
Asun® 
• microsystems 

SunOS™ Reference Manual 

Part Number: 800-1751-10 
Revision A, of 9 May 1988 



Credits and Trademarks 

Sun Workstation® is a registered trademark of Sun Microsystems, Inc. 

SunStation®, Sun Microsystems®, SunCore®, Sun Windows®, DVMA®, and the combination of Sun with a 
numeric suffix are trademarks of Sun Microsystems, Inc. 

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories. 

Intel® and Multibus® are registered trademarks of Intel Corporation. 

DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation. 

Copyright© 1987, 1988 by Sun Microsystems, Inc. 

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be 
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, 
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per
mission from Sun Microsystems. 



INTRO( 1) USER COMMANDS INTRO( 1) 

NAME 
intro - introduction to commands 

DESCRIPTION 
This section describes publicly accessible commands in alphabetic order. Commands of general utility, 
many with enhancements from 4.3 BSD. Wherever possible, we have incorporated System V versions of 
commands and utilities into our standard UNIX release. Where a command has both a System V and a BSD 
version and it has been possible to merge them, we have done so. In some cases, where the System V ver
sion is compatible with BSD and offers significant added value, SunOS incorporates that version as its stan
dard. 

Pages of special interest have been categorized as follows: 

lC Commands for communicating with other systems. 

lG Commands used primarily for graphics and computer-aided design. 

1 V Commands that only have System V versions, or that have separate BSD and System V ver
sions. 

These commands either depend upon System V functionality, or have incompatibilities with 
the corresponding BSD version. They are included in the System V Software installation 
option. Once installed, they can be found in the directory /usr/Sbin. 

SEE ALSO 
• Section 8 in this manual for system administration procedures, system maintenance and operation com

mands, local daemons, and network-services servers. 

• Section 7 in this manual for descriptions of publicly available files and macro packages for document 
preparation. 

• Section 6 in this manual for computer games. 

• Getting Started with SunOS: Beginner's Guide 

• Setting Up Your SunOS Environment: Beginner's Guide 

• Sun View 1 Beginner's Guide 

• Using the Network: Beginner's Guide 

• Doing More with SunOS: Beginner's Guide 

• Programming Utilities and Libraries 

DIAGNOSTICS 
Upon termination each command returns two bytes of status, one supplied by the system giving the cause 
for termination, and (in the case of "normal" termination) one supplied by the program, see wait and 
exit(2). The former byte is O for normal termination, the latter is customarily O for successful execution, 
nonzero to indicate troubles such as erroneous parameters, bad or inaccessible data, or other inability to 
cope with the task at hand. It is called variously "exit code," "exit status" or "return code," and is 
described only where special conventions are involved. 

Sun Release 4.0 Last change: 4 March 1988 3 



INTRO( 1) 

LIST OF COMMANDS 
Name 

% 
@ 
Mail 
adb 
addbib 
adjacentscreens 
admin 
aedplot 
alias 
align_ equals 
ar 
arch 
as 
at 
atq 
atrm 
awk 
banner 
bar 
basename 
batch 
be 
bg 
bgplot 
biff 
binmail 
break 
breaksw 
cal 
calendar 
capitalize 
case 
cat 
ch 
cc 
cd 
cdc 
cflow 
checkeq 
checknr 
chfn 
chgrp 
chkey 
chmod 
chsh 
clear 
clear_ colormap 
clear functions 
click 
clock 

4 

USER COMMANDS INTRO( 1) 

Appears on Page 

csh(l) 
csh(l) 
mail(l) 
adb(l) 
addbib(l) 
adjacentscreens( 1) 
admin(l) 
plot(lG) 
csh(l) 
textedit _ filters( 1) 
ar(lV) 
arch(l) 
as(l) 
at(l) 
atq(l) 
atrm(l) 
awk(l) 
banner(lV) 
bar(l) 
base name( 1) 
at(l) 
bc(l) 
csh(l) 
plot(IG) 
biff(l) 
binmail(l) 
csh(l) 
csh(l) 
cal(l) 
calendar(l) 
textedit _ filters( 1) 
csh(l) 
cat(lV) 
cb(l) 
cc(lV) 
cd(l) 
cdc(l) 
cflow(l) 
eqn(l) 
checknr(l) 
passwd(l) 
chgrp(l) 
chkey(l) 
chmod(lV) 
passwd(l) 
clear(l) 
clear _colormap(l) 
clear _functions(l) 
click(l) 
clock(l) 

Description 

C shell built-in commands 
C shell built-in commands 
read or send mail messages 
general-purpose debugger 
create or extend a bibliographic database 
connect multiple screens to Sun View window driver 
create and administer SCCS files 
graphics filters for various plotters 
C shell buiJt-in commands 
filters provided with textedit( 1) 
create library archives, and add or extract files 
display the architecture of the current host 
Sun-1, Sun-2 and Sun-3, Sun-4 and Sun386i assemblers 
execute a command or script at a specified time 
display the queue of jobs to be run at specified times 
remove jobs spooled by at or batch 
pattern scanning and processing language 
display a string in large letters 
create tape archives, and add or extract files 
display portions of pathnames and filenames 
execute a command or script at a specified time 
arbitrary-precision arithmetic language 
C shell built-in commands 
graphics filters for various plotters 
give notice of incoming mail messages 
an early program for processing mail messages 
C shell built-in commands 
C shell built-in commands 
display a calendar 
a simple reminder service 
filters provided with textedit( 1) 
C shell built-in commands 
concatenate and display 
a simple C program beautifier 
C compiler 
change working directory 
change the delta commentary of an SCCS delta 
generate a flow graph for a C program 
typeset mathematics 
check nroff and troff input files; report possible errors 
change password file information 
change the group ownership of a file 
change your encryption key 
change the permissions mode of a file 
change password file information 
clear the terminal screen 
clear the colormap to make console text visible 
reset the selection service to clear stuck function keys 
enable or disable the keyboard's keystroke click 
display the time in an icon or window 

Last change: 4 March 1988 Sun Release 4 .0 



INTRO( 1) 

cluster 
cmdtool 
cmp 
col 
colcrt 
coloredit 
colrm 
comb 
comm 
compress 
continue 
cp 
cpio 
cpp 
crontab 
crtplot 
crypt 
csb 
csplit 
ctags 
ctrace 
cu 
cut 
cxref 
date 
dbx 
dbxtool 
de 
dd 
default 
defaults _from _input 
defaults _from _input 
defaults_ to_ indentpro 
def au Its to mailrc 
def aultsedit 
delta 
deroff 
des 
df 
diff3 
diff 
diffmk 
dircmp 
dirname 
dirs 
dis 
domainname 
dos2unix 
dos 
du 
dumbplot 
e 
echo 

Sun Release 4.0 

USER COMMANDS INTRO( 1) 

cluster(l) 
cmdtool(l) 
cmp(l) 
col(l V) 
colcrt(l) 
coloredit( 1) 
colrm(l) 
comb(l) 
comm(l) 
compress(l) 
csh(l) 
cp(l) 
cpio(l) 
cpp(l) 
crontab(l) 
plot(lG) 
crypt(l) 
csh(l) 
csplit(l) 
ctags(l) 
ctrace(l) 
tip(lC) 
cut(l) 
cxref(l) 
date(lV) 
dbx(l) 
dbxtool(l) 
dc(l) 
dd(l) 
csh(l) 
defaultsedit( 1) 
input_from _defaults(l) 
defaultsedit( 1) 
defaultsedit( 1) 
defaultsedit( 1) 
delta(l) 
deroff(l) 
des(l) 
df(l) 
diff3(1 V) 
diff(l) 
diffmk(l) 
dircmp(lV) 
base name( 1) 
csh(l) 
dis(l) 
domainname( 1) 
dos2unix(l) 
dos(l) 
du(lV) 
plot(lG) 
ex(l) 
ecbo(lV) 

find the Sun386i cluster containing a file 
run a shell (or program) using the Sun View text facility 
perform a byte-by-byte comparison of two files 
filter reverse paper motions from nroff for display 
filter nroff output for a terminal lacking overstrike 
alter color map segment 
remove characters from specified columns within each line 
combine SCCS deltas 
display lines in common between two sorted lists 
compress or expand files, display expanded contents 
C shell built-in commands 
copy files 
copy file archives in and out 
the C language preprocessor 
install, edit, remove or list a user's crontab file 
graphics filters for various plotters 
encode or decode a file 
a shell with a C-like syntax 
split a file with respect to a given context 
create a tags file for use with vi 
generate a C program execution trace 
terminal emulator, telephone connection to a remote system 
remove selected fields from each line of a file 
generate a C program cross-reference 
display or set the date 
source-level debugger 
Sun View interface for the dbx source-level debugger 
desk calculator 
convert and copy files with various data formats 
C shell built-in commands 
create or edit default settings for Sun View 1 
update the mouse and keyboard from defaults 
create or edit default settings for Sun View 1 
create or edit default settings for Sun View 1 
create or edit default settings for Sun View 1 
make a delta (change) to an SCCS file 
remove nroff, troff, tbl and eqn constructs 
encrypt or decrypt data using Data Encryption Standard 
report free disk space on file systems 
display line-by-line differences between 3 files 
display line-by-line differences between pairs of text files 
mark differences between versions of a troff input file 
compare directories 
display portions of pathnames and filenames 
C shell built-in commands 
object code disassembler for COFF 
set or display name of the current YP domain 
convert text file from DOS format to SunOS format 
SunView window for IBM PC/AT applications 
display the number of disk blocks used per directory or file 
graphics filters for various plotters 
line editor 
echo arguments to the standard output 

Last change: 4 March 1988 5 



INTRO( 1) USER COMMANDS INTRO( 1) 

ed ed(l) basic line editor 
edit ex(l) line editor 
egrep grep(lV) search a file for a string or regular expression 
else csh(l) C shell built-in commands 
end csh(l) C shell built-in commands 
endif csh(l) C shell built-in commands 
endsw csh(l) C shell built-in commands 
enroll xsend(l) send or receive secret mail 
env env(l) obtain or alter environment variables 
eqn eqn(l) typeset mathematics 
error error(l) categorize compiler error messages 
eval csh(l) C shell built-in commands 
ex ex(l) line editor 
exec csh(l) C shell built-in commands 
exit csh(l) C shell built-in commands 
expand expand(l) expand TAB characters to SP ACE characters 
expr expr(lV) evaluate arguments as an expression 
false true(l) provide truth values 
fg csh(l) C shell built-in commands 
fgrep grep(lV) search a file for a string or regular expression 
file file(l) determine the type of a file by examining its contents 
find find(l) find files by name, or by other characteristics 
finger finger(l) display information about users 
fmt fmt(l) simple text and mail-message formatters 
fmt mail fmt(l) simple text and mail-message formatters 
fold fold(l) fold long lines for display 
fontedit f ontedit( 1) a vfont screen-font editor 
foption foption(l) determine available floating-point code generation options 
foreach csh(l) C shell built-in commands 
from from(l) display the sender and date of newly-arrived mail messages 
ftp ftp(lC) file transfer program 
gcore gcore(l) get core images of running processes 
get get(l) get a version of an SCCS file 
get selection get_selection(l) copy contents of a selection to the standard output 
getopt getopt(l) parse command options in shell scripts 
getoptcvt getopts(l) parse command options in shell scripts 
getopts getopts(l) parse command options in shell scripts 
gfxtool gfxtool(l) run graphics programs in a SunView window 
gigiplot plot(lG) graphics filters for various plotters 
glob csh(l) C shell built-in commands 
goto csh(l) C shell built-in commands 
gprof gprof(l) display call-graph profile data 
graph graph(lG) draw a graph 
grep grep(lV) search a file for a string or regular expression 
groups groups(l) display a user's group memberships 
hashstat csh(l) C shell built-in commands 
head head(l) display first few lines of specified files 
help help(l) ask for help regarding SCCS errors or warnings 
help_ viewer help_ viewer( 1) SunView help application 
history csh(l) C shell built-in commands 
hostid hostid(l) print the numeric identifier of the current host 
bostname hostname(l) set or print name of current host system 
hpplot plot(lG) graphics filters for various plotters 

6 Last change: 4 March 1988 Sun Release 4.0 



INTRO( 1) 

i386 
iAPX286 
iconedit 
id 
if 
implot 
indent 
indentpro _to_ defaults 
indxbib 
inline 
input _from_ defaults 
input _from_ defaults 
insert brackets 
install 
ipcrm 
ipcs 
jobs 
join 
keylogin 
kill 
label 
last 
lastcomm 
Id.so 
Id 
ldd 
leave 
lex 
limit 
line 
lint 
In 
load 
loadc 
lockscreen 
lockscreen default 
lockscreen def a ult 
logger 
login 
logname 
logout 
look 
lookbib 
!order 
lpq 
lpr 
lprm 
lptest 
Is 
m4 
m68k 
mach 
machid 

Sun Release 4.0 

USER COMMANDS INTRO( 1) 

machid(l) 
machid(l) 
iconedit( 1) 
id(l) 
csh(l) 
plot(lG) 
indent(!) 
defaultsedit( 1) 
indxbib(l) 
inline(l) 
defaultsedit( 1) 
input_from_defaults(l) 
textedit _ filters( 1) 

install(!) 
ipcrm(l) 
ipcs(l) 
csh(l) 
join(l) 
keylogin(l) 
kill(l) 
csh(l) 
last(l) 
lastcomm(l) 
ld(l) 
ld(l) 
ldd(l) 
leave(l) 
lex(l) 
csh(l) 
line(l) 
lint(l V) 
ln(l) 
load(l) 
load(l) 
lockscreen ( 1) 
defa ultsedit( 1) 
lockscreen ( 1) 
logger(l) 
login(l) 
logname(l) 
csh(l) 
look(l) 
lookbib(l) 
lorder(l) 
lpq(l) 
Ipr(l) 
lprm(l) 
lptest(l) 
ls(l V) 
m4(1V) 
machid(l) 
mach(l) 
machid(l) 

return true if processor is of a given type 
return true if processor is of a given type 
edit images for Sun View icons, cursors and panels 
print the user name and ID, and group name and ID 
C shell built-in commands 
graphics filters for various plotters 
indent and format a C program source file 
create or edit default settings for Sun View 1 
create an inverted index to a bibliographic database 
in-line procedure call expander 
create or edit default settings for Sun View 1 
update the mouse and keyboard from defaults 
filters provided with textedit( 1) 
install files 
remove message queue, semaphore, shared memory ID 
report interprocess communication facilities status 
C shell built-in commands 
relational database operator 
decrypt and store secret key 
send a signal to a process, or terminate a process 
C shell built-in commands 
indicate last logins by user or terminal 
show the last commands executed, in reverse order 
link editor, dynamic link editor 
link editor, dynamic link editor 
list dynamic dependencies 
remind you when you have to leave 
lexical analysis program generator 
C shell built-in commands 
read one line 
a C program verifier 
make hard or symbolic links to files 
load Sun386i clusters 
load Sun386i clusters 
maintain Sun View context and prevent unauthorized access 
create or edit default settings for Sun View 1 
maintain Sun View context and prevent unauthorized access 
add entries to the system log 
log in to the system 
get the name by which you logged in 
C shell built-in commands 
find words in the system dictionary or lines in a sorted iist 
find references in a bibliographic database 
find an ordering relation for an object library 
display the queue of printer jobs 
send a job to the printer 
remove jobs from the printer queue 
generate lineprinter ripple pattern 
list the contents of a directory 
macro language processor 
return true if processor is of a given type 
display the processor type of the current host 
return true if processor is of a given type 

Last change: 4 March 1988 7 



INTRO( 1) 

mail 
mailrc to defaults 
mailtool 
make 
man 
mesg 
mkdir 
mkstr 
more 
mt 
mv 
neqn 
newgrp 
nice 
nl 
nm 
nohup 
notify 
nroff 
objdump 
od 
oldccat 
old compact 
oldeyacc 
oldfilemerge 
oldmake 
oldprmail 
oldpti 
oldsetkeys 
oldsun3cvt 
oldsyslog 
oldtektool 
olduncompact 
oldvc 
on 
onintr 
organizer 
overview 
pack 
page 
pagesize 
passwd 
paste 
peat 
pdpll 
perfmeter 
pg 
plot 
popd 
pr 
printenv 
prof 
prs 

8 

mail(l) 
defaultsedit(l) 
mail tool( 1) 
make(l) 
man(l) 
mesg(l) 
mkdir(l) 
mkstr(l) 
more(l) 
mt(l) 
mv(l) 
eqn(l) 
newgrp(l) 
nice(l) 
nl(l) 
nm(l) 
nobup(lV) 
csh(l) 
nroff(l) 
objdump(l) 
od(lV) 
oldcom pact( 1) 
oldcom pact( 1) 
oldeyacc( 1) 
oldfilemerge( 1) 
oldmake(l) 
oldprmail( 1) 
oldpti(l) 
oldsetkeys( 1) 
oldsun3cvt( 1) 
oldsyslog( 1) 
oldtektool( 1) 
oldcom pact( 1) 
oldvc(l) 
on(lC) 
csh(l) 
organizer( 1) 
overview( 1) 
pack(l) 
more(l) 
pagesize( 1) 
passwd(l) 
paste(l) 
pack(l) 
machid(l) 
perfmeter( 1) 
pg(lV) 
plot(lG) 
csh(l) 
pr(lV) 
printenv(l) 
prof(l) 
prs(l) 

USER COMMANDS 

read or send mail messages 
create or edit default settings for Sun View 1 
Sun View interface for the mail program 

INTRO( 1) 

maintain, update, and regenerate related programs and files 
display reference manual pages; find pages by keyword 
permit or deny messages on the terminal 
make a directory 
create an error message file by massaging C source files 
browse or page through a text file 
magnetic tape control 
move or rename files 
typeset mathematics 
log in to a new group 
run a command at low priority 
line numbering filter 
print name list 
run a command immune to hangups and quits 
C shell built-in commands 
format documents for display or line-printer 
dump selected parts -of a COFF object file 
octal, decimal, hex, and ascii dump 
compress and uncompress files, and cat them 
compress and uncompress files, and cat them 
modified yacc allowing much improved error recovery 
window-based file comparison and merging program 
maintain, update, and regenerate groups of programs 
display waiting mail 
phototypesetter interpreter 
modify interpretation of the keyboard 
convert Sun-2 executables for use on a Sun-3 
make a system log entry 
Sun View Tektronix 4014 terminal-emulator window 
compress and uncompress files, and cat them 
version control 
execute on remote system with local environment 
C shell built-in commands 
file and directory manager 
run a program from Sun View that takes over the screen 
compress and expand files 
browse or page through a text file 
display the size of a page of memory 
change password file information 
join lines of several files 
compress and expand files 
return true if processor is of a given type 
display system performance values in a meter or strip chart 
page through a file on a soft-copy terminal 
graphics filters for various plotters 
C shell built-in commands 
prepare file(s) for printing, perhaps in multiple columns 
display environment variables currently set 
display profile data 
display selected portions an SCCS history 

Last change: 4 March 1988 Sun Release 4.0 



INTRO( 1) USER COMMANDS INTRO( 1) 

prt prt(l) display the delta and commentary history of an SCCS file 
ps ps(l) display the status of current processes 
ptx ptx(l) generate a permuted index 
pushd csh(l) C shell built-in commands 
pwd pwd(l) display the pathname of the current working directory 
quota quota(l) display a user's disk quota and usage 
ranlib ranlib(l) convert archives to random libraries 
rasfilter8to 1 rasfilter8tol(l) convert an 8-bit deep rasterfile to a 1-bit deep rasterfile 
rastrepl rastrepl(l) magnify a raster image by a factor of two 
rep rcp(lC) remote file copy 
rdist rdist(l) remote file distribution program 
refer refer(l) expand and insert references from a bibliographic database 
rehash csh(l) C shell built-in commands 
repeat csh(l) C shell built-in commands 
reset tset(l) establish or restore terminal characteristics 
rev rev(l) reverse the order of characters in each line 
rlogin rlogin(lC) remote login 
rm rm(l) remove (unlink) files or directories 
rmdel rmdel(l) remove a delta from an SCCS file 
rmdir rm(l) remove (unlink) files or directories 
roffbib roffbib(l) format and print a bibliographic database 
rpcgen rpcgen(l) an RPC protocol compiler 
rsh rsh(lC) remote shell 
rup rup(lC) show host status of local machines (RPC version) 
ruptime ruptime(lC) show host status of local machines 
rusers rusers(lC) who's logged in on local machines (RPC version) 
rwall rwall(lC) write to all users over a network 
rwho rwho(lC) who's logged in on local machines 
sact sact(l) print current SCCS file editing activity 
SCCS sccs(l) front end for the Source Code Control System (SCCS) 
sccsdiff sccsdiff( 1) compare two versions of an SCCS file 
screen blank screenblank(l) tum off the screen when the mouse and keyboard are idle 
screendump screendump(l) dump a frame-buffer image to a file 
screenload screenload( 1) load a frame-buffer image from a file 
script script(l) make typescript of a terminal session 
scrolldefaults defa ultsedit( 1) create or edit default settings for Sun View 1 
sdiff sdiff(l) contrast two text files by displaying them side-by-side 
sed sed(lV) stream editor 
selection svc selection_ svc( 1) SunView selection service 
set csh(l) C shell built-in commands 
setenv csh(l) C shell built-in commands 
sh sh(l) the standard UNIX system shell 
shelltool shelltool(l) run a shell (or command) in a Sun View terminal window 
shift csh(l) C shell built-in commands 
shift lines textedit_ filters(l) filters provided with textedit( 1) 
size size(l) display the size of an object file 
sleep sleep(l) suspend execution for a specified interval 
snap snap(l) Sun View application for system and network administration 
soelim soelim(l) resolve and eliminate .so requests from nroff or troff input 
sort sort(lV) sort and collate lines 
sortbib sortbib(l) sort a bibliographic database 
source csh(l) C shell built-in commands 
spare machid(l) return true if processor is of a given type 

Sun Release 4.0 Last change: 4 March 1988 9 



INTRO( 1) USER COMMANDS INTRO( 1) 

spell spell(l) report spelling errors 
spellin spell(l) report spelling errors 
spellout spell(l) report spelling errors 
spline spline(lG) interpolate smooth curve 
split split(l) split a file into pieces 
stop csh(l) C shell built-in commands 
strings strings(l) find printable strings in an object file or binary 
strip strip(l) remove symbols and relocation bits from an object file 
stty stty(lV) set or alter the options for a terminal 
stty _from_ def au Its defaultsedit( 1) create or edit default settings for Sun View 1 
stty _from _defaults stty _from_ defaults( 1) set terminal editing characters from the defaults database 
SU su(l) super-user, temporarily switch to a new user ID 
sum sum(lV) calculate a checksum for a file 
sun machid(l) return true if processor is of a given type 
sunview sunview(l) the Sun View window environment 
suspend csh(l) C shell built-in commands 
swin swin(l) set or get Sun View user input options 
switch csh(l) C shell built-in commands 
switcher switcher(l) switch between multiple Sun View desktops 
symorder symorder(l) rearrange a list of symbols 
sync sync(l) update the super block; force changed blocks to the disk 
sysex sysex(l) invoke the system exerciser 
syswait syswait(l) execute a command, suspending termination until user input 
t300 plot(lG) graphics filters for various plotters 
t300s plot(lG) graphics filters for various plotters 
t4013 plot(lG) graphics filters for various plotters 
t450 plot(lG) graphics filters for various plotters 
tabs tabs(l V) set tab stops on a terminal 
tail tail(l) display the last part of a file 
talk talk(l) talk to another user 
tar tar(l) create tape archives, and add or extract files 
tbl tbl(l) format tables for nroff or troff 
tcopy tcopy(l) copy a magnetic tape 
tcov tcov(l) construct test coverage analysis and statement profile 
tee tee(l) replicate the standard output 
tek plot(lG) graphics filters for various plotters 
telnet telnet(lC) interface to remote system using TELNET protocol 
test test(lV) return true or false according to a conditional expression 
textedit textedit(l) Sun View window- and mouse-based text editor 
textedit filters textedit _ filters( 1) filters provided with textedit(l) 
tftp tftp(lC) trivial file transfer program 
then csh(l) C shell built-in commands 
time time(lV) time a command 
tip tip(lC) terminal emulator, telephone connection to a remote system 
toolplaces tool places( 1) display Sun View window locations 
touch touch(lV) update the access and modification times of a file 
tput tput(lV) initialize a terminal or query the terminfo database 
tr tr(l V) translate characters 
trace trace(l) trace system calls and signals 
traffic traffic( 1 C) Sun View program to display Ethernet traffic 
troff troff(l) typeset or format documents 
true true(l) provide truth values 
tset tset(l) establish or restore terminal characteristics 

10 Last change: 4 March 1988 Sun Release 4.0 



INTRO( 1) USER COMMANDS INTRO( 1) 

tsort tsort(l) topological sort 
tty tty(l) display the name of the terminal 
u3bl5 machid(l) return true if processor is of a given type 
u3b2 machid(l) return true if processor is of a given type 
u3b5 machid(l) return true if processor is of a given type 
u3b machid(l) return true if processor is of a given type 
ul ul(l) do underlining 
umask csh(l) C shell built-in commands 
unalias csh(l) C shell built-in commands 
uname uname(lV) display the name of the current system 
uncompress compress(!) compress or expand files, display expanded contents 
unexpand expand(l) expand TAB characters to SP ACE characters 
unget unget(l) undo a previous get of an secs file 
unhash csh(l) C shell built-in commands 
unifdef unifdef(l) resolve and remove if def ed lines from cpp input 
uniq uniq(l) remove or report adjacent duplicate lines 
units units(l) conversion program 
unix2dos unix2dos(l) convert text file from SunOS format to DOS format 
unlimit csh(l) C shell built-in commands 
unload unload(l) unload Sun386i clusters 
unloadc unload(l) unload Sun386i clusters 
unpack pack(l) compress and expand files 
unset csh(l) C shell built-in commands 
unsetenv csh(l) C shell built-in commands 
uptime uptime(l) show how long the system has been up 
users users(l) display a compact list of users logged in 
uucp uucp(lC) system to system copy 
uudecode uuencode(lC) encode a binary file, or decode its ASCII representation 
uuencode uuencode( 1 C) encode a binary file, or decode its ASCII representation 
uulog uucp(lC) system to system copy 
uuname uucp(lC) system to system copy 
uusend uusend(lC) send a file to a remote host 
uustat uustat(lC) uucp status inquiry andjob control 
uux uux(lC) remote system command execution 
vacation vacation(!) reply to mail automatically 
val val(l) validate an SCCS file 
vax machid(l) return true if processor is of a given type 
vfontinfo vfontinfo(l) inspect and print out information about fonts 
vgrind vgrind(l) grind nice program listings 
vi vi(l) visual display editor based on ex( 1) 
view vi(l) visual display editor based on ex( 1) 
vplot vplot(l) plot graphics for a Versatec printer 
vswap vswap(l) convert a foreign font file 
vtroff vtroff(l) troff to a raster plotter 
vwidth vwidth(l) make a troff width table for a font 
w w(l) who is logged in, and what are they doing 
wait wait(l) wait for a process to finish 
wall wall(l) write to all users logged in 
WC wc(l) display a count of lines, words and characters 
what what(l) identify the version of files under SCCS 
whatis whatis(l) display a one-line summary about a keyword 
whereis whereis(l) locate binary, source, and manual page for a command 
which which(l) locate a command; display its pathname or alias 

Sun Release 4.0 Last change: 4 March 1988 11 



INTRO( 1) 

while 
who 
whoami 
whois 
write 
xargs 
xget 
xsend 
xstr 
yacc 
yes 
ypcat 
n~match 
yppas2wd 
ypwhich 
zcat 

12 

csh(l) 
who(l) 
whoami(l) 
whois(l) 
write(l) 
xargs(l) 
xsend(l) 
xsend(l) 
xstr(l) 
yacc(l) 
yes(l) 
ypcat(l) 
ypmatch(l) 
yppasswd(l) 
ypwhich(l) 
compress(l) 

USER COMMANDS 

C shell built-in commands 
who is logged in on the system 
display the effective current usemame 
DARPA Internet user name directory service 
write a message to another user 

INTRO( 1) 

construct the arguments list(s) and execute a command 
send or receive secret mail 
send or receive secret mail 
extract strings from C programs to implement shared strings 
yet another compiler-compiler: parsing program generator 
be repetitively affirmative 
print values in a YP data base 
print the value of one or more keys from a YP map 
change your network password in the Yellow Pages 
which host is the YP server or map master? 
compress or expand files, display expanded contents 

Last change: 4 March 1988 Sun Release 4.0 



ADB ( 1) USER COMMANDS ADB(l) 

NAME 
adb - general-purpose debugger 

SYNOPSIS 
adb [ -w] [ -k ] [ -I dir] [ objectfi/e [ corefile ] ] 

AVAILABILITY 
This command is available with the Debugging software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
adb is an interactive, general-purpose debugger. It can be used to examine files and provides a controlled 
environment for the execution of programs. 

objectfi/e is normally an executable program file, preferably containing a symbol table. If the file does not 
contain a symbol table, it can still be examined, but the symbolic features of adb cannot be used. The 
default for objectfile is a.out. core/de is assumed to be a core image file produced after executing 
objectftle. The default for corefile is core. 

OPTIONS 

USAGE 

-k 

-w 

-I dir 

Perform kernel memory mapping; should be used when corefile is a system crash dump or 
/dev/mem. 

Create both objectfzle and corefile, if necessary, and open them for reading and writing so that 
they can be modified using adb. 

specifies a directory where files to be read with$< or$« (see below) will be sought; the default 
is /usr/Iib/adb. 

Refer to adb in Debugging Tools for more complete information on how to use adb. (Note: Some com
mands require that you compile progams to be debugged with the -go compiler flag; see cc(l V) for details. 
These commands are not currently available on Sun-4 systems; they are marked '(-go only)' below.) 

Commands 
adb reads commands from the standard input and displays responses on the standard output. It does not 
supply a prompt. It ignores the QUIT signal. INTERRUPT invokes the next adb command. adb generally 
recognizes command input of the form: 

[ address ] [, count ] command [ ; ] 

address and count (if supplied) are expressions that result, respectively, in a new current address, and a 
repetition count. command is composed of a verb followed by a modifier or list of modifiers. 

The symbol '.' represents the current location. It is initially zero. The default count is '1'. 

Verbs 

? 
I 
= 
@ 

$r 
$R 
$x 
$X 
> 
RETURN 

Sun Release 4.0 

Print locations starting at address in objectfile. 
Print locations starting at address in corefile. 
Print the value of address itself. 
Interpret address as a source address. Print locations in objectfile or lines of source, as 
appropriate. (-go only). 
Manage a subprocess. 
Print names and contents of CPU registers. 
Print names and contents of MC68881 registers, if any. 
Print the names and contents of FPA registers O through 15, if any. 
Print the names and contents of FPA registers 16 through 31, if any. 
Assign a value to a variable or register. 
Repeat the previous command with a count of 1. Increment '.'. 
Shell escape. 

Last change: 18 February 1988 13 



ADB(l) USER COMMANDS ADB ( 1) 

14 

Modifiers 
Modifiers specify the format of command output Each modifier consists of a letter, preceded by an integer 
repeat count. 

Format Modifiers 

The following format modifiers apply to the commands ? , /, @, and =. To specify a format, follow the 
command with an optional repeat count, and the desired format letter or letters: 

[v][[r]/ ... ] 

where v is one of these four command verbs, r is a repeat count, and/ is one of the format letters listed 
below: 
0 

0 
q 
Q 
d 
D 
X 

X 
h 
H 
u 
u 
f 
F 
e 

b 
B 
C 

C 
s 
s 
y 

M 
z 
I 
a 
p 
A 
p 

t 
r 
n 

+ 

(' .' increment: 2) Print 2 bytes in octal. 
(4) Print 4 bytes in octal. 
(2) Print in signed octal. 
(4) Print long signed octal. 
(2) Print in decimal. 
(4) Print long decimal. 
(2) Print 2 bytes in hexadecimal. 
(4) Print 4 bytes in hexadecimal. 
(2) Sun386i systems only. Print 2 bytes in hexadecimal in reverse order. 
(4) Sun386i systems only. Print 4 bytes in hexadecimal in reverse order. 
(2) Print as an unsigned decimal number. 
( 4) Print long unsigned decimal. 
(4) Print a single-precision floating-point number. 
(8) Print a double-precision floating-point number. 
or E (12) Print a 96-bit MC68881 extended-precision floating-point number. (Sun-2 or 
Sun-3 systems only.) 
(1) Print the addressed byte in octal. 
(1) Sun386i systems only. Print the addressed byte in hexadecimal. 
(1) Print the addressed character. 
(1) Print the addressed character using" escape convention. 
(n) Print the addressed string. 
(n) Print a string using the " escape convention. 
(4) Print 4 bytes in date format. 
(n) Print as machine instructions. 
(n) On Sun386i systems, print as machine instructions along with machine code. 
(n) Print with MC68010 machine instruction timings. (Sun-2 or Sun-3 system only.) 
(0) Print the source text line specified by '.' (-go only) 
(0) Print the value of'.' in symbolic form. 
(4) Print the addressed value in symbolic form. 
(0) Print the value of'.' in source-symbol form. 
(4) Print the addressed value in source-symbol form. 
(0) Tab to the next appropriate TAB stop. 
(0) Print a SP ACE. 
(0) Print a NEWLINE. 
(0) Print the enclosed string. 
(0) Decrement '.'. 
(0) Increment '.'. 
(0) Decrement'.' by 1. 

Modifiers for? and I Only 

I value mask Apply mask and compare for value; move '.' to matching location. 
L value mask Apply mask and compare for 4-byte value; move '.' to matching location. 
w value Write the 2-byte value to address. 
W value Write the 4-byte value to address. 

Last change: 18 February 1988 Sun Release 4.0 



ADB ( 1) 

m bl el fl[?] 

: Modifiers 
b commands 
B commands 
w commands 

D 
r 
cs 
ss 
Ss 

t 
k 
es 
u 

t 
k 
A 

R 

$Modifiers 
<file 
<<file 
>file 
? 
r 

R 

X 

X 

b 
C 

C 

d 

e 
w 

USER COMMANDS ADB (1) 

Map new values for bl, el, fl. If the ? or / is followed by * then the second segment 
(b2, e2 ,/2) of the address mapping is changed. 

Set breakpoint, execute commands when reached. 
Set breakpoint using source address, execute commands when reached (-go only). 
Sun386i systems only. Set a data write breakpoint at address . Like b except that the 
breakpoint is hit when the program writes to address . 
Delete breakpoint at source address (-go only). 
Run objectfde as a subprocess. 
The subprocess is continued with signal s. 
Single-step the subprocess with signal s. 
Single-step the subprocess with signals using source lines (-go only). 
Add the signal specified by address to the list of signals passed directly to the subpro
cess. 
Remove the signal specified by address from the list implicitly passed to the subprocess. 
Single-step the subprocess with signal s using source lines ( -go only) 
Sun386i systems only. Likes , but steps over subroutine calls instead of into them. 
Sun386i systems only. Continue uplevel, stopping after the current routine has returned. 
Should only be given after the frame pointer has been pushed on the stack. 
Add the signal specified by address to the list of signals passed directly to the subpro
cess 
Remove the signal specified by address from the list implicitly passed to the subprocess. 
Terminate the current subprocess, if any. 
Sun386i systems only. Attach the process whose process ID is given by address. The 
PID is generally preceded by Ot so that it will be interpreted in decimal. 
Sun386i systems only. Release (detach) the current process. 

Read commands from the file file. 
Similar to <, but can be used in a file of commands without closing the file. 
Append output to file, which is created if it does not exist. 
Print process ID, the signal which stopped the subprocess, and the registers. 
Print the names and contents of the general CPU registers, and the instruction addressed 
by pc. 
On Sun-3 systems with an MC68881 floating-point coprocessor, print the names and 
contents of the coprocessor's registers. 
On Sun-3 systems with a Floating Point Accelerator (FPA), print the names and contents 
of FPA floating-point registers O through 15. On Sun-4 systems, print the names and 
contents of the floating-point registers O through 15. 
On Sun-3 systems with an FPA, print the names and contents of FPA registers 16 through 
31. On Sun-4 systems, print the names and contents of floating-point registers 16 
through 31. 
Print all breakpoints and their associated counts and commands. 
C stack backtrace. On Sun-4 systems, it is impossible for adb to determine how many 
parameters were passed to a function. The default that adb chooses in a $c command is 
to show the six parameter registers. This can be overridden by appending a hexadecimal 
number to the $c command, specifying how many parameters to display. For example, 
the $cf command will print 15 parameters for each function in the stack trace. 
C stack backtrace with names and (32 bit) values of all automatic and static variables for 
each active function. (-go only) 
Set the default radix to address and report the new value. Note: address is interpreted in 
the (old) current radix. Thus '10$d' never changes the default radix. 
Print the names and values of external variables. 
Set the page width for output to address (default 80). 

T __ .._ _t 



ADB(l) USER COMMANDS ADB(l) 

16 

s 
0 

q 
V 

m 
f 
p 
p 

w 

Variables 

Set the limit for symbol matches to address (default 255). 
All integers input are regarded as octal. 
Exit from adb. 
Print all non zero variables in octal. 
Print the address map. 
Print a list of known source filenames. (-go only) 
Print a list of known procedure names. (-go only) 
(Kernel debugging) Change the current kernel memory mapping to map the designated 
user structure to the address given by _u ( u on Sun386i systems); this is the address of 
the user's proc structure. 
Show which signals are passed to the subprocess with the minimum of adb interference. 
Reopen objectfile and corefile for writing, as though the -w command-line argument had 
been given. 
Sun386i systems only. Set the length in bytes (1, 2, or 4) of the object referenced by :a 
and :w to address Default is 1. 

Named variables are set initially by adb but are not used subsequently. 
0 The last value printed. 
1 The last offset part of an instruction source. 
2 The previous value of variable 1. 
9 The count on the last $< or $<< command. 

On entry the following are set from the system header in the corefile or objectfile as appropriate. 
b The base address of the data segment. 
B On Sun-3 systems, the number of an address register that points to the FPA page. 
d The data segment size. 
e The entry point 
F On Sun-3 systems, a value of' 1' indicates FPA disassembly. 
m The 'magic' number (0407, 0410 or 0413). 
s The stack segment size. 
t The text segment size. 

Expressions 

+ 

& 
integer 

int.frac 
'cccc' 
<name 
symbol 

_symbol 
routine .name 

(exp) 

Unary Operators 
*exp 
%exp 
-exp 
exp 

#exp 

The value of dot. 
The value of dot incremented by the current increment 
The value of dot decremented by the current increment. 
The last address typed. (In older versions of adb, """ was used.) 
A number. The prefixes Oo and 00 indicate octal; Ot and OT, decimal; Ox and OX, hexa
decimal (the default). 
A floating-point number. 
ASCII value of up to 4 characters. 
The value of name, which is either a variable name or a register name. 
A symbol in the symbol table. An initial '_' will be prepended to symbol (on Sun-2, 
Sun-3, and Sun-4 systems but not Sun386i systems) if needed. 
An external symbol (on Sun-2, Sun-3, and Sun-4 systems but not Sun386i systems). 
The address of the variable name in the specified routine in the symbol table. If name is 
omitted, the address of the most recent stack frame for routine. 
The value of exp. 

The contents of location exp in corefile. 
The contents of location exp in objectfile (In older versions of adb, '@' was used). 
Integer negation. 
Bitwise complement. 
Logical negation. 

Last change: 18 February 1988 Sun Release 4.U 



ADB ( 1) USER COMMANDS ADB(l) 

"Fexp 
"Aexp 
'name 
''file" 

(CTRL-F) Translate program address to source address. (-go only) 
(CTRL-A) Translates source address to program address. (-go only) 
(Backquote) Translates procedure name to sourcefile address. (-go only) 
The sourcefile address for the zero-th line of file. (-go only) 

Binary Operators 

FILES 

Binary operators are left associative and have lower precedence than unary operators. 
+ Integer addition. 

Integer subtraction. 
* Integer multiplication. 
% Integer division. 
& Bitwise conjunction ("AND"). 
I Bitwise disjunction ("OR"). 
# lhs rounded up to the next multiple of rhs. 

a.out 
core 

SEE ALSO 
cc(l V), dbx(l), kadb(8S), ptrace(2), a.out(5), core(5) 

Debugging Tools 

DIAGNOSTICS 

BUGS 

adb, when there is no current command or format, comments about inaccessible files, syntax errors, abnor
mal termination of commands, etc. Exit status is 0, unless last command failed or returned nonzero status. 

There does not seem to be any way to clear all breakpoints. 

adb uses the symbolic information in an old and now obsolete format generated by the -go flag of cc(l V); 
it should be changed to use the new format generated by -g. 

Since no shell is invoked to interpret the arguments of the :r command, the customary wild-card and vari
able expansions cannot occur. 

Since there is little type-checking on addresses, using a sourcefile address in an inappropriate context may 
lead to unexpected results. 

The $cparameter-count command is a kluge. 

Sun Release 4.0 Last change: 18 February 1988 17 



ADDBIB( 1) USER COMMANDS ADDBIB(l) 

NAME 
addbib - create or extend a bibliographic database 

SYNOPSIS 
addbib [ -a ] [ -p prompt.file ] database 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
When addbib starts up, answering y to the initial Instructions? prompt yields directions; typing n or 
RETURN skips them. addbib then prompts for various bibliographic fields, reads responses from the termi
nal, and sends output records to database. A null response (just RETURN) means to leave out that field. A 
- (minus sign) means to go back to the previous field. A trailing backslash allows a field to be continued 
on the next line. The repeating Continue? prompt allows the user either to resume by typing y or 
RETURN, to quit the current session by typing n or q, or to edit database with any system editor (vi(l), 
ex(l), ed(l)). 

OPTIONS 

USAGE 

-a Suppress prompting for an abstract; asking for an abstract is the default. Abstracts are 
ended with a CTRL-D. 

-p Use a new prompting skeleton, defined in promptfzle. This file should contain prompt 
strings, a TAB, and the key-letters to be written to the database. 

Bibliography Key Letters" 

1R 

The most common key-letters and their meanings are given below. addbib insulates you from these key
letters, since it gives you prompts in English, but if you edit the bibliography file later on, you will need to 

know this information. 

%A Author's name 

%B Book containing article referenced 

%C City (place of publication) 

%D Date of publication 

%E Editor of book containing article referenced 

%F Footnote number or label (supplied by refer) 

%G Government order number 

%H Header commentary, printed before reference 

%1 Issuer (publisher) 

%J Journal containing article 

%K Keywords to use in locating reference 

%L Label field used by -k option of refer 

%M Bell Labs Memorandum (undefined) 

%N Number within volume 

%0 Other commentary, printed at end of reference 

%P Page number(s) 

%Q Corporate or Foreign Author ( unreversed) 

%R Report, paper, or thesis (unpublished) 

%S Series title 

Last change: 21 December 1987 Sun Release 4.0 



ADDBIB ( 1) USER COMMANDS ADDBIB(l) 

% T Title of article or book 

% V Volume number 

%X Abstract- used by roffbib, not by refer 

% Y ,Z Ignored by ref er 

EXAMPLE 
Except for A, each field should be given just once. Only relevant fields should be supplied. 

% A Mark Twain 
%T Life on the Mississippi 
%1 Penguin Books 
%C New York 
%0 1978 

SEE ALSO 
ed(l), ex(l), indxbib(l), lookbib(l), refer(l), roffbib(l), sortbib(l), vi(l) 

refer in Formatting Documents 

Sun Release 4.0 Last change: 21 December 1987 19 



ADJACENTSCREENS ( 1) USER COMMANDS ADJACENTSCREENS ( 1 ) 

NAME 
adjacentscreens - connect multiple screens to Sun View window driver 

SYNOPSIS 
adjacentscreens [ -c 1-m ] center-screen [ -11-r 1-t 1-b side-screen ] . . . -x 

AVAILABILITY 

This command is available for Sun-2, Sun-3 and Sun-4 systems with the Sun View 1 User's software instal
lation option. Refer to Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
adjacentscreens tells the window-driver's mouse-pointer tracking mechanism how to move between 
screens that contain windows. Note that sun view( 1) must be running on all screens before adja
centscreens is used. Once properly notified using adjacentscreens , the mouse pointer slides from one 
screen to another as you move the pointer past the appropriate edge of a screen. 

OPTIONS 
-ccenter-screen 
-mcenter-screen 

center-screen is the name of a frame buffer device, such as /dev/fb; all other physical screen
positions are given relative to this reference point. The -c or -m flag is optional. If omitted, the 
first argument is taken as center-screen. If no further arguments are given, center-screen has no 
neighbors. 

-I side-screen 
-r side-screen 
-t side-screen 
-b side-screen 
-I side-screen 

side-screen is also a frame buffer device name, such as /dev/cgone. The -I flag indicates that 
side-screen is to the left of center-screen; -r indicates that it is to the right -t Indicates that 
side-screen is on top of (above) center-screen; -b indicates that it is below. Each neighboring 
screen can be specified as an option on the command line. 

-x Suppress the normal notification to a side-screen pointer tracker that center-screen is its only 
neighbor. This option is useful if you have a large number of screens or want exotic inter-window 
pointer movements. 

EXAMPLE 

FILES 

The following command: 

example% adjacentscreens /dev/fb-r /dev/cgone 

sets up pointer tracking so that the pointer slides from a monochrome screen (/dev/fb) to a color screen 
(/dev/cgone) when the pointer moves off the right hand edge of the monochrome display. Similarly, the 
pointer slides from the color screen to the monochrome screen when the pointer moves off the color 
screen's left edge. 

/usr/bin/adjacentscreens 
/dev/fb 
/dev/cgone 

SEE ALSO 
sunview(l), switcher(l) 

BUGS 
Window systems on all screens must be initialized before running adjacentscreens. 

20 Last change: 18 February 1988 Sun Release 4.0 



ADMIN( 1) USER COMMANDS ADMIN( 1) 

NAME 
ad.min - create and administer secs files 

SYNOPSIS 
/usr/sccs/admin [ -bhnz] [ -alogin] ... [ -djlag [flag-val]] ... [ -elogin] ... [ -fjlag [flag-val]] .. . 

[ -i [ name ] ] [ -llist ] [ -m [ mrlist ] ] [ -rrelease ] [ -t [ name ] ] [ -y [ comment ] ] filename .. . 

DESCRIPTION 
admin creates new secs files and changes parameters of existing ones. Filenames of secs files begin 
with the 's.' prefix. A named file is created if it does not exist already, and its parameters are initialized 
according to the specified options. Any parameter not initialized by an option is assigned a default value. 
If a named file does exist, parameters are altered according to the specified options, and other parameters 
are left as is. 

If a directory is named, admin behaves as though each file in the directory were specified as a named file, 
except that non-SCCS files (for which the last component of the path name does not begin with 's.') and 
unreadable files are silently ignored. A filename of'-' means the standard input - each line of the stan
dard input is taken as the name of an secs file to be processed. Again, non-SCCS files and unreadable files 
are silently ignored. 

OPTIONS 
Options are explained as though only one named file is to be processed, since they apply to each file 
independently. 

Sun Release 4.0 

-b When used with the -i flag, this option indicates that the SCCS file is to contain an 
encoded version of a binary data file. Normally, admin treats a file as binary only if it 
contains NUL or control characters, or does not end with a NEWLINE. However binary 
files do not fit these criteria; -b forces the initial delta to be flagged as binary, otherwise 
subsequent deltas that do fit the criteria cannot be checked in. 

-h Check the structure of the SCCS file (see sccsfile(5)), and compare a newly computed 
check-sum with one stored in the first line of the secs file. 

The -h option inhibits writing on the file, so that it nullifies the effect of any other 
options; it is therefore only meaningful when processing existing files. 

-n Create a new secs file. 

-z Recompute the file check-sum and store it in the first line of the secs file. Note: using 
the -z option on a truly corrupted file may prevent its corrupted state from being detected 
later on. 

-a login Add a login name, or a numerical group-ID, to the list of users who can make deltas to 
the SCCS file. A group-ID is equivalent to specifying all users in the group. Several -a 
options can appear on a single admin command line. As many login-, or group-ID, as 
desired can be on the list simultaneously. If the list of users is empty, anyone may add 
deltas. 

-djlag Delete the indicated flag from an secs file. The -d option may be specified only for 
existing secs files, and several -d options can be supplied on a single admin command. 

-e login Erase a login name or numerical group-ID from the list of users allowed to make deltas. 
Several -e options may be used on a single admin command line. 

-fjlag Set the indicated.flag, and, possibly, a value for that.flag. Several -f options can be sup
plied on a single admin command line. flags and their values appear in the FLAGS sec
tion below. 

-i [name] 
Initial text: the file name contains the text for the new SCCS file. This text constitutes the 
initial delta (set of checked changes checked in at one time); see the -r option for the 
delta numbering scheme. If name is omitted, the text is obtained from the standard input. 

Last change: 5 January 1988 21 



ADMIN( 1) 

FLAGS 

USER COMMANDS ADMIN(l) 

Omitting the -i option altogether creates an empty SCCS file. You can only create one 
secs file with an 'admin -i' command. Creating more than one secs file with a single 
admin command requires that they be created empty, in which case the -i option should 
be omitted. Note: the -i option implies the -n option. 

-I list Unlock the specified list of releases. See FLAGS below for a description of the I flag and 
the syntax of a list. 

-m [mrlist] 
The list of Modification Request (MR) numbers is inserted into the secs file as the 
rationale for creating an initial delta. A diagnostics message results if the v flag is not set 
or the MR validation fails. 

-r release 
Specify the release for the initial delta. -r may be used only if the -i option is also used 
The initial delta is inserted into release 1 if this option is omitted. The level of the initial 
delta is always 1, and initial deltas are named 1.1 by default. 

-t [name] 
Insert descriptive text contained in the file name. The descriptive text file name must be 
supplied when creating a new SCCS file (either or both -n and -i options) and the -t 
option is used. In the case of existing SCCS files: 1) a -t option without a file name 
removes descriptive text (if any) currently in the secs file, and 2) a -t option with a file 
name replaces the descriptive text currently in the SCCS file with any text in the named 
file. 

-y [comment] 
Insert a comment for the initial delta into the secs file. If the -y option is omitted, a 
default comment line is inserted in the form: 

date and time created YYIMMIDD s HH:MM:SS by login 

The -y option is valid only if the -i and/or-n options are specified. 

The followingjlags can appear as arguments to the -f (set flags) and-d (delete flags) options: 

22 

b When set, the -b option can be used on a get(l) command to create branch deltas. 

c ceil The highest release (ceiling) which may be retrieved by a get(l) command for editing. 
The ceiling is a number less than or equal to 9999. The default value for an unspecified c 
flag is 9999. 

fjloor The lowest release (floor) which may be retrieved by a get(l) command for editing. The 
floor is a number greater than O but less than 9999. The default value for an unspecified f 
flag is 1. 

dS/D The default delta number (SID) to be used by a get(l) command. 

i Treats the 'No id keywords (ge6)' message issued by get(l) or delta(l) as a fatal error. 
In the absence of the i flag, the message is only a warning. The message is displayed if 
no secs identification keywords (see get(l)) are found in the text retrieved or stored in 
the SCCS file. 

j Concurrent get(l) commands for editing may apply to the same SID of an secs file. This 
allows multiple concurrent updates to the same version of the SCCS file. 

llist A list of locked releases to which deltas can no longer be made. A 'get -e' fails when 
applied against one of these locked releases. The list has the following syntax: 

dist>::= <range> I dist>, <range> 
<range>::= Release Number I a 

The character a in the list is equivalent to specifying all releases for the named SCCS file. 

Last change: 5 January 1988 Sun Release 4.0 



ADMIN( 1) USER COMMANDS ADMIN(l) 

FILES 

n The delta(l) command creates a "null" delta in each release (if any) being skipped when 
a delta is made in a new release. For example, releases 3 and 4 are skipped when making 
delta 5.1 after delta 2.7. These null deltas serve as "anchor points" so that branch deltas 
may be created from them later. If the n flag is absent from the secs file, skipped 
releases will be non-existent in the secs file, preventing branch deltas from being 
created from them in the future. 

q text text is defined by the user. The text is substituted for all occurrences of the %Q % key
word in SCCS file text retrieved by get(l). 

mmodule 
module name of the SCCS file substituted for all occurrences of the % M % keyword in 
the secs file text retrieved by get(l). If them flag is not specified, the value assigned is 
the name of the SCCS file with the leading s. removed. 

ttype type of module in the secs file substituted for all occurrences of % Y% keyword in 
SCCS file text retrieved by get(l). 

v [program] 
Validity checking program: delta(l) prompts for Modification Request (MR) numbers as 
the reason for creating a delta. The optional pro gram specifies the name of an MR 
number validity checking program (see delta(l)). If this flag is set when creating an 
secs file, the -m option must also be used even if its value is NULL. 

The last component of all secs file names must be of the forms.filename. New secs files are given mode 
444 (see chmod(lV)). All writing done by admin is to a temporary file with an 'x'. prefix, created with 
mode 444 for a new SCCS file, or with the same mode as an existing SCCS file. After successful execution 
of admin, the existing SCCS file is removed, then replaced with the x.filename. This ensures that changes 
are made to the SCCS file only when no errors have occurred. 

It is recommended that directories containing secs files have permission mode 755, and that the secs files 
themselves have mode 444. The mode for directories allows only the owner to modify the SCCS files con
tained in the directories, while the mode of the SCCS files themselves prevents all modifications except 
those performed using SCCS commands. 

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644 by the 
owner to allow use of a text editor. However, extreme care must be taken when doing this. The edited file 
should always be processed by an 'admin -h' to check for corruption, followed by an 'admin -z' to gen
erate a proper check-sum. Another 'admin -h' is recommended to ensure that the resulting SCCS file is 
valid. 

admin also uses a transient lock file (called z.filename), to prevent simultaneous updates to the SCCS file by 
different users. See get(l) for further information. 

SEE ALSO 
chmod(l V), delta(l), ed(l), get(l), help(l), prs(l), sccs(l), what(l), sccsfile(S) 

Programming Utilities and Libraries. 

DIAGNOSTICS 
Use help(l) for explanations. 

Sun Release 4.0 Last change: 5 January 1988 23 



AR(lV) USER COMMANDS AR( lV) 

NAME 
ar- create library archives, and add or extract files 

SYNOPSIS 
ar d Im Ip I q Ir It Ix [[ abi position-name ] [ cilouv ]] archive [ member-file . .. ] 

SYSTEM V SYNOPSIS 
ar [-]d Im I p I q Ir It Ix [[ abi position-name ] [ cilouvs ]] archive [ member-file. . . ] 

DESCRIPTION 
ar maintains groups of files combined into a single archive file. An archive file comprises a set of member 
files and header information for each file. The archive header and the headers for the file consist of print
able characters (assuming that the characters in the names of the files in the archive are printable), and are 
in a format portable across all machines. This format is described in detail in ar(S)). If an archive is com
posed of printable files, with printable file names, the entire archive is printable. 

ar is normally used to create and update library files used by the link editor ld(l), but can be used for any 
similar purpose. 

archive is the name of the archive file. member-file is a member file contained in the archive. If this argu
ment is omitted, the command applies to all entries in the archive. Member names have a maximum of 15 
characters, except on Sun386i systems, where they have a maximum of 14 characters. Names longer than 
this are truncated 

SYSTEM V DESCRIPTION 
ar will run ranlib after modifying an archive, so that the symbol table member of the archive will be kept 
up-to-date. 

OPTIONS 

24 

You must indicate only one of: d, m, p, q, r, t, or x, which may be followed by one or more Modifiers. 

d Delete the named files from the archive file. 

m Move the named files to the end of the archive. 

p Print. If no names are given, all files in the archive are written to the standard output; if no names 
are given, only those files are written, and they are written in the order that they appear in the 
archive. 

q Quick append. Append the named files to the end of the archive file without searching the archive 
for duplicate names. Useful only to avoid quadratic behavior when creating a large archive 
piece-by-piece. If this option is used to add a member to an archive, and a member with the same 
name as that member already exists in the archive, the old member will not be removed; two 
members with the same name will exist in the archive. 

r Replace the named files in the archive. 

t Table of contents. If no names are given, all files in the archive are listed; if names are given, 
only those files are listed. 

x Extract. If no names are given, all files in the archive are extracted into the current directory; if 
names are given, only those files are extracted. In neither case does x alter the archive file. 

Modifiers 
a Place new files after posname (posname argument must be present). Applies only to the rand m 

options. 

b Place new files before posname (posname argument must be present). Applies only to the r and m 
options. 

c Create. Suppress the message that is produced by default when archive is created. 

Identical to the b modifier. 

Local. Place temporary files in the current working directory rather than in the default temporary 

Last change: 18 February 1988 Sun Release 4.0 



AR(lV) USER COMMANDS AR( lV) 

directory, /tmp. 

o Old date. When files are extracted with the x option, set the "last modified" date to the date 
recorded in the archive. 

u Update. Replace only those files that have changed since they were put in the archive. Used with 
the r option. 

v Verbose. When used with the r, d, m, or q option, give a file-by-file description of the creation of 
a new archive file from the old archive and the constituent files. When used with x, give a file
by-file description of the extraction of archive files. When used with t, give a long listing of infor
mation about the files. When used with p, write each member's name to the standard output 
before writing the member to the standard output. 

SYSTEM V OPTIONS 

The options may be preceded by - . 

Modifiers 

s Force the regeneration of the archive symbol table even if ar is not invoked with a command that 
will modify the archive contents. 

EXAMPLES 

FILES 

Creating a new archive: 
hermes % ar rev archive file.o 
a - file.o 

Adding to an archive: 
hermes % ar rav file.o archive next.c 
a - next.c 

Extracting from an archive: 
hermes % ar xv archive file.o 
x - file.o 
hermes % Is file.o 
file.o 

Seeing the table of contents: 
hermes % ar t archive 
file.o 

/tmp/v*. 
/tmp 

next.c 

temporaries 

SEE ALSO 

BUGS 

ld(l), lorder(l), ranlib(l), ar(5) 

If the same file is mentioned twice in an argument list, it is put in the archive twice. 

The "last-modified" date of a file will not be altered by the o option unless the user is either the owner of 
the extracted file or the super-user. 

Sun Release 4.0 Last change: 18 February 1988 25 



ARCH( 1) USER COMMANDS ARCH(l) 

NAME 
arch - display the architecture of the current host 

SYNOPSIS 
arch 

DESCRIPTION 
The arch command displays the architecture of the current host system. 

SEE ALSO 
mach( 1 ), machid( 1) 

26 Last change: 9 September 1987 Sun Release 4.0 



AS ( 1) USER COMMANDS AS( 1) 

NAME 
as - Sun-1, Sun-2 and Sun-3, Sun-4 and Sun386i assemblers 

SUN-1, SUN-2 and SUN-3 SYNOPSIS 
as [ -L] [ -R] [ -o objfile] [ -d2] [ -h] [ -j] [ -J] [ -0] [ -mc68010] [ -mc68020 ]filename 

SUN-4 SYNOPSIS 
as [ -L] [ -R] [ -o objfile] [ -O[n]] [ -P [ [ -Ipath] [ -Dname] [ -Dname=def] [ -Uname]] ... ] 

[ -S[C] ] filename ... 

Sun386i SYNOPSIS 
as [ -k] [ -o objfile] [ -R] [ -V] [ -i386] 

DESCRIPTION 
as translates the assembly source file,filename into an executable object file, objfile. The Sun-4 assembler 
recognizes the filename argument'-' as the standard input. 

All undefined symbols in the assembly are treated as global. 

The output of the assembly is left in the file objfile. 

OPTIONS 
The following options are common to all Sun architectures. Options for specific Sun architectures are 
listed below. 

-L Save defined labels beginning with an L, which are normally discarded to save space in the resul
tant symbol table. The compilers generate many such temporary labels. 

-R Make the initialized data segment read-only by concatenating it to the text segment. This elim
inates the need to run editor scripts on assembly code to make initialized data read-only and 
shared. 

-o objfile 
The next argument is taken as the name of the object file to be produced. If the -o flag is not 
used, the object file is named a.out. 

Sun-1, Sun-2 and Sun-3 Options 
-d2 Instruction offsets that involve forward or external references, and with unspecified size, are two 

bytes long. (See also the -j option.) 

-h Suppress span-dependent instruction calculations. Restrict branches to medium length. Force 
calls to take the most general form. This option is used when the assembly must be minimized, 
even at the expense of program size and run-time performance. It results in a smaller and faster 
program than one produced by the -J option, but some very large programs may be unable to use 
it due to the limits of medium-length branches. 

-j Use short (pc-relative) branches to resolve jump and jump-to-subroutine instructions to external 
routines. This is for compact programs for which the -d2 option is inappropriate due to large
program relocation. 

-J Suppress span-dependent instruction calculations and force branches and calls to take the most 
general form. This is useful when assembly time must be minimized, even at the expense of pro
gram size and run-time performance. 

-0 Perform span-dependent instruction resolution over entire files rather than just individual pro
cedures. 

Sun-4 Options 
-O[n] Enable peephole optimization corresponding to optimization level n (1 if n not specified) of the 

Sun high-level language compilers. This option can be used safely only when assembling code 
produced by a Sun compiler. 

-P Run cpp(l), the C preprocessor, on the files being assembled. The preprocessor is run separately 
on each input file, not on their concatenation. The preprocessor output is passed to the assembler. 

Sun Release 4.0 Last change: 18 February 1988 27 



AS(l) USER COMMANDS AS(l) 

-lpath 
-Dname 
-Dname=def 
-Uname 

When-Pis in effect, these cpp(l) options are passed to the C preprocessor, without interpretation 
by as. Otherwise, they are ignored. 

-S[C] Produce a disassembly of the emitted code to the standard output. This is most useful in combina
tion with the -0 option, to review optimized code. Adding the character C to the option prevents 
comment lines from appearing in the output. 

Sun386i Options 

-k Create position independent code. Called by cc -pie. 

-V Write the version number of the assembler being run on the standard error output. 

-i386 Confirm that this output is intended for an 80386 processor. 

FILES 
/tmp/as* default temporary file 

SEE ALSO 

BUGS 

adb(l), cpp(l), dbx(l), ld(l), a.out(S) coff(S) 

Sun-4 Assembly Language Reference Manual 
Assembly Language Manual 

The Sun Pascal compiler qualifies a nested procedure name by chaining the names of the enclosing pro
cedures. This sometimes results in names long enough to abort the Sun-1/2/3 assembler, which currently 
limits identifiers to 512 characters (the Sun-4 assembler does not have this restriction). 

Sun386i CAVEATS 
There can be only one forward-reference to a symbol per arithmetic expression. 

28 Last change: 18 February 1988 Sun Release 4.0 



AT( 1) USER COMMANDS AT(l) 

NAME 
at, batch - execute a command or script at a specified time 

SYNOPSIS 
at [ -csm ] time [ date ] [ + increment ] [ script ] 
at-r jobs .. . 
at -I [jobs ... ] 

batch [ -csm ] [ script ] 

DESCRIPTION 
at and batch read commands from standard input to be executed at a later time. at allows you to specify 
when the commands should be executed, while jobs queued with batch will execute when system load 
level permits. script is the name of a file to be used as command input for the Bourne shell, sh(l), the C 
shell, csh(l), or an arbitrary shell specified by the SHELL environment variable. If script is omitted, com
mand input is accepted from the standard input. 

Standard output and standard error output are mailed to the user unless they are redirected elsewhere. The 
shell environment variables, current directory, and umask(2) are retained when the commands are exe
cuted. Open file descriptors, traps, and priority are lost. 

Users are permitted to use at if their name appears in the file /var/spool/cron/at.allow. If that file does not 
exist, the file /var/spool/cron/at.deny is checked to determine if the user should be denied access to at. If 
neither file exists, only the super-user is allowed to submit a job. If at.deny is empty, global usage is per
mitted. The allow/deny files consist of one user name per line. 

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are taken to be hours, four digits 
to be hours and minutes. The time may alternately be specified as two numbers separated by a colon, 
meaning hour:minute. A suffix am or pm may be appended; otherwise a 24-hour clock time is understood. 
The suffix zulu may be used to indicate GMT. The special names noon, midnight, now, and next are also 
recognized. 

An optional date may be specified as either a month name followed by a day number (and possibly year 
number preceded by an optional comma) or a day of the week (fully spelled or abbreviated to three charac
ters). Two special "days", today and tomorrow are recognized. If no date is given, today is assumed if 
the given hour is greater than the current hour and tomorrow is assumed if it is less. If the given month is 
less than the current month (and no year is given), next year is assumed. 

The optional increment is simply a number suffixed by one of the following: minutes, hours, days, weeks, 
months, or years. (The singular form is also accepted.) 

Thus legitimate commands include: 

at 0815am Jan 24 
at 8:15am Jan 24 
at now+ 1 day 
at 5 pm Friday 

at and batch write the job number and schedule time to standard error. 

batch submits a batch job. It is almost equivalent to 'at now', but not quite. For one, it goes into a dif
ferent queue. For another, 'at now' will respond with the error message 'too late'. 

OPTIONS 
-c C shell. csh is used to execute script. 

-s Standard (Bourne) shell. sh is used to execute the job. SHELL environment variable to deter-
mine which shell to use. 

-m Mail. Send mail after the job has been run, even if the job completes successfully. 

-r jobs . . . Remove the specified jobs previously scheduled by at or batch. The job numbers are the 
numbers of the jos given to you previously by the at or batch commands. You can only 

Sun Release 4.0 Last change: 9 September 1987 29 



AT(l) USER COMMANDS 

remove your own jobs unless you are the super-user. 

-I [jobs ... ] 

AT(l) 

If jobs is specified, print the queue entry for those jobs; if jobs is not specified, print the queue 
entries for all jobs for the user. 

ENVIRONMENT 
If neither file exists, only the super-user is allowed to submit a job. If at.deny is empty, global usage is 
permitted. The allow/deny files consist of one user name per line. 

EXAMPLES 

FILES 

Unless a script is specified, the at and batch commands read from standard input the commands to be exe
cuted at a later time. sh and csh provide different ways of specifying standard input. Within your com
mands, it may be useful to redirect standard output. 

This sequence can be used at a terminal: 
batch 
nroff filename > outfile 
<control-D> (hold down 'control' and depress 'D') 

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a shell procedure (the 
sequence of output redirection specifications is significant): 

batch<<! 
nroff filename 2>&1 > outfile I mail loginid 

To have a job reschedule itself, invoke at from within the shell procedure, by including code similar to the 
following within the shell file: 

at 1900 thursday next week shellfile 

/var/spool/cron main cron directory 
/var/spool/cron/at.allow 

list of allowed users 
/var/spool/cron/at.deny 

list of denied users 
/var/spool/cron/atjobs spool area 

SEE ALSO 
atq(l), atrm(l), csh(l), kill(l), mail(l), nice(l), ps(l), sh(l), umask(2), cron(8) 

DIAGNOSTICS 
Complains about various syntax errors and times out of range. 

BUGS 
If the system crashes, mail stating that the job was not completed is not sent to the user. 

Shell interpreter specifiers (such as, !/bin/csh) in the beginning of script are ignored. 

30 Last change: 9 September 1987 Sun Release 4.0 



ATQ( 1) USER COMMANDS ATQ(l) 

NAME 
atq - display the queue of jobs to be run at specified times 

SYNOPSIS 
atq [ -c ] [ -n ] username . .. 

DESCRIPTION 
atq prints the queue of jobs, created with the at(l) command, that are waiting to be run at later date. 

With no flags, the queue is sorted in chronological order of execution. 

If no usemames are specified, the entire queue is displayed; otherwise, only those jobs belonging to the 
named users are displayed. 

OPTIONS 

FILES 

-c By creation time. Sorted the queue by the time that the at command was given, the most recently 
created job first 

-n Number of jobs. Print the total number of jobs currently in the queue. Do not list them. 

/var/spool/cron spool area 

SEE ALSO 
at(l), atrm(l), cron(8) 

Sun Release 4.0 Last change: 9 September 1987 31 



ATRM( 1) USER COMMANDS ATRM( 1) 

NAME 
atrm - remove jobs spooled by at or batch 

SYNOPSIS 
atrm [ -fi] [ - ] [job-number] ... [ username] ... 

DESCRIPTION 
atrm removes delayed-execution jobs that were created with the at( 1) command. The list of jobs can be 
displayed by atq(l) 

atrm removes each job-number you specify, and/or all jobs belonging to username, provided that you own 
the indicated jobs. 

Jobs belonging to other users can only be removed by the super-user. 

OPTIONS 

FILES 

-f 

-i 

Force. All information regarding the removal of the specified jobs is suppressed. 

Interactive. atrm asks if a job should be removed; a response of y verifies that the job is to be 
removed. 

Remove jobs that were queued by the current user. If invoked by the super-user, the entire queue 
will be flushed 

/var/spool/cron spool area 

SEE ALSO 
at(l), atq(l), cron(8) 

32 Last change: 9 September 1987 Sun Release 4.0 



AWK( 1) USER COMMANDS AWK(l) 

NAME 
awk - pattern scanning and processing language 

SYNOPSIS 
awk [ -f program-file ] [-Fe] [program] [ variable =value ... ] [filename ... ] 

DESCRIPTION 
awk scans each of its input filenames for lines that match any of a set of patterns specified in program. 
The inputfilenames are read in order; the standard input is read if there are no filenames. The filename'-' 
means the standard input. 

The set of patterns may either appear literally on the command line as program, or, by using the '-f 
pro gram-file' option, the set of patterns may be in a pro gram-file ; a pro gram-file of ' - ' means the standard 
input. If the program is specified on the command line, it should be enclosed in single quotes (') to protect 
it from the shell. 

awk variables may be set on the command line using arguments of the form variable =value. This sets the 
awk variable variable to value before the first record of the next filename argument is read. 

With each pattern in pro gram there can be an associated action that will be performed when a line of a 
filename matches the pattern. See the discussion below for the format of input lines and the awk language. 
Each line in each input filename is matched against the pattern portion of every pattern-action statement; 
the associated action is performed for each matched pattern. 

OPTIONS 
-f program-file 

Use the contents of program-file as the source for the program. 

-Fe Use the character c as the field separator (FS) character. See the discussion of PS below. 

USAGE 
Input Lines 

An input line is made up of fields separated by white space. The field separator can be changed by using 
FS - see Special Variable Names below. Fields are denoted $1, $2, ... , up to $9; $0 refers to the entire 
line. 

Pattern-action Statements 
A pattern-action statement has the form 

pattern { action } 
A missing action means copy the line to the output; a missing pattern always matches. 

Action Statements 
An action is a sequence of statements. A statement can be one of the following: 

if ( conditional) statement [ else statement ] 
while ( conditional ) statement 
for ( expression ; conditional ; expression ) statement 
break 
continue 
{ [statement] ... } 
variable = expression 
print [expression-list] [>expression] 
printf format [ , expression-list ] [ > expression ] 
next skip remaining patterns on this input line 
exit skip the rest of the input 

Format of the awk Language 
statements are terminated by semicolons, NEWLINE characters or right braces. An empty expression-list 
stands for the whole line. 

Sun Release 4.0 Last change: 24 September 1987 33 



AWK(l) USER COMMANDS AWK(l) 

expressions take on string or numeric values as appropriate, and are built using the operators+,-,*,/, %, 
and concatenation (indicated by a blank). The C operators ++ , -- , +=, -= , *=,I=, and %= are also 
available in expressions. 

variable may be scalars, array elements ( denoted x [ i ]) or fields. Variables are initialized to the null 
string. Array subscripts may be any string, not necessarily numeric, providing a form of associative 
memory. String constants are quoted " ... ". 

The print statement prints its arguments on the standard output (or on a file if >filename is present), 
separated by the current output field separator, and terminated by the output record separator. The printf 
statement formats its expression list according to the format template format (see printf(3S) for a descrip
tion of the formatting control characters). 

Built In Functions 
The built-in function length returns the length of its argument taken as a string, or of the whole line if no 
argument There are also built-in functions exp, log, sqrt, and int, where int truncates its argument to an 
integer. 'substr( s, m, n )' returns then-character substring of s that begins at position m. 'sprintf (for
mat, expression, expression, ... )' formats the expressions according to the printf format given by format, 
and returns the resulting string. 

Patterns 
Patterns are arbitrary Boolean combinations (!, 11, &&, and parentheses) of regular expressions and rela
tional expressions. Regular expressions must be surrounded by slashes and are as in egrep (see grep(l)), 
Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also occur in 
relational expressions. 

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all 
lines between an occurrence of the first pattern and the next occurrence of the second. 

A relational expression is one of the following: 

expression matchop regular-expression 
expression relop expression 

where a relop is any of the six relational operators in C, and a matchop is either (contains) or! (does not 
contain). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of 
these. 

The special pattern BEGIN may be used to capture control before the first input line is read, in which case 
BEGIN must be the first pattern. The special pattern END may be used to capture control after the last input 
line is read, in which case END must be the last pattern. 

Special Variable Names 
A single character c may be used to separate the fields by starting the program with 

BEGIN {FS = "c"} 

or by using the -F c option. 

Other variable names with special meanings include NF, the number of fields in the current record; NR, the 
ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output field 
separator (default blank); ORS, the output record separator (default NEWLINE); and OFMT, the output for
mat for numbers ( default % .6g). 

EXAMPLES 
Print lines longer than 72 characters: 

length> 72 

Print first two fields in opposite order: 

{ print $2, $1 } 

34 Last change: 24 September 1987 Sun Release 4.0 



AWK( 1) USER COMMANDS AWK(l) 

Add up first column, print sum and average: 

{ s += $1} 
END { print "sum is", s," average is", s/NR} 

Print fields in reverse order: 

{ for (i = NF; i > O; --i) print $i} 

Print all lines between start/stop pairs: 

/start/, /stop/ 

Print all lines whose first field is different from previous one: 

$1 != prev { print; prev = $1 } 

SEE ALSO 

BUGS 

grep(l V), lex(l), sed(l V), printf(3S) 

Editing Text Files 

Input white space is not preserved on output if fields are involved. 

There are no explicit conversions between numbers and strings. To force an expression to be treated as a 
number add Oto it; to force it to be treated as a string concatenate the null string("") to it. 

There is no escape sequence that prints a double-quote. A workaround is to use the sprintf (see 
printf(3S)) function to store the character into a variable by its ASCII sequence. 

dq = sprintf(" %c", 34) 

Syntax errors result in the cryptic message 'awk: bailing out near line 1'. 

Sun Release 4.0 Last change: 24 September 1987 35 



BANNER(l) USER COMMANDS BANNER(l) 

NAME 
banner - display a string in large letters 

SYNOPSIS 
/usr/Sbin/banner strings 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the SunOS for information on how to 
install this command. 

banner prints its arguments (each up to 10 characters long) in large letters on the standard output. 

SEE ALSO 
echo(lV) 

36 Last change: 24 September 1987 Sun Release 4.0 



BAR( 1) USER COMMANDS BAR( 1) 

NAME 
bar - create tape archives, and add or extract files 

SYNOPSIS 
bar [ - ] crxtu [ 014578feovwbXIFmhpBisHSUZRTIN] [ barfile] [ blocksize] [exclude-file] 

[ string ] [ target_ directory ] [ user _id] [ include-file ] filename] ... 
[ -C dir filename . . . ] ... 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
bar archives and extracts multiple files onto a single bar, file archive, called a barfile. It is quite similar to 
tar(5), but it has additional function modifiers , can read and write multiple volumes, and writes and reads 
a format that is incompatible with tar (see bar(5)). A barfile is usually a magnetic tape, but it can be any 
file. bar's actions are controlled by the first argument, the key, a string of characters containing exactly 
one function letter from the set rxtuc, and one or more of the optional function modifiers listed below. 
Other arguments to bar are file or directory names that specify which files to archive or extract. In all 
cases, the appearance of a directory name refers recursively to the files and subdirectories of that directory. 

FUNCTION LETTERS 
c Create a new barfile and write the named files onto it. 

r Write the named files on the end of the barfile. Note: this option does not work with quarter-inch 
archive tapes. 

x Extract the named files from the barfile. If a named file matches a directory with contents written onto 
the tape, this directory is (recursively) extracted. The owner, modification time, and mode are restored 
(if possible). If no filename arguments are given, all files in the archive are extracted. Note: if multiple 
entries specifying the same file are on the tape, the last one overwrites all earlier versions. 

t List the table of contents of the barfile. 

u Add the named files to the barfile if they are not there or if they have been modified since they were 
last archived. Note: this option does not work with quarter-inch archive tapes. 

FUNCTION MODIFIERS 
014578 

Select an alternate drive on which the tape is mounted. The numbers 2, 3, 6, and 9 do not specify valid 
drives. The default is /dev/rmt8. 

f Use the next argument as the name of the barfile. If f is omitted, use the device indicated by the TAPE 
environment variable, if set. Otherwise, use /dev/rmt8 by default. If barfile is given as '-', bar writes 
to the standard output or reads from the standard input, whichever is appropriate. Thus, bar can be 
used as the head or tail of a filter chain. bar can also be used to copy hierarchies with the command: 

example% cd fromdir; bar cf-, I (cd todir; bar xfflp-) 

e If any unexpected errors occur bar will exit immediately with a positive exit status. 

o Suppress information specifying owner and modes of directories which bar normally places in the 
archive. Such information makes former versions of bar generate an error message like: 

<.filename>: cannot create 

when they encounter it. 

v Normally bar does its work silently; the v (verbose) option displays the name of each file bar treats, 
preceded by the function letter. When used with the t function, v displays the barfile entries in a form 
similar to 'Is -I '. 

w Wait for user confirmation before taking the specified action. If you use w, bar displays the action to 
be taken followed by the file name, and then waits for a y response to proceed. No action is taken on 
the named file if you type anything other than a line beginning with y. 

Sun Release 4.0 Last change: 19 February 1988 37 



BAR( 1) USER COMMANDS BAR(l) 

38 

b Use the next argument as the blocking factor for tape records. The default blocking factor is 20 blocks. 
The block size is determined automatically when reading tapes (key letters x and t). This determination 
of the blocking factor may be fooled when reading from a pipe or a socket (see the B key letter below). 
The maximum blocking factor is determined only by the amount of memory available to bar when it is 
run. Larger blocking factors result in better throughput, longer blocks on nine-track tapes, and better 
media utilization. 

X Use the next argument as a file containing a list of named files (or directories) to be excluded from the 
barfile when using the key letters 'c', 'x', or 't'. Multiple X arguments may be used, with one exclude 
file per argument. 

Display error messages if all links to archived files cannot be resolved. If I is not used, no error mes
sages are printed. 

