
•~sun®
~ microsystems

Documentation Errata and Change Pages for SunOS
Release 4.0.3

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, Sunlnstall, SunOS, Sun View, NFS, NeWS, and SPARC are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of AT&T.

All other products or services mentioned in this document arc idcnti fled by the trademarks or service marks of their
respective companies or organizations.

Copyright© 1989 Sun Microsystems, Inc. -Printed in U.S.A.

All rights reserved. No part of this work covered by copy1ight hereon may be reproduced in any form or by any
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems Inc. for its users and licensees. Sun ack
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

Documentation Errata and Change Pages for SunOS
Release 4.0.3

Introduction

The "mini-box" of 4.0.3 release documentation contains this document and two manuals, Installing the SunOS 4.0.3
and the SunOS 4 .0 .3 Release Manual. The manuals contain information you will need in order to upgrade your
system. This document, "Documentation Errata and Change Pages for SunOS Release 4.0.3," supplements and
corrects the documentation set for SunOSTM 4.0.3 in the following areas:

• CG8 Release Notes

Describes the changes to Pixrect, Sun View 1, and Sun diagnostic software to support the new cg8 24-bit
frame buffer.

• Sun-2 and Sun-3 Assembler

Describes changes to the Assembly Language Reference Manual to support the MC68030 microprocessor
included in the as assembler for Sun-2 and Sun-3 worlcstations.

• Device Drivers

Describes corrections required to parts of Writing Device Drivers.

Refer also to the READ THIS FIRST document, which is packed in the release-tape box. READ THIS FIRST contains
information that, because of publication deadlines, could not be included elsewhere.

cg8 24-Bit Color

This section describes the changes implemented in Pixrect, Sun View 1, and diagnostic software to support the new
24-bit frame buffer, the cg 8. Refer to the Sun View 1 Programmer's Guide, the Sun View 1 System Programmer's
Guide, and the Pixrect Reference Manual for more information about Pixrect and SunViewl in SunOS 4.0.3. For
more information about diagnostics, refer to the Sun System Diagnostics manual.

Overview

The cg8 color board has three planes: a 24-bit plane to represent true color images, a 1-bit overlay plane for the
high-speed display of monochrome images, and an enable plane for selecting between the other two planes.

Pixrect Support

The changes to the Pixrect package have been deliberately kept to a minimum. The cg8 board stores its color pixels
in a format called XBGR. Pixrect now understands this format, storing XBGR format pixels in 32-bit pixrects.

1 Revision A of 24 April 1989

2 Documentation Errata for SunOS™ Release 4.0.3

The true color lookup table is manipulated with two new macros. There is also a new Pixrect planegroup, called
PIXPG_24BIT _ COLOR, which provides access to the cg8 true-color plane.

XBGRFormat

The Pixrect library already supports 1-bit, 8-bit, and 32-bit-deep pixrects (32 as memory pixrects). Since true color
pixrects are stored in a format that is 32 bits deep, there were minimal changes made to the Pixrect library. A new
type of pixel format, called XBGR is defined to hold true color pixrects. The cg8 stores 24-bit images in this format.
The format is shown below:

#include <pixrect/pixrect_hs.h>

union fbunit
u int
struct
u int
u int
u int
u int

} ;

packed; normal 32-bit pixrects

A: 8;
B:8;
G: 8;
R: 8;
channel;

the high-order 8 bits are unused
8 bits of blue component
8 bits of green component
8 bits of red component

The 32-bit word is divided into 4 channels of 8 bits each. The first channel (the high-order 8 bits) is not currently
used by the cg8. Its value is undefined, and it is reserved for future enhancements. The next channel contains 8 bits
of the pixel blue component (256 possible values, from Oto 255, forthe blue component of the pixel color). The
other two channels hold corresponding information for the green and red components of the pixel color. The three
components are used to index the red green and blue parts of the lookup table. The RGB components from the lookup
table are combined to produce a pixel with a particular hue and intensity.

Figure 1
31

unused

The op Argument

XBGR Layout

24 23 16 15 8 7

blue component green component

0

red component

The standard rop operations are allowed, to a limited extent, between pixrects of different depths. The table below
sums up the limitations:

Source Destination

I
Operations

Depth Depth Allowed

0 -) n yes
1 -) n yes
n -) 1 not allowed
n -) n yes

24 -) 32 not allowed
32 -) 24 not allowed

~\sun ~ microsystems
Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 3

The value n can be the values l, 8, and 32 bits. Note that 8 to 32 and 32 to 8 are not supported. To translate pixel
colors between 8 and 32, you must use the fonnula shown below. It uses the 8-bit pixel value (the variable color8), in
conjunction with the 8-bit colonnap, to generate a 24-bit color (saved in the integer variable color24). The color24
variable now has its true color stored in XBGR fonnat. The value can then be saved as a 32-bit pixel, in the pixrect
PIXPG_24BIT_COLOR planegroup.

int color24;
unsigned char red[256],green[256],blue[256];

color24 - red[color8] + green[color8] << 8 + blue[color8] << 16;

The color field of the op argument, used in many pixrect functions, is interpreted differently on the cg8 frame
buffer. The most significant 8 bits of this field (bit 24 to 31 of op) is the value of the blue channel, the next 8 bits
(bit 16 to 23) is the value of the green channel and the next 8 bits (bit 8 to bit 15) is the value of the red channel.

Figure 2

31

, , , ,
31,~ 29

I ,

blue

op fields

22 21

+ component

l_
reserved

color
field

green
component

S 4 1 0

l '":7 1 t---- clip
14 13 ', .§

red
component

The Pixrect library cannot distinguish between indexed 8-bit color and 24-bit direct color applications. Do not expect
your current 8-bit color programs to use 24-bit color without modification.

