snatched away by the paging daemon 
unless it explicitly locks the physical page containing that address into memory. 
The details of how this locking is done will be given later, in discussions of the 
kernel support routine physio (); for the moment simply note that physical 
addresses have a complex and transient relationship to virtual addresses. 
Specifically: 

o Each user process has its own distinct virtual address space. A user process 
(or the kernel) can make arrangements to share address space with another 
process - that is, to have part of its address space mapped to the same phy
sical memory as a part of the address space of another process - but this 
must be done explicitly. 

o In similar regard, a user process can elect to have a bus address mapped into 
its address space, but this doesn't happen automatically. 

In this manual, we will adopt a VMEbus address-space naming convention that 
makes both address size and data size explicit. The first number in the name 
indicates the number of bits in the address and the second number indicates the 
number of bits in the data length. For example, the space with a 24-bit address 
and a 16-bit data length will be known as vme2 4dl 6. This naming convention 
is used elsewhere, but others are as well, as indicated in the following table. 

VMEbus Address-space Names 

Address-Space Name 

vmel6dl6 
vme24dl6 
vrne32dl6 
vrnel6d32 
vrne24d32 
vme32d32 

Other Name(s) 

VME D16Al6 and vmel6 
VME D16A24 and vme2 4 
VMED16A32 
VMED32A16 
VMED32A24 
VME D32A32 and vme32 

The short names in the second column ( vme 16, vrne 2 4 and vrne 3 2) are com
monly used, but they can seem ambiguous to the novice, and will consequently 
be avoided in this manual. 

Note that there are two situations where the system expects the name of a 
VMEbus address space as input. In these situations, either the vrne 16 dl 6 or the 
vrne 16 forms are acceptable. These situations are: 

o within the kernel config file, and 
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1. 7. Manual Overview 

Regular Drivers 

Appendices 

Last Word 

o when naming actual memory devices ("special" files in the/ dev directory). 
See the Mapping Devices Without Device Drivers section of the Driver 
Development Topics chapter for more infonnation. 

Chapter 2 is an overview of the hardware environment provided by Sun Worksta
tions to their drivers. The emphasis is on bus and address-space related issues. 

Chapter 3 is an overview of the kernel environment within which drivers operate. 

Chapter 4 covers a number of topics relevant to drivers: address spaces, inter
rupts and so on, in greater detail. It also surveys the most important classes of 
services provided by the kernel to its drivers. 

Chapter 5 covers development topics, including the initial installation and 
checkout of devices, driver debugging and error handling. 

Chapter 6 provides a detailed discussion of a driver for a very simple hypotheti
cal character device. 

Chapter 7 explains how to add new drivers to the SunOS kernel. 

Chapter 8 explains pseudo-drivers, and provides source and installation instruc
tions for a real ramdisk pseudo-driver. 

Appendix A summarizes the device driver routines available to all device driver 
writers. 

Appendix B describes all the kernel support routines useful in developing device 
drivers. 

Appendix C describes the user-level routines useful in driver development. 

Appendix D contains a number of annotated driver listings to show how sample 
drivers are written. 

Remember, spend as much time as you need in the Sun PROM monitor poking, 
prodding and cajoling your device until you 're thoroughly familiar with its 
behavior. This will save you a lot of grief later. The details on how to proceed 
with a monitor checkout of your device are found in the Installing and Checking 
the Device section of the Driver Development Topics chapter. 

And finally, note that if you have no previous experience writing UNIX device 
drivers, you should expect to seek some help from the Sun Technical Support or 
Consulting organizations. Contact your Sun Representative for more infonna
tion. 
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2.1. VMEbus Machines 

Sun-3/Sun-3:x/Sun-4 Address 
Spaces 

2 
Hardware Context 

Computer 1/0 architectures are far more dependent upon bus structure than they 
are upon CPU type, and device drivers, oriented as they are towards 1/0, must 
have intimate knowledge of the bus characteristics of the machines on which 
they are running. Fortunately, the Sun kernel provides facilities (described in the 
Other Kernel/Driver Interfaces section of the Overall Kernel Context chapter) by 
which a driver can determine the type of the machine upon which it's running. 

VMEbus machine architecture makes no distinction between 1/0 space and 
Memory space, but on the other hand it supports multiple address spaces. It does 
so for reasons of both cost and flexibility. The VMEbus was designed to be 
cost-effective for a range of applications. It is expensive (in terms of money, 
power, and board space) to provide the hardware for a full 32-bit address space. 
If installed devices only respond to 16-bit addresses, it makes sense to be able to 
put them all into a 16-bit address space and save the cost of 16-bits' worth of 
address decoders and the like. The 24 and 32-bit address spaces are similar 
compromises between cost and flexibility. 

The driver writer has to understand which address space his board uses (gen
erally, this is completely out of his control), and make an appropriate entry in the 
config file. For DMA devices, the driver writer has to know the address space 
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space). 

Sun-3, Sun-3x and Sun-4 machines are all based on the full 32-bit VMEbus, so 
let's begin their discussion with a listing of the address types supported by the 
generic VMEbus. In all these memory references, we are referring to virtual 
VMEbus addresses, not Sun physical memory locations. 

The SPARCstation line of machines utilizing the SB us is not documented here. 
Refer to the SBus Developer's Kit, part number 825-1219-01. The information 
that follows pertains to Sun-4 VME; it does not apply to SPARCstations SBus. 
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Table 2-1 Generic VMEbus (Full Set) 

VMEbus-Space Address Data Trans/ er Physical Address 
Name Size Size Range 

vme32d16 32 bits 16 bits OxO - OxFFFFFFFF 
vme24d16 24 bits 16 bits OxO - OxFFFFFF 
vme16d16 16 bits 16 bits OxO - OxFFFF 
vme32d32 32 bits 32 bits OxO - OxFFFFFFFF 
vme24d32 24 bits 32 bits OxO - OxFFFFFF 
vme16d32 16 bits 32 bits OxO - OxFFFF 

Not all of these spaces are commonly used, but they are all nevertheless sup
ported by the Sun-3 and Sun-4 lines. The following table indicates their sizes 
and physical address mappings. 

Table 2-2 Sun-3/Sun-4 Page Table Types 

Type 

0 
1 
2 
3 
2 
2 
3 
3 

Address-Space Name Address Size Address Range 

On-board Memory 32 bits OxO - OxFFFFFFFF 
On-board 1/0 24 bits OxO - OxFFFFFF 
vme32d16 32 bits OxO - OxFEFFFFFF 
vme32d32 32 bits OxO - OxFEFFFFFF 
vme 2 4 dl 6 - Stolen from top 16M of vme 3 2 d 16 (OxO - OxFEFFFF) 
vme 16 dl 6 - Stolen from top 64 K of vme 2 4 d 16 (OxO - OxFFFF) 
vme24d32 -Stolen from top 16M of vme32d32 (OxO- OxFEFFFF) 
vmel 6d32 - Stolen from top 64K of vme2 4d32 (OxO - OxFFFF) 

The Sun-3x is different than the Sun-3 and Sun-4 in that the hardware does not 
use page table entries (PTE's) with a type identifier to map the devices into phy
sical memory. The Sun-3x uses absolute physical addresses when mapping dev
ices. Therefore the type field is not used as an identifier of physical address map
ping. The next two tables show the virtual VME addresses and the corresponding 
physical addresses for the specific ranges. Note for the Sun-3x there is no 
vme 3 2 d 16 entry and there is a hole in the address space usage from the end of 
the on-board 1/0 area to the beginning of the vme 16 d 16 area. 

Table 2-3 Sun-3x VMEbus Address Type/ 

Address-Space Name Address Size Offset Address 

vme24d16 32 bits OxO - OxOOFFFFFF 
vme32d32 32 bits OxO - Ox7FFFFFFF 
vmel6d16 - OxO - OxFFFF 
vme24d32 - OxO - OxFFFFFF 
vme16d32 - OxO - OxFFFF 

t Types are not used with the Sun-3x architecture. 
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Table 2-4 Sun-3x Physical Address map 

Address-Space Name Address Size Address Range 

On-board Memory 32 bits OxOOOOOOOO - Ox57FFFFFF 
On-board 1/0 32 bits Ox58000000 - Ox6EFFFFFF 
vmel6dl6 32 bits Ox7COOOOOO - Ox7C00FFFF 
vmel6d32 32 bits Ox7DOOOOOO - Ox7DOOFFFF 
vme24dl6 32 bits Ox7EOOOOOO - Ox7EFFFFFF 
vme24d32 32 bits Ox7FOOOOOO - Ox7FFFFFFF 
vme32d32 32 bits Ox80000000 - OxFFFFFFFF 

Sun-3/Sun-3x/Sun-4 space overlays are much more complex than those of earlier 
Sun machines, as is evident from both the tables above and the diagrams below. 
The principle, however, is the same - when a space overlays a larger space, its 
memory is stolen from that larger space and is considered by the MMU to be in 
the overlaid space. One simply cannot address above OxFFOOOOOO in 32-bit 
VMEbus space or above Ox O OFF O O O O in 24-bit VMEbus space. 

As the following diagrams illustrate, Sun-3 and Sun-4 addressing schemes are 
almost identical. They differ only in the size of the virtual address which- out
put by the CPU or a DVMA Bus Master - is fed to the MMU. 

The Sun-3x, which has the MMU on the CPU chip, is a different hardware archi
tecture than the Sun-3 'sand Sun-4 's. There is a full 32 bit input to the MMU 
from the CPU, and all 32 bits are used for input to the OnBoard and vme 
modules. No Sun devices use the vme32dl 6 so it is not part of the memory 
map. 
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Figure 2-1 Sun-3 VMEbus Address Spaces 
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Figure 2-2 Sun-3x VMEbus Address Spaces 
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Figure 2-3 Sun-4 VMEbus Address Spaces 
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This section summarizes the typical use of the 16, 24 and 32-bit VMEbus address 
spaces by Sun devices. Note that the usages summarized here are only for the 
generic configuration, and there's no guarantee that they match the exact usage 
on your machine. They will, however, help you to decide where to attach your 
device. The "Allocated From" field shows whether bus space is allocated from 
the high end of the given range or from the low end. The idea is to keep the 
maximum size "hole" in the middle in case the boundary needs to be shifted 
later. 
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Address Range Allocated 
From 
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Description of Use 

Ox0000-0x7FFF Low 
Ox8000-0xFFFF High 

Reserved for OEM/user devices 
Reserved for Sun devices 

16-bit VMEbus space is mapped into the topmost 64K of24-bit VMEbus space 
at OxOOFFOOOO to OxFFFFOOOO to OxFFFFFFFF (on Sun-3's, Sun-3x's, and 
Sun-4's). Note: The MultibusNMEbus Adapter will map the Multibus 1/0 
addresses of Multibus cards that use Multibus 1/0 into the same addresses in the 
16-bit VMEbus space. This may place the standard Multibus addresses for some 
cards into the OEM/user area in the above table. These addresses can be 
changed, if necessary, by physically readdressing the device and then changing 
its entry in the config file. 

Table 2-6 24-bit VMEbus Address Space Allocation 

Address Range 

OxOOOOOO-OxOFFFFF 
OxlOOOOO-OxlFFFFF 
Ox200000-0x2FFFFF 
Ox300000-0x3FFFFF 
Ox400000-0x7FFFFF 
Ox800000-0xBFFFFF 
OxCOOOOO-OxCFFFFF 
OxDOOOOO-OxDFFFFF 
OxEOOOOO-OxEFFFFF 
OxFOOOOO-OxFEFFFF 
OxFFOOOO-OxFFFFFF 

Allocated 
From 

Low 
High 
(Taken) 
High 
Low 
High 

Description of Use 

CPU board DVMA space 
Reserved by Sun 
Reserved for small Sun devices 
Reserved for large Sun devices 
Reserved for huge Sun devices 
Reserved for huge OEM/user devices 
Reserved for large OEM/user devices 
Reserved for small OEM/user devices 
Multibus-to-VMEbus memory space 
Reserved for the Future 
Reserved for 16-bit VMEbus space 
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Table 2-7 32-bit VMEbus Address Space Allocation (Sun-3' s, Sun-3x' s, Sun-4' s) 

Address Size Description of Use 

OxOOOOOOOO 1MB DVMASpace 
OxOOlOOOOO 15MB Reserved 
OxOlOOOOOO 112MB <=2MB Sun Devices 
Ox08000000 128MB Sun graphic Devices 
OxlOOOOOOO 80MB <=2MB OEM Devices 
OxlSOOOOOO 176MB >2MB OEM Devices 
Ox20000000 1536MB >2MB Sun Devices 
Ox80000000 1920MB Reserved 
OxF8000000 48MB Sun-4/110 Sun Devices 
OxFBOOOOOO 64MB Sun-4/110 OEM Devices 
OxFFOOOOOO 16320KB Reserved for 24 bit addr space 
OxFFFFOOOO 64KB Reserved for 16 bit addr space 

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus 
accesses. Note that, at least in the GENERIC kernel, there are some Sun devices 
( vpcO, vpcl and mti0-4) installed in the OEM/user area. It's always 
best to check, when choosing an installation address, that you aren't going to 
conflict with an already installed device. 

Table 2-8 VMEbus Address Assignments for Some Devices 

The Sun VMEbus to Multibus 
Adapter 

Device Addressing Addresses Used 

VMEbus SCSI Board vme24d16 Ox200000-0x2007FF 
Graphics Processor vme 2 4 d 16 Ox210000 - Ox21 OFFF 

This table is, of course, not complete. There is always a variety of devices on the 
bus, as can be easily determined by examining the config file. This table, how
ever, does include the standard devices that use a significant amount of space on 
the VMEbus. 

Multibus devices that are to be attached to VMEbus machines must be attached 
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul
tibus boards). An adapter can be used to take over one and only one chunk of 
vme2 4dl 6. However, that chunk can overlap all or part of vmel 6dl 6 
(because vme 16 dl 6 is a proper subset of vme 2 4 d 16 ). In any case, the adapter 
must be told how much space the board attached to it actually expects, for by 
default it will take over a full megabyte. Note that the Multibus Adapter sup
ports fully vectored interrupts, and that drivers for Multibus devices attached by 
way of adapters need not poll, since the adapters contain switches by which Mul
tibus devices can be assigned vectors. 
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Interrupt Vector Assignments The table below shows the assignments of interrupt vectors for those devices that 
can supply interrupts through the VMEbus vectored interrupt interface. To pick 
one for your device, examine the kernel config file for an unused number in the 
range reserved for customer use, 0 xC 8 to O xFF. 

Table 2-9 Vectored Interrupt Assignments 

2.2. A Thus Machines 

Vector Numbers Description 

OxOO thru Ox3F reserved for internal processor traps 
Ox40 thru Ox43 scO, sc? siO, si? - SCSI Host Adapters 
Ox44 thru Ox47 xdcO, xdcl, xdc2, xdc3- Xylogics 7053 Disk Controller 
Ox48 thru Ox4B xycO, xycl, xyc?- Xylogics Disk Controllers 
Ox4C thru Ox5F future disk controllers 
Ox60 thru Ox63 tmO, tml, tm?-TapeMaster Tape Controllers 
Ox64 thru Ox67 xtcO, xtcl, xtc?- Xylogics Tape Controllers 
Ox68 thru Oc6F future tape controllers 
Ox70 thru Ox73 ec? - 3COM Ethernet Controller 
Ox74 thru Ox77 ieO, ie 1, ie? - Sun Ethernet Controller 
Ox78 thru Ox7F future ethernet devices 
Ox80 thru Ox83 vpc?-Systech VPC-2200 
Ox84 thru Ox87 vp? - Ikon Versatec Parallel Interface 
Ox88 thru Ox8B mtiO, mti? - Systech Serial Multiplexors 
Ox8C thru Ox8F dcpl, dcp?- SunLink Comm. Processor 
Ox90 thru Ox9F zsO, zsl - Sun-3/Sun-3x Terminal/Modem Controller 
OxAO thru OxA3 future serial devices 
OxA4 thru OxA7 pcO, pcl, pc2, pc3-SunIPC 
OxA8 thru OxAB future frame buffer devices 
OxAC thru OxAF future graphics processors 
OxBO thru OxB3 Reserved - currently unused 
OxB4 thru OxB7 SunLink Channel Attach 
OxB8 thru OxC7 Reserved for Sun Use 
OxC8 thru OxFF Reserved for Customer Use 

The Intel 80386 processor handles 1/0 devices placed in either memory space or 
in 1/0 space. On the 80386, memory-mapped 1/0 provides additional program
ming flexibility. Any memory instruction can access any 1/0 port located in the 
memory space. For example, the MOV instruction transfers data between any 
register and any port. The AND, OR, and TEST instructions can be used to 
manipulate bits in the internal registers of a device. 

On some devices, reading a register will not read back what was written. There
fore, instructions such as AND, OR, and TEST can, in some cases, produce unex
pected results because the instruction reads a good location, changes it, and 
writes it back. See the Other Device Peculiarities section, ahead. 

Memory-mapped 1/0 can use the full complement of instructions. The 16 MB 
memory of AT memory exists in the 4 GB physical address space of the Sun386i 
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at O xE O O O O O O O. For example, a device that, on an AT, shows up in memory 
at DO 0000 will show up in the Sun386i physical memory at OxEODO 0000. 
Virtual addresses are assigned during the autoconfiguration process. 

If an 1/0 device is mapped into the 1/0 space then the IN, OUT, INS, and OUTS 
instructions are used to communicate to and from the device. All 1/0 transfers 
are perfonned via the AL (8-bit), AX (16-bit), or EAX (32-bit) registers. The 
first 256 bytes of the 1/0 space are directly addressable. The entire 64 Kbyte 1/0 
space is indirectly addressable through the DX register. 

The Sun386i has 21 interrupt channels, but only 11 are available to devices on 
the AT bus. The following list of interrupt channel assignments shows all of the 
interrupt channels. 

Table 2-10 Interrupt Channel Assignments 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

AT Channel* Assignee 
AT Pin B25 
ATPinB24 
AT Pin B23 
Not available (system diskette) 
Not available (parallel port) 
SCSI 
ATPinB04 
AT Pin D03 
AT PinD04 
AT Pin DOS 
Not available (Ethernet) 
AT Pin D07 
ATPinD06 

* Available to AT Cards 

When you add an AT card to the AT bus, you must select one of the values in the 
Channel column for the AT card's jumpers. For example, if you select channel 
10 for a serial card, the "device" line in the config file might look as follows: 

device nsO at atio? csr Ox3f8 irq 10 priority 6 
controller fdcO at atmem? csr OxOOlOOO irq 6 priority 2 

The Sun386i does not permit two AT cards to use the same interrupt channel. 

Some cards will also use OMA and will have jumpers to select a OMA channel 
to use. The following list shows that OMA channels 0-3 and channel 5 are avail
able for AT cards. Note that channel O and 5 can be used with 16-bit OMA dev
ices; l, 2, and 3 can be used only with 8-bit OMA devices. Note also that chan
nels 4, 6, and 7 are pre-assigned. 

The main difference is that the OMA controller is on the CPU board, not on the 
device. The AT bus does not support bus master devices, they must allocate a 
OMA channel from the OMA controller on-board the the CPU. The Sun 
machine uses an Intel 82380 for the interrupt and OMA controller, instead of the 
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8259 chip. See the Intel manual for more details. 

Table 2-11 Sun386i DMA Channel Assignments 

Channel Assignee Size (bits) 
0 AT Bus 16 
1 AT Bus 8 
2 AT Bus 8 
3 AT Bus 8 
4 Software Not Available 
5 AT Bus 16 
6 Ethernet 16 
7 SCSI 16 

For example, you might set up a controller that uses DMA channel 3. For this, 
the "controller" line in the config file might look like: this: 

controller wdsO at atio? csr Ox320 dmachan 3 irq 3 priority 3 

The Sun386i does not permit two AT cards to use the same OMA channel. 

In these examples, "priority" refers to the spl levels used in the driver. That is, 
the phrase "priority 3" implies that the driver uses splr (pritospl ( 3)) to 
protect its critical regions. 

On Sun machines, device drivers can be dynamically loadable. That is, they can 
be attached to a system without rebuilding its kernel and without having to bring 
the system down and restart it. See the Adding and Removing Loadable Drivers 
section of the Con.figuring the Kernel chapter for details. 

The Sun386i system supports both DOS drivers and SunOS drivers. Only 8086 
type devices and their drivers are supported in the DOS environment. Boards 
which need to use memory above 1 Megabyte or drivers which use 286/386 
specific instructions are not supported. 

You can attach a DOS device driver in the standard DOS way, but it will be 
usable only from within the DOS environment. Usually, all you need to do is to 
first plug in an add-in board. Then you insert an installation diskette (which 
comes with the board) into Drive A> and re-boot the system. The device driver 
is already compiled and linked. Generally, the diskette contains programs called 
"INST ALL" or something similar. You execute this program by typing its name. 
It copies the driver file from the diskette to the hard disk. At the same time, this 
procedure will modify the disk's con£ ig. sys file. 

The DOS system must be re-booted. The device driver will automatically be 
loaded into memory, its options will be parsed, and the driver will be initialized. 

NOTE The DOS driver on the Sun386i is running under SunOS and DOS, but the driver 
is unaware of this. SunOS might switch control to another task during device 
operation, so strict timing dependencies could/ail. Real time devices,for 
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2.3. Hardware Peculiarities 
to Watch Out For 

NOTE 

Multibus Device Peculiarities 

Multibus Byte-Ordering Issues 

example, may not work properly. If a peripheral and controller have strict tim
ing requirements, their drivers should be written in the standard SunOS style. 
DOS drivers do not run at the elevated priority of SunOS drivers. 

SunOS drivers, of course, are parts of the system kernel. Thus the timing 
requirements of most devices can be met under SunOS. SunOS drivers are 
accessible from the DOS environment via the device nodes /dev in the Unix 
file system. 

There are a variety of device peculiarities that the driver developer must be aware 
of. The most common of them are related to the Multibus and Multibus-based 
devices, but there are others as well. 

Multibus is NOT supported in SunOS 4.1, but is included here/or the benefit of 
all who are porting from a Multibus environment over to the other busses that 
Sun supports. 

The IEEE Multibus is a source of problems for two separate reasons. The first of 
these, discussed immediately below, is the fact that the Multibus has a different 
notion of byte order than does the either Motorola MC680XO family or the Sun 
SP ARC processor (the reduced instruction set CPU upon which Sun-4 machines 
are built). The second is simply that the Multibus has been around for a long 
time, and thus brings with it a variety of older devices, many of which have 
addressing limitations and other characteristics which make for a less than per
fect fit with the Sun architecture. 

The Sun-3 and Sun-3x processors are members of the Motorola MC680XO fam
ily, while Sun-4 processors are based on the SPARC CPU. All of these proces
sors address bytes within words by what we shall call /BM conventions - the 
most significant byte of a word is stored at the lowest addressed byte of the word. 
The Multibus, on the other hand, uses DEC conventions - the least significant 
byte of a word is stored at the lowest address, and significance increases with 
address. 

This class of byte-addressing conventions leads to two separate problems, 
with two separate solutions: 

o The first problem occurs when you're moving a single byte across the inter
face between the MC680XO/SP ARC and the IEEE Multibus. Because the 
two devices don't agree about the end of the word that the byte actually 
appears in, you have to change the byte address before the move - what 
you want to do, in effect, is move every byte to the other side of the word 
which it occupies- the most CPU-efficient way of doing so is to toggle the 
least significant bit of every byte address. 

o The second problem, also related to the Multibus, is a higher level version of 
the first. It occurs when machine words with significant internal structure 
( or structures that contain words) are moved across the bus interface. (If you 
write only words, and the device uses only words, there's no problem). The 
Multibus byte-ordering incompatibility will cause structures to be scrambled 

Revision A, of 27 March 1990 



Chapter 2 - Hardware Context 21 

when they're moved across the bus interface, unless the bytes within them 
are physically swapped first. 

Here are a few pictures describing the problems in detail: 

Motorola (IBM) Byte Ordering 

bit 15 bit 0 

ByteO Byte 1 

Multibus (DEC) Byte Ordering 

bit 15 bit 0 

Byte 1 Byte 0 

That is, the MC680XO and SPARC CPUs place byte O in bits 8 through 15 of the 
16-bit word, whereas the Multibus places byte 1 in those bits. If you did every
thing with the CPU, or everything on the Multibus, there wouldn't be any 
conflict, since things would be consistent. However, as soon as you cross the 
boundary between them, the byte order is reversed. Thus, you have to toggle the 
least significant bit of the address of any byte destined for the Multibus - this 
will have the effect of swapping adjacent addresses and thus reordering the bytes. 

To clarify this, consider an interface for a hypothetical Multibus board containing 
only two 8-bit 1/0 registers, namely a control and status register (csr) and a data 
register (we actually use this design later on in our example of a simple device 
driver). In this board, we place the command and status register at Multibus byte 
location 600, and the data register at Multibus byte location 601. The Multibus 
picture of that device looks like this: 

Hypothetical Board Registers 

bit 15 

Location 601 

DATA 

bit 0 

Location 600 

CSR 

But the MC680XO and SPARC processors view that device as looking like this: 
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Other Multibus-related 
Peculiarities 

Hypothetical Board Registers 

bit 15 

Location 600 

CSR 

bit 0 

Location 601 

DATA 

so that if you were to read location 600 from the point of view of the processor, 
you'd really end up reading the DATA register off the Multibus instead. So, 
when we define the skdevice data structure for that board, we define it by starting 
with the register definition in the device manual, and then swapping bytes to take 
account of the expected byte swapping: 

struct skdevice { 

} ; 

char 
char 

sk_data; 
sk_csr; 

I* 01: Data Register * I 
I* 00: command(w) and status(r) * I 

This rule (flipping the least significant bit of the address) holds good for all byte 
transfers which cross the line between the MC680XO/SPARC CPU and the Mul
tibus. 

o Many Multibus device controllers are geared for the 8-bit 8080 and 280 
style chips and don't understand 16-bit data transfers. Because of this, such 
controllers are quite happy to place what's really a word quantity (such as a 
16-bit address which must be two-byte aligned in the MC680XO) starting on 
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many 
don't know about 24-bit addresses), and it often happens that you have to 
chop an address into bytes by shifting and masking, and assign the halves or 
thirds of the address one at a time, because the device controller wants to 
place word-aligned quantities on odd-byte boundaries. Note also that many 
Multibus boards are geared for the 8086 family with its segmented address 
scheme. An 8086 (20-bit) address really consists of a 4-bit segment number 
and a 16-bit address; you usually have to deal with the 4-bit part and the 16-
bit part separately. For a good example of what we're talking about here, 
see the code for vp . c in the Sample Driver Listings appendix to this 
manual. 

o Although there are a myriad of vendors offering Multibus products, 
remember that the Multibus is a "standard" that evolved from a bus for 8-bit 
systems to a bus for 16-bit systems. Read vendors' product literature care
fully (especially the fine print) when selecting a Multibus board. The 
memory address space of the Multibus is supposed to be 20 or 24 bits wide 
and the 1/0 address space of the Multibus is supposed to be 16 bits wide. In 
practice, some older boards are limited to 16 bits of address space and 8 bits 
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of 1/0 space. In particular, watch for the following addressing peculiarities: 

o For a memory-mapped board, ensure that the board can actually handle 
a full twenty bits of addressing. Older Multibus boards often can only 
handle sixteen address lines. The Sun system assumes there is a 20-bit 
Multibus memory space out there. If the Multibus board you 're talking 
to can only handle 16-bit addresses, it will ignore the upper four address 
lines, and this means that such a board "wraps around" every 64K, 
which means that on a Sun the addresses that such a board responds to 
would be replicated sixteen times through the one-megabyte address 
space on the Multibus. This may conflict with some other device. 

o For an 1/0-mapped board (one that uses 1/0 registers), make sure that 
the board can handle 16-bit 1/0 addressing. Some older boards support 
only 8-bit 1/0 addressing. In our system, the address spaces of such 
boards would find themselves replicated every 256 bytes in the 1/0 
address space. Trying to fit such a board into the Sun system would 
severely curtail the number of 1/0 addresses available in the system. 

o Finally, watch out for boards containing PROM code that expects to find a 
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of 
course useless in the Sun system. 

There are two peculiarities which are specific to machines built upon the Sun 
SPARC CPU (currently, just Sun-4's) which can impact device drivers. For 
more infonnation about the Sun-4 machine architecture, see Porting Software to 
SPARC Systems, part number 800-1796-01. 

o The first problem is structure alignment. In MC680XO family processors, 
structures are aligned on half-word boundaries, but on Sun-4's, the 
structure-alignment requirements are imposed by the most strictly-aligned 
structure components. For example, a structure containing only bytes and 
characters has no alignment restrictions, while a structure containing a dou
b 1 e word must be constructed so as to guarantee that this word falls on a 
64-bit boundary. 

Programmers must be aware of these rules when writing drivers, for Sun-4 
compilers will pad structures to enforce them, and such padding will not 
always be correct for structures intended to map to device registers. Also, 
structures must be carefully designed if drivers are to be portable across 
machine architectures. 

o The second problem is data alignment. In MC680XO family processors, 
characters are aligned on byte boundaries, while integers of all sizes are 
aligned on 16-bit boundaries. In Sun-4 machines, in contrast, all quantities 
must be aligned on their "natural" boundaries: 16-bit half words on 16-bit 
boundaries, 32-bit words on 32-bit boundaries and 64-bit double words on 
64-bit boundaries. 

In nonnal programs, details such as these are handled by the compiler. In 
drivers, however, more care must be taken. SPARC (unlike the MC68010) 
doesn't break down 32-bit transactions into successive 16-bit transactions. 
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Other Device Peculiarities 

J 

Thus, there are times when 32-bit entities have to be broken down by the 
driver if they are to get across the bus correctly. More specifically, 32-bit or 
64-bit alignment is not possible in the 16-bit VMEbus spaces, and thus 32-
bit and 64-bit data access does not exist. In the 32-bit VMEbus spaces, all 
data paths exist. 

There are other de~i~ia_titie~_~f interest to the driver developer. These 
peculiarities are.particularly unfortunaiejn that they tend to require special han
dling of various kincli==oyte-swappfng, bit shuffling, timing delays, etc. -
\\'Q~never the driver conta~ts the device. Such special handling precludes the 
most obvious and desirable -~eans of interfacing the driver to the device, by map
ping tlie device registers into a C-structure declaration and then accessing them 
by way of references to structure fields. 

o One of the most ~g of these peculiarities is internal sequencing 
logic. Devices w~trange characteristic (a vestige of microcomputer 
systems with extremely limited address space) map multiple internal regis
ters to the same externally addressable address. There are various kinds of 
internal sequencing logic: 

o The Intel 8251 A and the Signetics 2651 alternate the same external 
register between two internal mode registers. Thus, if you want to put 
something in the first mode register of an 8251, you do so by writing to 
the external register. This write will, however, have the invisible side 
effect of setting up the sequencing logic in the chip so that the next 
read/write operation refers to the alternate, or second, internal register. 

o The NEC PD7201 PCC has multiple internal data registers. To write a 
byte into one of them, it's necessary to first load the first (register 0) 
with the number of the register into which the following byte of data 
will go - you then send that byte of data and it goes into the specified 
data register. The sequencing logic then automatically sets up the chip 
so that the next byte sent will go into data-register 0. 

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a 
data pointer register for pointing at the data register into which a data 
byte will go. When you send a byte to the data regis~ ~~ QQi_i:i~~r-~s 
incremented. Th~!k.~ofr.he~hip is such tl!~tyett can't read the 
pointer register to find out what' s'zn ztT ----

0 In fact, it's often true that device registers, when read, don't contain the 
same bits that were last written into them. This means that bitwise opera
tions (like register &= -xx ENABLE) that have the side effect of 
generating register reads must be done in a software copy of the device 
register, and then written to the real device register. This is why compiler 
optimization can do the wrong thing for kernel code. 

o Another problem is timing. Many chips specify that they can only be 
accessed every so often. The Zilog Z8530 SCC, which has a "write recovery 
time" of 1.6 microseconds, is an example. This means that a delay has to be 
enforced (with DELA YO) when writing out characters with an 8530. Things 
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can get worse, however, for there are instances when it's unclear what delays 
are needed, and in such cases it's left to the driver developer to determine 
them empirically. 

o Peripheral devices can contain chips that use a byte-ordering convention dif
ferent from that used by the Sun system into which they're installed. The 
Intel 82586, for example, supports DEC byte-ordering conventions; this 
makes it perfectly compatible with Multibus-based, but not VMEbus-based, 
Sun machines. Drivers for such peripheral devices will have to swap bytes, 
as indicated above, and to take care that, in doing so, they don't inadver
tently reorder the bits in any control fields greater than 16 bits in length. 

o Finally, there are some common interrupt-related peculiarities worth noting: 

o When a controller interrupts, it does not necessarily mean that both it 
and one of its slave devices are ready. Some controllers are designed in 
this way, but others interrupt to indicate that the controller or one of its 
devices but not necessarily both is ready. 

o Not all devices power up with interrupts disabled and then start inter
rupting only when told to do so. 

o While there should be a way to determine that a board has actually gen
erated an interrupt- an attention bit or something equivalent- some 
devices have no such facility. 

o Finally, an interrupting board should shut off its interrupts when told to 
do so (and also after a bus reset). Not all do. 

Many device controller boards are capable of what is known as Direct Memory 
Access or OMA. This means that the CPU can tell the device controller for such 
devices the address in memory where a data transfer is to take place and the 
length of the data transfer, and then instruct the device controller to start the 
transfer. The data transfer then takes place without further intervention on the 
part of the processor. When it's complete, the device controller interrupts to say 
that the transfer is done. 

NOTE Sun-3 and Sun-4 machines use Direct Virtual Memory Access (DVMA) to allow 
devices on the Main Bus (a VMEbus) to perform DMA transfers from and to sys
tem virtual address space. In the Sun386i system, however, the Memory 
Management Unit (MMU) is incorporated directly on the Intel 80386 chip itself; 
devices need to use physical addresses. Sun386i DMA is discussed in the next 
Section. 

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun 
Memory Management Unit to allow devices on the Main Bus (a VMEbus) to per
form OMA directly to Sun processor memory. It also allows Main Bus master 
devices to do OMA directly to Main Bus slaves without the extra step of going 
through processor memory. DVMA works by ensuring that the addresses used 
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by devices are processed by the MMU, just as if they were virtual addresses gen
erated by the CPU. This allows the system to provide the same memory protec
tion and mapping facilities to DMA devices as it does to the system CPU (and 
thus to programs). 

When setting up a driver to support DMA, it's necessary to know the device's 
DMA address size. This address size is the primary factor used in determining 
which of the system address spaces will host the device. Multibus devices gen
erally have a DMA address size of 20 bits, while VMEbus devices generally have 
a 24 or 32-bit DMA address size. 

o On the Sun-3, Sun-3x, and Sun-4 systems the DVMA hardware responds to 
the lowest megabyte of VMEbus address space in both the 24-bit and 32-bit 
VMEbus spaces. It maps addresses in this megabyte into the most 
significant megabyte of system virtual address space (Ox OFF O O O O O to 
OxFFFFFFF for the Sun-3 and OxFFFOOOOO to OxFFFFFFFF for the 
Sun-3x and Sun-4). The Sun-3, Sun-3x, and Sun-4 DVMA hardware use 
supervisor access for checking protection. 

The driver writer must account for these mappings, as should be evident from the 
diagram below. 
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Devices can only make DVMA transfers in memory buffers which are from (or 
redundantly mapped into- see below) the low-memory areas reserved as 
DVMA space. The memory-management hardware will then recognize refer
ences to these areas and map them into the high megabyte of system virtual 
address space, an area known as DVMA space. Likewise, if a driver needs to 
allocate space for a DMA transfer, it must do so by way of a mechanism that 
guarantees its allocation from DVMA space. There are several ways of making 
this guarantee: 

o rmalloc () can be used with the iopbmap argument. This will get a 
small block of memory from the beginning of the DVMA space. Such small 
blocks of memory are usually used for control information, and not for large 
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blocks of data. 

o For a large buffer, the driver can statically declare a bu£ structure (which is 
a buffer header that contains a pointer to the data) and then use mbset up () 
to allocate a buffer for it from DVMA space. This mechanism is primarily 
intended for block devices but is perfectly adaptable for use by character 
devices that need large DMA buffers. 

o You can also use kmem_alloc () to allocate some kernel memory, and 
then use mbset up () to gain access to it. 

When dealing with addresses which are in DVMA space, the driver must strip off 
the high bits by subtracting the external variable DVMA, which contains the 
address of DVMA (declared as an array of characters). DVMA is initialized by the 
system to OxFFFOO 00 0 for Sun-3's, Sun-3x's and Sun-4's. If the driver fails to 
make this adjustment, the device will attempt to use a null address- in the high 
megabyte - and the CPU board will not respond to it. 

NOTE Addresses received by way o/mbsetup () (and MBI ADDR()) do not have to be 
adjusted in this fashion, as mbsetup () will have already adjusted them to be 
relative to the start of DVMA space. 

When the device, in tum, uses the address, the address reference comes down the 
bus and through a slave decoder, which adds the machine-specific offset to it to 
map it back into the high megabyte of system virtual memory. 

Sun DMA is called DVMA because the addresses which the device uses to com
municate with the kernel are virtual addresses like any others. The driver, as part 
of the kernel, is privy to implementation dependent information, and knows that 
it must chop off the high-bits of any address intended for the device. This allows 
the MMU to recognize the addresses destined for the Main Bus and to act accord
ingly. The device, however, knows nothing of this except that its buffers are 
mapped to the high megabyte of system virtual memory. 

The kernel supports the redundant mapping of physical memory pages into mul
tiple virtual addresses as a means of providing DVMA between devices and user 
address space. In this way, a page of user memory (or, for that matter, a page of 
kernel memory) can be mapped into DVMA space in such a way that transferred 
data immediately appears in (or immediately comes from) the address space of 
the process requesting the 1/0 operation. All that a driver need do to support 
such direct user-space DVMA is to set up the kernel page maps with the routine 
mbsetup () -the details of the mapping will then be automatically handled by 
the kernel. 

If you wish to do DMA over the Main Bus, you must make the appropriate 
entries in the kernel memory map. There are two functions, mbset up () and 
mbrelse (), to help with this chore. 
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The Sun386i uses the Intel 80386 chip. This chip has an integrated MMU, so the 
1/0 devices cannot access the Sun MMU address-translation facility and there
fore must use physical addresses to access memory directly. 

To do OMA on the Sun386i, you must make certain changes in the kernel's 
memory map (its page tables). Use the mbsetup (), dma_setup (), 
mbrelse (), and dma _ done () routines to make these changes. The changes 
you must make to the kernel memory map are described with these routines in 
the Kernel Support Routines appendix. 
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3.1. The System Kernel 

3 
Overall Kernel Context 

Device drivers are parts of the SunOS kernel, a fact that must be appreciated to 
understand the ways in which drivers differ from user-level programs. The ker
nel is the crucial system program responsible for the control and allocation of 
system resources, including the processor, primary memory and the 1/0 devices. 
In most ways it's just like any user program, being a more or less cleverly con
structed structure shaped to its particular goals. In other ways, however, it's 
significantly different from a user program: 

o For one thing, the kernel is thick with the details of hardware implementa
tion and function. This tends not to be true of user programs, precisely 
because the kernel shields them from the need to consider device-specific 
details. 

o For another, the kernel (and thus its drivers) runs in supervisor mode. This 
means that drivers can often perfonn privileged device operations that can't 
be perfonned by user processes, even if those processes have access to the 
necessary device registers. 

o The kernel memory context is not entirely paged. Certain parts of the 
Sun386i kernel are paged, but drivers can safely assume that their text and 
data are resident and stationary within physical memory. 

o Programmers of ordinary user processes rarely need to concern themselves 
with physical addresses and virtual-to-physical address mappings. Device
driver developers, however, deal simultaneously with user virtual addresses, 
kernel virtual addresses and physical bus addresses. Special functions (see 
the Kernel Support Routines appendix) are provided to help drivers with the 
various address mappings they're called upon to perfonn. 

o Finally, the kernel provides a far different external interface than do user 
processes. It's possible for user processes to communicate with and dispatch 
tasks to other user processes by way of system inter-process communications 
mechanisms Oike signals and pipes) but to do so they must first make special 
arrangements with those other processes. The kernel, on the other hand, 
exists to provide services to user processes and it provides a special mechan
ism - the system call - by which user processes can call upon it to do so. 
This is not to say that user processes and the kernel (that is, the drivers) can't 
also use system inter-process communications mechanisms like signals. It's 
certainly possible, for example, to write a driver so that it will send a signal 
to a user process as part of its handling of a specified event. However, in the 
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3.2. Devices as "Special" 
Files 

nonn, user processes and the kernel communicate by way of system calls. 

System calls can, for all intents and purposes, be understood as calls by user 
processes to kernel subroutines; they involve, however, far more profound sys
tem state changes that do regular subroutine calls. When system calls are pro
cessed, the processor is placed in supervisor state The user process is suspended 
and the kernel begins to run, but since it runs on behalf of that user process which 
issued the system call, it can be viewed as that user process continuing execution 
in kernel mode. Such "kernel-mode" processes continue to run (with pauses 
whenever they sleep or yield to a higher-priority process) until the system call 
processing is completed. At this time the scheduler is called to choose the next 
user process to be dispatched. 

Some system calls can be completely processed without calling any device driver 
routines. The system call l seek () is in this class, it requires only that a 
software file position indicator be reset. Like many system calls - those related 
to process control, inter-process communication, timing services, and status 
infonnation - it can be handled entirely in software. Requests for 1/0, however, 
usually involve some action on the part of a peripheral device. In this case the 
kernel calls (through a branch table mechanism described below) a routine within 
the 1/0 device's driver. The driver will then initiate the 1/0 operation and, if 
necessary, sleep () until the data is available; in the meantime the kernel will 
dispatch another user process. 

When a user process issues a system call, execution shifts to the kernel. Then, 
for 1/0-related system calls, the kernel distinguishes requests related to regular 
named files (that is, files on a block device like a disk) from requests related to 
other kinds of 1/0 devices (like terminals or printers). In the interests of unifor
mity, these devices are viewed as "special" files which (by convention) are col
lected in the ldev directory. These special files are not created in the usual way. 
The infonnation in their i-nodes (the system structures that define the state of 
files) is quite different from the information maintained for regular files, and, as a 
consequence, special files can only be created with the mknod (make node) 
administration command. Instead of the addresses that will locate the contents of 
a regular file on a disk, the i-nodes of special files (devices) contain the infonna
tion necessary to detennine the corresponding device driver (the major device 
number), the device class (block, character, FIFO, or socket), and the minor dev
ice number. 

When a file of any type is accessed, the kernel needs to detennine which device 
driver is responsible for it. To make this determination, it must get the name of 
the device associated with the file. From that name it can derive (using a 
device-independent kernel subsystem) an i-node and thus a major device number 
(as well as a minor device number and a device class). 

The connection between the device name and its major number is made by way 
of the device entry in the !dev directory (more specifically, by way of the i-node 
infonnation associated with the device entry). The i-node for a device special 
file contains a major device number, which is used to index one of the two device 
switches. These switches, bdevsw (the block device switch) and cdevsw (the 
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character device switch) are actually arrays of structures, and the major device 
number selects a driver by indexing one of these structures. (The minor device 
number is then passed to the driver for local interpretation). 

Using the ls -1 command on the / dev directory shows you the i-node infor-
mation associated with special files: 

A Sample Listing of the ldev Directory 

T per- l own-
y mis- i er 
p sions n 
e k 

c rw--w--w- 1 henry 
c rw-r--r-- 1 root 
c rw------- 1 root 
c rw------- 1 root 
c rw-r--r-- 1 root 
c rw-rw-rw- 1 root 
c rw-rw-rw- 1 root 
c rw------- 1 root 
c rw------- 1 root 

c rw------- 1 root 
c rw------- 1 root 
b rw------- 1 root 
b rw------- 1 root 

b rw------- 1 root 
b rw------- 1 root 

maj- min-
or or 
# # 

0, 0 
3, 1 
3, 4 
3, 3 
3, 0 

13, 0 
3, 2 
9, 0 
9, 1 

9, 6 
9, 7 
3, 0 
3, 1 

3, 6 
3, 7 

date name 

Feb 21 09:45 console 
Dec 28 16:18 krnern 
Jan 13 23:07 rnbio 
Jan 13 23:07 rnbrnern 
Dec 28 16:18 rnern 
Dec 28 16:18 mouse 
Feb 22 16:40 null 
Dec 28 16:19 rxyOa 
Dec 28 16:19 rxyOb 

Feb 25 1984 rxyOg 
Dec 28 16:19 rxyOh 
Feb 25 1984 xyOa 
Jan 17 20:12 xyOb 

Dec 28 16:19 xyOg 
Dec 28 16:19 xyOh 

When a user process wishes access to a system service, it makes a system call. 
The subsequent flow of control looks somewhat like this: 
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Figure 3-1 /JO Paths in the UNIX system 
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When you add a new device driver you must add entries to one or both of the 
device switches. Since we are discussing only character-oriented devices in this 
manual, we will ignore the bdevsw structure and concentrate on the cdevsw 
structure. But note that it's common for drivers to appear in both tables; this 
happens because block-devices almost always support raw character 1/0. 

Application programs make calls upon the operating system to perform services 
such as opening a file, closing a file, reading data from a file, writing data to a 
file, and other operations that are done in terms of the file interface. The operat
ing system code turns these requests into specific requests to the device driver 
involved with that particular file. The glue between the specific file operation 
involved and the device driver entry-point is through the bdevsw and cdevsw 
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tables. 

Each entry in bdevsw or cdevsw contains pointers to a driver's entry-point 
functions. The position of an entry in the structure corresponds to the major dev
ice number assigned to the device. The minor device number is passed to the 
device driver as an argument. Usually, the driver uses it to access one of several 
identical physical devices, but it is also possible for it to be encoded so that mul
tiple minor numbers indicate the same device, but different operating modes. For 
example, one minor number might indicate a specific tape device, as well as the 
fact that the device is to be rewound when being closed, while another indicates 
the same device without the rewind. A minor number may also indicate a 
controller/device pair. Such breadth of interpretation is possible because the 
minor number has no significance other than that attributed to it by the driver 
itself. 

The cdevsw table specifies the interface routines present for character devices. 
Each character device may provide seven functions: xxopen (), xxclose (), 
xxread (), xxwrite (), xxioctl (), xxselect (), and xxnunap (). (While 
character drivers sometimes have "strategy" routines, this name is simply a car
ryover from the world of block drivers, and cdevsw thus has no xxstra
tegy () entry point). If you wish calls on a routine to be ignored- for exam
ple xxopen () calls on non-exclusive devices that require no setup-the 
cdevsw entry for that driver can be given as nulldev; if a call should be con
sidered an error- for example xxwrite () on read-only devices- nodev, 
which returns immediately with an error code, can be used. 

Note: the device switch tables do not include pointers to the driver initialization 
and interrupt handler functions. Pointers to these functions appear in separate 
mbvar structures ( discussed below). 

Here's what the declaration of an entry in the character device switch looks like. 
Each entry (row) is the only link between the main Sun0S code and the driver. 
The declaration of the device switches is in 
/usr/share/src/sys/sys/conf.h. 

struct cdevsw { 
int (*d_open) (); /* routine to call to open the device * I 
int (*d_close) (); /* routine to call to close the device * I 
int (*d_read) (); /* routine to call to readfrom the device * I 
int (*d_write) (); /* routinetocalltowritetothedevice *I 
int ( *d _ioctl) () ; / * special interface routine * I 
int ( *d_reset) () ; /* reset device and recycle its bus resources* I 
int ( *d _select) () ; / * routine to call to select the device * I 
int ( *d _ mmap) () ; / * routine to call to mmap the device * I 
struct streamtab *d_str; /* support/or STREAMS * I 
int ( *d_segmap) (); /* handlesmmapdevices that supportd_mmap * / 

*I 
} ; 

Routines in the kernel call specific driver routines indirectly by way of the table 
with the major device number. A typical kernel call to a driver routine will look 
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something like: 

(*cdevsw [major (dev)] . d_open) (params ... ) ; 

And here is a typical line from /usr /share/sys/ sun/ conf. c, which ini
tializes the requisite pointers in the cdevsw structure: 

All the other cdevsw entries between O and 13 appear first 

cgoneopen, cgoneclose, nodev, nodev, /*14*/ 
cgoneioctl, nodev, seltrue, cgonemmap, 
O, spec_segmap, 

} ' 

Then all the other cdevsw entries from 15 up 

In the Sun system, a number of devices in cdevsw are preassigned. The table 
below shows some of these assignments at the time of this writing. It is not com
plete, and besides, new devices are always being added. In allocating a major 
number to the new device which you're installing, make sure that you don't 
choose one that's already been allocated. /usr /sys/sun/ conf. c will give 
the major device numbers as currently allocated on your system. Choose yours so 
it will go at the end. 