F With one F argument specified, exclude all directories named SCCS from barfile. With two arguments 
FF, exclude all directories named SCCS, all files with .o as as their suffix, and all files named errs, core, 
and a.out. 

m Do not extract modification times of extracted files. The modification time will be the time of extrac
tion. 

b Follow symbolic links as if they were normal files or directories. Normally, bar does not follow sym
bolic links. 

p Restore the named files to their original modes, ignoring the present umask(2). Setuid and sticky infor
mation are also extracted if you are the super-user. This option is only useful with the x key letter. 

B Force bar to perform multiple reads (if necessary) so as to read exactly enough bytes to fill a block. 
This option exists so that bar can work across the Ethernet, since pipes and sockets return partial 
blocks even when more data is coming. 

Ignore directory checksum errors. 

s Force the ownership of extracted files to match the bar process's effective user ID and group ID. 

H The string of up to 128 characters is to be used as a volume header ID. A volume header is written to 
each volume of the archive when the c function letter is specified. See bar(5) for the volume header's 
format. 

Use of the H function modifier when creating an archive allows bar to read volumes out of sequence. 
When extracting a file that spans volumes, bar will identify the tape(s) it needs to extract the entire file. 
If the wrong volume is inserted, bar issues a warning and prompts again for the correct volume. 

S Place files specified for extraction in this target directory when used with the x function letter. 

U Specify the user ID in the volume header when creating archive, when the H function modifier is used. 
If the c function letter is specified and a volume header exists, bar will verify that the user ids match 
before overwriting barfile if the N modifier is specified. 

Z Specify compression. bar will compress files when used with the c function letter and will decompress 
files when used with the x function letter. bar will neither compress a compressed file, nor decompress 
a decompressed file. 

R Read the volume header and print the information to stdout. 

N See if the user owns the media (uid matches that in the bar header) before overwriting barfile with the C 
key word. 

T When using the x or t function letters, terminate the search of the media after all the files specified are 
extracted (for x) or listed (fort). 

Last change: 19 February 1988 Sun Release 4.0 



BAR( 1) USER COMMANDS BAR( 1) 

I Use the next argument as a file containing a list of named files, one per line, to be included in the bar 
archive. The include file expects filenames to be followed by a semicolon and newline character. 

In the case where excluded files (see X flag) also exist, excluded files take precedence over all included 
files. So, if a file is specified in both the include and exclude files (or on the command line), it will be 
excluded. 

OPTIONS 
-C dir filename 

In a c (create) or r (replace) operation, bar performs a chdir (see csh(l)) to that directory before inter
preting filename. This allows multiple directories not related by a close common parent to be archived 
using short relative path names. For example, to archive files from /usr/include and from /etc, one 
might use: 

example% bar c -C /usr include -C /etc . 

If you get a table of contents from the resulting barfile, you will see something like: 
include/ 
include/a.on t.h 
and all the other files in /usr/include .. Jchown 
and all the other files in /etc 

Note: the -C option only applies to one following directory name and one following file name. 

EXAMPLES 
Here is a simple example using bar to create an archive of your home directory on a tape mounted on drive 
/dev/rmtO: 

example% cd 
example% bar cvf /dev/rmtO. 
messages 

The c option means create the archive; the v option makes bar tell you what it's doing as it works; the f 
option means that you are specifically naming the file onto which the archive should be placed (/dev/rmtO 
in this example). 

Here is another example: /dev/rmtO: 

example% cd 

example% bar cvfH /dev/rmtO "TIDS IS MY HEADER" . 
messages 

As in the first example, the c option means create the archive; the v option makes bar tell you what it's 
doing as it works; the f option means that you are specifically naming the file onto which the archive 
should be placed (/dev/rmtO in this example). The H option says to use the string "TIDS IS MY 
HEADER" as the ID field in the volume header. 

Now you can read the table of contents from the archive like this: 
example% bar tvf /dev/rmtO 
(access user-id/group-id size 
rw-r--r-- 1677 /40 2123 

example% 

You can extract files from the archive like this: 
example% bar xvf /dev/rmtO 
messages 

mod. date 
Nov 7 18: 15: 1985 

filename) 
Jarchive/test.c 

If there are multiple archive files on a tape, each is separated from the following one by an EOF marker. 
bar does not read the EOF mark on the tape after it finishes reading an archive file because bar looks for a 
special header to decide when it has reached the end of the archive. Now if you try to use bar to read the 

Sun Release 4.0 Last change: 19 February 1988 39 



BAR( 1) USER COMMANDS BAR(l) 

FILES 

next archive file from the tape, bar does not know enough to skip over the EOF mark and tries to read the 
EOF mark as an archive instead. The result of this is an error message from bar to the effect: 

bar: blocksize=O 

This means that to read another archive from the tape, you must skip over the EOF marker before sbarting 
another bar command. You can accomplish this using the mt command, as shown in the example below. 
Assume that you are reading from /dev/nrmtO. 

example% bar xvfp /dev/nrmtO read first archive from tape 
messages 
example% mt fsf 1 skip over the end-of-file marker 
example% bar xvfp /dev/nrmtO read second archive from tape 
messages 
example% 

Finally, here is an example using bar to transfer files across the Ethernet. First, here is how to archive files 
from the local machine (example) to a tape on a remote system (host): 

example% bar cvfb - 20filenames lrshhostdd 
messages 
example% 

In the example above, we are creating a barfile with the c key letter, asking for verbose output from bar 
with the v option, specifying the name of the output barfile using the f option (the standard output is where 
the barfile appears, as indicated by the - sign), and specifying the blocksize (20) with the b option. If you 
want to change the blocksize, you must change the blocksize arguments both on the bar command and on 
the dd command. 

Now, here is how to use bar to get files from a tape on the remote system back to the local system: 
example% rsh -n host dd if=/dev/rmtO bs=20b I bar xvBfb - 20 filenames 
messages 
example% 

In the example above, we are extracting from the barfile with the x key letter, asking for verbose output 
from bar with the v option, telling bar it is reading from a pipe with the B option, specifying the name of 
the input barfile using the f option (the standard input is where the barfile appears, as indicated by the '-' 
sign), and specifying the blocksize (20) with the b option. 

/dev/rmt? 
/dev/rar? 
/dev/rst? 
/tmp/bar* 

half-inch magnetic tape interface 
quarter-inch magnetic tape interface 
SCSI tape interface 

ENVIRONMENT 
TAPE If specified, in the environment, the value of TAPE indicates the default tape device. 

NOTES 
bar will handle multiple volumes gracefully. If a tape error is encountered, bar issues a message on the 
standard error requesting a new volume. The presence of a new volume is confirmed when bar reads a line 
beginning with Y or yon the standard input; a line beginning with Norn aborts the archive; with any other 
character bar reissues the prompt. 

SEE ALSO 

BUGS 

40 

cpio(l), umask(2), bar(5), tar(5), dump(8), restore(8) 

Neither the r option nor the u option can be used with quarter-inch archive tapes, since these tape drives 
cannot backspace. 

Last change: 19 February 1988 Sun Release 4.0 



BAR(l) USER COMMANDS 

There is no way to ask for the nth occurrence of a file. 

The u option can be slow. 

There is no way selectively to follow symbolic links. 

BAR(l) 

When extracting tapes created with the r or u options, directory modification times may not be set 
correctly. 

Files with names longer than 100 characters cannot be processed. 

Filename substitution wildcards do not work for extracting files from the archive. To get around this, use a 
command of the form: 

bar xvf ... /dev/rstO 'bar tf ... /dev/rstO I grep 'pattern " 

If you specify '-' as the target file and the archive spans volumes, the request for a new volume may get 
lost 

Sun Release 4.0 Last change: 19 February 1988 41 



BASENAME( 1) USER COMMANDS 

NAME 
basename, dirname - display portions of pathnames and filenames 

SYNOPSIS 
basename string [ suffix ] 
dirname string 

DESCRIPTION 

BASENAME ( 1 ) 

basename deletes any prefix ending in/ and the suffix, if present in string. It directs the result to the stan
dard output, and is normally used inside substitution marks (' ') within shell procedures. 

dirname delivers all but the last level of the path name in string. 

EXAMPLES 
This shell procedure invoked with the argument /usr/srdbin/cat.c compiles the named file and moves the 
output to cat in the current directory: 

cc$1 
mv a.out 'basename $1.c' 

The following example will set the shell variable NAME to /usr/srdcmd: 
NAME='dirname /usr/srdcmcJ/cat.c' 

SEE ALSO 
sh(l) 

42 Last change: 9 September 1987 Sun Release 4.0 



BC( 1) USER COMMANDS BC( 1) 

NAME 
be - arbitrary-precision arithmetic language 

SYNOPSIS 
be [ -c] [-I] [filename ... ] 

DESCRIPTION 
be is an interactive processor for a language which resembles C but provides unlimited precision arith
metic. be takes input from any files given, then reads the standard input. 

OPTIONS 
-c Compile only. be is actually a preprocessor for dc(l), which it invokes automatically, unless the 

-c (compile only) option is present. In this case the de input is sent to the standard output instead. 

-I Is the name of an arbitrary precision math library. 

USAGE 
Comments 

Enclosed in / * and * I. 
Names 

Simple variables: /, where, / is a lower-case letter. 
Array elements: /[expression], where, expression is a legal be expression. 
The words ibase, obase, and scale. 

Other Operands 
Arbitrarily long numbers with optional sign and decimal point. 

(expression) 

Operators 

Statements 

sqrt (expression) 
length (expression) 
scale (expression) 
I (expression, 

+-*/%" 
++ -
== <= >= != < > 

Number of significant decimal digits 
Number of digits right of decimal point 
... , expression) 

( % is remainder; " is exponent) 
(prefix and postfix; apply to names) 

= += -= *= I= %= "= 

expression 
{statement; ... ; statement} 

where, statement is a legal be statement. 
if (expression )statement 
while ( expression ) statement 
for ( expression ; expression ; expression ) statement 
null statement 
break 
quit 

Function Definitions 
define / (/ , ... , / ) { 

auto/ , ... , / 
statement ; ••• statement 
return ( expression )} 

Functions in -I Math Library 
s(x) 
c(x) 
e(x) 

sine 
cosine 
exponential 

Sun Release 4.0 Last change: 24 September 1987 43 



BC( 1) USER COMMANDS 

l(x) 
a(x) 
j( n,x) 

All function arguments are passed by value. 

log 
arctangent 
Bessel function 

BC(l) 

The value of a statement that is an expression is printed unless the main operator is an assignment. Either 
semicolons or newlines may separate statements. Assignment to scale influences the number of digits to be 
retained on arithmetic operations in the manner of dc(l). Assignments to ibase or obase set the input and 
output number radix respectively. 

The same letter may be used as an array, a function, and a simple variable simultaneously. All variables 
are global to the program. 'Auto' variables are pushed down during function calls. When using arrays as 
function arguments or defining them as automatic variables empty square brackets must follow the array 
name. 

EXAMPLES 

FILES 

Define a function to compute an approximate value of the exponential function: 
scale= 20 
define 
e(x){ 

auto a, b, c, i, s 
a=l 
b=l 
s=l 
for(i=l; 1==1; i++ ){ 

a= a•x 

} 
} 

b = b•i 
C = a/b 
if(c == 0) return(s) 
s =s+c 

Print approximate values of the exponential function of the first ten integers: 

for(i=l; k=lO; i++) e(i) 

/usr/lib/lib.b 

dc(l) 

mathematical library 

desk calculator proper 

SEE ALSO 

BUGS 

44 

dc(l) 

Games, Demos & Other Pursuits 

for statement must have all three expression's. 
quit is interpreted when read, not when executed 

Last change: 24 September 1987 Sun Release 4.0 



BIFF(l) USER COMMANDS BIFF( 1) 

NAME 
biff - give notice of incoming mail messages 

SYNOPSIS 
biff [yin] 

DESCRIPTION 
biff turns mail notification on or off for the terminal session. With no arguments, biff displays the current 
notification status for the terminal. 

If notification is allowed, the terminal rings the bell and displays the header and the first few lines of each 
arriving mail message. biff operates asynchronously. For synchronized notices, use the MAIL variable of 
sh(l) or the mail variable of csh(l). 

A 'biff y' command can be included in your .login or .profile file for execution when you log in. 

OPTIONS 

FILES 

y 

n 

.login 

.profile 

Allow mail notification for the terminal. 

Disable notification for the terminal. 

SEE ALSO 

BUGS 

cmdtool(l), csh(l), mail(l), sh(l), shelltool(l), sunview(l), comsat(8C) 

You must have ownership the terminal to change its mail-notification status with biff, but windows running 
under sunview(l) are owned by the super-user. If you enable mail notification for the workstation console 
(in your .login or .profile file), incoming mail notices also appear on console windows running under sun
view(l). See shelltool(l) or cmdtool(l) for details. 

Sun Release 4.0 Last change: 9 September 1987 45 



BINMAIL( 1) USER COMMANDS BINMAIL( 1) 

NAME 
binmail - an early program for processing mail messages 

SYNOPSIS 
/usr/bin/mail [ -ipq ] [ -f filename ] address 
/usr/bin/mail recipient ... 

DESCRIPTION 
Note: This is the old version 7 UNIX system mail program. The default mail command, /usr/ucb/mail is 
described in mail(l). 

/usr/bin/mail with no address prints a user's mail, message-by-message in last-in, first-out order. 
/usr/bin/mail accepts commands from the standard input to direct disposition messages. 

When addresses are named, /usr/bin/mail takes the standard input up to an EOF (or a line with just'.') 
and routes it through the mailer daemon to each recipient. See sendmail(8) for details. The message is 
preceded by the sender's name and a postmark. Lines that look like postmarks are prepended with '>'. A 
recipient is a user name recognized by Iogin(l), a network address or local mail alias, or a filename (see 
aliases(5) for details). 

If there is any pending mail, login tells you there is mail when you log in. It is also possible to have the C 
shell, or the daemon biff tell you about mail that arrives while you are logged in. 

To forward mail automatically, add the addresses of additional recipients to the .forward file in your home 
directory. Note: forwarding addresses must be valid, or the messages will bounce. (You cannot, for 
instance, reroute your mail to a new host by forwarding it to your new address if it is not yet listed in the 
YP aliases domain.) 

OPTIONS 

USAGE 

46 

-i Ignore interrupts. 

-p Print messages without prompting for commands. Exit immediately upon receiving an interrupt. 

-q Quit immediately upon interrupt. 

-(filename 
Use filename as if it were the mail file. 

? 

EOT( CTRL-D) 

!command 

Print a command summary. 

Put unexamined mail back in the mail file and quit. 

Escape to the shell to do command. 

Go back to previous message. 

+ Go on to next message. 

NEWLINE Go on to next message. 

d Delete message and go on to the next. 

dq Delete message and quit. 

m [ person ]. . . Mail the message to the named recipients (yourself is default). 

n Go on to next message. 

p Print message (again). 

q SameasEOT. 

Last change: 23 September 1987 Sun Release 4.0 



BINMAIL( 1) USER COMMANDS BINMAIL( 1) 

FILES 

s [filename]... Save the message in the named.files ('mbox' default). If saved successfully, remove it 
from the list and go on to the next message. 

w [filename ] . . . Save the message, without a header, in the named.files ('mbox' default). If saved suc
cessfully, remove it from the list and go on to the next message. 

x Exit without changing the mail file. 

/ etc/passwd 
/var/spool/mail/• 
/usr/ucb/mail 
mbox' 
/tmp/ma* 
/var/spool/mail/• .lock 
dead.letter 
$HOME/.forward 

to identify sender and locate address 
incoming mail for user * 
routes input through daemon to recipients 
saved mail 
temp file 
lock for mail directory 
unmailable text is saved here 
list of forwarding recipients 

SEE ALSO 

BUGS 

biff(l), csh(l), des(l), login(l), mail(l), uucp(lC), uux(lC), write(l), xsend(l), crypt(3), aliases(5), 
sendmail(8) 

Race conditions sometimes result in a failure to remove a lock file. 

The super-user can read your mail, unless it is encrypted by des(l), xsend(l), or cryr,t(3). Even if you 
encrypt it, the super-user can delete it. 

Sun Release 4.0 Last change: 23 September 1987 47 



CAL( 1) USER COMMANDS CAL( 1) 

NAME 
cal - display a calendar 

SYNOPSIS 
cal [ [ month ] year ] 

DESCRIPTION 

48 

cal displays a calendar for the specified year. If a month is also specified, a calendar for that month only is 
displayed. If neither is specified, a calendar for the present month is printed. 

year can be between 1 and 9999. Be aware that 'cal 78' refers to the early Christian era, not the 20th cen
tury. Also, the year is always considered to start in January, even though this is historically naive. 

month is a number between 1 and 12. 

The calendar produced is that for England and her colonies. 

Try September 1752. 

Last change: 9 September 1987 Sun Release 4.0 



CALENDAR ( 1) USER COMMANDS CALENDAR ( 1 ) 

NAME 
calendar - a simple reminder service 

SYNOPSIS 
calendar [ - ] 

DESCRIPTION 

FILES 

calendar consults the file calendar in the current directory and displays lines that contain today's or 
tomorrow's date anywhere in the line. Most reasonable month-day dates - such as 'Dec. 7,' 'december 
7,' and '12/7' - are recognized, but '7 December' or '7/12' are not. If you give the month as'*' with a 
date - for example, '' * 1'' - that day in any month will do. On weekends "tomorrow" extends through 
Monday. 

When the optional '-' argument is present, calendar does its job for every user who has a file calendar in 
his login directory and sends him any positive results by mail(l). Normally this is done daily in the wee 
hours under control of cron(8). 

The file calendar is first run through the C preprocessor, /Iib/cpp, to include any other calendar files 
specified with the usual #include syntax. Included calendars are usually shared by all users, and main
tained by the system administrator. 

/calendar 
/usr/lib/calendar 
/etc/passwd 
/tmp/cal* 
/lib/cpp 
/usr/bin/egrep 
/usr/bin/sed 
/usr /bin/mail 

to figure out today's and tomorrow's dates 

SEE ALSO 

BUGS 

at(l), mail(l), cron(8) 

calendar's extended idea of "tomorrow" does not account for holidays. 

Problems may occur when there is no /etc/passwd file on the local host. 

Sun Release 4.0 Last change: 18 February 1988 49 



CAT(lV) USER COMMANDS CAT(lV) 

NAME 
cat - concatenate and display 

SYNOPSIS 
cat [ - ] [ -benstuv] [filename ... ] 

SYSTEM V SYNOPSIS 
cat [ - ] [ -estuv ] [filename. . . ] 

DESCRIPTION 
cat reads each filename in sequence and displays it on the standard output. Thus: 

example% cat goodies 

displays the contents of goodies on the standard output, and 

example% cat filename] filename2 > filename3 

concatenates the first two files and places the result on the third. 

If no filename argument is given, or if the argument'-' is given, cat reads from the standard input. If the 
standard input is a terminal, input is terminated by an EOF signal, usually CTRL-D. 

OPTIONS 
-b 

-e 

Number the lines, as -n, but omit the line numbers from blank lines. 

Display non-printing characters, as -v, and in addition display a$ character at the end of each 
line. 

-n Precede each line output with its line number. 

-s Substitute a single blank line for multiple adjacent blank lines. 

-t Display non-printing characters, as -v, and in addition display TAB characters as "'I ( CTRL-I). 

-u Unbuffered. If -u is not used, output is buffered in blocks, or line-buffered if standard output is a 
terminal. 

-v Display non-printing characters (with the exception of TAB and NEWLINE characters) so that they 
are visible. Control characters print like "'X for CTRL-X; the DEL character (octal 0177) print as 
'"' ?'. Non-ASCII characters (with the high bit set) are displayed as M-x where M- stands for 
'meta' and x is the character specified by the seven low order bits. 

SYSTEM V OPTIONS 
-e If the -v option is specified, display a $ character at the end of each line. 

-s Suppress messages about files which cannot be opened. 

-t If the -v option is specified, displays TAB characters as "'I (CTRL-I) and FORMFEED characters as 
"'L (CTRL-I). 

-v Display non-printing character (with the exception of TAB, NEWLINE, and FORMFEED charac
ters) so that they are visible. 

SEE ALSO 
cp(l), ex(l), more(l), pg(lV), pr(lV), tail(l) 

BUGS 
Beware of 'cat ab >a' and 'cat ab >b', which destroy the input files before reading them. 

50 Last change: 9 September 1987 Sun Release 4.0 



CB ( 1) USER COMMANDS CB ( 1) 

NAME 
cb - a simple C program beautifier 

SYNOPSIS 
cb [ -s] [ -j ] [ -lleng] [.filename ... ] 

DESCRIPTION 
cb reads C programs either from its arguments or from the standard input and writes them on the standard 
output with spacing and indentation that displays the structure of the code. 

indent(l) is preferred. 

OPTIONS 
With no options, cb preserves all user NEWLINES. 

-s Standard C style. Canonicalizes the code to the style of Kernighan and Ritchie in The C Pro
gramming Language. 

-j Split lines are put back together. 

-I Ieng Split lines longer than Ieng. 

SEE ALSO 
indent(l) 
B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978 

BUGS 
Punctuation hidden in preprocessor statements can cause indentation errors. 

Sun Release 4.0 Last change: 9 September 1987 51 



CC(lV) USER COMMANDS CC( lV) 

NAME 
cc - C compiler 

SYNOPSIS 
cc [-a] [ -align _block] [ -B binding] [ -c] [ -C] [ -dryrun] [ -Dname [=def]] [ -E] 

[jloat_option] [ -fsingle] [ -g] [-go] [-help] [-!pathname] [ -J] [ -llibrary] 
[ -Ldirectory ] [ -M ] [-misalign] [ -o outputfile ] [ -O[level] ] [ -p ] [ -P] [-pg] [-pie] 
[ -PIC] [-pipe] [ -Qoptionprog opt] [ -Qpathpathname] [ -Qproduce sourcetype] [ -R] 
[ -S] [ target_arch] [ -temp=directory] [-time] [ -Uname] [ -v] [ -w] sourcefile ... 

SYSTEM V SYNOPSIS 
/usr/5bin/cc arguments 

Note: arguments to /usr/5bin/cc are identical to those listed above. 

DESCRIPTION 
cc is the C compiler. It translates programs written in the C programming language into executable load 
modules, or into relocatable binary programs for subsequent loading with the ld(l) link editor. 

In addition to the many options, cc accepts several types of filename arguments. For instance, files with 
names ending in .c are taken to be C source programs. They are compiled, and each resulting object pro
gram is placed in the current directory. The object file is named after its source file - the suffix .o replac
ing .c in the name of the object. In the same way, files whose names end with .s are taken to be assembly 
source programs. They are assembled, and produce .o files. Filenames ending in .ii are taken to be inline 
expansion code template files; these are used to expand calls to selected routines in-line when code optimi
zation is enabled. See FILES, below for a complete list of compiler-related filename suffixes. 

Other arguments refer to assembler or loader options, object programs, or object libraries. Unless -c, -S, 
-E -P or -Qproduce is specified, these programs and libraries, together with the results of any specified 
compilations or assemblies, are loaded (in the order given) to produce an output file named a.out. You can 
specify a name for the executable by using the -o option. 

If a single C program is compiled and loaded all at once, the intermediate file is deleted. 

OPTIONS 

52 

When debugging or profiling objects are compiled using the -g or -pg options, respectively, the Id com
mand for linking them should also contain the appropriate option. 

See ld(l) for link-time options. 

-a Insert code to count how many times each basic block is executed. Invokes a run-time 
recording mechanism that creates a .d file for every .c file (at normal termination). The 
.d file accumulates execution data for the corresponding source file. The tcov(l) utility 
can then be run on the source file to generate statistics about the program. Since this 
option entails some optimization, it is incompatible with -g. 

-align _block Force the global uninitialized data symbol block to be page-aligned by increasing its size 
to a whole number of pages, and placing its first byte at the beginning of a page. 

-B binding Specify whether bindings of libraries for linking are static or dynamic, indicating 
whether libraries are non-shared or shared, respectively. 

-c Suppress linking with Id( 1) and produce a .o file for each source file. A single object file 
can be named explicitly using the -o option. 

-C Prevent the C preprocessor, cpp(l), from removing comments. 

-dryrun Show but do not execute the commands constructed by the compilation driver. 

-Dname[ =def] Define a symbol name to the C preprocessor (cpp(l)). Equivalent to a #define directive 
in the source. If no def is given, name is defined as 'l'. 

-E Run the source file through cpp(l), the C preprocessor, only. Sends the output to the 
standard output, or to a file named with the -o option. Includes the cpp line numbering 

Last change: 24 February 1988 Sun Release 4.0 



CC( lV) 

fl.oat_ option 

-fsingle 

-g 

-go 

-help 

-!pathname 

-J 

-1/ibrary 

-Ldirectory 

-M 

-misalign 

-o outputfile 

Sun Release 4.0 

USER COMMANDS CC( lV) 

information. (See also, the -P option.) 

Floating-point code generation option. Can be one of: 

-f68881 Generate in-line code for Motorola MC68881 floating-point processor (sup
ported only on Sun-3 systems). 

-fl'pa Generate in-line code for Sun Floating Point Accelerator (supported only on 
Sun-3 systems). 

-fsky Generate in-line code for Sky floating-point processor (supported only on 
Sun-2 systems). 

-fsoft Generate software floating-point calls. Supported only on Sun-2 and Sun-3 
systems, for which it is the default 

-fswitch Run-time-switched floating-point calls. The compiled object code is linked 
at runtime to routines that support one of the above types of floating point 
code. This was the default in previous releases. Only for use with programs 
that are floating-point intensive, and must be portable to machines with vari
ous floating-point hardware options (supported only on Sun-2 and Sun-3 sys
tems). 

(Sun-2, Sun-3 and Sun-4 systems) 
Use single-precision arithmetic in computations involving only float expressions. Do not 
convert everything to double, which is the default. Note: floating-point parameters are 
still converted to double precision, and functions returning values still return double
precision values. 

Although not standard C, certain programs run much faster using this option. Be aware 
that some significance can be lost due to lower-precision intermediate values. 

Produce additional symbol table information for dbx(l) and dbxtool(l) and pass the -lg 
flag to ld(l). When this option is given, the-0 and-R options are suppressed. 

Produce additional symbol table information for adb(l). When this option is given, the 
-0 and -R options are suppressed. 

Display helpful information about cc. 

Add pathname to the list of directories in which to search for #include files with relative 
filenames (not beginning with slash/). The preprocessor first searches for #include files 
in the directory containing sourcefile, then in directories named with -I options (if any), 
and finally, in /usr/include. 

Generate 32-bit offsets in switch statement labels (supported only on Sun-2 and Sun-3 
systems). 

Link with object library library (for ld(l)). 

Add directory to the list of directories containing object-library routines (for linking 
using ld(l). 

Run only the macro preprocessor on the named C programs, requesting that it generate 
makefile dependencies and send the result to the standard output (see make(l) for details 
about makefiles and dependencies). 

Generate code to allow loading and storage of misaligned data (Sun-4 systems only). 

Name the output file outputfile. outputfile must have the appropriate suffix for the type of 
file to be produced by the compilation (see FILES, below). outputfile cannot be the same 
as sourcefile (the compiler will not overwrite the source file). 

Last change: 24 February 1988 53 



CC(lV) USER COMMANDS CC( lV) 

54 

-O[level] 

-p 

-P 

-pg 

-pie 

Optimize the object code. Ignored when either -g, -go, or -a is used. On Sun-2 and 
Sun-3 systems, -0 with the level omitted is equivalent to -01; on Sun-4 systems, it is 
equivalent to -02. on Sun386i systems, all levels are the same as 1. level is one of: 

1 Do postpass assembly-level optimization only. 

2 Do global optimization prior to code generation, including loop optimi
zations, common subexpression elimination, copy propagation, and 
automatic register allocation. -02 does not optimize references to or 
definitions of external or indirect variables. 

3 Same as -02, but optimize uses and definitions of external variables. 
-03 does not trace the effects of pointer assignments. Neither -03 
nor -04 should be used when compiling either device drivers, or pro
grams that modify external variables from within signal handlers. 

4 Same as -03, but trace the effects of pointer assignments. 

Prepare the object code to collect data for profiling with prof(l). Invokes a run-time 
recording mechanism that produces a mon.out file (at normal termination). 

Run the source file through cpp(l), the C preprocessor, only. Puts the output in a file 
with a .i suffix. Does not include cpp-type line number information in the output. 

Prepare the object code to collect data for profiling with gprof(l). Invokes a run-time 
recording mechanism that produces a gmon.out file (at normal termination). 

Produce position-independent code. Each reference to a global datum is generated as a 
dereference of a pointer in the global offset table. Each function call is generated in pc-
relative addressing mode through a procedure linkage table. The size of the global offset 
table is limited to 64K on MC68000-family processors, or to SK on SPARC processors. 

-PIC Like -pie, but allows the global offset table to span the range of 32-bit addresses in those 
rare cases where there are too many global data objects for -pie. 

-pipe Use pipes, rather than intermediate files, between compilation stages. (Very cpu
intensive.) 

-Qoption pro g opt 
Pass the option opt to the program prog. The option must be appropriate to that program 
and may begin with a minus sign. prog can be one of: as, cpp, inline, or Id. 

-Qpatbpathname 
Insert directory pathname into the compilation search path (to use alternate versions of 
programs invoked during compilation). This path will also be searched first for certain 
relocatable object files that are implicitly referenced by the compiler driver (such files as 
*Crt*.O and bb_link.o ). 

-Qproduce sourcetype 

-R 

-S 

Produce source code of the type source type. sourcetype can be one of: 
.c C source (from bb _ count) . 
• i Preprocessed C source from cpp(l) . 
• o Object file from as(l) . 
.s Assembler source (from ccom, inline(l) or c2). 

Merge data segment with text segment for as(l). Data initialized in the object file pro
duced by this compilation is read-only, and (unless linked with Id -N) is shared between 
processes. Ignored when either -g or-go is used. 

Do not assemble the program but produce an assembly source file. 

Last change: 24 February 1988 Sun Release 4.0 



CC( IV) 

target _arch 

-temp=directory 

-time 

USER COMMANDS CC( IV) 

Compile object files for the specified processor architecture. Unless used in conjunction 
with one of the Sun Cross-Compilers, correct programs can be generated only for the 
architecture of the host on which the compilation is performed. target_ arch can be one 
of: 

-sun2 
-sun3 
-sun4 

Produce object files for a Sun-2 system. 
Produce object files for a Sun-3 system. 
Produce object files for a Sun-4 system. 

Set directory for temporary files to be directory. 

Report execution times for the various compilation passes. 

-Uname 

-v 

Remove any initial definition of the cpp(I) symbol name. (Inverse of the -D option.) 

Verbose. Print the version number of the compiler and the name of each program it exe
cutes. 

-w 

ENVIRONMENT 

Do not print warnings. 

FILES 

FLOAT OPTION 

a.out 
file .a 
file.c 
file .d 
file .i 
file .ii 
file .o 
file .s 
file .S 
file .tcov 
/usr/lib/c2 
/usr/lib/ccom 
/usr/lib/compile 
/usr/Iib/cpp 
/usr/Iib/crtO.o 
/usr/Iib/Fcrtl.o 
/usr/lib/gcrtO.o 
/usr/Iib/libc.a 
/usr/Iib/mcrtO.o 
/usr/Iib~crtl.o 
/usr/lib/Scrtl.o 
/usr/Iib/\Vcrtl.o 
/usr/include 
/usr/Iib/bb link.o 
/usr/Iib/cg 
/usr/lib/libc _p.a 
/usr/lib/inline 
/usr /Iib/iropt 
/usr/lib/libm.a 
/usr/Slib/Iibc.a 
/usr/Slib/Iibc _p.a 

Sun Release 4.0 

(Sun-2, Sun-3, Sun-4 systems only.) When no floating-point option is specified, 
the compiler uses the value of this environment variable (if set). Recognized 
values are: f68881, ffpa, fsky, fswitch and fsoft. 

executable output file 
library of object files 
C source file 
tcov(l) test coverage input file (Sun-2, Sun-3, Sun-4 systems only) 
C source file after preprocessing with cpp(l) 
inline expansion file 
object file 
assembler source file 
assembler source for cpp(l) 
output from tcov(l) (Sun-2, Sun-3, Sun-4 systems only) 
object code optimizer 
compiler 
compiler command-line processing driver 
macro preprocessor 
runtime startup code 
startup code for -fsoft option (Sun-2, Sun-3, Sun-4 systems only) 
startup for profiling with gprof(l) 
standard library, see intro(3) 
startup for profiling with prof(l) intro(3) 
startup code for -f68881 option (for Sun-3 systems) 
startup code for -fsky option (for Sun-2 systems) 
startup code for-fTpa option (for Sun-3 systems) 
standard directory for #include files 
basic block counting routine 
code generator used with /usr/lib/iropt 
profiling library, see gprof(l) or prof(l) 
inline expander of library calls 
intermediate representation optimizer 
math library 
System V standard compatibility library, see intro(3V) 
System V profiling library, see gprof(l) or prof(l) 

Last change: 24 February 1988 55 



CC( lV) USER COMMANDS CC(lV) 

/tmp/* 
moo.out 
gmon.out 

compiler temporary files 
file produced for analysis by prof(l) 
file produced for analysis by gprof(l) 

SEE ALSO 
adb(l), ar(lV), as(l), cpp(l), dbx(l), dbxtool(l), gprof(l), inline(l), ld(l), lint(l V), make(l), prof(l), 
tcov(l), intro(3), intro(3V), monitor(3) 

Floating Point Programmers Guide 
Programming Utilities and Libraries 
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978 

DIAGNOSTICS 

BUGS 

56 

The diagnostics produced by the C compiler are intended to be self-explanatory. Occasional obscure mes
sages may be produced by the preprocessor, assembler, or loader. 

The program context given in syntax error messages is taken from the input text after the C preprocessor 
has performed substitutions. Therefore, error messages involving syntax errors in or near macro references 
or manifest constants may be misleading. 

Compiling with optimization level 2 or greater may produce incorrect object code if tail-recursion elimina
tion is applied to functions called with fewer actual parameters (arguments) than the number of formal 
parameters in the function's definition. Such parameter-count mismatches can be detected using lint(lV). 

Last change: 24 February 1988 Sun Release 4.0 



CD( 1) USER COMMANDS CD(l) 

NAME 
cd - change working directory 

SYNOPSIS 
cd [ directory ] 

DESCRIPTION 
directory becomes the new working directory. The process must have execute (search) permission in 
directory. If cd is used without arguments, it returns you to your login directory. In csh(l) you may 
specify a list of directories in which directory is to be sought as a subdirectory if it is not a subdirectory of 
the current directory; see the description of the cdpath variable in csh(l). 

SEE ALSO 
csh(l), pwd(l), sh(l) 

Sun Release 4.0 Last change: 9 September 1987 57 



CDC(l) USER COMMANDS CDC(l) 

NAME 
cdc - change the delta commentary of an SCCS delta 

SYNOPSIS 
/usr/sccs/cdc -rS/D [ -m [ mrlist] ] [ -y [ comment] ] filename ... 

DESCRIPTION 

cdc changes the delta commentary, for the SID (SCCS ID) specified by the -r option, of each named secs 
file. 

Delta commentary is defined to be the Modification Request (MR) and comment information normally 
specified by the delta( 1) command. 

If a directory is named, cdc behaves as though each file in the directory were specified, except that non
secs files (last component of the path name does not begin with 's .') and unreadable files are silently 
ignored. If afilename of'.' is given, each line of the standard input is taken to be the name of an SCCS file 
to be processed, and the -m and -y options must be used. 

Permissions 
If you made the delta, you can normally change its delta commentary, or if you own the file and directory, 
and have write permission, you can modify the delta commentary. 

OPTIONS 

58 

Arguments to cdc, which may appear in any order, consist of options and file names. 

Each option applies independently to each filename. 

-rSID 

-m [ mrlist] 

Specify the (SID) string of a delta for which the delta commentary is to be changed. 

If the secs file has the v flag set (see admin(l)), a list of MR numbers to be added and/or 
deleted in the delta commentary of the SID specified by the -r option may be supplied 
(see EXAMPLES). A null MR list has no effect 

MR entries are added to the list of MRs in the same manner as that of delta. In order to 
delete an MR, precede the MR number with the character '! '. If the MR to be deleted is 
currently in the list of MRs, it is removed and changed into a comment line. A list of all 
deleted MRs is placed in the comment section of the delta commentary and preceded by a 
comment line stating that they were deleted. 

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on the 
standard output before the standard input is read; if the standard input is not a terminal, no 
prompt is issued. The MRs? prompt always precedes the comments? prompt (see the -y 
option). 

MRs in a list are separated by SP ACE and/or TAB characters. An unescaped NEWLINE 
character terminates the MR list 

Note: if the v flag has a value it is taken to be the name of a program (or shell procedure) 
which validates the correctness of the MR numbers. If a non-zero exit status is returned 
from the MR number validation program, cdc terminates and the delta commentary 
remains unchanged. 

-y [ comment ] Arbitrary text used to replace a comment already existing for the specified delta. The pre
vious comments are kept and preceded by a comment line stating that they were changed. 
A null comment has no effect. 

If -y is not specified and the standard input is a terminal, the prompt comments? is issued 
on the standard output before the standard input is read; if the standard input is not a ter
minal, no prompt is issued. An unescaped NEWLINE character terminates the comment 
text. 

Last change: 9 September 1987 Sun Release 4.0 



CDC( 1) USER COMMANDS CDC(l) 

EXAMPLES 
The following command: 

example% cdc -rl.6 -m"bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.file 

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the MR list, and adds the com
ment trouble to delta 1.6 of s. file. 

FILES 

The command: 
example% cdc -rl.6 s.file 
MRs? !bl77-54321 bl78-12345 bl79-00001 
comments? trouble 

does the same thing. 

x-file (see delta(l)) 
z-file (see delta(l)) 

SEE ALSO 
admin(l), comb(l), delta(l), get(l), help(l), prs(l), sccs(l), sccsdiff(l), val(l), what(l), sccsfile(5) 

Programming Utilities and Libraries. 

DIAGNOSTICS 
Use help(l) for explanations. 

Sun Release 4.0 Last change: 9 September 1987 59 



CFLOW( 1) USER COMMANDS CFLOW( 1) 

NAME 
cflow- generate a flow graph for a C program 

SYNOPSIS 
cflow [-r] [-ix] [-i_] [-dnum].filenames 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
cflow analyzes a collection of C, yacc, lex, assembler, and object files and attempts to build a graph chart
ing the external references. Files suffixed in .y, .I, .c, and .i are yacc'd, lex'd, and C-preprocessed output 
files, respectively (bypassed for. i files) as appropriate and then run through the first pass of lint(l V). (The 
-1, -D, and -U options of the C-preprocessor are also understood.) Files suffixed with • s are assembled 
and information is extracted (as in • o files) from the symbol table. The output of all this non-trivial pro
cessing is collected and turned into a graph of external references which is displayed upon the standard out
put. 

Each line of output begins with a reference (that is, line) number, followed by a suitable number of tabs 
indicating the level. Then the name of the global (normally only a function not defined as an external or 
beginning with an underscore; see below for the -i inclusion option) a colon and its definition. For infor
mation extracted from C source, the definition consists of an abstract type declaration (for example, char 
* ), and, delimited by angle brackets, the name of the source file and the line number where the definition 
was found. Definitions extracted from object files indicate the file name and location counter under which 
the symbol appeared (for example, text). Leading underscores in C-style external names are deleted. 

Once a definition of a name has been printed, subsequent references to that name contain only the reference 
number of the line where the definition may be found. For undefined references, only < > is printed. 

SYSTEM V DESCRIPTION 
The System V version of cflow in /usr/Sbin/cflow makes the C preprocessor, cpp(l) search in 
/usr/Sinclude for include files before it searches in /usr/include. 

OPTIONS 
The following options are interpreted by cflow : 

-r Reverse the "caller:callee" relationship producing an inverted listing showing the callers of each 
function. The listing is also sorted in lexicographical order by callee. 

-ix Include external and static data symbols. The default is to include only functions in the flowgraph. 

-i Include names that begin with an underscore. The default is to exclude these functions (and data if 
-ix is used). 

-dnum The num decimal integer indicates the depth at which the flowgraph is cut off. By default this is a 
very large number. Attempts to set the cutoff depth to a nonpositive integer will be met with con
tempt. 

EXAMPLE 

60 

As an example, given the following in file.c: 
int i; 
main() 
{ 

} 

f(); 
g(); 
f(); 

Last change: 21 December 1987 Sun Release 4.0 



CFLOW(l) USER COMMANDS CFLOW(l) 

FILES 

f() 
{ 

i = h(); 
} 

the command: 
cflow -ix file.c 

produces the output 
1 main: int(), <file.c 4> 
2 f: int(), <file.c 11> 
3 h:<> 
4 i: int, <file.c 1> 
5 g:<> 

When the nesting level becomes too deep, the -e option of pr(l V) can be used to compress the tab expan
sion to something less than every eight spaces. 

/usr/Sbin/cflow 
/usr/include 

SEE ALSO 
as(l), cc(l V), cpp{l), lex(l), lint(l V), nm(l), pr(l V), yacc(l) 

DIAGNOSTICS 

BUGS 

Complains about bad options. Complains about multiple definitions and only believes the first. Other mes
sages may come from the various programs used, such as, the C-preprocessor. 

Files produced by lex and yacc cause the reordering of line number declarations which can confuse cflow • 
To get proper results, feed cflow the yacc or lex input. 

Sun Release 4.0 Last change: 21 December 1987 61 



CHECKNR( 1) USER COMMANDS CHECKNR(l) 

NAME 
checknr - check nroff and troff input files; report possible errors 

SYNOPSIS 
checknr [ -fs] [ -a .xl .yl .x2 .y2 ...• xn .yn] [ -c .xl .x2 .x3 ...• xn] [filename ... ] 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DE~CRIPTION 
checknr checks a list of nroff(l) or troff(l) input files for certain kinds of errors involving mismatched 
opening and closing delimiters and unknown commands. If no files are specified, checknr checks the stan
dard input. Delimiters checked are: 

• Font changes using \fx ... \fP. 

• Size changes using \sx ... \sO. 

• Macros that come in open ... close forms, for example, the .TS and .TE macros which must 
always come in pairs. 

checknr knows about the ms(7) and me(7) macro packages. 

checknr is intended to be used on documents that are prepared with checknr in mind. It expects a certain 
document writing style for \f and \s commands, in that each \fx must be terminated with \fP and each \sx 
must be terminated with \sO. While it will work to directly go into the next font or explicitly specify the 
original font or point size, and many existing documents actually do this, such a practice will produce com
plaints from checknr. Since it is probably better to use the \fP and \sO forms anyway, you should think of 
this as a contribution to your document preparation style. 

OPTIONS 
-f Ignore \f font changes. 

-s Ignore \s size changes. 

-a .xl .yl ... 
Add pairs of macros to the list. The pairs of macros are assumed to be those (such as .DS and .DE) 
that should be checked for balance. The -a option must be followed by groups of six characters, 
each group defining a pair of macros. The six characters are a period, the first macro name, 
another period, and the second macro name. For example, to define a pair .BS and .ES, use 
'-a.BS.ES' 

-c .xl ... 
Define commands which checknr would otherwise complain about as undefined. 

SEE ALSO 
eqn(l), nroff(l), troff(l), me(7), ms(7) 

BUGS 
There is no way to define a one-character macro name using the -a option. 

62 Last change: 22 December 1987 Sun Release 4.0 



CHGRP( 1) USER COMMANDS CHGRP( 1) 

NAME 
chgrp - change the group ownership of a file 

SYNOPSIS 
chgrp [ -f ] [ -R ] group-filename . .. 

DESCRIPTION 
chgrp changes the group-ID of the filenames given as arguments to group. The group may be either a 
decimal GID or a group name found in the group- ID file, /etc/group. 

You must belong to the specified group and be the owner of the file, or be the super-user. 

OPTIONS 
-f 

-R 

FILES 

Force. Do not report errors. 

Recursive. chgrp descends through the directory, and any subdirectories, setting the specified 
group-ID as it proceeds. When symbolic links are encountered, their group is changed, but they 
are not traversed. 

/etc/group 

SEE ALSO 
chown(2), group(5), passwd(5) 

Sun Release 4.0 Last change: 9 September 1987 63 



CHKEY(l) USER COMMANDS CHKEY(l) 

NAME 
chkey - change your encryption key 

SYNOPSIS 
cbkey 

DESCRIPTION 
cbkey prompts the user for their login password, and uses it to encrypt a new encryption key for the user to 
be stored in the publickey(5) database. 

SEE ALSO 
keylogin(l), publickey(5), keyserv(8C), newkey(8) 

64 Last change: 9 September 1987 Sun Release 4.0 



CHMOD(lV) USER COMMANDS CHMOD(lV) 

NAME 
chmod - change the permissions mode of a file 

SYNOPSIS 
chmod [ -fR ] mode filename ••• 

DESCRIPTION 
Change the permissions (mode) of a file or files. Only the owner of a file (or the super-user) may change 
its mode. 

The mode of each named file is changed according to mode. which may be absolute or symbolic, as fol
lows. 

Absolute Modes 
An absolute mode is an octal number constructed from the OR of the following modes: 

400 Read by owner. 
200 Write by owner. 
100 Execute (search in directory) by owner. 

040 Read by group. 
020 Write by group. 
010 Execute (search) by group. 

004 Read by others. 
002 Write by others. 
001 Execute (search) by others. 

4000 Set user ID on execution. 
2000 Set group ID on execution (this bit is ignored if the file is a directory; it may be set or cleared only 

using symbolic mode). 
1000 Sticky bit, (see chmod (2) for more information). 

Symbolic Modes 
A symbolic mode has the form: 

[ who ] op permission [ op permission ] ••• 

who is a combination of: 

u User's permissions. 
g Group permissions. 
o Others. 
a All, or ugo. 

If who is omitted, the default is a. but the setting of the file creation mask (see umask in sh(l) or 
csh(l) for more information) is taken into account. When who is omitted, chmod will not over
ride the restrictions of your user mask. 

op is one of: 

+ To add the permission. 
To remove the permission. 

= To assign the permission explicitly (all other bits for that category, owner, group, or others, will 
be reset). 

permission is any combination of: 

r Read. 

w Write. 

x Execute. 

X Give execute permission if the file is a directory or if there is execute permission for one of the 
other user classes. 

Sun Release 4.0 Last change: 9 September 1987 65 



CHMOD( lV) USER COMMANDS CHMOD( lV) 

s Set owner- or group-ID. This is only useful with u or g. Also, the set group-ID bit of a directory 
may only be modified with+ or-. 

t Set the sticky bit to save program text between processes. 

The letters u, g, or o indicate that permission is to be taken from the current mode for the user
class. 

Omitting permission is only useful with'=', to take away all permissions. 

Multiple symbolic modes, <:,eparated by commas, may be given. Operations are performed in the order 
specified. 

SYSTEM V DESCRIPTION 
If who is omitted in a symbolic mode, it does not take the file creation mask into account, but acts as if who 
were a. 

OPTIONS 
-f Force. chmod will not complain if it fails to change the mode of a file. 

-R Recursively descend through directory arguments, setting the mode for each file as described 
above. When symbolic links are encountered, their mode is not changed and they are not 
traversed. 

EXAMPLES 
The first example denies write permission to others, the second makes a file executable by all if it is execut
able by anyone: 

chmod o-w file 
chmod + X file 

SEE ALSO 
csh(l), ls(lV), sh(l), chmod(2), chown(8) 

66 Last change: 9 September 1987 Sun Release 4.0 



CLEAR( 1) USER COMMANDS CLEAR( 1) 

NAME 
clear - clear the terminal screen 

SYNOPSIS 
clear 

DESCRIPTION 
clear clears your screen if this is possible. It looks in the environment for the terminal type and then in 
/etc/termcap to figure out how to clear the screen. 

FILES 
/etc/termcap terminal capability data base 

Sun Release 4.0 Last change: 9 September 1987 67 



CLEAR_COLORMAP(l) USER COMMANDS CLEAR_ COLORMAP ( 1) 

NAME 
clear_ colormap - clear the colormap to make console text visible 

SYNOPSIS 
clear_ colormap [ -no ] [ -f framebuffer ] " 

DESCRIPTION 
clear_ colormap ensures that text displayed on the console is visible. If no options are specified it clears 
the frame buffer and initializes the first two colormap entries. If the frame buffer has an overlay plane it is 
also cleared, its colormap is initialized, and the overlay enable plane is set so that the entire overlay plane is 
displayed. 

OPTIONS 
-n Do not clear the frame buffer or overlay plane. 

-o Do not clear the overlay plane, initialize its colormap, or modify the overlay enable plane. 

-f frame buffer 
Operate on frame buffer device frame buffer instead of the default, /dev/fb. 

FILES 
/dev/fb 

68 Last change: 9 September 1987 Sun Release 4.0 



CLEAR_FUNCTIONS ( 1) USER COMMANDS CLEAR_ FUNCTIONS ( 1 ) 

NAME 
clear _functions - reset the selection service to clear stuck function keys 

SYNOPSIS 
clear functions 

DESCRIPTION 
clear _functions instructs the selection service that no function keys are currently depressed. It is useful in 
cases where erroneous programs have reported a key press but not the corresponding release. The usual 
symptom for this situation is that all selections are secondary (underscored rather than inverted), even 
though no function keys are down. 

FILES 
/usr/bin/selection svc 

SEE ALSO 
Sun View 1 Beginner's Guide 

Sun Release 4.0 Last change: 24 September 1987 69 



CLICK( 1) USER COMMANDS CLICK( 1) 

NAME 
click- enable or disable the keyboard's keystroke click 

SYNOPSIS 
click [ -y ] [ -n ] [ -d keyboard-device ] 

DESCRIPTION 
Change the setting of the audible keyboard click. The default is no keyboard click. If you want to turn 
clicking on then a good place to do it is in /etdrc.local. 

Only keyboards that support a clicker respond to this command. At the time of this writing, the only key
boards known to have a clicker are the Sun-3 and Sun386i systems keyboards. 

OPTIONS 

FILES 

-y 

-n 

Yes, enable clicking. 

No, disable clicking. 

-d keyboard-device 
Specify the keyboard device being set. The default is /dev/kbd. 

/ etc/re.local 
/dev/kbd 

SEE ALSO 
kbd(4S) 

DIAGNOSTICS 

BUGS 

70 

A short help message is printed if an unknown flag is specified or if the -d switch is used and the keyboard 
device name is not supplied. A diagnostic is printed if the keyboard device name can't be opened or is not 
a keyboard type device. 

There is no way to determine the state of the keyboard click setting. 

Last change: 18 February 1988 Sun Release 4.0 



CLOCK( 1) USER COMMANDS CLOCK( 1) 

NAME 
clock- display the time in an icon or window 

SYNOPSIS 
clock [ -s ] [ -t ] [ -r ] [ -d mdyaw ] [ -f] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
clock is a Sun View utility that displays the current time in a window. When open, clock shows the date 
and time in text format. When closed, clock displays a clock face. 

Note: In previous releases clock was known as clocktool. In the current release, clocktool is a symbolic 
link to clock. 

OPTIONS 

USAGE 

FILES 

-r causes clock to use a square face with roman numerals in the iconic state. This replaces the 
default round clock face. 

-d display date information in a small area just below the clock face. The date information to be 
displayed may include: 

m the month, 
d the day of the month (1-31), 
y the year, 
a the string AM or PM, as appropriate, 
w the day of the week (Sun-Sat). 

There is only room for 3 of these, but any 3 may be displayed in any sequence. 

-f Display the date and day of week on the clock face. 

-s start clock with the seconds turned on. By default, the clock starts with seconds turned off, and 
updates every minute. With seconds turned on, it updates every second, and, if iconic, displays a 
second hand. 

-t Test mode - ignore the real time, and instead run in a loop continuously incrementing the time by 
one minute and displaying it. 

clock also accepts all of the generic tool arguments discussed in sunview(l). 

clock listens for keyboard input while open. It recognizes the following characters: 

s or S Enable or disable the display of seconds. 

tor T Enable or disable "test" mode. 

/usr/Iib/fonts/fixedwidthf onts/sail.r .6 
font for day-of-month clock-face display 

SEE ALSO 

BUGS 

sunview(l), date(lV) 

If you reset the system time, clock will not reflect the new time until you change its state from open to icon, 
or vice versa. To reset the system time, see date( 1 V). 

The date display does not go well with the round clock face. 

Sun Release 4.0 Last change: 21 December 1987 71 



CLUSTER( 1) USER COMMANDS CLUSTER( 1) 

NAME 
cluster - find the Application SunOS or Developer's Toolkit optional cluster containing a file 

SYNOPSIS 
cluster [filename ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
cluster finds the optional software cluster that contains a specified file. If the specified file is contained in 
one of the clusters in Application SunOS or Developer's Toolkit, the name of the cluster will be printed on 
standard output. 

Without arguments, cluster displays a summary of the clusters in Application SunOS and Developers 
Toolkit, including the load state and size of each cluster. 

EXAMPLES 
To find the name of the cluster that contains the spell command: 

example% cluster spell 
spellcheck 
example% 

To display a summary of the clusters in Application SunOS and Developer's Toolkit: 

% cluster 
Application SunOS Clusters: 

available cluster size (bytes) 

yes accounting 265K 
no advanced admin 501K 

Developer's Toolkit Clusters: 
availablecluster size (bytes) 

no base_devel 6907K 

space used by clusters: 6021K bytes 
total space remaining: 20432K bytes 

A cluster is available if it has been "loaded" using load( 1) or if it has been "mounted" across the network. 

FILES 
/usr/lib/loadl* data files 

SEE ALSO 
load(l), unload(l), toc(5) 

Sun386i System Setup and Maintenance 

DIAGNOSTICS 
The file filename is not in any of the optional software clusters. 

The specified file is not part of the Application SunOS or Developer's Toolkit. 

72 Last change: 19 February 1988 Sun Release 4.0 



CMDTOOL( 1) USER COMMANDS CMDTOOL(l) 

NAME 
cmdtool - run a shell ( or program) using the Sun View text facility 

SYNOPSIS 
cmdtool [ -C ] [ -M bytes] [ -P count] [generic-tool-arguments] [ program [program-arguments] ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
cmdtool is the standard Sun View support facility for shells and other programs. When invoked, cmdtool 
runs a program (usually a shell) in a text-based command subwindow. Characters typed on the keyboard 
are inserted at the caret. If the program is a shell, that shell accepts and runs commands in the usual 
manner. cmdtool also supports programs that perform cursor motions directly, such as vi(l). 

The text of the current command line can be edited using normal Text Edit functions. The command 
subwindow displays a log of the session, which can be scrolled through using the scrollbar (unless the com
mand does cursor motion). This log can be edited, and saved by choosing the 'Store as New File' item in 
the text facility's pop-up menu. The 'Split View' command, also in the pop-up menu, can be used to create 
two or more independent views of the log. 

OPTIONS 

USAGE 

-C Console cmdtool. Display console messages in this cmdtool, which might otherwise appear in 
unexpected places on the workstation screen. Since a cmdtool window can be scrolled, console 
error messages can be recorded for later examination. 

-M bytes 
Set the log to wrap-around after the indicated number of bytes. 

-P count 
Checkpoint the log after every set of count editing operations. 

generic-tool-arguments 
cmdtool accepts the generic tool arguments listed in sunview(l). 

program [program-arguments] 
If a program argument is present, cmdtool runs it and passes any remaining arguments to that 
program. If no program is given, cmdtool runs the program indicated by the SHELL environ
ment variable, or /usr/bin/sh by default. 

Refer to Sun View 1 Beginner's Guide for details on how to use cmdtool. 

Defaults Options 
The following options can be configured as default settings using defaultsedit(l). 

/Tty/ Append_ only _log 
When set to TRUE (the standard default) only command lines can be edited. FALSE allows the 
entire log to be edited. (See also the description of Enable Edit below.) 

/Tty/Insert_ makes_ caret_ visible 

Sun Release 4.0 

This entry allows you to specify the method for displaying the editing caret. 
Same_as_for_text Use the setting specified in the defaults for the Text category (the standard 

default). 
If_ auto_ scroll If the caret is showing, and an inserted NEWLINE would position it below 

the bottom of the screen (as determined by /Text/Lower _context), the text 
is scrolled to keep the caret showing. The number of lines scrolled is deter
mined by the /Text/Auto_scroll_by default. (See textedit(l) for more 
information.) 

Last change: 6 January 1988 73 



CMDTOOL(l) USER COMMANDS CMDTOOL(l) 

74 

Always 

/Tty /Checkpoint_ frequency 

Scroll the caret back into view whenever input would position it off the 
screen. 

If set to O (the standard default) no checkpointing is done. For any value greater than zero, a 
checkpoint is made each time the indicated number editing operations has been performed since 
the last checkpoint. Each character typed, each Paste, and each Cut cou.nts as an editing opera
tion. At each checkpoint, an updated copy of the log is saved in a file with a name that is con
structed by appending two percent signs ( % % ) to the name of the log file. By default, the log file 
has a name of the form /tmpltty.txt.pid (pid is the process ID number of cmdtool); the 
corresponding checkpoint file has a name of the form /tmp/tty .txt.nnnnnn % % . 

/Tty/Text_ wraparound_ size 
If set to O (the standard default) no wrap-around takes place; the log file grows without a specified 
limit. For values greater than zero, wrap-around occurs whenever the indicated number of charac
ters have been written to the log since the last wrap-around. Characters that are pushed over the 
top are replaced by the message: 

*** Text is lost because the maximum edit log size has been exceeded.*** 

/Text/Edit back char - -
Set the character for erasing to the left of the caret. Note: in cmdtool, the 'stty erase' command 
has no effect on cmdtool. Text-based tools refer only to the defaults database key settings. The 
default is DELETE. 

/Text/Edit back word - -
Set the character for erasing the word to the left of the caret. The standard default is CTRL-W. 

/Text/Edit back line - -
Set the character for erasing all characters to the left of the caret. Note: 'stty kill' has no effect on 
cmdtool. The standard default is CTRL-U. 

The Command Subwindow 
The command subwindow is based on the text facility, which is described in Sun View 1 Beginner's Guide. 
It uses the same pop-up menu as the text facility, but with an additional pull-right 'Cmd Modes' menu, 
which contains the 'Enable Editing' and 'Disable Scrolling' items. 

Command subwindows support cursor motions, using a new /etc/termcap entry called sun-cmd. Com
mand subwindows automatically set the TERM environment variable to sun-cmd. So, if you rlogin(lC) to 
a machine that does not have an entry for sun-cmd in its /etc/termcap file, the error message 'Type sun
cmd unknown' results. To rectify this, type the command 'set TERM=sun'. Programs written using the 
curses(3X) or curses(3V) library packages will work in a command subwindow, but programs hard-coded 
for sun-type terminals may not. When supporting a program that performs cursor motions, the command 
subwindow automatically takes on the characteristics of a tty subwindow (as with shelltool(l)). When that 
program terminates or sleeps, the full command subwindow functionality is restored. 

cmdtool supports programs that use CBREAK and NO ECHO terminal modes. This support is normally 
invisible to the user. However, programs that use RAW mode, such as rlogin(lC) and script(l), inhibit 
command-line editing with the mouse. In this case, however, tty-style ERASE, word-kill and line-kill char
acters can still be used to edit the current command line. 

The Command Subwindow Menu 
Copy, then Paste When there is a current selection, the entire menu item is active. The selection is 

copied both to the clipboard and to the location pointed to by the caret. When there 
is no selection, but there is text on the clipboard, only Paste is active. In this case, 
the contents of the clipboard are copied to the caret. When there is no selection and 
the clipboard is empty, this item is inactive. 'Copy then Paste' is a generic text 
menu item. Refer to textedit(l) information about other generic text menu items. 

Last change: 6 January 1988 Sun Release 4.0 



CMDTOOL(l) USER COMMANDS CMDTOOL(l) 

Enable Edit 
Disable Edit 

Disable Scrolling 
Enable Scrolling 

Toggle to allow or disallow editing on the log. 

Toggle between a scrollable, editable window, or a display that supports cursor 
motions. Note: for well-behaved programs (such as vi(l)) this switching is per
formed automatically (so this menu item is seldom needed). 

Accelerators 

FILES 

Text facility accelerators that are especially useful in command subwindows are described here. See tex
tedit( 1) for more information. 

CTRL-RETURN 

META-P 

CAPS-lock 
Fl 

Position the caret at the bottom, and scroll it into view as determined by 
/Text/Lower context. 

Choose the 'Copy, then Paste' menu item. 

Toggle between all-upper-case keyboard input, and mixed-case. 

ltmp/tty.txt.pid log file 
/.textswrc 
/.ttyswrc 
usr/Iib/.text extras menu - -
/etc/termcap 
/usr/bin/sh 

SEE ALSO 
defaultsedit(l), rlogin(lC), script(l), shelltool(l), sunview(l), textedit(l), vi(l), curses(3V), curses(3X) 

Installing the SunOS 
Sun View 1 Beginner's Guide 

BUGS 
Full terminal emulation is not complete. Some manifestations of this deficiency are: 

• File completion in the C shell does not work. 

• Enhanced display of text is not supported. 

Sun Release 4.0 Last change: 6 January 1988 75 



CMP( 1) USER COMMANDS CMP(l) 

NAME 
cmp - perform a byte-by-byte comparison of two files 

SYNOPSIS 
cmp [ -Is ] filename] filename2 [ ski pl ] [ skip2 ] 

DESCRIPTION 
cmp compares filename] and filename2. If filename] is '-', the standard input is used. With no options, 
cmp makes no comment if the files are the same; if they differ, it reports the byte and line number at which 
the difference occurred, or, that one file is an initial subsequence of the other. skip] and skip2 are initial 
byte offsets into filename] and filename2 respectively, and may be either octal or decimal; a leading 0 
denotes octal. 

OPTIONS 
-I 

-s 

Print the byte number (in decimal) and the differing bytes (in octal) for all differences between the 
two files. 

Silent. Print nothing for differing files; set exit codes only. 

SEE ALSO 
comm( 1 ), diff( 1) 

DIAGNOSTICS 

76 

Exit code O is returned for identical files, 1 for different files, and 2 for an inaccessible or missing argu
ment, or a system error. 

Last change: 23 November 1987 Sun Release 4.0 



COL( IV) USER COMMANDS COL( IV) 

NAME 
col - filter reverse paper motions from nroff output for display on a terminal 

SYNOPSIS 
col [ -bfbp] 

SYSTEM V SYNOPSIS 
/usr/Sbin/col [ -bfpx ] 

DESCRIPTION 
col copies the standard input to the standard output and performs line overlays implied by reverse 
LINEFEED characters (ESC-7 in ASCII) and by forward and reverse half LINEFEED characters (ESC-9 and 
ESC-8). col is particularly useful for filtering multicolumn output made with the .rt command of nrofT(l), 
and output resulting from use of the tbl(l) preprocessor. 

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in an alternate 
character set. The character set (primary or alternate) associated with each printing character read is 
remembered; on output, SO and SI characters are generated where necessary to maintain the correct treat
ment of each character. 

All control characters are removed from the input except SPACE, BACKSPACE, TAB, RETURN, NEWLINE, 
ESC (033) followed by one of 7, 8, 9, SI, so, and VT (013). This last character is an alternate form of full 
reverse LINEFEED, for compatibility with some other hardware conventions. All other non-printing char
acters are ignored. 

SYSTEM V DESCRIPTION 
The System V version of col converts SP ACE to TAB characters by default. 

OPTIONS 
-b The output device in use is not capable of backspacing. In this case, if several characters are to 

appear in the same place, only the last one read will be taken. 

-f Fine. Although col accepts half line motions in its input, it normally does not produce them on 
output. Instead, text that would appear between lines is moved to the next lower full-line boun
dary. The -f option suppresses this treatment. In this case the output from col may contain for
ward half LINEFEED characters (ESC-9), but will still never contain either kind of reverse line 
motion. 

-h Convert strings of blanks to TAB characters to decrease the printing time. 

-p Pass escape-sequences that col does not know about to the output, rather than stripping them out. 
This option is highly discouraged unless you are fully aware of the position of the escape 
sequences within the text. 

SYSTEM V OPTIONS 
-x Suppress converting SP ACE characters to TAB characters. 

SEE ALSO 

BUGS 

nrofT(l), tbl(l), troff(!) 

col cannot back up more than 128 lines. 

At most 1600 characters, including BACKSPACE characters, are allowed on a line. 

Local vertical motions that would result in backing up over the first line of the document are ignored. As a 
result, the first line must not have any superscripts. 

Sun Release 4.0 Last change: 9 September 1987 77 



COLCRT(l) USER COMMANDS COLCRT(l) 

NAME 
colcrt - filter nroff output for a terminal lacking overstrike capability 

SYNOPSIS 
colcrt [ - ] [ -2] [filename ... ] 

DESCRIPTION 
colcrt provides virtual half-line and reverse line feed sequences for terminals without such capability, and 
on which overstriking is destructive. Half-line characters and underlining (changed to dashing '-') are 
placed on new lines in between the normal output lines. 

OPTIONS 
Suppress all underlining - especially useful for previewing allboxed tables from tbl(l). 

-2 Print all half-lines, effectively double spacing the output. Normally, a minimal space output for
mat is used which suppresses empty lines. colcrt never suppresses two consecutive empty lines, 
however. The -2 option is useful for sending output to the line printer when the output contains 
superscripts and subscripts which would otherwise be invisible. 

EXAMPLE 
A typical use of colcrt would be 

tbl exum2.n I nroff -ms I colcrt - I more 

SEE ALSO 

BUGS 

78 

col(l V), more(l), nroff(l), tbl(l), troff(l), ul(l) 

Can't back up more than 102 lines. 

General overstriking is lost; as a special case ' I ' overs truck with ' - ' or underline becomes ' + '. 

Lines are trimmed to 132 characters. 

Some provision should be made for processing superscripts and subscripts in documents which are already 
double-spaced. 

Last change: 9 September 1987 Sun Release 4.0 



COLOREDIT ( 1 ) USER COMMANDS COLOREDIT ( 1 ) 

NAME 
coloredit - alter color map segment 

SYNOPSIS 
coloredit 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
coloredit is a Sun View application for altering the colors of objects (windows) selected with the cursor. 
These colors may be manipulated in three ways: 

• select color name from a list 

• specify the hue/saturation/value for a color 

• specify the red/green/blue levels for a color 

USAGE 
Window 

The coloredit window consists of four sections. 

colorlist 

colorbars 

palette 

logo 

An interactive window that lists the available colors for selection. This list can be scrolled 
up and down with a scrollbar, and comprises the contents of the .rgb file. Select a color and 
the corresponding RGB and HSY value appears in the colorbar section. coloredit first 
searches the working directory for .rgb, your home directory, and finally, /usr/Iib this file. 

An interactive window with two sets of three sliding bars. One set is for defining the hue 
saturation value of the color desired. The second set is for defining the red-green-blue 
ratios. The color can be specified using either set of sliding bars. 

A display subwindow divided horizontally into two equal parts. The top part shows the 
background color; the bottom, the foreground color. If the object has more than 2 colors, all 
the colors are shown. The background color is color Index #0. The color with the highest 
Index Number is the foreground color. 

A display subwindow containing the Sun logo in the currently-selected color. 

Command Buttons 

FILES 

The set of command buttons in the colorbars subwindow is as follows. 

Grab The next object selected will have its color map segment colors displayed in the coloredit win
dow. These colors may then be manipulated. 

Release Disassociates the colormap segment and the last object with which those colors were associated. 
The window returns to its default state. 

Undo Returns the colormap segment to the original colors that the object being colored had when color
ing began. Returns the object to its original colors. 

J.rgb 
/.rgb 

/usr/Iib/ .rgb 

SEE ALSO 
sunview(l) 

Sun Release 4.0 Last change: 19 February 1988 79 



COLRM(l) USER COMMANDS COLRM( 1) 

NAME 
colrm - remove characters from specified columns within each line 

SYNOPSIS 
colrm [ startcol [ endcol ] ] 

DESCRIPTION 
colrm removes selected columns from a text file. The text is is taken from standard input and copied to the 
standard output with the specified columns removed. 

If only startcol is specified, the columns of each line are removed starting with startcol and extending to 
the end of the line. If both startcol and endcol are specified, all columns between startcol and endcol, 
inclusive, are removed. 

Column numbering starts with column 1. 

SEE ALSO 
expand(l) 

80 Last change: 9 September 1987 Sun Release 4.0 



COMB( 1) USER COMMANDS COMB( 1) 

NAME 
comb - combine SCCS deltas 

SYNOPSIS 
/usr/sccs/comb [ -os] [ -c/ist] [ -pSID ]filename ... 

DESCRIPTION 
comb generates a shell procedure (see sh(l)) that can be used to reconstruct the given secs files. If a 
directory is named, comb behaves as though each file in the directory were specified as a named file, 
except that non-SCCS files (last component of the path name does not begin with 's .') and unreadable files 
are silently ignored. If a name of '-' is given, the standard input is read; each line of the standard input is 
taken to be the name of an SCCS file to be processed. Non-SCCS files and unreadable files are silently 
ignored. The generated shell procedure is written on the standard output. 

OPTIONS 

FILES 

Options are explained as though only one named file is to be processed, but the effects of any option apply 
independently to each named file. 

-o For each 'get -e' generated, the reconstructed file is accessed at the release of the delta to be 
created. In the absence of the -o option, the reconstructed file is accessed at the most recent 
ancestor. Use of the -o option may decrease the size of the reconstructed secs file. It may also 
alter the shape of the delta tree of the original file. 

-s Generate a shell procedure which, when run, will produce a report giving, for each file: the file 
name, size (in blocks) after combining, original size (also in blocks), and percentage change com
puted by: 

example% 100 * (original - combined) I original 

It is recommended that before any secs files are actually combined, you should use this option to 
determine exactly how much space is saved by the combining process. 

-c/ist A list of deltas to be preserved. All other deltas are discarded. See get(l) for the syntax of a list. 

-pSJD The secs ID string (SID) of the oldest delta to be preserved. All older deltas are discarded in the 
reconstructed file. 

If no options are specified, comb preserves only leaf deltas and the minimal number of ancestors needed to 
preserve the tree. 

s.COMB 
comb????? 

reconstructed secs file 
temporary 

SEE ALSO 
admin(l), delta(l), get(l), help(l), prs(l), sccs(l), sh(l), sccsfile(5) 

Programming Utilities and Libraries 

DIAGNOSTICS 

BUGS 

Use help(l) for explanations. 

comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is possible for the 
reconstructed file to actually be larger than the original. 

Sun Release 4.0 Last change: 9 September 1987 81 



COMM(l) USER COMMANDS COMM(l) 

NAME 

comm - display lines in common, and lines not in common, between two sorted lists 

SYNOPSIS 
comm [ -l 1-21-31-121-131-23 ]filename] filename2 

DESCRIPTION 
comm reads filename] and filename2, which should be ordered in ASCII collating sequence (see sort( 1 V) ), 
and produces three-column output when no options are specified: 

• Column 1 contains lines that occur only in filename] . 

• Column 2 contains lines only infilename2. 

• Column 3 contains lines common to both files. 

The filename ' -' means the standard input. 

OPTIONS 
The following options can be used to suppress the indicated columns from display. You can specify 
'-123', but doing so suppresses all output. 

-1 Suppress column 1; omit lines only infilenamel. 

-2 Suppress column 2; omit lines only infilename2. 

-3 Suppress column 3; omit lines common to both files. 

-12 Suppress columns 1 and 2; only show lines common to both files. 

-13 Suppress columns 1 and 3; only show lines infilename2. 

-23 Suppress columns 2 and 3; only show lines infilenamel. 

SEE ALSO 
cmp(l), diff(l), uniq(l), sort(l V) 

BUGS 
The options suppress, rather than select the columns you indicate. 

82 Last change: 9 September 1987 Sun Release 4.0 



COMPRESS ( 1 ) USER COMMANDS COMPRESS( 1) 

NAME 
compress, uncompress, zcat - compress or expand files, display expanded contents 

SYNOPSIS 
compress [ -cfv] [ -b bits] [filename ... ] 

uncompress [ -cv] [filename ... ] 

zcat [filename. . . ] 

DESCRIPTION 
compress reduces the size of the named files using adaptive Lempel-Ziv coding. Whenever possible, each 
file is replaced by one with the extension . Z, while keeping the same ownership modes, as well as access 
and modification times. If no files are specified, the standard input is compressed to the standard output. 

The amount of compression obtained depends on the size of the input, the number of bits per code, and the 
distribution of common substrings. Typically, text such as source code or English is reduced by 50-60%. 
Compression is generally much better than that achieved by Huffman coding (as used in pack(l)), or adap
tive Huffman coding (oldcompact(l)), and takes less time to compute. The bits parameter specified during 
compression is encoded within the compressed file, along with a magic number to ensure that neither 
decompression of random data nor recompression of compressed data is subsequently allowed. 

Compressed files can be restored to their original form using uncompress. 

zcat produces uncompressed output on the standard output, but leaves the compressed • Z file intact. 

OPTIONS 

FILES 

-c Write to the standard output; no files are changed. The nondestructive behavior of zcat is identi
cal to that of 'uncompress -c'. 

-f Force compression, even if the file does not actually shrink, or the corresponding • Z file already 
exists. Except when running in the background (under /usr/bin/sh), if -f is not given, prompt to 
verify whether an existing . Z file should be overwritten. 

-v Verbose. Display the percentage reduction for each file compressed. 

-b bits Set the upper limit (in bits) for common substring codes. bits must be between 9 and 16 (16 is the 
default). 

/usr/bin/sh 

SEE ALSO 
ln(l), oldcompact(l), pack(l) 

A Technique for High Performance Data Compression, Terry A. Welch, IEEE Computer, vol. 17, no. 6 
(June 1984), pp. 8-19. 

DIAGNOSTICS 
Exit status is normally 0. If the last file was not compressed because it became larger, the status is 2. If an 
error occurs, exit status is 1. 

Usage: compress [-fvc] [-b maxbits] [filename ... ] 
Invalid options were specified on the command line. 

Missing maxbits 
Maxbits must follow -b . 

filename: not in compressed format 
The file specified to uncompress has not been compressed. 

filename: compressed with xx bits, can only handle yybits 
filename was compressed by a program that could deal with more bits than the compress code 
on this machine. Recompress the file with smaller bits. 

Sun Release 4.0 Last change: 9 September 1987 83 



COMPRESS ( 1 ) USER COMMANDS COMPRESS ( 1 ) 

BUGS 

84 

filename: already has . Z suffix -- no change 
The file is assumed to be already compressed. Rename the file and try again. 

filename: already exists; do you wish to overwrite (y or n)? 
Respond y if you want the output file to be replaced; n if not. 

uncompress: corrupt input 
A SIGSEGV violation was detected, which usually means that the input file is corrupted. 

Compression: xx.xx% 
Percentage of the input saved by compression. (Relevant only for -v .) 

- - not a regular file: unchanged 
When the input file is not a regular file, (such as a directory), it is left unaltered. 

- - has xx other links: unchanged 
The input file has links; it is left unchanged. See ln(l) for more information. 

- - file unchanged 
No savings are achieved by compression. The input remains uncompressed. 

Although compressed files are compatible between machines with large memory, -b12 should be used for 
file transfer to architectures with a small process data space (64KB or less). 

compress should be more flexible about the existence of the • Z suffix. 

Last change: 9 September 1987 Sun Release 4.0 



CP( 1) USER COMMANDS CP(l) 

NAME 
cp - copy files 

SYNOPSIS 
cp [ -ip ] filename] filename2 
cp -r [ -ip ] directory] directory2 
cp [ -ipr R ] filename . . . directory 

DESCRIPTION 
cp copies the contents of filename] onto filename2. The mode and owner of filename2 are preserved if it 
already existed; the mode of the source file is used otherwise. If filename] is a symbolic link, or a dupli
cate hard link, the contents of the file that the link refers to are copied; links are not preserved. 

In the second form, cp recursively copies directory], along with its contents and subdirectories, to direc
tory2. If directory2 does not exist, cp creates it and duplicates the files and subdirectories of directory] 
within it. If directory2 does exist, cp makes a copy of the directory] directory within directory2 (as a sub
directory), along with its files and subdirectories. 

In the third form, each filename is copied to the indicated directory; the basename of the copy corresponds 
to that of the original. The destination directory must already exist for the copy to succeed. 

cp refuses to copy a file onto itself. 

OPTIONS 
-i Interactive. Prompt for confirmation whenever the copy would overwrite an existing file. A yin 

answer confirms that the copy should proceed. Any other answer prevents cp from overwriting 
the file. 

-p Preserve. Duplicate not only the contents of the original file or directory, but also the modification 
time and permission modes. 

-r 
-R Recursive. If any of the source files are directories, copy the directory along with its files (includ-

ing any subdirectories and their files); the destination must be a directory. 

EXAMPLES 
To copy a file: 

example% cp goodies goodies.old 
example% ls goodies* 
goodies goodies.old 

To copy a directory, first to a new, and then to an existing destination directory: 
example% ls /bkup 
/usr/example/fred/bkup not found 
example% cp -r /src /bkup 
example% ls-R /bkup 
x.c y.c z.sh 
example% cp -r /src /bkup 
example% ls -R /bkup 
src x.c y.c z.sh 

src: 
x.c y.c z.sh 

BEWARE of a recursive copy like this: 
example% cp -r /src /src/bkup 

which keeps copying files until it fills the entire file system. 

To copy a list of files to a destination directory: 
example% cp /src/* /tmp 

Sun Release 4.0 Last change: 9 September 1987 85 



CP( 1) USER COMMANDS CP( 1) 

SEE ALSO 

BUGS 

86 

cat(lV), ln(l), mv(l), pr(lV), rcp(lC), tar(l) 

cp copies the contents of files pointed to by symbolic links. It does not copy the symbolic link itself. This 
can lead to inconsistencies when directory hierarchies are replicated. Filenames that were linked in the ori
ginal hierarchy are no longer linked in the replica. This is also true for files with multiple hard links. See 
ln(l) for details about symbolic links and hard links. You can preserve links in replicated hierarchies by 
using tar( 1) to copy them. 

Last change: 9 September 1987 Sun Release 4.0 



CPIO(l) USER COMMANDS CPIO( 1) 

NAME 
cpio - copy file archives in and out 

SYNOPSIS 
cpio -o [ aBcv ] 
cpio -i [ bcdfmrsStuv6 ] [ patterns ] 
cpio -p [ adlmruv ] directory 

DESCRIPTION 
cpio copies files in to and out from a cpio copy archive. The archive (built by 'cpio -o') contains path
name and status information, along with the contents of one or more archived files. 