24 vs 32 bits

Since true color pixrects use only 24 bits per pixel to encode color information, yet are stored and handled as 32-bit
entities, a number of compatibility issues come up.

Memory Pixrects

It is possible to create 24-bit memory pixrects. This may be useful for synthesizing images that are later displayed.
24-bit-to-24-bit operations are supported; you cannot, however, perfonn a rop operation between a 24-bit pixrect
and a 32-bit one, even if the 32-bit pixrect is in XBGR format.

Sometimes, it is more efficient to use a 24-bit memory pixrect to generate an image, then save it as a 24-bit raster file.
When pr_ load () is called to load a 24-bit raster file, however, it automatically loads it in as a 32-bit pixrect so that
pixrect operations run more efficiently. When pr_ save () is called, the converted pixrect will be saved in a 32-bit
raster file.

Revision A of 24 April 1989

4 Documentation Errata for SunOS™ Release 4.0.3

Run-Length Encoding

It makes little sense to save a 32-bit pixrect (in XBGR format) as a run-length encoded raster file, although there is no
technical difficulties doing so. Since it is a true-color pixrcct, it is unlikely any adjacent bytes have the same value,
even if the adjacent XBGR pixels do. The run-length encoding compression scheme is byte-oriented, not pixel
oriented, so it is not likely to reduce the size of the file.

Plane Groups

Pixrect has added a new plane group, PIXPG_24BIT_COLOR, for access to the cg8 24-bit buffer. The new plane
group provides 24-bit RGB (red green blue) values stored in XBGR format in 32-bit pixels. All the normal logical
operations and plane masking are available; many of the logical operations are not useful with color, however.

The cg8 also has an overlay and an enable plane, providing three planegroups for cg8 pixrects:

Table 1 cg 8 plane groups

Plane Function

PIXPG OVERLAY Window System Plane -
PIXPG OVERLAY ENABLE Enable Plane - -
PIXPG 24BIT COLOR 24-bit Color Plane - -

The overlay plane is black and white by default. It docs, however, have its own 2-bit colormap. The foreground and
background colors of the overlay plane can be set using the pr_putcolormap () command with the overlay plane
as the pixrect argument. The colormap contains two 24-bit color values; one for pixels set to 1, and one for pixels set
to 0.

The enable and overlay planes have the same behavior seen in previous Sun frame buffers (cg4); the enable plane
mediates between the overlay and the 24-bit plane. When an enable pixel is one, only the overlay plane is visible;
when it is zero, only the 24-bit plane is visible.

Figure 3 cg8 planegroups

f'-/ _____ -</

.. ·· ..
.. ···

41.
i:4 bit
P°t-~ne

0 1 /

.. ····

.. ··
... i:3···

.. ·•· / Enable

..
.. ···

.. ·· .. ··
Pl,mc

~\sun
,~ microsystems

..........
. ··

fl ..
... / Overlay

Plane

Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 5

NOTE: The default plane for the cg8 is the overlay plane, not the 24-bit plane.

The example code below shows how to test whether the color board the application is using supports 24-bit color.
This type of code is important for writing software that can run with both 8-bit or 24-bit color.

finclude <pixrect/pixrect_hs.h>

char maxgroup[PIXPG_24BIT_COLOR + 1);
pr_available_plane_groups(pr, PIXPG_24BIT_COLOR + 1,\

maxgroup);
if (maxgroup[PIXPG_24BIT_COLOR] != 0)

printf("Board supports 24-bit color\n");

Lookup Tables

The cg8 has three lookup tables that can be used to adjust the intensity response of each component (red, green,
and blue) of the 24-bit color values. These tables can be used to make the color response nonlinear (for example in
gamma correction), or for special color effects.

For each color component, the intensity value of the pixel is used as an index to the corresponding table entry.
The value of that entry is then used as the actual intensity component for the displayed pixel. This can be used to
compensate for color inaccuracies generated by the display hardware; thus by applying color correction techniques
(like gamma correction) with the lookup table, the displayed image approaches true color.

Both 24-bit color lookup tables and 8-bit color colormaps require 768 bytes of space. The Pixrect functions
pr_getcolormap () and pr_putcolormap () commands are used to read or modify 8-bit colormaps, while
pr_getlut () and pr_putlut () are the corresponding commands to read and modify 24-bit lookup tables.

Revision A of 24 April 1989

6 Documentation Errata for SunOS™ Release 4.0.3

Figure 4 True-Color Lookup

I X I B I G

........ I
I
I

BLue
Table

I
I
I
I
I
I
I
I
I
I -

R
L_

Green
Table

I

Display
Hardware

........
I
I
I
I
I

Red
Table

Using the pr_putlut () macro to load the lookup tables is similar to using the pr_putcolormap () function;
the red[], green[], and blue[] array arguments correspond to the appropriate lookup tables. In the same way,
pr_getlut () loads these same arrays from the lookup tables.

Upon opening a pixrect, the cg8 lookup table is loaded with linear ramps from Oto 255 for the red, green, and blue
tables. The default table therefore has no built-in corrections. All applications share the same lookup table; you can
not divide it up into portions as you can with 8-bit colormaps, and lookup table segmenting is not allowed in Pixrect
or SunViewl running on a cg8.

The lookup table segment size is fixed at 256; no lookup segmenting is allowed.

