
6sun®
• microsystems

Writing Device Drivers

Part Number: 800-3851-10
Revision A of 27 March, 1990

The Sun logo, Sun Microsystems, Sun Workstation, NFS, and TOPS are
registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SPARCstation, SPARCserver, NeWS, NSE,
Open Windows, SPARC, Sunlnstall, SunLink, SunNet, SunOS, SunPro, and Sun
View are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T; OPEN LOOK is a trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations, and
Sun Microsystems, Inc. disclaims any responsibility for specifying which marks
are owned by which companies or organizations.

VMEbus is a trademark of Motorola, Incorporated.

VAX is a trademark of Digital Equipment Corporation.

IBM-PC and IBM 370 are trademarks of International Business Machines Cor
poration.

Cray is a trademark of Cray Research.

The Network Information Service (NIS) was formerly known as Sun Yellow
Pages. The functionality of the two remains the same, only the name has
changed. The name Yellow Pages™ is a registered trademark in the United
Kingdom of British Telecommunications plc and may not be used without per
mission.

Copyright© 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(l)(ii) of the Rights in
Technical Data and Computer Software clause at OF ARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,190 4,527,232 4,745,407 4,679,014 4,435,792 4,719,569 4,550,368 in
addition to foreign patents and applications pending.

Contents

Chapter 1 Introduction.. 1

1.1. Device Independence 1

1.2. Types of Devices ... 2

1.3. System V Compatibility .. 4

1.4. Major Development Stages.. 4

1.5. Warning To Microcomputer Programmers ... 5

1.6. Address-Space Terminology ... 5

1. 7. Manual Overview .. 6

Regular Drivers 6

Appendices ... 6

Last Word.. 6

PART ONE: Regular Device Drivers.. 7

Chapter 2 Hardware Context ... 9

2.1. VMEbus Machines ... 9

Sun-3/Sun-3x/Sun-4 Address Spaces .. 9

Allocation of VMEbus Memory .. ,................... 14

The Sun VMEbus to Multibus Adapter ; ;., ,;...... 16

Interrupt Vector Assignments .. : :u .. ; 0,. ,,. 17

2.2. A Thus Machines .. ;;; ; ;;.fa..... 17

Loadable Drivers .. / ;) •; 19

DOS and SunOS Environments ; <.,.O..:; .. ;......... 19

2.3. Hardware Peculiarities to Watch Out For ;;.; } ~.......... 20

Multibus Device Peculiarities:.0............ 20

- iii-

Contents- Continued

Multibus Byte-Ordering Issues.. 20

Other Multibus-related Peculiarities .. 22

Sun-4/SP ARC Peculiarities .. 23

Other Device Peculiarities ... 24

2.4. DMA Devices .. 25

Sun Main-Bus DVMA ... 25

OMA on A Thus Machines .. 29

Chapter 3 Overall Kernel Context... 31

3.1. The System Kernel ... 31

3.2. Devices as ''Special'' Files ... 32

3.3. Run-Time Data Structures .. 37

The Bus-Resource Interface.. 39

Autoconfiguration-Related Declarations ... 45

Other Kernel/Driver Interfaces ... 46

Chapter 4 Kernel Topics and Device Drivers... 49

4.1. Overall Layout of a Character Device Driver ... 49

4.2. User Space versus Kernel Space... 51

4.3. User Context and Interrupt Context.. 51

4.4. Device Interrupts .. 52

4.5. Interrupt Levels... 53

4.6. Vectored Interrupts and Polling Interrupts .. 54

4.7. Some Common Service Routines... 57

Timeout Mechanisms... 57

Sleep and Wakeup Mechanism... 57

Raising and Lowering Processor Priorities .. 58

Main Bus Resource Management Routines ... 59

Data-Transfer Functions ... 59

Kernel print£() Function ... 60

Macros to Manipulate Device Numbers .. 60

Chapter 5 Driver Development Topics .. 61

-iv-

Contents - Continued

5 .1. Installing and Checking the Device .. 61

Setting the Memory Management Unit.. 61

Selecting a Virtual Address ... 62

Finding a Physical Address ... 64

Selecting a Virtual to Physical Mapping ... 65

Sun-3/Sun-4 Virtual to Physical Mapping.. 65

Sun-3 and Sun-4 Address Mapping ... 66

Sun-3x Virtual to Physical Mapping.. 69

The Table Walk .. 70

A Few Example PfE Calculations .. 72

Sun-3 Solution .. 72

Sun-3x Solution .. 73

Sun-3 Solution .. 74

Sun-3x Solution .. 75

Getting the Device Working and in a Known State.................................. 75

A Warning about Monitor Usage .. 77

5.2. Builtin 1/0 Cache... 77

Using the 1/0 Cache in the Driver ... 77

Address Mapping .. 77

5.3. Installation Options for Memory-Mapped Devices 78

Memory-Mapped Device Drivers .. 78

Mapping Devices Without Device Drivers .. 79

Direct Opening of Memory Devices .. 83

5.4. Debugging Techniques... 85

Debugging with print£() .. 86

Event-Triggered Printing .. 88

Asynchronous Tracing ... 89

kadb - A Kernel Debugger .. 89

5.5. Device Driver Error Handling.. 90

Error Recovery 91

Error Returns .. 91

Error Signals .. 91

Error Logging .. 92

-v-

Contents-Continued

Kernel Panics ... 92

5.6. System Upgrades ... 92

5.7. Loadable Drivers.. 93

Chapter 6 The ''Skeleton'' Character Device Driver 97

6.1. General Declarations in Driver .. 100

6.2. Autoconfiguration Procedures.. 101

probe () Routine ... 1 O 1

attach() Routine.. 103

6.3. open() and close() Routines ... 103

6.4. read() and write() Routines ... 105

Some Notes About the UIO Structure... 106

6.5. Skeleton strategy() Routine ... 107

6.6. Skeleton start() Routine ... 108

6.7. intr () and poll() Routines... 110

6.8. ioctl () Routine .. 112

6.9. Skeleton Driver Variations... 112

OMA Variations .. 112

Multibus or VMEbus DVMA ... 112

A OMA Skeleton Driver ... 113

Variation with ''Asynchronous 1/0'' Support ... 116

Select Routines 117

Adding Asynchronous Notification .. 120

Adding an ioctl() routine ... 120

Chapter 7 Configuring the Kernel.. 123

7.1. Background Information ... 123

7.2. An Example .. 125

7.3. Devices that use Two Address Spaces .. 128

7.4. Adding and Removing Loadable Drivers.. 130

Chapter 8 Pseudo-Device Drivers-A Ramdisk .. 133

8.1. A Ramdisk Driver ... 134

-vi-

Contents - Continued

Ramdisk Source Code .. 134

Ramdisk Installation ... 135

Ramdisk Test Program .. 138

PART TWO: Appendices.. 139

Appendix A Summary of Device Driver Routines .. 141

A.1. Standard Error Numbers ... 141

A.2. Device Driver Routines .. 141

.xxattach () -Attach a Slave Device .. 142

xxclose () - Close a Device .. 142

xxintr () - Handle Vectored Interrupts .. 142

xxioctl () - Miscellaneous 1/0 Control .. 144

x.xmmap () - Mmap a Page of Memory .. 145

x.xminphys () -Determine Maximum Block Size............................. 146

xxopen () - Open a Device for Data Transfers 146

.x.xpoll () - Handle Polling Interrupts .. 147

x.xprobe () - Determine if Hardware is There 14 7

xxread () - Read Data from Device .. 148

xxselect () - Select Support ... 148

xxstrategy () -High-Level 1/0 ... 149

xxwri te () - Write Data to Device .. 149

Appendix B Kernel Support Routines ... 151

bcopy () - Byte Copy forNonoverlapping Regions........................ 151

bp _ map in () - Map a user buffer into kernel space 151

bp _ mapout () - Map out a user buffer in kernel space 152

btodb () - Convert Bytes to Disk Sectors ... 152

bzero () - Initialize Byte Memory Region to Zero 152

copy in () - Move Data From User to Kernel Space 152

copyout () -Move Data From Kernel to User Space................... 153

CDELAY () - Conditional Busy Wait.. 153

DELAY() - Busy Wait for a Given Period .. 153

dma _ done () - Free the DMA Channel .. 153

-vii-

Contents - Continued

dma_setup () -Set Up for a DMA Transfer...................................... 154

gsignal () - Send Signal to Process Group 158

hat _getkpfnum () - Address to Page Frame Number 158

inb () - Read a Byte from an 1/0 Port.. 158

iodone () - Indicate 1/0 Complete ... 158

iowait () -Wait for 1/0 to Complete... 158

kmem_alloc () -Allocate Space from Kernel Heap..................... 159

kmem _free () - Return Space to Kernel Heap 159

log () - Log Kernel Errors .. 159

machineid () - Get Host Id From Eprom ... 160

MBI _ ADDR () - Get Address in DVMA Space 160

mb _ mapalloc () - Get Address in DVMA Space 160

mb _ nbmapalloc () - Get Address in DVMA Space 162

mapin () - Map Physical to Virtual Addresses 163

mapout () - Remove Physical to Virtual Mappings 164

mballoc () - Allocate a Main Bus Buffer .. 164

mbrelse () - Free Main Bus Resources... 164

mbsetup () - Set Up to Use Main Bus Resources 165

outb () - Send a Byte to an 1/0 Port... 165

ovbcopy () - Copy Overlapping Byte Memory Regions 166

panic () - Reboot at Fatal Error ... 166

peek () , peekc () , peekl () - Check and Read 166

physio () - Block 1/0 Service Routine.. 166

poke(), pokec (), pokel () -Check and Write...................... 168

print£() - Kernel Printf Function... 168

pritospl () -Convert Priority Level.. 169

psignal () - Send Signal to Process... 169

:rmalloc () - General-Purpose Resource Allocator........................ 169

rmf ree () - Recycle Map Resource ... 170

selwakeup () - Wakeup a Select-blocked Process 170

sleep () - Sleep on an Event .. 171

spln () - Set CPU Priority Level .. 172

splx () - Reset Priority Level ... 172

- viii-

Contents - Continued

splr () - Raise Priority Level ... 172

suser () - Verify Super User.. 172

swab () - Swap Bytes ... 172

timeout () - Wait for an Interval .. 173

uiomove () - Move Data To or From an uio Structure 173

untimeout () - Cancel timeout () Request 174

uprintf () - Nonsleeping Kernel Printf Function 174

ureadc () , uwritec () - uio Structure Read/Write 174

wakeup () - Wake Up a Process Sleeping on an Event 175

Appendix C User Support Routines.. 177

free () - Free Allocated Memory .. 177

getpagesize () - Return Pagesize .. 177

mmap () - Map Memory from One Space to Another 177

munmap () - Unmap Pages of Memory .. 178

Appendix D Sample Driver Listings... 179

D.1. Skeleton Board Driver ... 180

D.2. Sun-3 Color Graphics Driver... 188

D.3. Sky Floating-Point Driver ... 205

D.4. Versatec Interface Driver... 213

D.5. Sun386i Parallel Port Driver.. 225

Index... 235

-ix-

Tables

Table 1-1 VMEbus Address-space Names ... 5

Table 2-1 Generic VMEbus (Full Set) ... 1 O

Table 2-2 Sun-3/Sun-4 Page Table Types.. 10
t Table 2-3 Sun-3x VMEbus Address Types ... 10

Table 2-4 Sun-3x Physical Address map .. 11

Table 2-5 16-bit VMEbus Address Space Allocation.. 15

Table 2-6 24-bit VMEbus Address Space Allocation.. 15

Table 2-7 32-bit VMEbus Address Space Allocation (Sun-3 's, Sun-

3x 's, Sun-4's) ... 16

Table 2-8 VMEbus Address Assignments for Some Devices 16

Table 2-9 Vectored Interrupt Assignments .. 17

Table 2-10 Interrupt Channel Assignments ... 18

Table 2-11 Sun386i OMA Channel Assignments .. 19

Table 3-1 A Sample Listing of the /dev Directory .. 33

Table 3-2 Current Major Device Number Assignments ... 36

Table 5-1 Sun-3/Sun-4 PTE Masks ...•. ;~ ,.; .. ; ... :." .. ;,.

Table 5-2 Virtual Memory Devices .. :;..u .. , •;.

-xi-

Figures

Figure 2-1 Sun-3 VMEbus Address Spaces .. 12

Figure 2-2 Sun-3x VMEbus Address Spaces.. 13

Figure 2-3 Sun-4 VMEbus Address Spaces .. 14

Figure 2-4 System DVMA .. 27

Figure 3-1 1/0 Paths in the UNIX system .. 34

Figure 5-1 Sun-3 Address Mapping... 63

Figure 5-2 Sun-3x/Sun-4 Address Mapping ... 63

Figure 5-3 Sun386i Address Mapping .. 64

Figure 5-4 Sun-3 MMU .. 66

Figure 5-5 Sun-4 MMU .. 67

- xiii-

1.1. Device Independence

1
Introduction

This manual is a guide to adding drivers for new devices to the SunOS kernel. It
comes in two parts.

o Part One, Regular Device Drivers, discusses a variety of issues relevant to
standard (non-STREAMS) device drivers. It is intended to be self
contained, and to include all necessary discussion of hardware and kernel
topics.

o Part Two, Non-STREAMS Appendices, includes reference material related to
regular (non-STREAMS) drivers.

Throughout the manual, statements that apply only to specific machines, e.g.
Sun-3's, Sun-3x's, Sun-4's, SPARCstations or Sun386i's, will be clearly flagged
to that effect.

One of SunOS's major services to application programs is to provide a device
independent view of the 1/0 hardware. In this view, user processes (application
programs), see devices as "special" types of files that can be opened, closed and
manipulated just like regular files. The user process manipulates devices as it
would files, by making system calls.

Once a system call carries process execution into the SunOS kernel, however, it
becomes clear just how "special" devices really are. The kernel distinguishes
between real files and device special files, and translates operations on the latter
into calls to their corresponding device drivers. These drivers control all device
operations; devices do nothing until their drivers tell them to.

System calls provide the interface between user processes and the SunOS kernel,
while device drivers provide an interface between the kernel itself and its peri
pheral devices. Device drivers are therefore crucial elements in SunOS's overall
device-independent scheme of things. Device-drivers are the only parts of the
system that know, or care, if a device is OMA (Direct Memory Access), PIO
(Programmed 1/0), or memory-mapped.

The kernel supplied with the Sun system is a configurable kernel, meaning that it
is possible to add new device driver modules to your system by rebuilding your
kernel, even if you don't have access to the system source code. The loadable
driver capability makes it possible to attach a driver to a system without rebuild
ing the kernel and rebooting the system. For more information on how to
reconfigure your kernel to include new device drivers, see the Configuring the

Revision A, of 27 March 1990

2 Writing Device Drivers

1.2. Types of Devices

Kernel chapter of this manual, the SunOS STREAMS Topics chapter of the
STREAMS Programming manual, the Adding Hardware to Your System chapter
of Network Programming and the config (8) man page.

This document is aimed at Sun users who wish to connect new VMEbus or
ATbus devices to their system. It does not, however, explain how to write
drivers for all possible Sun devices.

For information specific to SPARCstation machines and to writing drivers for
SBus-based devices, see Writing Device Drivers for the SBus, part number 800-
4455-01, which is one of the manuals in the SBus Developer's Kit, part number
825-1219-01.

We can classify devices into nine major categories:

1. Co-processors.

2. Disks and tapes.

3. Network interface drivers such as Ethernet or X.25.

4. SCSI devices. For more information see your Sun Representative for infor
mation on the two documents, "SCSI Implementation Guide" Part Number
800-4700-10, Rev A of 15 November, 1989 and "SCSA: SUN Common
SCSI Architecture" Part Number 800-4701-10, Rev A of 15 November,
1989.

5. Serial communications multiplexors.

6. General DMA devices such as driver boards for raster-oriented printers or
plotters. DMA devices contain their own processors and, once dispatched,
perform 1/0 independently of the system CPU by stealing memory cycles.

7. Programmed 1/0 devices, that is, devices which send and receive data on the
main system bus under direct control of the system CPU.

8. Frame buffers and other memory-mapped devices. Such devices are typi
cally mapped into user-process memory and then accessed directly.

9. So called pseudo devices, which are actually drivers without associated
hardware devices.

This manual does not cover driver development for devices in categories l, 2, 3,
4 and 5. Part one does discuss drivers for the devices in categories 6, 7, 8 and 9.
STREAMS-related information of interest to programmers planning drivers for
serial communications devices should see the STREAMS Programming manual.
The majority of the devices which users will want to add to their systems, from
categories 6 through 9, include:

o input devices like mice, digital tablets and analog-to-digital converters,
(though these are usually implemented as streams drivers independent of
Sun View).

o output and display devices like frame buffers, printers, and plotters,

Revision A, of 27 March 1990

Chapter 1 - Introduction 3

o utility peripherals like array and graphics processors.

This manual doesn't support the development of co-processor drivers for the sim
ple reason that co-processors, while certainly devices, are so intimately linked to
the CPU that they are integrated below the driver level of the kernel.

It also excludes disk drivers or drivers for any structured or block I/0 devices, for
such drivers are quite difficult to write well. Besides, most customers will find
that the structured-device drivers provided with the standard system software fill
their needs quite adequately. The extensive use of standards within the Sun pro
duct line will allow them to use hardware interfaces already provided by Sun to
drive whatever disk units they wish to use. If this turns out not to be the case, an
experienced driver developer will have to be consulted. (You will also want to
start with an existing driver, and will thus need a source-code license). For con
sultation, please see your Sun Representative who will put you in contact with
Consulting Services.

Finally, this manual doesn't really discuss the issues relevant to serial communi
cations and local network interface driver development. Again, such drivers are
rather involved, and users will almost certainly find the Sun product line to con
tain devices adequate to their task. (And again, you will need a source license to
go it alone).

This manual is primarily concerned with unstructured or character (as opposed
to structured or block) devices. This distinction is often made, but seldom
clearly, and it may be helpful then to consider structured devices as only those
upon which SunOS filesystems can be mounted. Such devices (almost always
disks) support random-access 1/0 by way of the system buffer-caching mechan
ism. They almost always support a second, character-oriented style of 1/0, often
called raw I/0, but this doesn't make them character devices. Their drivers tend
to implement raw 1/0 with the same mechanisms constructed for the main task of
supporting block 1/0.

Character devices, on the other hand, do not support random-access 1/0, and
filesystems cannot be mounted upon them. Their drivers typically support read
and/or write operations, but these operations are fundamentally different than in
block devices. Sometimes character drivers use mechanisms, routines and struc
tures that are primarily intended/or block drivers, but this shouldn't be allowed
to confuse matters; they use them only because it's convenient to do so. I

The techniques described in this manual can also be used to build pseudo-device
drivers. Such drivers can be useful in a variety of ways. They can be used to
implement virtual devices (for example, windows that behave as virtual tenni
nals) or for extending the capabilities of the kernel in highly localized and

1 To jump ahead for a moment, the kernel routines which, though written for block drivers are also used for
character drivers are physic(), mbsetup () and mbrelse (). The driver .ustrategy () routine is also
intended primarily for block devices, though it can be used in character drivers which buff er their 1/0 (typically
those which don't support a tty-style interface). In such cases it's not, as it is in block drivers, an entry point,
and it doesn't implement any strategy to speak of. But physic () requires its existence, as it does make use of
the bu f structure, and so they are used. The main point to keep in mind is that character drivers use block
driver mechanisms because it's convenient for them to do so, but this doesn't make them block drivers. In
particular, character drivers never have anything to do with the kernel buffer cache.

Revision A, of 27 March 1990

4 Writing Device Drivers

1.3. System V
Compatibility

1.4. Major Development
Stages

portable fashions (for example, by building a pseudo device to implement a
specific kind of semaphore facility). What they all have in common is the
absence of hardware; the driver actually implements and controls virtual software
devices.

The SunOS applications interface is almost completely compatible with that of
AT&T's System V UNIX system. The driver/kernel interface, however, is not.
In general, though, drivers that were written for System V (or V7 or 4.1BSD,
which have driver interfaces similar to System V) will be easily ported to SunOS,
because, with the exception of drivers for pseudo devices, drivers are far more
sensitive to the architectural details of the machines upon which they run than to
the details of the kernels to which they interface.

Sun device drivers differ from typical System V drivers because the Sun operat
ing system has evolved from 4.2BSD and, in 4.2BSD, the kernel driver interface
was significantly restructured. This doesn't mean that programmers with experi
ence developing System V drivers will find Sun drivers to be altogether foreign.
In fact, the overall structure of Sun drivers is largely identical to the structure of
System V drivers. Nevertheless, there are differences, and from some perspec
tives~they are quite significant. See the Overall Kernel Context chapter of this
manual for the details of the Sun driver/kernel interface.

The greatest differences between Sun drivers and drivers for other systems are
due not to operating system differences but rather to differences between the Sun
Memory-Management Unit (MMU) and the MMUs of other systems. Conse
quently, drivers which map addresses require a lot of Sun-specific code.

To add a new device and its driver to the system you must:

1. Get the device hardware into a state where you know it works as advertised.
It is extremely difficult to debug the driver software if the device hardware
isn't first working properly.

2. Write the device driver itself.

3. Add the driver to a kernel's configuration file to specify a system containing
the new driver, and compile this system. If you have written the driver as a
loadable driver, then compile the driver and use the modload (1) com
mand to load the driver into a running system.

4. Debug the driver.

5. Repeat steps 2 to 4 as necessary. Drivers are often written (and debugged)
by stages, with development proceeding long after early versions are
configured into the kernel.

Revision A, of 27 March 1990

1.5. Warning To
Microcomputer
Programmers

1.6. Address-Space
Terminology

Table 1-1

Chapter 1 - Introduction 5

Sun computers are virtual-address machines, and, as such, their addressing
schemes are far more complex than anything that microcomputer programmers
typically confront. In virtual-address machines, physical addresses have a com
plex and rapidly changing relationship to the virtual addresses which user pro
grams manipulate. The kernel continually maps, remaps and unmaps pages of
virtual memory to accommodate the limits of system physical memory. This
means that the kernel (including its device drivers) cannot assume that any physi
cal address in user memory will not be snatched away by the paging daemon
unless it explicitly locks the physical page containing that address into memory.
The details of how this locking is done will be given later, in discussions of the
kernel support routine physio (); for the moment simply note that physical
addresses have a complex and transient relationship to virtual addresses.
Specifically:

o Each user process has its own distinct virtual address space. A user process
(or the kernel) can make arrangements to share address space with another
process - that is, to have part of its address space mapped to the same phy
sical memory as a part of the address space of another process - but this
must be done explicitly.

o In similar regard, a user process can elect to have a bus address mapped into
its address space, but this doesn't happen automatically.

In this manual, we will adopt a VMEbus address-space naming convention that
makes both address size and data size explicit. The first number in the name
indicates the number of bits in the address and the second number indicates the
number of bits in the data length. For example, the space with a 24-bit address
and a 16-bit data length will be known as vme2 4dl 6. This naming convention
is used elsewhere, but others are as well, as indicated in the following table.

VMEbus Address-space Names

Address-Space Name

vmel6dl6
vme24dl6
vrne32dl6
vrnel6d32
vrne24d32
vme32d32

Other Name(s)

VME D16Al6 and vmel6
VME D16A24 and vme2 4
VMED16A32
VMED32A16
VMED32A24
VME D32A32 and vme32

The short names in the second column (vme 16, vrne 2 4 and vrne 3 2) are com
monly used, but they can seem ambiguous to the novice, and will consequently
be avoided in this manual.

Note that there are two situations where the system expects the name of a
VMEbus address space as input. In these situations, either the vrne 16 dl 6 or the
vrne 16 forms are acceptable. These situations are:

o within the kernel config file, and

Revision A, of 27 March 1990

6 Writing Device Drivers

1. 7. Manual Overview

Regular Drivers

Appendices

Last Word

o when naming actual memory devices ("special" files in the/ dev directory).
See the Mapping Devices Without Device Drivers section of the Driver
Development Topics chapter for more infonnation.

Chapter 2 is an overview of the hardware environment provided by Sun Worksta
tions to their drivers. The emphasis is on bus and address-space related issues.

Chapter 3 is an overview of the kernel environment within which drivers operate.

Chapter 4 covers a number of topics relevant to drivers: address spaces, inter
rupts and so on, in greater detail. It also surveys the most important classes of
services provided by the kernel to its drivers.

Chapter 5 covers development topics, including the initial installation and
checkout of devices, driver debugging and error handling.

Chapter 6 provides a detailed discussion of a driver for a very simple hypotheti
cal character device.

Chapter 7 explains how to add new drivers to the SunOS kernel.

Chapter 8 explains pseudo-drivers, and provides source and installation instruc
tions for a real ramdisk pseudo-driver.

Appendix A summarizes the device driver routines available to all device driver
writers.

Appendix B describes all the kernel support routines useful in developing device
drivers.

Appendix C describes the user-level routines useful in driver development.

Appendix D contains a number of annotated driver listings to show how sample
drivers are written.

Remember, spend as much time as you need in the Sun PROM monitor poking,
prodding and cajoling your device until you 're thoroughly familiar with its
behavior. This will save you a lot of grief later. The details on how to proceed
with a monitor checkout of your device are found in the Installing and Checking
the Device section of the Driver Development Topics chapter.

And finally, note that if you have no previous experience writing UNIX device
drivers, you should expect to seek some help from the Sun Technical Support or
Consulting organizations. Contact your Sun Representative for more infonna
tion.

Revision A, of 27 March 1990

PART ONE: Regular Device Drivers

PART ONE: Regular Device Drivers- Continued

2.1. VMEbus Machines

Sun-3/Sun-3:x/Sun-4 Address
Spaces

2
Hardware Context

Computer 1/0 architectures are far more dependent upon bus structure than they
are upon CPU type, and device drivers, oriented as they are towards 1/0, must
have intimate knowledge of the bus characteristics of the machines on which
they are running. Fortunately, the Sun kernel provides facilities (described in the
Other Kernel/Driver Interfaces section of the Overall Kernel Context chapter) by
which a driver can determine the type of the machine upon which it's running.

VMEbus machine architecture makes no distinction between 1/0 space and
Memory space, but on the other hand it supports multiple address spaces. It does
so for reasons of both cost and flexibility. The VMEbus was designed to be
cost-effective for a range of applications. It is expensive (in terms of money,
power, and board space) to provide the hardware for a full 32-bit address space.
If installed devices only respond to 16-bit addresses, it makes sense to be able to
put them all into a 16-bit address space and save the cost of 16-bits' worth of
address decoders and the like. The 24 and 32-bit address spaces are similar
compromises between cost and flexibility.

The driver writer has to understand which address space his board uses (gen
erally, this is completely out of his control), and make an appropriate entry in the
config file. For DMA devices, the driver writer has to know the address space
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space).

Sun-3, Sun-3x and Sun-4 machines are all based on the full 32-bit VMEbus, so
let's begin their discussion with a listing of the address types supported by the
generic VMEbus. In all these memory references, we are referring to virtual
VMEbus addresses, not Sun physical memory locations.

The SPARCstation line of machines utilizing the SB us is not documented here.
Refer to the SBus Developer's Kit, part number 825-1219-01. The information
that follows pertains to Sun-4 VME; it does not apply to SPARCstations SBus.

9 Revision A, of 27 March 1990

10 Writing Device Drivers

Table 2-1 Generic VMEbus (Full Set)

VMEbus-Space Address Data Trans/ er Physical Address
Name Size Size Range

vme32d16 32 bits 16 bits OxO - OxFFFFFFFF
vme24d16 24 bits 16 bits OxO - OxFFFFFF
vme16d16 16 bits 16 bits OxO - OxFFFF
vme32d32 32 bits 32 bits OxO - OxFFFFFFFF
vme24d32 24 bits 32 bits OxO - OxFFFFFF
vme16d32 16 bits 32 bits OxO - OxFFFF

Not all of these spaces are commonly used, but they are all nevertheless sup
ported by the Sun-3 and Sun-4 lines. The following table indicates their sizes
and physical address mappings.

Table 2-2 Sun-3/Sun-4 Page Table Types

Type

0
1
2
3
2
2
3
3

Address-Space Name Address Size Address Range

On-board Memory 32 bits OxO - OxFFFFFFFF
On-board 1/0 24 bits OxO - OxFFFFFF
vme32d16 32 bits OxO - OxFEFFFFFF
vme32d32 32 bits OxO - OxFEFFFFFF
vme 2 4 dl 6 - Stolen from top 16M of vme 3 2 d 16 (OxO - OxFEFFFF)
vme 16 dl 6 - Stolen from top 64 K of vme 2 4 d 16 (OxO - OxFFFF)
vme24d32 -Stolen from top 16M of vme32d32 (OxO- OxFEFFFF)
vmel 6d32 - Stolen from top 64K of vme2 4d32 (OxO - OxFFFF)

The Sun-3x is different than the Sun-3 and Sun-4 in that the hardware does not
use page table entries (PTE's) with a type identifier to map the devices into phy
sical memory. The Sun-3x uses absolute physical addresses when mapping dev
ices. Therefore the type field is not used as an identifier of physical address map
ping. The next two tables show the virtual VME addresses and the corresponding
physical addresses for the specific ranges. Note for the Sun-3x there is no
vme 3 2 d 16 entry and there is a hole in the address space usage from the end of
the on-board 1/0 area to the beginning of the vme 16 d 16 area.

Table 2-3 Sun-3x VMEbus Address Type/

Address-Space Name Address Size Offset Address

vme24d16 32 bits OxO - OxOOFFFFFF
vme32d32 32 bits OxO - Ox7FFFFFFF
vmel6d16 - OxO - OxFFFF
vme24d32 - OxO - OxFFFFFF
vme16d32 - OxO - OxFFFF

t Types are not used with the Sun-3x architecture.

Revision A, of 27 March 1990

Chapter 2 - Hardware Context 11

Table 2-4 Sun-3x Physical Address map

Address-Space Name Address Size Address Range

On-board Memory 32 bits OxOOOOOOOO - Ox57FFFFFF
On-board 1/0 32 bits Ox58000000 - Ox6EFFFFFF
vmel6dl6 32 bits Ox7COOOOOO - Ox7C00FFFF
vmel6d32 32 bits Ox7DOOOOOO - Ox7DOOFFFF
vme24dl6 32 bits Ox7EOOOOOO - Ox7EFFFFFF
vme24d32 32 bits Ox7FOOOOOO - Ox7FFFFFFF
vme32d32 32 bits Ox80000000 - OxFFFFFFFF

Sun-3/Sun-3x/Sun-4 space overlays are much more complex than those of earlier
Sun machines, as is evident from both the tables above and the diagrams below.
The principle, however, is the same - when a space overlays a larger space, its
memory is stolen from that larger space and is considered by the MMU to be in
the overlaid space. One simply cannot address above OxFFOOOOOO in 32-bit
VMEbus space or above Ox O OFF O O O O in 24-bit VMEbus space.

As the following diagrams illustrate, Sun-3 and Sun-4 addressing schemes are
almost identical. They differ only in the size of the virtual address which- out
put by the CPU or a DVMA Bus Master - is fed to the MMU.

The Sun-3x, which has the MMU on the CPU chip, is a different hardware archi
tecture than the Sun-3 'sand Sun-4 's. There is a full 32 bit input to the MMU
from the CPU, and all 32 bits are used for input to the OnBoard and vme
modules. No Sun devices use the vme32dl 6 so it is not part of the memory
map.

Revision A, of 27 March 1990

12 Writing Device Drivers

Figure 2-1 Sun-3 VMEbus Address Spaces

vme32d32
32 bits

vme16d32

type vme24d32

2 bits
32 bits vme32d16

CPU
28

MMU
32 bits

bits

ft
ft :

vme16d16

Virtual Phy~ical 24 bits OnBoard

Address Address 1/0

(CPU or:l)VMA)

:
: :

vme24d16
32 bits OnBoard

Mem

Revision A, of 27 March 1990

Chapter 2 - Hardware Context 13

Figure 2-2 Sun-3x VMEbus Address Spaces

vme32d32
32 bits

vme16d32

vme24d32

32 bits vme24d16

CPU
32

MMU
32 bits

bits

~
ft

vme16d16

VifEual Phy~ical 32 bits OnBoard

Address Address 1/0
(CPU otDMA)

:

32 bits OnBoard
Mem

Revision A, of 27 March 1990

14 Writing Device Drivers

Figure 2-3 Sun-4 VMEbus Address Spaces

CPU
32

MMU
bits

Ii

Viriual
Address

(CPU or:l)VMA)

Allocation of VMEbus
Memory

vme32d32
32 bits

vme16d32

type vme24d32

2 bits
32 bits vme32d16

32 bits

ft
:
:
: vme16d16

:
Phy~ical 24 bits OnBoard

Address 1/0

:
vme24d16

32 bits OnBoard
Mem

This section summarizes the typical use of the 16, 24 and 32-bit VMEbus address
spaces by Sun devices. Note that the usages summarized here are only for the
generic configuration, and there's no guarantee that they match the exact usage
on your machine. They will, however, help you to decide where to attach your
device. The "Allocated From" field shows whether bus space is allocated from
the high end of the given range or from the low end. The idea is to keep the
maximum size "hole" in the middle in case the boundary needs to be shifted
later.

Revision A, of 27 March 1990

Table 2-5 16-bit VMEbus Address Space Allocation

Address Range Allocated
From

Chapter 2 - Hardware Context 15

Description of Use

Ox0000-0x7FFF Low
Ox8000-0xFFFF High

Reserved for OEM/user devices
Reserved for Sun devices

16-bit VMEbus space is mapped into the topmost 64K of24-bit VMEbus space
at OxOOFFOOOO to OxFFFFOOOO to OxFFFFFFFF (on Sun-3's, Sun-3x's, and
Sun-4's). Note: The MultibusNMEbus Adapter will map the Multibus 1/0
addresses of Multibus cards that use Multibus 1/0 into the same addresses in the
16-bit VMEbus space. This may place the standard Multibus addresses for some
cards into the OEM/user area in the above table. These addresses can be
changed, if necessary, by physically readdressing the device and then changing
its entry in the config file.

Table 2-6 24-bit VMEbus Address Space Allocation

Address Range

OxOOOOOO-OxOFFFFF
OxlOOOOO-OxlFFFFF
Ox200000-0x2FFFFF
Ox300000-0x3FFFFF
Ox400000-0x7FFFFF
Ox800000-0xBFFFFF
OxCOOOOO-OxCFFFFF
OxDOOOOO-OxDFFFFF
OxEOOOOO-OxEFFFFF
OxFOOOOO-OxFEFFFF
OxFFOOOO-OxFFFFFF

Allocated
From

Low
High
(Taken)
High
Low
High

Description of Use

CPU board DVMA space
Reserved by Sun
Reserved for small Sun devices
Reserved for large Sun devices
Reserved for huge Sun devices
Reserved for huge OEM/user devices
Reserved for large OEM/user devices
Reserved for small OEM/user devices
Multibus-to-VMEbus memory space
Reserved for the Future
Reserved for 16-bit VMEbus space

Revision A, of 27 March 1990

16 Writing Device Drivers

Table 2-7 32-bit VMEbus Address Space Allocation (Sun-3' s, Sun-3x' s, Sun-4' s)

Address Size Description of Use

OxOOOOOOOO 1MB DVMASpace
OxOOlOOOOO 15MB Reserved
OxOlOOOOOO 112MB <=2MB Sun Devices
Ox08000000 128MB Sun graphic Devices
OxlOOOOOOO 80MB <=2MB OEM Devices
OxlSOOOOOO 176MB >2MB OEM Devices
Ox20000000 1536MB >2MB Sun Devices
Ox80000000 1920MB Reserved
OxF8000000 48MB Sun-4/110 Sun Devices
OxFBOOOOOO 64MB Sun-4/110 OEM Devices
OxFFOOOOOO 16320KB Reserved for 24 bit addr space
OxFFFFOOOO 64KB Reserved for 16 bit addr space

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus
accesses. Note that, at least in the GENERIC kernel, there are some Sun devices
(vpcO, vpcl and mti0-4) installed in the OEM/user area. It's always
best to check, when choosing an installation address, that you aren't going to
conflict with an already installed device.

Table 2-8 VMEbus Address Assignments for Some Devices

The Sun VMEbus to Multibus
Adapter

Device Addressing Addresses Used

VMEbus SCSI Board vme24d16 Ox200000-0x2007FF
Graphics Processor vme 2 4 d 16 Ox210000 - Ox21 OFFF

This table is, of course, not complete. There is always a variety of devices on the
bus, as can be easily determined by examining the config file. This table, how
ever, does include the standard devices that use a significant amount of space on
the VMEbus.

Multibus devices that are to be attached to VMEbus machines must be attached
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul
tibus boards). An adapter can be used to take over one and only one chunk of
vme2 4dl 6. However, that chunk can overlap all or part of vmel 6dl 6
(because vme 16 dl 6 is a proper subset of vme 2 4 d 16). In any case, the adapter
must be told how much space the board attached to it actually expects, for by
default it will take over a full megabyte. Note that the Multibus Adapter sup
ports fully vectored interrupts, and that drivers for Multibus devices attached by
way of adapters need not poll, since the adapters contain switches by which Mul
tibus devices can be assigned vectors.

Revision A, of 27 March 1990

Chapter 2 - Hardware Context 17

Interrupt Vector Assignments The table below shows the assignments of interrupt vectors for those devices that
can supply interrupts through the VMEbus vectored interrupt interface. To pick
one for your device, examine the kernel config file for an unused number in the
range reserved for customer use, 0 xC 8 to O xFF.

Table 2-9 Vectored Interrupt Assignments

2.2. A Thus Machines

Vector Numbers Description

OxOO thru Ox3F reserved for internal processor traps
Ox40 thru Ox43 scO, sc? siO, si? - SCSI Host Adapters
Ox44 thru Ox47 xdcO, xdcl, xdc2, xdc3- Xylogics 7053 Disk Controller
Ox48 thru Ox4B xycO, xycl, xyc?- Xylogics Disk Controllers
Ox4C thru Ox5F future disk controllers
Ox60 thru Ox63 tmO, tml, tm?-TapeMaster Tape Controllers
Ox64 thru Ox67 xtcO, xtcl, xtc?- Xylogics Tape Controllers
Ox68 thru Oc6F future tape controllers
Ox70 thru Ox73 ec? - 3COM Ethernet Controller
Ox74 thru Ox77 ieO, ie 1, ie? - Sun Ethernet Controller
Ox78 thru Ox7F future ethernet devices
Ox80 thru Ox83 vpc?-Systech VPC-2200
Ox84 thru Ox87 vp? - Ikon Versatec Parallel Interface
Ox88 thru Ox8B mtiO, mti? - Systech Serial Multiplexors
Ox8C thru Ox8F dcpl, dcp?- SunLink Comm. Processor
Ox90 thru Ox9F zsO, zsl - Sun-3/Sun-3x Terminal/Modem Controller
OxAO thru OxA3 future serial devices
OxA4 thru OxA7 pcO, pcl, pc2, pc3-SunIPC
OxA8 thru OxAB future frame buffer devices
OxAC thru OxAF future graphics processors
OxBO thru OxB3 Reserved - currently unused
OxB4 thru OxB7 SunLink Channel Attach
OxB8 thru OxC7 Reserved for Sun Use
OxC8 thru OxFF Reserved for Customer Use

The Intel 80386 processor handles 1/0 devices placed in either memory space or
in 1/0 space. On the 80386, memory-mapped 1/0 provides additional program
ming flexibility. Any memory instruction can access any 1/0 port located in the
memory space. For example, the MOV instruction transfers data between any
register and any port. The AND, OR, and TEST instructions can be used to
manipulate bits in the internal registers of a device.

On some devices, reading a register will not read back what was written. There
fore, instructions such as AND, OR, and TEST can, in some cases, produce unex
pected results because the instruction reads a good location, changes it, and
writes it back. See the Other Device Peculiarities section, ahead.

Memory-mapped 1/0 can use the full complement of instructions. The 16 MB
memory of AT memory exists in the 4 GB physical address space of the Sun386i

+~.!! Revision A, of 27 March 1990

18 Writing Device Drivers

at O xE O O O O O O O. For example, a device that, on an AT, shows up in memory
at DO 0000 will show up in the Sun386i physical memory at OxEODO 0000.
Virtual addresses are assigned during the autoconfiguration process.

If an 1/0 device is mapped into the 1/0 space then the IN, OUT, INS, and OUTS
instructions are used to communicate to and from the device. All 1/0 transfers
are perfonned via the AL (8-bit), AX (16-bit), or EAX (32-bit) registers. The
first 256 bytes of the 1/0 space are directly addressable. The entire 64 Kbyte 1/0
space is indirectly addressable through the DX register.

The Sun386i has 21 interrupt channels, but only 11 are available to devices on
the AT bus. The following list of interrupt channel assignments shows all of the
interrupt channels.

Table 2-10 Interrupt Channel Assignments

3
4
5
6
7
8
9
10
11
12
13
14
15

AT Channel* Assignee
AT Pin B25
ATPinB24
AT Pin B23
Not available (system diskette)
Not available (parallel port)
SCSI
ATPinB04
AT Pin D03
AT PinD04
AT Pin DOS
Not available (Ethernet)
AT Pin D07
ATPinD06

* Available to AT Cards

When you add an AT card to the AT bus, you must select one of the values in the
Channel column for the AT card's jumpers. For example, if you select channel
10 for a serial card, the "device" line in the config file might look as follows:

device nsO at atio? csr Ox3f8 irq 10 priority 6
controller fdcO at atmem? csr OxOOlOOO irq 6 priority 2

The Sun386i does not permit two AT cards to use the same interrupt channel.

Some cards will also use OMA and will have jumpers to select a OMA channel
to use. The following list shows that OMA channels 0-3 and channel 5 are avail
able for AT cards. Note that channel O and 5 can be used with 16-bit OMA dev
ices; l, 2, and 3 can be used only with 8-bit OMA devices. Note also that chan
nels 4, 6, and 7 are pre-assigned.

The main difference is that the OMA controller is on the CPU board, not on the
device. The AT bus does not support bus master devices, they must allocate a
OMA channel from the OMA controller on-board the the CPU. The Sun
machine uses an Intel 82380 for the interrupt and OMA controller, instead of the

Revision A, of 27 March 1990

Loadable Drivers

DOS and SunOS
Environments

Chapter 2 - Hardware Context 19

8259 chip. See the Intel manual for more details.

Table 2-11 Sun386i DMA Channel Assignments

Channel Assignee Size (bits)
0 AT Bus 16
1 AT Bus 8
2 AT Bus 8
3 AT Bus 8
4 Software Not Available
5 AT Bus 16
6 Ethernet 16
7 SCSI 16

For example, you might set up a controller that uses DMA channel 3. For this,
the "controller" line in the config file might look like: this:

controller wdsO at atio? csr Ox320 dmachan 3 irq 3 priority 3

The Sun386i does not permit two AT cards to use the same OMA channel.

In these examples, "priority" refers to the spl levels used in the driver. That is,
the phrase "priority 3" implies that the driver uses splr (pritospl (3)) to
protect its critical regions.

On Sun machines, device drivers can be dynamically loadable. That is, they can
be attached to a system without rebuilding its kernel and without having to bring
the system down and restart it. See the Adding and Removing Loadable Drivers
section of the Con.figuring the Kernel chapter for details.

The Sun386i system supports both DOS drivers and SunOS drivers. Only 8086
type devices and their drivers are supported in the DOS environment. Boards
which need to use memory above 1 Megabyte or drivers which use 286/386
specific instructions are not supported.

You can attach a DOS device driver in the standard DOS way, but it will be
usable only from within the DOS environment. Usually, all you need to do is to
first plug in an add-in board. Then you insert an installation diskette (which
comes with the board) into Drive A> and re-boot the system. The device driver
is already compiled and linked. Generally, the diskette contains programs called
"INST ALL" or something similar. You execute this program by typing its name.
It copies the driver file from the diskette to the hard disk. At the same time, this
procedure will modify the disk's con£ ig. sys file.

The DOS system must be re-booted. The device driver will automatically be
loaded into memory, its options will be parsed, and the driver will be initialized.

NOTE The DOS driver on the Sun386i is running under SunOS and DOS, but the driver
is unaware of this. SunOS might switch control to another task during device
operation, so strict timing dependencies could/ail. Real time devices,for

Revision A, of 27 March 1990

20 Writing Device Drivers

2.3. Hardware Peculiarities
to Watch Out For

NOTE

Multibus Device Peculiarities

Multibus Byte-Ordering Issues

example, may not work properly. If a peripheral and controller have strict tim
ing requirements, their drivers should be written in the standard SunOS style.
DOS drivers do not run at the elevated priority of SunOS drivers.

SunOS drivers, of course, are parts of the system kernel. Thus the timing
requirements of most devices can be met under SunOS. SunOS drivers are
accessible from the DOS environment via the device nodes /dev in the Unix
file system.

There are a variety of device peculiarities that the driver developer must be aware
of. The most common of them are related to the Multibus and Multibus-based
devices, but there are others as well.

Multibus is NOT supported in SunOS 4.1, but is included here/or the benefit of
all who are porting from a Multibus environment over to the other busses that
Sun supports.

The IEEE Multibus is a source of problems for two separate reasons. The first of
these, discussed immediately below, is the fact that the Multibus has a different
notion of byte order than does the either Motorola MC680XO family or the Sun
SP ARC processor (the reduced instruction set CPU upon which Sun-4 machines
are built). The second is simply that the Multibus has been around for a long
time, and thus brings with it a variety of older devices, many of which have
addressing limitations and other characteristics which make for a less than per
fect fit with the Sun architecture.

The Sun-3 and Sun-3x processors are members of the Motorola MC680XO fam
ily, while Sun-4 processors are based on the SPARC CPU. All of these proces
sors address bytes within words by what we shall call /BM conventions - the
most significant byte of a word is stored at the lowest addressed byte of the word.
The Multibus, on the other hand, uses DEC conventions - the least significant
byte of a word is stored at the lowest address, and significance increases with
address.

This class of byte-addressing conventions leads to two separate problems,
with two separate solutions:

o The first problem occurs when you're moving a single byte across the inter
face between the MC680XO/SP ARC and the IEEE Multibus. Because the
two devices don't agree about the end of the word that the byte actually
appears in, you have to change the byte address before the move - what
you want to do, in effect, is move every byte to the other side of the word
which it occupies- the most CPU-efficient way of doing so is to toggle the
least significant bit of every byte address.

o The second problem, also related to the Multibus, is a higher level version of
the first. It occurs when machine words with significant internal structure
(or structures that contain words) are moved across the bus interface. (If you
write only words, and the device uses only words, there's no problem). The
Multibus byte-ordering incompatibility will cause structures to be scrambled

Revision A, of 27 March 1990

Chapter 2 - Hardware Context 21

when they're moved across the bus interface, unless the bytes within them
are physically swapped first.

Here are a few pictures describing the problems in detail:

Motorola (IBM) Byte Ordering

bit 15 bit 0

ByteO Byte 1

Multibus (DEC) Byte Ordering

bit 15 bit 0

Byte 1 Byte 0

That is, the MC680XO and SPARC CPUs place byte O in bits 8 through 15 of the
16-bit word, whereas the Multibus places byte 1 in those bits. If you did every
thing with the CPU, or everything on the Multibus, there wouldn't be any
conflict, since things would be consistent. However, as soon as you cross the
boundary between them, the byte order is reversed. Thus, you have to toggle the
least significant bit of the address of any byte destined for the Multibus - this
will have the effect of swapping adjacent addresses and thus reordering the bytes.

To clarify this, consider an interface for a hypothetical Multibus board containing
only two 8-bit 1/0 registers, namely a control and status register (csr) and a data
register (we actually use this design later on in our example of a simple device
driver). In this board, we place the command and status register at Multibus byte
location 600, and the data register at Multibus byte location 601. The Multibus
picture of that device looks like this:

Hypothetical Board Registers

bit 15

Location 601

DATA

bit 0

Location 600

CSR

But the MC680XO and SPARC processors view that device as looking like this:

Revision A, of 27 March 1990

22 Writing Device Drivers

Other Multibus-related
Peculiarities

Hypothetical Board Registers

bit 15

Location 600

CSR

bit 0

Location 601

DATA

so that if you were to read location 600 from the point of view of the processor,
you'd really end up reading the DATA register off the Multibus instead. So,
when we define the skdevice data structure for that board, we define it by starting
with the register definition in the device manual, and then swapping bytes to take
account of the expected byte swapping:

struct skdevice {

} ;

char
char

sk_data;
sk_csr;

I* 01: Data Register * I
I* 00: command(w) and status(r) * I

This rule (flipping the least significant bit of the address) holds good for all byte
transfers which cross the line between the MC680XO/SPARC CPU and the Mul
tibus.

o Many Multibus device controllers are geared for the 8-bit 8080 and 280
style chips and don't understand 16-bit data transfers. Because of this, such
controllers are quite happy to place what's really a word quantity (such as a
16-bit address which must be two-byte aligned in the MC680XO) starting on
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many
don't know about 24-bit addresses), and it often happens that you have to
chop an address into bytes by shifting and masking, and assign the halves or
thirds of the address one at a time, because the device controller wants to
place word-aligned quantities on odd-byte boundaries. Note also that many
Multibus boards are geared for the 8086 family with its segmented address
scheme. An 8086 (20-bit) address really consists of a 4-bit segment number
and a 16-bit address; you usually have to deal with the 4-bit part and the 16-
bit part separately. For a good example of what we're talking about here,
see the code for vp . c in the Sample Driver Listings appendix to this
manual.

o Although there are a myriad of vendors offering Multibus products,
remember that the Multibus is a "standard" that evolved from a bus for 8-bit
systems to a bus for 16-bit systems. Read vendors' product literature care
fully (especially the fine print) when selecting a Multibus board. The
memory address space of the Multibus is supposed to be 20 or 24 bits wide
and the 1/0 address space of the Multibus is supposed to be 16 bits wide. In
practice, some older boards are limited to 16 bits of address space and 8 bits

Revision A, of 27 March 1990

Sun-4/SPARC Peculiarities

Chapter 2 - Hardware Context 23

of 1/0 space. In particular, watch for the following addressing peculiarities:

o For a memory-mapped board, ensure that the board can actually handle
a full twenty bits of addressing. Older Multibus boards often can only
handle sixteen address lines. The Sun system assumes there is a 20-bit
Multibus memory space out there. If the Multibus board you 're talking
to can only handle 16-bit addresses, it will ignore the upper four address
lines, and this means that such a board "wraps around" every 64K,
which means that on a Sun the addresses that such a board responds to
would be replicated sixteen times through the one-megabyte address
space on the Multibus. This may conflict with some other device.

o For an 1/0-mapped board (one that uses 1/0 registers), make sure that
the board can handle 16-bit 1/0 addressing. Some older boards support
only 8-bit 1/0 addressing. In our system, the address spaces of such
boards would find themselves replicated every 256 bytes in the 1/0
address space. Trying to fit such a board into the Sun system would
severely curtail the number of 1/0 addresses available in the system.

o Finally, watch out for boards containing PROM code that expects to find a
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of
course useless in the Sun system.

There are two peculiarities which are specific to machines built upon the Sun
SPARC CPU (currently, just Sun-4's) which can impact device drivers. For
more infonnation about the Sun-4 machine architecture, see Porting Software to
SPARC Systems, part number 800-1796-01.

o The first problem is structure alignment. In MC680XO family processors,
structures are aligned on half-word boundaries, but on Sun-4's, the
structure-alignment requirements are imposed by the most strictly-aligned
structure components. For example, a structure containing only bytes and
characters has no alignment restrictions, while a structure containing a dou
b 1 e word must be constructed so as to guarantee that this word falls on a
64-bit boundary.