OPTIONS 
-o Copy out an archive. Read the standard input for a list of pathnames, then copy the named files to 

the standard output in archive form - including pathname and status information. 

a Reset the access times of input files after they have been copied. 

B Input/output is to be blocked at 5120 bytes to the record This does not apply to the pass 
option. This option is only meaningful with data directed to or from raw magnetic dev
ices, such as '/dev/rmt?'. 

c Write header information in ASCII character form for portability. 

v Verbose. A list of filenames is displayed. When used with the t option, the table of con
tents looks like the output of an 'Is -I' command (see ls(lV)). 

-i Copy in an archive. Read in an archive from the standard input and extract files with names 
matching filename substitution patterns, supplied as arguments. 

patterns are similar to those in sh( 1) or csh( 1 ), save that within cpio, the metacharacters '? ', '*' 
and '( ... ]' also match the '/' (slash) character. If no patterns are specified, the default is * 
(select all files). 

b Swap both bytes and half-words after reading in data. 

d Create directories as needed. 

f Copy in all files except those matching patterns. 

m Retain previous file modification time. This option is ineffective on directories that are 
being copied. 

r Interactively rename files. If the user types a null line, the file is skipped. 

s Swap bytes after reading in data. 

S Swap halfwords after reading in data. 

t Print a table of contents of the input archive. No files are created. 

u Copy unconditionally. Normally, an older file will not replace a newer file with the same 
name. 

6 Process UNIX Version-6 files. 

-p One pass. Copy in and out in a single operation. Destination pathnames are interpreted relative to 
the named directory. 

Whenever possible, link files rather than copying them. 

EXAMPLES 
To copy the contents of a directory into an archive: 

example% Is I cpio -o > /dev/mtO 

Sun Release 4.0 Last change: 23 September 1987 87 



CPIO(l) USER COMMANDS CPIO(l) 

To duplicate the olddir directory hierarchy in the newdir directory: 
example% cd olddir 
example% find. -depth -print I cpio-pdl newdir 

The trivial case 
example% find . -depth -print I cpio -oB >ldev/rmtO 

can be handled more efficiently by: 

example% find . -cpio /dev/rmt/Om 

cpio archive tapes from other sites may have bytes swapped within the archive. Although the -is option 
only swaps the data bytes and not those in the header cpio recognizes tapes like this and swaps the bytes in 
the header automatically. 

SEE ALSO 

BUGS 

88 

ar(lV), csh(l), find(l), ls(lV), sh(l), tar(l), cpio(5) 

Pathnames are restricted to 128 characters. If there are too many unique linked files, cpio runs out of 
memory and linking information is lost thereafter. Only the super-user can copy special files. 

Last change: 23 September 1987 Sun Release 4.0 



CPP( 1) USER COMMANDS CPP( 1) 

NAME 
cpp - the C language preprocessor 

SYNOPSIS 
/usr/Iib/cpp [ -BCHMpPRT] [ -undef] [ -Dname] [ -Dname=def] [ -ldir] [ -U name] [ -Y dir] 

[ ijile [ ofile ] ] 

DESCRIPTION 
cpp is the C language preprocessor. It is invoked as the first pass of any C compilation started with the 
cc(l V) command; however, cpp can also used as a first-pass preprocessor for other Sun compilers. 

Although cpp can be used as a macro processor, this is not normally recommended, as its output is geared 
toward that which would be acceptable as input to a compiler's second pass. Thus, the preferred way to 
invoke cpp is through the cc(lV) command, or some other compilation command. For general-purpose 
macro-processing, see m4(1 V), and the chapter on m4 in Programming Utilities and Libraries 

cpp optionally accepts two filenames as arguments. ifile and ofile are, respectively, the input and output 
files for the preprocessor. They default to the standard input and standard output. 

OPTIONS 
-B 

-C 

-H 
-M 

-p 

-P 

-R 

-T 

Support the C++ comment indicator//. With this indicator everything on the line after the// is 
treated as a comment. 

Pass all comments (except those that appear on cpp directive lines) through the preprocessor. By 
default, cpp strips out C-style comments. 

Print the pathnames of included files, one per line on the standard error. 

Generate a list of makefile dependencies and write them to the standard output. This list indicates 
that the object file which would be generated from the input file depends on the input file as well 
as the include files referenced. 

Use only the first eight characters to distinguish preprocessor symbols, and issue a warning if 
extra tokens appear at the end of a line containing a directive. 

Preprocess the input without producing the line control information used by the next pass of the C 
compiler. 

Allow recursive macros. 

Use only the first eight characters for distinguishing different preprocessor names. This option is 
included for backward compatibility with systems which always use only the first eight characters. 

-undef Remove initial definitions for all predefined symbols. 

-Dname 
Define name as 1 (one). This is the same as if a -Dname=l option appeared on the cpp command 
line, or as if a 

#define name 1 

line appeared in the source file that cpp is processing. 

-Dname=def 
Define name as if by a #define directive. This is the same as if a 

#define name def 

line appeared in the source file that cpp is processing. The -D option has lower precedence than 
the -U option. That is, if the same name is used in both a -U option and a -D option, the name 
will be undefined regardless of the order of the options. 

-Idir Insert dir into the search path for #include files with names beginning with '/'. dir is inserted 
ahead of the standard list of ''include'' directories. Thus, #include files with names enclosed in 
double-quotes (") are searched for first in the directory of the file with the #include line, then in 
directories named with -I options, and lastly, in directories from the standard list. For #include 

Sun Release 4.0 Last change: 25 January 1988 89 



CPP( 1) 

USAGE 

-Uname 

USER COMMANDS CPP(l) 

files with names enclosed in angle-brackets ( < > ), the directory of the file with the #include line is 
not searched. See Details below for exact details of this search order. 

Remove any initial definition of name, where name is a symbol that is predefined by a particular 
preprocessor. Here is a partial list of symbols that may be predefined, depending upon the archi
tecture of the system: 

Operating System: 
Hardware: 

ibm, gcos, os, tss and unix 
interdata,pdpll,u370,u3b,u3b2,u3b5,u3bl5,u3b20d,vax, 
m68k (or alternatively, mc68000), M68010 (or mc68010), 
M68020 (or mc68020), ns32000, iAPX286, i386, spare , and 
sun 

UNIX system variant: RES, and RT 
The lint( 1 V) command: lint 

The symbols sun and unix are defined for all Sun systems, as is the value returned by the 
maeb command. For a Sun-4 system, this value would be spare. In addition, me68000 
is defined for Sun-2 and Sun-3 systems. 

-Y dir Use directory dir in place of the standard list of directories when searching for #include files. 

Directives 

90 

All epp directives start with a pound-sign (#) as the first character on a line. White space (SPACE or TAB 
characters) can appear after the initial# for proper indentation. 

#define name token-string 
Replace subsequent instances of name with token-string. 

#define name (arg [, arg] ... ) token-string 
There can be no space between name and the '('. Replace subsequent instances of name, fol
lowed by a parenthesized list of arguments, with token-string, where each occurrence of an arg in 
the token-string is replaced by the corresponding token in the comma-separated list. When a 
macro with arguments is expanded, the arguments are placed into the expanded token-string 
unchanged. After the entire token-string has been expanded, epp re-starts its scan for names to 
expand at the beginning of the newly created token-string. 

#undefname 
Remove any definition for the symbol name. No additional tokens are permitted on the directive 
line after name. 

#include "filename " 
#include <filename> 

Read in the contents of filename at this location. This data is processed by epp as if it were part of 
the current file. When the <filename> notation is used, filename is only searched for in the stan
dard "include" directories. See the -I and -Y options above for more detail. No additional 
tokens are permitted on the directive line after the final" or>. 

#line integer-constant "filename" 
Generate line control information for the next pass of the C compiler. integer-constant is inter
preted as the line number of the next line and filename is interpreted as the file from where it 
comes. If "filename" is not given, the current filename is unchanged. No additional tokens are 
permitted on the directive line after the optional filename. 

#if constant-expression 
Subsequent lines up to the matching #else, #elif , or #endif directive, appear in the output only if 
constant-expression yields a nonzero value. All binary non-assignment C operators, including 
'&&','II', and',', are legal in constant-expression. The'?:' operator, and the unary'-','!', and 
' ' operators, are also legal in constant-expression. 

Last change: 25 January 1988 Sun Release 4.0 



CPP( 1) USER COMMANDS CPP(l) 

The precedence of these operators is the same as that for C. In addition, the unary operator 
defined, can be used in constant-expression in these two forms: 'defined ( name )' or 'defined 
name'. This allows the effect of #ifdef and #ifndef directives (described below) in the #if direc
tive. Only these operators, integer constants, and names that are known by cpp should be used 
within constant-expression. In particular, the sizeof operator is not available. 

#if def name 
Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if name has 
been defined, either with a #define directive or a -D option, and in the absence of an intervening 
#undef directive. No additional tokens are permitted on the directive line after name. 

#ifndef name 
Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if name has 
not been defined, or if its definition has been removed with an #undef directive. No additional 
tokens are permitted on the directive line after name. 

#elif constant-expression 
Any number of #elif directives may appear between an #if, #ifdef, or #ifndef directive and a 
matching #else or #endif directive. The lines following the #elif directive appear in the output 
only if all of the following conditions hold: 

• The constant-expression in the preceding #if directive evaluated to zero, the name in the 
preceding #if def is not defined, or the name in the preceding #ifndef directive was defined. 

• The constant-expression in all intervening #elif directives evaluated to zero. 
• The current constant-expression evaluates to non-zero. 

If the constant-expression evaluates to non-zero, subsequent #elif and #else directives are ignored 
up to the matching #endif. Any constant-expression allowed in an #if directive is allowed in an 
#elif directive. 

#else This inverts the sense of the conditional directive otherwise in effect. If the preceding conditional 
would indicate that lines are to be included, then lines between the #else and the matching #endif 
are ignored. If the preceding conditional indicates that lines would be ignored, subsequent lines 
are included in the output. Conditional directives and corresponding #else directives can be 
nested. 

#endif End a section of lines begun by one of the conditional directives #if, #ifdef, or #ifndef. (Each 
such directive must have a matching #endif). 

Macros 
Formal parameters for macros are recognized in #define directive bodies, even when they occur inside 
character constants and quoted strings. For instance, the output from: 

#define abc(a) I \al 
abc(xyz) 

is the seven characters 'I \xyzl' (SPACE, vertical-bar, backquote, x, y, z, vertical-bar). Macro names are not 
recognized within character constants or quoted strings during the regular scan. Thus: 

#define abc xyz 
printf("abc"); 

does not expand abc in the second line, since it is inside a quoted string that is not part of a #define macro 
definition. 

Macros are not expanded while processing a #define or #undef. Thus: 
#define abc zingo 
#define xyz abc 
#undef abc 
xyz 

produces abc. The token appearing immediately after an #if def or #ifndef is not expanded. 

Sun Release 4.0 Last change: 25 January 1988 91 



CPP(l) USER COMMANDS CPP( 1) 

Macros are not expanded during the scan which determines the actual parameters to another macro call. 
Thus: 

#define reverse(first~econd)second first 
#define greeting hello 
reverse(greeting, 
#define greeting goodbye 
) 

produces ' goodbye '. 

Output 
Output consists of a copy of the input file, with modifications, plus lines of the form: 

#lineno "filename " "level" 

indicating the original source line number and filename of the following output line and whether this is the 
first such line after an include file has been entered (level=1), the first such line after an include file has 
been exited (level=2), or any other such line (level is empty). 

Details 
Directory Search Order 

#include files is: 

1. The directory of the file that contains the #include request (that is, #include is relative to the file being 
scanned when the request is made). 

2. The directories specified by -I options, in left-to-right order. 

3. The standard clirectory(s) (/usr/include on UNIX systems). 

Special Name.s 
Two special names are understood by cpp. The name __ LINE __ is defined as the current line number (a 
decimal integer) as known by cpp, and _ _ FILE _ _ is defined as the current filename (a C string) as known 
by cpp. They can be used anywhere (including in macros) just as any other defined name. 

Newline Characters 
A NEWLINE character terminates a character constant or quoted string. An escaped NEWLINE (that is, a 
backslash immediately followed by a NEWLINE) may be used in the body of a #define statement to con
tinue the definition onto the next line. The escaped NEWLINE is not included in the macro value. 

Comments 

Comments are removed (unless the -C option is used on the command line). Comments are also ignored, 
except that a comment terminates a token. 

FILES 
/usr/include 

SEE ALSO 

standard directory for #include files 

cc(lV), m4(1V) 

m4-A Macro Processor in Programming Utilities and Libraries 

DIAGNOSTICS 

NOTES 

92 

The error messages produced by cpp are intended to be self-explanatory. The line number and filename 
where the error occurred are printed along with the diagnostic. 

When NEWLINE characters were found in argument lists for macros to be expanded, some previous ver
sions of cpp put out the NEWLINE characters as they were found and expanded. The current version of 
cpp replaces them with SP ACE characters. 

Because the standard directory for included files may be different in different environments, this form of 
#include directive: 

Last change: 25 January 1988 Sun Release 4.0 



CPP(l) USER COMMANDS 

#include <file.h> 

should be used, rather than one with an absolute path, like: 

#include" /usr/include/file.h" 

cpp warns about the use of the absolute pathname. 

Sun Release 4.0 Last change: 25 January 1988 

CPP( 1) 

93 



CRONTAB(l) USER COMMANDS CRONTAB ( 1) 

NAME 
crontab - install, edit, remove or list a user's crontab file 

SYNOPSIS 
crontab [filename ] 
crontab -e [ username ] 
crontab -I [ username ] 
crontab-r 

DESCRIPTION 
crontab copies the specified file, or the standard input if no file is specified, into a directory that holds all 
users' crontab files. A user's crontab file lists commands that are to be executed on behalf of that user at 
specified times on specified dates; the format of these files is described in crontab(5). 

If the file /var/spool/cron/atallow exists, only users whose usemame appears in it can use crontab. If that 
file does not exist, however, crontab checks the /var/spool/cron/at.deny file to determine if the user 
should be denied the use of crontab. If neither file exists, only the super-user is allowed to submit a cron
tab job. If at.allow does not exist and at.deny exists and is empty, global usage is permitted. The 
allow/deny files consist of one user name per line. 

OPTIONS 

FILES 

-e Make a copy of the current user's crontab file, or create an empty file if it does not exist, and edit 
that file. The vi(l) editor will be used unless the environment variable VISUAL or EDITOR indi
cates an alternate editor. When editing is complete, install the file as the user's crontab file if it 
was modified. If a username is given, the specified user's crontab file is edited, rather than the 
current user's crontab file; this may only be done by the super-user. 

-I List the user's crontab file. 

-r Remove the current user's crontab file from the crontab directory. If a username is given, the 
specified user's crontab file is removed, rather than the current user's crontab file; this may only 
be done by the super-user. 

/var/spool/cron main cron directory 
/var/spool/cron/crontabs 

spool area 
/var/spool/ cron/at.allow 

list of allowed users 
/var/spool/cron/at.deny 

list of denied users 

SEE ALSO 
sh(l), crontab(5), cron(8) 

WARNINGS 

94 

If you inadvertently enter the crontab command with no argument(s), do not attempt to get out by typing 
CTRL-D. This removes all entries in your crontab file. Instead, exit by typing your interrupt character 
(normally CTRL-C). 

Last change: 9 September 1987 Sun Release 4.0 



CRYPT( 1) USER COMMANDS CRYPT( 1) 

NAME 
crypt - encode or decode a file 

SYNOPSIS 
crypt [ password ] 

DESCRIPTION 

FILES 

crypt encrypts and decrypts the contents of a file. crypt reads from the standard input and writes on the 
standard output. The password is a key that selects a particular transformation. If no password is given, 
crypt demands a key from the terminal and turns off printing while the key is being typed in. crypt 
encrypts and decrypts with the same key: 

example% crypt key <clear.file >encrypted.file 
example% crypt key <encrypted.file I pr 

will print the contents of clear .file. 

Files encrypted by crypt are compatible with those treated by the editors ed(l), ex(l) and vi(l) in encryp
tion mode. 

The security of encrypted files depends on three factors: the fundamental method must be hard to solve; 
direct search of the key space must be infeasible; "sneak paths" by which keys or cleartext can become 
visible must be minimized. 

crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a 256-
element rotor. Methods of attack on such machines are widely known, thus crypt provides minimal secu
rity. 

The transformation of a key into the internal settings of the machine is deliberately designed to be expen
sive, that is, to take a substantial fraction of a second to compute. However, if keys are restricted to (say) 
three lower-case letters, then encrypted files can be read by expending only a substantial fraction of five 
minutes of machine time. 

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(l) or a 
derivative command. To minimize this possibility, crypt takes care to destroy any record of the key 
immediately upon entry. No doubt the choice of keys and key security are the most vulnerable aspect of 
crypt. 

/dev/tty for typed key 

SEE ALSO 
des(l), ed(l), ex(l), ps(l), vi(l), makekey(8) 

RESTRICTIONS 
This program is not available on software shipped outside the U.S. 

Sun Release 4.0 Last change: 9 September 1987 95 



CSH(l) USER COMMANDS CSH(l) 

NAME 

csh- a shell (command interpreter) with a C-like syntax and advanced interactive features 

SYNOPSIS 
csh [ -bcefinstvVxX ] [ argument .. . ] 

DESCRIPTION 

csh, the C shell, is a command interpreter with a syntax reminiscent of C. It provides a number of con
venient features for interactive use that are not available with the standard (Bourne) shell, including 
filename completion, command aliasing, history substitution, job control, and a number of built-in com
mands. As with the standard shell, the C shell provides variable, command and filename substitution. 

Initialization and Termination 

When first started, the C shell normally performs commands from the .cshrc file in your home directory, 
provided that it is readable and you either own it or your real group ID matches its group ID. If the shell is 
invoked with a name that starts with '-', as when started by login(l), the shell runs as a login shell. In this 
case, after executing commands from the .cshrc file, the shell executes commands from the .login file in 
your home directory; the same permission checks as those for .cshrc are applied to this file. Typically, the 
.login file contains commands to specify the terminal type and environment. 

As a login shell terminates, it performs commands from the .logout file in your home directory; the same 
permission checks as those for .cshrc are applied to this file. 

Interactive Operation 
After startup processing is complete, an interactive C shell begins reading commands from the terminal, 
prompting with hostname % (or hostname# for the super-user). The shell then repeatedly performs the fol
lowing actions: a line of command input is read and broken into words. This sequence of words is placed 
on the history list and then parsed, as described under USAGE, below. Finally, the shell executes each 
command in the current line. 

Noninteractive Operation 
When running noninteractively, the shell does not prompt for input from the terminal. A noninteractive C 
shell can execute a command supplied as an argument on its command line, or interpret commands from a 
script. 

OPTIONS 
-b 

-c 

-e 

-f 

-i 

-n 

-s 

-t 

-v 

-V 

96 

Force a "break" from option processing. Subsequent command-line arguments are not interpreted 
as C shell options. This allows the passing of options to a script without confusion. The shell 
does not run a set-user-ID script unless this option is present. 

Read commands from the first filename argument (which must be present). Remaining arguments 
are placed in argv, the argument-list variable. 

Exit if a command terminates abnormally or yields a nonzero exit status. 

Fast start. Read neither the .cshrc file, nor the .login file (if a login shell) upon startup. 

Forced interactive. Prompt for command-line input, even if the standard input does not appear to 
be a terminal (character-special device). 

Parse (interpret), but do not execute commands. This option can be used to check C shell scripts 
for syn tax errors. 

Take commands from the standard input. 

Read and execute a single command line. A backslash (\) can be used to escape each NEWLINE 
for continuation of the command line onto subsequent input lines. 

Verbose. Set the verbose predefined variable; command input is echoed after history substitution 
(but before other substitutions) and before execution. 

Set verbose before reading .cshrc. 

Last change: 18 February 1988 Sun Release 4.0 



CSH(l) USER COMMANDS CSH(l) 

USAGE 

-x Echo. Set the echo variable; echo commands after all substitutions and just before execution. 

- X Set echo before reading .cshrc. 

Except with the flags -c, -i, -s or -t, the first nonflag argument is taken to be the name of a command or 
script. It is passed as argument zero, and subsequent arguments are added to the argument list for that 
command or script. 

Refer to Doing More with Sun0S: Beginner's Guide for tutorial information on how to use the various 
features of the C shell. 

Filename Completion 
When enabled by setting the variable filec, an interactive C shell can complete a partially typed filename or 
user name. When an unambiguous partial filename is followed by an ESC character on the terminal input 
line, the shell fills in the remaining characters of a matching filename from the working directory. 

If a partial filename is followed by the EOF character (usually typed as "D), the shell lists all filenames that 
match. It then prompts once again, supplying the incomplete command line typed in so far. 

When the last (partial) word begins with a tilde (-), the shell attempts completion with a user name, rather 
than a file in the working directory. 

The terminal bell signals errors or multiple matches; this can be inhibited by setting the variable nobeep. 
You can exclude files with certain suffixes by listing those suffixes in the variable fignore. If, however, the 
only possible completion includes a suffix in the list, it is not ignored. fignore does not affect the listing of 
filenames by the EOF character. 

Lexical Structure 
The shell splits input lines into words at SPACE and TAB characters, except as noted below. The characters 
&, I, ;, <, >, (, and) form separate words; if paired, the pairs form single words. These shell metacharac
ters can be made part of other words, and their special meaning can be suppressed by preceding them with 
a backslash(\). A NEWLINE preceded by a\ is equivalent to a SPACE. 

In addition, a string enclosed in matched pairs of single-quotes ( '), double-quotes ( " ), or backquotes (' ), 
forms a partial word; metacharacters in such a string, including any SP ACE or TAB characters, do not form 
separate words. Within pairs of backquote (') or double-quote (" ) characters, a NEWLINE preceded by a 
backslash ( \) gives a true NEWLINE character. Additional functions of each type of quote are described, 
below, under Variable Substitution, Command Substitution, and Filename Substitution. 

When the shell's input is not a terminal, the character # introduces a comment that continues to the end of 
the input line. Its special meaning is suppressed when preceded by a \ or enclosed in matching quotes. 

Command Line Parsing 
A simple command is composed of a sequence of words. The first word (that is not part of an I/0 redirec
tion) specifies the command to be executed. A simple command, or a set of simple commands separated by 
I or I& characters, forms a pipeline. With I, the standard output of the preceding command is redirected to 
the standard input of the command that follows. With I &, both the standard error and the standard output 
are redirected through the pipeline. 

Pipelines can be separated by semicolons ( ; ), in which case they are executed sequentially. Pipelines that 
are separated by && or 11 form conditional sequences in which the execution of pipelines on the right 
depends upon the success or failure, respectively, of the pipeline on the left. 

A pipeline or sequence can be enclosed within parentheses '( )' to form a simple command that can be a 
component in a pipeline or sequence. 

A sequence of pipelines can be executed asynchronously, or "in the background" by appending an '&'; 
rather than waiting for the sequence to finish before issuing a prompt, the shell displays the job number 
(see Job Control, below) and associated process IDs, and prompts immediately. 

Sun Release 4.0 Last change: 18 February 1988 97 



CSH(l) USER COMMANDS CSH(l) 

98 

History Substitution 
History substitution allows you to use words from previous command lines in the command line you are 
typing. This simplifies spelling corrections and the repetition of complicated commands or arguments. 
Command lines are saved in the history list, the size of which is controlled by the history variable. The 
most recent command is retained in any case. A history substitution begins with a ! (although you can 
change this with the histchars variable) and may occur anywhere on the command line; history substitu
tions do not nest. The ! can be escaped with \ to suppress its special meaning. 

Input lines containing history substitutions are echoed on the terminal after being expanded, but before any 
other substitutions take place or the command gets executed. 

Event Designators 
An event designator is a reference to a command-line entry in the history list 

! Start a history substitution, except when followed by a SPACE, TAB, NEWLINE,= or(. 
!! Refer to the previous command. By itself, this substitution repeats the previous com-

mand. 
!n Refer to command-linen. 
!-n Refer to the current command-line minus n. 
!str Refer to the most recent command starting with str. 
!?str[?] Refer to the most recent command containing str. 
!{ ... } Insulate a history reference from adjacent characters (if necessary). 

Word Designators 
A : separates the event specification from the word designator. It can be omitted if the word designator 
begins with a",$, *, - or%. If the word is to be selected from the previous command, the second! char
acter can be omitted from the event specification. For instance, !!:1 and !:1 both refer to the first word of 
the previous command, while!!$ and!$ both refer to the last word in the previous command. Word desig
nators include: 

# The entire command line typed so far. 
0 The first input word (command). 
n The n 'th argument 

The first argument, that is, 1. 
$ The last argument 
% The word matched by (the most recent) ?s search. 
x-y A range of words; -y abbreviates 0-y. 
* All the arguments, or a null value if there is just one word in the event. 
x• Abbreviates x-$. 
x- Like x* but omitting word $. 

Modifiers 
After the optional word designator, you can add a sequence of one or more of the following modifiers, each 
preceded by a:. 

h Remove a trailing pathname component, leaving the head. 
r Remove a trailing suffix of the form '.xxx', leaving the basename. 
e Remove all but the suffix. 
s/l/r[/] Substituter for 1. 
t Remove all leading pathname components, leaving the tail. 
& Repeat the previous substitution. 
g Apply the change to the first occurrence of a match in each word, by prefixing the above 

(for example, g& ). 
p Print the new command but do not execute it. 
q Quote the substituted words, escaping further substitutions. 
X Like q, but break into words at each SP ACE, TAB or NEWLINE. 

Last change: 18 February 1988 Sun Release 4.0 



CSH ( 1) USER COMMANDS CSH( 1) 

Unless preceded by a g, the modification is applied only to the first string that matches I; an error results if 
no string matches. 

The left-hand side of substitutions are not regular expressions, but character strings. Any character can be 
used as the delimiter in place of/. A backslash quotes the delimiter character. The character &, in the 
right hand side, is replaced by the text from the left-hand-side. The & can be quoted with a backslash. A 
null I uses the previous string either from a I or from a contextual scan string s from !? s. You can omit the 
rightmost delimiter if a NEWLINE immediately follows r; the rightmost ? · in a context scan can similarly be 
omitted. 

Without an event specification, a history reference refers either to the previous command, or to a previous 
history reference on the command line (if any). 

Quick Substitution 
,../ ,..r[ "] This is equivalent to the history substitution: !:s"l "r[ "]. 

Aliases 
The C shell maintains a list of aliases that you can create, display, and modify using the alias and unalias 
commands. The shell checks the first word in each command to see if it matches the name of an existing 
alias. If it does, the command is reprocessed with the alias definition replacing its name; the history substi
tution mechanism is made available as though that command were the previous input line. This allows his
tory substitutions, escaped with a backslash in the definition, to be replaced with actual command-line 
arguments when the alias is used. If no history substitution is called for, the arguments remain unchanged. 

Aliases can be nested. That is, an alias definition can contain the name of another alias. Nested aliases are 
expanded before any history substitutions is applied. This is useful in pipelines such as 

alias Im 'Is -I \! * I more' 

which when called, pipes the output of ls(l V) through more(l). 

Execpt for the first word, the name of the alias may not appear in its definition, nor in any alias referred to 
by its definition. Such loops are detected, and cause an error message. 

I/0 Redirection 
The following metacharacters indicate that the subsequent word is the name of a file to which the 
command's standard input, standard output, or standard error is redirected; this word is variable, command, 
and filename expanded separately from the rest of the command. 

< Redirect the standard input. 

<<word 
Read the standard input, up to a line that is identical with word, and place the resulting lines in a 
temporary file. Unless word is escaped or quoted, variable and command substitutions are per
formed on these lines. Then, invoke the pipeline with the temporary file as its standard input. 
word is not subjected to variable, filename or command substitution, and each line is compared to 
it before any substitutions are performed by the shell. 

> >! >& >&! 
Redirect the standard output to a file. If the file does not exist, it is created. If it does exist, it is 
overwritten; its previous contents are lost. 

When set, the variable noclobber prevents destruction of existing files. It also prevents redirec
tion to terminals and /dev/null, unless one of the ! forms is used. The & forms redirect both stan
dard output and the the standard error (diagnostic output) to the file. 

>> >>& >>! >>&! 

Sun Release 4.0 

Append the standard output. Like >, but places output at the end of the file rather than overwriting 
it. If noclobber is set, it is an error for the file not to exist, unless one of the ! forms is used. The 
& forms append both the standard error and standard output to the file. 

Last change: 18 February 1988 99 



CSH( 1) USER COMMANDS CSH( 1) 

100 

Variable Substitution 
After an input line is aliased and parsed, and before each command is executed, variable substitution is per
formed I/0 redirections are recognized before variable expansion is applied, and are variable-expanded 
separately. Strings enclosed in backquotes (' ), even when they contain variable references, are interpreted 
later (see Command Substitution). Otherwise, variable substitution is performed on the command name 
and argument list together. 

The C shell maintains a set of variables, each of which is composed of a name and a value. A variable 
name consists of up to 20 letters and digits, and starts with a letter (the underscore is considered a letter). 
A variable's value is a space-separated list of zero or more words. A reference to a variable starts with a$, 
and replaces the words of that variable's value, by selected words from the value, or by information about 
the variable, as described below. Braces can be used to insulate the reference from subsequent characters, 
which might otherwise be interpreted as part of it. 

Variable substitution can be suppressed by preceding the $ with a \, except within double-quotes where it 
always occurs. Within single-quotes, variable substitution is suppressed. A$ is escaped if followed by a 
SPACE, TAB or NEWLINE. 

Variables can be created, displayed, or destroyed using the set and unset commands. Some variables are 
maintained or used by the shell. For instance, the argv variable contains an image of the shell's argument 
list. Of the variables used by the shell, a number are toggles; the shell does not care what their value is, 
only whether they are set or not. 

Numerical values can be operated on as numbers (as with the @ built-in). With numeric operations, an 
empty value is considered to be zero; the second and subsequent words of multiword values are ignored. 
For instance, when the verbose variable is set to any value (including an empty value), command input is 
echoed on the terminal. 

Command and filename substitution is subsequently applied to the words that result from the variable sub
stitution, except when suppressed by double-quotes, when noglob is set (suppressing filename substitu
tion), or when the reference is quoted with the :q modifier. Within double-quotes, a reference is expanded 
to form (a portion of) a quoted string; multiword values are expanded to a string with embedded SPACE 
characters. When the :q modifier is applied to the reference, it is expanded to a list of space-separated 
words, each of which is quoted to prevent subsequent command or filename substitutions. 

Except as noted below, it is an error to refer to a variable that is not set. 

$var 
${var} These are replaced by words from the value of var, each separated by a SP ACE. If var is an 

environment variable, its value is returned (but ':' modifiers and the other forms given below are 
not available). 

$var[index] 
${ var [index]} 

These select only the indicated words from the value of var. Variable substitution is applied to 
index , which may consist of ( or result in) a either single number, two numbers separated by a '-', 
or an asterisk. Words are indexed starting from 1; a'*' selects all words. If the first number of a 
range is omitted (as with $argv[-2]), it defaults to 1. If the last number of a range is omitted (as 
with $argv[l-]), it defaults to $#var (the word count). It is not an error for a range to be empty if 
the second argument is omitted (or within range). 

$#name 
${#name} 

These give the number of words in the variable. 

$0 This substitutes the name of the file from which command input is being read. An error occurs if 
the name is not known. 

Last change: 18 February 1988 Sun Release 4.0 



CSR (1) USER COMMANDS CSH(l) 

$n 
${n} Equivalent to $argv[n]. 

$* Equivalent to $argv[ * ]. 

The modifiers :h, :t, :r, :q and :x can be applied (see History Substitution), as can :gh, :gt and :gr. If 
braces ( {}) are used, then the modifiers must appear within the braces. The current implementation allows 
only one such modifier per expansion. 

The following references may not be modified with : modifiers. 

$?var 
${?var} Substitutes the string 1 if var is set or O if it is not set. 

$?0 Substitutes 1 if the current input filename is known, or O if it is not. 

$$ Substitute the process number of the (parent) shell. 

$< Substitutes a line from the standard input, with no further interpretation thereafter. It can be used 
to read from the keyboard in a C shell script 

Command and Filename Substitutions 
Command and filename substitutions are applied selectively to the arguments of built-in commands. Por
tions of expressions that are not evaluated are not expanded. For non-built-in commands, filename expan
sion of the command name is done separately from that of the argument list; expansion occurs in a sub
shell, after 1/0 redirection is performed 

Command Substitution 
A command enclosed by backquotes (' ... ' ) is performed by a subshell. Its standard output is broken into 
separate words at each SPACE, TAB and NEWLINE; null words are discarded This text replaces the 
backquoted string on the current command line. Within double-quotes, only NEWLINE characters force 
new words; SPACE and TAB characters are preserved However, a final NEWLINE is ignored. It is there
fore possible for a command substitution to yield a partial word. 

Filename Substitution 
Unquoted words containing any of the characters *, ?, [ or {, or that begin with -, are expanded (also 
known as globbing) to an alphabetically sorted list of filenames, as follows: 

* Match any (zero or more) characters. 

? Match any single character. 

[ ... ] Match any single character in the enclosed list(s) or range(s). A list is a string of characters. A 
range is two characters separated by a minus-sign (-), and includes all the characters in between 
in the ASCII collating sequence (see ascii(7)). 

{str ,str , ... } 
Expand to each string (or filename-matching pattern) in the comma-separated list. Unlike the 
pattern-matching expressions above, the expansion of this construct is not sorted. For instance, 
{b,a} expands to 'b' 'a', (not 'a' 'b'). As special cases, the characters { and }, along with the 
string {},are passed undisturbed. 

-[user] Your home directory, as indicated by the value of the variable home, or that of user, as indicated 
by the password entry for user. 

Only the patterns *, ? and[ ... ] imply pattern matching; an error results if no filename matches a pattern 
that contains them. The dot character (.), when it is the first character in a filename or pathname com
ponent, must be matched explicitly. The slash(/) must also be matched explicitly. 

Expressions and Operators 
A number of C shell built-in commands accept expressions, in which the operators are similar to those of C 
and have the same precedence. These expressions typically appear in the @, exit, if, set and while com
mands, and are often used to regulate the flow of control for executing commands. Components of an 
expression are separated by white space. 

Sun Release 4.0 Last change: 18 February 1988 101 



CSH(l) USER COMMANDS CSH(l) 

102 

Null or missing values are considered 0. The result of all expressions are strings, which may represent 
decimal numbers. 

The following C shell operators are grouped in order of precedence: 

( ... ) grouping 

* I % 

one's complement 
logical negation 

multiplication, division, remainder (These are right associative, which can lead to unexpected 
results. Group combinations explicitly with parentheses.) 

+ - addition, subtraction (also right associative) 
<< >> bitwise shift left, bitwise shift right 
< > <= >= 

less than, greater than, less than or equal to, greater than or equal to 
== != =- !-

equal to, not equal to, filename-substitution pattern match (described below), filename-substitution 
pattern mismatch 

& bitwise AND 
bitwise XOR (exclusive or) 

I bitwise inclusive OR 
&& logical AND 
I I logical OR 

The operators: ==, !=, =-, and!- compare their arguments as strings; other operators use numbers. The 
oprators =-and!- each check whether or not a string to the left matches a filename substitution pattern on 
the right. This reduces the need for switch statements when pattern-matching between strings is all that is 
required. 

Also available are file inquiries: 
-r file Return true, or 1 if the user has read access. Otherwise it returns false, or 0. 
-w file True if the user has write access. 
-xfile True if the user has execute permission (or search permission on a directory). 
-e file True if file exists. 
-o file True if the user owns file. 
-zfile True if file is of zero length (empty). 
-f file True if file is a plain file. 
-dfile True if file is a directory. 

If file does not exist or is inaccessible, then all inquiries return false. 

An inquiry as to the success of a command is also available: 

{cmd} 

Control Flow 

If cmd runs successfully, the expression evaluates to true, 1. Otherwise it evaluates to 
false 0. (Note that, conversely, cmd itself typically returns O when it runs success
fully, or some other value if it encounters a problem. If you want to get at the status 
directly, use the value of the status variable rather than this expression). 

The shell contains a number of commands to regulate the flow of control in scripts, and within limits, from 
the terminal. These commands operate by forcing the shell either to reread input (to loop), or to skip input 
under certain conditions (to branch). 

Each occurrence of a foreach, switch, while, if ... then and else built-in must appear as the first word on its 
own input line. 

If the shell's input is not seekable and a loop is being read, that input is buffered. The shell performs seeks 
within the internal buffer to accomplish the rereading implied by the loop. (To the extent that this allows, 
backward goto commands will succeed on nonseekable inputs.) 

Last change: 18 February 1988 Sun Release 4.0 



CSH ( 1) USER COMMANDS CSH(l) 

Command Execution 
If the command is a C shell built-in, the shell executes it directly. Otherwise, the shell searches for a file by 
that name with execute access. If the command-name contains a/, the shell takes it as a pathname, and 
searches for it. If the command-name does not contain a/, the shell attempts to resolve it to a pathname, 
searching each directory in the path variable for the command. To speed the search, the shell uses its hash 
table (see the rehash built-in) to eliminate directories that have no applicable files. This hashing can be 
disabled with the -c or -t, options, or the unhash built-in. 

As a special case, if there is no I in the in the name of the script and there is an alias for the word shell, the 
expansion of the shell alias is prepended (without modification), to the command line. The system attempts 
to execute the first word of this special (late-occurring) alias, which should be a full pathname. Remaining 
words of the alias' s definition, along with the text of the input line, are treated as arguments. 

When a pathname is found that has proper execute permissions, the shell forks a new process and passes it, 
along with its arguments to the kernel (using the execve(2) system call). The kernel then attempts to over
lay the new process with the desired program. If the file is an executable binary (in a.out(5), the kernel 
succeeds, and begins executing the new process. If the file is a text file, and the first line begins with#!, the 
next word is taken to be the pathname of a shell (or command) to interpret that script. Subsequent words 
on the first line are taken as options for that shell. The kernel invokes (overlays) the indicated shell, using 
the name of the script as an argument 

If neither of the above conditions holds, the kernel cannot overlay the file (the execve(2) call fails); the C 
shell then attempts to execute the file by spawning a new shell, as follows: 

• If the first character of the file is a #, a C shell is invoked. 

• Otherwise, a standard (Bourne) shell is invoked. 

Signal Handling 
The shell normally ignores QUIT signals. Background jobs are immune to signals generated from the key
board, including HUPs. Other signals have the values that the C shell inherited from its environment. The 
shell's handling of interrupt and terminate signals within scripts can be controlled by the onintr built-in. 
Login shells catch the TERM signal; otherwise this signal is passed on to child processes. In no case are 
interrupts allowed when a login shell is reading the .logout file. 

Job Control 
The shell associates a numbered job with each command sequence, to keep track of those commands that 
are running in the background or have been stopped with TSTP signals (typically "Z). When a command, 
or command sequence (semicolon separated list), is started in the background using the & metacharacter, 
the shell displays a line with the job number in brackets, and a list of associated process numbers: 

[1] 1234 

To see the current list of jobs, use the jobs built-in command. The job most recently stopped (or put into 
the background if none are stopped) is referred to as the current job, and is indicated with a +. The previ
ous job is indicated with a -; when the current job is terminated or moved to the foreground, this job takes 
its place (becomes the new current job). 

To manipulate jobs, refer to the bg, fg, kill, stop and % built-ins. 

A reference to ajob begins with a%. By itself, the percent-sign refers to the currentjob. 

% %+ %% 
The current job. 

%- The previous job. 
%j Refer to job j as in: 'kill -9 %j'. j can be a job number, or a string that uniquely specifies the 

command-line by which it was started; 'fg %vi' might bring a stopped vi job to the foreground, 
for instance. 

%?string 
Specify the job for which the command-line uniquely contains string. 

Sun Release 4.0 Last change: 18 February 1988 103 



CSH ( 1) USER COMMANDS CSH(l) 

104 

A job running in the background stops when it attempts to read from the terminal. Background jobs can 
normally produce output, but this can be suppressed using the 'stty tostop' command. 

Status Reporting 
While running interactively, the shell tracks the status of each job and reports whenever a finishes or 
becomes blocked. It normally displays a message to this effect as it issues a prompt, so as to avoid disturb
ing the appearance of your input. When set, the notify variable indicates that the shell is to report status 
changes immediately. By default, the notify command marks the current process; after starting a back
ground job, type notify to mark it. 

Built-In Commands 
Built-in commands are executed within the C shell. If a built-in command occurs as any component of a 
pipeline except the last, it is executed in a subshell. 

Null command. This command is interpreted, but performs no action. 

alias [ name [ def] ] 
Assign def to the alias name. def is a list of words that may contain escaped history
substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted, the alias 
name is displayed along with its current definition. If both name and def are omitted, all 
aliases are displayed. 

bg [%job] ... 

break 

Run the current or specified jobs in the background 

Resume execution after the end of the nearest enclosing fore a ch or while loop. The remain
ing commands on the current line are executed. This allows multilevel breaks to be written as 
a list of break commands, all on one line. 

breaksw Break from a switch, resuming after the endsw. 

case label: A label in a switch statement 

cd [dir] 
chdir [dir] 

Change the shell's working directory to directory dir. If no argument is given, change to the 
home directory of the user. If dir is a relative pathname not found in the current directory, 
check for it in those directories listed in the cdpath variable. If dir is the name of a shell vari
able whose value starts with a /, change to the directory named by that value. 

continue Continue execution of the nearest enclosing while or foreach. 

default: Labels the default case in a switch statement. The default should come after all case labels. 

dirs [-I] 

Any remaining commands on the command line are first executed. 

Print the directory stack, most recent to the left; the first directory shown is the current direc
tory. With the -I argument, produce an unabbreviated printout; use of the - notation is 
suppressed. 

echo [ -n] list 
The words in list are written to the shell's standard output, separated by SPACE characters. 
The output is terminated with a NEWLINE unless the -n option is used. 

eval arg ... Reads the arguments as input to the shell, and executes the resulting command(s). This is usu
ally used to execute commands generated as the result of command or variable substitution, 
since parsing occurs before these substitutions. See tset(l) for an example of how to use eval. 

exec command 
Execute command in place of the current shell, which terminates. 

Last change: 18 February 1988 Sun Release 4.0 



CSH(l) USER COMMANDS CSH( 1) 

exit [(expr)] 

fg % UobJ 

The shell exits, either with the value of the status variable, or with the value of the specified 
by the expression expr. 

Bring the current or specified job into the foreground. 

foreach var (wordlist) 

end The variable var is successively set to each member of wordlist. The sequence of commands 
between this command and the matching end is executed for each new value of var. (Both 
foreach and end must appear alone on separate lines.) 

The built-in command continue may be used to continue the loop prematurely and the built-in 
command break to terminate it prematurely. When this command is read from the terminal, 
the loop is read up once prompting with ? before any statements in the loop are executed. 

glob wordlist 
Perform filename expansion on wordlist. Like echo, but no\ escapes are recognized. Words 
are delimited by NULL characters in the output. 

goto label The specified label is filename and command expanded to yield a label. The shell rewinds its 
input as much as possible and searches for a line of the form label: possibly preceded by 
SPACE or TAB characters. Execution continues after the indicated line. It is an error to jump 
to a label that occurs between a while or for built-in, and its corresponding end. 

hashstat Print a statistics line indicating how effective the internal hash table has been at locating com
mands (and avoiding execs). An exec is attempted for each component of the path where the 
hash function indicates a possible hit, and in each component that does not begin with a '/'. 

history [-hr] [n] 
Display the history list; if n is given, display only the n most recent events. 

-r Reverse the order of printout to be most recent first rather than oldest first. 
-h Display the history list without leading numbers. This is used to produce files suitable 

for sourcing using the -h option to source. 

if ( expr) command 
If the specified expression evaluates to true, the single command with arguments is executed. 
Variable substitution on command happens early, at the same time it does for the rest of the if 
command. command must be a simple command, not a pipeline, a command list, or a 
parenthesized command list. Note: 1/0 redirection occurs even if expr is false, when command 
is not executed (this is a bug). 

if (expr) then 

else if ( expr2) then 

else 

endif If expr is true, commands up to the first else are executed. Otherwise, if expr2 is true, the 
commands between the else if and the second else are executed. Otherwise, commands 
between the else and the endif are executed. Any number of else if pairs are allowed, but only 
one else. Only one endif is needed, but it is required. The words else and endif must be the 
first nonwhite characters on a line. The if must appear alone on its input line or after an else.) 

jobs[-1] List the active jobs under job control. 

-I List process IDs, in addition to the normal information. 

Sun Release 4.0 Last change: 18 February 1988 105 



CSH(l) USER COMMANDS CSH( 1) 

106 

kill [-sig] fpid] [%job ] ... 
kill-I Send the TERM (terminate) signal, by default, or the signal specified, to the specified process 

ID, the job indicated, or the current job. Signals are either given by number or by name. 
There is no default. Typing kill does not send a signal to the current job. If the signal being 
sent is TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) 
signal as well. 

-I List the signal names that can be sent. 

limit [-b] [resource [max-use]] 
Limit the consumption by the current process or any process it spawns, each not to exceed 
max-use on the specified resource. If max-use is omitted, print the current limit; if resource is 
omitted, display all limits. 

-b Use hard limits instead of the current limits. Hard limits impose a ceiling on the 
values of the current limits. Only the super-user may raise the hard limits. 

resource is one of: 

cputime 
filesize 
datasize 
stacksize 
coredumpsize 

Maximum CPU seconds per process. 
Largest single file allowed. 
Maximum data size (including stack) for the process. 
Maximum stack size for the process. 
Maximum size of a core dump (file). 

max-use is a number, with an optional scaling factor, as follows: 

nh Hours (for cputime). 
nk n kilobytes. This is the default for all but cputime. 
nm n megabytes or minutes (for cputime). 
mm:ss Minutes and seconds (for cputime). 

login [ username I -p] 

logout 

Terminate a login shell and invoke login(l). The .logout file is not processed. If username is 
omitted, lo gin prompts for the name of a user. 

-p Preserve the current environment (variables). 

Terminate a login shell. 

nice [+n 1-n] [command] 
Increment the nice value for the shell or for command by n. The higher the nice value, the 
lower the priority of a process, and the slower it runs. When given, command is always run in 
a subshell, and the restrictions placed on commands in simple if commands apply. If com
mand is omitted, nice increments the value for the current shell. If no increment is specified, 
nice sets the nice value to 4. The range of nice values is from -20 to 20. Values of n outside 
this range set the value to the lower, or to the higher boundary, respectively. 

+n Increment the nice value by n. 
-n Decrement by n. This argument can be used only by the super-user. 

nohup [command] 
Run command with HUPs ignored. With no arguments, ignore HUPs throughout the remainder 
of a script. When given, command is always run in a subshell, and the restrictions placed on 
commands in simple if commands apply. All processes detached with & are effectively 
nohup'd. 

notify [%job] ... 
Notify the user asynchronously when the status of the current, or of specified jobs, changes. 

onintr [ - I label] 
Control the action of the shell on interrupts. With no arguments, onintr restores the default 
action of the shell on interrupts. (The shell terminates shell scripts and returns to the terminal 

Last change: 18 February 1988 Sun Release 4.0 



CSH( 1) 

popd [+n] 

USER COMMANDS CSH( 1) 

command input level). With the - argument, the shell ignores all interrupts. With a label 
argument, the shell executes a goto label when an interrupt is received or a child process ter
minates because it was interrupted. 

Pop the directory stack, and eds to the new top directory. The elements of the directory stack 
are numbered from O starting at the top. 

+n Discard the n 'th entry in the stack. 

pushd [ +n I dir] 
Push a directory onto the directory stack. With no arguments, exchange the top two elements. 

+n Rotate the n 'th entry to the top of the stack and cd to it. 
dir Push the current working directory onto the stack and change to dir. 

rehash Recompute the internal hash table of the contents of directories listed in the path variable to 
account for new commands added. 

repeat count command 
Repeat command count times command is subject to the same restrictions as with the one-line 
if statement. 

set [var [=value]] 
set var[n] = word 

With no arguments, set displays the values of all shell variables. Multiword values are 
displayed as a parenthesized list. With the var argument alone, set assigns an empty (null) 
value to the variable var. With arguments of the form var = value set assigns value to var, 
where value is one of: 

word 
(wordlist) 

A single word ( or quoted string). 
A space-separated list of words enclosed in parentheses. 

Values are command and filename expanded before being assigned. The form set var[n] = 
word replaces then 'th word in a multiword value with word. 

setenv [ var [ word] ] 
With no arguments, setenv displays all environment variables. With the var argument sets the 
environment variable var to have an empty (null) value. (By convention, environment vari
ables are normally given upper-case names.) With both var and word arguments setenv sets 
the environment variable name to the value word, which must be either a single word or a 
quoted string. The most commonly used environment variables, USER, TERM, and PATH, are 
automatically imported to and exported from the csh variables user, term, and path; there is 
no need to use setenv for these. In addition, the shell sets the PWD environment variable from 
the csh variable cwd whenever the latter changes. 

shift [variable] 
The components of argv, or variable, if supplied, are shifted to the left, discarding the first 
component. It is an error for the variable not to be set, or to have a null value. 

source [-h] name 
Reads commands from name. source commands may be nested, but if they are nested too 
deeply the shell may run out of file descriptors. An error in a sourced file at any level ter
minates all nested source commands. 

-h Place commands from the the file name on the history list without executing them. 

stop [%job] ... 
Stop the current or specified background job. 

suspend Stop the shell in its tracks, much as if it had been sent a stop signal with "Z. This is most often 
used to stop shells started by su. 

Sun Release 4.0 Last change: 18 February 1988 107 



CSH(l) USER COMMANDS CSH(l) 

108 

switch (string) 
case label: 

breaksw 

default: 

breaksw 
endsw Each label is successively matched, against the specified string, which is first command and 

filename expanded The file metacharacters *, ? and [ ... ] may be used in the case labels, 
which are variable expanded. If none of the labels match before a "default" label is found, 
execution begins after the default label. Each case statement and the default statement must 
appear at the beginning of a line. The command breaksw continues execution after the 
endsw. Otherwise control falls through subsequent case and default statements as with C. If 
no label matches and there is no default, execution continues after the endsw. 

time [ command] 
With no argument, print a summary of time used by this C shell and its children. With an 
optional command, execute command and print a summary of the time it uses. 

umask [value] 
Display the file creation mask. With value set the file creation mask. value is given in octal, 
and is XORed with the permissions of 666 for files and 777 for directories to arrive at the per
missions for new files. Common values include 002, giving complete access to the group, and 
read (and directory search) access to others, or 022, giving read (and directory search) but not 
write permission to the group and others. 

unalias pattern 

unhash 

Discard aliases that match (filename substitution) pattern. All aliases are removed by 
unalias *· 
Disable the internal hash table. 

unlimit [-h] [resource] 
Remove a limitation on resource. If no resource is specified, then all resource limitations are 
removed. See the description of the limit command for the list of resource names. 

-h Remove corresponding hard limits. Only the super-user may do this. 

unset pattern 
Remove variables whose names match (filename substitution) pattern. All variables are 
removed by 'unset *'; this has noticeably distasteful side-effects. 

unsetenv variable 
Remove variable from the environment. Pattern matching, as with unset is not performed. 

wait Wait for background jobs to finish (or for an interrupt) before prompting. 

while ( expr) 

end While expr is true ( evaluates to non-zero), repeat commands between the while and the match
ing end statement. break and continue may be used to terminate or continue the loop prema
turely. The while and end must appear alone on their input lines. If the shell's input is a ter
minal, it prompts for commands with a question-mark until the end command is entered and 
then performs the commands in the loop. 

%Uob] [&] 
Bring the current or indicated job to the foreground. With the ampersand, continue running 
job in the background. 

Last change: 18 February 1988 Sun Release 4.0 



CSH ( 1) USER COMMANDS CSH(l) 

@ [ var =expr ] 
@ [var[n] =expr 

With no arguments, display the values for all shell variables. With arguments, the variable 
var, or the n 'th word in the value of var, to the value that expr evaluates to. (If [ n] is sup
plied, both var and its n 'th component must already exist) 

If the expression contains the characters >, <, & or I, then at least this part of expr must be 
placed within parentheses. 

The operators *=, +=, etc., are available as in C. The space separating the name from the 
assignment operator is optional. Spaces are, however, mandatory in separating components of 
expr that would otherwise be single words. 

Special postfix operators, + + and -- increment or decrement name, respectively. 

Environment Variables and Predefined Shell Variables 
Unlike the standard shell, the C shell maintains a distinction between environment variables, which are 
automatically exported to processes it invokes, and shell variables, which are not. Both types of variables 
are treated similarly under variable substitution. The shell sets the variables argv, cwd, home, path, 
prompt, shell, and status upon initialization. The shell copies the environment variable USER into the 
shell variable user, TERM into term, and HOME into home, and copies each back into the respective 
environment variable whenever the shell variables are reset. PATH and path are similarly handled You 
need only set path once in the .cshrc or .login file. The environment variable PWD is set from cwd when
ever the latter changes. The following shell variables have predefined meanings: 

argv 

cdpath 

cwd 

echo 

fignore 

filec 

Argument list. Contains the list of command line arguments supplied to the current invocation 
of the shell. This variable determines the value of the positional parameters $1, $2, and so on. 

Contains a list of directories to be searched by the cd, chdir, and popd commands, if the direc
tory argument each accepts is not a subdirectory of the current directory. 

The full pathname of the current directory. 

Echo commands (after substitutions), just before execution. 

A list of filename suffixes to ignore when attempting filename completion. Typically the sin
gle word '.o'. 

Enable filename completion, in which case the EQT character CD) and the ESC character have 
special significance when typed in at the end of a terminal input line: 

EQT Print a list of all filenames that start with the preceding string. 
ESC Replace the preceding string with the longest unambiguous extension. 

hardpaths If set, pathnames in the directory stack are resolved to contain no symbolic-link components. 

histchars A two-character string. The first character replaces ! as the history-substitution character. The 
second replaces the carat ( ") for quick substitutions. 

history The number of lines saved in the history list. A very large number may use up all of the C 
shell's memory. If not set, the C shell saves only the most recent command. 

home The user's home directory. The filename expansion of- refers to the value of this variable. 

ignoreeof If set, the shell ignores EQF from terminals. This protects against accidentally killini a C shell 
by typing a "D. 

mail A list of files where the C shell checks for mail. If the first word of the value is a number, it 
specifies a mail checking interval in seconds (default 5 minutes). 

nobeep Suppress the bell during command completion when asking the C shell to extend an ambigu
ous filename. 

noclobber Restrict output redirection so that existing files are not destroyed by accident. > redirections 
can only be made to new files. >> redirections can only be made to existing files. 

Sun Release 4.0 Last change: 18 February 1988 109 



CSH(l) 

110 

noglob 

nonomatch 

USER COMMANDS CSH( 1) 

Inhibit filename substitution. This is most useful in shell scripts once filenames (if any) are 
obtained and no further expansion is desired. 

Returns the filename substitution pattern, rather than an error, if the pattern is not matched. 
Malformed patterns still result in errors. 

notify If set, the shell notifies you immediately as jobs are completed, rather than waiting until just 
before issuing a prompt. 

path The list of directories in which to search for commands. path is initialized from the environ
ment variable PATH, which the C shell updates whenever path changes. A null word specifies 
the current directory. The default is typically: (. /usr/ucb /usr/bin). If path becomes unset 
only full pathnames will execute. An interactive C shell will normally hash the contents of the 
directories listed after reading .cshrc, and whenever path is reset. If new commands are 
added, use the rehash command to update the table. 

prompt The string an interactive C shell prompts with. Noninteractive shells leave the prompt vari
able unset. Aliases and other commands in the .cshrc file that are only useful interactively, 
can be placed after the following test: 'if ($?prompt == 0) exit', to reduce startup time for 
noninteractive shells. A! in the prompt string is replaced by the current event number. The 
default prompt is hostname % for mere mortals, or hostname# for the super-user. 

savehist The number of lines from the history list that are saved in -/ .history when the user logs out. 
Large values for savehist slow down the C shell during startup. 

shell The file in which the C shell resides. This is used in forking shells to interpret files that have 
execute bits set, but that are not executable by the system. 

status The status returned by the most recent command. If that command terminated abnormally, 
0200 is added to the status. Built-in commands that fail return exit status 1, all other built-in 
commands set status to 0. 

time Control automatic timing of commands. Can be supplied with one or two values. The first is 
the reporting threshold in CPU seconds. The second is a string of tags and text indicating which 
resources to report on. A tag is a percent sign ( % ) followed by a single upper-case letter 
(unrecognized tags print as text): 

verbose 

% D Average amount of unshared data space used in Kilobytes. 
%E Elapsed (wallclock) time for the command. 
%F Page faults. 
%1 Number of block input operations. 
% K Average amount of unshared stack space used in Kilobytes. 
%M Maximum real memory used during execution of the process. 
%0 Number of block output operations. 
%P Total CPU time- U (user) plus S (system)- as a percentage ofE (elapsed) 

time. 
%S Number of seconds of CPU time consumed by the kernel on behalf of the 

user's process. 
% U Number of seconds of CPU time devoted to the user's process. 
% W Number of swaps. 
%X Average amount of shared memory used in Kilobytes. 

The default summary display outputs from the %U, %S, %E, %P, %X, %0, %1, %0, %F 
and % W tags, in that order. 

Display each command after history substitution takes place. 

Last change: 18 February 1988 Sun Release 4.0 



CSH(l) USER COMMANDS CSH(l) 

Sun386i Environment V aria hies 
DOS_PRINTER The value of this environment variable indicates the timeout (in seconds) for printing in 

a DOS window. A value of 20 (the default) indicates that jobs will be sent to the print 
spooler after 20 seconds of no printing activity from DOS to that printer. A value of 0 
indicates that the spooler must be flushed manually from the menu in the DOS window. 

DOSLOOKUP If set, this environment variable indicates that a command should be tried as a DOS com
mand if not recognized by SunOS. If the command is supported by DOS, a DOS window 
will be created and the command executed in that window. Otherwise, the standard 
"command not found'' error message results. 

DIAGNOSTICS 

FILES 

You have stopped jobs. 
You attempted to exit the C shell with stopped jobs under job control. An immediate second 
attempt to exit will succeed, terminating the stopped jobs. 

-/.cshrc 
-/.login 
-/.logout 
-/.history 
/usr/bin/sh 
/tmp/sh* 
/ etc/passwd 

Read at beginning of execution by each shell. 
Read by login shells after .cshrc at login. 
Read by login shells at logout 
Saved history for use at next login. 
Standard shell, for shell scripts not starting with a'#'. 
Temporary file for'<<'. 
Source of home directories for ,-name' . 

SEE ALSO 
login(l), printenv(l), sh(l), tset(l), access(2), execve(2), fork(2), pipe(2), termio(4), a.out(5), 
environ(5V), ascii(7) 

Doing More with SunOS: Beginner's Guide 
Getting Started with SunOS: Beginner's Guide 

LIMITATIONS 

BUGS 

Words can be no longer than 1024 characters. The system limits argument lists to 10240 characters. The 
number of arguments to a command which involves filename expansion is limited to 1/6'th the number of 
characters allowed in an argument list. Command substitutions may substitute no more characters than are 
allowed in an argument list. To detect looping, the shell restricts the number of alias substitutions on a sin
gle line to 20. 

When a command is restarted from a stop, the shell prints the directory it started in if this is different from 
the current directory; this can be misleading (that is, wrong) as the job may have changed directories inter
nally. 

Shell built-in functions are not stoppable/restartable. Command sequences of the form a ; b ; c are also not 
handled gracefully when stopping is attempted. If you suspend b, the shell never executes c. This is espe
cially noticeable if the expansion results from an alias. It can be avoided by placing the sequence in 
parentheses to force it into a subshell. 

Control over terminal output after processes are started is primitive; use the Sun Window system if you 
need better output control. 

Multiline shell procedures should be provided, as they are with the standard (Bourne) shell. 

Commands within loops, prompted for by ? , are not placed in the history list. 

Control structures should be parsed rather than being recognized as built-in commands. This would allow 
control commands to be placed anywhere, to be combined with I, and to be used with & and ; metasyntax. 

Sun Release 4.0 Last change: 18 February 1988 111 



CSH(l) 

112 

USER COMMANDS CSH( 1) 

It should be possible to use the : modifiers on the output of command substitutions. There are two prob
lems with : modifier usage on variable substitutions: not all of the modifiers are available, and only one 
modifier per substitution is allowed. 

The g (global) flag in history substitutions applies only to the first match in each word, rather than all 
matches in all words. The the standard text editors consistently do the latter when given the g flag in a sub
stitution command. 

Quoting conventions are contradictory and confusing. 

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this. 

'set path' should remove duplicate pathnames from the pathname list. These often occur because a shell 
script or a .cshrc file does something like 'set path=(/usr/local /usr/hosts $path)' to ensure that the 
named directories are in the pathname list. 

The only way to direct the standard output and standard error separately is by invoking a subshell, as fol
lows: 

example% (command> outfile) >& errorfile 

Although robust enough for general use, adventures into the esoteric periphery of the C shell may reveal 
unexpected quirks. 

Last change: 18 February 1988 Sun Release 4.0 



CSPLIT( 1) USER COMMANDS CSPLIT( 1) 

NAME 
csplit - split a file with respect to a given context 

SYNOPSIS 
csplit [ -f prefix] [ -k] [ -s ]filename argument] [ .. . argumentn] 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
esp lit reads the file whose name is filename and separates it into n+ 1 sections, defined by the arguments 
argument] through argumentn. If the filename argument is a'-', the standard input is used. By default the 
sections are placed in files named xxOO through xxn. n may not be greater than 99. These sections receive 
the following portions of the file: 

xxOO From the start of filename up to (but not including) the line indicated by argument] (see 
OPTIONS below for an explanation of these arguments.) 

xxOl: From the line indicated by argument] up to the line indicated by argument2. 
xxn: From the line referenced by argumentn to the end of filename. 

csplit prints the character counts for each file created, and removes any files it creates if an error occurs. 

OPTIONS 
-f prefix name the created files prefixOO through prefixn. 

-k Suppress removal of created files when an error occurs. 

-s Suppress printing of character counts. 

The arguments argument] through argumentn can be a combination of the following selection operators: 

/rexp/ A file is to be created for the section from the current line up to (but not including) the line 
containing the regular expression rexp. The current line then becomes the line containing 
rexp. This argument may be followed by an optional'+' or'-' some number of lines (for 
example, /Page/-5). 

%rexp% 

lineno 

This argument is the same as Ir exp I, except that no file is created for the selected section. 

A file is to be created from the current line up to (but not including) line no. The current 
line becomes line no. 

{ num} Repeat argument. This argument may follow any of the above arguments. If it follows a 
rexp type argument, that argument is applied num more times. If it follows lineno, the file 
will be split every lineno lines (num times) from that point. 

Enclose all rexp type arguments that contain blanks or other characters meaningful to the shell in the 
appropriate quotes. Regular expressions may not contain embedded new-lines. 

EXAMPLES 
This example splits the file at every 100 lines, up to 10,000 lines. 

csplit -k file 100 {99} 

Assuming that prog.c follows the normal C coding convention of ending routines with a } at the beginning 
of the line, this example will create a file containing each separate C routine (up to 21) in prog.c. 

csplit-kprog.c '%main(%' '/"}/+1' {20} 

SEE ALSO 
ed( 1 ), sh(l ), regexp(3) 

Sun Release 4.0 Last change: 21 December 1987 113 



CSPLIT( 1) USER COMMANDS CSPLIT( 1) 

DIAGNOSTICS 
Self-explanatory except for: 

arg - out of range 

which means that the given argument did not refer to a line between the current position and the EDF. 

114 Last change: 21 December 1987 Sun Release 4.0 



CTAGS ( 1) USER COMMANDS CTAGS(l) 

NAME 
ctags - create a tags file for use with vi 

SYNOPSIS 
ctags [ -aBFtuvwx ] [ -f tagsfile ] filename ... 

DESCRIPTION 
ctags makes a tags file for ex(l) from the specified C, Pascal, FORTRAN, YACC, and LEX sources. A tags 
file gives the locations of specified objects (in this case functions and typedefs) in a group of files. Each 
line of the tags file contains the object name, the file in which it is defined, and an address specification for 
the object definition. Functions are searched with a pattern, typedefs with a line number. Specifiers are 
given in separate fields on the line, separated by SPACE or TAB characters. Using the tags file, ex can 
quickly find these objects definitions. 

Normally ctags places the tag descriptions in a file called tags; this may be overridden with the -f option. 

Files with names ending in .c or .h are assumed to be C source files and are searched for C routine and 
macro definitions. Files with names ending in .y are assumed to be YACC source files. Files with names 
ending in .I are assumed to be LEX files. Others are first examined to see if they contain any Pascal or FOR
TRAN routine definitions; if not, they are processed again looking for C definitions. 

The tag main is treated specially in C programs. The tag formed is created by prepending M to filename, 
with a trailing .c removed, if any, and leading pathname components also removed. This makes use of 
ctags practical in directories with more than one program. 

OPTIONS 
-a Append output to an existing tags file. 

-B Use backward searching patterns(? ... ?). 

-F Use forward searching patterns(/ ... /) (default). 

-t Create tags for typedefs. 

-u Update the specified files in tags, that is, all references to them are deleted, and the new values are 
appended to the file. Beware: this option is implemented in a way which is rather slow; it is usu
ally faster to simply rebuild the tags file. 

-v Produce on the standard output an index of the form expected by vgrind(l). This listing contains 
the function name, file name, and page number (assuming 64 line pages). Since the output will be 
sorted into lexicographic order, it may be desired to run the output through 'sort -f'. See EXAM
PLES. 

-w Suppress warning diagnostics. 

-x Produce a list of object names, the line number and file name on which each is defined, as well as 
the text of that line and prints this on the standard output. This is a simple index which can be 
printed out as an off-line readable function index. 

EXAMPLES 
Using ctags with the -v option, the output will be sorted into lexicographic order. You may want to run the 
output through 'sort -f'. 

FILES 
tags 

SEE ALSO 

ctags -v filenames I sort -f > index 
vgrind -x index 

output tags file 

ex(l), vgrind(l), vi(l) 

Sun Release 4.0 Last change: 9 September 1987 115 



CTAGS ( 1) USER COMMANDS CTAGS( 1) 

BUGS 

116 

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a very sim
pleminded way. No attempt is made to deal with block structure; if you have two Pascal procedures in dif
ferent blocks with the same name you lose. 

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack. 

ctags does not know about #if defs. 

ctags should know about Pascal types. Relies on the input being well formed to detect typedefs. Use of 
-tx shows only the last line of typedefs. 

Last change: 9 September 1987 Sun Release 4.0 



CTRACE( 1) USER COMMANDS CTRACE( 1) 

NAME 
ctrace - generate a C program execution trace 

SYNOPSIS 
ctr ace [ -f functions ] [ -v functions ] [ -o x u e ] [ -s P b ] [ -I n ] [ -t n ] [ ] [ -b ] [ -p ' s ' ] 

[ -r /] [filename ] 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the Sun0S 
for information on how to install optional software. 

DESCRIPTION 
ctrace allows you to follow the execution of a C program, statement by statement The effect is similar to 
executing a shell procedure with the -x option. ctrace reads the C program in filename ( or from standard 
input if you do not specify filename), inserts statements to print the text of each executable statement and 
the values of all variables referenced or modified, and writes the modified program to the standard output. 
You must put the output of ctrace into a temporary file because the cc(l V) command does not allow the 
use of a pipe. You then compile and execute this file. 

As each statement in the program executes it will be listed at the terminal, followed by the name and value 
of any variables referenced or modified in the statement, followed by any output from the statement. 
Loops in the trace output are detected and tracing is stopped until the loop is exited or a different sequence 
of statements within the loop is executed. 

A warning message is printed every 1000 times through the loop to help you detect infinite loops. The 
trace output goes to the standard output so you can put it into a file for examination with an editor or the 
tail( 1) command. 

OPTIONS 
-f functions Trace only these functions. 

-v functions Trace all but these functions. 

You may want to add to the default formats for printing variables. long and pointer variables are always 
printed as signed integers. Pointers to character arrays are printed as strings if appropriate. char, short, 
and int variables are printed as signed integers and, if appropriate, as characters. double variables are 
printed as floating-point numbers in scientific notation. You can request that variables be printed in addi
tional formats, if appropriate, with these options: 

-o Octal. 

-x Hexadecimal. 

-u Unsigned. 

-e Floating point. 

These options are used only in special circumstances: 

-I n Check n consecutively executed statements for looping trace output, instead of the default 
of 20. Use O to get all the trace output from loops. 

-s Suppress redundant trace output from simple assignment statements and string copy func
tion calls. This option can hide a bug caused by use of the = operator in place of the = = 
operator. 

-t n Trace n variables per statement instead of the default of 10 (the maximum number is 20). 
The DIAGNOSTICS section explains when to use this option. 

-P Run the C preprocessor on the input before tracing it. You can also use the -D, -1, and-U 
cc(l V) options. 

Sun Release 4.0 Last change: 21 December 1987 117 



CTRACE( 1) USER COMMANDS CTRACE( 1) 

USAGE 

These options are used to tailor the run-time trace package when the traced program will run in a non-UNIX 
system environment: 

-b Use only basic functions in the trace code, that is, those in ctype(3), printf(3S), and 
string(3). These are often available even in cross-compilers for microprocessors. In partic
ular, this option is needed when the traced program runs under an operating system that 
does not have signal(3), fflush, longjmp or setjmp(3) (see fclose(3S) and setjmp(3)). 

-p's' Change the trace print function from the default of 'printf('. For example, 'fprintf(stderr' 
would send the trace to the standard error output. 

-r f Use file/ in place of the runtime. c trace function package. This lets you change the entire 
print function, instead of just the name and leading arguments (see the -p option). 

Execution-Time Trace Control 
The default operation for ctrace is to trace the entire program file, unless you use the -f or -v options to 
trace specific functions. This does not give you statement by statement control of the tracing, nor does it let 
you turn the tracing off and on when executing the tracedprogram. 

You can do both of these by adding ctroff() and ctron() function calls to your program to turn the tracing 
off and on, respectively, at execution time. Thus, you can code arbitrarily complex criteria for trace con
trol with if statements, and you can even conditionally include this code because ctrace defines the 
CTRACE preprocessor variable. For example: 

#ifdef 
CTRACE 

if (c == '!' && i > 1000) 
ctron(); 
#endif 

You can also call these functions from dbx(l) if you compile with the -g option. For example, to trace all 
but lines 7 to 10 in the primary source file, enter: 
dbx a.out 
when at 7 { call ctroff(); cont;} 
when at 11 { call ctronO; cont; } 
run 
You can also turn the trace off and on by setting the static variable.B tr_ct_ to O and 1, respectively. This is 
useful if you are using a debugger that cannot call these functions directly, such as adb(l). 

EXAMPLE 

118 

If the file le. c contains this C program: 
#include <stdio. h> 
main() f* count lines in input *f 
{ 

} 

int c, nl; 
nl = O; 
while ( ( c = getchar()) ! = EO F) 

if (c = '\n') 
++nl; 

printf(" %d\n", nl); 

and you enter these commands and test data: 
cc lc.c 
a.out 
1 
CTRL-D, 

the program will be compiled and executed. The output of the program will be the number 2, which is not 
correct because there is only one line in the test data. The error in this program is common, but subtle. If 
you invoke ctrace with these commands: 

Last change: 21 December 1987 Sun Release 4.0 



CTRACE( 1) USER COMMANDS CTRACE( 1) 

FILES 

ctrace le. c >temp.c 
cc temp.c 
a.out 

the output will be: 
main() 

nl = O; 
I* nl == 0 *I 
while ((c = getchar()) != EOF) 

The program is now waiting for input. If you enter the same test data as before, the output will be: 
I* c == 49 or '1' *I 

if (c = '\n') 
I* c == 10 or '\n' *I 

++nl; 
I* nl == 1 *I 

while ( ( c = getchar()) ! = EO F) 
I* c == 10 or '\n' *I 

if (c = '\n') 
I* c == 10 or '\n' *I 

++nl; 
I* nl == 2 *I 

I* repeating *I 
If you now enter an end of file character (CTRL-D) the final output will be: 

I* repeated <1 time *I 
while ( ( c = getchar()) ! = EO F) 
f* C == -1 *f 
printf(" %d\n", nl); 
I* nl == 2 *12 

I* return *I 
Program output is printed at the end of the trace line for the nl variable. Also note the return comment 
added by ctrace at the end of the trace output. This shows the implicit return at the terminating brace in 
the function. 

The trace output shows that variable c is assigned the value ' 1' in line 7, but in line 8 it has the value '\n'. 
Once your attention is drawn to this if statement, you will probably realize that you used the assignment 
operator = in place of the equal operator = =. You can easily miss this error during code reading. 

/usr/Iib/ctrace/runtime.c 
run-time trace package 

SEE ALSO 
adb(l), cc(l V), dbx(l), tail(l), ctype(3), fclose(3S), printf(3S), setjmp(3), signal(3), string(3) 

DIAGNOSTICS 
This section contains diagnostic messages from both ctrace and cc(l V), since the traced code often gets 
some cc warning messages. You can get cc error messages in some rare cases, all of which can be 
avoided. 

From ctrace 
warning: some variables are not traced in this statement 

Only 10 variables are traced in a statement to prevent the C compiler 'out of tree space; simplify 
expression' error. Use the -t option to increase this number. 

warning: statement too long to trace 

Sun Release 4.0 

This statement is over 400 characters long. Make sure that you are using tabs to indent your code, 
not spaces. 

Last change: 21 December 1987 119 



C1RACE( 1) USER COMMANDS C1RACE( 1) 

cannot handle preprocessor code, use -P option 
This is usually caused by #ifdef/#endif preprocessor statements in the middle of a C statement, or 
by a semicolon at the end of a #define preprocessor statement. 

' if ... else if' sequence too long 
Split the sequence by removing an else from the middle. 

possible syntax error, try -P option 

From cc 

Use the -P option to preprocess the ctrace input, along with any appropriate -D, -1, and -U 
preprocessor options. If you still get the error message, check the WARNINGS section below. 

warning: floating-point not implemented 
warning: illegal combination of pointer and integer 
warning: statement not reached 
warning: sizeof returns 0 

Ignore these messages. 

compiler takes size of function 
See the ctrace 'possible syntax error' message above. 

yacc stack overflow 
See the ctrace ''if ... else if' sequence too long' message above. 

out of tree space; simplify expression 
Use the -t option to reduce the number of traced variables per statement from the default of 10. 
Ignore the 'ctrace: too many variables to trace' warnings you will now get. 

redeclaration of signal 
Either correct this declaration of signal(3 ), or remove it and #include <signal.h>. 

Warnings 
You will get a ctrace syntax error if you omit the semicolon at the end of the last element declaration in a 
structure or union, just before the right brace (} ). This is optional in some C compilers. 

Defining a function with the same name as a system function may cause a syntax error if the number of 
arguments is changed. Just use a different name. 

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are #defined constants. 
Declaring any of these to be variables, for example, 'int EOF;', will cause a syntax error. 

BUGS 

120 

ctrace does not know about the components of aggregates like structures, unions, and arrays. It cannot 
choose a format to print all the components of an aggregate when an assignment is made to the entire 
aggregate. ctrace may choose to print the address of an aggregate or use the wrong format (for example, 
%e for a structure with two integer members) when printing the value of an aggregate. 

Pointer values are always treated as pointers to character strings. 

The loop trace output elimination is done separately for each file of a multi-file program. This can result in 
functions called from a loop still being traced, or the elimination of trace output from one function in a file 
until another in the same file is called. 

Last change: 21 December 1987 Sun Release 4.0 



CUT( 1) USER COMMANDS CUT(l) 

NAME 
cut - remove selected fields from each line of a file 

SYNOPSIS 
cut -c list [filename . . . ] 

cut -f list [-de] [ -s] [filename ... ] 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
Use cut to cut out columns from a table or fields from each line of a file; in data base parlance, it imple
ments the projection of a relation. The fields as specified by list can be of fixed length, such character posi
tions (such as on a punched card), or of variable length between lines. They can be marked with a field 
delimiter character, such as TAB (as specified with the -f option). cut can be used as a filter; if no files are 
given, the standard input is used. In addition, a file name of '-' explicitly refers to standard input. 

OPTIONS 
-clist By character position. list is a comma-separated list of integer field numbers (in increasing order), 

with an optional'-' to indicate ranges: 

1,4,7 characters 1, 4 and 7 
1-3,8 characters 1 through 3, and 8 
-5,10 characters (1) through 5, and 10 
3- characters 3 through (last) 

-f list By field position. Instead of character positions, list specifies fields that are separated a delimiter 
(normally a TAB): 

1,4,7 fields 1, 4 and 7 

Lines with no field delimiters are normally passed through intact (to allow for subheadings). 

-de Set the field delimiter to c. The default is a TAB, SPACE, or a character with special meaning to 
the shell must be quoted. 

-s Suppress lines with no delimiter characters. 

EXAMPLES 
cut -d: -fi,5 /etc/passwd 

Mapping of user IDs to names. 

name=who am i I cut -n -d" " 
Set name to the current login name. 

SEE ALSO 
grep( 1 V), paste( 1) 

DIAGNOSTICS 
ERROR: line too long 

A line can have no more than 1023 characters or fields. 
ERROR: bad list for c If option 

Missing -c or -r option or incorrectly specified list. No error occurs if a line has fewer 
fields than the list calls for. 

ERROR: no fields 
The list is empty. 

ERROR: no delimiter 
Missing e har on -d option. 

ERROR: cannot handle multiple adjacent backspaces 
Adjacent backspaces cannot be processed correctly. 

Sun Release 4.0 Last change: 20 January 1988 121 



CUT(l) USER COMMANDS CUT(l) 

122 

WARNING: cannot open <filename>: <reason> 
Either filename cannot be read or does not exist. If multiple filenames are present, process
ing continues. 

WARNING: 1/0 error reading <filename>: <reason> 
An I/0 error occurred when reading filename. If multiple filenames are present, processing 
continues. 

Last change: 20 January 1988 Sun Release 4.0 



CXREF( 1) USER COMMANDS CXREF( 1) 

NAME 
cxref - generate a C program cross-reference 

SYNOPSIS 
cxref [ -c ] [ -w [ num ] ] [ -o filename ] [ -t ] filenames 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
cxref analyzes a collection of C files and attempts to build a cross-reference table. cxref utilizes a special 
option of cpp(l) to include #define'd information in its symbol table. It produces a listing on standard out
put of all symbols (auto, static, and global) in each file separately, or with the -c option, in combination. 
Each symbol contains an asterisk ( *) before the declaring reference. 