Two pixrectlookup macros, pr_putlut () and pr_getlut () are shown below:

#include <pixrect/pixrect_hs.h>

#define pr_putlut(pr, ind, cnt, red, grn, blu)\
(*(pr)->pr_ops->pro_putcolormap) (pr, PR_FORCE_UPDATE I ind, cnt, red, grn, blu)

#define pr_getlut(pr, ind, cnt, red, grn, blu)\
(*(pr)->pr_ops->pro_getcolormap) (pr, ind, cnt, red, grn, blu)

Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 7

The PR_FORCE_UPDATE value in the pr_putlut () macro is necessary because there is no colormap sharing in
Pixrect. The sample program below shows the macros in use:

#include <pixrect/pixrect_hs.h>

pr= pr_open("/dev/cgeightO");
pr_set_plane_group(pr, PIXPG_24BIT_COLOR); changeto24-bitplane
pr_getlut(pr, 0, 256, red, green, blue);
gamma_correct (red, green, blue); a user-supplied function ...
pr_putlut(pr, 0, 256, red, green, blue);

The code fragment above opens the cg8 frame buffer, and changes the current plane group to be 24-bit color (the
default is the overlay plane). The pr_putlut () and pr_getlut () macros read, then reload the lookup tables.

Indexed 24-bit Color

At this time, indexed 24-bit color (the 24-bit equivalent to 8-bit color) is not supported in Pixrects or Sun View 1.

SunViewl

The 24-bit SunViewl model is less general than the 8-bit one. Sun View 1 on the cg8 is a monochrome desktop
residing in the overlay plane. The color canvases in the desktop are 24-bit color, all affected by the same lookup
table.

Overlay Colormap

Although the Sun View 1 desktop is restricted to two colors (normally black and white) there is a 2 bit colormap for
the overlay plane. This means the programmer can set the foreground and background colors of the desktop by using
the pw _putcolormap {) command with the overlay plane as the pixrect argument. The table contains two 24-bit
color values; one for pixels set to 1, and one for pixels set to 0.

Modifying the Lookup Table

There is no lookup table sharing implemented in the 24-bit Sun View 1 system. Any changes in the lookup table affect
all systems. SunViewl cannot modify the lookup table directly. The pw _putcolormap {) command is ignored
when accessing the lookup table. There is no pw _put lut () macro corresponding to the Pixrect pr_putlut ()
macro. To change the lookup table, the Sun View 1 application must make a pr_putlut {) call with Pixrect. To do
this, the application must extract the pixrect pointer from the pix win data structure, then use that pointer in a
pr_putlut {) call. An example code fragment that performs gamma correction is shown below. We assume the
user has written a function called ganuna _ correct () which adjusts the red, green and blue values of the lookup
table.

unsigned char red[256], green[256], blue[256];

pr_set_plane_group(pw->pw_pixrect, PIXPG_24BIT_COLOR);
if(pr_get_plane_group(pw->pw_pixrect) != PIXPG_24BIT_COLOR)

return (0);
pr_getlut(pw->pw_pixrect, 0, 255, red, green, blue);
gamma_correct(red, green, blue);
pr_putlut(pw->pw_pixrect, 0, 255, red, green, blue);

Revision A of 24 April 1989

8 Documentation Errata for SunOS™ Release 4.0.3

This example uses the pixwin from the window canvas, extracts the pixrect, and switches to the 24-bit planegroup. If
the planegroup is not PIXPG_ 24BIT _ COLOR, then the display device does not support 24-bit color, and the rest of
the program is aborted. If it does have true color, the code uses pr_ get l u t () with the extracted pixrect to get the
contents of the lookup table, uses garnma_correct () to adjust the values, then calls pr_putlut (), to alter the
lookup table.

See the Pixrect example code near the end of this section for more details in using pr _putl ut () and
pr_getlut ().

All pw _putcolormap () and pw _getcolormap () calls arc ignored when the call is accessing a 24-bit plane
group. No error is reported. This allows older 8-bit color applications to fail ''gracefully'' when run on the cg 8.

Sun View 1 Startup

When starting a Sun View 1 desktop on a cg8 device, only 24-bit true color is allowed. Thus the following Sun View 1
flags are disabled:

Figure 5 Disabled Sun View 1 Flags

sunview -8bit_color_only
-overlay_only
-toggle_enable

The 24-bit Canvas

The basic sunview window requirement is to set the CANVAS_ COLOR2 4 attribute to TRUE. This tells
the window system that this will be a true color window. The window canvas will then reside in the cg8
PIXPG_24BIT_COLOR plane group. The initial lookup table segment is CMS_COLOR_IDENTITY.

Using CANVAS_ COLOR2 4 runs the window canvas in the 24-bit frame, and using CANVAS _FAST_ MONO puts the
canvas in the overlay plane. If both attributes are set, the one most recently set takes effect.

All 24-bit canvases use the same lookup table; any change to this table will affect all canvases running on the cg8.
The backing pixrect for 24-bit canvases will be 32 bits deep, storing the pixels in the XBGR fonnat described earlier.

Any windows not designated as 24-bit canvases will be monochrome, using the colonnap of the overlay plane.

Porting from 8-bit color to 24-bit color

Eight bit Color applications must be modified if they arc to work properly on the cg8. Since 8-bit color uses a color
map, while 24-bit color uses a lookup table, the color values generated by the program should be translated using the
following fonnula:

int color2 4;
unsigned char red[256],green[256],blue[256];

color24 = red[color8] + green[color8] << 8 + blue[color8] << 16;

The color8 variable is the 8 bit pixel value to be translated. The red[], green[J, and blue[] arrays are the contents of
the colonnap used with the 8-bit pixels being translated. The color24 variable holds the resulting 24-bit color in
XGBR fonnat. This value can be loaded into a 32-bit pixel, in the pixrect PIXPG_24BIT_COLOR planegroup.