Programmers must be aware of these rules when writing drivers, for Sun-4
compilers will pad structures to enforce them, and such padding will not
always be correct for structures intended to map to device registers. Also,
structures must be carefully designed if drivers are to be portable across
machine architectures.

o The second problem is data alignment. In MC680XO family processors,
characters are aligned on byte boundaries, while integers of all sizes are
aligned on 16-bit boundaries. In Sun-4 machines, in contrast, all quantities
must be aligned on their "natural" boundaries: 16-bit half words on 16-bit
boundaries, 32-bit words on 32-bit boundaries and 64-bit double words on
64-bit boundaries.

In nonnal programs, details such as these are handled by the compiler. In
drivers, however, more care must be taken. SPARC (unlike the MC68010)
doesn't break down 32-bit transactions into successive 16-bit transactions.

Revision A, of 27 March 1990

24 Writing Device Drivers

Other Device Peculiarities

J

Thus, there are times when 32-bit entities have to be broken down by the
driver if they are to get across the bus correctly. More specifically, 32-bit or
64-bit alignment is not possible in the 16-bit VMEbus spaces, and thus 32-
bit and 64-bit data access does not exist. In the 32-bit VMEbus spaces, all
data paths exist.

There are other de~i~ia_titie~_~f interest to the driver developer. These
peculiarities are.particularly unfortunaiejn that they tend to require special han
dling of various kincli==oyte-swappfng, bit shuffling, timing delays, etc. -
\\'Q~never the driver conta~ts the device. Such special handling precludes the
most obvious and desirable -~eans of interfacing the driver to the device, by map
ping tlie device registers into a C-structure declaration and then accessing them
by way of references to structure fields.

o One of the most ~g of these peculiarities is internal sequencing
logic. Devices w~trange characteristic (a vestige of microcomputer
systems with extremely limited address space) map multiple internal regis
ters to the same externally addressable address. There are various kinds of
internal sequencing logic:

o The Intel 8251 A and the Signetics 2651 alternate the same external
register between two internal mode registers. Thus, if you want to put
something in the first mode register of an 8251, you do so by writing to
the external register. This write will, however, have the invisible side
effect of setting up the sequencing logic in the chip so that the next
read/write operation refers to the alternate, or second, internal register.

o The NEC PD7201 PCC has multiple internal data registers. To write a
byte into one of them, it's necessary to first load the first (register 0)
with the number of the register into which the following byte of data
will go - you then send that byte of data and it goes into the specified
data register. The sequencing logic then automatically sets up the chip
so that the next byte sent will go into data-register 0.

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a
data pointer register for pointing at the data register into which a data
byte will go. When you send a byte to the data regis~ ~~ QQi_i:i~~r-~s
incremented. Th~!k.~ofr.he~hip is such tl!~tyett can't read the
pointer register to find out what' s'zn ztT ----

0 In fact, it's often true that device registers, when read, don't contain the
same bits that were last written into them. This means that bitwise opera
tions (like register &= -xx ENABLE) that have the side effect of
generating register reads must be done in a software copy of the device
register, and then written to the real device register. This is why compiler
optimization can do the wrong thing for kernel code.

o Another problem is timing. Many chips specify that they can only be
accessed every so often. The Zilog Z8530 SCC, which has a "write recovery
time" of 1.6 microseconds, is an example. This means that a delay has to be
enforced (with DELA YO) when writing out characters with an 8530. Things

Revision A, of 27 March 1990

2.4. DMA Devices

Sun Main-Bus DVMA

Chapter 2 - Hardware Context 25

can get worse, however, for there are instances when it's unclear what delays
are needed, and in such cases it's left to the driver developer to determine
them empirically.

o Peripheral devices can contain chips that use a byte-ordering convention dif
ferent from that used by the Sun system into which they're installed. The
Intel 82586, for example, supports DEC byte-ordering conventions; this
makes it perfectly compatible with Multibus-based, but not VMEbus-based,
Sun machines. Drivers for such peripheral devices will have to swap bytes,
as indicated above, and to take care that, in doing so, they don't inadver
tently reorder the bits in any control fields greater than 16 bits in length.

o Finally, there are some common interrupt-related peculiarities worth noting:

o When a controller interrupts, it does not necessarily mean that both it
and one of its slave devices are ready. Some controllers are designed in
this way, but others interrupt to indicate that the controller or one of its
devices but not necessarily both is ready.

o Not all devices power up with interrupts disabled and then start inter
rupting only when told to do so.

o While there should be a way to determine that a board has actually gen
erated an interrupt- an attention bit or something equivalent- some
devices have no such facility.

o Finally, an interrupting board should shut off its interrupts when told to
do so (and also after a bus reset). Not all do.

Many device controller boards are capable of what is known as Direct Memory
Access or OMA. This means that the CPU can tell the device controller for such
devices the address in memory where a data transfer is to take place and the
length of the data transfer, and then instruct the device controller to start the
transfer. The data transfer then takes place without further intervention on the
part of the processor. When it's complete, the device controller interrupts to say
that the transfer is done.

NOTE Sun-3 and Sun-4 machines use Direct Virtual Memory Access (DVMA) to allow
devices on the Main Bus (a VMEbus) to perform DMA transfers from and to sys
tem virtual address space. In the Sun386i system, however, the Memory
Management Unit (MMU) is incorporated directly on the Intel 80386 chip itself;
devices need to use physical addresses. Sun386i DMA is discussed in the next
Section.

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun
Memory Management Unit to allow devices on the Main Bus (a VMEbus) to per
form OMA directly to Sun processor memory. It also allows Main Bus master
devices to do OMA directly to Main Bus slaves without the extra step of going
through processor memory. DVMA works by ensuring that the addresses used

+!Y...!! Revision A, of 27 March 1990

26 Writing Device Drivers

by devices are processed by the MMU, just as if they were virtual addresses gen
erated by the CPU. This allows the system to provide the same memory protec
tion and mapping facilities to DMA devices as it does to the system CPU (and
thus to programs).

When setting up a driver to support DMA, it's necessary to know the device's
DMA address size. This address size is the primary factor used in determining
which of the system address spaces will host the device. Multibus devices gen
erally have a DMA address size of 20 bits, while VMEbus devices generally have
a 24 or 32-bit DMA address size.

o On the Sun-3, Sun-3x, and Sun-4 systems the DVMA hardware responds to
the lowest megabyte of VMEbus address space in both the 24-bit and 32-bit
VMEbus spaces. It maps addresses in this megabyte into the most
significant megabyte of system virtual address space (Ox OFF O O O O O to
OxFFFFFFF for the Sun-3 and OxFFFOOOOO to OxFFFFFFFF for the
Sun-3x and Sun-4). The Sun-3, Sun-3x, and Sun-4 DVMA hardware use
supervisor access for checking protection.

The driver writer must account for these mappings, as should be evident from the
diagram below.

Revision A, of 27 March 1990

CPU

Figure 2-4 System DVMA

Slave
Decoder

,,

OMA Device

VMEBUS

(u Address in Low megabyte) IE--\ Map it to High megabyte

MMU

Chapter 2 - Hardware Context 27

I~

OnBoard
Mem

On-Board Bus Masters
(like the Ethernet chip)

Devices can only make DVMA transfers in memory buffers which are from (or
redundantly mapped into- see below) the low-memory areas reserved as
DVMA space. The memory-management hardware will then recognize refer
ences to these areas and map them into the high megabyte of system virtual
address space, an area known as DVMA space. Likewise, if a driver needs to
allocate space for a DMA transfer, it must do so by way of a mechanism that
guarantees its allocation from DVMA space. There are several ways of making
this guarantee:

o rmalloc () can be used with the iopbmap argument. This will get a
small block of memory from the beginning of the DVMA space. Such small
blocks of memory are usually used for control information, and not for large

Revision A, of 27 March 1990

28 Writing Device Drivers

blocks of data.

o For a large buffer, the driver can statically declare a bu£ structure (which is
a buffer header that contains a pointer to the data) and then use mbset up ()
to allocate a buffer for it from DVMA space. This mechanism is primarily
intended for block devices but is perfectly adaptable for use by character
devices that need large DMA buffers.

o You can also use kmem_alloc () to allocate some kernel memory, and
then use mbset up () to gain access to it.

When dealing with addresses which are in DVMA space, the driver must strip off
the high bits by subtracting the external variable DVMA, which contains the
address of DVMA (declared as an array of characters). DVMA is initialized by the
system to OxFFFOO 00 0 for Sun-3's, Sun-3x's and Sun-4's. If the driver fails to
make this adjustment, the device will attempt to use a null address- in the high
megabyte - and the CPU board will not respond to it.

NOTE Addresses received by way o/mbsetup () (and MBI ADDR()) do not have to be
adjusted in this fashion, as mbsetup () will have already adjusted them to be
relative to the start of DVMA space.

When the device, in tum, uses the address, the address reference comes down the
bus and through a slave decoder, which adds the machine-specific offset to it to
map it back into the high megabyte of system virtual memory.

Sun DMA is called DVMA because the addresses which the device uses to com
municate with the kernel are virtual addresses like any others. The driver, as part
of the kernel, is privy to implementation dependent information, and knows that
it must chop off the high-bits of any address intended for the device. This allows
the MMU to recognize the addresses destined for the Main Bus and to act accord
ingly. The device, however, knows nothing of this except that its buffers are
mapped to the high megabyte of system virtual memory.

The kernel supports the redundant mapping of physical memory pages into mul
tiple virtual addresses as a means of providing DVMA between devices and user
address space. In this way, a page of user memory (or, for that matter, a page of
kernel memory) can be mapped into DVMA space in such a way that transferred
data immediately appears in (or immediately comes from) the address space of
the process requesting the 1/0 operation. All that a driver need do to support
such direct user-space DVMA is to set up the kernel page maps with the routine
mbsetup () -the details of the mapping will then be automatically handled by
the kernel.

If you wish to do DMA over the Main Bus, you must make the appropriate
entries in the kernel memory map. There are two functions, mbset up () and
mbrelse (), to help with this chore.

Revision A, of 27 March 1990

DMA on A Thus Machines

Chapter 2 - Hardware Context 29

The Sun386i uses the Intel 80386 chip. This chip has an integrated MMU, so the
1/0 devices cannot access the Sun MMU address-translation facility and there
fore must use physical addresses to access memory directly.

To do OMA on the Sun386i, you must make certain changes in the kernel's
memory map (its page tables). Use the mbsetup (), dma_setup (),
mbrelse (), and dma _ done () routines to make these changes. The changes
you must make to the kernel memory map are described with these routines in
the Kernel Support Routines appendix.

Revision A, of 27 March 1990

30 Writing Device Drivers

+~.!! Revision A, of 27 March 1990

3.1. The System Kernel

3
Overall Kernel Context

Device drivers are parts of the SunOS kernel, a fact that must be appreciated to
understand the ways in which drivers differ from user-level programs. The ker
nel is the crucial system program responsible for the control and allocation of
system resources, including the processor, primary memory and the 1/0 devices.
In most ways it's just like any user program, being a more or less cleverly con
structed structure shaped to its particular goals. In other ways, however, it's
significantly different from a user program:

o For one thing, the kernel is thick with the details of hardware implementa
tion and function. This tends not to be true of user programs, precisely
because the kernel shields them from the need to consider device-specific
details.

o For another, the kernel (and thus its drivers) runs in supervisor mode. This
means that drivers can often perfonn privileged device operations that can't
be perfonned by user processes, even if those processes have access to the
necessary device registers.

o The kernel memory context is not entirely paged. Certain parts of the
Sun386i kernel are paged, but drivers can safely assume that their text and
data are resident and stationary within physical memory.

o Programmers of ordinary user processes rarely need to concern themselves
with physical addresses and virtual-to-physical address mappings. Device
driver developers, however, deal simultaneously with user virtual addresses,
kernel virtual addresses and physical bus addresses. Special functions (see
the Kernel Support Routines appendix) are provided to help drivers with the
various address mappings they're called upon to perfonn.

o Finally, the kernel provides a far different external interface than do user
processes. It's possible for user processes to communicate with and dispatch
tasks to other user processes by way of system inter-process communications
mechanisms Oike signals and pipes) but to do so they must first make special
arrangements with those other processes. The kernel, on the other hand,
exists to provide services to user processes and it provides a special mechan
ism - the system call - by which user processes can call upon it to do so.
This is not to say that user processes and the kernel (that is, the drivers) can't
also use system inter-process communications mechanisms like signals. It's
certainly possible, for example, to write a driver so that it will send a signal
to a user process as part of its handling of a specified event. However, in the

31 Revision A, of 27 March 1990

32 Writing Device Drivers

3.2. Devices as "Special"
Files

nonn, user processes and the kernel communicate by way of system calls.

System calls can, for all intents and purposes, be understood as calls by user
processes to kernel subroutines; they involve, however, far more profound sys
tem state changes that do regular subroutine calls. When system calls are pro
cessed, the processor is placed in supervisor state The user process is suspended
and the kernel begins to run, but since it runs on behalf of that user process which
issued the system call, it can be viewed as that user process continuing execution
in kernel mode. Such "kernel-mode" processes continue to run (with pauses
whenever they sleep or yield to a higher-priority process) until the system call
processing is completed. At this time the scheduler is called to choose the next
user process to be dispatched.

Some system calls can be completely processed without calling any device driver
routines. The system call l seek () is in this class, it requires only that a
software file position indicator be reset. Like many system calls - those related
to process control, inter-process communication, timing services, and status
infonnation - it can be handled entirely in software. Requests for 1/0, however,
usually involve some action on the part of a peripheral device. In this case the
kernel calls (through a branch table mechanism described below) a routine within
the 1/0 device's driver. The driver will then initiate the 1/0 operation and, if
necessary, sleep () until the data is available; in the meantime the kernel will
dispatch another user process.

When a user process issues a system call, execution shifts to the kernel. Then,
for 1/0-related system calls, the kernel distinguishes requests related to regular
named files (that is, files on a block device like a disk) from requests related to
other kinds of 1/0 devices (like terminals or printers). In the interests of unifor
mity, these devices are viewed as "special" files which (by convention) are col
lected in the ldev directory. These special files are not created in the usual way.
The infonnation in their i-nodes (the system structures that define the state of
files) is quite different from the information maintained for regular files, and, as a
consequence, special files can only be created with the mknod (make node)
administration command. Instead of the addresses that will locate the contents of
a regular file on a disk, the i-nodes of special files (devices) contain the infonna
tion necessary to detennine the corresponding device driver (the major device
number), the device class (block, character, FIFO, or socket), and the minor dev
ice number.

When a file of any type is accessed, the kernel needs to detennine which device
driver is responsible for it. To make this determination, it must get the name of
the device associated with the file. From that name it can derive (using a
device-independent kernel subsystem) an i-node and thus a major device number
(as well as a minor device number and a device class).

The connection between the device name and its major number is made by way
of the device entry in the !dev directory (more specifically, by way of the i-node
infonnation associated with the device entry). The i-node for a device special
file contains a major device number, which is used to index one of the two device
switches. These switches, bdevsw (the block device switch) and cdevsw (the

Revision A, of 27 March 1990

Table 3-1

Chapter 3 -Overall Kernel Context 33

character device switch) are actually arrays of structures, and the major device
number selects a driver by indexing one of these structures. (The minor device
number is then passed to the driver for local interpretation).

Using the ls -1 command on the / dev directory shows you the i-node infor-
mation associated with special files:

A Sample Listing of the ldev Directory

T per- l own-
y mis- i er
p sions n
e k

c rw--w--w- 1 henry
c rw-r--r-- 1 root
c rw------- 1 root
c rw------- 1 root
c rw-r--r-- 1 root
c rw-rw-rw- 1 root
c rw-rw-rw- 1 root
c rw------- 1 root
c rw------- 1 root

c rw------- 1 root
c rw------- 1 root
b rw------- 1 root
b rw------- 1 root

b rw------- 1 root
b rw------- 1 root

maj- min-
or or

0, 0
3, 1
3, 4
3, 3
3, 0

13, 0
3, 2
9, 0
9, 1

9, 6
9, 7
3, 0
3, 1

3, 6
3, 7

date name

Feb 21 09:45 console
Dec 28 16:18 krnern
Jan 13 23:07 rnbio
Jan 13 23:07 rnbrnern
Dec 28 16:18 rnern
Dec 28 16:18 mouse
Feb 22 16:40 null
Dec 28 16:19 rxyOa
Dec 28 16:19 rxyOb

Feb 25 1984 rxyOg
Dec 28 16:19 rxyOh
Feb 25 1984 xyOa
Jan 17 20:12 xyOb

Dec 28 16:19 xyOg
Dec 28 16:19 xyOh

When a user process wishes access to a system service, it makes a system call.
The subsequent flow of control looks somewhat like this:

Revision A, of 27 March 1990

34 Writing Device Drivers

Figure 3-1 /JO Paths in the UNIX system

User Process

,, ,, User Space

I/ Kernel Space
1/0-Related

System Calls
Other

System Calls

Discriminate File-System 1/0
from Raw Device 1/0

.......................... ~
Raw 1/0

Device Type -> Switch

Major# -> Driver

Minor# -> Device

Hardware

...
ystem) 1/0

File-System
Code

.,

,,
Resolution to Physical

Device Operations

When you add a new device driver you must add entries to one or both of the
device switches. Since we are discussing only character-oriented devices in this
manual, we will ignore the bdevsw structure and concentrate on the cdevsw
structure. But note that it's common for drivers to appear in both tables; this
happens because block-devices almost always support raw character 1/0.

Application programs make calls upon the operating system to perform services
such as opening a file, closing a file, reading data from a file, writing data to a
file, and other operations that are done in terms of the file interface. The operat
ing system code turns these requests into specific requests to the device driver
involved with that particular file. The glue between the specific file operation
involved and the device driver entry-point is through the bdevsw and cdevsw

Revision A, of 27 March 1990

Chapter 3 - Overall Kernel Context 35

tables.

Each entry in bdevsw or cdevsw contains pointers to a driver's entry-point
functions. The position of an entry in the structure corresponds to the major dev
ice number assigned to the device. The minor device number is passed to the
device driver as an argument. Usually, the driver uses it to access one of several
identical physical devices, but it is also possible for it to be encoded so that mul
tiple minor numbers indicate the same device, but different operating modes. For
example, one minor number might indicate a specific tape device, as well as the
fact that the device is to be rewound when being closed, while another indicates
the same device without the rewind. A minor number may also indicate a
controller/device pair. Such breadth of interpretation is possible because the
minor number has no significance other than that attributed to it by the driver
itself.

The cdevsw table specifies the interface routines present for character devices.
Each character device may provide seven functions: xxopen (), xxclose (),
xxread (), xxwrite (), xxioctl (), xxselect (), and xxnunap (). (While
character drivers sometimes have "strategy" routines, this name is simply a car
ryover from the world of block drivers, and cdevsw thus has no xxstra
tegy () entry point). If you wish calls on a routine to be ignored- for exam
ple xxopen () calls on non-exclusive devices that require no setup-the
cdevsw entry for that driver can be given as nulldev; if a call should be con
sidered an error- for example xxwrite () on read-only devices- nodev,
which returns immediately with an error code, can be used.

Note: the device switch tables do not include pointers to the driver initialization
and interrupt handler functions. Pointers to these functions appear in separate
mbvar structures (discussed below).

Here's what the declaration of an entry in the character device switch looks like.
Each entry (row) is the only link between the main Sun0S code and the driver.
The declaration of the device switches is in
/usr/share/src/sys/sys/conf.h.

struct cdevsw {
int (*d_open) (); /* routine to call to open the device * I
int (*d_close) (); /* routine to call to close the device * I
int (*d_read) (); /* routine to call to readfrom the device * I
int (*d_write) (); /* routinetocalltowritetothedevice *I
int (*d _ioctl) () ; / * special interface routine * I
int (*d_reset) () ; /* reset device and recycle its bus resources* I
int (*d _select) () ; / * routine to call to select the device * I
int (*d _ mmap) () ; / * routine to call to mmap the device * I
struct streamtab *d_str; /* support/or STREAMS * I
int (*d_segmap) (); /* handlesmmapdevices that supportd_mmap * /

*I
} ;

Routines in the kernel call specific driver routines indirectly by way of the table
with the major device number. A typical kernel call to a driver routine will look

Revision A, of 27 March 1990

36 Writing Device Drivers

Table 3-2

something like:

(*cdevsw [major (dev)] . d_open) (params ...) ;

And here is a typical line from /usr /share/sys/ sun/ conf. c, which ini
tializes the requisite pointers in the cdevsw structure:

All the other cdevsw entries between O and 13 appear first

cgoneopen, cgoneclose, nodev, nodev, /*14*/
cgoneioctl, nodev, seltrue, cgonemmap,
O, spec_segmap,

} '

Then all the other cdevsw entries from 15 up

In the Sun system, a number of devices in cdevsw are preassigned. The table
below shows some of these assignments at the time of this writing. It is not com
plete, and besides, new devices are always being added. In allocating a major
number to the new device which you're installing, make sure that you don't
choose one that's already been allocated. /usr /sys/sun/ conf. c will give
the major device numbers as currently allocated on your system. Choose yours so
it will go at the end.

Current Major Device Number Assignments

Major Device Device Device
Number Abbreviation Description

0 en Sun Console
1 Not Available No Device
2 sy Indirect TIY
3 mm Memory special files
4 Not Available No Device
5 tm Raw Tapemaster Tape Device
6 vp Ikon Versatec Parallel Controller
7 Not Available No Device
9 xy Raw Xylogics Disk Device

10 mti SystechMTI
11 des DES Chip
12 ZS UARTS
13 ms Mouse
15 win Window Pseudo Device
16 Not Available Log Device

+§!!..!! Revision A, of 27 March 1990

Table 3-2

3.3. Run-Time Data
Structures

Chapter 3 -Overall Kernel Context 37

Current Major Device Number Assignment~ Continued

Major Device Device Device
Number Abbreviation Description

17 sd Raw SCSI disk
18 st Raw SCSI tape
19 Not Available No Device
20 pts Pseudo TTY
21 ptc Pseudo TTY
22 fb Sun Console Frame Buffer
25 pi Parallel input device
27 bwtwo Sun-2 Monochrome frame buffer
28 vpc Parallel Driver for Versatec printer
29 kbd Sun Console Keyboard Driver
30 xt Raw Xylogics 472 Tape Controller
31 cgtwo Sun-2 Color Frame Buffer
32 gpone Graphics Processor
34 fpa Floating-Point Accelerator
35 Not Available STREAMS Support
36 Not Available No Device
37 Not Available STREAMS Clone
38 pc Sun PC Driver
39 cgfour Sun-3/110 Color Frame Buffer
40 Not Available STREAMS NIT
41 Not Available Dump Device
42 xd Xylogics 7053 SMD Disk Driver

If you skip ahead and read the chapter on Configuring the Kernel you will see a
discussion of the procedures by which Sun systems are reconfigured to include
new devices and drivers. There are two major programs involved in this process.
The first is conf ig, which reads the kernel config file and generates the data
structure tables which specify the configuration of the new kernel. You will also
note, in that chapter, references to the kernel's autoconfiguration process (some
times called autoconf ig). The autoconfiguration process verifies that the
devices specified in the config file are actually installed and working, and adjusts
the kernel data structures accordingly.

The autoconfiguration approach was first introduced in 4 .1 BSD as part of a larger
kernel rationalization, and it significantly increases the flexibility of the kernel
configuration process, for example, by allowing multiple device controllers to be
driven by the same instance of a driver.

The autoconfiguration process is called by the kernel during its boot-time initiali
zation. It does several things:

Revision A, of 27 March 1990

38 Writing Device Drivers

o It verifies that the infonnation in the kernel config file is correct; that is to
say, it verifies that the devices which the kernel thinks are installed are actu
ally installed. It does this by calling device-specific x.xprobe () routines
that are supplied by the driver.

o It completes the initialization of the kernel data structures that were declared
by conf ig and linked into the kernel by way of ioconf. c (a file which
conf ig creates but cannot fully initialize). These structures, which are
defined in <sundev/mbvar. h> and shall hereafter be known as the
mbvar structures, fonn a good part of the run-time environment of the driver
routines.

o It maps the device registers (or memory) into kernel virtual space.

The autoconfiguration code does its work, as its name indicates, without worry
ing the driver developer too much. It's only necessary for the developer to know
what conventions to follow and what options exist. The rest will take care of
itself.

Note: readers who have written only System V drivers will perhaps find this all a
bit mysterious. In System V, as in BSD UNIX systems, the driver interface to the
kernel is defined primarily by the/unction switch (either cdevsw orbdevsw)
by which driver routines are called, by the parameters these routines are passed
and by the values they return. So far so good, but then there are the differences.
In System V drivers, nothing like the mbvar structures exists, and generic kernel
structures (like the user structure) are usedfar more heavily than in 4.2BSD,
where mbvar-like structures are consulted by preference. Sun's operating system
is, of course, derived from 4.2BSD, and its driver interface is quite similar.

The "mb" in the name of the mbvar structures clearly recalls the primary motiva
tion of the kernel rewrite in which they were introduced - to improve the
management of bus resources. The "mb" is derived from the initials of the M ul
tibus, around which older generation Sun machines were built. Newer machines,
while built around the VMEbus, nevertheless continue to bear the traces of the
past in these mbvar structure names, names which are now taken to stand for
"Main Bus" rather than for "Multibus."

During the configuration of the kernel, an edifice is built of the mbvar structures
and its initialization is begun. The edifice consists of a structure which
represents the bus itself, two arrays of structures (one representing system con
trollers; the other, devices) and a number of inter-structure field-to-field links of
various kinds. 2 The details of the edifice depend upon the infonnation in the ker
nel config file, and upon the compile-time declarations made by the individual
drivers. During boot time, the initialization that conf ig began is completed by
the autoconfiguration process.

2 It's not al ways clear just when a device is a "controller", and when it's a "device". The extreme cases are
clear: if a device attaches to the bus, fields interrupts and has other, so-called "slave" devices, then it's a
controller. Likewise, if a device attaches to a controller ratherthan to the bus, it's a slave device. The confusion
surrounds devices which attach to the device and field interrupts, but which do not have slave devices. Such
"devices" would, in many ways, be better thought of as "controllers" which control only themselves.

Revision A, of 27 March 1990

The Bus-Resource Interface

Chapter 3 - Overall Kernel Context 39

Then, at run time, the mbvar structures are used by both the drivers and the ker
nel to manage the bus and its interaction with the devices. The mbvar structures
are linked to each other in quite a complex fashion, for device characteristics and
thus device driver structures vary greatly, and these structures are intended to
support a great variety of access paths: device to controller, device to driver, con
troller to driver, and so on. Driver developers do not, however, need to concern
themselves with the details of the inter-structure links and access paths. Driver
routines will be called by the kernel with pointers to the mbvar structures of
interest to them. They are then free to build that information into whatever local
structures they find most convenient for the representation of whatever access
paths are of interest to them.

So, to sum up, the Sun kemeVdriver runtime interface can be seen as being built
in two different sections. One of these sections is composed of the mbvar struc
tures, constructed into interlinked arrays to represent specific kernel
configurations on specific machines. The other is similar to the generic SunOS
kemeVdriver interface, consisting as it does of the two device switches, the user
and proc structures, parameter conventions and a few miscellaneous variables.
We will now discuss the details to these two interfaces.

All controllers are installed on the main system bus, and all slave devices (like
disks and tape drivers) are attached to their controllers.3 Additionally, each con
troller is associated with a device driver, which is really a controller driver. The
mbvar data structures reflect these relationships, not only in terms of the fields
that they contain but in terms of the ways these fields are linked together.

The following mbvar structure fields are the ones most relevant to driver
developers.

mb hd

mb ct1r

The first data structure, rnb _ hd, is the Main Bus header data struc
ture. There is only one such structure, for Sun systems have only
one Main Bus. It contains a queue of rnb_ctlr structures, each
one representing a controller waiting for DVMA space. The
queue only contains entries when DVMA space is full. It also
contains other bus-status information. For example, if a driver has
exclusive access to the bus, this is noted in mb _ hd. Device
drivers never directly access the fields in mb _ hd.

Each slave-device controller on the Main Bus has an mb ct lr
structure associated with it. (This structure contains all of the
configuration-dependent information which the kernel needs in
interactions with the controller's driver, as well as some status
information. It is mb_ctlr that is queued onto mb_hd during a
wait for DVMA space. The following fields within mb_ctlr are
of interest even for character devices (there are others that are

3 Sometimes, in this manual, the word "device" will be used in a generic sense to denote either a "free"
device that attaches directly to the system bus rather than to a separate controller, or a regular slave device. This
generic usage occurs, for example, whenever the term "device driver" is used - such programs would more
accurately be described as "controller drivers". In this section, however, we're being extremely precise - free
devices attach to the system bus, and so they're called "controllers", not "devices".

Revision A, of 27 March 1990

40 Writing Device Drivers

used only by block devices):

me ctlr
The controller index for the corresponding controller, for
example, the 'O' in scO. Used to index into arrays of driver
specific controller status and control structures.

me alive
Set to one by the autoconfiguration process if the controller is
detennined to be present. Otherwise left at 0.

me addr
The address of the controller (control and status registers and
RAM) in bus space.

me_intpri
The interrupt priority level of the controller. This is to be
given in the config file and should be used, in the driver
source, only as an argument to splx () - e.g.
splx(pritospl(mc_intpri)).

me intr
On Sun-3, and Sun-4 systems, base address of array of
,structvec one for each specified in the config file. If
mc_intr is set, then the fields within the vec structure
become significant: On the Sun386i system, this field con
tains the irq (interrupt request channel). The Sun386i system
does not support vectored interrupts, so the v _ * fields are not
present.

v func
Pointer to the vector-interrupt function.

v vec
Vector number associated with the function in v func.

v_vptr
A pointer to the 32-bit argument to be passed to the
driver vector-interrupt routine. Defaults to the controller
number of the interrupting device, though it can be reset
within the driver. It's often set by the driver xxat
tach () routine to contain a local structure pointer.

me_space
A bit pattern which identifies the address space within which
the controller is installed.

me dmachan

On the Sun386i only, a field containing the DMA channel.

me mbinfo
Main Bus resource allocation infonnation (Used by
MBI_ADDR (), mbsetup () and mbrelse()).

Revision A, of 27 March 1990

Chapter 3 - Overall Kernel Context 41

mb device "Free" devices (devices with no separate controllers) as well as
"slave" devices, are represented to the kernel bus-management
routines by an instance of the rnb_device structure. (This is as
it has been since 4. lBSD, but it's not ideal- if free devices were
taken as controllers and represented by an rnb _ ct lr structure,
then rnb _ device would only be for slave devices and would
contain fewer fields). rnb _ ctlr contains all of the
configuration-related data for the free or slave device. If a con
troller has multiple slave devices attached to it, there will be as
many rnb_device structures associated with its mb_ctlr struc
ture. The following fields within rnb _ device (which are set by
the configuration system and are not normally reset by the driver)
are of interest:

md driver
A pointer to the rnb _driver structure associated with this
device.

md unit
The device index for the corresponding device, for example,
the 'O' in xyO. Used to index into arrays of driver-specific
device status and control structures.

md slave
The slave number of the device on its controller.

md addr
The base address of the device (its control/status registers and
perhaps some RAM). For VMEbus machines, it's the partic
ular address space within which the device is attached.
Unused for devices on controllers.

md_intpri
The Main Bus priority level of the device (the priority that is
passed to pritospl()). Used to parameterize the setting of
hardware priorities. Unused for devices on controllers.

md_flags
The optional flags parameter from the system config file is
copied to this field, to be interpreted by the driver. Only the
driver uses the information in this field. If flags was not
specified in the config file, then this field will contain a 0.

md intr
On Sun-3, and Sun-4 systems, base address of array of
struct vec, one for each specified in the config file.
Unused for devices on controllers. On the Sun386i system,
this field contains the interrupt channel as an integer.

md dmachan
On the Sun386i only, a field containing the DMA channel.

Revision A, of 27 March 1990

42 Writing Device Drivers

md al.ive
Set by the autoconfiguration process to 1 if xxprobe (} finds
the device, otherwise it's left at 0. Incidently, if xxprobe (}
fails to find the device, the autoconfiguration process will also
leave the device position in the xxdinf o (} array (if the
driver has one) at 0. The driver is free to test either variable
(in its xxopen (} routine) to determine xxprobe (} 's ver
dict.

mb driver The system assumes that the source code of your driver declares a
mb _driver structure named xxdr i ve r. This structure contains
infonnation relevant to the device driver as a whole, as opposed to
infonnation about individual devices or controllers. It differs in
several important manners from the device and controller struc
tures. For one thing, it contains a number of pointers to driver
functions. These pointers, like those in cdevsw and bdevsw,
are used by the kernel as entry points into the driver. For another,
it's initialized not by the configuration system, but within the
driver source code itself- if fact, several of the routines in
xxdr i ver (} are actually called by the kernel autoconfiguration
process to complete the driver-related kernel initialization. (Note:
while the driver has responsibility for initializing the fields in
xxdr i ver, it is still limited, at run time, to reading these fields -
it cannot ever change them).

xxdr i ver must be known more intimately by the driver developer than either
the driver md ctlr structure or the driver md device structure. We will
therefore give its complete declaration:

struct mb driver {

} ;

int (*mdr_probe) (); I* check device/controller installation * I
I* check slave device installation * I int (*mdr_slave) ();

int
int
int
int
int
char
struct
char
struct
short
struct

(*mdr_attach) ();
(*mdr _go) () ;
(*mdr _done) () ;
(*mdr_intr) ();
mdr_size;

*mdr_dname;
mb device **mdr_dinfo;

*mdr_cname;
mb_ctlr **mdr_cinfo;
mdr_flags;
mb driver *mdr_link;

I* boot-time device initialization * I
I* routine to start transfer * I
I* routine to finish transfer * I
I* polling interrupt routine * I
I* amount of memory space needed * I
I* name of a device * I
I* backpointers to mbdinit structs * I
I* name of a controller * I
I* backpointers to mbcinit structs * I
I* want exclusive use of Main Bus * I
I* interrupt routine linked list * I

Here is a brief discussion of the fields in the mb _driver structure that you will
need to initialize when defining .udr i ver. Note that many of the fields in
mb_dri ver are for the use of block drivers only-they're presented here as
useful background infonnation.

Revision A, of 27 March 1990

Chapter 3 - Overall Kernel Context 4 3

mdr_probe
is a pointer to the driver xxprobe () routine. xxprobe () is called for
every controller and every independent device (with no separate controller)
given in the kernel config file . .xxprobe () detennines if the
device/controller is actually installed. If it is, it returns the amount of bus
space consumed by the device/controller to the autoconfiguration process,
where this space is then mapped into system address space. When
.xxprobe () fails, it returns 0.

mdr slave
is a pointer to an xxslave () function within your driver. xxslave () is
analogous to xxprobe (), and serves the same function for devices which
are driven by separate controllers. Unlike xxprobe () , however,
xxslave () exists only for controllers that may have multiple devices
it's therefore quite rare in character device drivers.

mdr attach
is a pointer to an xxa t tac h () function within your driver. xxa t tac h ()
is called during the autoconfiguration process, where it does preliminary
setup and initialization for a device or controller. It's commonly used within
disk and tape drivers to perfonn setup tasks like the reading of labels, and in
character drivers for tasks like initializing interrupt vectors and reserving
blocks of memory. Initialize this field only if there's an xxat tach () rou
tine in your driver.

mdr_go
mdr done

are pointers to xxgo () and xxdone () functions within the driver. These
functions usually don't exist for character drivers, and these fields are conse
quently 0.

mdr intr
is a pointer to a polling interrupt routine within your driver. Such a polling
routine is used for the "auto-vectoring" of interrupts in systems where the
interrupt "vector" can only be based on the interrupt priority. This is the
case on all Multibus machines, and if there's any chance that your driver
will someday be run on a Multibus machine you should include a polling
interrupt routine and plug it in here.

If you have a Sun source license, and take the opportunity it affords to exam
ine a number of drivers (you can find them in
/usr / share/ src/ sys/ sundev) you may note an inconsistency in the
naming of interrupt routines:

o Some drivers have two interrupt routines: a polling interrupt routine
named xxpoll () and a vector interrupt routine, named xxintr (). In
such cases xxpoll () detennines the unit number of the interrupting
device and then calls xxintr () to actually handle the interrupt.

o Other drivers have only one interrupt routine. The routine is named
xxintr () and called from mdr _ intr, but it nevertheless contains
polling code. This, like the naming of the field mdr_intr (which

~) S ll fl Revision A, of 27 March 1990
~ microsystems

44 Writing Device Drivers

really should be mdr _poll) is an artifact of early Sun systems, in
which drivers were written for the Multibus only - in these systems
xxintr () was the interrupt routine, and it always contained polling
code.

In any case, remember that any routine called from mdr _int r must check
the polling chain, regardless of its name. If you will not support Multibus
machines, and thus need no polling interrupt routine, put a zero in this field.

mdr size
is the size - in bytes - of the memory required for the device. This field is
initialized with a value identical to that which x.xprobe () returns upon
success, and specifies the amount of space that needs to be mapped into sys
tem memory by the autoconfiguration code. The value returned by
x.xprobe (), while identical, is used only to indicate if the device was
found.

mdr dname
is the name of the device for which this driver is written.

mdr dinfo
is a pointer to a pointer to the mb _device structure in xxdinf o () . This
pointer is filled in during autoconfiguration (see section below on
Autoconfiguration-Related Declarations) and is necessary to work back from
the device unit number to the correct mb _ device structure by way of an
index operation.

mdr cname
is the name of the controller supported by this driver (for example, sc sup
ports the controllers scO, scl, etc). This field takes the form of a regular
null-terminated C string. Fill it in if you actually have a controller.

mdr cinfo
is a pointer to a pointer to an mb _ ctlr structure declared in the driver.
This pointer is filled in during autoconfiguration (see the section below on
Autoconfiguration-Related Declarations) and is necessary to work back from
the device unit number to the correct mb _ ctlr structure by way of an index
operation.

mdr_flags
consists of some flags, as follows:
MDR XCLU

The device needs exclusive use of Main Bus while running. This flag is
used only by mbgo () and mbdone () routines (which are not docu
mented in this manual), and it guarantees exclusive use only among
drivers which use it to enforce an exclusive-use protocol. Not all
drivers do so.

MDR BIODMA
For block devices that do DMA on the Main Bus (such drivers call
mbgo () and mbdone()). This flag tells the kernel that it must lock
other DMA devices off the bus.

Revision A, of 27 March 1990

Autoconfiguration-Related
Declarations

Chapter 3 - Overall Kernel Context 45

MDR DMA
For character devices which use OMA, either to transfer large blocks of
data or simply to transfer small blocks of control information. The
drivers for such devices call mbset up (). This flag tells the kernel that
it must lock other OMA devices off the bus, and all OMA drivers
should set it.

MDR SWAB
1/0 buffers are to be swab () 'ed- that is, pairs of data bytes are to be
exchanged. This flag is used to push the swab () out of mbgo () and
mbdone (} and down into the Main Bus driver.

MDR OBIO
The device is installed in on-board 1/0 space.

Of these, MDR_XCLU, MDR_DMA, MDR_SWAB and MDR_OBIO are poten
tially to be used for user character devices. These flags must be OR'ed
together if you wish to place any of that information there. Place a zero (0)
in this field if none of the flags apply to your driver.

mdr 1ink
This field is used by the autoconfiguration routines and is not for the driver's
use.

At the top of each driver, after the include statements, is a group of declarations
that are used by the autoconfiguration process to finish the initialization of the
mbvar structures. Here, as an example, are the relevant declarations from the
Sky floating-Point Driver:
r

I* Driver Declarations for Autoconfiguration * I
int skyprobe(), skyattach(), skyintr();
struct mb_device *skyinfo[l]; /* OnlySupportsOneBoard *I
struct mb_driver skydriver = {

skyprobe, 0, skyattach, O, 0, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, O,

} ;

The first line declares the names of the autoconfiguration-related entry point rou
tines for the driver. In this case there are only three - skyprobe (}, skyat
tach (} and skyintr (}. These declarations are necessary because, in a few
lines, we will use the names to initialize the driver's mb _driver structure.

The second line declares an array (in this case of dimension one) of pointers to
rob_ device structures. By the time the driver is linked into the kernel, con-
£ i g will have already declared an array of mb _device structures that contains
an entry for each of the devices named in the kernel config file. When the kernel
is booted, the autoconfiguration process initializes each driver's xxinf o (} array
to indicate the rob_ device structures corresponding to its devices, with each
device's unit number being used as its subscript into the xxinfo () array. The
Sky driver is slightly atypical in that it only supports one device; normally the
device count provided by con£ ig in a macro "NXX" (which is set to the

Revision A, of 27 March 1990

46 Writing Device Drivers

number of devices noted in the config file) would be the subscript in this declara
tion.

If this was a driver for a controller with slave devices, the second line would be
followed by an analogous one that declared an array of pointers to mb _ ct lr
structures.

The third line both declares and initializes the mb driver structure that
represents this driver. The fields within the structure are described in detail in
the previous section.

Other Kernel/Driver The kerneVdriver interface is almost entirely contained within the mbvar struc-
Interfaces tures and the parameter conventions of the driver routines. There are, however, a

few other common kerneVdriver interface points, which are given in this section.

WARNING The user structure is valid for the current process only while execution is in
the top half of the driver. It must never be accessed from the bottom half.

The kernel user structure (/usr/ share/ sys/ sys/user. h) contains a few
fields of interest to drivers. This structure, which maintains status infonnation
for the current user process (and which is swapped in and out with the process it
describes), is used far less by Sun drivers than it is by System V drivers. This is
because, in SunOS, the user structure does not define the address of the charac
ters to be written (or the place for characters to be read to). The Sun kernel uses
uio structures for this purpose, and passes them as parameters to the driver
xxread () and xxwrite () routines. (See Some Notes About the U/0 Structure
in the The "Skeleton" Character Device Driver chapter of this manual).

Still, three fields within the user structure remain of interest to device drivers.
They are:

u.u_qsave
is a set jmp () environment buffer that can be used to save the current
stack in preparation for a possible longjmp () return. set jmp () and
longjmp () are useful in drivers that need to intercept signals, and then to
wake sleeping processes. They can also be used for error handling. For
more infonnation, see the set jmp (3) man page.

u.u error
If an 1/0 operation is not successful, the driver must return an error code
(defined in <errno. h>), which is plugged into u. u _error. From here
it's normally stored in the per-process global variable errno in the user
context. (Note that in most cases the kernel plugs the value into
u . u _error, and it is not necessary for the driver to do so. In fact, a driver
cannot access u . u _error in its interrupt routine, where transfer errors are
nonnally detected, since the current user structure is unlikely to belong to
the process for which the failed 1/0 was being performed).

u.u_procp
The u. u _procp field in the user structure is a pointer to the processs
(proc) structure for the current process. The proc structure contains the
infonnation that the system needs about a process even when it is swapped

Revision A, of 27 March 1990

Chapter 3 - Overall Kernel Context 4 7

out. u. u _procp is used by drivers which contain select () routines.
See the Variation with "Asynchronous 110" Support section of the The
''Skeleton'' Character Device Driver chapter of this manual for details.

Drivers may occasionally need to know what kind of machine they're running
on. They can find out by querying a variable, cpu, which, while not in the user
structure, is available to them by including .. /machine/ cpu. h. This vari
able is initialized by the kernel on the basis of information in the ID PROM, and
is set to one of the following values:

CPU SUN3 50 - -
CPU SUN3 110 - -
CPU SUN3 60 - -
CPU SUN3 160 - -
CPU SUN3 260 - -
CPU SUN3 E - -
CPU SUN3X 80 - -
CPU SUN3X 460 - -
CPU SUN4 110 - -
CPU SUN4 260 - -
CPU SUN4 330 - -
CPU I386 AT386 - -

Note that when compiling for a Sun-3 system, only the Sun-3 names are avail
able; likewise for Sun-3x's, Sun-4s and Sun386i's.

Related to the CPU SUNX xx names are the SUNX xx ifdefs. These are set at
compile time on the basis of information in the config file, and can be used to
eliminate code or data that is unnecessary for machines of any particular type. In
general, it's possible (and advised) to write drivers that can compile and run on a
variety of Sun machines with no changes.

DVMA drivers will often need to know the address of kernel DVMA space on
the host machine (See the Sun Main-Bus DVMA section in the Hardware Context
chapter) so that they can subtract it from system virtual addresses to get
addresses relative to the start of DVMA space. The external variable DVMA,
declared as an array of characters, is available for this purpose.

The external variable hz gives the number of clock ticks per second on the host
system.

The external variable KERNELBASE _ DEBUG gives the start of kernel address
space in the current memory context.

Revision A, of 27 March 1990

48 Writing Device Drivers

Revision A, of 27 March 1990

4.1. Overall Layout of a
Character Device
Driver

4

Kernel Topics and Device Drivers

A first step in writing a device driver is deciding what sort of interface the device
should provide to the system. The way in which read () and write () opera
tions should occur, the kinds of control operations provided via ioctl (), and
whether the device can be mapped into the user's address space using the
mmap () system call, should be decided early in the process of designing the
driver. (For simple memory devices that require neither DMA nor an ioctl ()
routine, and that don't interrupt, it's possible to use the mmap () system call to
avoid writing a driver altogether. See the Mapping Devices Without Device
Drivers section of this manual for more details).

Device drivers have access to the memory management and interrupt handling
facilities of Sun0S. The device driver is called each time the user program
issues an open (), read (), write (), mmap (), select () or ioctl ()
system call, but only the last time the file is closed. The device driver can
arrange for 1/0 to happen synchronously, or it can set things up so that 1/0
proceeds while the user process continues to run.

Here's a brief summary of the parts that comprise a typical device driver. In any
given driver, some routines may be missing. In a complex driver, all of these
routines may well be present. A typical device driver consists of a number of
major sections, containing the routines introduced below.

Initial Declarations
Device drivers, like all C programs, begin with global declarations of vari
ous sorts. These declarations include the structures that the driver will over
lay on the device registers. (These structures are often conveniently declared
to contain unsigned integers and bit fields chosen to access various parts of
the device registers). They also must include the declarations discussed in
the Autoconfiguration-Related Declarations section of the Overall Kernel
Context chapter of this manual.

Autoconfiguration Support
Then come the xxprobe (), xxattach () and, perhaps, xxslave () rou
tines. These are called at kernel boot time to detennine if devices noted as
being present in the config file are actually installed, and to initialize them if
they are. This initialization may include the resetting of the interrupt vector.

49 Revision A, of 27 March 1990

50 Writing Device Drivers

Opening and Closing the Device
x.xopen {) is called each time the device is opened at the user level; if mul
tiple user processes open the device, x.xopen {) is called multiple times.
x.xclose (), in contrast, is called only when the last user process which is
using the device closes it.

Reading from and Writing to the Device
x.xread () and xxwri te () are called to get data from the device, or to
send data to the device. Drivers for tty-like devices will probably structure
x.xread () and xxwr i te () in the tenninal-driver style (not described in
this manual), while devices that deal simultaneously with groups of charac
ters will probably have their x.xread {) and xxwr i te {) routines imple
mented in tenns of ax.xstrategy () routine. Suchx.xstrategy () rou
tines are in every way subsets of block-driver x.xstrategy () routines -
they are integrated with physio {), and use buf structures, but they don't
have anything to do with the kernel buffer cache. Character drivers for
DMA device are likely to have strategy () routines, but they can be use
ful for non-DMA devices as well - as long as the devices do 1/0 in chunks.

Select Routine
x.xselect supports the select {) system call, by which user processes
can poll various devices (by way of 1/0 descriptors which specify them) to
see if they are ready for reading, writing, or have an exceptional condition
pending on them.

Start Routine
x.xstart {) is needed in drivers that queue requests; it's called from
x.xread (), xxwri te () or x.xstrategy () to start the queue and is also
called from x.xintr () to send off the next request in the queue.

Mmap Routine
The mma p () routine is present in drivers for devices which are operated by
being mapped into user memory - for example, frame buffers.

Interrupt Routines
There are two kinds of interrupt routines: polling (or auto-vectored) routines
and vectored routines. Polling routines are necessary when the host system
doesn't allow unambiguous means of mapping hardware interrupts to dev
ices, as is the case with Multibus-based machines. Vectored-interrupt rou
tines are used on VMEbus-based systems, which can map hardware inter
rupts immediately to devices. Drivers for VMEbus devices that are never
run on Multibus-based systems need only vector interrupt routines, while
drivers for devices which will be run on both Multibus and VMEbus
machines need both types of interrupt routines. In this case the polling rou
tine can detennine the interrupting device and then call the vectored routine
to do the rest.

Ioctl Routine
The x.xioctl () routine is called when the user process does an ioctl
system call. These calls are the~~~, in the otherwise gen
erally unifonn 1/0 architecture. They are-no~liowe"Ver, panaceas, and you
should not overuse them to solve problems in driver design. Tenninals have

Revision A, of 27 March 1990

4.2. User Space versus
Kernel Space

4.3. User Context and
Interrupt Context

Chapter 4 - Kernel Topics and Device Drivers 51

many ioctl calls, but they're a special case. They have many ioctl
calls because they're inherently quite complex and yet SunOS still insists
that they look like files.

SunOS, being a multi-tasking operating system, provides for multiple threads of
control at the user level. (These multiple threads are the various user processes).
At the kernel level, however, things are different. The SunOS kernel is a monol
ithic monitor type of operating system, and, as such, it cannot be interrupted by
user processes. Instead, it contains code which allocates its time (and other
resources) among the various user processes, as well as to itself. The kernel can
be interrupted by hardware, but when handling interrupts it doesn't run on
behalf of any individual user process.

Device driver functions are invoked by kernel routines after user processes make
system calls. These functions must be able to move data to or from user virtual
space quickly and easily. Kernel functions are provided to help it do so, and to
redundantly map memory so that it can be shared by user programs and the ker
nel.

Device drivers are parts of the kernel, and they inhabit kernel space:

o In the Sun-3 and Sun-4, the kernel virtual address space is at the top of the
current context, starting at KERNELBASE.

o In the Sun-4, the kernel uses the top 16 megabytes of the current Gigabyte
context, starting at O xFF O O O O O O.

o In the Sun386i, the kernel uses the top 64 Megabytes. Of these, the kernel
has 32 Mbytes reserved for its use; kadb has 16 Mbytes reserved, and the
EPROM uses 16 Mbytes.

In general, drivers don't need to consider the details of kernel address-space
implementation. Routines (like copy in () and copyout()) which deal in
multiple address spaces will manage the details internally, as will programs like
kadb.

A device driver can usefully be thought of as having a top half and a bottom half.
The top half, consisting of the read (), write (), and ioctl () routines, and
of any other routines which run on behalf of the user process making requests on
the driver, is run at 1/0 request time. The routines in the top half make device
requests that can cause long delays during which the system will schedule a new
user process so that it can continue doing useful work. The bottom half, consist
ing of xxintr () and any routines that it may call, is run at hardware interrupt
time.

Memory-mapped devices are usually not interrupt driven. Their drivers, thus, do
not typically need to include interrupt routines. Memory-mapped devices
operate by being written and read as system memory, and make no split-second
demands (interrupt-time demands) upon their users.

After starting an 1/0 request, the top half calls sleep () to wait for the bottom
half to indicate (by way of a call to wakeup()) that the request has been

Revision A, of 27 March 1990

52 Writing Device Drivers

4.4. Device Interrupts

serviced. Thus, when a user program issues a read on (say) an AID converter, it
is nonnally suspended when the top half of the corresponding driver calls
sleep () to wait until some input arrives. Alternatively, the top half of the
driver can call iowai t () and be put to sleep awaiting the completion of a
buffer-oriented 1/0 transfer.

The top half contains not only all the non-interrupt time driver routines, but (for
all practical purposes) the kernel routines above the driver as well. In particular,
it contains the kernel physio () routine, which manages the decomposition of
large 1/0 requests into a series of smaller ones that can be handled by the device.

The bottom half may include anxxstart () routine, which can be called inter
nally to start 1/0. This allows the device-specific code to be isolated in one rou
tine. xxstart () is not a driver entry point. It's called from either xxstra
tegy () or xxintr (), depending upon whether the device is busy or not.