SYSTEM V DESCRIPTION 
The System V version of cxref, run as /usr/Sbin/cxref, makes the C preprocessor search for include files in 
/usr/5include before searching for them in /usr/include. 

OPTIONS 

FILES 

In addition to the -D, -I and -U options (which are identical to their interpretation by cc(l V)), the follow
ing options are interpreted by cxref: 

-c Print a combined cross-reference of all input files. 

-w[ num] Width option which formats output no wider than num (decimal) columns. This option will 
default to 80 if num is not specified or is less than 51. 

-o filename Direct output to named file. 

-s 

-t 

Operate silently; does not print input file names. 

Format listing for 80-column width. 

/usr/tmp/xr* 
temporary files 

SEE ALSO 
cc(l V), cpp(l) 

DIAGNOSTICS 
Error messages are unusually cryptic, but usually mean that you cannot compile these files, anyway. 

BUGS 
cxref considers a formal argument in a #define macro definition to be a declaration of that symbol. For 
example, a program that #includes ctype. h, will contain many declarations of the variable c. 

Sun Release 4.0 Last change: 7 February 1988 123 



DATE( lV) USER COMMANDS DATE( lV) 

NAME 
date - display or set the date 

SYNOPSIS 
date [ -u ] [ -a [ - ] sss • .ff!] [ yy mm dd hh mm [ • ss ] ] [ +format] 

SYSTEM V SYNOPSIS 
date [ -u ] [ -a [ - ] sss .m] [ mm dd hh mm [ yy ] ] [ +for mat] 

DESCRIPTION 
If no argument is given, or if the argument begins with +, date displays the current date and time. Other
wise, the current date is set. Only the super-user may set the date. 

yy is the last two digits of the year; the first mm is the month number; dd is the day number in the month; hh 
is the hour number (24 hour system); the second mm is the minute number; .ss (optional) specifies seconds. 
The year, month and day may be omitted; the current values are supplied as defaults. 

If the argument begins with +, the output of date is under the control of the user. The format for the output 
is similar to that of the first argument to printf(3S). All output fields are of fixed size (zero padded if 
necessary). Each field descriptor is preceded by % and will be replaced in the output by its corresponding 
value. A single % is encoded by % % . All other characters are copied to the output without change. The 
string is always terminated with a new-line character. 

Field Descriptors: 
n insert a new-line character 
t insert a tab character 
m month of year - 01 to 12 
d day of month- 01 to 31 
y last 2 digits of year- 00 to 99 
D date as mm/dd/yy 
H hour- 00 to 23 
M minute - 00 to 59 
S second - 00 to 59 
T time as HH:MM:SS 
j day of year- 001 to 366 
w day of week - Sunday = 0 
a abbreviated weekday - Sun to Sat 
h abbreviated month - Jan to Dec 
r time in AM/PM notation 

SYSTEM V SYNOPSIS 
When setting the date, the first mm is the month number; dd is the day number in the month; hh is the hour 
number (24 hour system); the second mm is the minute number; yy is the last 2 digits of the year number 
and is optional. The current year is the default if no year is mentioned. 

OPTIONS 
-u Display the date in GMT (universal time). The system operates in GMT; date normally 

takes care of the conversion to and from local standard and daylight time. -u may also be 
used to set GMT time. 

-a [-]sss.fjf Using the adjtime(2) system call, tell the system to slowly adjust the time by sss.fff 
seconds (ff! represents fractions of a second). This adjustment can be positive or nega
tive. The system's clock will be sped up or slowed down until it has drifted by the number 
of seconds specified. 

EXAMPLES 
date 10080045 

124 Last change: 23 November 1987 Sun Release 4.0 



DATE( lV) USER COMMANDS 

FILES 

Would set the date to Oct 8, 12:45 AM. 

If the year were 1986, and the date were so set, 
date '+DATE: %m/%d/%y%nTIME: %H:%M: %S' 

would generate as output: 

DATE: 08/01/86 
TIME: 14:45:05 

/var/adm/wtmp to record time-setting 

/usr/share/lib/zoneinfo timezone definitions 

SEE ALSO 
adjtime(2), printf(3S), utmp(S) 

DIAGNOSTICS 
date: Failed to set date: Not 

If you try to change the date but are not the super-user. 

date: bad format character 
If the field descriptor is not recognizable. 

Sun Release 4.0 Last change: 23 November 1987 

DATE( lV) 

125 



DBX(l) USER COMMANDS DBX(l) 

NAME 
dbx - source-level debugger 

SYNOPSIS 
dbx [ -f fcount] [ -i] [ -I dir] [ -k] [ -kbd] [ -P fd] [ -r ] [ -s startup] [ -sr tstartup] 

[ objfile [ corefi/e I process-id] ] 

AVAILABILITY 

This command is available with the Debugging software installation option. Refer to Installing the Sun0S 
for information on how to install optional software. 

DESCRIPTION 
dbx is a utility for source-level debugging and execution of programs written in C, or other supported 
languages such as Pascal and FORTRAN 77. dbx accepts the same commands as dbxtool(l), but uses a 
standard terminal (tty) interface. 

objfile is an object file, produced by cc(l V) or another compiler, with the -g option to include a symbol 
table. This symbol table contains the names of all the source files used to create it, and these files are avail
able for perusal while using the debugger. 

If no objfile is specified, you can use dbx's debug command to specify the program to debug. 

If there is a file named core in the current directory, or a co refile argument is specified, you can use dbx to 
examine the state of the program when the core file was produced. 

dbx commands in the file • dbxinit are executed immediately after the symbol table is read, if that file 
exists in the current directory, or in the user's home directory if .dbxinit doesn't exist in the current direc
tory. 

OPTIONS 

USAGE 

126 

-ffcount Alter the initial estimate of the number functions in the program being debugged. The ini
tial setting is 500. 

-i Force dbx to act as though the standard input were a terminal or terminal emulator. 

-1 dir Add dir to the list of directories in which to search for a source file. dbx normally searches 
the current directory, and the directory where objfi/e is located. The directory search path 
can be reset with the use command. 

-k Kernel debugging. 

-kbd Debug a program that sets the keyboard into up-down translation mode. This flag is neces-
sary if a program uses up-down decoding. 

-P fd Create a pipeline to a dbxtool(l) process. fd is the file descriptor through which to pipe out
put to the front-end process. This option is passed automatically to dbx by dbxtool. 

-r Execute obj/tie immediately. Parameters follow the object file name (redirection is handled 
properly). If the program terminates successfully, dbx exits. Otherwise, dbx reports the 
reason for termination and waits for a response. dbx reads from the terminal (/dev/tty) 
when -r is specified and standard input is a file or pipe. 

-s startup Read initialization commands from the file named startup. 

-sr tstartup Read initialization commands from the temporary file named startup, and then remove that 
file. 

Refer to dbx in Debugging Tools 

The most useful basic commands to know about are run, to run the program being debugged, where, to 
obtain a stack trace with line numbers, print, to display variables, and stop, to set breakpoints. 

Last change: 18 February 1988 Sun Release 4.0 



DBX(l) USER COMMANDS DBX(l) 

Filenames 
Filenames in dbx may include shell metacharacters. The shell used for pattern matching is determined by 
the SHELL environment variable. 

Expressions 
dbx expressions are combinations of variables, constants, procedure calls, and operators. Variables are 
either variables in the program being debugged or special dbx variables whose names begin with $. Hexa
decimal constants must be preceded by a 'Ox' and octal constants by a 'O'. Character constants must be 
enclosed in single quotes. Expressions cannot involve strings, structures, or arrays, although elements of 
structures or arrays may be used. 

Operators 

+ - * I div % 

<< >> & 

& * 

< > <= >= -- != 

&& II 
sizeof (cast) 

• -> 

Add, subtract, multiply, divide, integer division, and remainder, respec
tively. 

Left-shift, right-shift, bitwise AND, bitwise OR, and bitwise complement. 

Address of operator, and contents of operator. 

Less than, greater than, less than or equal to, greater than or equal to, equal, 
not equal, and negation. 

Logical AND, and logical OR 

Size of variable or type and type cast. 

Field reference, and pointed-to-field reference (however, dot works for both 
in dbx). 

Precedence and associativity of operators are the same as for C; parentheses can be used for grouping. 

If there is no corefile, only expressions containing constants are available. Procedure calls require an 
active child process. 

Scope Rules 

dbx uses the current file and function to resolve scope conflicts. Their values are updated as files and func
tions are entered and exited during execution. You can also change them explicitly by using the file and 
func commands. When the current function is changed, the current file is updated along with it, but not 
vice versa. 

Execution and Tracing Commands 
"C Interrupt. Stop the program being debugged and enter dbx. 

run [ args ] [ < infile ] [ > I » outfile ] 
Start executing objfile, reading in any new information from it. With no args, use the argument 
list from the previous run command. 

args Pass args as command-line arguments to the program. 
< I > I >> Redirect input or output, or append output to a file. 

rerun [ args] [ < infile ] [>I » outfile ] 
Like the run command, except that when args are omitted, none are passed to the program. 

cont [ at sourceline ] [ sig signal ] 

Sun Release 4.0 

Continue execution from where it stopped. 

at sourceline Start from sourceline 
sig signal Continue as if signal had occurred. signal may be a number or a name as 

with catch. 

Last change: 18 February 1988 127 



DBX( 1) USER COMMANDS DBX( 1) 

128 

trace [ injunction ] [ if condition ] 
trace sourceline [ if condition ] 
trace function [ if condition ] 
trace expression at sourceline [ if condition ] 
trace variable [ injunction ] [ if condition ] 

Display tracing information. If no argument is specified, each source line is displayed before exe
cution. Tracing is turned off when the function or procedure is exited. 

injunction Display tracing information only while executing the function or pro
cedure function. 

if condition Display tracing information only if condition is true. 
sourceline Display the line immediately prior to executing it. Source line-numbers 

from another file are written as filename: n. 
function Display the routine and source line called from, parameters passed in, and 

return value. 
expression at sourceline 

Display the value of expression whenever sourceline is reached. 
variable Display the name and value whenever variable changes. 

stop at sourceline [ if condition ] 
stop injunction [ if condition ] 
stop variable [ if condition ] 
stop if condition 

Stop execution when the source line is reached, function is called, variable is changed, or condi
tion becomes true. 

when inf unction { command ; [ command ; ] ... } 
when at sourceline { command ; [ command ; ] ... } 
when condition { command ; [ command ; ] ... } 

Execute the dbx command(s) when/unction is called, sourceline is reached, or condition is true. 

status [ > filename ] 
Display active trace, stop and when commands, and associated command numbers. 

delete all 
delete cmd-no [ , cmd-no ] ... 

Remove all traces, stops and whens, or those corresponding to each dbx cmd-no (as displayed by 
status). 

clear [ source line] 
Clear all breakpoints at the current stopping point, or at source line. 

catch [ signal [ , signal ] ... ] 
Display all signals currently being caught, or catch signal before it is sent to the program being 
debugged. A signal can be specified either by name (with the SIG prefix omitted, as with kill(l)) 
or number. Initially all signals are caught except SIGHUP, SIGEMT, SIGFPE, SIGKILL, SIGALRM, 
SIGTSTP, SIGCONT, SIGCHLD, and SIGWINCH. 

ignore [ signal [ , signal ] ... ] 

step [n] 

next [n] 

Display all signals currently being ignored, or stop catching signal, which may be specified by 
name or number as with catch. 

Execute the next n source lines. If omitted, n is taken to be 1. Steps into functions. 

Execute the next n source lines. If omitted, n is taken to be 1. next steps past functions. 

Last change: 18 February 1988 Sun Release 4.0 



DBX( 1) USER COMMANDS DBX( 1) 

Naming, Printing and Displaying Data 
Variables from another function or procedure with the same name as one in the current block must be 
qualified as follows: 

[ 'sourcefile 'Vunction 'variable 

For Pascal variables there may be more than one function or procedure name, each separated by a 
backquote. 

print expression [ , expression ] ... 
Print the value of each expression, which may involve function calls. Program execution halts 
when a breakpoint is reached, and dbx resumes. 

display [ expression [ , expression ] ... ] 
Print a list of the expressions currently being displayed, or display the value of each expression 
whenever execution stops. 

undisplay [ expression [ , expression ] ... ] 
Stop displaying the value of each expression whenever execution stops. If expression is a con
stant, it refers to a display-number as shown by the display command with no arguments. 

whatis identifier 
whatis type 

Print the declaration of the given identifier or type. types are useful to print all the members of a 
structure, union, or enumerated type. 

which identifier 
Print the fully-qualified name of the given identifier. 

whereis identifier 
Print the fully qualified name of all symbols matching identifier. 

assign variable = expression 
set variable = expression 

Assign the value of expression to variable. There is no type conversion for operands of differing 
type. 

set81fpreg=wordl word2 word3 
Treat the concatenation of word] word2 word3 as a 96-bit, IEEE floating-point value and assign it 
to the MC68881 floating-point register fpreg. (Supported only on Sun-3). 

call Junction (parameters) 
Execute the named function. Arguments are passed according to the rules for the source-language 
of function. 

where[ n] 
List all, or the top n, active functions on the stack. 

dump [function ] 
Display the names and values of local variables and parameters in the current or specified func
tion. 

up [n] 
down [n] 

Move up (towards "main") or down the call stack, one or n levels. 

File Access Commands 
edit [filename I function ] 

Edit the current source file, or the givenfilename or the file that contains function. 

file [filename ] 
Print the name of the current source file, or change the current source file to filename. 

Sun Release 4.0 Last change: 18 February 1988 129 



DBX( 1) USER COMMANDS DBX( 1) 

130 

func [functionlprogram I objfile] 
Print the name of the current function, or change to the given/unction, program, or objfile. Also 
changes the current scope. 

list [ startline [ , endline ] ] 
list function 

List the next ten lines from current source file, list from startline through endline, or and list from 
five lines above, to five lines below the first line of function. 

use [ directory-list ] 
Print or set the list of directories in which to search for source files. 

cd [ directory ] 
Change the current working directory for dbx to directory (or to the value of the HOME environ
ment variable). 

pwd Print the current working directory for dbx. 

/reg-exp[ I] 
?reg-exp[?] 

Search the current file for the regular expression reg-exp, from the next (previous) line to the end 
(top). The matching line becomes the new current line. 

Miscellaneous Commands 
sh command-line 

Pass the command line to the shell for execution. The SHELL environment variable determines 
which shell is used. 

alias new-command-name character-sequence 
Respond to new-command-name as though it were character-sequence. Special characters occur
ring in character-sequence must be enclosed in quotation marks. Alias substitution as with the C 
shell (csh(l)) also occurs. 

help [ command ] 
Display a synopsis of dbx commands, or print a short message explaining command. 

make Invoke make(l) with the name of the program as its argument Any arguments set using dbxenv 
makeargs are also passed as arguments. 

source filename 
Read and execute dbx commands from filename. Useful when the filename has been created by 
redirecting an earlier status command 

quit Exit dbx. 

dbxenv 
dbxenv case sensitive I insensitive 
dbxenv fpaasm on I off 
dbxenv fpabase a[O-7] I off 
dbxenv makeargs string 
dbxenv stringlen num 
dbxenv speed seconds 

Display dbx attributes or set the named attribute: 

case Controls whether upper- and lower-case characters are treated as different 
values. The default is sensitive. 

fpaasm Controls FPA instruction disassembly. The default is on. (Supported only 
on Sun-3). 

fpabase Sets the base register for FPA instruction disassembly. The default is off. 
(Supported only on Sun-3 systems). 

makeargs Sets arguments to pass to make. The default is CC=cc -g. 

Last change: 18 February 1988 Sun Release 4.0 



DBX( 1) USER COMMANDS DBX( 1) 

speed Set the interval between execution during tracing. The default is 0.5 
seconds. 

stringlen Controls the maximum number of characters printed for a ''char *'' variable 
in a C program. The default is 512. 

debug [ -k ] [ objfile [ corefile I pid ] ] 
With no arguments, print the name of the current program. With arguments, stop debugging the 
current program and begin debugging objfile having either corefile or the current process ID pid. 
The -k options indicates kernel debugging. 

kill Stop debugging of the current program, but be ready to debug another. 

detach Detach the current program (process) from dbx. dbx will be unable to access or modify its state. 

proc [pid] 
For kernel debugging. Display which process is mapped into the user area, or map pid to the user 
area. 

Machine-Level Commands 
tracei [ address ] [ if condition ] 
tracei [ variable ] [at address ] [ if condition ] 

Trace execution of a specific machine-instruction address. 

stopi [ variable ] [ if condition ] 
stopi [at address ] [ if condition ] 

Set a breakpoint at a machine instruction address. 

stepi 
nexti Single step as in step or next, but do a single machine instruction rather than a source line. 

address, address I [ mode ] 
address I [count] [ mode ] 

Display the contents of memory starting at the first ( or current) address up to the second address, 
or until count items have been displayed. The initial display mode is X. The following modes are 
supported: 

d 
D 
0 

0 
X 

X 
b 
C 

s 
f 
F 
E 

the machine instruction 
word in decimal 
longword in decimal 
word in octal 
longword in octal 
word in hexadecimal 
longword in hexadecimal 
byte in octal 
byte as a character 
strings as characters terminated by a null 
single precision real number 
double-precision real number 
extended-precision real number (not supported on Sun-4) 

An address can be specified as an item from the following list, as an expression made up of other 
addresses and the operators '+ ', ' - ', '* ', and indirection ( unary '* '), or as an arbitrary expression 
enclosed in parentheses. 

&name symbolic address 
integer numeric address 

address = [ mode ] 
Display the value of the address. 

Sun Release 4.0 Last change: 18 February 1988 131 



DBX( 1) USER COMMANDS DBX( 1) 

132 

Machine Registers 
The machine registers for the current machine type are represented as special dbx variables. They can be 
used in expressions as any other dbx variable can. The registers and their variable names are: 

Sun-2 and Sun-3 Registers 
$d[0-7] 
$a[0-7] 
$fp 
$sp 
$pc 
$ps 

Sun-3-0nly Registers 
$fp[0-7] 
$fpc 
$fps 
$fpi 
$fpf 
$fpa[0-31] 
$sfpa[0-31] 

Sun-4 Registers 
$g[0-7] 
$o[0-7] 
$i[0-7] 
$1[0-7] 
$fp 
$sp 
$y 
$psr 
$wim 
$tbr 
$pc 
$npc 
$f[0-31] 
$fsr 
$fq 

Sun386i Registers 

$ss 
$eflags 
$cs 
$eip 
$eax 
$ecx 
$edx 
$ebx 
$esp 
$ebp 
$esi 
$edi 
$ds 
$es 
$fs 
$gs 

data registers 
address registers 
frame pointer, equivalent to register a6 
stack pointer, equivalent to register a7 
program counter 
program status 

MC68881 data registers 
MC68881 control register 
MC68881 status register 
MC68881 instruction address register 
MC68881 flags register (unused, idle, busy) 
double-precision interpretation of FPA registers. 
single-precision interpretation of FP A registers. 

global registers 
"out" registers 
"in" registers 
"local" registers 
frame pointer, equivalent to register i6 
stack pointer, equivalent to register o6 
Y register 
processor state register 
window invalid mask register 
trap base register 
program counter 
next program counter 
FPU "f' registers 
FPU status register 
FPU queue 

stack segment register 
flags 
code segment register 
instruction pointer 
general register 
general register 
general register 
general register 
stack pointer 
frame pointer 
source index register 
destination index register 
data segment register 
alternate data segment register 
alternate data segment register 
alternate data segment register 

Last change: 18 February 1988 Sun Release 4.0 



DBX( 1) USER COMMANDS DBX(l) 

Registers for the 80386 lower halves (16 bits) are: 

$ax 
$ex 
$dx 
$bx 
$sp 
$hp 
$si 
$di 
$ip 
$flags 

general register 
general register 
general register 
general register 
stack pointer 
frame pointer 
source index register 
destination index register 
instruction pointer, lower 16 bits 
flags, lower 16 bits 

The first four Sun386i 16-bit registers can be split into 8-bit parts: 

$al lower (right) half of register $ax 
$ah higher (left) half of register $ax 
$cl lower (right) half of register $ex 
$ch higher (left) half of register $ex 
$di lower (right) half of register $dx 
$db higher (left) half of register $dx 
$bl lower (right) half of register $bx 
$bh higher (left) half of register $bx 

Registers for the 80387 are: 
$fctrl control register 
$fstat status register 
$ftag tag register 
$tip instruction pointer offset 
$f cs code segment selector 
$f opofT operand pointer offset 
$f opsel operand pointer selector 
$st0 - $st7 

data registers 

ENVIRONMENT 

FILES 

dbx checks the environment variable EDITOR for the name of the text editor to use with the edit command. 

core 
.dbxinit 
/. dbxinit 

default core file 
local dbx initialization file 
user's dbx initialization file 

SEE ALSO 

BUGS 

cc(l V), csh(l), dbxtool(l), kill(l), lex(l), make(l), yacc(l) 

Debugging Tools 

dbx does not correctly handle C variables that are local to compound statements. When printing these 
variables it often gives incorrect results. 

dbx does not handle FORTRAN entry points well - it treats them as if they were independent routines. 

dbx does not handle assigning to FORTRAN complex types correctly (see the assign/set command). 

Sun Release 4.0 Last change: 18 February 1988 133 



DBX( 1) USER COMMANDS DBX( 1) 

134 

Some operations behave differently in dbx than in C: 

• dbx has two division operators - I always yields a floating-point result and div always yields 
an integral result 

• An array or function name does not signify the address of the array or function in dbx. An 
array name signifies the entire array, and a function name signifies a call to the function with 
no arguments. The address of an array can be obtained by taking the address of its first ele
ment, and the address of a function can be obtained by taking the address of its name. 

Casts do not work with FORTRAN 77 or Pascal. 

Executable code incorporated into a source file using an #include preprocessor directive confuses dbx. 

dbx is confused by the output of program generators such as yacc(l) and lex(l). 

You cannot use dbx to debug a shared library directly. You can, however, debug a program that uses a 
shared library. 

Last change: 18 February 1988 Sun Release 4.0 



DBXTOOL( 1) USER COMMANDS DBXTOOL(l) 

NAME 
dbxtool - Sun View interface for the dbx source-level debugger 

SYNOPSIS 
dbxtool [ -d ] [ -i ] [ -k ] [ -kbd ] [ -I directory ] [ objectfile [ corefile ] ] 

AVAILABILITY 
This command is available with the Debugging software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
dbxtool, a source-level debugger for C, Pascal and FORTRAN 77 programs, is a standard tool that runs 
within the Sun View environment. It accepts the same commands as dbx, but provides a more convenient 
user interface. 

You can use the mouse to set breakpoints, examine the values of variables, control execution, peruse 
source files, and so on. dbxtool has separate subwindows for viewing source code, entering commands 
and other uses. 

objectfile is an object file produced by cc(l V), any other Sun compiler, (or a combination of them) with the 
appropriate flag (-g) specified to produce symbol information in the object file. IMPORTANT: every stage 
of the compilation process, including the linking phase, must include the -g option. If no objectfile is 
specified, you can use the debug command to specify the program to be debugged. The object file contains 
a symbol table which includes the names of all the source files translated by the compiler to create it. 
These files are available for perusal while using the debugger. 

If a file named core exists in the current directory or a corefile is specified, dbxtool can be used to examine 
the state of the program when it faulted. 

Debugger commands in the file • dbxinit are executed immediately after the symbolic information is read, 
if that file exists in the current directory, or in the user's home directory if. dbxinit does not exist in the 
current directory. 

OPTIONS 

USAGE 

FILES 

-d Produce debugging information for the pipeline from which it reads dbx(l) output. 

-i Force dbxtool to act as though standard input were a terminal. 

-k Kernel debugging. 

-kbd Debugs a program that sets the keyboard into up/down translation mode. This flag is necessary if 
you are debugging a program that uses up/down encoding. 

-l directory 
Add directory to the list of directories that are searched when looking for a source file. Normally 
dbxtool looks for source files in the current directory and then in the directory where objectfile is 
located. The directory search path can also be set with the use command. Multiple -I options 
may be given. 

Refer to dbx(l) for a summary of dbx commands, or Debugging Tools for more complete information on 
using dbxtool. 

core default core file 
• dbxinit local dbx initialization file 
/. dbxinit user's dbx initialization file 

SEE ALSO 
cc(l V), dbx(l) 
Debugging Tools 
Sun View 1 Programmer's Guide 

Sun Release 4.0 Last change: 11 January 1988 135 



DBXTOOL( 1) USER COMMANDS DBXTOOL(l) 

BUGS 

136 

The bugs for dbx(l) apply to dbxtool as well. 
The interaction between scrolling in the source subwindow and dbx's regular expression search commands 
is wrong. Scrolling should affect where the next search begins, but it does not. 

Last change: 11 January 1988 Sun Release 4.0 



DC( 1) USER COMMANDS DC(l) 

NAME 
de - desk calculator 

SYNOPSIS 
de [filename ] 

DESCRIPTION 
de is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but an input 
base, output base, and a number of fractional digits to be maintained may be specified. The overall struc
ture of de is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that file 
until its end, and then from the standard input. 

Note: be(l) is a preprocessor for de that provides infix (normal arithmetic) notation, a C-like syntax for 
functions, and reasonable control structures for programs. 

The following input constructs are recognized: 

Commands 
number Push a number onto the stack. A number is an unbroken string of the digits 0-9. It may be 

preceded by an underscore'_' to input a negative number, and may contain decimal points. 

+ -I * % A 

sx 

Sx 

Ix 

Lx 

d 

p 

p 

f 

q 

Q 
X 

X 

[ ... ] 
<X >X 

V 

The top two values on the stack are: added (+), subtracted (-), multiplied (*), divided (/), 
remaindered ( % ), or exponentiated ("). The two entries are popped off the stack and the result 
is pushed in their place. Any fractional part of an exponent is ignored. 

Pop the top of the stack and store into a register named x, where x is any character. 

Treat x as a stack and push the value onto it. 

Push the value in register x onto the stack. The register xis not altered. All registers start with 
zero value. 

Treat register x as a stack, and pop its top value onto the main stack. 

Duplicate the top value on the stack. 

Print the top value on the stack. The top value remains unchanged. With 

Interpret the top of the stack as an ASCII string, remove and print it. 

Print all values on the stack and in registers. 

Exit the program. If executing a string, pop the recursion level by two. 

Pop the top value on the stack, and pop the string execution level by that value. 

Treat the top element of the stack as a character string and execute it as a string of de com
mands. 

Replace the number on the top of the stack with its scale factor. 

Put the bracketed ASCII string onto the top of the stack. 

= x Pop and compare top two elements of the stack. Execute register x if they obey the stated rela
tion. 

Replace the top element on the stack by its square root. Any existing fractional part of the 
argument is taken into account, but otherwise the scale factor is ignored. 

Interpret the rest of the line as a command. 

e Clear all values on the stack. 

Pop the top value on the stack and use that value as the input radix. 

I Push the input base on the top of the stack. 

o Pop the top value on the stack and use as the output radix. 

Sun Release 4.0 Last change: 23 September 1987 137 



DC(l) 

0 

k 

z 

z 
? 

' . 

USER COMMANDS DC(l) 

Push the output base on the top of the stack. 

The top of the stack is popped, and that value is used as a non-negative scale factor: the 
appropriate number of places are printed on output, and maintained during multiplication, divi
sion, and exponentiation. The interaction of scale factor, input base, and output base will be 
reasonable if all are changed together. 

Push the stack level onto the stack. 

Replace the number on the top of the stack with its length. 

Take a line of input from the input source (usually the terminal) and execute it. 

Used by be for array operations. 

EXAMPLE 
Print the first ten values of n! 

[ lal + dsa * plalO > y ]sy 
Osal 
lyx 

SEE ALSO 
bc(l) 

DIAGNOSTICS 

BUGS 

xis unimplemented 
stack empty 
Out of space 
Out of headers 
Out of pushdown 
Nesting Depth 

Where x is an octal number. 
For not enough elements on the stack to do what was asked 
When the free list is exhausted (too many digits). 
For too many numbers being kept around. 
For too many items on the stack. 
For too many levels of nested execution. 

Base conversions on fractions are truncated to the number of fractional digits of the input value. The 
values are not rounded. 

138 Last change: 23 September 1987 Sun Release 4.0 



DD( 1) USER COMMANDS DD(l) 

NAME 
dd - convert and copy files with various data formats 

SYNOPSIS 
dd [ option =value ] ... 

DESCRIPTION 
dd copies a specified input file to a specified output with possible conversions. The standard input and out
put are used by default. The input and output block size may be specified to take advantage of raw physi
cal I/0. 

OPTIONS 
if=name 

of=name 

ibs=n 

obs=n 

bs=n 

cbs=n 

skip=n 

files=n 

seek=n 

Input file is taken from name; standard input is default. 

Output file is taken from name; standard output is default. Note: dd creates an explicit 
output file; therefore the seek option is usually useless with explicit output except in spe-
cial cases such as using magnetic tape or raw disk files. 

Input block size n bytes (default 512). 

Output block size n bytes (default 512). 

Set both input and output block size, superseding ibs and obs; also, if no conversion is 
specified, it is particularly efficient since no copy need be done 

Conversion buffer size. 

Skip n input records before starting copy 

Copy n input files before terminating (makes sense only when input is a magtape or 
similar device). 

Seek n records from beginning of output file before copying. This option generally only 
works with magnetic tapes and raw disk files and is otherwise usually useless if the 
explicit output file was named with the of option. 

count=n Copy only n input records. 

conv=ascii Convert EBCDIC to ASCII. 
ebcdic Convert ASCII to EBCDIC. 
ibm Slightly different map of ASCII to EBCDIC. 
block Convert variable length records to fixed length. 
unblock Convert fixed length records to variable length. 
lease Map alphabetics to lower case. 
ucase Map alphabetics to upper case. 
swab Swap every pair of bytes. 
noerror Do not stop processing on an error. 
sync Pad every input record to ibs. 
arg, arg [, ... ] 

Several comma-separated conversions, for a combination of effects. For instance, 
conv=sync,block is useful for reading variable-length output from a pipe. 

Where sizes are specified, a number of bytes is expected. A number may end with k (kilobytes) to specify 
multiplication by 1024, b (blocks of 512 bytes) to specify multiplication by 512, or w (words) to specify 
multiplication by 4; a pair of numbers may be separated by x to indicate a product. 

cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two cases, cbs 
characters are placed into the conversion buffer, any specified character mapping is done, trailing blanks 
trimmed and NEWLINE added before sending the line to the output. In the latter three cases, characters are 
read into the conversion buffer, and blanks added to make up an output record of size cbs. 

Sun Release 4.0 Last change: 28 January 1988 139 



DD( 1) USER COMMANDS DD(l) 

After completion, dd reports the number of whole and partial input and output blocks. 

EXAMPLE 
To read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into the ASCII file x: 

example% dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,Icase 

Note: the use of raw magtape: dd is especially suited to 1/0 on the raw physical devices because it allows 
reading and writing in arbitrary record sizes. 

SEE ALSO 
cp(l), tr(l V) 

DIAGNOSTICS 

BUGS 

140 

f + p records in(out): 
Numbers of full and partial records read( written). 

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov, 1968. 
The ibm conversion, while less blessed as a standard, corresponds better to certain IBM print train conven
tions. There is no universal solution. 

The block and unblock options cannot be combined with the ascii, ebcdic or ibm. Invalid combinations 
silently ignore all but the last mutually-exclusive keyword. 

Last change: 28 January 1988 Sun Release 4.0 



DEFAULTSEDIT ( 1) USER COMMANDS DEFAULTSEDIT( 1) 

NAME 
defaultsedit, defaults_ from_ input, defaults_ to_ indentpro, defaults_ to_ mailrc, indentpro _to_ defaults, 
input_ from_ defaults, lockscreen _ default, mailrc _to_ defaults, scrolldefaults, stty _from_ defaults - create or 
edit default settings for Sun View 1 and Sun View utilities 

SYNOPSIS 
defaultsedit [ generic-tool-arguments ] 

defaults _from_ input 

def au Its_ to_ indentpro 

def au Its to mailrc 

indentpro_to_defaults 

input _from_ defaults 

lockscreen default 

mailrc to defaults 

scrolldef aults 

stty _from_ defaults 

AVAILABILITY 
These commands are available with the Sun View 1 User's software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
defaultsedit is a Sun View application that provides a convenient means for inspecting and setting default 
parameters. It can be viewed as an alternative to the traditional UNIX operating system • *re files that con
tain initialization options for various commands. Currently, you can use defaultsedit to manipulate options 
to the programs indent( 1 ), mail( 1) and mailtool( 1 ), stty( 1 V), and defaultsedit, as well as the menu, 
scrollbar, text subwindow and tty subwindow packages, and the Sun View environment itself. 

The remaining commands are used by defaultsedit to perform conversions and other functions; they can 
also be invoked directly from the shell: 

defaults_from_input update window-system I/0 defaults from current system values 
defaults_to_indentpro update indent(l) defaults in the database from the .indent.pro file 
defaults_ to_ mailrc 
indentpro _to_ defaults 
input _from_ defaults 

lockscreen default 
mailrc to defaults 
scrolldef aults 

stty _from _defaults 

update the .mailrc file from the defaults database 
update indent defaults from the .indent.pro file 
update current system values for window-system I/0 from defaults data
base 
apply current default for lockscreen(l) display program 
update mail(l) and/or mailtool(l) defaults from the .mailrc file 
a SunView application that lets you try out different settings from the 
Scrollbar category interactively 
set terminal (ITY) options from defaults database 

Any program or package that a user can customize by setting or changing a parameter could be written so 
as to get its initialization options from the defaults database. For further information, see Sun View 1 Sys
tem Programmer's Guide. 

Sun Release 4.0 Last change: 15 February 1988 141 



DEFAULTSEDIT( 1) USER COMMANDS DEFAULTSEDIT( 1) 

OPTIONS 

defaultsedit accepts all of the generic tool arguments discussed in sunview(l). 

USAGE 
This only applies to defaultsedit. 

Subwindows 
def aultsedit consists of four subwindows. From top to bottom they are: 

control Contains the name of the category currently displayed, and buttons labeled SA VE, QUIT, 
RESET, and EDIT ITEM. To change the category, click the LEFf mouse button on the 
word CATEGORY, or use the menu that pops up when you click the RIGHT mouse but
ton. 

message 

parameters 

edit 

Control Panel 
SAVE 

QUIT 

RESET 

EDIT ITEM 

COPY ITEM 

DELETE ITEM 

EDIT LABEL 

A small text subwindow where messages from defaultsedit are displayed. 

Shows all current default parameter names with corresponding values. Clicking the 
LEFf mouse button over a parameter displays a help string in the message subwindow. 

A small text subwindow which enables text editing of parameter values. This is useful 
for very long text values, such as a long mailing list. 

Save the current values that differ from the standard defaults in your private database -
that is, the. defaults file in your home directory. 

Exit without saving any changes. 

Reset the default parameters of the current category to the values in your private data
base. This is useful if you change some values, then change your mind and want to 
restore the original values. 

Clicking the RIGHT mouse button over the EDIT ITEM button brings up a menu with 
three choices: COPY ITEM, DELETE ITEM and EDIT LABEL. Only text or numeric items 
can be edited. Note: edits made using this menu will appear only in your private 
defaults database, not in the master database. The three editing operations are described 
below. 

Choosing COPY ITEM will duplicate the current item. You can then edit both the label 
and the value of the newly created item. Only items with text or numeric values can be 
copied in this way. COPY ITEM is useful when you want to change the number of 
instances of a certain type of item - for example, to insert a new mail alias into your 
defaults database. 

Choosing DELETE ITEM will delete the current item from your private database. It can
not be permanently deleted if the corresponding node is present in the master database. 
However, you can make it behave like an undefined node by giving it the special value 
255Undefined255. 

Choosing EDIT LABEL allows you to edit the label of the current item. When you choose 
EDIT LABEL, the label of the current item changes from bold to normal face. Then you 
can select the label and edit it as a normal panel text item. 

Note: SunView starts up faster when you set the Private_only parameter in the Defaults category to 
TRUE, in which case only your private .defaults file is read. 

ENVIRONMENT 
DEFAULTS FILE The value of this environment variable indicates the file from which private Sun

View defaults are read. When it is undefined, defaults are read from the • defaults 
file in your home directory. 

142 Last change: 15 February 1988 Sun Release 4.0 



DEFAULTSEDIT( 1) USER COMMANDS DEFAULTSEDIT( 1) 

FILES 
/usr/lib/defaults/•.d System-wide parameters and their standard settings. Each file is a category in 

defaultsedit. 
/.defaults 

SEE ALSO 

BUGS 

indent(l), lockscreen(l), mail(l), mailtool(l), stty(lV), sunview(l) 

Sun View 1 Beginner's Guide 

Sun View 1 System Programmer's Guide 

Editing of choice items or categories is not supported by defaultsedit. Neither is editing of the master 
defaults database - to add a new program to the master defaults database, you have to edit a master 
defaults textfile. 

def aultsedit reorders mail aliases that appear in the .mailrc file. This can adversely affect recursive mail 
aliases. To avoid this, use the source command for mail(l) to include a file containing such aliases. 

Sun Release 4.0 Last change: 15 February 1988 143 



DELTA( 1) USER COMMANDS DELTA( 1) 

NAME 
delta - make a delta (change) to an SCCS file 

SYNOPSIS 
/usr/sccs/delta [ -nps] [ -g list] [ -m [ mrlist] [ -rS/D ] ] [ -y [ comment ] ] filename ... 

DESCRIPTION 
delta permanently introduces into the named SCCS file changes that were made to the file retrieved by 
get(l) (called the g-file, or generated file). 

delta makes a delta to each named SCCS file. If a directory is named, delta behaves as though each file in 
the directory were specified as a named file, except that non-SCCS files (last component of the path name 
does not begin with 's.') and unreadable files are silently ignored. If a name of'-' is given, the standard 
input is read (see WARNINGS); each line of the standard input is taken to be the name of an SCCS file to be 
processed. 

delta may issue prompts on the standard output depending upon certain options specified and flags (see 
admin(l)) that may be present in the secs file (see -m and-y options below). 

OPTIONS 

144 

Options apply independently to each named file. 

-n Retain the edited g-file which is normally removed at completion of delta processing. 

-p Display ( on the standard output) the SCCS file differences before and after the delta is applied in a 
diff( 1) format. 

-s Do not display the created delta's SID, number of lines inserted, deleted and unchanged in the 
SCCS file. 

-g list Specify a list of deltas to be ignored when the file is accessed at the change level (SID) created by 
this delta. See get( 1) for the definition of list. 

-m [mrlist] 
If the SCCS file has the v flag set (see admin(l)), a Modification Request (MR) number must be 
supplied as the reason for creating the new delta. 

If-mis not used and the standard input is a terminal, the prompt MRs? is issued on the standard 
output before the standard input is read; if the standard input is not a terminal, no prompt is issued. 
The MRs? prompt always precedes the comments? prompt (see -y option). 

MRs in a list are separated by SPACE and/or TAB characters. An unescaped NEWLINE character 
terminates the MR list. 

Note: if the v flag has a value (see admin(l)), it is taken to be the name of a program (or shell pro
cedure) which will validate the correctness of the MR numbers. If a non-zero exit status is 
returned from MR number validation program, delta terminates (it is assumed that the MR 
numbers were not all valid). 

-rS/D Uniquely identify which delta is to be made to the secs file. The use of this option is necessary 
only if two or more outstanding get's for editing ('get -e') on the same secs file were done by 
the same person (login name). The SID value specified with the -r option can be either the SID 
specified on the get command line or the SID to be made as reported by the get command. A diag
nostic results if the specified SID is ambiguous, or, if necessary and omitted on the command line. 

-y [comment] 
Arbitrary text to describe the reason for making the delta. A null string is considered a valid com
ment. 

If -y is not specified and the standard input is a terminal, the prompt comments? is issued on the 
standard output before the standard input is read; if the standard input is not a terminal, no prompt 
is issued. An unescaped NEWLINE character terminates the comment text. 

Last change: 24 September 1987 Sun Release 4.0 



DELTA(l) USER COMMANDS DELTA( 1) 

FILES 
All files of the form ?-file are explained in the secs chapter of Programming Utilities and Libraries. The 
naming convention for these files is also described there. 

g. file Existed before the execution of delta; removed after completion of delta. 
p. file Existed before the execution of delta; may exist after completion of delta. 
q. file Created during the execution of delta; removed after completion of delta. 
x. file Created during the execution of delta; renamed to SCCS file after completion of 

delta. 
z.file 
d. file 
/usr/bin/diff 

Created during the execution of delta; removed during the execution of delta. 
Created during the execution of delta; removed after completion of delta. 
Program to compute differences between the "gotten" file and the g. file. 

WARNINGS 
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the SCCS file unless the SOH 
is escaped. This character has special meaning to SCCS (see sccsfile(5)) and produces an error. 

A get of many SCCS files, followed by a delta of those files, should be avoided when the get generates a 
large amount of data. Instead, multiple get/delta sequences should be used. 

If the standard input('-') is specified on the delta command line, the -m (if necessary) and -y options 
must also be present. Omission of these options is an error. 

SEE ALSO 
admin(l), difT(l), get(l), help(l), prs(l), sccs(l), sccsfile(5) 

Programming Utilities and Libraries 

DIAGNOSTICS 
Use help(l) for explanations. 

Sun Release 4.0 Last change: 24 September 1987 145 



DEROFF(l) USER COMMANDS DEROFF(l) 

NAME 
deroff- remove nroff, troff, tbl and eqn constructs 

SYNOPSIS 
deroff [ -w ] filename ••• 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
deroff reads each file in sequence and removes all nroff and troff command lines, backslash constructions, 
macro definitions, eqn constructs (between .EQ and .EN lines or between delimiters), and table descriptions 
and writes the remainder on the standard output. derofT follows chains of included files (. so and • nx com
mands); if a file has already been included, a • so is ignored and a . nx terminates execution. If no input file 
is given, derofT reads from the standard input file. 

OPTIONS 
-w Generate a word list, one word per line. A 'word' is a string of letters, digits, and apostrophes, 

beginning with a letter; apostrophes are removed. All other characters are ignored. 

SEE ALSO 

BUGS 

146 

eqn(l), nroff(l), tbl(l), troff(l) 

deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most errors result in 
too much rather than too little output. 

deroff does not work well with files that use • so to source in the standard macro package files. 

Last change: 21 December 1987 Sun Release 4.0 



DES(l) USER COMMANDS DES(l) 

NAME 
des - encrypt or decrypt data using Data Encryption Standard 

SYNOPSIS 
des -e I -d [ -b ] [ -f ] [ -k key ] [ -s ] [ infile [ outfile ] ] 

DESCRIPTION 
des encrypts and decrypts data using the NBS Data Encryption Standard algorithm. One of -e (for encrypt) 
or -d (for decrypt) must be specified. 

The des command is provided to promote secure exchange of data in a standard fashion. 

OPTIONS 

FILES 

-b Select ECB ( eight bytes at a time) encryption mode. 

-f Suppress warning message when software implementation is used. 

-k key V se the encryption key specified. 

-s Selects software implementation for the encryption algorithm. 

Two standard encryption modes are supported by the des program, Cipher Block Chaining ( CBC - the 
default) and Electronic Code Book ( ECB - specified with -b ). CBC mode treats an entire file as a unit of 
encryption, that is, if insertions or deletions are made to the encrypted file then decryption will not succeed. 
CBC mode also ensures that regularities in clear data do not appear in the encrypted data. ECB mode treats 
each 8 bytes as units of encryptions, so if parts of the encrypted file are modified then other parts may still 
be decrypted. Identical values of clear text encrypt to identical values of cipher text. 

The key used for the DES algorithm is obtained by prompting the user unless the -k key option is given. If 
the key is an argument to the des command, it is potentially visible to users executing ps(l) or a derivative. 
To minimize this possibility, des takes care to destroy the key argument immediately upon entry. 

The des command attempts to use DES hardware for its job, but will use a software implementation of the 
DES algorithm if the hardware is unavailable. Normally, a warning message is printed if the DES hardware 
is unavailable since the software is only about 1150th as fast. However, the -f option will suppress the 
warning. The -s option may be used to force use of software instead of hardware DES. 

The des command reads from standard input unless infile is specified and writes to standard output unless 
outfile is given. 

The following sections give information required to implement compatible facilities in other environments. 

Since the CBC and ECB modes of DES require units of 8 bytes to be encrypted, files being encrypted by the 
des command have 1 to 8 bytes appended to them to cause them to be a multiple of 8 bytes. The last byte, 
when decrypted, gives the number of bytes (0 to 7) which are to be saved of the last 8 bytes. The other 
bytes of those appended to the input are randomized before encryption. If, when decrypting, the last byte is 
not in the range of O to 7 then either the encrypted file has been corrupted or an incorrect key was provided 
for decryption and an error message is printed. 

The DES algorithm requires an 8 byte key whose low order bits are assumed to be odd-parity bits. The 
ASCII key supplied by the user is zero padded to 8 bytes and the high order bits are set to be odd-parity 
bits. The DES algorithm then ignores the low bit of each ASCII character, but that bit's information has 
been preserved in the high bit due to the parity. 

The CBC mode of operation always uses an initial value of all zeros for the initialization vector, so the first 
8 bytes of a file are encrypted the same whether in CBC or ECB mode. 

/dev/des? 

SEE ALSO 
ps(l) 

Sun Release 4.0 Last change: 9 September 1987 147 



DES ( 1) 

BUGS 

USER COMMANDS DES ( 1) 

It would be better to use a real 56-bit key rather than an ASCII -based 56-bit pattern. Knowing that the key 
was derived from ASCII radically reduces the time necessary for a brute-force crytographic attack. 

RESTRICTIONS 

148 

Software encryption is disabled for programs shipped outside of the U.S. The program will still be able to 
encrypt files if one can obtain an encryption chip, legally or otherwise. 

Last change: 9 September 1987 Sun Release 4.0 



DF( 1) USER COMMANDS DF( 1) 

NAME 
df - report free disk space on file systems 

SYNOPSIS 
df [-a] [ -i] [ -t type] [filesystem ... ] [filename ... ] 

DESCRIPTION 
df displays the amount of disk space occupied by currently mounted file systems, the amount of used and 
available space, and how much of the file system's total capacity has been used. Used without arguments, 
df reports on all mounted file systems, producing something like: 

tutorial% df 
Filesystem kbytes used avail capacity Mounted on 
/dev/ipOa 7445 4714 1986 70% / 
/dev/ipOg 42277 35291 2758 93% /usr 

Note that used+avail is less than the amount of space in the file system (kbytes); this is because the system 
reserves a fraction of the space in the file system to allow its file system allocation routines to work well. 
The amount reserved is typically about 10%; this may be adjusted using tunefs(8). When all the space on a 
file system except for this reserve is in use, only the super-user can allocate new files and data blocks to 
existing files. When a file system is overallocated in this way, df may report that the file system is more 
than 100% utilized. 

If arguments to df are disk partitions (for example, /dev/ipOas or path names, df produces a report on the 
file system containing the named file. Thus df . shows the amount of space on the file system containing the 
current directory. 

OPTIONS 

FILES 

-a Reports on all filesystems including the uninteresting ones which have zero total blocks. (e.g. 
automounter ) 

-i Report the number of used and free inodes. 

-t type Report on filesystems of a given type (for example, nfs or 4.2). 

/etc/mtab List of filesystems currently mounted. 

SEE ALSO 
du(l V), mtab(5), quot(8), tunefs(8) 

Sun Release 4.0 Last change: 23 September 1987 149 



DIFF(l) USER COMMANDS DIFF(l) 

NAME 
diff - display line-by-line differences between pairs of text files 

SYNOPSIS 
diff [ -bitw] [ -c [ #] 1-e 1-f 1-n 1-h ] filename] filename2 
diff [ -bitw] [ -Dstring] filename] filename2 
diff [ -bitw] [ -c [ #] I -e 1-f 1-n 1-h] [ -I ] [ -r ] [ -s] [ -Sname ] directory] directory2 

DESCRIPTION 
diff is a differential file comparator. When run on regular files, and when comparing text files that differ 
during directory comparison (see the notes below on comparing directories), diff tells what lines must be 
changed in the files to bring them into agreement. Except in rare circumstances, difT finds a smallest 
sufficient set of differences. If neither filename] nor filename2 is a directory, either may be given as'-', in 
which case the standard input is used. If filename] is a directory, a file in that directory whose filename is 
the same as the filename offilename2 is used (and vice versa). 

There are several options for output format; the default output format contains lines of these forms: 

nlan3,n4 
nl,n2dn3 
nl,n2cn3,n4 

These lines resemble ed( 1) commands to convert filename] into filename2. The numbers after the letters 
pertain to filename2. In fact, by exchanging a for d and reading backward one may ascertain equally how 
to convert filename2 into filename] . As in ed( 1 ), identical pairs, where n 1 = n 2 or n 3 = n 4, are abbrevi
ated as a single number. 

Following each of these lines come all the lines that are affected in the first file flagged by '<', then all the 
lines that are affected in the second file flagged by '>'. 

If both arguments are directories, diff sorts the contents of the directories by name, and then runs the regu
lar file diff program as described above on text files which are different. Binary files which differ, com
mon subdirectories, and files which appear in only one directory are listed. 

OPTIONS 

150 

-b 

-i 

-t 

-w 

Ignore trailing blanks (SPACE and TAB characters) and treat all other strings of blanks as 
equivalent. 

Ignore the case of letters; for example, 'A' will compare equal to 'a'. 

Expand TAB characters in output lines. Normal or -c output adds character(s) to the front of each 
line which may screw up the indentation of the original source lines and make the output listing 
difficult to interpret. This option will preserve the original source's indentation. 

Ignore all blanks (SPACE and TAB characters); for example, 'if (a== b )' will compare equal to 
'if(a= =b)'. 

The following four options are mutually exclusive: 

-c[#] Produce a listing of differences with lines of context. The default is to present 3 lines of context 
and may be changed, (to 10, for example), by -clO. With -c the output format is modified 
slightly: output begins with identification of the files involved and their creation dates, then each 
change is separated by a line with a dozen* s. The lines removed fromfilenamel are marked with 
'-';those added tofilename2 are marked'+'. Lines which are changed from one file to the other 
are marked in both files with '! '. 

Changes which lie within <context> lines of each other are grouped together on output. (This is a 
change from the previous 'diff -c' but the resulting output is usually much easier to interpret.) 

-e Produce a script of a, c, and d commands for the editor ed, which will recreate filename2 from 
filename]. 

Last change: 9 September 1987 Sun Release 4.0 



DIFF( 1) USER COMMANDS DIFF(l) 

FILES 

In connection with -e, the following shell program may help maintain multiple versions of a file. 
Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2, $3, ... ) made by diff 
need be on hand. A 'latest version' appears on the standard output 

(shift; cat $*; echo '1,$p ') I ed - $1 

Extra commands are added to the output when comparing directories with -e, so that the result is 
a sh script for converting text files which are common to the two directories from their state in 
directory] to their state in directory2. 

-f Produce a script similar to that of -e, not useful with ed, which is in the opposite order. 

-n Produce a script similar to that of -e, but in the opposite order and with a count of changed lines 
on each insert or delete command. 

-h Do a fast, half-hearted job. It works only when changed stretches are short and well separated, 
but does work on files of unlimited length. 

Options for the second form of dif'f are as follows: 

-Dstring 
Create a merged version of filename] and filename2 on the standard output, with C preprocessor 
controls included so that a compilation of the result without defining string is equivalent to com
pilingfilenamel, while defining string will yieldfilename2. 

Options when comparing directories are: 

-I Long output format; each text file dif'f is piped through pr(l V) to paginate it, other differences are 
remembered and summarized after all text file differences are reported. 

-r Apply diff recursively to common subdirectories encountered. 

-s Report files which are the same, which are otherwise not mentioned. 

-Sname 
Start a directory diff in the middle, beginning with file name. 

/tmp/d????? 
/usr /lib/ diflb 
/usr /bin/ diff 
/usr/bin/pr 

for-h 
for directory diffs 

SEE ALSO 
cc(l V), cmp(l), comm(l), cpp(l), diff3(1V), ed(l), pr(l V) 

DIAGNOSTICS 

BUGS 

Exit status is O for no differences, 1 for some differences, 2 for trouble. 

Missing newline at end of fileX 
Indicates that the last line of file X did not have a NEWLINE. If the lines are different, they will be 
flagged and output, although the output will seem to indicate they are the same. 

Editing scripts produced under the -e or -f option are naive about creating lines consisting of a single'.'. 

When comparing directories with the -b, -w, or -i options specified, diff first compares the files (as in 
cmp(l), and then runs the regular dif'f algorithm if they are not equal. This may cause a small amount of 
spurious output if the files then turn out to be identical because the only differences are insignificant blank 
string or case differences. 

The -D option ignores existing preprocessor controls in the source files, and can generate #ifdefs's with 
overlapping scope. The output should be checked by hand, or run through 'cc -E' (see cc(lV)) and then 
dif'f ed with the original source files. Discrepancies revealed should be corrected before compilation. 

Sun Release 4.0 Last change: 9 September 1987 151 



DIFF3 ( lV) USER COMMANDS DIFF3( lV) 

NAME 
diff3 - display line-by-line differences between 3 files 

SYNOPSIS 
diff3 [ -exEX3 ] filename] filename2 filename] 

SYSTEM V SYNOPSIS 
/usr/5bin/diff3 [ -ex3 ] filename] filename2 filename] 

DESCRIPTION 
diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these codes: 

---- All three files differ 

====1 

====2 

====3 

filename] is different 

filename2 is different 

filename] is different 

The types of differences between a given range within the given files are indicated in one of these ways: 

f: nl a Text is to be appended after line number nl in file/, where/= 1, 2, or 3. 

f: nl, n2 c Text is to be changed in the range line nl to line n2. If nl = n2, the range may be 
abbreviated to nl. 

The original contents of the range follows immediately after a c indication. When the contents of two files 
are identical, the contents of the lower-numbered file is suppressed. 

OPTIONS 

152 

The options to diff3 instruct it to produce a script for the editor ed, rather than a list of differences. This 
script will incorporate some or all of the differences between filename2 and filename] into filename] . This 
script will not include a w or q command at the end, so that it will not write out the changed file. 

-e Produce a script that will incorporate all changes between filename2 and filename3, that is, the 
changes that normally would be flagged'====' and '====3'. 

-x Produce a script that will incorporate only changes flagged'===='. 

-3 Produce a script that will incorporate only changes flagged '====3'. 

-E Produce a script that will incorporate all changes betweenfilename2 andfilename3, but treat over-
lapping changes (that is, changes that would be flagged with ==== in the normal listing) dif
ferently. The overlapping lines from both files will be inserted by the edit script, bracketed by 
<<<<<< and >>>>>> lines. 

-X Produce a script that will incorporate only changes flagged====, but treat these changes in the 
manner of the-E option. 

For example, suppose lines 7-8 are changed in bothfilenamel andfilename2. Applying the edit script gen
erated by the command 

diff3 -Efilenamel filename2 filename] 

to filename] results in the following file. 

Last change: 9 September 1987 Sun Release 4.0 



DIFF3 ( lV) USER COMMANDS DIFF3(1V) 

lines 1-6 
of filename] 
<<<<<<< filename] 
lines 7-8 
of filename! 

======= 
lines 7-8 
of filename] 
>>>>>>> filename] 
rest of filename] 

SYSTEM V OPTIONS 
The System V version of diff3 does not support the-E and-X options. The script produced by the-e, -x, 
and-3 options does include aw and q command at the end, so that it will write out the changed file. 

EXAMPLES 

FILES 

The following command will incorporate all the changes between filename2 and filename3 into filename], 
and print the resulting file to the standard output. If the System V version of diff3, is used, filename] will 
be replaced with the resulting file. 

(diff3 -efilenamel filename2 filename]; echo '1, $p') I ed - filename] 

/tmp/d3????? 
/usr/lib/diff3 
/usr/5Iib/diff3prog 

SEE ALSO 
diff(l), ed(l) 

BUGS 
Text lines that consist of a single '.' will defeat a -e option. 

Sun Release 4.0 Last change: 9 September 1987 153 



DIFFMK( 1) USER COMMANDS DIFFMK(l) 

NAME 
diffmk - mark differences between versions of a troff input file 

SYNOPSIS 
diffmk oldfile newfile markedfile 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
diffmk compares two versions of a file and creates a third version that includes "change mark" (.me) 
commands for nroff(l) and troff(l). oldfile and newfile are the old and new versions of the file. diffmk 
generates markedfile, which, contains the text from newfile with troff(l) "change mark" requests (. me) 
inserted where newfile differs from oldfile. When markedfile is formatted, changed or inserted text is 
shown by I at the right margin of each line. The position of deleted text is shown by a single *. 
diffmk can also be used in conjunction with the proper troff requests to produce program listings with 
marked changes. In the following command line: 

diffmk old.c new.c marked.c; nroff 

the file reqs contains the following troff requests: 
.pl 1 
.II 77 
.nr 
.eo 
.nb 

which eliminate page breaks, adjust the line length, set no-fill mode, ignore escape characters, and tum off 
hyphenation, respectively. 

If the characters I and * are inappropriate, you might run markedfile through sed(l V) to globally change 
them. 

SEE ALSO 

BUGS 

154 

diff(l), nroff(l), sed(lV), troff(l) 

Aesthetic considerations may dictate manual adjustment of some output. File differences involving only 
formatting requests may produce undesirable output, that is, replacing . sp by • sp 2 will produce a ''change 
mark'' on the preceding or following line of output. 

Last change: 18 January 1988 Sun Release 4.0 



DIRCMP( lV) USER COMMANDS DIRCMP( lV) 

NAME 
dircmp - compare directories 

SYNOPSIS 
/usr/5bin/dircmp [ -d ] [ -s ] [ -wn] dirl dir2 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the SunOS for information on how to 
install this command. dircmp examines dirl and dir2 and generates various tabulated information about 
the contents of the directories. Listings of files that are unique to each directory are generated for all the 
options. If no option is entered, a list is output indicating whether the filenames common to both direc
tories have the same contents. 

OPTIONS 
-d 

-s 

-wn 

SEE ALSO 

Compare the contents of files with the same name in both directories and output a list telling what 
must be changed in the two files to bring them into agreement. The list format is described in 
diff(l). 

Suppress messages about identical files. 

Change the width of the output line to n characters. The default width is 72. 

cmp(l), diff(l) 

Installing the SunOS 

Sun Release 4.0 Last change: 24 September 1987 155 



DIS ( 1) USER COMMANDS DIS ( 1) 

NAME 
dis - object code disassembler for COFF 

SYNOPSIS 
dis [ -o ] [ -V ] [ -L ] [ -d sec ] [ -da sec ] [ -F function ] [ -t sec ] [ -I string ] coff-file ... 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
The dis command produces an assembly-language listing of coff-file, which may be any object file in COPP 
format, or an archive of COPP object files. 

The listing includes assembly statements and an octal or hexadecimal representation of the binary that pro
duced those statements. 

OPTIONS 

FILES 

-o Print numbers in octal. The default is hexadecimal. 

-V Print, on standard error, the version number of the disassembler being executed. 

-L Lookup source labels in the symbol table for subsequent printing. This option works only if the 
file was compiled with additional debugging information (e.g., the -g option of cc(l V)). 

-d sec Disassemble the named section as data, printing the offset of the data from the beginning of the 
section. 

-da sec Disassemble the named section as data, printing the actual address of the data. 

-F function 
Disassemble only the named function in each object file specified on the command line. The -F 
option may be specified multiple times on the command line. 

-t sec Disassemble the named section as text 

-I string 
Disassemble the library file specified by string. For example, dis -I x -I z disassembles libx.a 
and libz.a. All libraries are assumed to be in /usr/lib. 

If the -d, -da or -t options are specified, only those named sections from each user-supplied file name will 
be disassembled. Otherwise, all sections containing text will be disassembled. 

On output, a number enclosed in brackets at the beginning of a line, such as [5], represents that the break
pointable line number starts with the following instruction. These line numbers will be printed only if the 
file was compiled with additional debugging information (e.g., the -g option of cc(lV)). An expression 
such as <40> in the operand field or in the symbolic disassembly, following a relative displacement for 
control transfer instructions, is the computed address within the section to which control will be 
transferred. A function name will appear in the first column, followed by ( ). 

/usr/Iib 

SEE ALSO 
cc(l V) cofl'(5) 

156 Last change: 19 February 1988 Sun Release 4.0 



DOMAINNAME ( 1) USER COMMANDS DOMAINNAME ( 1 ) 

NAME 
domainname - set or display name of the current YP domain 

SYNOPSIS 
domainname [ name-of-doma.in ] 

DESCRIPTION 
Without an argument, domainname displays the name of the current domain, which typically encompasses 
a group of hosts under the same administration. As such, the name of a YP domain is normally also a valid 
Internet domain name, and can be used in conjunction with the sendmail(8) and the name server 
named(8C). 

Only the super-user can set the name of the domain, by giving domainname an argument; this is usually 
done in the startup script /etdrc.local. 

SEE ALSO 
ypinit(8), named(8C), sendmail(8) 

Sun Release 4.0 Last change: 16 November 1987 157 



DOS ( 1) USER COMMANDS DOS( 1) 

NAME 
dos- SunView window for IBM PC/AT applications 

SYNOPSIS 
dos [ -b ] [ -s ] [ -p config ] [ -w ] [ -c command ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
A window created by dos looks and acts like the screen of an IBM PC/ AT or compatible computer running 
MS-DOS 3.3, except that it has expanded features. It allows sharing of files with SunOS, copying and past
ing data between windows, and piping and redirection. You may run any reasonable number of DOS win
dows simultaneously. 

Shrinking or expanding the window will not change the contents to accomodate the new size. 

USAGE 

158 

Menu 
The menu available in the window by pressing the right mouse button allows various controls over the 
work in the window. Edit allows you to copy and paste between windows. The Show Screen menu item 
selects the display type emulation (either Hercules, CGA, or Monochrome). The Mouse menu item allows 
you to control whether the mouse operates like a Microsoft or compatible mouse or in normal Sun View 
fashion. The Send to printer menu item allows you to send queued jobs to the print spooler. Device 
allows you to select which disks and other devices will be used and which are to be considered write only. 
The Reboot DOS Window item is equivalent to restarting the window. This can also be accomplished by 
pressing the CONTROL, ALT, and DELETE keys simultaneously. 

Printer Assignments 
DOS uses three printer designations: LPTl, LPT2, and LPTJ. The default settings are: files sent to LPTl go 
to the default system printer. Files sent to LPT2 are appended to the file /pc/lpt2 in your home directory. 
Epson-compatible print jobs can be sent to LPTJ to yield Epson FX-80 quality output on a Postscript 
printer. 

Drives 
Drive A 

Drive C 

Drives D through S 

DriveD 

Drive H 

Drive R 

The Sun386i 3-1/2" diskette drive, used for reading PC format diskettes onto the 
hard disk and writing data to be stored on floppy. Drive A is not accessible across a 
network. 

A virtual disk stored in a file in lhomelyournamelpc. Files written to drive C cannot 
be accessed from SunOS. Drive C is generally intended for storage of applications 
and copy protected software but not data. 

Equivalents of SunOS directories. They can be accessed from either DOS or SunOS, 
and can contain any number of files and other directories. The SunOS directories 
referenced by DOS drives other than D, H, and R (described below) are user-defined 
(using the DOS EXTEND command). 

The current SunOS directory when the DOS window was opened. May subsequently 
be changed to any other directory. 

The home directory of the user who opened the window. May subsequently be 
changed to any directory in the user's home directory tree. 

Initially equivalent to the root directory of Sun0S 

File Sharing between SunOS and DOS 
File names under DOS consist of 8 characters, a period, and a 3 character extension. When a SunOS 
filename does not comply with these rules, its name is modified by placing a tilde ( ) in an appropriate loca
tion so that the file name conforms to DOS specifications while remaining unique. It is recommended that 
filenames conform to DOS requirements for files to be used in both SunOS and DOS. 

Last change: 19 February 1988 Sun Release 4.0 



DOS(l) USER COMMANDS DOS( 1) 

Because SunOS and DOS use different conventions for carriage returns, dos2unix and unix2dos are pro
vided to convert text files between the two formats. 

Command Sharing between SunOS and DOS 
The /etc/dos/unix directory contains a list of SunOS commands accessible from DOS. Other SunOS com
mands not in this list can be executed from DOS with the command 'unix command'. SunOS commands 
always use SunOS filename conventions and DOS commands always use DOS filename conventions, 
regardless of whether either type of command is executed from SunOS or DOS. Only DOS commands can 
use drives A and C. 

OPTIONS 
-b Boots (loads) DOS and opens a window using the AUTOEXEC.BAT and CONFIG.SYS files instead 

of /pc/.quickpc. A DOS sign-on message is displayed in the window. 

-s Boot DOS and save a new .quickpc file under the name specified on the SA VE line in 
/pc/.setup.pc. Use this option after making changes to drive C AUTOEXEC.BAT or 
CONFIG.SYS. Exits DOS after saving the .quickpc file. 

-p config 
Loads an alternate file instead of setup.pc. 

-c command 
Executes the given DOS command in the newly created window. 

-w Runs DOS text-only commands and applications in the current Sun View Commands window. 

ENVIRONMENT 

FILES 

DOS_PRINTER The value of this environment variable indicates the timeout (in seconds) for printing. A 
value of 20 (the default) indicates that jobs will be sent to the UNIX print spooler after 
20 seconds of no printing activity from DOS to that printer. A value of O indicates that 
the spooler must be flushed manually from the menu in the window. 

DOSLOOKUP 
If on, this environment variable indicates that a command should be tried as a DOS com
mand if not recognized by SunOS. If DOS supports the command, a DOS window is 
created and the command executed in that window. If the command does not exist, the 
normal Sun0S error message results. 

/etc/dos/unix Files in this directory indicate which SunOS commands are accessible from 
DOS. 

/etc/dos/defaults/.quickpc Default .quickpc file copied into user's home PC directory ( /pc) the first 
time a DOS window is started. Not used by DOS in this location. 

/etc/dos/defaults/setup.pc Default setup.pc file copied into user's home DOS directory ( /pc) the first 
time a DOS window is started. Not used by DOS in this location. 

/etc/dos/defaults/boards.pc Stores information about IBM PC/XT/AT-compatible boards installed in your 
system. 

/etc/dos/defaults/C: Default drive C file copied into a user's home PC directory the first time a 
DOS window is started. 

/pc/autoexec.bat Contains drive assignments, search paths, and other startup commands. 
Searched after C:AUTOEXEC.BAT and D:AUTOEXEC.BAT. 

C:AUTOEXEC.BAT Contains commands to access system printers and special drives. You 
should not need to change the AUTOEXEC.BAT on drive C. Put your 
changes in the AUTOEXEC.BAT on drive H (in your home directory). 
C:AUTOEXEC.BAT is not accessible from SunOS. 

D:AUTOEXEC.BAT If an AUTOEXEC.BAT file exists in the current directory, DOS tries execute 
faster running C:AUTOEXEC.BAT. 

C:CONFIG.SYS Specifies device drivers and other system parameters. C:CONFIG.SYS is 
not accessible from SunOS. 

Sun Release 4.0 Last change: 19 February 1988 159 



DOS(l) USER COMMANDS DOS(l) 

/pc/setup.pc 

/pd .quickpc 

/pc/C: 

Defines printers, standard PC devices, and drive C. One or more of these 
files may exist, under various names which you assign. 
An image of DOS as last saved with dos -s, including all DOS environment 
variables and drivers that were in effect at that time. DOS normally reads 
this file at startup. 
A user's personal copy of drive C. 

DIAGNOSTICS 
Cannot save filename quick-start file. 

The dos command was unable to save the specified quick-start file. Check the SA VE setting in 
your PC setup file (normally /pc/setup.pc) Also check file access permissions on the specified 
quick-start file. 

Cannot loadfilename quick-start file. 
dos was unable to read the specified quick-start file. Check the SA VE setting in your setup.pc 
file. Also check file access permissions on the specified quick-start file. 

Possible software incompatibility. Unsupported 286 instruction instruction at address. 
Possible software incompatibility. Unsupported 386 instruction 
Possible software incompatibility. Segment wrap. 
Possible software incompatibility. Two-byte opcode not 

The application you are running was written specifically for 80286 or 80386 machines. 
Software run from a DOS window must be compatible with 8086 systems. 

Copying def a ult configuration files into your 
This is the first time you have run the dos command. A /pc directory is being set up, and 
DOS-related files are being copied into it. 

Another DOS window already has access to device 
Your PC configuration file (normally /pdsetup.pc) is requesting access to a physical device 
that another DOS window is using. 

Port number number out of range for board board. 
The port number specified in the /etddos/defaults/boards.pc is invalid. 

Second port number number out of range for board board. 
The port number specified in the /etddos/defaults/boards.pc is invalid. 

IRQ value number out of range for board board. 
The interrupt level specified in the /etddos/defaults/boards.pc is invalid. 

Interrupt level number is used by DOS to support the device 
The interrupt level specified in the /etc/dos/defaults/boards.pc conflicts with an interrupt 
value currently being used by either a physical or emulated DOS device. 

1/0 address range address - address requested for board already in use by device . 
The address range specified in the /etc/dos/defaults/boards.pc conflicts with range currently 
being used by either a physical or emulated DOS device. 

Cannot share device with a hardware interrupt. 
A shared device specified in the /etddos/defaults/boards.pc was also assigned an interrupt 
level in this file. Shared devices cannot be assigned interrupt levels. 

Couldn't find board in boards.pc. 
A file specified in the PC setup file (normally /pc/setup.pc) is not listed in the 
/etc/dos/defaults/boards.pc file. Check the setup.pc file, or add an entry for the board in 
boards.pc. 

SEE ALSO 

160 

dos2unix(l), unix2dos(l) 
Sun386i User's Guide 
Sun386i Advanced Skills 
DOS Reference Manual 

Last change: 19 February 1988 Sun Release 4.0 



D0S2UNIX ( 1 ) USER COMMANDS D0S2UNIX ( 1 ) 

NAME 
dos2unix - convert text file from DOS format to SunOS format 

SYNOPSIS 
dos2unix [ -iso ] [ - 7 ] originalfile convertedfile 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
dos2unix removes extra carriage returns and converts end of file characters in DOS format text files to 
conform to SunOS requirements. 

This command can be invoked from either DOS or Sun0S. However, the filenames must conform to the 
conventions of the environment in which the command is invoked. 

If the original file and the converted file are the same, dos2unix will rewrite the original file after convert
ing it. 

OPTIONS 
-iso Convert characters in the DOS extended character set to the corresponding ISO standard charac

ters. 

- 7 Convert 8 bit DOS graphics characters to 7 bit space characters so that SunOS can read the file. 

DIAGNOSTICS 
File filename not found, or no read permission 

The input file you specified does not exist, or you do not have read permission ( check with the 
Sun0S Is -I command). 

Bad output filename filename, or no write permission 
The output file you specified is either invalid, or you do not have write permission for that file or 
the directory that contains it. Check also that the drive or diskette is not write-protected. 

Error while writing to temporary file 
An error occurred while converting your file, possibly because there is not enough space on the 
current drive. Check the amount of space on the current drive using the DIR command. Also be 
certain that the default diskette or drive is write-enabled (not write-protected). Note that when this 
error occurs, the original file remains intact. 

Could not rename temporary file to 
Translated temporary file name = filename. 

The program could not perform the final step in converting your file. Your converted file is stored 
under the name indicated on the second line of this message. 

SEE ALSO 
Sun386i Advanced Skills 
DOS Reference Manual 

Sun Release 4.0 Last change: 19 February 1988 161 



DU(lV) USER COMMANDS DU( lV) 

NAME 
du - display the number of disk blocks used per directory or file 

SYNOPSIS 
du [ -s ] [ -a ] [filename ••• ] 

SYSTEM V SYNOPSIS 
du [ -s] [-a] [ -r] [filename ••• ] 

DESCRIPTION 
du gives the number of kilobytes contained in all files and, recursively, directories within each specified 
directory or file.filename. If .filename is missing, '.' (the current directory) is used. 

A file which has multiple links to it is only counted once. 

SYSTEM V DESCRIPTION 
The System V version of du gives the number of 512-byte blocks rather than the number of kilobytes. 

OPTIONS 
-s Only display the grand total for each of the specified filenames. 

-a Generate an entry for each file. 

Entries are generated only for each directory in the absence of options. 

SYSTEM V OPTIONS 
-r The System V version of du is normally silent about directories that cannot be read, files that can

not be opened, etc. The-r option will cause du to generate messages in such instances. 

EXAMPLE 
Here is an example of using du in a directory. We used the pwd(l) command to identify the directory, 
then used du to show the usage of all the subdirectories in that directory. The grand total for the directory 
is the last entry in the display: 

%pwd 
/usr/ralpb/misc 
%du 
s 
33 
44 
217 
401 
144 
80 
388 
93 
15 
1211 

./jokes 

./squash 

. /tech.papers/I pr .document 

. /tech.papers/new .manager 

. /tech.papers 

./memos 

./letters 

./window 

./messages 

. /useful.news 

% 

SEE ALSO 
df( 1 ), pwd( 1 ), quot(8) 

BUGS 
Filename arguments that are not directory names are ignored, unless you use -a . 
If there are too many distinct linked files, du will count the excess files more than once. 

162 Last change: 9 September 1987 Sun Release 4.0 



ECHO( lV) USER COMMANDS ECHO(lV) 

NAME 
echo - echo arguments to the standard output 

SYNOPSIS 
echo [ -n ] [ argument ••• ] 

SYSTEM V SYNOPSIS 
echo argument ••• 

DESCRIPTION 
echo writes its arguments on the standard output. Arguments must be separated by SP ACE characters or 
TAB characters, and terminated by a NEWLINE. 

echo is useful for producing diagnostics in shell programs and for writing constant data on pipes. If you 
are using the Bourne shell ( sh(l)), you can send diagnostics to the standard error file by typing: 

echo ... 1>& 

SYSTEM V DESCRIPTION 
Note: If /usr/5bin is ahead of /usr/bin in the Bourne shell's search path, its built-in echo command mimics 
the System V version of echo as described here. 

echo also understands C-like escape conventions; beware of conflicts with the shell's use of'\': 
\b BACKSPACE 
\c Print line without NEWLINE 
\I FORMFEED 
\n NEWLINE 
\r RETURN 
\t TAB 
\v vertical TAB 
\\ backslash 
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number n, which must 

start with a zero. 
OPTIONS 

-n Do not add the NEWLINE to the output. 
FILES 

/usr/5bin 
/usr/bin 

SEE ALSO 
sh(l) 

Sun Release 4.0 Last change: 9 September 1987 163 



ED( 1) USER COMMANDS ED(l) 

NAME 
ed- basic line editor 

SYNOPSIS 
ed [ - ] [ -sx ] [ -p string ] [filename ] 

DESCRIPTION 
ed is the most basic line editor of the UNIX system. Although superseded by ex(l) and vi(l) for most pur
poses, ed is still used by various system utilities. 

ed operates on a copy of filename, called a buffer, and overwrites a file only when you issue thew (write) 
command. ed provides line oriented editing commands to display or change lines, to insert and delete lines 
from the buffer, to move or copy lines within the buffer, or to substitute character strings within lines. 

OPTIONS 

-s Suppress printing of character counts (bye, r, and w commands), diagnostics (bye and q com
mands), and the! prompt (after a! command). Also, suppress printing the? diagnostic before 
overwriting unsaved changes in the buffer. 

-x Edit an encrypted file (see crypt(l) for details). 

-p string Use string as the editing prompt in command mode. 

USAGE 

164 

Command Structure 
ed commands have a simple and regular structure. They consist of an optional address, or two optional 
addresses separated by a comma or semicolon, then a single-character command, which may be followed 
by a parameter for that command: 

[address[ , address]] command [parameter] 

If only one address is specified, operations are performed on that line. If two addresses are specified, ed 
performs the operation on the inclusive range of lines. Commands that requires an address use certain 
addresses by default, typically the address of the current line. 

For example, 1,lOp means "print (display) lines 1 through 10" (two addresses), Sa means "append text 
after line 5" (one address), and d means "delete the current line" (no address with the current line used as 
default). The meaning of parameter varies for each operation - for the move (m) and transfer (t) opera
tions, for instance, it is the line that the addressed lines are to be moved to or transferred after. For reading 
(r) and writing (w) a file, parameter specifies the name of the file that is to be read or written. 

ed is extremely terse in its interaction with the user. Its normal response to most problems is simply a 
question mark(?). This may happen when ed cannot find a specified line in the buffer, or if a search for a 
regular expression fails in a substitute (s) command. The h command prints a somewhat more complete 
diagnostic for the most recent error encountered; the H command requests that the diagnostic be printed for 
all errors. 

Addresses 
Lines can be addressed in several ways: 

nnn By line number. Lines in the buffer are numbered relative to the start of the buffer. When 
displayed, line numbers are not physically present with the text of the file or buffer. 

$ The last line of the buffer. 

The current line. ed keeps track of the line on which you last performed an operation. This line is 
called the current line. You can address this line by typing a "dot" character. 

±n By relative line number. Address the line number that is n lines higher, or n lines lower than the 
current line. 

'c Address the line marked with the mark character c, which must be a lower-case letter. Lines are 
marked with the k command, described below. 

Last change: 18 January 1988 Sun Release 4.0 



ED( 1) USER COMMANDS ED(l) 

IRE/ An RE is a Regular Expression, described under Regular Expressions below. When enclosed by 
slashes, RE addresses the first line found by searching for a matching string. The search proceeds 
forward from the line following the current line, and wraps through the beginning of the buffer to 
include all preceding lines, as well as the current line. 

?RE? An RE enclosed in question marks addresses the first line containing a match found by searching 
backward from the line preceding the current line. The search wraps through the end of the buffer 
to include all lines following the current line (in reverse order), as well as the current line. 

address±n 
An address followed by a plus sign ( +) or a minus sign (-), followed by a decimal number, 
specifies that address plus or minus the indicated number of lines. (The plus sign may be omit
ted.) If the address is omitted, the current line is used as the base. For example, '31-3' addresses 
line 28 in the buffer. 

address± 
If an address ends with'+' or'-', then 1 is added to or subtracted from the address, respectively. 
As a consequence of this rule and the previous rule, the address'-' refers to the line preceding the 
current line. (To maintain compatibility with earlier versions of ed, the character ,", is equivalent 
to '-'.) Trailing '+' and '-' characters have a cumulative effect, so ' - - ' refers to the current line, 
less 2. 

By itself, a comma stands for the address pair '1,$'. 

A semicolon by itself stands for the pair'.,$'. 