Revision A of 24 April 1989

Documentation Errata for Sun0S Release 4.0.3 9

Basically, this formula translates the 8-bit index into the red, green and blue components that would be displayed
on the screen of an 8-bit color system. These translated color components are then loaded into the appropriate bit
locations for a 24-bit color value in XGBR format.

Porting Limitations

While the translation approach is probably the fastest way make 8-bit color applications portable to 24 bits, it is not
the best. First, you are not taking advantage of all the additional colors available on the cg 8. More importantly, the
24-bit system is going to be slower by about a factor of four (moving 32-bit, instead of 8-bit, pixels). Adding an
additional translation step will slow it down further.

It would be better to change the application model so it understands 24-bit color in the first place. It could be set to
cut down its 24-bit colors to 8 when it runs on 8-bit color boards (for portability).

Diagnostics

The two sections below describe the diagnostics available for the cg8 frame buffer.

BootPROMs

The cg8 is the first frame buffer to utilize an external boot PROM. The external boot PROM allows all frame buffer
specific code to placed in its own the frame buffer PROM. This allows the host machine to test the frame buffer
without knowing its configurations details.

The boot sequence has been changed to accommodate the new boot code. At boot up, host machine self-tests are run
normally, but the frame buffer selftests arc no longer part of the host's PROM.

Once the host machine performs its own self-test, the host CPU probes all external devices for external boot PROMs.
When it finds a frame buffer, it loads the frame buffer code into its own memory. After the code is loaded, the host
CPU initializes all frame buffer data, such as manufacturer, model number, revision, and resolution, then moves the
information into an area accessible to the operating system. The host machine then initializes the display routines.

At this point, the frame buffer self-tests are executed. The table below shows the tests that are executed, along with
their frame buffer status codes.

NOTE The DM notation indicates this test is only run if the diagnostic mode switch is enabled.

~\sun
,~ microsystems

Revision A of 24 April 1989

10 Documentation Errata for Sun OS™ Release 4.0.3

Table 2 Frame buffer codes

08 Enable memory tests.
08 Quick address line test.
09 Quick data line test.
OA Long address pattern test. DM
OB Data size test. DM
oc Data bits test. DM
OD-OF Reserved for future expansion.

1 Overlay memory tests.
1 Quick address line test.
1 Quick data line test.
1 Long address pattern test. DM
1 Data size test. DM
1 Data bits test. DM
15-1 Reserved for future expansion.

1 Color memory tests.
1 Quick address line test.
1 Quick data line test.
lA Long address pattern test. DM
lB Data size test. DM
lC Data bits test. DM
10-lF Reserved for future expansion
2 Color controller (ramdac test).
2 Color palette tests.
29-3F Reserved for future expansion.

40-FF Reserved for future expansion.

Revision A of 24 April 1989

Documentation Errata for Sun0S Release 4.0.3 11

The following is the output from the selftests while the diagnostic switch is in the diag position:

Sizing Memory (size= Ox00000008 Megabytes).

Selftest Completed.

Type a key within 10 secondsto enter Extended Test System (e for echo mode).
Looking for display devices
cgeight
Testing display
Testing cgeight

Overlay-plane
Data lines test
Address quick test
Data size test
Data bits test
Address=data test

Enable-plane
Data lines test
Address quick test
Data size test
Data bits test
Address=data test

Sysdiag

The cg8 is tested in sysdiag by a test called color 24. This test verifies all device-specific driver routines,
colormaps, and frame buffer memories. Since all tests in sysdiag are executed automatically, no user intervention
is required to run color 24.

~\sun ~ microsystems
Revision A of 24 April 1989

12 Documentation Errata for SunOS™ Release 4.0.3

Pixrect Example Code

As the number of bits per pixel increases, the amount of data stored in a pixrect becomes significant. The size of a
XGBR-format pixrect is substantial; thus, both space efficiency and performance become issues. The program below
shows a way to minimize space consumption and maximize pcrfo1mance when loading true-color pixrects:

/*
* A program which loads images to the cg8 frame buffer using both pixrect
* and mmap. pr_load() is not used, it consumes too much memory resources.
* We actually open the image file, mmap it into user's addressing space
* and access it directly.
*/

I*
* This program is practically:
* file_pixrect = pr_load(file);
* pr_rop(screen, , file_pixrect, ...) ;
* only fancier.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <pixrect/pixrect_hs.h>

Pixrect *pr_cg8;

main (argc, argv)
int
char

char
FILE
struct stat
char
char
u char

prog = *argv++;

argc;
*argv[];

*fname;
*fp;
st;

*prog;
groups[PIXPG_24BIT_COLOR + 1];

fptr; / file pointer*/

if ((pr_cg8 = pr_open (" /dev/cgeightO")) == NULL I I
(pr_cg8 = pr_open ("/dev/fb")) == NULL)
fprintf (stderr, "%s: fail to open cgeightO or fbO, prog);
return 1;

pr_available_plane_groups (pr_cg8, PIXPG_24BIT_COLOR + 1, groups);
if (!groups[PIXPG_24BIT_COLOR]) {
fprintf (stderr, "%s: Not a 24-bit framebufferO, prog);
return 1;

• sun
microsystems

Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 13

while (--argc > 0 && *argv != NULL)
fname = *argv++;
if (fname &&

(strlen (fname) <= 0 I I (fp = fopen (fname, "r")) == NULL))
pr_close (pr_cg8);
fprintf (stderr, "%s: fail to open %s0, prog, fname);
continue;

if (fstat (fileno (fp), &st) < 0 I I
(fptr = (u_char *) mmap (0, st.st_size,

PROT_READ, MAP_SHARED, fileno (fp), 0)) == NULL)
fprintf (stderr, "%s: fail to map %s0, prog, fname);
fclose (fp);
continue;

im_load (fptr);
munmap (fptr, st.st_size);
fclose (fp);
}

pr_close (pr_cg8);
return;