Consider an AID converter driver that expected the converter to interrupt when a
sample was available. The kernel interrupt handler would detect the device inter
rupt and dispatch xxintr (), which would then store the sample data in a buffer
and wakeup () the user process sleeping in the top half so the process could
retrieve the data. If there was no user process sleeping in the top half, the
wakeup () would have no effect, but the next process to read the AID driver
would find the data already there and wouldn't have to sleep ().

It must be stressed that, in general, xxintr () doesn't run on behalf of the
current user process-this is, in fact, why it's distinguished so clearly from the
top half. This means that no infonnation about the current user process is avail
able, in any way, to xxintr (). It shouldn't examine, let alone change, any of
the variables in the kernel user structure.

In general, the driver developer has limited control over the interrupt characteris
tics of the device. However, it should be said that some device-interrupt charac
teristics are better than others. In particular, interrupt-processing takes lots of
time, and it's important that devices interrupt as seldom as possible. If, for
example, a device can be made to handle multiple characters for each interrupt it
processes, it should be. It's also preferable that a device not interrupt until its
driver has enabled its interrupts, that it hold its interrupt line high until the driver
asks that it be cleared, and that it remain quiescent after a bus reset (system
boot).

Most hardware devices interrupt, and all interrupts occur at some given priority
level. When an interrupt occurs, the system traps it, suspends the in-process
operation (which may be a process entirely unrelated to the interrupting device or
even the kernel) and resumes execution in the bottom half of the driver associ
ated with the interrupting device. This means that the top half of a device driver
can be interrupted at any time by its bottom half. If they wish to share data, they
must do so in shared data structures, and they must take special provision to see
that those structures remain consistent. An example of such a data structure is a
pointer to a current buffer and a character counter. The top half of the driver
must protect itself so that data structures can be updated as atomic actions, that
is, the bottom half must not be allowed to interrupt during the time that the top

Revision A, of 27 March 1990

4.5. Interrupt Levels

Chapter 4 - Kernel Topics and Device Drivers 53

half is updating some shared data structure. This protection is achieved by
bracketing critical sections of code (sections that update or examine shared data
structures) with subroutine calls that raise the processor priority to levels which
can't be interrupted by the bottom half. Such a section of code looks like:

s = spln ();

critical section of code that can't be interrupted

(void) splx (s);
\.

Here we've first raised the hardware priority level and then restored it after the
protected section of code. (Detennining the correct hardware priority will be dis
cussed later). One section of code that almost always needs to be protected is the
section where the top half checks to see if there is any data ready for it to read, or
whether it can write data or start the device. Since the device can interrupt at any
time, the section of code that checks for input in this fashion is wrong:

if (no input ready)
sleep (awaiting input, software_priority)

because the device might well interrupt after the if condition is tested, but
before the process switch. (The consequences, if this happens, are grave - the
call to wakeup () will occur before the process has actually gone to sleep, and
thus it will never wake up).

The above section of code must thus be rewritten to look like this:
r

\.

s = spln ();
while (no input ready)

sleep (awaiting input, software_priority)
(void) splx (s) ;

If the top half executes the sleep () system call, the bottom half will be
allowed to interrupt, because the hardware priority level is reset to O as soon as
the sleep () context switches away from this process.

In many cases it is possible to set the device interrupt level by setting switches on
its board. If so, you must decide what processor-interrupt level the device is
going to interrupt at. At first it may seem that your device is very high priority,
but you must consider the consequences of locking out other devices:

o If you lock out the on-board U ARTs (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the SunOS
scheduler will be suspended.

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed.

Revision A, of 27 March 1990

54 Writing Device Drivers

4.6. Vectored Interrupts
and Polling Interrupts

o If you lock out the disks (level 2), disk rotations may be missed.

o Level 1 is used for software interrupts and cannot be used for real devices.

In general, it's best to use the lowest level that will provide you with the response
that you need.

In older Sun machines, the kernel uses only auto-vectored (polling) interrupts.
With auto-vectoring, the interrupt vector associated with a given device is based
solely on the device interrupt priority level. Since many system configurations
will contain more devices than there are interrupt levels, multiple devices may
share the same interrupt level. Still, when processing an interrupt, the kernel
must have a way of determining which device interrupted, and which driver
should process the interrupt. In such configurations, the kernel proceeds by pol
ling all the drivers at the given interrupt level (in the order that they are given in
the config file), calling each of their polling interrupt routines in turn. These rou
tines then proceed to interrogate their corresponding devices looking for the dev
ice that has an "attention bit" set, thus indicating that it issued the interrupt.
Devices that don't indicate that they've interrupted can still be installed - one
per system - by putting them at the end of the config file and thus at the end of
the polling chain. Unclaimed interrupts can then be assumed to be from the last
device.

After determining that one of its devices issued an interrupt, the polling routine
services it and returns a non-zero to indicate that it did so (or a O to indicate that
no device was found to originate the interrupt).

Polling only works if devices which share interrupt levels continue to interrupt
until the driver tells them to stop. This is because the driver polling-interrupt
routine returns to the kernel with an indication of which of the devices it has ser
viced. If two devices (A & B) are polling at the same interrupt level and both
issue an interrupt, device A will always get serviced first. The kernel will then
go on its merry way unless device B continues to interrupt. If it does, then when
device A has been serviced, device B will be serviced. Fortunately, most Mul
tibus boards continue to interrupt until told to stop. VMEbus boards typically do
not, so it's important that they use vectored interrupts.

Sun VMEbus machines, (even those with Multibus devices installed by way of
adapters) can take advantage of vectored interrupts. When handling a vectored
interrupt, the kernel calls the appropriate driver's vector interrupt routine
directly, passing it an argument to identify which of its devices (or controllers)
interrupted.

It's important to realize that a driver can support both vectored interrupts and
polling interrupts. Such a driver can be run on either type of machine, its polling
interrupt routine will determine which device, if any, originated the interrupt, and
then call the vectored interrupt routine to actually service it.

VMEbus devices - if they interrupt - are assigned unique identifying numbers
in the range O x4 0 to O xFF when they are described in the conf ig file. It is
these vector numbers that are used by the kernel to directly identify the interrupt
ing device.

Revision A, of 27 March 1990

Chapter 4-Kemel Topics and Device Drivers 55

There are cases where no separate polling routine is needed. The first is where a
driver knows that it supports only one device, and that no other device will share
its device's interrupt level. In this case only an xxintr () routine need exist. It
can then be specified inmb_driver->mdr_intr for use in the auto-vectored
case and in the con£ ig file for the vectored interrupt case. Thus, all
configurations will use the same interrupt routine. Remember, this will only work
if there are no other devices of any sort installed at the same interrupt level.

The other case where xxpoll () is not needed is when a driver will never sup
port polling - presumably because it will never be run on a Multibus machine.
In this case xxi n tr () should be specified in the con fig file for use as the vec
tored interrupt routine, and the auto-vectored (polling) interrupt routine specified
in mb dr i ver->mdr intr should be 0.

Note that in the first case above, where the device will have an interrupt level to
itself, little need be done to make the driver work with vectored interrupts. One
may simply take a polling interrupt routine, (perhaps renaming it xxintr () to
avoid confusion) and install it as the vector interrupt routine by giving its name
in the appropriate place in the con£ ig file. This isn't the most efficient thing to
do, for when the routine is called through the kernel's vectoring mechanism, it
will waste the information in its argument (which identifies the device originat
ing the interrupt) and go on to poll its devices. Nevertheless it will work. It's
better, however, if drivers contain both xxintr () and xxpoll () routines, so
that they may be easily transported to a variety of systems.

Another issue of concern only to drivers running on VMEbus machines is related
to setting up the interrupt-vector number. When using the VMEbus-Multibus
adapter or certain VMEbus devices, the vector number is set by switches on the
circuit board. But some devices require that software initialize the device by tel
ling it which vector number to use on interrupts. Presently, the only place where
this can be done is in xxat tach (). The vector number that xxat tach ()
communicates to the device is in the md intr->v vec field of the - -
mb device structure- a NULL value in this field indicates that the host
machine is Multibus based and does not support vectored interrupts.

A skeleton for a "typical" driver, one supporting both vectored and polling inter
rupts and using software to set interrupt vectors might look like:

I*
* NXX is computed by configfor each device type.
* It can then be used within the driver source code to
* declare arrays of device specific data structures.
*I

struct .xx device .xxdevice[NXX];

I*
* Attach routine for a device .xx that must be notified of its
* interrupt vector.
*I

.xxattach (md)

Revision A, of 27 March 1990

56 Writing Device Drivers

\

struct mb_device *md;

register struct xx device *xx &xxdevice[md->md_unit];

:/Hfndef sun386
!*
* Vector number given in kernel config file and passed by the autoconfiguration
* process during boot. This code does not apply to the Sun386i, which does not
* support vectored interrupts.
*!

if (md->md_intr)

I* so we will be using vectored interrupts * I

I* WRITE interrupt number TO THE DEVICE * I
xx->c_addr->intvec = md->md_intr->v_vec;

I* Setup argument to be passed to xxa t t ach * /
*(md->md_intr->v_vptr) = (int)xx;

else { /* WRITE auto-vector code TO THE DEVICE * I
xx->c addr->intvec = AUTOBASE + md->md_intpri;

/* any other attach code * I
fondif
}

!*
* Handle interrupt - called from xxpoll and for vectored interrupts.
*!
xxintr (xx)

struct xx device *xx;

I* handle the interrupt here * I

I*
* Polling (auto-vectored) interrupt routine
*!

xxpoll ()
{

register struct xx device *xx;
int serviced= 0;

I* loop through the device descriptor array * I
for (xx= xxdevice; xx< &xxdevice[NXX]; xx++)

if (!xx->c_present I I
(xx->c_iobp->status & XX_INTR) == 0)
continue;

serviced= 1;
xxintr (xx) ;

Revision A, of 27 March 1990

4.7. Some Common Service
Routines

Timeout Mechanisms

Sleep and Wakeup
Mechanism

Chapter 4 - Kernel Topics and Device Drivers 57

return (serviced);]
The kernel provides numerous service routines that device drivers can use to
their advantage. These routines, as well as many others, are described more com
pletely in the Kernel Support Routines appendix to this manual. The most
important of these routines can be clustered into the functional groups given
here:

If a device needs to know about clock intervals,

timeout(func, arg, interval)
int (*func) ();
caddr_t arg;
int interval;

is useful. timeout () arranges that after interval clock-ticks, thefunc is called
with arg as argument, in the style (*func)(arg). interval is often expressed as a
multiple of the external variable hz, since hz gives the number of ticks per
second on the host machine. (lO*hz, then, specifies a timeout often seconds).
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to terminate an attempt to
read a device if there is no response within a specified number of seconds. Also,
the specified June is called at "software" interrupt priority from the lower half of
the clock routine, so it should conform to the requirements of interrupt routines
in general-you can't, for example, call sleep () from within/unc, although
you can call wakeup (). (See also untimeout()).

Another key set of kernel routines is sleep () and wakeup (). The call

sleep(event, software_priority)
caddr_t event;
int software_priority;

makes the process wait (allowing other processes to run) until the event occurs; at
that time, the process is marked ready-to-run. When the process resumes execu
tion, it has the priority specified by software _priority.

The call

(wakeup(event)
caddr_t event;

indicates that the event has happened, that is, causes processes sleeping on the
event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker - it must uniquely identify the device. By convention,

]

Revision A, of 27 March 1990

58 Writing Device Drivers

Raising and Lowering
Processor Priorities

event is the address of some data area used by the driver (or by a specific minor
device if there's more than one).

Processes sleeping on an event should not assume that the event has really hap
pened when they are awakened, for wakeup () wakes all processes which are
asleep waiting for the event to happen. Processes which are awakened should
check that the conditions that caused them to go to sleep are no longer true.

Software priorities can range from Oto 127; a higher numerical value indicates a
less-favored scheduling condition. A distinction is made between processes
sleeping at priority less than or equal to the macro P ZERO and those sleeping at
numerically greater priorities.

If a process is blocked in s 1 e ep () at a priority less than or equal to P z ERO, it
will not be awakened upon receipt of a signal; the signal will not be processed
until the process is awakened elsewhere and returns to user mode. (This means
that a user cannot interrupt such a process by typing their interrupt character).
Thus, it is a bad idea to sleep with priority less than or equal to P ZERO on an
event that may not occur.

On the other hand, if a process is blocked in sleep () at a priority greater than
P ZERO, and if a signal is sent to the process, it will be awakened. However, the
call to sleep () will not return. This means that the routine that called
sleep () cannot clean up after receiving the signal. If the routine needs to do
such clean up, it can arrange for this by ORing the PCATCH flag into the priority
it passes to sleep (). If this is done, and sleep () is interrupted by a signal, it
will return 1; if the process is awakened normally, sleep () will return 0.

In general, sleeping at priorities less than or equal to P ZERO should only be used
to wait for events that occur quickly, such as disk and tape 1/0 completion.
Waiting for events that may not occur quickly-for example, the typing of a par
ticular key by a human at a keyboard-should be done at priorities greater than
PZERO.

Incidentally, it is a gross error to call sleep () in a routine called at interrupt
time, since the process that is running is almost certainly not the process that
should go to sleep.

At certain places in a device driver it is necessary to raise the processor priority
so that a section of critical code cannot be interrupted, for example, while adding
or removing entries from a queue, or modifying a data structure common to both
halves of a driver.

The splx () function changes the interrupt priority to a specified level, and then
returns the old value.

The splr () function raises the priority without lowering the current priority
level.

For configuration reasons, the pritospl () macro is necessary to convert a
Main Bus priority level to a processor priority level. The Main Bus priority level
can be found in either md->md _int pr i or mc->mc _int pr i, where it is put
by the autoconfiguration process. (These structures are defined in

Revision A, of 27 March 1990

Main Bus Resource
Management Routines

Data-Transfer Functions

Chapter 4 - Kernel Topics and Device Drivers 59

<sundev/mbvar. h>).

Here's how you nonnally use the pritospl () and splx () functions in a
hypothetical strategy () routine:

hypo_strategy(bp)
register struct buf *bp;

register struct mb_ctlr *me
hypoinfo[rninor(bp->b_dev));

int s;

s = splx(pritospl(rnc->rnc_intpri));
while (bp->b_flags & B_BUSY)

sleep((caddr_t)bp, PRIBIO);

here is some critical code section

(void)splx(s); I* Set priority to what it was previously * I

Alternatively, spln can be used to set the processor to a certain fixed priority
level.

On the Sun-3, Sun-3x, and Sun-4, the routine mbsetup () is called when the
device driver wants to start up a DMA transfer to the device, for DMA transfers
require Main Bus resources. The MBI _ ADDR () macro can then be used to
transform the abstract integer returned by mbsetup () into a DVMA transfer
address. At some later time, when the transfer is complete, the device driver
calls the mbrelse () routine to inform the Main Bus resource manager that the
transfer is complete and the resources are no longer required.

On the Sun386i, the mbsetup () and dma_setup () routines are called when
the device driver wants to start up a DMA transfer. After the transfer is com
plete, the driver calls mbrelse () and dma done ().

The kernel provides a number of routines designed to transfer data between the
user and kernel address spaces. These include copy in () and copyout (),
general routines designed to move blocks of bytes back and forth. They also
include uiomove (), ureadc () and uwritec (), routines which are
designed to transfer data to or from a uio structure (see Some Notes About the
U/0 Structure in the The "Skeleton'' Character Device Driver chapter for more
details about this structure).

Revision A, of 27 March 1990

60 Writing Device Drivers

Kernel print f () Function

Macros to Manipulate Device
Numbers

The kernel provides a printf () function analogous to the printf () func
tion supplied by the C library for user programs. The kernel printf (), how
ever, is more limited. It writes directly to the console, and it doesn't support
pr intf () 's full set of formatting conversions. See the Debugging with
print£() section of this manual for more details on the use of the kernel
printf ().

A device number (in this system) is a 16-bit number (typedef short
dev _ t) divided into two parts called the major device number and the minor
device number. There are macros provided for the purpose of isolating the major
and minor numbers from the whole device number. The macro

major(dev)

returns the major portion of the device number dev, and the macro

minor(dev)

returns the minor portion of the device number. Finally, given a major and a
minor number x and y, the macro

dev_t makedev(x,y)

returns a device number constructed from its two arguments.

+~.!! Revision A, of 27 March 1990

5.1. Installing and
Checking the Device

Setting the Memory
Management Unit

5
Driver Development Topics

The central processor board (CPU) of the Sun Workstation has a set of PRO Ms
containing a program generally known as the "Monitor". (See the appropriate
PROM Commands chapter of the PROM User's Manual for detailed descriptions
of the monitor commands and their syntax). The monitor has three basic pur
poses:

1) To bring the machine up from power on, or from a hard reset (monitor k2
command).

2) To provide an interactive tool for examining and setting memory, device
registers, page tables and segment tables.

3) To boot SunOS, stand-alone programs, or the kernel debugger kadb.

If you simply power up your computer and attempt to use its monitor to examine
your device's registers, you will likely fail. This is because, while you may have
correctly installed your device (a process that includes specifying its virtual
memory mapping in the config file) those mappings are SunOS specific, and
don't become active until SunOS is booted. The PROM will, upon power up,
map in a set of essential system devices - like the keyboard - but your device
is almost certainly not among them.

When installing a new device, you will use the monitor primarily as a means of
examining and setting device registers. Before even beginning the development
of your driver, it's a good idea to attach your device to the system bus and use
the monitor to manually probe and test it. This will give you a chance to become
familiar with the details of its operation, and to ensure that it works as you expect
it to.

Upon power-up, the PROM monitor:

o Maps the beginning of on-board memory, up to 6 megabytes, to low virtual
addresses starting at virtual Ox O.

Later, using the autoconfiguration process, SunOS makes a pass through the
config file (actually, through the ioconf. c file that was produced as output by
conf ig when it processed the config file). For each device, SunOS selects an
unused virtual address (using an algorithm that doesn't presently concern us) and
maps it into the device's physical address as specified in the config file.

61 Revision A, of 27 March 1990

62 Writing Device Drivers

Selecting a Virtual Address

SunOS then calls the x.xprobe () routine for each device, passing it the chosen
virtual address. In this way, x.xprobe () is kept from having any knowledge of
the physical address to which the device is mapped. x.xprobe () then deter
mines whether or not the device is present. If it isn't, the virtual address can be
reused.

To test a device, ignore the SunOS mappings and use the monitor to manually set
the MMU to map your device registers to a known address in physical memory.
Then you can use the monitor to verify its proper operation. This verification
process will consist primarily of using the monitor's o (open a byte), E (open a
word) and L (open a long word) commands to examine and modify the device's
registers. Note that, in Sun-4 machines, words and long words are both 32 bits in
length.

The process of setting up the device for initial testing consists of three discrete
steps.

o The selection of an appropriate virtual address for the testing of the device.

o The detennination of the physical address of the device, as well as the
address space that it occupies.

o The use of the monitor to map the system's virtual address to the device's
physical address. Detailed discussion of these three steps follow.

Since SunOS initializes the MMU in the course of its autoconfiguration process,
it's possible to test a device by actually installing it, and then booting and halt
ing SunOS. (You can halt SunOS by pressing the 'Ll' and 'A' keys simultane
ously, or, on a terminal console, by hitting the <BREAK> key). Having gotten to
the monitor by this route, the MMU will be initialized to its SunOS run-time
state. You can then use the monitor to test the device, or, if you wish, boot
kadb. (A hard reset-the monitor's k2 command-sets the toMMU to its
pre-SunOS power-up state). But while using the SunOS memory maps may occa
sionally be useful, it's not what you want to do during the first stages of device
integration.

First, understand that the MMU, when mapping a virtual address to a physical
address, is actually mapping to a page of physical memory and an offset within
that page. The low-order bits of a virtual address, those that specify the offset,
do not get mapped- an address that is X bytes from the beginning of its virtual
page is X bytes from the beginning of whatever physical page it gets mapped
into.

The mapping mechanism is essentially the same for all Sun systems, although the
details of address size and page mapping differ. This can be seen in the follow
ing diagrams:

Revision A, of 27 March 1990

Chapter 5 -Driver Development Topics 63

Figure 5-1 Sun-3 Address Mapping

28 bits high
MMU

high - 32 bits -- -
Input " 15 - 19 -/ Output -

Ii Ii
Viriual Phy~ical
Address Address

low :

13

Figure 5-2 Sun-3x/Sun-4 Address Mapping

32 bits - high - MMU
high - 32 bits

~

Input ' 19 - 19 -/ Output -

Ii Ii
Viriual Phy~ical
Address Address

low
13

Revision A, of 27 March 1990

64 Writing Device Drivers

Figure 5-3 Sun386i Address Mapping

32 bits -
Input " ft.

Viiiual
Address

Finding a Physical Address

high - MMU
high 32 bits - -

20 - 20 -(Output -

ft.
Phy~ical
Address

low
12

The easiest way to select a virtual address for PROM-monitor testing is to use
one between Ox4000 and OxlOOOOO on Sun-3, Sun-3x and Sun-4 systems, or
Ox20000 and OxlOOOOO on Sun386i systems. Addresses in these ranges are
unused by the monitor in the respective Sun models, and are thus available.
(Note that these addresses, while convenient for testing, are not those that the
kernel will choose when your device is finally installed).

It's most convenient to select a virtual address which has only zero's in its low
order bits. This way you select the first address in a virtual page. The low-order
bits in the address you choose remains unchanged. With ' x' representing the
unmapped low-order bits (13 for a Sun-3, Sun-3x or Sun-4, 12 for a Sun386i) the
test address Ox4 0 0 0 is, in binary:

Sun-3 :
Sun-3x:
Sun-4

Sun386i :

0000 0000 0000 lOOX XXXX XXXX XXXX
0000 0000 0000 0000 lOOX XXXX XXXX XXXX
0000 0000 0000 0000 lOOX XXXX XXXX XXXX
0000 0000 0000 0000 0100 xxxx xxxx xxxx

(28 bits)
(32 bits)
(32 bits)
(32 bits)

Your board may be preconfigured to some address. If it is, then use that address
unless it conflicts with the address of an already installed device. If it conflicts,
you have to find an unused physical address at which you can install your device.
To do so, examine the kernel config file for the system upon which you are work
ing. Tables in the Hardware Context chapter show memory layouts correspond
ing to typical configurations, but if your system has departed at all from the
norm, you have to consult your kernel's config file (to determine where devices
have been installed) and the header files for the corresponding device drivers (to
determine how much space they consume on the bus).

Revision A, of 27 March 1990

Selecting a Virtual to Physical
Mapping

Sun-3/Sun-4 Virtual to Physical
Mapping

Chapter 5 - Driver Development Topics 65

When selecting a virtual to physical mapping, it's best if you understand a bit
about the internals of the Memory Management Unit. The Sun-3, and Sun-4 all
use the same proprietary MMU architecture. The Sun-3x uses the MMU that is
on the same chip as the CPU. This MMU works differently than the Sun MMU.

The following description is about the Sun MMU operation as it pertains to the
Sun-3 and Sun-4. There is also an example of how to perfonn a mappings using
sample numbers. The Sun-3x description follows the Sun-3/Sun-4 description
and includes a page mapping example.

Up to this point we've only stressed that the MMU maps the top bits of the vir
tual address, leaving the offset bits unchanged. Following is the explanation of
the mapping process in more detail.

Some new concepts are necessary to discuss the details of virtual to physical
memory mapping.

o The context register is a register specifying which of memory contexts
should be used when mapping virtual addresses to physical addresses. Sun-
3 Context Registers contain 3 bits, and specify one of eight memory contexts;
Sun-4/260 Context Registers contain four bits, and specify one of 16 memory
contexts. Each SunOS process segment (containing either code, data or
stack) is kept within a single memory context.

o Sun-3s and Sun-4s have user and kernel address spaces in the same
hardware context. That is to say, there is only one virtual address space,
a portion of which is used by the kernel and the rest by user processes.
Sun-4 virtual address spaces are divided into two chunks. One of them
is at the top of the addressable virtual memory space and the other is at
the bottom. The size of the unused space between these two spaces
varies with the model - in the Sun-4/260 each of the two virtual
address spaces is 512 megabytes in size, and the space between them
consumes 3 Gigabytes.

o The segment map is used in conjunction with the context register to select
the page map entry group (PMEG) corresponding to the virtual address
being mapped. The eight bits in the segment register specify one of a group
of 256 PMEGs.

o Within each page map entry group there are 16 page table entries.

o The page map maps the PMEG returned from the segment mapping with a
second subfield of the incoming virtual address to exactly specify a single
page table entry describing the physical page within which the virtual
address is mapped.

o The page table entry (PTE) is the final output of the MMU. A PTE specifies
the physical address of a page, as well as its type (e.g., on-board memory
space), protection, and the state of its access and modified flags.

Revision A, of 27 March 1990

66 Writing Device Drivers

Sun-3 and Sun-4 Address Consider the following diagram of address mapping on the Sun-3.
Mapping

supeivisor _
-user

28 bits
Input

Vi,lual
Addtess

Figure 5-4 Sun-3 MMU

Context
Register

11

..............
: :

:
:
:

:
3 : : -- type -: -

protection --. . . accessed/modified .
Segment 8

. . -. . -
:PMEG .

Map .

~
don't cache -. -.

11112119 24125132 - II - -- bits bits -
Page
Map

: Ph~ical
Add~ess

4

13

Note that:

o The MMU is getting a 28-bit virtual address as its input.

o The number of high-order bits reported out of the MMU, and thus the size of
the physical address, is variable. The address size is fixed for any given
Sun-3 machine, and varies only with the model-there are different kinds
of Sun-3 machines and they have different physical address sizes.

The Sun-4 MMU is almost the same:

Revision A, of 27 March 1990

Chapter 5 - Driver Development Topics 67

Figure 5-5 Sun-4 MMU

supervisor _ Context
user - Register

Top 2 Bjts

32 biribits

-

12
Input Passed ,,

Vi~ual
Addtess

............

413 - type - --
protection ---. . . accessed/modified

Segment 918
. -. -- PMEG .

don't cache Map

~

19 32 _.._ j~ - -- bits / bits -
Page
Map

Ph~ical
Addtess

5

13

As you can see, the Sun-4 MMU is largely identical to the Sun-3 MMU. The
differences are that:

o The Sun-4 MMU gets a 32-bit virtual address as its input, as opposed to a
28-bit address in the Sun-3. The top two bits are immediately shunted off.
They must be either O O or 11, and are used to specify one of the two
"chunks" in the virtual address space. (See Selecting a Virtual to Physical
Mapping above).

o The number of bits coming off the Context Register is 4 (to specify one of
16 contexts) on Sun-4/260s and 3 (to specify one of 8 contexts) on Sun-
4/1 lOs.

o The number of bits coming off the Segment map is 9 for Sun-4/260s and 8
for Sun-4/1 lOs.

On both Sun-3 and Sun-4 systems, PTEs are 32-bit numbers with the following
structure.

Revision A, of 27 March 1990

68 Writing Device Drivers

Table 5-1

V w s C Type a m Unused (5) Physical Page Number (19)

I I I

We will make a "template" bit mask that we can use to construct our standard
PfEs. One acceptable mask assumes values as follows:

V (valid) = 1
w/s (write ok/supervisor only) = 11
c (don't cache) = 1
(a/m) accessed/modified= 00
unused= 00000

(A one (1) in the don't cache position only disables caching if the type is zero
(0), since other types of pages are never cached). With the above values, our
template then looks like this:

1 1 1 1 Type 0 0 0 0 0 0 0 Physical Page Number (19)

I I I I I I I

This gives us a mask of O xF O O O O O O O (if we assume that the type field is O O).
Thus, the four masks for the four types of memory are:

Sun-3/Sun-4 PTE Masks

Type Description Mask

0 On Board Memory OxFOOOOOOO
1 On Board 1/0 Space OxF4000000
2 vme16d16 OxF8000000
2 vme24d16 OxF8000000
2 vme32d16 OxF8000000
3 vme16d32 OxFCOOOOOO
3 vme24d32 OxFCOOOOOO
3 vme32d32 OxFCOOOOOO

To determine the value to be plugged into the PfE, we must add the appropriate
mask to the appropriate physical page number, thus giving us the full 32-bit
number that we need. Here, again, we will give rules instead of details.

If vme16d16
or vme24d16
or vme32d16

Use Type-2 Template

Revision A, of 27 March 1990

Sun-3x Virtual to Physical
Mapping

,

\..

If vme16d32
or vme24d32
or vme32d32

Use Type-3 Template

If vme32d16
or vme32d32

Chapter 5 - Driver Development Topics 69

Physical Page Number Physical Address>> 13

If vme24d16
or vme24d32

Physical Page Number=
(Physical Address +OxFFOOOOOO) >> 13

If vme16d16
or vme16d32

Physical Page Number=
(Physical Address +OxFFFFOOOO) >> 13

In the previous CPU board designs, such as the Sun-3 architecture, a discrete
MMU was designed and implemented to handle Demand Paging (off chip). That
MMU was implemented mostly in hardware, with a dedicated register for the
Context and separate high speed RAM for the Segment and Page values. In the
Sun-3x architecture where the MC68030 is used as the CPU, a fully programm
able Memory Management Unit (MMU) integrated into the silicon (on the 68030
chip) is used to handle demand paging. A similar MMU has been offered by
Motorola for some time (the MC6885 l MMU) but was not used by Sun due to
certain architectural incompatibilities.

This Memory Management Unit is drastically different in operation from the
popular discrete version of its processors. Some of the MMU 's most significant
changes involve how the Translation Tables are initialized, accessed, and
updated and also the way the Address Translation procedure, or Table Walk, is
completed. This next discussion presents the process of how the firmware builds,
initializes, and updates the entries in the MMU Translation Tables, how the
Table Walk is accomplished, and how the MMU performs Address Translation.
An example is shown how to use the monitor to map virtual addresses into physi
cal addresses to access devices through the PROM.

The MMU handles the translation of addresses from virtual to physical using
translation tables stored at arbitrary locations in memory. The MMU has an

Revision A, of 27 March 1990

70 Writing Device Drivers

The Table Walk

Address Translation Cache (ATC) that holds recently used virtual to physical
address translations. When the CPU passes a virtual address to the MMU for
translation, it first searches the A TC for the corresponding physical address. If
the requested entry is not in the ATC, the processor searches the translation
tables in main memory for the infonnation. An A TC access operates in parallel
with the other on-chip caches, namely the CPU's Instruction Cache and Data
Cache. In order for the MMU to operate correctly, its internal registers must be
initialized to a known state.

The MMU has several internal registers that are initialized to known values
before the MMU is Enabled (Address Translation Enabled) and during various
Reset (k2 or power-on) operations. These registers include the CPU Root Pointer
(CRP), the Supervisor Root Pointer (SRP), and the Translation Control (TC)
register, all of which are initialized while the MMU is Disabled (Translation Dis
abled). The CRP and SRP are discussed in the Motorola 68030 Manual, but for
now it is important to say that these registers contain the starting addresses for
the MMU' s table walk.

The MMU's principal function is address translation, which involves converting
a virtual or logical address to a physical address. This process is known as a
Table Walk. For the Sun-3x architecture a three level MMU has been designed
and requires that a three level table walk be initiated to perform address transla
tion. This process tenninates when either an INVALID Entry or PAGE Descrip
tor is encountered. The three levels of address translation are referred to as TIA,
TIB, and PAGE respectively.

The three level table walk is needed to evenly divide the four gigabyte address
ing range of the MC68030. This could have been accomplished several different
ways, but a specified design goal was to have the Finnware, the Executive Diag
nostic and the Unix Operating System all use the same Translation Table format.

The first level of lookup, the TIA table entry, must be able to map in the entire
four gigabyte addressing range all at once. The largest block of virtual memory
that is required at any one time is 32 megabytes. By dividing 4 gigabytes by 32
megabytes we get 128 entries for the first level of address translation. For the
second level of translation, the TIB entries take each of the 32 megabyte TIA
entries and divide them by 64. This allows each TIA entry to be accessed as 64
separate 512 Kbytes (l/2 megabyte) blocks. Each of the 64 'I'IB entries are then
divided into 64 again which results in 8 Kbyte page sizes.

It is because of this table traverse that the name Table Walk is used. Each virtual
address is translated to a physical one by taking parts of the virtual address and
using them as indexes into the three tables, the resulting output being a Page
Table Entry (PTE) which detennines the exact physical address. See the table
below for how the entire virtual address range is divided into 8 Kbyte ranges.

Revision A, of 27 March 1990

4G

First Level

1 0 - 32M bytes

2 33 - 64M bytes

3 65 - 96M bytes

128 3.68 - 4G bytes

Chapter 5 - Driver Development Topics 71

Second Level Third Level

512K bytes 8K bytes

512K bytes 8K bytes

The beginning of the table walk starts with a pointer to the location of the MMU
tables in main memory. The PMMU has two pointers, one that is used by the
CPU (CPU Root Pointer), and one that is used by the CPU while in supeIVisor
state (SupeIVisor Root Pointer). For the firmware's use, both the CRP and the
SRP are initialized to the same value, which means they both point to the base of
the MMU tables.

When the MMU is Enabled, the CPU passes virtual addresses to be translated to
the MMU. If the requested entry is not in the A TC, a table walk of the transla
tion table is initiated. The table walk sequence is described below.

Step One: The CRP contains the base address of the TIA table in memory. The
top seven bits of the Virtual Address are used to calculate the index into the TIA
table. This index is added to the CRP to generate the specific TIA table entry.
The TIA entry contains the base address of the TIB table for the next step.

Step Two: The next six bits of the virtual address are used as an index into the
TIB table. When added to the base address from the TIA table the specific TIB
table entry is generated. The TIB entry contains the base address of the PAGE
Table.

Step Three: The next six bits of the virtual address are used as an index into the
PAGE table. The base address from the TIB table plus the index result in the
PAGE Table Entry (PTE). The PTE contains a 32 bit PAGE Descriptor of which
19 bits are the Page address, 5 are unused, and the remaining 8 are Status bits.

The Physical address is calculated by taking the top 19 bits from the PTE and the
lower 13 bits from the Virtual address. These 13 bits are an offset into the physi
cal memory page that is selected from the 19 bits.

The table walk is completed by passing the physical address back to the CPU. If
an INVALID descriptor is ever encountered the table walk terminates.

Revision A, of 27 March 1990

72 Writing Device Drivers

32 BIT VIRTUAL ADDRESS

7 Bits 6 Bits 6 Bits 13 Bits

TIA Index TIB Index Page Index Physical Address

TIA

Root
......
/

Ptr

TIB

~ TIB Base Addr
.......
7

PTE I Page Address

31

I
31

A Few Example PTE
Calculations

Sun-3 Solution

\V
Page Address

PAGES

~ Page Base Addr
........
/

~ Page Descriptor -

I Not Used lo CI 0 I Miu l~DTDT:<

13 7 6 5 4 3 2 1 0

w
I Lower Physical Address Bits I
13 0

Example One: You wish to map a device which you have attached at physical
Ox280008 onto bus type vme24d16 which will be mapped into virtual
memory at address O xE O O O O O O. What is the corresponding PTE?

Since we are mapping the device into vme 2 4 dl 6, we will use
O xF 8 O O O O O O as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to O xFF O O O O O O. This yields
OxFF280008. In binary, this is:

1111 1111 0010 1000 0000 0000 0000 1000

Shifting this right by 13 yields:

XXXX XXXX XXXX Xlll 1111 1001 0100 0000

Revision A, of 27 March 1990

Sun-3x Solution

Chapter 5 -Driver Development Topics 73

Adding the template, O xF 8 0 0 0 0 O O, we get values for the 13 bits that are
undefined from the shift. Thus the PTE is:

1111 1000 0000 0111 1111 1001 0100 0000

Which is OxF807F940.

A final note: we've now calculated the PTE that maps the virtual page beginning
at O xE O O O O O O to the physical page containing O x2 8 0 0 0 8. To get the virtual
address by which to access the device it's necessary to take the lower 13 bits of
the physical installation address - the bits that are just passed through the MMU
- and add them to virtual O xE O O O O O O. The lower 13 bits of physical
Ox280008 are 0008, and adding them to OxEOOOOOO yields OxE000008,
the virtual address by which the device can be accessed.

Our variables are:

physical address
virtual address
bus type

280008
EOOOOOO
vme24d16

The base address for vme2 4dl 6 for the Sun-3x, which is in Table 2-8 in
Chapter 2, is Ox 7 e O O O O O O So we add the physical memory address to the vme
base pointer which gives us a specific physical address.

vme24d16
physical

physical

7EOOOOOO
280008

7E280008

Then we take off the top 19 bits to mask out just the vme page, which gives us
the physical page of memory. We then need to logically 'or' in some status bits
to allow us to write to this page. The value 1 enables the write status.

physical 7E280008
and mask 7E280000

page 7E280000
or flag 1

PTE 7E280001

To use the monitor to perform the mapping, use the 'p' command for displaying
and changing the Page Table. The syntax is

p[virtual address]

where the virtual address is the original virtual memory given in the problem ini
tially. The monitor returns the current PTE and asks you for a new value. The
newly calculated PTE is input, which modifies the PTE to map to a new physical
memory location

Revision A, of 27 March 1990

74 Writing Device Drivers

Sun-3 Solution

monitor cmd
return value
new PTE
exit monitor

>pEOOOOOO<cr>
xxxxxxxx
?7E280001<cr>

Now every reference to the virtual memory location E O O O O O 8 will be mapped
to the device. Note that since the original physical address was folded into the
virtual address and then was masked, we still have the 8 offset at the end of the
memory reference to index into the physical page of memory to access the dev
ice.

Example Two: You wish to map physical OxEE48 on bus type vme16d32 on a
Sun-3. Using virtual address OxEOOOOOO, what is the PTE?

Since we are mapping the device into vme 16 d3 2, we will use
0 xFCO O O O O O as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to OxFFFFOOOO. This yields
OxFFFFEE4 8. In binary, this is:

1111 1111 1111 1111 1110 1110 0100 1000

Shifting this right by 13 yields:

XXXX XXXX XXXX Xlll 1111 1111 1111 1111

Adding the template, 0 xFC O O O O O O, we get values for the 13 bits that are
undefined from the shift. Thus the PTE is:

1111 1100 0000 0111 1111 1111 1111 1111

Which is OxFC07FFFF.

To get the virtual address by which to access the device at physical O xEE 4 8, add
its lower 13 bits, OxE48, to OxEOOOOOO -this yields OxEOOOE48.

The Sun-4/110 MMU does not store bits 28-31. For the VME, which is the only
addressing that use 32 bits of physical addressing on the Sun-4/110, bits 28-31
are generated by sign extending bit 27. When the PTE is read back, these upper
bits are always set to zero. This essentially creates a hole in the address space
that is not addressable.

When entering page table entries on a Sun-4/110 to test hardware from the prom
monitor, use a virtual address less than Ox 8 O O O O O. Virtual addresses from
Ox 8 O O O O O and above are not setup by the prom monitor for use and will result
in an invalid PMEG.

If you are mapping the device to vme 16, vme 2 4 or the top half of the vme 3 2
address space, after entering the PTE the top five bits of the physical page
number are zero because the Sun-4/110 physical address space is split with 128
megabytes at the bottom and 128 megabytes at the top. Whenever the physical
address goes above 128 megabytes, the high bit is sign extended so that the
address lies within the top 128 megabytes. If you sign extend the high bit into

Revision A, of 27 March 1990

Sun-3x Solution

Getting the Device Working
and in a Known State

Chapter 5 -Driver Development Topics 75

the next five bits you should come up with your previously calculated physical
page number.

In this example, instead of using O xE O O O O O O as the starting address, the value
OxEO O O O has been used successfully.

Using the same steps above, this is how the solution looks:

physical EE48
virtual EOOOOOO
bus type vme16d32

vme16d32 7DOOOOOO
physical EE48

physical 7D00EE48

physical 7D00EE48
and mask 7DOOEOOO 0111 1101 0000 0000 111

masked page 7D00E000
or flag 1

PTE 7D00E001

This is the new PTE value that can be used in the monitor as shown in the previ
ous example.

Before you even think about writing any code you should check out your device.
You must get to know it, finding out early if it has any peculiarities that will
affect its driver. It may, for example, have addressing and data-bandwidth limi
tations. Or, if it's a bus master, it may not implement the release on request
bus-arbitration scheme the Sun supports. Know the peculiarities of your device
early, and then test it to verify that it's working before proceeding further with
driver development.

Make sure that the board is set up as specified in the vendor's manual. Device
characteristics which, in general, have to be set properly before the device can
successfully be used include:

o Address and data widths,

o Interrupt levels,

o Interrupt vector numbers for VMEbus device,

o VMEbus address modifiers,

o The bus grant level for VMEbus devices should be set at 3.

Then, take down your system and power it off. Plug the device into the card
cage and attempt to bring the system back up. If you can't boot the system, then
there's a problem. Perhaps the board isn't really working, or perhaps it's

Revision A, of 27 March 1990

76 Writing Device Drivers

responding to addresses used by other system devices. You must resolve this
problem before proceeding further.

Take SunOS down again and attempt to contact the device using the PROM
monitor. To do so, you will need to set up a PfE on the Sun-3 or Sun-4 which
maps to the device's physical installation address. Use the procedures given
above to calculate a PfE, then:

o Issue the monitor command that puts you into supervisor data state. This
will be s B for Sun-4 machines and sS for all others. So, if you have a
Sun-3, give the

>sS

command.

o Calculate, using the procedures given above, the PTE appropriate to the phy
sical address you've chosen.

o Set the position in the kernel page map that corresponds to your physical
address to contain the calculated PfE. This will map your chosen physical
address, thus putting you in contact with your device. You may use the
monitor's p command to perform this mapping. The p command takes a
virtual address as its argument, displays the PTE that corresponds to that vir
tual address, and gives you the option of modifying the PTE. For example:

>pF32000

selects the page map entry that corresponds to the virtual address of
O xF 3 2 O O O and displays it. It also displays a '? ', which indicates that you
may type in a new value to replace the one displayed. (See the appropriate
PROM Commands chapter of the PROM User's Manual for more details).
Note that all virtual addresses within a page select the same PTE.

Having contacted the device from the monitor, try some of the following:

o Try reading from the device status register(s), if there are any.

o Try writing to the device control and data registers(s), if there are any. Then
try reading the data back to see if it got written properly (this assumes, of
course, that the device allows the reading of these regist~r(s).

o Try actually getting the device to do something by sending it data.

o If the device is a controller with separate slave devices, then switch a slave
on and off and watch for changes in the controller status bits.

Your goal is to try to actually operate the device, for a moment, from the moni
tor. For example, if you have a line printer, try to print a line with a few charac
ters. Be aware that bit and byte ordering issues are critical in this process. The
reason you're doing this is to ensure that the device works and that you under
stand the way it works. When you understand the device's peculiarities, you can
proceed to write a driver for it.

Revision A, of 27 March 1990

A Warning about Monitor
Usage

5.2. Builtin 1/0 Cache

Using the 1/0 Cache in the
Driver

Address Mapping

Chapter S - Driver Development Topics 77

When you use the monitor's o, e or l. commands to open a location, the monitor
reads the present contents of that location and displays them before giving you
the option to rewrite them. In the best of all possible worlds, this would present
no problems, but many devices don't respond to reads and writes in as straight
forward afashion as does normal memory.

For example, the Intel 8251A and the Signetics 2651 use the same externally
addressable register to access two separate internal mode registers, and they have
internal state logic that alternates accesses to the external register between the
two internal registers. So suppose that you want to put something in mode regis
ter 1 of the 8251. You open the external register, the monitor displays its con
tents, and you then do your write. If, being cautious, you then read the external
register to check that the data you wrote is there, you will find that it's not
because the read will sequence you on to the second register.

To deal correctly with such devices, it's necessary to use the monitor's "write
without looking" facility and then read the locations back later to check them.
You can write without looking with any of the monitor commands that "open" an
area of memory; all that's necessary is that you enter a value after the
address argument. For example:

>l [address] [value]

This will cause value to be written into address without first reading its
current contents. For more information on hardware peculiarities and the prob
lems that they can cause for the monitor, the Hardware Peculiarities to Watch
Out For section of the Hardware Context chapter.

To use the 1/0 cache for devices that process buffers, such as disk and tape
drivers, the driver needs to mark the buffer with the B _ IOCACHE flag in the stra
tegy routine and tum off this flag in the interrupt routine when the 1/0 completes.
The buffer must be properly aligned, which is on a 16 byte boundary.

To use the cache with ethemet-like devices, set the IOCACHE bit in the page
tables and flush the 1/0 cache after 1/0 completes. Cached 1/0 is only valid for
16 byte aligned transfers of a multiple of 16 bytes. On future machines, there
may be 32 byte-aligned 1/0 caches.

The device driver doesn't have to tell the 1/0 cache what physical address range
matches with a particular DVMA address range. The kernel routines used to
allocate and map in DVMA space already handle the physical to virtual map
pings. The 1/0 cache is not concerned about these mappings because it does not
see the mechanics of it. The rnb routines set up the 1/0 mapper entries that
translate DVMA addresses to physical addresses.

Revision A, of 27 March 1990

78 Writing Device Drivers

5.3. Installation Options
for Memory-Mapped
Devices

Memory-Mapped Device
Drivers

Memory-mapped devices are the simplest types of devices to write drivers for.
Frequently, however, their essential simplicity isn't obvious from a quick glance
at their source code. This is because many memory-mapped devices are frame
buffers, and frame-buffer drivers must set up and manage the low-level interface
for the Sun window system as well as the standard device interface. Conse
quently, they tend to be littered with declarations and manipulations related to
the "pixrect" (pixel rectangle) system. See the Pixrect Reference Manual for
more details.

Memory-mapped devices are most frequently installed into Sun systems with
simple drivers that map them into user address space (there are sometimes alter
natives to such drivers, as you will see below). Such memory-mapped drivers
don't really do much. Obviously, xxprobe () and .xxmmap () must exist, for
the kernel must be able to check the device installation and perform the actual
device mapping. And, in addition, xxintr () must be real if the device is inter
rupt driven. But xxopen () and xxclose () are usually stubs, and xxread ()
and xxwri te () can be calls to nulldev.

Keep in mind that the major purpose of a memory-mapped driver is to support
the rrnna p () system call. This is very important because user processes which
call window code must first map the frame buffer into their address space. They
do so with the rrnna p () system call, which is translated by the kernel into a
series of calls to the driver's rrnnap routine. Each of these calls returns page
table entry information which the kernel needs to map a single page (the next
page) of frame-buffer memory into a virtual address space. Here's some very
simple driver .xxmma p () code.

Revision A, of 27 March 1990

Mapping Devices Without
Device Drivers

,

/*ARGSUSED* I
cgonernmap(dev,off,prot)

dev_t dev;
off_t off;
int prot;

Chapter 5 - Driver Development Topics 79

return (fbrnmap(dev,off,prot,NCGONE,cgoneinfo,CGlSIZE));

/*ARGSUSED* I
int fbrnmap(dev, off, prot, numdevs, rnb_devs, size)

dev_t dev;
off_t off;
int prot, numdevs;
struct rnb device **rnb_devs;
int size;

int kpfnum;

if ((u_int) off>= size)
return -1;

kpfnum =
hat_getkpfnum(rnb_devs[minor(dev)]->md_addr + off);

return kpfnum;

dev is, of course, the device major and minor number, and off is the offset into
the frame buffer (passed down from the user's mmap () system call). prot is also
passed down from the user's call, but it is not currently used. As you can see,
there's a bit of shuffling around and then a call to hat_getkpfnum, which
returns a Page Frame Number which .x.xrmnap () is expected to return.

Note that rnb dev->md addr is the address of the frame buffer from the Main - -
Bus device structure. This is the device installation address as given in the ker-
nel config file. The offset is checked to be sure the user isn't mapping beyond
the end of the frame buffer.

Under a restricted set of circumstances, it's possible to avoid writing a device
driver altogether by using the mmap () system call to overlay the device's regis
ters and memory onto user memory. Having done this, you can read and write
the registers - as if they were normal user memory - from a user program.

What this really amounts to is piggybacking the new device onto an another, sys
tem standard, virtual memory device (and its driver). The mmap () routine of a
system virtual memory device is then used to do the user-device mapping, and
the "installation" is accomplished without the development of a driver specific to
the user device. Instead, a user level program is written, one that calls the
mma p () system call.

Revision A, of 27 March 1990

80 Writing Device Drivers

The restrictions on this shortcut are, however, fairly severe.

o The device must not require any special handling of the type that would go
into xxioctl ().

o The device (including all its control registers) must work with user function
codes, since that's what it will get when mapped into and then accessed from
user space. To be able to access a board from a user mmap program, the
address modifier on the board must be set to non-privileged data access, or
user data space. This is so that the board will respond to user function codes
in the user data space, such as address modifiers OxO 9, Ox2 9, and Ox3 9 for
vme32, 16, and 24 respectively.

NOTE MC680XO processors, SPARC processors and the Intel 80386 all run in either
'user' or 'supervisor' state. Many devices, in turn, restrict certain of their
operations, and will only perform them when the processor is in supervisor state.
The Sun CPU is in supervisor state only when executing kernel code. This means
that device drivers, which are part of the kernel, can issue device commands
which are not available from user processes. Also note that, when the CPU is in
supervisor state, as it is when driver code is executing, the device will receive
different VMEbus address modifier codes than when the CPU is in user state.
For details about these codes see the VMEbus specification.

o The device must not require any other sort of special handling - it cannot,
for example, be multiplexed, interrupt driven, or do DMA.

o Finally, there are security problems associated with this sort of installation.
Since the system virtual-memory devices are normally owned by and res
tricted to the superuser, your programs will either have to change their per
missions to allow normal users to access them, or will have to run with
superuser privileges. The former strategy is usually not acceptable in the
long run, because it creates a gaping hole in the security of the system. And
it's far from clear that the second alternative is desirable either.

The virtual-memory devices of interest here are those that support mapping over
the entire range of a virtual address space. They are:

Table 5-2 Virtual Memory Devices

Machine Type

VMEbus (All Sun's)
VMEbus (All Sun's)
VMEbus (Sun-3 and Sun-4)
VMEbus (Sun-3/Sun-3x/Sun-4)
VMEbus (Sun-3/Sun-3x/Sun-4)
VMEbus (Sun-3/Sun-3x/Sun-4)
A Thus (Sun386i only)

Memory Device Name

vme16d16
vme24d16
vme32d16
vme16d32
vme24d32
vme32d32
atmem

In addition, there are memory pseudo-devices that support access to the on-board
devices that users are allowed to access. These are/ dev / fb, / dev /mem and
/ dev /kmem (See the mem (4) manual page for details).

Revision A, of 27 March 1990

Chapter 5 - Driver Development Topics 81

/ dev / fb is a memory device which, on any given system, is set up to address
the local frame-buffer device. It can be used as if it were a system memory dev
ice - on any given system, / dev / fb can be mmap () 'ed into user memory and
then written to, with the effect of writing the local frame buffer memory.

To use mmap () with one of the system memory devices, you must do three
things:

o Open the device.

o Calculate the offset which you will need to call mma p () . This offset is
merely the device address on the appropriate system memory device rounded
to a page boundary. That is to say that you get the offset from the device
manual and/or the switches on the device itself.

o Call mmap () to allocate virtual space and map in the physical bus address
of your device, which you must know. (See the Hardware Context chapter
for a discussion on how to pick a good physical address from the infonna
tion in the system config file).

The following example program uses / dev / fb rather than one of the virtual
memory devices. It makes a good example because it maps the system frame
buffer into user memory so that it can then be written from a user program. It
uses mmap () to set things up, but doesn't bother with calling munmap (),
because unmapping occurs automatically when the memory device is closed.
This close occurs implicitly when the program ceases execution. (The machine
segment size is 128K for the Sun-3; 256K for the Sun-4; and 4Mbytes for the
Sun386i. Areas greater than the machine segment size should be mapped only
with special care. The Sun-3x has no segment size so any input value will work.
For details, see the discussion of mmap () in the User Support Routines appen
dix).