Current Major Device Number Assignments 

Major Device Device Device 
Number Abbreviation Description 

0 en Sun Console 
1 Not Available No Device 
2 sy Indirect TIY 
3 mm Memory special files 
4 Not Available No Device 
5 tm Raw Tapemaster Tape Device 
6 vp Ikon Versatec Parallel Controller 
7 Not Available No Device 
9 xy Raw Xylogics Disk Device 

10 mti SystechMTI 
11 des DES Chip 
12 ZS UARTS 
13 ms Mouse 
15 win Window Pseudo Device 
16 Not Available Log Device 
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3.3. Run-Time Data 
Structures 
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Current Major Device Number Assignment~ Continued 

Major Device Device Device 
Number Abbreviation Description 

17 sd Raw SCSI disk 
18 st Raw SCSI tape 
19 Not Available No Device 
20 pts Pseudo TTY 
21 ptc Pseudo TTY 
22 fb Sun Console Frame Buffer 
25 pi Parallel input device 
27 bwtwo Sun-2 Monochrome frame buffer 
28 vpc Parallel Driver for Versatec printer 
29 kbd Sun Console Keyboard Driver 
30 xt Raw Xylogics 472 Tape Controller 
31 cgtwo Sun-2 Color Frame Buffer 
32 gpone Graphics Processor 
34 fpa Floating-Point Accelerator 
35 Not Available STREAMS Support 
36 Not Available No Device 
37 Not Available STREAMS Clone 
38 pc Sun PC Driver 
39 cgfour Sun-3/110 Color Frame Buffer 
40 Not Available STREAMS NIT 
41 Not Available Dump Device 
42 xd Xylogics 7053 SMD Disk Driver 

If you skip ahead and read the chapter on Configuring the Kernel you will see a 
discussion of the procedures by which Sun systems are reconfigured to include 
new devices and drivers. There are two major programs involved in this process. 
The first is conf ig, which reads the kernel config file and generates the data
structure tables which specify the configuration of the new kernel. You will also 
note, in that chapter, references to the kernel's autoconfiguration process (some
times called autoconf ig). The autoconfiguration process verifies that the 
devices specified in the config file are actually installed and working, and adjusts 
the kernel data structures accordingly. 

The autoconfiguration approach was first introduced in 4 .1 BSD as part of a larger 
kernel rationalization, and it significantly increases the flexibility of the kernel 
configuration process, for example, by allowing multiple device controllers to be 
driven by the same instance of a driver. 

The autoconfiguration process is called by the kernel during its boot-time initiali
zation. It does several things: 
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o It verifies that the infonnation in the kernel config file is correct; that is to 
say, it verifies that the devices which the kernel thinks are installed are actu
ally installed. It does this by calling device-specific x.xprobe ( ) routines 
that are supplied by the driver. 

o It completes the initialization of the kernel data structures that were declared 
by conf ig and linked into the kernel by way of ioconf. c (a file which 
conf ig creates but cannot fully initialize). These structures, which are 
defined in <sundev/mbvar. h> and shall hereafter be known as the 
mbvar structures, fonn a good part of the run-time environment of the driver 
routines. 

o It maps the device registers (or memory) into kernel virtual space. 

The autoconfiguration code does its work, as its name indicates, without worry
ing the driver developer too much. It's only necessary for the developer to know 
what conventions to follow and what options exist. The rest will take care of 
itself. 

Note: readers who have written only System V drivers will perhaps find this all a 
bit mysterious. In System V, as in BSD UNIX systems, the driver interface to the 
kernel is defined primarily by the/unction switch (either cdevsw orbdevsw) 
by which driver routines are called, by the parameters these routines are passed 
and by the values they return. So far so good, but then there are the differences. 
In System V drivers, nothing like the mbvar structures exists, and generic kernel 
structures (like the user structure) are usedfar more heavily than in 4.2BSD, 
where mbvar-like structures are consulted by preference. Sun's operating system 
is, of course, derived from 4.2BSD, and its driver interface is quite similar. 

The "mb" in the name of the mbvar structures clearly recalls the primary motiva
tion of the kernel rewrite in which they were introduced - to improve the 
management of bus resources. The "mb" is derived from the initials of the M ul
tibus, around which older generation Sun machines were built. Newer machines, 
while built around the VMEbus, nevertheless continue to bear the traces of the 
past in these mbvar structure names, names which are now taken to stand for 
"Main Bus" rather than for "Multibus." 

During the configuration of the kernel, an edifice is built of the mbvar structures 
and its initialization is begun. The edifice consists of a structure which 
represents the bus itself, two arrays of structures (one representing system con
trollers; the other, devices) and a number of inter-structure field-to-field links of 
various kinds. 2 The details of the edifice depend upon the infonnation in the ker
nel config file, and upon the compile-time declarations made by the individual 
drivers. During boot time, the initialization that conf ig began is completed by 
the autoconfiguration process. 

2 It's not al ways clear just when a device is a "controller", and when it's a "device". The extreme cases are 
clear: if a device attaches to the bus, fields interrupts and has other, so-called "slave" devices, then it's a 
controller. Likewise, if a device attaches to a controller ratherthan to the bus, it's a slave device. The confusion 
surrounds devices which attach to the device and field interrupts, but which do not have slave devices. Such 
"devices" would, in many ways, be better thought of as "controllers" which control only themselves. 
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Then, at run time, the mbvar structures are used by both the drivers and the ker
nel to manage the bus and its interaction with the devices. The mbvar structures 
are linked to each other in quite a complex fashion, for device characteristics and 
thus device driver structures vary greatly, and these structures are intended to 
support a great variety of access paths: device to controller, device to driver, con
troller to driver, and so on. Driver developers do not, however, need to concern 
themselves with the details of the inter-structure links and access paths. Driver 
routines will be called by the kernel with pointers to the mbvar structures of 
interest to them. They are then free to build that information into whatever local 
structures they find most convenient for the representation of whatever access 
paths are of interest to them. 

So, to sum up, the Sun kemeVdriver runtime interface can be seen as being built 
in two different sections. One of these sections is composed of the mbvar struc
tures, constructed into interlinked arrays to represent specific kernel 
configurations on specific machines. The other is similar to the generic SunOS 
kemeVdriver interface, consisting as it does of the two device switches, the user 
and proc structures, parameter conventions and a few miscellaneous variables. 
We will now discuss the details to these two interfaces. 

All controllers are installed on the main system bus, and all slave devices (like 
disks and tape drivers) are attached to their controllers.3 Additionally, each con
troller is associated with a device driver, which is really a controller driver. The 
mbvar data structures reflect these relationships, not only in terms of the fields 
that they contain but in terms of the ways these fields are linked together. 

The following mbvar structure fields are the ones most relevant to driver 
developers. 

mb hd 

mb ct1r 

The first data structure, rnb _ hd, is the Main Bus header data struc
ture. There is only one such structure, for Sun systems have only 
one Main Bus. It contains a queue of rnb_ctlr structures, each 
one representing a controller waiting for DVMA space. The 
queue only contains entries when DVMA space is full. It also 
contains other bus-status information. For example, if a driver has 
exclusive access to the bus, this is noted in mb _ hd. Device 
drivers never directly access the fields in mb _ hd. 

Each slave-device controller on the Main Bus has an mb ct lr 
structure associated with it. (This structure contains all of the 
configuration-dependent information which the kernel needs in 
interactions with the controller's driver, as well as some status 
information. It is mb_ctlr that is queued onto mb_hd during a 
wait for DVMA space. The following fields within mb_ctlr are 
of interest even for character devices (there are others that are 

3 Sometimes, in this manual, the word "device" will be used in a generic sense to denote either a "free" 
device that attaches directly to the system bus rather than to a separate controller, or a regular slave device. This 
generic usage occurs, for example, whenever the term "device driver" is used - such programs would more 
accurately be described as "controller drivers". In this section, however, we're being extremely precise - free 
devices attach to the system bus, and so they're called "controllers", not "devices". 

Revision A, of 27 March 1990 



40 Writing Device Drivers 

used only by block devices): 

me ctlr 
The controller index for the corresponding controller, for 
example, the 'O' in scO. Used to index into arrays of driver
specific controller status and control structures. 

me alive 
Set to one by the autoconfiguration process if the controller is 
detennined to be present. Otherwise left at 0. 

me addr 
The address of the controller ( control and status registers and 
RAM) in bus space. 

me_intpri 
The interrupt priority level of the controller. This is to be 
given in the config file and should be used, in the driver 
source, only as an argument to splx () - e.g. 
splx(pritospl(mc_intpri)). 

me intr 
On Sun-3, and Sun-4 systems, base address of array of 
,structvec one for each specified in the config file. If 
mc_intr is set, then the fields within the vec structure 
become significant: On the Sun386i system, this field con
tains the irq (interrupt request channel). The Sun386i system 
does not support vectored interrupts, so the v _ * fields are not 
present. 

v func 
Pointer to the vector-interrupt function. 

v vec 
Vector number associated with the function in v func. 

v_vptr 
A pointer to the 32-bit argument to be passed to the 
driver vector-interrupt routine. Defaults to the controller 
number of the interrupting device, though it can be reset 
within the driver. It's often set by the driver xxat
tach () routine to contain a local structure pointer. 

me_space 
A bit pattern which identifies the address space within which 
the controller is installed. 

me dmachan 

On the Sun386i only, a field containing the DMA channel. 

me mbinfo 
Main Bus resource allocation infonnation (Used by 
MBI_ADDR (), mbsetup () and mbrelse()). 
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mb device "Free" devices (devices with no separate controllers) as well as 
"slave" devices, are represented to the kernel bus-management 
routines by an instance of the rnb_device structure. (This is as 
it has been since 4. lBSD, but it's not ideal- if free devices were 
taken as controllers and represented by an rnb _ ct lr structure, 
then rnb _ device would only be for slave devices and would 
contain fewer fields). rnb _ ctlr contains all of the 
configuration-related data for the free or slave device. If a con
troller has multiple slave devices attached to it, there will be as 
many rnb_device structures associated with its mb_ctlr struc
ture. The following fields within rnb _ device (which are set by 
the configuration system and are not normally reset by the driver) 
are of interest: 

md driver 
A pointer to the rnb _driver structure associated with this 
device. 

md unit 
The device index for the corresponding device, for example, 
the 'O' in xyO. Used to index into arrays of driver-specific 
device status and control structures. 

md slave 
The slave number of the device on its controller. 

md addr 
The base address of the device (its control/status registers and 
perhaps some RAM). For VMEbus machines, it's the partic
ular address space within which the device is attached. 
Unused for devices on controllers. 

md_intpri 
The Main Bus priority level of the device (the priority that is 
passed to pritospl()). Used to parameterize the setting of 
hardware priorities. Unused for devices on controllers. 

md_flags 
The optional flags parameter from the system config file is 
copied to this field, to be interpreted by the driver. Only the 
driver uses the information in this field. If flags was not 
specified in the config file, then this field will contain a 0. 

md intr 
On Sun-3, and Sun-4 systems, base address of array of 
struct vec, one for each specified in the config file. 
Unused for devices on controllers. On the Sun386i system, 
this field contains the interrupt channel as an integer. 

md dmachan 
On the Sun386i only, a field containing the DMA channel. 
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md al.ive 
Set by the autoconfiguration process to 1 if xxprobe (} finds 
the device, otherwise it's left at 0. Incidently, if xxprobe (} 
fails to find the device, the autoconfiguration process will also 
leave the device position in the xxdinf o (} array (if the 
driver has one) at 0. The driver is free to test either variable 
(in its xxopen (} routine) to determine xxprobe (} 's ver
dict. 

mb driver The system assumes that the source code of your driver declares a 
mb _driver structure named xxdr i ve r. This structure contains 
infonnation relevant to the device driver as a whole, as opposed to 
infonnation about individual devices or controllers. It differs in 
several important manners from the device and controller struc
tures. For one thing, it contains a number of pointers to driver 
functions. These pointers, like those in cdevsw and bdevsw, 
are used by the kernel as entry points into the driver. For another, 
it's initialized not by the configuration system, but within the 
driver source code itself- if fact, several of the routines in 
xxdr i ver ( } are actually called by the kernel autoconfiguration 
process to complete the driver-related kernel initialization. (Note: 
while the driver has responsibility for initializing the fields in 
xxdr i ver, it is still limited, at run time, to reading these fields -
it cannot ever change them). 

xxdr i ver must be known more intimately by the driver developer than either 
the driver md ctlr structure or the driver md device structure. We will 
therefore give its complete declaration: 

struct mb driver { 

} ; 

int (*mdr_probe) (); I* check device/controller installation * I 
I* check slave device installation * I int (*mdr_slave) (); 

int 
int 
int 
int 
int 
char 
struct 
char 
struct 
short 
struct 

(*mdr_attach) (); 
( *mdr _go) ( ) ; 
( *mdr _done) ( ) ; 
(*mdr_intr) (); 
mdr_size; 

*mdr_dname; 
mb device **mdr_dinfo; 

*mdr_cname; 
mb_ctlr **mdr_cinfo; 
mdr_flags; 
mb driver *mdr_link; 

I* boot-time device initialization * I 
I* routine to start transfer * I 
I* routine to finish transfer * I 
I* polling interrupt routine * I 
I* amount of memory space needed * I 
I* name of a device * I 
I* backpointers to mbdinit structs * I 
I* name of a controller * I 
I* backpointers to mbcinit structs * I 
I* want exclusive use of Main Bus * I 
I* interrupt routine linked list * I 

Here is a brief discussion of the fields in the mb _driver structure that you will 
need to initialize when defining .udr i ver. Note that many of the fields in 
mb_dri ver are for the use of block drivers only-they're presented here as 
useful background infonnation. 
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mdr_probe 
is a pointer to the driver xxprobe () routine. xxprobe () is called for 
every controller and every independent device (with no separate controller) 
given in the kernel config file . .xxprobe () detennines if the 
device/controller is actually installed. If it is, it returns the amount of bus 
space consumed by the device/controller to the autoconfiguration process, 
where this space is then mapped into system address space. When 
.xxprobe () fails, it returns 0. 

mdr slave 
is a pointer to an xxslave () function within your driver. xxslave () is 
analogous to xxprobe (), and serves the same function for devices which 
are driven by separate controllers. Unlike xxprobe () , however, 
xxslave () exists only for controllers that may have multiple devices
it's therefore quite rare in character device drivers. 

mdr attach 
is a pointer to an xxa t tac h ( ) function within your driver. xxa t tac h ( ) 
is called during the autoconfiguration process, where it does preliminary 
setup and initialization for a device or controller. It's commonly used within 
disk and tape drivers to perfonn setup tasks like the reading of labels, and in 
character drivers for tasks like initializing interrupt vectors and reserving 
blocks of memory. Initialize this field only if there's an xxat tach () rou
tine in your driver. 

mdr_go 
mdr done 

are pointers to xxgo () and xxdone () functions within the driver. These 
functions usually don't exist for character drivers, and these fields are conse
quently 0. 

mdr intr 
is a pointer to a polling interrupt routine within your driver. Such a polling 
routine is used for the "auto-vectoring" of interrupts in systems where the 
interrupt "vector" can only be based on the interrupt priority. This is the 
case on all Multibus machines, and if there's any chance that your driver 
will someday be run on a Multibus machine you should include a polling 
interrupt routine and plug it in here. 

If you have a Sun source license, and take the opportunity it affords to exam
ine a number of drivers (you can find them in 
/usr / share/ src/ sys/ sundev) you may note an inconsistency in the 
naming of interrupt routines: 

o Some drivers have two interrupt routines: a polling interrupt routine 
named xxpoll () and a vector interrupt routine, named xxintr (). In 
such cases xxpoll () detennines the unit number of the interrupting 
device and then calls xxintr () to actually handle the interrupt. 

o Other drivers have only one interrupt routine. The routine is named 
xxintr () and called from mdr _ intr, but it nevertheless contains 
polling code. This, like the naming of the field mdr_intr (which 
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really should be mdr _poll) is an artifact of early Sun systems, in 
which drivers were written for the Multibus only - in these systems 
xxintr () was the interrupt routine, and it always contained polling 
code. 

In any case, remember that any routine called from mdr _int r must check 
the polling chain, regardless of its name. If you will not support Multibus 
machines, and thus need no polling interrupt routine, put a zero in this field. 

mdr size 
is the size - in bytes - of the memory required for the device. This field is 
initialized with a value identical to that which x.xprobe () returns upon 
success, and specifies the amount of space that needs to be mapped into sys
tem memory by the autoconfiguration code. The value returned by 
x.xprobe (), while identical, is used only to indicate if the device was 
found. 

mdr dname 
is the name of the device for which this driver is written. 

mdr dinfo 
is a pointer to a pointer to the mb _device structure in xxdinf o () . This 
pointer is filled in during autoconfiguration (see section below on 
Autoconfiguration-Related Declarations) and is necessary to work back from 
the device unit number to the correct mb _ device structure by way of an 
index operation. 

mdr cname 
is the name of the controller supported by this driver (for example, sc sup
ports the controllers scO, scl, etc). This field takes the form of a regular 
null-terminated C string. Fill it in if you actually have a controller. 

mdr cinfo 
is a pointer to a pointer to an mb _ ctlr structure declared in the driver. 
This pointer is filled in during autoconfiguration (see the section below on 
Autoconfiguration-Related Declarations) and is necessary to work back from 
the device unit number to the correct mb _ ctlr structure by way of an index 
operation. 

mdr_flags 
consists of some flags, as follows: 
MDR XCLU 

The device needs exclusive use of Main Bus while running. This flag is 
used only by mbgo () and mbdone () routines (which are not docu
mented in this manual), and it guarantees exclusive use only among 
drivers which use it to enforce an exclusive-use protocol. Not all 
drivers do so. 

MDR BIODMA 
For block devices that do DMA on the Main Bus (such drivers call 
mbgo () and mbdone()). This flag tells the kernel that it must lock 
other DMA devices off the bus. 
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MDR DMA 
For character devices which use OMA, either to transfer large blocks of 
data or simply to transfer small blocks of control information. The 
drivers for such devices call mbset up (). This flag tells the kernel that 
it must lock other OMA devices off the bus, and all OMA drivers 
should set it. 

MDR SWAB 
1/0 buffers are to be swab () 'ed- that is, pairs of data bytes are to be 
exchanged. This flag is used to push the swab () out of mbgo () and 
mbdone (} and down into the Main Bus driver. 

MDR OBIO 
The device is installed in on-board 1/0 space. 

Of these, MDR_XCLU, MDR_DMA, MDR_SWAB and MDR_OBIO are poten
tially to be used for user character devices. These flags must be OR'ed 
together if you wish to place any of that information there. Place a zero (0) 
in this field if none of the flags apply to your driver. 

mdr 1ink 
This field is used by the autoconfiguration routines and is not for the driver's 
use. 

At the top of each driver, after the include statements, is a group of declarations 
that are used by the autoconfiguration process to finish the initialization of the 
mbvar structures. Here, as an example, are the relevant declarations from the 
Sky floating-Point Driver: 
r 

I* Driver Declarations for Autoconfiguration * I 
int skyprobe(), skyattach(), skyintr(); 
struct mb_device *skyinfo[l]; /* OnlySupportsOneBoard *I 
struct mb_driver skydriver = { 

skyprobe, 0, skyattach, O, 0, skyintr, 
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, O, 

} ; 

The first line declares the names of the autoconfiguration-related entry point rou
tines for the driver. In this case there are only three - skyprobe (}, skyat
tach (} and skyintr (}. These declarations are necessary because, in a few 
lines, we will use the names to initialize the driver's mb _driver structure. 

The second line declares an array (in this case of dimension one) of pointers to 
rob_ device structures. By the time the driver is linked into the kernel, con-
£ i g will have already declared an array of mb _device structures that contains 
an entry for each of the devices named in the kernel config file. When the kernel 
is booted, the autoconfiguration process initializes each driver's xxinf o (} array 
to indicate the rob_ device structures corresponding to its devices, with each 
device's unit number being used as its subscript into the xxinfo () array. The 
Sky driver is slightly atypical in that it only supports one device; normally the 
device count provided by con£ ig in a macro "NXX" (which is set to the 
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number of devices noted in the config file) would be the subscript in this declara
tion. 

If this was a driver for a controller with slave devices, the second line would be 
followed by an analogous one that declared an array of pointers to mb _ ct lr 
structures. 

The third line both declares and initializes the mb driver structure that 
represents this driver. The fields within the structure are described in detail in 
the previous section. 

Other Kernel/Driver The kerneVdriver interface is almost entirely contained within the mbvar struc-
Interfaces tures and the parameter conventions of the driver routines. There are, however, a 

few other common kerneVdriver interface points, which are given in this section. 

WARNING The user structure is valid for the current process only while execution is in 
the top half of the driver. It must never be accessed from the bottom half. 

The kernel user structure (/usr/ share/ sys/ sys/user. h) contains a few 
fields of interest to drivers. This structure, which maintains status infonnation 
for the current user process (and which is swapped in and out with the process it 
describes), is used far less by Sun drivers than it is by System V drivers. This is 
because, in SunOS, the user structure does not define the address of the charac
ters to be written (or the place for characters to be read to). The Sun kernel uses 
uio structures for this purpose, and passes them as parameters to the driver 
xxread () and xxwrite () routines. (See Some Notes About the U/0 Structure 
in the The "Skeleton" Character Device Driver chapter of this manual). 

Still, three fields within the user structure remain of interest to device drivers. 
They are: 

u.u_qsave 
is a set jmp ( ) environment buffer that can be used to save the current 
stack in preparation for a possible longjmp () return. set jmp () and 
longjmp () are useful in drivers that need to intercept signals, and then to 
wake sleeping processes. They can also be used for error handling. For 
more infonnation, see the set jmp ( 3) man page. 

u.u error 
If an 1/0 operation is not successful, the driver must return an error code 
(defined in <errno. h> ), which is plugged into u. u _error. From here 
it's normally stored in the per-process global variable errno in the user 
context. (Note that in most cases the kernel plugs the value into 
u . u _error, and it is not necessary for the driver to do so. In fact, a driver 
cannot access u . u _error in its interrupt routine, where transfer errors are 
nonnally detected, since the current user structure is unlikely to belong to 
the process for which the failed 1/0 was being performed). 

u.u_procp 
The u. u _procp field in the user structure is a pointer to the processs 
(proc) structure for the current process. The proc structure contains the 
infonnation that the system needs about a process even when it is swapped 
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out. u. u _procp is used by drivers which contain select () routines. 
See the Variation with "Asynchronous 110" Support section of the The 
''Skeleton'' Character Device Driver chapter of this manual for details. 

Drivers may occasionally need to know what kind of machine they're running 
on. They can find out by querying a variable, cpu, which, while not in the user 
structure, is available to them by including .. /machine/ cpu. h. This vari
able is initialized by the kernel on the basis of information in the ID PROM, and 
is set to one of the following values: 

CPU SUN3 50 - -
CPU SUN3 110 - -
CPU SUN3 60 - -
CPU SUN3 160 - -
CPU SUN3 260 - -
CPU SUN3 E - -
CPU SUN3X 80 - -
CPU SUN3X 460 - -
CPU SUN4 110 - -
CPU SUN4 260 - -
CPU SUN4 330 - -
CPU I386 AT386 - -

Note that when compiling for a Sun-3 system, only the Sun-3 names are avail
able; likewise for Sun-3x's, Sun-4s and Sun386i's. 

Related to the CPU SUNX xx names are the SUNX xx ifdefs. These are set at 
compile time on the basis of information in the config file, and can be used to 
eliminate code or data that is unnecessary for machines of any particular type. In 
general, it's possible (and advised) to write drivers that can compile and run on a 
variety of Sun machines with no changes. 

DVMA drivers will often need to know the address of kernel DVMA space on 
the host machine (See the Sun Main-Bus DVMA section in the Hardware Context 
chapter) so that they can subtract it from system virtual addresses to get 
addresses relative to the start of DVMA space. The external variable DVMA, 
declared as an array of characters, is available for this purpose. 

The external variable hz gives the number of clock ticks per second on the host 
system. 

The external variable KERNELBASE _ DEBUG gives the start of kernel address 
space in the current memory context. 
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Kernel Topics and Device Drivers 

A first step in writing a device driver is deciding what sort of interface the device 
should provide to the system. The way in which read () and write () opera
tions should occur, the kinds of control operations provided via ioctl (), and 
whether the device can be mapped into the user's address space using the 
mmap () system call, should be decided early in the process of designing the 
driver. (For simple memory devices that require neither DMA nor an ioctl () 
routine, and that don't interrupt, it's possible to use the mmap () system call to 
avoid writing a driver altogether. See the Mapping Devices Without Device 
Drivers section of this manual for more details). 

Device drivers have access to the memory management and interrupt handling 
facilities of Sun0S. The device driver is called each time the user program 
issues an open (), read (), write (), mmap (), select () or ioctl () 
system call, but only the last time the file is closed. The device driver can 
arrange for 1/0 to happen synchronously, or it can set things up so that 1/0 
proceeds while the user process continues to run. 

Here's a brief summary of the parts that comprise a typical device driver. In any 
given driver, some routines may be missing. In a complex driver, all of these 
routines may well be present. A typical device driver consists of a number of 
major sections, containing the routines introduced below. 

Initial Declarations 
Device drivers, like all C programs, begin with global declarations of vari
ous sorts. These declarations include the structures that the driver will over
lay on the device registers. (These structures are often conveniently declared 
to contain unsigned integers and bit fields chosen to access various parts of 
the device registers). They also must include the declarations discussed in 
the Autoconfiguration-Related Declarations section of the Overall Kernel 
Context chapter of this manual. 

Autoconfiguration Support 
Then come the xxprobe (), xxattach () and, perhaps, xxslave () rou
tines. These are called at kernel boot time to detennine if devices noted as 
being present in the config file are actually installed, and to initialize them if 
they are. This initialization may include the resetting of the interrupt vector. 
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Opening and Closing the Device 
x.xopen {) is called each time the device is opened at the user level; if mul
tiple user processes open the device, x.xopen { ) is called multiple times. 
x.xclose (), in contrast, is called only when the last user process which is 
using the device closes it. 

Reading from and Writing to the Device 
x.xread () and xxwri te () are called to get data from the device, or to 
send data to the device. Drivers for tty-like devices will probably structure 
x.xread () and xxwr i te () in the tenninal-driver style (not described in 
this manual), while devices that deal simultaneously with groups of charac
ters will probably have their x.xread { ) and xxwr i te {) routines imple
mented in tenns of ax.xstrategy () routine. Suchx.xstrategy () rou
tines are in every way subsets of block-driver x.xstrategy () routines -
they are integrated with physio {), and use buf structures, but they don't 
have anything to do with the kernel buffer cache. Character drivers for 
DMA device are likely to have strategy () routines, but they can be use
ful for non-DMA devices as well - as long as the devices do 1/0 in chunks. 

Select Routine 
x.xselect supports the select {) system call, by which user processes 
can poll various devices (by way of 1/0 descriptors which specify them) to 
see if they are ready for reading, writing, or have an exceptional condition 
pending on them. 

Start Routine 
x.xstart {) is needed in drivers that queue requests; it's called from 
x.xread (), xxwri te () or x.xstrategy () to start the queue and is also 
called from x.xintr () to send off the next request in the queue. 

Mmap Routine 
The mma p ( ) routine is present in drivers for devices which are operated by 
being mapped into user memory - for example, frame buffers. 

Interrupt Routines 
There are two kinds of interrupt routines: polling (or auto-vectored) routines 
and vectored routines. Polling routines are necessary when the host system 
doesn't allow unambiguous means of mapping hardware interrupts to dev
ices, as is the case with Multibus-based machines. Vectored-interrupt rou
tines are used on VMEbus-based systems, which can map hardware inter
rupts immediately to devices. Drivers for VMEbus devices that are never 
run on Multibus-based systems need only vector interrupt routines, while 
drivers for devices which will be run on both Multibus and VMEbus 
machines need both types of interrupt routines. In this case the polling rou
tine can detennine the interrupting device and then call the vectored routine 
to do the rest. 

Ioctl Routine 
The x.xioctl () routine is called when the user process does an ioctl 
system call. These calls are the~~~, in the otherwise gen
erally unifonn 1/0 architecture. They are-no~liowe"Ver, panaceas, and you 
should not overuse them to solve problems in driver design. Tenninals have 
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many ioctl calls, but they're a special case. They have many ioctl 
calls because they're inherently quite complex and yet SunOS still insists 
that they look like files. 

SunOS, being a multi-tasking operating system, provides for multiple threads of 
control at the user level. (These multiple threads are the various user processes). 
At the kernel level, however, things are different. The SunOS kernel is a monol
ithic monitor type of operating system, and, as such, it cannot be interrupted by 
user processes. Instead, it contains code which allocates its time (and other 
resources) among the various user processes, as well as to itself. The kernel can 
be interrupted by hardware, but when handling interrupts it doesn't run on 
behalf of any individual user process. 

Device driver functions are invoked by kernel routines after user processes make 
system calls. These functions must be able to move data to or from user virtual 
space quickly and easily. Kernel functions are provided to help it do so, and to 
redundantly map memory so that it can be shared by user programs and the ker
nel. 

Device drivers are parts of the kernel, and they inhabit kernel space: 

o In the Sun-3 and Sun-4, the kernel virtual address space is at the top of the 
current context, starting at KERNELBASE. 

o In the Sun-4, the kernel uses the top 16 megabytes of the current Gigabyte 
context, starting at O xFF O O O O O O. 

o In the Sun386i, the kernel uses the top 64 Megabytes. Of these, the kernel 
has 32 Mbytes reserved for its use; kadb has 16 Mbytes reserved, and the 
EPROM uses 16 Mbytes. 

In general, drivers don't need to consider the details of kernel address-space 
implementation. Routines (like copy in () and copyout()) which deal in 
multiple address spaces will manage the details internally, as will programs like 
kadb. 

A device driver can usefully be thought of as having a top half and a bottom half. 
The top half, consisting of the read (), write (), and ioctl () routines, and 
of any other routines which run on behalf of the user process making requests on 
the driver, is run at 1/0 request time. The routines in the top half make device 
requests that can cause long delays during which the system will schedule a new 
user process so that it can continue doing useful work. The bottom half, consist
ing of xxintr () and any routines that it may call, is run at hardware interrupt 
time. 

Memory-mapped devices are usually not interrupt driven. Their drivers, thus, do 
not typically need to include interrupt routines. Memory-mapped devices 
operate by being written and read as system memory, and make no split-second 
demands (interrupt-time demands) upon their users. 

After starting an 1/0 request, the top half calls sleep () to wait for the bottom 
half to indicate (by way of a call to wakeup()) that the request has been 
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serviced. Thus, when a user program issues a read on (say) an AID converter, it 
is nonnally suspended when the top half of the corresponding driver calls 
sleep () to wait until some input arrives. Alternatively, the top half of the 
driver can call iowai t () and be put to sleep awaiting the completion of a 
buffer-oriented 1/0 transfer. 

The top half contains not only all the non-interrupt time driver routines, but (for 
all practical purposes) the kernel routines above the driver as well. In particular, 
it contains the kernel physio () routine, which manages the decomposition of 
large 1/0 requests into a series of smaller ones that can be handled by the device. 

The bottom half may include anxxstart () routine, which can be called inter
nally to start 1/0. This allows the device-specific code to be isolated in one rou
tine. xxstart () is not a driver entry point. It's called from either xxstra
tegy () or xxintr (), depending upon whether the device is busy or not. 

Consider an AID converter driver that expected the converter to interrupt when a 
sample was available. The kernel interrupt handler would detect the device inter
rupt and dispatch xxintr (), which would then store the sample data in a buffer 
and wakeup () the user process sleeping in the top half so the process could 
retrieve the data. If there was no user process sleeping in the top half, the 
wakeup ( ) would have no effect, but the next process to read the AID driver 
would find the data already there and wouldn't have to sleep (). 

It must be stressed that, in general, xxintr () doesn't run on behalf of the 
current user process-this is, in fact, why it's distinguished so clearly from the 
top half. This means that no infonnation about the current user process is avail
able, in any way, to xxintr (). It shouldn't examine, let alone change, any of 
the variables in the kernel user structure. 

In general, the driver developer has limited control over the interrupt characteris
tics of the device. However, it should be said that some device-interrupt charac
teristics are better than others. In particular, interrupt-processing takes lots of 
time, and it's important that devices interrupt as seldom as possible. If, for 
example, a device can be made to handle multiple characters for each interrupt it 
processes, it should be. It's also preferable that a device not interrupt until its 
driver has enabled its interrupts, that it hold its interrupt line high until the driver 
asks that it be cleared, and that it remain quiescent after a bus reset (system 
boot). 

Most hardware devices interrupt, and all interrupts occur at some given priority 
level. When an interrupt occurs, the system traps it, suspends the in-process 
operation (which may be a process entirely unrelated to the interrupting device or 
even the kernel) and resumes execution in the bottom half of the driver associ
ated with the interrupting device. This means that the top half of a device driver 
can be interrupted at any time by its bottom half. If they wish to share data, they 
must do so in shared data structures, and they must take special provision to see 
that those structures remain consistent. An example of such a data structure is a 
pointer to a current buffer and a character counter. The top half of the driver 
must protect itself so that data structures can be updated as atomic actions, that 
is, the bottom half must not be allowed to interrupt during the time that the top 
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half is updating some shared data structure. This protection is achieved by 
bracketing critical sections of code (sections that update or examine shared data 
structures) with subroutine calls that raise the processor priority to levels which 
can't be interrupted by the bottom half. Such a section of code looks like: 

s = spln (); 

critical section of code that can't be interrupted 

(void) splx (s); 
\. 

Here we've first raised the hardware priority level and then restored it after the 
protected section of code. (Detennining the correct hardware priority will be dis
cussed later). One section of code that almost always needs to be protected is the 
section where the top half checks to see if there is any data ready for it to read, or 
whether it can write data or start the device. Since the device can interrupt at any 
time, the section of code that checks for input in this fashion is wrong: 

if (no input ready) 
sleep (awaiting input, software_priority) 

because the device might well interrupt after the if condition is tested, but 
before the process switch. (The consequences, if this happens, are grave - the 
call to wakeup () will occur before the process has actually gone to sleep, and 
thus it will never wake up). 

The above section of code must thus be rewritten to look like this: 
r 

\. 

s = spln (); 
while (no input ready) 

sleep (awaiting input, software_priority) 
(void) splx ( s) ; 

If the top half executes the sleep () system call, the bottom half will be 
allowed to interrupt, because the hardware priority level is reset to O as soon as 
the sleep () context switches away from this process. 

In many cases it is possible to set the device interrupt level by setting switches on 
its board. If so, you must decide what processor-interrupt level the device is 
going to interrupt at. At first it may seem that your device is very high priority, 
but you must consider the consequences of locking out other devices: 

o If you lock out the on-board U ARTs (level 6) characters may be lost. 

o If you lock out the clock (level 5) time will not be accurate, and the SunOS 
scheduler will be suspended. 

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed. 
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o If you lock out the disks (level 2), disk rotations may be missed. 

o Level 1 is used for software interrupts and cannot be used for real devices. 

In general, it's best to use the lowest level that will provide you with the response 
that you need. 

In older Sun machines, the kernel uses only auto-vectored (polling) interrupts. 
With auto-vectoring, the interrupt vector associated with a given device is based 
solely on the device interrupt priority level. Since many system configurations 
will contain more devices than there are interrupt levels, multiple devices may 
share the same interrupt level. Still, when processing an interrupt, the kernel 
must have a way of determining which device interrupted, and which driver 
should process the interrupt. In such configurations, the kernel proceeds by pol
ling all the drivers at the given interrupt level (in the order that they are given in 
the config file), calling each of their polling interrupt routines in turn. These rou
tines then proceed to interrogate their corresponding devices looking for the dev
ice that has an "attention bit" set, thus indicating that it issued the interrupt. 
Devices that don't indicate that they've interrupted can still be installed - one 
per system - by putting them at the end of the config file and thus at the end of 
the polling chain. Unclaimed interrupts can then be assumed to be from the last 
device. 

After determining that one of its devices issued an interrupt, the polling routine 
services it and returns a non-zero to indicate that it did so ( or a O to indicate that 
no device was found to originate the interrupt). 

Polling only works if devices which share interrupt levels continue to interrupt 
until the driver tells them to stop. This is because the driver polling-interrupt 
routine returns to the kernel with an indication of which of the devices it has ser
viced. If two devices (A & B) are polling at the same interrupt level and both 
issue an interrupt, device A will always get serviced first. The kernel will then 
go on its merry way unless device B continues to interrupt. If it does, then when 
device A has been serviced, device B will be serviced. Fortunately, most Mul
tibus boards continue to interrupt until told to stop. VMEbus boards typically do 
not, so it's important that they use vectored interrupts. 

Sun VMEbus machines, (even those with Multibus devices installed by way of 
adapters) can take advantage of vectored interrupts. When handling a vectored 
interrupt, the kernel calls the appropriate driver's vector interrupt routine 
directly, passing it an argument to identify which of its devices (or controllers) 
interrupted. 

It's important to realize that a driver can support both vectored interrupts and 
polling interrupts. Such a driver can be run on either type of machine, its polling 
interrupt routine will determine which device, if any, originated the interrupt, and 
then call the vectored interrupt routine to actually service it. 

VMEbus devices - if they interrupt - are assigned unique identifying numbers 
in the range O x4 0 to O xFF when they are described in the conf ig file. It is 
these vector numbers that are used by the kernel to directly identify the interrupt
ing device. 
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There are cases where no separate polling routine is needed. The first is where a 
driver knows that it supports only one device, and that no other device will share 
its device's interrupt level. In this case only an xxintr () routine need exist. It 
can then be specified inmb_driver->mdr_intr for use in the auto-vectored 
case and in the con£ ig file for the vectored interrupt case. Thus, all 
configurations will use the same interrupt routine. Remember, this will only work 
if there are no other devices of any sort installed at the same interrupt level. 

The other case where xxpoll () is not needed is when a driver will never sup
port polling - presumably because it will never be run on a Multibus machine. 
In this case xxi n tr ( ) should be specified in the con fig file for use as the vec
tored interrupt routine, and the auto-vectored (polling) interrupt routine specified 
in mb dr i ver->mdr intr should be 0. 

Note that in the first case above, where the device will have an interrupt level to 
itself, little need be done to make the driver work with vectored interrupts. One 
may simply take a polling interrupt routine, (perhaps renaming it xxintr () to 
avoid confusion) and install it as the vector interrupt routine by giving its name 
in the appropriate place in the con£ ig file. This isn't the most efficient thing to 
do, for when the routine is called through the kernel's vectoring mechanism, it 
will waste the information in its argument ( which identifies the device originat
ing the interrupt) and go on to poll its devices. Nevertheless it will work. It's 
better, however, if drivers contain both xxintr () and xxpoll () routines, so 
that they may be easily transported to a variety of systems. 

Another issue of concern only to drivers running on VMEbus machines is related 
to setting up the interrupt-vector number. When using the VMEbus-Multibus 
adapter or certain VMEbus devices, the vector number is set by switches on the 
circuit board. But some devices require that software initialize the device by tel
ling it which vector number to use on interrupts. Presently, the only place where 
this can be done is in xxat tach (). The vector number that xxat tach () 
communicates to the device is in the md intr->v vec field of the - -
mb device structure- a NULL value in this field indicates that the host 
machine is Multibus based and does not support vectored interrupts. 

A skeleton for a "typical" driver, one supporting both vectored and polling inter
rupts and using software to set interrupt vectors might look like: 

I* 
* NXX is computed by configfor each device type. 
* It can then be used within the driver source code to 
* declare arrays of device specific data structures. 
*I 

struct .xx device .xxdevice[NXX]; 

I* 
* Attach routine for a device .xx that must be notified of its 
* interrupt vector. 
*I 

.xxattach (md) 
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struct mb_device *md; 

register struct xx device *xx &xxdevice[md->md_unit]; 

:/Hfndef sun386 
!* 
* Vector number given in kernel config file and passed by the autoconfiguration 
* process during boot. This code does not apply to the Sun386i, which does not 
* support vectored interrupts. 
*! 

if (md->md_intr) 

I* so we will be using vectored interrupts * I 

I* WRITE interrupt number TO THE DEVICE * I 
xx->c_addr->intvec = md->md_intr->v_vec; 

I* Setup argument to be passed to xxa t t ach * / 
*(md->md_intr->v_vptr) = (int)xx; 

else { /* WRITE auto-vector code TO THE DEVICE * I 
xx->c addr->intvec = AUTOBASE + md->md_intpri; 

/* any other attach code * I 
fondif 
} 

!* 
* Handle interrupt - called from xxpoll and for vectored interrupts. 
*! 
xxintr (xx) 

struct xx device *xx; 

I* handle the interrupt here * I 

I* 
* Polling ( auto-vectored) interrupt routine 
*! 

xxpoll () 
{ 

register struct xx device *xx; 
int serviced= 0; 

I* loop through the device descriptor array * I 
for (xx= xxdevice; xx< &xxdevice[NXX]; xx++) 

if (!xx->c_present I I 
(xx->c_iobp->status & XX_INTR) == 0) 
continue; 

serviced= 1; 
xxintr (xx) ; 
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return (serviced); ] 
The kernel provides numerous service routines that device drivers can use to 
their advantage. These routines, as well as many others, are described more com
pletely in the Kernel Support Routines appendix to this manual. The most 
important of these routines can be clustered into the functional groups given 
here: 

If a device needs to know about clock intervals, 

timeout(func, arg, interval) 
int (*func) (); 
caddr_t arg; 
int interval; 

is useful. timeout () arranges that after interval clock-ticks, thefunc is called 
with arg as argument, in the style (*func)(arg). interval is often expressed as a 
multiple of the external variable hz, since hz gives the number of ticks per 
second on the host machine. (lO*hz, then, specifies a timeout often seconds). 
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to terminate an attempt to 
read a device if there is no response within a specified number of seconds. Also, 
the specified June is called at "software" interrupt priority from the lower half of 
the clock routine, so it should conform to the requirements of interrupt routines 
in general-you can't, for example, call sleep () from within/unc, although 
you can call wakeup (). (See also untimeout()). 

Another key set of kernel routines is sleep () and wakeup (). The call 

sleep(event, software_priority) 
caddr_t event; 
int software_priority; 

makes the process wait (allowing other processes to run) until the event occurs; at 
that time, the process is marked ready-to-run. When the process resumes execu
tion, it has the priority specified by software _priority. 

The call 

( wakeup(event) 
caddr_t event; 

indicates that the event has happened, that is, causes processes sleeping on the 
event to be awakened. The event is an arbitrary quantity agreed upon by the 
sleeper and the waker - it must uniquely identify the device. By convention, 

] 
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event is the address of some data area used by the driver (or by a specific minor 
device if there's more than one). 

Processes sleeping on an event should not assume that the event has really hap
pened when they are awakened, for wakeup () wakes all processes which are 
asleep waiting for the event to happen. Processes which are awakened should 
check that the conditions that caused them to go to sleep are no longer true. 

Software priorities can range from Oto 127; a higher numerical value indicates a 
less-favored scheduling condition. A distinction is made between processes 
sleeping at priority less than or equal to the macro P ZERO and those sleeping at 
numerically greater priorities. 

If a process is blocked in s 1 e ep ( ) at a priority less than or equal to P z ERO, it 
will not be awakened upon receipt of a signal; the signal will not be processed 
until the process is awakened elsewhere and returns to user mode. (This means 
that a user cannot interrupt such a process by typing their interrupt character). 
Thus, it is a bad idea to sleep with priority less than or equal to P ZERO on an 
event that may not occur. 

On the other hand, if a process is blocked in sleep () at a priority greater than 
P ZERO, and if a signal is sent to the process, it will be awakened. However, the 
call to sleep () will not return. This means that the routine that called 
sleep () cannot clean up after receiving the signal. If the routine needs to do 
such clean up, it can arrange for this by ORing the PCATCH flag into the priority 
it passes to sleep (). If this is done, and sleep () is interrupted by a signal, it 
will return 1; if the process is awakened normally, sleep () will return 0. 

In general, sleeping at priorities less than or equal to P ZERO should only be used 
to wait for events that occur quickly, such as disk and tape 1/0 completion. 
Waiting for events that may not occur quickly-for example, the typing of a par
ticular key by a human at a keyboard-should be done at priorities greater than 
PZERO. 

Incidentally, it is a gross error to call sleep () in a routine called at interrupt 
time, since the process that is running is almost certainly not the process that 
should go to sleep. 

At certain places in a device driver it is necessary to raise the processor priority 
so that a section of critical code cannot be interrupted, for example, while adding 
or removing entries from a queue, or modifying a data structure common to both 
halves of a driver. 

The splx () function changes the interrupt priority to a specified level, and then 
returns the old value. 

The splr () function raises the priority without lowering the current priority 
level. 

For configuration reasons, the pritospl () macro is necessary to convert a 
Main Bus priority level to a processor priority level. The Main Bus priority level 
can be found in either md->md _int pr i or mc->mc _int pr i, where it is put 
by the autoconfiguration process. (These structures are defined in 
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<sundev/mbvar. h>). 

Here's how you nonnally use the pritospl () and splx () functions in a 
hypothetical strategy () routine: 

hypo_strategy(bp) 
register struct buf *bp; 

register struct mb_ctlr *me 
hypoinfo[rninor(bp->b_dev)); 

int s; 

s = splx(pritospl(rnc->rnc_intpri)); 
while (bp->b_flags & B_BUSY) 

sleep((caddr_t)bp, PRIBIO); 

here is some critical code section 

(void)splx(s); I* Set priority to what it was previously * I 

Alternatively, spln can be used to set the processor to a certain fixed priority 
level. 

On the Sun-3, Sun-3x, and Sun-4, the routine mbsetup () is called when the 
device driver wants to start up a DMA transfer to the device, for DMA transfers 
require Main Bus resources. The MBI _ ADDR () macro can then be used to 
transform the abstract integer returned by mbsetup () into a DVMA transfer 
address. At some later time, when the transfer is complete, the device driver 
calls the mbrelse () routine to inform the Main Bus resource manager that the 
transfer is complete and the resources are no longer required. 

On the Sun386i, the mbsetup () and dma_setup () routines are called when 
the device driver wants to start up a DMA transfer. After the transfer is com
plete, the driver calls mbrelse () and dma done (). 

The kernel provides a number of routines designed to transfer data between the 
user and kernel address spaces. These include copy in () and copyout (), 
general routines designed to move blocks of bytes back and forth. They also 
include uiomove (), ureadc () and uwritec (), routines which are 
designed to transfer data to or from a uio structure (see Some Notes About the 
U/0 Structure in the The "Skeleton'' Character Device Driver chapter for more 
details about this structure). 
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The kernel provides a printf () function analogous to the printf () func
tion supplied by the C library for user programs. The kernel printf (), how
ever, is more limited. It writes directly to the console, and it doesn't support 
pr intf () 's full set of formatting conversions. See the Debugging with 
print£() section of this manual for more details on the use of the kernel 
printf (). 

A device number (in this system) is a 16-bit number (typedef short 
dev _ t) divided into two parts called the major device number and the minor 
device number. There are macros provided for the purpose of isolating the major 
and minor numbers from the whole device number. The macro 

major(dev) 

returns the major portion of the device number dev, and the macro 

minor(dev) 

returns the minor portion of the device number. Finally, given a major and a 
minor number x and y, the macro 

dev_t makedev(x,y) 

returns a device number constructed from its two arguments. 
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The central processor board (CPU) of the Sun Workstation has a set of PRO Ms 
containing a program generally known as the "Monitor". (See the appropriate 
PROM Commands chapter of the PROM User's Manual for detailed descriptions 
of the monitor commands and their syntax). The monitor has three basic pur
poses: 

1) To bring the machine up from power on, or from a hard reset (monitor k2 
command). 