/* loading image from file*/
im_load (fptr)

u char *fptr;

struct rasterfile *rh;
struct pr_pos off;

rh = (struct rasterfile *) fptr;
fptr += sizeof (struct rasterfile) ;/* lseek */
off.x (pr_cg8->pr_size.x rh->ras_width) / 2;
off.y = (pr_cg8->pr_size.y - rh->ras_height) / 2;

if (rh->ras_magic == RAS_MAGIC)
switch (rh->ras_depth) {
case 32:
case 24:
case 8:

load 32 (rh, off, fptr);
break;

case 1:
load 1 (rh, off, fptr);
break;

default:
break;

static
load 32 (rh, off, fptr)

• sun
microsystems

Revision A of 24 April 1989

14 Documentation Errata for SunOS™ Release 4.0.3

struct rasterfile *rh;
struct pr_pos off;
u char

u char

int
register int
register int
int

*fptr;

*r,
*g,
*b;
maplen;
linesize;
fb_increment;
i,
j,
pixel_size;

register u_char *im_buffer;
union fbunit *fb_image;
union fbunit *fb_ptr;

/*
* Clear the overlay and enable plane. Black out the frame buffer and
* open the hole on the enable plane to let the frame buffer "see thru".
*/

pr_set_plane_group (pr_cg8, PIXPG_OVERLAY);
pr_rop (pr_cg8, 0, 0, pr_cg8->pr_size.x, pr_cg8->pr_size.y,

PIX_SRC I PIX_COLOR (1), 0, 0, O);
pr_set_plane_group (pr_cg8, PIXPG_OVERLAY_ENABLE);
pr_rop (pr_cg8, 0, 0, pr_cg8->pr_size.x, pr_cg8->pr_size.y,

PIX_SRC I PIX_COLOR (1), 0, 0, 0);
pr_set_plane_group (pr_cg8, PIXPG_24BIT_COLOR);
pr_rop (pr_cg8, O, 0, pr_cg8->pr_size.x, pr_cg8->pr_size.y,

PIX_SRC, 0, O, 0);
pr_set_plane_group (pr_cg8, PIXPG_OVERLAY_ENABLE);
pr_rop (pr_cg8, off.x, off.y, rh->ras_width, rh->ras_height,

PIX_SRC, 0, 0, 0);

/* ready to show the image*/
pr_set_plane_group (pr_cg8, PIXPG_24BIT_COLOR);
if (rh->ras_maptype == RMT_EQUAL_RGB) {
maplen = rh->ras_maplength / 3;
r = (u_char *) fptr;
fptr += maplen;
g = (u_char *) fptr;
fptr += maplen;
b = (u_char *) fptr;
fptr += maplen;
if (rh->ras_depth != 8)

pr_putlut (pr_cg8, 0, maplen, r, g, b);

/*
* Get the pointer to the frame buffer, offset it to the right starting
* pixel .

• sun
microsystems

Revision A of 24 April 1989

Documentation Errata for Sun0S Release 4.0.3 15

(pr_cg8)->mpr.md_image;
*I

fb_image
pixel_size

(union fbunit *) mprp_d
rh->ras_depth / 8;

pointer/
/* amount to increment the file

linesize = mpr_linebytes (rh->ras_width, rh->ras_depth);
fb_increment = mprp_d (pr_cg8)->mpr.md_linebytes / sizeof (union fbunit);
if (off .y >= 0)
fb_image += off.y *

(mprp_d (pr_cg8)->mpr.md_linebytes / sizeof (union fbunit));
else
fptr -= off.y * linesize;
if (off .x >= 0)
fb_image += off.x;
else
fptr -= pixel_size * off.x;

for (j = 0; j < rh->ras_height && j < pr_cg8->pr_size.y;
j++, fptr += linesize, fb_image += fb_increment) {

im_buffer = fptr;
fb_ptr = fb_image;
for (i = 0; i < rh->ras_width && i < pr_cg8->pr_size.x;

i++, im_buffer += pixel_size, fb_ptr++) {
switch (rh->ras_depth) {
case 32:
fb_ptr->packed = ((union fbunit *) im_buffer)->packed;
break;
case 24:{

union fbunit store;

store.channel.B im_buffer[OJ;
store.channel.G im_buffer[l];
store.channel.R im_buffer[2];
fb_ptr->packed = store.packed;
break;

case 8:{
union fbunit

store.channel.R
store.channel.G
store.channel.B

store;

r [*im_buffer];
g[*im_buffer];
b[*im_buffer];

fb_ptr->packed = store.packed;

#define SMALLER(src, dst, w) \
(src->pr_size.w < dst->pr_size.w? src->pr_size.w dst->pr_size.w)

• sun
microsystems

Revision A of 24 April 1989

16 Documentation Errata for Sun0S™ Release 4.0.3

static
load 1 (rh, off, fptr)

struct rasterfile *rh;
struct pr_pos off;
u char *fptr;

Pixrect *mono;
struct pr_pos dup;
struct pr_pos small;

pr_set_plane_group (pr_cg8, PIXPG_OVERLAY);
pr_rop (pr_cg8, 0, 0, pr_cg8->pr_size.x, pr_cg8->pr_size.y,