Once the device has been mapped into user space it can be treated as a piece of
local user memory. (Remember that memory accesses perfonned by way of this
mechanism will be reflected - at the device level - as non-privileged (user)
accesses. This is because mmap () accesses inherit the privilege of the process
that calls mmap (). Thus, if memory is mapped by a driver, subsequent accesses
to it will have the standard supervisor data access privilege, but if it's called from
a user process, as described here, subsequent accesses will be non-privileged.
Attempts to access supervisor-only device registers without supervisor privilege
might produce a bus error, i.e., they're inaccessible from a user program, and
thus a kernel level driver must be written to manipulate them. The device will
also receive different address modifier codes when accessed from a user process
than when accessed via a device driver).

#include <stdio.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/types.h>

I* Width and Height of Frame Buffer in Bits * I
#define WIDTH 1152

Revision A, of 27 March 1990

82 Writing Device Drivers

#define HEIGHT 900

main ()
{

int fd;
off_t offset;
unsigned len;
char *addr;

I* Open the frame-buffer device * I
if ((fd = open("/dev/fb",O_RDWR)) < 0)

syserr("open");

I* Compute total number of bytes * I
len = ((WIDTH* HEIGHT)/8);

I*
* offset must be page aligned. I dev / fb
* is already aligned with frame-buff er memory
*/

offset= (off_t)O;

I* Map device memory to user space * I
addr = mmap((caddr_t)O, len, PROT_READIPROT_WRITE,

MAP_SHARED, fd, offset);
if (addr == (caddr_t)-1)

syserr("mmap failed");

writeFB (addr);
exit(O);

writeFB (addr) /* Write to frame buffer * I
char *addr;

char color;
int i,j;

color= OxFF;
for (i = 0; i < HEIGHT; i++)

color= -color;
for (j = 0; j < WIDTH/8; j++)

*addr++ = color;

syserr (msg) /* print system call error message and terminate * I
char *msg;

extern int errno, sys_nerr;
extern char *sys_errlist[];

fprintf(stderr,"ERROR: %s (%d", msg, errno);

Revision A, of 27 March 1990

Chapter 5 -Driver Development Topics 83

if (errno > 0 && errno < sys_nerr)
fprintf(stderr, "; %s)\n", sys_errlist[errno]);

else
fprintf(stderr,")\n");

exit(l);

NOTE This example uses the special memory device I dev / fb, since this device is
always set up to address the frame buff er memory.

Direct Opening of Memory
Devices

So, despite the plethora of limitations on the sorts of devices that can be installed
by way of mapping them into user space, it's quite an easy thing to do. If your
device characteristics are such that this is an option, you may well wish to take it.
And even if such an installation isn't an attractive long-tenn option (for example,
because of unacceptable security problems) it may still be attractive as a short
tenn alternative to driver development. Even in environments where security
considerations make it unacceptable in the long term, it can allow you to get your
device up and running very quickly. Sometimes this counts for a lot.

It should be noted, for the purpose of completeness, that there's another approach
to avoiding driver development, one that's even easier than the use of mmap ()
described here, and even more limited. That is, it's possible to simply open the
virtual memory device that contains your board, to seek to the location of its
registers, and then to read and write those registers as if they were regular
memory.

This approach has most of the same problems as does the use ofmmap (), and is
notable mainly because, with it, the device receives supervisor function codes. It
does, however, introduce new problems. It doesn't give you the same degree of
control as does mrnap(), and you often need that control when dealing with dev
ices. When you use mrnap(), the device actually becomes part of your user
memory space, and it's left to the compiler to generate exactly the 1/0 accesses
which you implicitly specify in your structure and variable declarations. You
can always access exactly what you want, and the accesses occur directly as
move byte and move word operations. Thus they are very fast.

When, however, you simply open a system memory device as a file and then read
and write to it, your communication with your board is mediated by the 1/0 sys
tem. The 1/0 systems will always try to do the "right thing" (if you request 1/0
at an odd address or for an odd number of bytes it will perfonn byte access as
appropriate; otherwise it will use short integers), but it still doesn't give you the
kind of control that can be had using mrna p(). Furthennore, 1/0 operations
involve lots of code, and take hundreds of times as long as direct references to
mmap () 'ed references, which proceed by way of the MMU and use· low-level
store and move instructions to directly access device registers and memory as
physical memory.

So the bottom line is that, unless you need to access a device only a few times, or
if you need to receive supervisor function codes (and the corresponding VMEbus
address-modifier codes) and performance isn't critical, you can do your

Revision A, of 27 March 1990

84 Writing Device Drivers

installation by opening a system memory device and then seeking to your device
registers and memory space. Otheiwise, use mmap () or write a driver. If you
do decide to use the open () / ls eek () method, do so with low-level 1/0
rather than with the standard 1/0 library. The standard 1/0 library implements a
buffered 1/0 scheme which will add considerably to your problems.

The following user program is similar to the example above, in that it writes the
same pattern to the memory of a frame buffer. This time, though, the write is
done by way of the 1/0 system rather than by using mma p(), and the frame buffer
is taken to be installed at OFFSET (whatever the device physical installation
address is) in the vme2 4dl 6 memory space.

NOTE Since all Sun VMEbus machines have a built-in, on-boardframe buffer, this
example is only meaningful for color frame bujf ers.

#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>

void syserr();
long lseek();

I* Width and Height of Frame Buffer in Bits * I
#define WIDTH 1152
#define HEIGHT 900

main ()
{

int fd;

I* Open the system memory device containing the frame buffer * I
if ((fd = open("/dev/vme24",0_RDWR)) < 0)

syserr("open");

I* Seek to the frame buffer memory * I
if (lseek(fd, (long)OFFSET, L_SET) -lL)

syserr("lseek");

writeFB (fd);
exit(O);

writeFB (fd) /* Write to frame buffer * I
int fd;

char color;
int i,j;

color= OxFF;
for (i = 0; i < HEIGHT; i++) {

Revision A, of 27 March 1990

5.4. Debugging Techniques

Chapter 5 - Driver Development Topics 85

color= -color;
for (j = 0; j < WIDTH/8; j++) {

if (write(fd, &color, 1) == -1)
syserr("write");

As described above, it's a good idea to begin debugging by using the monitor to
check that the device has been installed at the intended address, and that it works,
before proceeding to debug your device driver. This allows you to avoid debug
ging the device simultaneously with the driver, an experience that you'd like to
avoid for as long as possible. Alternatively, if you're confident in both your dev
ice and the correctness of your installation, you can simply make a new kernel,
boot it and proceed with debugging. In this case you should put some
print£ () messages- see below-into the xxprobe () routine. Then you
can at least see the device get contacted and initialized.

Debugging drivers is significantly more difficult than debugging regular user pro
grams, for a number of reasons:

o In the first place, device drivers are part of the system kernel. This means
that the system is not protected from their errors. Addressing errors, for
example, will frequently trip hardware traps and crash the system.

o As mentioned above, there's the possibility that the device hardware will be
buggy. For this reason, you can't really trust your environment in the same
way as you can when writing a user program on a mature computer system.

o Some devices behave in rather peculiar ways. (See A Warning about Moni
tor Usage, above).

o Finally, the debugging environment in the kernel is thinner than it is in user
space. There is a kernel debugger, kadb, and this is a big step towards mak
ing life easier for driver developers. Still, life remains more difficult when
debugging in kernel space.

It's possible to prototype drivers in user address space by using techniques
similar to those described in the Mapping Devices Without Device Drivers
section of this chapter. The same constraints given there apply to prototyp
ing. In particular, it's not possible to run an interrupt routine, or to probe
for non-existent devices without generating bus errors from prototype
drivers in user space. If the device generates no interrupts, and if it doesn't
do DMA, the entire driver might be able to run in user space.

For all these reasons, you should give extra care to desk-checking your code, and
check a reference manual when not absolutely sure of the meaning of a given
construction. Don't take chances.

Also, make changes incrementally. Don't try to save time by making many
changes at once. You will save time in the long run if you take the time to add
and test a few parts at a time. Keep your feet on solid ground.

Revision A, of 27 March 1990

86 Writing Device Drivers

Use trace output from pr intf(), as described below. Drivers can act in surpris
ing ways, and the best way to proceed is by making the flow of operations highly
visible.

NOTE On all Sun systems, the loadable drivers feature makes driver development much
easier because the code-compile-reboot-test cycle is reduced to code-compile
load-test.

Debugging with print£ () With the availability of kadb, the kernel debugger, the importance of

The window system should not be
up when you use printf () to
debug a driver because its output
will go to the console window. On
the Sun386i system, it is best to set
the global variable new log to 0.

print f () in the debugging of device drivers has been significantly reduced.
Still, even with kadb available, pr intf () statements remain useful as means
of providing synchronous tracing of overall driver flow and structure. kadb can
be made to provide a similar sort of tracing (by tying print commands to strategi
cally chosen breakpoints) but this won't altogether eliminate the print£ ()
statement. The print f () has long found application in driver debugging, and,
as a matter of taste and experience, some programmers will continue to use it.
For this reason, we will discuss its use in some detail.

The kernel print f () sends its message directly to the system console, without
going through the tty driver. As a consequence, the printing is uninterruptible
the characters aren't buffered. Furthennore, pr intf () runs at high priority,
and no other kernel or user process activity takes place while its output is being
produced. print£ () thus radically limits overall system perfonnance (though
this is usually ok while device drivers are being debugged).

There is a second kernel print statement, uprintf(). uprintf(), however, is
of little use to driver developers. It attempts to print to the current user tty as
identified in the user structure, and prints to the console only if there's no
current user tty (at which point it becomes identical to pr intf()). upr intf ()
cannot be called from lower-half routines, which run in interrupt context and can
not make any assumptions about the user structure (where uprintf () looks
to detennine the current user tty). uprintf () is most useful for production
drivers, like tape drivers that encounter media errors, which want to report errors
not to a programmer but to the user.

There are occasions in which the use o/printf () (or uprintf()) statements
will change the behavior of your driver. print£ () statements,for example,
can affect the timing of operations in the driver being tested as well as in other
drivers. The output may be so slow relative to other device operations that inter
rupts are lost and systemfailures are introduced; thus, it is frequently impossible
to synchronously trace a device interrupt routine. Driver code may begin to fail
only when printf () s are introduced, or, even worse, only when print£ () s
are disabled. Likewise adding print£ () statements may make your driver
begin to work properly when bugs are actually still existent, due to alterations of
the system timing. If you're debugging a tty driver, you may even/ace a situation
where print£ () -based tracing generates new calls to the driver being
debugged. Thus, there are situations in which it cannot be used. In such situa
tions, you should use kadb or the techniques suggested below in the section on
Asynchronous Tracing.

Revision A, of 27 March 1990

Chapter 5 -Driver Development Topics 87

The best way to use print f () statements for tracing driver execution is by set
ting things up so that you can toggle printing by using the kernel debugger,
kad.b (see below) to set and reset print-control variables. Doing so is very sim
ple. At the top of the driver source file, include statements like:

Hfdef XXDEBUG
int xxdebug = 0;
*define XXDPRINT if (xxdebug > 0) printf
*endif

(It's important that the variables like xxdebug be global, so that you can later
access them freely from the debugger - remember that all drivers are part of one
program, the kernel, and name your print-control variables so as to avoid naming
conflicts).

Then, instead of calling pr int f () inside the driver routines, call XXDPRINT.

Each call should be in the fonn:

#ifdef XXDEBUG
XXDPRINT("driver name ... ", ...);
#endif

which will only call pr int f () if XXDEBUG is defined and xx debug is set to a
value greater than 0.

Make sure that each call to XXDPRINT identifies the driver, for it's possible that
you, or some other programmer, will want to see debugging output from several
drivers at once. And leave the debugging code in for a while after you're
finished - bugs may surface later.

Having set things up like this, you can tum the pr intf () 'son or off at any
time by using kadb to set, reset or change the print-control variable xxdebug.
Or you can use adb if you wish, running it at user level in a separate window:

example adb -w /vmunix /dev/mem

(ad.b won't allow you to set breakpoints in the kernel, but it will allow you to set
and unset variables-you can change the value of xxdebug, or even reset a
variable which has caused your driver to hang). Remember that you' re in the
kernel so BE CAREFUL.

Incidentally, / dev /kmem represents the kernel virtual address space, which is
why it's used here. adb -k /vmunix / dev /mem, in contrast, generates a
view of the physical address space, because / de v / mem represents the physical
memory. This latter command is useful for examining core files.

Revision A, of 27 March 1990

88 Writing Device Drivers

Event-Triggered Printing

Good places to put printf () statements include:

o driver routine entry points

o before critical subroutine calls

o upon reading status information from the device

o before writing of commands or data to the device

o at intermediate points in complex routines

o at routine exit points

Note again that you don't have to restrict yourself to a single xxdebug variable,
or to binary tests that check to see if a variable is on or off. You can use as many
variables, and as many values for each variable, as necessary to reflect the func
tional divisions most appropriate to your driver. It can also be useful to send cer
tain trace statements directly to the user tty (by calling uprintf()) while the
rest use pr intf () and go to the console.

In the above discussion, the xxdebug variable was initialized by the compiler,
and toggled with a debugger. However, it's just as easy to have the driver rou
tines themselves set a trigger variable under pre-chosen conditions.

For example, if you wanted to enable tracing after a given condition had
occurred, you could declare xxdebug, just as was shown above, but define
XXDPRINT somewhat differently:

=#=ifdef XXDEBUG
int xxdebug = 0;
=#=define XXDPRINT(v,msg,al,a2) \

if (xxdebug > (v)) printf(msg,al,a2);
=#=endif

and then, in the code that checks for the condition:
,

=#=ifdef XXDEBUG
if (condition) xxdebug 1;
=#=endif

Then to call XXDPRINT:
,

=#=ifdef XXDEBUG
XXDPRINT(O,"driver name ... \n",a,b);
=#=endif

One major disadvantage of using the kernel printf () is that its output doesn't
go through a device driver, and thus can't be paused with Control-Sor redirected
to a file. It's possible, then, that printf () will overwhelm you with output.
There are a number of things that you can do if you run into this problem:

Revision A, of 27 March 1990

Asynchronous Tracing

kadb - A Kernel Debugger

Chapter 5 - Driver Development Topics 89

o If you haven't used multivalued print-control variables, then do so. This
gives you more control than you have with simple on/off print control, and
will allow you to reduce the amount of output to trace noise.

o You can use a debugger to set the global variable noprintf. This will
keep printf () 's output from being sent to the console, but that output
will still go to a buffer where kernel error messages are kept before being
transferred to /var/ adrn/ mess ages. You can examine the message
buffer at your leisure, in one of two different ways:

o From a user window, you can use drne s g.

o From kadb (or adb on /dev/kmem) you can type msgbuf+lO/s.

o It's also possible to reconfigure your system so that it uses a hardcopy tenni
nal as its console over a RS-232 line. Then, you won't lose any of the
printf () output.

o Best of all, you can get another machine and connect it to your machine over
a RS-232 line. Having done so, use tip to open a window on the second
machine as the console of the test machine. You can then use tip's record
feature (see the tip man page) to make a record of all the stuff that
printf () is sending to the test machine's console.

As mentioned above, there are occasions when timing problems forbid the use of
the printf statement. In these cases, it's a good idea to give up any attachment
that you might have to printf () statements and use kadb.

Or, if you prefer, it's possible to deal with timing problems by using kadb to
patch the noprintf variable, and then to check the message buffer to see
what's going on. Doing so:

o allows you to continue using the debugging code that you installed before
encountering the timing problem, and

o presents you with a sequential list of the events in your driver, a list spelled
out in English phrases and including interrupt-level events.

Or, you can simply use kadb for everything.

kadb is an interactive debugger similar in operation to adb. kadb differs in
several key respects from adb. It runs as a standalone program under the PROM
monitor, rather than as a user process in user address space. And it allows you to
set breakpoints and single step in the kernel.

Thus, running a kernel under kadb is significantly different than running it
under adb -k. The k option to adb merely makes it simulate the kernel
memory mappings while kadb actually runs in the kernel address space. And
unlike adb, which runs at user level and as a separate process from the process
being debugged, kadb runs in system space as a coprocess. It shares not only
the kernel address space but its CPU supervisor mode as well.

kadb, for all intents and purposes, is a version of adb. It has the same com
mand syntax and almost the same command set. Thus, you can see the kadb and

Revision A, of 27 March 1990

90 Writing Device Drivers

S.S. Device Driver Error
Handling

adb manual pages, as well as Debugging Tools for the Sun Workstation, for
more details on its use. Note, however, the following points of special interest to
driver developers:

o All interrupts are disabled while interacting with kadb (except non
maskable interrupts). Thus, when using kadb to examine memory, the ker
nel remains stable. However, while single stepped instructions are being
executed, the actual standing priority of the kernel is temporarily restored,
and interrupts can get dispatched, run and return. You won't notice unless
you have a break point set in the interrupt routine, which works just fine.

o kadb is installed so that, when a program is being run under it, an abort
sequence (Ll-A) will transfer control not to the PROM monitor but to kadb
itself. Once in kadb, you can abort again and be transferred to the monitor.
The transfer is direct and immediate, so you can use the monitor to examine
control spaces (e.g. page and segment maps) which are not accessible from
kadb. The monitor c command will return you to kadb.

o kadb runs in the same virtual memory space as the kernel itself, and with
the CPU in supervisor mode. This means that kadb uses the kernel memory
maps when calculating virtual addresses, and that it can directly examine
kernel structures. This is in contrast to the situation with adb -k, where
software copies of the page table entries are used to map virtual addresses to
physical pages.

o kadb's memory view is almost the same as that resulting from adb
/vmunix / dev /mem. In other ways, however, kadb is much different.
To give just one example: on Sun-3 and Sun-3x machines, where users and
supervisors share the virtual address space, kadb allows the user to examine
the user virtual address space (this is not true with adb - k).

o Finally, be aware that kadb - as a consequence of the way that adb works
- always does 32-bit memory reads. Even if you tell kadb to read a byte it
will read a long. This leads to a lack of control that can cause problems
when reading device registers. (This problem does not exist on the Sun386i.
On the Sun386i, when kadb is told to read a byte, it does. Within kadb,
the B command is used to read a single byte and the v command to write
one).

o Sometimes a kernel which will boot find by itself will not boot under kadb
because it is too large to be loaded along with kadb.

There are various types of errors: "expected" errors like those generated by
xxprobe () routines, transient errors in operations that can reasonably be
retried, fatal errors that require controlled shutdowns, and others. The kinds of
errors that you will face depends upon the kinds of drivers that you write and the
peculiarities of your devices; few generalizations can usefully be made.

To further complicate matters, the detection and treatment of errors varies greatly
from device to device. You should begin by carefully reading your device
specification manual to determine the error indications that can arise and the
responses that should be made when they do. Most devices have at least an error

Revision A, of 27 March 1990

Error Recovery

Error Returns

Error Signals

Chapter 5 - Driver Development Topics 91

bit in the controVstatus register, and usually more detailed error information is
available. Ideally, you should understand all potential errors, avoid those that
you can and recover from the rest. This ideal isn't always achievable, but try not
to leave any obvious holes. If you do nothing else, check/or device errors and
use the kernel printf () function to report them to the system console.

There are various error reporting and management mechanisms available to the
driver developer. Most of them have already been mentioned as they've become
relevant; here they are collected and summarized:

It's difficult to generalize about error-recovery mechanisms, for they are largely
device specific. It's worth noting, however, that:

o Some errors are worth retrying and some aren't; the matter is entirely device
specific.

o Error-recovery routines should be able to run at the interrupt level. This is
because errors can occur either synchronously or asynchronously with
respect to the dispatch of device commands, and, therefore, recovery rou
tines must be callable from interrupt routines.

o If you do implement error recovery logic, you must do so consistently. The
data structure that contains retry-status information must be global, and must
be protected by critical sections. Error-recovery routines, like interrupt rou
tines in general, must take special pains to protect data-structure integrity;
indeed, they must restore such integrity upon encountering errors they can't
recover from.

There are three mechanisms by which driver routines can report errors up to their
calling routines. The first, of course, is by way of the values that the driver rou
tines return to their callers. The second, and most important, is the error
reporting mechanism based upon the buffer-header. This is the only mechanism
that can be used when returning errors from xxstrategy (), xxstart (), and
xxintr () . (See the discussion of xxintr () error reporting in the Swnmary of
Device Driver Routines chapter. Finally, it is possible to directly set the global
error register, u. u_error, from routines in the top half of the driver.

It is sometimes desirable to have a driver send a software interrupt to the process
or processes. It's possible, for example, that a device will fail in an unrecover
able fashion - in this case it's perhaps a good idea to signal the user processes,
rather than merely returning an extraordinary error code. It's also possible
(though rare) for a driver to encounter serious errors from which it can recover by
restarting the device - user processes may also need to be notified in this case.
The kernel psignal () and gsignal () routines can signal either a single
process or all the processes in a given process group.

Revision A, of 27 March 1990

92 Writing Device Drivers

Error Logging

Kernel Panics

5.6. System Upgrades

When you use the kernel print£ () statement to report errors to the console,
those errors are also placed into a system error-message buffer accessible to the
dme s g daemon. Note that the message buffer is small, and that if a lot of entries
are being written into it, some of them will get lost before being transferred into
/var/adm/messages.

The most unequivocal way of dealing with an error is to panic when you get it.
The panic () routine is provided to help you do so in a somewhat controlled
fashion- panic () is called only on unresolvable fatal errors. It prints
panic: mesg on the console, and then reboots. (Or, if you're running under
the debugger, it transfers control to kadb). panic () also keeps track of
whether it's already been called, and avoids attempts to sync the disks (by flush
ing all pending write buffers) if it has, since this can lead to recursive panics.

The final production version of a driver should call panic () only when
"impossible" situations are encountered; lesser errors should be recovered from.
During debugging, though, panic () can be used to implement a passable assert
mechanism.

Hfdef XXDEBUG
if (inconsistent condition)

panic ("Assertion Failed: ... ") ;
:#=endif

(It's possible to write a fancier assert mechanism, for example by using the
ASSERT macro which calls an assert () routine which prints error context
information and then calls panic () .

Finally, note that in cases where it's very important to halt the system immedi
ately after detecting an inconsistent condition, kadb can be used. The driver
code can test for the inconsistent condition, and then set a debugging variable:

[

if (inconsistent condition)
. junk= l;

kadb can then be used to set a breakpoint at the machine instruction generated
from the assignmentto junk.

System upgrades generally have minimal effects on user-written device drivers.
The changes that are necessary are rare and release specific.

In other cases, changes are optional. When VMEbus machines were introduced,
for example, drivers had to be adapted to run on them; however, it was possible
to upgrade Multibus machines without rewriting user-written drivers.

In any case, any release upgrades that imply changes- either optional or man
datory - to user-written device drivers will be documented in the Sun0S 4.1
Release Notes for this release.

J

+~.!! Revision A, of 27 March 1990

5. 7. Loadable Drivers

Chapter 5 - Driver Development Topics 93

All Sun machines support loadable drivers in SunOS 4.1. This feature allows
you to add a device driver to a running system without rebooting the system or
rebuilding the kernel. The loadable drivers feature reduces time spent on driver
development, and makes it easier for users to install drivers from other vendors.

This section explains how to convert a non-loadable driver to be a loadable
driver.

Conversion of a non-loadable driver to a loadable driver requires an initialization
or "wrapper" module to be written. The module z zini t. c below is an exam
ple of a wrapper module that contains the same kind of information ordinarily
provided by a config file and by the linker. Almost all wrappers are identical to
the example below. Usually, only the actual structure initialization values are
different.

The following module is a typical example of an initialization routine for a driver
named z z that has one controller and one device on that controller.

#include <sys/types.h>
#include <sys/conf.h>
#include <sys/buf.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sundev/mbvar.h>
#include <sun/autoconf.h>
#include <sun/vddrv.h>

extern zzopen(), nulldev(), zzstrategy(), zzdump();
extern zzsize(), zzread(), zzwrite(), zzioctl();
extern zzint(), nodev(), seltrue();

extern struct mb driver zzcdriver; I* defined in driver * I

!*
* Driver block device entry points (normally in <sun/ conf. c>)
*I
struct bdevsw zzbdev = {

zzopen, nulldev, zzstrategy, zzdump, zzsize, O
} ;

I*
* Driver character device entry points (normally in <sun/ conf. c>)
*I
struct cdevsw zzcdev = {

} ;

I*

zzopen, nulldev, zzread, zzwrite, zzioctl, nodev,
nulldev, seltrue, 0

* Controller structure (normally in ioconf. c) (see <sundev /mbvar. h>)
*I
struct mb_ctlr zzcctlr[] = {

&zzcdriver, O, O, (caddr_t) OxOOOOlOOO, 2, 6,

Revision A, of 27 March 1990

94 Writing Device Drivers

\.

SP_ATMEM, 0
} ;

I*
* Device structure (normally in ioconf. c) (see <sundev /mbvar. h>)
*I
struct mb_device zzcdevice[] = {

&zzcdriver, O, O, O, (caddr_t) OxOOOOOOOO, O, O, OxO,
O, OxO

} ;

I*
* The following structure is defined in <sun/vddrv. h>
*
* If the number of controllers is 0, then the address of the
* controller structure array must be NULL. Similarly, if the number
* of devices is 0, then the address of the device structure array
* must be NULL. The bdevsw or cdevsw entries can be NULL if there
* is no block or character device for the driver.
*I
struct vdldrv vd

VDMAGIC_DRV,
"zzdrv",
zzcctlr,
&zzcdriver,
zzcdevice,
1,

} ;

I*

1,
&zzbdev,
&zzcdev,
o,
0,

{

I* Type of module. This one is a driver.* I
I* Name of the module.* I
I* Address of the mb _ ctlr structure array * I
I* Address of the mb _ driver structure * I
I* Address of the mb _ device structure array * I
I* Number of controllers * I
I* Number of devices * I
I* Address of the bdevsw entry * I
I* Address of the cdevsw entry * I
/* Block device number. 0 means let system choose.* I
I* Char. device number. 0 means let system choose.* I

* This is the driver entry point routine. The name of the default entry point
* is xxxinit. It can be changed by using the "-entry" command to modload.
*
* inputs: function code -VDLOAD, VDUNLOAD, orVDSTAT.

* pointer to kernel vddrv structure for this module.
* pointer to appropriate vdi.octl structure for this function.
* pointer to vdstat structure (for VDSTAT only)
*
* return: Ofor success. VDLOADfunction must set vdp->vdd_vdtab.
* non-zero error code (from errno.h) if error.
*
*I

xxxinit(function_code, vdp, vdi, vds)
unsigned int function_code;
struct vddrv *vdp;
addr t vdi;
struct vdstat *vds;

Revision A, of 27 March 1990

Chapter 5 - Driver Development Topics 95

switch (function_code)
case VDLOAD:

vdp->vdd_vdtab
return (0);

case VDUNLOAD:

(struct vdlinkage *)&vd;

return (unload(vdp, vdi));
case VDSTAT:

return (0);
default:

return (EIO);

static unload(vdp, vdi)
struct vddrv *vdp;
struct vdioctl unload *vdi;

extern struct buf zztab;

struct buf *dp;

dp = &zztab;
if (dp->b_actf)

return (-1) ; / * The driver still has an active request. * I

I* The driver can do any device shutdown stuff that it needs to do * I

return(O);

Your driver routines can be placed in the wrapper module if you like. If your
driver is big, it is more appropriate to break it into several modules.

If you decide to place your driver in the wrapper module, then the driver can be
compiled with the following command line:

example# cc -c -0 -DKERNEL -D[arch] [options] zzinit.c

where [arch J is the specific architecture that you are compiling for. Values
that will nonnally be here are -Dsun3, -Dsun3x, -Dsun4, -Dsun4c, and -
Dsun38 6. The [options J field includes other options that nonnally occur in
the kernel makefile.

If the driver consists of more than one module, then you must use the link editor,
ld(l), with the -r option to preserve relocation infonnation. For example you
might type:

Revision A, of 27 March 1990

96 Writing Device Drivers

example# cc -c -0 -Dsun386 -DKERNEL zzinit.c

example# cc -c -0 -Dsun386 -DKERNEL zzl.c

example# cc -c -0 -Dsun386 -DKERNEL zz2.c

example# ld -r -o zz.o zzinit.o zzl.o zz2.o

Thus the object module can be created either by the cc(l) command, when the
driver resides in one module, or by the ld(l) command, when the driver resides
in several modules.

In either case the resulting loadable module is an ordinary relocatable object file
(z z in it . o or z z . o). It can be installed in the kernel using the
modload (8) command. Only the Sun386i stores the object file as a COFF
file.4

The kernel-level support for loadable modules is contained in the driver for the
/ dev / vd pseudo-device. Loading a module involves a four-step process. First,
modload runs ld (1) to determine the size of the linked module. Then, using
an ioctl call to / dev /vd, modload reserves a section of memory to hold the
module. The memory is dynamically allocated by the vd driver and its starting
address is returned. Modload runs ld a second time to relocate the module and
to resolve references to external kernel symbols. Finally, using another ioctl
call, it copies the module into the kernel and passes control to the module's
wrapper function.

4 "COFF" = Common Object File Fonnat, a UNIX object-file standard to which Sun386i assembler and
link-editor output files (nonnally a. out) comply. See coff(5).

Revision A, of 27 March 1990

6
The ' 'Skeleton'' Character Device

Driver

This chapter presents one of the simplest drivers you could ever hope to
encounter, a driver for an imaginary Multibus character device known as the
"Skeleton" device. Both programmed 1/0 and OMA versions of the driver will
be discussed. There is a complete version of this driver in the Sample Driver
Listings appendix to this manual - the parts are presented piecemeal here with
some discussion of their functions.

What we're doing here is inventing the very simple, 1/0 mapped, Skeleton con
troller. It's actually a "free device" with no separate controller and no separate
slaves. It has a single-byte command/status register, and a single-byte data regis
ter. It's a write-only device. It's not a slow tty-type device-you can provide
vast blocks of data and the Skeleton board gets it all out very fast. It interrupts
when it's ready for a data transfer, and comes up in the power-on state with inter
rupts disabled and everything else in neutral.

Note: the Skeleton device is capable, in both its simple and its OMA variants, of
writing chunks (not to say "blocks") of data in a single operation. It is, therefore,
a character device that can make good use of xxstrategy () routines, phy
sio (), buf structures and other block-1/0 mechanisms. As explained in Ker
nel Topics and Device Drivers, its use of these mechanisms does not make it a
block driver. Rather, its simple needs are a subset of the needs of block drivers,
and it's convenient here for form to follow function.

Let us assume that we've installed the Skeleton board with its control/status
register at Ox 6 0 0 in Multibus 1/0 space - this puts its data register at Ox 6 O 1.
The control/status register is both a read and a write register, with bit assign
ments as shown in the tables below.

97 Revision A, of 27 March 1990

98 Writing Device Drivers

BIT

Read

BIT

Write

7

Inter

rupt

7

6 5 4 3 2

Device Interface

Ready Ready

6 5 4 3 2

Reset

1
Error

1

0
Interrupt

Enabled

0
Enable

Interrupt

Here is a brief description of what the bits mean:

When reading from the status register

bit 7 is a 1 when the board is interrupting, 0 otherwise.

bit 3 is a 1 when the device that the board controls is ready for data
transfers.

bit 2 is a 1 when the Skeleton board itself is ready for data transfers.

bit O is a 1 when interrupts are enabled, 0 when interrupts are dis
abled.

When writing to the status register

bit 2 resets the Skeleton board to its startup state - interrupts are
disabled and the board should indicate that it is ready for data
transfers.

bit O enables interrupts by writing a 1 to this bit, disables interrupts
by writing a 0.

The header file for this interface is in skreg. h. By convention, we put the
register and control infonnation for a given device (say xy) in a file called
xyreg. h. The actual C code for the xy driver would by convention be placed
in a file called xy. c. The header file for the Skeleton board looks like this:

Revision A, of 27 March 1990

Chapter 6-The "Skeleton" Character Device Driver 99

I*
* Registers for Skeleton Multibus I/0 Interface -- note the byte swap
*I

struct sk_reg {
char sk_data; I* OJ: Data Register * I
char sk_csr; /* 00: command(w) and status(r) * I

} ;

/* sk csr bits (read) *I
#define SK INTR Ox80 I* Device is Interrupting * I
#define SK DEVREADY Ox08 /* Device is Ready * I
#define SK INTREADY Ox04 /* Interface is Ready * I
#define SK ERROR Ox02 I* Device Error * I
#define SK INTENAB OxOl /* Interrupts are Enabled */

#define SK ISTHERE OxOC /* Existence Check;
Device and Interface Ready * I

/* sk csr bits (write) */
#define SK RESET Ox04
#define SK ENABLE OxOl

I* Reset Device and Interface * I
I* Enable Interrupts * I

The complete device driver for the Skeleton board consists of the following
parts:

skprobe
is the autoconfiguration routine called at system startup time to determine if
the sk board is actually in the system, and to notify the kernel of its memory
requirements.

skopen and skclose
routines for opening the device each time the file corresponding to that dev
ice is opened, and for closing down after the last time the file has been
closed.

skwrite
routine that is called to send data to the device.

skstrategy
routine that is called from s k write () via phys i o () to control the actual
transfer of data.

skstart
routine that is called for every byte to be transferred.

skpoll
the polling interrupt routine that services interrupts and arranges to transfer
the next byte of data to the device.

The subsections to follow describe these routines in more detail.

Revision A, of 27 March 1990

100 Writing Device Drivers

6.1. General Declarations
in Driver

In addition to including a bunch of system header files, there are some data struc
tures that the driver must define.

*include <sys/param.h>
*include <sys/buf.h>
*include <sys/file.h>
*include <sys/dir.h>
*include <sys/user.h>
*include <sys/uio.h>
*include <machine/psl.h>
*include <sundev/mbvar.h>

include "sk.h" / file generated by config;
contains the definition of NSK * I

include "skreg.h" / registerdefinitions */

define SKPRI (PZER0-1) / software sleep priority for sk * I

*define SKUNIT(dev) (minor(dev))

struct buf skbufs [NSK]; /* static buffer headers for physic * /

I* autoconfiguration-related declarations * I
int skprobe (), skpoll (); /* kernel interface routines * I
struct mb_device *skdinfo[NSK];
struct mb_driver skdriver = { skprobe, O, 0, O, O, skpoll,

sizeof(struct sk_reg), "sk", skdinfo, 0, O, 0, O,
} ;

I* device state information -- global to driver * I
struct sk_device {

char soft_csr;
struct buf *sk_bp;
int sk_count;
char *sk_cp;
char sk_busy;

skdevice[NSK];

I * software copy of csr * I
I* current bu/ * I
I* number of bytes to send * I
I* next byte to send * I
I * true if device is busy * I

Here's a brief discussion on the declarations in the above example.

sk. h file is automatically generated by conf ig. It contains the definition
of NSK, the number of sk devices configured into the system.

SKPRI declaration declares the software priority level at which this device
driver will sleep.

SKUNIT macro is a common way of obtaining the minor device number in a
driver. Study just about any device driver and you will find a
declaration like this - it is a stylized way of referring to the minor
device number. One reason for this is that sometimes a driver will
encode the bits of the minor device number to mean things other
than just the device number, so using the SKUNIT convention is an

~) S ll fl Revision A, of 27 March 1990
~ microsystems

6.2. Autoconfiguration
Procedures

probe () Routine

skbufs

Chapter 6 -The "Skeleton" Character Device Driver 101

easy way to make sure that if things change, the code will not be
affected.

array is necessary so that the driver will have its own bu f headers to
pass to the physio () routine. Character drivers should never use
buf headers from the kernel's 1/0 queue. physio () will fill in
certain fields (only a few, really) before calling .x.xstrategy ()
with the buf structure as the argument.

There then follows a series of declarations, one for each of the
autoconfiguration-related entry points into the device driver. In this driver, the
only such entry points we use are skprobe () (which probes the Main Bus dur
ing system configuration) and skpoll () (the polling interrupt routine).

s k din f o is an array of pointers to the mb _device structures that correspond
to the driver's devices. The autoconfiguration process will initialize
it during kernel boot time.

skdriver
is a definition of the mb driver structure for this driver. An
explanation of the fields in this structure and how they are initialized
appears in the Autoconfiguration-Related Declarations section of
this manual.

This data structure is the major linkage to the kernel. It must be
called driver-namedr i ver where driver-name is the name of the
device driver. conf ig assumes that all device-driver structures
have names in the fonn driver-namedriver.

sk device
is a definition of a structure, global to the driver, that holds driver
specific state information.

Sun device drivers are tightly bound to the Sun autoconfiguration system. They
assume, at compile time, that certain services have been provided for them by
conf ig, and they, in tum, provide boot-time hooks by which the kernel can
detennine if the actual system configuration matches that given in its config
file.

There are, essentially, two autoconfiguration routines provided by the driver.
The first is xxprobe (), the second .xxattach (). For more infonnation, see
the Overall Kernel Context section of this manual.

There should be an xxprobe () function in every driver. During the system
boot each device entry in the config file generates a call to the xxprobe (} rou
tine in the corresponding driver . .xxprobe () has three functions:

1. To detennine if a device is present at the address indicated in the config file.

2 To detennine if it's the expected type of device.

3. To notify the kernel of the system resources required for the device.

Revision A, of 27 March 1990

102 Writing Device Drivers

Under normal circumstances, addressing non-existent memory on the VMEbus
generates a bus error in the CPU. The kernel, however, supports checking for
device existence with a set of functions designed to probe the address space,
recover from possible bus errors, and return an indication as to whether the probe
generated a bus error.

These functions are peek (} , peekc (} , peekl (} , poke (} , pokec (} , and
pokel (}. They provide for accessing possibly non-existent addresses on the
bus without generating the bus errors that would otherwise terminate the process
trying to access such addresses. peek (} and poke (} read and write, respec
tively, 16-bit words ("shorts" on Sun-3's and Sun-3X's, "half-words" on Sun-
4's). peekc (} and pokec (} read and write 8-bit characters. In general, you
will use the character routines for probing single-byte 1/0 registers. See the Ker
nel Support Routines appendix for details on these routines.

Having determined whether the device exists in the system, the xxprobe (}
function returns either:

o the size (in bytes) of the device structure if it does exist. The kernel uses the
value returned from probe () to reserve memory resources for that device.
For both 1/0-mapped and memory-mapped devices, .xxprobe () returns the
total amount of space consumed by the device registers and memory.

o a value of O (zero) if the device does not exist.

Now we can write skprobe (} :

/*ARGSUSED* I
skprobe(reg, unit)

caddr_t reg;
int unit;

register struct sk_reg *sk_reg;
register int c;

sk_reg = (struct sk_reg *)reg;

I* contact the device * I
c = peekc((char *)&sk_reg->sk_csr);
if (c == -1 I I (c != SK_ISTHERE))

return (0);

I* contact the device * I
if (pokec((char *)&sk_reg->sk_csr, SK_RESET))

return (O);

return (sizeof (struct sk_reg));

The reg argument is the purported address of the device, as given in the con£ ig
file. The unit argument is only needed for controller drivers that must distinguish
among multiple slave devices.

Revision A, of 27 March 1990

attach() Routine

6.3. open () and
close () Routines

Chapter 6-The "Skeleton" Character Device Driver 103

The xxprobe {) routine detennines that the device actually exists, resets it to
make sure that it's ready to go, and then returns the amount of bus space that it
uses to the kernel autoconfiguration process. If xxprobe {) finds the device, the
md _alive field in the device structure is set to 1, otherwise it's set to 0.
md _ a 1 i ve is subsequently used by other driver (and kernel) functions to check
that the device was probed successfully at startup time. (These routines can also
check the device's position in the driver's xxdinfo {) array (if it has one) to see
if it's been initialized).

The second autoconfiguration routine is xxattach {). The purpose of xxat
tach {) is to do device-specific initialization. Such initialization may include
the issuing of commands to the actual device hardware, for example, the disa
bling of its interrupts, or it may be entirely confined to the initialization of local
device-specific structures. It's up to the driver what kind of initialization is done
inxxattach {).

The Skeleton device is artificially simple, and it requires no initialization besides
the assignment of SK_ RESET into its controVstatus register. This assignment, as
you will note, has already been done in skprobe {), where it serves as a doub
lecheck on the correct installation of the device. Since no further initialization is
necessary, the Skeleton driver needs no attach {) routine.

During the processing of an open {) call for a special file, the system always
calls the device's xxopen {) routine to allow for any special processing required
(rewinding a tape, turning on the data-tenninal-ready lead of a modem, and so
on). However, the xxclose {) routine is called only when the last process
closes a file, that is, when the i-node table entry for that file is being deallocated.
Thus it is not feasible for a device driver to maintain, or depend on, a count of its
users, although it is quite simple to implement an exclusive-use device that can't
be reopened until it has been closed.

skopen {) is quite straightforward. It's called with two arguments, namely, the
device to be opened, and a flag indicating whether the device should be opened
for reading, writing, or both. The first task is to check whether the device
number to be opened actually exists - skopen {) returns an error indication if
not. The second check is whether the open is for writing only. Since the Skele
ton device is write only, it's an error to open it for reading. If all the checks
succeed, skopen {) enables interrupts from the device, and then returns zero as
an indication of success. Here's the code for skopen {):

Revision A, of 27 March 1990

104 Writing Device Drivers

skopen(dev, flags)
dev_t dev;
int flags;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

if (unit>= NSK I lmd
return (ENXIO);

if (flags & FREAD)
return (ENODEV) ;

0 I I md->md alive

sk_reg = (struct sk_reg *)md->md_addr;

I* enable interrupts * I
skdevice[unit] .soft_csr

I* contact the device * I

SK_ENABLE;

sk_reg->sk_csr

return (0);

skdevice[unit] .soft_csr;

0)

The first if statement checks if the device actually exists. The first clause

(unit >= NSK)

is necessary because, as root, someone could make a special file that has a minor
device number greater than NSK then try to open it. This actually isn't unusual,
many /dev directories have entries for devices that are not really installed. The
second clause tests to see if the probe routine found the device. Note the use of
the SKUNIT macro to obtain the minor device number - we discussed this ear
lier on. Also note that we 're maintaining a copy

(skdevice[unit] .soft_csr)

of the controVstatus register in memory. Each time we write the register we will
do so first in memory and then in the actual hardware register. We will do this
doggedly, to make the point that we must protect ourselves from the potential
side effects of inadvertent calculations within registers. For example

csr &= -sK ENABLE

has the side effect of reading the csr register - and patterns read from this regis
ter are not always identical to those written into it. (For more infonnation, see
the Hardware Peculiarities to Watch Out For section of the Hardware Context
chapter).

skclose () is quite straightforward, since all it does is disable interrupts:

Revision A, of 27 March 1990

6.4. read () and
write () Routines

Chapter 6-The "Skeleton" Character Device Driver 105

l*ARGSUSED* I
skclose(dev, flags)

dev_t dev;
int flags;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

I * disable interrupts * I
sk_reg = (struct sk_reg *)md->md_addr;
skdevice[unit] .soft_csr &= -sK_ENABLE;

I* contact the device * I
sk_reg->sk_csr = skdevice[unit] .soft_csr;

skclose () could in fact be more complicated than this. It could, for example:

o deallocate resources that were allocated for the device being closed, or

o shut down the device itself, for example by signaling a port to hang up.

The Skeleton device is write-only, but this discussion would apply equally to
reading in such a non-tty oriented character device.

When a read or write takes place, the user's arguments - as well as some
system-maintained information about the file to which the 1/0 operation is to be
performed- are used to initialize two structures- uio and iovec -that are
used for character 1/0. The fields of greatest interest within these structures are
iovec. iov_base, iovec. iov_len, and uio. uio_offset which
respectively contain the (user) address of the 1/0 target area, the byte-count for
the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate .xxread () or .xxwr i te () routine is
called - this routine is responsible for transferring data and updating the count
and current location appropriately as discussed below.

For most non-tty devices, xxread () and xxwr i te () call .xxstrategy ()
through the system physio () routine. physio () ensures that the user's
memory space is locked into core (not paged out) for the duration of the data
transfer. It also provides an automated way of breaking a large transfer into a
series of smaller, more manageable ones. Note that character drivers that use
physio () must declare an array of buf structures, one for each of their dev
ices (here the array is named skbuf s). By doing so they avoid any need to use
the kernel's buffer cache, which is provided for the use of system block
structured devices.

xxwr i te () differs from xxread () only in the value of the flag it passes to
physio (). skwri te () looks like this:

Revision A, of 27 March 1990

106 Writing Device Drivers

Some Notes About the UIO
Structure

,

skwrite(dev, uio)
dev_t dev;
struct uio *uio;

int unit SKUNIT(dev);

if (unit>= NSK)
return (ENXIO);

return (physio(skstrategy, &skbufs[unit], dev,
B_WRITE, skminphys, uio));

See notes on the uio structure below. The skminphys (} routine is called by
physic to detennine the largest reasonable block size to transfer at once. If the
user requests a larger transfer, physic (} will call skstrategy (} repeat
edly, requesting no more than this block size each time. This is important when
DVMA transfers are done. (DVMA is covered in more detail below). The rea
soning is that only a finite amount of address space is available for DVMA
transfers and it is not reasonable for any device to tie up too much of it. For
example, a disk or a tape might reasonably ask for as much as 63 Kilobytes; slow
devices like printers should only ask for one to four Kilobytes since they will tie
up the resource for a relatively long time. Here's the skminphys (} routine.

skminphys(bp)
struct buf *bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_count MAX_SK_BSIZE;

Note that if you don't supply your own mi nph y s (} routine, you place the name
of the system supplied minphys (} routine, whose name is minphys (}, as the
argument to physic (} in its place, and the system supplied minphys (} rou
tine gets used instead. This is not always a good thing, however, for the system
routine divides an 1/0 operation into finite chunks, and this can be too large for
optimum system perfonnance when the device in question is slow (like a
printer).

When the system is reading and writing data from or to a device, the uic struc
ture is used extensively (see <sys/uic. h> for more infonnation). The uic
structure is generalized to support what is called gather-write and scatter-read.
That is, when writing to a device, the blocks of data to be written don't have to
be contiguous in the user's memory but can be in physically discontiguous areas.
Similarly, when reading from a device into memory, the data comes off the dev
ice in a continuous stream but can go into physically discontiguous areas of the
user's memory. Each discontiguous area of memory is described by a structure
called an icvec (1/0 vector). Each icvec contains a pointer to the data area to

Revision A, of 27 March 1990

6.5. Skeleton
strategy () Routine

Chapter 6 -The "Skeleton" Character Device Driver 107

be transferred, and a count of the number of bytes in that area. The uio struc
ture describes the complete data transfer. u i o contains a pointer to an array of
these iovec structures. Thus when you want to write a number of physically
discontiguous blocks of memory to a device, you can set up an array of iovec
structures, and place a pointer to the start of the array in the uio structure. In the
simplest case, there's just one block of data to be transferred, and the uio struc
ture is quite simple. Note that physio () will call the strategy routine at least
once for each iovec contained by the uio structure.

xxstrategy () is called by physic () after it has locked the user's buffer
into memory. The name strategy originated in the world of disk drivers, and
implied that the routine could be clever about queuing 1/0 requests (for example,
by disk address) so as to minimize time wasted by the disk. The skstra
tegy () routine has no such problems, since it doesn't queue 1/0 requests for a
random-access device. Still, a number of tasks remain - s ks tr at egy ()
must check that the device is ready, initiate the data transfer, and wait for its
completion to be signaled by the interrupt routine. Note that skstrategy ()
can safely assume that physio () has properly initialized a number of variables
- here we will assume that the b dev field in the buf has been set to contain
the device number.

'-

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk device *sk;
int s;

md skdinfo[SKUNIT(bp->b_dev)];
sk &skdevice[SKUNIT(bp->b_dev)];

s = splx (pri tospl (md->md _ intpri)) ; /*begin critical section* I
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);

I* set up for first 110 operation * I
sk->sk_busy = 1;
sk->sk_bp = bp;
sk->sk_cp = bp->b_un.b addr;
sk->sk_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr);

(void) splx (s); /* end critical section * I

xxstrategy () doesn't actually do any 1/0. It just insures that the device is
not busy, (by sleeping on the address of a data structure that is global to the
driver) sets up for the first 1/0 operation and then calls xxskstart () to get
things rolling. The critical section is necessary because xxstrategy () is

+~.!! Revision A, of 27 March 1990

108 Writing Device Drivers

6.6. Skeleton start ()
Routine

trying to acquire the device on behalf of one, and only one, user process.

xxstart () is actually responsible for getting the data to or from the device.
skstart () is called once directly from skstrategy () to get the very first
byte out to the device. After that, it is assumed that the device will interrupt
every time it is ready for a new data byte, and so skstart () is thereafter
called from skintr (). Here is one possible skstart () routine:

skstart(sk, sk_reg)
struct sk device *sk;
struct sk_reg *sk_reg;

sk_reg->sk_data = *sk->sk_cp++;

if (--sk->sk_count > 0) {
sk->soft csr = SK_ENABLE;

I* contact the device * I
sk_reg->sk_csr = sk->soft_csr;

This routine will work, but not very efficiently. There's a lot of overhead in tak
ing a device interrupt on every character. Since we know that the device can
accept characters very quickly, it would be much more efficient to give the char
acters quickly, and thus avoid generating unnecessary interrupts. xxstart ()
should take advantage of device-specific characteristics to win efficiency
enhancements of this type. It can wait for characters, check for ready, etc -
here, we will just check after each character and give another one if the device is
ready for it. Here's the new, more efficient skstart () routine.

Revision A, of 27 March 1990

\.

Chapter 6 - The ''Skeleton'' Character Device Driver

skstart(sk, sk_reg)
struct sk device *sk;
struct sk_reg *sk_reg;

while(sk->sk_count > 0) { /* stillmorecharacters */
sk_reg->sk_data = *sk->sk_cp++;
sk->sk count--;

I* stop giving characters if device not ready * I
/* Note: the softcopy isn't needed/or reads * I
I* contact the device * I

/* DELAY(]O) might go here * I

if (! (sk_reg->sk_csr & SK_DEVREADY))
break;

I* error-retry logic would go here * I

I* still more characters * I
if (sk->sk_count > 0)

sk->soft csr = SK_ENABLE;

I* contact the device * I
sk_reg->sk_csr = sk->soft_csr;

else {
I * special case: finished command without taking any interrupts! * I

I* disable interrupts * I
sk->soft_csr = 0;

I* contact the device * I
sk_reg->sk_csr = sk->soft_csr;
sk->sk_busy = 0;

I* free device to sleeping strategy routine * I
wakeup((caddr_t) sk);

/* free buffer to waiting physio * /
iodone(sk->sk_bp);

109

We give characters to the device as long as there are more characters and the
device is ready to receive them. If we run out of characters, we disable interrupts
to keep the device from bothering us and call iodone (} to mark the buffer as
done.

It may be that the device is not quite quick enough to take a character and raise
the SK DEVREADY bit in the time we can decrement the counter. If so, it would

Revision A, of 27 March 1990

110 Writing Device Drivers

6.7. intr () and poll()
Routines

be very worthwhile to busy wait for a short time. The reasoning is that while
busy waiting is a waste, servicing an interrupt costs lots more CPU time, and if
busy waiting works fairly often it is a big win. There is a macro DELAY () that
takes an integer argument which is approximately the number of microseconds to
delay, so we could add

DELAY (10);

at the top of the while loop. Oearly this is an area where experimentation with
the real device is called for.

Each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is transformed into a C-compatible call on the device's interrupt rou
tine. After the interrupt has been processed, a return from the interrupt handler
returns from the interrupt itself.