By default for a given command. If you do not specify an address for a command to operate on, a 
command that requires an address supplies one by default. This is typically the current line. 

A pair of addresses separated by a comma signifies an inclusive range of lines, and the current line is not 
changed unless the command changes it. When addresses are separated by a semicolon, however, the 
current line is set to the address preceding the semicolon before any subsequent addresses are interpreted. 
This feature can be used to determine the starting line for forward and backward searches using'/', and'?'. 

The second address of any two-address sequence must correspond to a line that occurs later in the buffer 
than that of the first address. 

Regular Expressions 
ed supports a limited form of regular-expression notation, which can be used in a line address to specify 
lines by content. A regular expression (RE) specifies a set of character strings to match against - such as 
"any string containing digits 5 through 9" or "only lines containing uppercase letters." A member of this set 
of strings is said to be matched by the regular expression. Regular expressions or patterns are used to 
address lines in the buffer (see Addresses, above), and also for selecting strings to be replaced using the s 
(substitute) command. 

Where multiple matches are present in a line, a regular expression matches the the longest of the leftmost 
matching strings. 

Regular expressions can be built up from the following "single-character" RE's: 

c Any ordinary character not listed below. An ordinary character matches itself. 

\ Backslash. When followed by a special character, the RE matches the "quoted" character. A 
backslash followed by one of <, >, (, ), {, or } , represents an operator in a regular expression, as 
described below. 

Sun Release 4.0 

Dot. Matches any single character except NEWLINE. 

As the leftmost character, a caret (or circumflex) constrains the RE to match the leftmost portion 
of a line. A match of this type is called an "anchored match" because it is "anchored" to a specific 
place in the line. The " character loses its special meaning if it appears in any position other than 
the start of the RE. 

Last change: 18 January 1988 165 



ED( 1) USER COMMANDS ED(l) 

$ As the rightmost character, a dollar sign constrains the RE to match the rightmost portion of a line. 
The $ character loses its special meaning if it appears in any position other than at the end of the 
RE. 

"RE$ The construction "RE $ constrains the RE to match the entire line. 

\< The sequence\< in an RE constrains the one-character RE immediately following it only to match 
something at the beginning of a "word"; that is, either at the beginning of a line, or just before a 
letter, digit, or underline and after a character not one of these. 

\> The sequence\> in an RE constrains the one-character RE immediately following it only to match 
something at the end of a "word." 

[ c ... ] A nonempty string of characters, enclosed in square brackets matches any single character in the 
string. For example, [abcxyz] matches any single character from the set 'abcxyz'. When the first 
character of the string is a caret (), then the RE matches any character except NEWLINE and those 
in the remainder of the string. For example, '[" 45678]' matches any character except '45678'. A 
caret in any other position is interpreted as an ordinary character. 

[] c ... ] The right square bracket does not terminate the enclosed string if it is the first character (after an 
initial,",, if any), in the bracketed string. In this position it is treated as an ordinary character. 

[ l-r] The minus sign, between two characters, indicates a range of consecutive ASCII characters to 
match. For example, the range '[0-9]' is equivalent to the string '[Oi23456789]'. Such a brack
eted string of characters is known as a character class. The'-' is treated as an ordinary character 
if it occurs first ( or first after an initial ") or last in the string. 

d Delimiter character. The character used to delimit an RE within a command is special for that 
command (for example, see how / is used in the g command, below). 

The following rules and special characters allow for constructing RE's from single-character RE's: 

A concatenation of RE's matches a concatenation of text strings, each of which is a match for a 
successive RE in the search pattern. 

* A single-character RE, followed by an asterisk ( *) matches zero or more occurrences of the 
single-character RE. Such a pattern is called a closure. For example, [a-z][a-z] * matches any 
string of one or more lower case letters. 

\{m\} 
\{m,\} 
\{m,n\} A one-character RE followed by \{m \}, \{m, \}, or \{m,n \} is an RE that matches a range of 

occurrences of the one-character RE. The values of m and n must be nonnegative integers less. than 
256; \{m \} matches exactly m occurrences; \{m, \} matches at least m occurrences; \{m,n \} 
matches any number of occurrences between m and n, inclusively. Whenever a choice exists, the 
RE matches as many occurrences as possible. 

\( ... \) An RE enclosed between the character sequences \( and\) matches whatever the unadorned RE 
matches, but saves the string matched by the enclosed RE in a numbered substring register. There 
can be up to nine such substrings in an RE, and parenthesis operators can be nested. 

\n Match the contents of the nth substring register from the current RE. This provides a mechanism 
for extracting matched substrings. For example, the expression "\(.*\)\1$ matches a line consist
ing of two repeated appearances of the same string. When nested parenthesized substrings are 
present, n is determined by counting occurrences of\( starting from the left. 

/ / The null RE (/ /) is equivalent to the last RE encountered. 

Commands 

166 

The commands a for append, c for change, and i for insert, allow you to add new text to the buffer. While 
accepting new text, ed is said to be in input mode. While in input mode, no commands are recognized; all 
character input is inserted into the buffer. To exit from input mode, enter a dot (.) on a line by itself; ed 
then reverts to command mode. Or, you can interrupted (typically with CTRL-C), in which case it displays 

Last change: 18 January 1988 Sun Release 4.0 



ED( 1) USER COMMANDS ED(l) 

a ? and returns to command mode. 

Commands may accept zero, one, or two addresses. Commands that accept no addresses regard the pres
ence of an address as an error. Commands that accept one or two addresses assume default addresses when 
too few addresses are given; if more addresses are given than such a command requires, only the last ones 
are used 

In the following list of ed commands, the default addresses are shown in parentheses; the parenthesized 
addresses are not part of the command. 

It is generally illegal for more than one command to appear on a line. However, any command (except e, f, 
r, or w) may be followed by I, n, or p in which case the current line is either listed, numbered or printed, 
respectively. 
(.)a 

text 

( .) C 

text 

Append text. Add lines of text into the buffer after the addressed line. The resulting current line 
is the last line of input, or the addressed line if no text is entered. Address O is legal for this com
mand, in which case the text is placed at the beginning of the buffer. The maximum number of 
characters per input line (from a terminal) is 256, including the final NEWLINE. 

Change lines. Delete the addressed lines, and then accept lines of text to replace them. c accepts 
one or two addresses; the default is the current line. The resulting current line is the last line of 
input, or the line preceding the deleted lines if no text is entered. 

< · '·) d Delete the addressed lines from the buffer. d accepts one or two addresses; the default is the 
current line. The resulting current line is the line following the last one deleted; if the deleted 
lines were at the end of the buffer, the new last line is the resulting current line. 

efilename 
Edit a file. Delete the entire contents of the buffer, and then read in the named file. The resulting 
current line is the last line of the buffer. e reports the number of characters read into the buffer, 
and sets filename to be the current file (for use as a default filename in subsequent commands). If 
no filename is given, the current filename, if any, is used (see the f command, below). If filename 
is replaced by a shell (sh( 1)) command prefaced with a '! ', the shell command is executed and its 
output is read into the buffer after the current line. Such a shell command is not used as the 
current filename. e displays a ? if the buffer has not been written out since the last change made -
another e command in response to the ? forces the command to take effect 

Efilename 
The E command is like e, except that the editor does not check for changes to the buffer since the 
last w command was performed. 

(filename 
Display or set the current filename. If filename is given as an argument, the file (f) command 
changes the current filename to filename; otherwise, it prints the current filename. 

( 1 '$) g!REI command-list 
The global (g) command performs command-list on all lines in the range of addresses that match 
RE. ed executes command-list for each matching line in succession, setting the current line to 
each in tum. command-list can contain a single command, or it can be continued across input 
lines, with one ed command per line, by escaping all but the last NEWLINE with a\ character. 
Operations that place ed into input mode (a, i, and c), are permitted in command-list; the final '.' 
terminating text input may be omitted if it is the last line of the command-list. g, G, v, and V 
commands, however, are not permitted. An empty command-list is equivalent to the p command. 

Sun Release 4.0 Last change: 18 January 1988 167 



ED( 1) 

168 

USER COMMANDS ED(l) 

(l,$) GIRE/ 

The interactive G (Global) command, selects all lines that match the given RE. Then, each 
selected line is made current, and any one command (other than one of the a, c, i, g, G, v, and V 
commands) can be performed upon that line. A NEWLINE acts as a null command; an & reexe
cutes the most recent command. Commands entered during execution of the G command can 
address and affect lines other than the current line. The G command can be terminated by an 
interrupt (typically CTRL-D). 

h Help. Display a short error message that explains the reason for the most recent ? diagnostic. 

H Automatic printing of help diagnostics. Toggle between printing the ? diagnostic, or automati
cally printing diagnostic messages as well. 

(.) i 

text 
Insert Text Insert the given text into the buffer, above the addressed line. i accepts one address; 
the default is the current line. The resulting current line is the last line of input; if no text is input, 
it is the line just before the addressed line. This command differs from the a command only in the 
placement of the input text; Address O is not allowed for this command. The maximum number of 
characters that may be entered from a terminal is 256 per line (including the NEWLINE character). 

< ·' .+l) j Join Lines. Remove the NEWLINE character from between the two addressed lines. The defaults 
are the current line and the line following. If exactly one address is given, this command does 
nothing. The joined line is the resulting current line. 

(·)kc Mark the addressed line with the name c, a lower-case letter. The address-form, 'c, addresses the 
line marked by c. k accepts one address; the default is the current line. The current line is left 
unchanged. 

( ·' ·) I List nonprinting characters. Print the addressed lines in an unambiguous way: a few nonprinting 
characters, such as TAB and BACKSPACE are represented by visually mnemonic overstrikes. All 
other nonprinting characters are shown in octal, with long lines folded I accepts one or two 
addresses; the default is the current line. The resulting current line is the last line printed. An I 
command may be appended to any command other thane, f, r, or w. 

( ·' ·) maddress 
Move addressed lines to just after address. Address O is legal, and moves the addressed line(s) to 
the beginning of the file. An error results if address falls within the range of lines to move. m 
accepts two addresses to specify a range of lines to move; the default is the current line. The 
resulting current line is the last of the moved lines. 

< ·' ·) n Number the displayed lines. Print the addressed lines, preceding each with its line number and a 
TAB character. n accepts one or two addresses; the default is the current line. The resulting 
current line is the last line printed. The n command can be appended to any command other than 
e, f, r, orw. 

< ·' ·) p Print the addressed lines. p accepts one or two addresses; the default is the current line. The 
resulting current line is the last line printed. The p command may be appended to any command 
other thane, f, r, or w. For example, dp deletes the current line and prints the new current line. 

P Toggle prompting on or off. When prompting is in effect, the editor prompts with a * for com
mands. A subsequent P command turns prompting off. 

q Quit Exit from ed. Note, however, that the buffer is not automatically written out; you must 
write any changes to be saved with the w command; ed warns you once if you have not saved 
your changes (unless the '-' option is in effect). A second q forces ed to exit regardless, destroy
ing the buffer's contents. 

Q Force quit. This is the same as q, but you do not get any warning if you have not previously writ
ten out the buffer. ed simply exits. 

Last change: 18 January 1988 Sun Release 4.0 



ED( 1) USER COMMANDS ED(l) 

($) r filename 
Read in the contents of filename, after the addressed line. If filename is not given, the current 
filename, if any, is used (see thee and f commands). The current filename is not altered; if there 
is no current filename, filename becomes the current filename. r accepts one address; the default 
is$. Address O is legal for r, in which case the file is read in at the beginning of the buffer. If the 
read is successful, the number of characters read is typed. The resulting current line is the last line 
read in from the file. If filename is replaced by a shell (sh(l)) command prefaced with a !, the 
shell command is executed and its output is read in. Such a shell command is not remembered as 
the current filename. 

(.,.) s/RE/rs/ 
(.,.) s/RE/rs/g 
(.,.) s!RE/rsln 

Substitute. Search each addressed line for the first occurrence of a string matching the specified 
RE, and replace it with rs, the replacement string. If g (global suffix) is appended to the com
mand, replace all (non-overlapped) matching strings in each addressed line with the replacement 
string rs. Note: the g suffix is distinct from the g command. If a number n is appended, replace 
only the n 'th occurrence of the matched string on each addressed line. s accepts one or two 
addresses; the default is the current line. The resulting current line is the last line on which a sub
stitution is made. An error results if RE matches no strings in the addressed liG'~ or range. Any 
character (other than SPACE or NEWLINE can be used instead of/ to delimit RE and rs. As with 
RE's in addresses, you can refer to the entire string matched by RE with an '&'; you can refer to 
parenthesized substrings within RE using \1 ... \n. When % is the only character in rs, the rs from 
in the most recent substitute command is used as the current rs. The % loses its special meaning 
when it is in a replacement string of more than one character, or if it is preceded by a backslash. 

A line may be split by substituting a NEWLINE character into it. The NEWLINE in the replace
ment must be escaped by preceding with an '\'. Such substitutions cannot be done as part of a g or 
v command list. 

( ·' ·) taddress 

Transfer. Transpose a copy of the addressed range of lines to just after the given address. t 
(transfer) is like m (move), except that it copies of the lines, rather than moving them. t accepts 
two addresses preceding the operation letter, the current address is the default. The resulting 
current line is the last line copied. Address O is allowed. 

u Undo. Reverse the effect of the most recent command that modified the buffer. A second u 
undoes the undo operation. 

(1,$) v/RE/command-list 
This command is the same as the global command g except that the command-list is executed with 
'.' initially set to every line that does not match the RE. 

(l,$) VIRE 

Similar to the G command, except that the lines selected are those that do not match the RE. 

( 1 '$) w filename 

Write the addressed lines to filename. If the file does not exist, ed creates it. The current filename 
is not altered; if there is no current filename, then filename becomes current. If no filename is 
given, the current filename, if any, is used. w accepts one or two addresses; the default is all lines 
in the file. The current line is unchanged. If the command is successful, the number of characters 
written is displayed. If filename is replaced by a shell (sh(l)) command prefaced with a '!', the 
shell command is executed with standard input taken from the addressed lines. Such a shell com
mand is not remembered as the current filename. 

(l,$) W filename 

Like w, but append the addressed lines onto the named file. 

x Encrypt the file. ed prompts for an encryption key from the standard input. Subsequent e, r, and 

Sun Release 4.0 Last change: 18 January 1988 169 



ED(l) USER COMMANDS ED(l) 

w commands encrypt and decrypt the text with this key (see crypt(l)). An empty key turns off 
encryption. Encryption can also be specified on the command line with the -x option. 

( $) = Display the line number of the addressed line; the current line remains unchanged. 

!shell-command 
Run a shell command. shell-command is a (Bourne shell) command line. ed replaces the unes
caped character % with the current filename; if a ! appears as the first character of the shell com
mand, it is replaced with the text of the previous shell command. (!! repeats the last shell com
mand.) If any such expansion is performed, the expanded line is echoed. The current line is 
unchanged. 

address 
NEWLINE 

An address, alone on a line, prints the addressed line. A NEWLINE alone is equivalent to '.+lp' 
which is useful for stepping forward through the buffer. 

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level. 

File Format Specification Support 
ed supports the fspec(5) formatting capability for displaying lines. When the first line of a file is a format 
specification of the form: 

<:ts[,ts] ... smax:> 

where ts is the column number of a tab stop and max is the maximum line length for display purposes, and 
with the terminal in 'stty -tabs' or 'stty tab3' mode (see stty(l V) for details), the indicated tab stops are 
used in displayed lines. While inserting text, however, tab stops are set to every eighth column. 

ENVIRONMENT 

FILES 

TMPDIR If this environment variable is set and is not null, its value is used in place of /usr/tmp as the 
directory in which the temporary file is placed. 

/usr/tmp/e# 
ed.hup 

temporary;# is the process number 
file for saved work if the terminal is hung up 

SEE ALSO 
crypt(l), ex(l), grep(lV), sed(lV), sh(l), stty(lV), vi(l), regexp(3), fspec(5) 

Editing Text Files 

LIMITATIONS 

170 

The following limitations apply: 

512 characters per line. 
256 characters per global command-list. 
1024 characters per filename. 
The limit on the number of lines depends on the amount of user memory: 
each line takes 1 word. 

When reading a file, ed discards ASCII NUL characters and all characters after the last NEWLINE. Files 
(such as executable images) that contain characters not in the ASCII set (bit 8 on) cannot be edited using ed. 

If a file is not terminated by a NEWLINE character, ed adds one and prints a message saying that it has done 
so. 

If the closing delimiter of an RE or of a replacement string (such as /) would be the last character before a 
NEWLINE, that delimiter can be omitted, in which case the addressed line is printed. The following pairs 
of commands are equivalent: 

s/sl/s2 s/sl/s2/p 
g/sl g/sl/p 
?sl ?sl? 

Last change: 18 January 1988 Sun Release 4.0 



ED( 1) USER COMMANDS ED( 1) 

DIAGNOSTICS 
? For command errors. 

?file :error 
For an inaccessible file (use the h (help) and H (Help) commands for detailed explanations). 

If changes have been made in the buffer since the last w command, ed issues a warning ? when a command 
is given that would destroy the buffers contents. A second e or q command at this point will take effect. 
The'-' and-s command-line options inhibit this feature. 

CA VEA TS AND BUGS 
A ! command cannot be subject to a g or a v command. 

The sequence \n in an RE does not match a NEWLINE character. 

Files encrypted directly with the crypt(l) command with the null key cannot be edited. 

The encryption facilities of ed are not available on software shipped outside the U.S. 

Characters are masked to 7 bits on input. 

If the editor input is coming from a command file, the editor exits at the first failure of a command in that 
file. 

Sun Release 4.0 Last change: 18 January 1988 171 



ENV( 1) USER COMMANDS 

env - obtain or alter environment variables for command execution 

SYNOPSIS 
env [ - ] [ name=value ... ] [command] 

DESCRIPTION 

ENV(l) 

env obtains the current environment, modifies it according to its arguments, and executes the command 
with the modified environment that results. 

If no command is specified, the resulting environment is displayed. 

OPTIONS 

name=value 

SEE ALSO 

Ignore the environment that would otherwise be inherited from the current shell. 
Restricts the environment for command to that specified by the arguments. 

Set the environment variable filename to value and add it to the environment. 

sh(l), execve(2), profi.1(2), environ(SV) 

172 Last change: 9 September 1987 Sun Release 4.0 



EQN( 1) USER COMMANDS EQN(l) 

NAME 
eqn, neqn, checkeq - typeset mathematics 

SYNOPSIS 
eqn [ -dxy] [ -pn ] [ -sn ] [ -fn] [filename ] ... 
neqn [filename ] ... 
checkeq [filename ] ... 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
eqn (and neqn) are language processors to assist in describing equations. eqn is a preprocessor for 
troff(l) and is intended for devices that can print troff's output. neqn is a preprocessor for nroff(l) and is 
intended for use with terminals. Usage is almost always: 

tutorial% eqn file .•• I troff 
tutorial% neqnfile ... I nroff 

If no files are specified, eqn and neqn read from the standard input. A line beginning with '.EQ' marks the 
start of an equation; the end of an equation is marked by a line beginning with' .EN'. Neither of these lines 
is altered, so they may be defined in macro packages to get centering, numbering, etc. It is also possible to 
set two characters as 'delimiters'; subsequent text between delimiters is also treated as eqn input. 

checkeq reports missing or unbalanced delimiters and .EQ/ .EN pairs. 

OPTIONS 
-dxy 

-pn 

-sn 

-fn 

Set equation delimiters set to characters x and y with the command-line argument. The more 
common way to do this is with delimxy between .EQ and .EN. The left and right delimiters may 
be identical. Delimiters are turned off by delim off appearing in the text. All text that is neither 
between delimiters nor between .EQ and .EN is passed through untouched. 

Reduce subscripts and superscripts by n point sizes from the previous size. In the absence of the 
-p option, subscripts and superscripts are reduced by 3 point sizes from the previous size. 

Change point size to n globally in the document. The point size can also be changed globally in 
the body of the document by using the gsize directive. 

Change font to n globally in the document. The font can also be changed globally in the body of 
the document by using the gf ont directive. 

EQN LANGUAGE 
Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or circumflexes. 
Braces {} are used for grouping; generally speaking, anywhere a single character like x could appear, a 
complicated construction enclosed in braces may be used instead. Tilde ( ) represents a full space in the 
output, circumflex C) half as much. 

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes xi, a sub i 
sup 2 produces a/, and e sup {x sup 2 + y sup 2} gives ex

2

+l. 

Fractions are made with over: a over b yields : . 

sqrt makes square roots: 1 over sqrt {ax sup 2 +bx+c} results in ...J 
1 

. 
ax2+bx+c 

" The keywords from and to introduce lower and upper limits on arbitrary things: lim Di is made with lim 
"~o 

from {n-> inf} sum from O to n x sub i. 

Left and right brackets, braces, etc., of the right height are made with left and right: left [ x sup 2 + y sup 

2 over alpha right J = 1 produces [ x 2+f] = I. The right clause is optional. Legal characters after left 

Sun Release 4.0 Last change: 21 December 1987 173 



EQN(l) USER COMMANDS EQN(l) 

and right are braces, brackets, bars, c and f for ceiling and floor, and'"' for nothing at all (useful for a 
right-side-only bracket). 

a 
Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b above c} produces b. 

C 

There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and cpile center, with dif-
ferent vertical spacing, and rpile right justifies. 

X; 1 
Matrices are made with matrix: matrix { lcol { x sub i above y sub 2} ecol { 1 above 2}} produces 

2
. 

Y2 
In addition, there is rcol for a right-justified column. 

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot= f(t) bar is 
i=f (t), y dotdot bar = n under is y =!!,and x vec = y dyad is Y= y. 
Sizes and font can be changed with size nor size ±n, roman, italic, bold, and font n. Size and fonts can 
be changed globally in a document by gsize n and gfont n, or by the command-line arguments -sn and -fn. 

Successive display arguments can be lined up. Place mark before the desired lineup point in the first equa
tion; place lineup at the place that is to line up vertically in subsequent equations. 

Shorthands may be defined or existing keywords redefined with define: 
define thing % replacement % 

defines a new token called thing which will be replaced by replacement whenever it appears thereafter. 
The% may be any character that does not occur in replacement. 

Keywords like sum(~:), int <J), inf (oo), and shorthands like>=(~),->(~), and != (:;t) are recognized. 
Greek letters are spelled out in the desired case, as in alpha or GAMMA. Mathematical words like sin, 
cos, log are made Roman automatically. troff(l) four-character escapes like \(bu (•) can be used any
where. Strings enclosed in double quotes " ... " are passed through untouched; this permits keywords to be 
entered as text, and can be used to communicate with troff when all else fails. 

SEE ALSO 
troff(l), tbl(l), ms(7), eqnchar(7) 

Formatting Documents 

BUGS 
To embolden digits, parens, etc., it is necessary to quote them, as in bold "12.3". 

174 Last change: 21 December 1987 Sun Release 4.0 



ERROR( 1) USER COMMANDS ERROR( 1) 

NAME 
error - categorize compiler error messages, insert at responsible source file lines 

SYNOPSIS 
error [ -n ] [ -s ] [ -q ] [ -v ] [ -t suffixlist] [ -I ignore/tie ] [filename ] 

DESCRIPTION 
error analyzes error messages produced by a number of compilers and language processors. It replaces 
the painful, traditional methods of scribbling abbreviations of errors on paper, and permits error messages 
and source code to be viewed simultaneously. 

error looks at error messages, either from the specified file filename or from the standard input, and: 

• Determines which language processor produced each error message. 

• Determines the file name and line number of the erroneous line. 

• Inserts the error message into the source file immediately preceding the erroneous line. 

Error messages that can't be categorized by language processor or content are not inserted into any file, but 
are sent to the standard output error touches source files only after all input has been read. 

error is intended to be run with its standard input connected with a pipe to the error message source. Some 
language processors put error messages on their standard error file; others put their messages on the stan
dard output. Hence, both error sources should be piped together into error. For example, when using the 
csh syntax, 

tutorial% make -s lint I & error 

will analyze all the error messages produced by whatever programs make(l) runs when making lint. 

error knows about the error messages produced by: make(l), cc(lV), cpp(l), as(l), ld(l), lint(lV), and 
other compilers. For all languages except Pascal, error messages are restricted to one line. Some error 
messages refer to more than one line in more than one file, in which case error duplicates the error mes
sage and inserts it in all the appropriate places. 

OPTIONS 

USAGE 

-n Do not touch any files; all error messages are sent to the standard output 

-q error asks whether the file should be touched. A 'y' or 'n' to the question is necessary to continue. 
Absence of the -q option implies that all referenced files ( except those referring to discarded error 
messages) are to be touched. 

-v After all files have been touched, overlay the visual editor vi with it set up to edit all files touched, 
and positioned in the first touched file at the first error. If vi(l) can't be found, try ex(l) or ed(l) 
from standard places. 

-t suffixlist 
Take the following argument as a suffix list. Files whose suffices do not appear in the suffix list are 
not touched. The suffix list is dot separated, and'•' wildcards work. Thus the suffix list: 

.c.y.f•.h 

allows error to touch files ending with '.c', '.y', '.f•' and' .h'. 

-s Print out statistics regarding the error categorization. 

error catches interrupt and terminate signals, and terminates in an orderly fashion. 

Action Statements 
error does one of six things with error messages. 

synchronize Some language processors produce short errors describing which file they are processing. 

Sun Release 4.0 

Error uses these to determine the file name for languages that don't include the file name 
in each error message. These synchronization messages are consumed entirely by error. 

Last change: 9 September 1987 175 



ERROR( 1) USER COMMANDS ERROR( 1) 

FILES 

discard 

nullify 

Error messages from lint that refer to one of the two lint libraries, /usr/lib/Iint/llib-Ic and 
/usr/lib/lint/llib-port are discarded, to prevent accidently touching these libraries. 
Again, these error messages are consumed entirely by error. 

Error messages from lint can be nullified if they refer to a specific function, which is 
known to generate diagnostics which are not interesting. Nullified error messages are not 
inserted into the source file, but are written to the standard output. The names of func
tions to ignore are taken from either the file named .errorrc in the user's home directory, 
or from the file named by the -I option. If the file does not exist, no error messages are 
nullified. If the file does exist, there must be one function name per line. 

not file specific Error messages that can't be intuited are grouped together, and written to the standard 
output before any files are touched. They are not inserted into any source file. 

file specific 

true errors 

Error messages that refer to a specific file but to no specific line are written to the stan
dard output when that file is touched. 

Error messages that can be intuited are candidates for insertion into the file to which they 
refer. 

Only true error messages are inserted into source files. Other error messages are consumed entirely by 
error or are written to the standard output. error inserts the error messages into the source file on the line 
preceding the line number in the error message. Each error message is turned into a one line comment for 
the language, and is internally flagged with the string ### at the beginning of the error, and % % % at the 
end of the error. This makes pattern searching for errors easier with an editor, and allows the messages to 
be easily removed. In addition, each error message contains the source line number for the line the message 
refers to. A reasonably formatted source program can be recompiled with the error messages still in it, 
without having the error messages themselves cause future errors. For poorly formatted source programs 
in free format languages, such as C or Pascal, it is possible to insert a comment into another comment, 
which can wreak havoc with a future compilation. To avoid this, format the source program so there are no 
language statements on the same line as the end of a comment. 

/.errorrc 
/dev/tty 

function names to ignore for lint error messages 
user's teletype 

SEE ALSO 

BUGS 

176 

as(l), cc(lV), cpp(.1), csh(l), ed(l), ex(l), ld(l), lint(lV), make(l), vi(l) 

Opens the tty-device directly for user input. 

Source files with links make a new copy of the file with only one link to it. 

Changing a language processor's error message format may cause error to not understand the error mes
sage. 

error, since it is purely mechanical, will not filter out subsequent errors caused by "floodgating" initiated 
by one syntactically trivial error. Humans are still much better at discarding these related errors. 

Pascal error messages belong after the lines affected, error puts them before. The alignment of the I mark
ing the point of error is also disturbed by error. 

error was designed for work on CRT 'sat reasonably high speed. It is less pleasant on slow speed termi
nals, and has never been used on hardcopy terminals. 

Last change: 9 September 1987 Sun Release 4.0 



EX( 1) USER COMMANDS EX( 1) 

NAME 
ex, edit, e - line editor 

SYNOPSIS 
ex [ - ] [ -Ir Rvx ] [ -t tag ] [ -wnnn ] [ +command] filename . .. 

edit [ options ] 

DESCRIPTION 
ex, a line editor, is the root of a family of editors that includes edit, ex(l), and vi(l) (the display editor). In 
most cases vi is preferred for interactive use. 

OPTIONS 

-I 

-r 

-R 
-v 

-x 

-t tag 

-wnnn 

Suppress all interactive feedback to the user (useful for processing ex scripts in shell files). 

Set up for editing LISP programs. 

Recover the indicated filenames after a system crash. 

Read only. Do not overwrite the original file. 

Start up in display editing state using vi. You can achieve the same effect by simply typing the 
vi command itself. 

Prompt for a key to be used in encrypting the file being edited. 

Edit the file containing the tag tag. A tags database must first be created using the ctags( 1) 
command. 

Set the default window (number of lines on your terminal) to nnn - this is useful if you are 
dialing into the system over a slow phone line. 

+command Start the editing session by executing command. 

ENVIRONMENT 

FILES 

The editor recognizes the environment variable EXINIT as a command (or list of commands separated by I 
characters) to run when it starts up. If this variable is undefined, the editor checks for startup commands in 
the file /.exrc file, which you must own. However, if there is a .exrc owned by you in the current direc
tory, the editor takes its startup commands from this file - overriding both the file in your home directory 
and the environment variable. 

/usr/Iib/ex?. ?strings 
/usr/Iib/ex?. ?recover 
/usr/Iib/ex?. ?preserve 
/etc/termcap 
.exrc 
/.exrc 

ltmp/Exnnnnn 
ltmp/Rxnnnnn 
/var/preserve 

error messages 
recover command 
preserve command 
describes capabilities of terminals 
editor startup file for current directory 
user's editor startup file 
editor temporary file 
file named buffer temporary 
preservation directory 

SEE ALSO 

BUGS 

awk( 1 ), ctags(l ), ed(l ), vi(l ), grep(l V), sed(l V), termcap(5), environ(5V) 

Editing Text Files 

All marks are lost on lines changed and then restored with the undo commmand, if the marked lines were 
changed. undo never clears the buffer modified condition. 

The z command prints a number of logical rather than physical lines. More than a screen full of output 
may result if long lines are present. 

Sun Release 4.0 Last change: 24 September 1987 177 



EX(l) USER COMMANDS 

File input/output errors do not print a name if the command line'-' option is used. 

There is no easy way to do a single scan ignoring case. 

The editor does not warn if text is placed in named buffers and not used before exiting the editor. 

Null characters are discarded in input files, and cannot appear in resultant files. 

EX(l) 

With the modeline option in effect, the editor checks the first five lines of the text file for commands of the 
form 

ex: comma.nd: 
or 

vi: command: 
if any are found, the editor executes them. This can result in unexpected behavior, and is not recom
mended in any case. In earlier releases, modeline was in effect by default Now it is not, but setting it in 
the .exrc file or the EXINIT environment variable can still produce untoward effects. 

RESTRICTIONS 
The encryption facilities of ex are not available on software shipped outside the U.S. 

178 Last change: 24 September 1987 Sun Release 4.0 



EXPAND( 1) USER COMMANDS EXPAND(!) 

NAME 
expand, unexpand - expand TAB characters to SP ACE characters, and vice versa 

SYNOPSIS 
expand [ -tabstop] [-tab], tab2, .. . , tabn] [filename ... ] 

unexpand [ -a ] [filename . . . ] 

DESCRIPTION 
expand copies filenames ( or the standard input) to the standard output, with TAB characters expanded to 
SPACE characters. BACKSPACE characters are preserved into the output and decrement the column count 
for TAB calculations. expand is useful for pre-processing character files (before sorting, looking at specific 
columns, etc.) that contain TAB characters. 

unexpand copies filenames (or the standard input) to the standard output, putting TAB characters back into 
the data. By default, only leading SPACE and TAB characters are converted to strings of tabs, but this can 
be overridden by the -a option (see the OPTIONS section below). 

OPTIONS 
expand 

-tabstop 
Specify as a single argument, sets TAB characters tabstop SPACE characters apart instead of the 
default 8. 

-tab], tab2, .. . , tabn 

unexpand 
-a 

Sun Release 4.0 

Set TAB characters at the columns specified by tab] •• • 

Insert TAB characters when replacing a run of two or more SPACE characters would produce a 
smaller output file. 

Last change: 9 September 1987 179 



EXPR( lV) USER COMMANDS EXPR(lV) 

NAME 
expr - evaluate arguments as a logical, arithmetic, or string expression 

SYNOPSIS 
e:xpr argument . .. 

DESCRIPTION 
e:xpr evaluates expressions as specified by its arguments. After evaluation, the result is written on the stan
dard output. Each token of the expression is a separate argument, so terms of the expression must be 
separated by blanks. Characters special to the shell must be escaped. Note: 0 is returned to indicate a zero 
value, rather than the null string. Strings containing blanks or other special characters should be quoted. 
Integer-valued arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-
bit, 2s complement numbers. 

The operators and keywords are listed below. Characters that need to be escaped are preceded by'\'. The 
list is in order of increasing precedence, with equal precedence operators grouped within {} symbols. 

expr \I expr 
Return the first expr if it is neither NULL nor 0, otherwise returns the second expr. 

expr \& expr 
Return the first expr if neither expr is NULL or 0, otherwise returns 0. 

expr { =, \>, \>=, \<, \<=, !=} expr 
Return the result of an integer comparison if both arguments are integers, otherwise returns the 
result of a lexical comparison. 

expr { +, - } expr 
Addition or subtraction of integer-valued arguments. 

expr { \*, /, % } expr 
Multiplication, division, or remainder of the integer-valued arguments. 

string : regular-expression 
match string regular-expression 

The two forms of the matching operator above are synonymous. The matching operators : and 
match compare the first argument with the second argument which must be a regular expression. 
Regular expression syntax is the same as that of ed(l), except that all patterns are "anchored" 
(treated as if they begin with ") and, therefore, " is not a special character, in that context. Nor
mally, the matching operator returns the number of characters matched (0 on failure). Alterna
tively, the \( ••• \) pattern symbols can be used to return a portion of the first argument. 

substr string integer-] integer-2 
Extract the subtring of string starting at position integer-] and of length integer-2 characters. If 
integer-] has a value greater than the length of string, expr returns a null string. If you try to 
extract more characters than there are in string, expr returns all the remaining characters from 
string. Beware of using negative values for either integer-] or integer-2 as expr tends to run for
ever in these cases. 

index string character-list 
Report the first position in string at which any one of the characters in character-list matches a 
character in string. 

length string 
Return the length (that is, the number of characters) of string. 

( expr ) Parentheses may be used for grouping. 

SYSTEM V DESCRIPTION 
The operators substr, index, and length are not supported. 

180 Last change: 5 January 1988 Sun Release 4.0 



EXPR( lV) USER COMMANDS EXPR( lV) 

EXAMPLES 
1. a='expr $a + 1' 

2. 

Adds 1 to the shell variable a. 

# 'For $a equal to either "/usr/abc/file" or just "file"' 
expr $a : '.*/\(.*\)' \I $a 

Returns the last segment of a path name (that is, the filename part). Watch out for/ alone 
as an argument: expr will take it as the division operator (see BUGS below). 

3. # A better representation of example 2. 
expr //$a : '.•/\(.*\)' 

The addition of the II characters eliminates any ambiguity about the division operator and 
simplifies the whole expression. 

4. expr $VAR : '.*' 
Returns the number of characters in $VAR. 

SEE ALSO 
ed(l), sh(l), test(lV) 

EXIT CODE 
expr returns the following exit codes: 

0 if the expression is neither null nor 0 

1 if the expression is null or 0 

2 for invalid expressions. 

DIAGNOSTICS 
syntax error for operator/ operand errors 

BUGS 

non-numeric argument 
if arithmetic is attempted on such a string 

division by zero if an attempt to divide by zero is made 

After argument processing by the shell, expr cannot tell the difference between an operator and an operand 
except by the value. If $a is an =, the command: 

expr $a = '=' 
looks like: 

expr = = = 

as the arguments are passed to expr (and they will all be taken as the= operator). The following works: 

expr X$a = X= 

Note: the match, substr, length, and index operators cannot themselves be used as ordinary strings. That 
is, the expression: 

example% expr index expurgatorious length 
syntax error 
example% 

generates the 'syntax error' message as shown instead of the value 1 as you might expect. 

Sun Release 4.0 Last change: 5 January 1988 181 



FILE( 1) USER COMMANDS FILE ( 1) 

NAME 
file - determine the type of a file by examining its contents 

SYNOPSIS 
file [ -f !file ] [ -cL ] [ -m mfile ] filename . .. 

DESCRIPTION 
file performs a series of tests on each filename in an attempt to determine what it contains. If the contents 
of a file appear to be ASCII text, file examines the first 512 bytes and tries to guess its language. 

file uses the file /etc/magic to identify files that have some sort of magic number, that is, any file contain
ing a numeric or string constant that indicates its type. 

OPTIONS 
-c Check for format errors in the magic number file. For reasons of efficiency, this validation is not 

normally carried out. No file type-checking is done under-c. 

-f /file Get a list of filenames to identify from /file. 

-L If a file is a symbolic link, test the file the link references rather than the link itself. 

-m mfile 
Use mfile as the name of an alternate magic number file. 

EXAMPLE 

FILES 

This example illustrates the use of file on all the files in a specific user's directory: 

example% pwd 
/usr/blort/misc 
example% file * 

code: 

code.c: 

counts: 

doc: 

empty.file: 

libz: 

memos: 

project: 

script: 

titles: 

sS.stuff: 

example% 

/etc/magic 

mc68020 demand paged executable 

c program text 

ascii text 

roff, nroff, or eqn input text 

empty 

archive random library 

directory 

symbolic link to /usr/project 

executable shell script 

ascii text 

cpio archive 

SEE ALSO 
magic(5) 

BUGS 

182 

file often makes mistakes. In particular, it often suggests that command files are C programs. 

Does not recognize Pascal or LISP. 

Last change: 9 September 1987 Sun Release 4.0 



FIND(l) USER COMMANDS FIND( 1) 

NAME 
find - find files by name, or by other characteristics 

SYNOPSIS 
find pathname-list expression 

DESCRIPTION 

USAGE 

find recursively descends the directory hierarchy for each pathname in the pathname-list, seeking files that 
match a boolean (logical) expression written using the operators listed below. 

find does not follow symbolic links to other files or directories; it applies the selection criteria to the sym
bolic link itself, as if it were an ordinary file (see ln(l) for a description of symbolic links). 

Operators 
In the descriptions, the argument n is used as a decimal integer where +n means more than n, -n means 
less than n, and n means exactly n. 

-fstype type Troe if the filesystem to which the the file belongs is of type type, where type is typically 
4.2 or nfs. 

-name filename True if the filename argument matches the current file name. Shell argument syntax can 
be used if escaped (watch out for[,? and*). 

-perm onum 

-prune 

-type C 

-linksn 
-user uname 

-nouser 
-group gname 

-nogroup 
-size·n 

-inum n 
-atime n 

-mtime n 
-ctime n 

-exec command 

-okcommand 

Sun Release 4.0 

True if the file permission flags exactly match the octal number onum (see chmod(l V)). 
If onum is prefixed by a minus sign, more flag bits (017777, see chmod(lV)) become 
significant and the flags are compared: (jlags&onum)==onum. 

Always yields true. Has the side effect of pruning the search tree at the file. That is, if 
the current path name is a directory, find will not descend into that directory. 

True if the type of the file is c, where c is one of: 

b for block special file c 
c for character special file 
d for directory 
f for plain file 
p for named pipe (FIFO) 
I for symbolic link 
s for socket 

True if the file has n links. 
True if the file belongs to the user uname. If uname is numeric and does not appear as a 
login name in the /etc/passwd database, it is taken as a user ID. 
True if the file belongs to a user not in the /etc/passwd database. 
True if the file belongs to group gname. If gname is numeric and does not appear as a 
login name in the /etc/group database, it is taken as a group ID. 
True if the file belongs to a group not in the /etc/group database. 
True if the file is n blocks long (512 bytes per block). If n is followed by a c, the size is 
in characters. 
True if the file has in ode number n. 
True if the file has been accessed inn days. Note: the access time of directories in path
name-list is changed by find itself. 
True if the file has been modified in n days. 
True if the file has been changed in n days. "Changed" means either that the file has 
been modified or some attribute of the file (its owner, its group, the number of links to it, 
etc.) has been changed. 
True if the executed command returns a zero value as exit status. The end of command 
must be punctuated by an escaped semicolon. A command argument {} is replaced by 
the current pathname. 
Like -exec except that the generated command is written on the standard output, then the 

Last change: 9 September 1987 183 



FIND(l) USER COMMANDS FIND(l) 

-print 
-Is 

-cpio device 
-ncpio device 
-newer file 
-xdev 

-depth 

( expression ) 

standard input is read and the command executed only upon response y. 
Always true; the current pathname is printed. 
Always true; prints current pathname together with its associated statistics. These 
include (respectively) inode number, size in kilobytes (1024 bytes), protection mode, 
number of hard links, user, group, size in bytes, and modification time. If the file is a 
special file the size field will instead contain the major and minor device numbers. If the 
file is a symbolic link the pathname of the linked-to file is printed preceded by '->'. The 
format is identical to that of 'ls-gilds' ( See ls(lV)). Note: formatting is done internally, 
without executing the Is program. 
Always true; write the current file on device in cpio(5) format (5120-byte records). 
Always true; write the current file on device in 'cpio-c' format (5120-byte records). 
True if the current file has been modified more recently than the argument.filename. 
Always true; find does not to traverse down into a file system different from the one on 
which current argument pathname resides. 
Always true; performs descent of the directory hierarchy so that all entries in a directory 
are acted on before the directory itself. This can be useful when find is used with cpio( 1) 
to transfer files that are contained in directories without write permission. 
True if the parenthesized expression is true (parentheses are special to the shell and must 
be escaped). 

!primary True if the primary is false(! is the unary not operator). 
primary] [-a] primary2 

True if both primary] and primary2 are true. The -a is not required. It is implied by the 
juxtaposition of two primaries. 

primary] -o primary2 
True if either primary] or primary2 is true (-o is the or operator). 

EXAMPLE 

184 

In our local development system, we keep a file called TIMESTAMP in all the manual page directories. 
Here is how to find all entries that have been updated since TIMEST AMP was created: 

example% find /usr/share/man/man2-newer /usr/share/man/man2/TIMESTAMP-print 
/usr/share/man/man2 
/usr/share/man/man2/socket.2 
/usr/share/man/man2/mmap.2 
example% 

To find all the files called intro.ms starting from the current directory: 

example% find . -name intro.ms -print 
. /manuals/a~mbler/intro.ms 
. /manuals/sun.core/intro.ms 
. /manuals/ driver .tut/intro.ms 
. /manuals/sys.manager/uucp.impl/intro.mss 
. /supplements/general.works/unix.introduction/intro.mss 
. /supplements/programming.tools/sccs/intro.mss 
example% 

To recursively print all files names in the current directory and below, but skipping SCCS directories: 

example% find . -name SCCS -prune -o -print 
example% 

To recursively print all files names in the current directory and below, skipping the contents of SCCS direc
tories, but printing out the SCCS directory name: 

example% find . -print -name SCCS -prune 
example% 

Last change: 9 September 1987 Sun Release 4.0 



FIND( 1) USER COMMANDS FIND(l) 

To remove files beneath your home directory named a.out or •.o that have not been accessed for a week 
and that are not mounted using NFS: 

example% cd 
example% find.\( -name a.out-o -name '*.o' \)-atime +7 -exec rm {} \; -o -fstype nfs -prune 

FILES 
I etc/passwd 
/etc/group 
a.out 
*.O 

SEE ALSO 
cpio(l), sh(l), ln(l), chmod(lV), ls(lV) test(lV), cpio(5), fs(5) 

Sun Release 4.0 Last change: 9 September 1987 185 



FINGER( 1) USER COMMANDS FINGER(l) 

NAME 
finger - display information about users 

SYNOPSIS 
finger [ options ] name . .. 

DESCRIPTION 
By default, finger displays information about each logged-in user, including his or her: login name, full 
name, terminal name (prepended with a'*' if write-permission is denied), idle time, login time, and loca
tion (comment field in /etc/ttytab for users logged in locally, hostname for users logged in remotely) if 
known. 

Idle time is minutes if it is a single integer, hours and minutes if a ': ' is present, or days and hours if a d is 
present 

When one or more name arguments are given, more detailed information is given for each name specified, 
whether they are logged in or not A name may be a first or last name, or an account name. Information is 
presented in a multi-line format, and includes, in addition to the information mentioned above: 

the user's home directory and login shell 
the time they logged in if they are currently logged in, or the time they last logged in if they are 
not, as well as the terminal or host from which they logged in and, if a terminal, the comment field 
in /etc/ttytab for that terminal 
the last time they received mail, and the last time they read their mail 
any plan contained in the file • plan in the user's home directory 
and any project on which they are working described in the file. project (also in that directory) 

If a name argument contains an at-sign, '@', then a connection is attempted to the machine named after the 
at-sign, and the remote finger daemon is queried. The data returned by that daemon is printed. If a long 
format printout is to be produced, the /W option is passed to the remote finger daemon. 

OPTIONS 

FILES 

-m Match arguments only on user name (not first or last name). 

-I Force long output format. 

-s Force short output format 

-q Force quick output format, which is similar to short format except that only the login name, termi-
nal, and login time are printed. 

-i Force ''idle'' output format, which is similar to short format except that only the login name, ter-
minal, login time, and idle time are printed 

-b Suppress printing the user's home directory and shell in a long format printout. 

-f Suppress printing the header that is normally printed in a non-long format printout 

-w Suppress printing the full name in a short format printout 

-h Suppress printing of the • project file in a long format printout 

-p Suppress printing of the • plan file in a long format printout. 

/etc/utmp 
I etc/passwd 
/var/adm/Iastlog 
I etc/ttytab 
/. plan 
/. project 

who is logged in 
for users' names 
last login times 
terminal locations 
plans 
projects 

SEE ALSO 
passwd(l), w(l), who(l), whois(l) 

186 Last change: 10 January 1988 Sun Release 4.0 



FINGER( 1) USER COMMANDS FINGER( 1) 

BUGS 
Only the first line of the .project file is printed. 

Sun Release 4.0 Last change: 10 January 1988 187 



FMT( 1) USER COMMANDS FMT( 1) 

NAME 
fmt, fmt_ mail - simple text and mail-message formatters 

SYNOPSIS 
fmt [ -cs ] [ -width ] [ inputfile. . . ] 

fmt _ mail [ --cs ] [ -width ] [ inputfile . . . ] 

DESCRIPTION 
fmt is a simple text formatter that fills and joins lines to produce output lines of (up to) the number of char
acters specified in the -width option. The default width is 72. fmt concatenates the inputfiles listed as 
arguments. If none are given, fmt formats text from the standard input 

Blank lines are preserved in the output, as is the spacing between words. fmt does not fill lines beginning 
with '.', for compatibility with nrofT(l). Nor does it fill lines starting with 'From:' (but for full compatibil
ity with mail(l), use fmt_mail). 

Indention is preserved in the output, and input lines with differing indention are not joined (unless -c is 
used). 

fmt can also be used as an in-line text filter for vi(l); the vi command: 

!}fmt 

reformats the text between the cursor location and the end of the paragraph. 

fmt_ mail is a script that formats and sends mail messages. It leaves mail header lines untouched, and runs 
the remainder of the message through fmt -s. The resulting message is passed along to sendmail(8), which 
routes it to the recipient. 

OPTIONS 
--c Crown margin mode. Preserve the indention of the first two lines within a paragraph, and align the 

left margin of each subsequent line with that of the second line. This is useful for tagged para
graphs. 

-s Split lines only. Do not join short lines to form longer ones. This prevents sample lines of code, 
and other such "formatted" text, from being unduly combined. 

-width Fill output lines to up to width columns. 

SEE ALSO 
mail(l), nrofT(l), vi(l) 

188 Last change: 28 December 1987 Sun Release 4.0 



FOLD( 1) USER COMMANDS FOLD( 1) 

NAME 
fold - fold long lines for display on an output device of a given width 

SYNOPSIS 
fold [ -width ] [ file ] 

DESCRIPTION 
Fold the contents of the specified files, or the standard input if no files are specified, breaking the lines to 
have maximum width width. The default for width is 80. Width should be a multiple of 8 if tabs are 
present, or the tabs should be expanded using expand(l) before using/old. 

SEE ALSO 
expand(l) 

BUGS 
Folding may not work correctly if underlining is present. 

Sun Release 4.0 Last change: 9 September 1987 189 



FONTEDIT( 1) USER COMMANDS FONTEDIT ( 1 ) 

NAME 
fontedit- a vfont screen-font editor 

SYNOPSIS 
fontedit [ generic-tool-argument ] . . . [font_ name ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
fontedit is an editor for fixed-width fonts in vf ont format whose characters are no taller than 24 pixels 
(larger characters will not fit completely onto the screen). For a description of vfont format, see vfont(5). 

OPTIONS 
generic-tool-argument 

fontedit accepts any generic tool argument as described in sunview(l). Otherwise, you can mani
pulate the tool using the Frame Menu. 

COMMANDS 

190 

To edit a font, type 'fontedit'. A font_ name may be supplied on the command line or may be typed into 
the Control panel once the program has started. If it exists, the font_ name file must be in vf ont format. 
When the program starts, it displays a single large window containing four subwindows. From top to bot
tom, the four subwindows are: 

1) The top subwindow, a message subwindow, displays messages, prompts, and warnings. 

2) The second subwindow from the top, an Control panel, allows you to set global parameters for the 
entire font and specify operations for editing any single character. The options are: 

(Load) Load in the font specified in the file name field. The program will warn you if you try to 
read over a modified font. 

(Store) 

(Quit) 

Fontname: 

Store the current font onto disk with the name in file name field. 

Quit the program; warns you if you have modified the font. 

The name of the font. 

Max Width and Max Height: 
The size, in pixels, of the largest character in the font. If you edit an existing font, these 
parameters are set automatically; you must set them if you are creating a new font. 
Changing either of these values for an existing font may alter the glyph of some charac
ters of the font. If the glyph size of a character is larger than the new max size, then that 
character is clipped to the new size (its bottom and right edges are moved in). However, if 
a glyph's size is smaller than the new size, the glyph is left alone. 

Caps Height and X-Height: 
The distance, in pixels, between the top of a capital and lowercase letter and the baseline. 
When an existing font is edited, the values of Caps Height and X-Height are estimated 
by fontedit, and may require some adjustment. 

Baseline: The number of pixels from the top (that is, the upper left comer) of the character to the 
baseline. For an existing font, the value of the largest baseline distance is used. For a new 
font, each character will have the same baseline distance. If this value is changed, then 
the baseline distance for all characters in the font will be the new value. 

(Apply) Apply the current values of Max Width, Max Height, Caps Height, X-Height, and 
Baseline to the font. That is, changes made to these values do not take effect until Apply 
is selected. 

Last change: 21 December 1987 Sun Release 4.0 



FONTEDIT ( 1 ) 

Operation: 

USER COMMANDS FONTEDIT ( 1 ) 

This is a list of drawing and editing operations that you can perform on a character. For 
drawing, the left mouse button draws in black, and the middle draws in white. Operations 
are: 

Single Pt Press a mouse button down and a grey cell will appear; move the mouse and 
the cell will follow it. Releasing the the button will draw. 

Pt Wipe Pressing a button down will draw and moving with the button down will con
tinue drawing until the button is released. 

Line Button down marks the end point of a line; moving with the button down 
rubber bands a line; releasing button draws the line. 

Rect Like Line except draws a rectangle. 

Cut Button down marks one end of rectangle, and moving rubber bands the out
line of the rectangle. Button up places the contents of the rectangle into a 
buffer and then "cuts" (draws in white) the rectangular region from the 
character. The Paste operation (below) gets the data from the buffer. 

Copy Like Cut except that the region is just copied; no change is made to the char
acter. 

Paste Button down displays a rectangle the size of the region in the buffer. Moving 
with the button down moves the rectangle. Button up pastes the contents of 
the buffer into the character. 
The contents of the paste buffer cannot be transferred between tools. 
In Copy or Cut mode, holding down the shift key while pressing the left or 
middle mouse button will perform a Paste action. For best results, after plac
ing a region in the buffer, press down the shift key and hold it down, then 
press down the mouse button. Release the mouse key to paste the region and 
then release the shift key. 

3) The third subwindow echoes the characters in the current font as they are typed. Note that the cursor 
must be in this window in order to see the characters. Your character delete key will delete the echoed 
characters. 

4) The bottom subwindow, the editing subwindow, displays eight smaller squares at its top; these are 
called edit buttons. The top section of each of these buttons contains a line of text in the form nnn: c, 
where nnn is the hexadecimal number of the character and c is the standard ASCII character 
corresponding to that number. In the lower section of the button the character of the current font, if it 
exists, is displayed. Clicking once over an editing button selects its character for editing. 

Just below this row of buttons is a box with the characters ''O 9 A Z a z'' in it. This box is called a 
slider. The slider allows you to scroll around in the font and select which section of the font you want 
displayed in the edit buttons. The black rectangle near ''a'' is an indicator which shows the section 
of the font that is displayed in the buttons above. To move the indicator, select it by pressing the left 
or middle mouse button down over the indicator and then move the mouse to the left or right with the 
button down; the indicator will slide along with the cursor. Releasing the button selects the new sec
tion of the font A faster method of moving about in the font is to just press down and release the 
mouse button above the area you want without bothering to drag the indicator. Another method of 
scrolling through the characters of the font is to press a key on the keyboard when the cursor is in the 
bottom window; that character is the first one displayed in the edit buttons. 

EDITING CHARACTERS: 
To edit a character, click once over the edit button where the character is displayed. When you do this, an 
edit pad will appear in the bottom subwindow. 

Sun Release 4.0 Last change: 21 December 1987 191 



FONTEDIT ( 1 ) USER COMMANDS FONTEDIT ( 1 ) 

FILES 

The edit pad consists of an editing area bordered by scales, a proof area, and 3 command buttons. The edit
ing area is Max Width by Max Height when the pad opens, and displays a magnified view of the selected 
character. Black squares indicate foreground pixels. The editing area is surrounded by scales which show 
the current Caps Height, X-Height and Baseline in reverse video. 

Just outside the scales, on the top, right side, and bottom of the pad, are three small boxes with the capital 
letters "R", "B", and "A" in them. These boxes are movable sliders that change the right edge, bottom 
edge, and x-axis advance of the character respectively. In a fixed-width font, these values are usually the 
same for all characters; however, in a variable-width font these controls can be used to set these properties 
for each character. 

To the right of the pad is the proof area where the character is displayed at normal (that is, screen) resolu
tion and three buttons. The three buttons are: 

Undo Clicking the left or middle mouse button undoes the last operation. 

Store Stores the current representation of the character in the font. 

Quit Closes the edit pad. 

In the bottom subwindow, the right mouse button displays a menu of operations. These operations are the 
same as those in the control panel discussed above; you can select the current operation by either picking 
the operation in the control panel or by selecting the appropriate menu with the right button of the mouse. 
When the cursor is in the other subwindows, the right button displays the standard tool menu. 

/usr/lib/fonts/fixedwidthfonts 
Sun-supplied screen fonts 

SEE ALSO 

BUGS 

192 

sunview(l), vswap(l), vfont(5) 

Results are unpredictable with variable-width fonts. The baseline should be greater than O or else the font 
cannot be read in by fontedit or by sunview(l). 

Last change: 21 December 1987 Sun Release 4.0 



FOPTION( 1) USER COMMANDS FOPTION( 1) 

NAME 
foption - determine available floating-point code generation options 

SYNOPSIS 
f option [ -f type ] 

DESCRIPTION 
foption has two uses on Sun-2 and Sun-3 systems. Its action is undefined on Sun-4 systems since there are 
no floating-point code generation options. 

Called without an argument, it sends a string to standard output which is the compiler floating-point option 
corresponding to the type of floating-point hardware that would be used by a program compiled with 
-fswitch. Exit status is undefined. This usage is intended for interactively determining available floating
point hardware. On Sun-2 or Sun-3 systems without floating-point hardware, the result would be 

example% foption 
soft 

corresponding to the compiler option -fsoft. 

Called with an argument which is one of the compiler floating-point options -ffpa, -f68881, -fsoft, or 
-fswitch, it produces no output but returns exit status O (true) if a program compiled with that option could 
execute on this machine, and status 1 (false) otherwise. Thus foption -fsoft and foption -fswitch always 
produce exit status 0. This usage is intended for shell scripts and Makefiles that, for instance, select dif
ferent executable files or link with different libraries according to the floating-point hardware present. 

OPTIONS 
-ftype Return exit status O if a program compiled -ftype could execute on this machine. 

SEE ALSO 
cc(l V), fpaversion(8), mc68881 version(8) 

Sun Release 4.0 Last change: 8 December 1987 193 



FROM(l) USER COMMANDS FROM(l) 

NAME 
from - display the sender and date of newly-arrived mail messages 

SYNOPSIS 
from [ -s sender ] [ username ] 

DESCRIPTION 
Fromname prints out the mail header lines in your mailbox file to show you who your mail is from. If 
username is specified, then username's mailbox is examined instead of your own. 

OPTIONS 
-ssender 

Only display headers for mail sent by sender. 

FILES 
/var/spool/mail/• 

SEE ALSO 
biff(l), mail(l), prmail(l) 

194 Last change: 9 September 1987 Sun Release 4.0 



FTP(lC) USER COMMANDS FfP( lC) 

NAME 
ftp - file transfer program 

SYNOPSIS 
ftp [ -dgintv ] [ hostname ] 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
ftp is the user interface to the ARPANET standard File Transfer Protocol (FTP). ftp transfers files to and 
from a remote network site. 

The client host with which ftp is to communicate may be specified on the command line. If this is done, 
ftp immediately attempts to establish a connection to an FfP server on that host; otherwise, ftp enters its 
command interpreter and awaits instructions from the user. When ftp is awaiting commands from the user, 
it displays the prompt 'ftp>'. 

OPTIONS 
Options may be specified at the command line, or to the command interpreter. 

-d Enable debugging. 

-g Disable filename "globbing." 

-i Turn off interactive prompting during multiple file transfers. 

-n Do not attempt "auto-login" upon initial connection. If auto-login is enabled, ftp checks the 
.netrc file in the user's home directory for an entry describing an account on the remote machine. 
If no entry exists, ftp will prompt for the login name of the account on the remote machine (the 
default is the login name on the local machine), and, if necessary, prompts for a password and an 
account with which to login. 

-t Enable packet tracing (unimplemented). 

-v Show all responses from the remote server, as well as report on data transfer statistics. This is 
turned on by default if ftp is running interactively with its input coming from the user's terminal. 

COMMANDS 
! [command] 

Run command as a shell command on the local machine. If no command is given, invoke an 
interactive shell. 

$ macro-name [ args ] 
Execute the macro macro-name that was defined with the macdef command. Arguments are 
passed to the macro unglobbed. 

account [ passwd ] 
Supply a supplemental password required by a remote system for access to resources once a login 
has been successfully completed. If no argument is included, the user will be prompted for an 
account password in a non-echoing input mode. 

append local-file [ remote-file ] 
Append a local file to a file on the remote machine. If remote-file is left unspecified, the local file 
name is used in naming the remote file after being altered by any ntrans or nmap setting. File 
transfer uses the current settings for "representation type", "file structure", and "transfer mode". 

ascii Set the "representation type" to "network ASCII". This is the default type. 

bell Sound a bell after each file transfer command is completed. 

binary Set the "representation type" to "image". 

bye Terminate the FTP session with the remote server and exit ftp. An EOF will also terminate the 

Sun Release 4.0 Last change: 15 January 1988 195 



FTP(lC) USER COMMANDS FTP( lC) 

196 

session and exit. 

case Toggle remote computer file name case mapping during mget commands. When case is on 
( default is oft), remote computer file names with all letters in upper case are written in the local 
directory with the letters mapped to lower case. 

cd remote-directory 
Change the working directory on the remote machine to remote-directory. 

cdup Change the remote machine working directory to the parent of the current remote machine work
ing directory. 

close Terminate the FfP session with the remote server, and return to the command interpreter. Any 
defined macros are erased. 

er Toggle RETURN stripping during "network ASCII" type file retrieval. Records are denoted by a 
RETURN/LINEFEED sequence during "network ASCII" type file transfer. When er is on (the 
default), RETURN characters are stripped from this sequence to conform with the UNIX system 
single LINEFEED record delimiter. Records on non-UNIX-system remote hosts may contain single 
LINEFEED characters; when an "network ASCII" type transfer is made, these LINEFEED charac
ters may be distinguished from a record delimiter only when er is off. 

delete remote-file 
Delete the file remote-file on the remote machine. 

debug [ debug-value ] 
Toggle debugging mode. If an optional debug-value is specified it is used to set the debugging 
level. When debugging is on, ftp prints each command sent to the remote machine, preceded by 
the string'··>'. 

dir [ remote-di.rectory ] [ local-file ] 
Print a listing of the directory contents in the directory, remote-directory, and, optionally, placing 
the output in local-file. If no directory is specified, the current working directory on the remote 
machine is used. If no local file is specified, or local-file is'-', output is sent to the terminal. 

disconnect 
A synonym for close. 

form [format-name ] 
Set the carriage control format subtype of the "representation type" to format-name. The only 
valid format-name is non-print, which corresponds to the default "non-print" subtype. 

get remote-file [ local-file ] 
Retrieve the remote-file and store it on the local machine. If the local file name is not specified, it 
is given the same name it has on the remote machine, subject to alteration by the current case, 
ntrans, and nmap settings. The current settings for "representation type", "file structure", and 
"transfer mode" are used while transferring the file. 

glob Toggle filename expansion, or "globbing", for mdelete, mget and mput. If globbing is turned 
off, filenames are taken literally. 

Globbing for mput is done as in csh(l). For mdelete and mget, each remote file name is 
expanded separately on the remote machine, and the lists are not merged. 

Expansion of a directory name is likely to be radically different from expansion of the name of an 
ordinary file: the exact result depends on the remote operating system and FfP server, and can be 
previewed by doing 'mis remote-files-'. 

mget and mput are not meant to transfer entire directory subtrees of files. You can do this by 
transferring a tar(l) archive of the subtree (using a "representation type" of "image" as set by the 
binary command). 

hash Toggle hash-sign (#) printing for each data block transferred. The size of a data block is 1024 

Last change: 15 January 1988 Sun Release 4.0 



FTP( lC) USER COMMANDS FfP( lC) 

bytes. 

help [ command ] 
Print an informative message about the meaning of command. If no argument is given, ftp prints 
a list of the known commands. 

led [ directory ] 
Change the working directory on the local machine. If no directory is specified, the user's home 
directory is used. 

Is [ remote-directory ] [ local-file ] 
Print an abbreviated listing of the contents of a directory on the remote machine. If remote
directory is left unspecified, the current working directory is used. If no local file is specified, or if 
local-file is '-', the output is sent to the terminal. 

macdef ma.cro-name 
Define a macro. Subsequent lines are stored as the macro ma.cro-name; a null line (consecutive 
NEWLINE characters in a file or RETURN characters from the terminal) terminates macro input 
mode. There is a limit of 16 macros and 4096 total characters in all defined macros. Macros 
remain defined until a close command is executed. 

The macro processor interprets '$' and '\' as special characters. A '$' followed by a number (or 
numbers) is replaced by the corresponding argument on the macro invocation command line. A 
'$' followed by an 'i' signals that macro processor that the executing macro is to be looped. On 
the first pass '$i' is replaced by the first argument on the macro invocation command line, on the 
second pass it is replaced by the second argument, and so on. A '\' followed by any character is 
replaced by that character. Use the '\' to prevent special treatment of the '$'. 

mdelete [ remote-files ] 
Delete the remote-files on the remote machine. 

mdir remote-files local-file 
Like dir, except multiple remote files may be specified. If interactive prompting is on, ftp will 
prompt the user to verify that the last argument is indeed the target local file for receiving mdir 
output. 

mget remote-files 
Expand the remote-files on the remote machine and do a get for each file name thus produced. 
See glob for details on the filename expansion. Resulting file names will then be processed 
according to case, ntrans, and nmap settings. Files are transferred into the local working direc
tory, which can be changed with 'led directory'; new local directories can be created with 
'! mkdir directory'. 

mkdir directory-name 
Make a directory on the remote machine. 

mis remote-files local-file 
Like Is( 1 V), except multiple remote files may be specified. If interactive prompting is on, ftp will 
prompt the user to verify that the last argument is indeed the target local file for receiving mis out
put 

mode [ mode-name ] 
Set the "transfer mode" to mode-name. The only valid mode-name is stream, which corresponds 
to the default "stream" mode. 

mput local-files 

Sun Release 4.0 

Expand wild cards in the list of local files given as arguments and do a put for each file in the 
resulting list. See glob for details of filename expansion. Resulting file names will then be pro
cessed according to ntrans and nmap settings. 

Last change: 15 January 1988 197 



FTP( lC) USER COMMANDS FfP( lC) 

198 

nmap [ inpattern outpattern ] 
Set or unset the filename mapping mechanism. If no arguments are specified, the filename map
ping mechanism is unset. If arguments are specified, remote filenames are mapped during mput 
commands and put commands issued without a specified remote target filename. If arguments are 
specified, local filenames are mapped during mget commands and get commands issued without a 
specified local target filename. 

This command is useful when connecting to a non-UNIX-system remote host with different file 
naming conventions or practices. The mapping follows the pattern set by inpattern and outpat
tern. inpattern is a template for incoming filenames (which may have already been processed 
according to the ntrans and case settings). Variable templating is accomplished by including the 
sequences $1, $2, ... , $9 in inpattern. Use\ to prevent this special treatment of the$ character. 
All other characters are treated literally, and are used to determine the nmap inpattern variable 
values. 

For example, given inpattern $1.$2 and the remote file name mydata.data, $1 would have the 
value "mydata", and $2 would have the value "data". 

The outpattern determines the resulting mapped filename. The sequences $1, $2, ... , $9 are 
replaced by any value resulting from the inpattern template. The sequence $0 is replaced by the 
original filename. Additionally, the sequence '[ seq] , seq2 ]' is replaced by seql if seq] is not a 
null string; otherwise it is replaced by seq2. 

For example, the command 'nmap $1.$2.$3 [$1,$2].[$2,file]' would yield the output filename 
myfile.data for input filenames myfile.data and myfile.data.old, myfile.file for the input filename 
myfile, and myfile.myfile for the input filename .myfile. SPACE characters may be included in 
outpattern, as in the example 'nmap $11 sed "s/ *$/I" > $1'. Use the\ character to prevent spe
cial treatment of the'$', '[', ']' and',' characters. 

ntrans [ inchars [ outchars ] ] 
Set or unset the filename character translation mechanism. If no arguments are specified, the 
filename character translation mechanism is unset. If arguments are specified, characters in 
remote filenames are translated during mput commands and put commands issued without a 
specified remote target filename, and characters in local filenames are translated during mget 
commands and get commands issued without a specified local target filename. 

This command is useful when connecting to a non-UNIX-system remote host with different file 
naming conventions or practices. Characters in a filename matching a character in inchars are 
replaced with the corresponding character in outchars. If the character's position in inchars is 
longer than the length of outchars, the character is deleted from the file name. 

open host [ port ] 
Establish a connection to the specified host FfP server. An optional port number may be supplied, 
in which case, ftp will attempt to contact an FfP server at that port. If the auto-login option is on 
(default), ftp will also attempt to automatically log the user in to the FfP server (see below). 

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to allow 
the user to selectively retrieve or store files. By default, prompting is turned on. If prompting is 
turned off, any mget or mput will transfer all files, and any mdelete will delete all files. 

proxy ftp-command 
Execute an Ff P command on a secondary control connection. This command allows simultaneous 
connection to two remote Ff P servers for transferring files between the two servers. The first 
proxy command should be an open, to establish the secondary control connection. Enter the com
mand 'proxy?' to see other FfP commands executable on the secondary connection. 

The following commands behave differently when prefaced by proxy: open will not define new 
macros during the auto-login process, close will not erase existing macro definitions, get and mget 
transfer files from the host on the primary control connection to the host on the secondary control 
connection, and put, mput, and append transfer files from the host on the secondary control 

Last change: 15 January 1988 Sun Release 4.0 



FTP( lC) USER COMMANDS FfP( lC) 

connection to the host on the primary control connection. 

Third party file transfers depend upon support of the PASV command by the server on the secon
dary control connection. 

put local-file [ remote-file] 
Store a local file on the remote machine. If remote-file is left unspecified, the local file name is 
used after processing according to any ntrans or nmap settings in naming the remote file. File 
transfer uses the current settings for "representation type", "file structure", and "transfer mode". 

pwd Print the name of the current working directory on the remote machine. 

quit A synonym for bye. 

quote argl arg2 ... 
Send the arguments specified, verbatim, to the remote FTP server. A single FTP reply code is 
expected in return. 

recv remote-file [ local-file] 
A synonym for get. 

remotehelp [ command-name ] 
Request help from the remote FTP server. If a command-name is specified it is supplied to the 
server as well. 

rename from to 
Rename the file from on the remote machine to have the name to. 

reset Clear reply queue. This command re-synchronizes command/reply sequencing with the remote 
FTP server. Resynchronization may be necessary following a violation of the FTP protocol by the 
remote server. 

rmdir directory-name 

runique 

Delete a directory on the remote machine. 

Toggle storing of files on the local system with unique filenames. If a file already exists with a 
name equal to the target local filename for a get or mget command, a '.1' is appended to the 
name. If the resulting name matches another existing file, a '.2' is appended to the original name. 
If this process continues up to '.99', an error message is printed, and the transfer does not take 
place. The generated unique filename will be reported. Note: runique will not affect local files 
generated from a shell command (see below). The default value is off. 

send local-file [ remote-file ] 
A synonym for put. 

sendport 
Toggle the use of PORT commands. By default, ftp will attempt to use a PORT command when 
establishing a connection for each data transfer. The use of PORT commands can prevent delays 
when performing multiple file transfers. If the PORT command fails, ftp will use the default data 
port. When the use of PORT commands is disabled, no attempt will be made to use PORT com
mands for each data transfer. This is useful when connected to certain FTP implementations that 
ignore PORT commands but incorrectly indicate they have been accepted. 

status Show the current status of ftp. 

struct [ struct-name ] 

sunique 

Sun Release 4.0 

Set the "file structure" to struct-name. The only valid struct-name is file, which corresponds to 
the default "file" structure. 

Toggle storing of files on remote machine under unique file names. The remote FTP server must 
support the STOU command for successful completion. The remote server will report the unique 

Last change: 15 January 1988 199 



FTP( lC) USER COMMANDS FfP( lC) 

name. Default value is off. 

tenex Set the "representation type" to that needed to talk to TENEX machines. 

trace Toggle packet tracing (unimplemented). 

type [ type-name ] 
Set the "representation type" to type-name. The valid type-names are ascii for "network ASCII", 
binary or image for "image", and tenex for "local byte size" with a byte size of 8 (used to talk to 
TENEX machines). If no type is specified, the current type is printed. The default type is "net
work ASCII". 

user user-name [ password ] [ account ] 
Identify yourself to the remote FTP server. If the password is not specified and the server requires 
it, ftp will prompt the user for it (after disabling local echo). If an account field is not specified, 
and the FTP server requires it, the user will be prompted for it. If an account field is specified, an 
account command will be relayed to the remote server after the login sequence is completed if the 
remote server did not require it for logging in. Unless ftp is invoked with "auto-login" disabled, 
this process is done automatically on initial connection to the FTP server. 

verbose Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the 
user. In addition, if verbose mode is on, when a file transfer completes, statistics regarding the 
efficiency of the transfer are reported. By default, verbose mode is on if ftp's commands are com
ing from a terminal, and off otherwise. 

? [command] 
A synonym for help. 

Command arguments which have embedded spaces may be quoted with quote(") marks. 

If any command argument which is not indicated as being optional is not specified, ftp will prompt for that 
argument. 

ABORTING A FILE TRANSFER 
To abort a file transfer, use the terminal interrupt key (usually CTRL-C). Sending transfers will be immedi
ately halted. Receiving transfers will be halted by sending a ftp protocol ABOR command to the remote 
server, and discarding any further data received. The speed at which this is accomplished depends upon 
the remote server's support for ABOR processing. If the remote server does not support the ABOR com
mand, an "ftp>" prompt will not appear until the remote server has completed sending the requested file. 

The terminal interrupt key sequence will be ignored when ftp has completed any local processing and is 
awaiting a reply from the remote server. A long delay in this mode may result from the ABOR processing 
described above, or from unexpected behavior by the remote server, including violations of the ftp proto
col. If the delay results from unexpected remote server behavior, the local ftp program must be killed by 
hand. 

FILE NAMING CONVENTIONS 

200 

Local files specified as arguments to ftp commands are processed according to the following rules. 

1) If the file name '-' is specified, the standard input (for reading) or standard output (for writing) is 
used. 

2) If the first character of the file name is 'I', the remainder of the argument is interpreted as a shell 
command. ftp then forks a shell, using popen(3S) with the argument supplied, and reads (writes) 
from the standard output (standard input) of that shell. If the shell command includes SPACE 
characters, the argument must be quoted; for example '"I ls -It"'. A particularly useful example 
of this mechanism is: 'dir I more'. 

3) Failing the above checks, if "glob bing" is enabled, local file names are expanded according to the 
rules used in the csh(l); see the glob command. If the ftp command expects a single local file (for 
example, put), only the first filename generated by the "globbing" operation is used. 

4) For mget commands and get commands with unspecified local file names, the local filename is the 

Last change: 15 January 1988 Sun Release 4.0 



FTP( lC) USER COMMANDS FTP( lC) 

remote filename, which may be altered by a case, ntrans, or nmap setting. The resulting filename 
may then be altered if runique is on. 

5) For mput commands and put commands with unspecified remote file names, the remote filename 
is the local filename, which may be altered by a ntrans or nmap setting. The resulting filename 
may then be altered by the remote server if sunique is on. 

FILE TRANSFER PARAMETERS 
The FTP specification specifies many parameters which may affect a file transfer. 

The "representation type" may be one of "network ASCII", "EBCDIC", "image", or "local byte size" with a 
specified byte size (for PDP-lO's and PDP-20's mostly). The "network ASCII" and "EBCDIC(rq types have 
a further subtype which specifies whether vertical format control (NEWLINE characters, form feeds, etc.) 
are to be passed through ("non-print"), provided in TELNET format ("TELNET format controls"), or pro
vided in ASA (FORTRAN) ("carriage control (ASA)") format. ftp supports the "network ASCII" (subtype 
"non-print" only) and "image" types, plus "local byte size" with a byte size of 8 for communicating with 
TENEX machines. 

The "file structure" may be one of "file" (no record structure), "record", or "page". ftp supports only the 
default value, which is "file". 

The "transfer mode" may be one of "stream", "block", or "compressed". ftp supports only the default 
value, which is "stream". 

SEE ALSO 

BUGS 

csh(l), ls(l V), rcp(lC), tar(l), popen(3S), netrc(5), ftpd(8C) 

Correct execution of many commands depends upon proper behavior by the remote server. 

An error in the treatment of carriage returns in the 4.2 BSD code handling transfers with a "representation 
type" of "network ASCII" has been corrected. This correction may result in incorrect transfers of binary 
files to and from 4.2 BSD servers using a "representation type" of "network ASCII". Avoid this problem by 
using the "image" type. 

Sun Release 4.0 Last change: 15 January 1988 201 



GCORE( 1) USER COMMANDS GCORE(l) 

NAME 
gcore - get core images of running processes 

SYNOPSIS 
gcore [ -o filename ] process-id ... 

DESCRIPTION 
gcore creates a core image of each specified process. Such an image can be used with adb(l) or dbx(l). 
The name of the core image file for the process whose process ID is process-id will be core.process-id. 

OPTIONS 
-ofilename 

Substitute filename in place of core as the first part of the name of the core image files. 

FILES 
core.process-id core images 

SEE ALSO 
kill(l), csh(l), adb(l), dbx(l), ptrace(2) 

202 Last change: 26 February 1988 Sun Release 4.0 



GET( 1) USER COMMANDS GET( 1) 

NAME 
get - get a version of an SCCS file 

SYNOPSIS 
/usr/sccs/get [ -begkmnpst] [ -I [ p]] [ -a seq-no. ] [ -c cutoff] [ -Gnewname ] [ -i list] [ -rS/D ] 

[ -x list ] filename ... 

DESCRIPTION 
get generates an ASCII text file from each named SCCS file according to the specified option. Arguments 
may be specified in any order, options apply to all named SCCS files. If a directory is named, get behaves 
as though each file in the directory were specified as a named file, except that non-SCCS files (last com
ponent of the path name does not begin with 's.') and unreadable files are silently ignored. If a name of 
'-' is given, the standard input is read; each line of the standard input is taken to be the name of an SCCS 
file to be processed. Again, non-SCCS files and unreadable files are silently ignored. 

The generated text is normally written into a file called the g-file whose name is derived from the SCCS file 
name by simply removing the leading 's.'; (see also FILES, below). 

OPTIONS 
Options are explained below as though only one SCCS file is to be processed, but the effects of any option 
argument applies independently to each named file. 

-b Used with the -e option to indicate that the new delta should have· an SID in a new branch as 
shown in Table 1. This option is ignored if the b flag is not present in the file (see admin(l)) or if 
the retrieved delta is not a leaf delta. (A leaf delta is one that has no successors on the SCCS file 
tree.) 

Note: A branch delta may always be created from a non-leaf delta. 

-e This get is for editing or making a change (delta) to the SCCS file with a subsequent use of delta. 
A '/usr/sccs/get -e' applied to a particular version (SID) of the SCCS file prevents further 
'/usr/sccs/get -e' commands on the same SID until delta is run or the j (joint edit) flag is set in 
the SCCS file (see admin(l)). Concurrent use of '/usr/sccs/get -e' for different SIDs is always 
allowed. 

If the g-file generated by a '/usr/sccs/get -e' is accidentally ruined in the process of editing it, it 
may be regenerated by re-running a get with the -k option in place of the -e option. 

SCCS file protection specified with the ceiling, floor, and authorized user list stored in the SCCS 
file (see admin(l)) are enforced when the -e option is used. 

-g Do not actually retrieve text from the SCCS file. It is primarily used to generate an I-file, or to ver
ify the existence of a particular SID. 