PIX_SRC I PIX_COLOR (1), 0, 0, 0);
fptr += rh->ras_maplength;
mono= mem_point (rh->ras_width, rh->ras_height, rh->ras_depth, (short*)

fptr);

dup.x = dup.y = 0;
if (off .x < 0)
dup.x = -off.x, off.x 0;
if (off .y < 0)
dup.y = -off.y, off.y 0;
pr_set_plane_group (pr_cg8, PIXPG_OVERLAY_ENABLE);
pr_rop (pr_cg8, off.x, off.y,

SMALLER (mono, pr_cg8, x),
SMALLER (mono, pr_cg8, y),
PIX_SRC I PIX_COLOR (1), 0, 0, 0);

pr_set_plane_group (pr_cg8, PIXPG_OVERLAY);
small.x = SMALLER (mono, pr_cgB, x);
small.y = SMALLER (mono, pr_cg8, y);
pr_rop (pr_cg8, off.x, off.y,

small.x, small.y,
PIX_SRC, mono, dup.x, dup.y);

pr_destroy (mono);

~~sun ~ microsystems
Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 17

Sun View Example Code

/*
* This sample Sunview program shows how to use rops, vectors and pixels.
*/

#include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/canvas.h>

Frame
Canvas
Pixwin

/* Base frame. */

char

frame;
canvas;

*pwin;
**argv;

frame window create (NULL, FRAME,

if (frame== NULL)

FRAME_LABEL, argv[O],
FRAME_ARGC_PTR_ARGV, &argc, argv,
0) ;

fprintf (stderr, "%s: Failed to create frame.O, argv[O]);
exit (1);

/* Open the canvas. */
canvas= window create (frame, CANVAS,

if (canvas== NULL)

CANVAS_RETAINED, FALSE,
CANVAS_REPAINT_PROC, repaint_canvas,
CANVAS_COLOR24, TRUE,
0) ;

fprintf (stderr, "%s: Failed to create canvas. O, argv[O]);
exit (1);

/* Get the pixwin associated with this canvas. */
pwin = (Pixwin *) window_get (canvas, WIN_PIXWIN);
if (pwin == NULL) {

fprintf (stderr, "%s: Failed to get pixwin.O, argv[O]);
exit (1);

window_main_loop (frame);

~~sun
~i{{{P microsystems

Revision A of 24 April 1989

18 Documentation Errata for SunOS™ Release 4.0.3

void
repaint_canvas ()
{

/* Loop index. */ int
int

i;
offset 200; /* To move ramps toward center of*/

/* window. */

/* Rop a white block (proves that r, g and b work). */
pw_rop (pwin, 0, 0, 100, 100, (PIX_SRC I PIX_COLOR (OxOOffffff)), 0, 0, 0);

/* Draw some ramps in different colors. */
for (i = 0; i < 256; i++) {

pw_vector (pwin, i + offset, 100, i + offset, 110, PIX_SRC, (i << O));
pw_vector (pwin, i + offset, 112, i + offset, 120, PIX_SRC, (i << 8));
pw_vector (pwin, i + offset, 122, i + offset, 130, PIX_SRC, (i << 16));

/* Spit out some pixels so we know that they work. */
pw_put (pwin, 500, 500, OxOOffOOOO); I* red *I
pw_put (pwin, 500, 501, OxOOffOOOO);
pw_put (pwin, 500, 502, OxOOffOOOO);
pw_put (pwin, 501, 500, OxOOffOOOO);
pw_put (pwin, 501, 501, OxOOffOOOO);
pw_put (pwin, 501, 502, OxOOffOOOO);
pw_put (pwin, 504, 500, OxOOOOffOO); /*green*/
pw_put (pwin, 504, 501, OxOOOOffOO);
pw_put (pwin, 504, 502, OxOOOOffOO);
pw_put (pwin, 505, 500, OxOOOOffOO);
pw_put (pwin, 505, 501, OxOOOOffOO);
pw_put (pwin, 505, 502, OxOOOOffOO);
pw_put (pwin, 508, 500, OxOOOOOOff); /*blue*/
pw_put (pwin, 508, 501, OxOOOOOOff);
pw_put (pwin, 508, 502, OxOOOOOOff);
pw_put (pwin, 509, 500, OxOOOOOOff);
pw_put (pwin, 509, 501, OxOOOOOOff);
pw_put (pwin, 509, 502, OxOOOOOOff);

Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 19

Sun-2 and Sun-3 Assembler

This section describes changes to the Assembly Language Reference, Part Number 800-1773, that supports the
MC68030 processor included in SunOS release 4.0.3 as assembler for the Sun-2 and Sun-3 workstations.

For more information about the MC68030, see the MC68030 Enhanced 32-Bit Microprocessor User's Manual,
Motorola Inc. document MC68030UM/AD, or later.

New Control Register Support

The MC68030 has six control registers not included in the MC68020 or MC68010. The registers are named crp,
srp, tc, ttO, ttl, and psr.

Replace the table on page 43 of the Assembly Language Reference with this table containing the new register names:

Name Register

sp the stack pointer, which is equivalent to a 7
sr the status register
cc the condition codes of the status register

usp the user mode stack pointer
pc the program counter

sfc the source function code register
dfc the destination function code register

fpcr the floating-point control register
fpsr the floating-point status register
fpiar the floating-point instruction address register

crp 64-bit CPU root pointer
srp 64-bit supervisor root pointer

tc 32-bit translation control register
ttO 32-bit transparent translation register
ttl 32-bit transparent translation register

psr MMU status register

New Processor Instruction Support

The new MC68030 instructions supported by the SunOS Release 4.0.3 as are: pf lush, pload, pmove, pt est,
and their variants. Note that all the new instructions are privileged.