The address of the polling interrupt routine for a particular device driver is con
tained in the per-driver (that is, mb driver) data structure for that device
driver. It is installed there during the kernel configuration process based upon
information in the config file.

It's expected that the device actually indicates when it's interrupting. If there are
any more bytes to transfer, the interrupt routine calls xxstart () to transfer the
next byte. If there are no more bytes to transfer, the interrupt routine disables the
interrupt (so that the device won't keep interrupting when there's nothing to do),
and finishes up by calling iodone (). (iodone (), incidentally, is another of
the mechanisms provided primarily for block drivers). Here are the interrupt rou
tines for the Skeleton driver:

skpoll ()
{

register struct sk_reg *sk_reg;
int serviced, i;

serviced= 0;
for (i = 0; i < NSK; i++) { /* tryeachone *I

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;

I* contact the device * I
if (sk_reg->sk_csr & SK_INTR)

serviced= 1;
skintr(i);

return (serviced);

skintr (i)
inti;

register struct sk_reg *sk_reg;

Revision A, of 27 March 1990

Chapter 6 - The ''Skeleton'' Character Device Driver 111

register struct sk device *sk;

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;
sk = &skdevice[i];

I* check for an //0 error * I

I* contact the device * I
if (sk_reg->sk_csr & SK_ERROR) {

I* error-retry logic would go here * I

printf("skintr: I/0 errorO);
sk->sk_bp->b_flags I= B_ERROR;

I* //0 transfer completed * I
if ((sk->sk_bp->b_flag & B_ERROR) != 0 I I

sk->sk_count == 0) {

I* clear interrupt * I
sk->soft_csr = 0;

I* contact the device * I
sk_reg->sk_csr = sk->soft_csr;
sk->sk_busy = O;

I* free device to sleeping strategy routine * I
wakeup((caddr_t) sk);

I* free buffer to waiting physio * /
iodone(sk->sk_bp);

else
skstart(sk, sk_reg);

skin tr () checks the hardware for an error every time it's called, and upon
finding an error, calls pr intf (), flags the error in the 1/0 buffer and then
returns. Note that:

o skintr () needs the buffer header associated with the failed transfer so
that it can indicate the error in its b _flags field.

o A retry attempt could be made before giving up and taking the error return.
Whether or not this is advisable is entirely dependent on the specific device
and error characteristics.

o The error return aborts the 1/0 request that produced the error and then
places both the device and the driver in their nonnal idle states.

Revision A, of 27 March 1990

112 Writing Device Drivers

6.8. ioctl () Routine

6.9. Skeleton Driver
Variations

DMA Variations

NOTE

Multibus or VMEbus DVMA

xxioctl () is used to perfonn any tasks that can't be done by xxopen (),
xxclose (), xxread (), or .xxwri te (). Typical applications are: "what is the
status ofthis device", or "go into mode X". The Skeleton device, as we've
defined it here, is modeless and has no such special functions so we don't have an
xxioctl () routine. (Though we will add one below in a variation of the Skele
ton driver that supports a fonn of asynchronous 1/0). For details about driver
xxioctl () routines, and the other driver routines, see the Summary of Device
Driver Routines appendix.

The Skeleton 1/0 board isn't particularly realistic, but is does serve to illustrate
the construction of a basic character driver. In this section, we will propose some
variations on the basic device, each designed to illustrate a useful technique.

Devices that are capable of doing DMA are treated differently than the Skeleton
device we've been working with so far. Let's assume that we have a new version
of the Skeleton board; call it the Skeleton II. It can do DMA transfers and we
want to use this feature since it is much more efficient.

DMA is different on the Sun386i system. For information about it, see the
dma_setup () and dma_done () routines in the Kernel Support Routines
appendix.

The Sun processor board is always listening to the Multibus or VMEbus for
memory references. When there is a request to read or write any address in the
DVMA space (see the Sun Main-Bus DVMA section of the Hardware Context
chapter for more infonnation) the DVMA hardware adds a machine-specific
offset to the address to find the location in kernel virtual memory that contains
the device RAM being used in the transfer.

On the Sun-3, the DVMA space is defined by the address range OxO to
OxFFFFF for 24-bit or 32-bit addressing; its system virtual address is
OxFFOO 000.

On the Sun-4 (or Sun-3x), the DVMA space is defined by the same address range
used on the Sun-3, OxO to OxFFFFF for 24-bit or 32-bit addressing. Its system
virtual address, however, is O xFFF O O O O O.

If you wish to do DMA over the Main Bus, you must make entries in the kernel
memory map to map your device's RAM into the appropriate DVMA space. As
you might expect, there are subroutines to help with this chore. rnbsetup ()
sets up the kernel memory map and rnbrelse () clears entries in it to release
DVMA space. Note that all Sun DMA occurs between the bus and kernel virtual
address space - if you wish to do DMA directly into a user buffer, you will have
to first map that buffer into kernel space, then pass it to rnbsetup () to map it
into DVMA space.

Revision A, of 27 March 1990

A OMA Skeleton Driver

Chapter 6-The "Skeleton" Character Device Driver 113

The addition of OMA to the capabilities of the device opens up several new
options. For the moment, consider only the changes necessary to switch the
driver over to OMA-style 1/0. These changes turn out to be surprisingly straight
forward. First we will extend the sk _ reg structure which defines the device
registers. We will assume that the Skeleton II board is a bus-master which sup
ports 20-bit transfers, and that the following structure overlays its registers.

struct sk_reg {

} ;

char sk_data;
char sk_csr;
short sk_count;
caddr_t sk_addr;

I* 01: Data Register * I
/* 00: command(w) and status(r) * I
I* bytes to be trans/ erred * I
/* 20-bit DMA address * I

Next we assume that bit 5 in the csr is set to initiate a OMA transfer.

define SK DMA OxlO I Do DMA transfer * I

and a definition of the maximum OMA transfer for skrninphys ().

define MAX SK BSIZE 4096 I DMA transfer block * I

And we must add another element to the sk _ device structure for use by
rnbsetup () and rnbrelse (). (The alternative would be to use the
me_ rnb info structure in the rnb _ct l r structure, but since we don't use that
structure for anything else, this seems more reasonable):

int sk_mbinfo;

Now we change skstrategy () to use the OMA feature.

Revision A, of 27 March 1990

114 Writing Device Drivers

skstrategy(bp)
register struct buf *bp;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[SKUNIT(bp->b_dev)];

s = splx (pritospl (md->md_intpri)); /* begin critical section* I
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);
sk->sk_busy = 1;
sk->sk_bp = bp;

I* this is the part that is changed * I

I* grab bus resources * I
sk->sk_mbinfo = mbsetup(md->md_hd, bp, O);

I* plug the remainder * I
sk_reg->sk_count = bp->b_bcount;

I* plug bus transfer address * I
sk_reg->sk_addr = (caddr_t)MBI_ADDR(sk->sk_mbinfo);

I* make sure we didn't overrun the address space limit * I
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF)

printf("sk%d: ", sk_reg->sk_addr);
panic("exceeded 20 bit address");

sk->soft csr = SK_ENABLE I SK_DMA;
sk_reg->sk_csr = sk->soft_csr; /* contact the device * I

/* end of DMA-related changes * I

(void) splx(s); I* end critical section * I

There are a number of details here that are worth noting:

o skstart () is no longer needed and may be completely eliminated.

o The return value from rnbset up () is being saved for use in calls to
MBI_ADDR (} and rnbrelse ().

o The 32-bit address returned by MBI __ ADDR () is being tested to ensure that
it doesn't exceed the 20-bits limits of the device. (This wouldn't be neces
sary if the address was sure to be in the DVMA transfer area, which always

Revision A, of 27 March 1990

Chapter 6 - The ''Skeleton'' Character Device Driver 115

ends at OxFFFFF or below. However, the transfer address can also be else
where in the VMEbus address space).

o All the 1/0 now is started by skstrategy () and continues until
skpoll () is called-thus we can delete the sk _ cp and sk _ count
fields from the sk device structure.

o There's no longer any need to check the count and sometimes call
skstart (). Instead, iodone () is always called and physio () is
relied upon to proceed with the transfer. Note that, with skstart () elim
inated, the call to wakeup () , as well as the clearing of sk _busy, have
been moved to skintr ().

o Finally, skintr () needs to free up the Main Bus resources, so it will call
rnbrelse () .

Here are the new skintr () and skpoll () routines:

skintr(i)
inti;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[i);

I* check for an 1/0 error * I
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I

I* error-retry logic would go here * I

printf("skintr: I/0 error\n");
sk->sk_bp->b_flags I= B_ERROR;

I* this is the part that changed * I
sk->soft csr = 0; /* clear interrupt * I
sk_reg->sk_csr = sk->soft_csr;
mbrelse(md->md_hd, &sk->sk_mbinfo);

sk->sk_busy = 0;
wakeup ((caddr_t) sk); /* free device to sleeping strategy routine * /
iodone (sk->sk_bp); /* freebuffertowaitingphysio *I

Revision A, of 27 March 1990

116 Writing Device Drivers

Variation with
'' Asynchronous 1/0'' Support

,

skpoll ()
{

register struct mb_device *md;
register struct sk_reg *sk_reg;
int serviced, i;

serviced= O;
for (i = 0; i < NSK; i++) {

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

serviced= 1;
skintr(i);

return (serviced);

In this next section, we will assume that we want to further modify the Skeleton
driver to support '' asynchronous 1/0' '. This may, at first sight, seem an odd
thing to do, for asynchronous 1/0 is most commonly used for network and
serial-line devices that have little in common with the Skeleton device. In actual
fact, however, asynchronous 1/0 is not limited in application to such devices -
its purpose is to support user processes which need to avoid blocking during 1/0
operations, and such functionality is of interest for serial lines, sockets,
STREAMS and various character devices.

First, note that the term ''asynchronous 1/0'' is used, in the UNIX world, to indi
cate two separate mechanisms. In practice, these mechanisms are closely related,
and both of them will be covered in this section:

o The first is ''non-blocking 1/0''. This is a type of 1/0 which, when incapa
ble of immediately proceeding to completion, notifies its user process of this
fact rather than simply going to sleep (). It thus gives the user process a
choice of responses.

In the UNIX system, non-blocking 1/0 is traditionally provided by the
select () system call, which allows a user process to query a device to see
if it's ready before making a read () or write () request to it, and thus to
avoid being blocked. (It should be noted that select () isn't really non
blocking 1/0 proper. It's better thought of as an alternative to device pol
ling, which can waste considerable CPU time).

o The second UNIX asynchronous 1/0 mechanism is best called '' asynchro
nous notification". With this mechanism available, the user process no
longer needs to keep trying an 1/0 operation until it succeeds, because the
driver will signal () it (with as IGIO) when one of its 1/0 channels
clears. The code necessary to support such asynchronous notification is
closely related to that necessary to support select () , and it should rou
tinely be provided at the same time as select () support.

Revision A, of 27 March 1990

Select Routines

Chapter 6-The "Skeleton" Character Device Driver 117

The Skeleton driver hasn't really been defined as a device that we would expect
to have a select () routine. Such routines are most useful for devices which
aren't always ready, and since we've defined the Skeleton device as being write
only and arbitrarily fast, we wouldn't expect it to clog. Still, for the purposes of
this example, we will assume that the Skeleton board is sufficiently slow that it's
reasonable to have its driver support select ().

select () is more typically used in serial-line drivers which are multiplexed
between multiple lines. Before reading, for example, a terminal's keyboard, such
drivers need to ensure that there are characters waiting. If they didn't, they
would block so often that their overall performance would be unacceptable.

select () works by providing user processes with a means of determining if
1/0 is possible on a given file descriptor. Alternatively, it has a multiplexing
feature that makes it possible to determine which of a set of specified descriptors
is ready to go. It can be told to return immediately, or to block the calling pro
cess until at least one descriptor is ready. A timeout argument can be specified to
keep the process from blocking forever, or to allow the process to periodically do
something else. See select (2) for details.

The driver's select () routine may or may not support the full functionality of
the select () system call. The minimum that it can reasonably do is allow the
user program to poll the specified device to determine if it's ready:

skselect(dev, rw)
dev_t dev;
int rw;

register struct mb_device *rod;
register struct sk_reg *sk_reg;
int s = spl5 () ;

rod= skdinfo[SKUNIT(bp->b_dev)];
sk_reg = rod->rod_addr;

I* Check if the device is ready * I
if (sk_reg->sk_csr & SK_DEVREADY)

(void) splx (s) ;
return (1);

(void) splx (s) ;
return (O);

Note that, in this example, the rw flag has been ignored because the Skeleton
device is write only. If, however, it were a read/write device, skselect ()
would switch on rw, and do a separate readiness test for each of the READ and
WRITE cases. Throughout this example we will show only write cases: read
cases would be handled identically.

Revision A, of 27 March 1990

118 Writing Device Drivers

To extend skselect () to allow user processes to block for specified periods
of time (or, for that matter, indefinitely) while waiting for an OK to proceed with
an 1/0 operation, more must be done. To begin with, we must add two fields to
the sk_device () structure. Both of them must be initialized to 0.

\.

struct sk_device {

} ;

struct proc *sk_wsel;
int sk_state;

I* user proc structure * I
I* select state flag * I

We also need the flag

#define SK WCOLL OxOl

which will be used to indicate that a write-select collision has occurred, that is to
say, that more than one process has attempted to select the device.

Then, skselect () must be changed, as follows:
r

skselect(dev, rw)
dev_t dev;
int rw;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;

int s = spl 5 () ;

md = skdinfo[SKUNIT(dev)];
sk_reg = md->md_addr;
sk = &skdevice[SKUNIT(dev)];

/* Check if the device is ready * I
if (sk_reg->sk_csr & SK_DEVREADY)

(void) splx (s) ;
return (1);

I* Here's the new code * I
if (sk->sk_wsel &&

(sk->sk_wsel->p_wchan == (caddr_t) &selwait))
sk->sk_state I= SK_WCOLL;

else
sk->sk wsel = u.u_procp;

(void) splx (s) ;
return (0);

Revision A, of 27 March 1990

Chapter 6-The "Skeleton" Character Device Driver 119

selwai t, an external integer imported via <sys/ systm. h>, is the "channel"
which the select () system call, and only the select () system call, uses
when it calls sleep () .

If the device is ready to go, skselect () behaves just as it did above: it returns
immediately with a 1. If, however, the device isn't ready, a check is made to see
if it has already been selected. If it hasn't been, the field sk _ wsel is set to
point to the proc structure of the process doing the select. In effect, we 're
remembering the first process to select the device. If no other processes select
the same device, this structure will later be used as a '' fast path'' to the selecting
process.

If, however, skselect () finds that sk _ wsel has already been set, the test:

(sk->sk_wsel->p_wchan == (caddr_t) &selwait)

is made to see if the process indicated by sk->sk_wsel is sleeping as a result
of a call to select () . If it is, the code

sk->sk_state I= SK_WCOLL;

is executed to indicate that a select "collision" has occurred, that is, that a
second (or third, etc.) process attempted to select the device while the first pro
cess was still waiting for it to become available.

The rest of the select-related code is executed at interrupt time, so it goes into
skintr (). One clean way of inserting it is to create a new routine,
skwakeup (), and to call it from skintr () instead of calling wakeup ().
(See the non-DMA version of skin tr () , above):

skwakeup(sk)
register struct sk_device *sk;

if (sk->sk_wsel) { /* select ispending */

I* wake up the process * I
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL);

I* reset the select flags * I
sk->sk_state &= -sK_WCOLL;
sk->sk_wsel = O;

wakeup((caddr_t) sk);

selwakeup () thus receives a NULL second parameter unless a select collision
occurred. If such a collision did occur, all processes which are sleeping as a
result of a select () (any select) are awakened by a call to wakeup () on the
s e 1 wait channel. Most of them will just go back to sleep, and the ones that
don't will race for the device. This isn't very efficient, but it doesn't happen very
often. Usually, the device will be selected by a single process, and the proc
structure will be used to wake only that process.

Revision A, of 27 March 1990

120 Writing Device Drivers

Adding Asynchronous
Notification

Adding an ioct1 () routine

Note that selwakeup () does nothing if sk->sk_wsel is 0, or if there are no
processes sleeping on selwait. Thus, if a process has called select (), but
not gone to sleep (because the device was immediately ready) the subsequent
interrupt will simply reset the flags.

If the driver is to support asynchronous notification as well as select (), a bit
more.is necessary. First, a new flag is necessary to indicate that the user has
requested asynchronous notification:

#define SK_ASYNC Ox02

And a new field is necessary in the sk_ device structure, which now becomes:

struct sk_device {

} ;

struct proc *sk_wsel;
int sk_state;
short p_pgrp;

I* user proc structure * I
I* select state flag * I
I* user process group leader * I

The new field, p _pgrp must, like the others, be initialized to 0. And p _pgrp
must be initialized in skopen () to indicate the process group leader of the user
process opening the device:

if (sk->p_pgrp 0)
sk->p_pgrp = (u.u_procp)->p_pid;

Next, we must provide a way for the user process to request that the driver enable
asynchronous notification. Of course it would be possible for it to always
operate in asynchronous mode, but then user processes would constantly get sent
s I GI o signals by the driver, whether they expected them or not. Besides, if the
Skeleton driver has multiple modes, we must introduce an skioctl () routine
to toggle them, and that gives us an opportunity to discuss ioctl routines. Actu
ally, there are potentially three system calls that can be used to put a driver into
asynchronous mode, or, for that matter, into any mode. The most common of
these is i o ct 1 (2) , and that is shown here. Note, though, that the other two
possibilities are fcntl (2) and open (2).

The first step in introducing an ioctl () routine is to define the macros which
user processes will use to issue commands to the device and its driver. (For
details, see the discussion of ioct 1 () routines in the Summary of Device
Driver Routines appendix to this manual).

In the case of skioctl (), these macros are few and simple, for skioctl ()
will only toggle the driver mode between synchronous and asynchronous.
There's no need for the ioctl () macros to either ship data from, or return it to,
the user program.

i o ct 1- related command codes are exported to user processes by means of
macros kept, by convention, in /usr /include/sys. In the case of the

Revision A, of 27 March 1990

Chapter 6 -The "Skeleton" Character Device Driver 121

Skeleton driver, only two macros are necessary, and we will put them into
<sys/skcmds. h>:

#define SKSETSYNC _IO(k,0)
#define SKSETASYNC _IO(k,l)

The _IO macro is the simplest of the ioctl () macros, being intended for pur
poses like this, where no argument data need be transferred. Here, all that's
necessary is to define a convention by which O indicates synchronous mode (the
default) and 1 indicates asynchronous mode. Note the first parameter, 'k'. It's
used, quite arbitrarily, to identify the ioct 1 () to be vectored to the Skeleton
driver.

The additions to the driver are very simple. First, it must include the file contain
ing its control macros:

#include <sys/skcmds.h>

Then, in skioctl () it simply takes the infonnation encoded by the _IO macro
to toggle the driver's state:

skioctl(dev, cmd, data, flag)
dev_t dev;
int cmd;
caddr_t data;
int flag;

register struct sk_device *sk;
sk = &skdevice[SKUNIT(dev)];

switch (cmd) {

case SKSETSYNC:
sk->sk state&= -sK_ASYNC;
break;

case SKSETASYNC:
sk->sk state I= SK_ASYNC;
break;

That's it. And now that skioctl () can set the SK_ ASYNC flag,
skwakeup () can reasonably test for it and, if it's set, call gsignal () to send
the SIGIO signal to the user process group. Note that the SK_ASYNC signal
must be cleared after calling gsignal ().

Revision A, of 27 March 1990

122 Writing Device Drivers

,

skwakeup(sk)
register struct sk_device *sk;

if (sk->sk_wsel) { /* select is pending * I

I* wake up the process * I
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL);

I* reset the select flags * I
sk->sk_state &= -sK_WCOLL;
sk->sk_wsel = 0;

if (sk->sk_state & SK_ASYNC) {
gsignal(sk->p_pgrp, SIGIO);
sk->sk state&= -sK_ASYNC;
}

wakeup((caddr_t) sk);

The final step in adding a select () routine to a driver is to edit the kernel
conf. c file, and to plug the name of the new select () routine into the
cdevsw structure in the place of the "nodev" or "seltrue" that is already there.

Revision A, of 27 March 1990

7 .1. Background
Information

7
Configuring the Kernel

In this chapter, we will assume that you've written your driver. The next step,
obviously, is to build a kernel that includes your new driver. This process isn't
difficult; Sun systems support easy kernel configuration, even without access to
system source code. If the driver is a loadable driver then the kernel is not re
built and therefore the discussion of rebuilding the kernel does not apply. In this
case, see the Loadable Drivers section of the Driver Development Topics
chapter.

In heterogeneous server/client environments, kernels must be con.figured in fairly
general ways. For one thing, they must work on both Multibus and VMEbus
machines,for another, they have to tolerate normal variations among system
devices (e.g. client Ethernet boards may be made by either 3COM or Sun). The
GENERIC con.fig file thus contains con.figuration lines for all common devices for
both bus types. However, if you're con.figuring a kernel for a known system, you
need not carry around extraneous options - you can tailor your con.figuration
file as appropriate and thus get a smaller (by 100 kilobytes or more!) and more
efficient kernel.

For additional infonnation on kernel configuration, see the Adding Hardware to
Your System section of Network Programming and the config (8) man page.
(Incidentally, conf ig is found in the /usr /etc/directory- so make sure
that your path includes /usr / etc before proceeding).

First, a simple distinction. If your kernel already contains a certain driver, and
you're simply installing a corresponding device, you will only need to edit the
kernel config file - all of the installation specific infonnation about devices
themselves is contained in this file. If, however, you will be adding a new driver
to the kernel, you will need to edit some additional files:

o The first of these is /usr /sys/sun/ conf. c, a C-language source-code
file which contains the default initializations of the cdevsw and bdevsw
switches.

o The second is either /usr / sys/ 'arch -k '/ conf /files,
/usr/sys/sun3/conf/files,/usr/sys/sun3x/conf/files,
/usr/sys/sun4/conf/files,or
/usr / sys/ sun38 6/ conf /files, (depending upon the type of your
machine). This file tells conf ig where to find the source code for the ker
nel and its drivers.

123 Revision A, of 27 March 1990

124 Writing Device Drivers

The discussion in this chapter concerns conf ig, a utility program that is used
in configuring kernels and initializing the kernel/driver interface structures.
conf ig is altogether different from the autoconfiguration process, sometimes
called autoconf ig, which is built into the initialization pass of the SunOS ker
nel, and thus run at system boot time. Autoconfiguration completes the run-time
driver environment initialization that config begins,for example by checking
that the devices indicated as present in the kernel config file are actually present
in the running system. Autoconfiguration is discussed in much greater detail in
the Overall Kernel Context chapter of this manual.

conf ig's goal is to output a set of files that can be directly used to configure a
new kernel. The purpose of the configuration may simply be to install a device
(for which the kernel already contains a driver) or it may be to integrate a new
device and its driver. The kernel configuration system learns of new devices by
way of entries in the config file, whereas new drivers are indicated by editing one
or all of the files conf. c, /usr/ sys/conf. common/files. cmn and
/usr/sys/sun[3,3x,4,4c]/conf/files(or
/usr / sys/ sun386/ conf / files). The files output by config are used in
the construction of the new kernel, but so are others, notably conf . c itself.

o ioconf. c - the major input to the autoconfiguration process. It contains
arrays of mbvar structures- struct mb_ ctlr mbcini t [] and
struct mb _ device mbdini t [] - that have been initialized on the
basis of the device and controller information in the config file. (lncidently,
the order of the device declarations in the config file will determine the order
of the structures in ioconf. c, and thus the order in which devices are
polled). The autoconfiguration process assumes that ioconf. c exists and
will complete the initialization of its structures by calling .xxprobe () ,
x.xattach (), and x.xslave (). See the Overall Kernel Context chapter
for more information.

o x.x.h - a set of header files, one for each driver. These header files define
macros (e.g. #define NSK 2) that tell the drivers how many devices
they will be managing. The drivers will use these macros at compile time to
control conditional compilation and to size device tables.

o mbglue.s - contains assembly-level code that translates from the hardware
interrupt mechanisms to the device-interrupt routines fo., the installed dev
ices. It does not exist on Sun-4 or Sun386i machines.

o Makefile- a makefile that, when executed, will actually make the new ker
nel, compiling and linking files as necessary. Note that the entries in
/usr/sys/sun[3,3x,4,4c]/conf/files(or
/usr/sys/sun386/conf/files) refer to source files (i.e.
sundev / sk. c), but that if conf ig fails to find a named source file it will
set up to use the corresponding object file (from the OBJ subdirectory of the
configuration directory) instead. Thus, conf ig works on both source
licensed and object licensed machines.

+~.!! Revision A, of 27 March 1990

7.2. An Example

Chapter 7 - Configuring the Kernel 125

The example that follows assumes that you 're adding a driver for the Skeleton
board (sk. c) to your system. To proceed, you will need a configuration direc
tory and a config file for your new kernel. con fig will create a configuration
directory in /usr / sys/ 'arch -k' with the same name as the new config file
in /usr / sys/ 'arch -k '/ conf, so all you have to do is create that file:

example#
example#

cd /usr/sys/'arch -k'/conf
cp GENERIC SKELETON

Then edit the SKELETON config file to reflect the presence, in your system, of
the Skeleton board. As you can see by checking con fig (8) , each line in the
file describes a different device - thus, you will simply need to add lines that
describe the installation of the Skeleton board. The exact format of those lines
will depend upon the address space within which the board is to be installed.

The address space that's given in the kernel config file will determine the
address-space mappings that are set up by the MMU - the virtual addresses that
the driver receives from the kernel, and then treats as pointers to the device's
registers, will be within the address space given here. What's important is that
the driver writer know and specify, at this point, the number of bits in the device
address, and the number of bits in its data-access length.

We will install the Skeleton device within vmel 6dl 6 by way of a VMEbus
adapter. We choose vme16d16 because it's the smallest address space:

device skO at vme16d16? csr Ox600 priority 2 vector skintr OxC8

This says that, when plugged into an adapter board, the vector number O xC 8 is
set up to route to the skintr routine. (Vector numbers OxC8 through OxFF are
reserved for user devices).

On a Sun-3, Sun-3X or Sun-4, it would likewise be reasonable to choose the
smallest of the available address spaces:

Only very rudimentary error checking is done on the config file. For example, if
you declare a device attached to a controller, you must declare the controller as
well.

One more point about the config file. The number of installed devices will be
determined, for each driver, by conf ig, and it will generate the appropriate
s k . h header file for you in the configuration directory.

Now, you can go on with the process of building the new kernel. The next step is
to edit conf . c, adding to it the names of the entry point routines for the Skele
ton driver, and then installing those routines into the kernel's character device
switch cdevsw. The following code accomplishes these two goals:

Revision A, of 27 March 1990

126 Writing Device Drivers

#include "sk.h"
Hf NSK > 0
int skopen(), skclose(), skread(), skwrite(), skmmap();
#else
#define skopen nodev
#define skclose nodev
#define skread nodev
#define skwrite nodev
#define skmmap nodev
#endif

struct cdevsw cdevsw[]

skopen, skclose, skread, skwrite,
skiotcl, nodev,
skselect, skmmap, O, 0

} ,

This will add the driver's routines to cdevsw if NSK is greater than O (NSK is, as
already explained, calculated by conf ig). Note well that the position in the
cdevsw where we've installed our routines (the exact position depends, of
course, upon how many device are already installed) is the same as the major
device number which we will later assign to all devices driven by this driver -
the major number is an index into cdevsw.

The entries in cdevsw are, in order, .xxopen (), .x.xclose (), xxread (),
.x.xwr i te () , .x.xioctl () , .x.xreset () , .xxselect () and xxmmap () . The
Skeleton driver uses the xx i o ct 1 () routine from the previous chapter .
.x.xreset () is never used so all devices set its entry to nodev, a special routine
which always returns an error condition . .x.xselect () is called when a user
process does a select (2) system call; it returns 1 if the device can be
immediately selected. In this example we are using the routine from the previous
chapter. An alternative would be to recognize that since the Skeleton device is
write only and arbitrarily fast, it's always selectable. In this case we could use the
default sel true routine that always returns 1.

The next step is to edit the file that tells conf ig how to locate the driver source
code. This source code will not be common to all Sun systems, and thus its path
name will go not into /usr / sys/ conf. common/ files_cmn but into
/usr / sys/ 'arch -k '/ conf / files. Assuming that the driver source is
in /usr / sys/ sundev, here's the line you must add to /usr / sys/ 'arch
-k '/conf/files:

Revision A, of 27 March 1990

Chapter 7 -Configuring the Kernel 127

sundev/sk.c optional sk device-driver

This says that the file sundev / sk. c contains the source code for the optional
sk device and that it is a device driver.

After adding these lines to your configuration file, you can run conf ig:

example# config SKELETON

config uses SKELETON, /usr/sys/conf. common/files_cmn and
/usr / sys/ 'arch -k '/ conf / files as input, and generates a number of
files in the .. / SKELETON directory. One of these files is the makefile that
contains a dependency tree for any new C source files you created during the pro
cess of adding new drivers (or whatever) to the kernel. make will use this as its
command file when it is actually executed to produce the new kernel. When
conf ig finishes generating the makefile, it automatically goes on to gen
erate the dependencies (unless you tell it not to with the -n command-line flag).
The generation of the dependencies takes a long time, and before it starts, con
fig will notify you with the message:

Doing a "make depend"

Now you can change directory to the new configuration directory, .. / SKELE
TON in this case, and make the new system:

example# cd .. /SKELETON
example# make

Now you must add a new device entry to the/ dev directory. The connections
between the kernel and the device driver are established through the entries in the
/ dev directory. Using the example above as our model, we want to install the
device for the Skeleton driver.

Device entries are made with one of two shell scripts in the/ dev directory. The
first, MAKEDEV, is for standard system devices and should be left as is. The
second, MAKEDEV. local, differs only in that it contains entries for user dev
ices, and it is here that entries for new devices should be placed.

It's worth looking inside MAKEDEV to see the kinds of things it does. The lines
of shell script below reflect what you'd add to MAKEDEV. local for the new
Skeleton device. First, there are some lines of commentary:
r

\.

#! /bin/sh
MAKEDEV.local 4.45
* Graphics
* sk* Skeleton Board

86/04/15

Then there's the actual shell code that makes the device entries:

Revision A, of 27 March 1990

128 Writing Device Drivers

7 .3. Devices that use Two
Address Spaces

sk*)
unit='expr $i : 'sk)''
/etc/mknod sk$unit c 40 $unit
chmod 222 sk$unit

This code extracts the numeric portion of MAKEDEV. local 's argument and
passes it on to mknod and chmod. In the simplest case, we simply say:

example* MAKEDEV.local skO

MAKEDEV. local then makes the special inode / dev / skO for a character spe
cial device with major device number 40 and minor device number 0, and then
sets the mode of the file so that anyone can write to the device.

Having added the new device entry, you can install the new system and try it out.

example* cp /usr/sys/'arch -k'/SKELETON/vmunix vmunix+
example* halt

The system here goes through the halt sequence, then
the monitor displays its prompt, at which point you can
boot the system in single-user state

> b vmunix+ -s
The system boots up in single user state and
then you can try things out

If the system appears to work, save the old kernel under a different name and
install the new one in /vmunix:

example* cd /
example* mv vmunix vmunix
example# mv vmunix+ vmunix

Make sure that the new version of the kernel is actually called vmunix because
programs like ps and net stat () use that exact name in collecting infonnation
they need from runtime tables. If the running version of the kernel is called
something other than vmunix, the results from such programs will be wrong.

Nonnally, devices interface to the system by way of a single address space.
However, there are exceptions. Some Multibus devices have registers in Mul
tibus 1/0 space and memory in Multibus memory space. And there are any
number of VMEbus devices coming on the market that have memory in 24 or
32-bit VME space while keeping their control and status registers in 16, or even
8-bit, VME space.

Unfortunately, such situations can't currently be handled in a clean fashion
because the kernel configuration program (con£ ig) can't cope with dual-space
devices. The xxprobe () routine is the core of the problem, since it deals with
only a single space.

Revision A, of 27 March 1990

Chapter 7 -Configuring the Kernel 129

There are, fortunately, two ways to work around the problem:

o The first is easier, but rather inelegant. It consists of treating the device as if
it were two devices, and of writing two separate "drivers" for it. So, for
example, if we were to have a new, dual-space, VMEbus version of the
Skeleton device, we'd add the following two lines to the config file:

* Skeleton Memory Space
device skmO at vme32d32? csr OxD0000000 priority 3
* Skeleton Register Space
device skrO at vme16d16? csr OxDOOO priority 3 vector skintr Ox88

It's also necessary to have two entries in /usr / sys/ 'arch
-k '/conf/files:

sundev/skm.c
sundev/skr.c

optional skm device-driver
optional skr device-driver

And it's necessary to have a second "driver". Actually, all of the real driver
code goes into skr. c, which manipulates the device registers. The second
driver, skrn. c, consists entirely of a probe () routine - all its other rou
tines are null.

Both sides of the driver, skr. c and skrn. c, include the same register
header file skreg. h. skreg. h contains an external declaration for an
array of structures (one for each instance of the device) that contain what
ever information skr. c needs from the memory-side probe () routine:

extern struct sk_devinfo sk_devinfo[NSK];

All that remains is for the memory-side probe () routine to initialize
sk devinfo.

o There's a second procedure for installing dual-space devices. It's a bit
harder to use, but it doesn't require a stub driver containing only a
probe () routine.

Pick one of the two device installation addresses for normal treatment in the
config file. It doesn't matter which one you pick, unless the device is a
memory-mapped Multibus device, in which case you must pick the address
in Multibus Memory space. Otherwise just pick the one that's most con
venient for your xxprobe () routine to use to test the device installation.
The registers and memory in this first space will then be automatically
mapped into kernel virtual space (as usual) by the autoconfiguration process.

Then use the config file flags word to communicate the second space ins
tallation address to your driver. The driver will then find that address in
rnd->rnd_flags and be able to access it from eitherthexxattach () or
xxslave () routine; it's best (for most character devices) to pick it up at
xxattach () time. The driver can then use rrnalloc () to allocate (from
kernelrnap) virtual space for the second-space registers/memory, and then
call rnapin () to map them into kernel space. (See the Kernel Support Rou
tines appendix for details about map in()).

Revision A, of 27 March 1990

130 Writing Device Drivers

7 .4. Adding and Removing
Loadable Drivers

All Sun architectures support loadable drivers. A loadable driver doesn't need to
be linked with the kernel . o files. Nor does the system have to be rebooted or
rebuilt for loadable drivers to be used. You can simply add a loadable driver to a
running system. Once you have a driver in the loadable fonn, you can load it
into the running system with the modload(8) command. You must be the
superuser to do this.

Take care when loading an undebugged driver for the first time. Although there
are many consistency checks made when a driver is loaded, it is still possible for
drivers to crash the system. One of the more common crashes occurs when the
running kernel is not /vmunix. modload assumes by default (unless the -A
switch is provided) that the running kernel is /vmunix. It resolves driver refer
ences to kernel addresses by reading the symbol table from /vmunix. If
/vmunix is not the running system, then the system is likely to crash when the
driver is used.

A typical example of the modload command is:

example# mod.load zz.o -con£ <config_file> -exec <exec file

This tells the kernel that the driver object module is in z z . o. (See the Loadable
Drivers section of the Driver Development Topics chapter for infonnation about
how to build a loadable driver.)

Configuration infonnation for the driver and optionally the block and character
major numbers are specified in the file config_.file. If modload is successful, the
file exec _file is executed. This file is typically a script used to make the / dev
entries for the driver. modload(8) has many options; see its man page for
details.

Error messages from modload can appear in two places. The modload utility
itself prints error messages to standard output on the tenninal from which
modload is run. In addition, modload-related kernel code can print infonnation
to the console. For this reason, we recommend that the console output be visible
when you issue the modload command.

When it is loading a driver, modload may fail for a variety of reasons. For
example, the driver initialization routine may not do all that is required (as
described in the Loadable Drivers section of the Driver Development Topics
chapter). Or the linkage structure in the driver wrapper module may have invalid
addresses. Since it is not possible to return a unique error code for every possible
condition, a single error code is returned and additional infonnation is often
printed on the console.

To inquire about device drivers after they are loaded, use the modstat(8) com
mand. It displays the module id of the driver, the name of the device, and the
major numbers of the block and character devices, as well as some additional
infonnation about the module.

The module id is required to unload a driver. A driver can be unloaded by using
the modunload(8) command, as in this example:

Revision A, of 27 March 1990

Chapter 7 - Configuring the Kernel 131

[..._e_x_a_m_p_1_e_*_mo_d_un_1_o_a_d __ -_i_d_2_-_e_x_e_c_<_e_x_e_c_f_i_1_e_> _________ J

This example assumes that the modstat command displayed the driver's
module id as 2. The file exec _file is executed and if the execution is successful
the driver is unloaded. Typically this file is a script that removes the / dev
entries for the driver.

An example of a script that could be used with modload is as follows:

#!/bin/csh -f
if $3 != "0" then

if (! -r /dev/zzO) then
echo /etc/mknod /dev/zzO b $3 0
/etc/mknod /dev/zzO b $3 0

endif
endif

if $4 != "0" then
if (! -r /dev/xrfdOa) then

echo /etc/mknod /dev/xrfdOa c $4 0
/etc/mknod /dev/rzzO c $4 0

endif
endif

The script is invoked with the following arguments:

<module _id> <module _type> <block_ major_ number> <character_ major _number>

modunload could be invoked with the following script to remove the / dev
entries for the driver:

#!/bin/csh -f
rm -f /dev/zzO
rm -f /dev/rzzO

Revision A, of 27 March 1990

132 Writing Device Drivers

Revision A, of 27 March 1990

8
Pseudo-Device Drivers -A Ramdisk

SunOS supports "software devices", sometimes called "pseudo devices", which
have no associated physical devices. Such devices can be quite useful. The sys
tem memory devices, for example, are pseudo devices, and they can be used to
access installed peripheral devices, as is shown in the discussion of frame-buffer
installation in Direct Opening of Memory Devices section of this manual. The
memory devices allow such direct physical-device access by providing a means
by which processes can read and write physical memory outside their own
address space. For example, the ps command uses the kmem pseudo-device
driver to access the kernel's process tables by way of the physical memory to
which the kernel is mapped.

This section will introduce pseudo-devices by way of a real, working pseudo
device ramdisk. As you will see, such a ramdisk requires none of the subtlety
that makes physical disk drivers so difficult.5 Yet it does buy speed, since ram
disks avoid two distinct kinds of file-system overhead:

o In normal use, IO buffers get paged out, despite the use of the kernel buffer
cache to minimize unnecessary 1/0 operations. A ramdisk is an especially
big win on reads, since reading processes must normally block while
requested data is brought into the buffer cache.

o During normal file-system operation, file control information (like inodes)
must be written synchronously with data. This overhead doesn't exist with
ramdisks.

Ram disks can be used for / tmp.

NOTE In Sun0S 4.1 there is afacility already in place to do this for you, called tmpfs. lt
addresses the benefits mentioned herein.
This way, if a system crash results in the loss of ramdisk files, it's not a serious
problem. Note that for some applications, particularly those that involve tem
porary files larger than ram disk memory, using / tmp isn't a very good idea. An
alternative is to mount the ramdisk as / aux, and to use it explicitly each time
you think it's safe. Ramdisks have only a minimal impact on applications

5 The ramdisk given here is very crude. A production version should have its memory allocated at boot time
and should be pageable. And with the memory-management system introduced in SunOS 4.0, a ramdisk
probably won't improve performance anyway. In general, you '11 be better off letting UNIX manage memory as
a page cache, rather than devoting some of that cache to a ram disk, or use tmpf s.

+~.!! 133 Revision A, of 27 March 1990

134 Writing Device Drivers

8.1. A Ramdisk Driver

Ramdisk Source Code

software- once they're set up they are entirely transparent. (Note that ramdisks
- like devices in general - can be shared by multiple processes. This driver
can thus be used as an indirect means of sharing memory.)

The following ramdisk driver consumes a half-megabyte of kernel memory,
which is allocated to the ramdisk pseudo-device.

Put the source code for the ramdisk driver into/ sys/ sundev /ram. c.

I*
* Ramdisk pseudo-device to support 110 to real memory
* (a statically allocated kernel array).
*I

#include "ram.h"
Hf NRAM > 0
#include <sys/param. h> /* Includes <sysltypes.h> * I
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>

#define RAMSIZE (1024*512) /* Half a megabyte *I
char ram[NRAM] [RAMSIZE];

ramopen(dev,wrtflag)
dev_t dev;
int wrtflag;

return(minor(dev) >= NRAM? ENXIO 0);

ramsize(dev)
dev_t dev;

return(minor(dev) >= NRAM? -1

ramread(dev,uio)
dev_t dev;
register struct uio *uio;

btodb(RAMSIZE));

if ((unsigned)uio->uio_offset > RAMSIZE)
return(EINVAL);

return(uiomove(ram[minor(dev)]+uio->uio_offset,
MIN(uio->uio_resid, RAMSIZE - uio->uio_offset),
UIO_READ, uio));

ramwrite(dev,uio)
dev_t dev;
register struct uio *uio;

Revision A, of 27 March 1990

Ramdisk Installation

Chapter 8 - Pseudo-Device Drivers - A Ramdisk 135

if ((unsigned)uio->uio_offset > RAMSIZE)
return(EINVAL);

return(uiomove(ram[minor(dev)]+uio->uio_offset,
MIN(uio->uio_resid, RAMSIZE - uio->uio_offset),
UIO_WRITE, uio));

ramstrategy(bp)
register struct buf *bp;

register long offset= dbtob(bp->b_blkno);

if ((u_long)offset > RAMSIZE)
bp->b_error = EINVAL;
bp->b_flags I= B_ERROR;

else {
caddr_t raddr = ram[minor(bp->b_dev)]+offset;
unsignednbytes=MIN(bp->b_bcount,RAMSIZE-offset);
if (bp->b_flags & B_PAGEIO)

bp_mapin(bp);

if (bp->b_flags & B_READ)
bcopy(raddr, bp->b_un.b_addr, nbytes);

else
bcopy(bp->b_un.b_addr, raddr, nbytes);

bp->b_resid bp->b_bcount - nbytes;

iodone (bp) ;

#-endif

Pseudo-device drivers, by definition, have no corresponding physical devices.
Thus, they have no probe routines.

Note the routine ramsize. All block drivers provide such a routine, which is
charged with returning the sector size of the device in the peculiar units which
the kernel expects. (This information is then used to maximize the speed of
f sck). ramsize (} calls the btodb (} conversion routine, passing it an argu
ment in bytes, and receiving from it an appropriately scaled result.

The more detailed discussion of these and related configuration procedures can
be found in the Configuring the Kernel chapter of this manual. Edit
/us r / sys/ 'arch - k ' /con f / files, adding the following line to the end
ofit:

sundev/ram.c optional ram device-driver

Then, edit both the bdevsw and cdevsw arrays in /sys/sun/conf. c,
adding entries for the ramdisk to each of them. (In this discussion, we will only
use the ramdisk as a block device, but the driver provides all the entry points
necessary for use as either a block or a character driver).

Revision A, of 27 March 1990

136 Writing Device Drivers

#include "ram.h"
if NRAM > 0
int ramopen(), ramread(), ramwrite();
int ramstrategy(), ramsize();
#else
#define ramopen nodev
#define ramread nodev
#define ramwrite nodev
#define ramstrategy nodev
#define ramsize nodev
#endif

ramopen, nulldev, ramstrategy, nulldev, /*22*/
ramsize, 0

ramopen, nulldev, ramread, ramwrite,
nodev, nodev, seltrue, nodev, 0, 0

}

I* 63 * I

Next, move into / dev and create device entries to correspond to the entries in
conf. c.

example# cd /dev
example# /etc/mknod ramO b 22 0
example# /etc/mknod rramO c 63 0

The next step is to make a new configuration directory for the variant of you ker
nel that will include the ramdisk. Copy your kernel configuration file and add the
line:

pseudo-device ram

to the pseudo-device section of the copy. If your config file was named GEN
ERIC, you might name the ramdisk variation GENERIC_ RAM.

Then, make a version of the system kernel that includes the ramdisk:

example# /etc/config GENERIC_RAM
example# cd .. /GENERIC_RAM
example# make
example# cp /vmunix /vmunix.old
example# cp vmunix /vmunix
example# /etc/reboot

During the reboot, note that the size of the kernel has gotten very large. After the
reboot, make and associate a '' filesystem'' with the block ramdisk device:

Revision A, of 27 March 1990

Chapter 8 - Pseudo-Device Drivers -A Ramdisk 137

/etc/mkfs /dev/ramO 1024 8 8 8192 1024 16 5 100
/etc/mount /dev/ramO /tmp

That's 1024 blocks total (512 Kb), broken out as 8 sectors of 8 tracks of 8192
bytes per block with 1024 byte fragment size with 16 cylinders per group with
5% minimum free (as in df(l)) and 100 revolutions per second. (This two line
sequence should probably be put in the/ etc/re. local script). The logical
block size of the file system (8192) must be the same size as the pagesize (8K).

Once the ramdisk filesystem is mounted onto / tmp, then any program which
creates and uses files on / tmp will use the ramdisk. Reads and writes to these
files will be very fast. Measured performance indicates that 1/0 on files of about
1 OK bytes is about 5 times as fast as with a physical disk, and that this factor
increases to about 10 for very large files.

Following is a test program that will exercise the driver. Another way to test it
simply is to copy some data to the pathname via the cp command.

Revision A, of 27 March 1990

138 Writing Device Drivers

Ramdisk Test Program Here is a program to test that the ramdisk works:

#define BUFSIZ 1024
#define CYCLES 100
#define RAMDISK

I*
* Ramdisk test program
*I

main ()
{

int fd;
int nb;
int i;
int count=BUFSIZ;
char buffer[BUFSIZ];

I* file descriptor * I
I* number of bytes transferred * I
I* generic loop counter variable * I

int iterations=O, error=O, done=O;

Hfndef RAMDISK
I* Open a file on the regular filesystem * I
if ((fd = open("testfile", 2)) == -1) {

perror("ramdisk test (normal opening)");
exit(l);

#else
/* Open a file in the ram diskfilesystem * I
if ((fd = open ("/tmp/testfile", 2)) == -1) {

perror("ramdisk test (ram opening)");
exit(l);

#endif

do {
lseek(fd, O, 0);
if (write (fd, buffer, count) ! = count) {

perror("ramdisk test (writing)");
exit(l);

lseek(fd, O, 0);
if (read(fd, buffer, count) != count) {

printf("count= %d0, count);
perror("ramdisk test (reading)");
exit(l);

if (iterations++ CYCLES) done++;

while !error && !done);
close (fd);
exit(O);

Revision A, of 27 March 1990

m:·· • ,• •!:-•

PART TWO: Appendices

PART TWO: Appendices-Continued

A.1. Standard Error
Numbers

A.2. Device Driver
Routines

A
Summary of Device Driver Routines

The system has a collection of standard error numbers that a driver can return to
its callers. These numbers are described in detail in intro (2), the introduc
tory pages of the System Interface Manual. A complete listing of the error
numbers appears in <sys/ errno. h>.

These routines actually compose the bulk of the device driver. Some of them,
like xxioctl (), are optional. Others, like xxprobe (), must appear in every
driver. Omitted from this section is the xxs lave () routine, which appears pri
marily in block-device drivers. See the The "Skeleton'' Character Device
Driver chapter for additional infonnation about many of these routines.

When a user program makes a system call that involves 1/0 devices, it's
translated by the kernel into a call to the appropriate driver routine. However,
when that driver routine is called, its parameters are no longer the same as the
parameters that the user program passed to the system call - they will have been
translated into parameters reflecting the actual run-time environment of the
drivers, an environment set up and initialized by con£ ig and the
autoconfiguration process and then maintained by the kernel and the drivers
themselves. For example, a user program will call

write (fileno, address, nbytes)
int fileno;
char *address;
int nbytes;

but the kernel will translate this into

xxwrite(dev, uio)
dev_t dev;
struct uio *uio;

by the time it calls the driver's .x.xwri te () routine.

141 Revision A, of 27 March 1990

14 2 Appendices

xxat tach () - Attach a Slave (J
I>evice -Xt~a-tt_~_tc-rh_u_~m-td_)_mb __ ~d-ev_i_·c_e~*-m_d_;~~~~~~~~~~~~~~~~-'

NOTE

xxclose () - Close a Device

xxintr () -Handle Vectored
Interrupts

xxat tach () does boot-time, device-specific setup and initialization. It's com
monly used in disk and tape drivers for setup tasks like reading labels, and in
character drivers for the initialization of interrupt vectors and the reserving of
blocks of memory. Its proper tasks are not limited to the initialization of actual
hardware devices-xxattach () is also used to set up and initialize local data
structures.

When it needs to set a device interrupt-vector number, .x.xat tach () finds it in
the md intr->v vec field of the mb device structure. On VMEbus - -
machines md_intr->v_ vec is the interrupt-vector number given for the dev
ice in the kernel config file and must be present.

xxat tach () can also be used to set the 32-bit argument that's subsequently
passed to xxintr (). This argument (contained in md_intr->v_ vptr) is ini
tially set to the unit number of the interrupting device, but it's often convenient
to reset it to contain a pointer to a local structure.

This does not work on the Sun 386i. It is hardcoded to be your irq

xxclose(dev, flags)
dev_t dev;
int flags;

xxclose () does whatever it has to do to indicate that data transfers can't be
made on the device until it's been reopened. This may involve nothing at all, or
it may include resetting and quieting the device, flushing data buffers, and releas
ing or unlocking resources (or unlocking the device itself if it's opened
exclusively). Since xxclose () is called only when the last user process which
is using the device closes it, xxc 1 o s e () must clean up for all user processes
which have had the device open . .x.xclose () doesn't need to report an error,
although it can. flags, incidently, is the same as it is for .x.xopen ().

[x,:intr(ctrl_num)
int ctrl_num;

xxintr () is responsible for fielding vectored interrupts from the device. As
such, it is specified (with its interrupt vector) in the kernel config file. As an
interrupt routine, xxintr () (and any routines that it calls) is absolutely prohi
bited from calling sleep () or referencing the kernel user structure.

xxintr () receives one 32-bit parameter, which is, by default, the unit number
of the device that interrupted. However, you can arrange for it to receive some
thing else by changing the value in md_intr->v _ vptr. (See .x.xattach (),

]

Revision A, of 27 March 1990

Note that the driver xxintr () rou
tine cannot itself set the errno regis
ter, since that register is actually a field
in the user structure (u. u error),
and the user structure must not be
accessed at interrupt time. Instead,
xxintr () passes the error to the ker
nel via the buffer, and the kernel sets
u.u error.

Appendix A-Summary of Device Driver Routines 143

above).

This does not apply to the Sun386i. The Sun386i receives two arguments. The
first is the current priority level (cpl) and the second is the interrupt request
(irq). The irq is hardwired so it cannot be changed. The interrupt routine can
never receive the unit number. The unit number can be obtained by saving the
interrupt request channel (board level + 8) at attach time and then figuring out
which device received the interrupt at interrupt time.

In character drivers which, like block drivers, make use of physic () and its
associated structures, mechanisms and routines, xxintr () is used to indicate
when the device is finished with one chunk and ready for the next. xxintr () is
also instrumental in certain tasks which, by their nature, must be shared with
top-half routines. Examples of such tasks are the maintenance of character 1/0
buffers and select () -related bookkeeping structures. (In the select ()
case, xxintr () also has the job of calling selwakeup () to wakeup sleeping
processes).