-k Suppress replacement of identification keywords (see below) in the retrieved text by their value. 
The -k option is implied by the -e option. 

-m Precede each text line retrieved from the SCCS file with the SID of the delta that inserted the text 
line in the SCCS file. The format is: SID, followed by a horizontal TAB, followed by the text line. 

-n Precede each generated text line with the %M% identification keyword value (see below). The 
format is: %M% value, followed by a horizontal TAB followed by the text line. When both the 
-m and -n options are used, the format is: % M % value, followed by a horizontal TAB, followed 
by the -m option generated format. 

-p Write the text retrieved from the SCCS file to the standard output. No g-file is created. All output 
which normally goes to the standard output goes to the standard error file instead, unless the -s 
option is used, in which case it disappears. 

-s Suppress all output normally written on the standard output. However, fatal error messages 
(which always go to the standard error file) remain unaffected. 

Sun Release 4.0 Last change: 5 January 1988 203 



GET( 1) USER COMMANDS GET(l) 

204 

-t Access the most recently created (top) delta in a given release (for example, -rl), or release and 
level (for example, -rl.2). 

-I [ p] Write a delta summary into an I-file. If -Ip is used, the delta summary is written on the standard 
output and the I-file is not created. See FILES for the format of the I-file. 

-a seq-no. 
The delta sequence number of the SCCS file delta (version) to be retrieved (see sccsfile(5)). This 
option is used by the comb(l) command; it is not a generally useful option, and users should not 
use it. If both the -r and -a options are specified, the -a option is used Care should be taken 
when using the -a option in conjunction with the -e option, as the SID of the delta to be created 
may not be what one expects. The -r option can be used with the -a and -e options to control the 
naming of the SID of the delta to be created. 

-ccutoff 
cutoff date-time, in the form: YY[ MM[ DD[ HH[ MM[ SS]] ] ] ] 

No changes (deltas) to the SCCS file which were created after the specified cutoff date-time are 
included in the generated ASCII text file. Units omitted from the date-time default to their max
imum possible values; that is, -c7502 is equivalent to -c750228235959. Any number of non
numeric characters may separate the various 2 digit pieces of the cutoff date-time. This feature 
allows one to specify a cutoff date in the form: '-c77/2/29:22:25'. Note: this implies that one may 
use the %E% and % U% identification keywords. 

-Gnewname 
If a get is allowed onfilename (filename is not writable by anyone) place the version that get pro
duces in a file called newname. 

-i list A list of deltas to be included (forced to be applied) in the creation of the generated file. The list 
has the following syntax: 

<list> ::= <range > I <list>, <range> 
<range>::= SID I SID-SID 

SID, the secs ID of a delta, may be in any form shown in the 'SID Specified' column of Table 1. 
Partial SIDs are interpreted as shown in the 'SID Retrieved' column of Table 1. 

-r SID The SCCS ID string (SID) of the version (delta) of an SCCS file to be retrieved. Table 1 below 
shows, for the most useful cases, what version of an secs file is retrieved (as well as the SID of 
the version to be eventually created by delta(l) if the -e option is also used), as a function of the 
SID specified. 

-x list A list of deltas to be excluded (forced not to be applied) in the creation of the generated file. See 
the -i option for the list format. 

For each file processed, get responds (on the standard output) with the SID being accessed and with the 
number of lines retrieved from the secs file. 

If the -e option is used, the SID of the delta to be made appears after the SID accessed and before the 
number of lines generated. If there is more than one named file or if a directory or standard input is named, 
each filename is printed (preceded by a NEWLINE) before it is processed. If the -i option is used included 
deltas are listed following the notation 'Included'; if the -x option is used, excluded deltas are listed fol
lowing the notation 'Excluded'. 

Last change: 5 January 1988 Sun Release 4.0 



GET( 1) USER COMMANDS GET( 1) 

TABLE 1. Determination of SCCS Identification String 

SID* -b Option Other SID SID of Delta 
Specified Usedt Conditions Retrieved to be Created 

none:j: no R defaults to mR mR.mL mR.(mL+l) 

none:j: yes R defaults to mR mR.mL mR.mL.(mB+l).1 

R no R>mR mR.mL R.l*** 

R no R=mR mR.mL mR.(mL+l) 

R yes R>mR mR.mL mR.mL.(mB + 1 ).1 

R yes R=mR mR.mL mR.mL.(mB+l).l 

R R < mR and hR.mL** hR.mL.(mB+l).1 
R does not exist 

R Trunk succ.# R.mL R.mL.(mB+l).l 
in release > R 
and R exists 

R.L no No trunk succ. R.L R.(L+l) 

R.L yes No trunk succ. R.L R.L.(mB +1).1 

R.L Trunk succ. R.L R.L.(mB+l).1 
in release ~ R 

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+l) 

R.L.B yes No branch succ. R.L.B.mS R.L.(mB +1).1 

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+l) 

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB + 1 ).1 

R.L.B.S Branch succ. R.L.B.S R.L.(mB +1).1 

* 'R', 'L', 'B', and 'S' are the 'release', 'level', 'branch', and 'sequence' components of the SID, 

respectively; 'm' means 'maximum'. Thus, for example, 'R.mL' means 'the maximum level 
number within release R'; 'R.L.(mB+l).l' means 'the first sequence number on the new branch 
(that is, maximum branch number plus one) of level L within release R'. Note: if the .SM SID 
specified is of the form 'R.L', 'R.L.B ', or 'R.L.B.S', each of the specified components must exist. 

** 'hR' is the highest existing release that is lower than the specified, nonexistent, release R. 
*** Forces creation of the.first delta in a new release. 
# Successor. 
t The -b option is effective only if the b flag (see admin(l)) is present in the file. An entry of'-' 

means 'irrelevant'. 
:j: This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the 

file, the SID obtained from the d flag is interpreted as if it had been specified on the command line. 
Thus, one of the other cases in this table applies. 

IDENTIFICATION KEYWORDS 
Identifying information is inserted into the text retrieved from the SCCS file by replacing identification key
words with their value wherever they occur. The following keywords may be used in the text stored in an 
SCCS file: 

Keyword 
%M% 

%1% 
%R% 
%L% 

Sun Release 4.0 

Value 
Module name: either the value of them flag in the file (see admin(l)), or if absent, the name 
of the SCCS file with the leading s. removed. 
SCCS identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text. 
Release. 
Level. 

Last change: 5 January 1988 205 



GET( 1) 

FILES 

206 

%B% 
%S% 
%D% 
%H% 
%T% 
%E% 
%G% 
%U% 
%Y% 
%F% 
%P% 
%Q% 
%C% 

%Z% 
%W% 

%A% 

Branch. 
Sequence. 

USER COMMANDS 

Current date (YYIMM/DD). 
Current date (MM!DDIYY). 
Current time (HH:MM:SS). 
Date newest applied delta was created (YY/MMIDD). 
Date newest applied delta was created (MM!DDIYY). 
Time newest applied delta was created (HH:MM:SS). 

Module type: value of the t flag in the secs file (see admin(l)). 
secs file name. 
Fully qualified SCCS file name. 
The value of the q flag in the file (see admin(l)). 

GET( 1) 

Current line number. This keyword is intended for identifying messages output by the pro
gram such as 'this shouldn't have happened' type errors. It is not intended to be used on 
every line to provide sequence numbers. 
The 4-character string@(#) recognizable by what(l). 
A shorthand notation for constructing what strings for program files. 
%W% = %Z%%M%<horizonta/TAB>%1% 
Another shorthand notation for constructing what strings. 
%A%= %Z%%Y% %M% %1%%Z% 

Several auxiliary files may be created by get, These files are known generically as the g-file, I-file, p-file, 
and z-file. The letter before the hyphen is called the tag. An auxiliary file name is formed from the SCCS 
file name: the last component of all SCCS file names must be of the forms.module-name, the auxiliary files 
are named by replacing the leading s with the tag. The g-file is an exception to this scheme: the g-file is 
named by removing the s. prefix. For example, s.xyz.c, the auxiliary file names would be xyz.c, l.xyz.c, 
p.xyz.c, and z.xyz.c, respectively. 

The g-file, which contains the generated text, is created in the current directory (unless the -p option is 
used). A g-file is created in all cases, whether or not any lines of text were generated by the get. It is 
owned by the real user. If the -k option is used or implied its mode is 644; otherwise its mode is 444. 
Only the real user need have write permission in the current directory. 

The I-file contains a table showing which deltas were applied in generating the retrieved text. The I-file is 
created in the current directory if the -I option is used; its mode is 444 and it is owned by the real user. 
Only the real user need have write permission in the current directory. 

Lines in the I-file have the following format: 

a. A blank character if the delta was applied; * otherwise. 
b. A blank character if the delta was applied or was not applied and ignored; * if the delta 

was not applied and was not ignored. 
c. A code indicating a "special" reason why the delta was or was not applied: 

'I': Included. 
'X': Excluded. 
'C': Cut off (by a -c option). 

d. Blank. 
e. secs identification (SID). 
f. TAB character. 
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation. 
h. Blank. 
i. Login name of person who created the delta. 

The comments and MR data follow on subsequent lines, indented one horizontal TAB character. A 
blank line terminates each entry. 

Last change: 5 January 1988 Sun Release 4.0 



GET(l) USER COMMANDS GET( 1) 

The p-file passes information resulting from a '/usr/sccs/get -e' along to delta. Its contents are also used 
to prevent a subsequent execution of a '/usr/sccs/get -e' for the same SID until delta is executed or the 
joint edit flag, j, (see admin(l)) is set in the SCCS file. The p-file is created in the directory containing the 
SCCS file and the effective user must have write permission in that directory. Its mode is 644 and it is 
owned by the effective user. The format of the p-file is: the gotten SID, followed by a blank, followed by 
the SID that the new delta will have when it is made, followed by a blank, followed by the login name of 
the real user, followed by a blank, followed by the date-time the get was executed, followed by a blank and 
the -i option if it was present, followed by a blank and the -x option if it was present, followed by a NEW
LINE. There can be an arbitrary number of lines in the p-file at any time; no two lines can have the same 
new delta SID. 

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary (2 
bytes) process ID of the command (that is, get) that created it. The z-file is created in the directory contain
ing the SCCS file for the duration of get. The same protection restrictions as those for the p-file apply for 
the z-file. The z-file is created mode 444. 

SEE ALSO 

sccs(l), admin(l), delta(l), help(l), prs(l), what(l), sccsfile(5) 

Programmi.ng Utilities and Libraries 

DIAGNOSTICS 

BUGS 

Use help for explanations. 

If the effective user has write permission (either explicitly or implicitly) in the directory containing the 
SCCS files, but the real user does not, only one file may be named when the-e option is used 

Sun Release 4.0 Last change: 5 January 1988 207 



GET_ SELECTION ( 1 ) USER COMMANDS GET_ SELECTION ( 1 ) 

NAME 
get_selection - copy the contents of a Sun View selection to the standard output 

SYNOPSIS 
get_ selection [ rank ] [ t seconds ] [ D ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
Sun0S for information on how to install optional software. 

DESCRIPTION 
get_ selection prints the contents of the indicated selection on standard out. A selection is a collection of 
objects (for instance, characters) picked with the mouse in the SunView window system. 

OPTIONS 
rank Indicate which selection is to be printed: 

1: primary; 
2: secondary; 
3: clipboard. 

The default is primary. 

t seconds 
Indicate how many seconds to wait for the holder of a selection to respond to a request before giv
ing up. The default is 6 seconds. 

D Debugging. Inquire through a special debugging service for the selection, rather than accessing 
the standard service. Useful only for debugging window applications which are clients of the 
selection library. 

EXAMPLE 
The following line in a SunView root menu file provides a menu command to print the primary selection 
on the user's default printer: 

"Print It" csh -c get_selection j lpr 

SEE ALSO 
Sun View 1 Beginner's Guide 

208 Last change: 21 December 1987 Sun Release 4.0 



GETOPT( 1) USER COMMANDS GETOPT( 1) 

NAME 
getopt - parse command options in shell scripts 

SYNOPSIS 
set-- 'getopt opstring $•' 
set argv = ('getopt opstring $•') 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
getopt is used to break up options in command lines for easy parsing by shell scripts, and to check for legal 
options. optstring is a string of option letters to recognize, (see getopt(3)). If a letter is followed by a 
colon, the option is expected to have an argument - which may or may not be separated by white space. 

(The ' - -' following set indicates that the Bourne shell is to pass arguments beginning with a dash as 
parameters to the script.) 

If'-' appears on the command line that invokes the script, getopt uses it to delimit the end of options it is 
to parse (see example below). If used explicitly, getopt will recognize it; otherwise, getopt will generate it 
at the first argument it encounters that has no '-'. In either case, getopt places it at the end of the options. 
The positional parameters ($1 $2 . .. ) of the shell are reset so that each option in optstring is broken out and 
preceded by a'-', along with the argument (if any) for each. 

EXAMPLE 
The following code fragment shows how one might process the arguments for a command that can take the 
options a orb, as well as the option o, which requires an argument: 

#! /usr/bin/sh 
set - - getopt abo: $*' 
if [ $? != 0] 
then 

fi 

echo $USAGE 
exit 2 

for i in$* 
do 

case $i in 
-a I -b) FLAG =$i; shift;; 
-o) OARG :$2; shift 2;; 
--) shift; break;; 
esac 

done 

This code will accept any of the following command lines as equivalent: 
cmd -a -0 arg fl f2 
cmd -aoarg fl f2 
cmd -oarg -a fl f2 
cmd -a -oarg - - fl f2 

SEE ALSO 
csh(l), getopts(l), sh(l), getopt(3) 

DIAGNOSTICS 

getopt prints an error message on the standard error when it encounters an option letter not included in opt
string. 

Sun Release 4.0 Last change: 21 December 1987 209 



GETOPT( 1) USER COMMANDS GETOPT(l) 

NOTES 
getopts( 1) is preferred. 

210 Last change: 21 December 1987 Sun Release 4.0 



GETOPTS( 1) USER COMMANDS GETOPTS(l) 

NAME 
getopts, getoptcvt - parse command options in shell scripts 

SYNOPSIS 
getopts optstring name [ argument. . . ] 

getoptcvt [ -b ] filename 

DESCRIPTION 
getopts is used by shell procedures to parse positional parameters and to check for legal options. It should 
be used in place of the getopt( 1) command. It supports the following command syntax rules: 

• Option names must be one character long. 

• All options must be preceded by'-'. 

• Options with no arguments may be grouped after a single '-'. 

• The first option-argument following an option must be preceded by white space. 

• Option-arguments cannot be optional. 

• Groups of option-arguments following an option must either be separated by commas or 
separated by white space and quoted (that is, '-o xxx,z,yy' or '-o "xxx z yy"'). 

• All options must precede operands on the command line. 

• '--'maybe used to indicate the end of the options. 

optstring must contain the option letters the command using getopts will recognize; if a letter is followed 
by a colon, the option is expected to have an argument, or group of arguments, which must be separated 
from it by white space. 

Each time it is invoked, getopts will place the next option in the shell variable name and the index of the 
next argument to be processed in the shell variable OPTIND. Whenever the shell or a shell procedure is 
invoked, OPTIND is initialized to 1. 

When an option requires an option-argument, getopts places it in the shell variable OPTARG. 

If an illegal option is encountered, ? will be placed in name. 

When the end of options is encountered, getopts exits with a non-zero exit status. The special option'--' 
may be used to delimit the end of the options. 

By default, getopts parses the positional parameters. If extra arguments (argument ... ) are given on the 
getopts command line, getopts will parse them instead. 

getoptcvt reads the shell script in filename, converts it to use getopts instead of getopt, and writes the 
results on the standard output. 

OPTIONS 
getoptcvt 

-b 

Sun Release 4.0 

Generate a script that will be portable to earlier releases of the UNIX system. The script will 
determine at run time whether to invoke getopts or getopt. 

Last change: 18 November 1987 211 



GETOPTS( 1) USER COMMANDS GETOPTS( 1) 

EXAMPLE 
The following fragment of a shell program shows how one might process the arguments for a command 
that can take the options a orb, as well as the option o, which requires an option-argument: 

while getopts abo: c 
do 

case $c in 
a I b) 
o) 
\?) 

esac 
done 

FLAG=$c;; 
OARG=$0Pf ARG;; 
echo $USAGE 
exit 2;; 

shift 'expr $OPTIND - 1' 

This code will accept any of the following as equivalent: 

cmd -a -b -o "xxx z yy" filename 
cmd -a -b -o "xxx z yy" - filename 
cmd -ab -o xxx,z,yy filename 
cmd -ab -o "xxx z yy" filename 
cmd -o xxx,z,yy -b -a filename 

SEE ALSO 
getopt(l), sh(l), getopt(3) 

WARNING 
Changing the value of the shell variable OPTIND or parsing different sets of arguments may lead to unex
pected results. 

DIAGNOSTICS 

212 

getopts prints an error message on the standard error when it encounters an option letter not included in 
optstring. 

Last change: 18 November 1987 Sun Release 4.0 



GFXTOOL(l) USER COMMANDS GFXTOOL(l) 

NAME 
gfxtool - run graphics programs in a Sun View window 

SYNOPSIS 
gfxtool [ -C] [program [arguments]] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
gfxtool is a standard tool provided with the SunView environment It allows you to run graphics programs 
that don't overwrite the terminal emulator from which they run. 

gfxtool has two subwindows: a terminal sub window and an empty subwindow. The terminal subwindow 
contains a running shell, just like the shelltool (see shelltool(l)). Programs invoked in the terminal subwin
dow can run in the empty sub window. You can move the boundary between these two subwindows as 
described in sunview(l). If you wish, you can make gfxtool your console by entering a first argument of 
-C. 

Normally you can use the mouse and keyboard anywhere in the empty subwindow to access frame func
tions. However, some graphics programs which run in this window may take over inputs directed to it For 
example, SunCore uses the mouse and keyboard for its own input. When you run such tools, access the 
Frame Menu from the tool boundaries or frame header. 

OPTIONS 

FILES 

-C Redirect system console output to this instance of gfxtool. 

gfxtool also accepts all of the generic tool arguments; see sunview(l) for a list of these arguments. 

If a pro gram argument is present, gfxtool runs it. If there are no arguments, gfxtool runs the program 
corresponding to your SHELL environment variable. If this environment variable is not available, then 
gfxtool runs /usr/bin/sh. 

/.ttyswrc 
/usr/bin/gfxtool 
/usr/demo/• 

SEE ALSO 

BUGS 

shelltool( 1 ), sun view( 1 ), gp _ demos( 6) 

If more than 256 characters are input to a terminal emulator subwindow without an intervening NEWLINE, 
the terminal emulator may hang. If this occurs, display the Frame Menu; the 'TTY Hung?' submenu there 
has one item, 'Flush input', that you can invoke to correct the problem. 

Sun Release 4.0 Last change: 21 December 1987 213 



GPROF( 1) USER COMMANDS GPROF( 1) 

NAME 
gprof - display call-graph profile data 

SYNOPSIS 
gprof [ -abcsz] [ -efilename] [ -Efilename] [-(filename] [ -F filename] 

[ image-file [ profile-file ... ] ] 

DESCRIPTION 

gprof produces an execution profile of a program. The effect of called routines is incorporated in the 
profile of each caller. The profile data is taken from the call graph profile file which is created by programs 
compiled with the -pg option of cc(l V) and other compilers. That option also links in versions of the 
library routines which are compiled for profiling. The symbol table in the executable image file image-file 
(a.out by default) is read and correlated with the call graph profile file profile-file (gmon.out by default). If 
more than one profile file is specified, the gprof output shows the sum of the profile information in the 
given profile files. 

First, execution times for each routines are propagated along the edges of the call graph. Cycles are 
discovered, and calls into a cycle are made to share the time of the cycle. The first listing shows the func
tions sorted according to the time they represent, including the time of their call graph descendants. Below 
each function entry is shown its (direct) call-graph children, and how their times are propagated to this 
function. A similar display above the function shows how this function's time and the time of its descen
dants is propagated to its (direct) call-graph parents. 

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of the cycle and 
their contributions to the time and call counts of the cycle. 

Next, a flat profile is given, similar to that provided by prof(l). This listing gives the total execution times 
and call counts for each of the functions in the program, sorted by decreasing time. Finally, an index show
ing the correspondence between function names and call-graph profile index numbers. 

A single function may be split into subfunctions for profiling by means of the MARK macro (see prof(3)). 

Beware of quantization errors. The granularity of the sampling is shown, but remains statistical at best. It 
is assumed that the time for each execution of a function can be expressed by the total time for the function 
divided by the number of times the function is called. Thus the time propagated along the call-graph arcs 
to parents of that function is directly proportional to the number of times that arc is traversed. 

The profiled program must call exit(2) or return normally for the profiling information to be saved in the 
gmon.out file. 

OPTIONS 

214 

-a Suppress printing statically declared functions. If this option is given, all relevant information 
about the static function (for instance, time samples, calls to other functions, calls from other func
tions) belongs to the function loaded just before the static function in the a.out file. 

-b Brief. Suppress descriptions of each field in the profile. 

-c The static call-graph of the program is discovered by a heuristic which examines the text space of 
the object file. Static-only parents or children are indicated with call counts of 0. 

-s Produce a profile file gmon.sum which represents the sum of the profile information in all the 
specified profile files. This summary profile file may be given to subsequent executions of gprof 
(probably also with a -s) option to accumulate profile data across several runs of an a.out file. 

-z Display routines which have zero usage (as indicated by call counts and accumulated time). This 
is useful in conjunction with the -c option for discovering which routines were never called. 

-efilename 
Suppress printing the graph profile entry for routine filename and all its descendants (unless they 
have other ancestors that are not suppressed). More than one -e option may be given. Only one 
filename may be given with each -e option. 

Last change: 22 December 1987 Sun Release 4.0 



GPROF( 1) USER COMMANDS GPROF( 1) 

-Efilename 
Suppress printing the graph profile entry for routine filename (and its descendants) as -e, above, 
and also exclude the time spent in filename (and its descendants) from the total and percentage 
time computations. More than one -E option may be given. For example: 

'-E mcount -E mcleanup' 

is the default. 

-(filename 
Print the graph profile entry only for routine filename and its descendants. More than one -f 
option may be given. Only one filename may be given with each -f option. 

-F filename 
Print the graph profile entry only for routine filename and its descendants (as -f, above) and also 
use only the times of the printed routines in total time and percentage computations. More than 
one -F option may be given. Only one filename may be given with each -F option. The -F 
option overrides the -E option. 

ENVIRONMENT 

FILES 

PROFDIR 
If this environment variable contains a value, place profiling output within that directory, in a file 
named pid.programname. pid is the process ID, and programname is the name of the program 
being profiled, as determined by removing any path prefix from the argv[O] with which the pro
gram was called. If the variable contains a NULL value, no profiling output is produced. Other
wise, profiling output is placed in the file gmon.out. 

a.out executable file containing namelist 
gmon.out dynamic call-graph and profile 
gmon.sum summarized dynamic call-graph and profile 
$PROFDIR/pid.pro gramname 

SEE ALSO 

BUGS 

cc(l V), prof(l), tcov(l), exit(2), profil(2), monitor(3), prof(3) 

Graham, S.L., Kessler, P.B., McKusick, M.K., 'gprof: A Call Graph Execution Profiler', Proceedings of 
the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 17, No. 6, pp. 120-126, 
June 1982. 

Parents which are not themselves profiled will have the time of their profiled children propagated to them, 
but they will appear to be spontaneously invoked in the call-graph listing, and will not have their time pro
pagated further. Similarly, signal catchers, even though profiled, will appear to be spontaneous (although 
for more obscure reasons). Any profiled children of signal catchers should have their times propagated 
properly, unless the signal catcher was invoked during the execution of the profiling routine, in which case 
all is lost. 

Sun Release 4.0 Last change: 22 December 1987 215 



GRAPH( lG) USER COMMANDS GRAPH( lG) 

NAME 
graph - draw a graph 

SYNOPSIS 
graph [ -a spacing [ start] ] [ -b ] [ -c string ] [ -g grid.style ] [ -I label ] 

[ -m connectmode ] [ -s ] [ -x [ I ] lower [ upper [ spacing ] ] ] 
[ -y [I] lower [ upper [spacing]]] [ -hfraction] [ -w fraction] [ -r fraction] 
[ -ufraction] [ -t] ... 

DESCRIPTION 
graph with no options takes pairs of numbers from the standard input as abscissas and ordinates of a graph. 
Successive points are connected by straight lines. The graph is encoded on the standard output for display 
by the plot(lG) filters. 

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a label beginning 
on the point. Labels may be surrounded with quotes " in which case they may be empty or contain 
blanks and numbers; labels never contain newlines. 

A legend indicating grid range is produced with a grid unless the -s option is present. 

OPTIONS 

216 

Each option is recognized as a separate argument. 

-a spacing [ start ] 
Supply abscissas automatically (they are missing from the input); spacing is the spacing ( default 
1). start is the starting point for automatic abscissas (default O or lower limit given by -x). 

-b Break (disconnect) the graph after each label in the input 

-c string 
String is the default label for each point 

-g gridstyle 
Gridstyle is the grid style: 0 no grid, 1 frame with ticks, 2 full grid (default). 

-I label is label for graph. 

~m connectmode 
Mode (style) of connecting lines: 0 disconnected, 1 connected (default). Some devices give dis
tinguishable line styles for other small integers. 

-s Save screen, don't erase before plotting. 

-x [ I ] lower [ upper [ spacing 
If I is present, x axis is logarithmic. lower and upper are lower (and upper) x limits. spacing, if 
present, is grid spacing on x axis. Normally these quantities are determined automatically. 

-y [ I ] lower [ upper [ spacing 
If I is present, y axis is logarithmic. lower and upper are lower (and upper) y limits. spacing, if 
present, is grid spacing on y axis. Normally these quantities are determined automatically. 

-hfraction 
fraction of space for height. 

-wfraction 
fraction of space for width. 

-r fraction 
fraction of space to move right before plotting. 

-ufraction 
fraction of space to move up before plotting. 

-t Transpose horizontal and vertical axes. (Option -x now applies to the vertical axis.) 

Last change: 9 September 1987 Sun Release 4.0 



GRAPH( lG) USER COMMANDS 

If a specified lower limit exceeds the upper limit, the axis is reversed 

SEE ALSO 
plot(lG), spline(lG) 

BUGS 
graph stores all points internally and drops those for which there isn't room. 

Segments that run out of bounds are dropped, not windowed. 

Logarithmic axes may not be reversed. 

Sun Release 4.0 Last change: 9 September 1987 

GRAPH( lG) 

217 



GREP( lV) USER COMMANDS GREP(lV) 

NAME 
grep, egrep, fgrep - search a file for a string or regular expression 

SYNOPSIS 
grep [ -bchilnsvw] [ -e expression ] [filename . .. ] 

egrep [ -bchilnsvw] [ -e expression] [ -f filename] [expression] [filename ... ] 

fgrep [ -bchilnsvwx ] [ -e string ] [ -f filename ] [ string ] [filename . .. ] 

SYSTEM V SYNOPSIS 
/usr/Sbin/grep [ -bchilnsvw] [ -e expression ] [filename ... ] 

DESCRIPTION 
Commands of the grep family search the inputfilenames (the standard input default) for lines matching a 
pattern. Normally, each line found is copied to the standard output. grep patterns are limited regular 
expressions in the style of ed(l). egrep patterns are full regular expressions including alternation. fgrep 
patterns are fixed strings - no regular expression metacharacters are supported. 

In general, egrep is the fastest of these programs. 

Take care when using the characters '$', '*', [, ''", 'I','(', ')',and'\' in the expression, as these characters 
are also meaningful to the shell. It is safest to enclose the entire expression argument in single quotes 

When any of the grep utilities is applied to more than one input file, the name of the file is displayed 
preceding each line which matches the pattern. The filename is not displayed when processing a single file, 
so if you actually want the filename to appear, use /dev/null as a second file in the list. 

OPTIONS 

218 

-b Precede each line by the block number on which it was found. This is sometimes useful in locat-
ing disk block numbers by context 

-c Display a count of matching lines rather than displaying the lines which match. 

-h Do not display filenames. 

-i Ignore the case of letters in making comparisons - that is, upper and lower case are considered 
identical. 

-I List only the names of files with matching lines (once) separated by NEWLINE characters. 

-n Precede each line by its relative line number in the file. 

-s Work silently, that is, display nothing except error messages. This is useful for checking the error 
status. 

-v Invert the search to only display lines that do not match. 

-w Search for the expression as a word as if surrounded by\< and\>. This applies to grep only. 

-x Display only those lines which match exactly - that is, only lines which match in their entirety 
This applies to fgrep only. 

-e expression 
Same as a simple expression argument, but useful when the expression begins with a '-'. 

-e string 
For egrep the argument is a literal character string. 

-(filename 
Take the regular expression ( egrep) or a list of strings separated by NEWLINE (fgrep) from 
filename. 

Last change: 9 September 1987 Sun Release 4.0 



GREP( lV) USER COMMANDS GREP( lV) 

SYSTEM V OPTIONS 
The -s option to grep indicates that error messages for nonexistent or unreadable files should be 
suppressed, not that all messages except for error messages should be suppressed. 

REGULAR EXPRESSIONS 
The following one-character regular expressions match a single character: 

c An ordinary character (not one of the special characters discussed below) is a one-character regu
lar expression that matches that character. 

\c A backslash (\) followed by any special character is a one-character regular expression that 
matches the special character itself. The special characters are: 

• '.', '* ', '[', and '\' (period, asterisk, left square bracket, and backslash, respec
tively), which are always special, except when they appear within square brack
ets ([ ]). 

• ,", (caret or circumflex), which is special at the beginning of an entire regular 
expression, or when it immediately follows the left of a pair of square brackets 
([ ]). 

• $ (currency symbol), which is special at the end of an entire regular expression. 

A backslash followed by one of'<', '>', '(', ')', '{', or '}', represents a special operator in the regular 
expression; see below. 

[string] 

A'.' (period) is a one-character regular expression that matches any character except NEWLINE. 

A non-empty string of characters enclosed in square brackets is a one-character regular expression 
that matches any one character in that string. If, however, the first character of the string is a ,", 
(a circumflex or caret), the one-character regular expression matches any character except NEW

LINE and the remaining characters in the string. The,", has this special meaning only if it occurs 
first in the string. The '-' (minus) may be used to indicate a range of consecutive ASCII charac
ters; for example, [0-9] is equivalent to [0123456789]. The '-' loses this special meaning if it 
occurs first (after an initial ,",, if any) or last in the string. The ']' (right square bracket) does not 
terminate such a string when it is the first character within it (after an initial ," ', if any); that is, 
[ ]a-f] matches either ']' (a right square bracket) or one of the letters a through f inclusive. The 
four characters '.', '*', '[',and'\' stand for themselves within such a string of characters. 

The following rules may be used to construct regular expressions: 

* A one-character regular expression followed by '*' (an asterisk) is a regular expression that 
matches zero or more occurrences of the one-character regular expression. If there is any choice, 
the longest leftmost string that permits a match is chosen. 

\( and\) A regular expression enclosed between the character sequences \( and \) matches whatever the 
unadorned regular expression matches. This applies only to grep. 

\n The expression \n matches the same string of characters as was matched by an expression 
enclosed between \( and \) earlier in the same regular expression. Here n is a digit; the sub
expression specified is that beginning with the nth occurrence of \( counting from the left _ For 
example, the expression "\(.*\)\1$ matches a line consisting of two repeated appearances of the 
same string. 

Concatenation 

The concatenation of regular expressions is a regular expression that matches the concatenation of the 
strings matched by each component of the regular expression. 

\< The sequence \< in a regular expression constrains the one-character regular expression immedi
ately following it only to match something at the beginning of a "word"; that is, either at the 
beginning of a line, or just before a letter, digit, or underline and after a character not one of these. 

Sun Release 4.0 Last change: 9 September 1987 219 



GREP( lV) USER COMMANDS GREP( lV) 

h The sequence\> in a regular expression constrains the one-character regular expression immedi
ately following it only to match something at the end of a "word"; that is, either at the end of a 
line, or just before a character which is neither a letter, digit, nor underline. 

\{m\} 
\{m,\} 
\{m,n\} A regular expression followed by \{m\}, \{m,\), or \{m,n\} matches a range of occurrences of the 

regular expression. The values of m and n must be non-negative integers less than 256; \{m\} 
matches exactly m occurrences; \{m,\} matches at least m occurrences; \{m,n\} matches any 
number of occurrences between m and n inclusive. Whenever a choice exists, the regular expres
sion matches as many occurrences as possible. 

A circumflex or caret ( " ) at the beginning of an entire regular expression constrains that regular 
expression to match an initial segment of a line. 

$ A currency symbol ($) at the end of an entire regular expression constrains that regular expression 
to match afinal segment of a line. 

The construction 

example% "entire regular expression $ 

constrains the entire regular expression to match the entire line. 

egrep accepts regular expressions of the same sort grep does, except for \(, \), \n, \<, \>, \{, and \}, with the 
addition of: 

* A regular expression (not just a one-character regular expression) followed by 
'*' (an asterisk) is a regular expression that matches zero or more occurrences 
of the one-character regular expression. If there is any choice, the longest left
most string that permits a match is chosen. 

+ A regular expression followed by '+' (a plus sign) is a regular expression that 
matches one or more occurrences of the one-character regular expression. If 
there is any choice, the longest leftmost string that permits a match is chosen. 

? A regular expression followed by '?' (a question mark) is a regular expression 
that matches zero or one occurrences of the one-character regular expression. If 
there is any choice, the longest leftmost string that permits a match is chosen. 

Alternation: two regular expressions separated by 'I' or NEWLINE match either 
a match for the first or a match for the second. 

() A regular expression enclosed in parentheses matches a match for the regular 
expression. 

The order of precedence of operators at the same parenthesis level is '[ ]' (character classes), then '*' '+' 
'?' (closures),then concatenation, then 'I' (alternation)and NEWLINE. 

EXAMPLES 

220 

Search a file for a fixed string using fgrep: 

example% fgrep intro /usr/share/man/man3/•.3• 

Look for character classes using grep: 

example% grep '[l-8]([CJMSNX])' /usr/share/man/manl/•.1 

Look for alternative patterns using egrep: 

example% egrep '(SallylFred) (SmithlJoneslParker)' telephone.list 

Last change: 9 September 1987 Sun Release 4.0 



GREP( lV) USER COMMANDS GREP( lV) 

FILES 

To get the filename displayed when only processing a single file, use /dev/null as the second file in the list: 

example% grep 'Sally Parker' telephone.list /dev/null 

/dev/null 

SEE ALSO 

BUGS 

awk(l), ed(l), ex(l), sh(l), vi(l), sed(l V) 

Lines are limited to 1024 characters by grep; longer lines are truncated. 

The combination of -I and -v options does not produce a list of files in which a regular expression is not 
found. To get such a list, use the Bourne shell construct: 

for filename in• 
do 

done 

if [ 'grep "re" $filename I we -1' -eq O] 
then 

echo $filename 
fi 

or the C shell construct: 

foreachfilename (*) 
if ('grep "re" $filename I we -1' == 0) echo $filename 

end 

Ideally there should be only one grep. 

DIAGNOSTICS 
Exit status is O if any matches are found, 1 if none, 2 for syntax errors or inaccessible files. 

Sun Release 4.0 Last change: 9 September 1987 221 



GROUPS( 1) USER COMMANDS GROUPS(l) 

NAME 
groups - display a user's group memberships 

SYNOPSIS 
groups [ user ... ] 

DESCRIPTION 
With no arguments, groups displays the groups to which you belong; else it displays the groups to which 
the user belongs. Each user belongs to a group specified in the password file /etdpasswd and possibly to 
other groups as specified in the file /etc/group. If you do not own a file but belong to the group which it is 
owned by then you are granted group access to the file. 

When a new file is created it is given the group of the containing directory. 

FILES 
/ etc/passwd 
/etc/group 

SEE ALSO 
getgroups(2) 

222 Last change: 9 September 1987 Sun Release 4.0 



HEAD(l) USER COMMANDS HEAD(l) 

NAME 
head - display first few lines of specified files 

SYNOPSIS 
head [ -n ] [filename . .. ] 

DESCRIPTION 
head copies the first n lines of each filename to the standard output. If no filename is given, head copies 
lines from the standard input. The default value of n is 10 lines. 

When more than one file is specified, the start of each file which looks like: 

==>filename<== 

Thus, a common way to display a set of short files, identifying each one, is: 
example% head -9999 filename] filename2 ... 

EXAMPLE 
The following example: 

example% head -4 /usr/share/man/manl/{cat,head,tail}.1 * 

produces: 

SEE ALSO 

==> /usr/share/man/manl/cat.1 v <== 
.TH CAT lV "2 June 1983" 
.SH NAME 
cat - concatenate and display 
.SH SYNOPSIS 

==> /usr/share/man/manl/head.l <== 
.TH HEAD 1 "24 August 1983" 
.SH NAME 
head - display first few lines of specified files 
.SH SYNOPSIS 

==> /usr/share/man/manl/tail.1 <== 
.TH TAIL 1 "27 April 1983" 
.SH NAME 

tail - display the last part of a file 
.SH SYNOPSIS 

cat(l V), more(l), tail(l) 

Sun Release 4.0 Last change: 9 September 1987 223 



HELP(l) USER COMMANDS HELP( 1) 

NAME 
help - ask for help regarding SCCS errors or warnings 

SYNOPSIS 
/usr/sccs/help [arguments] 

DESCRIPTION 

FILES 

help finds information to explain a message from a command or explain the use of a command. Zero or 
more arguments may be supplied. If no arguments are given, help will prompt for one. 

The arguments may be either message numbers (which normally appear in parentheses following mes
sages) or command names, of one of the following types: 

type 1 

type2 

type 3 

Begins with non-numerics, ends in numerics. The non-numeric prefix is usually an 
abbreviation for the program or set of routines which produced the message (for 
example, ge6, for message 6 from the get command). 

Does not contain numerics (as a command, such as get(l)). 

Is all numeric (for example, 212). 

The response of the program will be the explanatory information related to the argument, if there is any. 

When all else fails, try '/usr/sccs/help stuck'. 

/usr /lib/help 
/usr/sccs/help 

directory containing files of message text 

SEE ALSO 
get(l) 

224 Last change: 9 September 1987 Sun Release 4.0 



HELP_ VIEWER ( 1 ) USER COMMANDS HELP_ VIEWER ( 1) 

NAME 
help_ viewer - Sun View application providing help with applications and desktop 

SYNOPSIS 
/usr/Iib/help _ viewer [ options] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
help_ viewer allows you to quickly access documentation about Sun View applications and the Sun View 
Desktop. This help consists of intermixed text and graphics displayed in a window called the Help Viewer. 

There are two ways help_ viewer can be invoked. One is as a stand-alone Sun View application, where 
help_ viewer starts up with a list of the applications that it contains documentation for. The second way to 
reach help_ viewer is by clicking on the More Help button in a Spot Help window. In this case, the Help 
Viewer comes up with text specific to the current application and context. 

The documentation within help_ viewer is extendable, but as shipped it includes handbooks for the Desk
Top, mailtool( 1 ), shelltool(l ), textedit( 1 ), organizer, SunPC, and itself (help_ viewer). 

The available documentation depends only on the existence of the appropriate files in the directories 
specified under FILES. 

The user moves between the various pages of help with the assistance of hypertext links. Links are sym
bolic connections between pages of text. The current convention at Sun is to use underlined text to indicate 
the presence of a link. When the user double-clicks on a link, the text associated with the topic indicated 
by the link is shown in the Help Viewer. There are links in many places to make it quick and easy to go 
from place to place within the help_ viewer database. 

At the lower levels in the hierarchy of help files, many of the topics contain more than one page of text, and 
in these cases a link to the next page and to the previous page is available at the upper-right comer of the 
Help Viewer which allows you to page through the document. 

The current position within the hierarchy of text is indicated by the links at the upper-left comer of the 
Help Viewer. The last link in the list is the level just above your current position. 

OPTIONS 

FILES 

The standard SunView options for window size, position, fonts, and other options are allowed. See sun
view(l) for details. 

-dir dirname 
Name of help directory 

-file filename[#] 
Name of startup file relative to help directory (or /usr/Iib/help by default). # is a page number 
separated from the filename by a SPACE. If# is omitted, the first page is shown. 

/usr/lib/help directory containing miscellaneous help files 
The files in /usr/lib/help are used by the help and the help_ viewer facilities, and the SCCS help( 1) facility. 
Directories within /usr/lib/help named after SunView applications and the DeskTop contain specific infor
mation used by help_ viewer. See help_ viewer(5) for information about the files in these directories. 

SEE ALSO 
help( 1 ), mailtool( 1 ), shell tool( 1 ), textedit( 1 ), help_ viewer(5) 

DIAGNOSTICS 
help_ viewer(!) displays a pop-up error window if it cannot find the file required to show the requested 
help. 

Sun Release 4.0 Last change: 19 February 1988 225 



HOSTID( 1) USER COMMANDS HOSTID( 1) 

NAME 
hostid - print the numeric identifier of the current host 

SYNOPSIS 
hostid 

DESCRIPTION 
The hostid command prints the identifier of the current host in hexadecimal. This numeric value is unique 
across all Sun hosts. 

SEE ALSO 
gethostid(2) 

226 Last change: 9 September 1987 Sun Release 4.0 



HOSTNAME(l) USER COMMANDS HOSTNAME(l) 

NAME 
hostname - set or print name of current host system 

SYNOPSIS 
hostname [ name-of-host ] 

DESCRIPTION 
The hostname command prints the name of the current host, as given before the "login" prompt. The 
super-user can set the hostname by giving an argument; this is usually done in the startup script 
/ etc/re.local. 

FILES 
/ etc/re.local 

SEE ALSO 
gethostname(2) 

Sun Release 4.0 Last change: 9 September 1987 227 



ICONEDIT ( 1 ) USER COMMANDS ICONEDIT ( 1 ) 

NAME 
iconedit - create and edit images for Sun View icons, cursors and panel items 

SYNOPSIS 
iconedit [filename ] 

OPTIONS 
iconedit accepts the standard Sun View command-line arguments; see sunview(l) for a list. 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
iconedit is a standard tool provided with the SunView environment. With it you can create and edit small 
images for use in icons, cursors, panel items, etc. iconedit has several subwindows: 

• A large drawing area or canvas (on the left). 

• A small proof area for previewing a life-size version of the image being edited (at the lower 
right). 

• A control panel showing the options available and their current state (at the center right). 

• An area for status messages (at the upper right). 

• An area containing instructions for the use of the mouse (above the drawing canvas). 

Inside the canvas, use the left button to draw and the middle button to erase. As you draw, an enlarged ver
sion of the image appears in the canvas, while a life-sized version of the image appears in the proof area. 
Use the right button to undo the previous operation. 

While editing a cursor image, you can try the cursor out against different backgrounds and with different 
raster operations by moving the cursor into the proof area 

CONTROL PANEL 

228 

The large control panel to the right of the canvas contains many items through which you can control 
iconedit. Some items are buttons which allow you to initiate commands, some are text fields which you 
type into, and some are choice items allowing you select from a range of options. Use the left button to 
select items. Most items also have a menu which you can invoke with the right button. 

There are three text fields: the two at the top labeled Dir: and File:, and one to the right of the abc labeled 
Fill:. A triangular caret points to the current type-in position. Typing RETURN advances the caret to the 
next text field; you can also move the caret to a text field by selecting the field with the left button. 

Each item in the control panel is described below: 

Dir The current directory. 

File The current filename. The default is the filename given on the command line. You can request 
filename completion by pressing ESC. iconedit searches the current directory for files whose 
names begin with the string you entered. If the filename search locates only one file, that file will 
be loaded in. In addition, typing CTRL-L, CTRL-S, CTRL-B or CTRL-Q are equivalent to pressing 
the Load, Store, Browse, or Quit buttons, respectively. 

Load (Button) Load the canvas from the file named in the File field. 

Store (Button) Store the current image in the file named in the File field. 

Browse (Button) Display all the images in the current directory in a popup panel. When you select an 
image with the left button, it will be loaded into the canvas for editing and the browsing panel will 
be hidden. Pressing browse again will cause the panel to popup again (it will come up immedi
ately if the directory and file fields have not been modified). 

Quit (Button) Terminate processing. Quitting requires confirmation. 

Last change: 21 December 1987 Sun Release 4.0 



ICONEDIT ( 1 ) USER COMMANDS ICONEDIT ( 1 ) 

Size Alter the canvas size. Choices are icon size (64 x 64 pixels) or cursor size (16 x 16 pixels). 

Grid Display a grid over the drawing canvas, or tum the grid off. 

Clear (Button) Clear the canvas. 

Fill (Button) Fill canvas with current rectangular fill pattern. 

Invert (Button) Invert each pixel represented on the canvas. 

Paintbrush 
Select from among five painting modes. Instructions for each painting mode appear above the 
canvas. The painting modes are: 

dot Paint a single dot at a time. 

line Draw a line. To draw a line on the canvas, point to the first endpoint of the line, and 
press and hold the left mouse button. While holding the button down, drag the cursor to 
the second endpoint of the line. Release the mouse button. 

rectangle 
Draw a rectangle. To draw a rectangle on the canvas, point to the first comer of the rec
tangle and press and hold the left mouse button. While holding the button down, drag the 
cursor to the diagonally opposite comer of the rectangle. Release the mouse button. 

In the control panel, the Fill field to the right of the rectangle indicates the current rectan
gle fill pattern. Any rectangles you paint on the canvas will be filled with this pattern. 

circle Draw a circle. To draw a circle on the canvas, point to the center of the circle, and press 
and hold the left mouse button. While holding the button down, drag the cursor to the 
desired edge of the circle. Release the mouse button. 

In the control panel, the Fill field to the right of the circle indicates the current circle fill 
pattern. Any circles you paint on the canvas will be filled with this pattern. 

abc Insert text. To insert text, move the painting hand to abc and type the desired text. Then 
move the cursor to the canvas and press and hold the left mouse button. A box will 
appear where the text is to go. Position the box as desired and release the mouse button. 

In addition, you can choose the font in which to draw the text. Point at the Fill field to 
the right of the abc and either click the left mouse button to cycle through the available 
fonts or press and hold the right mouse button to bring up a menu of fonts. 

Load This is the rasterop to be used when loading a file in from disk. (See the Pixrect Reference 
Manual for details on rasterops). 

Fill This is the rasterop to be used when filling the canvas. The source for this operation is the rectan
gle fill pattern, and the destination is the canvas. 

Proof This is the rasterop to be used when rendering the proof image. The source for this operation is 
the proof image, and the destination is the proof background. 

Proof background 
The proof background can be changed to allow you to preview how the image will appear against 
a variety of patterns. The squares just above the proof area show the patterns available for use as 
the proof background pattern. To change the proof background, point at the desired pattern and 
click the left mouse button. 

SEE ALSO 
sunview(l) 

Pixrect Reference Manual 

Sun Release 4.0 Last change: 21 December 1987 229 



ID( l) USER COMMANDS ID(l) 

NAME 
id - print the user name and ID, and group name and ID 

SYNOPSIS 
id 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the SunOS for information on how to 
install this command. 

id displays your user and group ID, and your usemame. If your real and effective IDs do not match, both 
are printed. 

SEE ALSO 
getuid(2) 

230 Last change: 21 December 1987 Sun Release 4.0 



INDENT( 1) USER COMMANDS INDENT( 1) 

NAME 
indent - indent and format a C program source file 

SYNOPSIS 
indent [ input-file [ output-file ] ] [ [ -bap 1-nbap ] [ -bacc I -nbacc ] [ -bad 1-nbad ] [ -bbb 1-nbbb ] 

[ -be 1-nbc ] [ -bl ] [ -br ] [ -bs I -nbs ] [ -en ] [ -cdn ] [ -cdb I -ncdb ] [ -ce I -nee ] [ -cin ] 
[ -clin ] [ -dn ] [ -din ] [ -eei I -neei ] [ -fcl 1-nfcl ] [ -in ] [ -ip I -nip ] [ -In ] [ -Jen ] 
[ -Ip I -nip ] [ -pcs 1-npcs ] [ -npro] [ -psi 1-npsl] [ -sc 1-nsc ] [ -sob 1-nsob] [-st] 
[ -troff] [ -v I -nv ] 

DESCRIPTION 
indent is a C program formatter. It reformats the C program in the input-file according to the switches. 
The switches which can be specified are described below. They may appear before or after the file names. 

Note: if you only specify an input-file, the formatting is done "in-place", that is, the formatted file is written 
back into input-file and a backup copy of input-file is written in the current directory. If input-file is named 
/blah/blah/file, the backup file is named file. BAK. 

If output-file is specified, indent checks to make sure it is different from input-file. 

OPTIONS 
The options listed below control the formatting style imposed by indent. 

-bap,-nbap If -hap is specified, a blank line is forced after every procedure body. Default: -nbap. 

-bacc,-nbacc If -bacc is specified, a blank line is forced around every conditional compilation block. 
That is. in front of every #ifdef and after every #endif. Other blanklines surrounding 
these will be swallowed. Default: -nbacc. 

-bad,-nbad If -bad is specified, a blank line is forced after every block of declarations. Default: 
-nbad. 

-bbb,-nbbb If -bbb is specified, a blank line is forced before every block comment. Default: 
-nbbb. 

-bc,-nbc If -be is specified, then a NEWLINE is forced after each comma in a declaration. -nbc 
turns off this option. The default is -be. 

-br,-bl Specifying -bl lines up compound statements like this: 
if ( •.. ) 
{ 

code 
} 

Specifying -br (the default) makes them look like this: 

if( ... ) { 
code 

} 

-bs,-nbs 
Enable (disable) the forcing of a blank after sizeof. Some people believe that sizeof should appear 
as though it were a procedure call (-nbs, the default) and some people believe that since sizeof is 
an operator, it should always be treated that way and should always have a blank after it. 

-en The column in which comments on code start. The default is 33. 

-cdn The column in which comments on declarations start. The default is for these comments to start 
in the same column as those on code. 

Sun Release 4 .0 Last change: 9 September 1987 231 



INDENT( 1) USER COMMANDS INDENT( 1) 

232 

-cdb,-ncdb 
Enable (disable) the placement of comment delimiters on blank lines. With this option enabled, 
comments look like this: 

'* * this is a comment 

*' Rather than like this: 

I* this is a comment *I 

This only affects block comments, not comments to the right of code. The default is -cdb . 

-ce,-oce 
Enables (disables) forcing else's to cuddle up to the immediately preceeding '}'. The default is 
-Ce. 

-cin Sets the continuation indent to be n. Continuation lines will be indented that far from the begin-
ning of the first line of the statement. Parenthesized expressions have extra indentation added to 
indicate the nesting, unless -Ip is in effect. -ci defaults to the same value as -i. 

-clin Cause case labels to be indented n tab stops to the right of the containing switch statement. -cli0.5 
causes case labels to be indented half a tab stop. The default is -cliO .. 

-dn Control the placement of comments which are not to the right of code. The default -dl means 
that such comments are placed one indentation level to the left of code. Specifying -dO lines up 
these comments with the code. See the section on comment indentation below. 

-din Specify the indentation, in character positions, from a declaration keyword to the following 
identifier. The default is -di16. 

-eei,-neei 
If -eei is specified, and extra expression indent is applied on continuation lines of the expression 
part of if() and while(). These continuation lines will be indented one extra level - twice instead 
of just once. This is to avoid the confusion between the continued expression and the statement 
that follows the if() or while(). Default: -neei. 

-fcl,-nfcl 
Enables (disables) the formatting of comments that start in column 1. Often, comments whose 
leading '/' is in column 1 have been carefully hand formatted by the programmer. In such cases, 
-nfcl should be used. The default is -fcl. 

-in The number of spaces for one indentation level. The default is 4. 

-ip,-nip 
Enables (disables) the indentation of parameter declarations from the left margin. The default is 
-ip. 

-In Maximum length of an output line. The default is 78. 

-Jen Sets the line length for block comments to n. It defaults to being the same as the usual line length 
as specified with -1. 

-lp,-olp 
Lines up code surrounded by parenthesis in continuation lines. If a line has a left paren which is 
not closed on that line, then continuation lines will be lined up to start at the character position just 
after the left parenthesis. For example, here is how a piece of continued code looks with -nip in 
effect: 

pl= first_procedure(second_procedure(p2, p3), 
third _procedure(p4, p5)); 

Last change: 9 September 1987 Sun Release 4.0 



INDENT( 1) USER COMMANDS 

With-Ip in effect (the default) the code looks somewhat clearer: 

pl= first_procedure(second_procedure(p2, p3), 
third_procedure(p4, p5)); 

Inserting a couple more NEWLINE characters we get: 

pl= first_procedure(second_procedure(p2, 
p3), 

third _proced ure(p4, 
p5)); 

INDENT( 1) 

-npro Ignore the profile files, ./.indent.pro and -/.indent.pro. 

-pcs ,-opes 
If true (-pcs) all procedure calls will have a space inserted between the name and the '('. The 
default is -npcs 

-psi, -npsl 
If true (-psi) the names of procedures being defined are placed in column 1 - their types, if any, 
will be left on the previous lines. The default is -psi. 

-sc,-nsc 
Enables (disables) the placement of asterisks ('*'s) at the left edge of all comments. 

-sob,-nsob 
If -sob is specified, indent will swallow optional blank lines. You can use this to get rid of blank 
lines after declarations. Default: -nsob 

-st indent takes its input from the standard input, and put its output to the standard output. 

-T typename 
Add typename to the list of type keywords. Names accumulate: -T can be specified more than 
once. You need to specify all the typenames that appear in your program that are defined by 
typedefs - nothing will be harmed if you miss a few, but the program won't be formatted as 
nicely as it should. This sounds like a painful thing to have to do, but it is really a symptom of a 
problem in C: typedef causes a syntactic change in the language and indent cannot find all 
typedefs. 

-troff Causes indent to format the program for processing by troff. It will produce a fancy listing in 
much the same spirit as vgrind. If the output file is not specified, the default is standard output, 
rather than formatting in place. The usual way to get a troff ed listing is with the command 

indent -troff program.c I troff-mindent 

-v,-nv -v turns on "verbose" mode, -nv turns it off. When in verbose mode, indent reports when it 
splits one line of input into two or more lines of output, and gives some size statistics at comple
tion. The default is -nv. 

FURTHER DESCRIPTION 
You may set up your own "profile" of defaults to indent by creating a file called .indent.pro in either your 
login directory or the current directory and including whatever switches you like. An .indent.pro in the 
current directory takes precedence over the one in your login directory. If indent is run and a profile file 
exists, then it is read to set up the program's defaults. Switches on the command line, though, always over
ride profile switches. The switches should be separated by SPACE, TAB, or NEWLINE characters. 

Comments 
Boxed 

Sun Release 4.0 

indent assumes that any comment with a dash or star immediately after the start of com
ment (that is, '/•-'or'/**') is a comment surrounded by a box of stars. Each line of such 
a comment is left unchanged, except that its indentation may be adjusted to account for 
the change in indentation of the first line of the comment. 

Last change: 9 September 1987 233 



INDENT(l) USER COMMANDS INDENT( 1) 

Straight text 

Comment indentation 

All other comments are treated as straight text. indent fits as many words (separated by 
SPACE, TAB, or NEWLINE characters) on a line as possible. Blank lines break para
graphs. 

If a comment is on a line with code it is started in the "comment column", which is set by the -en com
mand line parameter. Otherwise, the comment is started at n indentation levels less than where code is 
currently being placed, where n is specified by the -dn command line parameter. If the code on a line 
extends past the comment column, the comment starts further to the right, and the right margin may be 
automatically extended in extreme cases. 

Preprocessor lines 
In general, indent leaves preprocessor lines alone. The only reformatting that it will do is to straighten up 
trailing comments. It leaves imbedded comments alone. Conditional compilation (#if def ••• #endif) is 
recognized and indent attempts to correctly compensate for the syntactic peculiarities introduced. 

C syntax 
indent understands a substantial amount about the syntax of C, but it has a "forgiving" parser. It attempts 
to cope with the usual sorts of incomplete and misformed syntax. In particular, the use of macros like: 

#define forever for(;;) 

is handled properly. 

FILES 
. /.indent.pro profile file 
~/.indent.pro profile file 
/usr/sbare/lib/tmac/tmac.indent 

troff macro package for 'indent -troff' output. 

SEE ALSO 

BUGS 

234 

Is( 1 V), troff( 1) 

indent has even more switches than ls(lV). 

A common mistake that often causes grief is typing: 

indent *.c 

to the shell in an attempt to indent all the C programs in a directory. This is probably a bug, not a feature. 

The -bs option splits an excessively fine hair. 

Last change: 9 September 1987 Sun Release 4.0 



INDXBIB( 1) USER COMMANDS INDXBIB(l) 

NAME 
indxbib - create an inverted index to a bibliographic database 

SYNOPSIS 
indxbib database-file . .. 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

indxbib makes an inverted index to the named database-file (which must reside within the current direc
tory), typically for use by lookbib(l) and refer(l). A database contains bibliographic references (or other 
kinds of information) separated by blank lines. 

A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each field starts 
on a line beginning with a '% ', followed by a key-letter, then a blank, and finally the contents of the field, 
which may continue until the next line starting with '% '. 

indxbib is a shell script that calls two programs: /usr/Iib/refer/mkey and /usr/Iib/ref er/inv. mkey trun
cates words to 6 characters, and maps upper case to lower case. It also discards words shorter than 3 char
acters, words among the 100 most common English words, and numbers (dates)< 1900 or> 2000. These 
parameters can be changed. See refer in Formatting Documents for details. 

indxbib creates an entry file (with a .ia suffix), a posting file (.ib), and a tag file (.ic), in the working direc
tory. 

/usr/Iib/refer/mkey 
/usr/Iib/refer/inv 
x.ia 
x.ib 
x.ic 
x.ig 

entry file 
posting file 
tag file 
reference file 

SEE ALSO 

BUGS 

addbib(l), lookbib(l), refer(l), roffbib(l), sortbib(l) 

Formatting Documents 

All dates should probably be indexed, since many disciplines refer to literature written in the 1800s or ear
lier. 

indxbib does not recognize pathnames. 

Sun Release 4.0 Last change: 21 December 1987 235 



INLINE( 1) USER COMMANDS INLINE( 1) 

NAME 
inline - in-line procedure call expander 

SYNOPSIS 
/usr/lib/inline [ -w ] [ -v ] [ -o outputfile ] [ -i inlinefile ] . . . [ cpu-option ] [fpu-option ] filename ... 

DESCRIPTION 
inline expands assembly language calls in the indicated source files into copies of the corresponding pro
cedure bodies obtained from an inlinefile specified with the -i option. If no inlinefile is specified, the 
source files are simply concatenated and written to the standard output. If no source files are specified, the 
input is read from the standard input. 

Inline itself is little more than a sed script Almost all of the benefit produced is derived from subsequent 
peephole optimization. 

OPTIONS 

USAGE 

236 

-w Display warnings for duplicate definitions on the standard error. 

-v Verbose. Display the names of routines that were actually in-line expanded in the sourcefile on 
the standard error. 

-o outputfile 
write output to the indicated file; standard output by default 

-i inlinefile 
Read in-line code templates from inlinefile. 

cpu-option 
Specify templates for the machine architecture of a Sun-2 or Sun-3 system. If this option is omit
ted, the proper template for the host architecture is used. Can be one of: 

-mc68010 expand .mc68010 code templates 
-mc68020 expand .mc68020 code templates 

fpu-option 
Specify a floating-point processor option for a Sun-2 or Sun-3 system. Can be one of: 

-fsoft expand .fsoft code templates (the default) 
-fswitch expand .fswitch code templates 
-fsky expand .fsky code templates (-mc68010 only) 
-f68881 expand .f68881 code templates (-mc68020 only) 
-ffpa expand .ffpa code templates (-mc68020 only) 

Each inlinefile contains one or more labeled assembly language templates of the form: 
inline-dire ctive 

instructions 

.end 

where the instructions constitute an in-line expansion of the named routine. An inline-directive is a com
mand of the form: 

.inline identifier, argsize 

This declares a block of code for the routine named by identifier, with argsize bytes of arguments. (argsize 
is optional on Sun-4 systems). Calls to the named routine are replaced by the code in the in-line template. 

Last change: 23 September 1987 Sun Release 4.0 



INLINE( 1) USER COMMANDS INLINE ( 1) 

For Sun-2 and Sun-3 systems, the following additional forms are recognized: 

.mc68010 identifier, argsize 

.mc68020 identifier, argsize 

.fsoft identifier, argsize 

.fswitch identifier, argsize 

.fsky identifier, argsize 

.f68881 identifier, argsize 

.ffpa identifier, argsize 

These forms are similar to .inline, with the addition of a CPU or FPU specification. The template is only 
expanded if the specified target system matches the value of the target CPU or FPU type, as determined by 
the command-line options, or if none were given, by the type of the host system. 

Multiple templates are permitted; matching templates after the first are ignored. Duplicate templates may 
be placed in order of decreasing performance of the corresponding hardware; thus the most efficient usable 
version will be selected. 

Coding Conventions for all Sun Systems 
In-line templates should be coded as expansions of C-compatible procedure calls, with the difference that 
the return address cannot be depended upon to be in the expected place, since no call instruction will have 
been executed. See FILES, below, for examples. 

In-line templates must conform to standard Sun parameter passing and register usage conventions, as 
detailed below. They must not call routines that violate these conventions; for example, assembly language 
routines such as setjmp(3) may cause problems. 

Registers other than the ones mentioned below must not be used or set. 

Branch instructions in an in-line template may only transfer to numeric labels (lf, 2b, and so on) defined 
within the in-line template. No other control transfers are allowed. 

Only opcodes and addressing modes generated by Sun compilers are guaranteed to work. Binary encod
ings of instructions are not supported. 

Coding Conventions for Sun-2 and Sun-3 
Arguments are passed in 32-bit aligned memory locations starting at sp@. Note that there is no return 
address on the stack, since no jbsr instruction will have been executed. 

Results are returned in dO or dO/dl. 

The following registers may be used as temporaries: registers aO, al, dO, and dl on the MC680IO and 
MC68020; registers fpO and fpl on the MC6888I; registers fpaO through fpa3 on the Sun Floating-Point 
Accelerator. No other registers may be used. 

The template must delete exactly argsize bytes from the stack. This is to enable inline to deal with autoin
crement and autodecrement addressing modes, which in tum are used by c2 to delimit the lifetimes of stack 
temporaries. 

The stack must not underflow the level of the last argument. 

Use jee branch mnemonics instead of bee. The bee ops are span limited and will fail if retargeted to a 
label whose span overflows the branch displacement field. 

Coding Conventions for Sun-4 Systems 
Arguments are passed in registers %00-%0S, followed by memory locations starting at [%sp+OxSc]. %sp 
is guaranteed to be 64-bit aligned. The contents of %07 are undefined, since no call instruction will have 
been executed. 

Results are returned in %00 or %f0/%fl. 

Registers %00-%0S and %f0-%f31 may be used as temporaries. 

Sun Release 4.0 Last change: 23 September 1987 237 



INLINE( 1) USER COMMANDS INLINE( 1) 

FILES 

Integral and single-precision floating-point arguments are 32-bit aligned 

Double-precision floating-point arguments are guaranteed to be 64-bit aligned if their offsets are multiples 
of 8. 

Each control-transfer instruction (branches and calls) must be immediately followed by a nop. 

Call instructions must include an extra (final) argument which indicates the number of registers used to 
pass parameters to the called routine. 

Note that for Sun-4 systems, the instruction following an expanded 'call' is inserted by inline before the 
expanded code to preserve the semantics of the call' s delay slot 

/usr/lib/inline in-line procedure call expander 
/usr/lib/fsoft/libm.il in-line templates for software floating point (Sun-2 and Sun-3 only) 
/usr/lib/fswitcb/libm.il in-line templates for switched floating point (Sun-2 and Sun-3 only) 
/usr/lib/fsky/libm.il in-line templates for Sky FFP (Sun-2 only) 
/usr/lib/f68881/libm.il in-line templates for Motorola 68881 (Sun-3 only) 
/usr/lib/ffpa/libm.il in-line templates for Sun FPA (Sun-3 only) 

WARNING 
inline does not check for violations of the coding conventions described above. 

238 Last change: 23 September 1987 Sun Release 4.0 



INPUT_ FROM_ DEF AUL TS ( 1 ) USER COMMANDS INPUT_FROM_DEFAULTS( 1) 

NAME 
input_ from_ defaults, defaults _from_ input - update the current state of the mouse and keyboard from the 
defaults database, and vice versa 

SYNOPSIS 

input_ from_ defaults 
defaults _from_ input 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

input _from_ defaults updates various parameters controlling mouse- and keyboard-processing on the 
machine on which it is run. It should be used on systems which are running the Sun View window system. 
The parameters control the distribution of function keys on the keyboard, the assignment of buttons on the 
mouse, the scaling of mouse-to-cursor motion, and the effect of two filters on mouse-motion originally pro
vided to compensate for defective mice. The new values are taken from the defaults database, starting with 
the file .defaults in the user's home directory. 

defaults_from_input is the inverse operation to input_from_defaults. It updates a the user's private 
defaults database (used by defaultsedit(l)) to reflect the current state of kernel input parameters listed 
above. 

$HOME/.defaults 
/usr /lib/ defaults/* .d 

SEE ALSO 
def aultsedit( 1) 

Sun View 1 Beginner's Guide 

BUGS 

input_from_defaults should be targetable to any user's .defaults file. 

Sun Release 4.0 Last change: 21 December 1987 239 



INSTALL( 1) USER COMMANDS INSTALL( 1) 

NAME 
install - install files 

SYNOPSIS 
install [-cs] [ -g group] [ -m mode] [ -o owner ]file] file2 

install [ -cs ] [ -g group ] [ -m mode ] [ -o owner ] file . . . directory 

install -d [ -g group ] [ -m mode ] [ -o owner ] directory 

AVAILABILITY 
This command is available with the Install Tools software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
Install is used within makefiles to copy new versions of files into a destination directory and to create the 
destination directory itself. 

The first two forms are similar to the cp( 1) command with the addition that executable files can be stripped 
during the copy and the owner, group, and mode of the installed file(s) can be given. 

The third form can be used to create a destination directory with the required owner, group and permis
sions. 

Note: install uses no special privileges to copy files from one place to another. The implications of this 
are: 

• You must have permission to read the files to be installed. 
• You must have permission to copy into the destination file or directory. 
• You must have permission to change the modes on the final copy of the file if you want to use 

the -m option to change modes. 
• You must be superuser if you want to use the -o option to change ownership. 

OPTIONS 
-g group 

Set the group ownership of the installed file or directory. (staff by default) 

-mmode 
Set the mode for the installed file or directory. (0755 by default) 

-oowner 
Set the owner of the installed file or directory. (root by default) 

-c Copy files. In fact install always copies files, but the -c option is retained for backwards compati
bility with old shell scripts that might otherwise break. 

-s Strip executable files as they are copied. 

-d Create a directory. Missing parent directories are created as required as in mkdir -p. If the 
directory already exists, the owner, group and mode will be set to the values given on the com
mand line. 

SEE ALSO 
chmod(lV), chgrp(l), cp(l), mkdir(l), strip(l), chown(8) 

240 Last change: 8 January 1988 Sun Release 4.0 



IPCRM( 1) USER COMMANDS IPCRM( 1) 

NAME 
ipcrm - remove a message queue, semaphore set, or shared memory ID 

SYNOPSIS 
ipcrm [ primitives ] 

DESCRIPTION 
ipcrm removes one or several messages, semaphores, or shared memory identifiers, as specified by the fol
lowing primitives: 

-qmsqid 
removes the message queue identifier msqid from the system and destroys the message queue and 
data structures associated with it. 

-mshmid 
removes the shared memory identifier shmid from the system. The shared memory segment and 
data structures associated with it are destroyed after the last detach. 

-s semid 
removes the semaphore identifier semid from the system and destroys the set of semaphores and 
data structures associated with it. 

-Q msgkey 
removes the message queue identifier, created with key msgkey, from the system and destroys the 
message queue and data structures associated with it. 

-Mshmkey 
removes the shared memory identifier, created with key shmkey, from the system. The shared 
memory segment and data structures associated with it are destroyed after the last detach. 

-S semkey 
removes the semaphore identifier, created with key semkey, from the system and destroys the set 
of semaphores and data structures associated with it. 

The identifiers and keys may be found by using ipcs(l). 

The details of removing identifiers are described in msgctl(2), shmctl(2), and semctl(2) in the sections 
detailing the IPC _ RMID command. 

SEE ALSO 
ipcs(l), msgctl(2), msgget(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2), shmop(2) 

Sun Release 4.0 Last change: 9 September 1987 241 



IPCS( 1) USER COMMANDS IPCS(l) 

NAME 
ipcs - report interprocess communication facilities status 

SYNOPSIS 
ipcs [ primitives ] 

DESCRIPTION 

242 

ipcs prints information about active interprocess communication facilities as specified by the primitives 
shown below. If no primitives are given, information is printed in short format for message queues, shared 
memory, and semaphores that are currently active in the system. 

Command - Line Primitives 
If any of the primitives -q, -m, or -s are specified, information about only indicated facilities is printed. If 
none of these are specified, information about all three is printed 

-q Print information about active message queues. 

-m Print information about active shared memory segments. 

-s Print information about active semaphores. 

-b Print the biggest allowable size information. (Maximum number of bytes in messages on queue 
for message queues, size of segments for shared memory, and number of semaphores in each set 
for semaphores.) See below for the meaning of columns in a listing. 

-c Print creator's login name and group name. See below. 

-o Print information on outstanding usage. (Number of messages on queue and total number of bytes 
in messages on queue for message queues and number of processes attached to shared memory 
segments.) 

-p Print process number information. (Process ID of last process to send a message and process ID of 
last process to receive a message on message queues and process ID of creating process and pro
cess ID of last process to attach or detach on shared memory segments)See below. 

-t Print time information. (Time of the last control operation that changed the access permissions for 
all facilities. Time of last msgsnd and last msgrcv (see msgop(2)) on message queues, last shmat 
and last shmdt (see shmop(2)) on shared memory, last semop(2) on semaphores.) See below. 

-a Use all display primitives. (This is a shorthand notation for-b, -c, -o, -p, and-t.) 

-C corefile 
Use the file corefile in place of /dev/kmem. 

-N namelist 
The argument will be taken as the name of an alternate filenamelist (/vmunix is the default). 

The column headings and the meaning of the columns in an ipcs listing are given below; the letters in 
parentheses indicate the primitives that cause the corresponding heading to appear; all means that the head
ing always appears. Note: these primitives only determine what information is provided for each facility; 
they do not determine which facilities will be listed. 

T (all) Type of the facility: 
q message queue 
m shared memory segment 
s semaphore 

ID (all) The identifier for the facility entry. 

KEY (all) The key used as an argument to msgget(2), semget(2), or sbmget(2) to create the facil-

MODE 

ity entry. (Note: The key of a shared memory segment is changed to IPC_PRIVATE 
when the segment has been removed until all processes attached to the segment detach 
it.) 

(all) The facility access modes and flags: The mode consists of 11 characters that are 

Last change: 9 September 1987 Sun Release 4.0 



IPCS(l) 

FILES 

OWNER 
GROUP 
CREATOR 
CGROUP 
CBYTES 

QNUM 
QBYTES 

LSPID 
LRPID 
STIME 
RTIME 
CTIME 
NATTCH 
SEGSZ 
CPID 
LPID 
ATIME 
DTIME 
NSEMS 
OTIME 

/vmunix 
/dev/kmem 
/ etc/passwd 
/etc/group 

SEE ALSO 

(all) 
(all) 
(a,c) 
(a,c) 
(a,o) 

(a,o) 
(a,b) 

(a,p) 
(a,p) 
(a,t) 
(a,t) 
(a,t) 
(a,o) 
(a,b) 
(a,p) 
(a,p) 
(a,t) 
(a,t) 
(a,b) 
(a,t) 

USER COMMANDS 

interpreted as follows: 

The first two characters are: 
R If a process is waiting on a msgrcv. 
S If a process is waiting on a msgsnd. 

IPCS (1) 

D If the associated shared memory segment has been removed. It will 
disappear when the last process attached to the segment detaches it. 

C If the associated shared memory segment is to be cleared when the first 
attach is executed. 
If the corresponding special flag is not set. 

The next 9 characters are interpreted as three sets of three bits each. The first 
set refers to the owner's permissions; the next to permissions of others in the 
user-group of the facility entry; and the last to all others. Within each set, the 
first character indicates permission to read, the second character indicates per
mission to write or alter the facility entry, and the last character is currently 
unused. 

The permissions are indicated as follows: 
r If read permission is granted. 
w If write permission is granted. 
a If alter permission is granted. 

If the indicated permission is not granted. 
The login name of the owner of the facility entry. 
The group name of the group of the owner of the facility entry. 
The login name of the creator of the facility entry. 
The group name of the group of the creator of the facility entry. 
The number of bytes in messages currently outstanding on the associated message 
queue. 
The number of messages currently outstanding on the associated message queue. 
The maximum number of bytes allowed in messages outstanding on the associated 
message queue. 
The process ID of the last process to send a message to the associated queue. 
The process ID of the last process to receive a message from the associated queue. 
The time the last message was sent to the associated queue. 
The time the last message was received from the associated queue. 
The time when the associated entry was created or changed. 
The number of processes attached to the associated shared memory segment. 
The size of the associated shared memory segment. 
The process ID of the creator of the shared memory entry. 
The process ID of the last process to attach or detach the shared memory segment. 
The time the last attach was completed to the associated shared memory segment. 
The time the last detach was completed on the associated shared memory segment. 
The number of semaphores in the set associated with the semaphore entry. 
The time the last semaphore operation was completed on the set associated with the 
semaphore entry. 

system namelist 
memory 
user names 
group names 

ipcrm(l), msgop(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2), shmop(2) 

Sun Release 4.0 Last change: 9 September 1987 243 



IPCS(l) USER COMMANDS IPCS (1) 

BUGS 
Things can change while ipcs is running; the picture it gives is only a close approximation to reality. 

244 Last change: 9 September 1987 Sun Release 4.0 



JOIN ( 1) USER COMMANDS JOIN ( 1) 

NAME 
join - relational database operator 

SYNOPSIS 
join [ -an ] [ -e string ] [ -j [112] m] [ -o list] [ -tc ] filename] filename2 

DESCRIPTION 
join forms, on the standard output, a join of the two relations specified by the lines of filename] and 
filename2. If filename] is'-', the standard input is used. 

filename] andfilename2 must be sorted in increasing ASCII collating sequence on the fields on which they 
are to be joined - normally the first in each line. 

There is one line in the output for each pair of lines in filename] and filename2 that have identical join 
fields. The output line normally consists of the common field, then the rest of the line fromfilenamel, then 
the rest of the line fromfilename2. 

The default input field separators are SPACE, TAB, and NEWLINE characters. If the default input field 
separators are used, multiple separators count as one field separator, and leading separators are ignored. 
The default output field separator is a blank. 

OPTIONS 
-an The parameter n can be one of the values: 

1 Produce a line for each unpairable line infilenamel. 
2 Produce a line for each unpairable line infilename2. 
3 Produce a line for each unpairable line in bothfilenamel andfilename2. 

The normal output is also produced. 

-e string 
Replace empty output fields by string. 

-j[112]m 
The j may be immediately followed by n, which is either a 1 or a 2. If n is missing, the join is on 
the m'th field of both files. If n is present, the join is on the m'th field of file n, and the first field 
of the other. Note: join counts fields from 1 instead of Oas sort(l V) does. 

-o list Each output line comprises the fields specified in list, each element of which has the form n .m, 
where n is a file number and m is a field number. The common field is not printed unless 
specifically requested. Note: join counts fields from 1 instead of O like sort does. 

-tc Use character c as a separator (tab character). Every appearance of c in a line is significant. The 
character c is used as the field separator for both input and output. 

EXAMPLE 
The following command line will join the password file and the group file, matching on the numeric group 
ID, and outputting the login name, the group name and the login directory. It is assumed that the files have 
been sorted in ASCII collating sequence on the group ID fields. 

join -jl 4 -j2 3 -o 1.12.11.6 -t: /etdpasswd /etc/group 

SEE ALSO 

BUGS 

awk(l), comm(l), look(l), sort(l V), uniq(l) 

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is that of a 
plain sort. 

The conventions of join, sort, comm, uniq, look, and awk are wildly incongruous. 

Filenames that are numeric may cause conflict when the -o option is used right before listing filenames. 

Sun Release 4.0 Last change: 16 February 1988 245 



KEYLOGIN ( 1) USER COMMANDS KEYLOGIN ( 1 ) 

NAME 
keylogin - decrypt and store secret key 

SYNOPSIS 
keylogin 

DESCRIPTION 
keylogin prompts the user for their login password, and uses it do decrypt the user's secret key stored in 
the publickey(S) database. Once decrypted, the user's key is stored by the local key server process 
keyserv(8C) to be used by any secure network services, such as NFS. 

Normally, login(l) does this work when the user logs onto the system, but running keylogin may be neces
sary if the user did not type a password to login( 1 ). 

SEE ALSO 
chkey(l), login(l), publickey(S), keyserv(8C), newkey(8) 

246 Last change: 9 September 1987 Sun Release 4.0 



KILL(l) USER COMMANDS KILL(l) 

NAME 
kill - send a signal to a process, or terminate a process 

SYNOPSIS 
kill [ -signal ] pid ••• 
kill -I 

DESCRIPTION 
kill sends the TERM (terminate, 15) signal to the processes with the specified pids. If a signal name or 
number preceded by '-' is given as first argument, that signal is sent instead of terminate. The signal 
names are listed by using the -I option, and are as given in /usr/include/signal.h, stripped of the common 
SIG prefix. 

The terminate signal will kill processes that do not catch the signal, so 'kill -9 ... ' is a sure kill, as the 
KILL (9) signal cannot be caught. By convention, if process number O is specified, all members in the pro
cess group (that is, processes resulting from the current login) are signaled (but beware: this works only if 
you use sh(l); not if you use csh(l).) Negative process numbers also have special meanings; see kill(2V) 
for details. The killed processes must belong to the current user unless he is the super-user. 

To shut the system down and bring it up single user the super-user may send the initialization process a 
TERM (terminate) signal by 'kill 1'; see init(8). To force init to close and open terminals according to 
what is currently in /etdttytab use 'kill-HUP 1' (sending a hangup, signal 1). 

The shell reports the process number of an asynchronous process started with '&' (run in the background). 
Process numbers can also be found by using ps(l). 

kill is built in to csh(l); it allows job specifiers, such as 'kill % ... ', in place of kill arguments. See 
csh(l) for details. 