The following table lists the instructions specific to the MC68030 as supported by as. Append it to the end of
Table B-1 starting on page 60 in the Assembly Language Reference.

NOTE as has no explicit -0 3 0 flag: the new instructions are always recognized and assembled. Obviously, this
would create problems with code run on non-MC68030 machines.

Revision A of24 April 1989

20 Documentation Errata for Sun0S™ Release 4.0.3

Table 3 List of MC68030 Instruction Codes

Mnemonic Operation Name Syntax Processor
pflusha flush all ATC entries pflusha MC68030

pflush flush ATC entry pflush #data, #data MC68030

pflush d.n,#data MC68030

pflush d.n, #data, ea MC68030

pflush sfc,#data MC68030

pflush sfc,#data, ea MC68030

pflush df c, #data, ax@ (8, d 7 : 1) MC68030

pflush df c, #data, ax@ MC68030

ploadr load ATC entry ploadr #data, 2: 1 MC68030

ploadr d.n, ax@ (8) MC68030

ploadr sfc,ax@(8,d7:l) MC68030

ploadr dfc, ax@ MC68030

ploadw ploadw #data, 2: 1 MC68030

ploadw d.n, ax@ (8) MC68030

ploadw Sf C, ax@ (8, d 7 : 1) MC68030

ploadw dfc, ax@ MC68030

pmove move to/from MMU registers pmove crp,ax@ MC68030

pmove srp, ax@ MC68030

pmove tc, ax@ MC68030

pmove psr, ax@ MC68030

pmove ttO,ax@ MC68030

pmove ttl, ax@ MC68030

pmove ax@,crp MC68030

pmove ax@, srp MC68030

pmove ax@, tc MC68030

pmove ax@,psr MC68030

pmove ax@, ttO MC68030

pmove ax@,ttl MC68030

ptestr test logical address ptestr #data, 2 : 1, #data MC68030

ptestr d.n, ax@ (8) , #data MC68030

ptestr sfc,ax@(8,d7:l) ,#data,a3 MC68030

ptestr dfc, ax@,#data, a4 MC68030

ptestw ptestw #data, 2 : 1, #data MC68030

ptestw dn, ax@ (8) , #data MC68030

ptestw sfc, ax@ (8, d7: 1) ,#data, a3 MC68030

ptestw df c, ax@, #data, a4 MC68030

pmoveflush move to/from MMU register, pmoveflush crp, ax@ MC68030
flush ATC

pmoveflush srp, ax@ MC68030

pmoveflush tc, ax@ MC68030

pmoveflush psr, ax@ MC68030

pmoveflush ttO,ax@ MC68030

pmoveflush ttl, ax@ MC68030

Revision A of 24 April 1989

Documentation Errata for SunOS Release 4.0.3 21

Table 3 List of MC68030 Instruction Codes-Continued

Mnemonic Operation Name Syntax Processor
pmoveflush ax@, crp MC68030

pmoveflush ax@, srp MC68030

pmoveflush ax@, tc MC68030

pmoveflush ax@, psr MC68030

pmoveflush ax@,ttO MC68030

pmoveflush ax@,ttl MC68030

Revision A of 24 April 1989

22 Documentation Errata for SunOS™ Release 4.0.3

Device Drivers

This section corrects portions of Writing Device Drivers , Part Number 800-1780-10, for SunOS Release 4.0, 4.0.1,
and 4.0.3.

rmalloc ()

Sun386i Interrupt

tty_std(4M)

cdevsw

kmem alloc

skioctl

Pages 35 (bottom) and 377 refer to rrnalloc () and iopbrnap. The statement "this will
get a small block of memory back from the beginning of DVMA space" does not describe
how this space is accessed.

The iopbmap is a byte-aligned table. The address it returns is not aligned on a long word
boundary. If a non-aligned address is accessed, a panic may result. Callers of rmalloc ()
should ask for a few bytes of memory more than they need, and round up the address to a full
word boundary if necessary. This applies to both Sun-3 'sand Sun-4 's, but it is more critical
to Sun-4 's, since they can only address using full word alignment.

On the bottom of page 352 and the top of page 353, it states that xxintr () receives by
default the unit number of the device that interrupted it, or something else by changing the
value in rnd _intr->v _ vptr.

This does not apply to the Sun386i. The Sun386i receives two arguments. The first is the
current priority level (cpl) and the second is the interrupt request (irq). The irq is
hardwired so it cannot be changed. The interrupt routine can never receive the unit number.
The unit number can be obtained by saving the interrupt request channel (board level + 8) at
attach time and then figure out which device received the interrupt at interrupt time.

On page 164, in Figure 9-2, the names in the left column: tty_ cornpat. 4m,
tty_std. 4m, and nit. 4m are System V names. These names are now ttcornpat. 4m,
ldterm. 4m, and nit. 4p respectively. These same changes should also be made on pages
311 and 312.

On the bottom of page 45, the cdevsw structure is listed with each element. The two
elements d_stop and d_ttys no longer exist in SunOS and should not be in the table.

On page 369, the krnern _ alloc () description says the routine calls panic () if its request
cannot be satisfied. This was true in SunOS 3.X, but not for SunOS 4.0 and above. In
SunOS 4.0 and above, NULL pointer is returned if the space cannot be allocated.