2) To provide an interactive tool for examining and setting memory, device 
registers, page tables and segment tables. 

3) To boot SunOS, stand-alone programs, or the kernel debugger kadb. 

If you simply power up your computer and attempt to use its monitor to examine 
your device's registers, you will likely fail. This is because, while you may have 
correctly installed your device (a process that includes specifying its virtual 
memory mapping in the config file) those mappings are SunOS specific, and 
don't become active until SunOS is booted. The PROM will, upon power up, 
map in a set of essential system devices - like the keyboard - but your device 
is almost certainly not among them. 

When installing a new device, you will use the monitor primarily as a means of 
examining and setting device registers. Before even beginning the development 
of your driver, it's a good idea to attach your device to the system bus and use 
the monitor to manually probe and test it. This will give you a chance to become 
familiar with the details of its operation, and to ensure that it works as you expect 
it to. 

Upon power-up, the PROM monitor: 

o Maps the beginning of on-board memory, up to 6 megabytes, to low virtual 
addresses starting at virtual Ox O. 

Later, using the autoconfiguration process, SunOS makes a pass through the 
config file (actually, through the ioconf. c file that was produced as output by 
conf ig when it processed the config file). For each device, SunOS selects an 
unused virtual address (using an algorithm that doesn't presently concern us) and 
maps it into the device's physical address as specified in the config file. 
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SunOS then calls the x.xprobe () routine for each device, passing it the chosen 
virtual address. In this way, x.xprobe () is kept from having any knowledge of 
the physical address to which the device is mapped. x.xprobe () then deter
mines whether or not the device is present. If it isn't, the virtual address can be 
reused. 

To test a device, ignore the SunOS mappings and use the monitor to manually set 
the MMU to map your device registers to a known address in physical memory. 
Then you can use the monitor to verify its proper operation. This verification 
process will consist primarily of using the monitor's o (open a byte), E (open a 
word) and L ( open a long word) commands to examine and modify the device's 
registers. Note that, in Sun-4 machines, words and long words are both 32 bits in 
length. 

The process of setting up the device for initial testing consists of three discrete 
steps. 

o The selection of an appropriate virtual address for the testing of the device. 

o The detennination of the physical address of the device, as well as the 
address space that it occupies. 

o The use of the monitor to map the system's virtual address to the device's 
physical address. Detailed discussion of these three steps follow. 

Since SunOS initializes the MMU in the course of its autoconfiguration process, 
it's possible to test a device by actually installing it, and then booting and halt
ing SunOS. (You can halt SunOS by pressing the 'Ll' and 'A' keys simultane
ously, or, on a terminal console, by hitting the <BREAK> key). Having gotten to 
the monitor by this route, the MMU will be initialized to its SunOS run-time 
state. You can then use the monitor to test the device, or, if you wish, boot 
kadb. (A hard reset-the monitor's k2 command-sets the toMMU to its 
pre-SunOS power-up state). But while using the SunOS memory maps may occa
sionally be useful, it's not what you want to do during the first stages of device 
integration. 

First, understand that the MMU, when mapping a virtual address to a physical 
address, is actually mapping to a page of physical memory and an offset within 
that page. The low-order bits of a virtual address, those that specify the offset, 
do not get mapped- an address that is X bytes from the beginning of its virtual 
page is X bytes from the beginning of whatever physical page it gets mapped 
into. 

The mapping mechanism is essentially the same for all Sun systems, although the 
details of address size and page mapping differ. This can be seen in the follow
ing diagrams: 
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Figure 5-1 Sun-3 Address Mapping 
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Figure 5-2 Sun-3x/Sun-4 Address Mapping 
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Figure 5-3 Sun386i Address Mapping 
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The easiest way to select a virtual address for PROM-monitor testing is to use 
one between Ox4000 and OxlOOOOO on Sun-3, Sun-3x and Sun-4 systems, or 
Ox20000 and OxlOOOOO on Sun386i systems. Addresses in these ranges are 
unused by the monitor in the respective Sun models, and are thus available. 
(Note that these addresses, while convenient for testing, are not those that the 
kernel will choose when your device is finally installed). 

It's most convenient to select a virtual address which has only zero's in its low
order bits. This way you select the first address in a virtual page. The low-order 
bits in the address you choose remains unchanged. With ' x' representing the 
unmapped low-order bits (13 for a Sun-3, Sun-3x or Sun-4, 12 for a Sun386i) the 
test address Ox4 0 0 0 is, in binary: 

Sun-3 : 
Sun-3x: 
Sun-4 

Sun386i : 

0000 0000 0000 lOOX XXXX XXXX XXXX 
0000 0000 0000 0000 lOOX XXXX XXXX XXXX 
0000 0000 0000 0000 lOOX XXXX XXXX XXXX 
0000 0000 0000 0000 0100 xxxx xxxx xxxx 

(28 bits) 
(32 bits) 
(32 bits) 
(32 bits) 

Your board may be preconfigured to some address. If it is, then use that address 
unless it conflicts with the address of an already installed device. If it conflicts, 
you have to find an unused physical address at which you can install your device. 
To do so, examine the kernel config file for the system upon which you are work
ing. Tables in the Hardware Context chapter show memory layouts correspond
ing to typical configurations, but if your system has departed at all from the 
norm, you have to consult your kernel's config file (to determine where devices 
have been installed) and the header files for the corresponding device drivers (to 
determine how much space they consume on the bus). 
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When selecting a virtual to physical mapping, it's best if you understand a bit 
about the internals of the Memory Management Unit. The Sun-3, and Sun-4 all 
use the same proprietary MMU architecture. The Sun-3x uses the MMU that is 
on the same chip as the CPU. This MMU works differently than the Sun MMU. 

The following description is about the Sun MMU operation as it pertains to the 
Sun-3 and Sun-4. There is also an example of how to perfonn a mappings using 
sample numbers. The Sun-3x description follows the Sun-3/Sun-4 description 
and includes a page mapping example. 

Up to this point we've only stressed that the MMU maps the top bits of the vir
tual address, leaving the offset bits unchanged. Following is the explanation of 
the mapping process in more detail. 

Some new concepts are necessary to discuss the details of virtual to physical 
memory mapping. 

o The context register is a register specifying which of memory contexts 
should be used when mapping virtual addresses to physical addresses. Sun-
3 Context Registers contain 3 bits, and specify one of eight memory contexts; 
Sun-4/260 Context Registers contain four bits, and specify one of 16 memory 
contexts. Each SunOS process segment ( containing either code, data or 
stack) is kept within a single memory context. 

o Sun-3s and Sun-4s have user and kernel address spaces in the same 
hardware context. That is to say, there is only one virtual address space, 
a portion of which is used by the kernel and the rest by user processes. 
Sun-4 virtual address spaces are divided into two chunks. One of them 
is at the top of the addressable virtual memory space and the other is at 
the bottom. The size of the unused space between these two spaces 
varies with the model - in the Sun-4/260 each of the two virtual 
address spaces is 512 megabytes in size, and the space between them 
consumes 3 Gigabytes. 

o The segment map is used in conjunction with the context register to select 
the page map entry group (PMEG) corresponding to the virtual address 
being mapped. The eight bits in the segment register specify one of a group 
of 256 PMEGs. 

o Within each page map entry group there are 16 page table entries. 

o The page map maps the PMEG returned from the segment mapping with a 
second subfield of the incoming virtual address to exactly specify a single 
page table entry describing the physical page within which the virtual 
address is mapped. 

o The page table entry (PTE) is the final output of the MMU. A PTE specifies 
the physical address of a page, as well as its type (e.g., on-board memory 
space), protection, and the state of its access and modified flags. 
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Sun-3 and Sun-4 Address Consider the following diagram of address mapping on the Sun-3. 
Mapping 
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Note that: 

o The MMU is getting a 28-bit virtual address as its input. 

o The number of high-order bits reported out of the MMU, and thus the size of 
the physical address, is variable. The address size is fixed for any given 
Sun-3 machine, and varies only with the model-there are different kinds 
of Sun-3 machines and they have different physical address sizes. 

The Sun-4 MMU is almost the same: 
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Figure 5-5 Sun-4 MMU 
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As you can see, the Sun-4 MMU is largely identical to the Sun-3 MMU. The 
differences are that: 

o The Sun-4 MMU gets a 32-bit virtual address as its input, as opposed to a 
28-bit address in the Sun-3. The top two bits are immediately shunted off. 
They must be either O O or 11, and are used to specify one of the two 
"chunks" in the virtual address space. (See Selecting a Virtual to Physical 
Mapping above). 

o The number of bits coming off the Context Register is 4 (to specify one of 
16 contexts) on Sun-4/260s and 3 (to specify one of 8 contexts) on Sun-
4/1 lOs. 

o The number of bits coming off the Segment map is 9 for Sun-4/260s and 8 
for Sun-4/1 lOs. 

On both Sun-3 and Sun-4 systems, PTEs are 32-bit numbers with the following 
structure. 
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Table 5-1 

V w s C Type a m Unused (5) Physical Page Number (19) 

I I I 

We will make a "template" bit mask that we can use to construct our standard 
PfEs. One acceptable mask assumes values as follows: 

V (valid) = 1 
w/s (write ok/supervisor only) = 11 
c (don't cache) = 1 
(a/m) accessed/modified= 00 
unused= 00000 

(A one (1) in the don't cache position only disables caching if the type is zero 
(0), since other types of pages are never cached). With the above values, our 
template then looks like this: 

1 1 1 1 Type 0 0 0 0 0 0 0 Physical Page Number (19) 

I I I I I I I 

This gives us a mask of O xF O O O O O O O (if we assume that the type field is O O ). 
Thus, the four masks for the four types of memory are: 

Sun-3/Sun-4 PTE Masks 

Type Description Mask 

0 On Board Memory OxFOOOOOOO 
1 On Board 1/0 Space OxF4000000 
2 vme16d16 OxF8000000 
2 vme24d16 OxF8000000 
2 vme32d16 OxF8000000 
3 vme16d32 OxFCOOOOOO 
3 vme24d32 OxFCOOOOOO 
3 vme32d32 OxFCOOOOOO 

To determine the value to be plugged into the PfE, we must add the appropriate 
mask to the appropriate physical page number, thus giving us the full 32-bit 
number that we need. Here, again, we will give rules instead of details. 

If vme16d16 
or vme24d16 
or vme32d16 

Use Type-2 Template 
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\.. 

If vme16d32 
or vme24d32 
or vme32d32 

Use Type-3 Template 

If vme32d16 
or vme32d32 
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Physical Page Number Physical Address>> 13 

If vme24d16 
or vme24d32 

Physical Page Number= 
(Physical Address +OxFFOOOOOO) >> 13 

If vme16d16 
or vme16d32 

Physical Page Number= 
(Physical Address +OxFFFFOOOO) >> 13 

In the previous CPU board designs, such as the Sun-3 architecture, a discrete 
MMU was designed and implemented to handle Demand Paging (off chip). That 
MMU was implemented mostly in hardware, with a dedicated register for the 
Context and separate high speed RAM for the Segment and Page values. In the 
Sun-3x architecture where the MC68030 is used as the CPU, a fully programm
able Memory Management Unit (MMU) integrated into the silicon (on the 68030 
chip) is used to handle demand paging. A similar MMU has been offered by 
Motorola for some time (the MC6885 l MMU) but was not used by Sun due to 
certain architectural incompatibilities. 

This Memory Management Unit is drastically different in operation from the 
popular discrete version of its processors. Some of the MMU 's most significant 
changes involve how the Translation Tables are initialized, accessed, and 
updated and also the way the Address Translation procedure, or Table Walk, is 
completed. This next discussion presents the process of how the firmware builds, 
initializes, and updates the entries in the MMU Translation Tables, how the 
Table Walk is accomplished, and how the MMU performs Address Translation. 
An example is shown how to use the monitor to map virtual addresses into physi
cal addresses to access devices through the PROM. 

The MMU handles the translation of addresses from virtual to physical using 
translation tables stored at arbitrary locations in memory. The MMU has an 
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The Table Walk 

Address Translation Cache (ATC) that holds recently used virtual to physical 
address translations. When the CPU passes a virtual address to the MMU for 
translation, it first searches the A TC for the corresponding physical address. If 
the requested entry is not in the ATC, the processor searches the translation 
tables in main memory for the infonnation. An A TC access operates in parallel 
with the other on-chip caches, namely the CPU's Instruction Cache and Data 
Cache. In order for the MMU to operate correctly, its internal registers must be 
initialized to a known state. 

The MMU has several internal registers that are initialized to known values 
before the MMU is Enabled (Address Translation Enabled) and during various 
Reset (k2 or power-on) operations. These registers include the CPU Root Pointer 
(CRP), the Supervisor Root Pointer (SRP), and the Translation Control (TC) 
register, all of which are initialized while the MMU is Disabled (Translation Dis
abled). The CRP and SRP are discussed in the Motorola 68030 Manual, but for 
now it is important to say that these registers contain the starting addresses for 
the MMU' s table walk. 

The MMU's principal function is address translation, which involves converting 
a virtual or logical address to a physical address. This process is known as a 
Table Walk. For the Sun-3x architecture a three level MMU has been designed 
and requires that a three level table walk be initiated to perform address transla
tion. This process tenninates when either an INVALID Entry or PAGE Descrip
tor is encountered. The three levels of address translation are referred to as TIA, 
TIB, and PAGE respectively. 

The three level table walk is needed to evenly divide the four gigabyte address
ing range of the MC68030. This could have been accomplished several different 
ways, but a specified design goal was to have the Finnware, the Executive Diag
nostic and the Unix Operating System all use the same Translation Table format. 

The first level of lookup, the TIA table entry, must be able to map in the entire 
four gigabyte addressing range all at once. The largest block of virtual memory 
that is required at any one time is 32 megabytes. By dividing 4 gigabytes by 32 
megabytes we get 128 entries for the first level of address translation. For the 
second level of translation, the TIB entries take each of the 32 megabyte TIA 
entries and divide them by 64. This allows each TIA entry to be accessed as 64 
separate 512 Kbytes (l/2 megabyte) blocks. Each of the 64 'I'IB entries are then 
divided into 64 again which results in 8 Kbyte page sizes. 

It is because of this table traverse that the name Table Walk is used. Each virtual 
address is translated to a physical one by taking parts of the virtual address and 
using them as indexes into the three tables, the resulting output being a Page 
Table Entry (PTE) which detennines the exact physical address. See the table 
below for how the entire virtual address range is divided into 8 Kbyte ranges. 
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First Level 

1 0 - 32M bytes 

2 33 - 64M bytes 

3 65 - 96M bytes 

128 3.68 - 4G bytes 
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Second Level Third Level 

512K bytes 8K bytes 

512K bytes 8K bytes 

The beginning of the table walk starts with a pointer to the location of the MMU 
tables in main memory. The PMMU has two pointers, one that is used by the 
CPU (CPU Root Pointer), and one that is used by the CPU while in supeIVisor 
state (SupeIVisor Root Pointer). For the firmware's use, both the CRP and the 
SRP are initialized to the same value, which means they both point to the base of 
the MMU tables. 

When the MMU is Enabled, the CPU passes virtual addresses to be translated to 
the MMU. If the requested entry is not in the A TC, a table walk of the transla
tion table is initiated. The table walk sequence is described below. 

Step One: The CRP contains the base address of the TIA table in memory. The 
top seven bits of the Virtual Address are used to calculate the index into the TIA 
table. This index is added to the CRP to generate the specific TIA table entry. 
The TIA entry contains the base address of the TIB table for the next step. 

Step Two: The next six bits of the virtual address are used as an index into the 
TIB table. When added to the base address from the TIA table the specific TIB 
table entry is generated. The TIB entry contains the base address of the PAGE 
Table. 

Step Three: The next six bits of the virtual address are used as an index into the 
PAGE table. The base address from the TIB table plus the index result in the 
PAGE Table Entry (PTE). The PTE contains a 32 bit PAGE Descriptor of which 
19 bits are the Page address, 5 are unused, and the remaining 8 are Status bits. 

The Physical address is calculated by taking the top 19 bits from the PTE and the 
lower 13 bits from the Virtual address. These 13 bits are an offset into the physi
cal memory page that is selected from the 19 bits. 

The table walk is completed by passing the physical address back to the CPU. If 
an INVALID descriptor is ever encountered the table walk terminates. 
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32 BIT VIRTUAL ADDRESS 

7 Bits 6 Bits 6 Bits 13 Bits 

TIA Index TIB Index Page Index Physical Address 

TIA 

Root 
...... 
/ 

Ptr 

TIB 

~ TIB Base Addr 
....... 
7 

PTE I Page Address 

31 

I 
31 

A Few Example PTE 
Calculations 

Sun-3 Solution 

\V 
Page Address 

PAGES 

~ Page Base Addr 
........ 
/ 

~ Page Descriptor -

I Not Used lo CI 0 I Miu l~DTDT:< 

13 7 6 5 4 3 2 1 0 

w 
I Lower Physical Address Bits I 
13 0 

Example One: You wish to map a device which you have attached at physical 
Ox280008 onto bus type vme24d16 which will be mapped into virtual 
memory at address O xE O O O O O O. What is the corresponding PTE? 

Since we are mapping the device into vme 2 4 dl 6, we will use 
O xF 8 O O O O O O as the template. Then, following the Sun-3 rules, as given 
above, we add the physical address to O xFF O O O O O O. This yields 
OxFF280008. In binary, this is: 

1111 1111 0010 1000 0000 0000 0000 1000 

Shifting this right by 13 yields: 

XXXX XXXX XXXX Xlll 1111 1001 0100 0000 
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Adding the template, O xF 8 0 0 0 0 O O, we get values for the 13 bits that are 
undefined from the shift. Thus the PTE is: 

1111 1000 0000 0111 1111 1001 0100 0000 

Which is OxF807F940. 

A final note: we've now calculated the PTE that maps the virtual page beginning 
at O xE O O O O O O to the physical page containing O x2 8 0 0 0 8. To get the virtual 
address by which to access the device it's necessary to take the lower 13 bits of 
the physical installation address - the bits that are just passed through the MMU 
- and add them to virtual O xE O O O O O O. The lower 13 bits of physical 
Ox280008 are 0008, and adding them to OxEOOOOOO yields OxE000008, 
the virtual address by which the device can be accessed. 

Our variables are: 

physical address 
virtual address 
bus type 

280008 
EOOOOOO 
vme24d16 

The base address for vme2 4dl 6 for the Sun-3x, which is in Table 2-8 in 
Chapter 2, is Ox 7 e O O O O O O So we add the physical memory address to the vme 
base pointer which gives us a specific physical address. 

vme24d16 
physical 

physical 

7EOOOOOO 
280008 

7E280008 

Then we take off the top 19 bits to mask out just the vme page, which gives us 
the physical page of memory. We then need to logically 'or' in some status bits 
to allow us to write to this page. The value 1 enables the write status. 

physical 7E280008 
and mask 7E280000 

--------
page 7E280000 
or flag 1 

--------
PTE 7E280001 

To use the monitor to perform the mapping, use the 'p' command for displaying 
and changing the Page Table. The syntax is 

p[virtual address] 

where the virtual address is the original virtual memory given in the problem ini
tially. The monitor returns the current PTE and asks you for a new value. The 
newly calculated PTE is input, which modifies the PTE to map to a new physical 
memory location 
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Sun-3 Solution 

monitor cmd 
return value 
new PTE 
exit monitor 

>pEOOOOOO<cr> 
xxxxxxxx 
?7E280001<cr> 

Now every reference to the virtual memory location E O O O O O 8 will be mapped 
to the device. Note that since the original physical address was folded into the 
virtual address and then was masked, we still have the 8 offset at the end of the 
memory reference to index into the physical page of memory to access the dev
ice. 

Example Two: You wish to map physical OxEE48 on bus type vme16d32 on a 
Sun-3. Using virtual address OxEOOOOOO, what is the PTE? 

Since we are mapping the device into vme 16 d3 2, we will use 
0 xFCO O O O O O as the template. Then, following the Sun-3 rules, as given 
above, we add the physical address to OxFFFFOOOO. This yields 
OxFFFFEE4 8. In binary, this is: 

1111 1111 1111 1111 1110 1110 0100 1000 

Shifting this right by 13 yields: 

XXXX XXXX XXXX Xlll 1111 1111 1111 1111 

Adding the template, 0 xFC O O O O O O, we get values for the 13 bits that are 
undefined from the shift. Thus the PTE is: 

1111 1100 0000 0111 1111 1111 1111 1111 

Which is OxFC07FFFF. 

To get the virtual address by which to access the device at physical O xEE 4 8, add 
its lower 13 bits, OxE48, to OxEOOOOOO -this yields OxEOOOE48. 

The Sun-4/110 MMU does not store bits 28-31. For the VME, which is the only 
addressing that use 32 bits of physical addressing on the Sun-4/110, bits 28-31 
are generated by sign extending bit 27. When the PTE is read back, these upper 
bits are always set to zero. This essentially creates a hole in the address space 
that is not addressable. 

When entering page table entries on a Sun-4/110 to test hardware from the prom 
monitor, use a virtual address less than Ox 8 O O O O O. Virtual addresses from 
Ox 8 O O O O O and above are not setup by the prom monitor for use and will result 
in an invalid PMEG. 

If you are mapping the device to vme 16, vme 2 4 or the top half of the vme 3 2 
address space, after entering the PTE the top five bits of the physical page 
number are zero because the Sun-4/110 physical address space is split with 128 
megabytes at the bottom and 128 megabytes at the top. Whenever the physical 
address goes above 128 megabytes, the high bit is sign extended so that the 
address lies within the top 128 megabytes. If you sign extend the high bit into 
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the next five bits you should come up with your previously calculated physical 
page number. 

In this example, instead of using O xE O O O O O O as the starting address, the value 
OxEO O O O has been used successfully. 

Using the same steps above, this is how the solution looks: 

physical EE48 
virtual EOOOOOO 
bus type vme16d32 

vme16d32 7DOOOOOO 
physical EE48 

--------
physical 7D00EE48 

physical 7D00EE48 
and mask 7DOOEOOO 0111 1101 0000 0000 111 

--------
masked page 7D00E000 
or flag 1 

--------
PTE 7D00E001 

This is the new PTE value that can be used in the monitor as shown in the previ
ous example. 

Before you even think about writing any code you should check out your device. 
You must get to know it, finding out early if it has any peculiarities that will 
affect its driver. It may, for example, have addressing and data-bandwidth limi
tations. Or, if it's a bus master, it may not implement the release on request 
bus-arbitration scheme the Sun supports. Know the peculiarities of your device 
early, and then test it to verify that it's working before proceeding further with 
driver development. 

Make sure that the board is set up as specified in the vendor's manual. Device 
characteristics which, in general, have to be set properly before the device can 
successfully be used include: 

o Address and data widths, 

o Interrupt levels, 

o Interrupt vector numbers for VMEbus device, 

o VMEbus address modifiers, 

o The bus grant level for VMEbus devices should be set at 3. 

Then, take down your system and power it off. Plug the device into the card 
cage and attempt to bring the system back up. If you can't boot the system, then 
there's a problem. Perhaps the board isn't really working, or perhaps it's 
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responding to addresses used by other system devices. You must resolve this 
problem before proceeding further. 

Take SunOS down again and attempt to contact the device using the PROM 
monitor. To do so, you will need to set up a PfE on the Sun-3 or Sun-4 which 
maps to the device's physical installation address. Use the procedures given 
above to calculate a PfE, then: 

o Issue the monitor command that puts you into supervisor data state. This 
will be s B for Sun-4 machines and sS for all others. So, if you have a 
Sun-3, give the 

>sS 

command. 

o Calculate, using the procedures given above, the PTE appropriate to the phy
sical address you've chosen. 

o Set the position in the kernel page map that corresponds to your physical 
address to contain the calculated PfE. This will map your chosen physical 
address, thus putting you in contact with your device. You may use the 
monitor's p command to perform this mapping. The p command takes a 
virtual address as its argument, displays the PTE that corresponds to that vir
tual address, and gives you the option of modifying the PTE. For example: 

>pF32000 

selects the page map entry that corresponds to the virtual address of 
O xF 3 2 O O O and displays it. It also displays a '? ', which indicates that you 
may type in a new value to replace the one displayed. (See the appropriate 
PROM Commands chapter of the PROM User's Manual for more details). 
Note that all virtual addresses within a page select the same PTE. 

Having contacted the device from the monitor, try some of the following: 

o Try reading from the device status register(s), if there are any. 

o Try writing to the device control and data registers(s), if there are any. Then 
try reading the data back to see if it got written properly (this assumes, of 
course, that the device allows the reading of these regist~r(s). 

o Try actually getting the device to do something by sending it data. 

o If the device is a controller with separate slave devices, then switch a slave 
on and off and watch for changes in the controller status bits. 

Your goal is to try to actually operate the device, for a moment, from the moni
tor. For example, if you have a line printer, try to print a line with a few charac
ters. Be aware that bit and byte ordering issues are critical in this process. The 
reason you're doing this is to ensure that the device works and that you under
stand the way it works. When you understand the device's peculiarities, you can 
proceed to write a driver for it. 
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When you use the monitor's o, e or l. commands to open a location, the monitor 
reads the present contents of that location and displays them before giving you 
the option to rewrite them. In the best of all possible worlds, this would present 
no problems, but many devices don't respond to reads and writes in as straight
forward afashion as does normal memory. 

For example, the Intel 8251A and the Signetics 2651 use the same externally 
addressable register to access two separate internal mode registers, and they have 
internal state logic that alternates accesses to the external register between the 
two internal registers. So suppose that you want to put something in mode regis
ter 1 of the 8251. You open the external register, the monitor displays its con
tents, and you then do your write. If, being cautious, you then read the external 
register to check that the data you wrote is there, you will find that it's not
because the read will sequence you on to the second register. 

To deal correctly with such devices, it's necessary to use the monitor's "write 
without looking" facility and then read the locations back later to check them. 
You can write without looking with any of the monitor commands that "open" an 
area of memory; all that's necessary is that you enter a value after the 
address argument. For example: 

>l [address] [value] 

This will cause value to be written into address without first reading its 
current contents. For more information on hardware peculiarities and the prob
lems that they can cause for the monitor, the Hardware Peculiarities to Watch 
Out For section of the Hardware Context chapter. 

To use the 1/0 cache for devices that process buffers, such as disk and tape 
drivers, the driver needs to mark the buffer with the B _ IOCACHE flag in the stra
tegy routine and tum off this flag in the interrupt routine when the 1/0 completes. 
The buffer must be properly aligned, which is on a 16 byte boundary. 

To use the cache with ethemet-like devices, set the IOCACHE bit in the page 
tables and flush the 1/0 cache after 1/0 completes. Cached 1/0 is only valid for 
16 byte aligned transfers of a multiple of 16 bytes. On future machines, there 
may be 32 byte-aligned 1/0 caches. 

The device driver doesn't have to tell the 1/0 cache what physical address range 
matches with a particular DVMA address range. The kernel routines used to 
allocate and map in DVMA space already handle the physical to virtual map
pings. The 1/0 cache is not concerned about these mappings because it does not 
see the mechanics of it. The rnb routines set up the 1/0 mapper entries that 
translate DVMA addresses to physical addresses. 
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5.3. Installation Options 
for Memory-Mapped 
Devices 

Memory-Mapped Device 
Drivers 

Memory-mapped devices are the simplest types of devices to write drivers for. 
Frequently, however, their essential simplicity isn't obvious from a quick glance 
at their source code. This is because many memory-mapped devices are frame 
buffers, and frame-buffer drivers must set up and manage the low-level interface 
for the Sun window system as well as the standard device interface. Conse
quently, they tend to be littered with declarations and manipulations related to 
the "pixrect" (pixel rectangle) system. See the Pixrect Reference Manual for 
more details. 

Memory-mapped devices are most frequently installed into Sun systems with 
simple drivers that map them into user address space (there are sometimes alter
natives to such drivers, as you will see below). Such memory-mapped drivers 
don't really do much. Obviously, xxprobe () and .xxmmap () must exist, for 
the kernel must be able to check the device installation and perform the actual 
device mapping. And, in addition, xxintr () must be real if the device is inter
rupt driven. But xxopen () and xxclose () are usually stubs, and xxread () 
and xxwri te () can be calls to nulldev. 

Keep in mind that the major purpose of a memory-mapped driver is to support 
the rrnna p ( ) system call. This is very important because user processes which 
call window code must first map the frame buffer into their address space. They 
do so with the rrnna p ( ) system call, which is translated by the kernel into a 
series of calls to the driver's rrnnap routine. Each of these calls returns page 
table entry information which the kernel needs to map a single page (the next 
page) of frame-buffer memory into a virtual address space. Here's some very 
simple driver .xxmma p ( ) code. 
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, 

/*ARGSUSED* I 
cgonernmap(dev,off,prot) 

dev_t dev; 
off_t off; 
int prot; 
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return (fbrnmap(dev,off,prot,NCGONE,cgoneinfo,CGlSIZE)); 

/*ARGSUSED* I 
int fbrnmap(dev, off, prot, numdevs, rnb_devs, size) 

dev_t dev; 
off_t off; 
int prot, numdevs; 
struct rnb device **rnb_devs; 
int size; 

int kpfnum; 

if ((u_int) off>= size) 
return -1; 

kpfnum = 
hat_getkpfnum(rnb_devs[minor(dev)]->md_addr + off); 

return kpfnum; 

dev is, of course, the device major and minor number, and off is the offset into 
the frame buffer (passed down from the user's mmap () system call). prot is also 
passed down from the user's call, but it is not currently used. As you can see, 
there's a bit of shuffling around and then a call to hat_getkpfnum, which 
returns a Page Frame Number which .x.xrmnap () is expected to return. 

Note that rnb dev->md addr is the address of the frame buffer from the Main - -
Bus device structure. This is the device installation address as given in the ker-
nel config file. The offset is checked to be sure the user isn't mapping beyond 
the end of the frame buffer. 

Under a restricted set of circumstances, it's possible to avoid writing a device 
driver altogether by using the mmap () system call to overlay the device's regis
ters and memory onto user memory. Having done this, you can read and write 
the registers - as if they were normal user memory - from a user program. 

What this really amounts to is piggybacking the new device onto an another, sys
tem standard, virtual memory device (and its driver). The mmap () routine of a 
system virtual memory device is then used to do the user-device mapping, and 
the "installation" is accomplished without the development of a driver specific to 
the user device. Instead, a user level program is written, one that calls the 
mma p ( ) system call. 
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The restrictions on this shortcut are, however, fairly severe. 

o The device must not require any special handling of the type that would go 
into xxioctl (). 

o The device (including all its control registers) must work with user function 
codes, since that's what it will get when mapped into and then accessed from 
user space. To be able to access a board from a user mmap program, the 
address modifier on the board must be set to non-privileged data access, or 
user data space. This is so that the board will respond to user function codes 
in the user data space, such as address modifiers OxO 9, Ox2 9, and Ox3 9 for 
vme32, 16, and 24 respectively. 

NOTE MC680XO processors, SPARC processors and the Intel 80386 all run in either 
'user' or 'supervisor' state. Many devices, in turn, restrict certain of their 
operations, and will only perform them when the processor is in supervisor state. 
The Sun CPU is in supervisor state only when executing kernel code. This means 
that device drivers, which are part of the kernel, can issue device commands 
which are not available from user processes. Also note that, when the CPU is in 
supervisor state, as it is when driver code is executing, the device will receive 
different VMEbus address modifier codes than when the CPU is in user state. 
For details about these codes see the VMEbus specification. 

o The device must not require any other sort of special handling - it cannot, 
for example, be multiplexed, interrupt driven, or do DMA. 

o Finally, there are security problems associated with this sort of installation. 
Since the system virtual-memory devices are normally owned by and res
tricted to the superuser, your programs will either have to change their per
missions to allow normal users to access them, or will have to run with 
superuser privileges. The former strategy is usually not acceptable in the 
long run, because it creates a gaping hole in the security of the system. And 
it's far from clear that the second alternative is desirable either. 

The virtual-memory devices of interest here are those that support mapping over 
the entire range of a virtual address space. They are: 

Table 5-2 Virtual Memory Devices 

Machine Type 

VMEbus (All Sun's) 
VMEbus (All Sun's) 
VMEbus (Sun-3 and Sun-4) 
VMEbus (Sun-3/Sun-3x/Sun-4) 
VMEbus (Sun-3/Sun-3x/Sun-4) 
VMEbus (Sun-3/Sun-3x/Sun-4) 
A Thus (Sun386i only) 

Memory Device Name 

vme16d16 
vme24d16 
vme32d16 
vme16d32 
vme24d32 
vme32d32 
atmem 

In addition, there are memory pseudo-devices that support access to the on-board 
devices that users are allowed to access. These are/ dev / fb, / dev /mem and 
/ dev /kmem (See the mem ( 4) manual page for details). 
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/ dev / fb is a memory device which, on any given system, is set up to address 
the local frame-buffer device. It can be used as if it were a system memory dev
ice - on any given system, / dev / fb can be mmap () 'ed into user memory and 
then written to, with the effect of writing the local frame buffer memory. 

To use mmap () with one of the system memory devices, you must do three 
things: 

o Open the device. 

o Calculate the offset which you will need to call mma p ( ) . This offset is 
merely the device address on the appropriate system memory device rounded 
to a page boundary. That is to say that you get the offset from the device 
manual and/or the switches on the device itself. 

o Call mmap () to allocate virtual space and map in the physical bus address 
of your device, which you must know. (See the Hardware Context chapter 
for a discussion on how to pick a good physical address from the infonna
tion in the system config file). 

The following example program uses / dev / fb rather than one of the virtual 
memory devices. It makes a good example because it maps the system frame 
buffer into user memory so that it can then be written from a user program. It 
uses mmap () to set things up, but doesn't bother with calling munmap (), 
because unmapping occurs automatically when the memory device is closed. 
This close occurs implicitly when the program ceases execution. (The machine 
segment size is 128K for the Sun-3; 256K for the Sun-4; and 4Mbytes for the 
Sun386i. Areas greater than the machine segment size should be mapped only 
with special care. The Sun-3x has no segment size so any input value will work. 
For details, see the discussion of mmap () in the User Support Routines appen
dix). 

Once the device has been mapped into user space it can be treated as a piece of 
local user memory. (Remember that memory accesses perfonned by way of this 
mechanism will be reflected - at the device level - as non-privileged (user) 
accesses. This is because mmap () accesses inherit the privilege of the process 
that calls mmap (). Thus, if memory is mapped by a driver, subsequent accesses 
to it will have the standard supervisor data access privilege, but if it's called from 
a user process, as described here, subsequent accesses will be non-privileged. 
Attempts to access supervisor-only device registers without supervisor privilege 
might produce a bus error, i.e., they're inaccessible from a user program, and 
thus a kernel level driver must be written to manipulate them. The device will 
also receive different address modifier codes when accessed from a user process 
than when accessed via a device driver). 

#include <stdio.h> 
#include <sys/file.h> 
#include <sys/mman.h> 
#include <sys/types.h> 

I* Width and Height of Frame Buffer in Bits * I 
#define WIDTH 1152 
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#define HEIGHT 900 

main () 
{ 

int fd; 
off_t offset; 
unsigned len; 
char *addr; 

I* Open the frame-buffer device * I 
if ( (fd = open("/dev/fb",O_RDWR)) < 0) 

syserr("open"); 

I* Compute total number of bytes * I 
len = ((WIDTH* HEIGHT)/8); 

I* 
* offset must be page aligned. I dev / fb 
* is already aligned with frame-buff er memory 
*/ 

offset= (off_t)O; 

I* Map device memory to user space * I 
addr = mmap((caddr_t)O, len, PROT_READIPROT_WRITE, 

MAP_SHARED, fd, offset); 
if (addr == (caddr_t)-1) 

syserr("mmap failed"); 

writeFB (addr); 
exit(O); 

writeFB (addr) /* Write to frame buffer * I 
char *addr; 

char color; 
int i,j; 

color= OxFF; 
for (i = 0; i < HEIGHT; i++) 

color= -color; 
for (j = 0; j < WIDTH/8; j++) 

*addr++ = color; 

syserr (msg) /* print system call error message and terminate * I 
char *msg; 

extern int errno, sys_nerr; 
extern char *sys_errlist[]; 

fprintf(stderr,"ERROR: %s (%d", msg, errno); 
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if (errno > 0 && errno < sys_nerr) 
fprintf(stderr, "; %s)\n", sys_errlist[errno]); 

else 
fprintf(stderr,")\n"); 

exit(l); 

NOTE This example uses the special memory device I dev / fb, since this device is 
always set up to address the frame buff er memory. 

Direct Opening of Memory 
Devices 

So, despite the plethora of limitations on the sorts of devices that can be installed 
by way of mapping them into user space, it's quite an easy thing to do. If your 
device characteristics are such that this is an option, you may well wish to take it. 
And even if such an installation isn't an attractive long-tenn option (for example, 
because of unacceptable security problems) it may still be attractive as a short
tenn alternative to driver development. Even in environments where security 
considerations make it unacceptable in the long term, it can allow you to get your 
device up and running very quickly. Sometimes this counts for a lot. 

It should be noted, for the purpose of completeness, that there's another approach 
to avoiding driver development, one that's even easier than the use of mmap () 
described here, and even more limited. That is, it's possible to simply open the 
virtual memory device that contains your board, to seek to the location of its 
registers, and then to read and write those registers as if they were regular 
memory. 

This approach has most of the same problems as does the use ofmmap (), and is 
notable mainly because, with it, the device receives supervisor function codes. It 
does, however, introduce new problems. It doesn't give you the same degree of 
control as does mrnap(), and you often need that control when dealing with dev
ices. When you use mrnap(), the device actually becomes part of your user 
memory space, and it's left to the compiler to generate exactly the 1/0 accesses 
which you implicitly specify in your structure and variable declarations. You 
can always access exactly what you want, and the accesses occur directly as 
move byte and move word operations. Thus they are very fast. 

When, however, you simply open a system memory device as a file and then read 
and write to it, your communication with your board is mediated by the 1/0 sys
tem. The 1/0 systems will always try to do the "right thing" (if you request 1/0 
at an odd address or for an odd number of bytes it will perfonn byte access as 
appropriate; otherwise it will use short integers), but it still doesn't give you the 
kind of control that can be had using mrna p(). Furthennore, 1/0 operations 
involve lots of code, and take hundreds of times as long as direct references to 
mmap () 'ed references, which proceed by way of the MMU and use· low-level 
store and move instructions to directly access device registers and memory as 
physical memory. 

So the bottom line is that, unless you need to access a device only a few times, or 
if you need to receive supervisor function codes (and the corresponding VMEbus 
address-modifier codes) and performance isn't critical, you can do your 
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installation by opening a system memory device and then seeking to your device 
registers and memory space. Otheiwise, use mmap ( ) or write a driver. If you 
do decide to use the open () / ls eek () method, do so with low-level 1/0 
rather than with the standard 1/0 library. The standard 1/0 library implements a 
buffered 1/0 scheme which will add considerably to your problems. 

The following user program is similar to the example above, in that it writes the 
same pattern to the memory of a frame buffer. This time, though, the write is 
done by way of the 1/0 system rather than by using mma p(), and the frame buffer 
is taken to be installed at OFFSET (whatever the device physical installation 
address is) in the vme2 4dl 6 memory space. 

NOTE Since all Sun VMEbus machines have a built-in, on-boardframe buffer, this 
example is only meaningful for color frame bujf ers. 

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/file.h> 

void syserr(); 
long lseek(); 

I* Width and Height of Frame Buffer in Bits * I 
#define WIDTH 1152 
#define HEIGHT 900 

main () 
{ 

int fd; 

I* Open the system memory device containing the frame buffer * I 
if ((fd = open("/dev/vme24",0_RDWR)) < 0) 

syserr("open"); 

I* Seek to the frame buffer memory * I 
if (lseek(fd, (long)OFFSET, L_SET) -lL) 

syserr("lseek"); 

writeFB (fd); 
exit(O); 

writeFB (fd) /* Write to frame buffer * I 
int fd; 

char color; 
int i,j; 

color= OxFF; 
for (i = 0; i < HEIGHT; i++) { 
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color= -color; 
for (j = 0; j < WIDTH/8; j++) { 

if (write(fd, &color, 1) == -1) 
syserr("write"); 

As described above, it's a good idea to begin debugging by using the monitor to 
check that the device has been installed at the intended address, and that it works, 
before proceeding to debug your device driver. This allows you to avoid debug
ging the device simultaneously with the driver, an experience that you'd like to 
avoid for as long as possible. Alternatively, if you're confident in both your dev
ice and the correctness of your installation, you can simply make a new kernel, 
boot it and proceed with debugging. In this case you should put some 
print£ () messages- see below-into the xxprobe () routine. Then you 
can at least see the device get contacted and initialized. 

Debugging drivers is significantly more difficult than debugging regular user pro
grams, for a number of reasons: 

o In the first place, device drivers are part of the system kernel. This means 
that the system is not protected from their errors. Addressing errors, for 
example, will frequently trip hardware traps and crash the system. 

o As mentioned above, there's the possibility that the device hardware will be 
buggy. For this reason, you can't really trust your environment in the same 
way as you can when writing a user program on a mature computer system. 

o Some devices behave in rather peculiar ways. (See A Warning about Moni
tor Usage, above). 

o Finally, the debugging environment in the kernel is thinner than it is in user 
space. There is a kernel debugger, kadb, and this is a big step towards mak
ing life easier for driver developers. Still, life remains more difficult when 
debugging in kernel space. 

It's possible to prototype drivers in user address space by using techniques 
similar to those described in the Mapping Devices Without Device Drivers 
section of this chapter. The same constraints given there apply to prototyp
ing. In particular, it's not possible to run an interrupt routine, or to probe 
for non-existent devices without generating bus errors from prototype 
drivers in user space. If the device generates no interrupts, and if it doesn't 
do DMA, the entire driver might be able to run in user space. 

For all these reasons, you should give extra care to desk-checking your code, and 
check a reference manual when not absolutely sure of the meaning of a given 
construction. Don't take chances. 

Also, make changes incrementally. Don't try to save time by making many 
changes at once. You will save time in the long run if you take the time to add 
and test a few parts at a time. Keep your feet on solid ground. 
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Use trace output from pr intf(), as described below. Drivers can act in surpris
ing ways, and the best way to proceed is by making the flow of operations highly 
visible. 

NOTE On all Sun systems, the loadable drivers feature makes driver development much 
easier because the code-compile-reboot-test cycle is reduced to code-compile
load-test. 

Debugging with print£ () With the availability of kadb, the kernel debugger, the importance of 

The window system should not be 
up when you use printf () to 
debug a driver because its output 
will go to the console window. On 
the Sun386i system, it is best to set 
the global variable new log to 0. 

print f ( ) in the debugging of device drivers has been significantly reduced. 
Still, even with kadb available, pr intf () statements remain useful as means 
of providing synchronous tracing of overall driver flow and structure. kadb can 
be made to provide a similar sort of tracing (by tying print commands to strategi
cally chosen breakpoints) but this won't altogether eliminate the print£ () 
statement. The print f ( ) has long found application in driver debugging, and, 
as a matter of taste and experience, some programmers will continue to use it. 
For this reason, we will discuss its use in some detail. 

The kernel print f ( ) sends its message directly to the system console, without 
going through the tty driver. As a consequence, the printing is uninterruptible
the characters aren't buffered. Furthennore, pr intf () runs at high priority, 
and no other kernel or user process activity takes place while its output is being 
produced. print£ () thus radically limits overall system perfonnance (though 
this is usually ok while device drivers are being debugged). 

There is a second kernel print statement, uprintf(). uprintf(), however, is 
of little use to driver developers. It attempts to print to the current user tty as 
identified in the user structure, and prints to the console only if there's no 
current user tty (at which point it becomes identical to pr intf()). upr intf () 
cannot be called from lower-half routines, which run in interrupt context and can
not make any assumptions about the user structure (where uprintf () looks 
to detennine the current user tty). uprintf () is most useful for production 
drivers, like tape drivers that encounter media errors, which want to report errors 
not to a programmer but to the user. 

There are occasions in which the use o/printf () (or uprintf()) statements 
will change the behavior of your driver. print£ () statements,for example, 
can affect the timing of operations in the driver being tested as well as in other 
drivers. The output may be so slow relative to other device operations that inter
rupts are lost and systemfailures are introduced; thus, it is frequently impossible 
to synchronously trace a device interrupt routine. Driver code may begin to fail 
only when printf () s are introduced, or, even worse, only when print£ () s 
are disabled. Likewise adding print£ () statements may make your driver 
begin to work properly when bugs are actually still existent, due to alterations of 
the system timing. If you're debugging a tty driver, you may even/ace a situation 
where print£ () -based tracing generates new calls to the driver being 
debugged. Thus, there are situations in which it cannot be used. In such situa
tions, you should use kadb or the techniques suggested below in the section on 
Asynchronous Tracing. 
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The best way to use print f ( ) statements for tracing driver execution is by set
ting things up so that you can toggle printing by using the kernel debugger, 
kad.b (see below) to set and reset print-control variables. Doing so is very sim
ple. At the top of the driver source file, include statements like: 

Hfdef XXDEBUG 
int xxdebug = 0; 
*define XXDPRINT if (xxdebug > 0) printf 
*endif 

(It's important that the variables like xxdebug be global, so that you can later 
access them freely from the debugger - remember that all drivers are part of one 
program, the kernel, and name your print-control variables so as to avoid naming 
conflicts). 

Then, instead of calling pr int f () inside the driver routines, call XXDPRINT. 

Each call should be in the fonn: 

#ifdef XXDEBUG 
XXDPRINT("driver name ... ", ... ); 
#endif 

which will only call pr int f () if XXDEBUG is defined and xx debug is set to a 
value greater than 0. 

Make sure that each call to XXDPRINT identifies the driver, for it's possible that 
you, or some other programmer, will want to see debugging output from several 
drivers at once. And leave the debugging code in for a while after you're 
finished - bugs may surface later. 

Having set things up like this, you can tum the pr intf () 'son or off at any 
time by using kadb to set, reset or change the print-control variable xxdebug. 
Or you can use adb if you wish, running it at user level in a separate window: 

example adb -w /vmunix /dev/mem 

(ad.b won't allow you to set breakpoints in the kernel, but it will allow you to set 
and unset variables-you can change the value of xxdebug, or even reset a 
variable which has caused your driver to hang). Remember that you' re in the 
kernel so BE CAREFUL. 

Incidentally, / dev /kmem represents the kernel virtual address space, which is 
why it's used here. adb -k /vmunix / dev /mem, in contrast, generates a 
view of the physical address space, because / de v / mem represents the physical 
memory. This latter command is useful for examining core files. 
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Event-Triggered Printing 

Good places to put printf () statements include: 

o driver routine entry points 

o before critical subroutine calls 

o upon reading status information from the device 

o before writing of commands or data to the device 

o at intermediate points in complex routines 

o at routine exit points 

Note again that you don't have to restrict yourself to a single xxdebug variable, 
or to binary tests that check to see if a variable is on or off. You can use as many 
variables, and as many values for each variable, as necessary to reflect the func
tional divisions most appropriate to your driver. It can also be useful to send cer
tain trace statements directly to the user tty (by calling uprintf()) while the 
rest use pr intf () and go to the console. 

In the above discussion, the xxdebug variable was initialized by the compiler, 
and toggled with a debugger. However, it's just as easy to have the driver rou
tines themselves set a trigger variable under pre-chosen conditions. 