Note that whenever xxintr () maintains a data structure or resource in coopera
tion with top-level routines, the top-level code must be protected by a mutual
exclusion lock. Interrupts are automatically disabled when an interrupt routine is
called, so it is generally unnecessary for xxintr () to disable interrupts before it
does its part of the job.

xxintr () is also responsible for error handling and reporting. More
specifically:

o xxintr () should check the device for an error every time it's called. It can
also check the driver state against the device state to ensure that the device
is, in fact, doing what the driver expects it to be doing. Upon finding an
"impossible" or unrecoverable error, xxintr () should panic (). But for
regular errors it should call pr int£ () (or upr int f ()), flag the error in
the 1/0 buffer, and then return.

o The error is flagged by setting the B _ ERROR bits in the buffer header
b _£ lags field (and, if an error code other than EIO is desired, by assigning
that error code into the buffer b _ errcr field). The error code will then be
propagated up to the user by way of physic (). physic () checks to see
if the error flag has been set in the buffer, and if it has, passes the error code
up to the user program, which usually plugs it into the global error register
errnc. xxintr () doesn't itself return anything.

o A retry attempt can be made before giving up and taking the error return.
Whether or not this is advisable is entirely dependent on the specific device
and error characteristics. (Note that the b _ resid field in the buffer header
will typically indicate the number of bytes of data that were still
untransferred at the error return).

o The error return should abort the 1/0 request that produced the error and then
place the device in its normal idle state.

Revision A, of 27 March 1990

144 Appendices

xxioct1 () - Miscellaneous
1/0 Control

xxioctl(dev, cmd, data, flag)
dev_t dev;
int cmd;
caddr_t data;
int flag;

The device-driver entry routines, taken as a set, are intended to constitute a uni
fonn abstract interface capable of accommodating all possible 1/0 devices.
Obviously, such devices differ greatly, and thus the need for this xxioctl (). It
is the escape mechanism by which miscellaneous operations are implemented.

These functions vary greatly- almost anything is possible. The range of possi
bilities requires a very general interface, and xxioctl () has one. The cmd
variable identifies a specific device control operation, and is typically used by
xxioctl () as the index into a switch statement. The data parameter is the real
escape hatch, a pointer to an array up to 255 bytes in length. This array, over
which the driver and its users will overlay a driver-specific structure, can be
treated as both an input parameter by which user programs send data to the driver
and as an output parameter by which the driver returns data to its users. flag is
setto the £_flags field of the file structure. The file structure, together
with the file-mode flags to which its f _flags field can be set (FREAD,
FWRI TE, and so on) is defined in <sys/file . h>. The driver is free to use
flag to make its operation sensitive to the manner in which the file was opened by
the user.

In <sys/ ioctl. h> will be found a collection of macros which encode param
eter size and read/write control infonnation into ioctl () command codes.
These macros tell the kernel, on a command by command basis:

o How many of the maximum of 255 bytes in the ioctl () parameter are
significant when that parameter is read.

o How many of these bytes are significant when the parameter is written.

o If the parameter bytes should be written back into kernel space before calling
x.xioctl ().

o If they should be read into user space after calling x.xi o ct l () .

The Versatec Interface driver in the Sample Driver Listings appendix of this
manual contains some simple examples of the use of these ioctl () macros.
(More complex examples can be found in <sys/ioctl . h>). The Versatec
Interface driver defines two ioctl () command codes (in <sys /vcmd. h>):

idefine VGETSTATE IOR(v, 0, int)
idefine VSETSTATE _IOW(v, 1, int)

The first parameter of the ioctl () macros is an ASCII character that serves to
group together each driver's command codes. This character is not checked and
is rather arbitrarily chosen. In this case, the "v" stands for "Versatec". The
second parameter is the command code itself. The third is the size of the
ioctl () argument, which cannot exceed 127 bytes for Sun0S 3.x and 255

Revision A, of 27 March 1990

xxmmap () - Mmap a Page of
Memory

Appendix A - Summary of Device Driver Routines 145

bytes for Sun0S 4.x. Note that the size is given as the name of the structure
which will be used to interpret the parameter array. The macros _IOR, _row
and _ I OWR then use the size of () operator to determine the number of bytes
consumed by the structure.

The definitions of such ioctl () -related structures, together with the
command-code definitions lhemselves, must be collected into a user accessible
include file. Such include files are usually, though not necessarily, kept in
/usr/include/sys.

When the kernel processes the ioctl () system call, translating its parameters
into the terms appropriate to anxxioctl () driver routine, it consults the
read/write encode bits in the command code. If the read bit is set, then the argu
ment is read into a buffer in kernel space, and a pointer to that buffer is passed to
the driver i o ct 1 () routine. Likewise, if the write bit is set, the argument is
copied back into user space after command execution is completed.

xxioct 1 () does whatever it has to do, then returns O if there were no errors, an
error code if there were. ENO TTY is the code used if the requested command did
not apply to the device. The kernel passes error codes up to the user program,
which usually plugs them into errno.

xxmmap(dev, off, protection)
dev_t dev;
off_t off;
int protection;

xxmmap () is called for PfE information about the page (at offset off) of dev's
memory. (This information is what the kernel needs to map the page to a virtual
address). xxmmap () should first check that off doesn't exceed the device
memory size:

if (off>= XXSIZE) return (-1);

for this would cause the mapping of an area greater than the device memory.
xxmma p () returns the subset of the page table entry (PTE) containing the page
frame number and the page type to its caller in the kernel. xxmmap () is called
iteratively to perform a mapping requested by a call to mmap () -the looping
and all of its bookkeeping, as well as the actual mapping, is performed by the
kernel in a way that's transparent to the driver.

xxmmap () returns -1 to the kernel if it can't do the mapping, otherwise it returns
its PfE subset. Upon receipt of a -1, the kernel returns the error code E INVAL

(Illegal argument) to the user program, where it's usually plugged into the global
error variable errno.

Revision A, of 27 March 1990

146 Appendices

.mninphys () - Determine
Maximum Block Size

unsigned .uminphys(bp)
register struct buf *bp;

xxopen () - Open a Device
for Data Transfers

xxminphys () determines a "reasonable" block size for transfers, so as to avoid
tying up too many resources. x.xminphys () is passed as an argument to phy
sic. The system version of the xxminphys () function, minphys, may be
used by any driver. xxminphy s () should perform the calculation:

int block; /* some reasonable block size/or transfers, but
less than maxphys unless the new maxphys kernel
label is increased * I

if (bp->b_bcount > block)
bp->b_bcount block;

xxopen(dev, flags)
dev_t dev;
int flags;

xxopen () is called each time the device is opened, and may include any
device-specific initialization. Typically, it will:

o begin by validating the minor device number and doing other device-specific
error checking.

o Then if everything is ok, it will initialize the device (for example by clearing
registers, enabling interrupts or checking for power-up errors) and possibly
the local data structures. This structure initialization may include locking
the device if it's exclusive use, or allocating driver resources - for example
allocating dynamic buffers that will be needed later.

o Finally, xxopen () will typically wait for the device to come on-line, and
return an error if it doesn't.

NOTE /f xxopen () supports "clone open", that is to say, if it will allow a user to open
a driver without specifying a minor device, then it is important that it does not do
anything that may lead to its being blocked before it actually chooses the minor
device that it is going to clone. Otherwise, there's a possibility of someone else
grabbing the device while xxopen () is blocked.

The integer argument flags indicates if the open is for reading, writing, or for
both. The constants FREAD and FWRITE (from <sys/file. h>) are avail
able to be AND'ed withjia,gs.

The minor device number encoded in dev is of concern only to the device driver
itself. It can itself be encoded to contain various kinds of information, as needed
by the driver. The driver developer will want to provide macros to break out
encoded subfields. dev may encode a unit or driver number, a special feature, or
an operating mode.

Revision A, of 27 March 1990

.npoll () - Handle Polling
Interrupts

.nprobe () - Detennine if
Hardware is There

Appendix A - Summary of Device Driver Routines 14 7

xxopen {) returns ENXIO (No such device or address) if the minor device
number is out of range, ENODEV (No such device) if an attempt was made to
open the device with an inappropriate mode or EI o (1/0 Error) to indicate an 1/0
error in the course of an attempted initialization. If the open is successful, x.xo
pe n {) returns 0. The kernel will return the error code to the user program,
where it is usually plugged into the global error variable errno.

[xxpoll ()]
xxpoll {) is responsible for fielding non-vectored interrupts from the device. In
situations where multiple devices share the same interrupt level, xxpoll {) must
determine if the interrupt was actually destined for this driver or not. xxpo 11 {)
returns O to indicate that the interrupt was not serviced by this driver, and non
zero to indicate that the interrupt was serviced. It is a gross error for xxpoll {)
to say that it serviced an interrupt when it did not.

If a device driver handles both vectored interrupts and polling interrupts,
xxpoll {) typically calls the xxintr {) routine with the proper arguments, nor
mally the unit number of the device that interrupted. sleep may never be
called from xxpoll {) , or, for that matter, from any of the lower-half routines .

xxprobe(reg, unit)
caddr_t reg;
int unit;

x.xprobe () detennines whether the device at the kernel virtual address reg actu
ally exists and is the correct device for this driver. The method by which it
accomplishes this is impossible to standardize, for devices provide no unifonn
means of identification. Indeed, some devices fail to provide even reasonable
non-standard means of identification.

The kernel provides a set of functions to help with probing. These functions can
probe an address, recover from the bus error that will occur if no device is
installed at that address, and return with an indication as to whether such a bus
error occurred. These functions are peek () , pee kc () , pee kl () , poke (),
pokec () and pokel ().

It's possible for probe () to check the value of the reg parameter to ensure that
the device isn't installed at an address that it can't itself address. The device's
entry in the kernel config file detennines which address space it's mapped into,
but it's sometimes possible for the device itself to be configured differently. The
driver can check, for example, that reg doesn't contain an address greater than
0 xFFFFF (that is, an address with more than 20 significant bits) if the device is
configured for 20-bit references.

It's also possible for xxprobe () to do some device initialization, even though
such initialization is properly the job of x.xat tach (). This can make sense if

Revision A, of 27 March 1990

148 Appendices

xxread () - Read Data from
Device

xxse1ect () - Select Support

such initialization allows xxprobe () to identify and verify the device, but it
should only do the amount of initialization necessary to detennine if the device is
really there. It definitely should not allocate any memory that won't be used if
the device isn't found, and it should not assume that just because it found a dev
ice the system will choose to include that device in its configuration.

If the correct device is found at the probed location, xxprobe () returns
sizeof(structxxdevice). (This is the size of the device registers in memory
space). If no device is found at the expected location, or if the device found is
not the one that was expected, xxprobe () returns a 0. If it doesn't, the kernel
will be incorrectly led to believe that a device is present, and future attempts to
use it will cause the kernel to panic () with a bus error.

Note that the amount of memory mapped in by the autoconfiguration code is
detennined by the size given in the mb_dri ver->rndr_size field, and not by
the value returned from xxprobe (), which is used only for the go/nogo test.

xxread(dev, uio)
dev_t dev;
struct uio *uio;

xxread () is the high-level routine called (in character device drivers) to per
fonn data transfers from the device. xxread () must check that the minor dev
ice number passed to it is in range. If the minor device number is out of range,
xxr ea d () returns like so:

if (XXUNIT(dev) >= NXX)
return (ENXIO);

Subsequent actions of xxread () differ depending on whether the device is a
tty-style character-at-a-time device or a device that buffers its 1/0 into blocks.

For block transfers, xxread () uses physic (), its associated mechanisms, and
the xxstrategy (). buf is here an array oflocally declared buffers:

return (physio(xxstrategy, &buf[minor(dev)],
dev, B_READ, minphys, uio));

If the read operation fails, xxread () passes the error code whichxxintr () set
in the buffer header up to the kernel. The kernel then passes it on to the user pro
gram, which usually plugs it into the users global error variable errno.

xxselect(dev, rw)
dev_t dev;
int rw;

The xxselect () routine is necessary if the driver is to support the select ()
system call. rw is either FREAD, FWRITE or 0. (Simple character devices won't
have occasion to use the O value, which is intended for exceptional conditions. It

Revision A, of 27 March 1990

xxstrategy () - High-Level
1/0

xxwrite () - Write Data to
Device

Appendix A - Summary of Device Driver Routines 149

is used by network devices). These constants are defined in <sys/file. h>.

If xxselect () only supports polling, then it simply detennines if the device
specified by the major/minor pair encoded within dev is ready to go, returning a
1 if it is and a O if it's not. Interrupts must be disabled while this check is per
fonned, so xxselect () should always do a

s = spl6();

immediately, and a

splx(s)

before returning.

If, however, xxselect () allows user processes to wait for a device to become
ready, it must do somewhat more work. In this case, the driver will have to
maintain a local per-device structure which can associate a process with each
device. It can do so with the current process proc structure, a pointer to which
can be found in u. u _procp. (If the device can read and write independently,
separate processes must be tracked for the two cases). The local structures must
also contain some state infonnation, which will be used by xxselect () (as
well as xxintr ()) for bookkeeping purposes. The details are somewhat com
plicated, and are illustrated in the Variation with "Asynchronous 1/0" Support
section of the The "Skeleton" Character Device Driver chapter of this manual.

r

xxstrategy (bp)
register struct buf *bp;

xxstrategy () is a high-level 1/0 routine designed to be called from phy
sio (). Its name derives from its role in block-device drivers, where xxstra
tegy () has responsibility for reordering the 1/0 request queue so as to increase
the overall 1/0 bandwidth. In character devices (even those which queue 1/0)
such reordering is to no advantage, and xxstrategy () 's major function is
structural. It allows the xxread () and xxwr i te () routines to share their com
mon code in a routine designed to be called from physio (). xxstrategy ()
returns no error code to its caller in the kernel. Instead, errors that occur in the
course of the 1/0 operation are reported by xxintr () by way of the buffer
header and passed along by xxs tr ate gy () .

xxwrite(dev, uio)
dev_t dev;
struct uio *uio;

xxwr it e () is the high-level routine called (in character device drivers) to per
fonn data transfers to the device. xxwri te () must check that the minor device
number passed to it is in range. If the minor device number is out of range,
xxwr i te () returns like so:

Revision A, of 27 March 1990

150 Appendices

if (XXUNIT(dev) >= NXX)
return (ENXIO);

Subsequent actions of xxwr it e () differ depending on whether the device is a
tty-style character-at-a-time device or a device that buffers its 1/0 into blocks.

For block transfers, xxwri te () uses physio (), its associated mechanisms,
and the xxstrategy (). buf is here an array oflocally declared buffers:

return (physio(xxstrategy, &buf[minor(dev)],
dev, B_WRITE, minphys, uio));

If the write operation fails, xxwr i te () passes the error code which xxintr ()
set in the buffer header up to the kernel. The kernel then passes it on to the user
program, which usually plugs it into the global error variable errno.

Revision A, of 27 March 1990

bcopy () -Byte Copy for
Nonoverlapping Regions

bp _ mapin () - Map a user
buffer into kernel space

B
Kernel Support Routines

These routines are in alphabetical order, on the assumption that this will make
them easier to find.

r

void
bcopy(from, to, count)

caddr t from, to;
u int count;

Copies count bytes from the address designated by from to the address desig
nated by to. The operands may not overlap; i.e. the interval [from,from+count]
must be disjoint from the interval [to, to+count]. Use ovbcopy () to copy
overlapping regions.

[

bp_mapin (bp)
_ struct buf *bp;

bp _ map in () allocates kernel virtual address space from the kernelmap, maps
the data referred to by the buffer bp into the space allocated, and converts

J

b _ un.b _ addr to the new address, which is now valid at any time in the kernel.
The driver must call bp _ mapin () after calling physio () but before starting
the data transfer - usually somewhere early in the driver's xxstrategy () rou
tine, before using the b _un.b _ addr field from the buffer header.

Device drivers that use the kernel routine physio () may be affected by a
change in the implementation of phys io () from SunOS 4.0 on. The change
will only affect drivers that touch the actual data in the 1/0 buffer themselves,
from the bottom half of the driver (the interrupt routine).

The physio () routine no longer maps the user's 1/0 buffer into kernel virtual
address space using the kemelmap. The result is that the data address field in the
buffer header (bp->b _un.b _addr) is now the same as the user context virtual
address. This has no impact on a driver that touches the data in the 1/0 buffer
only in its top half.

151 Revision A, of 27 March 1990

152 Appendices

bp_mapout () -Map out a
user buffer in kernel space

btodb () - Convert Bytes to
Disk Sectors

bzero () - Initialize Byte
Memory Region to Zero

copyin () - Move Data
From User to Kernel Space

However, when the interrupt routine is running, this data address will not neces
sarily be valid. If the driver tries to touch the data in the buffer during its inter
rupt processing, a variety of errors will occur, ranging from silently touching the
wrong data to kernel bus error traps. This is a change from earlier SunOS
rele~ses, where the buffer address was valid at any time in the kernel, after
phy.sio {) had been called.

For drivers that need to reference the data in the 1/0 buffer from interrupt level,
the correct approach in SunOS 4.0 and later is to use bp _ map in {) and
bp _ ma pout {) . Using bp _ map in {) to access the user buffer inside the dev
ice driver will ensure the user buffer is aligned on the same cache line as
mbsetup {), for machines with a write-back cache.

[bp mapout(bp)
- struct buf *bp;]

bp _ mapout {) undoes the kernel mapping and releases the space in the kernel
map.

[btod1;' (bytes)
int bytes;

Converts bytes into standard kernel block-size units. btodb {) is called (for
block drivers) from xxsize {). It is listed here because it is called from the
example ramdisk pseudo-device driver.

void
bzero(base, count)

caddr t base;
u int count;

Initializes to zero count bytes starting from the address designated by base.

copyin(udaddr, kaddr, n)
caddr_t udaddr, kaddr;
u int n;

copy in {) moves data from the user address space to the kernel address space.
It is commonly used when writing xxioctl {) routines. See copyout {).

kaddr is a kernel virtual address, udaddr is a user virtual address, and n is the
number of bytes to copy in. Returns O if no error occurs, EFAULT on a memory
error, and other Exxx errors on pagefaults which cannot be resolved. The value

]

Revision A, of 27 March 1990

copyout () - Move Data
From Kernel to User Space

CDELAY () - Conditional
Busy Wait

DELAY() -Busy Wait for a
Given Period

dma _ done () - Free the
DMA Channel

Appendix B-Kemel Support Routines 153

of n can be up to 1 megabyte, any more is dependent on the specific machine
architecture.

\.

copyout(kaddr, udaddr, n)
caddr_t kaddr, udaddr;
u int n;

copyout () moves data from the kernel address space to the user address space.
It is commonly used when writing xxioctl () routines. See copyin ().
ka.ddr is a kernel virtual address, udaddr is a user virtual address, and n is the
number of bytes to copy out. Returns O if no error occurs, EF AULT on a memory
error, and other Exxx errors on pagefaults which cannot be resolved. The value
ofn can be up to 128 kilobytes, any more is dependent on the specific machine
architecture.

r

CDELAY(condition, time)
int condition, time;

CDELAY () is like DELAY () (see below) in that it busy waits for a specified
number of microseconds. It differs, however, in that it has a second argument
condition. Each time it goes through its busy wait loop, CDELAY () checks con
dition, and, if it's true, it immediately returns. In typical usage, condition is a
masked subset of the bits in a device register.

(DELA~ (tim~)
int time;]

DELAY busy waits for a specified minimum number of microseconds. That is, it
just spins around using CPU time. It can be useful in situations where a device is
not quite slow enough to justify having its driver go to sleep. In such cases, it's
useful to busy wait for a short time. The reasoning is that while busy waiting is a
waste, servicing an interrupt costs a lot more CPU time.

DELAY () is also useful in introducing pauses between accesses to a device with
write latency. A device register may, for example, require multiple sequential
writes, and yet also require delays between the writes. See vpprobe in the
Sample Driver Listings appendix for an example. See CDELAY ().

[dma_~one (chan)
int chan;]

Revision A, of 27 March 1990

154 Appendices

dma_setup () -Set Up for a
OMA Transfer

On Sun386i only. After a OMA transfer completes, dma _ done () must be
called to mark the channel as not busy so that another transfer can proceed.

[dma setup (dma)
-struct dma_request *dma;]

On Sun386i only. dma _setup () is called after the driver has gotten a contigu
ous set of virtual addresses from mb setup () and before the device is pro
grammed to start sending or receiving data. The dma _ request structure
(defined in <sun38 6/ dma. h>) contains all the infonnation required to set up
the 82380 OMA chip on the Sun386i.

Unlike the Sun-3, Sun-3X, Sun-4 line of machines, the Sun386i has a memory
management unit as an integral part of the CPU (the 80386). Therefore, to use
the OMA facility of the Sun386i for a device driver, you must interface to the
82380 chip, which contains the OMA controller.

The primary interface to the OMA chip is the dma _ request structure. You
must fill in the fields in this structure and then call dma _setup () with a
pointer to the structure. dma _setup () takes the contiguous virtual addresses,
which were obtained from a call to mbsetup (), and sets up a linked list of phy
sical addresses to be loaded into the OMA chip as needed.

dma _setup () returns a value of zero if the setup was successful, and non-zero
if there is a problem. Reasons for failure are: the channel was busy, the transfer
was zero pages long, or memory could not be allocated for the linked list of
buffers.

The fields in dma _ request structure are defined as follows:

Revision A, of 27 March 1990

Appendix B-Kemel Support Routines 155

I*
* DMA request structure passed to dma _setup () .
*Seethe Intel 82380 Tech Ref for more info.
*I
struct dma_request {

u_char dma_channel;
u char dma_xfer_mode;

#define DMA DEMAND MODE - -
#define DMA_SINGLE_MODE
#define
#define

char
#define
#define

DMA BLOCK MODE - -
DMA CASCADE MODE - -

dma_rdwr;
DMA READ
DMA WRITE

u_long dma_count;
u_long dma_req__space;

0
1
2
3

2
1

#define DMA MEMORY 0
#define DMA IO 1

u int
#define
#define
#define

dma_req__size;
DMA BUS 32 1

2
3

} ;

DMA BUS 16
DMA BUS 8

char
caddr t
u_long
u int
char
caddr t

dma_req__hold;
dma _ req__ addr;
dma_target_space;
dma_target_size;
dma_target_hold;
dma_target_addr;

I* Channel number: 0 - 7 * I
I* Transfer mode * I

I * Transfer direction * I
I* (Relative to requester) * I

I* Transfer count * I
I* Requester address space * I
I* Memory or memory-mapped * I

I* 1/0 mapped * I
I* Size of xfers to/from requester * I

I* 32-bit transfers * I
I* 16-bit transfers * I
I* 8-bit transfers * I

I* 1 = hold address, 0 = increment * I
I* Requester (virtual) address * I
I* Target address space * I
I* Size of xfers to/from targit * I
I* Hold/increment target address * I
I* Target (virtual) address * I

In this context, the "requester" is the device that requests service from the 82380
(normally a peripheral such as a disk controller). The "target" is the "device"
with which the requester wants to communicate (normally system memory).

The fields of the dma _request structure are used as follows:

dma channel
Specifies the channel that the requester will use for the transfer.

dma xfer mode - -
Refers to the type of transfer that the requester is capable of supporting. The
SCSI controller, for instance, uses the DMA _ s INGLE_ MODE of transfer, as
does the floppy controller. Refer to the peripheral manufacturer's
specification sheet and the 82380 data sheet for more details.

dma rdwr
is the direction of data transfer relative to the requester. DMA _ WRITE
means transfer from the requester to the target and DMA _ READ means
transfer from the target to the requester.

dma count
is the byte count for the transfer.

Revision A, of 27 March 1990

156 Appendices

dma_req_space
is the address space in which the requester resides, i.e., whether the device is
memory mapped (DMA MEMORY) or 1/0 mapped (DMA IO). - -

dma_req_size
is the size of the requester's data path (DMA _BUS_ 8 = 8 bits,
DMA_BUS_l6 = 16 bits, DMA_BUS_32 = 32 bits) and therefore the amount
of data transferred with each OMA bus cycle.

dma_req_hold
indicates whether the 82380 should hold the requester address constant
throughout the OMA transfer, or increment it with each bus cycle. Typically
the requester address is the address of the device's 1/0 register, which is
fixed, so dma_req_hold is set to "1 ".

dma_req_addr
is the requester's virtual address.

dma_target_space
is the address space in which the target resides (usually OMA_ MEMORY).

dma_target_size
is the size of the target's data path (D MA_ Bus_ 3 2 for system memory).

dma_target_hold
indicates whether the 82380 should hold or increment the target address dur
ing the OMA transfer. For memory devices, the 82380 should increment the
target address with each bus cycle, so "dma_target_hold" is set to 0.

dma_target_addr
is the target's virtual address.

Once all these fields are set up by the driver, the driver calls the dma _ setup ()
routine. The following pseudo-code routines demonstrate how to use the DMA
routines:

*include <machine/dma.h>
*include <sundev/mbvar.h>

struct
caddr t

mb_device *xxinfo;
xx ioaddr = XX_ADDR;

xx_example(bp)
struct buf *bp;

I* Device info * I
I* Address of device's I/0 port * I

struct mb device *md = xxinfo[O);

I*

unsigned int target_addr;
unsigned int transfer_count;
int channel;
int readflag;

* Set up DMA transfer.
*I

target_addr = MBI_ADDR(mbsetup(md->md_hd, bp, 0));
transfer_count bp->b_bcount

Revision A, of 27 March 1990

"

Appendix B -Kernel Support Routines 157

channel= md->md_dmachan;
readflag = ((bp->b_flags & B_READ) ? 1 : 0);

if (xx_dma_setup(target_addr, transfer_count,

I*

channel, readflag) != 0)
return(-1);

* Code to talk to the device, initiate the transfer,
* and wait for transfer completion.
*I

!*
* Free DMA resources.
*I

xx_dma_done(channel);
mbrelse(md->md_hd, &target_addr);

return(O);

xx_dma_setup(addr, count, chan, rdflag)
unsigned int addr;
unsigned int count;
int chan;
int rdflag;

struct dma_request dreq;

dreq.dma_channel = chan;
dreq.dma_xfer_mode

I* Dma channel * I

I* Single mode transfer * I DMA_SINGLE_MODE;
dreq.dma_rdwr =

(rdflag? DMA_WRITE
dreq.dma_count = count;

DMA _READ) ; / * Direction * /

dreq.dma_req_space
dreq.dma_req_size
dreq.dma_req_hold
dreq.dma_req_addr

DMA_MEMORY;
DMA_BUS_8;
1;
xx_ioaddr;

I* Transfer count * I

I* Memory-mapped requester* I
I* 8-bit data path * I
I* Hold address constant * I
I* I/0 port virt. address * I

dreq. dma_target_space = DMA_MEMORY; /*Target is system memory* I
dreq.dma_target_size DMA_BUS_32; /* 32-bitdatapath */
dreq.dma_target_hold = 0; l*lncrementaddreachcycle*/
dreq.dma_target_addr = addr; /* Buffervirtualaddress */
return(dma_setup(&dreq));

xx_dma_done(chan)
int chan;

dma_done(chan);

Revision A, of 27 March 1990

15 8 Appendices

gsigna1 () - Send Signal to
Process Group

hat_getkpfnum() -
Address to Page Frame Number

inb () -Read a Byte from an
1/0 Port

iodone () - Indicate 1/0
Complete

iowait () -Wait forl/0 to
Complete

\..

gsignal(pgrp, sig)
int pgrp;
int sig;

Sends signal sig to all of the processes in the process group pgrp. See psig
nal ().

,
u int
hat_getkpfnum(addr)

addr_t addr;

hat_getkpfnum takes a virtual address and returns its associated Page Frame
Number. This number has already been masked down to one that can appropri
ately be returned by the driver xxmmap () routine.

[inb(port)
short port;]

Sun386i only. inb () returns the byte value from the specified port address in
the 1/0 space. (See outb ()).

[
iodone(bp) J

-· __ s_t_r_u_c_t __ b_u_f __ *b_p_; ------------------

In the skeleton driver example, iodone is called to indicate that 1/0 associated
with the buffer header bp is complete, and that it can be reused. iodone sets
the DONE flag in the buffer header, then does a wakeup call with the buffer
pointer as argument. iodone () is called from the bottom half right after the
call to wakeup (). See iowai t ().

[

int iowait(bp)
. struct buf *bp;

iowai t waits on the buffer header addressed by bp for the DONE flag to be set.
iowai t actually does a sleep on the buffer header and is called from the top
half in place of sleep () . iowai t () also returns the error value. See
iodone ().

]

Revision A, of 27 March 1990

kmem _a11oc () - Allocate
Space from Kernel Heap

kmem _free () - Return
Space to Kernel Heap

1og () - Log Kernel Errors

\..

caddr_t kmem_alloc(nbytes)
u int nbytes;

Appendix B-Kemel Support Routines 159

Allocates nbytes of contiguous kernel memory and returns a pointer to it. If
called from an interrupt routine, kmem......'.alloc () can return a NULL. (Though
kmem _ alloc () generally should not be called from the interrupt level.) It
returns a NULL if its request can't be satisfied. Note that kmem _ alloc ()
takes a while, and shouldn't be used frivolously. Memory allocated with
kmem _alloc () can be recycled with kmem _ free ().

kmem_free(ptr, nbytes)
caddr_t ptr;
u int nbytes;

Returns the block (allocated by kmem al lo c ()) at ptr to the kernel heap. If
the block has already been freed, or if ptr doesn't indicate an address within the
heap, kmem _free () panics. When the block is freed, it is coalesced with adja
cent free blocks to ensure that the free blocks in the heap are as large as possible.
kmem_free (), like kmem_alloc (), should not be called from the interrupt
level.

[

log (~ri_co~e, ...) l
int pri_code;

The kernel provides a log () function analogous to the sys log (3) function
supplied with the C library for user programs. The first argument to log () is a
priority code, as defined in <sys/ syslog. h>, and is identical to the priority
codes used by sys log (3). The subsequent arguments are a pr intf () for
mat string and the values to be printed under its control. Unlike sys log (), the
fonnat string must be tenninated with a newline (\n) if a newline is to be printed
at the end of the message.

Messages logged with log () will not pass though the nonnal kernel
print£ () mechanism if the syslogd daemon is running. They will get writ
ten to the system message buffer just as print£ () messages are. The sys
logd daemon will read them using a special device driver, and will log them as
messages from the "kern" facility with the given priority.

If such a message is to be printed on the console, syslogd will do so, using its
standard fonnat which includes a time stamp. Messages printed with
pr intf () will get logged as messages from the ''kem'' facility with a priority
of LOG_ CRI T, except that sys 1 o gd will not print them on the console as they
have already been printed there by the kernel. The kernel does not time stamp
messages that it prints; thus, messages logged with log () will be time stamped

Revision A, of 27 March 1990

160 Appendices

machineid () - Get Host Id
FromEprom

MBI _ ADDR () - Get Address
in DVMA Space

mb_mapa11oc () - Get
Address in DVMA Space

if they are printed on the console, while messages printed with print f () will
not. Furthennore, syslogd does not lock out interrupts while printing mes
sages, so messages logged with log () will not tie up the machine while they
are being printed, unless syslogd is not printing and the kernel must print the
message itself.

[machineid ()]
machineid () takes no arguments and returns an unsigned int which contains
the same value returned by gethostid (). This is useful when the driver, run
ning in kernel space, needs to know the hostid of the machine it is running on.

(MBI_ADDR(mb_cookie)
int mb_cookie;]

MBI _ ADDR () is a macro that takes the "cookie" (abstract number) returned by
mbsetup () and converts it into a 32-bit transfer address, which may be either
in the DVMA space or a VMEbus address space. This is the address that is then
given to the bus-master device, though it may first need to be checked (especially
for older devices) to ensure that it is not larger than the device capacity. See
mbsetup () and mbrelse ().

caddr_tmb_mapalloc(map,bp, flags,waitfp, arg)
struct map *map;
register struct buf *bp;
int flags;
int (*waitfp) ();
caddr_t arg;

This is one of two new routines that device drivers can use to allocate DVMA
space for 1/0 transfers. These routines are a move toward separating the alloca
tion and maintenance of DVMA resources from the complex framework of the
mainbus ("mb") structures. They also simplify matters in the case when no
DVMA space can be allocated. The old mbsetup () and mballoc () inter
faces are retained for compatibility with current drivers, so use of the new rou
tines is entirely optional.

There are two main differences between the old and new routines. The first is that
the new routines use a generic map structure instead of a pointer to a struct
mb _ hd. This provides for systems which do not have a "mainbus" but which do
have DVMA capability.

The second difference is the way in which the allocation routines behave if there
is no DVMA space available; the old scheme would return NULL and force

Revision A, of 27 March 1990

Appendix B - Kernel Support Routines 161

drivers to call the allocation routines at some later point, either by way of a
periodic timer in the driver or by being interrupted by 1/0 completion. The new
interfaces use a "callback" scheme to inform drivers when DVMA has become
available again. The driver passes in a pointer to the routine it wishes to be called
back with and an argument to the callback routine. The argument is data private
to the device driver (i.e. the allocation routines don't examine or modify it) and
can optionally be used as a hint by the driver to itself. After the driver's callback
request is queued, the allocation routines return NULL.

At this time, the driver puts the request which failed on a wait queue of its own,
since the allocation routines only queue the callback routine, not the request
itself. This method allows drivers to manage their own queues and to perform
any optimizations on the request ordering they deem useful. For simplicity and
economy of kernel resources, callback routines are only placed on the wait queue
if they are not already there. Subsequent requests using an already queued call
back routine will be ignored. The remaining responsibility of the driver's call
back routine is to return DVMA_RUNOUT (defined in <sys/mbvar. h>)
when DVMA has run out, as the allocation routines must know when to stop pul
ling callback routines off the wait queue.

map is a pointer to the DVMA allocation map structure, buf is the buffer header
associated with this request, jla.gs is set by the device driver to indicate special
processing for this request, waitfp is a pointer to a function to be queued by the
allocation routines if DVMA space is not available and the driver has set the
flags parameter to MB_ CAN1W AIT, and arg is the argument to the callback func
tion.

The following example shows a simple device driver start () routine that uses
the mb_mapalloc () function to obtain DVMA space.

Revision A, of 27 March 1990

162 Appendices

mb _ nbmapal.l.oc () - Get
Address in DVMA Space

xxstart(arg)
caddr_t arg;

struct buf *bp;
struct xxunit *un;
int bufaddr, unit;

for (bp = bufq; bp; bp = bp->av_forw) {
unit= dkunit(bp);
un = &xxunits[unit];

if (bufaddr = mb_mapalloc(un->un_mc->mc_mh->mh_map, bp,
MB_CANTWAIT, xxstart, arg)) {

xxgo ();
else {

bufq = bp;
return (DVMA_RUNOUT);

bufq = bp;
return (0);

Points of note: The variable buf q is a queue of buffer pointers maintained by the
driver; incoming requests are put on this queue, as well as requests that could not
get DVMA space. The callback routine is the xxstart () routine itself, ignor
ing any arguments. This could have been a separate function within the driver,
but we are showing simplicity here.

If DVMA is not available (i.e., if the return value ofmb_mapalloc () is
NULL), then mb _ mapalloc () will queue up a pointer to the xx start ()
function. When DVMA space frees up, xx start () will be called back and
will attempt to run its queue again. Note that even though space is now avail
able, there is no guarantee that it will be sufficient to map this particular request.
In such an event, mb_mapalloc () will simply requeue the request.

Since the xxstart () routine can be invoked by other driver routines or by the
DVMA allocation routines, care should be taken in how such arguments are used.

r

caddr_tmb_nbmapalloc(map,addr,bcnt, flags,waitfp, arg)
map *map;
caddr_t addr;
int bent, flags;
int (*waitfp) ();
caddr t arg;

Revision A, of 27 March 1990

ma.pin () - Map Physical to
Virtual Addresses

Appendix B - Kernel Support Routines 163

This is the second of two new routines that device drivers can use to allocate
DVMA space for 1/0 transfers. This routine is for devices which do not use the
buf structure, but still need to request DVMA space.

The only difference between this and mb_mapalloc () is that the bzefstructure
has been replaced by addr and bent, which represent the buffer address and byte
count, respectively.

mapin(ppte, vpagenum, physpagenum, sizeinpages, access)
struct pte *ppte;
u_int vpagenum, physpagenum;
int sizeinpages, access;

mapin () maps physical addresses to virtual addresses. Device drivers use it to
set up kernel virtual memory so that device registers and memory can be directly
accessed. This is useful for devices which:

o interface to the kernel by way of two different memory spaces. Since the
autoconfiguration process only sets up one space, such cases are best han
dled by having the .xxattach () routine use mapin () to set up the other.

o can consume variable amounts of virtual memory space, and for which,
therefore, an optimum mapping cannot be made at autoconfiguration time.
This is the case, for example, with certain kinds of variable-resolution frame
buffers.

Drivers that call map in () in their .xxat tach () routines must first call
rmalloc (kernelmap, ...) to get the kernel virtual addresses which
mapin () requires. (Actually, rmalloc () will return indexes to kernel virtual
addresses-see below). Note that, when a driver calls mapin () , it should also
call mapout () to return the mapped virtual memory when its no longer needed.

ppte is a pointer to the PTE which performs the mapping. This is the PTE in
Sysmap (defined in <sun [33X4 J /pte. h>) which corresponds to the map
index returned from rmalloc (kernelmap, ...) . That is,ppte can be
given as &Sysmap [kmx], where kmx is the map index returned by rmal
loc ().

vpagenum is the number of the virtual page where the physical memory is to be
mapped. kmx, the map index returned by rmalloc (), can be used to calculate
a virtual address, which can then be converted to a virtual page number like so:

vpagenum = btoc(Sysbase) + kmx;

Here Sysmap is the external array of page table entries used to map virtual
addresses, starting at the (kernel virtual) base address Sysbase. btoc () is a
macro (see <machine/param. h>) which converts addresses to page numbers,
and, if necessary, performs the appropriate rounding.

Note that there are a number of general-purpose macros designed to convert
between kernel map indexes and virtual addresses. These macros are in
<sys/vrnmac. h>. One of them, kmxtob expects an (int) kernel map index

Revision A, of 27 March 1990

164 Appendices

mapout () - Remove
Physical to Virtual Mappings

mballoc () - Allocate a
Main Bus Buffer

mbrelse () - Free Main Bus
Resources

and returns the virtual address by page number. Another, btokmx expects a
(caddr_t) virtual address and returns the integer kernel map index.

physpagenum is the physical page number of the memory being mapped into ker
nel virtual memory. Actually, it is the physical page number with the appropriate
type bits for the given physical memory space-these types bits (PGT _ *) are
given in <sys/pte. h>.

sizeinpages is the size in pages of the memory being mapped. It can be easily
computed by using the btoc () macro to convert the size (in bytes) of the
memory being mapped into pages (since btoc () will round up as needed).

access is the PTE-level access flags. The flags (PG_*) are defined in
<sys/pte. h>. The value passed by the auto-configuration process when it
calls mapin () (the standard device driver case) is "PG_ VIPG_KW", which
indicates valid system pages with their write-enable flags set.

See fbmapin () and fbmapout () in fbutils. c (in the Sample Driver
Listings appendix) for examples of real map in () and ma pout () calls. It is
advisable to map in small portions of a device's memory (less than or equal to
6M bytes) instead of fewer mappings of large memory chunks.

r

mapout (ppte, sizeinpages)
struet pte *ppte;
int sizeinpages;

mapout () is used to unmap a chunk of physical memory from the virtual
memory that map in () associated it with. Its parameters are as given in
mapin () , above. Drivers typically need to call mapout () only when they
have made their own calls to rmalloc () and rmfree (). It should be called
just before rmfree ().

r

mballoe(mh, addr, bent, flags)
struet mb_hd *mh;
eaddr_t addr;
int bent, flags;

mballoc () is a wrapper for mbset up () . It allocates a buf struct, zeroes it
out, stuffs the b_un .b_addr field with addr, sets the b_flags word to
B_BUSY, sets the b_bcount word to bent and calls mbsetup (). The argu
ments passed to mbset up () are mh, the address of the buf struct, andflags.

mbrelse(mb_hd, mbinfop)
struet mb_hd *mb_hd;
int *mbinfop;

Revision A, of 27 March 1990

mbsetup () - Set Up to Use
Main Bus Resources

Appendix B - Kernel Support Routines 165

mbrelse releases the Main Bus DVMA resources allocated by mbsetup.
Note that the second parameter is a pointer to the integer returned by mbset up.

mbsetup(mb_hd, bp, flag)
struct mb_hd *mb_hd;
struct buf *bp;
int flag;

mbset up is called to set up the memory map for a single Main Bus DVMA
transfer. It assumes that bp's fields have been set up to define the transfer, which
is generally true, since physio () sets them up before calling the driver
xxstrategy () routine. (These fields are b_un .b_addr, b_flags and
b_bcount). flag is MB_CANTWAIT if the caller desires not to wait for map
resources (slots in the map or DVMA space) if none are available - it's highly
unlikely that this will ever happen, but if it does mbsetup will return immedi
ately with a 0. In this case its caller can, presumably, wait before trying again.
If, on the other hand, flag is 0, the requesting process will be put to sleep until the
necessary map resources become available.

mbsetup () is typically called from the driver strategy () routine, so when
phys io () breaks up a large 1/0 request, one result is the generation of a series
of calls to mbsetup (). (mbrelse () is then called from the driver xxintr ()
routine). mbsetup (), like physio (), is intended primarily for the use of
block drivers, though character drivers can use it as long as they don't use buffer
headers from the kernel cache. The buffer is double mapped so that the system
will consider it as being in kernel DVMA space as well as in the address space of
the program being serviced.

NOTE Don't set B_PHYS in bp's b_flagsfield if DVMA is between kernel address
space and the device.

outb () -Send a Byte to an
1/0 Port

Upon success, mbset up returns a number which must be saved for the call to
mbrelse. This number can also be passed to MBI _ ADDR (), which will
transform it into a transfer address.

,

outb(port, data)
short port;
u char data;

Sun386i only. On the Sun386i, many devices, such as the floppy, are accessed by
way of the 1/0 space. outb () sends a byte value to the 1/0 address specified.
1/0 device addresses are in the range of Oto OxFFFF. (See inb ()).

Revision A, of 27 March 1990

166 Appendices

ovbcopy() -Copy
Overlapping Byte Memory
Regions

panic () - Reboot at Fatal
Error

peek() , peekc () ,
peekl () - Check and Read

physio () - Block 1/0
Service Routine

,

void
ovbcopy(from, to, count)

caddr_t from, to;
u int count;

Copies count bytes from the address designated by from to the address desig
nated by to. The operands may overlap. If they do not, it is more efficient to use
bcopy () instead.

[panic (message)
char *message;]

panic can be called upon encountering an unresolvable fatal error. It prints its
message to the system console, and then reboots the system, so don't take its use
lightly. (It does have the sense to avoid the reboot if it has already been called
thus preventing recursive calls to panic ()). A kernel core image is dumped.

...

short
peek(address)

short *address;

short
peekc (address)

char *address;

peekl(address, value)
long *address;
long *value;

peek and its variants are called with an address from which they read. They
return -1 if the addressed location doesn't exist, otherwise they return the value
that was fetched from that location. They are for use only in xxprobe (). See
poke and its variants, below.

,
physio(strategy, buf, dev, rw_flag, minphys, uio)

void (*strategy) ();
struct buf *buf;
dev t dev;
int rw_flag;
void (*minphys) ();
struct uio *uio;

,

Character drivers sometimes do block 1/0, and when they do it's convenient for
them to use physic (). Such drivers resemble simple block drivers in that they

Revision A, of 27 March 1990

Appendix B - Kernel Support Routines 167

have xxread () and/or .x.xwr ite () and xxstrategy () routines, call those
xxstrategy () routines indirectly through physio (), and use buf struc
tures. Too much, however, should not be made of the similarity. Character
driver xxstrategy () routines typically implement no strategy, and they are
not driver entry points. And while character drivers can use physio () (and
mbsetup () and iowait () and the few other kernel support routines that
manipulate buffer headers) they do not use buffers from the kernel buffer cache.

physio () serves two major purposes:

o It ensures that pages of user memory are locked down (physically available
and not paged out) during the duration of a data transfer. This is the only
way to lock down pages of user memory.

o It breaks large transfers (those greater than the value returned by min -
phys ()) into smaller pieces, thus keeping slow devices from monopolizing
the bus.

If the size of the transfer is greater than the system determined maximum, phy
sio () calls the driver xxstrategy () routine repeatedly, making sure that all
relevant pointers and counters are updated correctly. Basically, physio ()
looks like this:

loop:
/* error and termination checking (based on values in uio) /*
s = sp/6();
while (buf->b _flags & B _BUSY) {

buf->b_fiags /= B_WANTED;
sleep(buf, PRlB/0+1);

}
(void) splx(s);
I* set up buffer for 1/0 *I
while (more data) {

buf->b _flags= B _BUSY/ B _PHYS/ rw _flag;
I* more buffer 1/0 set up *I

}

(*minphys) (bu!);
I* lock down pages of user memory * I
(*strategy) (buf);
iowait(buf);
s = spl6();
I* unlock buff er * I
if (buf->b _flags & B _WANTED)

wakeup(buf);
(void) splx(s);
!* bookkeeping * I

buf->b _flags&= -(B _BUSY/B _ W ANTED/B _PHYS);
!* error checking and bookkeeping (based on values in uio) *I
goto loop:

buf is a buffer header for this device. physio () wants exclusive use of this
buffer header and its associated buffer, and when called it checks to see if it has
it. Ifit doesn't, it will sleep () until it gets it. dev is the device to which the

Revision A, of 27 March 1990

168 Appendices

poke() , pokec () ,
pokel () - Check and Write

print f () - Kernel Printf
Function

transfer is taking place. rw _flag is B READ or B WRITE to indicate the direc-- -
tion of the transfer. minphys () is a function that detennines the amount of
data to be transferred in one call to the xxstrategy () routine. uio is a pointer
to the uio structure.

physio () returns one of the error codes defined in errno. h if an 1/0 error
occurs, and a O upon success. Error codes are not returned on the stack, but by
way of the b_error field in the buffer header.

poke(address, value)
short *address;
short value;

pokec(address, value)
char *address;
char value;

pokel(address, value)
long *address;
long value;

poke and its variants are called with an address to store into, and a value to be
stored. They return 1 if the addressed location doesn't exist, and O if it does.
They are for use only in xxprobe () . See peek and its variants, above.

The kernel provides a print£ () function analogous to the print£ () func
tion supplied with the C library for user programs. The kernel print f () , how
ever, is different than the version in the C library. It writes directly to the con
sole tty, its output cannot be easily redirected, and it supports only a subset of
print£ () 's fonnatting conversions. Furthennore, it's not interrupt driven, and
thus causes all system activities to be suspended while it outputs its message.
Nevertheless, print£ () is useful as a debugging tool, and for reporting error
messages. See uprintf ().

The fonnatting conversions supported by the kernel pr int£ () are:

%x, %X - Hexadecimal numbers
%d, %D - Decimal numbers
%0, %0 - Octal numbers
%c - Single characters
%s - Strings
%b - Bit values

Note that floating-point conversions are not supported. Also note that a special
fonnat %bis provided to decode error registers. Its usage is:

printf("reg=%b\n", regval, "<base><arg>*");

Where <base> is the output base expressed as a control character. For exam
ple, \ 10 gives octal and \ 2 0 gives hex. Each arg is a sequence of characters,
the first of which gives the bit number to be inspected (counting from 1), and the

Revision A, of 27 March 1990

pritospl () - Convert
Priority Level

ps ignal () - Send Signal to
Process

rmalloc () - General
Purpose Resource Allocator

Appendix B - Kernel Support Routines 169

rest of which (up to a control character, that is, a character<= 32), give the name
of the register. Thus:

printf("reg=%b\n", 3, "\10\2BITTW0\1BITONE\n");

would produce the output:

reg=3<BITTWO,BITONE>

Also note that no conversion modifiers (field widths and so on) are supported -
only a single character can follow the%.

The kernel pr intf {) function raises the priority level and therefore locks out
interrupts while it is sending data to the console. And it displays its messages
directly on the console, unless specifically redirected by the TIOCCONS ioctl.

[prit?spl (value)
int value;

pritospl is a macro that converts the hardware priority level given by value,
which is a Main Bus priority level, to the processor priority level that splx
expects. The Main Bus priority level can be found in either

]

mb_device .md_intpri ormb_ctlr .mc_intpri, where it is put by the
config process. pr i tospl is used to parameterize the setting of priority levels.
See spln and splx ().

psignal(p, sig)
struct proc *p;
int sig;

Sends signal sig to the process specified by the proc structure. See gsig
nal (). The structure element is of type p _pid.

u_long rmalloc(mp, size)
struct map *mp;
long size;

rmalloc (for resource map allocator) is a rather specialized sort of resource
allocator. In fact, it doesn't really allocate resources at all, but rather names of
resources (that is, lists of numbers). Such lists are initialized by rminit () and
are called resource "maps". Given such a map, rmalloc () can parcel out the
names in it. The relationship of such names to real resources (virtual address
space, physical memory, and so on) !S entirely a matter of usage conventions.
Names allocated with rmalloc () are recycled with rmfree. size used
here is in the unit of the map mp. For the map kernelmap, size is in pages,
as you are just allocating virtual space. For the map iopbmap, this size is in

Revision A, of 27 March 1990

170 Appendices

rmfree () - Recycle Map
Resource

selwakeup () - Wakeup a
Select-blocked Process

bytes, as you are allocating virtual space tied to real physical memory.

rmalloc is a low-level routine, and shouldn't be used casually. If you just
want some kernel virtual memory, use kmem_alloc (). rmalloc () is called
by drivers that need to allocate kernel virtual address space during their
xxprobe () and xxat tach () routines. They call it, rather than
kmem _alloc (), because they want an address space without physical memory
mapped to it.

rrninit () is not documented here, for device drivers only have occasion to use
two pre-initialized rmalloc () maps:

0

0

The map kernelrnap (in <sys/map. h>) is used to allocate chunks of
generic kernel virtual address space.

The map iopbrnap (in <sundev /rnbvar. h>) contains addresses that are
guaranteed to be in the high megabyte and thus suitable for use as DVMA
buffer addresses. iopbmap is 8K, and should be used only for temporary or
very small buffers. The iopbrnap is a byte-aligned table. The address it
returns is not aligned on a long word boundary. If a non-aligned address is
accessed, a panic may result. Callers of rrna 11 o c () should ask for a few
bytes of memory more than they need, and round up the address to a full
word boundary if necessary. This applies to both Sun-3' s and Sun-4 's, but it
is more critical to Sun-4 's, since they can only address using full word align
ment.

rmfree(mp, size, addr)
struct map *mp;
long size;
u_long addr;

rrnf ree recycles the map resource allocated with rrnalloc.

\..

selwakeup(p, coll)
register struct proc *p;
int coll;

selwakeup () is called from driver interrupt routines to wakeup () processes
which are asleep as a result of calls to select () . If both of its parameters are
0, it does nothing. If coll is 0, thus indicating that no select () collision
occurred-that only one process is waiting for the device- selwakeup ()
just wakes up the waiting process indicated by p. If, however, a collision did
occur, it issues a wakeup ((caddr_t) &selwait), thus waking all select
sleeping processes. (The selwai t channel is used exclusively to indicate
select-related sleeping). These waking processes then race for access to the dev
ice, with the first selector getting no special treatment.

Revision A, of 27 March 1990

sleep () - Sleep on an Event

Appendix B - Kernel Support Routines 171

r

sleep(address, priority)
caddr_t address;
int priority;

sleep is called to put the calling process to sleep, typically while it awaits the
availability of some system resource. address is the address of a location in
memory, usually a field in some global driver structure that is being used as a
"semaphore" (such fields are not true semaphores, see below). In other areas,
address is also referred to as chan for the channel that a device uses, or event sig
nifying an action or state associated with a specific device. priority is the
software priority the calling process will have after being awakened.

sleep must never be called from the interrupt-level side of a driver. This is
because sleep () is always executed on behalf of a specific process. It
suspends that process while the scheduler picks and executes another waiting
process. And since, when handling an interrupt, the kernel isn't running on
behalf of any process, it makes no sense to call sleep (). Incidently, the kernel
will panic () if sleep is called while it's running on the interrupt stack.