On the bottom of page 142 the clements of the cdevsw are described. There are two
routines shown that are no longer used. References to xx stop () and "a tty structure
pointer" should not be there. See cdevsw explanation above. The description of the
cdevsw entries in the box on page 142 should also be changed to reflect the new order.
The three lines that say

skopen, skclose, skread, skwrite,
nodev, nodev, nodev, 0,
seltrue, skmrnap

should occur in the following order. References to the ioctl routine should include the
code from page 135 in the previous chapter, and references to the select routine should
include the code from page 132. The new list should be:

~~~ sun 
~i{f? microsystems 

Revision A of 24 April 1989 



selwait 

Ramdisk 

Ramdisk node 

strlog () 

tty structures 

tty structure 

cdevsw structure 

Documentation Errata for SunOS Release 4.0.3 23 

skopen, skclose, skread, skwrite, 
skioctl, nodev, skselect, skmmap 

On pages 133 and 134, there arc references to selwai t () making it look like it is a func
tion. s el wait is an integer, so there should be no parenthesis. This reference is at the top 
and bottom of page 133 and the top of page 134. In addition, the index references on page 
449 and 451 should not have parenthesis. 

Chapter 8 (pages 151 - 156) describes how to implement a ramdisk pseudo-device driver. 
This example is based on SunOS 3.5 and does not work on SunOS 4.0. If this program is run 
under SunOS 4.0 it may cause your system to crash. 

In the box on page 154 is a list of functions for the cdevsw. As described in the cdevsw 
section above, this list should have two less entries. The list should look like this: 

ramopen, nulldev, ramread, ramwrite, 
nodev, nulldev, seltrue, nodev 

On page 154 the mknod example references ramOc as the device name. The correct 
command should be: 

/etc/mknod ramO b 8 0 
/etc/mknod rramO c 30 0 

On the top of page 155 the reference to device name / dev / ramO c should instead be 
/dev/ramO. 

On page 337 is a description of the routine strlog (). Although this appears in the manual, 
it is not a Sun-supported routine and is not recommended to use. 

In Chapter 3 on page 45, at the end of the second paragraph, the statement "For terminals, 
the cdevsw structure also contains a pointer to an array oft ty structures associated with 
the driver.'' should be deleted. 

In Chapter 3 on the top of page 46, the first paragraph "Only teletype-like devices (such as 
the the console driver, the mt i driver, and the z s driver) use the tty structure. All other 
devices set it to zero.'' should be deleted. 

In Chapter 3 on page 46, the first box shows the cdevsw structure. Some of the names have 
been changed. The original routines are: 

cgoneopen, cgoneclose, nodev, nodev, /*14*/ 
cgoneioctl, nodev, nodev, 0, 
seltrue, cgonemmap, 

which should be changed to: 

cgoneopen, cgoneclose, 
cgoneioctl, nodev, 
0, spec_segmap, 

~\sun ~~ microsystems 

nodev, 
seltrue, 

nodev, 
cgonemmap, 

/*14*/ 

Revision A of24 April 1989 



24 Documentation Errata for SunOS™ Release 4.0.3 

md driver 

kernel 

header file 

uio.h 

conf.c 

ram.c 

In Chapter 3 on page 52, the last word on the page "definition" should be "declaration." 

In Chapter 4 on page 63, the statement ''kemel is monolithic monitor type of operating 
system'' should have the word ''a'' inserted resulting in ''kernel is a monolithic monitor type 
of operating system'' 

In Chapter 6 on page 114, the box has a series of include statements. They should be 
changed from 

#include " .. /h/param.h" 
#include .. /h/buf.h" 
#include 
#include 
#include 
#include 
#include 
#include 

to 

.. /h/file.h" 

.. /h/dir.h" 

.. /h/user.h" 

.. /h/uio.h" 

.. /machine/psl. h" 

.. /sundev/mbvar.h" 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/file.h> 
#include <sys/dir.h> 
#include <sys/user.h> 
#include <sys/uio.h> 
#include <machine/psl.h> 
#include <sundev/mbvar.h> 

In Chapter 6 on page 120, the last paragraph makes reference to an include file as 
/usr/ include/ sys/uio. h which should be changed to <sys/uio. h>. 

In Chapter 7 on page 139, the first square item states that conf. c is "a C-language source
code file which contains the definitions of the switches''. Definitions should really be 
changed to "a C-language source-code file which contains the default initializations of the 
switches'' 

In Chapter 8 on page 152, the box contains include statements for the driver. 
These statements should be changed from: 

#include " .. /h/param.h" 
#include " .. /h/errno.h" 
#include " .. /h/uio.h" 
#include" .. /h/buf.h" 

to: 

#include <sys/param.h> 
#include <sys/errno.h> 
#include <sys/uio.h> 
#include <sys/buf.h> 

~\sun ~ microsystems 

I* Includes " . ./hltypes.h" * I 

I* Includes <sys/types.h> * I 

Revision A of 24 April 1989 



alternatives 

putctll 

testb 

boottime 

QUEUE 

Documentation Errata for Sun0S Release 4.0.3 25 

In Chapter 9 on page 191, the end of the second paragraph states" "interfaces to the two the 
non-802.2 drivers and the IP multiplexor.''. There is an extra ''the'' that should be deleted, 
making ''the two non-802.2 drivers and the IP multiplexor.''. 

In Appendix A on page 335, the putctl description refers to the box before it. The statement 
"section, below). On successful completion" should be "section, above). On successful 
completion". 

In Appendix A on page 337, the box for testb () has a C statement 

int size, pri; 

that should be 

register size; 
uint pri; 

In Appendix A on page 341, under kernel.his the statement 

struct timeval boot time /* time since system came up */hz 

that should be 

struct timeval boot time /* time since system came up *I 

In Appendix A on page 342, the square item at the bottom of the page has a period after the 
word QUEUE which should be a comma. 

~\sun ~ microsystems 
Revision A of 24 April 1989 



Notes 