For example, if you wanted to enable tracing after a given condition had 
occurred, you could declare xxdebug, just as was shown above, but define 
XXDPRINT somewhat differently: 

=#=ifdef XXDEBUG 
int xxdebug = 0; 
=#=define XXDPRINT(v,msg,al,a2) \ 

if (xxdebug > (v)) printf(msg,al,a2); 
=#=endif 

and then, in the code that checks for the condition: 
, 

=#=ifdef XXDEBUG 
if (condition) xxdebug 1; 
=#=endif 

Then to call XXDPRINT: 
, 

=#=ifdef XXDEBUG 
XXDPRINT(O,"driver name ... \n",a,b); 
=#=endif 

One major disadvantage of using the kernel printf () is that its output doesn't 
go through a device driver, and thus can't be paused with Control-Sor redirected 
to a file. It's possible, then, that printf () will overwhelm you with output. 
There are a number of things that you can do if you run into this problem: 
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o If you haven't used multivalued print-control variables, then do so. This 
gives you more control than you have with simple on/off print control, and 
will allow you to reduce the amount of output to trace noise. 

o You can use a debugger to set the global variable noprintf. This will 
keep printf () 's output from being sent to the console, but that output 
will still go to a buffer where kernel error messages are kept before being 
transferred to /var/ adrn/ mess ages. You can examine the message 
buffer at your leisure, in one of two different ways: 

o From a user window, you can use drne s g. 

o From kadb (or adb on /dev/kmem) you can type msgbuf+lO/s. 

o It's also possible to reconfigure your system so that it uses a hardcopy tenni
nal as its console over a RS-232 line. Then, you won't lose any of the 
printf () output. 

o Best of all, you can get another machine and connect it to your machine over 
a RS-232 line. Having done so, use tip to open a window on the second 
machine as the console of the test machine. You can then use tip's record 
feature (see the tip man page) to make a record of all the stuff that 
printf () is sending to the test machine's console. 

As mentioned above, there are occasions when timing problems forbid the use of 
the printf statement. In these cases, it's a good idea to give up any attachment 
that you might have to printf () statements and use kadb. 

Or, if you prefer, it's possible to deal with timing problems by using kadb to 
patch the noprintf variable, and then to check the message buffer to see 
what's going on. Doing so: 

o allows you to continue using the debugging code that you installed before 
encountering the timing problem, and 

o presents you with a sequential list of the events in your driver, a list spelled 
out in English phrases and including interrupt-level events. 

Or, you can simply use kadb for everything. 

kadb is an interactive debugger similar in operation to adb. kadb differs in 
several key respects from adb. It runs as a standalone program under the PROM 
monitor, rather than as a user process in user address space. And it allows you to 
set breakpoints and single step in the kernel. 

Thus, running a kernel under kadb is significantly different than running it 
under adb -k. The k option to adb merely makes it simulate the kernel 
memory mappings while kadb actually runs in the kernel address space. And 
unlike adb, which runs at user level and as a separate process from the process 
being debugged, kadb runs in system space as a coprocess. It shares not only 
the kernel address space but its CPU supervisor mode as well. 

kadb, for all intents and purposes, is a version of adb. It has the same com
mand syntax and almost the same command set. Thus, you can see the kadb and 
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S.S. Device Driver Error 
Handling 

adb manual pages, as well as Debugging Tools for the Sun Workstation, for 
more details on its use. Note, however, the following points of special interest to 
driver developers: 

o All interrupts are disabled while interacting with kadb (except non
maskable interrupts). Thus, when using kadb to examine memory, the ker
nel remains stable. However, while single stepped instructions are being 
executed, the actual standing priority of the kernel is temporarily restored, 
and interrupts can get dispatched, run and return. You won't notice unless 
you have a break point set in the interrupt routine, which works just fine. 

o kadb is installed so that, when a program is being run under it, an abort 
sequence (Ll-A) will transfer control not to the PROM monitor but to kadb 
itself. Once in kadb, you can abort again and be transferred to the monitor. 
The transfer is direct and immediate, so you can use the monitor to examine 
control spaces (e.g. page and segment maps) which are not accessible from 
kadb. The monitor c command will return you to kadb. 

o kadb runs in the same virtual memory space as the kernel itself, and with 
the CPU in supervisor mode. This means that kadb uses the kernel memory 
maps when calculating virtual addresses, and that it can directly examine 
kernel structures. This is in contrast to the situation with adb -k, where 
software copies of the page table entries are used to map virtual addresses to 
physical pages. 

o kadb's memory view is almost the same as that resulting from adb 
/vmunix / dev /mem. In other ways, however, kadb is much different. 
To give just one example: on Sun-3 and Sun-3x machines, where users and 
supervisors share the virtual address space, kadb allows the user to examine 
the user virtual address space (this is not true with adb - k). 

o Finally, be aware that kadb - as a consequence of the way that adb works 
- always does 32-bit memory reads. Even if you tell kadb to read a byte it 
will read a long. This leads to a lack of control that can cause problems 
when reading device registers. (This problem does not exist on the Sun386i. 
On the Sun386i, when kadb is told to read a byte, it does. Within kadb, 
the B command is used to read a single byte and the v command to write 
one). 

o Sometimes a kernel which will boot find by itself will not boot under kadb 
because it is too large to be loaded along with kadb. 

There are various types of errors: "expected" errors like those generated by 
xxprobe () routines, transient errors in operations that can reasonably be 
retried, fatal errors that require controlled shutdowns, and others. The kinds of 
errors that you will face depends upon the kinds of drivers that you write and the 
peculiarities of your devices; few generalizations can usefully be made. 

To further complicate matters, the detection and treatment of errors varies greatly 
from device to device. You should begin by carefully reading your device 
specification manual to determine the error indications that can arise and the 
responses that should be made when they do. Most devices have at least an error 
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bit in the controVstatus register, and usually more detailed error information is 
available. Ideally, you should understand all potential errors, avoid those that 
you can and recover from the rest. This ideal isn't always achievable, but try not 
to leave any obvious holes. If you do nothing else, check/or device errors and 
use the kernel printf () function to report them to the system console. 

There are various error reporting and management mechanisms available to the 
driver developer. Most of them have already been mentioned as they've become 
relevant; here they are collected and summarized: 

It's difficult to generalize about error-recovery mechanisms, for they are largely 
device specific. It's worth noting, however, that: 

o Some errors are worth retrying and some aren't; the matter is entirely device 
specific. 

o Error-recovery routines should be able to run at the interrupt level. This is 
because errors can occur either synchronously or asynchronously with 
respect to the dispatch of device commands, and, therefore, recovery rou
tines must be callable from interrupt routines. 

o If you do implement error recovery logic, you must do so consistently. The 
data structure that contains retry-status information must be global, and must 
be protected by critical sections. Error-recovery routines, like interrupt rou
tines in general, must take special pains to protect data-structure integrity; 
indeed, they must restore such integrity upon encountering errors they can't 
recover from. 

There are three mechanisms by which driver routines can report errors up to their 
calling routines. The first, of course, is by way of the values that the driver rou
tines return to their callers. The second, and most important, is the error
reporting mechanism based upon the buffer-header. This is the only mechanism 
that can be used when returning errors from xxstrategy (), xxstart (), and 
xxintr () . (See the discussion of xxintr () error reporting in the Swnmary of 
Device Driver Routines chapter. Finally, it is possible to directly set the global 
error register, u. u_error, from routines in the top half of the driver. 

It is sometimes desirable to have a driver send a software interrupt to the process 
or processes. It's possible, for example, that a device will fail in an unrecover
able fashion - in this case it's perhaps a good idea to signal the user processes, 
rather than merely returning an extraordinary error code. It's also possible 
(though rare) for a driver to encounter serious errors from which it can recover by 
restarting the device - user processes may also need to be notified in this case. 
The kernel psignal () and gsignal () routines can signal either a single 
process or all the processes in a given process group. 
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Error Logging 

Kernel Panics 

5.6. System Upgrades 

When you use the kernel print£ () statement to report errors to the console, 
those errors are also placed into a system error-message buffer accessible to the 
dme s g daemon. Note that the message buffer is small, and that if a lot of entries 
are being written into it, some of them will get lost before being transferred into 
/var/adm/messages. 

The most unequivocal way of dealing with an error is to panic when you get it. 
The panic () routine is provided to help you do so in a somewhat controlled 
fashion- panic () is called only on unresolvable fatal errors. It prints 
panic: mesg on the console, and then reboots. (Or, if you're running under 
the debugger, it transfers control to kadb). panic () also keeps track of 
whether it's already been called, and avoids attempts to sync the disks (by flush
ing all pending write buffers) if it has, since this can lead to recursive panics. 

The final production version of a driver should call panic () only when 
"impossible" situations are encountered; lesser errors should be recovered from. 
During debugging, though, panic () can be used to implement a passable assert 
mechanism. 

Hfdef XXDEBUG 
if (inconsistent condition) 

panic ( "Assertion Failed: ... ") ; 
:#=endif 

(It's possible to write a fancier assert mechanism, for example by using the 
ASSERT macro which calls an assert () routine which prints error context 
information and then calls panic ( ) . 

Finally, note that in cases where it's very important to halt the system immedi
ately after detecting an inconsistent condition, kadb can be used. The driver 
code can test for the inconsistent condition, and then set a debugging variable: 

[

if (inconsistent condition) 
. junk= l; 

kadb can then be used to set a breakpoint at the machine instruction generated 
from the assignmentto junk. 

System upgrades generally have minimal effects on user-written device drivers. 
The changes that are necessary are rare and release specific. 

In other cases, changes are optional. When VMEbus machines were introduced, 
for example, drivers had to be adapted to run on them; however, it was possible 
to upgrade Multibus machines without rewriting user-written drivers. 

In any case, any release upgrades that imply changes- either optional or man
datory - to user-written device drivers will be documented in the Sun0S 4.1 
Release Notes for this release. 

J 
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All Sun machines support loadable drivers in SunOS 4.1. This feature allows 
you to add a device driver to a running system without rebooting the system or 
rebuilding the kernel. The loadable drivers feature reduces time spent on driver 
development, and makes it easier for users to install drivers from other vendors. 

This section explains how to convert a non-loadable driver to be a loadable 
driver. 

Conversion of a non-loadable driver to a loadable driver requires an initialization 
or "wrapper" module to be written. The module z zini t. c below is an exam
ple of a wrapper module that contains the same kind of information ordinarily 
provided by a config file and by the linker. Almost all wrappers are identical to 
the example below. Usually, only the actual structure initialization values are 
different. 

The following module is a typical example of an initialization routine for a driver 
named z z that has one controller and one device on that controller. 

#include <sys/types.h> 
#include <sys/conf.h> 
#include <sys/buf.h> 
#include <sys/param.h> 
#include <sys/errno.h> 
#include <sundev/mbvar.h> 
#include <sun/autoconf.h> 
#include <sun/vddrv.h> 

extern zzopen(), nulldev(), zzstrategy(), zzdump(); 
extern zzsize(), zzread(), zzwrite(), zzioctl(); 
extern zzint(), nodev(), seltrue(); 

extern struct mb driver zzcdriver; I* defined in driver * I 

!* 
* Driver block device entry points (normally in <sun/ conf. c>) 
*I 
struct bdevsw zzbdev = { 

zzopen, nulldev, zzstrategy, zzdump, zzsize, O 
} ; 

I* 
* Driver character device entry points (normally in <sun/ conf. c>) 
*I 
struct cdevsw zzcdev = { 

} ; 

I* 

zzopen, nulldev, zzread, zzwrite, zzioctl, nodev, 
nulldev, seltrue, 0 

* Controller structure (normally in ioconf. c) (see <sundev /mbvar. h>) 
*I 
struct mb_ctlr zzcctlr[] = { 

&zzcdriver, O, O, (caddr_t) OxOOOOlOOO, 2, 6, 
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\. 

SP_ATMEM, 0 
} ; 

I* 
* Device structure (normally in ioconf. c) (see <sundev /mbvar. h>) 
*I 
struct mb_device zzcdevice[] = { 

&zzcdriver, O, O, O, (caddr_t) OxOOOOOOOO, O, O, OxO, 
O, OxO 

} ; 

I* 
* The following structure is defined in <sun/vddrv. h> 
* 
* If the number of controllers is 0, then the address of the 
* controller structure array must be NULL. Similarly, if the number 
* of devices is 0, then the address of the device structure array 
* must be NULL. The bdevsw or cdevsw entries can be NULL if there 
* is no block or character device for the driver. 
*I 
struct vdldrv vd 

VDMAGIC_DRV, 
"zzdrv", 
zzcctlr, 
&zzcdriver, 
zzcdevice, 
1, 

} ; 

I* 

1, 
&zzbdev, 
&zzcdev, 
o, 
0, 

{ 

I* Type of module. This one is a driver.* I 
I* Name of the module.* I 
I* Address of the mb _ ctlr structure array * I 
I* Address of the mb _ driver structure * I 
I* Address of the mb _ device structure array * I 
I* Number of controllers * I 
I* Number of devices * I 
I* Address of the bdevsw entry * I 
I* Address of the cdevsw entry * I 
/* Block device number. 0 means let system choose.* I 
I* Char. device number. 0 means let system choose.* I 

* This is the driver entry point routine. The name of the default entry point 
* is xxxinit. It can be changed by using the "-entry" command to modload. 
* 
* inputs: function code -VDLOAD, VDUNLOAD, orVDSTAT. 

* pointer to kernel vddrv structure for this module. 
* pointer to appropriate vdi.octl structure for this function. 
* pointer to vdstat structure (for VDSTAT only) 
* 
* return: Ofor success. VDLOADfunction must set vdp->vdd_vdtab. 
* non-zero error code (from errno.h) if error. 
* 
*I 

xxxinit(function_code, vdp, vdi, vds) 
unsigned int function_code; 
struct vddrv *vdp; 
addr t vdi; 
struct vdstat *vds; 
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switch (function_code) 
case VDLOAD: 

vdp->vdd_vdtab 
return (0); 

case VDUNLOAD: 

(struct vdlinkage *)&vd; 

return (unload(vdp, vdi)); 
case VDSTAT: 

return (0); 
default: 

return (EIO); 

static unload(vdp, vdi) 
struct vddrv *vdp; 
struct vdioctl unload *vdi; 

extern struct buf zztab; 

struct buf *dp; 

dp = &zztab; 
if (dp->b_actf) 

return ( -1) ; / * The driver still has an active request. * I 

I* The driver can do any device shutdown stuff that it needs to do * I 

return(O); 

Your driver routines can be placed in the wrapper module if you like. If your 
driver is big, it is more appropriate to break it into several modules. 

If you decide to place your driver in the wrapper module, then the driver can be 
compiled with the following command line: 

example# cc -c -0 -DKERNEL -D[arch] [options] zzinit.c 

where [ arch J is the specific architecture that you are compiling for. Values 
that will nonnally be here are -Dsun3, -Dsun3x, -Dsun4, -Dsun4c, and -
Dsun38 6. The [ options J field includes other options that nonnally occur in 
the kernel makefile. 

If the driver consists of more than one module, then you must use the link editor, 
ld(l), with the -r option to preserve relocation infonnation. For example you 
might type: 
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example# cc -c -0 -Dsun386 -DKERNEL zzinit.c 

example# cc -c -0 -Dsun386 -DKERNEL zzl.c 

example# cc -c -0 -Dsun386 -DKERNEL zz2.c 

example# ld -r -o zz.o zzinit.o zzl.o zz2.o 

Thus the object module can be created either by the cc(l) command, when the 
driver resides in one module, or by the ld(l) command, when the driver resides 
in several modules. 

In either case the resulting loadable module is an ordinary relocatable object file 
( z z in it . o or z z . o ). It can be installed in the kernel using the 
modload ( 8) command. Only the Sun386i stores the object file as a COFF 
file.4 

The kernel-level support for loadable modules is contained in the driver for the 
/ dev / vd pseudo-device. Loading a module involves a four-step process. First, 
modload runs ld ( 1) to determine the size of the linked module. Then, using 
an ioctl call to / dev /vd, modload reserves a section of memory to hold the 
module. The memory is dynamically allocated by the vd driver and its starting 
address is returned. Modload runs ld a second time to relocate the module and 
to resolve references to external kernel symbols. Finally, using another ioctl 
call, it copies the module into the kernel and passes control to the module's 
wrapper function. 

4 "COFF" = Common Object File Fonnat, a UNIX object-file standard to which Sun386i assembler and 
link-editor output files (nonnally a. out) comply. See coff(5). 
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The ' 'Skeleton'' Character Device 

Driver 

This chapter presents one of the simplest drivers you could ever hope to 
encounter, a driver for an imaginary Multibus character device known as the 
"Skeleton" device. Both programmed 1/0 and OMA versions of the driver will 
be discussed. There is a complete version of this driver in the Sample Driver 
Listings appendix to this manual - the parts are presented piecemeal here with 
some discussion of their functions. 

What we're doing here is inventing the very simple, 1/0 mapped, Skeleton con
troller. It's actually a "free device" with no separate controller and no separate 
slaves. It has a single-byte command/status register, and a single-byte data regis
ter. It's a write-only device. It's not a slow tty-type device-you can provide 
vast blocks of data and the Skeleton board gets it all out very fast. It interrupts 
when it's ready for a data transfer, and comes up in the power-on state with inter
rupts disabled and everything else in neutral. 

Note: the Skeleton device is capable, in both its simple and its OMA variants, of 
writing chunks (not to say "blocks") of data in a single operation. It is, therefore, 
a character device that can make good use of xxstrategy () routines, phy
sio (), buf structures and other block-1/0 mechanisms. As explained in Ker
nel Topics and Device Drivers, its use of these mechanisms does not make it a 
block driver. Rather, its simple needs are a subset of the needs of block drivers, 
and it's convenient here for form to follow function. 

Let us assume that we've installed the Skeleton board with its control/status 
register at Ox 6 0 0 in Multibus 1/0 space - this puts its data register at Ox 6 O 1. 
The control/status register is both a read and a write register, with bit assign
ments as shown in the tables below. 
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BIT 

Read 

BIT 

Write 

7 

Inter

rupt 

7 

6 5 4 3 2 

Device Interface 

Ready Ready 

6 5 4 3 2 

Reset 

1 
Error 

1 

0 
Interrupt 

Enabled 

0 
Enable 

Interrupt 

Here is a brief description of what the bits mean: 

When reading from the status register 

bit 7 is a 1 when the board is interrupting, 0 otherwise. 

bit 3 is a 1 when the device that the board controls is ready for data 
transfers. 

bit 2 is a 1 when the Skeleton board itself is ready for data transfers. 

bit O is a 1 when interrupts are enabled, 0 when interrupts are dis
abled. 

When writing to the status register 

bit 2 resets the Skeleton board to its startup state - interrupts are 
disabled and the board should indicate that it is ready for data 
transfers. 

bit O enables interrupts by writing a 1 to this bit, disables interrupts 
by writing a 0. 

The header file for this interface is in skreg. h. By convention, we put the 
register and control infonnation for a given device (say xy) in a file called 
xyreg. h. The actual C code for the xy driver would by convention be placed 
in a file called xy. c. The header file for the Skeleton board looks like this: 
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I* 
* Registers for Skeleton Multibus I/0 Interface -- note the byte swap 
*I 

struct sk_reg { 
char sk_data; I* OJ: Data Register * I 
char sk_csr; /* 00: command(w) and status(r) * I 

} ; 

/* sk csr bits (read) *I 
#define SK INTR Ox80 I* Device is Interrupting * I 
#define SK DEVREADY Ox08 /* Device is Ready * I 
#define SK INTREADY Ox04 /* Interface is Ready * I 
#define SK ERROR Ox02 I* Device Error * I 
#define SK INTENAB OxOl /* Interrupts are Enabled */ 

#define SK ISTHERE OxOC /* Existence Check; 
Device and Interface Ready * I 

/* sk csr bits (write) */ 
#define SK RESET Ox04 
#define SK ENABLE OxOl 

I* Reset Device and Interface * I 
I* Enable Interrupts * I 

The complete device driver for the Skeleton board consists of the following 
parts: 

skprobe 
is the autoconfiguration routine called at system startup time to determine if 
the sk board is actually in the system, and to notify the kernel of its memory 
requirements. 

skopen and skclose 
routines for opening the device each time the file corresponding to that dev
ice is opened, and for closing down after the last time the file has been 
closed. 

skwrite 
routine that is called to send data to the device. 

skstrategy 
routine that is called from s k write ( ) via phys i o ( ) to control the actual 
transfer of data. 

skstart 
routine that is called for every byte to be transferred. 

skpoll 
the polling interrupt routine that services interrupts and arranges to transfer 
the next byte of data to the device. 

The subsections to follow describe these routines in more detail. 
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6.1. General Declarations 
in Driver 

In addition to including a bunch of system header files, there are some data struc
tures that the driver must define. 

*include <sys/param.h> 
*include <sys/buf.h> 
*include <sys/file.h> 
*include <sys/dir.h> 
*include <sys/user.h> 
*include <sys/uio.h> 
*include <machine/psl.h> 
*include <sundev/mbvar.h> 

*include "sk.h" /* file generated by config; 
contains the definition of NSK * I 

*include "skreg.h" /* registerdefinitions */ 

*define SKPRI (PZER0-1) /* software sleep priority for sk * I 

*define SKUNIT(dev) (minor(dev)) 

struct buf skbufs [NSK]; /* static buffer headers for physic * / 

I* autoconfiguration-related declarations * I 
int skprobe (), skpoll (); /* kernel interface routines * I 
struct mb_device *skdinfo[NSK]; 
struct mb_driver skdriver = { skprobe, O, 0, O, O, skpoll, 

sizeof(struct sk_reg), "sk", skdinfo, 0, O, 0, O, 
} ; 

I* device state information -- global to driver * I 
struct sk_device { 

char soft_csr; 
struct buf *sk_bp; 
int sk_count; 
char *sk_cp; 
char sk_busy; 

skdevice[NSK]; 

I * software copy of csr * I 
I* current bu/ * I 
I* number of bytes to send * I 
I* next byte to send * I 
I * true if device is busy * I 

Here's a brief discussion on the declarations in the above example. 

sk. h file is automatically generated by conf ig. It contains the definition 
of NSK, the number of sk devices configured into the system. 

SKPRI declaration declares the software priority level at which this device 
driver will sleep. 

SKUNIT macro is a common way of obtaining the minor device number in a 
driver. Study just about any device driver and you will find a 
declaration like this - it is a stylized way of referring to the minor 
device number. One reason for this is that sometimes a driver will 
encode the bits of the minor device number to mean things other 
than just the device number, so using the SKUNIT convention is an 
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6.2. Autoconfiguration 
Procedures 

probe () Routine 

skbufs 
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easy way to make sure that if things change, the code will not be 
affected. 

array is necessary so that the driver will have its own bu f headers to 
pass to the physio () routine. Character drivers should never use 
buf headers from the kernel's 1/0 queue. physio () will fill in 
certain fields (only a few, really) before calling .x.xstrategy () 
with the buf structure as the argument. 

There then follows a series of declarations, one for each of the 
autoconfiguration-related entry points into the device driver. In this driver, the 
only such entry points we use are skprobe () (which probes the Main Bus dur
ing system configuration) and skpoll () (the polling interrupt routine). 

s k din f o is an array of pointers to the mb _device structures that correspond 
to the driver's devices. The autoconfiguration process will initialize 
it during kernel boot time. 

skdriver 
is a definition of the mb driver structure for this driver. An 
explanation of the fields in this structure and how they are initialized 
appears in the Autoconfiguration-Related Declarations section of 
this manual. 

This data structure is the major linkage to the kernel. It must be 
called driver-namedr i ver where driver-name is the name of the 
device driver. conf ig assumes that all device-driver structures 
have names in the fonn driver-namedriver. 

sk device 
is a definition of a structure, global to the driver, that holds driver
specific state information. 

Sun device drivers are tightly bound to the Sun autoconfiguration system. They 
assume, at compile time, that certain services have been provided for them by 
conf ig, and they, in tum, provide boot-time hooks by which the kernel can 
detennine if the actual system configuration matches that given in its config 
file. 

There are, essentially, two autoconfiguration routines provided by the driver. 
The first is xxprobe (), the second .xxattach (). For more infonnation, see 
the Overall Kernel Context section of this manual. 

There should be an xxprobe () function in every driver. During the system 
boot each device entry in the config file generates a call to the xxprobe (} rou
tine in the corresponding driver . .xxprobe () has three functions: 

1. To detennine if a device is present at the address indicated in the config file. 

2 To detennine if it's the expected type of device. 

3. To notify the kernel of the system resources required for the device. 
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Under normal circumstances, addressing non-existent memory on the VMEbus 
generates a bus error in the CPU. The kernel, however, supports checking for 
device existence with a set of functions designed to probe the address space, 
recover from possible bus errors, and return an indication as to whether the probe 
generated a bus error. 

These functions are peek (} , peekc (} , peekl (} , poke (} , pokec (} , and 
pokel (}. They provide for accessing possibly non-existent addresses on the 
bus without generating the bus errors that would otherwise terminate the process 
trying to access such addresses. peek (} and poke (} read and write, respec
tively, 16-bit words ("shorts" on Sun-3's and Sun-3X's, "half-words" on Sun-
4's). peekc (} and pokec (} read and write 8-bit characters. In general, you 
will use the character routines for probing single-byte 1/0 registers. See the Ker
nel Support Routines appendix for details on these routines. 

Having determined whether the device exists in the system, the xxprobe (} 
function returns either: 

o the size (in bytes) of the device structure if it does exist. The kernel uses the 
value returned from probe () to reserve memory resources for that device. 
For both 1/0-mapped and memory-mapped devices, .xxprobe ( ) returns the 
total amount of space consumed by the device registers and memory. 

o a value of O (zero) if the device does not exist. 

Now we can write skprobe (} : 

/*ARGSUSED* I 
skprobe(reg, unit) 

caddr_t reg; 
int unit; 

register struct sk_reg *sk_reg; 
register int c; 

sk_reg = (struct sk_reg *)reg; 

I* contact the device * I 
c = peekc((char *)&sk_reg->sk_csr); 
if (c == -1 I I (c != SK_ISTHERE)) 

return (0); 

I* contact the device * I 
if (pokec((char *)&sk_reg->sk_csr, SK_RESET)) 

return (O); 

return (sizeof (struct sk_reg)); 

The reg argument is the purported address of the device, as given in the con£ ig 
file. The unit argument is only needed for controller drivers that must distinguish 
among multiple slave devices. 
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6.3. open () and 
close () Routines 
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The xxprobe {) routine detennines that the device actually exists, resets it to 
make sure that it's ready to go, and then returns the amount of bus space that it 
uses to the kernel autoconfiguration process. If xxprobe {) finds the device, the 
md _alive field in the device structure is set to 1, otherwise it's set to 0. 
md _ a 1 i ve is subsequently used by other driver (and kernel) functions to check 
that the device was probed successfully at startup time. (These routines can also 
check the device's position in the driver's xxdinfo {) array (if it has one) to see 
if it's been initialized). 

The second autoconfiguration routine is xxattach {). The purpose of xxat
tach {) is to do device-specific initialization. Such initialization may include 
the issuing of commands to the actual device hardware, for example, the disa
bling of its interrupts, or it may be entirely confined to the initialization of local 
device-specific structures. It's up to the driver what kind of initialization is done 
inxxattach {). 

The Skeleton device is artificially simple, and it requires no initialization besides 
the assignment of SK_ RESET into its controVstatus register. This assignment, as 
you will note, has already been done in skprobe {), where it serves as a doub
lecheck on the correct installation of the device. Since no further initialization is 
necessary, the Skeleton driver needs no attach { ) routine. 

During the processing of an open {) call for a special file, the system always 
calls the device's xxopen {) routine to allow for any special processing required 
(rewinding a tape, turning on the data-tenninal-ready lead of a modem, and so 
on). However, the xxclose {) routine is called only when the last process 
closes a file, that is, when the i-node table entry for that file is being deallocated. 
Thus it is not feasible for a device driver to maintain, or depend on, a count of its 
users, although it is quite simple to implement an exclusive-use device that can't 
be reopened until it has been closed. 

skopen {) is quite straightforward. It's called with two arguments, namely, the 
device to be opened, and a flag indicating whether the device should be opened 
for reading, writing, or both. The first task is to check whether the device 
number to be opened actually exists - skopen {) returns an error indication if 
not. The second check is whether the open is for writing only. Since the Skele
ton device is write only, it's an error to open it for reading. If all the checks 
succeed, skopen {) enables interrupts from the device, and then returns zero as 
an indication of success. Here's the code for skopen {): 
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skopen(dev, flags) 
dev_t dev; 
int flags; 

register int unit= SKUNIT(dev); 
register struct mb_device *md; 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]; 

if (unit>= NSK I lmd 
return (ENXIO); 

if (flags & FREAD) 
return (ENODEV) ; 

0 I I md->md alive 

sk_reg = (struct sk_reg *)md->md_addr; 

I* enable interrupts * I 
skdevice[unit] .soft_csr 

I* contact the device * I 

SK_ENABLE; 

sk_reg->sk_csr 

return (0); 

skdevice[unit] .soft_csr; 

0) 

The first if statement checks if the device actually exists. The first clause 

(unit >= NSK) 

is necessary because, as root, someone could make a special file that has a minor 
device number greater than NSK then try to open it. This actually isn't unusual, 
many /dev directories have entries for devices that are not really installed. The 
second clause tests to see if the probe routine found the device. Note the use of 
the SKUNIT macro to obtain the minor device number - we discussed this ear
lier on. Also note that we 're maintaining a copy 

(skdevice[unit] .soft_csr) 

of the controVstatus register in memory. Each time we write the register we will 
do so first in memory and then in the actual hardware register. We will do this 
doggedly, to make the point that we must protect ourselves from the potential 
side effects of inadvertent calculations within registers. For example 

csr &= -sK ENABLE 

has the side effect of reading the csr register - and patterns read from this regis
ter are not always identical to those written into it. (For more infonnation, see 
the Hardware Peculiarities to Watch Out For section of the Hardware Context 
chapter). 

skclose () is quite straightforward, since all it does is disable interrupts: 
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l*ARGSUSED* I 
skclose(dev, flags) 

dev_t dev; 
int flags; 

register int unit= SKUNIT(dev); 
register struct mb_device *md; 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]; 

I * disable interrupts * I 
sk_reg = (struct sk_reg *)md->md_addr; 
skdevice[unit] .soft_csr &= -sK_ENABLE; 

I* contact the device * I 
sk_reg->sk_csr = skdevice[unit] .soft_csr; 

skclose () could in fact be more complicated than this. It could, for example: 

o deallocate resources that were allocated for the device being closed, or 

o shut down the device itself, for example by signaling a port to hang up. 

The Skeleton device is write-only, but this discussion would apply equally to 
reading in such a non-tty oriented character device. 

When a read or write takes place, the user's arguments - as well as some 
system-maintained information about the file to which the 1/0 operation is to be 
performed- are used to initialize two structures- uio and iovec -that are 
used for character 1/0. The fields of greatest interest within these structures are 
iovec. iov_base, iovec. iov_len, and uio. uio_offset which 
respectively contain the (user) address of the 1/0 target area, the byte-count for 
the transfer, and the current location in the file. If the file referred to is a 
character-type special file, the appropriate .xxread () or .xxwr i te () routine is 
called - this routine is responsible for transferring data and updating the count 
and current location appropriately as discussed below. 

For most non-tty devices, xxread () and xxwr i te () call .xxstrategy () 
through the system physio () routine. physio () ensures that the user's 
memory space is locked into core (not paged out) for the duration of the data 
transfer. It also provides an automated way of breaking a large transfer into a 
series of smaller, more manageable ones. Note that character drivers that use 
physio () must declare an array of buf structures, one for each of their dev
ices (here the array is named skbuf s). By doing so they avoid any need to use 
the kernel's buffer cache, which is provided for the use of system block
structured devices. 

xxwr i te () differs from xxread () only in the value of the flag it passes to 
physio (). skwri te () looks like this: 
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, 

skwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

int unit SKUNIT(dev); 

if (unit>= NSK) 
return (ENXIO); 

return (physio(skstrategy, &skbufs[unit], dev, 
B_WRITE, skminphys, uio)); 

See notes on the uio structure below. The skminphys (} routine is called by 
physic to detennine the largest reasonable block size to transfer at once. If the 
user requests a larger transfer, physic (} will call skstrategy (} repeat
edly, requesting no more than this block size each time. This is important when 
DVMA transfers are done. (DVMA is covered in more detail below). The rea
soning is that only a finite amount of address space is available for DVMA 
transfers and it is not reasonable for any device to tie up too much of it. For 
example, a disk or a tape might reasonably ask for as much as 63 Kilobytes; slow 
devices like printers should only ask for one to four Kilobytes since they will tie 
up the resource for a relatively long time. Here's the skminphys (} routine. 

skminphys(bp) 
struct buf *bp; 

if (bp->b_bcount > MAX_SK_BSIZE) 
bp->b_count MAX_SK_BSIZE; 

Note that if you don't supply your own mi nph y s ( } routine, you place the name 
of the system supplied minphys (} routine, whose name is minphys (}, as the 
argument to physic (} in its place, and the system supplied minphys (} rou
tine gets used instead. This is not always a good thing, however, for the system 
routine divides an 1/0 operation into finite chunks, and this can be too large for 
optimum system perfonnance when the device in question is slow (like a 
printer). 

When the system is reading and writing data from or to a device, the uic struc
ture is used extensively (see <sys/uic. h> for more infonnation). The uic 
structure is generalized to support what is called gather-write and scatter-read. 
That is, when writing to a device, the blocks of data to be written don't have to 
be contiguous in the user's memory but can be in physically discontiguous areas. 
Similarly, when reading from a device into memory, the data comes off the dev
ice in a continuous stream but can go into physically discontiguous areas of the 
user's memory. Each discontiguous area of memory is described by a structure 
called an icvec (1/0 vector). Each icvec contains a pointer to the data area to 
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be transferred, and a count of the number of bytes in that area. The uio struc
ture describes the complete data transfer. u i o contains a pointer to an array of 
these iovec structures. Thus when you want to write a number of physically 
discontiguous blocks of memory to a device, you can set up an array of iovec 
structures, and place a pointer to the start of the array in the uio structure. In the 
simplest case, there's just one block of data to be transferred, and the uio struc
ture is quite simple. Note that physio () will call the strategy routine at least 
once for each iovec contained by the uio structure. 

xxstrategy () is called by physic () after it has locked the user's buffer 
into memory. The name strategy originated in the world of disk drivers, and 
implied that the routine could be clever about queuing 1/0 requests (for example, 
by disk address) so as to minimize time wasted by the disk. The skstra
tegy () routine has no such problems, since it doesn't queue 1/0 requests for a 
random-access device. Still, a number of tasks remain - s ks tr at egy ( ) 
must check that the device is ready, initiate the data transfer, and wait for its 
completion to be signaled by the interrupt routine. Note that skstrategy () 
can safely assume that physio () has properly initialized a number of variables 
- here we will assume that the b dev field in the buf has been set to contain 
the device number. 

'-

skstrategy(bp) 
register struct buf *bp; 

register struct mb device *md; 
register struct sk device *sk; 
int s; 

md skdinfo[SKUNIT(bp->b_dev)]; 
sk &skdevice[SKUNIT(bp->b_dev)]; 

s = splx (pri tospl (md->md _ intpri) ) ; /*begin critical section* I 
while (sk->sk_busy) 

sleep((caddr_t) sk, SKPRI); 

I* set up for first 110 operation * I 
sk->sk_busy = 1; 
sk->sk_bp = bp; 
sk->sk_cp = bp->b_un.b addr; 
sk->sk_count = bp->b_bcount; 
skstart(sk, (struct sk_reg *)md->md_addr); 

(void) splx (s); /* end critical section * I 

xxstrategy () doesn't actually do any 1/0. It just insures that the device is 
not busy, (by sleeping on the address of a data structure that is global to the 
driver) sets up for the first 1/0 operation and then calls xxskstart () to get 
things rolling. The critical section is necessary because xxstrategy () is 
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6.6. Skeleton start () 
Routine 

trying to acquire the device on behalf of one, and only one, user process. 

xxstart () is actually responsible for getting the data to or from the device. 
skstart () is called once directly from skstrategy () to get the very first 
byte out to the device. After that, it is assumed that the device will interrupt 
every time it is ready for a new data byte, and so skstart () is thereafter 
called from skintr (). Here is one possible skstart () routine: 

skstart(sk, sk_reg) 
struct sk device *sk; 
struct sk_reg *sk_reg; 

sk_reg->sk_data = *sk->sk_cp++; 

if (--sk->sk_count > 0) { 
sk->soft csr = SK_ENABLE; 

I* contact the device * I 
sk_reg->sk_csr = sk->soft_csr; 

This routine will work, but not very efficiently. There's a lot of overhead in tak
ing a device interrupt on every character. Since we know that the device can 
accept characters very quickly, it would be much more efficient to give the char
acters quickly, and thus avoid generating unnecessary interrupts. xxstart () 
should take advantage of device-specific characteristics to win efficiency 
enhancements of this type. It can wait for characters, check for ready, etc -
here, we will just check after each character and give another one if the device is 
ready for it. Here's the new, more efficient skstart () routine. 
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skstart(sk, sk_reg) 
struct sk device *sk; 
struct sk_reg *sk_reg; 

while(sk->sk_count > 0) { /* stillmorecharacters */ 
sk_reg->sk_data = *sk->sk_cp++; 
sk->sk count--; 

I* stop giving characters if device not ready * I 
/* Note: the softcopy isn't needed/or reads * I 
I* contact the device * I 

/* DELAY(]O) might go here * I 

if (! (sk_reg->sk_csr & SK_DEVREADY)) 
break; 

I* error-retry logic would go here * I 

I* still more characters * I 
if (sk->sk_count > 0) 

sk->soft csr = SK_ENABLE; 

I* contact the device * I 
sk_reg->sk_csr = sk->soft_csr; 

else { 
I * special case: finished command without taking any interrupts! * I 

I* disable interrupts * I 
sk->soft_csr = 0; 

I* contact the device * I 
sk_reg->sk_csr = sk->soft_csr; 
sk->sk_busy = 0; 

I* free device to sleeping strategy routine * I 
wakeup((caddr_t) sk); 

/* free buffer to waiting physio * / 
iodone(sk->sk_bp); 

109 

We give characters to the device as long as there are more characters and the 
device is ready to receive them. If we run out of characters, we disable interrupts 
to keep the device from bothering us and call iodone (} to mark the buffer as 
done. 

It may be that the device is not quite quick enough to take a character and raise 
the SK DEVREADY bit in the time we can decrement the counter. If so, it would 

Revision A, of 27 March 1990 



110 Writing Device Drivers 
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Routines 

be very worthwhile to busy wait for a short time. The reasoning is that while 
busy waiting is a waste, servicing an interrupt costs lots more CPU time, and if 
busy waiting works fairly often it is a big win. There is a macro DELAY () that 
takes an integer argument which is approximately the number of microseconds to 
delay, so we could add 

DELAY (10); 

at the top of the while loop. Oearly this is an area where experimentation with 
the real device is called for. 

Each device should have appropriate interrupt-time routines. When an interrupt 
occurs, it is transformed into a C-compatible call on the device's interrupt rou
tine. After the interrupt has been processed, a return from the interrupt handler 
returns from the interrupt itself. 

The address of the polling interrupt routine for a particular device driver is con
tained in the per-driver (that is, mb driver) data structure for that device 
driver. It is installed there during the kernel configuration process based upon 
information in the config file. 

It's expected that the device actually indicates when it's interrupting. If there are 
any more bytes to transfer, the interrupt routine calls xxstart () to transfer the 
next byte. If there are no more bytes to transfer, the interrupt routine disables the 
interrupt (so that the device won't keep interrupting when there's nothing to do), 
and finishes up by calling iodone (). (iodone (), incidentally, is another of 
the mechanisms provided primarily for block drivers). Here are the interrupt rou
tines for the Skeleton driver: 

skpoll () 
{ 

register struct sk_reg *sk_reg; 
int serviced, i; 

serviced= 0; 
for (i = 0; i < NSK; i++) { /* tryeachone *I 

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr; 

I* contact the device * I 
if (sk_reg->sk_csr & SK_INTR) 

serviced= 1; 
skintr(i); 

return (serviced); 

skintr (i) 
inti; 

register struct sk_reg *sk_reg; 
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register struct sk device *sk; 

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr; 
sk = &skdevice[i]; 

I* check for an //0 error * I 

I* contact the device * I 
if (sk_reg->sk_csr & SK_ERROR) { 

I* error-retry logic would go here * I 

printf("skintr: I/0 errorO); 
sk->sk_bp->b_flags I= B_ERROR; 

I* //0 transfer completed * I 
if ((sk->sk_bp->b_flag & B_ERROR) != 0 I I 

sk->sk_count == 0) { 

I* clear interrupt * I 
sk->soft_csr = 0; 

I* contact the device * I 
sk_reg->sk_csr = sk->soft_csr; 
sk->sk_busy = O; 

I* free device to sleeping strategy routine * I 
wakeup((caddr_t) sk); 

I* free buffer to waiting physio * / 
iodone(sk->sk_bp); 

else 
skstart(sk, sk_reg); 

skin tr () checks the hardware for an error every time it's called, and upon 
finding an error, calls pr intf (), flags the error in the 1/0 buffer and then 
returns. Note that: 

o skintr () needs the buffer header associated with the failed transfer so 
that it can indicate the error in its b _flags field. 

o A retry attempt could be made before giving up and taking the error return. 
Whether or not this is advisable is entirely dependent on the specific device 
and error characteristics. 

o The error return aborts the 1/0 request that produced the error and then 
places both the device and the driver in their nonnal idle states. 

Revision A, of 27 March 1990 



112 Writing Device Drivers 

6.8. ioctl () Routine 

6.9. Skeleton Driver 
Variations 

DMA Variations 

NOTE 

Multibus or VMEbus DVMA 

xxioctl () is used to perfonn any tasks that can't be done by xxopen (), 
xxclose (), xxread (), or .xxwri te (). Typical applications are: "what is the 
status ofthis device", or "go into mode X". The Skeleton device, as we've 
defined it here, is modeless and has no such special functions so we don't have an 
xxioctl () routine. (Though we will add one below in a variation of the Skele
ton driver that supports a fonn of asynchronous 1/0). For details about driver 
xxioctl () routines, and the other driver routines, see the Summary of Device 
Driver Routines appendix. 

The Skeleton 1/0 board isn't particularly realistic, but is does serve to illustrate 
the construction of a basic character driver. In this section, we will propose some 
variations on the basic device, each designed to illustrate a useful technique. 

Devices that are capable of doing DMA are treated differently than the Skeleton 
device we've been working with so far. Let's assume that we have a new version 
of the Skeleton board; call it the Skeleton II. It can do DMA transfers and we 
want to use this feature since it is much more efficient. 

DMA is different on the Sun386i system. For information about it, see the 
dma_setup () and dma_done () routines in the Kernel Support Routines 
appendix. 

The Sun processor board is always listening to the Multibus or VMEbus for 
memory references. When there is a request to read or write any address in the 
DVMA space (see the Sun Main-Bus DVMA section of the Hardware Context 
chapter for more infonnation) the DVMA hardware adds a machine-specific 
offset to the address to find the location in kernel virtual memory that contains 
the device RAM being used in the transfer. 

On the Sun-3, the DVMA space is defined by the address range OxO to 
OxFFFFF for 24-bit or 32-bit addressing; its system virtual address is 
OxFFOO 000. 

On the Sun-4 (or Sun-3x), the DVMA space is defined by the same address range 
used on the Sun-3, OxO to OxFFFFF for 24-bit or 32-bit addressing. Its system 
virtual address, however, is O xFFF O O O O O. 

If you wish to do DMA over the Main Bus, you must make entries in the kernel 
memory map to map your device's RAM into the appropriate DVMA space. As 
you might expect, there are subroutines to help with this chore. rnbsetup () 
sets up the kernel memory map and rnbrelse () clears entries in it to release 
DVMA space. Note that all Sun DMA occurs between the bus and kernel virtual 
address space - if you wish to do DMA directly into a user buffer, you will have 
to first map that buffer into kernel space, then pass it to rnbsetup () to map it 
into DVMA space. 
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The addition of OMA to the capabilities of the device opens up several new 
options. For the moment, consider only the changes necessary to switch the 
driver over to OMA-style 1/0. These changes turn out to be surprisingly straight
forward. First we will extend the sk _ reg structure which defines the device 
registers. We will assume that the Skeleton II board is a bus-master which sup
ports 20-bit transfers, and that the following structure overlays its registers. 

struct sk_reg { 

} ; 

char sk_data; 
char sk_csr; 
short sk_count; 
caddr_t sk_addr; 

I* 01: Data Register * I 
/* 00: command(w) and status(r) * I 
I* bytes to be trans/ erred * I 
/* 20-bit DMA address * I 

Next we assume that bit 5 in the csr is set to initiate a OMA transfer. 

*define SK DMA OxlO I* Do DMA transfer * I 

and a definition of the maximum OMA transfer for skrninphys (). 

*define MAX SK BSIZE 4096 I* DMA transfer block * I 

And we must add another element to the sk _ device structure for use by 
rnbsetup () and rnbrelse (). (The alternative would be to use the 
me_ rnb info structure in the rnb _ct l r structure, but since we don't use that 
structure for anything else, this seems more reasonable): 

int sk_mbinfo; 

Now we change skstrategy () to use the OMA feature. 
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skstrategy(bp) 
register struct buf *bp; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk device *sk; 
int s; 

md = skdinfo[SKUNIT(bp->b_dev)]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[SKUNIT(bp->b_dev)]; 

s = splx (pritospl (md->md_intpri)); /* begin critical section* I 
while (sk->sk_busy) 

sleep((caddr_t) sk, SKPRI); 
sk->sk_busy = 1; 
sk->sk_bp = bp; 

I* this is the part that is changed * I 

I* grab bus resources * I 
sk->sk_mbinfo = mbsetup(md->md_hd, bp, O); 

I* plug the remainder * I 
sk_reg->sk_count = bp->b_bcount; 

I* plug bus transfer address * I 
sk_reg->sk_addr = (caddr_t)MBI_ADDR(sk->sk_mbinfo); 

I* make sure we didn't overrun the address space limit * I 
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) 

printf("sk%d: ", sk_reg->sk_addr); 
panic("exceeded 20 bit address"); 

sk->soft csr = SK_ENABLE I SK_DMA; 
sk_reg->sk_csr = sk->soft_csr; /* contact the device * I 

/* end of DMA-related changes * I 

(void) splx(s); I* end critical section * I 

There are a number of details here that are worth noting: 

o skstart () is no longer needed and may be completely eliminated. 

o The return value from rnbset up () is being saved for use in calls to 
MBI_ADDR (} and rnbrelse (). 

o The 32-bit address returned by MBI __ ADDR () is being tested to ensure that 
it doesn't exceed the 20-bits limits of the device. (This wouldn't be neces
sary if the address was sure to be in the DVMA transfer area, which always 
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ends at OxFFFFF or below. However, the transfer address can also be else
where in the VMEbus address space). 

o All the 1/0 now is started by skstrategy () and continues until 
skpoll () is called-thus we can delete the sk _ cp and sk _ count 
fields from the sk device structure. 

o There's no longer any need to check the count and sometimes call 
skstart (). Instead, iodone () is always called and physio () is 
relied upon to proceed with the transfer. Note that, with skstart () elim
inated, the call to wakeup () , as well as the clearing of sk _busy, have 
been moved to skintr (). 

o Finally, skintr () needs to free up the Main Bus resources, so it will call 
rnbrelse () . 

Here are the new skintr () and skpoll () routines: 

skintr(i) 
inti; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk_device *sk; 

md = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[i); 

I* check for an 1/0 error * I 
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I 

I* error-retry logic would go here * I 

printf("skintr: I/0 error\n"); 
sk->sk_bp->b_flags I= B_ERROR; 

I* this is the part that changed * I 
sk->soft csr = 0; /* clear interrupt * I 
sk_reg->sk_csr = sk->soft_csr; 
mbrelse(md->md_hd, &sk->sk_mbinfo); 

sk->sk_busy = 0; 
wakeup ( (caddr_t) sk); /* free device to sleeping strategy routine * / 
iodone (sk->sk_bp); /* freebuffertowaitingphysio *I 
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Variation with 
'' Asynchronous 1/0'' Support 

, 

skpoll () 
{ 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
int serviced, i; 

serviced= O; 
for (i = 0; i < NSK; i++) { 

md = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
if (sk_reg->sk_csr & SK_INTR) { 

serviced= 1; 
skintr(i); 

return (serviced); 

In this next section, we will assume that we want to further modify the Skeleton 
driver to support '' asynchronous 1/0' '. This may, at first sight, seem an odd 
thing to do, for asynchronous 1/0 is most commonly used for network and 
serial-line devices that have little in common with the Skeleton device. In actual 
fact, however, asynchronous 1/0 is not limited in application to such devices -
its purpose is to support user processes which need to avoid blocking during 1/0 
operations, and such functionality is of interest for serial lines, sockets, 
STREAMS and various character devices. 