OPTIONS 

FILES 

-I Display a list of signal names. 

I etc/ttytab 
/usr/include/signal.h 

SEE ALSO 
csh( 1 ), ps( 1 ), kill(2V), sigvec(2), init(8) 

BUGS 
A replacement for 'kill O' for csh(l) users should be provided. 

Sun Release 4.0 Last change: 16 November 1987 247 



LAST(l) USER COMMANDS LAST( 1) 

NAME 
last- indicate last logins by user or terminal 

SYNOPSIS 
last [ -number ] [ -f filename ] [ name. . . ] [ tty. . . ] 

DESCRIPTION 
last looks back in the wtmp file which records all logins and logouts for information about a user, a tele
type or any group of users and teletypes. Arguments specify names of users or teletypes of interest. 
Names of teletypes may be given fully or abbreviated. For example last O is the same as lastttyO. If multi
ple arguments are given, the information which applies to any of the arguments is printed. For example 
last root console would list all of "root's" sessions as well as all sessions on the console terminal. last 
displays the sessions of the specified users and teletypes, most recent first, indicating the times at which the 
session began, the duration of the session, and the teletype which the session took place on. If the session 
is still continuing or was cut short by a reboot, last so indicates. 

The pseudo-user reboot logs in at reboots of the system, thus 

last reboot 

will give an indication of mean time between reboot. 

last with no arguments displays a record of all logins and logouts, in reverse order. 

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted with a quit sig
nal (generated by a CfRL-\) last indicates how far the search has progressed so far, and the search contin
ues. 

OPTIONS 
-number 

limit the number of entries displayed to that specified by number. 

-(filename 
Use filename as the name of the accounting file instead of /var/adm/wtmp. 

FILES 
/var/adm/wtmp login data base 

SEE ALSO 
lastcomm(l), utmp(S), ac(8) 

248 Last change: 9 September 1987 Sun Release 4.0 



LASTCOMM ( 1) USER COMMANDS LASTCOMM ( 1 ) 

NAME 
lastcomm - show the last commands executed, in reverse order 

SYNOPSIS 
lastcomm [ command-name ] ... [ user-name ] ... [ terminal-name ] ... 

DESCRIPTION 
lastcomm gives information on previously executed commands. lastcomm with no arguments displays 
information about all the commands recorded during the current accounting file's lifetime. If called with 
arguments, lastcomm only displays accounting entries with a matching command-name, user-name, or 
terminal-name. 

EXAMPLES 

FILES 

The command: 

example% lastcomm a.out root ttydO 

would produce a listing of all the executions of commands named a.out, by user root while using the ter
minal ttydO. and 

example% lastcomm root 

would produce a listing of all the commands executed by user root. 

For each process entry, lastcomm displays the following items of information: 

• The command name under which the process was called. 

• One or more flags indicating special information about the process. The flags have the follow
ing meanings: 

F The process performed a fork but not an exec. 

S The process ran as a set-user-id program. 

D The process dumped memory. 

X The process was killed by some signal. 

• The name of the user who ran the process. 

• The terminal which the user was logged in on at the time (if applicable). 

• The amount of CPU time used by the process (in seconds). 

• The date and time the process exited. 

/var/adm/acct accounting file 

SEE ALSO 
last(l), sigvec(2), acct(5), core(5) 

Sun Release 4.0 Last change: 9 September 1987 249 



LD(l) USER COMMANDS LD(l) 

NAME 
Id, Id.so- link editor, dynamic link editor 

SYNOPSIS 
Id [ -align datum ] [ -assert assertion-keyword ] [ -A name ] [ -Bbinding-keyword] [ -d ] 

[ -de ] [ -dp ] [ -D hex ] [ -e entry ] [ -Ix ] [ -Ldir] [ -M ] [ -n ] [ -N ] [ -o name ] [ -p ] 
[ -r ] [ -s] [ -S ] [ -t] [ -T [text] hex] [ -Tdata hex] [ -u name] [ -x] [ -X ] [ -ysym] 
[ -z ] filename ... 

DESCRIPTION 
Id combines object programs to create an executable file or another object program suitable for further Id 
processing (with the -r option). The object modules on which Id operates are specified on the command 
line, and can be: 

• simple object files, which typically end in the .o suffix, and are referred to as "dot-oh" files 

• ar(lV) library archives (.a), or "libraries" 

• dynamically-bound, sharable object files (.so), are also referred to as "shared libraries," which 
are created from previous Id executions. 

Unless an output file is specified, Id produces a file named a.out. This file contains the object files given as 
input, appropriately combined to form an executable file. 

OPTIONS 

250 

When linking debugging or profiling objects, include the -g or -pg option (see cc(l V)), as appropriate, in 
the Id command. 

Options should appear before filenames, except for abbreviated library names specified with -I options, 
and some binding control options specified by-B (which can appear anywhere in the line). 

-align datum 
Force the global uninitialized data symbol datum (usually a FORTRAN common block) to be 
page-aligned. Increase its size to a whole number of pages, and place its first byte at the start of a 
page. 

-assert assertion-keyword 
Check an assertion about the link editing being performed. The assertion desired is specified by 
the assertion-keyword string. Id is silent if the assertion holds, else it yields a diagnostic and 
aborts. Valid assertion-keyword's and their interpretations are: 

-A name 

definitions If the resulting program were run now, there would be no run-time 
undefined symbol diagnostics. This assertion is set by default. 

nosymbolic 

pure-text 

There are no symbolic relocation items remaining to be resolved. 

The resulting load has no relocation items remaining in its text. 

Incremental loading: linking is to be done in a manner so that the resulting object may be read into 
an already executing program. name is the name of a file whose symbol table is taken as a basis on 
which to define additional symbols. Only newly linked material is entered into the text and data 
portions of a.out, but the new symbol table will reflect all symbols defined before and after the 
incremental load. This argument must appear before any other object file in the argument list. 
One or both of the -T options may be used as well, and will be taken to mean that the newly 
linked segment will commence at the corresponding addresses (which must be a multiple of the 
page size). The default value is the old value of _end. 

Last change: 18 February 1988 Sun Release 4.0 



LD( 1) USER COMMANDS LD(l) 

-Bbinding-keyword 
Specify allowed binding times for the items which follow. Allowed values of binding-keyword 
are: 

dynamic 

nosymbolic 

static 

symbolic 

Allow dynamic binding: do not resolve symbolic references, allow creation of 
run-time symbol and relocation environment. -Bdynamic is the default. When 
-Bdynamic is in effect, all sharable objects encountered until a succeeding 
-Bstatic may be added dynamically to the object being linked. Non-sharable 
objects are bound statically. 

Do not perform symbolic relocation, even if other options imply it. 

Bind statically. Opposite of -Bdynamic. Implied when either -n or -N is 
specified. Influences handling of all objects following its specification on a 
command line until the next -Bdynamic. 

Force symbolic relocation. Normally implied if an entry point has been 
specified with -e, or if dynamic loading is in effect. 

-d Force common storage for uninitialized variables and other common symbols to be allocated in 
the current Id run, even when the -r flag is present (which would otherwise postpone this binding 
until the final linking phase). 

-de Do -d, but also copy initialized data referenced by this program from shared objects. 

-dp Force an alias definition of undefined procedure entry points. Used with dynamic binding to 
improve sharing and the locality of run-time relocations. 

-D hex Pad the data segment with zero-valued bytes to make it hex bytes long. 

-e entry 
Define the entry point: the entry argument is made the name of the entry point of the loaded pro
gram. Implies -Bsymbolic. 

-Ix [. v] This option is an abbreviation for the library name libx .a, where x is a string. Id searches for 
libraries first in any directories specified with -L options, then in the standard directories /lib, 
/usr/lib, and /usr/local/lib. A library is searched when its name is encountered, so the placement 
of a -I is significant. If a dynamically loadable object is found, and -Bdynamic is in effect at that 
point on the command line, then Id prepares to access the object for relocation at run-time. In 
such a case, the optional .v suffix can be used to indicate a specific library version. 

-Ldir Add dir to the list of directories in which to search for libraries. Directories specified with-Lare 
searched before the standard directories, /lib, /usr/lib, and /usr/local/lib. 

-M Produce a primitive load map, listing the names of the files which will be loaded. 

-n Arrange (by giving the output file a 0410 "magic number") that when the output file is executed, 
the text portion will be read-only with the data areas placed at the beginning of the next address 
boundary following the end of the text. Implies -Bstatic. 

-N Do not make the text portion read-only. (Use "magic number'' 0407.) Implies -Bstatic. 

-oname 
name is made the name of the Id output file, instead of a.out. 

-p Arrange for the.data segment to begin on a page boundary, even if the text is not shared (with the 
-N option). 

-r Generate relocation bits in the output file so that it can be the subject of another Id run. This flag 
also prevents final definitions from being given to common symbols, and suppresses the 
"undefined symbol" diagnostics. 

-s Strip the output, that is, remove the symbol table and relocation bits to save space (but impair the 
usefulness of the debuggers). This information can also be removed by strip(l). 

Sun Release 4.0 Last change: 18 February 1988 251 



LD(l) 

USAGE 

USER COMMANDS LD(l) 

-S Strip the output by removing all symbols except locals and globals. 

-t Trace: display the name of each file as it is processed. 

-T [ text ] hex 
Start the text segment at location hex. Specifying -T is the same as using the -Ttext option. 

-Tdata hex 

-uname 

Start the data segment at location hex. This option is only of use to programmers wishing to write 
code for PROMs, since the resulting code cannot be executed by the system. 

Enter name as an undefined symbol. This is useful for loading wholly from a library, since ini
tially the symbol table is empty and an unresolved reference is needed to force the loading of the 
first routine. 

-x Preserve only global (non-.globl) symbols in the output symbol table; only enter external symbols. 
This option saves some space in the output file. 

-X Record local symbols, except for those whose names begin with L. This option is used by cc to 
discard internally generated labels while retaining symbols local to routines. 

-ysym Display each file in which sym appears, its type and whether the file defines or references it. 
Many such options may be given to trace many symbols. It is usually necessary to begin sym with 
an '_', as external C, FORTRAN and Pascal variables begin with underscores. 

-z Arrange for the process demand paged from the resulting executable file (0413 "magic number"). 
This is the default. Results in a (32-byte) header on the output file followed by text and data seg
ments, each of which has a multiple of page-size bytes (being padded out with NULL characters in 
the file if necessary). With this format the first few BSS segment symbols may actually end up in 
the data segment; this is to avoid wasting the space resulting from rounding the data segment size. 
Implies -Bdynamic. 

Command Line Processing 

252 

In general, options should appear ahead of the list of files to process. Unless otherwise specified, the effect 
of an option covers all of Id operations, independent of that option's placement on the command line. 
Exceptions to this rule include some of the binding control options specified by '-B' and the abbreviated 
library-names specified by '-I'. These may appear anywhere, and their influence is dependent upon their 
location. Some options may be obtained from environment variables, such options are interpreted before 
any on the command line (see ENVIRONMENT, below). 

Object _file Processing 
The files specified on the command line are processed in the order listed. Information is extracted from 
each file, and concatenated to form the output. The specific processing performed on a given file depends 
upon whether it is a simple object file, a library archive, or a shared library. 

Simple object (.o) files are concatenated to the output as they are encountered. 

Library archive (.a) files are searched exactly once each, as each is encountered; only those archive entries 
matching an unresolved external reference are extracted and concatenated to the output If a member of an 
archive references a symbol defined by another member of that same archive, the member making the 
reference must appear before the member containing the definition. 

On Sun386i, a library contains a dictionary of symbols, On other Sun systems, processing library archives 
through ranlib(l) provides this dictionary. In addition, you can use lorder(l), in combination with 
tsort(l) to place library members in calling order (see lorder(l) for details), or both (for fastest symbol 
lookup). The first member of an archived processed by ranlib has the reserved name of __ .SYMDEF, 
which Id takes to be the dictionary of all symbols defined by members of the archive. 

Last change: 18 February 1988 Sun Release 4.0 



LD( 1) USER COMMANDS LD(l) 

Sharable objects (.so) are scanned for symbol definitions and references, but are not normally included in 
the output from Id, except in cases where a shared library exports initialized data structures and the -de 
option is in effect However, the occurrence of each sharable object file in the Id command line is noted in 
the resulting executable file; this notation is utilized by an execution-time variant of Id, Id.so, for deferred 
and dynamic loading and binding during execution. See Execution-Time Loading, below, for details. 

The -I option specifies a short name for an object file or archive used as a library. The full name of the 
object file is derived by adding the prefix lib and a suffix of either .a or .so[.v] to indicate an ar(l V) 
archive or a shared library, respectively. The specific suffix used is determined through rules discussed in 
Binding and Relocation Semantics, below. 

Id searches for the desired object file through a list of directories specified by -L options, the environment 
variable LD_LIBRARY_PATH, and finally, the built-in list of standard library directories: /lib, /usr/lib, and 
/usr/local/lib. 

Binding and Relocation Semantics 
The manner in which Id processes a given object file is dependent in part upon the "binding mode" in 
which it is operating at the time the file is encountered. This binding mode is specified by the -B flag, 
which takes the keyword arguments: 

dynamic Allow dynamic binding, do not resolve symbolic references, and allow creation of 
execution-time symbol and relocation information. This is the default setting. 

static Force static binding, implied by options that generate non-sharable executable for-
mats. 

-Bdynamic and -Bstatic may be specified several times, and may be used to toggle each other on and off. 
Like -1, the influence of each depends upon its location within the command line. When -Bdynamic is in 
effect, -I searches may be satisfied by the first occurrence of either form of library (.so or .a), but if both 
are encountered, the .so form is preferred. When -Bstatic is in effect, Id refuses to use any .so libraries it 
encounters; it continue searching for the .a form. Furthermore, an explicit request to load a .so file is 
treated as an error. 

After Id has processed all input files and command line options, the form of the output it produces is based 
on the information provided in both. Id first tries to reduce all symbolic references to relative numerical 
offsets within the executable it is building. To perform this "symbolic reduction," Id must be able to deter
mine that: 

• all information relating to the program has been provided, in particular, no .so is to be added at 
execution time; and/or 

• the program has an entry point, and symbolic reduction can be performed for all symbols hav-
ing definitions existing in the material provided. 

It should be noted that uninitialized "common" areas (for example, uninitialized C globals) are allocated by 
the link editor after it has collected all references. In particular, this allocation can not occur in a program 
that still requires the addition of information contained in a .so file, as the missing information may affect 
the allocation process. Initialized "commons" however, are allocated within the executable in which their 
definition appears. 

After Id has performed all the symbolic reductions it can, it attempts to transform all relative references to 
absolute addresses. Id is able to perform this "relative reduction" only if it has been provided some abso
lute address, either implicitly through the specification of an entry point, or explicitly through Id 
command-line options. If, after performing all the reductions it can, there are no further relocations or 
definitions to perform, then Id has produced a completely linked executable. 

Execution-Time Loading 
In the event that one or more reductions can not be completed, the executable will require further link edit
ing at execution time in order to be usable. Such executables contain an data structure identified with the 
symbol __ DYNAMIC. An incompletely linked "main" program should be linked with a "bootstrap" rou
tine that invokes Id.so, which uses the information contained in the main program's __ DYNAMIC to 

Sun Release 4.0 Last change: 18 February 1988 253 



LD( 1) USER COMMANDS LD(l) 

254 

assemble the rest of the executables constituting the entire program. A standard Sun compilation driver 
(such as cc(l V)) automatically includes such a module in each "main" executable. 

When Id.so is given control on program startup, it finds all .so files specified when the program was con
structed (and all .so's on which they depend), and loads them into the address space. Id.so then completes 
all remaining relocations, with the exception of procedure call relocations; failure to resolve a given non
procedural relocation results in termination of the program with an appropriate diagnostic. 

Procedure relocations are resolved when the referencing instruction is first executed. It should be noted 
that it is possible for "undefined symbol" diagnostics to be produced during program execution if a given 
target is not defined when referenced. 

Although it is possible for binding errors to occur at execution-time, such an occurrence generally indicates 
something wrong in the maintenance of shared objects. Id's -assert definitions function (on by default) 
checks at Id-time whether or not an execution-time binding error would occur. 

Version Handling for Shared Libraries 
To allow the independent evolution of .so's used as libraries and the programs which use them, Id's han
dling of .so files found through -I options involves the retention and management of version control infor
mation. The .so files used as such "shared libraries" are post-fixed with a Dewey-decimal format string 
describing the version of the "library" contained in the file. 

The first decimal component is called the library's "major version" number, and the second component its 
"minor version" number. When Id records a .so used as a library, it also records these two numbers in the 
database used by Id.so at execution time. In tum, Id.so uses these numbers to decide which of multiple ver
sions of a given library is "best" or whether any of the available versions are acceptable. The rules are: 

• Major Versions Identical: the major version used at execution time must exactly match the 
version found at Id-time. Failure to find an instance of the library with a matching major ver
sion causes a diagnostic to be issued and the program's execution to be terminated. 

• Highest Minor Version: in the presence of multiple instances of libraries that match the 
desired major version, Id.so uses the highest minor version it finds. However, if the highest 
minor version found at execution time is less than the version found at Id-time, a warning 
diagnostic is issued; program execution continues. 

The semantics of version numbers are such that major version numbers should be changed whenever inter
faces are changed. Minor versions should be changed to reflect compatible updates to libraries, and pro
grams will silently favor the highest compatible version they can obtain. 

Special Symbols 
A number of symbols have special meanings to Id and programs should not define these symbols. The 
symbols described below are those actually seen by Id. Note: C and several other languages prepend sym
bols they use with '_'. 

etext The first location after the text of the program. 

edata The first location after initialized data. 

end The first location after all data. 

DYNAMIC 
Identifies an Id-produced data structure. It is defined with a non-zero value in executables which 
require execution-time link editing. By convention, if defined, it is the first symbol in the symbol 
table associated with an a.out file. 

__ GLOBAL_OFFSET_TABLE_ 
A position-independent reference to an Id-constructed table of addresses. This table is constructed 
from "position-independent" data references occurring in objects that have been assembled with 
the assembler's -k flag (invoked on behalf of C compilations performed with the -pie flag). A 
related table (for which no symbol is currently defined) contains a series of transfer instructions 
and is created from "position-independent" procedure calls or, if -dp is specified to Id, a list of 

Last change: 18 February 1988 Sun Release 4.0 



LD(l) USER COMMANDS LD(l) 

undefined symbols. 

Symbols in object files beginning with the letter L are taken to be local symbols and unless otherwise 
specified are purged from Id output files. 

ENVIRONMENT 

FILES 

LD LIBRARY PATH - -
A colon-separated list of directories in which to search for libraries specified with the -I option. 
Similar to the PATH environment variable. LD_LIBRARY_PATH also affects library searching 
during execution-time loading. 

LD OPTIONS 
A default set of options to Id. LD _ OPTIONS is interpreted by Id just as though its value had been 
placed on the command line, immediately following the name used to invoke Id, as in: 

example% Id $LO_ OPTIONS ... other-arguments ... 

Note: Environment variable-names beginning with the characters 'LD _' are reserved for possible future 
enhancements to Id. 

/usr/lib/lib• .a 
lib•.so.v 
lib•.sa.v 
/usr/lib/ld.so 
/usr/lib/•crt•.o 
a.out 
/usr/local/lib 

libraries 
shared libraries 
exported, initialized shared library data 
execution-time Id 
default program bootstraps 
output file 

SEE ALSO 

BUGS 

as( 1 ), ar( 1 V), cc( 1 V), lorder( 1 ), ranlib(l ), strip( 1 ), tsort( 1) 

Options are being overloaded and are an inappropriate vehicle for describing to Id the wide variety of 
things it can do. There needs to be a link-editing language which can be used in the more complex situa
tions. 

The -r option does not properly handle programs assembled with the -k (position-independent) flag, 
invoked from cc with -pie or -PIC. 

Sun Release 4.0 Last change: 18 February 1988 255 



LDD( 1) USER COMMANDS LDD( 1) 

NAME 
ldd - list dynamic dependencies 

SYNOPSIS 
ldd.filename ••• 

DESCRIPTION 
For each.filename, ldd lists the dynamically loaded objects on which that.filename depends, if any. If the 
dynamic dependency is a "library" (a so-called "shared library"), then both the canonical form of the 
library. name and version and the actual pathname used to access the library are listed. For example, if a 
given .filename uses a shared C library version 4, which has the name /usr/Iib/Iibc.so.4.9 (where 9 is the 
most recent revision to interface version number 4) then ldd.filename will report: 

filename: 
-Ic.4 => /usr/Iib/Iibc.so.4.9 

For each .filename which is not an executable program, or else does not require any dynamic objects for its 
execution, ldd will issue an appropriate diagnostic. 

It should be noted that although all dynamically linked programs depend on the file /usr/Iib/ld.so , ldd will 
never report this dependency. 

SEE ALSO 
ld(l) 

256 Last change: 12 November 1987 Sun Release 4.0 



LEAVE( 1) USER COMMANDS LEAVE( 1) 

NAME 
leave - remind you when you have to leave 

SYNOPSIS 
leave [[ +] hhmm] 

DESCRIPTION 
leave sets an alarm to a time you specify and will tell you when the time is up. leave waits until the 
specified time, then reminds you that you have to leave. You are reminded 5 minutes and 1 minute before 
the actual time, and at the time. After the specified time, it reminds you every minute thereafter 10 more 
times. leave disappears after you log off. 

You can specify the time in on of two ways, namely as an absolute time of day in the form hhmm where hh 
is a time in hours (on a 12 or 24 hour clock), or you can place a+ sign in front of the time, in which case 
the time is relative to the current time, that is, the specified number of hours and minutes from now. All 
times are converted to a 12 hour clock, and assumed to be in the next 12 hours. 

If no argument is given, leave prompts with 'When do you have to leave?'. leave exits if you just type a 
NEWLINE, otherwise the reply is assumed to be a time. This form is suitable for inclusion in a .login or 
.profile. 

leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or use kill -9 and 
its process ID. 

EXAMPLES 

FILES 

The first example sets the alarm to an absolute time of day: 

example% leave 1535 
Alarm set for Wed Mar 7 15:35:07 1984 

work work work work 

example% Time to leave! 

The second example sets the alarm for 10 minutes in the future: 

example% leave +10 Alarm set for Wed Mar 7 

.login 

.profile 

work work work work 

example% Time to leave! 

work work work work 

example% You're going to be late! 

SEE ALSO 
calendar(l) 

Sun Release 4.0 Last change: 9 September 1987 257 



LEX(l) USER COMMANDS LEX(l) 

NAME 
lex - lexical analysis program generator 

SYNOPSIS 
lex [ -fntv] [filename] ... 

DESCRIPTION 

258 

lex generates programs to be used in simple lexical analysis of text. Each filename (the standard input by 
default) contains regular expressions to search for, and actions written in C to be executed when expres
sions are found. 

A C source program, lex.yy .c is generated, to be compiled as follows: 

cc lex.yy .c -ll 

This program, when run, copies unrecognized portions of the input to the output, and executes the associ
ated C action for each regular expression that is recognized. The actual string matched is left in yytext, an 
external character array. 

Matching is done in order of the strings in the file. The strings may contain square braces to indicate char
acter classes, as in [abx-z] to indicate a, b, x, y, and z; and the operators *,+and?, which mean, respec
tively, any nonnegative number, any positive number, or either zero or one occurrences of the previous 
character or character-class. The "dot" character('.') is the class of all ASCII characters except NEWLINE. 

Parentheses for grouping and vertical bar for alternation are also supported. The notation r{d,e} in a rule 
indicates instances of regular expression r between d and e. It has a higher precedence than I, but lower 
than that of*, ?, +, or concatenation. The" (carat character) at the beginning of an expression permits a 
successful match only immediately after a NEWLINE, and the $ character at the end of an expression 
requires a trailing NEWLINE. 

The / character in an expression indicates trailing context; only the part of the expression up to the slash is 
returned in yytext, although the remainder of the expression must follow in the input stream. 

An operator character may be used as an ordinary symbol if it is within'"' symbols or preceded by'\'. 

Three subroutines defined as macros are expected: input() to read a character; unput(c) to replace a char
acter read; and output(c) to place an output character. They are defined in terms of the standard streams, 
but you can override them. The program generated is named yylex( ), and the library contains a main() 
which calls it. The action RFJECT on the right side of the rule rejects this match and executes the next suit
able match; the function yymore() accumulates additional characters into the same yytext; and the func
tion yyless(p) pushes back the portion of the string matched beginning at p, which should be between 
yytext and yytext+yyleng. The macros input and output use files yyin and yyout to read from and write 
to, defaulted to stdio and stdout, respectively. 

In a lex program, any line beginning with a blank is assumed to contain only C text and is copied; if it pre
cedes % % it is copied into the external definition area of the lex.yy .c file. All rules should follow a % % , 
as in YACC. Lines preceding % % which begin with a nonblank character define the string on the left to be 
the remainder of the line; it can be used later by surrounding it with { }. Note: curly brackets do not imply 
parentheses; only string substitution is done. 

The external names generated by lex all begin with the prefix yy or YY. 

Certain table sizes for the resulting finite-state machine can be set in the definitions section: 

%p n number of positions is n (default 2000) 

%n n number of states is n (500) 

%t n number of parse tree nodes is n (1000) 

%a n number of transitions is n (3000) 

Last change: 24 September 1987 Sun Release 4.0 



LEX( 1) USER COMMANDS LEX( 1) 

The use of one or more of the above automatically implies the -v option, unless the -n option is used. 

OPTIONS 
-f 

-n 

-t 

-v 

EXAMPLES 

Faster compilation. Do not bother to pack the resulting tables; limited to small programs. 

Opposite of -v; -n is default. 

Place the result on the standard output instead of in file lex.yy.c. 

Print a one-line summary of statistics of the generated analyzer. 

The following command line: 
lex lexcommands 

would draw lex instructions from the file lexcommands, and place the output in lex.yy.c. 

The following: 

% % [A-Z] putchar (yytext[O]+'a' -' A 1; [ ]+$ ; [ ]+ putchar(' '); 

is an example of a lex program. It converts upper case to lower, removes blanks at the end of lines, and 
replaces multiple blanks by single blanks. 

D [0-9] 
%% 
if 
[a-z]+ 
O{D}+ 
{D}+ 
"++" 
"+" 
"'*" 

printf("IF statement\n"); 
printf("tag, value %s\n" ,yytext); 
printf("octal number %s\n" ,yytext); 
printf("decimal number %s\n" ,yytext); 
printf("unary op\n"); 
printf("binary op\n"); 
{ loop: 

while (input() != '*'); 
switch (input()) 

{ 

case'/': break; 
case'*': unput('*'); 
default: go to loop; 
} 

} 

FILES 
Iex.yy.c 

SEE ALSO 
sed(l V), yacc(l) 

Programming Utilities and Libraries 

Sun Release 4.0 Last change: 24 September 1987 259 



LINE( 1) USER COMMANDS LINE ( 1) 

NAME 
line - read one line 

SYNOPSIS 
line 

DESCRIPTION 
line copies one line (up to a NEWLINE) from the standard input and writes it on the standard output It 
returns an exit code of 1 on EOF and always prints a NEWLINE at least. It is often used within shell scripts 
to read a line from the terminal. 

SEE ALSO 
sh( 1 ), read(2V) 

260 Last change: 9 September 1987 Sun Release 4.0 



LINT( lV) USER COMMANDS LINT(lV) 

NAME 
lint - a C program verifier 

SYNOPSIS 
lint [ -abchinquvxz ] [ -Dname [ =def] ] [ -host=arch ] [ -!directory ] [ -llibrary J L -,> outputftle ] 

[ -target=arch ] [ -Uname ] filename ... 
lint [ -Clibrary ] [ -Dname [ =def] ] [ -host=arch ] [ -!directory ] [ -llibrary] [ -target=arch ] 

[ -Uname ] filename ... 

SYSTEM V SYNOPSIS 
/usr/5bin/lint [ -abcghnpquvxzO] [ -Dname [ =def] ] [-!directory] [ -llibrary] [ -o outputfile ] 

[ -Uname ] filename ... 

DESCRIPTION 
lint attempts to detect features of the named C program files that are likely to be bugs, to be non-portable, 
or to be wasteful. It also performs stricter type checking than does the C compiler. lint runs the C prepro
cessor as its first phase, with the preprocessor symbol lint defined to allow certain questionable code to be 
altered or skipped by lint. Therefore, this symbol should be thought of as a reserved word for all code that 
is to be checked by lint. 

Among the possible problems that are currently noted are unreachable statements, loops not entered at the 
top, automatic variables declared and not used, and logical expressions with constant values. Function 
calls are checked for inconsistencies, such as calls to functions that return values in some places and not in 
others, functions called with varying numbers of arguments, function calls that pass arguments of a type 
other than the type the function expects to receive, functions whose values are not used, and calls to func
tions not returning values that use the non-existent return value of the function. 

Filename arguments ending with .c are taken to be C source files. Filename arguments with names ending 
with .In are taken to be the result of an earlier invocation of lint, with either the -i or the -C option in 
effect. The .In files are analogous to the .o (object) files produced by the cc(lV) from .c files. lint also 
accepts special libraries specified with the -I option, which contain simplified definitions of standard 
library routines (preprocessed by 'lint -C') for faster checking of function calls. 

lint processes the various .c, .In, and llib-llibrary.ln (lint library) files and process them in command-line 
order. By default, lint appends the standard C lint library (llib-lc.ln) to the end of the list of files. When 
the -C and -i options are omi.tted the second pass of lint checks this list of files for mutual compatibility. 
When the -C or the -i options are used, the .In and the llib-llibrary.ln files are ignored. 

SYSTEM V DESCRIPTION 
Filename arguments with names ending with .In are taken to be the result of an earlier invocation of lint, 
with either the -c or the -,> option in effect. 

lint processes the various .c, .In, and llib-llibrary.ln (lint library) files and process them in command-line 
order. By default, lint appends the standard C lint library (llib-lc.ln) to the end of the list of files. How
ever, if the -p option is used, the portable Clint library (llib-port.ln) is appended instead. When the -c 
option is omi.tted the second pass of lint checks this list of files for mutual compatibility. When the -c 
option is used, the .In and the llib-llibrary .In files are ignored. 

lint produces its first-pass output on a per-source-file basis. Complaints regarding included files are col
lected and printed after all source files have been processed. If the -c option is not used, information gath
ered from all input files is then collected and checked for consistency. At this point, if it is not clear 
whether a complaint stems from a given source file or from one of its included files, the source file name is 
printed, followed by a question mark. 

OPTIONS 
-a Report assignments of long values to variables that are not long. 

-b Report break statements that cannot be reached. This is not the default because, unfortunately, 
most lex(l) and many yacc(l) outputs produce many such complaints. 

-c Complain about casts which have questionable portability. 

Sun Release 4.0 Last change: 23 February 1988 261 



LINT( lV) USER COMMANDS LINT( lV) 

-h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce waste. 

-i Produce a .In file for every .c file on the command line. These .In files are the product of lint's 
first pass only, and are not checked for compatibility between functions. 

-n Do not check compatibility against the standard library. 

-q Do not complain about constructs that do not cause portability problems between current Sun 
implementations of the C language but that will cause portability problems between other imple
mentations. If the -q flag is specified, lint treats type enum as an int, treats type long as type int 
and type unsigned long as unsigned int, and treats a O argument as being conformable with any 
pointer. 

-u Do not complain about functions and external variables used and not defined, or defined and not 
used (this is suitable for running lint on a subset of files comprising part of a larger program). 

-v Suppress complaints about unused arguments in functions. 

-x Report variables referred to by extern declarations, but never used. 

-z Do not complain about structures that are never defined (for example, using a structure pointer 
without knowing its contents). 

-Clibrary 
Create a lint library with the name llib-1/ibrary .In. 

-Dname[ =defJ 
Define name for cpp(l), as if by a #define directive. If no definition is given, name is defined as 
1. 

-host=arch (Sun-2, Sun-3, and Sun-4 systems only) 
Define the host architecture to be arch. The default is the architecture returned by the arch( 1) 
command. arch can be one of sun2, sun3, or sun4. 

-!directory 
Add directory to the list of list of directories in which to search for include files. Include files with 
names that do not begin with / are always sought first in the directory of the filename argument, 
then in directories named in -I options, then in the /usr/include directory. 

-llibrary 
Use the lint library library from the /usr/Iib/lint directory. 

-o outputfile 
Name the output file outputfile. outputfile cannot be the same as source/tie (lint will not overwrite 
the source file). 

-target=arch (Sun-2, Sun-3, and Sun-4 systems only) 

-Uname 

Define the target architecture to be arch, for additional portability checks specific to that architec
ture. The default is the value returned by the arch(l) command. arch can be one of: sun2, sun3, 
orsun4. 

Remove any initial definition of name for the preprocessor. 

SYSTEM V OPTIONS 

262 

The sense of the -a, -b, -h, and -x options is reversed in the System V version of lint; the tests they con
trol are performed unless the flag is specified. The -C option is not available; instead, the -c or -o options 
can be used. The -i option is not used; instead, the -c option can be used. The -q, -host, and -target 
options are not available. 

-c Produce a .In file for every .c file on the command line. These .In files are the product of lint's 
first pass only, and are not checked for compatibility between functions. 

Last change: 23 February 1988 Sun Release 4.0 



LINT( lV) USER COMMANDS LINT( lV) 

USAGE 

-g 
-0 These options are accepted but ignored. By recognizing these options, lint's behavior is closer to 

that of the cc( 1 V) command. 

-n Do not check compatibility against either the standard or the portable lint library. 

-p Attempt to check portability of code to other dialects of C, such as IBM 370 and Honeywell GCOS. 
Along with performing stricter checking, this option truncates all non-external names to eight 
characters, and all external names to six characters and one case. 

-o library 
Create a lint library with the name llib-1/ib .In. The -c option nullifies any use of the -o option. 
The lint library produced is the input that is given to lint's second pass. The -o option simply 
saves this file in the named lint library. To produce a llib-llib .In without extraneous messages, use 
of the -x option is suggested. The -v option is useful if the source file(s) for the lint library are 
just external interfaces (for example, the way the file llib-lc is written). These option settings are 
also available through the use of "lint comments" (see Input Grammar below). 

For more information about lint refer to lint in Programming Utilities and Libraries 

To create lint libraries, use the -C option. For example 

example% lint-Ccongressfilenames ... 

where filenames are the C sources of library congress, produces a file llib-lcongress.ln in the current direc
tory in the correct library format suitable for "tinting" programs using -lcongress. 

Input Grammar 
lint's first pass reads standard C source files. lint recognizes the following C comments as commands. 

/•NOTREACHED+/ 
At appropriate points, inhibit comments about unreachable code. (This comment is typically 
placed just after calls to functions like exit(2)). 

/• V ARARGSn •I 
Suppress the usual checking for variable numbers of arguments in the following function declara
tion. The data types of the first n arguments are checked; a missing n is taken to be 0. In this ver
sion of lint, /•VARARGSO•/ is allowed. It no longer indicates the absence of variable arguments. 

/•ARGSUSED•/ 
Enable the -v option for the next function. 

/•LINTLIBRARY•/ 
At the beginning of a file, shut off complaints about unused functions and function arguments in 
this file. This is equivalent to using the -v and-x options. 

SYSTEM V USAGE 
The behavior of the -c and the -o options allows for incremental use of lint on a set of C source files. 
Invoking 'lint -c' for each source file produces a corresponding .In file, and prints all messages pertaining 
to that source file. After all of the source files have been run through lint separately, it is invoked once 
more (without the -c option), and with all of the .In files and -lx options. This produces messages about 
any inconsistencies between files. This scheme works well with make(l), since it allows make to "lint" 
only those source files that have been modified since the last time lint was run. 

To create lint libraries, use the -o option. For example 

example% lint -x -o congress filenames ... 

where filenames are the C sources of library congress, produces a file llib-lcongress.ln in the current direc
tory in the correct library format suitable for "tinting" programs using -lcongress. 

Sun Release 4.0 Last change: 23 February 1988 263 



LINT( IV) USER COMMANDS LINT( IV) 

EXAMPLE 

FILES 

The following lint call: 

example% lint -b myfile.c 

checks the consistency of the code in the C source file file myfile.c. The -b option indicates that unreach
able break statements are to be checked for. 

/usr/lib/lint/lint[12] programs 
/usr/lib/lint/llib-1*.ln various prebuilt lint libraries 
/usr/lib/lint/llib-1* sources of the prebuilt lint libraries 

The following lint libraries are supplied with SunOS: -le, -leore, -leurses, -lkvm, -llwp, -Im, -Imp, 
-lpixrect, -lplot, -lsuntool, -lsunwindow, -ltermcap, and -ltermlib. Additional lint libraries may be 
installed separately. 

SYSTEM V FILES 
/usr/51ib/lint/lint[l2] programs 
/usr/Slib/lint/llib-1*.ln various prebuilt lint libraries 
/usr/Slib/lint/llib-1* sources of the prebuilt lint libraries 

The following System V lint libraries are supplied with SunOS: -le, -leore, -lcurses, -lkvm, -llwp, -Im, 
-Imp, -lpixrect, -lplot, -lport. -lsuntool, and -lsunwindow. Additional lint libraries may be installed 
separately. 

SEE ALSO 

BUGS 

264 

cc(l V), cpp(l), lex(l), make(l), yacc(l), exit(2), setjmp{3) 

Programming Utilities and Libraries 

There are some things you just cannot get lint to shut up about. 

The routines exit(2), longjmp (see setjmp(3)) and other functions that do not return are not understood; 
this causes various incorrect diagnostics. 

Libraries created by the -C or -o options will, when used in later lint runs, cause certain errors that were 
reported when the libraries were created to be reported again, and cause line numbers and file names from 
the original source used to create those libraries to be reported in error messages. For these reasons, it is 
still useful to produce stripped down lint library source files and to use them to generate lint libraries. 

Last change: 23 February 1988 Sun Release 4.0 



LN(l) USER COMMANDS LN(l) 

NAME 
ln - make hard or symbolic links to files 

SYNOPSIS 
In [ -fs ] filename [ linkname ] 
In [ -fs ] pathname. . . directory 

DESCRIPTION 
In creates an additional directory entry, called a link, to a file or directory. Any number of links can be 
assigned to a file. The number of links does not affect other file attributes such as size, protections, data, 
etc. 

filename is the name of the original file or directory. linkname is the new name to associate with the file or 
filename. If linkname is omitted, the last component of filename is used as the name of the link. 

If the last argument is the name of a directory, symbolic links are made in that directory for each pathname 
argument; In uses the last component of each pathname as the name of each link in the named directory. 

A hard link (the default) is a standard directory entry just like the one made when the file was created. 
Hard links can only be made to existing files. Hard links cannot be made across file systems (disk parti
tions, mounted file systems). To remove a file, all hard links to it must be removed, including the name by 
which it was first created; removing the last hard link releases the inode associated with the file. 

A symbolic link, made with the -s option, is a special directory entry that points to another named file. 
Symbolic links can span file systems and point to directories. In fact, you can create a symbolic link that 
points to a file that is currently absent from the file system; removing the file that it points to does not affect 
or alter the symbolic link itself. 

A symbolic link to a directory behaves differently than you might expect in certain cases. While an ls(l V) 
on such a link displays the files in the pointed-to directory, an 'ls -I' displays information about the link 
itself: 

example% ln-s dir link 
example% ls link 
filel file2 file3 file4 
example% ls -I link 
lrwxrwxrwx 1 user 7 Jan 11 23:27 link -> dir 

When you cd(l) to a directory through a symbolic link, you wind up in the pointed-to location within the 
file system. This means that the parent of the new working directory is not the parent of the symbolic link, 
but rather, the parent of the pointed-to directory. For instance, in the following case the final working 
directory is /usr and not /home/user/linktest. 

example% pwd 
/home/user/linktest 
example% In -s /usr/tmp symlink 
example% cd symlink 
example% cd .. 
example% pwd 
/usr 

C shell user's can avoid any resulting navigation problems by using the pushd and popd built-in com
mands instead of ed. 

OPTIONS 
-f Force a hard link to a directory - this option is only available to the super-user. 

-s Create a symbolic link or links. 

Sun Release 4.0 Last change: 21 January 1988 265 



LN( 1) USER COMMANDS LN(l) 

EXAMPLE 

The commands below illustrate the effects of the different forms of the In command: 

example% In file link 
example% ls-F file link 
file link 
example% In -s file symlink 
example% Is -F file symlink 
file symlink@ 
example% Is -Ii file link symlink 
10606 -rw-r--r-- 2 user O Jan 12 00:06 file 
10606 -rw-r--r-- 2 user O Jan 12 00:06 link 
10607 lrwxrwxrwx 1 user 4 Jan 12 00:06 symlink -> file 

example% ln-s nonesuch devoid 
example% Is -F devoid 
devoid@ 
example% cat devoid 
devoid: No such file or directory 
example% ln-s /proto/binl* /tmp/bin 
example% Is -F /proto/bin /tmp/bin 
/proto/bin: 
X* Y* Z* 

/tmp/bin: 
x@ y@ z@ 

SEE ALSO 
cp(l), ls(l V), mv(l), rm(l), link(2), lstat(2), readlink(2), stat(2), symlink(2) 

WARNINGS 

266 

When the last argument is a directory, simple basenames should not be used for pathname arguments. If a 
basename is used, the resulting symbolic link points to itself: 

example% In -s file /tmp 
example% Is -1 /tmp/file 
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file -> file 
example% cat /tmp/file 
/tmp/file: Too many levels of symbolic links 

To avoid this problem, use full pathnames, or prepend a reference to the PWD variable to files in the work
ing directory: 

example% rm /tmp/file 
example% In -s $PWD/file /tmp 
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file -> /home/user/subdir/file 

Last change: 21 January 1988 Sun Release 4.0 



LOAD( 1) USER COMMANDS LOAD( 1) 

NAME 
load, loadc - load Application SunOS or Developer's Toolkit clusters 

SYNOPSIS 
load [filename ... ] 

loadc [ cluster ... ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
load loads the optional clusters in the Application Sunos or the Developer's Toolkit that contain the files 
specified in the filename arguments. loadc loads the optional clusters in the Application SunOS or the 
Developers Toolkit specified in the cluster arguments. 

load and loadc require the user to specify the distribution media type (3.5" diskette or 1/4" tape) for the 
system and to insert the specified 3.5" diskette or 1/4" tape. The user will be asked to confirm that the 
specified media has been inserted. If the user confirmation is negative, no software will be loaded from the 
specified media. 

Without arguments, load and loadc display a summary of the clusters in the Application SunOS and 
Developer's Toolkit, including the load state and size of each cluster. 

EXAMPLES 
To load the cluster that contains the spell(l) command: 

% load spell 
Enter your distribution media type (1=1/4" tape, 2=3.5" diskette): 2 
Insert diskette n to load the spellcheck cluster, confirm (y/n): y 
Loading the spellcheck cluster ... 
The spellcheck cluster has been loaded. 
space used by clusters: 6021K bytes 
total space remaining: 20432K bytes 

To load the spellcheck cluster: 

% loadc spellcheck 
Enter your distribution media type (1=1/4" tape, 2=3.5" diskette): 2 
Insert diskette n to load the spellcheck, confirm (y/n): y 
Loading the spellcheck cluster ... 
The spellcheck cluster has been loaded. 
space used by clusters: 6021K bytes 
total space remaining: 20432K bytes 

To display a summary of the clusters in the Application SunOS and Developer's Toolkit: 

% load 
Application SunOS Clusters: 

availablecluster size (bytes) 

yes accounting 265K 
no advanced admin 501K 

Sun Release 4.0 Last change: 19 February 1988 267 



LOAD( 1) USER COMMANDS LOAD( 1) 

Developer's Toolkit Clusters: 
availablecluster size (bytes) 

no base devel 6907K 

space used by clusters: 6021K bytes 
total space remaining: 20432K bytes 

A cluster is available if it has been "loaded" using load or loadc or if it has been "mounted" across the net
work. 

ENVIRONMENT 
LOADMEDIA Used to specify the distribution media type for the system. It can be set to diskette to 

specify 3.5" diskette or tape to specify 1/4" tape. If it is set, load and loadc will not ask 
the user to enter the distribution media type. 

FILES 
/export/loaded.lap pl 
/ export/loaded/ devel 
/usr/Iib/load./• 

where Application SunOS clusters are loaded ( or mounted) 
where Developer's Toolkit clusters are loaded ( or mounted) 
data files 

SEE ALSO 
unload(l), cluster(l), toc(5) 

Sun386i System Setup and Maintenance 

DIAGNOSTICS 

268 

Wrong diskette/tape 
An incorrect diskette or tape was inserted. The user will again be asked to insert the specified 
media. 

The file filename is not in any or the optional software clusters. 
The specified file is not part of the Application SunOS or Developer's Toolkit 

There is no cluster cluster. 
The specified cluster is not part of the Application SunOS or Developers Toolkit 

The cluster cluster is already loaded, overwrite? (y/n): 
The specified cluster appears to have been loaded already. Type y followed by RETURN to have 
the cluster loaded or n followed by RETURN to cancel the loading of the cluster. 

Cluster cluster requires nK; there is not enough disk space. 
There is not enough disk space to hold the specified cluster. 

The cluster cluster has not been loaded. 
The loading of the specified cluster has been canceled or interrupted by the user. 

The Application SunOS (and/or) Developers Toolkit are mounted. 
The Application SunOS or Developers Toolkit or both are mounted across the network and can not 
be loaded or unloaded. 

The tape/diskette drive is currently in use. 
You are trying to load a cluster from tape (or diskette) and another process currently has control of 
the tape (or diskette) drive. 

Last change: 19 February 1988 Sun Release 4.0 



LOCKSCREEN ( 1 ) USER COMMANDS LOCKSCREEN ( 1 ) 

NAME 
lockscreen, lockscreen _ default - maintain Sun View context and prevent unauthorized access 

SYNOPSIS 
lockscreen [ -enr] [ -b program] [ -t seconds] [ gfx-program [ gfx-program-arguments]] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
lockscreen is a Sun View utility that locks the screen against unauthorized access while preserving the state 
of the Sun View display. It clears the workstation screen to black, and then runs gfx-program, which typi
cally provides a moving graphics display to reduce phosphor burn. If no gfx-program is provided, a suit
able default program is run. 

lockscreen requires the user's password before restoring the window context. When any keyboard or 
mouse button is pressed, the graphics screen is replaced by a password screen that displays the user name, 
a small box with a bouncing logo, and a prompt for the user's password. If the user has no password, or if 
the -n option is used, the window context is simply restored. 

When the password screen appears: 

• Restore the window context by entering the user's password followed by a RETURN (this 
password is not echoed on the screen) or, 

• Point to the black box and click the left button to return to the graphics display. 

If neither of the above actions is taken, gfx _yrogram will resume execution after the interval specified with 
the -t option. 

OPTIONS 

FILES 

-e Add the Exit Desktop choice to the password screen. If pointed to and clicked, the Sun View 
environment is exited and the current user is logged out. 

-n Require no password to reenter the window environment. 

-r Allow the use of the user name root in the 'Name:' field of the password screen. Normally, root 
is not accepted as a valid user name. 

-bprogram 
Allow an additional program to be run as a child process of lockscreen. This background process 
could be a compile server or some other useful program that the user wants run while lockscreen 
is running. No arguments are passed to this program. 

-t seconds 
After seconds seconds, clear the password screen and restart gfx-program. The default is 5 
minutes (300 seconds). 

[ gfx-program] [ gfx-program-arguments] 
Run this program after clearing the screen to black. If no program argument is present, lock
screen will try to run lockscreen _ default if it exists on the standard search path, otherwise a 
bouncing Sun logo will appear. If gfx-program-arguments are specified and the gfx-program is 
not then the arguments are passed to lockscreen _ default. lockscreen _ default is typically a non
interactive graphics program (see graphics_demos(6)). lockscreen will not search for 
lockscreen_default if the gfx-program is specified explicitly as an empty argument (an adjacent 
pair of quote-marks). 

I usr /b in/Iockscreen def a ult 
Default gfx-program. This displays a series of life(6) patterns. If a file named 
lockscreen _default appears earlier in the search path, that file is used instead. 

Sun Release 4.0 Last change: 21 December 1987 269 



LOCKSCREEN ( 1 ) USER COMMANDS LOCKSCREEN ( 1 ) 

SEE ALSO 
login(!), sunview(l) 

270 Last change: 21 December 1987 Sun Release 4.0 



LOGGER(l) USER COMMANDS LOGGER(l) 

NAME 
logger - add entries to the system log 

SYNOPSIS 
logger [ -t tag ] [ -p priority ] [ -i ] [ -f filename ] [ message ] ... 

DESCRIPTION 
logger provides a method for adding one-line entries to the system log file from the command line. One or 
more message arguments can be given on the command line, in which case each is logged immediately. 
Otherwise, a filename can be specified, in which case each line in the file is logged. If neither is specified, 
logger reads and logs messages on a line-by-line basis from the standard input. 

OPTIONS 
-t tag Mark each line added to the log with the specified tag. 

-p priority Enter the message with the specified priority. The message priority can be specified numer-
ically, or as afacility.level pair. For example, '-p local3.info' assigns the message priority 
to the info level in the local3 facility. The default priority is user .notice. 

-i Log the process ID of the logger process with each line. 

-f filename Use the contents of filename as the message to log. 

message If this is unspecified, either the file indicated with -f or the standard input is added to the 
log. 

EXAMPLES 
logger System rebooted 

will log the message 'System rebooted' to the facility at priority notice to be treated by syslogd as other 
messages to the facility notice are. 

logger -p localO.notice -t HOSTIDM -f /dev/idmc 

will read from the file /dev/idmc and will log each line in that file as a message with the tag 'HOSTIDM' at 
priority notice to be treated by syslogd as other messages to the facility localO are. 

SEE ALSO 
syslog(3), syslogd(8) 

Sun Release 4.0 Last change: 9 September 1987 271 



LOGIN( 1) USER COMMANDS LOGIN(l) 

NAME 
login - log in to the system 

SYNOPSIS 
login [ -p ] [ username ] 

DESCRIPTION 
login signs username on to the system initially; login may also be used at any time to ~hange from one 
userID to another. 

When used with no argument, login requests a user name and password (if appropriate). Echoing is turned 
off (if possible) while typing the password. Note: the number of significant characters in a password is 8. 
(See passwd(l).) 

When successful, login updates accounting files, prints the message of the day, informs you of the 
existence of any mail, and displays the time you last logged in. None of these messages are printed if 
there is a .hushlogin file in your home directory; this is mostly used to make life easier for nonhuman 
users, such as uucp(lC). 

login initializes the user and group IDs and the working directory, then starts a command interpreter shell 
(usually either /usr/bin/sh or /usr/bin/csh) according to specifications found in the file /etc/passwd. Argu
ment O of the command interpreter is the name of the command interpreter with a leading dash ('-') 
prepended. 

login also modifies the environment (environ(SV)) with information specifying home directory, command 
interpreter, terminal-type (if available) and username. The -p argument preserves the remainder of the 
environment, otherwise any previous environment is discarded. 

The super-user root may only log in on those terminals marked as "secure" in the /etc/ttytab file. For 
example, if the file contained: 

console "/etc/getty Console-9600" 
ttyOO "/etc/getty Console-9600" 

the super-user could only log in on the console. 

sun 
sun 

on secure 
on 

If the file /etc/nologin exists, login prints its contents on the user's terminal and exits. This is used by shut
down(8) to stop logins when the system is about to go down. 

The login command, recognized by sh(l) and csh(l), is executed directly (without forking), and terminates 
that shell. To resume working, you must log in again. 

login times out and exits if its prompt for input is not answered within a reasonable time. 

When the Bourne shell (sh) starts up, it reads a file called .profile from your home directory (that of the 
username you use to log in). When the C shell (csh) starts up, it reads a file called .cshrc from your home 
directory, and then reads a file called .login. 

The shells read these files only if they are owned by the person logging in. 

OPTIONS 

FILES 

272 

-p Preserve any existing environment variables and their values; otherwise the previous environment 
is discarded. 

/etc/utmp 
/var/adm/wtmp 
/var/adm/lastlog 
I etc/ttytab 
/usr/ucb/quota 
/var/spool/mail/* 
/etc/motd 

accounting 
accounting 
time of last login 
terminal types 
quota check 
mail 
message-of-the-day 

Last change: 9 September 1987 Sun Release 4.0 



LOGIN( 1) 

/etc/passwd 
/etc/nologin 
/ .bushlogin 

/usr/bin/sh 
/usr/bin/csb 
.login 
.profile 

SEE ALSO 

USER COMMANDS 

password file 
stop login, print message 
makes login quieter 

LOGIN(l) 

csh(l), mail(l), passwd(l), rlogin(lC) sh(l), uucp(lC), passwd(5), environ(5V), utmp(5), init(8), 
getty(8), sbutdown(8), 

DIAGNOSTICS 
Login incorrect 

If the name or the password is bad (or mistyped). 

No Shell 

cannot open password file 

no directory 
Ask your system administrator for assistance. 

Sun Release 4.0 Last change: 9 September 1987 273 



LOGNAME( 1) USER COMMANDS LOGNAME(l) 

NAME 
logname - get the name by which you logged in 

SYNOPSIS 
logname 

DESCRIPTION 
logname returns the contents of the environment variable LOGNAME, which is set when a user logs into 
the system. 

FILES 
/etc/profile 

SEE ALSO 
env(l), login(l), environ(5V) 

274 Last change: 9 September 1987 Sun Release 4.0 



LOOK( 1) USER COMMANDS LOOK(l) 

NAME 
look - find words in the system dictionary or lines in a sorted list 

SYNOPSIS 
look [ -df] [ -tc] string [filename ] 

DESCRIPTION 
look consults a sortedfilename 
and prints all lines that begin with string. 

If no filename is specified, look uses /usr/dict/words with collating sequence -df. 

OPTIONS 
-d Dictionary order. Only letters, digits, TAB and SPACE characters are used in comparisons. 

-f Fold case. Upper case letters aren't distinguished from lower case in comparisons. 

-tc Set termination character. All characters to the right of c in string are ignored. 

FILES 
/usr/dict/words 

SEE ALSO 
grep(l V), sort(l V) 

Sun Release 4.0 Last change: 17 August 1987 275 



LOOK.BIB( 1) USER COMMANDS LOOKBIB(l) 

NAME 
lookbib - find references in a bibliographic database 

SYNOPSIS 
lookbib database 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each field starts 
on a line beginning with a '% ', followed by a key-letter, then a blank, and finally the contents of the field, 
which may continue until the next line starting with ' % '. 

lookbib uses an inverted index made by indxbib to find sets of bibliographic references. It reads keywords 
typed after the'>' prompt on the terminal, and retrieves records containing all these keywords. If nothing 
matches, nothing is returned except another '>' prompt. 

It is possible to search multiple databases, as long as they have a common index made by indxbib(l). In 
that case, only the first argument given to indxbib is specified to lookbib. 

If lookbib does not find the index files (the .i[abc] files), it looks for a reference file with the same name as 
the argument, without the suffixes. It creates a file with a .ig suffix, suitable for use with fgrep (see 
grep(l V)). lookbib then uses this fgrep file to find references. This method is simpler to use, but the .ig 
file is slower to use than the .i[abc] files, and does not allow the use of multiple reference files. 

x.ia 
x.ib 
x.ic 
x.ig 

index files 
reference file 

SEE ALSO 

BUGS 

276 

add bib( 1 ), grep( 1 V), indxbib( 1 ), ref er( 1 ), roflbib( 1 ), sort bib( 1) 

F orma.tting Documents 

Probably all dates should be indexed, since many disciplines refer to literature written in the 1800s or ear
lier. 

Last change: 21 December 1987 Sun Release 4.0 



LORDER( 1) USER COMMANDS LORDER(l) 

NAME 
lorder - find an ordering relation for an object library 

SYNOPSIS 
lorder filename . .. 

DESCRIPTION 
Give lorder one or more object or library archive (see ar(lV)) filenames, and it lists pairs of object file 
names - meaning that the first file of the pair refers to external identifiers defined in the second - to the 
standard output. lorder's output may be processed by tsort(l) to find an ordering of a library suitable for 
one-pass access by ld(l). 

EXAMPLE 
This brash one-liner intends to build a new library from existing .o files. 

ar er library ' lorder * .o I tsorf 

The ranlib( 1 ), command converts an ordered archive into a randomly accessed library and makes lorder 
unnecessary. 

SEE ALSO 
ar(lV), ld(l), ranlib(l), tsort(l) 

BUGS 
The names of object files, in and out of libraries, must end with '.o'; otherwise, nonsense results. 

Sun Release 4.0 Last change: 9 September 1987 277 



LPQ(l) USER COMMANDS LPQ( 1) 

NAME 
lpq - display the queue of printer jobs 

SYNOPSIS 
lpq [ -Pprinter] [-I] [ + [interval] ] [job# ... ] [ username ... ] 

DESCRIPTION 
lpq displays the contents of a printer queue. It reports the status of jobs specified by job#, or all jobs 
owned by the user specified by username. lpq reports on all jobs in the default printer queue when 
invoked with no arguments. 

For each print job in the queue, lpq reports the user's name, current position, the names of input files 
comprising the job, the job number (by which it is referred to when using lprm(l)) and the total size in 
bytes. Normally, only as much information as will fit on one line is displayed. Jobs are normally queued 
on a first-in-first-out basis. Filenames comprising a job may be unavailable, such as when lpr is used at the 
end of a pipeline; in such cases the filename field indicates "(standard input)". 

If lpq warns that there is no daemon present (that is, due to some malfunction), the lpc(8) command can be 
used to restart a printer daemon. 

OPTIONS 

FILES 

-P printer 
Display information about the queue for the specified printer. In the absence of the -P option, the 
queue to the printer specified by the PRINTER variable in the environment is used. If the PRINTER 
variable isn't set, the queue for the default printer is used. 

-I Display queue information in long format; includes the name of the host from which the job ori
ginated. 

+[interval] 
Display the spool queue periodically until it empties. This option clears the terminal screen before 
reporting on the queue. If an interval is supplied, lpq sleeps that number of seconds in between 
reports. 

/etc/termcap for manipulating the screen for repeated display /etdprintcap to determine printer 
characteristics /var/spool/I* spooling directory, as determined from printcap 
/var/spool/1*/cf* control files specifying jobs /var/spool/1*/lock lock file to obtain 
the currently active job 

SEE ALSO 
lpr{l), lprm(l), lpc(8), lpd(8) 

DIAGNOSTICS 

278 

printer is ready and printing 
The lpq program checks to see if there is a printer daemon. If the daemon is hung, the super-user 
can abort the current daemon and start a new one using lpc(8). Under some circumstances, lpq 
reports that a printer is ready and printing when the daemon is, in fact, hung. 

Waiting for printer to become ready ( offline ?) 
The daemon could not open the printer device. The printer may be turned off-line. This message 
can also occur if a printer is out of paper, the paper is jammed, and so on. Another possible cause 
is that a process, such as an output filter, has exclusive use of the device. The only recourse in this 
case is to kill the offending process and restart the printer with lpc. 

waiting for host to come up 
A daemon is trying to connect to the remote machine named host, in order to send the files in the 
local queue. If the remote machine is up, lpd on the remote machine is probably dead or hung and 
should be restarted using lpc. 

Last change: 9 September 1987 Sun Release 4.0 



LPQ( 1) 

BUGS 

USER COMMANDS LPQ( 1) 

sending to host 
The files are being transferred to the remote host, or else the local daemon has hung while trying 
to transfer the files. 

Warning: printer is down 
The printer has been marked as being unavailable with lpc. 

Warning: no daemon present 
The lpd process overseeing the spooling queue, as indicated in the "lock" file in that directory, 
does not exist. This normally occurs only when the daemon has unexpectedly died. Check the 
printer's error log for a diagnostic from the deceased process; you can restart the printer daemon 
with lpc. 

lpq may report unreliably. The status as reported may not always reflect the actual state of the printer. 

Output formatting is sensitive to the line length of the terminal; this can result in widely-spaced columns. 

lpq is sometimes unable to open various files when the lock file is malformed. 

Sun Release 4.0 Last change: 9 September 1987 279 



LPR(l) USER COMMANDS LPR(l) 

NAME 
lpr- send ajob to the printer 

SYNOPSIS 

lpr [ -Pprinter] [-#copies] [ -Cclass] [ -Jjob] [ -Ttitle] [ -i [ indent] ] [ -1234/ont] 
[ -wcols] [ -B] [ -r] [ -m] [ -h] [ -s] [-filter-option] [filename ... ] 

DESCRIPTION 
Ipr forwards printer jobs to a spooling area for subsequent printing as facilities become available. Each 
printer job consists of copies of (or, with -s, symbolic links to) each filename you specify. The spool area 
is managed by the line printer daemon, lpd(8). lpr reads from the standard input if no files are specified. 

OPTIONS 
-Pprinter 

280 

Send output to the named printer. Otherwise send output to the printer named in the PRINTER 
environment variable, or to the default printer, Ip. 

-#copies 

-Cc/ass 

Produce the number of copies indicated for each named file. For example: 

example% lpr -#3 index.c lookup.c 

produces three copies of index.c, followed by three copies of lookup.c. On the other hand, 

example% cat index.c lookup.c I lpr 

generates three copies of the concatenation of the files. 

Print class as the job classification on the burst page. For example, 

example% lpr -C Operations new.index.c 

replaces the system name (the name returned by hostname) with ''Operations'' on the burst page, 
and prints the file new.index.c. 

-Jjob Printjob as the job name on the burst page. Normally, lpr uses the first file's name. 

-T title Use title instead of the file name for the title used by pr(l V). 

-i[indent] 
Indent output indent spaces. Eight spaces is the default. 

-1/ont 
-2/ont 
-3/ont 
-4 font Mount the specified/ ont on font position 1, 2, 3 or 4. The daemon will construct a .railmag file in 

the spool directory that indicates the mount by referencing /usr/lib/vf ont/f ont. 

-wcols Use cols as the page width for pr. 

-r Remove the file upon completion of spooling, or upon completion of printing with the -s option. 

-m Send mail upon completion. 

-h Suppress printing the burst page. 

-s Create a symbolic link from the spool area to the data files rather than trying to copy them (so 
large files can be printed). This means the data files should not be modified or removed until they 
have been printed. In the absence of this option, files larger than 1 Megabyte in length are trun
cated. Note: the -s option only works on the local host (files sent to remote printer hosts are 
copied anyway), and only with named data files - it doesn't work if lpr is at the end of a pipe
line. 

Last change: 16 November 1987 Sun Release 4.0 



LPR(l) USER COMMANDS LPR(l) 

FILES 

filter-option 
The following single letter options notify the line printer spooler that the files are not standard text 
files. The spooling daemon will use the appropriate filters to print the data accordingly. 

-p Use pr to format the files (lpr-p is very much like pr I Ipr). 
-I Print control characters and suppress page breaks. 
-t The files contain troff(l) (cat phototypesetter) binary data. 
-n The files contain data from ditroff ( device independent troff). 
-d The files contain data from tex (DVI format from Stanford). 
-g The files contain standard plot data as produced by the plot(3X) routines (see also 

plot(lG) for the filters used by the printer spooler). 
-v The files contain a raster image, see rasterfile (5). 
-c The files contain data produced by elf plot. 
-f Interpret the first character of each line as a standard FORTRAN carriage control charac-

ter. 

If no filter-option is given (and the printer can interpret PostScript), the string '%!' as the first 
two characters of a file indicates that it contains PostScript commands. 

/etc/passwd 
/etc/printcap 
/usr/lib/lpd 
/var/spool/I* 
/var/spool/1*/cf* 
/var/spool/1*/df* 
/var/spoolfl*ftf* 
/usr/lib/vfont/font 

personal identification 
printer capabilities data base 
line printer daemon 
directories used for spooling 
daemon control files 
data files specified in 'er files 
temporary copies of 'er files 

SEE ALSO 
lpq(l), lprm(l), plot(lG), pr(lV), screendump(l), troff(l), plot(3X), printcap(5), rasterfile(5), lpc(8), 
lpd(8) 

DIAGNOSTICS 
lpr: copy file is too large 

A file is determined to be too "large" to print by copying into the spool area. Use the -s option 
as defined above to make a symbolic link to the file instead of copying it. A too-large file is 
approximately 1 Megabyte. lpr truncates the file, and prints as much of it as it can. 

lpr: printer : unknown printer 
The printer was not found in the printcap database. Usually this is a typing mistake; however, it 
may indicate a missing or incorrect entry in the /etc/printcap file. 

lpr: printer : jobs queued, but cannot start daemon. 
The connection to lpd on the local machine failed. This usually means the printer server started at 
boot time has died or is hung. Check the local socket /dev/printer to be sure it still exists (if it 
does not exist, there is no lpd process running). 

lpr: printer: printer queue is disabled 

Sun Release 4.0 

This means the queue was turned off with 

example% /usr/etc/lpc disable printer 

to prevent lpr from putting files in the queue. This is normally done by the system manager when 
a printer is going to be down for a long time. The printer can be turned back on by a super-user 
with lpc. 

If a connection to lpd on the local machine cannot be made lpr will say that the daemon cannot be 
started. Diagnostics may be printed in the daemon's log file regarding missing spool files by lpd 

Last change: 16 November 1987 281 



LPR( 1) 

BUGS 

282 

USER COMMANDS LPR( 1) 

Command-line options cannot be combined into a single argument as with some other commands. The 
command: 

Ipr-fs 

is not equivalent to 

lpr-f-s. 

copies the file to the spooling directory rather than making a symbolic link. Placing the -s flag first, or 
writing each as a separate argument makes a link as expected. 

lpr -p is not precisely equivalent to prllpr. lpr -p puts the current date at the top of each page, rather than 
the date last modified. 

Fonts for trofT(l) and tex reside on the printer host. It is currently not possible to use local font libraries. 

If you spool too large a file, output is truncated at about 1 Megabyte. 

lpr objects to printing binary files. 

The -s option only works for print jobs that are run from the printer host itself. Jobs added to the queue 
from a remote host are always copied into the spool area. That is, if the printer does not reside on the host 
that lpr is run from, the spooling system makes a copy the file to print, and places it in the spool area of the 
printer host, regardless of -s. 

Last change: 16 November 1987 Sun Release 4.0 



LPRM( 1) USER COMMANDS LPRM( 1) 

NAME 
lprm - remove jobs from the printer queue 

SYNOPSIS 
lprm [ -Pprinter ] [ - ] [ job # . . . ] [ username . . . ] 

DESCRIPTION 
lprm removes a job or jobs from a printer's spooling queue. Since the spool directory is protected from 
users, using lprm is normally the only method by which a user can remove a job. 

Without any arguments, lprm deletes the job that is currently active, provided that the user who invoked 
lprm owns thatjob. 

When the super-user specifies a username, lprm removes all jobs belonging to that user. 

You can remove a specific job by supplying its job number as an argument, which you can obtain using 
lpq(l). For example: 

example% lpq -Pbost 
host is ready and printing 
Rank Owner Job Files 
active wendy 385 standard input 
example% lprm-Phost 385 

Total Size 
35501 bytes 

lprm reports the names of any files it removes, and is silent if there are no applicable jobs to remove. 

lprm kills the active printer daemon, if necessary, before removing spooled jobs; it restarts the daemon 
when through. 

OPTIONS 

FILES 

-Pprinter 
Specify the queue associated with a specific printer. Otherwise the value of the PRINTER vari
able in the environment is used. If this variable is unset, the queue for the default printer is used. 

Remove all jobs owned by you. If invoked by the super-user, all jobs in the spool are removed. 
(Job ownership is determined by the user's login name and host name on the machine where the 
lpr command was invoked). 

/etc/printcap 
/var/spool/• 
/var/spool/1•/lock 

printer characteristics file 
spooling directories 
lock file used to obtain the pid of the current daemon and the job number of the 
currently active job 

SEE ALSO 
lpr(l), lpq(l), lpd(8) 

DIAGNOSTICS 

BUGS 

lprm: printer: cannot restart printer daemon 
The connection to lpd on the local machine failed. This usually means the printer server started at 
boot time has died or is hung. If it is hung, the master lpd(8) daemon may have to be killed and a 
new one started. 

Since race conditions are possible when updating the lock file, an active job may be incorrectly identified 
for removal by an lprm command issued with no arguments. During the interval between an lpq(l) com
mand and the execution of lprm, the next job in line may have become active; that job may be removed 
unintentionally if it is owned by you. To avoid this, supply lprm with the job number to remove when a 
critical job that you own is next in line. 

Sun Release 4.0 Last change: 9 September 1987 283 



LPTEST( 1) USER COMMANDS LPTEST( 1) 

NAME 
lptest - generate lineprinter ripple pattern 

SYNOPSIS 
lptest [ length [ count ] ] 

DESCRIPTION 

284 

lptest writes the traditional "ripple test" pattern on standard output. In 96 lines, this pattern will print all 96 
printable ASCII characters in each position. While originally created to test printers, it is quite useful for 
testing terminals, driving terminal ports for debugging purposes, or any other task where a quick supply of 
random data is needed. 

The length argument specifies the output line length if the the default length of 79 is inappropriate. 

The count argument specifies the number of output lines to be generated if the default count of 200 is inap
propriate. Note that if count is to be specified, length must be also be specified. 

Last change: 16 February 1988 Sun Release 4.0 



LS ( lV) USER COMMANDS LS( lV) 

NAME 
ls - list the contents of a directory 

SYNOPSIS 
ls [ -aAcCdfFgilLqrRstul ]filename ... 

SYSTEM V SYNOPSIS 
/usr/5bin/ls [ -abcCdfFgilLmnopqrRstux] filename ... 

DESCRIPTION 
For each filename which is a directory, ls lists the contents of the directory; for each filename which is a 
file, ls repeats its name and any other information requested. By default, the output is sorted alphabetically. 
When no argument is given, the current directory is listed. When several arguments are given, the argu
ments are first sorted appropriately, but file arguments are processed before directories and their contents. 

In order to determine output formats for the -C, -x, and -m options, /usr/5bin/ls uses an environment 
variable, COLUMNS, to determine the number of character positions available on one output line. If this 
variable is not set, the terminfo database is used to determine the number of columns, based on the 
environment variable TERM. If this information cannot be obtained, 80 columns are assumed. 

Permissions Field 
The mode printed under the -1 option contains 10 characters interpreted as follows. If the first character is: 

d entry is a directory; 
b entry is a block-type special file; 
c entry is a character-type special file; 
I entry is a symbolic link; 
p entry is a FIFO (also known as "named pipe") special file; 
s entry is an AF_ UNIX address family socket, or 

entry is a plain file. 

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner permis
sions; the next refers to permissions to others in the same user-group; and the last refers to all others. 
Within each set the three characters indicate permission respectively to read, towrite, or to execute the file 
as a program. For a directory, "execute" permission is interpreted to mean permission to search the 
directory.The permissions are indicated as follows: 

r the file is readable; 
w the file is writable; 
x the file is executable; 

the indicated permission is not granted. 

The group-execute permission character is given as s if the file has the set-group-id bit set; likewise the 
owner-execute permission character is given ass if the file has the set-user-id bit set. 

The last character of the mode (normally x or'-') is t if the 1000 bit of the mode is on. See chmod(lV) 
for the meaning of this mode. The indications of set-ID and 1000 bits of the mode are capitalized (Sand T 
respectively) if the corresponding execute permission is not set. 

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks is 
printed. 

OPTIONS 
-a List all entries; in the absence of this option, entries whose names begin with a '.' are not listed 

(except for the super-user, for whom ls, but not /usr/5bin/ls, normally prints even files that begin 
with a'.'). 

-A (ls only) Same as -a, except that'.' and' .. ' are not listed. 

-c Use time of last edit ( or last mode change) for sorting or printing. 

Sun Release 4.0 Last change: 16 November 1987 285 



LS( lV) USER COMMANDS LS( lV) 

-C Force multi-column output, with entries sorted down the columns; for Is, this is the default when 
output is to a terminal. 

-d If argument is a directory, list only its name (not its contents); often used with -I to get the status 
of a directory. 

-f Force each argument to be interpreted as a directory and list the name found in each slot. This 
option turns off -1, -t, -s, and -r, and turns on -a; the order is the order in which entries appear 
in the directory. 

-F Mark directories with a trailing slash ('/'), executable files with a trailing asterisk('*'), symbolic 
links with a trailing at-sign ('@'), and AF_ UNIX address family sockets with a trailing equals sign 
('='). 

-g For Is, show the group ownership of the file in a long output. For /usr/Sbin/Is, print a long listing, 
the same as -I, except that the owner is not printed. 

-i For each file, print the i-number in the first column of the report. 

-I List in long format, giving mode, number of links, owner, size in bytes, and time of last 
modification for each file. If the file is a special file the size field will instead contain the major 
and minor device numbers. If the file is a symbolic link the pathname of the linked-to file is 
printed preceded by'->'. /usr/Sbin/Is will print the group in addition to the owner. 

-L If argument is a symbolic link, list the file or directory the link references rather than the link 
itself. 

-q Display non-graphic characters in filenames as the character?; this is the default when output is to 
a terminal. 

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate. 

-R Recursively list subdirectories encountered. 

-s Give size of each file, including any indirect blocks used to map the file, in kilobytes (Is) or 512-
byte blocks (/usr/Sbin/Is). 

-t Sort by time modified (latest first) instead of by name. 

-u Use time of last access instead of last modification for sorting (with the -t option) and/or printing 
(with the -I option). 

-1 (Is only) Force one entry per line output format; this is the default when output is not to a terminal. 

SYSTEM V OPTIONS 
-b Force printing of non-graphic characters to be in the octal \ddd notation. 

-m Stream output format; the file names are printed as a list separated by commas, with as many 
entries as possible printed on a line. 

-n The same as -1, except that the owner's UID and group's GID numbers are printed, rather than the 
associated character strings. 

-o The same as -1, except that the group is not printed. 

-p Put a slash (' /') after each filename if that file is a directory. 

-x Multi-column output with entries sorted across rather than down the page. 

286 Last change: 16 November 1987 Sun Release 4.0 



LS( IV) 

FILES 

BUGS 

USER COMMANDS 

/etc/passwd to get user ID's for 'ls -I' and 'ls-o'. 
/etc/group to get group ID for 'ls-g' and '/usr/Sbin/ls-1'. 
/usr/share/lib/terminfo/* 

to get terminal information for /usr/Sbin/ls. 

NEWLINE and TAB are considered printing characters in filenames. 

The output device is assumed to be 80 columns wide. 

LS( IV) 

The option setting based on whether the output is a teletype is undesirable as 'ls -s' is much different than 
'ls -s I lpr'. On the other hand, not doing this setting would make old shell scripts which used ls almost 
certain losers. 

None of the above apply to /usr/Sbin/ls. 

Unprintable characters in file names may confuse the columnar output options. 

Sun Release 4.0 Last change: 16 November 1987 287 



M4(1V) USER COMMANDS M4(1V) 

NAME 
m4 - macro language processor 

SYNOPSIS 
m4 [filename ] ... 

SYSTEM V SYNOPSIS 
/usr/5bin/m4 [ -es ] [ -Bint] [-Hint] [ -Sint] [-Tint] [ -Dname=val] [ -Uname ] [filename ] ... 

DESCRIPTION 
m4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of the argument 
files is processed in order; if there are no files, or if a file name is '-', the standard input is read. The pro
cessed text is written on the standard output. 

Macro calls have the form: 

name (argument][, argument2, ... ,] argumentn) 

The '(' must immediately follow the name of the macro. If the name of a defined macro is not followed by 
a '(', it is interpreted as a call of the macro with no arguments. Potential macro names consist of letters, 
digits, and'_', (underscores) where the first character is not a digit 

Leading unquoted SPACE, TAB, and NEWLINE characters are ignored while collecting arguments. Left and 
right single quotes (" ") are used to quote strings. The value of a quoted string is the string stripped of the 
quotes. 

When a macro name is recognized, the arguments are collected by searching for a matching right 
parenthesis. If fewer arguments are supplied than are in the macro definition, the trailing arguments are 
taken to be NULL. Macro evaluation proceeds normally during the collection of the arguments, and any 
commas or right parentheses which happen to turn up within the value of a nested call are as effective as 
those in the original input text. After argument collection, the value of the macro is pushed back onto the 
input stream and rescanned. 

SYSTEM V OPTIONS 

USAGE 

The options and their effects are as follows: 

-e Operate interactively. Interrupts are ignored and the output is unbuffered. 

-s Enable line sync output for the C preprocessor (#line ... ) 

-Bint Change the size of the push-back and argument collection buffers from the default of 4,006. 

-Hint Change the size of the symbol table hash array from the default of 199. The size should be prime. 

-Sint Change the size of the call stack from the default of 100 slots. Macros take three slots, and non-
macro arguments take one. 

-Tint Change the size of the token buffer from the default of 512 bytes. 

To be effective, these flags must appear before any file names and before any -D or -U flags: 

-Dname[=val] 
Define filename to be val or to be NULL in val' s absence. 

-Uname 
Undefine name. 

Built-In Macros 

288 

m4 makes available the following built-in macros. They may be redefined, but once this is done the origi
nal meaning is lost. Their values are NULL unless otherwise stated. 

define The second argument is installed as the value of the macro whose name is the first argu
ment. Each occurrence of $n in the replacement text, where n is a digit, is replaced by the 
n 'th argument. Argument O is the name of the macro; missing arguments are replaced by 
the NULL string. 

Last change: 23 September 1987 Sun Release 4.0 



M4(1V) 

undefine 

ifdef 

changequote 

divert 

undivert 

divnum 

dnl 

ifelse 

incr 

eval 

len 

index 

substr 

translit 

include 

sinclude 

syscmd 

maketemp 

errprint 

dumpdef 

SYSTEM V USAGE 

USER COMMANDS M4( lV) 

Remove the definition of the macro named in the argument. 

If the first argument is defined, the value is the second argument, otherwise the third. If 
there is no third argument, the value is NULL. The word unix is predefined. 

Change quote characters to the first and second arguments. changequote without arguments 
restores the original values (that is, ""). 

m4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of the 
streams in numerical order; initially stream O is the current stream. The divert macro 
changes the current output stream to the (digit-string) argument. Output diverted to a stream 
other than O through 9 is discarded. 

Display immediate output of text from diversions named as arguments, or all diversions if 
no argument. Text may be undiverted into another diversion. Undiverting discards the 
diverted text. 

Return the value of the current output stream. 

Read and discard characters up to and including the next NEWLINE. 

Has three or more arguments. If the first argument is the same string as the second, then the 
value is the third argument If not, and if there are more than four arguments, the process is 
repeated with arguments 4, 5, 6, 7 and so on. Otherwise, the value is either the last string 
not used by the above process, or, if it is not present, NULL. 