A process that has called sleep () will be reawakened by any wakeup call
issued with the same address. However it's not guaranteed that, upon waking,
the process will find the resource that it was waiting for to be available. It must,
therefore, check again before proceeding, and go back to sleep if necessary. This
is because the Sun0S sleep () and wakeup () facilities do not constitute true
semaphore primitives in the usual PN sense. wakeup will wakeup every pro
cess that is sleeping on that event, where a true 'V' semaphore will wake only
one sleeper (the highest priority one or whichever).

Thus in SunOS you always do:

s = spln ();
while (resource_busy)

sleep(resource, high_priority);
make_resource_busy;
(void) splx (s) ;

<critical section>

wakeup(resource);

whereas with real semaphores you would simply do:

P(resource);

<critical section>

V (resource) ;

However, semaphores are not easily implemented to lockout around hardware
interrupts so SunOS just uses the sleep () / wakeup () mechanism for both
situations.

Revision A, of 27 March 1990

172 Appendices

spln () - Set CPU Priority
Level

splx () - Reset Priority
Level

splr () - Raise Priority
Level

suser () - Verify Super User

swab () - Swap Bytes

The spln functions are available for setting the CPU priority level ton, where n
ranges from Oto 7 (higher numbers indicate higher priorities). Note that
spl6 () actually gets you spl5 () on Sun systems to avoid lockout of the level
6 on-board UART interrupts. When you allocate a CPU priority level to your
device, choose one that's high enough to give you the perfonnance you need, but
don't overdo it or you will interfere with the operation of the system:

o If you lock out the on-board U ARTS (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the Sun OS
scheduler will be suspended.

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed.

o And if you lock out the disks (level 2), disk rotations may be missed.

The spln functions return the previous priority level.

[
splx~s)]

1.nt s;

splx called with an arguments sets the priority level to s, which was returned
from a previous call to spln, pr i tospl () , or splx () . splx is typically
used to restore the priority level to a previously stored level. splx () returns
the previous level.

(splr ~s)
1.nt s;

splr called with an arguments that raises the priority level bys units.

(suser ()

Returns a 1 if the current user is root, 0 if not. suser () is commonly called by
ioctl () routines that are restricted to the superuser, and that thus need to
check who's calling them.

swab(from, to, nbytes)
caddr t from;
caddr t to;
int nbytes;

swab swaps bytes within 16-bit words. nbytes is the number of bytes to swap,

]

J

Revision A, of 27 March 1990

timeout () - Wait for an
Interval

uiomove () - Move Data To
or From an uio Structure

Appendix B - Kernel Support Routines 173

and is rounded up to a multiple of two. No checking is done to ensure that the
from and to areas do not overlap each other.

timeout(func, arg, interval)
int (*func) ();
caddr_t arg;
int interval;

timeout arranges that after interval clock-ticks,func will be called with arg as
its argument, in the style (*June)(arg). A clock tick is about a fiftieth of a second
for Sun-3, Sun-3X, and Sun386i machines, a hundredth of a second for Sun-4s.
The precise number of clock ticks per second is given in the external variable h z.
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to cancel read or write
requests that have received no response within a specified amount of time (if
there's a lost interrupt or if the device otherwise flakes out). The specified June is
eventually called from the lower half of the clock-interrupt routine, so it must
conform to the requirements of interrupt routines in general. In particular, it
can't call sleep (). See untimeout ().

r

uiomove(cp, n, rw, uio)
caddr t cp;
int n;
enum uio rw rw;
struct *uio;

uiomove () is the most common way for device drivers to move a specified
number of bytes between a byte array in kernel address space and an area defined
by a uio structure (which may or may not be in kernel address space). If the
uio _ seg field in the uio structure is set to UIOSEG _ USER, uiomove () will
assume the uio pointer to be in user space; if it is UIOSEG _ KERNEL, it will
assume it to be in kernel space (see <sys/uio. h>). uiomove () moves n
bytes between the uio structure and the area defined by the cp parameter. The
read/write flag is inteipreted as follows: - uro _ READ indicates a transfer from
kernel to user space (a call to copyout ()), and UIO _ WRITE a transfer from
user to kernel space (a call to copyin ()). uiomove () returns O upon suc
cess, Exxx upon failure. Since this routine uses copy in () and copyout (),
the amount of memory that can be moved is dependent on these routines.

For more information about the uio structure, see Some Notes About the U/0
Structure in the The "Skeleton'' Character Device Driver chapter of this manual.

Revision A, of 27 March 1990

17 4 Appendices

untimeout () -Cancel
timeout() Request

uprintf () - Nonsleeping
Kernel Printf Function

ureadc () , uwri tee () -
uio Structure Read/Write

untirneout(func, arg)
int (*func) ();
caddr_t arg;

untimeout is called to cancel a prior timeout request. June and arg are the
same as in timeout ().

uprintf () is like print£ (), with two important differences. The first is
that it checks to see if the process' "controlling terminal" is open, and if it is the
message is sent to it rather than to the system console (uprintf () consults the
user structure, so it must not be called from the lower-half routines). If there's
no controlling terminal, uprintf () executes as would print£ (). The
second difference is that uprintf () is interruptible, and thus reasonably
efficient.

upr int f () is often called from open () routines to report errors to the user.
It's used for errors which, like tape-read errors, are likely to indicate operator
error rather than system failure. See pr intf () .

,

ureadc(c, uio)
int c;
struct *uio;

ureade () transfers the character c into the uio structure (which is normally
passed to the driver when it is called). ureade () is normally used when "read
ing" a character in from a device.

[uwritec (uio) ,
struct *u1.o;

uwri tee () returns the next character in the uio structure (which is normally
passed to the driver when it is called), or returns -1 on error. uwri tee () is
normally used when "writing" a character to a device.

Note that "read" and "write" are slightly confusing in the above contexts, since
ureade () actually obtains a character from somewhere and places it into the
uio structure, whereas uwri tee () obtains a character from the uio structure
and "writes" it somewhere else. The "read" and the "write," then, are from the
perspective of the user program.

ureade () and uwritee () replace the routines epass () and passe (),
which are no longer supported.

]

Revision A, of 27 March 1990

wakeup() - Wake Up a
Process Sleeping on an Event

Appendix B -Kernel Support Routines 175

[

wakeup(address) J
'-· __ c_a_d_d_r ___ t_a_d_d_r_e_s_s_; __________________ ___.

wakeup is called when a process waiting on an event must be awakened.
address is typically the address of a location in memory. wakeup is typically
called from the low level side of a driver when (for instance) all data has been
transferred to or from the user's buffer and the process waiting for the transfer to
complete must be awakened. See sleep () .

Revision A, of 27 March 1990

17 6 Appendices

Revision A, of 27 March 1990

free () - Free Allocated
Memory

getpagesize () - Return
Pagesize

mmap () - Map Memory from
One Space to Another

C
User Support Routines

These routines are often useful in user-level programs that manipulate devices.

[

~ree (ptr) J
char *ptr;

'----------

free (3) can be used to recycle the virtual memory allocated by a variety of
memory allocators, including valloc (3) and malloc (3) (the most general
pmpose of the allocators).

(..._i_n_t_g_e_t_p_a_g_e_s_i_z_e_<_) ___________________ _....]

getpagesize (2) returns the number of bytes in a page. The page size is the
system page size and may not be identical with the page size in the underlying
hardware - it is, however, the pagesize of interest in all of the memory manage
ment functions.

,

caddr t
mmap(addr, len, protection, flags, fd, off)

caddr_t addr;
int len, protection, flags, fd;
off t off;

mmap () maps pages of memory space from the memory device associated with
the file/ d into the address space of the calling process (or into the kernel address
space). The mapping is performed one page at a time, by iteratively calling the
memory device's mmap () routine.

The memory is mapped from the memory device, beginning at off(the device's
physical installation address within/d's memory), into the caller's address space
beginning at addr and continuing for Len bytes. (By default, mmap () will pick a
good value for addr). The mapping established by mmap () replaces any previ
ous mappings for the process's pages in the range [addr, addr + Len).

+~.!! 177 Revision A, of 27 March 1990

17 8 Appendices

munmap () - Unmap Pages of
Memory

fd is a file descriptor obtained by opening the character special device to be
mmap () 'ed. protection specifies the read/write accessibility of the mapped
pages. The values desired are expressed by or'ing the flags values PROT _ READ,
PROT_EXECUTE, and PROT_WRITE. A write () must fail if PROT_WRITE
has not been set, though its behavior can be influenced by setting
MAP _PRIVATE in the flags parameter.

flags provides additional information about the handling of mapped pages. Its
possible values are:

MAP SHARED
MAP PRIVATE
MAP TYPE
MAP FIXED

MAP RENAME

Share Changes
Changes are Private
Mask for Type of Mapping
Interpret addr Exactly
Assign Page to File

addr and off must be multiples of the page size (which can be found by using
getpagesize()). Pages are automatically unmapped when/dis closed-they
should be explicitly unmapped with munmap (). mmap () returns a -1 on error,
and returns a pointer on success.

For a detailed overview of SunOS memory mapping, see the Memory Manage
ment chapter of the Sun System Services Overview. For specific details about
mmap () and its related facilities, see munmap () below and the mmap (2) ,
munmap (2) , mincore (2) , mprotect (2) , and ms ync (2) manual
pages.

munmap(addr, len)
caddr _ t addr;
int len;

munmap () causes the pages starting at addr and continuing for Len bytes to be
unmapped, that is, marked invalid. If an address within an unmapped page is
subsequently referenced, and if that page is in the "data segment" of a UNIXt
process, then a page of zeros will be created under the address. However, if the
address is outside a data segment, such a reference will cause a segmentation vio
lation. munmap () returns a -1 on error, 0 on success. See mmap () above and
the mma p (2) manual page for more details.

t UNIX is a registered trademark of AT&T.

+!Y...!! Revision A, of 27 March 1990

D
Sample Driver Listings

The following source listings are for sample Sun device drivers. There are four
drivers listed here; the first being the skeleton driver and the other three being
real production drivers. (These three drivers, it should be mentioned, have been
chosen as relatively simple illustrations of the three major types of drivers - not
as software ideals to be closely emulated).

SKELETON
is the driver for the "skeleton board" discussed earlier in this manual.

CG1WO

SKY

is a device driver for the Sun-3 Color Graphics board. It is one of the sim
plest drivers around, being memory mapped.

is a programmed 1/0 driver for the Sky floating-point board, with both pol
ling interrupts and vectored interrupts. However, the interrupt routines don't
do a whole lot.

NOTE This is no longer supported by Sun, but is included here for reference purposes
only.

VP is a driver for the Versatec Printer Interface. It's a fairly good example of a
DMA device driver.

PP is the listing of the Sun386i Parallel Port Driver.

179 Revision A, of 27 March 1990

180 Appendices

D.1. Skeleton Board Driver

I*
* (skreg.h) Registers for Skeleton Board -- note the byte swap
*I

struct sk_reg {
char sk_data;
char sk_csr;

I* 01: Data Register * I
/* 00: command(w) and status(r) * I

} ;

I* sk_csr bits (read)* I
#define SK INTR
#define SK DEVREADY
#define SK INTREADY
#define SK ERROR
#define SK INTENAB

#define SK ISTHERE

/* sk_csr bits (write)* I
#define SK RESET Ox04
#define SK ENABLE OxOl

I*

Ox80 /* Device is Interrupting* I
OxO 8 /*Device is Ready * I
Ox04 /* Interface is Ready* I
Ox02 I* Device Error * I
OxOl /* Interrupts are Enabled* I

OxOC I* Existance Check; Device and Interface Ready * I

I* Reset Device and Interface * I
I* Enable Interrupts * I

* Further definitions for DMA skeleton board
*I

SK DMA OxlO #define
#define MAX SK BSIZE 4096

I* Do DMA transfer * I
/* DMA tranfer block* I

struct sk_reg2 {

} ;

char sk_data;
char sk_csr;
short sk_count;
caddr t sk_addr;

I* 01: Data Register * I
I* 00: command(w) and status(r) * I
I* bytes to be transferred * I
I* DMA address * I

Revision A, of 27 March 1990

I*
* (sk.c) The "Skeleton Board" Driver"
*I

I* This listing is not heavily annotated. This is because it's identical to
* the Skeleton driver discussed at length in the main body of the manual.
* It appears here for purposes of completeness.
*I

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/uio.h>
#include <machine/psl.h>
#include <sundev/mbvar.h>

#include "sk.h"
#include "skreg.h"

I* file generated by config (defines NSK) * I
I* register definitions * I

#define SKPRI (PZER0-1) /* software sleep priority for sk * I

#define SKUNIT(dev) (minor(dev))

struct buf skbufs[NSK];

int skprobe(), skpoll();

struct mb_device *skdinfo[NSK];
struct mb driver skdriver = { skprobe, O, O, O, O, skpoll,

sizeof(struct sk_reg), "sk", skdinfo, 0, O, O, O,
} ;

struct sk_device {
char soft_csr;
struct buf *sk_bp;
int sk_count;
char *sk_cp;
char sk_busy;

skdevice[NSK];

/*ARGSUSED* I
skprobe(reg, unit)

caddr_t reg;
int unit;

I* software copy of control/status register * I
/* current buf* I
I* number of bytes to send * I
I* next byte to send * I
I* true if device is busy * I

register struct sk_reg *sk_reg;
register int c;

sk_reg = (struct sk_reg *)reg;

Appendix D - Sample Driver Listings 181

c = peekc((char *)&sk_reg->sk_csr); I* contact the device *I

Revision A, of 27 March 1990

182 Appendices

if (c == -1 I I (c != SK_ISTHERE))
return (0);

if (pokec ((char *) &sk_reg->sk_csr, SK_RESET)) /* contact the device *I
return (0);

return (sizeof (struct sk_reg));

skopen(dev, flags)
dev_t dev;
int flags;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

if (unit >= NSK 11 md->md alive
return (ENXIO);

if (flags & FREAD)

return (ENODEV);

0)

sk_reg = (struct sk_reg *)md->md_addr;

I* enable interrupts * I
skdevice[unit] .soft_csr SK_ENABLE;

I* contact the device * I
sk_reg->sk_csr

return (0);

l*ARGSUSED* I
skclose(dev, flags)

dev_t dev;
int flags;

skdevice[unit] .soft_csr;

register int unit= SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

I* disable interrupts * I
sk_reg = (struct sk_reg *)md->md_addr;
skdevice[unit] .soft_csr &= -sK_ENABLE;

I * contact device * I
sk_reg->sk_csr = skdevice[unit] .soft_csr;

sun
microsystems

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 183

skminphys(bp)
struct buf *bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_bcount = MAX_SK_BSIZE;

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk device *sk;
int s;

md skdinfo [SKUNIT (bp->b_dev)]; /* physic putthe device number into bp * /
sk &skdevice[SKUNIT(bp->b_dev)];

s = splx (pri tospl (md->md _ intpri)) ; /* begin critical section* I
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);

I* set up for first write * I
sk->sk_busy = 1;
sk->sk_bp = bp;
sk->sk_cp = bp->b_un.b_addr;
sk->sk_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr);

(void) splx (s) ;

skwrite(dev, uio)
dev_t dev;
struct uio *uio;

register int unit

if (unit>= NSK)
return (ENXIO);

I* end critical section * I

SKUNIT (dev) ;

return (physio(skstrategy, &skbufs[unit],
dev, B_WRITE, skminphys, uio));

skstart(sk, sk_reg)
struct sk device *sk;
struct sk_reg *sk_reg;

while (sk->sk _ count > 0) { / * still more characters* I
sk_reg->sk_data = *sk->sk_cp++;
sk->sk_count--;

Revision A, of 27 March 1990

184 Appendices

I* stop giving characters if device not ready * I
/* Note: the softcopy isn't needed/or reads * I

/* DELAY(]O) might go here * I

if (! (sk_reg->sk_csr & SK_DEVREADY)) /* contact the device * I
break;

I* error-retry logic would go here * I

if (sk->sk count > 0) { /* still more characters*/
sk->soft csr = SK_ENABLE;
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I

else {

skpoll ()
{

I* special case: finished the command without taking any interrupts! * I
sk->soft_csr = 0; /* disable interrupts* I
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I
sk->sk_busy = O;
wakeup ((caddr_t) sk); /*free device to sleeping strategy routine * I
iodone (sk->sk_bp); /*free buffer to waiting physio * /

register struct sk_reg *sk_reg;
int serviced, i;

serviced = 0;
for (i = 0; i < NSK; i++) { /*tryeachone*/

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;
if (sk_reg->sk_csr & SK_INTR) { /* contact the device * I

serviced = 1;
skintr (i);

return (serviced);

skintr(i)
int i;

register struct sk_reg *sk_reg;
register struct sk device *sk;

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;
sk = &skdevice[i];

/* checkforanl!Oerror *I
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I

I* error-retry logic would go here * I

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 185

printf("skintr: I/0 error\n");
sk->sk_bp->b_flags I= B_ERROR;
goto error_return;

if (sk->sk_count == 0) { /* 1/0transfercompleted */
error return:

sk->soft csr = 0; / * clear interrupt * I
sk_reg->sk_csr sk->soft_csr; /* contact the device * I
sk->sk_busy = 0;
wakeup ((caddr_t) sk); /* free device to sleeping strategy routine * I
iodone (sk->sk bp); /* free buffer to waiting physic * /

else skstart(sk, sk_reg);

I* DMA VARIATIONS FOLLOW* I

struct sk_device {
char soft_csr;
struct buf *sk_bp;
char sk_busy;

I* software copy of control/status register * I
I* current buf * I
I* true if device is busy * I

int sk_mbinfo; /* Information stash/or DMA * I
skdevice[NSK];

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[SKUNIT(bp->b_dev)];

s = splx(pritospl(md->md_intpri));
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);
sk->sk_busy = 1;
sk->sk_bp = bp;

I* this is the part that is changed * I

I* grab bus resources * I

I* begin critical section * I

sk->sk_mbinfo = mbsetup(md->md_hd, bp, O);

I * the remainder * I
sk_reg->sk_count = bp->b_bcount;

I* plug bus transfer address * I
sk_reg->sk_addr = (caddr_t)MBI ADDR(sk->sk mbinfo);

Revision A, of 27 March 1990

186 Appendices

/* make sure we didn't overrun the address space limit*/
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) {

printf("sk%d: ", sk_reg->sk_addr);
panic("exceeded 20 bit address");

sk->soft csr = SK_ENABLE I SK_DMA;
sk_reg->sk_csr = sk->soft_csr; /* contact the device* I

I* end of DMA-related changes * I

(void) splx (s) ; I* end critical section * I

skpoll ()
{

register struct mb_device *md;
register struct sk_reg *sk_reg;
int serviced, i;

serviced = 0;
for (i = 0; i < NSK; i++) {

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

serviced= 1;
skintr(i);

return (serviced);

skintr(i)
int i;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[i];

I* check for an 110 error * I
if (sk_reg->sk_csr & SK_ERROR) { /* contact the device * I

I* error-retry logic would go here * I

printf("skintr: I/0 errorO);
sk->sk_bp->b_flags I= B_ERROR;

I* this is the part that changed * I

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 187

sk->soft csr = 0; /* clearinterrupt *I
sk_reg->sk_csr = sk->soft_csr;
mbrelse(md->md_hd, &sk->sk_mbinfo);
sk->sk_busy = 0;
wakeup ((caddr_t) sk); /* free device to sleeping strategy routine * I
iodone (sk->sk_bp); /* free buffer to waiting physic * /

I* alternate routines which show examples of uwritec(), ureadc() usage
* The skwrite() routine below could be used in place of the skwrite,
* skstrategy, skstart routines
*I

skwrite (dev, uio)
dev_t dev;
struct uio *uio;

struct mb device *md;
struct sk_reg *sk_reg;

int c;

md = skdinfo[SKUNIT(dev)];
sk_reg = (struct sk_reg *)md->md_addr;

while (uio->uio_iovcnt > 0 && uio->uio_iov->iov len > 0) {
if ((c = uwritec(uio)) == -1)

return(EFAULT);
sk_reg->sk_data = (char)c;

return(O);

skread (dev, uio)
dev_t dev;
struct uio *uio;
{

struct mb device *md;
struct sk_reg *sk_reg;

md = skdinfo[SKUNIT(dev)];
sk_reg = (struct sk_reg *)md->md_addr;

while (uio->uio_iovcnt > 0 && uio->uio_iov->iov len > O) {
if (ureadc(sk_reg->sk_data, uio))

return(EFAULT);

return(O);

Revision A, of 27 March 1990

18 8 Appendices

D.2. Sun-3 Color Graphics Driver

I*
*
* (cg2reg.h) Description of Sun-3 hardware color frame buffer.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

I*
* Structure defining the way in which the address bits to the
* SUN-3 color frame buffer are decoded.
*I

#define CG2 WIDTH 1152
#define CG2 HEIGHT 900
#define CG2_SQUARE 1024
#define CG2 DEPTH 8

struct cg2memfb {
union bitplane /* Word mode memory* I

} ;

short word[CG2_HEIGHT] [CG2_WIDTH/(8*sizeof(short))];
short sword[CG2_SQUARE] [CG2_SQUARE/(8*sizeof(short))];

memplane[8];
union byteplane { /* Pixel mode memory* I

u char pixel[CG2_HEIGHT] [CG2 WIDTH];
u char spixel[CG2_SQUARE] [CG2_SQUARE];

pixplane;

struct cg2statusreg {
unsigned unused : 4;
unsigned resolution: 4;

I* Reserved for future use * I
I* Screen resolution * I

unsigned retrace 1;
unsigned inpend 1;
unsigned ropmode 3;
unsigned inten 1;
unsigned update_cmap: 1;

/* 0 = 900 x 1152 * I
I* 1 = 1024 x 1024 * I

I* rd.only: monitor in retrace * I
I* rd.only: interrupt pending * I
I* Rasterop mode * I
I* Enable interrupt at end of retrace * I

I* Copy ITL cmap to ECL cmap next vert retrace* I
I* Silently disables writing to ITL cmap * I

unsigned video enab 1; I* Enable video DA Cs * I
} ;

struct cg2fb {
union { /* ROP mode memory* I

union bitplane ropplane[8]; /* WordmodememorywithROP */
union byteplane roppixel; /* Pixel mode memory withROP * I

ropio;
union {

struct memropc ropregs;
I* Rasterop unit control * I
I* Normal register access * I

Revision A, of 27 March 1990

} ;

!*

Appendix D - Sample Driver Listings 189

struct {
char pad [2 0 4 8] ; / * For pixmode src reg prime * I
st ruct memropc ropregs; / * Byte xfer loads alternate * I

prime; /* Source register bits* I
char pad[4096];

ropcontrol[9];
union { /* Status register* I

struct cg2statusreg reg;
short word;
char pad[4096];

status;
union {

unsigned short reg;
char pad[4096];

ppmask;
union {

unsigned short reg;

char pad[4096];
wordpan;

union {
struct

unsigned unused
unsigned lineoff
unsigned pixzoom

reg;
short word;
char pad [4 0 9 6] ;

zoom;
union {

struct
unsigned unused
unsigned lorigin
unsigned pixeloff

reg;
short word;
char pad[4096];

pixpan;
union {

unsigned short reg;
char pad[4096];

varzoom;
union {

unsigned short reg;
char pad[4096];

} intrptvec;
u_short redmap[256];
u short greenmap[256];
u short bluemap[256];

8;

I* Per plane mask register * I
I* 8 bits 1 bit-> wr to plane* I

I* Word pan register * I
I* High 16 bits of 20-bit pixel address* I
I* Pixel addr = CG2 _ WIDTH*y+x * I

I* Zoom and line offset register * I

4; / * y offset into zoomed pixel * I
4 ; / * Zoomed pixel size - 1 * I

I* Pixel pan register * I

8;
4;
4;

I* Low 4 bits of pix addr* I
I* Zoomed pixel x offset/4 * I

I* Variable zoom register * I
I* Reset zoom after line no * I
/* Line number 0 . .1024/4 * I

I* Interrupt vector register * I
/* Line number 0 . .1024/4 * I

/* Shadow color maps* I

Revision A, of 27 March 1990

190 Appendices

* ROPMODES -- Parallel, W _SDT, LS_SRC, Read/Write,

* on read or write?, on wrdmode or pixmode?
*I

-#define PRWWRD 0 /* parallel 8 plane, read write, wrdmode
-#define SRWPIX 1 I* single pixel, read write, pixmode
-#define PWWWRD 2 I* parallel 8 plane, write write, wrdmode
-#define SWWPIX 3 /* single pixel, write write, pixmode
-#define PRRWRD 4 /* parallel 8 plane, read read, wrdmode
-#define PRWPIX 5 /* parallel 16 pixel, read write, pixmode
-#define PWRWRD 6 I* parallel 8 plane, write read, wrdmode
-#define PWWPIX 7 I* parallel 16 pixel, write write, pixmode

I*
* ROP control unit numbers
*I

-#define CG2 ROPO 0 /* Rasterop unit for bit plane 0 */
-#define CG2 ROPl 1 /* Rasterop unit for bit plane 1 */
-#define CG2 ROP2 2
-#define CG2 ROP3 3
-#define CG2 ROP4 4

-#define CG2 ROPS 5
-#define CG2 ROP6 6
-#define CG2 ROP7 7
#"define CG2 ALLROP 8 /* Writes to all units enabled by PP MASK, */

/* reads from plane zero * I

-#define CG SRC OxCC
-#define CG DEST OxAA
#"define CG MASK OxfO
-#define CG NOTMASK OxOf
#"define CGOP NEEDS_MASK(op) ((((op) > > 4) - (op)) & CG_NOTMASK)

I*
* Defines for accessing the rasterop units
*I

#"define

#"define

#"define

#define

-#define

#define

cg2_setrsource(fb, ropunit, val)\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_sourcel (val))
cg2_setlsource(fb, ropunit, val)\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_source2 (val))
cg2_setfunction(fb, ropunit, val)\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_op = (val))
cg2_setpattern(fb, ropunit, val)\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_pattern = (val))
cg2_setshift(fb, ropunit, shft, dir)\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_shift =\

(sh ft) I ((di r) < < 8))
cg2_setwidth(fb, ropunit, w, count)\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_width = (w));\
((fb)->ropcontrol[(ropunit)] .ropregs.mrc_opcount = (count))

*/
*I
*I
*/
*I
*/
*I
*/

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 191

!*
* Defines for accessing the zoom and pan registers
*I

#define

#define

#define

#define

cg2_setzoom(fb, pixsize)\
((fb)->zoom.reg.pixzoom = (pixsize)-1)
cg2_setpanoffset(fb, xoff, yoff)\
((fb)->pixpan.reg.pixeloff = (xoff)>>2;\
(fb)->zoom.reg.lineoff = (yoff)

cg2_setpanorigin(fb, x, y)\
((y) = ((fb)->status.reg.resolution == 1) ?\

(y)*CG2_SQUARE+(x) : (y)*CG2_WIDTH+(x);\
(fb)->pixpan.reg.lorigin = (y)&Oxf;\
(fb)->wordpan.reg = (y)>>4)

cg2_setzoomstop(fb, y) ((fb)->varzoom.reg (y)>>2)

I*
*
*I

Defines that facilitate addressing the frame buffer

#define

#define

#define

#define

#define

#define

#define

#define
#define

cg2_pixaddr(fb, x, y)\
(((fb)->status.reg.resolution) ?\
&(fb)->pixplane.spixel[(y)] [(x)] :\
&(fb)->pixplane.pixel[(y)] [(x)])

cg2_wordaddr(fb, plane, x, y)\
(((fb)->status.reg.resolution) ?\
& (fb) ->memplane [(plane)]. sword[(y)] [(x) >>4] : \
& (fb)->memplane[(plane)] .word[(y)] [(x) >>4])

cg2_roppixaddr(fb, x, y)\
(((fb)->status.reg.resolution) ?\
&(fb)->ropio.roppixel.spixel[(y)] [(x)] :\
&(fb)->ropio.roppixel.pixel[(y)] [(x)])

cg2_ropwordaddr(fb, plane, x, y)\
(((fb)->status.reg.resolution) ?\
&(fb)->ropio.ropplane[(plane)] .sword[(y)] [(x)>>4] :\
& (fb) ->ropio. ropplane [(plane)] . word [(y)] [(x) >>4])

cg2_width (fb) \
(((fb)->status.reg.resolution) ? CG2_SQUARE CG2_WIDTH)
cg2_height(fb)\
(((fb)->status.reg.resolution) ? CG2_SQUARE
cg2_linebytes(fb, mode)\
(((fb)->status.reg.resolution)\
? (((mode)&l)?CG2_SQUARE:CG2_SQUARE/8)\
: (((mode)&1)?CG2_WI0TH:CG2_WIDTH/8))

cg2_prskew(x) ((x) & 15)
cg2_touch(a) ((a)=O)

CG2 HEIGHT

Revision A, of 27 March 1990

192 Appendices

I* (cg2var.h) More Sun-3 color frame buffer definitions
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

I*
* Information pertaining to the Sun-3 color buffer but not to pixrects in
* general is stored in the struct pointed to by the pr_ data attribute of the
* pixrect. One property of the color buffer not shared with all pixrects is
* that it has a color map. The color map type and colormap contents are
* specified by the putcolormap operation.
*I

struct cg2pr
struct
int

cg2fb *cgpr_va;
cgpr_fd;

int
struct

cgp r _planes; / * Color bit plane mask register * I
pr_pos cgpr_offset;

} ;

#define cg2_d(pr) ((struct cg2pr *) (pr)->pr_data)
#define cg2_fbfrompr(pr) (((struct cg2pr *) (pr)->pr_data)->cgpr_va)
#define cg2_ropword(cgd, plane, ax, ay)\

(cg2_ropwordaddr((cgd)->cgpr_va, (plane),\
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay))

#define cg2_pixel(cgd, ax, ay)\
(cg2_pixaddr((cgd)->cgpr_va,\
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay))

#define cg2_roppixel(cgd, ax, ay)\
(cg2_roppixaddr((cgd)->cgpr_va,\
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay))

#define cg2_prd_skew(cgd, ax)\
(((cgd)->cgpr_offset.x+(ax)) & 15)

extern struct pixrectops cg2_ops;

int cg2_rop();
int cg2_putcolormap();
int cg2_putattributes();

#ifndef KERNEL

int
int
struct
int
int
int
int
struct
int
int
#endif

cg2_stencil ();
cg2_batchrop();
pixrect *cg2_make();
cg2_destroy ();
cg2_get();
cg2_put ();
cg2_vector ();
pixrect *cg2_region();
cg2_getcolormap();
cg2_getattributes();

!KERNEL

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 193

I*
* (cgtwo.c) Sun-3 (Memory Mapped) Color Board Driver
* Copyright (c) 1984 by Sun Microsystems, Inc.
*I

I*
*Asa driver for a frame-buffer device, cgtwo.c must provide not only the
* standard device-driver functionality, but also low-level support/or the
* Sun virtual desktop. That is to say ,frame-buffer drivers not only
* implement the standard device-driver hardware interface, but also declare,
* initialize and export the pixrect structures which allow the kernel to
* view the frame-buffer memory as a large rectangle within which it can
* rapidly paint a cursor. As a consequence, some of the code here is pixrect
* related, though among the muck you'll find the operations common to all
* memory-mapped drivers.
*
* The kernel does not context switch frame buffers, despite the fact that some
* of them (including the Sun2 Color Board which this driver controls) do have
* context. In general, the kernel assumes that frame buffers either have no
* context that needs to be switched, or are used in a manner that doesn't
* require them to be context switched. Sun Windows takes the second of these
* tacks, arbitrating frame-buffer access (with pixwin locking) so that no
* process can use the frame buffer while another process has "context" in it.
*
*I

#include "cgtwo.h"
#include "win.h"
#if NCGTWO > 0

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/map.h>
#include <sys/vmmac.h>

I* installed device count --from conf ig * /

I* general kernel parameters * I
I* 1/0 buffers * I
I* system error reporting * I
I* ioctl definitions * I
I* resource allocation maps * I
I* virtual memory related conversion macros * I

I* <machine> is a symbolic link to sun[234J * I
#include <machine/pte. h> /* page table entries* I
#include <machine/mmu. h> /* memory-management unit*/
#include <machine/psl. h> /* process status register* I

#include <sun/fbio.h> I* frame buffer definitions * I

I* <sundev> is the device driver source directory * /
#include <sundev /mbvar. h> /* bus-interface definitions* I

I* <pixrect> contains pixrect-related source * I
#include <pixrect/pixrect. h> /* basic pixrect definitions* I
#include <pixrect/pr_impl_util. h> /* pixrect utilities* I
#include <pixrect/memreg. h> /* rasterop hardware registers*/
#include <pix re ct/ cg2 reg. h> / * Sun2 color frame buffer definitions * I
#include <pixrect/ cg2var. h> /* more Sun2 color frame buffer* I

Revision A, of 27 March 1990

194 Appendices

I* probe size in bytes -- enough for the useful part of the board* I
#define CG2 PROBESIZE CG2 MAPPED SIZE

I* M ainbus device data * I
int cgtwoprobe(), cgtwoattach();

struct mb device *cgtwoinfo[NCGTWO];
struct mb driver cgtwodriver = {

cgtwoprobe, 0, cgtwoattach, O, O, O,
CG2_PR0BESIZE, "cgtwo", cgtwoinfo, 0, 0, O, 0

} ;

I* Driver per-unit data * I
struct cg2_softc {

int flags; / * misc. flags; bits defined in cg2var.h * I
/* (struct cg2pr,flags member) * I

struct cg2fb *fb; /* virtual address * I
int w, h; / * resolution * I

#if NWIN > 0
Pixrect pr;
struct cg2pr prd;

#"endif NWIN > 0
} cg2_softc[NCGTWO];

I* kernel pixrect and private data * I

/* default structure/or FBIOGAITR!FBIOGITPE ioctls * I
static struct fbgattr fbgattr_default {
I* real _type owner * I

FBTYPE_SUN2COLOR, 0,
I* fbtype: type h w depth ems size * I

{ FBTYPE_SUN2COLOR, 0, 0, 8, 256, CG2 MAPPED SIZE},
/* fbsattr:flags emu_type * I

{ FB_ATTR_DEVSPECIFIC, -1,
I* dev _specific: FLAGS, BUFFERS, PRFLAGS * I

{ FB_ATTR_CG2_FLAGS_PRFLAGS, 1, 0 } },
/* emu_types * I

{ -1, -1, -1, -1}
} ;

I* Double buffering enable flag * I
int cg2_dblbuf_enable = 1;

#if NWIN > 0

I* Sun Windows specific stuff * I

I* kernel pixrect ops vector * I
static struct pixrectops pr_ops

cg2_rop,

} ;

cg2_putcolormap,
cg2_putattributes

#endif NWIN > 0

Revision A, of 27 March 1990

cgtwoprobe(reg, unit)
caddr_t reg;
int unit;

register struct cg2fb *fb = (struct cg2fb *) reg;
register struct cg2_softc *softc;

I*
* Check if board is present and strapped for 2M decoding.
* If this fails, remap for 4M decoding and try again.
*I
if (probeit(fb)) {

fbmapin((caddr_t) fb, fbgetpage((caddr_t) fb) +

Appendix D - Sample Driver Listings 195

(int) btop(CG2_MAPPED_OFFSET), CG2_MAPPED_SIZE);

if (probeit (fb))
return O;

softc = &cg2_softc[unit];
softc->fb = fb;
softc->flags = O;

I* check for supported resolution * I
switch (fb->status.reg.resolution)
case CG2 SCR 1152X900:

softc->w = 1152;
softc->h = 900;
softc->flags = CG2D_STDRES;
break;

case CG2 SCR 1024Xl024: - -
softc->w 1024;
softc->h = 1024;
break;

default:
printf("%s%d: unsupported resolution (%d)O,

cgtwodriver.mdr_cname, unit,
fb->status.reg.resolution);

return O;

return CG2_PR0BESIZE;

static
probeit(fb)

register struct cg2fb *fb;

union {
struct cg2statusreg reg;
short word;

status;

Revision A, of 27 March 1990

196 Appendices

://:define
://:define

allrop(fb, reg) ((short*) &(fb)->ropcontrol[CG2_ALLROP] .ropregs.reg)
pixelO(fb) ((char*) &fb->ropio.roppixel.pixel[O] [O])

I*
* Probe sequence:
*
* set board/or pixel mode access
* enable all planes
* set rasterop function to CG_ SRC
* disable end masks
* set fifo shift/direction to zero/left-to-right
* write Oxa5 to pixel at (0,0)
* check pixel value
* enable subset of planes (Oxcc)
* set rasterop function to ~cG _DEST
* write to pixel at (0,0) again
* enable all planes again
* read pixel value; should be Oxa5 A Oxcc = Ox69
*I
status.word= peek(&fb->status.word);
status.reg.ropmode = SWWPIX;
if (poke(&fb->status.word, status.word) I I

poke((short *) &fb->ppmask.reg, 255) I I
poke(allrop(fb, mrc_op), CG_SRC) I I
poke(allrop(fb, mrc_maskl), 0) I I
poke(allrop(fb, mrc_mask2), 0) I I
poke(allrop(fb, mrc shift), 1 << 8) 11

pokec (pixelO (fb), Oxa5) I I
pokec(pixelO(fb), 0) I I
peekc(pixelO(fb)) != Oxa5 I I
poke((short *) &fb->ppmask.reg, Oxcc) I I
poke(allrop(fb, mrc_op), -cG_DEST) I I
pokec(pixelO(fb), 0) I I
poke((short *) &fb->ppmask.reg, 255) I I
peekc(pixelO(fb)) != (Oxa5 ~ Oxcc))
return 1;

return 0;

:/1:undef
:/1:undef
}

allrop
pixelO

cgtwoattach(md)
struct rob device *md;

register struct cg2_softc *softc = &cg2_softc[md->md_unit];
register struct cg2fb *fb = softc->fb;
register int flags= softc->flags;

://:define dummy flags

Revision A, of 27 March 1990

I* set interrupt vector * I
if (md->md_intr)

fb->intrptvec.reg
else

Appendix D - Sample Driver Listings 197

md->md_intr->v_vec;

printf("WARNING: no interrupt vector specified in config fileO);

I*
* Determine whether this is a Sun-2 or Sun-3 color board
* by setting the wait bit in the double buffering register
* and seeing if it clears itself during retrace.
*
* On the Sun-2 color board this just writes a bit in the
* "wordpan" register.
*!
fb->misc.nozoom.dblbuf.word = 0;
fb->misc.nozoom.dblbuf.reg.wait = 1;

I* wait for leading edge, then trailing edge of retrace * I
while (fb->status.reg.retrace)

I * nothing * I ;
while (!fb->status.reg.retrace)

/* nothing * I ;
while (fb->status.reg.retrace)

I* nothing * I ;

if (fb->misc.nozoom.dblbuf.reg.wait)

else

I* Sun-2 color board * I
fb->misc.nozoom.dblbuf.reg.wait O;
flags I= CG2D_ZOOM;

/* Sun-3 color board (or better) * I
flags I= CG2D_32BIT I CG2D_NOZOOM;

if (fb->status.reg.fastread)
flags I= CG2D_FASTREAD;

if (fb->status.reg.id)
flags I= CG2D ID I CG2D_ROPM0DE;

I*
* Probe for double buffering feature.
* Write distinctive values to one pixel in both buffers,
* then two pixels in buffer B only.
* Read from buffer Band see what we get.
*
* Warning: assumes we were called right after cgtwoprobe
*!

cg2_setfunction(fb, CG2_ALLROP, CG_SRC);
fb->ropio.roppixel.pixel[O] [O] = OxSa;
fb->ropio.roppixel.pixel[O] [0] = OxaS;
fb->misc.nozoom.dblbuf.reg.nowrite_a = 1;
fb->ropio.roppixel.pixel[O] [O] = Oxc3;

Revision A, of 27 March 1990

198 Appendices

fb->ropio.roppixel.pixel[O] [4] = dummy;
if (fb->ropio.roppixel.pixel[O] [0] == OxSa)

fb->misc.nozoom.dblbuf.reg.read_b = 1;

if (fb->ropio.roppixel.pixel[O] [0] == OxaS &&
fb->ropio.roppixel.pixel[O] [4] == Oxc3 &&
cg2_dblbuf_enable)
flags I= CG2D_DBLBUF;

fb->misc.nozoom.dblbuf.word = O;

softc->flags flags;

#ifndef sun2
I* re-map into correct VME space if necessary * I
{

int page= fbgetpage((caddr_t) fb);

if (((flags & CG2D_32BIT) != 0) !=
((page & PGT_MASK) == PGT_VME_D32))
fbmapin((caddr_t) fb,

page A (PGT_VME_D16 A PGT_VME_D32),
CG2_MAPPED_SIZE);

#endif !sun2

I* print informative message * I
printf("%s%d: Sun-%c color board%s%s0,

md->md_driver->mdr_dname, md->md_unit,
flags & CG2D_ZOOM? '2' : '3',
flags & CG2D_DBLBUF? ", double buffered" : "",
flags & CG2D FASTREAD? ", fast read" : "");

cgtwoopen(dev, flag)
dev_t dev;
int flag;

return fbopen(dev, flag, NCGTWO, cgtwoinfo);

/*ARGSUSED* I
cgtwoclose(dev, flag)

dev_t dev;

register struct cg2_softc *softc = &cg2_softc[minor(dev)];
register struct cg2fb *fb = softc->fb;

I* fix up zoom and/or double buffering on close * I

if (softc->flags & CG2D_ZOOM) {
fb->misc.zoom.wordpan.reg O; I* hi pixel adr = 0 * I

Revision A, of 27 March 1990

Appendix D- Sample Driver Listings 199

fb->misc.zoom.zoom.word = 0; /* zoom=O,yoff=O */
fb->misc. zoom. pixpan. word O; /* pix adr=O, xoff=O * I
fb->misc. zoom. varzoom. reg = 255; /* unzoom at line 4*255 * I

if (softc->flags & CG2D_NOZOOM)
fb->misc.nozoom.dblbuf.word 0;

return O;

cgtwommap(dev, off, prot)
dev_t dev;
off_t off;
int prot;

return fbmmap(dev, off - CG2_MAPPED_OFFSET,
prot, NCGTWO, cgtwoinfo, CG2_MAPPED_SIZE);

/*ARGSUSED* I
cgtwoioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr_t data;
int flag;

register struct cg2_softc *softc

switch (cmd} {

case FBIOGTYPE:

&cg2_softc[minor(dev}];

register struct fbtype *fbtype = (struct fbtype *) data;

*fbtype = fbgattr_default.fbtype;
fbtype->fb_height softc->h;
fbtype->fb_width = softc->w;

break;

case FBIOGATTR:
register struct fbgattr *gattr (struct fbgattr *) data;

*gattr = fbgattr_default;
gattr->fbtype.fb_height = softc->h;
gattr->fbtype.fb_width = softc->w;

if (softc->flags & CG2D_NOZOOM)
gattr->sattr.dev_specific[FB_ATTR CG2 FLAGS] I=

FB_ATTR_CG2_FLAGS_SUN3;

if (softc->flags & CG2D_DBLBUF)
gattr->sattr.dev_specific[FB_ATTR CG2 BUFFERS] 2;

Revision A, of 27 March 1990

200 Appendices

gattr->sattr.dev_specific[FB_ATTR_CG2_PRFLAGS] softc->flags;

break;

case FBIOSATTR:
break;

#if NWIN > 0

case FBIOGPIXRECT:
((struct fbpixrect *) data)->fbpr_pixrect

I* initialize pixrect * I
softc->pr.pr_ops = &pr_ops;
softc->pr.pr_size.x = softc->w;
softc->pr.pr_size.y = softc->h;
softc->pr.pr_depth = CG2_DEPTH;
softc->pr.pr_data = (caddr_t) &softc->prd;

I* initialize private data * I

&softc->pr;

bzero((char *) &softc->prd, sizeof softc->prd);
softc->prd.cgpr_va = softc->fb;
softc->prd.cgpr_fd = 0;
softc->prd.cgpr_planes = 255;
softc->prd.ioctl_fd = minor(dev);
softc->prd.flags = softc->flags;
softc->prd.linebytes = softc->w;

I * enable video * I
softc->fb->status.reg.video_enab 1;

break;

#endif NWIN > 0

/* get info/or GP * I
case FBIOGINFO: {

register struct fbinfo *fbinfo

fbinfo->fb_physaddr =

(struct fbinfo *) data;

(fbgetpage((caddr_t) softc->fb) << PGSHIFT) -
CG2 MAPPED OFFSET & Oxffffff; - -

fbinfo->fb hwwidth = softc->w;
fbinfo->fb_hwheight = softc->h;
fbinfo->fb_ropaddr (u_char *) softc->fb;

break;

I* set video flags * I
case FBIOSVIDEO:

softc->fb->status.reg.video_enab
(* (int*) data) & FBVIDEO ON? 1 0;

break;

Revision A, of 27 March 1990

Appendix D- Sample Driver Listings 201

I* get video flags * I
case FBIOGVIDEO:

* (int*) data= softc->fb->status.reg.video_enab
? FBVIDEO ON FBVIDEO_OFF;

break;

case FBIOVERTICAL:
cgtwo_wait(minor(dev));
break;

default:
return ENOTTY;

return 0;

I* wait for vertical retrace interrupt * I
cgtwo_wait(unit)

int unit;

register struct mb device *md = cgtwoinfo[unit & 255];
register struct cg2_softc *softc = &cg2_softc[unit & 255];
int s;

if (md->md_intr 0)
return;

s = splx(pritospl(md->md_intpri));
softc->fb->status.reg.inten = 1;
(void) sleep((caddr_t) softc, PZERO - 1);
(void) splx (s) ;

I* vertical retrace interrupt service routine * I
cgtwointr(unit)

int unit;

register struct cg2_softc *softc

softc->fb->status.reg.inten = O;
wakeup((caddr_t) softc);

-#ifdef lint
cgtwointr(unit);

-#endif
}

&cg2_softc[unit];

Revision A, of 27 March 1990

202 Appendices

I*
* (jbutil.c) Frame Buffer Driver Support Utilities
* Copyright (c) 1985, 1987 by Sun Microsystems, Inc.
*I

I*
* The routines in this.file, called from many the Sunframe buffer drivers,
* peiform the essential operations necessary for all memory-mapped drivers.
*I

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/errno.h
#include <sys/mman.h>
#include <sys/vmmac.h>

I* machine dependent kernel parameters * I
I* 110 buffers* I
I* System error reporting * I
I* Memory-mapping definitions * I
I* Virtual memory related conversion macros * I

I* <machine> is a symbolic link set to sun[234 J * I
#include <machine/pte. h> /* page table entries* I

I* <sundev> is the device driver source directory * I
#include <sundev /mbvar. h> / * bus-inteiface definitions* I

I*
* Makes the necessary error checks and then returns. Everything is OK if the
* device is predefined in the con.fig file and if the probe routine found it as
* expected.
*I
int fbopen(dev, flag, numdevs, mb_devs)

dev_t dev;
int flag, numdevs;
struct mb device **mb_devs;

register struct mb_device *md;

if (minor(dev) >= numdevs I I
(md = mb_devs[minor(dev)]) 0 I I

md->md alive== 0)
return ENXIO;

return 0;

I*
* Work from the device address and an offset within its address
* space to get the page frame number for the page to be mapped.
*I
int fbmmap(dev, off, prot, numdevs, mb_devs, size)

dev t dev;
off_t off;
int rot;
int numdevs;
struct mb device **mb_devs;
int size;

+ sun
microsystems

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 203

if ((u_int) off>= size)
return -1;

return fbgetpage(mb_devs[minor(dev)]->md_addr + off);

I* Get page frame number and page type * I
fbgetpage(addr)

caddr t addr;

return (int) hat_getkpfnum((addr_t) addr);

I*
* Simplified ma pin and ma pout. Note that, since these
* routines are implemented in terms ofusrptmap (which has been
* preserved for compatibility reasons) they will work with either SunOS
* release 4.0 or with earlier releases.
fbmapin(virt, phys, size)

caddr t virt;
int phys;
int size;

mapin(&Usrptmap[btokmx((struct pte *) virt)], btop(virt),
(u_int) phys, btoc(size), PG V I PG_KW);

fbmapout(virt, size)
caddr_t virt;
int size;

mapout(&Usrptmap[btokmx((struct pte *) virt)], btoc(size));

#ifdef sun2
I*
* Some Sun-2 frame-buffer devices allowed the user to enable/disable interrupts, and
* even to change the interrupt level. Thus, fbintr is necessary so that the
* kernel will always be able to find the interrupting device. /f fbintrfinds
* an interrupting device, it returns with a 1 after calling intclear to turn
* off its interrupt.
*I
fbintr(numdevs, mb_devs, intclear)

int numdevs;
register struct mb_device **mb_devs;
int (*intclear) ();

register struct mb_device *md;

while (--numdevs >= 0)

Revision A, of 27 March 1990

204 Appendices

if ((md = *mb_devs++) &&
md->md alive &&
(*intclear) (md->md_addr))
return 1;

return O;

-#endif sun2

Revision A, of 27 March 1990

D.3. Sky Floating-Point Driver

I*
* (skyreg.h) Sky Floating Point Processor Registers
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

struct skyreg {
u short
u short
union {

sky_command;
sky_status;

short skyu_dword[2];
long skyu_dlong;

skyu;
#define sky_data skyu.skyu_dlong
#define sky_dlreg skyu.skyu_dword[O]

long sky_ucode;
u short sky_ vector; / * VME interrupt vector number* I

} ;

I* command masks * I
#define SKY SAVE Ox1040
#define SKY RESTOR Ox1041
#define SKY NOP Ox1063
#define SKY STARTO OxlOOO
#define SKY STARTl OxlOOl

I* status masks * I
#define SKY IHALT OxOOOO
#define SKY INTRPT Ox0003
#define SKY INTENB OxOOlO
#define SKY RUNENB Ox0040
#define SKY SNGRUN Ox0060
#define SKY RESET Ox0080
#define SKY IODIR Ox2000
#define SKY IDLE Ox4000
#define SKY IORDY Ox8000

Appendix D - Sample Driver Listings 205

Revision A, of 27 March 1990

206 Appendices

I*
* (sky.c) SKY Floating-point Processor Driver
* Copyright (c) 1985 by Sun Microsystems, Inc.
*I

I*
* The Sky driver is quite unusual in that maintains some state information
* in the kernel user structure. This is because the kernel must context
* switch the Sky board among the processes that wish to use it. This is not
* typical, and, in fact, there is currently no way for users to add new
* devices which, like the Sky board, must be context switched by the kernel.
*
* The Sky board is used only with Sun2 machines, and machines with Sky boards
* are known to have only one installed.
*I

I*
* Most device drivers include about the same set of system header files,
* with variation reflecting driver differences in functionality. The system
* include files are located in directories whose location is fixed relative
* to the configuration directories (for both source and object distributions.)
* Note that there is not a sky.hfile included here; the sky board is a
* special case and we know that there's only one installed.
*I

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/dir.h>
#include <sys/user.h>

I* general kernel parameters * I
/* 110 buffers* I
I* open file information * I
I* file system directories* I
I* kernel per-process status * I

I* <machine> is a symbolic link set to either sun2 or sun3 * I
#include <machine/pte. h> /* page table entries* I
#include <machine/mmu. h> /* memory management unit* I
#include <machine/ cpu. h> / * architecture-related defs * I
#include <machine/scb. h> /* system control block* I

I* . .lsundev is the device driver source directory * I
#include <sundev /mbvar. h> /* bus interface definitions* I
#include <sundev / sky reg. h> /* sky register definitions* I

I*
* The ''page" size (for the VME sky board only) is an offset which must be
* added to the device base address to get access to the full set of device
* registers. The second page (page 1) is taken as the supervisor page and
* allows access to all the registers; the first (0) page is the user page and
* does not, thus preventing access to the registers needed to load microcode
* and context switch the device. In user mode it's only possible to access the
* registers needed to control floating-point operations.
*I
#define SKYPGSIZE Ox800

I * auto-configuration information * I

Revision A, of 27 March 1990

int skyprobe(), skyattach(), skyintr();
struct mb_device *skyinfo[l]; /*OnlyoneSkyboard*/
struct mb_driver skydriver = {

skyprobe, 0, skyattach, O, O, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, O, 0, 0, O,

} ;

I*
* The global variable skyaddr is set in skyprobe to contain the
* base address of the "supervisor page" (page 1) of the Sky board (the base
* address of the device registers.)
*!
struct skyreg *skyaddr;

I*
* These two global variables are used to control extraordinary aspects of the
* Sky driver logic:
* skyinit is set to 1 when the device (during system initialization)
* is opened for microcode loading. When the microcode loader closes the
* device, skyini t is set to 2, indicating that the device is available
* for general use. This mechanism is necessary to handle the special open
* state needed for microcode loading.
* skyisnew is even more peculiar, being necessary only to distinguish
* two slightly different versions of the Sky board.
*I
int skyinit = O, skyisnew = O;

/*AR.GSUSED* I
skyprobe(reg, unit)

caddr_t reg;
int unit;

Appendix D - Sample Driver Listings 207

register struct skyreg *skybase (struct skyreg *)reg;

I* Is something there? * I
if (peek((short *)skybase) -1)

return (O);

I* If so, is it a Sky board? * I
if (poke((short *)&skybase->sky_status, SKY_IHALT))

return (0);

skyaddr = (struct skyreg *) (SKYPGSIZE + reg);
if (cpu == CPU_SUN2_120 I I

poke((short *)&skyaddr->sky_status, SKY_IHALT))

I* old VMEbus or Multibus version of the Sky board * I
skyaddr = (struct skyreg *)reg;
skyisnew 0;

else
skyisnew 1;

return (sizeof (struct skyreg));

Revision A, of 27 March 1990

208 Appendices

I*
* If it's the new version of the board, then it has to be told what interrupt
* to respond to. This is true for both vectored and auto-vectored interrupts.
* In the auto-vectored case, the VME interrupt vector is set to be identical
* to the 68000 auto-vector for the appropriate interrupt level. For the old
* version of the Sky board, skyattach does nothing.
*I
skyattach(md)

struct rob device *md;

if (skyisnew) {
if (! md->md_intr) {

I* auto-vectored interrupts * I
(void) poke((short *)&skyaddr->sky_vector,

AUTOBASE + md->md_intpri);
else {

I* vectored interrupts * I
(void) poke((short *)&skyaddr->sky_vector,

md->md intr->v_vec);

/*ARGSUSED* I
skyopen(dev, flag)

dev_t dev;
int flag;

inti;
register struct skyreg *s = skyaddr;

if (skyaddr == 0) /*skyprobedidn'tfindthedevice*/
return (ENXIO);

if (skyinit == 2) {
I*
* skyini tis 2 only when skyclose has previously been
* called. This is true only in the case where skyclose was
* called by the microcode loader, and so it's used here to recognize
* the first time that the device is openedfor use by a user
* process. Thus, it's here that the device (and its related
* bookkeeping fields) need to be initialized.
*I
s->sky_status = SKY_RESET;
s->sky_command SKY_STARTO;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_STARTl;
s->sky_status = SKY_RUNENB;
u.u_skyctx.usc_used = l;
u.u_skyctx.usc_cmd SKY_NOP;

Revision A, of 27 March 1990

for (i=O; i<8; i++)
u.u_skyctx.usc_regs[i] O;

skyrestore();

else if (flag & FNDELAY)

I*
* This open is for the the user program that loads the microcode.
* This is a special case that allows it to open the device, even
* though it isn't initialized.
*/
skyinit = 1;

else
return (ENXIO);

return (0);

/*ARGSUSED* I
skyclose(dev, flag)

dev_t dev;
int flag;

I*
* Call skysave in case a user aborted and left the board in an
* unclean state. We're really not saving the device state here, but
* rather calling skysave to ensure that the state is safe for the
* next user.
*I
if (skyinit == 2)

skysave();

I*
* This is not the normal case. skyini tis being set to 2 to indicate to
* skyopen that the device has been initialized.
*I
if (skyinit == 1)

skyinit = 2;
u.u_skyctx.usc_used O;
return (0);

l*ARGSUSED* I
skymmap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

if (off)
return (-1);

I*

Appendix D - Sample Driver Listings 209

Revision A, of 27 March 1990

210 Appendices

I*

* If this is a VME Sky board, and the board has been initialized (its
* microcode loaded), then allow the user process to have access only to
* the "user" page. This allows users to do floating-point operations,
* but not to load microcode. The Multibus Sky board doesn't offer such
* protection, so any process can load microcode and screw up other users
* of the board. If this is a VME board, but we've still in the
* microcode-loading state, allow access to the "supervisor" version of
* the registers so we can load the microcode.
*!
off= (off_t)skyaddr;
if (skyisnew && skyinit 2) /* useuserpage */

off-= SKYPGSIZE;

return (hat_getkpfnum((addr_t) off));

* skyintr is also quite atypical, being used only for error reporting
* and to disable interrupts. It must disable interrupts because they may (on
* the Multibus version/or sure) have been accidently set by a user process
* with access to the device registers. The kernel must be able to handle
* all the interrupts which can be generated by all the devices, even if it
* doesn't use them/or anything.
*I

!*ARGSUSED*!
skyintr(n)

int n;

static u short skybooboo = 0;

if (skyaddr && (skyaddr->sky_status & (SKY_INTENBISKY_INTRPT))) {
if (skyaddr->sky_status & SKY_INTENB) {

printf("skyintr: sky board interrupt enabled, status Ox%x\n",
skyaddr->sky_status);

skyaddr->sky_status &= -(SKY_INTENBISKY_INTRPT);
return (1);

if (!skybooboo && (skyaddr->sky_status & SKY_INTRPT)) {
printf("skyintr: sky board unrecognized status, status Ox%x\n",

skybooboo skyaddr->sky_status);
return (0);

return (0);

!*
* skysave does the actual work of saving the device state. It has to
* jump through some hoops to do so, but these hoops are completely device
* specific.
*I
skysave ()
{

sun
microsystems

Revision A, of 27 March 1990

register short i;
register struct skyreg *s
register u short stat;

skyaddr;

for (i = O; i < 100; i++)
stat= s->sky_status;
if (stat & SKY_IDLE) {

u.u_skyctx.usc_cmd
goto sky_save;

if (stat & SKY_IORDY)
goto sky_ioready;

printf("skyO: hung\n");
skyinit = O;
u.u_skyctx.usc_used = O;
return;

I* 1/0 is ready, is it a read or write? * I
sky_ioready:

SKY_NOP;

s->sky_status = SKY_SNGRUN; /* set single step mode* I
if (stat & SKY_IODIR)

i = s->sky_dlreg;
else

s->sky_dlreg = i;

/*
* Check again since data may have been in a long word.
*I

stat= s->sky_status;
if (stat & SKY_IORDY)

I*

if (stat & SKY_IODIR)
i = s->sky_dlreg;

else
s->sky_dlreg = i;

* Read and save the command register. Decrement it by 1 since it's
* actually Sky program counter and must be backed up.
*I
u.u_skyctx.usc_cmd = s->sky_command - 1;

/*
* Reinitialize the board.
*/

s->sky_status = SKY_RESET;
s->sky_command SKY_STARTO;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_STARTl;
s->sky_status SKY_RUNENB;

/*
* Do the actual context save. (Unrolled loop for efficiency.)