First, note that the term ''asynchronous 1/0'' is used, in the UNIX world, to indi
cate two separate mechanisms. In practice, these mechanisms are closely related, 
and both of them will be covered in this section: 

o The first is ''non-blocking 1/0''. This is a type of 1/0 which, when incapa
ble of immediately proceeding to completion, notifies its user process of this 
fact rather than simply going to sleep (). It thus gives the user process a 
choice of responses. 

In the UNIX system, non-blocking 1/0 is traditionally provided by the 
select ( ) system call, which allows a user process to query a device to see 
if it's ready before making a read () or write () request to it, and thus to 
avoid being blocked. (It should be noted that select () isn't really non
blocking 1/0 proper. It's better thought of as an alternative to device pol
ling, which can waste considerable CPU time). 

o The second UNIX asynchronous 1/0 mechanism is best called '' asynchro
nous notification". With this mechanism available, the user process no 
longer needs to keep trying an 1/0 operation until it succeeds, because the 
driver will signal () it (with as IGIO) when one of its 1/0 channels 
clears. The code necessary to support such asynchronous notification is 
closely related to that necessary to support select () , and it should rou
tinely be provided at the same time as select () support. 
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The Skeleton driver hasn't really been defined as a device that we would expect 
to have a select () routine. Such routines are most useful for devices which 
aren't always ready, and since we've defined the Skeleton device as being write 
only and arbitrarily fast, we wouldn't expect it to clog. Still, for the purposes of 
this example, we will assume that the Skeleton board is sufficiently slow that it's 
reasonable to have its driver support select (). 

select () is more typically used in serial-line drivers which are multiplexed 
between multiple lines. Before reading, for example, a terminal's keyboard, such 
drivers need to ensure that there are characters waiting. If they didn't, they 
would block so often that their overall performance would be unacceptable. 

select () works by providing user processes with a means of determining if 
1/0 is possible on a given file descriptor. Alternatively, it has a multiplexing 
feature that makes it possible to determine which of a set of specified descriptors 
is ready to go. It can be told to return immediately, or to block the calling pro
cess until at least one descriptor is ready. A timeout argument can be specified to 
keep the process from blocking forever, or to allow the process to periodically do 
something else. See select ( 2) for details. 

The driver's select () routine may or may not support the full functionality of 
the select () system call. The minimum that it can reasonably do is allow the 
user program to poll the specified device to determine if it's ready: 

skselect(dev, rw) 
dev_t dev; 
int rw; 

register struct mb_device *rod; 
register struct sk_reg *sk_reg; 
int s = spl5 () ; 

rod= skdinfo[SKUNIT(bp->b_dev)]; 
sk_reg = rod->rod_addr; 

I* Check if the device is ready * I 
if (sk_reg->sk_csr & SK_DEVREADY) 

(void) splx ( s) ; 
return (1); 

(void) splx ( s) ; 
return (O); 

Note that, in this example, the rw flag has been ignored because the Skeleton 
device is write only. If, however, it were a read/write device, skselect () 
would switch on rw, and do a separate readiness test for each of the READ and 
WRITE cases. Throughout this example we will show only write cases: read 
cases would be handled identically. 
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To extend skselect () to allow user processes to block for specified periods 
of time (or, for that matter, indefinitely) while waiting for an OK to proceed with 
an 1/0 operation, more must be done. To begin with, we must add two fields to 
the sk_device () structure. Both of them must be initialized to 0. 

\. 

struct sk_device { 

} ; 

struct proc *sk_wsel; 
int sk_state; 

I* user proc structure * I 
I* select state flag * I 

We also need the flag 

#define SK WCOLL OxOl 

which will be used to indicate that a write-select collision has occurred, that is to 
say, that more than one process has attempted to select the device. 

Then, skselect () must be changed, as follows: 
r 

skselect(dev, rw) 
dev_t dev; 
int rw; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk device *sk; 

int s = spl 5 () ; 

md = skdinfo[SKUNIT(dev)]; 
sk_reg = md->md_addr; 
sk = &skdevice[SKUNIT(dev)]; 

/* Check if the device is ready * I 
if (sk_reg->sk_csr & SK_DEVREADY) 

(void) splx ( s) ; 
return (1); 

I* Here's the new code * I 
if (sk->sk_wsel && 

(sk->sk_wsel->p_wchan == (caddr_t) &selwait)) 
sk->sk_state I= SK_WCOLL; 

else 
sk->sk wsel = u.u_procp; 

(void) splx ( s) ; 
return (0); 

Revision A, of 27 March 1990 



Chapter 6-The "Skeleton" Character Device Driver 119 

selwai t, an external integer imported via <sys/ systm. h>, is the "channel" 
which the select () system call, and only the select () system call, uses 
when it calls sleep () . 

If the device is ready to go, skselect () behaves just as it did above: it returns 
immediately with a 1. If, however, the device isn't ready, a check is made to see 
if it has already been selected. If it hasn't been, the field sk _ wsel is set to 
point to the proc structure of the process doing the select. In effect, we 're 
remembering the first process to select the device. If no other processes select 
the same device, this structure will later be used as a '' fast path'' to the selecting 
process. 

If, however, skselect () finds that sk _ wsel has already been set, the test: 

(sk->sk_wsel->p_wchan == (caddr_t) &selwait) 

is made to see if the process indicated by sk->sk_wsel is sleeping as a result 
of a call to select () . If it is, the code 

sk->sk_state I= SK_WCOLL; 

is executed to indicate that a select "collision" has occurred, that is, that a 
second (or third, etc.) process attempted to select the device while the first pro
cess was still waiting for it to become available. 

The rest of the select-related code is executed at interrupt time, so it goes into 
skintr (). One clean way of inserting it is to create a new routine, 
skwakeup (), and to call it from skintr () instead of calling wakeup (). 
(See the non-DMA version of skin tr () , above): 

skwakeup(sk) 
register struct sk_device *sk; 

if (sk->sk_wsel) { /* select ispending */ 

I* wake up the process * I 
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL); 

I* reset the select flags * I 
sk->sk_state &= -sK_WCOLL; 
sk->sk_wsel = O; 

wakeup((caddr_t) sk); 

selwakeup () thus receives a NULL second parameter unless a select collision 
occurred. If such a collision did occur, all processes which are sleeping as a 
result of a select () (any select) are awakened by a call to wakeup () on the 
s e 1 wait channel. Most of them will just go back to sleep, and the ones that 
don't will race for the device. This isn't very efficient, but it doesn't happen very 
often. Usually, the device will be selected by a single process, and the proc 
structure will be used to wake only that process. 
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Adding Asynchronous 
Notification 

Adding an ioct1 () routine 

Note that selwakeup () does nothing if sk->sk_wsel is 0, or if there are no 
processes sleeping on selwait. Thus, if a process has called select (), but 
not gone to sleep (because the device was immediately ready) the subsequent 
interrupt will simply reset the flags. 

If the driver is to support asynchronous notification as well as select (), a bit 
more.is necessary. First, a new flag is necessary to indicate that the user has 
requested asynchronous notification: 

#define SK_ASYNC Ox02 

And a new field is necessary in the sk_ device structure, which now becomes: 

struct sk_device { 

} ; 

struct proc *sk_wsel; 
int sk_state; 
short p_pgrp; 

I* user proc structure * I 
I* select state flag * I 
I* user process group leader * I 

The new field, p _pgrp must, like the others, be initialized to 0. And p _pgrp 
must be initialized in skopen () to indicate the process group leader of the user 
process opening the device: 

if (sk->p_pgrp 0) 
sk->p_pgrp = (u.u_procp)->p_pid; 

Next, we must provide a way for the user process to request that the driver enable 
asynchronous notification. Of course it would be possible for it to always 
operate in asynchronous mode, but then user processes would constantly get sent 
s I GI o signals by the driver, whether they expected them or not. Besides, if the 
Skeleton driver has multiple modes, we must introduce an skioctl () routine 
to toggle them, and that gives us an opportunity to discuss ioctl routines. Actu
ally, there are potentially three system calls that can be used to put a driver into 
asynchronous mode, or, for that matter, into any mode. The most common of 
these is i o ct 1 ( 2 ) , and that is shown here. Note, though, that the other two 
possibilities are fcntl (2) and open (2). 

The first step in introducing an ioctl () routine is to define the macros which 
user processes will use to issue commands to the device and its driver. (For 
details, see the discussion of ioct 1 ( ) routines in the Summary of Device 
Driver Routines appendix to this manual). 

In the case of skioctl (), these macros are few and simple, for skioctl () 
will only toggle the driver mode between synchronous and asynchronous. 
There's no need for the ioctl () macros to either ship data from, or return it to, 
the user program. 

i o ct 1- related command codes are exported to user processes by means of 
macros kept, by convention, in /usr /include/sys. In the case of the 
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Skeleton driver, only two macros are necessary, and we will put them into 
<sys/skcmds. h>: 

#define SKSETSYNC _IO(k,0) 
#define SKSETASYNC _IO(k,l) 

The _IO macro is the simplest of the ioctl () macros, being intended for pur
poses like this, where no argument data need be transferred. Here, all that's 
necessary is to define a convention by which O indicates synchronous mode (the 
default) and 1 indicates asynchronous mode. Note the first parameter, 'k'. It's 
used, quite arbitrarily, to identify the ioct 1 () to be vectored to the Skeleton 
driver. 

The additions to the driver are very simple. First, it must include the file contain
ing its control macros: 

#include <sys/skcmds.h> 

Then, in skioctl () it simply takes the infonnation encoded by the _IO macro 
to toggle the driver's state: 

skioctl(dev, cmd, data, flag) 
dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

register struct sk_device *sk; 
sk = &skdevice[SKUNIT(dev)]; 

switch (cmd) { 

case SKSETSYNC: 
sk->sk state&= -sK_ASYNC; 
break; 

case SKSETASYNC: 
sk->sk state I= SK_ASYNC; 
break; 

That's it. And now that skioctl () can set the SK_ ASYNC flag, 
skwakeup () can reasonably test for it and, if it's set, call gsignal () to send 
the SIGIO signal to the user process group. Note that the SK_ASYNC signal 
must be cleared after calling gsignal (). 
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, 

skwakeup(sk) 
register struct sk_device *sk; 

if (sk->sk_wsel) { /* select is pending * I 

I* wake up the process * I 
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL); 

I* reset the select flags * I 
sk->sk_state &= -sK_WCOLL; 
sk->sk_wsel = 0; 

if (sk->sk_state & SK_ASYNC) { 
gsignal(sk->p_pgrp, SIGIO); 
sk->sk state&= -sK_ASYNC; 
} 

wakeup((caddr_t) sk); 

The final step in adding a select () routine to a driver is to edit the kernel 
conf. c file, and to plug the name of the new select () routine into the 
cdevsw structure in the place of the "nodev" or "seltrue" that is already there. 
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Information 

7 
Configuring the Kernel 

In this chapter, we will assume that you've written your driver. The next step, 
obviously, is to build a kernel that includes your new driver. This process isn't 
difficult; Sun systems support easy kernel configuration, even without access to 
system source code. If the driver is a loadable driver then the kernel is not re
built and therefore the discussion of rebuilding the kernel does not apply. In this 
case, see the Loadable Drivers section of the Driver Development Topics 
chapter. 

In heterogeneous server/client environments, kernels must be con.figured in fairly 
general ways. For one thing, they must work on both Multibus and VMEbus 
machines,for another, they have to tolerate normal variations among system 
devices ( e.g. client Ethernet boards may be made by either 3COM or Sun). The 
GENERIC con.fig file thus contains con.figuration lines for all common devices for 
both bus types. However, if you're con.figuring a kernel for a known system, you 
need not carry around extraneous options - you can tailor your con.figuration 
file as appropriate and thus get a smaller (by 100 kilobytes or more!) and more 
efficient kernel. 

For additional infonnation on kernel configuration, see the Adding Hardware to 
Your System section of Network Programming and the config (8) man page. 
(Incidentally, conf ig is found in the /usr /etc/directory- so make sure 
that your path includes /usr / etc before proceeding). 

First, a simple distinction. If your kernel already contains a certain driver, and 
you're simply installing a corresponding device, you will only need to edit the 
kernel config file - all of the installation specific infonnation about devices 
themselves is contained in this file. If, however, you will be adding a new driver 
to the kernel, you will need to edit some additional files: 

o The first of these is /usr /sys/sun/ conf. c, a C-language source-code 
file which contains the default initializations of the cdevsw and bdevsw 
switches. 

o The second is either /usr / sys/ 'arch -k '/ conf /files, 
/usr/sys/sun3/conf/files,/usr/sys/sun3x/conf/files, 
/usr/sys/sun4/conf/files,or 
/usr / sys/ sun38 6/ conf /files, (depending upon the type of your 
machine). This file tells conf ig where to find the source code for the ker
nel and its drivers. 
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The discussion in this chapter concerns conf ig, a utility program that is used 
in configuring kernels and initializing the kernel/driver interface structures. 
conf ig is altogether different from the autoconfiguration process, sometimes 
called autoconf ig, which is built into the initialization pass of the SunOS ker
nel, and thus run at system boot time. Autoconfiguration completes the run-time 
driver environment initialization that config begins,for example by checking 
that the devices indicated as present in the kernel config file are actually present 
in the running system. Autoconfiguration is discussed in much greater detail in 
the Overall Kernel Context chapter of this manual. 

conf ig's goal is to output a set of files that can be directly used to configure a 
new kernel. The purpose of the configuration may simply be to install a device 
(for which the kernel already contains a driver) or it may be to integrate a new 
device and its driver. The kernel configuration system learns of new devices by 
way of entries in the config file, whereas new drivers are indicated by editing one 
or all of the files conf. c, /usr/ sys/conf. common/files. cmn and 
/usr/sys/sun[3,3x,4,4c]/conf/files(or 
/usr / sys/ sun386/ conf / files). The files output by config are used in 
the construction of the new kernel, but so are others, notably conf . c itself. 

o ioconf. c - the major input to the autoconfiguration process. It contains 
arrays of mbvar structures- struct mb_ ctlr mbcini t [] and 
struct mb _ device mbdini t [] - that have been initialized on the 
basis of the device and controller information in the config file. (lncidently, 
the order of the device declarations in the config file will determine the order 
of the structures in ioconf. c, and thus the order in which devices are 
polled). The autoconfiguration process assumes that ioconf. c exists and 
will complete the initialization of its structures by calling .xxprobe ( ) , 
x.xattach (), and x.xslave (). See the Overall Kernel Context chapter 
for more information. 

o x.x.h - a set of header files, one for each driver. These header files define 
macros (e.g. #define NSK 2) that tell the drivers how many devices 
they will be managing. The drivers will use these macros at compile time to 
control conditional compilation and to size device tables. 

o mbglue.s - contains assembly-level code that translates from the hardware 
interrupt mechanisms to the device-interrupt routines fo., the installed dev
ices. It does not exist on Sun-4 or Sun386i machines. 

o Makefile- a makefile that, when executed, will actually make the new ker
nel, compiling and linking files as necessary. Note that the entries in 
/usr/sys/sun[3,3x,4,4c]/conf/files(or 
/usr/sys/sun386/conf/files) refer to source files (i.e. 
sundev / sk. c), but that if conf ig fails to find a named source file it will 
set up to use the corresponding object file (from the OBJ subdirectory of the 
configuration directory) instead. Thus, conf ig works on both source 
licensed and object licensed machines. 
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The example that follows assumes that you 're adding a driver for the Skeleton 
board (sk. c) to your system. To proceed, you will need a configuration direc
tory and a config file for your new kernel. con fig will create a configuration 
directory in /usr / sys/ 'arch -k' with the same name as the new config file 
in /usr / sys/ 'arch -k '/ conf, so all you have to do is create that file: 

example# 
example# 

cd /usr/sys/'arch -k'/conf 
cp GENERIC SKELETON 

Then edit the SKELETON config file to reflect the presence, in your system, of 
the Skeleton board. As you can see by checking con fig ( 8 ) , each line in the 
file describes a different device - thus, you will simply need to add lines that 
describe the installation of the Skeleton board. The exact format of those lines 
will depend upon the address space within which the board is to be installed. 

The address space that's given in the kernel config file will determine the 
address-space mappings that are set up by the MMU - the virtual addresses that 
the driver receives from the kernel, and then treats as pointers to the device's 
registers, will be within the address space given here. What's important is that 
the driver writer know and specify, at this point, the number of bits in the device 
address, and the number of bits in its data-access length. 

We will install the Skeleton device within vmel 6dl 6 by way of a VMEbus 
adapter. We choose vme16d16 because it's the smallest address space: 

device skO at vme16d16? csr Ox600 priority 2 vector skintr OxC8 

This says that, when plugged into an adapter board, the vector number O xC 8 is 
set up to route to the skintr routine. (Vector numbers OxC8 through OxFF are 
reserved for user devices). 

On a Sun-3, Sun-3X or Sun-4, it would likewise be reasonable to choose the 
smallest of the available address spaces: 

Only very rudimentary error checking is done on the config file. For example, if 
you declare a device attached to a controller, you must declare the controller as 
well. 

One more point about the config file. The number of installed devices will be 
determined, for each driver, by conf ig, and it will generate the appropriate 
s k . h header file for you in the configuration directory. 

Now, you can go on with the process of building the new kernel. The next step is 
to edit conf . c, adding to it the names of the entry point routines for the Skele
ton driver, and then installing those routines into the kernel's character device 
switch cdevsw. The following code accomplishes these two goals: 
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#include "sk.h" 
Hf NSK > 0 
int skopen(), skclose(), skread(), skwrite(), skmmap(); 
#else 
#define skopen nodev 
#define skclose nodev 
#define skread nodev 
#define skwrite nodev 
#define skmmap nodev 
#endif 

struct cdevsw cdevsw[] 

skopen, skclose, skread, skwrite, 
skiotcl, nodev, 
skselect, skmmap, O, 0 

} , 

This will add the driver's routines to cdevsw if NSK is greater than O (NSK is, as 
already explained, calculated by conf ig). Note well that the position in the 
cdevsw where we've installed our routines (the exact position depends, of 
course, upon how many device are already installed) is the same as the major 
device number which we will later assign to all devices driven by this driver -
the major number is an index into cdevsw. 

The entries in cdevsw are, in order, .xxopen (), .x.xclose (), xxread (), 
.x.xwr i te () , .x.xioctl () , .x.xreset () , .xxselect () and xxmmap () . The 
Skeleton driver uses the xx i o ct 1 ( ) routine from the previous chapter . 
.x.xreset () is never used so all devices set its entry to nodev, a special routine 
which always returns an error condition . .x.xselect () is called when a user 
process does a select ( 2) system call; it returns 1 if the device can be 
immediately selected. In this example we are using the routine from the previous 
chapter. An alternative would be to recognize that since the Skeleton device is 
write only and arbitrarily fast, it's always selectable. In this case we could use the 
default sel true routine that always returns 1. 

The next step is to edit the file that tells conf ig how to locate the driver source 
code. This source code will not be common to all Sun systems, and thus its path
name will go not into /usr / sys/ conf. common/ files_cmn but into 
/usr / sys/ 'arch -k '/ conf / files. Assuming that the driver source is 
in /usr / sys/ sundev, here's the line you must add to /usr / sys/ 'arch 
-k '/conf/files: 
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sundev/sk.c optional sk device-driver 

This says that the file sundev / sk. c contains the source code for the optional 
sk device and that it is a device driver. 

After adding these lines to your configuration file, you can run conf ig: 

example# config SKELETON 

config uses SKELETON, /usr/sys/conf. common/files_cmn and 
/usr / sys/ 'arch -k '/ conf / files as input, and generates a number of 
files in the .. / SKELETON directory. One of these files is the makefile that 
contains a dependency tree for any new C source files you created during the pro
cess of adding new drivers (or whatever) to the kernel. make will use this as its 
command file when it is actually executed to produce the new kernel. When 
conf ig finishes generating the makefile, it automatically goes on to gen
erate the dependencies (unless you tell it not to with the -n command-line flag). 
The generation of the dependencies takes a long time, and before it starts, con
fig will notify you with the message: 

Doing a "make depend" 

Now you can change directory to the new configuration directory, .. / SKELE
TON in this case, and make the new system: 

example# cd .. /SKELETON 
example# make 

Now you must add a new device entry to the/ dev directory. The connections 
between the kernel and the device driver are established through the entries in the 
/ dev directory. Using the example above as our model, we want to install the 
device for the Skeleton driver. 

Device entries are made with one of two shell scripts in the/ dev directory. The 
first, MAKEDEV, is for standard system devices and should be left as is. The 
second, MAKEDEV. local, differs only in that it contains entries for user dev
ices, and it is here that entries for new devices should be placed. 

It's worth looking inside MAKEDEV to see the kinds of things it does. The lines 
of shell script below reflect what you'd add to MAKEDEV. local for the new 
Skeleton device. First, there are some lines of commentary: 
r 

\. 

#! /bin/sh 
# MAKEDEV.local 4.45 
* Graphics 
* sk* Skeleton Board 

86/04/15 

Then there's the actual shell code that makes the device entries: 
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7 .3. Devices that use Two 
Address Spaces 

sk*) 
unit='expr $i : 'sk)'' 
/etc/mknod sk$unit c 40 $unit 
chmod 222 sk$unit 

This code extracts the numeric portion of MAKEDEV. local 's argument and 
passes it on to mknod and chmod. In the simplest case, we simply say: 

example* MAKEDEV.local skO 

MAKEDEV. local then makes the special inode / dev / skO for a character spe
cial device with major device number 40 and minor device number 0, and then 
sets the mode of the file so that anyone can write to the device. 

Having added the new device entry, you can install the new system and try it out. 

example* cp /usr/sys/'arch -k'/SKELETON/vmunix vmunix+ 
example* halt 

The system here goes through the halt sequence, then 
the monitor displays its prompt, at which point you can 
boot the system in single-user state 

> b vmunix+ -s 
The system boots up in single user state and 
then you can try things out 

If the system appears to work, save the old kernel under a different name and 
install the new one in /vmunix: 

example* cd / 
example* mv vmunix vmunix
example# mv vmunix+ vmunix 

Make sure that the new version of the kernel is actually called vmunix because 
programs like ps and net stat () use that exact name in collecting infonnation 
they need from runtime tables. If the running version of the kernel is called 
something other than vmunix, the results from such programs will be wrong. 

Nonnally, devices interface to the system by way of a single address space. 
However, there are exceptions. Some Multibus devices have registers in Mul
tibus 1/0 space and memory in Multibus memory space. And there are any 
number of VMEbus devices coming on the market that have memory in 24 or 
32-bit VME space while keeping their control and status registers in 16, or even 
8-bit, VME space. 

Unfortunately, such situations can't currently be handled in a clean fashion 
because the kernel configuration program (con£ ig) can't cope with dual-space 
devices. The xxprobe ( ) routine is the core of the problem, since it deals with 
only a single space. 
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There are, fortunately, two ways to work around the problem: 

o The first is easier, but rather inelegant. It consists of treating the device as if 
it were two devices, and of writing two separate "drivers" for it. So, for 
example, if we were to have a new, dual-space, VMEbus version of the 
Skeleton device, we'd add the following two lines to the config file: 

* Skeleton Memory Space 
device skmO at vme32d32? csr OxD0000000 priority 3 
* Skeleton Register Space 
device skrO at vme16d16? csr OxDOOO priority 3 vector skintr Ox88 

It's also necessary to have two entries in /usr / sys/ 'arch 
-k '/conf/files: 

sundev/skm.c 
sundev/skr.c 

optional skm device-driver 
optional skr device-driver 

And it's necessary to have a second "driver". Actually, all of the real driver 
code goes into skr. c, which manipulates the device registers. The second 
driver, skrn. c, consists entirely of a probe () routine - all its other rou
tines are null. 

Both sides of the driver, skr. c and skrn. c, include the same register 
header file skreg. h. skreg. h contains an external declaration for an 
array of structures (one for each instance of the device) that contain what
ever information skr. c needs from the memory-side probe () routine: 

extern struct sk_devinfo sk_devinfo[NSK]; 

All that remains is for the memory-side probe () routine to initialize 
sk devinfo. 

o There's a second procedure for installing dual-space devices. It's a bit 
harder to use, but it doesn't require a stub driver containing only a 
probe () routine. 

Pick one of the two device installation addresses for normal treatment in the 
config file. It doesn't matter which one you pick, unless the device is a 
memory-mapped Multibus device, in which case you must pick the address 
in Multibus Memory space. Otherwise just pick the one that's most con
venient for your xxprobe () routine to use to test the device installation. 
The registers and memory in this first space will then be automatically 
mapped into kernel virtual space (as usual) by the autoconfiguration process. 

Then use the config file flags word to communicate the second space ins
tallation address to your driver. The driver will then find that address in 
rnd->rnd_flags and be able to access it from eitherthexxattach () or 
xxslave () routine; it's best (for most character devices) to pick it up at 
xxattach () time. The driver can then use rrnalloc () to allocate (from 
kernelrnap) virtual space for the second-space registers/memory, and then 
call rnapin () to map them into kernel space. (See the Kernel Support Rou
tines appendix for details about map in()). 
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7 .4. Adding and Removing 
Loadable Drivers 

All Sun architectures support loadable drivers. A loadable driver doesn't need to 
be linked with the kernel . o files. Nor does the system have to be rebooted or 
rebuilt for loadable drivers to be used. You can simply add a loadable driver to a 
running system. Once you have a driver in the loadable fonn, you can load it 
into the running system with the modload(8) command. You must be the 
superuser to do this. 

Take care when loading an undebugged driver for the first time. Although there 
are many consistency checks made when a driver is loaded, it is still possible for 
drivers to crash the system. One of the more common crashes occurs when the 
running kernel is not /vmunix. modload assumes by default (unless the -A 
switch is provided) that the running kernel is /vmunix. It resolves driver refer
ences to kernel addresses by reading the symbol table from /vmunix. If 
/vmunix is not the running system, then the system is likely to crash when the 
driver is used. 

A typical example of the modload command is: 

example# mod.load zz.o -con£ <config_file> -exec <exec file 

This tells the kernel that the driver object module is in z z . o. (See the Loadable 
Drivers section of the Driver Development Topics chapter for infonnation about 
how to build a loadable driver.) 

Configuration infonnation for the driver and optionally the block and character 
major numbers are specified in the file config_.file. If modload is successful, the 
file exec _file is executed. This file is typically a script used to make the / dev 
entries for the driver. modload(8) has many options; see its man page for 
details. 

Error messages from modload can appear in two places. The modload utility 
itself prints error messages to standard output on the tenninal from which 
modload is run. In addition, modload-related kernel code can print infonnation 
to the console. For this reason, we recommend that the console output be visible 
when you issue the modload command. 

When it is loading a driver, modload may fail for a variety of reasons. For 
example, the driver initialization routine may not do all that is required (as 
described in the Loadable Drivers section of the Driver Development Topics 
chapter). Or the linkage structure in the driver wrapper module may have invalid 
addresses. Since it is not possible to return a unique error code for every possible 
condition, a single error code is returned and additional infonnation is often 
printed on the console. 

To inquire about device drivers after they are loaded, use the modstat(8) com
mand. It displays the module id of the driver, the name of the device, and the 
major numbers of the block and character devices, as well as some additional 
infonnation about the module. 

The module id is required to unload a driver. A driver can be unloaded by using 
the modunload(8) command, as in this example: 
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[..._e_x_a_m_p_1_e_*_mo_d_un_1_o_a_d __ -_i_d_2_-_e_x_e_c_<_e_x_e_c_f_i_1_e_> _________ J 

This example assumes that the modstat command displayed the driver's 
module id as 2. The file exec _file is executed and if the execution is successful 
the driver is unloaded. Typically this file is a script that removes the / dev 
entries for the driver. 

An example of a script that could be used with modload is as follows: 

#!/bin/csh -f 
if $3 != "0" then 

if ( ! -r /dev/zzO) then 
echo /etc/mknod /dev/zzO b $3 0 
/etc/mknod /dev/zzO b $3 0 

endif 
endif 

if $4 != "0" then 
if ( ! -r /dev/xrfdOa) then 

echo /etc/mknod /dev/xrfdOa c $4 0 
/etc/mknod /dev/rzzO c $4 0 

endif 
endif 

The script is invoked with the following arguments: 

<module _id> <module _type> <block_ major_ number> <character_ major _number> 

modunload could be invoked with the following script to remove the / dev 
entries for the driver: 

#!/bin/csh -f 
rm -f /dev/zzO 
rm -f /dev/rzzO 
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8 
Pseudo-Device Drivers -A Ramdisk 

SunOS supports "software devices", sometimes called "pseudo devices", which 
have no associated physical devices. Such devices can be quite useful. The sys
tem memory devices, for example, are pseudo devices, and they can be used to 
access installed peripheral devices, as is shown in the discussion of frame-buffer 
installation in Direct Opening of Memory Devices section of this manual. The 
memory devices allow such direct physical-device access by providing a means 
by which processes can read and write physical memory outside their own 
address space. For example, the ps command uses the kmem pseudo-device 
driver to access the kernel's process tables by way of the physical memory to 
which the kernel is mapped. 

This section will introduce pseudo-devices by way of a real, working pseudo
device ramdisk. As you will see, such a ramdisk requires none of the subtlety 
that makes physical disk drivers so difficult.5 Yet it does buy speed, since ram
disks avoid two distinct kinds of file-system overhead: 

o In normal use, IO buffers get paged out, despite the use of the kernel buffer 
cache to minimize unnecessary 1/0 operations. A ramdisk is an especially 
big win on reads, since reading processes must normally block while 
requested data is brought into the buffer cache. 

o During normal file-system operation, file control information (like inodes) 
must be written synchronously with data. This overhead doesn't exist with 
ramdisks. 

Ram disks can be used for / tmp. 

NOTE In Sun0S 4.1 there is afacility already in place to do this for you, called tmpfs. lt 
addresses the benefits mentioned herein. 
This way, if a system crash results in the loss of ramdisk files, it's not a serious 
problem. Note that for some applications, particularly those that involve tem
porary files larger than ram disk memory, using / tmp isn't a very good idea. An 
alternative is to mount the ramdisk as / aux, and to use it explicitly each time 
you think it's safe. Ramdisks have only a minimal impact on applications 

5 The ramdisk given here is very crude. A production version should have its memory allocated at boot time 
and should be pageable. And with the memory-management system introduced in SunOS 4.0, a ramdisk 
probably won't improve performance anyway. In general, you '11 be better off letting UNIX manage memory as 
a page cache, rather than devoting some of that cache to a ram disk, or use tmpf s. 
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8.1. A Ramdisk Driver 

Ramdisk Source Code 

software- once they're set up they are entirely transparent. (Note that ramdisks 
- like devices in general - can be shared by multiple processes. This driver 
can thus be used as an indirect means of sharing memory.) 

The following ramdisk driver consumes a half-megabyte of kernel memory, 
which is allocated to the ramdisk pseudo-device. 

Put the source code for the ramdisk driver into/ sys/ sundev /ram. c. 

I* 
* Ramdisk pseudo-device to support 110 to real memory 
* ( a statically allocated kernel array). 
*I 

#include "ram.h" 
Hf NRAM > 0 
#include <sys/param. h> /* Includes <sysltypes.h> * I 
#include <sys/errno.h> 
#include <sys/uio.h> 
#include <sys/buf.h> 

#define RAMSIZE (1024*512) /* Half a megabyte *I 
char ram[NRAM] [RAMSIZE]; 

ramopen(dev,wrtflag) 
dev_t dev; 
int wrtflag; 

return(minor(dev) >= NRAM? ENXIO 0); 

ramsize(dev) 
dev_t dev; 

return(minor(dev) >= NRAM? -1 

ramread(dev,uio) 
dev_t dev; 
register struct uio *uio; 

btodb(RAMSIZE)); 

if ((unsigned)uio->uio_offset > RAMSIZE) 
return(EINVAL); 

return(uiomove(ram[minor(dev)]+uio->uio_offset, 
MIN(uio->uio_resid, RAMSIZE - uio->uio_offset), 
UIO_READ, uio)); 

ramwrite(dev,uio) 
dev_t dev; 
register struct uio *uio; 
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if ((unsigned)uio->uio_offset > RAMSIZE) 
return(EINVAL); 

return(uiomove(ram[minor(dev)]+uio->uio_offset, 
MIN(uio->uio_resid, RAMSIZE - uio->uio_offset), 
UIO_WRITE, uio)); 

ramstrategy(bp) 
register struct buf *bp; 

register long offset= dbtob(bp->b_blkno); 

if ((u_long)offset > RAMSIZE) 
bp->b_error = EINVAL; 
bp->b_flags I= B_ERROR; 

else { 
caddr_t raddr = ram[minor(bp->b_dev)]+offset; 
unsignednbytes=MIN(bp->b_bcount,RAMSIZE-offset); 
if (bp->b_flags & B_PAGEIO) 

bp_mapin(bp); 

if (bp->b_flags & B_READ) 
bcopy(raddr, bp->b_un.b_addr, nbytes); 

else 
bcopy(bp->b_un.b_addr, raddr, nbytes); 

bp->b_resid bp->b_bcount - nbytes; 

iodone (bp) ; 

#-endif 

Pseudo-device drivers, by definition, have no corresponding physical devices. 
Thus, they have no probe routines. 

Note the routine ramsize. All block drivers provide such a routine, which is 
charged with returning the sector size of the device in the peculiar units which 
the kernel expects. (This information is then used to maximize the speed of 
f sck). ramsize (} calls the btodb (} conversion routine, passing it an argu
ment in bytes, and receiving from it an appropriately scaled result. 

The more detailed discussion of these and related configuration procedures can 
be found in the Configuring the Kernel chapter of this manual. Edit 
/us r / sys/ 'arch - k ' /con f / files, adding the following line to the end 
ofit: 

sundev/ram.c optional ram device-driver 

Then, edit both the bdevsw and cdevsw arrays in /sys/sun/conf. c, 
adding entries for the ramdisk to each of them. (In this discussion, we will only 
use the ramdisk as a block device, but the driver provides all the entry points 
necessary for use as either a block or a character driver). 
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#include "ram.h" 
if NRAM > 0 
int ramopen(), ramread(), ramwrite(); 
int ramstrategy(), ramsize(); 
#else 
#define ramopen nodev 
#define ramread nodev 
#define ramwrite nodev 
#define ramstrategy nodev 
#define ramsize nodev 
#endif 

ramopen, nulldev, ramstrategy, nulldev, /*22*/ 
ramsize, 0 

ramopen, nulldev, ramread, ramwrite, 
nodev, nodev, seltrue, nodev, 0, 0 

} 

I* 63 * I 

Next, move into / dev and create device entries to correspond to the entries in 
conf. c. 

example# cd /dev 
example# /etc/mknod ramO b 22 0 
example# /etc/mknod rramO c 63 0 

The next step is to make a new configuration directory for the variant of you ker
nel that will include the ramdisk. Copy your kernel configuration file and add the 
line: 

pseudo-device ram 

to the pseudo-device section of the copy. If your config file was named GEN
ERIC, you might name the ramdisk variation GENERIC_ RAM. 

Then, make a version of the system kernel that includes the ramdisk: 

example# /etc/config GENERIC_RAM 
example# cd .. /GENERIC_RAM 
example# make 
example# cp /vmunix /vmunix.old 
example# cp vmunix /vmunix 
example# /etc/reboot 

During the reboot, note that the size of the kernel has gotten very large. After the 
reboot, make and associate a '' filesystem'' with the block ramdisk device: 
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/etc/mkfs /dev/ramO 1024 8 8 8192 1024 16 5 100 
/etc/mount /dev/ramO /tmp 

That's 1024 blocks total (512 Kb), broken out as 8 sectors of 8 tracks of 8192 
bytes per block with 1024 byte fragment size with 16 cylinders per group with 
5% minimum free (as in df(l)) and 100 revolutions per second. (This two line 
sequence should probably be put in the/ etc/re. local script). The logical 
block size of the file system (8192) must be the same size as the pagesize (8K). 

Once the ramdisk filesystem is mounted onto / tmp, then any program which 
creates and uses files on / tmp will use the ramdisk. Reads and writes to these 
files will be very fast. Measured performance indicates that 1/0 on files of about 
1 OK bytes is about 5 times as fast as with a physical disk, and that this factor 
increases to about 10 for very large files. 

Following is a test program that will exercise the driver. Another way to test it 
simply is to copy some data to the pathname via the cp command. 
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Ramdisk Test Program Here is a program to test that the ramdisk works: 

#define BUFSIZ 1024 
#define CYCLES 100 
#define RAMDISK 

I* 
* Ramdisk test program 
*I 

main () 
{ 

int fd; 
int nb; 
int i; 
int count=BUFSIZ; 
char buffer[BUFSIZ]; 

I* file descriptor * I 
I* number of bytes transferred * I 
I* generic loop counter variable * I 

int iterations=O, error=O, done=O; 

Hfndef RAMDISK 
I* Open a file on the regular filesystem * I 
if ((fd = open("testfile", 2)) == -1) { 

perror("ramdisk test (normal opening)"); 
exit(l); 

#else 
/* Open a file in the ram diskfilesystem * I 
if ( ( fd = open ( "/tmp/testfile", 2) ) == -1 ) { 

perror("ramdisk test (ram opening)"); 
exit(l); 

#endif 

do { 
lseek(fd, O, 0); 
if (write (fd, buffer, count) ! = count) { 

perror("ramdisk test (writing)"); 
exit(l); 

lseek(fd, O, 0); 
if (read(fd, buffer, count) != count) { 

printf("count= %d0, count); 
perror("ramdisk test (reading)"); 
exit(l); 

if (iterations++ CYCLES) done++; 

while !error && !done); 
close (fd); 
exit(O); 
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A.1. Standard Error 
Numbers 

A.2. Device Driver 
Routines 

A 
Summary of Device Driver Routines 

The system has a collection of standard error numbers that a driver can return to 
its callers. These numbers are described in detail in intro (2), the introduc
tory pages of the System Interface Manual. A complete listing of the error 
numbers appears in <sys/ errno. h>. 

These routines actually compose the bulk of the device driver. Some of them, 
like xxioctl (), are optional. Others, like xxprobe (), must appear in every 
driver. Omitted from this section is the xxs lave ( ) routine, which appears pri
marily in block-device drivers. See the The "Skeleton'' Character Device 
Driver chapter for additional infonnation about many of these routines. 

When a user program makes a system call that involves 1/0 devices, it's 
translated by the kernel into a call to the appropriate driver routine. However, 
when that driver routine is called, its parameters are no longer the same as the 
parameters that the user program passed to the system call - they will have been 
translated into parameters reflecting the actual run-time environment of the 
drivers, an environment set up and initialized by con£ ig and the 
autoconfiguration process and then maintained by the kernel and the drivers 
themselves. For example, a user program will call 

write (fileno, address, nbytes) 
int fileno; 
char *address; 
int nbytes; 

but the kernel will translate this into 

xxwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

by the time it calls the driver's .x.xwri te () routine. 
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xxat tach () - Attach a Slave ( J 
I>evice -Xt~a-tt_~_tc-rh_u_~m-td_)_mb __ ~d-ev_i_·c_e~*-m_d_;~~~~~~~~~~~~~~~~-' 

NOTE 

xxclose () - Close a Device 

xxintr () -Handle Vectored 
Interrupts 

xxat tach () does boot-time, device-specific setup and initialization. It's com
monly used in disk and tape drivers for setup tasks like reading labels, and in 
character drivers for the initialization of interrupt vectors and the reserving of 
blocks of memory. Its proper tasks are not limited to the initialization of actual 
hardware devices-xxattach () is also used to set up and initialize local data 
structures. 

When it needs to set a device interrupt-vector number, .x.xat tach () finds it in 
the md intr->v vec field of the mb device structure. On VMEbus - -
machines md_intr->v_ vec is the interrupt-vector number given for the dev
ice in the kernel config file and must be present. 

xxat tach () can also be used to set the 32-bit argument that's subsequently 
passed to xxintr (). This argument (contained in md_intr->v_ vptr) is ini
tially set to the unit number of the interrupting device, but it's often convenient 
to reset it to contain a pointer to a local structure. 

This does not work on the Sun 386i. It is hardcoded to be your irq 

xxclose(dev, flags) 
dev_t dev; 
int flags; 

xxclose () does whatever it has to do to indicate that data transfers can't be 
made on the device until it's been reopened. This may involve nothing at all, or 
it may include resetting and quieting the device, flushing data buffers, and releas
ing or unlocking resources (or unlocking the device itself if it's opened 
exclusively). Since xxclose () is called only when the last user process which 
is using the device closes it, xxc 1 o s e ( ) must clean up for all user processes 
which have had the device open . .x.xclose () doesn't need to report an error, 
although it can. flags, incidently, is the same as it is for .x.xopen (). 

[ x,:intr(ctrl_num) 
int ctrl_num; 

xxintr () is responsible for fielding vectored interrupts from the device. As 
such, it is specified (with its interrupt vector) in the kernel config file. As an 
interrupt routine, xxintr () (and any routines that it calls) is absolutely prohi
bited from calling sleep () or referencing the kernel user structure. 

xxintr () receives one 32-bit parameter, which is, by default, the unit number 
of the device that interrupted. However, you can arrange for it to receive some
thing else by changing the value in md_intr->v _ vptr. (See .x.xattach (), 

] 
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Note that the driver xxintr () rou
tine cannot itself set the errno regis
ter, since that register is actually a field 
in the user structure ( u. u error), 
and the user structure must not be 
accessed at interrupt time. Instead, 
xxintr () passes the error to the ker
nel via the buffer, and the kernel sets 
u.u error. 
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above). 

This does not apply to the Sun386i. The Sun386i receives two arguments. The 
first is the current priority level (cpl) and the second is the interrupt request 
(irq). The irq is hardwired so it cannot be changed. The interrupt routine can 
never receive the unit number. The unit number can be obtained by saving the 
interrupt request channel (board level + 8) at attach time and then figuring out 
which device received the interrupt at interrupt time. 

In character drivers which, like block drivers, make use of physic () and its 
associated structures, mechanisms and routines, xxintr () is used to indicate 
when the device is finished with one chunk and ready for the next. xxintr () is 
also instrumental in certain tasks which, by their nature, must be shared with 
top-half routines. Examples of such tasks are the maintenance of character 1/0 
buffers and select () -related bookkeeping structures. (In the select () 
case, xxintr () also has the job of calling selwakeup () to wakeup sleeping 
processes). 

Note that whenever xxintr () maintains a data structure or resource in coopera
tion with top-level routines, the top-level code must be protected by a mutual
exclusion lock. Interrupts are automatically disabled when an interrupt routine is 
called, so it is generally unnecessary for xxintr () to disable interrupts before it 
does its part of the job. 

xxintr () is also responsible for error handling and reporting. More 
specifically: 

o xxintr () should check the device for an error every time it's called. It can 
also check the driver state against the device state to ensure that the device 
is, in fact, doing what the driver expects it to be doing. Upon finding an 
"impossible" or unrecoverable error, xxintr () should panic (). But for 
regular errors it should call pr int£ () (or upr int f ()), flag the error in 
the 1/0 buffer, and then return. 

o The error is flagged by setting the B _ ERROR bits in the buffer header 
b _£ lags field (and, if an error code other than EIO is desired, by assigning 
that error code into the buffer b _ errcr field). The error code will then be 
propagated up to the user by way of physic (). physic () checks to see 
if the error flag has been set in the buffer, and if it has, passes the error code 
up to the user program, which usually plugs it into the global error register 
errnc. xxintr () doesn't itself return anything. 

o A retry attempt can be made before giving up and taking the error return. 
Whether or not this is advisable is entirely dependent on the specific device 
and error characteristics. (Note that the b _ resid field in the buffer header 
will typically indicate the number of bytes of data that were still 
untransferred at the error return). 

o The error return should abort the 1/0 request that produced the error and then 
place the device in its normal idle state. 
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xxioct1 () - Miscellaneous 
1/0 Control 

xxioctl(dev, cmd, data, flag) 
dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

The device-driver entry routines, taken as a set, are intended to constitute a uni
fonn abstract interface capable of accommodating all possible 1/0 devices. 
Obviously, such devices differ greatly, and thus the need for this xxioctl (). It 
is the escape mechanism by which miscellaneous operations are implemented. 

These functions vary greatly- almost anything is possible. The range of possi
bilities requires a very general interface, and xxioctl () has one. The cmd 
variable identifies a specific device control operation, and is typically used by 
xxioctl () as the index into a switch statement. The data parameter is the real 
escape hatch, a pointer to an array up to 255 bytes in length. This array, over 
which the driver and its users will overlay a driver-specific structure, can be 
treated as both an input parameter by which user programs send data to the driver 
and as an output parameter by which the driver returns data to its users. flag is 
setto the £_flags field of the file structure. The file structure, together 
with the file-mode flags to which its f _flags field can be set (FREAD, 
FWRI TE, and so on) is defined in <sys/file . h>. The driver is free to use 
flag to make its operation sensitive to the manner in which the file was opened by 
the user. 

In <sys/ ioctl. h> will be found a collection of macros which encode param
eter size and read/write control infonnation into ioctl () command codes. 
These macros tell the kernel, on a command by command basis: 

o How many of the maximum of 255 bytes in the ioctl () parameter are 
significant when that parameter is read. 

o How many of these bytes are significant when the parameter is written. 

o If the parameter bytes should be written back into kernel space before calling 
x.xioctl (). 

o If they should be read into user space after calling x.xi o ct l ( ) . 

The Versatec Interface driver in the Sample Driver Listings appendix of this 
manual contains some simple examples of the use of these ioctl () macros. 
(More complex examples can be found in <sys/ioctl . h> ). The Versatec 
Interface driver defines two ioctl () command codes (in <sys /vcmd. h> ): 

idefine VGETSTATE IOR(v, 0, int) 
idefine VSETSTATE _IOW(v, 1, int) 

The first parameter of the ioctl ( ) macros is an ASCII character that serves to 
group together each driver's command codes. This character is not checked and 
is rather arbitrarily chosen. In this case, the "v" stands for "Versatec". The 
second parameter is the command code itself. The third is the size of the 
ioctl () argument, which cannot exceed 127 bytes for Sun0S 3.x and 255 
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bytes for Sun0S 4.x. Note that the size is given as the name of the structure 
which will be used to interpret the parameter array. The macros _IOR, _row 
and _ I OWR then use the size of ( ) operator to determine the number of bytes 
consumed by the structure. 

The definitions of such ioctl () -related structures, together with the 
command-code definitions lhemselves, must be collected into a user accessible 
include file. Such include files are usually, though not necessarily, kept in 
/usr/include/sys. 

When the kernel processes the ioctl () system call, translating its parameters 
into the terms appropriate to anxxioctl () driver routine, it consults the 
read/write encode bits in the command code. If the read bit is set, then the argu
ment is read into a buffer in kernel space, and a pointer to that buffer is passed to 
the driver i o ct 1 ( ) routine. Likewise, if the write bit is set, the argument is 
copied back into user space after command execution is completed. 

xxioct 1 () does whatever it has to do, then returns O if there were no errors, an 
error code if there were. ENO TTY is the code used if the requested command did 
not apply to the device. The kernel passes error codes up to the user program, 
which usually plugs them into errno. 

xxmmap(dev, off, protection) 
dev_t dev; 
off_t off; 
int protection; 

xxmmap () is called for PfE information about the page (at offset off) of dev's 
memory. (This information is what the kernel needs to map the page to a virtual 
address). xxmmap () should first check that off doesn't exceed the device
memory size: 

if (off>= XXSIZE) return (-1); 

for this would cause the mapping of an area greater than the device memory. 
xxmma p ( ) returns the subset of the page table entry (PTE) containing the page 
frame number and the page type to its caller in the kernel. xxmmap () is called 
iteratively to perform a mapping requested by a call to mmap () -the looping 
and all of its bookkeeping, as well as the actual mapping, is performed by the 
kernel in a way that's transparent to the driver. 

xxmmap () returns -1 to the kernel if it can't do the mapping, otherwise it returns 
its PfE subset. Upon receipt of a -1, the kernel returns the error code E INVAL 

(Illegal argument) to the user program, where it's usually plugged into the global 
error variable errno. 
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.mninphys () - Determine 
Maximum Block Size 

unsigned .uminphys(bp) 
register struct buf *bp; 

xxopen () - Open a Device 
for Data Transfers 

xxminphys () determines a "reasonable" block size for transfers, so as to avoid 
tying up too many resources. x.xminphys () is passed as an argument to phy
sic. The system version of the xxminphys () function, minphys, may be 
used by any driver. xxminphy s () should perform the calculation: 

int block; /* some reasonable block size/or transfers, but 
less than maxphys unless the new maxphys kernel 
label is increased * I 

if (bp->b_bcount > block) 
bp->b_bcount block; 

xxopen(dev, flags) 
dev_t dev; 
int flags; 

xxopen ( ) is called each time the device is opened, and may include any 
device-specific initialization. Typically, it will: 

o begin by validating the minor device number and doing other device-specific 
error checking. 

o Then if everything is ok, it will initialize the device (for example by clearing 
registers, enabling interrupts or checking for power-up errors) and possibly 
the local data structures. This structure initialization may include locking 
the device if it's exclusive use, or allocating driver resources - for example 
allocating dynamic buffers that will be needed later. 

o Finally, xxopen () will typically wait for the device to come on-line, and 
return an error if it doesn't. 

NOTE /f xxopen () supports "clone open", that is to say, if it will allow a user to open 
a driver without specifying a minor device, then it is important that it does not do 
anything that may lead to its being blocked before it actually chooses the minor 
device that it is going to clone. Otherwise, there's a possibility of someone else 
grabbing the device while xxopen ( ) is blocked. 

The integer argument flags indicates if the open is for reading, writing, or for 
both. The constants FREAD and FWRITE (from <sys/file. h>) are avail
able to be AND'ed withjia,gs. 

The minor device number encoded in dev is of concern only to the device driver 
itself. It can itself be encoded to contain various kinds of information, as needed 
by the driver. The driver developer will want to provide macros to break out 
encoded subfields. dev may encode a unit or driver number, a special feature, or 
an operating mode. 
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Hardware is There 
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xxopen {) returns ENXIO (No such device or address) if the minor device 
number is out of range, ENODEV (No such device) if an attempt was made to 
open the device with an inappropriate mode or EI o (1/0 Error) to indicate an 1/0 
error in the course of an attempted initialization. If the open is successful, x.xo
pe n {) returns 0. The kernel will return the error code to the user program, 
where it is usually plugged into the global error variable errno. 

[ xxpoll () ] 
xxpoll {) is responsible for fielding non-vectored interrupts from the device. In 
situations where multiple devices share the same interrupt level, xxpoll {) must 
determine if the interrupt was actually destined for this driver or not. xxpo 11 { ) 
returns O to indicate that the interrupt was not serviced by this driver, and non
zero to indicate that the interrupt was serviced. It is a gross error for xxpoll {) 
to say that it serviced an interrupt when it did not. 

If a device driver handles both vectored interrupts and polling interrupts, 
xxpoll {) typically calls the xxintr {) routine with the proper arguments, nor
mally the unit number of the device that interrupted. sleep may never be 
called from xxpoll {) , or, for that matter, from any of the lower-half routines . 

xxprobe(reg, unit) 
caddr_t reg; 
int unit; 

x.xprobe () detennines whether the device at the kernel virtual address reg actu
ally exists and is the correct device for this driver. The method by which it 
accomplishes this is impossible to standardize, for devices provide no unifonn 
means of identification. Indeed, some devices fail to provide even reasonable 
non-standard means of identification. 

The kernel provides a set of functions to help with probing. These functions can 
probe an address, recover from the bus error that will occur if no device is 
installed at that address, and return with an indication as to whether such a bus 
error occurred. These functions are peek () , pee kc () , pee kl () , poke (), 
pokec () and pokel (). 

It's possible for probe () to check the value of the reg parameter to ensure that 
the device isn't installed at an address that it can't itself address. The device's 
entry in the kernel config file detennines which address space it's mapped into, 
but it's sometimes possible for the device itself to be configured differently. The 
driver can check, for example, that reg doesn't contain an address greater than 
0 xFFFFF (that is, an address with more than 20 significant bits) if the device is 
configured for 20-bit references. 

It's also possible for xxprobe () to do some device initialization, even though 
such initialization is properly the job of x.xat tach (). This can make sense if 
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xxread () - Read Data from 
Device 

xxse1ect () - Select Support 

such initialization allows xxprobe () to identify and verify the device, but it 
should only do the amount of initialization necessary to detennine if the device is 
really there. It definitely should not allocate any memory that won't be used if 
the device isn't found, and it should not assume that just because it found a dev
ice the system will choose to include that device in its configuration. 

If the correct device is found at the probed location, xxprobe () returns 
sizeof(structxxdevice). (This is the size of the device registers in memory 
space). If no device is found at the expected location, or if the device found is 
not the one that was expected, xxprobe () returns a 0. If it doesn't, the kernel 
will be incorrectly led to believe that a device is present, and future attempts to 
use it will cause the kernel to panic () with a bus error. 

Note that the amount of memory mapped in by the autoconfiguration code is 
detennined by the size given in the mb_dri ver->rndr_size field, and not by 
the value returned from xxprobe (), which is used only for the go/nogo test. 

xxread(dev, uio) 
dev_t dev; 
struct uio *uio; 

xxread () is the high-level routine called (in character device drivers) to per
fonn data transfers from the device. xxread () must check that the minor dev
ice number passed to it is in range. If the minor device number is out of range, 
xxr ea d ( ) returns like so: 

if (XXUNIT(dev) >= NXX) 
return (ENXIO); 

Subsequent actions of xxread () differ depending on whether the device is a 
tty-style character-at-a-time device or a device that buffers its 1/0 into blocks. 

For block transfers, xxread () uses physic (), its associated mechanisms, and 
the xxstrategy (). buf is here an array oflocally declared buffers: 

return (physio(xxstrategy, &buf[minor(dev)], 
dev, B_READ, minphys, uio)); 

If the read operation fails, xxread () passes the error code whichxxintr () set 
in the buffer header up to the kernel. The kernel then passes it on to the user pro
gram, which usually plugs it into the users global error variable errno. 

xxselect(dev, rw) 
dev_t dev; 
int rw; 

The xxselect () routine is necessary if the driver is to support the select () 
system call. rw is either FREAD, FWRITE or 0. (Simple character devices won't 
have occasion to use the O value, which is intended for exceptional conditions. It 
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1/0 

xxwrite () - Write Data to 
Device 
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is used by network devices). These constants are defined in <sys/file. h>. 

If xxselect () only supports polling, then it simply detennines if the device 
specified by the major/minor pair encoded within dev is ready to go, returning a 
1 if it is and a O if it's not. Interrupts must be disabled while this check is per
fonned, so xxselect () should always do a 

s = spl6(); 

immediately, and a 

splx(s) 

before returning. 

If, however, xxselect () allows user processes to wait for a device to become 
ready, it must do somewhat more work. In this case, the driver will have to 
maintain a local per-device structure which can associate a process with each 
device. It can do so with the current process proc structure, a pointer to which 
can be found in u. u _procp. (If the device can read and write independently, 
separate processes must be tracked for the two cases). The local structures must 
also contain some state infonnation, which will be used by xxselect () (as 
well as xxintr ()) for bookkeeping purposes. The details are somewhat com
plicated, and are illustrated in the Variation with "Asynchronous 1/0" Support 
section of the The "Skeleton" Character Device Driver chapter of this manual. 

r 

xxstrategy (bp) 
register struct buf *bp; 

xxstrategy () is a high-level 1/0 routine designed to be called from phy
sio (). Its name derives from its role in block-device drivers, where xxstra
tegy () has responsibility for reordering the 1/0 request queue so as to increase 
the overall 1/0 bandwidth. In character devices (even those which queue 1/0) 
such reordering is to no advantage, and xxstrategy () 's major function is 
structural. It allows the xxread () and xxwr i te () routines to share their com
mon code in a routine designed to be called from physio (). xxstrategy () 
returns no error code to its caller in the kernel. Instead, errors that occur in the 
course of the 1/0 operation are reported by xxintr () by way of the buffer 
header and passed along by xxs tr ate gy ( ) . 

xxwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

xxwr it e ( ) is the high-level routine called (in character device drivers) to per
fonn data transfers to the device. xxwri te () must check that the minor device 
number passed to it is in range. If the minor device number is out of range, 
xxwr i te () returns like so: 
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if (XXUNIT(dev) >= NXX) 
return (ENXIO); 

Subsequent actions of xxwr it e ( ) differ depending on whether the device is a 
tty-style character-at-a-time device or a device that buffers its 1/0 into blocks. 

For block transfers, xxwri te () uses physio (), its associated mechanisms, 
and the xxstrategy (). buf is here an array oflocally declared buffers: 

return (physio(xxstrategy, &buf[minor(dev)], 
dev, B_WRITE, minphys, uio)); 

If the write operation fails, xxwr i te () passes the error code which xxintr () 
set in the buffer header up to the kernel. The kernel then passes it on to the user 
program, which usually plugs it into the global error variable errno. 
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bcopy () -Byte Copy for 
Nonoverlapping Regions 

bp _ mapin () - Map a user 
buffer into kernel space 

B 
Kernel Support Routines 

These routines are in alphabetical order, on the assumption that this will make 
them easier to find. 

r 

void 
bcopy(from, to, count) 

caddr t from, to; 
u int count; 

Copies count bytes from the address designated by from to the address desig
nated by to. The operands may not overlap; i.e. the interval [from,from+count] 
must be disjoint from the interval [ to, to+count]. Use ovbcopy () to copy 
overlapping regions. 

[

bp_mapin (bp) 
_ struct buf *bp; 

bp _ map in () allocates kernel virtual address space from the kernelmap, maps 
the data referred to by the buffer bp into the space allocated, and converts 

J 

b _ un.b _ addr to the new address, which is now valid at any time in the kernel. 
The driver must call bp _ mapin () after calling physio () but before starting 
the data transfer - usually somewhere early in the driver's xxstrategy () rou
tine, before using the b _un.b _ addr field from the buffer header. 

Device drivers that use the kernel routine physio () may be affected by a 
change in the implementation of phys io () from SunOS 4.0 on. The change 
will only affect drivers that touch the actual data in the 1/0 buffer themselves, 
from the bottom half of the driver (the interrupt routine). 

The physio () routine no longer maps the user's 1/0 buffer into kernel virtual 
address space using the kemelmap. The result is that the data address field in the 
buffer header ( bp->b _un.b _addr) is now the same as the user context virtual 
address. This has no impact on a driver that touches the data in the 1/0 buffer 
only in its top half. 
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bp_mapout () -Map out a 
user buffer in kernel space 

btodb () - Convert Bytes to 
Disk Sectors 

bzero () - Initialize Byte 
Memory Region to Zero 

copyin () - Move Data 
From User to Kernel Space 

However, when the interrupt routine is running, this data address will not neces
sarily be valid. If the driver tries to touch the data in the buffer during its inter
rupt processing, a variety of errors will occur, ranging from silently touching the 
wrong data to kernel bus error traps. This is a change from earlier SunOS 
rele~ses, where the buffer address was valid at any time in the kernel, after 
phy.sio {) had been called. 

For drivers that need to reference the data in the 1/0 buffer from interrupt level, 
the correct approach in SunOS 4.0 and later is to use bp _ map in {) and 
bp _ ma pout {) . Using bp _ map in {) to access the user buffer inside the dev
ice driver will ensure the user buffer is aligned on the same cache line as 
mbsetup {), for machines with a write-back cache. 

[ bp mapout(bp) 
- struct buf *bp; ] 

bp _ mapout {) undoes the kernel mapping and releases the space in the kernel
map. 

[ btod1;' (bytes) 
int bytes; 

Converts bytes into standard kernel block-size units. btodb {) is called (for 
block drivers) from xxsize {). It is listed here because it is called from the 
example ramdisk pseudo-device driver. 

void 
bzero(base, count) 

caddr t base; 
u int count; 

Initializes to zero count bytes starting from the address designated by base. 

copyin(udaddr, kaddr, n) 
caddr_t udaddr, kaddr; 
u int n; 

copy in {) moves data from the user address space to the kernel address space. 
It is commonly used when writing xxioctl {) routines. See copyout {). 

kaddr is a kernel virtual address, udaddr is a user virtual address, and n is the 
number of bytes to copy in. Returns O if no error occurs, EFAULT on a memory 
error, and other Exxx errors on pagefaults which cannot be resolved. The value 

] 
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copyout () - Move Data 
From Kernel to User Space 

CDELAY () - Conditional 
Busy Wait 

DELAY() -Busy Wait for a 
Given Period 

dma _ done () - Free the 
DMA Channel 
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of n can be up to 1 megabyte, any more is dependent on the specific machine 
architecture. 

\. 

copyout(kaddr, udaddr, n) 
caddr_t kaddr, udaddr; 
u int n; 

copyout () moves data from the kernel address space to the user address space. 
It is commonly used when writing xxioctl () routines. See copyin (). 
ka.ddr is a kernel virtual address, udaddr is a user virtual address, and n is the 
number of bytes to copy out. Returns O if no error occurs, EF AULT on a memory 
error, and other Exxx errors on pagefaults which cannot be resolved. The value 
ofn can be up to 128 kilobytes, any more is dependent on the specific machine 
architecture. 

r 

CDELAY(condition, time) 
int condition, time; 

CDELAY () is like DELAY () (see below) in that it busy waits for a specified 
number of microseconds. It differs, however, in that it has a second argument 
condition. Each time it goes through its busy wait loop, CDELAY () checks con
dition, and, if it's true, it immediately returns. In typical usage, condition is a 
masked subset of the bits in a device register. 

( DELA~ (tim~) 
int time; ] 

DELAY busy waits for a specified minimum number of microseconds. That is, it 
just spins around using CPU time. It can be useful in situations where a device is 
not quite slow enough to justify having its driver go to sleep. In such cases, it's 
useful to busy wait for a short time. The reasoning is that while busy waiting is a 
waste, servicing an interrupt costs a lot more CPU time. 

DELAY () is also useful in introducing pauses between accesses to a device with 
write latency. A device register may, for example, require multiple sequential 
writes, and yet also require delays between the writes. See vpprobe in the 
Sample Driver Listings appendix for an example. See CDELAY (). 

[ dma_~one (chan) 
int chan; ] 
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dma_setup () -Set Up for a 
OMA Transfer 

On Sun386i only. After a OMA transfer completes, dma _ done () must be 
called to mark the channel as not busy so that another transfer can proceed. 

[ dma setup (dma) 
-struct dma_request *dma; ] 

On Sun386i only. dma _setup () is called after the driver has gotten a contigu
ous set of virtual addresses from mb setup ( ) and before the device is pro
grammed to start sending or receiving data. The dma _ request structure 
(defined in <sun38 6/ dma. h>) contains all the infonnation required to set up 
the 82380 OMA chip on the Sun386i. 

Unlike the Sun-3, Sun-3X, Sun-4 line of machines, the Sun386i has a memory 
management unit as an integral part of the CPU (the 80386). Therefore, to use 
the OMA facility of the Sun386i for a device driver, you must interface to the 
82380 chip, which contains the OMA controller. 

The primary interface to the OMA chip is the dma _ request structure. You 
must fill in the fields in this structure and then call dma _setup () with a 
pointer to the structure. dma _setup ( ) takes the contiguous virtual addresses, 
which were obtained from a call to mbsetup (), and sets up a linked list of phy
sical addresses to be loaded into the OMA chip as needed. 

dma _setup () returns a value of zero if the setup was successful, and non-zero 
if there is a problem. Reasons for failure are: the channel was busy, the transfer 
was zero pages long, or memory could not be allocated for the linked list of 
buffers. 

The fields in dma _ request structure are defined as follows: 
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I* 
* DMA request structure passed to dma _setup ( ) . 
*Seethe Intel 82380 Tech Ref for more info. 
*I 
struct dma_request { 

u_char dma_channel; 
u char dma_xfer_mode; 

#define DMA DEMAND MODE - -
#define DMA_SINGLE_MODE 
#define 
#define 

char 
#define 
#define 

DMA BLOCK MODE - -
DMA CASCADE MODE - -

dma_rdwr; 
DMA READ 
DMA WRITE 

u_long dma_count; 
u_long dma_req__space; 

0 
1 
2 
3 

2 
1 

#define DMA MEMORY 0 
#define DMA IO 1 

u int 
#define 
#define 
#define 

dma_req__size; 
DMA BUS 32 1 

2 
3 

} ; 

DMA BUS 16 
DMA BUS 8 

char 
caddr t 
u_long 
u int 
char 
caddr t 

dma_req__hold; 
dma _ req__ addr; 
dma_target_space; 
dma_target_size; 
dma_target_hold; 
dma_target_addr; 

I* Channel number: 0 - 7 * I 
I* Transfer mode * I 

I * Transfer direction * I 
I* (Relative to requester) * I 

I* Transfer count * I 
I* Requester address space * I 
I* Memory or memory-mapped * I 

I* 1/0 mapped * I 
I* Size of xfers to/from requester * I 

I* 32-bit transfers * I 
I* 16-bit transfers * I 
I* 8-bit transfers * I 

I* 1 = hold address, 0 = increment * I 
I* Requester (virtual) address * I 
I* Target address space * I 
I* Size of xfers to/from targit * I 
I* Hold/increment target address * I 
I* Target (virtual) address * I 

In this context, the "requester" is the device that requests service from the 82380 
(normally a peripheral such as a disk controller). The "target" is the "device" 
with which the requester wants to communicate (normally system memory). 

The fields of the dma _request structure are used as follows: 

dma channel 
Specifies the channel that the requester will use for the transfer. 

dma xfer mode - -
Refers to the type of transfer that the requester is capable of supporting. The 
SCSI controller, for instance, uses the DMA _ s INGLE_ MODE of transfer, as 
does the floppy controller. Refer to the peripheral manufacturer's 
specification sheet and the 82380 data sheet for more details. 

dma rdwr 
is the direction of data transfer relative to the requester. DMA _ WRITE 
means transfer from the requester to the target and DMA _ READ means 
transfer from the target to the requester. 

dma count 
is the byte count for the transfer. 
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dma_req_space 
is the address space in which the requester resides, i.e., whether the device is 
memory mapped (DMA MEMORY) or 1/0 mapped (DMA IO). - -

dma_req_size 
is the size of the requester's data path ( DMA _BUS_ 8 = 8 bits, 
DMA_BUS_l6 = 16 bits, DMA_BUS_32 = 32 bits) and therefore the amount 
of data transferred with each OMA bus cycle. 

dma_req_hold 
indicates whether the 82380 should hold the requester address constant 
throughout the OMA transfer, or increment it with each bus cycle. Typically 
the requester address is the address of the device's 1/0 register, which is 
fixed, so dma_req_hold is set to "1 ". 

dma_req_addr 
is the requester's virtual address. 

dma_target_space 
is the address space in which the target resides (usually OMA_ MEMORY). 

dma_target_size 
is the size of the target's data path ( D MA_ Bus_ 3 2 for system memory). 

dma_target_hold 
indicates whether the 82380 should hold or increment the target address dur
ing the OMA transfer. For memory devices, the 82380 should increment the 
target address with each bus cycle, so "dma_target_hold" is set to 0. 

dma_target_addr 
is the target's virtual address. 

Once all these fields are set up by the driver, the driver calls the dma _ setup () 
routine. The following pseudo-code routines demonstrate how to use the DMA 
routines: 

*include <machine/dma.h> 
*include <sundev/mbvar.h> 

struct 
caddr t 

mb_device *xxinfo; 
xx ioaddr = XX_ADDR; 

xx_example(bp) 
struct buf *bp; 

I* Device info * I 
I* Address of device's I/0 port * I 

struct mb device *md = xxinfo[O); 

I* 

unsigned int target_addr; 
unsigned int transfer_count; 
int channel; 
int readflag; 

* Set up DMA transfer. 
*I 

target_addr = MBI_ADDR(mbsetup(md->md_hd, bp, 0)); 
transfer_count bp->b_bcount 
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channel= md->md_dmachan; 
readflag = ((bp->b_flags & B_READ) ? 1 : 0); 

if (xx_dma_setup(target_addr, transfer_count, 

I* 

channel, readflag) != 0) 
return(-1); 

* Code to talk to the device, initiate the transfer, 
* and wait for transfer completion. 
*I 

!* 
* Free DMA resources. 
*I 

xx_dma_done(channel); 
mbrelse(md->md_hd, &target_addr); 

return(O); 

xx_dma_setup(addr, count, chan, rdflag) 
unsigned int addr; 
unsigned int count; 
int chan; 
int rdflag; 

struct dma_request dreq; 

dreq.dma_channel = chan; 
dreq.dma_xfer_mode 

I* Dma channel * I 

I* Single mode transfer * I DMA_SINGLE_MODE; 
dreq.dma_rdwr = 

(rdflag? DMA_WRITE 
dreq.dma_count = count; 

DMA _READ) ; / * Direction * / 

dreq.dma_req_space 
dreq.dma_req_size 
dreq.dma_req_hold 
dreq.dma_req_addr 

DMA_MEMORY; 
DMA_BUS_8; 
1; 
xx_ioaddr; 

I* Transfer count * I 

I* Memory-mapped requester* I 
I* 8-bit data path * I 
I* Hold address constant * I 
I* I/0 port virt. address * I 

dreq. dma_target_space = DMA_MEMORY; /*Target is system memory* I 
dreq.dma_target_size DMA_BUS_32; /* 32-bitdatapath */ 
dreq.dma_target_hold = 0; l*lncrementaddreachcycle*/ 
dreq.dma_target_addr = addr; /* Buffervirtualaddress */ 
return(dma_setup(&dreq)); 

xx_dma_done(chan) 
int chan; 

dma_done(chan); 
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gsigna1 () - Send Signal to 
Process Group 

hat_getkpfnum() -
Address to Page Frame Number 

inb () -Read a Byte from an 
1/0 Port 

iodone () - Indicate 1/0 
Complete 

iowait () -Wait forl/0 to 
Complete 

\.. 

gsignal(pgrp, sig) 
int pgrp; 
int sig; 

Sends signal sig to all of the processes in the process group pgrp. See psig
nal (). 

, 
u int 
hat_getkpfnum(addr) 

addr_t addr; 

hat_getkpfnum takes a virtual address and returns its associated Page Frame 
Number. This number has already been masked down to one that can appropri
ately be returned by the driver xxmmap () routine. 

[ inb(port) 
short port; ] 

Sun386i only. inb () returns the byte value from the specified port address in 
the 1/0 space. (See outb () ). 

[
iodone(bp) J 

-· __ s_t_r_u_c_t __ b_u_f __ *b_p_; ------------------

In the skeleton driver example, iodone is called to indicate that 1/0 associated 
with the buffer header bp is complete, and that it can be reused. iodone sets 
the DONE flag in the buffer header, then does a wakeup call with the buffer 
pointer as argument. iodone () is called from the bottom half right after the 
call to wakeup (). See iowai t (). 

[

int iowait(bp) 
. struct buf *bp; 

iowai t waits on the buffer header addressed by bp for the DONE flag to be set. 
iowai t actually does a sleep on the buffer header and is called from the top 
half in place of sleep () . iowai t () also returns the error value. See 
iodone (). 

] 
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kmem _a11oc () - Allocate 
Space from Kernel Heap 

kmem _free () - Return 
Space to Kernel Heap 

1og () - Log Kernel Errors 

\.. 

caddr_t kmem_alloc(nbytes) 
u int nbytes; 
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Allocates nbytes of contiguous kernel memory and returns a pointer to it. If 
called from an interrupt routine, kmem......'.alloc () can return a NULL. (Though 
kmem _ alloc () generally should not be called from the interrupt level.) It 
returns a NULL if its request can't be satisfied. Note that kmem _ alloc () 
takes a while, and shouldn't be used frivolously. Memory allocated with 
kmem _alloc () can be recycled with kmem _ free (). 

kmem_free(ptr, nbytes) 
caddr_t ptr; 
u int nbytes; 

Returns the block (allocated by kmem al lo c ( ) ) at ptr to the kernel heap. If 
the block has already been freed, or if ptr doesn't indicate an address within the 
heap, kmem _free () panics. When the block is freed, it is coalesced with adja
cent free blocks to ensure that the free blocks in the heap are as large as possible. 
kmem_free (), like kmem_alloc (), should not be called from the interrupt 
level. 

[

log (~ri_co~e, ... ) l 
int pri_code; 

-----------
The kernel provides a log () function analogous to the sys log (3) function 
supplied with the C library for user programs. The first argument to log () is a 
priority code, as defined in <sys/ syslog. h>, and is identical to the priority 
codes used by sys log ( 3). The subsequent arguments are a pr intf () for
mat string and the values to be printed under its control. Unlike sys log (), the 
fonnat string must be tenninated with a newline (\n) if a newline is to be printed 
at the end of the message. 

Messages logged with log () will not pass though the nonnal kernel 
print£ () mechanism if the syslogd daemon is running. They will get writ
ten to the system message buffer just as print£ () messages are. The sys
logd daemon will read them using a special device driver, and will log them as 
messages from the "kern" facility with the given priority. 

If such a message is to be printed on the console, syslogd will do so, using its 
standard fonnat which includes a time stamp. Messages printed with 
pr intf () will get logged as messages from the ''kem'' facility with a priority 
of LOG_ CRI T, except that sys 1 o gd will not print them on the console as they 
have already been printed there by the kernel. The kernel does not time stamp 
messages that it prints; thus, messages logged with log () will be time stamped 
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machineid () - Get Host Id 
FromEprom 

MBI _ ADDR () - Get Address 
in DVMA Space 

mb_mapa11oc () - Get 
Address in DVMA Space 

if they are printed on the console, while messages printed with print f ( ) will 
not. Furthennore, syslogd does not lock out interrupts while printing mes
sages, so messages logged with log () will not tie up the machine while they 
are being printed, unless syslogd is not printing and the kernel must print the 
message itself. 

[ machineid () ] 
machineid () takes no arguments and returns an unsigned int which contains 
the same value returned by gethostid (). This is useful when the driver, run
ning in kernel space, needs to know the hostid of the machine it is running on. 

( MBI_ADDR(mb_cookie) 
int mb_cookie; ] 

MBI _ ADDR () is a macro that takes the "cookie" (abstract number) returned by 
mbsetup () and converts it into a 32-bit transfer address, which may be either 
in the DVMA space or a VMEbus address space. This is the address that is then 
given to the bus-master device, though it may first need to be checked (especially 
for older devices) to ensure that it is not larger than the device capacity. See 
mbsetup () and mbrelse (). 

caddr_tmb_mapalloc(map,bp, flags,waitfp, arg) 
struct map *map; 
register struct buf *bp; 
int flags; 
int (*waitfp) (); 
caddr_t arg; 

This is one of two new routines that device drivers can use to allocate DVMA 
space for 1/0 transfers. These routines are a move toward separating the alloca
tion and maintenance of DVMA resources from the complex framework of the 
mainbus ("mb") structures. They also simplify matters in the case when no 
DVMA space can be allocated. The old mbsetup () and mballoc () inter
faces are retained for compatibility with current drivers, so use of the new rou
tines is entirely optional. 

There are two main differences between the old and new routines. The first is that 
the new routines use a generic map structure instead of a pointer to a struct 
mb _ hd. This provides for systems which do not have a "mainbus" but which do 
have DVMA capability. 

The second difference is the way in which the allocation routines behave if there 
is no DVMA space available; the old scheme would return NULL and force 
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drivers to call the allocation routines at some later point, either by way of a 
periodic timer in the driver or by being interrupted by 1/0 completion. The new 
interfaces use a "callback" scheme to inform drivers when DVMA has become 
available again. The driver passes in a pointer to the routine it wishes to be called 
back with and an argument to the callback routine. The argument is data private 
to the device driver (i.e. the allocation routines don't examine or modify it) and 
can optionally be used as a hint by the driver to itself. After the driver's callback 
request is queued, the allocation routines return NULL. 

At this time, the driver puts the request which failed on a wait queue of its own, 
since the allocation routines only queue the callback routine, not the request 
itself. This method allows drivers to manage their own queues and to perform 
any optimizations on the request ordering they deem useful. For simplicity and 
economy of kernel resources, callback routines are only placed on the wait queue 
if they are not already there. Subsequent requests using an already queued call
back routine will be ignored. The remaining responsibility of the driver's call
back routine is to return DVMA_RUNOUT (defined in <sys/mbvar. h>) 
when DVMA has run out, as the allocation routines must know when to stop pul
ling callback routines off the wait queue. 

map is a pointer to the DVMA allocation map structure, buf is the buffer header 
associated with this request, jla.gs is set by the device driver to indicate special 
processing for this request, waitfp is a pointer to a function to be queued by the 
allocation routines if DVMA space is not available and the driver has set the 
flags parameter to MB_ CAN1W AIT, and arg is the argument to the callback func
tion. 

The following example shows a simple device driver start () routine that uses 
the mb_mapalloc () function to obtain DVMA space. 
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mb _ nbmapal.l.oc () - Get 
Address in DVMA Space 

xxstart(arg) 
caddr_t arg; 

struct buf *bp; 
struct xxunit *un; 
int bufaddr, unit; 

for (bp = bufq; bp; bp = bp->av_forw) { 
unit= dkunit(bp); 
un = &xxunits[unit]; 

if (bufaddr = mb_mapalloc(un->un_mc->mc_mh->mh_map, bp, 
MB_CANTWAIT, xxstart, arg)) { 

xxgo (); 
else { 

bufq = bp; 
return (DVMA_RUNOUT); 

bufq = bp; 
return (0); 

Points of note: The variable buf q is a queue of buffer pointers maintained by the 
driver; incoming requests are put on this queue, as well as requests that could not 
get DVMA space. The callback routine is the xxstart () routine itself, ignor
ing any arguments. This could have been a separate function within the driver, 
but we are showing simplicity here. 

If DVMA is not available (i.e., if the return value ofmb_mapalloc () is 
NULL), then mb _ mapalloc () will queue up a pointer to the xx start () 
function. When DVMA space frees up, xx start () will be called back and 
will attempt to run its queue again. Note that even though space is now avail
able, there is no guarantee that it will be sufficient to map this particular request. 
In such an event, mb_mapalloc () will simply requeue the request. 

Since the xxstart () routine can be invoked by other driver routines or by the 
DVMA allocation routines, care should be taken in how such arguments are used. 

r 

caddr_tmb_nbmapalloc(map,addr,bcnt, flags,waitfp, arg) 
map *map; 
caddr_t addr; 
int bent, flags; 
int (*waitfp) (); 
caddr t arg; 
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This is the second of two new routines that device drivers can use to allocate 
DVMA space for 1/0 transfers. This routine is for devices which do not use the 
buf structure, but still need to request DVMA space. 

The only difference between this and mb_mapalloc () is that the bzefstructure 
has been replaced by addr and bent, which represent the buffer address and byte 
count, respectively. 

mapin(ppte, vpagenum, physpagenum, sizeinpages, access) 
struct pte *ppte; 
u_int vpagenum, physpagenum; 
int sizeinpages, access; 

mapin () maps physical addresses to virtual addresses. Device drivers use it to 
set up kernel virtual memory so that device registers and memory can be directly 
accessed. This is useful for devices which: 

o interface to the kernel by way of two different memory spaces. Since the 
autoconfiguration process only sets up one space, such cases are best han
dled by having the .xxattach () routine use mapin () to set up the other. 

o can consume variable amounts of virtual memory space, and for which, 
therefore, an optimum mapping cannot be made at autoconfiguration time. 
This is the case, for example, with certain kinds of variable-resolution frame 
buffers. 

Drivers that call map in () in their .xxat tach () routines must first call 
rmalloc (kernelmap, ... ) to get the kernel virtual addresses which 
mapin () requires. (Actually, rmalloc () will return indexes to kernel virtual 
addresses-see below). Note that, when a driver calls mapin () , it should also 
call mapout () to return the mapped virtual memory when its no longer needed. 

ppte is a pointer to the PTE which performs the mapping. This is the PTE in 
Sysmap (defined in <sun [ 33X4 J /pte. h>) which corresponds to the map 
index returned from rmalloc (kernelmap, ... ) . That is,ppte can be 
given as &Sysmap [kmx], where kmx is the map index returned by rmal
loc (). 

vpagenum is the number of the virtual page where the physical memory is to be 
mapped. kmx, the map index returned by rmalloc (), can be used to calculate 
a virtual address, which can then be converted to a virtual page number like so: 

vpagenum = btoc(Sysbase) + kmx; 

Here Sysmap is the external array of page table entries used to map virtual 
addresses, starting at the (kernel virtual) base address Sysbase. btoc () is a 
macro (see <machine/param. h>) which converts addresses to page numbers, 
and, if necessary, performs the appropriate rounding. 

Note that there are a number of general-purpose macros designed to convert 
between kernel map indexes and virtual addresses. These macros are in 
<sys/vrnmac. h>. One of them, kmxtob expects an (int) kernel map index 
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and returns the virtual address by page number. Another, btokmx expects a 
(caddr_t) virtual address and returns the integer kernel map index. 

physpagenum is the physical page number of the memory being mapped into ker
nel virtual memory. Actually, it is the physical page number with the appropriate 
type bits for the given physical memory space-these types bits (PGT _ *) are 
given in <sys/pte. h>. 

sizeinpages is the size in pages of the memory being mapped. It can be easily 
computed by using the btoc () macro to convert the size (in bytes) of the 
memory being mapped into pages (since btoc () will round up as needed). 

access is the PTE-level access flags. The flags (PG_*) are defined in 
<sys/pte. h>. The value passed by the auto-configuration process when it 
calls mapin () (the standard device driver case) is "PG_ VIPG_KW", which 
indicates valid system pages with their write-enable flags set. 

See fbmapin () and fbmapout () in fbutils. c (in the Sample Driver 
Listings appendix) for examples of real map in () and ma pout () calls. It is 
advisable to map in small portions of a device's memory (less than or equal to 
6M bytes) instead of fewer mappings of large memory chunks. 

r 

mapout (ppte, sizeinpages) 
struet pte *ppte; 
int sizeinpages; 

mapout () is used to unmap a chunk of physical memory from the virtual 
memory that map in () associated it with. Its parameters are as given in 
mapin () , above. Drivers typically need to call mapout () only when they 
have made their own calls to rmalloc () and rmfree (). It should be called 
just before rmfree (). 

r 

mballoe(mh, addr, bent, flags) 
struet mb_hd *mh; 
eaddr_t addr; 
int bent, flags; 

mballoc () is a wrapper for mbset up () . It allocates a buf struct, zeroes it 
out, stuffs the b_un .b_addr field with addr, sets the b_flags word to 
B_BUSY, sets the b_bcount word to bent and calls mbsetup (). The argu
ments passed to mbset up () are mh, the address of the buf struct, andflags. 

mbrelse(mb_hd, mbinfop) 
struet mb_hd *mb_hd; 
int *mbinfop; 
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mbrelse releases the Main Bus DVMA resources allocated by mbsetup. 
Note that the second parameter is a pointer to the integer returned by mbset up. 

mbsetup(mb_hd, bp, flag) 
struct mb_hd *mb_hd; 
struct buf *bp; 
int flag; 

mbset up is called to set up the memory map for a single Main Bus DVMA 
transfer. It assumes that bp's fields have been set up to define the transfer, which 
is generally true, since physio () sets them up before calling the driver 
xxstrategy () routine. (These fields are b_un .b_addr, b_flags and 
b_bcount). flag is MB_CANTWAIT if the caller desires not to wait for map 
resources (slots in the map or DVMA space) if none are available - it's highly 
unlikely that this will ever happen, but if it does mbsetup will return immedi
ately with a 0. In this case its caller can, presumably, wait before trying again. 
If, on the other hand, flag is 0, the requesting process will be put to sleep until the 
necessary map resources become available. 

mbsetup () is typically called from the driver strategy () routine, so when 
phys io ( ) breaks up a large 1/0 request, one result is the generation of a series 
of calls to mbsetup (). (mbrelse () is then called from the driver xxintr () 
routine). mbsetup (), like physio (), is intended primarily for the use of 
block drivers, though character drivers can use it as long as they don't use buffer 
headers from the kernel cache. The buffer is double mapped so that the system 
will consider it as being in kernel DVMA space as well as in the address space of 
the program being serviced. 

NOTE Don't set B_PHYS in bp's b_flagsfield if DVMA is between kernel address 
space and the device. 

outb () -Send a Byte to an 
1/0 Port 

Upon success, mbset up returns a number which must be saved for the call to 
mbrelse. This number can also be passed to MBI _ ADDR (), which will 
transform it into a transfer address. 

, 

outb(port, data) 
short port; 
u char data; 

Sun386i only. On the Sun386i, many devices, such as the floppy, are accessed by 
way of the 1/0 space. outb ( ) sends a byte value to the 1/0 address specified. 
1/0 device addresses are in the range of Oto OxFFFF. (See inb () ). 
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, 

void 
ovbcopy(from, to, count) 

caddr_t from, to; 
u int count; 

Copies count bytes from the address designated by from to the address desig
nated by to. The operands may overlap. If they do not, it is more efficient to use 
bcopy () instead. 

[ panic (message) 
char *message; ] 

panic can be called upon encountering an unresolvable fatal error. It prints its 
message to the system console, and then reboots the system, so don't take its use 
lightly. (It does have the sense to avoid the reboot if it has already been called
thus preventing recursive calls to panic () ). A kernel core image is dumped. 

... 

short 
peek(address) 

short *address; 

short 
peekc (address) 

char *address; 

peekl(address, value) 
long *address; 
long *value; 

peek and its variants are called with an address from which they read. They 
return -1 if the addressed location doesn't exist, otherwise they return the value 
that was fetched from that location. They are for use only in xxprobe (). See 
poke and its variants, below. 

, 
physio(strategy, buf, dev, rw_flag, minphys, uio) 

void (*strategy) (); 
struct buf *buf; 
dev t dev; 
int rw_flag; 
void (*minphys) (); 
struct uio *uio; 

, 

Character drivers sometimes do block 1/0, and when they do it's convenient for 
them to use physic (). Such drivers resemble simple block drivers in that they 
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have xxread () and/or .x.xwr ite () and xxstrategy () routines, call those 
xxstrategy () routines indirectly through physio (), and use buf struc
tures. Too much, however, should not be made of the similarity. Character
driver xxstrategy () routines typically implement no strategy, and they are 
not driver entry points. And while character drivers can use physio () (and 
mbsetup () and iowait () and the few other kernel support routines that 
manipulate buffer headers) they do not use buffers from the kernel buffer cache. 

physio () serves two major purposes: 

o It ensures that pages of user memory are locked down (physically available 
and not paged out) during the duration of a data transfer. This is the only 
way to lock down pages of user memory. 

o It breaks large transfers (those greater than the value returned by min -
phys ()) into smaller pieces, thus keeping slow devices from monopolizing 
the bus. 

If the size of the transfer is greater than the system determined maximum, phy
sio () calls the driver xxstrategy () routine repeatedly, making sure that all 
relevant pointers and counters are updated correctly. Basically, physio () 
looks like this: 

loop: 
/* error and termination checking (based on values in uio) /* 
s = sp/6(); 
while (buf->b _flags & B _BUSY) { 

buf->b_fiags /= B_WANTED; 
sleep(buf, PRlB/0+1); 

} 
(void) splx(s); 
I* set up buffer for 1/0 *I 
while (more data) { 

buf->b _flags= B _BUSY/ B _PHYS/ rw _flag; 
I* more buffer 1/0 set up *I 

} 

(*minphys) (bu!); 
I* lock down pages of user memory * I 
(*strategy) (buf); 
iowait( buf); 
s = spl6(); 
I* unlock buff er * I 
if (buf->b _flags & B _WANTED) 

wakeup( buf); 
(void) splx( s); 
!* bookkeeping * I 

buf->b _flags&= -(B _BUSY/B _ W ANTED/B _PHYS); 
!* error checking and bookkeeping (based on values in uio) *I 
goto loop: 

buf is a buffer header for this device. physio () wants exclusive use of this 
buffer header and its associated buffer, and when called it checks to see if it has 
it. Ifit doesn't, it will sleep () until it gets it. dev is the device to which the 
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poke() , pokec () , 
pokel () - Check and Write 

print f () - Kernel Printf 
Function 

transfer is taking place. rw _flag is B READ or B WRITE to indicate the direc-- -
tion of the transfer. minphys () is a function that detennines the amount of 
data to be transferred in one call to the xxstrategy () routine. uio is a pointer 
to the uio structure. 

physio () returns one of the error codes defined in errno. h if an 1/0 error 
occurs, and a O upon success. Error codes are not returned on the stack, but by 
way of the b_error field in the buffer header. 

poke(address, value) 
short *address; 
short value; 

pokec(address, value) 
char *address; 
char value; 

pokel(address, value) 
long *address; 
long value; 

poke and its variants are called with an address to store into, and a value to be 
stored. They return 1 if the addressed location doesn't exist, and O if it does. 
They are for use only in xxprobe () . See peek and its variants, above. 

The kernel provides a print£ () function analogous to the print£ () func
tion supplied with the C library for user programs. The kernel print f ( ) , how
ever, is different than the version in the C library. It writes directly to the con
sole tty, its output cannot be easily redirected, and it supports only a subset of 
print£ () 's fonnatting conversions. Furthennore, it's not interrupt driven, and 
thus causes all system activities to be suspended while it outputs its message. 
Nevertheless, print£ () is useful as a debugging tool, and for reporting error 
messages. See uprintf (). 

The fonnatting conversions supported by the kernel pr int£ () are: 

%x, %X - Hexadecimal numbers 
%d, %D - Decimal numbers 
%0, %0 - Octal numbers 
%c - Single characters 
%s - Strings 
%b - Bit values 

Note that floating-point conversions are not supported. Also note that a special 
fonnat %bis provided to decode error registers. Its usage is: 

printf("reg=%b\n", regval, "<base><arg>*"); 

Where <base> is the output base expressed as a control character. For exam
ple, \ 10 gives octal and \ 2 0 gives hex. Each arg is a sequence of characters, 
the first of which gives the bit number to be inspected ( counting from 1 ), and the 
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rest of which (up to a control character, that is, a character<= 32), give the name 
of the register. Thus: 

printf("reg=%b\n", 3, "\10\2BITTW0\1BITONE\n"); 

would produce the output: 

reg=3<BITTWO,BITONE> 

Also note that no conversion modifiers (field widths and so on) are supported -
only a single character can follow the%. 

The kernel pr intf {) function raises the priority level and therefore locks out 
interrupts while it is sending data to the console. And it displays its messages 
directly on the console, unless specifically redirected by the TIOCCONS ioctl. 

[ prit?spl (value) 
int value; 

pritospl is a macro that converts the hardware priority level given by value, 
which is a Main Bus priority level, to the processor priority level that splx 
expects. The Main Bus priority level can be found in either 

] 

mb_device .md_intpri ormb_ctlr .mc_intpri, where it is put by the 
config process. pr i tospl is used to parameterize the setting of priority levels. 
See spln and splx (). 

psignal(p, sig) 
struct proc *p; 
int sig; 

Sends signal sig to the process specified by the proc structure. See gsig
nal (). The structure element is of type p _pid. 

u_long rmalloc(mp, size) 
struct map *mp; 
long size; 

rmalloc (for resource map allocator) is a rather specialized sort of resource 
allocator. In fact, it doesn't really allocate resources at all, but rather names of 
resources (that is, lists of numbers). Such lists are initialized by rminit () and 
are called resource "maps". Given such a map, rmalloc () can parcel out the 
names in it. The relationship of such names to real resources (virtual address 
space, physical memory, and so on) !S entirely a matter of usage conventions. 
Names allocated with rmalloc () are recycled with rmfree. size used 
here is in the unit of the map mp. For the map kernelmap, size is in pages, 
as you are just allocating virtual space. For the map iopbmap, this size is in 
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Select-blocked Process 

bytes, as you are allocating virtual space tied to real physical memory. 

rmalloc is a low-level routine, and shouldn't be used casually. If you just 
want some kernel virtual memory, use kmem_alloc (). rmalloc () is called 
by drivers that need to allocate kernel virtual address space during their 
xxprobe () and xxat tach () routines. They call it, rather than 
kmem _alloc (), because they want an address space without physical memory 
mapped to it. 

rrninit () is not documented here, for device drivers only have occasion to use 
two pre-initialized rmalloc () maps: 

0 

0 

The map kernelrnap (in <sys/map. h>) is used to allocate chunks of 
generic kernel virtual address space. 

The map iopbrnap (in <sundev /rnbvar. h>) contains addresses that are 
guaranteed to be in the high megabyte and thus suitable for use as DVMA 
buffer addresses. iopbmap is 8K, and should be used only for temporary or 
very small buffers. The iopbrnap is a byte-aligned table. The address it 
returns is not aligned on a long word boundary. If a non-aligned address is 
accessed, a panic may result. Callers of rrna 11 o c ( ) should ask for a few 
bytes of memory more than they need, and round up the address to a full 
word boundary if necessary. This applies to both Sun-3' s and Sun-4 's, but it 
is more critical to Sun-4 's, since they can only address using full word align
ment. 

rmfree(mp, size, addr) 
struct map *mp; 
long size; 
u_long addr; 

rrnf ree recycles the map resource allocated with rrnalloc. 

\.. 

selwakeup(p, coll) 
register struct proc *p; 
int coll; 

selwakeup () is called from driver interrupt routines to wakeup () processes 
which are asleep as a result of calls to select ( ) . If both of its parameters are 
0, it does nothing. If coll is 0, thus indicating that no select () collision 
occurred-that only one process is waiting for the device- selwakeup () 
just wakes up the waiting process indicated by p. If, however, a collision did 
occur, it issues a wakeup ( (caddr_t) &selwait), thus waking all select
sleeping processes. (The selwai t channel is used exclusively to indicate 
select-related sleeping). These waking processes then race for access to the dev
ice, with the first selector getting no special treatment. 
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r 

sleep(address, priority) 
caddr_t address; 
int priority; 

sleep is called to put the calling process to sleep, typically while it awaits the 
availability of some system resource. address is the address of a location in 
memory, usually a field in some global driver structure that is being used as a 
"semaphore" (such fields are not true semaphores, see below). In other areas, 
address is also referred to as chan for the channel that a device uses, or event sig
nifying an action or state associated with a specific device. priority is the 
software priority the calling process will have after being awakened. 

sleep must never be called from the interrupt-level side of a driver. This is 
because sleep () is always executed on behalf of a specific process. It 
suspends that process while the scheduler picks and executes another waiting 
process. And since, when handling an interrupt, the kernel isn't running on 
behalf of any process, it makes no sense to call sleep (). Incidently, the kernel 
will panic () if sleep is called while it's running on the interrupt stack. 

A process that has called sleep () will be reawakened by any wakeup call 
issued with the same address. However it's not guaranteed that, upon waking, 
the process will find the resource that it was waiting for to be available. It must, 
therefore, check again before proceeding, and go back to sleep if necessary. This 
is because the Sun0S sleep () and wakeup () facilities do not constitute true 
semaphore primitives in the usual PN sense. wakeup will wakeup every pro
cess that is sleeping on that event, where a true 'V' semaphore will wake only 
one sleeper (the highest priority one or whichever). 