Appendix D - Sample Driver Listings 211

Revision A, of 27 March 1990

212 Appendices

*I
sky_save:

s->sky_command = SKY_NOP; /* set device to a clean mode* I
s->sky_command = SKY_SAVE;
u.u_skyctx.usc_regs[O] s->sky_data;
u.u_skyctx.usc_regs[l] s->sky_data;
u.u_skyctx.usc_regs[2] s->sky_data;
u.u_skyctx.usc_regs[3] s->sky_data;
u.u_skyctx.usc_regs[4] s->sky_data;
u.u_skyctx.usc_regs[S] s->sky_data;
u.u_skyctx.usc_regs[6] s->sky_data;
u.u_skyctx.usc_regs[7] s->sky_data;

skyrestore ()
{

register struct skyreg *s skyaddr;

if (skyinit != 2) {
u.u_skyctx.usc_used 0;
return;

s->sky_command SKY_NOP;

/*
* Do the actual context restore.
*I

I* set device to a clean mode * I

s->sky_command = SKY_RESTOR;
s->sky_data u.u_skyctx.usc_regs[O];
s->sky_data u.u_skyctx.usc_regs[l];
s->sky_data u.u_skyctx.usc_regs[2];
s->sky_data u.u_skyctx.usc_regs[3];
s->sky_data u.u_skyctx.usc_regs[4];
s->sky_data u.u_skyctx.usc_regs[S];
s->sky_data u.u_skyctx.usc_regs[6];
s->sky_data u.u_skyctx.usc_regs[7];
s->sky_command = u.u_skyctx.usc_cmd;

Revision A, of 27 March 1990

D.4. Versatec Interface Driver

I*
* (vcmd.h) Include file for user programs that'll give ioctl commands to the
* Ikon 10071-5 Multibus/Versatec interface.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

Hfndef IOCTL -
#include <sys/ioctl.h>
fondif

#define VPRINT 0100
#define VPLOT 0200
#define VPRINTPLOT 0400
#define VPC TERMCOM 0040
#define VPC FFCOM 0020
#define VPC EOTCOM 0010
#define VPC CLRCOM 0004
#define VPC RESET 0002

I*
* !OR and !OW encode read/write instructions to the kernel within the ioctl
* command code. These instructions cause the kernel to read the ioctl
* command argument into user space (_[OR), or to write it into kernel space (_[OW).
*I
#define
#define

VGETSTATE _IOR(v, 0, int)
VSETSTATE _IOW(v, 1, int)

Appendix D - Sample Driver Listings 213

Revision A, of 27 March 1990

214 Appendices

I*
* (vpreg.h) Registers for Ikon 10071-5 Multibus/Versatec interface.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

I*
* Note that the vpdevice structure actually spans the registers of several
* contiguous IC devices (a 8259 and a 8237.) Only the low byte of each
* (short) word is used.
*I

struct vpdevice {
u_short vp_status;
u short vp_cmd;
u short vp_pioout;
u short vp_hiaddr;
u short vp_icadO;
u short vp_icadl;

I* 00: mode(w) and status(r) * I
I* 02: special command bits(w) * I
I* 04: PIO output data(w) (unused) * I
I* 06: hi word of Multibus DMA address(w) * I
I* 08: adO of 8259 interrupt controller * I
I* OA: adl of 8259 interrupt controller * I

I* The rest of the fields are for the 8237 DMA controller * I
u short vp_addr; /* OC: DMA word address* I
u short vp_wc; /* OE: DMA word count* I
u short vp_dmacsr; /*10:commandandstatus(unused)*/
u short vp_dmareq; /* 12: request (unused)* I
u short vp_smb; /* 14: single mask bit (unused)* I
u short vp_mode; /* 16: dma mode* I
u short vp _ clrff; / * 18: clear first/last flip-flop* I
u short vp_clear; /* JA: DMA master clear* I
u short vp_clrmask; /* JC: clear mask register* I
u short vp_allmask; /* JE: all mask bits (unused)* I

} ;

I*
* Warning - this is one of those devices in which the read bits are not
* identical to write bits.
*I

I* vp _status bits (read) * I
#define VP IS8237 Ox80 I * 1 if 8237 (sanity checker) * I
#define VP REDY Ox40 I * printer ready * I
#define VP DRDY Ox20 I* printer and interface ready * I
#define VP IRDY OxlO I* interface ready * I
#define VP PRINT Ox08 I* print mode * I
#define VP NOSPP Ox04 I* not in SPP mode* I
#define VP ONLINE Ox02 I* printer online * I
#define VP NOPAPER OxOl I* printer out of paper * I

I* vp _status bits (write) * I
#define VP PLOT Ox02 I* enter plot mode * I
#define VP SPP OxOl I* enter SPP mode * I

/* vp_cmd bits* I
#define VP RESET OxlO I* reset the plotter and interface * I

Revision A, of 27 March 1990

tdefine
tdefine
tdefine
tdefine

VP CLEAR
VP FF
VP EOT
VP TERM

I* vp _mode bits* I

Ox08
Ox04
Ox02
OxOl

tdefine VP DMAMODE Ox47

I*

I * clear the plotter * I
I* form feed to plotter * I
I* EOT to plotter * I
I* line terminate to plotter * I

/* put interface in DMA mode* I

* These two values are used to set the device (which is reticent to disclose
* that it has issued an interrupt) so that the polling routine can find out.
*I
tdefine
tdefine

VP ICPOLL OxOC
VP ICEOI Ox20

Appendix D- Sample Driver Listings 215

Revision A, of 27 March 1990

216 Appendices

I*
* (vp.c) DMA driver for Ikon 10071-5 Versatec matrix printer/plotter driver.
* Copyright (c) 1985 by Sun Microsystems, Inc.
*I

I*
* Most device drivers include about the same set of system header files, with
* variation reflecting driver differences in functionality. The system include
* files are located in directories whose location is fixed relative to the
* configuration directories (for both source and object distributions.) vp.h
* is presumed to be in the configuration directory, where conf ig will have
* left it and from which it is assumed that driver source files (like this one)
* are compiled.
*I

-#include "vp. h" I* installed device count -- from config * I
-#include <sys/pararn.h> I* general kernel parameters * I
-#include <sys/dir.h> I* file system directories * I
-#include <sys/user.h> I* kernel per-process status * I
-#include <sys/buf.h> I* I/0 buffers * I
-#include <sys/systrn.h> I* miscellaneous kernel variables * I
-#include <sys/kernel.h> I* kernel global variables * I
-#include <sys/rnap.h> I* resource allocation maps * I
-#include <sys/ioctl.h> I* ioctl definitions * I
-#include <sys/vcrnd.h> I* for all Versatec interface drivers * I
-#include <sys/uio.h> I* uio structures * I

I* <machine> is a symbolic link set to either sun2 or sun3 * I
-#include <rnachine/psl. h> /* processor status codes* I
-#include <rnachine/mrnu. h> /* memory-management unit* I

I* <sundev> is the device driver source directory * I
#include <sundev /vpreg. h> /* vp register definitions* I
-#include <sundev /mbvar. h> /* bus-interface definitions* I

I*
* Define the Versatec sleeping priority to be lower than PZERO, that is, make
* its sleep be uninterruptible by signals. This is appropriate because the
* events which we'll be waiting/or, slow as they may be, are relatively fast
* and sure (unlike user input) to occur.
*I
-#define VPPRI (PZER0-1)

I*
* Define an array o/vp_softc structures, one/or each of the NVP
* installed devices. By convention, the names xx_softc and
* xx_device are used/or the private.per-device software state
* structure.
*I
struct vp_softc {

int sc_state;
struct buf *sc_bp;
int sc_mbinfo;

I* current device state * I
I* buff er mapped to device * I
I* stash/or mbsetup' s return code * I

Revision A, of 27 March 1990

} vp_softc[NVP];

I*
* sc_state bits - passed in VGETSTATE and VSETSTATE ioctl calls.
* The user-level ioctl command codes are in vcmd. h, normally found
* in /usr/include/sys
*I
#define VPSC BUSY 0400000
#define VPSC MODE 0000700
#define VPSC SPP 0000400
#define VPSC PLOT 0000200
#define VPSC PRINT 0000100
#define VPSC CMNDS 0000076
#define VPSC OPEN 0000001

I* no special encoding in minor device number * I
#define VPUNIT(dev) (minor(dev))

I*
* Declare an array of private buf headers, by convention named rvpbuf, one for
* each of the NVP installed devices.
*I
struct buf rvpbuf[NVP];

I* The autoconfig-related declarations. * I
int vpprobe(), vpintr();
struct mb_device *vpdinfo[NVP];
struct rob driver vpdriver = {

vpprobe, 0, 0, 0, O, vpintr,
sizeof (struct vpdevice), "vp", vpdinfo, O, O, O,

} ;

I*
* vpprobe already indicates the persnickety nature of the device, a
* nature that will become more clear as we proceed.
*I
vpprobe(reg)

caddr t reg;

Appendix D - Sample Driver Listings 217

register struct vpdevice *vpaddr
register int x;

(struct vpdevice *)reg;

x = peek((short *)&vpaddr->vp_status);

/*
* Note that the device provides a sanity check bit, which
* we can use to ensure that vpprobe is accurate
*/

if (x == -1 I I (x & VP_ IS 8 2 3 7) == 0)
return (O);

I* Now reset the 8259; also return O if reset fails* I
if (poke((short *)&vpaddr->vp_cmd, VP_RESET))

Revision A, of 27 March 1990

218 Appendices

return (0);

I*
* Device-specific magic to shut up the device, by setting the 8259 -- it
* doesn't have enough sense to wait/or the driver's instructions, and
* starts interrupting after being reset. Note that even this isn't
* straightforward because of register write latency.
*I
vpaddr->vp_icadO
DELAY(l);
vpaddr->vp_icadl
DELAY(l);
vpaddr->vp_icadl

Oxl 2; / * ICWJ, edge-trigger * I

OxFF; /* ICW2 - don't care (non-zero)* I

OxFE; / * /RO - interrupt on DRDY edge * I

I* Also reset the 8237 * I
vpaddr->vp_clear = 1;

return (sizeof (struct vpdevice));

vpopen(dev)
dev_t dev;

register struct vp_softc *sc;
register struct mb device *md;
register int s;
static int vpwatch = 0;

I* Do a variety of error checks upon opening the device. Fail if dev
* is greater than the configured number of devices, or if the device
* (which is exclusive open) has already been opened, or if vpprobe
* failed to find the device as expected.
*
* Note that, if the device wasn'tfound by the probe routine, both
* vpdinfo [VPUNIT (dev)] andmd->md_alive will be 0. Any given
* driver may chose.for its convenience, to make either test, but it's
* paranoid to -- as is done here -- make both. (All drivers have
* access to md->md_ali ve; this isn't the case with xxdinfo).
*I
if (VPUNIT(dev) >= NVP I I

I*

((sc = &vp_softc[minor(dev)])->sc_state&VPSC_OPEN) I I
(md = vpdinfo[VPUNIT(dev)]) == 0 I I md->md alive== 0)
return (ENXIO);

* vpw at ch is a static local which is set to O the first time
* vpopen is called. This code sets vpwatch to one and then
* calls vptimo -- the effect is that vptimo gets called only once,
* the first time a user process calls vpopen. But if you examine
* vptimo, you' II see that it arranges matters so that it's called
* repeatedly. This helps to keep the device from locking up.
*I
if (! vpwatch) {

Revision A, of 27 March 1990

I*

vpwatch = 1;
vptimo ();

* Initialize softc state variable. Here we are, among other things, setting

Appendix D - Sample Driver Listings 219

* sc->sc_state = VPSC_OPEN, which indicates that the device (which is
* exclusive use) is tied up, and that no one else can open it. We are also
* dispatching two commands, CLRCOM andVPC_RESET.
*I
sc->sc_state = VPSC_OPENIVPSC_PRINT

I* Loop while any command is in process * I
while (sc->sc_state & VPSC_CMNDS)

I*

VPC_CLRCOMIVPC_RESET;

* This critical section ensures that only one instance of the driver can
* vpwai t/vpcmd at any time. vpcmd clears command request
* bits as it processes commands. This is absolutely necessary, since
* vpcmd intends to actually dispatch a command (posted in
* sc->sc_state) to the hardware.
*I
s = splx(pritospl(md->md_intpri));
vpwait (dev);
vpcmd(dev);
(void) splx (s) ;

return (0);

vpclose(dev)
dev_t dev;

register struct vp_softc *sc

sc->sc state= O;

vpstrategy(bp)
register struct buf *bp;

&vp_softc[VPUNIT(dev)];

register struct vp_softc *sc = &vp_softc[VPUNIT(bp->b_dev)J;
register struct mb_device *md = vpdinfo[VPUNIT(bp->b_dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;
int s;
int pa, we;

I*
* The hardware doesn't support writes to odd addresses or DMA requests
* of less than two bytes in length.
*I
if (((int)bp->b_un.b_addr & 1) I I bp->b_bcount < 2) {

bp->b_flags I= B_ERROR;
iodone (bp);

~ §,,!!,!! Revision A, of 27 March 1990

220 Appendices

I*

return;

s = splx(pritospl(md->md_intpri));
while (sc->sc_bp != NULL)

sleep((caddr_t)sc, VPPRI);

sc->sc_bp = bp;

vpwait(bp->b_dev);
I* Map next request for the now idle device onto the bus for a DMA transfer* I
sc->sc_mbinfo = mbsetup(md->md_hd, bp, 0);

vpaddr->vp_clear = 1;

/* Get the address in DVMA space* I
pa MBI_ADDR(sc->sc_mbinfo);

I*
* Now comes some VERY device-specific code, as we set the DMA transfer
* address on the device.
*I
vpaddr->vp_hiaddr = (pa>> 16) & OxF;
pa= (pa>> 1) & Ox7FFF;
we= (bp->b_bcount >> 1) - 1;
bp->b_resid = O;

I*
* Note the 2 sequential 8-bit writes into the same address to indicate
* a 16-bit address!
*I
vpaddr->vp_addr
vpaddr->vp_addr

pa & OxFF;
pa >> 8;

vpaddr->vp_wc = we & OxFF;
vpaddr->vp_wc =we>> 8;
vpaddr->vp_mode = VP_DMAMODE;
vpaddr->vp_clrmask = 1;

I*
* By setting the VPSC _BUSY bit in sc->sc _ state, we indicate that the device
* is to sleep, and that vpwai tis to loop. This is because we want to insure
* that another command doesn't get issued until this DMA transfer is completed.
*I
sc->sc_state I= VPSC BUSY;

(void) splx (s); I* end of critical section * I

* There is no read routine, as this is a write-only device.
*I

l*ARGSUSED*I

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 221

vpwrite(dev, uio)
dev_t dev;
struct uio *uio;

I*

if (VPUNIT(dev) >= NVP)
return (ENXIO);

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE,
minphys, uio));

* vpwai t kills time, but not by busy waiting. Instead, it relies on the
* fact that sleep and wakeup aren't proper semaphores, and that ALL
* processes which are sleeping on a channel wake when a wakeup is issued
* on that channel. vpwai t' s sleep, then, is awaken by vpintr.
*I
vpwait(dev)

dev_t dev;

register struct vpdevice *vpaddr =
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];

for (; ;)
if ((sc->sc_state & VPSC_BUSY) == 0 &&

vpaddr->vp_status & VP_DRDY)
break;

sleep((caddr_t)sc, VPPRI);

return;

struct pair
char soft;
char hard;

I* software bit * I
I* hardware bit * I

} ;

I*

vpbits[] = {
VPC_RESET,
VPC_CLRCOM,
VPC_EOTCOM,
VPC_FFCOM,
VPC_TERMCOM,
o,

VP_RESET,
VP_CLEAR,
VP_EOT,
VP_FF,
VP_TERM,
0,

* vpcmd is designed to be called after vpwai t has returned, thus
* indicating that the hardware is quiet and ready to receive a new command.
* When it's called, it runs through the possible command bits in
* sc->sc_state, and.finding one set, issues the corresponding hardware
* command to the actual device. At the same time it clears the command from
* sc->sc_state, so that the next time vpcmd is called another
* command will be issued to the hardware. Note that vpcmd waits a long

Revision A, of 27 March 1990

222 Appendices

* time, probably too long.for the device to recover before it returns.
*I
vpcmd(dev)

dev_t;

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr =

(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;
register struct pair *bit;

for (bit= vpbits; bit->soft != 0; bit++)
if (sc->sc_state & bit->soft) {

vpaddr->vp_cmd = bit->hard;
sc->sc_state &= -bit->soft;
DELAY (10 0) ; /* time for DRDY to drop* I
return;

/*ARGSUSED* I
vpioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr_t data;
int flag;

register int m;
register struct mb_device *md = vpdinfo[VPUNIT(dev)];
register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;
int s;

switch (cmd) {

case VGETSTATE:
*(int *)data
break;

I*

sc->sc_state;

* Turn off VP SC_ MODE; restrict the user to resetting it and setting
* VPSC CMNDS
*I
case VSETSTATE:

m = *(int *)data;
sc->sc state=

(sc->sc_state & -vPSC_MODE) (m&(VPSC_MODEIVPSC_CMNDS));
break;

default:
return (ENOTTY); I* "Not a typewriter" * I

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 223

I*
* More careful handling to make sure that one command doesn't get issued until the
* last one has completed. Wait, then post some state information from

I*

* sc->sc_softc to the hardware, then wait again, then call vpcmd to
* fire off the next command. And all in a critical section!
*I
s = splx(pritospl(md->md_intpri));
vpwait (dev);
if (sc->sc_state&VPSC_SPP)

vpaddr->vp_status = VP_SPPIVP_PLOT;
else if (sc->sc_state&VPSC_PLOT)

vpaddr->vp_status VP_PLOT;
else

vpaddr->vp status O;
while (sc->sc_state & VPSC_CMNDS)

vpwait (dev);
vpcmd (dev);

(void) splx (s) ;
return (O);

* This is really a polling interrupt routine. The code at the top that checks
* the polling chain should really be broken out into a vppoll routine
* that gets plugged into the mb _device structure. The rest of the code
* would then be where it properly belongs, in a vpintr routine that can
* be named in the config file.
*I
vpintr ()
{

register int dev;
register struct mb device *md;
register struct vpdevice *vpaddr;
register struct vp_softc *sc;
register int found= 0;

for (dev = 0; dev < NVP; dev++)
if ((md = vpdinfo[dev]) == NULL)

continue;
vpaddr = (struct vpdevice *)md->md_addr;

/*
* It's not easy to find out if an interrupt has occurred.
*I

vpaddr->vp_icadO = VP_ICPOLL;
DELAY (1);

if (vpaddr->vp_icadO & Ox80) {
found= 1;

/* Wake up the guilty device * I
DELAY(l);
vpaddr->vp_icadO VP_ICEOI;

~) S ll fl Revision A, of 27 March 1990
~ microsystems

224 Appendices

sc = &vp_softc[dev];

I* Is there a command currently dispatched and does the hardware
* say it's done with it?
*I
if ((sc->sc_state&VPSC_BUSY) && (vpaddr->vp_status & VP_DRDY))

sc->sc_state &= -vPSC_BUSY; /* clear busy indicator* I

I*

if (sc->sc_state & VPSC_SPP) {

I* device-specific mode toggle * I
sc->sc_state &= -vpsc_SPP;
sc->sc_state I= VPSC_PLOT;
vpaddr->vp_status = VP_PLOT;

iodone (sc->sc _ bp) ; / * break wait in physio * /
sc->sc_bp = NULL;

I*
* Note that the resources being deallocated here were allocated
* in vpstrategy, in the top half of the driver. This is
* standardformfor DMA drivers.
*I

mbrelse(md->md hd, &sc->sc_mbinfo);

wakeup ((caddr_t) sc); /* break loops in vpstrategy AND vpwait * I

return (found);

* vptimo is used to repeatedly kickstart the device, which has a tendency
* to freeze up if left alone too long. It calls vpintr, and then it sets
* up a timer to call vptimo again (and again, and again ...) to make sure
* that a call to vpintr is always pending. The kernel global hz is set
* to reflect the clock rate of the system processor chip (it's 50 for a Sun3).
*I
vptimo ()
{

int s;
register struct mb_device *md = vpdinfo[O];

s = splx(pritospl(md->md_intpri));
(void) vpintr();
(void) splx (s) ;
timeout(vptimo, (caddr_t)O, hz);

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 225

D.S. Sun386i Parallel Port Driver

I*
* (ppreg.h) Sun-386i Parallel Port Registers
* Copyright (c) 1987 by Sun Microsystems, Inc.
*I

I* Register addresses.
*I

ushort ppregs[] [NPPREGS] =
Ox378, Ox37a, Ox379 }, /* portlregs */

} ;

I* Printer Control Reg bits * I
#define PC INTENABLE
#define PC SELECT
#define PC INIT
#define PC LINEFEED
#define PC STROBE

#define PC NORM
#define PC OFF
#define PC RESET

I* Printer Status Reg bits * I
#define PS READY
#define PS NOTACK
#define PS NOPAPER
#define PS SELECT
#define PS NOERROR

#define PSREADY(s)
#define PSSELECT(s)
#define PSNOPAPER(s)
#define PSERROR(s)

OxlO /* +IRQ ENABLE: enable ACK interrupts* I
OxO 8 / * +SLCT IN: select printer* I
OxO 4 / * -/NIT: init printer * I
Ox02 /* +AUTO FD XT: set auto linefeed* I
OxOl /* +STROBE: strobe data* I

(PC INTENABLEIPC SELECTIPC_INIT)
(PC_SELECTIPC_INIT)
0

Ox8 0 / * -BUSY: printer not busy * I
Ox4 0 / * -ACK: ACK state * I
Ox2 0 I* +PE: printer out of paper * I
Oxl O / * +SLCT: printer is selected* I
Ox08 /* -ERROR: printer error condition* I

((s) &PS_READY)
((s) &PS_SELECT)
((s) &PS_NOPAPER)
(((s)&PS_NOERROR) 0)

Revision A, of 27 March 1990

226 Appendices

I*
* Parallel Port (printer) driver.
* Copyright (c) 1987 by Sun Microsystems, Inc.
*I

#include "pp.h"
#if NPP > 0

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sundev/mbvar.h>

I*
* Buffers for use by physio().
*I
struct buf ppbuf[NPP];
#define PPBUFSIZ 64 I* Size of buffer written to printer* I

I*
* Software state structure, one for each printer
*I
struct ppstate {

int pp_flags;
#define PP OPEN OxOl
#define
#define
#define

u char
u char
u char
int
struct
struct
char
char

PP WANT Ox02
PP TIMER Ox08
PP BUSY OxlO
pp_timer;
pp_lostintr;
pp_notready;
pp_unit;
mb_device *pp_md;
buf *pp_bp;
pp_buf[PPBUFSIZ];
*pp_cp;

int pp_count;
u_short pp_regbase;
ppstate[NPP];

I * Printer state: * I
I* Currently open * I
I* Someone waiting for printer * I
I* Watchdog timer is running * I
I* I/0 in progress * I
I* For detecting timeout situations* I
I* For tracking lost interrupts* I
I* Printer not ready (no paper, etc.) * I
I* Unit number* I
I* Pointer to mb info * I
I* Pointer to current' buf * I
/* Buffer *I
I* Current byte in current buffer * I
I* Number of bytes left to print * I
I* Device register base in ilo space * I

#define
#define
#define

PPREG DATA
PPREG CTRL
PPREG STAT

(pp->pp_regbase)
(pp->pp_regbase + 2)
(pp->pp_regbase + 1)

#define
#define

PPUNIT(dev)
PPPRI

extern int hz;
#define PPWATCHDOG
#define PPTICKS

(minor (dev))
(PZERO + 1) I* Sleeps are interruptable * I

3 /* Watchdog interval: see 'pptimeout()' * I
(30/PPWATCHDOG + 1)

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 227

#define PPMSGTICKS

Hfdef DEBUG
I*
* Debugging stuff.
*I
#define DBINIT
#define DBIO
#define DBOPEN
#define DBCLOSE
#define DBSTRAT
#define DBSTART
#define DBTMOUT
#define DBINTR

(180/PPWATCHDOG)

OxOOOl
Ox0002
Ox0004
Ox0008
OxOOlO
Ox0020
Ox0040
Ox0080

int ppdebug = Oxffff;
#define ppprint(flg,x) (((flg)&ppdebug) ? printf x

#else
#define ppprint(flg,x)
fondif DEBUG

: t ppprobe(), ppattach(), ppintr(), pptimeout();

struct mb driver ppdriver = {

0)

ppprobe, 0, ppattach, 0, O, ppintr, 0, "pp", 0, O, 0, 0,
} ;

1 *ARGSUSED* I
ppprobe(reg, unit)

caddr_t reg;
int unit;

ppprint (DBINIT, ("ppprobe\n"));

if (unit>= NPP)
panic("pp: too many units");

ppstate[unit] .pp_regbase = (u_short)reg;
return(l);

ppattach(md)
register struct mb_device *md;

register struct ppstate *pp;

ppprint(DBINIT, ("ppattach\n"));

pp= &ppstate[md->md_unit];
pp->pp_md = md;

I* Initialize printer.

Revision A, of 27 March 1990

228 Appendices

* Holding PC _]NIT low for 50 usecs does the trick.
*I
outb(PPREG_CTRL, PC_RESET);
DELAY(SO);
outb(PPREG_CTRL, PC_OFF);
DELAY(lO);

ppopen(dev, flags)
dev_t dev;
int flags;

register struct ppstate *pp
int status;

&ppstate[PPUNIT(dev)];

ppprint(DBOPEN, ("ppopen: unit %d\n", PPUNIT(dev)));

if (PPUNIT(dev) >= NPP I I pp->pp_md->md_alive == 0)
return(ENXIO);

if (flags & FREAD)
return (ENODEV);

I* Can't read a write-only device * I

pp->pp_unit = PPUNIT(dev);

while (pp->pp_flags & PP _OPEN) /* Enforce exclusive access* I
ppprint(DBOPEN, ("ppopen: in use - waiting ... \n"));
if (flags & FNDELAY)

return(EBUSY);
pp->pp_flags I= PP_WANT;
if (sleep((caddr_t)&pp->pp_flags, PPPRIIPCATCH)) {

return (EINTR);

status= inb(PPREG_STAT);
if (PSNOPAPER(status) I I ! PSSELECT(status) I I PSERROR(status))

if (PSNOPAPER(status))
uprintf("pp%d: printer out of paper\n", pp->pp_unit);

else
uprintf("pp%d: printer not ready\n", pp->pp_unit);

(void)wakeup((caddr_t)&pp->pp_flags);
pp->pp_flags = 0;
return(EIO);

outb (PPREG_CTRL, PC_NORM) ; /* Enable interrupts*/

if ((pp->pp_flags & PP_TIMER) 0) {
/*
*Kickoff watchdog timer.
*I
timeout(pptimeout, (caddr_t)pp, PPWATCHDOG*hz);
pp->pp_timer = O;

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 229

I*

pp->pp_flags I= PP TIMER;

pp->pp_flags I= PP_OPEN;
return(O);

* ppclose:
* Close the printer device.
* Turn off interrupts.
* Wake up anyone waiting to open the printer.
*I
ppclose(dev)

dev_t dev;

register struct ppstate *pp= &ppstate[PPUNIT(dev)];

ppprint(DBCLOSE, ("ppclose: unit %d\n", PPUNIT(dev)));

outb(PPREG_CTRL, PC_OFF); I* Disable interrupts * I

if (pp->pp_flags & PP_WANT)
wakeup((caddr_t)&pp->pp_flags);

pp->pp_flags = 0;

ppwrite(dev, uio)
dev_t dev;
struct uio *uio;

I*

int ppminphys(), ppstrategy();

ppprint(DBIO, ("ppwrite\n"));

return(physio(ppstrategy, &ppbuf[PPUNIT(dev)], dev, B_WRITE,
ppminphys, uio));

* ppstrategy:
*I
ppstrategy(bp)

register struct buf *bp;

register struct ppstate *pp= &ppstate[PPUNIT(bp->b_dev)];

ppprint(DBSTRATIDBIO, ("ppstrategy\n"));

pp->pp_bp = bp;
pp->pp_count = bp->b_bcount;
pp->pp_cp = pp->pp_buf;

Revision A, of 27 March 1990

230 Appendices

if (copyin(bp->b_un.b_addr, pp->pp_buf, bp->b_bcount))
bp->b_flags I= B_ERROR;
bp->b_error = EFAULT;
ppiodone(pp);
return;

pp->pp_flags I= PP_BUSY;
pp->pp_tirner = PPTICKS;
pp->pp_lostintr 0;
pp->pp_notready = 0;
ppintr () ;
ppiowait(pp, bp);
pp->pp_tirner = O;

/* Set timer* I
I* Reset "lost interrupt" counter * I
I* Reset "notready" counter * I

I * Turn off timer * I

ppprint (DBSTRAT, ("ppstrategy: ***done\n"));

pprninphys(bp)

I*

register struct buf *bp;

if (bp->b_bcount > PPBUFSIZ)
bp->b_bcount = PPBUFSIZ;

* ppintr:
* Handle' ack' interrupts from printer.
*I
ppintr ()
{

register struct ppstate *pp;
int status; /* printer status* I
int s;

ppprint(DBINTR, ("ppintr\n"));

pp= &ppstate[O]; I* XXX - only works for unit #0 * I

s = splx(pritospl(pp->pp_rnd->rnd_intpri));

status= inb(PPREG_STAT);
ppprint(DBINTR, ("ppintr: status

/* Were we expecting an interrupt?* I
if (! (pp->pp_flags & PP_BUSY))

Ox%x\n", status));

ppprint(DBINTR, ("ppintr: unsolicited interrupt\n"));
splx(s);
return;

if (pp->pp_count > 0)

Revision A, of 27 March 1990

Appendix D - Sample Driver Listings 231

I*

else

I* AT Tech Ref says data must be in data reg at least
* 0.5 usec before and after we strobe, and strobe must
* last at least 0.5 usec.
*I
outb(PPREG_DATA, *pp->pp_cp);
pp->pp_cp++;
pp->pp_count--;
DELAY(l);
outb(PPREG_CTRL, PC_NORMIPC_STROBE);
DELAY(l);
outb(PPREG_CTRL, PC_NORM);

ppiodone(pp);

splx(s);

* pptimeout:
* Check occasionally for lost interrupts or
* printer errors (no paper, printer off line, etc.).
*I
pptimeout(arg)

caddr_t arg;

register struct ppstate *pp= (struct ppstate *)arg;
int status; /* Printer status* I
int error= O;
int s;

ppprint(DBTMOUT, ("pptimeout\n"));

s = splx(pritospl(pp->pp_md->md_intpri));

I* If we're not currently doing anything, we can go away. * I
if ((pp->pp_flags & PP_OPEN) 0) { /*Notopen*/

splx(s);
return;

else if (pp->pp_timer <= 0) { /*Notcurrentlyactive*/
timeout(pptimeout, (caddr_t)pp, PPWATCHDOG*hz);
splx(s);
return;

status= inb(PPREG_STAT);

I* Check/or printer errors. * I
if (PSNOPAPER(status))

if ((pp->pp_notready++ % PPMSGTICKS) 0)
uprintf("pp%d: printer out of paper\n", pp->pp_unit);

Revision A, of 27 March 1990

232 Appendices

else if (! PSSELECT (status) I I PSERROR (status)) {
if ((pp->pp_notready++ % PPMSGTICKS) 0)

uprintf("pp%d: printer not ready\n", pp->pp_unit);
else if (--pp->pp_timer == 0) {

I* Timer has expired - see what's wrong. * I
ppprint(DBTMOUT, ("pptimeout: status Ox%x\n", status));

if (PSREADY(status)) {
I*
* We must have dropped an interrupt.
* If this is the first one we've dropped, assume
*it's a fluke and carry on. Otherwise, give up.
*I
if (pp->pp_lostintr++ == 0) {

ppprint(DBTMOUT, ("pptimeout: dropped intr\n"));
pp->pp _ timer = PP TICKS; /*Reset timer * I
ppintr ();

else {
printf("pp%d: not getting interrupts\n",

pp->pp_unit);
error= l;

else
I* Printer is hung * I
error= l;

if (! error) {
timeout(pptimeout, (caddr_t)pp, PPWATCHDOG*hz);

else {
pp->pp_bp->b_flags I= B_ERROR;
ppiodone(pp);
pp->pp_flags &= -pp_TIMER;

splx(s);

I *ARGSUSED* I
ppioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr t data;
int flag;

return(ENOTTY);

I*
* ppiowait:
* Private version of' biowait()'.

Revision A, of 27 March 1990

*I
ppiowait(pp, bp)

!*

struct ppstate *pp;
register struct buf *bp;

int s;

s = splx(pritospl(pp->pp_md->md_intpri));
while (! (bp->b_flags&B_DONE)) {

if (sleep((caddr_t)bp, PPPRIIPCATCH))
bp->b_flags I= (B_ERRORIB_DONE);
bp->b_error = EINTR;

splx(s);

* ppiodone:
* Private version of' biodone()'.
*I
ppiodone(pp)

register struct ppstate *pp;

register struct buf *bp

bp->b_flags I= B_DONE;
wakeup((caddr_t)bp);

pp->pp_flags &= -pp_BUSY;

#endif NPP

pp->pp_bp;

Appendix D-Sample Driver Listings 233

Revision A, of 27 March 1990

Index

8
80386, 17

A
adb command, 87
addresses

convenient testing, 64
finding physical, 64
kernel space, 51
mapping of, 62
mapping Sun-3, 63, 66
mapping Sun-3x, 63
mapping Sun-4, 63, 66
mapping Sun386i, 64
selection of virtual, 62
space terminology, 5
user space, 51
virtual space warning, 5
virtual to physical mapping, 65

assert mechanism, 92
asynchronous

tracing, 89
asynchronous notification, 120
A Thus Machines, 17
attach () routine, 55, 103
autoconfiguration, 49

and initialization, 37
related declarations, 45
Skeleton example, 101

B
bdevsw, 32

definition, 123
block driver mechanisms, 3
bottom half of driver, 51, 52
4.2BSD, 38
building a kernel, 123
byte order, 20

C
cache 1/0, 77
cdevsw, 32, 126

definition, 123
character driver overview, 49
close () routine, 103
computer architecture, 9

-235-

config command, 124
configuration, 123, 124

autoconfiguration, 124
conf. c, 125
config file, 125
configuration makefile, 124
device installation, 124
dual address-space devices, 128
example, 125
file, 125
GENERIC file, 16
MAKEDEV shell script, 127
mknod command, 128

context registers, 65
controllers, 39
CPU PROM monitor, 61 thru 77

warning, 76
CPU state, 65
critical sections, 52

D
data structures

kernel, 38
Debugging Techniques, 85
I dev directory, 32
device

as special files, 32
block devices, 32
character devices, 32
classes, 32
devices and controllers, 38
independence, 1
initial checkout, 75
installation, 128
major numbers, 32
major types, 2
memory-mapped installation, 78
minor numbers, 32
names, 32
number macros, 60
numbers, 32
peculiarities, 20
preassigned devices, 36
slave vrs free devices, 39
testing, 62
virtual-memory, 80
warnings, 20

Device Drivers

Index - Continued

Device Drivers, continued
introduction, 1
kernel space, 51
regular drivers, 7
types of devices, 2

DMA
devices, 25, 112
Multibus, 112
Skeleton Board DVMA, 113
VMEbus, 112

dmesg command- See system messages, 89
OOS and SunOS drivers, 19
driver

kernel interaction, 31
kernel interface, 46
overview, 49
source code, 126
user processes, 31

driver example, 97
driver listing

color graphics driver, 188
skeleton driver, 180
Sky floating-point driver, 205
Sun386i parallel port driver, 225
Versatec interface driver, 213

driver routines, 141
xxattach (), 142, 147
xxclose (), 142
xxintr (), 142
xxioctl (), 144
xxminphys (), 145
xxmmap (), 145
xxopen (), 146
xxpoll (), 147
xxprobe () , 147
xxread () , 148
xxselect (), 148
xxstrategy (), 149
xxwri te (), 149

dual address-space devices, 128
DVMA,25

DVMA hardware, 26
DVMA space, 27
DVMA variable, 28
no user-level DVMA, 28
rmalloc () , 27

error

Sun Main Bus DVMA, 25

E

logging, 92
numbers, 141
recovery, 91
returns, 91
signals, 91

example
configuration, 125
mapping without drivers, 81, 84
mmap (), 78
VI'E calculations, 72
ramdisk pseudodevice, 133

example driver, 97

F
filesystems, 3
frame buffers, 78

mapping without drivers, 81

H
hardware peculiarities, 20
hat _getkpfnum (), 79
heterogeneous networks, 123

l/0
I

and signals, 116
asynchronous, 116
asynchronous notification, 116
non-blocking, 116
paths,33

1/0 cache, 77
initial

checkout, 75
declarations, 49
device tests, 76

installation of device, 128
Intel 80386, 17
interrupt

context, 51
levels, 53
number setting, 55
related problems, 25
routines, 43, 50
vector assignments, 17

interrupts, 52
polling, 54
vectored, 54

intr () routine, 50, 110
ioctl()

macros, 144
routine, 50, 112, 120

K
kadb - the kernel debugger, 89

abort to monitor, 90
and booting kernels, 90
and virtual spaces, 90
limitation, 89

kernel
buffer cache, 3
config file, 125
configuration, 123
data structures, 38
interface, 38
interface points, 101
kerneVdriver interface, 46
memory context, 31
panics, 92
run-time data structures, 37
space, 51

KERNELBASE, 51

-236-

L
limitations of this manual, 3
Loadable Drivers, 19, 93

Adding, 130
Removing, 130

M
Main Bus, 38

resource management, 38
major () macro, 60
MAKEDEV shell script, 127
makedev () macro, 60
manual overview, 6
MAP _FIXED, 178
MAP _PRIVATE, 178
MAP _RENAME, 178
MAP _SHARED, 178
MAP_TYPE, 178
mapping without drivers, examples, 81, 84
mb_etlr structure, 39, 55
mb_deviee structure, 40, 55
mb _driver structure, 42
mb _ hd structure, 39
mbglue. s, 124
mbvar structures, 38
me_addr field, 40
me_alive field, 40
me_etlr field, 40
me_ dma ehan field, 40
me_intpri field, 40
me_intr field, 40
me_mbinfo field, 40
me_ spa ee field, 40
md _addr field, 41
md _alive field, 42
md _ dma ehan field, 41
md _driver field, 41
md_flags field, 41
md_intpri field, 41
md_intr field, 41
md_slave field, 41
md_unit field, 41
mdr_attaeh field, 43
XDR_BIODMA, 44
mdr_einfo field, 44
mdr _ ename field, 44
mdr_dinfo field, 44
XDR_DMA,44
mdr _ dname field, 44
mdr _ done field, 43
mdr _flags field, 44
mdr _ go field, 43
mdr _ intr field, 43
mdr _ link field, 45
XDR_OBIO, 45
mdr _probe field, 42
mdr _size field, 44
mdr_slave field, 43

-237-

XOR_ SWAB, 45
XDR_XCLU, 44
memory contexts, 65
memory mapping, 78
memory-mapped

device installation options, 78
devices, 51, 78
drivers, 78

minor () macro, 60
minphys () routine, 106
mknod command, 128
mmap (), 78, 50

direct opening of devices, 83
mmap (), 78
without drivers, 79

MMU
setting the, 61
Sun-3, 66
Sun-4, 66

monitor, 61 thru 77
warning, 76

Multibus
adapter, 16
adapter warning, 23
byte-ordering issues, 20
device peculiarities, 20
OMA, 112
multibus resource management, 59
other peculiarities, 22

multiple address-space devices, 128

N
noprintf variable, 89

0
open () routine, 103

p
Page Map Entry Groups, PMEGs, 65
page maps, 65
Page Table Entries, PTEs, 65
pixrects, 78
PMEGS, 65
poll() routine, 50, 55, 110
polling

chain, 44
interrupts, 54
restrictions on, 54

printf ()
event triggered, 88
restrictions on, 86
usage hints, 88
with debuggers, 87

probe () routine, 101
proe structure, 46
processes, 65
processor priority, 52

raising and lowering, 58
processor state, 65
PROM monitor, 61 thru 77

lndex-ConJinued

Index - Continued

PROM monitor, continued
warning, 76

PROT _ EXECUTE, 178
PROT _READ, 178
PROT_WRITE, 178
pseudo devices, 133

ramdisk example, 133
PTE, 65

calculations, 72
Sun-3 masks, 68
Sun-4 masks, 68
templates, 68

R
ramdisk

driver, 134
installation, 135
source code, 134
test program, 138

read() routine, 50, 105
register

peculiarities, 20
sequencing logic, 24
warnings, 20

run-time data structures, 37

s
sample listings, 179
segment maps, 65
Select Routines, 117
select (), 50, 117

and ioctl(), 120
interrupt time, 119

select () routine, 116
selwait, 119
selwait" selwai t, 170
semaphores, 171
service functions, 57

change processor priorities, 58
data-transfer functions, 59
multibus resource management, 59
printf (), 60
sleep and wakeup, 57
timeout, 57
untimeout, 57

Skeleton driver, 97
Skeleton driver declarations, 100
sleep and wakeup mechanism, 57
sleep () system call, 52, 53
software devices, ramdisk example, 133
software priorities, 58
SPARC

and MC680XO, 21
and Multibus, 20
peculiarities, 23

SPARCstation, 9
start () routine, 50, 108
strategy () routine, 107
Sun-3x virtual to physical mapping, 69
Sun-4 Peculiarities, 23

Sun386i
address mapping', 64
DMA,59
DMA Channels, 19
DMA on A Thus machines, 29
dma done (), 153
dma=setup (), 154
DOS driver, 19
inb (), 158
interrupts, 18
loadable drivers, 93, 130
noDVMA, 25
no vectored interrupts, 40
outb (), 165

SunOS source license, 3
support routines

bcopy (), 151
bp_mapin (), 151
bp ma pout () , 152
btodb c >. 152
bzero (), 152
CDELAY (), 153
copy in (), 152
copyout () , 153
DELAY () , 153
dma_done (), 153
dma_setup (), 154
gsignal (), 158
hat _getkpfnum (), 158
inb (), 158
iodone (), 158
iowai t (), 158
kmem_alloc (), 158
kmem free(), 159
log(), 159
machine id (), 160
map in (), 163
mapout (), 164
mb_mapalloc(),160
mb nbmapalloc(),162
mballoc (), 164
MBI_ADDR (), 160
mbrel se (), 164
mbsetup (), 165

-238-

outb (), 165
ovbcopy (), 166
panic (), 166
peek (), 166
peekc (), 166
pee kl (), 166
physic (), 166
poke(), 168
pokec (), 168
pokel (), 168
printf (), 168
pri tospl (), 169
psignal (), 169
rmalloc (), 169
rmfree (), 170
sel wakeup (), 170
sleep(), 171
spln (), 172
splr (), 172

support routines, continued
splx (), 172
suser (), 172
swab(), 172
timeout () , 173
uiomove (), 173
untimeout (), 173
uprintf (), 174
ureadc (), 174
uwritec (), 174
wakeup (), 175

system calls, 32, 51
system configuration, 123
System DVMA, 27
system memory devices, 80
system reset, 61
system upgrades, 92
System V compatibility, 4
System V differences, 38

T
timeout mechanisms, 57
timing problems, 24
top half of driver, 51
tracing, 89

u
u structure, 46
uio structure, 106
upgrades, 92
user context, 51
user space, 51
user structure, 46
user-level routines

free(), 177
getpagesize(),177
mmap (), 177
munmap (), 178

V
v _ func field, 40
v _ vec field, 40
v _ vpt r field, 40
vector numbers, 54
vectored interrupts, 54
virtual memory devices, 80
virtual to physical mapping, 65
VMEbus, 9

16-bit allocation, 14
24-bit allocation, 15
32-bit allocation, 15
allocation of VMEbus memory, 14
device address assignments, 16
OMA, 112
generic,9
Multibus Adapter, 16
Sun-3 address spaces, 9
Sun-3 VMEbus, 12
Sun-3 VMEbus address types, 10
Sun-3x Physical Address map, 10
Sun-3x VMEbus, 13

-239-

VMEbus, contirw.ed
Sun-3x VMEbus Address Types, 10
Sun-4 address spaces, 9
Sun-4 VMEbus, 14
Sun-4 VMEbus address types, 10

VMEbus machines, 9

w
write() routine, 50, 105

Index-ConJinued