Thus in SunOS you always do: 

s = spln (); 
while (resource_busy) 

sleep(resource, high_priority); 
make_resource_busy; 
(void) splx ( s) ; 

<critical section> 

wakeup(resource); 

whereas with real semaphores you would simply do: 

P(resource); 

<critical section> 

V (resource) ; 

However, semaphores are not easily implemented to lockout around hardware 
interrupts so SunOS just uses the sleep () / wakeup () mechanism for both 
situations. 
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spln () - Set CPU Priority 
Level 

splx () - Reset Priority 
Level 

splr () - Raise Priority 
Level 

suser () - Verify Super User 

swab () - Swap Bytes 

The spln functions are available for setting the CPU priority level ton, where n 
ranges from Oto 7 (higher numbers indicate higher priorities). Note that 
spl6 () actually gets you spl5 () on Sun systems to avoid lockout of the level 
6 on-board UART interrupts. When you allocate a CPU priority level to your 
device, choose one that's high enough to give you the perfonnance you need, but 
don't overdo it or you will interfere with the operation of the system: 

o If you lock out the on-board U ARTS (level 6) characters may be lost. 

o If you lock out the clock (level 5) time will not be accurate, and the Sun OS 
scheduler will be suspended. 

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed. 

o And if you lock out the disks (level 2), disk rotations may be missed. 

The spln functions return the previous priority level. 

[
splx~s) ] 

1.nt s; 

-----
splx called with an arguments sets the priority level to s, which was returned 
from a previous call to spln, pr i tospl () , or splx () . splx is typically 
used to restore the priority level to a previously stored level. splx () returns 
the previous level. 

( splr ~s) 
1.nt s; 

splr called with an arguments that raises the priority level bys units. 

( suser () 

Returns a 1 if the current user is root, 0 if not. suser () is commonly called by 
ioctl () routines that are restricted to the superuser, and that thus need to 
check who's calling them. 

swab(from, to, nbytes) 
caddr t from; 
caddr t to; 
int nbytes; 

swab swaps bytes within 16-bit words. nbytes is the number of bytes to swap, 

] 

J 
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and is rounded up to a multiple of two. No checking is done to ensure that the 
from and to areas do not overlap each other. 

timeout(func, arg, interval) 
int (*func) (); 
caddr_t arg; 
int interval; 

timeout arranges that after interval clock-ticks,func will be called with arg as 
its argument, in the style (*June)( arg). A clock tick is about a fiftieth of a second 
for Sun-3, Sun-3X, and Sun386i machines, a hundredth of a second for Sun-4s. 
The precise number of clock ticks per second is given in the external variable h z. 
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to cancel read or write 
requests that have received no response within a specified amount of time (if 
there's a lost interrupt or if the device otherwise flakes out). The specified June is 
eventually called from the lower half of the clock-interrupt routine, so it must 
conform to the requirements of interrupt routines in general. In particular, it 
can't call sleep (). See untimeout (). 

r 

uiomove(cp, n, rw, uio) 
caddr t cp; 
int n; 
enum uio rw rw; 
struct *uio; 

uiomove () is the most common way for device drivers to move a specified 
number of bytes between a byte array in kernel address space and an area defined 
by a uio structure (which may or may not be in kernel address space). If the 
uio _ seg field in the uio structure is set to UIOSEG _ USER, uiomove () will 
assume the uio pointer to be in user space; if it is UIOSEG _ KERNEL, it will 
assume it to be in kernel space (see <sys/uio. h> ). uiomove () moves n 
bytes between the uio structure and the area defined by the cp parameter. The 
read/write flag is inteipreted as follows: - uro _ READ indicates a transfer from 
kernel to user space (a call to copyout () ), and UIO _ WRITE a transfer from 
user to kernel space (a call to copyin () ). uiomove () returns O upon suc
cess, Exxx upon failure. Since this routine uses copy in () and copyout (), 
the amount of memory that can be moved is dependent on these routines. 

For more information about the uio structure, see Some Notes About the U/0 
Structure in the The "Skeleton'' Character Device Driver chapter of this manual. 
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untimeout () -Cancel 
timeout() Request 

uprintf () - Nonsleeping 
Kernel Printf Function 

ureadc () , uwri tee () -
uio Structure Read/Write 

untirneout(func, arg) 
int (*func) (); 
caddr_t arg; 

untimeout is called to cancel a prior timeout request. June and arg are the 
same as in timeout (). 

uprintf () is like print£ (), with two important differences. The first is 
that it checks to see if the process' "controlling terminal" is open, and if it is the 
message is sent to it rather than to the system console (uprintf () consults the 
user structure, so it must not be called from the lower-half routines). If there's 
no controlling terminal, uprintf () executes as would print£ (). The 
second difference is that uprintf () is interruptible, and thus reasonably 
efficient. 

upr int f () is often called from open () routines to report errors to the user. 
It's used for errors which, like tape-read errors, are likely to indicate operator 
error rather than system failure. See pr intf () . 

, 

ureadc(c, uio) 
int c; 
struct *uio; 

ureade () transfers the character c into the uio structure (which is normally 
passed to the driver when it is called). ureade () is normally used when "read
ing" a character in from a device. 

[ uwritec (uio) , 
struct *u1.o; 

uwri tee () returns the next character in the uio structure (which is normally 
passed to the driver when it is called), or returns -1 on error. uwri tee () is 
normally used when "writing" a character to a device. 

Note that "read" and "write" are slightly confusing in the above contexts, since 
ureade () actually obtains a character from somewhere and places it into the 
uio structure, whereas uwri tee () obtains a character from the uio structure 
and "writes" it somewhere else. The "read" and the "write," then, are from the 
perspective of the user program. 

ureade () and uwritee () replace the routines epass () and passe (), 
which are no longer supported. 

] 
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[

wakeup(address) J 
'-· __ c_a_d_d_r ___ t_a_d_d_r_e_s_s_; __________________ ___. 

wakeup is called when a process waiting on an event must be awakened. 
address is typically the address of a location in memory. wakeup is typically 
called from the low level side of a driver when (for instance) all data has been 
transferred to or from the user's buffer and the process waiting for the transfer to 
complete must be awakened. See sleep () . 
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free () - Free Allocated 
Memory 

getpagesize () - Return 
Pagesize 

mmap () - Map Memory from 
One Space to Another 

C 
User Support Routines 

These routines are often useful in user-level programs that manipulate devices. 

[ 

~ree (ptr) J 
char *ptr; 

'----------

free ( 3) can be used to recycle the virtual memory allocated by a variety of 
memory allocators, including valloc ( 3) and malloc ( 3) (the most general 
pmpose of the allocators). 

(..._i_n_t_g_e_t_p_a_g_e_s_i_z_e_<_) ___________________ _....] 

getpagesize ( 2) returns the number of bytes in a page. The page size is the 
system page size and may not be identical with the page size in the underlying 
hardware - it is, however, the pagesize of interest in all of the memory manage
ment functions. 

, 

caddr t 
mmap(addr, len, protection, flags, fd, off) 

caddr_t addr; 
int len, protection, flags, fd; 
off t off; 

mmap () maps pages of memory space from the memory device associated with 
the file/ d into the address space of the calling process ( or into the kernel address 
space). The mapping is performed one page at a time, by iteratively calling the 
memory device's mmap () routine. 

The memory is mapped from the memory device, beginning at off(the device's 
physical installation address within/d's memory), into the caller's address space 
beginning at addr and continuing for Len bytes. (By default, mmap () will pick a 
good value for addr). The mapping established by mmap () replaces any previ
ous mappings for the process's pages in the range [addr, addr + Len). 
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munmap () - Unmap Pages of 
Memory 

fd is a file descriptor obtained by opening the character special device to be 
mmap () 'ed. protection specifies the read/write accessibility of the mapped 
pages. The values desired are expressed by or'ing the flags values PROT _ READ, 
PROT_EXECUTE, and PROT_WRITE. A write () must fail if PROT_WRITE 
has not been set, though its behavior can be influenced by setting 
MAP _PRIVATE in the flags parameter. 

flags provides additional information about the handling of mapped pages. Its 
possible values are: 

MAP SHARED 
MAP PRIVATE 
MAP TYPE 
MAP FIXED 

MAP RENAME 

Share Changes 
Changes are Private 
Mask for Type of Mapping 
Interpret addr Exactly 
Assign Page to File 

addr and off must be multiples of the page size (which can be found by using 
getpagesize()). Pages are automatically unmapped when/dis closed-they 
should be explicitly unmapped with munmap (). mmap () returns a -1 on error, 
and returns a pointer on success. 

For a detailed overview of SunOS memory mapping, see the Memory Manage
ment chapter of the Sun System Services Overview. For specific details about 
mmap () and its related facilities, see munmap () below and the mmap ( 2) , 
munmap ( 2) , mincore ( 2) , mprotect ( 2) , and ms ync ( 2) manual 
pages. 

munmap(addr, len) 
caddr _ t addr; 
int len; 

munmap () causes the pages starting at addr and continuing for Len bytes to be 
unmapped, that is, marked invalid. If an address within an unmapped page is 
subsequently referenced, and if that page is in the "data segment" of a UNIXt 
process, then a page of zeros will be created under the address. However, if the 
address is outside a data segment, such a reference will cause a segmentation vio
lation. munmap () returns a -1 on error, 0 on success. See mmap () above and 
the mma p ( 2 ) manual page for more details. 

t UNIX is a registered trademark of AT&T. 
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D 
Sample Driver Listings 

The following source listings are for sample Sun device drivers. There are four 
drivers listed here; the first being the skeleton driver and the other three being 
real production drivers. (These three drivers, it should be mentioned, have been 
chosen as relatively simple illustrations of the three major types of drivers - not 
as software ideals to be closely emulated). 

SKELETON 
is the driver for the "skeleton board" discussed earlier in this manual. 

CG1WO 

SKY 

is a device driver for the Sun-3 Color Graphics board. It is one of the sim
plest drivers around, being memory mapped. 

is a programmed 1/0 driver for the Sky floating-point board, with both pol
ling interrupts and vectored interrupts. However, the interrupt routines don't 
do a whole lot. 

NOTE This is no longer supported by Sun, but is included here for reference purposes 
only. 

VP is a driver for the Versatec Printer Interface. It's a fairly good example of a 
DMA device driver. 

PP is the listing of the Sun386i Parallel Port Driver. 
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D.1. Skeleton Board Driver 

I* 
* (skreg.h) Registers for Skeleton Board -- note the byte swap 
*I 

struct sk_reg { 
char sk_data; 
char sk_csr; 

I* 01: Data Register * I 
/* 00: command(w) and status(r) * I 

} ; 

I* sk_csr bits (read)* I 
#define SK INTR 
#define SK DEVREADY 
#define SK INTREADY 
#define SK ERROR 
#define SK INTENAB 

#define SK ISTHERE 

/* sk_csr bits (write)* I 
#define SK RESET Ox04 
#define SK ENABLE OxOl 

I* 

Ox80 /* Device is Interrupting* I 
OxO 8 /*Device is Ready * I 
Ox04 /* Interface is Ready* I 
Ox02 I* Device Error * I 
OxOl /* Interrupts are Enabled* I 

OxOC I* Existance Check; Device and Interface Ready * I 

I* Reset Device and Interface * I 
I* Enable Interrupts * I 

* Further definitions for DMA skeleton board 
*I 

SK DMA OxlO #define 
#define MAX SK BSIZE 4096 

I* Do DMA transfer * I 
/* DMA tranfer block* I 

struct sk_reg2 { 

} ; 

char sk_data; 
char sk_csr; 
short sk_count; 
caddr t sk_addr; 

I* 01: Data Register * I 
I* 00: command(w) and status(r) * I 
I* bytes to be transferred * I 
I* DMA address * I 
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I* 
* (sk.c) The "Skeleton Board" Driver" 
*I 

I* This listing is not heavily annotated. This is because it's identical to 
* the Skeleton driver discussed at length in the main body of the manual. 
* It appears here for purposes of completeness. 
*I 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/file.h> 
#include <sys/dir.h> 
#include <sys/user.h> 
#include <sys/uio.h> 
#include <machine/psl.h> 
#include <sundev/mbvar.h> 

#include "sk.h" 
#include "skreg.h" 

I* file generated by config ( defines NSK) * I 
I* register definitions * I 

#define SKPRI (PZER0-1) /* software sleep priority for sk * I 

#define SKUNIT(dev) (minor(dev)) 

struct buf skbufs[NSK]; 

int skprobe(), skpoll(); 

struct mb_device *skdinfo[NSK]; 
struct mb driver skdriver = { skprobe, O, O, O, O, skpoll, 

sizeof(struct sk_reg), "sk", skdinfo, 0, O, O, O, 
} ; 

struct sk_device { 
char soft_csr; 
struct buf *sk_bp; 
int sk_count; 
char *sk_cp; 
char sk_busy; 

skdevice[NSK]; 

/*ARGSUSED* I 
skprobe(reg, unit) 

caddr_t reg; 
int unit; 

I* software copy of control/status register * I 
/* current buf* I 
I* number of bytes to send * I 
I* next byte to send * I 
I* true if device is busy * I 

register struct sk_reg *sk_reg; 
register int c; 

sk_reg = (struct sk_reg *)reg; 
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c = peekc((char *)&sk_reg->sk_csr); I* contact the device *I 
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if (c == -1 I I (c != SK_ISTHERE)) 
return (0); 

if (pokec ((char *) &sk_reg->sk_csr, SK_RESET)) /* contact the device *I 
return (0); 

return (sizeof (struct sk_reg)); 

skopen(dev, flags) 
dev_t dev; 
int flags; 

register int unit= SKUNIT(dev); 
register struct mb_device *md; 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]; 

if (unit >= NSK 11 md->md alive 
return (ENXIO); 

if (flags & FREAD) 

return (ENODEV); 

0) 

sk_reg = (struct sk_reg *)md->md_addr; 

I* enable interrupts * I 
skdevice[unit] .soft_csr SK_ENABLE; 

I* contact the device * I 
sk_reg->sk_csr 

return (0); 

l*ARGSUSED* I 
skclose(dev, flags) 

dev_t dev; 
int flags; 

skdevice[unit] .soft_csr; 

register int unit= SKUNIT(dev); 
register struct mb_device *md; 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]; 

I* disable interrupts * I 
sk_reg = (struct sk_reg *)md->md_addr; 
skdevice[unit] .soft_csr &= -sK_ENABLE; 

I * contact device * I 
sk_reg->sk_csr = skdevice[unit] .soft_csr; 

sun 
microsystems 
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skminphys(bp) 
struct buf *bp; 

if (bp->b_bcount > MAX_SK_BSIZE) 
bp->b_bcount = MAX_SK_BSIZE; 

skstrategy(bp) 
register struct buf *bp; 

register struct mb device *md; 
register struct sk device *sk; 
int s; 

md skdinfo [ SKUNIT (bp->b_dev)]; /* physic putthe device number into bp * / 
sk &skdevice[SKUNIT(bp->b_dev)]; 

s = splx (pri tospl (md->md _ intpri) ) ; /* begin critical section* I 
while (sk->sk_busy) 

sleep((caddr_t) sk, SKPRI); 

I* set up for first write * I 
sk->sk_busy = 1; 
sk->sk_bp = bp; 
sk->sk_cp = bp->b_un.b_addr; 
sk->sk_count = bp->b_bcount; 
skstart(sk, (struct sk_reg *)md->md_addr); 

(void) splx ( s) ; 

skwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

register int unit 

if (unit>= NSK) 
return (ENXIO); 

I* end critical section * I 

SKUNIT (dev) ; 

return (physio(skstrategy, &skbufs[unit], 
dev, B_WRITE, skminphys, uio)); 

skstart(sk, sk_reg) 
struct sk device *sk; 
struct sk_reg *sk_reg; 

while ( sk->sk _ count > 0) { / * still more characters* I 
sk_reg->sk_data = *sk->sk_cp++; 
sk->sk_count--; 
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I* stop giving characters if device not ready * I 
/* Note: the softcopy isn't needed/or reads * I 

/* DELAY(]O) might go here * I 

if ( ! (sk_reg->sk_csr & SK_DEVREADY)) /* contact the device * I 
break; 

I* error-retry logic would go here * I 

if (sk->sk count > 0) { /* still more characters*/ 
sk->soft csr = SK_ENABLE; 
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I 

else { 

skpoll () 
{ 

I* special case: finished the command without taking any interrupts! * I 
sk->soft_csr = 0; /* disable interrupts* I 
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I 
sk->sk_busy = O; 
wakeup ( (caddr_t) sk); /*free device to sleeping strategy routine * I 
iodone (sk->sk_bp); /*free buffer to waiting physio * / 

register struct sk_reg *sk_reg; 
int serviced, i; 

serviced = 0; 
for (i = 0; i < NSK; i++) { /*tryeachone*/ 

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr; 
if (sk_reg->sk_csr & SK_INTR) { /* contact the device * I 

serviced = 1; 
skintr (i); 

return (serviced); 

skintr(i) 
int i; 

register struct sk_reg *sk_reg; 
register struct sk device *sk; 

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr; 
sk = &skdevice[i]; 

/* checkforanl!Oerror *I 
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I 

I* error-retry logic would go here * I 
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printf("skintr: I/0 error\n"); 
sk->sk_bp->b_flags I= B_ERROR; 
goto error_return; 

if (sk->sk_count == 0) { /* 1/0transfercompleted */ 
error return: 

sk->soft csr = 0; / * clear interrupt * I 
sk_reg->sk_csr sk->soft_csr; /* contact the device * I 
sk->sk_busy = 0; 
wakeup ( (caddr_t) sk); /* free device to sleeping strategy routine * I 
iodone (sk->sk bp); /* free buffer to waiting physic * / 

else skstart(sk, sk_reg); 

I* DMA VARIATIONS FOLLOW* I 

struct sk_device { 
char soft_csr; 
struct buf *sk_bp; 
char sk_busy; 

I* software copy of control/status register * I 
I* current buf * I 
I* true if device is busy * I 

int sk_mbinfo; /* Information stash/or DMA * I 
skdevice[NSK]; 

skstrategy(bp) 
register struct buf *bp; 

register struct mb device *md; 
register struct sk_reg *sk_reg; 
register struct sk device *sk; 
int s; 

md = skdinfo[SKUNIT(bp->b_dev)]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[SKUNIT(bp->b_dev)]; 

s = splx(pritospl(md->md_intpri)); 
while (sk->sk_busy) 

sleep((caddr_t) sk, SKPRI); 
sk->sk_busy = 1; 
sk->sk_bp = bp; 

I* this is the part that is changed * I 

I* grab bus resources * I 

I* begin critical section * I 

sk->sk_mbinfo = mbsetup(md->md_hd, bp, O); 

I * the remainder * I 
sk_reg->sk_count = bp->b_bcount; 

I* plug bus transfer address * I 
sk_reg->sk_addr = (caddr_t)MBI ADDR(sk->sk mbinfo); 

Revision A, of 27 March 1990 



186 Appendices 

/* make sure we didn't overrun the address space limit*/ 
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) { 

printf("sk%d: ", sk_reg->sk_addr); 
panic("exceeded 20 bit address"); 

sk->soft csr = SK_ENABLE I SK_DMA; 
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I 

I* end of DMA-related changes * I 

(void) splx ( s) ; I* end critical section * I 

skpoll () 
{ 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
int serviced, i; 

serviced = 0; 
for (i = 0; i < NSK; i++) { 

md = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
if (sk_reg->sk_csr & SK_INTR) { 

serviced= 1; 
skintr(i); 

return (serviced); 

skintr(i) 
int i; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk_device *sk; 

md = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[i]; 

I* check for an 110 error * I 
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I 

I* error-retry logic would go here * I 

printf("skintr: I/0 errorO); 
sk->sk_bp->b_flags I= B_ERROR; 

I* this is the part that changed * I 
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sk->soft csr = 0; /* clearinterrupt *I 
sk_reg->sk_csr = sk->soft_csr; 
mbrelse(md->md_hd, &sk->sk_mbinfo); 
sk->sk_busy = 0; 
wakeup ( (caddr_t) sk); /* free device to sleeping strategy routine * I 
iodone (sk->sk_bp); /* free buffer to waiting physic * / 

I* alternate routines which show examples of uwritec(), ureadc() usage 
* The skwrite() routine below could be used in place of the skwrite, 
* skstrategy, skstart routines 
*I 

skwrite (dev, uio) 
dev_t dev; 
struct uio *uio; 

struct mb device *md; 
struct sk_reg *sk_reg; 

int c; 

md = skdinfo[SKUNIT(dev)]; 
sk_reg = (struct sk_reg *)md->md_addr; 

while (uio->uio_iovcnt > 0 && uio->uio_iov->iov len > 0) { 
if ((c = uwritec(uio)) == -1) 

return(EFAULT); 
sk_reg->sk_data = (char)c; 

return(O); 

skread (dev, uio) 
dev_t dev; 
struct uio *uio; 
{ 

struct mb device *md; 
struct sk_reg *sk_reg; 

md = skdinfo[SKUNIT(dev)]; 
sk_reg = (struct sk_reg *)md->md_addr; 

while (uio->uio_iovcnt > 0 && uio->uio_iov->iov len > O) { 
if (ureadc(sk_reg->sk_data, uio)) 

return(EFAULT); 

return(O); 
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D.2. Sun-3 Color Graphics Driver 

I* 
* 
* ( cg2reg.h) Description of Sun-3 hardware color frame buffer. 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*I 

I* 
* Structure defining the way in which the address bits to the 
* SUN-3 color frame buffer are decoded. 
*I 

#define CG2 WIDTH 1152 
#define CG2 HEIGHT 900 
#define CG2_SQUARE 1024 
#define CG2 DEPTH 8 

struct cg2memfb { 
union bitplane /* Word mode memory* I 

} ; 

short word[CG2_HEIGHT] [CG2_WIDTH/(8*sizeof(short))]; 
short sword[CG2_SQUARE] [CG2_SQUARE/(8*sizeof(short))]; 

memplane[8]; 
union byteplane { /* Pixel mode memory* I 

u char pixel[CG2_HEIGHT] [CG2 WIDTH]; 
u char spixel[CG2_SQUARE] [CG2_SQUARE]; 

pixplane; 

struct cg2statusreg { 
unsigned unused : 4; 
unsigned resolution: 4; 

I* Reserved for future use * I 
I* Screen resolution * I 

unsigned retrace 1; 
unsigned inpend 1; 
unsigned ropmode 3; 
unsigned inten 1; 
unsigned update_cmap: 1; 

/* 0 = 900 x 1152 * I 
I* 1 = 1024 x 1024 * I 

I* rd.only: monitor in retrace * I 
I* rd.only: interrupt pending * I 
I* Rasterop mode * I 
I* Enable interrupt at end of retrace * I 

I* Copy ITL cmap to ECL cmap next vert retrace* I 
I* Silently disables writing to ITL cmap * I 

unsigned video enab 1; I* Enable video DA Cs * I 
} ; 

struct cg2fb { 
union { /* ROP mode memory* I 

union bitplane ropplane[8]; /* WordmodememorywithROP */ 
union byteplane roppixel; /* Pixel mode memory withROP * I 

ropio; 
union { 

struct memropc ropregs; 
I* Rasterop unit control * I 
I* Normal register access * I 
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!* 
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struct { 
char pad [ 2 0 4 8 ] ; / * For pixmode src reg prime * I 
st ruct memropc ropregs; / * Byte xfer loads alternate * I 

prime; /* Source register bits* I 
char pad[4096]; 

ropcontrol[9]; 
union { /* Status register* I 

struct cg2statusreg reg; 
short word; 
char pad[4096]; 

status; 
union { 

unsigned short reg; 
char pad[4096]; 

ppmask; 
union { 

unsigned short reg; 

char pad[4096]; 
wordpan; 

union { 
struct 

unsigned unused 
unsigned lineoff 
unsigned pixzoom 

reg; 
short word; 
char pad [ 4 0 9 6] ; 

zoom; 
union { 

struct 
unsigned unused 
unsigned lorigin 
unsigned pixeloff 

reg; 
short word; 
char pad[4096]; 

pixpan; 
union { 

unsigned short reg; 
char pad[4096]; 

varzoom; 
union { 

unsigned short reg; 
char pad[4096]; 

} intrptvec; 
u_short redmap[256]; 
u short greenmap[256]; 
u short bluemap[256]; 

8; 

I* Per plane mask register * I 
I* 8 bits 1 bit-> wr to plane* I 

I* Word pan register * I 
I* High 16 bits of 20-bit pixel address* I 
I* Pixel addr = CG2 _ WIDTH*y+x * I 

I* Zoom and line offset register * I 

4; / * y offset into zoomed pixel * I 
4 ; / * Zoomed pixel size - 1 * I 

I* Pixel pan register * I 

8; 
4; 
4; 

I* Low 4 bits of pix addr* I 
I* Zoomed pixel x offset/4 * I 

I* Variable zoom register * I 
I* Reset zoom after line no * I 
/* Line number 0 . .1024/4 * I 

I* Interrupt vector register * I 
/* Line number 0 . .1024/4 * I 

/* Shadow color maps* I 
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* ROPMODES -- Parallel, W _SDT, LS_SRC, Read/Write, 

* on read or write?, on wrdmode or pixmode? 
*I 

-#define PRWWRD 0 /* parallel 8 plane, read write, wrdmode 
-#define SRWPIX 1 I* single pixel, read write, pixmode 
-#define PWWWRD 2 I* parallel 8 plane, write write, wrdmode 
-#define SWWPIX 3 /* single pixel, write write, pixmode 
-#define PRRWRD 4 /* parallel 8 plane, read read, wrdmode 
-#define PRWPIX 5 /* parallel 16 pixel, read write, pixmode 
-#define PWRWRD 6 I* parallel 8 plane, write read, wrdmode 
-#define PWWPIX 7 I* parallel 16 pixel, write write, pixmode 

I* 
* ROP control unit numbers 
*I 

-#define CG2 ROPO 0 /* Rasterop unit for bit plane 0 */ 
-#define CG2 ROPl 1 /* Rasterop unit for bit plane 1 */ 
-#define CG2 ROP2 2 
-#define CG2 ROP3 3 
-#define CG2 ROP4 4 

-#define CG2 ROPS 5 
-#define CG2 ROP6 6 
-#define CG2 ROP7 7 
#"define CG2 ALLROP 8 /* Writes to all units enabled by PP MASK, */ 

/* reads from plane zero * I 

-#define CG SRC OxCC 
-#define CG DEST OxAA 
#"define CG MASK OxfO 
-#define CG NOTMASK OxOf 
#"define CGOP NEEDS_MASK(op) ( ( ( (op) > > 4 ) - (op) ) & CG_NOTMASK) 

I* 
* Defines for accessing the rasterop units 
*I 

#"define 

#"define 

#"define 

#define 

-#define 

#define 

cg2_setrsource(fb, ropunit, val)\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_sourcel (val)) 
cg2_setlsource(fb, ropunit, val)\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_source2 (val)) 
cg2_setfunction(fb, ropunit, val)\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_op = (val)) 
cg2_setpattern(fb, ropunit, val)\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_pattern = (val)) 
cg2_setshift(fb, ropunit, shft, dir)\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_shift =\ 

( sh ft ) I ( ( di r ) < < 8 ) ) 
cg2_setwidth(fb, ropunit, w, count)\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_width = (w));\ 
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_opcount = (count)) 

*/ 
*I 
*I 
*/ 
*I 
*/ 
*I 
*/ 
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!* 
* Defines for accessing the zoom and pan registers 
*I 

#define 

#define 

#define 

#define 

cg2_setzoom(fb, pixsize)\ 
((fb)->zoom.reg.pixzoom = (pixsize)-1) 
cg2_setpanoffset(fb, xoff, yoff)\ 
((fb)->pixpan.reg.pixeloff = (xoff)>>2;\ 
(fb)->zoom.reg.lineoff = (yoff) 

cg2_setpanorigin(fb, x, y)\ 
((y) = ((fb)->status.reg.resolution == 1) ?\ 

(y)*CG2_SQUARE+(x) : (y)*CG2_WIDTH+(x);\ 
(fb)->pixpan.reg.lorigin = (y)&Oxf;\ 
(fb)->wordpan.reg = (y)>>4) 

cg2_setzoomstop(fb, y) ((fb)->varzoom.reg (y)>>2) 

I* 
* 
*I 

Defines that facilitate addressing the frame buffer 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 
#define 

cg2_pixaddr(fb, x, y)\ 
(((fb)->status.reg.resolution) ?\ 
&(fb)->pixplane.spixel[(y)] [(x)] :\ 
&(fb)->pixplane.pixel[(y)] [(x)] ) 

cg2_wordaddr(fb, plane, x, y)\ 
(((fb)->status.reg.resolution) ?\ 
& (fb) ->memplane [(plane)]. sword[ (y)] [ (x) >>4] : \ 
& (fb)->memplane[ (plane)] .word[ (y)] [ (x) >>4]) 

cg2_roppixaddr(fb, x, y)\ 
(((fb)->status.reg.resolution) ?\ 
&(fb)->ropio.roppixel.spixel[(y)] [(x)] :\ 
&(fb)->ropio.roppixel.pixel[(y)] [(x)]) 

cg2_ropwordaddr(fb, plane, x, y)\ 
(((fb)->status.reg.resolution) ?\ 
&(fb)->ropio.ropplane[(plane)] .sword[(y)] [(x)>>4] :\ 
& ( fb) ->ropio. ropplane [ (plane) ] . word [ (y) ] [ (x) >>4] ) 

cg2_width (fb ) \ 
( ((fb)->status.reg.resolution) ? CG2_SQUARE CG2_WIDTH) 
cg2_height(fb )\ 
( ((fb)->status.reg.resolution) ? CG2_SQUARE 
cg2_linebytes(fb, mode)\ 
( ((fb)->status.reg.resolution)\ 
? ( ((mode)&l)?CG2_SQUARE:CG2_SQUARE/8 )\ 
: ( ((mode)&1)?CG2_WI0TH:CG2_WIDTH/8 )) 

cg2_prskew(x) ((x) & 15) 
cg2_touch(a) ((a)=O) 

CG2 HEIGHT 
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I* ( cg2var.h) More Sun-3 color frame buffer definitions 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*I 

I* 
* Information pertaining to the Sun-3 color buffer but not to pixrects in 
* general is stored in the struct pointed to by the pr_ data attribute of the 
* pixrect. One property of the color buffer not shared with all pixrects is 
* that it has a color map. The color map type and colormap contents are 
* specified by the putcolormap operation. 
*I 

struct cg2pr 
struct 
int 

cg2fb *cgpr_va; 
cgpr_fd; 

int 
struct 

cgp r _planes; / * Color bit plane mask register * I 
pr_pos cgpr_offset; 

} ; 

#define cg2_d(pr) ((struct cg2pr *) (pr)->pr_data) 
#define cg2_fbfrompr(pr) (((struct cg2pr *) (pr)->pr_data)->cgpr_va) 
#define cg2_ropword(cgd, plane, ax, ay)\ 

(cg2_ropwordaddr((cgd)->cgpr_va, (plane),\ 
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay)) 

#define cg2_pixel(cgd, ax, ay)\ 
(cg2_pixaddr((cgd)->cgpr_va,\ 
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay)) 

#define cg2_roppixel(cgd, ax, ay)\ 
(cg2_roppixaddr((cgd)->cgpr_va,\ 
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay)) 

#define cg2_prd_skew(cgd, ax)\ 
(((cgd)->cgpr_offset.x+(ax)) & 15) 

extern struct pixrectops cg2_ops; 

int cg2_rop(); 
int cg2_putcolormap(); 
int cg2_putattributes(); 

#ifndef KERNEL 

int 
int 
struct 
int 
int 
int 
int 
struct 
int 
int 
#endif 

cg2_stencil (); 
cg2_batchrop(); 
pixrect *cg2_make(); 
cg2_destroy (); 
cg2_get(); 
cg2_put (); 
cg2_vector (); 
pixrect *cg2_region(); 
cg2_getcolormap(); 
cg2_getattributes(); 

!KERNEL 
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I* 
* (cgtwo.c) Sun-3 (Memory Mapped) Color Board Driver 
* Copyright (c) 1984 by Sun Microsystems, Inc. 
*I 

I* 
*Asa driver for a frame-buffer device, cgtwo.c must provide not only the 
* standard device-driver functionality, but also low-level support/or the 
* Sun virtual desktop. That is to say ,frame-buffer drivers not only 
* implement the standard device-driver hardware interface, but also declare, 
* initialize and export the pixrect structures which allow the kernel to 
* view the frame-buffer memory as a large rectangle within which it can 
* rapidly paint a cursor. As a consequence, some of the code here is pixrect 
* related, though among the muck you'll find the operations common to all 
* memory-mapped drivers. 
* 
* The kernel does not context switch frame buffers, despite the fact that some 
* of them (including the Sun2 Color Board which this driver controls) do have 
* context. In general, the kernel assumes that frame buffers either have no 
* context that needs to be switched, or are used in a manner that doesn't 
* require them to be context switched. Sun Windows takes the second of these 
* tacks, arbitrating frame-buffer access (with pixwin locking) so that no 
* process can use the frame buffer while another process has "context" in it. 
* 
*I 

#include "cgtwo.h" 
#include "win.h" 
#if NCGTWO > 0 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/errno.h> 
#include <sys/ioctl.h> 
#include <sys/map.h> 
#include <sys/vmmac.h> 

I* installed device count --from conf ig * / 

I* general kernel parameters * I 
I* 1/0 buffers * I 
I* system error reporting * I 
I* ioctl definitions * I 
I* resource allocation maps * I 
I* virtual memory related conversion macros * I 

I* <machine> is a symbolic link to sun[234J * I 
#include <machine/pte. h> /* page table entries* I 
#include <machine/mmu. h> /* memory-management unit*/ 
#include <machine/psl. h> /* process status register* I 

#include <sun/fbio.h> I* frame buffer definitions * I 

I* <sundev> is the device driver source directory * / 
#include <sundev /mbvar. h> /* bus-interface definitions* I 

I* <pixrect> contains pixrect-related source * I 
#include <pixrect/pixrect. h> /* basic pixrect definitions* I 
#include <pixrect/pr_impl_util. h> /* pixrect utilities* I 
#include <pixrect/memreg. h> /* rasterop hardware registers*/ 
#include <pix re ct/ cg2 reg. h> / * Sun2 color frame buffer definitions * I 
#include <pixrect/ cg2var. h> /* more Sun2 color frame buffer* I 
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I* probe size in bytes -- enough for the useful part of the board* I 
#define CG2 PROBESIZE CG2 MAPPED SIZE 

I* M ainbus device data * I 
int cgtwoprobe(), cgtwoattach(); 

struct mb device *cgtwoinfo[NCGTWO]; 
struct mb driver cgtwodriver = { 

cgtwoprobe, 0, cgtwoattach, O, O, O, 
CG2_PR0BESIZE, "cgtwo", cgtwoinfo, 0, 0, O, 0 

} ; 

I* Driver per-unit data * I 
struct cg2_softc { 

int flags; / * misc. flags; bits defined in cg2var.h * I 
/* (struct cg2pr,flags member) * I 

struct cg2fb *fb; /* virtual address * I 
int w, h; / * resolution * I 

#if NWIN > 0 
Pixrect pr; 
struct cg2pr prd; 

#"endif NWIN > 0 
} cg2_softc[NCGTWO]; 

I* kernel pixrect and private data * I 

/* default structure/or FBIOGAITR!FBIOGITPE ioctls * I 
static struct fbgattr fbgattr_default { 
I* real _type owner * I 

FBTYPE_SUN2COLOR, 0, 
I* fbtype: type h w depth ems size * I 

{ FBTYPE_SUN2COLOR, 0, 0, 8, 256, CG2 MAPPED SIZE}, 
/* fbsattr:flags emu_type * I 

{ FB_ATTR_DEVSPECIFIC, -1, 
I* dev _specific: FLAGS, BUFFERS, PRFLAGS * I 

{ FB_ATTR_CG2_FLAGS_PRFLAGS, 1, 0 } }, 
/* emu_types * I 

{ -1, -1, -1, -1} 
} ; 

I* Double buffering enable flag * I 
int cg2_dblbuf_enable = 1; 

#if NWIN > 0 

I* Sun Windows specific stuff * I 

I* kernel pixrect ops vector * I 
static struct pixrectops pr_ops 

cg2_rop, 

} ; 

cg2_putcolormap, 
cg2_putattributes 

#endif NWIN > 0 
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cgtwoprobe(reg, unit) 
caddr_t reg; 
int unit; 

register struct cg2fb *fb = (struct cg2fb *) reg; 
register struct cg2_softc *softc; 

I* 
* Check if board is present and strapped for 2M decoding. 
* If this fails, remap for 4M decoding and try again. 
*I 
if (probeit(fb)) { 

fbmapin((caddr_t) fb, fbgetpage((caddr_t) fb) + 
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(int) btop(CG2_MAPPED_OFFSET), CG2_MAPPED_SIZE); 

if (probeit (fb)) 
return O; 

softc = &cg2_softc[unit]; 
softc->fb = fb; 
softc->flags = O; 

I* check for supported resolution * I 
switch (fb->status.reg.resolution) 
case CG2 SCR 1152X900: 

softc->w = 1152; 
softc->h = 900; 
softc->flags = CG2D_STDRES; 
break; 

case CG2 SCR 1024Xl024: - -
softc->w 1024; 
softc->h = 1024; 
break; 

default: 
printf("%s%d: unsupported resolution (%d)O, 

cgtwodriver.mdr_cname, unit, 
fb->status.reg.resolution); 

return O; 

return CG2_PR0BESIZE; 

static 
probeit(fb) 

register struct cg2fb *fb; 

union { 
struct cg2statusreg reg; 
short word; 

status; 
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://:define 
://:define 

allrop(fb, reg) ((short*) &(fb)->ropcontrol[CG2_ALLROP] .ropregs.reg) 
pixelO(fb) ((char*) &fb->ropio.roppixel.pixel[O] [O]) 

I* 
* Probe sequence: 
* 
* set board/or pixel mode access 
* enable all planes 
* set rasterop function to CG_ SRC 
* disable end masks 
* set fifo shift/direction to zero/left-to-right 
* write Oxa5 to pixel at (0,0) 
* check pixel value 
* enable subset of planes (Oxcc) 
* set rasterop function to ~cG _DEST 
* write to pixel at (0,0) again 
* enable all planes again 
* read pixel value; should be Oxa5 A Oxcc = Ox69 
*I 
status.word= peek(&fb->status.word); 
status.reg.ropmode = SWWPIX; 
if (poke(&fb->status.word, status.word) I I 

poke((short *) &fb->ppmask.reg, 255) I I 
poke(allrop(fb, mrc_op), CG_SRC) I I 
poke(allrop(fb, mrc_maskl), 0) I I 
poke(allrop(fb, mrc_mask2), 0) I I 
poke(allrop(fb, mrc shift), 1 << 8) 11 

pokec (pixelO (fb), Oxa5) I I 
pokec(pixelO(fb), 0) I I 
peekc(pixelO(fb)) != Oxa5 I I 
poke((short *) &fb->ppmask.reg, Oxcc) I I 
poke(allrop(fb, mrc_op), -cG_DEST) I I 
pokec(pixelO(fb), 0) I I 
poke((short *) &fb->ppmask.reg, 255) I I 
peekc(pixelO(fb)) != (Oxa5 ~ Oxcc)) 
return 1; 

return 0; 

:/1:undef 
:/1:undef 
} 

allrop 
pixelO 

cgtwoattach(md) 
struct rob device *md; 

register struct cg2_softc *softc = &cg2_softc[md->md_unit]; 
register struct cg2fb *fb = softc->fb; 
register int flags= softc->flags; 

://:define dummy flags 
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I* set interrupt vector * I 
if (md->md_intr) 

fb->intrptvec.reg 
else 
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md->md_intr->v_vec; 

printf("WARNING: no interrupt vector specified in config fileO); 

I* 
* Determine whether this is a Sun-2 or Sun-3 color board 
* by setting the wait bit in the double buffering register 
* and seeing if it clears itself during retrace. 
* 
* On the Sun-2 color board this just writes a bit in the 
* "wordpan" register. 
*! 
fb->misc.nozoom.dblbuf.word = 0; 
fb->misc.nozoom.dblbuf.reg.wait = 1; 

I* wait for leading edge, then trailing edge of retrace * I 
while (fb->status.reg.retrace) 

I * nothing * I ; 
while (!fb->status.reg.retrace) 

/* nothing * I ; 
while (fb->status.reg.retrace) 

I* nothing * I ; 

if (fb->misc.nozoom.dblbuf.reg.wait) 

else 

I* Sun-2 color board * I 
fb->misc.nozoom.dblbuf.reg.wait O; 
flags I= CG2D_ZOOM; 

/* Sun-3 color board (or better) * I 
flags I= CG2D_32BIT I CG2D_NOZOOM; 

if (fb->status.reg.fastread) 
flags I= CG2D_FASTREAD; 

if (fb->status.reg.id) 
flags I= CG2D ID I CG2D_ROPM0DE; 

I* 
* Probe for double buffering feature. 
* Write distinctive values to one pixel in both buffers, 
* then two pixels in buffer B only. 
* Read from buffer Band see what we get. 
* 
* Warning: assumes we were called right after cgtwoprobe 
*! 

cg2_setfunction(fb, CG2_ALLROP, CG_SRC); 
fb->ropio.roppixel.pixel[O] [O] = OxSa; 
fb->ropio.roppixel.pixel[O] [0] = OxaS; 
fb->misc.nozoom.dblbuf.reg.nowrite_a = 1; 
fb->ropio.roppixel.pixel[O] [O] = Oxc3; 

Revision A, of 27 March 1990 



198 Appendices 

fb->ropio.roppixel.pixel[O] [4] = dummy; 
if (fb->ropio.roppixel.pixel[O] [0] == OxSa) 

fb->misc.nozoom.dblbuf.reg.read_b = 1; 

if (fb->ropio.roppixel.pixel[O] [0] == OxaS && 
fb->ropio.roppixel.pixel[O] [4] == Oxc3 && 
cg2_dblbuf_enable) 
flags I= CG2D_DBLBUF; 

fb->misc.nozoom.dblbuf.word = O; 

softc->flags flags; 

#ifndef sun2 
I* re-map into correct VME space if necessary * I 
{ 

int page= fbgetpage((caddr_t) fb); 

if (((flags & CG2D_32BIT) != 0) != 
((page & PGT_MASK) == PGT_VME_D32)) 
fbmapin((caddr_t) fb, 

page A (PGT_VME_D16 A PGT_VME_D32), 
CG2_MAPPED_SIZE); 

#endif !sun2 

I* print informative message * I 
printf("%s%d: Sun-%c color board%s%s0, 

md->md_driver->mdr_dname, md->md_unit, 
flags & CG2D_ZOOM? '2' : '3', 
flags & CG2D_DBLBUF? ", double buffered" : "", 
flags & CG2D FASTREAD? ", fast read" : ""); 

cgtwoopen(dev, flag) 
dev_t dev; 
int flag; 

return fbopen(dev, flag, NCGTWO, cgtwoinfo); 

/*ARGSUSED* I 
cgtwoclose(dev, flag) 

dev_t dev; 

register struct cg2_softc *softc = &cg2_softc[minor(dev)]; 
register struct cg2fb *fb = softc->fb; 

I* fix up zoom and/or double buffering on close * I 

if (softc->flags & CG2D_ZOOM) { 
fb->misc.zoom.wordpan.reg O; I* hi pixel adr = 0 * I 
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fb->misc.zoom.zoom.word = 0; /* zoom=O,yoff=O */ 
fb->misc. zoom. pixpan. word O; /* pix adr=O, xoff=O * I 
fb->misc. zoom. varzoom. reg = 255; /* unzoom at line 4*255 * I 

if (softc->flags & CG2D_NOZOOM) 
fb->misc.nozoom.dblbuf.word 0; 

return O; 

cgtwommap(dev, off, prot) 
dev_t dev; 
off_t off; 
int prot; 

return fbmmap(dev, off - CG2_MAPPED_OFFSET, 
prot, NCGTWO, cgtwoinfo, CG2_MAPPED_SIZE); 

/*ARGSUSED* I 
cgtwoioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

register struct cg2_softc *softc 

switch (cmd} { 

case FBIOGTYPE: 

&cg2_softc[minor(dev}]; 

register struct fbtype *fbtype = (struct fbtype *) data; 

*fbtype = fbgattr_default.fbtype; 
fbtype->fb_height softc->h; 
fbtype->fb_width = softc->w; 

break; 

case FBIOGATTR: 
register struct fbgattr *gattr (struct fbgattr *) data; 

*gattr = fbgattr_default; 
gattr->fbtype.fb_height = softc->h; 
gattr->fbtype.fb_width = softc->w; 

if (softc->flags & CG2D_NOZOOM) 
gattr->sattr.dev_specific[FB_ATTR CG2 FLAGS] I= 

FB_ATTR_CG2_FLAGS_SUN3; 

if (softc->flags & CG2D_DBLBUF) 
gattr->sattr.dev_specific[FB_ATTR CG2 BUFFERS] 2; 
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gattr->sattr.dev_specific[FB_ATTR_CG2_PRFLAGS] softc->flags; 

break; 

case FBIOSATTR: 
break; 

#if NWIN > 0 

case FBIOGPIXRECT: 
((struct fbpixrect *) data)->fbpr_pixrect 

I* initialize pixrect * I 
softc->pr.pr_ops = &pr_ops; 
softc->pr.pr_size.x = softc->w; 
softc->pr.pr_size.y = softc->h; 
softc->pr.pr_depth = CG2_DEPTH; 
softc->pr.pr_data = (caddr_t) &softc->prd; 

I* initialize private data * I 

&softc->pr; 

bzero((char *) &softc->prd, sizeof softc->prd); 
softc->prd.cgpr_va = softc->fb; 
softc->prd.cgpr_fd = 0; 
softc->prd.cgpr_planes = 255; 
softc->prd.ioctl_fd = minor(dev); 
softc->prd.flags = softc->flags; 
softc->prd.linebytes = softc->w; 

I * enable video * I 
softc->fb->status.reg.video_enab 1; 

break; 

#endif NWIN > 0 

/* get info/or GP * I 
case FBIOGINFO: { 

register struct fbinfo *fbinfo 

fbinfo->fb_physaddr = 

(struct fbinfo *) data; 

(fbgetpage((caddr_t) softc->fb) << PGSHIFT) -
CG2 MAPPED OFFSET & Oxffffff; - -

fbinfo->fb hwwidth = softc->w; 
fbinfo->fb_hwheight = softc->h; 
fbinfo->fb_ropaddr (u_char *) softc->fb; 

break; 

I* set video flags * I 
case FBIOSVIDEO: 

softc->fb->status.reg.video_enab 
(* (int*) data) & FBVIDEO ON? 1 0; 

break; 
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I* get video flags * I 
case FBIOGVIDEO: 

* (int*) data= softc->fb->status.reg.video_enab 
? FBVIDEO ON FBVIDEO_OFF; 

break; 

case FBIOVERTICAL: 
cgtwo_wait(minor(dev)); 
break; 

default: 
return ENOTTY; 

return 0; 

I* wait for vertical retrace interrupt * I 
cgtwo_wait(unit) 

int unit; 

register struct mb device *md = cgtwoinfo[unit & 255]; 
register struct cg2_softc *softc = &cg2_softc[unit & 255]; 
int s; 

if (md->md_intr 0) 
return; 

s = splx(pritospl(md->md_intpri)); 
softc->fb->status.reg.inten = 1; 
(void) sleep((caddr_t) softc, PZERO - 1); 
(void) splx ( s) ; 

I* vertical retrace interrupt service routine * I 
cgtwointr(unit) 

int unit; 

register struct cg2_softc *softc 

softc->fb->status.reg.inten = O; 
wakeup((caddr_t) softc); 

-#ifdef lint 
cgtwointr(unit); 

-#endif 
} 

&cg2_softc[unit]; 
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I* 
* (jbutil.c) Frame Buffer Driver Support Utilities 
* Copyright (c) 1985, 1987 by Sun Microsystems, Inc. 
*I 

I* 
* The routines in this.file, called from many the Sunframe buffer drivers, 
* peiform the essential operations necessary for all memory-mapped drivers. 
*I 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/errno.h 
#include <sys/mman.h> 
#include <sys/vmmac.h> 

I* machine dependent kernel parameters * I 
I* 110 buffers* I 
I* System error reporting * I 
I* Memory-mapping definitions * I 
I* Virtual memory related conversion macros * I 

I* <machine> is a symbolic link set to sun[234 J * I 
#include <machine/pte. h> /* page table entries* I 

I* <sundev> is the device driver source directory * I 
#include <sundev /mbvar. h> / * bus-inteiface definitions* I 

I* 
* Makes the necessary error checks and then returns. Everything is OK if the 
* device is predefined in the con.fig file and if the probe routine found it as 
* expected. 
*I 
int fbopen(dev, flag, numdevs, mb_devs) 

dev_t dev; 
int flag, numdevs; 
struct mb device **mb_devs; 

register struct mb_device *md; 

if (minor(dev) >= numdevs I I 
(md = mb_devs[minor(dev)]) 0 I I 

md->md alive== 0) 
return ENXIO; 

return 0; 

I* 
* Work from the device address and an offset within its address 
* space to get the page frame number for the page to be mapped. 
*I 
int fbmmap(dev, off, prot, numdevs, mb_devs, size) 

dev t dev; 
off_t off; 
int rot; 
int numdevs; 
struct mb device **mb_devs; 
int size; 

+ sun 
microsystems 
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if ((u_int) off>= size) 
return -1; 

return fbgetpage(mb_devs[minor(dev)]->md_addr + off); 

I* Get page frame number and page type * I 
fbgetpage(addr) 

caddr t addr; 

return (int) hat_getkpfnum((addr_t) addr); 

I* 
* Simplified ma pin and ma pout. Note that, since these 
* routines are implemented in terms ofusrptmap (which has been 
* preserved for compatibility reasons) they will work with either SunOS 
* release 4.0 or with earlier releases. 
fbmapin(virt, phys, size) 

caddr t virt; 
int phys; 
int size; 

mapin(&Usrptmap[btokmx((struct pte *) virt)], btop(virt), 
(u_int) phys, btoc(size), PG V I PG_KW); 

fbmapout(virt, size) 
caddr_t virt; 
int size; 

mapout(&Usrptmap[btokmx((struct pte *) virt)], btoc(size)); 

#ifdef sun2 
I* 
* Some Sun-2 frame-buffer devices allowed the user to enable/disable interrupts, and 
* even to change the interrupt level. Thus, fbintr is necessary so that the 
* kernel will always be able to find the interrupting device. /f fbintrfinds 
* an interrupting device, it returns with a 1 after calling intclear to turn 
* off its interrupt. 
*I 
fbintr(numdevs, mb_devs, intclear) 

int numdevs; 
register struct mb_device **mb_devs; 
int (*intclear) (); 

register struct mb_device *md; 

while (--numdevs >= 0) 
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if ((md = *mb_devs++) && 
md->md alive && 
(*intclear) (md->md_addr)) 
return 1; 

return O; 

-#endif sun2 
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D.3. Sky Floating-Point Driver 

I* 
* (skyreg.h) Sky Floating Point Processor Registers 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*I 

struct skyreg { 
u short 
u short 
union { 

sky_command; 
sky_status; 

short skyu_dword[2]; 
long skyu_dlong; 

skyu; 
#define sky_data skyu.skyu_dlong 
#define sky_dlreg skyu.skyu_dword[O] 

long sky_ucode; 
u short sky_ vector; / * VME interrupt vector number* I 

} ; 

I* command masks * I 
#define SKY SAVE Ox1040 
#define SKY RESTOR Ox1041 
#define SKY NOP Ox1063 
#define SKY STARTO OxlOOO 
#define SKY STARTl OxlOOl 

I* status masks * I 
#define SKY IHALT OxOOOO 
#define SKY INTRPT Ox0003 
#define SKY INTENB OxOOlO 
#define SKY RUNENB Ox0040 
#define SKY SNGRUN Ox0060 
#define SKY RESET Ox0080 
#define SKY IODIR Ox2000 
#define SKY IDLE Ox4000 
#define SKY IORDY Ox8000 
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I* 
* (sky.c) SKY Floating-point Processor Driver 
* Copyright (c) 1985 by Sun Microsystems, Inc. 
*I 

I* 
* The Sky driver is quite unusual in that maintains some state information 
* in the kernel user structure. This is because the kernel must context 
* switch the Sky board among the processes that wish to use it. This is not 
* typical, and, in fact, there is currently no way for users to add new 
* devices which, like the Sky board, must be context switched by the kernel. 
* 
* The Sky board is used only with Sun2 machines, and machines with Sky boards 
* are known to have only one installed. 
*I 

I* 
* Most device drivers include about the same set of system header files, 
* with variation reflecting driver differences in functionality. The system 
* include files are located in directories whose location is fixed relative 
* to the configuration directories (for both source and object distributions.) 
* Note that there is not a sky.hfile included here; the sky board is a 
* special case and we know that there's only one installed. 
*I 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/file.h> 
#include <sys/dir.h> 
#include <sys/user.h> 

I* general kernel parameters * I 
/* 110 buffers* I 
I* open file information * I 
I* file system directories* I 
I* kernel per-process status * I 

I* <machine> is a symbolic link set to either sun2 or sun3 * I 
#include <machine/pte. h> /* page table entries* I 
#include <machine/mmu. h> /* memory management unit* I 
#include <machine/ cpu. h> / * architecture-related defs * I 
#include <machine/scb. h> /* system control block* I 

I* . .lsundev is the device driver source directory * I 
#include <sundev /mbvar. h> /* bus interface definitions* I 
#include <sundev / sky reg. h> /* sky register definitions* I 

I* 
* The ''page" size (for the VME sky board only) is an offset which must be 
* added to the device base address to get access to the full set of device 
* registers. The second page (page 1) is taken as the supervisor page and 
* allows access to all the registers; the first (0) page is the user page and 
* does not, thus preventing access to the registers needed to load microcode 
* and context switch the device. In user mode it's only possible to access the 
* registers needed to control floating-point operations. 
*I 
#define SKYPGSIZE Ox800 

I * auto-configuration information * I 
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int skyprobe(), skyattach(), skyintr(); 
struct mb_device *skyinfo[l]; /*OnlyoneSkyboard*/ 
struct mb_driver skydriver = { 

skyprobe, 0, skyattach, O, O, skyintr, 
2 * SKYPGSIZE, "sky", skyinfo, O, 0, 0, O, 

} ; 

I* 
* The global variable skyaddr is set in skyprobe to contain the 
* base address of the "supervisor page" (page 1) of the Sky board ( the base 
* address of the device registers.) 
*! 
struct skyreg *skyaddr; 

I* 
* These two global variables are used to control extraordinary aspects of the 
* Sky driver logic: 
* skyinit is set to 1 when the device (during system initialization) 
* is opened for microcode loading. When the microcode loader closes the 
* device, skyini t is set to 2, indicating that the device is available 
* for general use. This mechanism is necessary to handle the special open 
* state needed for microcode loading. 
* skyisnew is even more peculiar, being necessary only to distinguish 
* two slightly different versions of the Sky board. 
*I 
int skyinit = O, skyisnew = O; 

/*AR.GSUSED* I 
skyprobe(reg, unit) 

caddr_t reg; 
int unit; 
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register struct skyreg *skybase (struct skyreg *)reg; 

I* Is something there? * I 
if (peek((short *)skybase) -1) 

return (O); 

I* If so, is it a Sky board? * I 
if (poke((short *)&skybase->sky_status, SKY_IHALT)) 

return (0); 

skyaddr = (struct skyreg *) (SKYPGSIZE + reg); 
if (cpu == CPU_SUN2_120 I I 

poke((short *)&skyaddr->sky_status, SKY_IHALT)) 

I* old VMEbus or Multibus version of the Sky board * I 
skyaddr = (struct skyreg *)reg; 
skyisnew 0; 

else 
skyisnew 1; 

return (sizeof (struct skyreg)); 
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I* 
* If it's the new version of the board, then it has to be told what interrupt 
* to respond to. This is true for both vectored and auto-vectored interrupts. 
* In the auto-vectored case, the VME interrupt vector is set to be identical 
* to the 68000 auto-vector for the appropriate interrupt level. For the old 
* version of the Sky board, skyattach does nothing. 
*I 
skyattach(md) 

struct rob device *md; 

if (skyisnew) { 
if ( ! md->md_intr) { 

I* auto-vectored interrupts * I 
(void) poke((short *)&skyaddr->sky_vector, 

AUTOBASE + md->md_intpri); 
else { 

I* vectored interrupts * I 
(void) poke((short *)&skyaddr->sky_vector, 

md->md intr->v_vec); 

/*ARGSUSED* I 
skyopen(dev, flag) 

dev_t dev; 
int flag; 

inti; 
register struct skyreg *s = skyaddr; 

if (skyaddr == 0) /*skyprobedidn'tfindthedevice*/ 
return (ENXIO); 

if (skyinit == 2) { 
I* 
* skyini tis 2 only when skyclose has previously been 
* called. This is true only in the case where skyclose was 
* called by the microcode loader, and so it's used here to recognize 
* the first time that the device is openedfor use by a user 
* process. Thus, it's here that the device ( and its related 
* bookkeeping fields) need to be initialized. 
*I 
s->sky_status = SKY_RESET; 
s->sky_command SKY_STARTO; 
s->sky_command = SKY_STARTO; 
s->sky_command = SKY_STARTl; 
s->sky_status = SKY_RUNENB; 
u.u_skyctx.usc_used = l; 
u.u_skyctx.usc_cmd SKY_NOP; 
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for (i=O; i<8; i++) 
u.u_skyctx.usc_regs[i] O; 

skyrestore(); 

else if (flag & FNDELAY) 

I* 
* This open is for the the user program that loads the microcode. 
* This is a special case that allows it to open the device, even 
* though it isn't initialized. 
*/ 
skyinit = 1; 

else 
return (ENXIO); 

return (0); 

/*ARGSUSED* I 
skyclose(dev, flag) 

dev_t dev; 
int flag; 

I* 
* Call skysave in case a user aborted and left the board in an 
* unclean state. We're really not saving the device state here, but 
* rather calling skysave to ensure that the state is safe for the 
* next user. 
*I 
if (skyinit == 2) 

skysave(); 

I* 
* This is not the normal case. skyini tis being set to 2 to indicate to 
* skyopen that the device has been initialized. 
*I 
if (skyinit == 1) 

skyinit = 2; 
u.u_skyctx.usc_used O; 
return (0); 

l*ARGSUSED* I 
skymmap(dev, off, prot) 

dev_t dev; 
off_t off; 
int prot; 

if (off) 
return (-1); 

I* 
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I* 

* If this is a VME Sky board, and the board has been initialized (its 
* microcode loaded), then allow the user process to have access only to 
* the "user" page. This allows users to do floating-point operations, 
* but not to load microcode. The Multibus Sky board doesn't offer such 
* protection, so any process can load microcode and screw up other users 
* of the board. If this is a VME board, but we've still in the 
* microcode-loading state, allow access to the "supervisor" version of 
* the registers so we can load the microcode. 
*! 
off= (off_t)skyaddr; 
if (skyisnew && skyinit 2) /* useuserpage */ 

off-= SKYPGSIZE; 

return (hat_getkpfnum((addr_t) off)); 

* skyintr is also quite atypical, being used only for error reporting 
* and to disable interrupts. It must disable interrupts because they may (on 
* the Multibus version/or sure) have been accidently set by a user process 
* with access to the device registers. The kernel must be able to handle 
* all the interrupts which can be generated by all the devices, even if it 
* doesn't use them/or anything. 
*I 

!*ARGSUSED*! 
skyintr(n) 

int n; 

static u short skybooboo = 0; 

if (skyaddr && (skyaddr->sky_status & (SKY_INTENBISKY_INTRPT))) { 
if (skyaddr->sky_status & SKY_INTENB) { 

printf("skyintr: sky board interrupt enabled, status Ox%x\n", 
skyaddr->sky_status); 

skyaddr->sky_status &= -(SKY_INTENBISKY_INTRPT); 
return (1); 

if (!skybooboo && (skyaddr->sky_status & SKY_INTRPT)) { 
printf("skyintr: sky board unrecognized status, status Ox%x\n", 

skybooboo skyaddr->sky_status); 
return (0); 

return (0); 

!* 
* skysave does the actual work of saving the device state. It has to 
* jump through some hoops to do so, but these hoops are completely device 
* specific. 
*I 
skysave () 
{ 

sun 
microsystems 
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register short i; 
register struct skyreg *s 
register u short stat; 

skyaddr; 

for (i = O; i < 100; i++) 
stat= s->sky_status; 
if (stat & SKY_IDLE) { 

u.u_skyctx.usc_cmd 
goto sky_save; 

if (stat & SKY_IORDY) 
goto sky_ioready; 

printf("skyO: hung\n"); 
skyinit = O; 
u.u_skyctx.usc_used = O; 
return; 

I* 1/0 is ready, is it a read or write? * I 
sky_ioready: 

SKY_NOP; 

s->sky_status = SKY_SNGRUN; /* set single step mode* I 
if (stat & SKY_IODIR) 

i = s->sky_dlreg; 
else 

s->sky_dlreg = i; 

/* 
* Check again since data may have been in a long word. 
*I 

stat= s->sky_status; 
if (stat & SKY_IORDY) 

I* 

if (stat & SKY_IODIR) 
i = s->sky_dlreg; 

else 
s->sky_dlreg = i; 

* Read and save the command register. Decrement it by 1 since it's 
* actually Sky program counter and must be backed up. 
*I 
u.u_skyctx.usc_cmd = s->sky_command - 1; 

/* 
* Reinitialize the board. 
*/ 

s->sky_status = SKY_RESET; 
s->sky_command SKY_STARTO; 
s->sky_command = SKY_STARTO; 
s->sky_command = SKY_STARTl; 
s->sky_status SKY_RUNENB; 

/* 
* Do the actual context save. (Unrolled loop for efficiency.) 
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*I 
sky_save: 

s->sky_command = SKY_NOP; /* set device to a clean mode* I 
s->sky_command = SKY_SAVE; 
u.u_skyctx.usc_regs[O] s->sky_data; 
u.u_skyctx.usc_regs[l] s->sky_data; 
u.u_skyctx.usc_regs[2] s->sky_data; 
u.u_skyctx.usc_regs[3] s->sky_data; 
u.u_skyctx.usc_regs[4] s->sky_data; 
u.u_skyctx.usc_regs[S] s->sky_data; 
u.u_skyctx.usc_regs[6] s->sky_data; 
u.u_skyctx.usc_regs[7] s->sky_data; 

skyrestore () 
{ 

register struct skyreg *s skyaddr; 

if (skyinit != 2) { 
u.u_skyctx.usc_used 0; 
return; 

s->sky_command SKY_NOP; 

/* 
* Do the actual context restore. 
*I 

I* set device to a clean mode * I 

s->sky_command = SKY_RESTOR; 
s->sky_data u.u_skyctx.usc_regs[O]; 
s->sky_data u.u_skyctx.usc_regs[l]; 
s->sky_data u.u_skyctx.usc_regs[2]; 
s->sky_data u.u_skyctx.usc_regs[3]; 
s->sky_data u.u_skyctx.usc_regs[4]; 
s->sky_data u.u_skyctx.usc_regs[S]; 
s->sky_data u.u_skyctx.usc_regs[6]; 
s->sky_data u.u_skyctx.usc_regs[7]; 
s->sky_command = u.u_skyctx.usc_cmd; 
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D.4. Versatec Interface Driver 

I* 
* (vcmd.h) Include file for user programs that'll give ioctl commands to the 
* Ikon 10071-5 Multibus/Versatec interface. 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*I 

Hfndef IOCTL -
#include <sys/ioctl.h> 
fondif 

#define VPRINT 0100 
#define VPLOT 0200 
#define VPRINTPLOT 0400 
#define VPC TERMCOM 0040 
#define VPC FFCOM 0020 
#define VPC EOTCOM 0010 
#define VPC CLRCOM 0004 
#define VPC RESET 0002 

I* 
* !OR and !OW encode read/write instructions to the kernel within the ioctl 
* command code. These instructions cause the kernel to read the ioctl 
* command argument into user space (_[OR), or to write it into kernel space (_[OW). 
*I 
#define 
#define 

VGETSTATE _IOR(v, 0, int) 
VSETSTATE _IOW(v, 1, int) 
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I* 
* (vpreg.h) Registers for Ikon 10071-5 Multibus/Versatec interface. 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*I 

I* 
* Note that the vpdevice structure actually spans the registers of several 
* contiguous IC devices ( a 8259 and a 8237.) Only the low byte of each 
* ( short) word is used. 
*I 

struct vpdevice { 
u_short vp_status; 
u short vp_cmd; 
u short vp_pioout; 
u short vp_hiaddr; 
u short vp_icadO; 
u short vp_icadl; 

I* 00: mode(w) and status(r) * I 
I* 02: special command bits(w) * I 
I* 04: PIO output data(w) (unused) * I 
I* 06: hi word of Multibus DMA address(w) * I 
I* 08: adO of 8259 interrupt controller * I 
I* OA: adl of 8259 interrupt controller * I 

I* The rest of the fields are for the 8237 DMA controller * I 
u short vp_addr; /* OC: DMA word address* I 
u short vp_wc; /* OE: DMA word count* I 
u short vp_dmacsr; /*10:commandandstatus(unused)*/ 
u short vp_dmareq; /* 12: request (unused)* I 
u short vp_smb; /* 14: single mask bit (unused)* I 
u short vp_mode; /* 16: dma mode* I 
u short vp _ clrff; / * 18: clear first/last flip-flop* I 
u short vp_clear; /* JA: DMA master clear* I 
u short vp_clrmask; /* JC: clear mask register* I 
u short vp_allmask; /* JE: all mask bits (unused)* I 

} ; 

I* 
* Warning - this is one of those devices in which the read bits are not 
* identical to write bits. 
*I 

I* vp _status bits (read) * I 
#define VP IS8237 Ox80 I * 1 if 8237 ( sanity checker) * I 
#define VP REDY Ox40 I * printer ready * I 
#define VP DRDY Ox20 I* printer and interface ready * I 
#define VP IRDY OxlO I* interface ready * I 
#define VP PRINT Ox08 I* print mode * I 
#define VP NOSPP Ox04 I* not in SPP mode* I 
#define VP ONLINE Ox02 I* printer online * I 
#define VP NOPAPER OxOl I* printer out of paper * I 

I* vp _status bits (write) * I 
#define VP PLOT Ox02 I* enter plot mode * I 
#define VP SPP OxOl I* enter SPP mode * I 

/* vp_cmd bits* I 
#define VP RESET OxlO I* reset the plotter and interface * I 
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tdefine 
tdefine 
tdefine 
tdefine 

VP CLEAR 
VP FF 
VP EOT 
VP TERM 

I* vp _mode bits* I 

Ox08 
Ox04 
Ox02 
OxOl 

tdefine VP DMAMODE Ox47 

I* 

I * clear the plotter * I 
I* form feed to plotter * I 
I* EOT to plotter * I 
I* line terminate to plotter * I 

/* put interface in DMA mode* I 

* These two values are used to set the device (which is reticent to disclose 
* that it has issued an interrupt) so that the polling routine can find out. 
*I 
tdefine 
tdefine 

VP ICPOLL OxOC 
VP ICEOI Ox20 
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I* 
* (vp.c) DMA driver for Ikon 10071-5 Versatec matrix printer/plotter driver. 
* Copyright (c) 1985 by Sun Microsystems, Inc. 
*I 

I* 
* Most device drivers include about the same set of system header files, with 
* variation reflecting driver differences in functionality. The system include 
* files are located in directories whose location is fixed relative to the 
* configuration directories (for both source and object distributions.) vp.h 
* is presumed to be in the configuration directory, where conf ig will have 
* left it and from which it is assumed that driver source files (like this one) 
* are compiled. 
*I 

-#include "vp. h" I* installed device count -- from config * I 
-#include <sys/pararn.h> I* general kernel parameters * I 
-#include <sys/dir.h> I* file system directories * I 
-#include <sys/user.h> I* kernel per-process status * I 
-#include <sys/buf.h> I* I/0 buffers * I 
-#include <sys/systrn.h> I* miscellaneous kernel variables * I 
-#include <sys/kernel.h> I* kernel global variables * I 
-#include <sys/rnap.h> I* resource allocation maps * I 
-#include <sys/ioctl.h> I* ioctl definitions * I 
-#include <sys/vcrnd.h> I* for all Versatec interface drivers * I 
-#include <sys/uio.h> I* uio structures * I 

I* <machine> is a symbolic link set to either sun2 or sun3 * I 
-#include <rnachine/psl. h> /* processor status codes* I 
-#include <rnachine/mrnu. h> /* memory-management unit* I 

I* <sundev> is the device driver source directory * I 
#include <sundev /vpreg. h> /* vp register definitions* I 
-#include <sundev /mbvar. h> /* bus-interface definitions* I 

I* 
* Define the Versatec sleeping priority to be lower than PZERO, that is, make 
* its sleep be uninterruptible by signals. This is appropriate because the 
* events which we'll be waiting/or, slow as they may be, are relatively fast 
* and sure (unlike user input) to occur. 
*I 
-#define VPPRI (PZER0-1) 

I* 
* Define an array o/vp_softc structures, one/or each of the NVP 
* installed devices. By convention, the names xx_softc and 
* xx_device are used/or the private.per-device software state 
* structure. 
*I 
struct vp_softc { 

int sc_state; 
struct buf *sc_bp; 
int sc_mbinfo; 

I* current device state * I 
I* buff er mapped to device * I 
I* stash/or mbsetup' s return code * I 
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} vp_softc[NVP]; 

I* 
* sc_state bits - passed in VGETSTATE and VSETSTATE ioctl calls. 
* The user-level ioctl command codes are in vcmd. h, normally found 
* in /usr/include/sys 
*I 
#define VPSC BUSY 0400000 
#define VPSC MODE 0000700 
#define VPSC SPP 0000400 
#define VPSC PLOT 0000200 
#define VPSC PRINT 0000100 
#define VPSC CMNDS 0000076 
#define VPSC OPEN 0000001 

I* no special encoding in minor device number * I 
#define VPUNIT(dev) (minor(dev)) 

I* 
* Declare an array of private buf headers, by convention named rvpbuf, one for 
* each of the NVP installed devices. 
*I 
struct buf rvpbuf[NVP]; 

I* The autoconfig-related declarations. * I 
int vpprobe(), vpintr(); 
struct mb_device *vpdinfo[NVP]; 
struct rob driver vpdriver = { 

vpprobe, 0, 0, 0, O, vpintr, 
sizeof (struct vpdevice), "vp", vpdinfo, O, O, O, 

} ; 

I* 
* vpprobe already indicates the persnickety nature of the device, a 
* nature that will become more clear as we proceed. 
*I 
vpprobe(reg) 

caddr t reg; 
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register struct vpdevice *vpaddr 
register int x; 

(struct vpdevice *)reg; 

x = peek((short *)&vpaddr->vp_status); 

/* 
* Note that the device provides a sanity check bit, which 
* we can use to ensure that vpprobe is accurate 
*/ 

if ( x == -1 I I ( x & VP_ IS 8 2 3 7 ) == 0 ) 
return (O); 

I* Now reset the 8259; also return O if reset fails* I 
if (poke((short *)&vpaddr->vp_cmd, VP_RESET)) 
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return (0); 

I* 
* Device-specific magic to shut up the device, by setting the 8259 -- it 
* doesn't have enough sense to wait/or the driver's instructions, and 
* starts interrupting after being reset. Note that even this isn't 
* straightforward because of register write latency. 
*I 
vpaddr->vp_icadO 
DELAY(l); 
vpaddr->vp_icadl 
DELAY(l); 
vpaddr->vp_icadl 

Oxl 2; / * ICWJ, edge-trigger * I 

OxFF; /* ICW2 - don't care (non-zero)* I 

OxFE; / * /RO - interrupt on DRDY edge * I 

I* Also reset the 8237 * I 
vpaddr->vp_clear = 1; 

return (sizeof (struct vpdevice)); 

vpopen(dev) 
dev_t dev; 

register struct vp_softc *sc; 
register struct mb device *md; 
register int s; 
static int vpwatch = 0; 

I* Do a variety of error checks upon opening the device. Fail if dev 
* is greater than the configured number of devices, or if the device 
* (which is exclusive open) has already been opened, or if vpprobe 
* failed to find the device as expected. 
* 
* Note that, if the device wasn'tfound by the probe routine, both 
* vpdinfo [VPUNIT (dev)] andmd->md_alive will be 0. Any given 
* driver may chose.for its convenience, to make either test, but it's 
* paranoid to -- as is done here -- make both. (All drivers have 
* access to md->md_ali ve; this isn't the case with xxdinfo). 
*I 
if (VPUNIT(dev) >= NVP I I 

I* 

((sc = &vp_softc[minor(dev)])->sc_state&VPSC_OPEN) I I 
(md = vpdinfo[VPUNIT(dev)]) == 0 I I md->md alive== 0) 
return (ENXIO); 

* vpw at ch is a static local which is set to O the first time 
* vpopen is called. This code sets vpwatch to one and then 
* calls vptimo -- the effect is that vptimo gets called only once, 
* the first time a user process calls vpopen. But if you examine 
* vptimo, you' II see that it arranges matters so that it's called 
* repeatedly. This helps to keep the device from locking up. 
*I 
if ( ! vpwatch) { 
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I* 

vpwatch = 1; 
vptimo (); 

* Initialize softc state variable. Here we are, among other things, setting 
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* sc->sc_state = VPSC_OPEN, which indicates that the device (which is 
* exclusive use) is tied up, and that no one else can open it. We are also 
* dispatching two commands, CLRCOM andVPC_RESET. 
*I 
sc->sc_state = VPSC_OPENIVPSC_PRINT 

I* Loop while any command is in process * I 
while (sc->sc_state & VPSC_CMNDS) 

I* 

VPC_CLRCOMIVPC_RESET; 

* This critical section ensures that only one instance of the driver can 
* vpwai t/vpcmd at any time. vpcmd clears command request 
* bits as it processes commands. This is absolutely necessary, since 
* vpcmd intends to actually dispatch a command (posted in 
* sc->sc_state) to the hardware. 
*I 
s = splx(pritospl(md->md_intpri)); 
vpwait (dev); 
vpcmd(dev); 
(void) splx ( s) ; 

return (0); 

vpclose(dev) 
dev_t dev; 

register struct vp_softc *sc 

sc->sc state= O; 

vpstrategy(bp) 
register struct buf *bp; 

&vp_softc[VPUNIT(dev)]; 

register struct vp_softc *sc = &vp_softc[VPUNIT(bp->b_dev)J; 
register struct mb_device *md = vpdinfo[VPUNIT(bp->b_dev)]; 
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr; 
int s; 
int pa, we; 

I* 
* The hardware doesn't support writes to odd addresses or DMA requests 
* of less than two bytes in length. 
*I 
if (((int)bp->b_un.b_addr & 1) I I bp->b_bcount < 2) { 

bp->b_flags I= B_ERROR; 
iodone (bp); 
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I* 

return; 

s = splx(pritospl(md->md_intpri)); 
while (sc->sc_bp != NULL) 

sleep((caddr_t)sc, VPPRI); 

sc->sc_bp = bp; 

vpwait(bp->b_dev); 
I* Map next request for the now idle device onto the bus for a DMA transfer* I 
sc->sc_mbinfo = mbsetup(md->md_hd, bp, 0); 

vpaddr->vp_clear = 1; 

/* Get the address in DVMA space* I 
pa MBI_ADDR(sc->sc_mbinfo); 

I* 
* Now comes some VERY device-specific code, as we set the DMA transfer 
* address on the device. 
*I 
vpaddr->vp_hiaddr = (pa>> 16) & OxF; 
pa= (pa>> 1) & Ox7FFF; 
we= (bp->b_bcount >> 1) - 1; 
bp->b_resid = O; 

I* 
* Note the 2 sequential 8-bit writes into the same address to indicate 
* a 16-bit address! 
*I 
vpaddr->vp_addr 
vpaddr->vp_addr 

pa & OxFF; 
pa >> 8; 

vpaddr->vp_wc = we & OxFF; 
vpaddr->vp_wc =we>> 8; 
vpaddr->vp_mode = VP_DMAMODE; 
vpaddr->vp_clrmask = 1; 

I* 
* By setting the VPSC _BUSY bit in sc->sc _ state, we indicate that the device 
* is to sleep, and that vpwai tis to loop. This is because we want to insure 
* that another command doesn't get issued until this DMA transfer is completed. 
*I 
sc->sc_state I= VPSC BUSY; 

(void) splx (s); I* end of critical section * I 

* There is no read routine, as this is a write-only device. 
*I 

l*ARGSUSED*I 
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vpwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

I* 

if (VPUNIT(dev) >= NVP) 
return (ENXIO); 

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE, 
minphys, uio)); 

* vpwai t kills time, but not by busy waiting. Instead, it relies on the 
* fact that sleep and wakeup aren't proper semaphores, and that ALL 
* processes which are sleeping on a channel wake when a wakeup is issued 
* on that channel. vpwai t' s sleep, then, is awaken by vpintr. 
*I 
vpwait(dev) 

dev_t dev; 

register struct vpdevice *vpaddr = 
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr; 

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]; 

for (; ; ) 
if ((sc->sc_state & VPSC_BUSY) == 0 && 

vpaddr->vp_status & VP_DRDY) 
break; 

sleep((caddr_t)sc, VPPRI); 

return; 

struct pair 
char soft; 
char hard; 

I* software bit * I 
I* hardware bit * I 

} ; 

I* 

vpbits[] = { 
VPC_RESET, 
VPC_CLRCOM, 
VPC_EOTCOM, 
VPC_FFCOM, 
VPC_TERMCOM, 
o, 

VP_RESET, 
VP_CLEAR, 
VP_EOT, 
VP_FF, 
VP_TERM, 
0, 

* vpcmd is designed to be called after vpwai t has returned, thus 
* indicating that the hardware is quiet and ready to receive a new command. 
* When it's called, it runs through the possible command bits in 
* sc->sc_state, and.finding one set, issues the corresponding hardware 
* command to the actual device. At the same time it clears the command from 
* sc->sc_state, so that the next time vpcmd is called another 
* command will be issued to the hardware. Note that vpcmd waits a long 
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* time, probably too long.for the device to recover before it returns. 
*I 
vpcmd(dev) 

dev_t; 

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]; 
register struct vpdevice *vpaddr = 

(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr; 
register struct pair *bit; 

for (bit= vpbits; bit->soft != 0; bit++) 
if (sc->sc_state & bit->soft) { 

vpaddr->vp_cmd = bit->hard; 
sc->sc_state &= -bit->soft; 
DELAY ( 10 0) ; /* time for DRDY to drop* I 
return; 

/*ARGSUSED* I 
vpioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

register int m; 
register struct mb_device *md = vpdinfo[VPUNIT(dev)]; 
register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]; 
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr; 
int s; 

switch ( cmd) { 

case VGETSTATE: 
*(int *)data 
break; 

I* 

sc->sc_state; 

* Turn off VP SC_ MODE; restrict the user to resetting it and setting 
* VPSC CMNDS 
*I 
case VSETSTATE: 

m = *(int *)data; 
sc->sc state= 

(sc->sc_state & -vPSC_MODE) (m&(VPSC_MODEIVPSC_CMNDS)); 
break; 

default: 
return (ENOTTY); I* "Not a typewriter" * I 
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I* 
* More careful handling to make sure that one command doesn't get issued until the 
* last one has completed. Wait, then post some state information from 

I* 

* sc->sc_softc to the hardware, then wait again, then call vpcmd to 
* fire off the next command. And all in a critical section! 
*I 
s = splx(pritospl(md->md_intpri)); 
vpwait (dev); 
if (sc->sc_state&VPSC_SPP) 

vpaddr->vp_status = VP_SPPIVP_PLOT; 
else if (sc->sc_state&VPSC_PLOT) 

vpaddr->vp_status VP_PLOT; 
else 

vpaddr->vp status O; 
while (sc->sc_state & VPSC_CMNDS) 

vpwait (dev); 
vpcmd (dev); 

(void) splx ( s) ; 
return (O); 

* This is really a polling interrupt routine. The code at the top that checks 
* the polling chain should really be broken out into a vppoll routine 
* that gets plugged into the mb _device structure. The rest of the code 
* would then be where it properly belongs, in a vpintr routine that can 
* be named in the config file. 
*I 
vpintr () 
{ 

register int dev; 
register struct mb device *md; 
register struct vpdevice *vpaddr; 
register struct vp_softc *sc; 
register int found= 0; 

for (dev = 0; dev < NVP; dev++) 
if ((md = vpdinfo[dev]) == NULL) 

continue; 
vpaddr = (struct vpdevice *)md->md_addr; 

/* 
* It's not easy to find out if an interrupt has occurred. 
*I 

vpaddr->vp_icadO = VP_ICPOLL; 
DELAY (1); 

if (vpaddr->vp_icadO & Ox80) { 
found= 1; 

/* Wake up the guilty device * I 
DELAY(l); 
vpaddr->vp_icadO VP_ICEOI; 

~) S ll fl Revision A, of 27 March 1990 
~ microsystems 



224 Appendices 

sc = &vp_softc[dev]; 

I* Is there a command currently dispatched and does the hardware 
* say it's done with it? 
*I 
if ((sc->sc_state&VPSC_BUSY) && (vpaddr->vp_status & VP_DRDY)) 

sc->sc_state &= -vPSC_BUSY; /* clear busy indicator* I 

I* 

if (sc->sc_state & VPSC_SPP) { 

I* device-specific mode toggle * I 
sc->sc_state &= -vpsc_SPP; 
sc->sc_state I= VPSC_PLOT; 
vpaddr->vp_status = VP_PLOT; 

iodone ( sc->sc _ bp) ; / * break wait in physio * / 
sc->sc_bp = NULL; 

I* 
* Note that the resources being deallocated here were allocated 
* in vpstrategy, in the top half of the driver. This is 
* standardformfor DMA drivers. 
*I 

mbrelse(md->md hd, &sc->sc_mbinfo); 

wakeup ( (caddr_t) sc); /* break loops in vpstrategy AND vpwait * I 

return (found); 

* vptimo is used to repeatedly kickstart the device, which has a tendency 
* to freeze up if left alone too long. It calls vpintr, and then it sets 
* up a timer to call vptimo again (and again, and again ... ) to make sure 
* that a call to vpintr is always pending. The kernel global hz is set 
* to reflect the clock rate of the system processor chip (it's 50 for a Sun3 ). 
*I 
vptimo () 
{ 

int s; 
register struct mb_device *md = vpdinfo[O]; 

s = splx(pritospl(md->md_intpri)); 
(void) vpintr(); 
(void) splx ( s) ; 
timeout(vptimo, (caddr_t)O, hz); 
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D.S. Sun386i Parallel Port Driver 

I* 
* (ppreg.h) Sun-386i Parallel Port Registers 
* Copyright (c) 1987 by Sun Microsystems, Inc. 
*I 

I* Register addresses. 
*I 

ushort ppregs[] [NPPREGS] = 
Ox378, Ox37a, Ox379 }, /* portlregs */ 

} ; 

I* Printer Control Reg bits * I 
#define PC INTENABLE 
#define PC SELECT 
#define PC INIT 
#define PC LINEFEED 
#define PC STROBE 

#define PC NORM 
#define PC OFF 
#define PC RESET 

I* Printer Status Reg bits * I 
#define PS READY 
#define PS NOTACK 
#define PS NOPAPER 
#define PS SELECT 
#define PS NOERROR 

#define PSREADY(s) 
#define PSSELECT(s) 
#define PSNOPAPER(s) 
#define PSERROR(s) 

OxlO /* +IRQ ENABLE: enable ACK interrupts* I 
OxO 8 / * +SLCT IN: select printer* I 
OxO 4 / * -/NIT: init printer * I 
Ox02 /* +AUTO FD XT: set auto linefeed* I 
OxOl /* +STROBE: strobe data* I 

(PC INTENABLEIPC SELECTIPC_INIT) 
(PC_SELECTIPC_INIT) 
0 

Ox8 0 / * -BUSY: printer not busy * I 
Ox4 0 / * -ACK: ACK state * I 
Ox2 0 I* +PE: printer out of paper * I 
Oxl O / * +SLCT: printer is selected* I 
Ox08 /* -ERROR: printer error condition* I 

( (s) &PS_READY) 
( (s) &PS_SELECT) 
( (s) &PS_NOPAPER) 
(((s)&PS_NOERROR) 0) 
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I* 
* Parallel Port (printer) driver. 
* Copyright (c) 1987 by Sun Microsystems, Inc. 
*I 

#include "pp.h" 
#if NPP > 0 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/uio.h> 
#include <sys/errno.h> 
#include <sys/file.h> 
#include <sundev/mbvar.h> 

I* 
* Buffers for use by physio( ). 
*I 
struct buf ppbuf[NPP]; 
#define PPBUFSIZ 64 I* Size of buffer written to printer* I 

I* 
* Software state structure, one for each printer 
*I 
struct ppstate { 

int pp_flags; 
#define PP OPEN OxOl 
#define 
#define 
#define 

u char 
u char 
u char 
int 
struct 
struct 
char 
char 

PP WANT Ox02 
PP TIMER Ox08 
PP BUSY OxlO 
pp_timer; 
pp_lostintr; 
pp_notready; 
pp_unit; 
mb_device *pp_md; 
buf *pp_bp; 
pp_buf[PPBUFSIZ]; 
*pp_cp; 

int pp_count; 
u_short pp_regbase; 
ppstate[NPP]; 

I * Printer state: * I 
I* Currently open * I 
I* Someone waiting for printer * I 
I* Watchdog timer is running * I 
I* I/0 in progress * I 
I* For detecting timeout situations* I 
I* For tracking lost interrupts* I 
I* Printer not ready (no paper, etc.) * I 
I* Unit number* I 
I* Pointer to mb info * I 
I* Pointer to current' buf * I 
/* Buffer *I 
I* Current byte in current buffer * I 
I* Number of bytes left to print * I 
I* Device register base in ilo space * I 

#define 
#define 
#define 

PPREG DATA 
PPREG CTRL 
PPREG STAT 

(pp->pp_regbase) 
(pp->pp_regbase + 2) 
(pp->pp_regbase + 1) 

#define 
#define 

PPUNIT(dev) 
PPPRI 

extern int hz; 
#define PPWATCHDOG 
#define PPTICKS 

(minor (dev)) 
(PZERO + 1) I* Sleeps are interruptable * I 

3 /* Watchdog interval: see 'pptimeout()' * I 
(30/PPWATCHDOG + 1) 
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#define PPMSGTICKS 

Hfdef DEBUG 
I* 
* Debugging stuff. 
*I 
#define DBINIT 
#define DBIO 
#define DBOPEN 
#define DBCLOSE 
#define DBSTRAT 
#define DBSTART 
#define DBTMOUT 
#define DBINTR 

(180/PPWATCHDOG) 

OxOOOl 
Ox0002 
Ox0004 
Ox0008 
OxOOlO 
Ox0020 
Ox0040 
Ox0080 

int ppdebug = Oxffff; 
#define ppprint(flg,x) (((flg)&ppdebug) ? printf x 

#else 
#define ppprint(flg,x) 
fondif DEBUG 

: t ppprobe(), ppattach(), ppintr(), pptimeout(); 

struct mb driver ppdriver = { 

0) 

ppprobe, 0, ppattach, 0, O, ppintr, 0, "pp", 0, O, 0, 0, 
} ; 

1 *ARGSUSED* I 
ppprobe(reg, unit) 

caddr_t reg; 
int unit; 

ppprint (DBINIT, ("ppprobe\n")); 

if (unit>= NPP) 
panic("pp: too many units"); 

ppstate[unit] .pp_regbase = (u_short)reg; 
return(l); 

ppattach(md) 
register struct mb_device *md; 

register struct ppstate *pp; 

ppprint(DBINIT, ("ppattach\n")); 

pp= &ppstate[md->md_unit]; 
pp->pp_md = md; 

I* Initialize printer. 
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* Holding PC _]NIT low for 50 usecs does the trick. 
*I 
outb(PPREG_CTRL, PC_RESET); 
DELAY(SO); 
outb(PPREG_CTRL, PC_OFF); 
DELAY(lO); 

ppopen(dev, flags) 
dev_t dev; 
int flags; 

register struct ppstate *pp 
int status; 

&ppstate[PPUNIT(dev)]; 

ppprint(DBOPEN, ("ppopen: unit %d\n", PPUNIT(dev))); 

if (PPUNIT(dev) >= NPP I I pp->pp_md->md_alive == 0) 
return(ENXIO); 

if (flags & FREAD) 
return (ENODEV); 

I* Can't read a write-only device * I 

pp->pp_unit = PPUNIT(dev); 

while (pp->pp_flags & PP _OPEN) /* Enforce exclusive access* I 
ppprint(DBOPEN, ("ppopen: in use - waiting ... \n")); 
if (flags & FNDELAY) 

return(EBUSY); 
pp->pp_flags I= PP_WANT; 
if (sleep((caddr_t)&pp->pp_flags, PPPRIIPCATCH)) { 

return (EINTR); 

status= inb(PPREG_STAT); 
if (PSNOPAPER(status) I I ! PSSELECT(status) I I PSERROR(status)) 

if (PSNOPAPER(status)) 
uprintf("pp%d: printer out of paper\n", pp->pp_unit); 

else 
uprintf("pp%d: printer not ready\n", pp->pp_unit); 

(void)wakeup((caddr_t)&pp->pp_flags); 
pp->pp_flags = 0; 
return(EIO); 

outb (PPREG_CTRL, PC_NORM) ; /* Enable interrupts*/ 

if ((pp->pp_flags & PP_TIMER) 0) { 
/* 
*Kickoff watchdog timer. 
*I 
timeout(pptimeout, (caddr_t)pp, PPWATCHDOG*hz); 
pp->pp_timer = O; 
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I* 

pp->pp_flags I= PP TIMER; 

pp->pp_flags I= PP_OPEN; 
return(O); 

* ppclose: 
* Close the printer device. 
* Turn off interrupts. 
* Wake up anyone waiting to open the printer. 
*I 
ppclose(dev) 

dev_t dev; 

register struct ppstate *pp= &ppstate[PPUNIT(dev)]; 

ppprint(DBCLOSE, ("ppclose: unit %d\n", PPUNIT(dev))); 

outb(PPREG_CTRL, PC_OFF); I* Disable interrupts * I 

if (pp->pp_flags & PP_WANT) 
wakeup((caddr_t)&pp->pp_flags); 

pp->pp_flags = 0; 

ppwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

I* 

int ppminphys(), ppstrategy(); 

ppprint(DBIO, ("ppwrite\n")); 

return(physio(ppstrategy, &ppbuf[PPUNIT(dev)], dev, B_WRITE, 
ppminphys, uio)); 

* ppstrategy: 
*I 
ppstrategy(bp) 

register struct buf *bp; 

register struct ppstate *pp= &ppstate[PPUNIT(bp->b_dev)]; 

ppprint(DBSTRATIDBIO, ("ppstrategy\n")); 

pp->pp_bp = bp; 
pp->pp_count = bp->b_bcount; 
pp->pp_cp = pp->pp_buf; 
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if (copyin(bp->b_un.b_addr, pp->pp_buf, bp->b_bcount)) 
bp->b_flags I= B_ERROR; 
bp->b_error = EFAULT; 
ppiodone(pp); 
return; 

pp->pp_flags I= PP_BUSY; 
pp->pp_tirner = PPTICKS; 
pp->pp_lostintr 0; 
pp->pp_notready = 0; 
ppintr () ; 
ppiowait(pp, bp); 
pp->pp_tirner = O; 

/* Set timer* I 
I* Reset "lost interrupt" counter * I 
I* Reset "notready" counter * I 

I * Turn off timer * I 

ppprint (DBSTRAT, ("ppstrategy: ***done\n")); 

pprninphys(bp) 

I* 

register struct buf *bp; 

if (bp->b_bcount > PPBUFSIZ) 
bp->b_bcount = PPBUFSIZ; 

* ppintr: 
* Handle' ack' interrupts from printer. 
*I 
ppintr () 
{ 

register struct ppstate *pp; 
int status; /* printer status* I 
int s; 

ppprint(DBINTR, ("ppintr\n")); 

pp= &ppstate[O]; I* XXX - only works for unit #0 * I 

s = splx(pritospl(pp->pp_rnd->rnd_intpri)); 

status= inb(PPREG_STAT); 
ppprint(DBINTR, ("ppintr: status 

/* Were we expecting an interrupt?* I 
if ( ! (pp->pp_flags & PP_BUSY)) 

Ox%x\n", status)); 

ppprint(DBINTR, ("ppintr: unsolicited interrupt\n")); 
splx(s); 
return; 

if (pp->pp_count > 0) 
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I* 

else 

I* AT Tech Ref says data must be in data reg at least 
* 0.5 usec before and after we strobe, and strobe must 
* last at least 0.5 usec. 
*I 
outb(PPREG_DATA, *pp->pp_cp); 
pp->pp_cp++; 
pp->pp_count--; 
DELAY(l); 
outb(PPREG_CTRL, PC_NORMIPC_STROBE); 
DELAY(l); 
outb(PPREG_CTRL, PC_NORM); 

ppiodone(pp); 

splx(s); 

* pptimeout: 
* Check occasionally for lost interrupts or 
* printer errors (no paper, printer off line, etc.). 
*I 
pptimeout(arg) 

caddr_t arg; 

register struct ppstate *pp= (struct ppstate *)arg; 
int status; /* Printer status* I 
int error= O; 
int s; 

ppprint(DBTMOUT, ("pptimeout\n")); 

s = splx(pritospl(pp->pp_md->md_intpri)); 

I* If we're not currently doing anything, we can go away. * I 
if ((pp->pp_flags & PP_OPEN) 0) { /*Notopen*/ 

splx(s); 
return; 

else if (pp->pp_timer <= 0) { /*Notcurrentlyactive*/ 
timeout(pptimeout, (caddr_t)pp, PPWATCHDOG*hz); 
splx(s); 
return; 

status= inb(PPREG_STAT); 

I* Check/or printer errors. * I 
if (PSNOPAPER(status)) 

if ((pp->pp_notready++ % PPMSGTICKS) 0) 
uprintf("pp%d: printer out of paper\n", pp->pp_unit); 
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else if ( ! PSSELECT (status) I I PSERROR (status)) { 
if ((pp->pp_notready++ % PPMSGTICKS) 0) 

uprintf("pp%d: printer not ready\n", pp->pp_unit); 
else if (--pp->pp_timer == 0) { 

I* Timer has expired - see what's wrong. * I 
ppprint(DBTMOUT, ("pptimeout: status Ox%x\n", status)); 

if (PSREADY(status)) { 
I* 
* We must have dropped an interrupt. 
* If this is the first one we've dropped, assume 
*it's a fluke and carry on. Otherwise, give up. 
*I 
if (pp->pp_lostintr++ == 0) { 

ppprint(DBTMOUT, ("pptimeout: dropped intr\n")); 
pp->pp _ timer = PP TICKS; /*Reset timer * I 
ppintr (); 

else { 
printf("pp%d: not getting interrupts\n", 

pp->pp_unit); 
error= l; 

else 
I* Printer is hung * I 
error= l; 

if ( ! error) { 
timeout(pptimeout, (caddr_t)pp, PPWATCHDOG*hz); 

else { 
pp->pp_bp->b_flags I= B_ERROR; 
ppiodone(pp); 
pp->pp_flags &= -pp_TIMER; 

splx(s); 

I *ARGSUSED* I 
ppioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr t data; 
int flag; 

return(ENOTTY); 

I* 
* ppiowait: 
* Private version of' biowait()'. 
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ppiowait(pp, bp) 

!* 

struct ppstate *pp; 
register struct buf *bp; 

int s; 

s = splx(pritospl(pp->pp_md->md_intpri)); 
while ( ! (bp->b_flags&B_DONE)) { 

if (sleep((caddr_t)bp, PPPRIIPCATCH)) 
bp->b_flags I= (B_ERRORIB_DONE); 
bp->b_error = EINTR; 

splx(s); 

* ppiodone: 
* Private version of' biodone( )'. 
*I 
ppiodone(pp) 

register struct ppstate *pp; 

register struct buf *bp 

bp->b_flags I= B_DONE; 
wakeup((caddr_t)bp); 

pp->pp_flags &= -pp_BUSY; 

#endif NPP 

pp->pp_bp; 
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