Return the value of the argument incremented by 1. The value of the argument is calculated 
by interpreting an initial digit-string as a decimal number. 

Evaluate the argument as an arithmetic expression, using 32-bit arithmetic. Operators 
include+,-, *, /, %, "(exponentiation); relationals; parentheses. 

Return the number of characters in the argument. 

Return the position in the first argument where the second argument begins (zero origin), or 
-1 if the second argument does not occur. 

Return a substring of the first argument. The second argument is a zero origin number 
selecting the first character; the third argument indicates the length of the substring. A miss
ing third argument is taken to be large enough to extend to the end of the first string. 

Transliterate the characters in the first argument from the set given by the second argument 
to the set given by the third. No abbreviations are permitted. 

Return the contents of the file named in the argument. 

Is similar to include, except that it says nothing if the file is inaccessible. 

Execute the system command given in the first argument. No value is returned. 

Fill in a string of XXXXX in the argument with the current process ID. 

Print the argument on the diagnostic output file. 

Print current names and definitions, for the named items, or for all if no arguments are 
given. 

In the System V version of m4, the following built-in macros have added capabilities. 

Built-In Macros 

define '$#' is replaced by the number of arguments; $• is replaced by a list of all the arguments 
separated by commas; $@ is like '$•', but each argument is quoted (with the current 
quotes). 

changequote Change quote symbols to the first and second arguments. The symbols may be up to five 
characters long. 

Sun Release 4.0 Last change: 23 September 1987 289 



M4( lV) USER COMMANDS M4( lV) 

eval Additional operators include bitwise '&', 'I ', '"' and ' '. Octal, decimal and hex numbers 
may be specified as in C. The second argument specifies the radix for the result; the default 
is 10. The third argument may be used to specify the minimum number of digits in the 
result. 

The System V version of m4 makes available the following additional built-in macros. 

defn Return the quoted definition of the argument(s ). It is useful for renaming macros, especially 
built-ins. 

pushdef 

popdef 

shift 

changecom 

deer 

sysval 

m4exit 

m4wrap 

traceon 

traceoff 

Like define, but saves any previous definition. 

Remove current definition of the argument(s), exposing the previous one, if any. 

Return all but the first argument. The other arguments are quoted and pushed back with 
commas in between. The quoting nullifies the effect of the extra scan that will subsequently 
be performed. 

Change left and right comment markers from the default# and NEWLINE. With no argu
ments, the comment mechanism is effectively disabled. With one argument, the left marker 
becomes the argument and the right marker becomes NEWLINE. With two arguments, both 
markers are affected. Comment markers may be up to five characters long. 

Return the value of the argument decremented by 1. 

Return code from the last call to syscmd. 

Exit immediately from m4. Argument 1, if given, is the exit code; the default is 0. 

Argument 1 will be pushed back at final EOF. For example, 'm4wrap("cleanup( )")'. 

With no arguments, tum on tracing for all macros (including built-ins). Otherwise, tum on 
tracing for named macros. 

Turn off trace globally and for any macros specified. Macros specifically traced by traceon 
can be untraced only by specific calls to traceoff. 

SEE ALSO 
m4-A Macro Processor, in Programming Utilities and Libraries 

290 Last change: 23 September 1987 Sun Release 4.0 



MACH( 1) USER COMMANDS MACH(l) 

NAME 
mach - display the processor type of the current host 

SYNOPSIS 
mach 

DESCRIPTION 
The mach command displays the processor-type of the current Sun host. 

SEE ALSO 
arch(l), machid(l) 

Sun Release 4.0 Last change: 9 September 1987 291 



MACHID( 1) USER COMMANDS MACHID(l) 

NAME 
machid, sun, iAPX286, m68k, pdpll, spare, u3b, u3b2, u3b5, u3bl5, vax, i386 - return a true exit status if 
the processor is of the indicated type 

SYNOPSIS 
sun 

iAPX286 

m68k 

pdpll 

spare 

u3b 

u3b2 

u3b5 

u3b15 

vax 

i386 

DESCRIPTION 
The following commands will return a true value (exit code of 0) if you are on a processor that the com
mand name indicates. 

sun 

iAPX286 

i386 

m68k 

pdpll 

spare 

u3b 

u3b2 

u3b5 

u3b15 

True if you are on a Sun system. 

True if you are on a computer using an iAPX286 processor. 

True if you are on a computer using an iAPX386 processor. 

True if you are on a computer, such as a Sun-2 or a Sun-3, using an M68000-family 
processor. 

True if you are on a PDP-11. 

True if you are on a computer, such as a Sun-4, using a SPARC-family processor. 

True if you are on a 3B20S computer. 

True if you are on a 3B2 computer. 

True if you are on a 3B5 computer. 

True if you are on a 3B 15 computer. 

vax True if you are on a VAX. 

The commands that do not apply will return a false (non-zero) value. These commands are often used 
within make( 1) makefiles and shell procedures to increase portability. 

SEE ALSO 
areh(l), maeh(l), make(l), sh(l), test(l V), true(l) 

292 Last change: 18 February 1988 Sun Release 4.0 



MAIL( 1) USER COMMANDS MAIL( 1) 

NAME 
mail, Mail - read or send mail messages 

SYNOPSIS 
Mail [ -deHinNUv ] [ -f [filename l+folder ] ] [ -T file ] [ -u user ] 

Mail [ -dFinUv] [ -h number] [ -r address] [ -s subject] recipient ... 

/usr/ucb/mail ... 

DESCRIPTION 
mail is a comfortable, flexible, interactive program for composing, sending and receiving electronic mes
sages. While reading messages, mail provides you with commands to browse, display, save, delete, and 
respond to messages. While sending mail, mail allows editing and reviewing of messages being com
posed, and the inclusion of text from files or other messages. 

Incoming mail is stored in the system mailbox for each user. This is a file named after the user in 
/var/spool/mail. mail normally looks in this file for incoming messages, but you can use the MAIL 
environment variable to have it look in a different file. When you read a message, it is marked to be moved 
to a secondary file for storage. This secondary file, called the mbox, is normally the file .mbox in your 
home directory. This file can also be changed by setting the MBOX environment variable. Messages 
remain in the mbox file until deliberately removed. 

OPTIONS 
If no recipient is specified, mail attempts to read messages from the system mailbox. 

-d Tum on debugging output. (Neither particularly interesting nor recommended.) 

-e 

-F 

-H 

-i 

-n 

-N 

-U 

-v 

-f [filename] 

-f [ +folder] 

-h number 

-r address 

-s subject 

-T file 

-u user 

Sun Release 4.0 

Test for presence of mail. If there is no mail, mail prints nothing and exits (with a suc
cessful return code). 

Record the message in a file named after the first recipient. Override the record variable, 
if set. 

Print header summary only. 

Ignore interrupts (as with the ignore variable). 

Do not initialize from the system default Mail.re file. 

Do not print initial header summary. 

Convert uucp style addresses to Internet standards. Overrides the conv environment vari
able. 

Pass the -v flag to sendmail(8). 

Read messages from filename instead of system mailbox. If no filename is specified, the 
mbox is used. 

Use the file folder in the folder directory (same as the folder command). The name of this 
directory is listed in the folder variable. 

The number of network "hops" made so far. This is provided for network software to 
avoid infinite delivery loops. 

Pass address to network delivery software. All tilde (-) commands are disabled. 

Set the Subject header field to subject. 

Print the contents of the article-id fields of all messages that were read or deleted on file 
(for the use of network news programs if available). 

Read user's system mailbox. This is only effective if user's system mailbox is not read 
protected. 

Last change: 4 February 1988 293 



MAIL( 1) USER COMMANDS MAIL( 1) 

USAGE 

294 

Refer to Mail and Messages: Beginner's Guide for tutorial information about mail. 

Starting Mail 
As it starts, mail reads commands from a system-wide file (/usr/lib/Mail.rc) to initialize certain variables, 
then it reads from from a private start-up file called the .mailrc file (it is normally the file .mailrc in your 
home directory, but can be changed by setting the MAILRC environment variable) for your personal com
mands and variable settings. Most mail commands are legal inside start-up files. The most common uses 
for this file are to set up initial display options and alias lists. The following commands are not legal in the 
start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply, Reply, replyall, replysender, 
shell, and visual. Any errors in the start-up file cause the remaining lines in that file to be ignored. 

You can use the mail command to send a message directly by including names of recipients as arguments 
on the command line. When no recipients appear on the mail command line, it enters command mode, 
from which you can read messages sent to you. If you list no recipients and have no messages, mail prints 
the message: 'No mail for username' and exits. 

When in command mode (while reading messages), you can send messages using the mail command. 

Sending Mail 
While you are composing a message to send, mail is in input mode. If no subject is specified as an argu
ment to the command a prompt for the subject is printed. After entering the subject line, mail enters input 
mode to accept the text of your message to send. 

As you type in the message, mail stores it in a temporary file. To review or modify the message, enter the 
appropriate tilde escapes, listed below, at the beginning of an input line. 

To indicate that the message is ready to send, type a dot (or EOF character, normally CTRL-D) on a line by 
itself. mail submits the message to sendmail(8) for routing to each recipient. 

Recipients can be local usernames, Internet addresses of the form: 

name@domain 

uucp( 1 C) addresses of the form: 

. . . [host!]host!username 

filenames for which you have write permission, or alias groups. If the name of the recipient begins with a 
pipe symbol (I), the remainder of the name is taken as a shell command to pipe the message through. This 
provides an automatic interface with any program that reads the standard input, such as lpr( 1) to record 
outgoing mail on paper. An alias group is the name of a list of recipients that is set by the alias command, 
taken from the host's /etc/aliases file, or taken from the Yellow Pages aliases domain. See aliases(5) for 
more information about mail addresses and aliases. 

Tilde Escapes 
The following tilde escape commands can be used when composing messages to send. Each must appear at 
the beginning of an input line. The escape character ( - ), can be changed by setting a new value for the 
escape variable. The escape character can be entered as text by typing it twice. 

-! [shell-command] 
Escape to the shell. If present, run shell-command. 

Simulate EOF (terminate message input). 

-: mail-command 
- mail-command 

- Perform the indicated mail command. Valid only when sending a message while reading mail. 

-? Print a summary of tilde escapes. 

-A Insert the autograph string Sign into the message. 

-a Insert the autograph string sign into the message. 

Last change: 4 February 1988 Sun Release 4.0 



MAIL( 1) USER COMMANDS MAIL(l) 

-bname ... 
Add the names to the blind carbon copy (Bee) list. This is like the carbon copy (Cc) list, except 
that the names in the Bee list are not shown in the header of the mail message. 

-c name ... 
Add the names to the carbon copy (Cc) list 

-d Read in the dead.letter file. The name of this file is listed in the variable DEAD. 

-e Invoke the editor to edit the message. The name of the editor is listed in the EDITOR variable. 
The default editor is ex(l). 

-f [message-list] 
Forward the listed messages, or the current message being read. Valid only when sending a mes
sage while reading mail; the messages are inserted without alteration (as opposed to the -m 
escape). 

-h Prompt for the message header lines: Subject, To, Cc, and Bee. If the header line contains text, 
you can edit the text by backspacing over it and retyping. 

-i variable 
Insert the value of the named variable into the message. 

-m [message-list] 
Insert text from the specified messages, or the current message, into the letter. Valid only when 
sending a message while reading mail; the text the message is shifted to the right, and the string 
contained in the indentprefix variable is inserted as the leftmost characters of each line. If 
indentprefix is not set, a TAB character is inserted into each line. 

-p Print the message being entered. 

-q Quit from input mode by simulating an interrupt. If the body of the message is not empty, the par-
tial message is saved in the dead.letter file. 

-r filename 
-<filename 
-<! shell-command 

Read in text from the specified file or the standard output of the specified shell-command. 

-s subject 
Set the subject line to subject. 

-tname ... 
Add each name to the list of recipients. 

-v Invoke a visual editor to edit the message. The name of the editor is listed in the VISUAL vari
able. The default visual editor is vi(l). 

-w filename 
Write the message text onto the given file, without the header. 

-x Exit as with -q but do not save the message in the dead.letter file. 

-I shell-command 
Pipe the body of the message through the given shell-command. If shell-command returns a suc
cessful exit status, the output of the command replaces the message. 

Reading Mail 

When you enter command mode in order to read your messages, mail displays a header summary of the 
first several messages, followed by a prompt for one of the commands listed below. The default prompt is 
the & (ampersand character). 

Sun Release 4.0 Last change: 4 February 1988 295 



MAIL( 1) USER COMMANDS MAIL(l) 

296 

Message are listed and referred to by number. There is, at any time, a current message, which is marked 
by a> in the header summary. For commands that take an optional list of messages, if you omit a message 
number as an argument, the command applies to the current message. 

A message-list is a list of message specifications, separated by SPACE characters, which may include: 

n 

$ 
+ 

* 
n-m 
user 
/string 
:c 

The current message. 
Message number n. 
The first undeleted message. 
The last message. 
The next undeleted message. 
The previous undeleted message. 
All messages. 
An inclusive range of message numbers. 
All messages from user. 
All messages with string in the subject line (case ignored). 
All messages of type c, where c is one of: 

d deleted messages 
n new messages 
o old messages 
r read messages 
u unread messages 

Note: the context of the command determines whether this type of message specification 
makes sense. 

Additional arguments are treated as strings whose usage depends on the command involved. Filenames, 
where expected, are expanded using the normal shell filename-substitution mechanism. 

Special characters, recognized by certain commands, are documented with those commands. 

Commands 
While in command mode, if you type in an empty command line (a RETURN or NEWLINE only), the print 
command is assumed. The following is a complete list of mail commands: 

! shell-command Escape to the shell. The name of the shell to use is listed in the SHELL variable. 

#arguments 

= 

? 

Null command. This may be used as if it were a comment in .mailrc files, but note 
that it must be separated from its arguments (commentary) by white space. 

Print the current message number. 

Print a summary of commands. 

alias [alias recipient ... ] 
group [alias recipient ... ] 

Declare an alias for the given list of recipients. The list will be substituted when the 
alias is used as a recipient while sending mail. When put in the .mailrc file, this 
command provides you with a record of the alias. With no arguments, the command 
displays the list of defined aliases. 

alternates name . . . Declare a list of alternate names for your login. When responding to a message, 
these names are removed from the list of recipients for the response. With no argu
ments, alternates prints the current list of alternate names. 

cd[ directory] 
chdir [directory] Change directory. If directory is not specified, $HOME is used. 

copy [message-list] [filename] 
Copy messages to the file without marking the messages as saved. Otherwise 
equivalent to the save command. 

Last change: 4 February 1988 Sun Release 4.0 



MAIL( 1) USER COMMANDS MAIL( 1) 

Copy [message-list] Save the specified messages in a file whose name is derived from the author of the 
message to be saved, without marking the messages as saved. Otherwise equivalent 
to the Save command. 

delete [message-list] Delete messages from the system mailbox. If the variable autoprint is set, print the 
message following the last message deleted. 

discard [header-field . .. ] 
ignore [header-field ... ] 

dp [message-list] 
dt [message-list] 

Suppress printing of the specified header fields when displaying messages on the 
screen, such as "Status" and "Received". The fields are included when the message 
is saved unless the variable alwaysignore is set. The Print and Type commands 
display all header fields, ignored or not. 

Delete the specified messages from the system mailbox, and print the message after 
the last one deleted. Equivalent to a delete command followed by a print command. 

echo [string ... ] Echo the given strings (like echo(l V)). 

edit [message-list] Edit the given messages. The messages are placed in a temporary file and the EDI
TOR variable is used to get the name of the editor. The default editor is ex(l). 

exit 
xit 

file ffilename] 
folder ffilename] 

folders 

followup [message] 

Exit from mail without changing the system mailbox. No messages are saved in the 
mbox (see also quit). 

Quit from the current mailbox file and read in the named mailbox file. Several spe
cial characters are recognized when used as file names: 

% Your system mailbox. 
% user The system mailbox for user. 
# The previous mail file. 
& Your mbox file (of messages previously read). 
+filename The named file in the folder directory (listed in the folder vari

able). 

With no arguments, file prints the name of the current mail file, and the number of 
messages and characters it contains. 

Print the name of each mail file in the/older directory (listed in the folder variable). 

Respond to a message, recording the response in a file, name of which is derived 
from the author of the message (overrides the record variable, if set). See also the 
Followup, Save, and Copy commands and the outfolder variable. 

Followup [message-list] 
Respond to the first message in the message list, sending the message to the author of 
each message in the list. The subject line is taken from the first message, and the 
response is recorded in a file, the name of which is derived from the author of the 
first message (overrides the record variable, if set). See also the followup, Save, and 
Copy commands and the outfolder variable. 

from [message-list] Print the header summary for the indicated messages or the current message. 

group alias name . . . Same as the alias command. 

headers [message] Print the page of headers that includes the message specified, or the current message. 
The screen variable sets the number of headers per page. See also the z command. 

help Print a summary of commands. 

Sun Release 4.0 Last change: 4 February 1988 297 



MAIL( 1) USER COMMANDS MAIL( 1) 

298 

bold [message-list] 
preserve [message-list] 

ifslrlt 
mail-command 

else 
mail-command 

Hold the specified messages in the system mailbox. 

endif Conditional execution, wheres will execute following mail-command up to an else 
or endif, if the program is in send mode, r executes the mail-command only in 
receive mode, and t executes the mail-command only if mail is being run from a ter
minal. Useful primarily in the .mailrc file. 

ignore [header-field ... ] 

inc 

Same as the discard command. 

Incorporate messages that arrive while you are reading the system mailbox. The 
new messages are added to the message list in the current mail session. This com
mand does not commit changes made during the session, and prior messages are not 
renumbered. 

list Prints all commands available. No explanation is given. 

load [message] filename 

mail recipient ... 

Load the specified message from the name file. filename should contain a single 
mail message including mail headers (as saved by the save command). 

Mail a message to the specified recipients. 

mbox [message-list] Arrange for the given messages to end up in the standard mbox file when mail ter
minates normally. See also the exit and quit commands. 

new [message-list] 
New [message-list] 
unread [message-list] 

Unread [message-list] 
Take a message list and mark each message as not having been read. 

next message Go to next message matching message. A message-list can be given instead of mes
sage, but only first valid message in the list is used. (This can be used, for instance, 
to jump to the next message from a specific user.) 

pipe [message-list] [shell-command] 
I [message-list] [shell-command] 

Pipe the message through shell-command. The message is treated marked as read 
(and normally saved to the mbox file when mail exits). If no arguments are given, 
the current message is piped through the command specified by the value of the cmd 
variable. If the page variable is set, a form feed character is inserted after each mes
sage. 

preserve [message-list] 
Same as the bold command. 

print [message-list] 
type [message-listfP] Print the specified messages. If the crt variable is set, messages longer than the 

number of lines it indicates paged through the command specified by the PAGER 
variable. The default paging command is more(l). 

Last change: 4 February 1988 Sun Release 4.0 



MAIL( 1) USER COMMANDS MAIL( 1) 

Print [message-list] 
Type [message-list] Print the specified messages on the screen, including all header fields. Overrides 

suppression of fields by the ignore and retain commands. 

quit Exit from mail storing messages that were read in the mbox file and unread messages 
in the system mailbox. Messages that have been explicitly saved in a file are deleted 
unless the variable keepsave is set. 

reply [message-list] 
respond [message-list] 
replysender [message-list] 

Reply [message] 
Respond [message] 
replyall [message] 

Send a response to the author of each message in the message-list. The subject line 
is taken from the first message. If record is set to a filename, a copy of the the reply 
is added to that file. If the replyall variable is set, the actions of Reply/Respond and 
reply/respond are reversed. The replysender command is not affected by the 
replyall variable, but sends each reply only to the sender of each message. 

Reply to the specified message, including all other recipients of that message. If the 
variable record is set to a filename, a copy of the reply added to that file. If the 
replyall variable is set, the actions of Reply/Respond and reply/respond are 
reversed. The replyall command is not affected by the replyall variable, but always 
sends the reply to all recipients of the message. 

retain Add the list of header fields named to the retained list. Only the header fields in the 
retain list are shown on your terminal when you print a message. All other header 
fields are suppressed. The set of retained fields specified by the retain command 
overrides any list of ignored fields specified by the ignore command. The Type and 
Print commands can be used to print a message in its entirety. If retain is executed 
with no arguments, it lists the current set of retained fields. 

save [message-list] [filename] 
Save the specified messages in the named file. The file is created if it does not exist. 
If no filename is specified, the file named in the MBOX variable is used, mbox in 
your home directory by default. Each saved message is deleted from the system 
mailbox when mail terminates unless the keepsave variable is set. See also the exit 
and quit commands. 

Save [message-list] Save the specified messages in a file whose name is derived from the author of the 
first message. The name of the file is taken from the author's name, with all network 
addressing stripped off. See also the Copy, followup, and Followup commands and 
the outfolder variables. 

set [variable [=value]] 
Define a variable. To assign a value to variable, separate the variable name from 
the value by an '=' (there must be no space before or after the '='). A variable may 
be given a null, string, or numeric value. To embed SPACE characters within a value 
enclose it in quotes. 

With no arguments, set displays all defined variables and any values they might 
have. See Variables for a description of all predefined mail variables. 

shell Invoke the interactive shell listed in the SHELL variable. 

size [message-list] 

source filename 

top [message-list] 

Sun Release 4.0 

Print the size in characters of the specified messages. 

Read commands from the given file and return to command mode. 

Print the top few lines of the specified messages. If the toplines variable is set, it is 
taken as the number of lines to print. The default number is 5. 

Last change: 4 February 1988 299 



MAIL( 1) USER COMMANDS MAIL( 1) 

300 

touch [message-list] Touch the specified messages. If any message in message-list is not specifically 
saved in a file, it will be placed in the mbox upon normal termination. See also the 
exit and quit commands. 

type [message-list] Same as the print command 

Type [message-list] Same as the Print command. 

undelete [message-list] 
Restore deleted messages. This command only restores messages deleted in the 
current mail session. If the autoprint variable is set, the last message restored is 
printed. 

unread [message-list] 
Unread [message-list] 

Same as the new command. 
unset variable . . . Erase the specified variables. If the variable was imported from the environment 

(that is, an environment variable or exported shell variable), it cannot be unset from 
within mail. 

version Print the current version and release date of the mail utility. 

visual [message-list] Edit the given messages with the screen editor listed in the VISUAL variable. The 
default screen editor is vi(l). Each message is placed in a temporary file for editing. 

write [message-list] [filename] 

xit 

z[ + 1-] 

Forwarding Messages 

Write the given messages onto the specified file, but without the header and trailing 
blank line. Otherwise, this is equivalent to the save command. 

Same as the exit command. 

Scroll the header display forward ( +) or backward (-) one screenfull. The number 
of headers displayed is set by the screen variable. 

To forward a specific message, include it in a message to the desired recipients with the -f or -m tilde 
escapes. To forward mail automatically, add a comma-separated list of addresses for additional recipients 
to the .forward file in your home directory. (This is different from the format of the alias command, 
which talces a space-separated list instead.) Note: forwarding addresses must be valid (as described in 
aliases(5)), or the messages will "bounce." You cannot, for instance, reroute your mail to a new host by 
forwarding it to your new address if it is not yet listed in the YP aliases domain. 

Variables 
The behavior of mail is governed by a set of predefined variables that are set and cleared using the set and 
unset commands. 

EnvironmenJ Variables 
Values for the following variables are read in automatically from the environment; they cannot be altered 
from within mail: 

HOME=directory 

MAIL=filename 

The user's home directory. 

The name of the initial mailbox file to read (in lieu of the standard system mailbox). The 
default is /var/spool/mail/username . 

MAILRC=filename 
The name of the personal start-up file. The default is $HOME/.mailrc. 

Last change: 4 February 1988 Sun Release 4.0 



MAIL( 1) USER COMMANDS MAIL( 1) 

Mail Variables 

The following variables can be initialized within the .mailrc file, or set and altered interactively using the 
set command. They can also be imported from the environment (in which case their values cannot be 
changed within mail). The unset command clears variables. The set command can also be used to clear a 
variable by prefixing the word no to the name of the variable to clear. 

Variables for which values are normally supplied are indicated with an equal-sign(=). The equal-sign is 
required by the set command, and there can be no spaces between the variable-name, equal-sign, and value, 
using set to assign a value. 

allnet All network names whose last component (login name) match are treated as identical. 
This causes the message list specifications to behave similarly. Default is noallnet. See 
also the alternates command and the metoo variable. 

alwaysignore Ignore header fields with ignore everywhere, not just during print or type. Affects the 
save, Save, copy, Copy, top, pipe, and write commands, and the -m and-f tilde escapes. 

append Upon termination, append messages to the end of the mbox file instead of prepending 
them. Default is noappend but append is set in the global start-up file (which can be 
suppressed with the -n command line option). 

askcc Prompt for the Cc list after message is entered. Default is noaskcc. 

asksub Prompt for subject if it is not specified on the command line with the -s option. Enabled 
by default. 

autoprint Enable automatic printing of messages after delete and undelete commands. Default is 
noautoprint. 

bang Enable the special-casing of exclamation points (!) in shell escape command lines as in 
vi(l). Default is nobang. 

cmd=shell-command 
Set the default command for the pipe command. No default value. 

conv=conversion 
Convert uucp addresses to the address style specified by conversion, which can be either: 

internet 
This requires a mail delivery program conforming to the RFC822 standard for 
electronic mail addressing. 

optimize 
Remove loops in uucp(lC) address paths (typically generated by the reply com
mand). No rerouting is performed; mail has no knowledge of UUCP routes or 
connections. 

Conversion is disabled by default. See also sendmail(8) and the -U command line option. 

crt=number 

DEAD=filename 

debug 

dot 

Sun Release 4.0 

Pipe messages having more than number lines through the command specified by the 
value of the PAGER variable (more by default). Disabled by default. 

The name of the file in which to save partial letters in case of untimely interrupt or 
delivery errors. Default is the file dead.letter in your home directory. 

Enable verbose diagnostics for debugging. Messages are not delivered. Default is node
bug. 

Take a period on a line by itself during input from a terminal as EOF. Default is nodot but 
dot is set in the global start-up file (which can be suppressed with the -n command line 
option). 

Last change: 4 February 1988 301 



MAIL( 1) USER COMMANDS MAIL( 1) 

302 

EDITOR=shell-command 
The command to run when the edit or -e command is used. Default is ex(l). 

escape=c Substitute c for the - escape character. 

f older=directory 

header 

hold 

ignore 

ignoreeof 

The directory for saving standard mail files. User specified file names beginning with a 
plus ( +) are expanded by preceding the filename with this directory name to obtain the 
real filename. If directory does not start with a slash (/), the value of HOME is prepended 
to it. There is no default for the folder variable. See also outfolder below. 

Enable printing of the header summary when entering mail. Enabled by default. 

Preserve all messages that are read in the system mailbox instead of putting them in the 
standard mbox save file. Default is nohold. 

Ignore interrupts while entering messages. Handy for noisy dial-up lines. Default is 
noignore. 

Ignore EOF during message input. Input must be terminated by a period('.') on a line by 
itself or by the'-'. command. Default is noignoreeof. See also dot above. 

ind en tprefix=string 

keep 

When indentprefix is set, string is used to mark indented lines from messages included 
with -m. The default is a TAB character. 

When the system mailbox is empty, truncate it to zero length instead of removing it. Dis
abled by default. 

keepsave Keep messages that have been saved in other files in the system mailbox instead of delet
ing them. Default is nokeepsave. 

LISTER=shell-command 

MBOX=filename 

metoo 

no 

onehop 

outfolder 

page 

The command (and options) to use when listing the files in the folder directory. The 
default is Is( 1 V). 

The name of the file to save messages which have been read. The xit command overrides 
this variable, as does saving the message explicitly to another file. Default is the file 
mbox in your home directory. 

If your login appears as a recipient, do not delete it from the list. Default is nometoo. 

When used as a prefix to a variable name, has the effect of unsetting the variable. 

When responding to a message that was originally sent to several recipients, the other 
recipient addresses are normally forced to be relative to the originating author's machine 
for the response. This flag disables alteration of the recipients' addresses, improving 
efficiency in a network where all machines can send directly to all other machines (that is, 
one "hop" away). 

Locate the files used to record outgoing messages in the directory specified by the folder 
variable unless the pathname is absolute. Default is nooutf older. See folder above and 
the Save, Copy, followup, and Followup commands. 

Used with the pipe command to insert a form feed after each message sent through the 
pipe. Default is nopage. 

PAGER=shell-command 
The command to use as a filter for paginating output, along with any options to be used. 
Default is more( 1 ). 

prompt=string Set the command mode prompt to string. Default is ' & '. 

Last change: 4 February 1988 Sun Release 4.0 



MAIL( 1) USER COMMANDS MAIL( 1) 

FILES 

quiet Refrain from printing the opening message and version when entering mail. Default is 
noquiet. 

record=filename 

replyall 

save 

Record all outgoing mail in filename. Disabled by default. See also the variable out
folder. 

Reverse the effect of the reply and Reply commands. 

Enable saving of messages in the dead.letter file on interrupt or delivery error. See DEAD 
for a description of this file. Enabled by default. 

screen=number Set the number of lines in a screen-full of headers for the headers command. 

sendmail=shell-comma.nd 

sendwait 

Alternate command for delivering messages. Note: in addition to the expected list of 
recipients, mail also passes the -i and -m, flags to the command. Since these flags are 
not appropriate to other commands, you may have to use a shell script that strips them 
from the arguments list before invoking the desired command. 

Wait for background mailer to finish before returning. Default is nosendwait. 

SHELL=shell-command 
The name of a preferred command interpreter. Typically inherited from the environment, 
the shell is normally the one you always use. Otherwise defaults to sh(l). 

showto When displaying the header summary and the message is from you, print the recipient's 
name instead of the author's name. 

sign=autograph The autograph text inserted into the message when the -a (autograph) command is given. 
No default (see also the -i tilde escape). 

Sign=autograph The autograph text inserted into the message when the -A command is given. No default 
(see also the -i tilde escape). 

toplines=number 
The number of lines of header to print with the top command Default is 5. 

verbose Invoke sendmail with the -v flag. 

VISVAL:shell-command 

The name of a preferred screen editor. Default is vi. 

$HOME/.mailrc 
$HOME/ forward 
$HOME/mbox 
$HOME! dead.letter 
/var/spool/mail 
/usr/lib/Mail.help• 
/usr /lib/Mail.re 
/tmp/R[emqsx]* 

personal start-up file 
list of recipients for automatic forwarding of messages 
secondary storage file 
undeliverable messages file 
directory for system mailboxes 
help message files 
global start-up file 
temporary files 

SEE ALSO 
bitT(l), binmail(l), echo(lV), ex(l), fmt(l), ls(lV), mailtool(l), more(l), sh(l), uucp(lC), vacation(l), 
vi(l), aliases(5), newaliases(8), sendmail(8) 

Mail and Messages: Beginner's Guide 

mail is found in /usr/ucb/Mail, as a link to /usr/ucb/mail. If you wish to use the original (version 6) UNIX 
mail program, you can find it in /usr/bin/mail. Its man page is named binmail(l). 

Sun Release 4.0 Last change: 4 February 1988 303 



MAIL(l) USER COMMANDS MAIL(l) 

BUGS 

304 

Where shell-command is shown as valid, arguments are not always allowed. Experimentation is recom
mended. 

Internal variables imported from the execution environment cannot be unset. 

Replies do not always generate correct return addresses. Try resending the errant reply with onehop set. 

mail does not lock your record file. So, if you use a record file and send two or more messages simultane
ously, lines from the messages may be interleaved in the record file. 

The format for the alias command is a space-separated list of recipients, while the format for an alias in 
either the .forward or /etdaliases is a comma-separated list. 

Last change: 4 February 1988 Sun Release 4.0 



MAIL TOOL ( 1 ) USER COMMANDS MAIL TOOL ( 1 ) 

NAME 
mailtool - Sun View interface for the mail program 

SYNOPSIS 
mailtool [ -Mx ] [ -Mi interval ] [ generic-tool-arguments ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
mailtool is the standard SunView interface to mail(l). It provides a window and mouse-based interface 
for reading, storing, composing, and sending mail messages. Scrollable windows allow easy access to your 
mailbox and mail folders. Software "panel buttons" make frequently-used commands readily available. 
Less-used commands are accessible from menus, and keyboard accelerators are provided for the more 
experienced user. 

The full editing capabilities of textedit(l) and the SunView selection service are available for modifying 
and composing mail. In addition, you can customize mailtool by setting various parameters with 
defaultsedit( 1 ). 

OPTIONS 

USAGE 

-Mx 

-Mi interval 

Expert mode. Do not ask for confirmation after potentially damaging mail commands. This 
has the same effect as setting the expert variable. 

Check for new mail every interval seconds. This has the same effect as specifying a value 
for the interval variable. 

generic-tool-arguments 
mailtool accepts the generic tool arguments described in sunview(l). 

Users who are not familiar with the mail command should read Mail and Messages: Beginner's Guide. 
For more information on text editing and the selection service, see the Sun View 1 Beginner's Guide. 

mailtool comes up closed. You can open the tool by clicking on the icon with the LEFf mouse button. 
mailtool starts reading your system mailbox as it opens. Alternatively, the frame menu on the icon con
tains the Open pull-right item, which allows you to open mailtool to a selected folder, or open and Com
pose, or just open without performing any other operation. 

Subwindows 

mailtool is composed of six parts. From top to bottom, they are: 

frame header 
This is the broad stripe at the top of the tool, and it displays status information. The right 
side displays information about the most-recently executed command. The left side displays 
other information such as the name of the current folder. When involved in a lengthy opera
tion, mailtool displays a message to that effect on the left side. While an operation is pend
ing, the cursor takes on the shape of an hourglass; you must wait until it finishes. 

header-list window 

control panel 

Sun Release 4.0 

This read-only text window contains a list of message headers from the current folder or 
mailbox. Initially, it shows the contents of your system mailbox (by default). Each header 
typically contains fields indicating who the message is from, its subject, and so forth. There 
is a scrollbar to the left that you can use to scroll through the headers. 

This panel contains a collection of software buttons corresponding to the most frequently 
used mail(l) commands. Clicking on one of these buttons starts the indicated operation for 
either the selected or the current message. Commands that require the name of a folder, 
such as Save, use the contents of the 'File:' text item. You must enter the name of a file or 

Last change: 7 January 1988 305 



MAILTOOL( 1) USER COMMANDS MAIL TOOL ( 1 ) 

306 

folder in this space before clicking on the button. 

In addition to the panel buttons, other commands and variations are accessible through 
menus "behind" each panel button. To display a button menu, hold down the RIGHT mouse 
button over the panel button. See Command Menus, below, for details. 

The message window. 
This text window displays the current message (marked with '>' in the header window). 
You can edit this message, in which case the result replaces the original message in the 
mailbox or folder. 

composition panel 
This panel contains software buttons for composing or replying to messages, and is visible 
only when you are composing a message or reply. 

composition window 
This text window, in which you compose messages to send, appears in conjunction with the 
composition panel. It is normally displayed only when composing a message or reply. It is 
initially loaded with mail header lines such as 'To:' and 'Subject:', and perhaps, 'Cc:'. 
After these labels come various text fields, such as l>recipients<I. You can move from field 
to field using META-TAB. This advances to the next text field. If you supply input to the 
field, your input replaces its contents. Empty fields are deleted when the message is sent. 
You can continue to edit the message as you see fit until you click on Deliver, at which 
point the message is sent as is. (You normally cannot retrieve a message once it has been 
sent). 

pop-up composition window 
While composing a message or reply, clicking again on Compose or Reply, opens another 
frame that contains a composition panel and window. The only limit on the number of such 
pop-up composition frames is the number of windows that a tool can support. These addi
tional frames operate independently. 

Basic Mailtool Concepts 
Choosing a message 

To choose a message, place the cursor anywhere in its header in the header window and 
click the LEFf mouse button. If there is no message chosen, mailtool applies operations to 
the current message. 

Current message 

Confirmation 

Folders 

The message that is displayed in the message window, and flagged with a '>' in the header 
window. 

Some operations require confirmation, in which case an alert is displayed. You can then 
confirm or cancel the operation. 

When mailtool starts up, it normally reads your system mailbox. However, you can select 
another "folder" (file containing mail messages) from which to read. 

Committing Changes 
Some operations change the state of your system mailbox or the current folder. These 
changes are not finalized until you commit them. For instance, you can "undelete" mes
sages that were deleted, provided that you have not yet done an operation that commits your 
changes. If the mailtool session is interrupted, pending changes to the mailbox or folder do 
not take effect. The Done button commits changes, as does the Quit button, which also 
exits from mailtool. To deliberately exit without committing, use the pop-up menu behind 
the Quit button. 

Last change: 7 January 1988 Sun Release 4.0 



MAIL TOOL ( 1 ) USER COMMANDS MAILTOOL ( 1 ) 

Control Panel 
Except for the Next and Undelete buttons, mailtool commands operate on the selected message or the 
current message only. You cannot specify a list or range of messages as with mail(l). The control panel 
buttons and items are (in alphabetical order): 

Compose 

Delete 

Done 

'File:' 

Folder 

Misc 

New Mail 

Next 

Print 

Reply 

Save 

Show 

Open a composition panel and window to compose a message. 

Delete the selected or current message. 

Commit changes, close mailtool, and read new mail on next Open. 

This is a text item in which to enter the name of a folder for the Save, Copy, and Folder 
commands. This name can be a full pathname, a pathname relative to the current directory 
( the directory mailtool was started from), or a filename prefixed with a '+' to refer to a file 
in the "folder" directory. 

Commit changes and switch to the file or folder specified in the 'File:' text item. 

Display a pop-up panel to change the current directory of mailtool. Other miscellaneous 
operations are available on the menu behind this button. 

If you are examining your system mailbox, retrieve new mail without committing changes. 
If your are examining a folder, commit any changes to the folder, switch back to system 
mailbox, and retrieve any new mail in the process. 

Display the message following the current message in the message window. 

Print the corresponding message on a hardcopy printer. 

Open a composition window to reply to the selected or current message. 

Save the current or selected message in the folder specified in the 'File:' text field, and 
delete it from your system mailbox or current folder. 

Display the chosen or current message in the message window. 

The Composition Panel 
This panel contains four buttons and a cycle-item. The cycle-item controls the behavior of the composition 
window when it becomes inactive - when the user delivers or cancels a message. Items in the cycle are: 

Disappear Remove the composition window and panel from display. This is the default. 

Stay Up Clear the window, but leave it displayed. 

Close Close a pop-up composition frame. 

The panel buttons are: 

Cancel Abort the message being composed. 

Deliver Send the message being composed to the indicated recipients. 

Include Insert the corresponding message into the composition window at the caret. This operation 
can be performed repeatedly, to include various messages. 

Re-address Insert the appropriate 'To:', 'Subject:' and 'Cc:' fields at the top of the composition win
dow. 

Command Menus 

All panel buttons have menus behind them. The first item on the menu is the default command; choosing 
this item is the same as clicking on the panel button. 

Some menu items are pull-right to menus of related commands. You can browse the button menus to dis
cover what additional commands are available, and what their accelerators are, if any. The following com
mands are particular! y useful. 

Change Directory 
Display a pop-up panel to change the current directory. 

Sun Release 4.0 Last change: 7 January 1988 307 



MAIL TOOL ( 1 ) USER COMMANDS MAILTOOL ( 1 ) 

308 

Commit Changes 
Commit changes. This item is behind the New Mail button when viewing a folder. 

Commit Changes and Quit 
Behind the Done button. Commit changes and exit mailtool(l). This is the same as choos
ing Quit from the frame menu. 

Commit Changes and Retrieve New Mail 
Behind the New Mail button. Commit changes and retrieve new mail, switching to the sys
tem mail box if in a folder. This is the default when viewing a folder. 

Copy Behind the Save button. Copy the selected message to the file or folder specified in the 
'File:' text item, without deleting it from the mailbox or folder. 

Deliver, Leave Window Intact 
Behind the Deliver button. Deliver the message, but do not undisplay, close, or clear the 
message composition window. 

Include, Indented 
Behind the Include button. Include the indicated message, setting it off by indention rather 
than bracketing it with '-·· Begin Included Message -··' and '··· End Included Message 
---' lines. 

Previous Behind the Next button. Display the previous message in the message window. 

Quit without Committing Changes 
Behind the Done button. Exit mailtool without committing changes. 

Show Full Header 
Behind the Show button. Display the complete message in the message window, including 
header lines that are normally ignored. 

Source .mailrc 

Undelete 

Behind the Misc button. Read in your .mailrc file to acquire new variables and settings. 
Note: this operation does not "forget" the previous option settings; only changes to boolean 
variables take effect. 

Behind the Delete button. Undelete the most recently deleted message(s) - this may be 
used repeatedly. It is inactive when there are no deleted messages. 

There are two special menus for use with the 'File:' text item. Choosing a name from either of these 
menus replaces the contents of this item. The menu behind the 'File:' item holds the most recently used 
folder names of the current session. It is be initialized by the filemenu variable. The menu behind the 
Folder button displays all folders in the "folder" directory, which is specified by the folder variable 
(described in mail(l)). Folders can be organized into subdirectories within the folder directory. Files in 
these subdirectories appear in a hierarchy of pull-right menus. 

To switch to a folder, choose it from one of the file menus, or type it in directly, and click on the Folder 
button. To return to your system mailbox, use the New Mail button. 

Mailtool Variables 
In addition to the variables recognized by mail(l), mailtool recognizes those listed below. They can be set 
by using defaultsedit(l), or by editing your .mailrc file directly. Unless otherwise noted, the default for 
the following variables is off. 

allowreversescan 
When set, allows you to step through messages in latest-first oldest-first order if you choose. 
The next message depends on the order of travel. 

alwaysusepopup 
Never split the message window to compose or reply; always use pop-up composition win
dows. 

Last change: 7 January 1988 Sun Release 4.0 



MAILTOOL ( 1) USER COMMANDS MAILTOOL ( 1) 

askbee 

autoprint 

bell 

Prompt for the 'Bee:' field when composing or replying. 

Display the next message when the current message is deleted or saved. 

The number of times to ring the bell when new mail arrives. The default is 0. 

disablefields Do not use text fields in the composition window. The default is to use text fields. 

editmessagewindow 

expert 

filemenu 

Request confirmation before the first editing operation to a mesage in the message window 
(as opposed to composing a reply). The default is not to request confirmation of the first 
edit. 

Set expert mode in which no confirmations are requested 

A list of files from which to initialize the 'File:' menu. These can be absolute pathnames, 
pathnames relative to the working directory for mailtool (typically your home directory), or 
filenames prefixed with a '+ ', which are taken as relative to the directory specified in the 
folder variable (see mail(l)). 

filemenusize Specifies the maximum size of the 'File:' menu. The default is 10. 

flash The number of times to flash the window or icon when new mail arrives. The default is 0. 

headerlines The number of lines in header window. The default is 10. 

interval 

maillines 

The interval in seconds to check for new mail. The default is 300. 

The number of lines in mail message window. The default is 30. 

moveinputfocus 
Move the input focus into the composition window for Compose and Reply. This only 
works for click-to-type. 

pop-uplines The number of lines in pop-up message composition window. The default is 30. 

msgpereent The percent of the message window to remain visible during Compose or Reply. The 
default is 50. 

printmail 

trash 

The command to use to print a message. The default is 'Ipr -p'. 

The name of trash bin, which may be accessed just like any other folder. If set, all deleted 
messages are moved to the trash bin. The trash bin is emptied when you commit changes. 

Conditional Settings 

FILES 

You can make your .mailre set variables conditionally, depending on whether it is running in the tty 
environment or the window environment. See Mail and Messages: Beginner's Guide for details. 

/var/spool/mail/• 
/.mailre 

system mailboxes 
startup file for mail and mailtool 

SEE ALSO 

BUGS 

binmail(l), defaultsedit(l), mail(l), sunview(l), textedit(l) aliases(5), newaliases(8), sendmail(8) 

Mail and Messages: Beginner's Guide 
Sun View 1 Beginner's Guide 

If mail(l) receives an error, then mailtool may hang, in which case you must kill it. 

New mail status is only approximate, therefore the presence of new mail is not always accurately reflected 
in the icon image or tool frame header. 

Mouse input may be lost while mailtool switches to iconic state. 

Sun Release 4.0 Last change: 7 January 1988 309 



MAIL TOOL ( 1 ) USER COMMANDS MAILTOOL( 1) 

310 

When notifying you of new mail, mailtool will not flash the window or icon without beeping (ringing the 
audible bell). Thus, the number of flashes is limited by the number of beeps you set. 

Last change: 7 January 1988 Sun Release 4.0 



MAKE( 1) USER COMMANDS MAKE(l) 

NAME 
make - maintain, update, and regenerate related programs and files 

SYNOPSIS 
make [ -f makefile ] . . . [ -d ] [ -dd ] [ -D ] [ -DD ] [ -e ] [ -i] [ -k ] [ -n ] [ -p ] [ -P] 

[ -q ] [ -r ] [ -p ] [ -s ] [ -S ] [ -t ] [ target . . . ] [ macro =value . . . ] 

DESCRIPTION 
make executes a list of shell commands associated with each target, typically to create or update a file of 
the same name. makefile contains entries that describe how to bring a target up to date with respect to oth
ers on which it depends. These prerequisite targets are called dependencies. Since each dependency is a 
target, it may have dependencies of its own. 

Targets, dependencies, and sub-dependencies comprise a tree structure that make traces when deciding 
whether or not to rebuild a target. make recursively checks each target against its dependencies, begin
ning with the first target entry in makefile if none is supplied on the command line. If, after processing its 
all of its dependencies, a target file is found either to be missing, or to be older than any of its dependency 
files, make rebuilds it. Optionally with this version of make, a target can be treated as out-of-date when 
the commands used to generate it have changed. 

To build a given target, make executes the list of commands, called a rule. This rule may be listed expli
citly in the target's makefile entry, or it may be supplied implicitly by make. 

If no makefile is specified with a -f option: 

• If there is an secs history file for makefile, make will attempt to extract and read the most 
recent version of that file. 

• If there is a file named makefile in the current directory, make will attempt to read that file. 

• If there is an secs history file for Makefile, make will attempt to extract and read the most 
recent version of that file. 

• If there is a file named Makefile in the current directory, make will attempt to read that file. 

If no target is specified on the command line, make uses the first target defined in makefile. 

If a target has no makefile entry, or if its entry has no rule, make attempts to derive a rule by each of the 
following methods, in tum, until a suitable rule is found. (Each method is described under USAGE below.) 

• Pattern matching rules. 

• Implicit rules, read in from a user-supplied makefile. 

• Standard implicit rules (also known as suffix rules), typically read in from the file 
/usr/include/make/default.mk. 

• SCCS extraction. make extracts the most recent version from the SCCS history file (if any). 
See the description of the '.secs_ GET:' special-function target for details. 

• The rule from the '.DEFAULT:' target entry, if there is such an entry in the makefile. 

If there is no makefile entry for a target, if no rule can be derived for building it, and if no file by that name 
is present, make issues an error message and stops. 

OPTIONS 
-f makefile 

Sun Release 4.0 

Use the description file makefile. A'-' as the makefile argument denotes the standard input. The 
contents of makefile, when present, override the standard set of implicit rules and predefined mac
ros. When more than one '-f makefile' argument pair appears, make uses the concatenation of 
those files, in order of appearance. 

Last change: 4 February 1988 311 



MAKE( 1) USER COMMANDS MAKE(l) 

USAGE 

-d Display the reasons why make chooses to rebuild a target; make displays any and all dependen
cies that are newer. In addition, make displays options read in from the MAKEFLAGS environ
ment variable. 

-dd Display the dependency check and processing in vast detail. 

-D Display the text of the makefiles read in. 

-DD Display the text of the makefiles, default.mk file, the state file, and all hidden-dependency reports. 

-e Environment variables override assignments within makefiles. 

-i Ignore error codes returned by commands. Equivalent to the special-function target '.IGNORE:'. 

-k When a nonzero error status is returned by a command, abandon work on the current target, but 
continue with other branches that do not depend on that target. 

-n No execution mode. Print commands, but do not execute them. Even lines beginning with an@ 
are printed. However, if a command line contains a reference to the $(MAKE) macro, that line is 
always executed (see the discussion of MAKEFLAGS in Reading Makefiles and the Environ
ment). 

-p Print out the complete set of macro definitions and target descriptions. 

-P Report dependencies recursively to show the entire dependency hierarchy, without rebuilding any 
targets. 

-q Question mode. make returns a zero or nonzero status code depending on whether or not the tar
get file is up to date. 

-r Do not read in the default file. 

-s Silent mode. Do not print command lines before executing them. Equivalent to the special-
function target '.SILENT:'. 

-S Undo the effect of the -k option. Stop processing when a non-zero exit status is returned by a 
command. 

-t Touch the target files (bringing them up to date) rather than performing their rules. This can be 
dangerous when files are maintained by more than one person. When the .KEEP_ ST ATE: target 
appears in the makefile, this option updates the state file just as if the rules had been performed. 

macro =value 
Macro definition. This definition remains fixed for the make invocation. It overrides any regular 
definition for the specified macro within the makefile itself, or in the environment. However, this 
definition can still be overridden by conditional macro assignments and delayed macro assign
ments in target entries. 

Refer to Doing More with SunOS: Beginner's Guide and make in Programming Utilities and Libraries for 
tutorial information about make. 

Reading Makefiles and the Environment 

312 

When make first starts, it reads the MAKEFLAGS environment variable to obtain a list of flag (single
character) options. Then it reads the command line for additional options that also take effect. 

Next, make reads in a default makefile that typically contains predefined macro definitions, target entries 
for implicit rules, and additional rules, such as the rule for extracting SCCS files. If present, make uses the 
file default.mk in the current directory; otherwise it reads the file /usr/include/make/default.mk, which 
contains the standard definitions and rules. Use the directive 'include /usr/include/make/default.mk'. in 
your local default.mk file to include them. 

Next, make imports variables from the environment (unless the -e option is in effect), treating them as 
defined macros. Because make uses the most recent definition it encounters, a macro definition in the 
makefile normally overrides an environment variable of the same name. When -e is in effect, however, 

Last change: 4 February 1988 Sun Release 4.0 



MAKE(l) USER COMMANDS MAKE(l) 

environment variables are read in after all makefiles have been read. In that case, the environment variable 
takes precedence over any makefile definition. 

Next, make reads the state file, .make.state in the local directory if it exists, and then any makefiles you 
specify with -f, or one of makefile or Makefile as described above. 

Finally, (after reading the environment if -e is in effect), make reads in any macro definitions from the 
command line. These override macro definitions in the makefile and the environment both. But, if there is 
a definition for the macro in a makefile used by a nested make command, that definition takes effect for the 
nested make, unless you use the -e option. With -e, the nested make also uses the value set on the com
mand line. 

make exports its environment variables to each command or shell that it invokes. It does not export mac
ros defined in the makefile. If an environment variable is set, and a macro with the same name is defined 
on the command line, make exports its value as defined on the command line. Unless -e is in effect, macro 
definitions within the makefile take precedence over those imported from the environment. 

The macros MAKEFLAGS, MAKE and SHELL are special cases. See Special-Purpose Macros below, for 
details. 

Makefile Target Entries 
A target entry has the following format: 

target ... [:I::] [dependency] ... [;command] ... 
[command] 

The first line contains the name of a target (or a space-separated list of target names), terminated with a 
colon or double colon. This may be followed by a dependency, or a dependency list that make checks in 
order. The dependency list may be terminated with a semicolon (;), which in tum can be followed by a 
Bourne shell command. Subsequent lines in the target entry begin with a TAB, and contain Bourne shell 
commands. These commands comprise a rule for building the target. 

Shell commands may be continued across input lines by escaping the NEWLINE with a backslash (\). The 
continuing line must also start with a TAB. 

To rebuild a target, make expands macros, strips off initial TAB characters and either executes the com
mand directly (if it contains no shell metacharacters), or passes each command line to a Bourne shell for 
execution. 

The first line that does not begin with a TAB or# begins another target or macro definition. 

Makefile Special Characters 
Global 

# Start a comment. The comment ends at the next NEWLINE. If the # follows the TAB in a com
mand line, that line is passed to the shell (which also treats# as the start of a comment). 

include filename 
If the word include appears as the first seven letters of a line and is followed by a SPACE or TAB, 
the string that follows is taken as a filename to interpolate at that line. include files can be nested 
to a depth of no more than about 16. 

Targets and Dependencies 

Sun Release 4.0 

Target list terminator. Words following the colon are added to the dependency list for the target 
or targets. If a target is named in more than one colon-terminated target entry, the dependencies 
for all its entries are added to form that target's complete dependency list. 

Last change: 4 February 1988 313 



MAKE( 1) USER COMMANDS MAKE(l) 

314 

Target terminator for alternate dependencies. When used in place of a ':' the double-colon allows 
a target to be checked and updated with respect to alternate dependency lists. When the target is 
out-of-date with respect to dependencies listed in one entry, it is built according to the rule for that 
entry. When out-of-date with respect to dependencies in an alternate entry, it is built according the 
rule in that alternate entry. Implicit rules do not apply to double-colon targets; you must supply a 
rule for each entry. If no dependencies are specified, the rule is always performed. 

target [ + target . .. ] : 
Target group. The rule in the target entry builds all the indicated targets as a group. It is normally 
performed only once per make run, but is checked for command dependencies every time a target 
in the group is encountered in the dependency scan. 

% Pattern matching rule wild card character. Like the * shell wild card, % matches any string of 
zero or more characters occurring in both a target and the name of a dependency file. See Pattern 
Matching Rules, below for details. 

Macros 

= 

$ 

() 
{} 

$$ 

+= 

Rules 

Macro definition. The word to the left of this character is the macro name; words to the right 
comprise its value. Leading white space between the = and the first word of the value is ignored. 
A word break following the = is implied. Trailing white space is included in the value. 

Macro reference. The following character, or the parenthesized or bracketed string, is interpreted 
as a macro reference: make expands the reference (including the $) by replacing it with the 
macro's value. 

Macro-reference name delimiters. A parenthesized or bracketed word appended to a$ is taken as 
the name of the macro being referred to. Without the delimiters, make recognizes only the first 
character as the macro name. 

A reference to the dollar-sign macro, the value of which is the character '$'. Used to pass variable 
expressions beginning with $ to the shell, to refer to environment variables which are expanded by 
the shell, or to delay processing of dynamic macros within the dependency list of a target, until 
that target is actually processed. 

When used in place of'=', appends a string to a macro definition (must be surrounded by white 
space, unlike'='). 

Conditional macro assignment. When preceded by a list of targets with explicit target entries, the 
macro definition that follows takes effect when processing only those targets, and their dependen
cies. 

make ignores any nonzero error code returned by a command line for which the first non-TAB 
character is a '-'. This character is not passed to the shell as part of the command line. make 
normally terminates when a command returns nonzero status, unless the -i or -k options, or the 
.IGNORE: special-function target is in effect. 

@ If the first non-TAB character is a@, make does not print the command line before executing it. 
This character is not passed to the shell. 

? Escape command-dependency checking. Command lines starting with this character are not sub
ject to command dependency checking. 

Force command-dependency checking. Command-dependency checking is applied to command 
lines for which it would otherwise be suppressed. This checking is normally suppressed for lines 
that contain references to the'?' dynamic macro (for example, '$?'). 

When any combination of'-','@','?', or'!' appear as the first characters after the TAB, all apply. None 
are passed to the shell. 

Last change: 4 February 1988 Sun Release 4.0 



MAKE( 1) USER COMMANDS MAKE(l) 

Special-Function Targets 
When incorporated in a makefile, the following target names perform special-functions: 

.DEFAULT: 
If it has an entry in the makefile, the rule for this target is used to process a target when there is no 
other entry for it, no rule for building it, and no SCCS history file from which to extract a current 
version. make ignores any dependencies for this target. 

.DONE: If defined in the makefile, make processes this target and its dependencies after all other targets 
are built. 

.IGNORE: 
Ignore errors. When this target appears in the makefile, make ignores non-zero error codes 
returned from commands . 

. INIT: If defined in the makefile, this target and its dependencies are built before any other targets are 
processed . 

. KEEP ST ATE: 
If this target appears in the makefile, make updates the state file, .make.state, in the current direc
tory. This target also activates command dependencies, and hidden dependency checks . 

. MAKE VERSION: 
A target-entry of the form: 

.MAKE VERSION: VERSION-number 

enables version checking. If the version of make differs from the version indicated, make issues 
a warning message . 

. PRECIOUS: 
List of files not to delete. make does not remove any of the files listed as dependencies for this 
target when interrupted. make normally removes the current target when it receives an interrupt. 

.SCCS GET: 
This target contains the rule for extracting the current version of an SCCS file from its history file. 
To suppress automatic extraction, add an entry for this target, with an empty rule to your makefile . 

. SILENT: 
Run silently. When this target appears in the makefile, make does not echo commands before exe
cuting them . 

. SUFFIXES: 
The suffixes list for selecting implicit rules (see The Suffixes List). 

In this version of make, you can clear the definition of any special target, or any target starting with '.', by 
supplying a target entry for it with an empty rule and empty dependency list; the entry: 

.special: 

removes the definition of target named .special. 

Command Dependencies 
When the '.KEEP_ ST ATE:' target appears in the makefile, make checks the command for building a target 
against the state file, .make.state. If the command has changed since the last make run, make rebuilds the 
target. 

Hidden Dependencies 

When the '.KEEP _STATE:' target appears in the makefile, make reads reports from cpp(l) and other com
pilation processors for any "hidden" files, such as #include files. If the target is out of date with respect to 
any of these files, make rebuilds it. 

Sun Release 4.0 Last change: 4 February 1988 315 



MAKE( 1) USER COMMANDS MAKE(l) 

316 

Macros 
Entries of the form 

macro =value 

define macros. macro is the name of the macro, and value, which consists of all characters up to a com
ment character or unescaped NEWLINE, is the value. 

Subsequent references to the macro, of the forms: $(name) or ${name} are replaced by value. The 
parentheses or brackets can be omitted in a reference to a macro with a single-character name. 

Macro definitions can contain references to other macros, in which case nested references are expanded 
first. 

Suffix Replacement Macro References 

Substitutions within macros can be made as follows: 

$(name:stringl =string2) 

where string] is either a suffix, or a word to be replaced in the macro definition, and string2 is the replace
ment suffix or word. Words in a macro value are separated by SPACE, TAB, and escaped NEWLINE char
acters. 

Pattern Replacement Macro References 

Pattern matching replacements can also be applied to macros, with a reference of the form: 

$(name: op%os= np%ns) 

where op is the existing (old) prefix and os is the existing (old) suffix, np and ns are the new prefix and new 
suffix, respectively, and the pattern matched by % (a string of zero or more characters), is carried forward 
from the value being replaced. For example: 

PROGRAM=fabricate 
DEBUG= $(PROGRAM:%=tmp/%-g) 

sets the value of DEBUG to tmp/fabricate-g. 

Note: pattern replacement macro references cannot be used in the dependency line of a pattern matching 
rule; the % characters are not evaluated independently. 

Appending to a Macro 
Words can be appended to macro values as follows: 

macro += word ... 

The space preceding the + is required. make inserts a leading space between the previous value and the 
first appended word. 

Special-Purpose Macros 
When the MAKEFLAGS variable is present in the environment, make takes flag (single-character) options 
from it, in combination with options entered on the command line. make retains this combined value as 
the MAKEFLAGS macro, and exports it automatically to each command or shell it invokes. 

Note: flags passed with MAKEFLAGS are only displayed when the -d, or -dd options are in effect. 

The MAKE macro is another special case. It has the value make by default, and temporarily overrides the 
-n option for any line in which it is referred to. This allows nested invocations of make written as: 

$(MAKE) ... 

to run recursively, with the -n flag in effect for all commands but make. This lets you use 'make -n' to 
test an entire hierarchy of makefiles. 

For compatibility with the 4.2 BSD make, the MFLAGS macro is set from the MAKEFLAGS variable by 
prepending a'-'. MFLAGS is not exported automatically. 

Last change: 4 February 1988 Sun Release 4.0 



MAKE( 1) USER COMMANDS MAKE(l) 

The SHELL macro, when set to a single-word value such as /usr/bin/csh, indicates the name of an alternate 
shell to use. Note: make executes commands containing no shell metacharacters directly. Builtin com
mands, such as dirs in the C shell, are not recognized unless the command line includes a metacharacter 
(for instance, a semicolon). This macro is neither imported from, nor exported to the environment, regard
less of -e. To be sure it is set properly, you must define this macro within every makefile that requires it. 

The KEEP_STATE environment variable, has the same effect as the '.KEEP_STATE:' special-function tar
get, enabling command dependencies, hidden dependencies and writing of the state file. 

Predefined Macros 
make supplies the macros shown in the table that follows for compilers and their options, host architec
tures, and other commands. Unless these macros are read in as environment variables, their values are not 
exported by make. If you run make with variables by these names in the environment, it is a good idea to 
add commentary to the makefile to indicate what value each macro is expected to inherit from the 
corresponding environment variable. 

If -r is in effect, make does not supply these macro definitions. 

Dynamic Macros 
There are several dynamically maintained macros that are useful as abbreviations within rules. They are 
shown here as references; it is best not to define them explicitly. 

$* The basename of the current target, derived as if selected for use with an implicit rule. In the case 
of pattern matching rules, the value is the string matched by the '% '. 

$< The name of a dependency file, derived as if selected for use with an implicit rule. 

$@ The name of the current target. 

$? The list of dependencies that are newer than the target, derived as if selected for use with an impli
cit rule. Command-dependency checking is automatically suppressed for lines that contain this 
macro, just as if the command had been prefixed with a '?'. See the description of '?', under 
Makefile Special Tokens, above. You can force this check with the ! command-line prefix. 

$ % The name of the library member being processed. See Library Maintenance for more informa-
tion. 

To refer to a dynamic macro within a dependency list, precede the reference with an additional'$' charac
ter (for example, '$$<'). Because make assigns$< and$* as it would for implicit rules (according to the 
suffixes list and the directory contents), they may be unreliable when used within explicit target entries. 

All of these macros but $? can be modified to apply either to the filename part, or the directory part of the 
strings they stand for, by adding an upper case For D, respectively (and enclosing the resulting name in 
parentheses or braces). Thus, '$(@0)' refers to the directory part of the string '$@'; if there is no direc
tory part, '.' is assigned. $(@F) refers to the filename part. 

Sun Release 4.0 Last change: 4 February 1988 317 



MAKE( 1) USER COMMANDS MAKE( 1) 

Table of Predefined Macros 

Use Macro Def a ult Value 

Library AR ar 
Archives ARFLAGS rv 

Assembler AS as 
Commands ASFLAGS 

COMPILE.s $(AS) $(ASFLAGS) $(TARGET_ MACH) 
COMPILE.S $(CC) $(ASFLAGS) $(CPPFLAGS) $(TARGET_MACH)-c 

C Compiler cc cc 
Commands CFLAGS 

CPPFLAGS 
COMPILE.c $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c 
LINK.c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) 

FORTRAN77 FC f77 
Compiler FFLAGS 
Commands COMPILE.f $(FC) $(FFLAGS) $(TARGET_ARCH)-c 

LINK.f $(FC) $(FFLAGS) $(TARGET_ARCH) $(LDFLAGS) 
COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) $(TARGET_ARCH)-c 
LINK.F $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET ARCH) 

Link Editor LD Id 
Command LDFLAGS 

lex LEX lex 
Command LFLAGS 

LEX.I $(LEX) $(LFLAGS) -t 

lint LINT lint 
Command LINTFLAGS 

LINT.c $(LINT) $(LINTFLAGS) $(CPPFLAGS) $(TARGET_ARCH) 

Modula2 M2C m2c 
Commands M2FLAGS 

MODFLAGS 
DEFFLAGS 
COMPILE.def $(M2C) $(M2FLAGS) $(DEFFLAGS) $(TARGET_ARCH) 
COMPILE.mod $(M2C) $(M2FLAGS) $(M0DFLAGS) $(TARGET_ARCH) 

Pascal PC pc 
Compiler PFLAGS 
Commands COMPILE.p $(PC) $(PFLAGS) $(CPPFLAGS) $(TARGET_ARCH)-c 

LINK.p $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) 

Ratfor RFLAGS 
Compilation COMPILE.r $(FC) $(FFLAGS) $(RFLAGS) $(TARGET_ARCH) -c 
Commands LINK.r $(FC) $(FFLAGS) $(RFLAGS) $(TARGET_ARCH) $(LDFLAGS) 

rm 
RM rm-f 

Command 

yacc YACC yacc 
Command YFLAGS 

YACC.y $(YACC) $(YFLAGS) 

Suffixes .o .c £ .s .s- .S .S- .In .f .r .F .F- .I 
List SUFFIXES .r .mod .mod- .sym .def .der .p .p- .r .r -

.y .y- .h .h- .sh .sh· .cps .cps· 

318 Last change: 4 February 1988 Sun Release 4.0 



MAKE( 1) USER COMMANDS MAKE( 1) 

Implicit Rules 
When a target has no entry in the makefile, make attempts to determine its class (if any) and apply the rule 
for that class. An implicit rule describes how to build any target of a given class, from an associated 
dependency file. The class of a target can be determined either by a pattern, or by a suffix; there must also 
be a dependency file (with the same basename) from which such a target might be built. In addition to a 
predefined set of implicit rules, make allows you to define your own, either by pattern, or by suffix. 

Pattern Matching Rules 

A target entry of the form: 

Tp%Ts: Dp%Ds 
rule 

where Tp is a target prefix, Ts is a target suffix, Dp is a dependency prefix, and Ds is a dependency suffix 
(any of which may be null), pattern matching rule in which the % stands for a basename of zero or more 
characters that is matched in both a filename and a dependency. When make encounters a match in its 
search for an implicit rule, it uses the rule in that target entry to build the target from the dependency file. 
Pattern-matching implicit rules typically make use of the$@ and$< dynamic macros as placeholders for 
the target and dependency names. The dynamic macro$* is set to the string matched by the% wild card. 

Suffix Rules 

When no pattern matching rule applies, make checks the target name to see if it contains a suffix in the 
known suffixes list. If so, make checks for any suffix rules, as well as a dependency file with same root 
and another recognized suffix, from which to build it. 

The target entry for a suffix rule takes the form: 

DsTs: 
rule 

where Ts is the suffix of the target, Ds is the suffix of the dependency file, and rule is the rule for building a 
target in the class. Both Ds and Ts must appear in the suffixes list. 

A suffix rule with only one suffix describes how to build a target having a null (or no) suffix from a depen
dency file with the indicated suffix. For instance, the .c rule could be used to build an executable program 
named file from a C source file named 'file.c'. 

Sun Release 4.0 Last change: 4 February 1988 319 



MAKE(l) USER COMMANDS MAKE(l) 

Table of Standard Implicit (Suffix) Rules 

Use Implicit Rule Name Command Line 

Assembly .s.o $(COMPILE.s)-o $@$< 

.s.a $(COMPILE.s)-o $% $< 
$(AR) $(ARFLAGS) $@ $ % 
$(RM) $% 

Files .S.o $(COMPILE.S)-o $@$< 

.S.a $(COMPILE.S)-o $% $< 
$(AR) $(ARFLAGS) $@$% 
$(RM) $% 

C .c $(LINK.c)-o $@$< $(LDLIBS) 

Files .c.ln $(LINT.c) $(0UfPUf OPTION) -i $< 

.c.o $(COMPILE.c) $(0UfPUf OPTION) $< 

.c.a $(COMPILE.c) -o $% $< 
$(AR) $(ARFLAGS) $@ $ % 
$(RM) $% 

FORTRAN77 .f $(LINK.f)-o $@$< $(LDLIBS) 

Files .f.o $(COMPILE.f) $(0UfPUf OPTION) $< 

.f.a $(COMPILE.f) -o $% $< 
$(AR) $(ARFLAGS) $@ $ % 
$(RM) $% 

.F $(LINK.F) -o $@ $< $(LDL1BS) 

.F.o $(COMPILE.F) $(0UfPUf OPTION) $< 

.F.a $(COMPILE.F) -o $% $< 
$(AR) $(ARFLAGS) $@ $% 
$(RM) $% 

lex .I $(RM) $•.c 
Files $(LEX.I) $< > $•.c 

$(LINK.c)-o $@$•.c $(LDLIBS) 
$(RM) $•.c 

.l.c $(RM) $@ 
$(LEX.I) $< > $@ 

.I.In $(RM) $•.c 
$(LEX.I) $< > $•.c 
$(LINT.c)-o $@-1 $•.c 
$(RM) $•.c 

.l.o $(RM) $•.c 
$(LEX.I) $< > $•.c 
$(COMPILE.c) -o $@ $•.c 
$(RM) $•.c 

Modula2 .mod $(COMPILE.mod) -o $@ -e $@ $< 

Files .mod.o $(COMPILE.mod) -o $@ $< 

.def.sym $(COMPILE.def)-o $@$< 

NeWS .cps.h cps $•.cps 

Pascal .p $(LINK.p)-o $@$< $(LDLIBS) 

Files .p.o $(COMPILE.p) $(0UTPUf OPTION) $< 

Ratfor .r $(LINK.r)-o $@$< $(LDL1BS) 

Files .r.o $(COMPILE.r) $(0UTPUf OPTION) $< 

.r.a $(COMPILE.r) -o $% $< 
$(AR) $(ARFLAGS) $@ $ % 
$(RM) $% 

320 Last change: 4 February 1988 Sun Release 4.0 



MAKE( 1) USER COMMANDS MAKE(l) 

Table of Standard Implicit (Suffix) Rules 

Use Implicit Rule Name Command Line 

Shell .sh cat$<>$@ 
Scripts chmod+x$@ 

yacc .y $(Y ACC.y) $< 
Files $(LINK.c) -o $@ y .tab.c $(LDL1BS) 

$(RM) y .tab.c 

.y.c $(Y ACC.y) $< 
mv y.tab.c $@ 

.y.ln $(Y ACC.y) $< 
$(LINT.c)-o $@-i y.tab.c 
$(RM) y .tab.c 

.y.o $(Y ACC.y) $< 
$(COMPILE.c) -o $@ y.tab.c 
$(RM) y .tab.c 

make reads in the standard set of implicit rules from the file /usr/include/make/default.mk, unless -r is in 
effect, or there is a def ault.mk file in the local directory that does not include it. 

The Suffixes List 
The suffixes list is given as the list of dependencies for the '.SUFFIXES:' special-function target. The 
default list is contained in the SUFFIXES macro (See Table of Predefined Macros for the standard list of 
suffixes). You can define additional '.SUFFIXES:' targets; a .SUFFIXES target with no dependencies clears 
the list of suffixes. Order is significant within the list; make selects a rule that corresponds to the target's 
suffix and the first dependency-file suffix found in the list. To place suffixes at the head of the list, clear the 
list and replace it with the new suffixes, followed by the default list: 

.SUFFIXES: 

.SUFFIXES: suffixes $(SUFFIXES) 

A tilde ( ) indicates that if a dependency file with the indicated suffix (minus the ) is under SCCS its most 
recent version should be extracted, if necessary, before the target is processed. 

Library Maintenance 

A target name of the form: 

lib(member .. . ) 

refers to a member, or a space-separated list of members, in an ar(l V) library. 

The dependency of the library member on the corresponding file must be given as an explicit entry in the 
makefile. This can be handled by a pattern matching rule of the form: 

lib(%.s): %.s 

where .s is the suffix of the member; this suffix is typically .o for object libraries. 

A target name of the form 

lib ((symbol)) 

refers to the member of a randomized object library (see ranlib(l)) that defines the entry point named sym
bol. 

Command Execution 

Command lines are executed one at a time, each by its own process or shell. Shell commands, notably cd, 
are ineffectual across an unescaped NEWLINE in the makefile. A line is printed (after macro expansion) 
just before being executed. This is suppressed if it starts with a '@', if there is a '.SILENT:' entry in the 
makefile, or if make is run with the -s option. Although the -n option specifies printing without execu
tion, lines containing the macro $(MAKE) are executed regardless, and lines containing the @ special char
acter are printed. The -t (touch) option updates the modification date of a file without executing any rules. 

Sun Release 4.0 Last change: 4 February 1988 321 



MAKE( 1) USER COMMANDS MAKE( 1) 

This can be dangerous when sources are maintained by more than one person. 

To use the Bourne shell if control structure for branching, use a command line of the form: 

if expression ; \ 
then command ; \ 

... ; \ 
else ; \ 

... ; \ 
fi 

Although composed of several input lines, the escaped NEWLINE characters insure that make treats them 
all as one (shell) command line. 

To use the Bourne shell for control structure for loops, use a command line of the form: 

for var in list ; \ 
do command; \ 

... ; \ 
done 

To write shell variables, use double dollar-signs ($$). This escapes expansion of the dollar-sign by make. 

Signals 
INT and QUIT signals received from the keyboard halt make and remove the target file being processed 
unless that target is in the dependency list for' .PRECIOUS:'. 

EXAMPLES 

FILES 

This makefile says that pgm depends on two files a.o and b.o, and that they in tum depend on their 
corresponding source files (a.c and b.c) along with a common file incl.h: 

pgm: a.o b.o 
cc a.o b.o -o $@ 

a.o: incl.h a.c 
cc-c a.c 

b.o: incl.h b.c 
cc-c b.c 

The following makefile uses implicit rules to express the same dependencies: 

pgm: a.o b.o 
cc a.o b.o-o pgm 

a.o b.o: incl.h 

makefile 
Makefile 
SCCS/s.makefile 

current version(s) of make description file 

SCCS/s.Makefile SCCS history files for the above makefile(s) 
default.mk default file for user-defined targets, macros, and implicit rules 
/usr/include/make/default.mk 

.make.state 

.make.state.lock 

makefile for standard implicit rules and macros (not read if default.mk is) 
state file in the local directory 
lock file used for controlling write access to the state file 

SEE ALSO 

322 

ar(lV), cc(lV), cd(l), get(l), lex(l), ranlib(l), sh(l) 

Doing More with SunOS: Beginner's Guide 
Programming Utilities and Libraries 

Last change: 4 February 1988 Sun Release 4.0 



MAKE(l) USER COMMANDS MAKE(l) 

DIAGNOSTICS 

BUGS 

make returns a exit status of 1 when it halts as a result of an error. Otherwise it returns and exit status of 0. 

Do not know how to make target. Stop. 
There is no makefile entry for target, and none of make's implicit rules apply (there is no depen
dency file with a suffix in the suffixes list, or the target's suffix is not in the list). 

*** target removed. 
make was interrupted while building target. Rather than leaving a partially-completed version 
that is newer than its dependencies, make removes the file named target. 

* * * target not removed. 
make was interrupted while building target and target was not present in the directory. 

* * * target could not be removed, reason 
make was interrupted while building target, which was not removed for the indicated reason. 

Read of include file 'file' failed 
The makefile indicated in an include directive was not found, or was inaccessible. 

Loop detected when expanding macro value 'macro' 
A reference to the macro being defined was found in the definition. 

Could not write state file 'file' 
You used the .KEEP_ ST ATE: target, but do not have write permission on the state file. 

* * * Error code n 
The previous shell command returned a nonzero error code. 

*** signal message 
The previous shell command was aborted due to a signal. If - core dumped appears after the 
message, a core file was created. 

Some commands return nonzero status inappropriately; to overcome this difficulty, prefix the offending 
command line in the rule with a ' - '. 

Filenames with the characters=,:, or@, do not work. 

You cannot build file.o from lib(file.o). 

Options supplied by MAKEFLAGS should be reported for nested make commands. Use the -d option to 
find out what options the nested command picks up from MAKEFLAGS. 

This version of make is incompatible in certain respects with previous versions: 

• The -d option output is much briefer in this version. -dd now produces the equivalent 
voluminous output. 

• make attempts to derive values for the dynamic macros '$*', '$<',and'$?', while processing 
explicit targets. It uses the same method as for implicit rules; in some cases this can lead 
either to unexpected values, or to an empty value being assigned. (Actually, this was true for 
earlier versions as well, even though the documentation stated otherwise.) 

• make no longer searches the current directory for sccs history files. 

• Suffix replacement in macro references is now applied after the macro is expanded. 

There is no guarantee that makefiles created for this version of make will work with earlier versions. 

If there is no default.mk file in the current directory, and the file /usr/include/make/default.mk is miss
ing, make stops before processing any targets. To force make to run anyway, create an empty default.mk 
file in the current directory. 

Sun Release 4.0 Last change: 4 February 1988 323 



MAKE( 1) USER COMMANDS MAKE( 1) 

324 

Once a dependency is made, make assumes the dependency file is present for the remainder of the run. If 
a rule subsequently removes that file and future targets depend on its existence, unexpected errors may 
result. 

When hidden dependency checking is in effect, the$? macro's value includes the names of hidden depen
dencies. This can lead to improper filename arguments to compiler commands when $? is used in a rule. 

Pattern replacement macro references cannot be used in the dependency line of a pattern matching rule. 

Unlike previous versions, this version of make strips a leading 'J' from the value of the '$@' dynamic 
macro. 

Last change: 4 February 1988 Sun Release 4.0 



MAN(l) USER COMMANDS MAN(l) 

NAME 
man - display reference manual pages; find reference pages by keyword 

SYNOPSIS 
man [ - ] [ -t] [ -M path] [ -T macro-package ] [ [ section ] title ... ] ... 
man [ -M path ] -k keyword .. . 
man [ -M path ] -f filename .. . 

DESCRIPTION 
man displays information from the reference manuals. It can display complete manual pages that you 
select by title, or one-line summaries selected either by keyword (-k), or by the name of an associated file 
(-f). 

A section, when given, applies to the titles that follow it on the command line (up to the next section, if 
any). man looks in the indicated section of the manual for those titles. section is either a digit (perhaps 
followed by a single letter indicating the type of manual page), or one of the words new, local, old, or pub
lic. If section is omitted, man searches all reference sections (giving preference to commands over func
tions) and prints the first manual page it finds. If no manual page is located, man prints an error message. 

The reference page sources are typically located in the /usr/share/man/man? directories. Since these 
directories are optionally installed, they may not reside on your host; you may have to mount 
/usr/share/man from a host on which they do reside. If there are preformatted, up-to-date versions in 
corresponding cat? or fmt? directories, man simply displays or prints those versions. If the preformatted 
version of interest is out of date or missing, man reformats it prior to display. If directories for the prefor
matted versions are not provided, man reformats a page whenever it is requested; it uses a temporary file to 
store the formatted text during display. 

If the standard output is not a terminal, or if the '-' flag is given, man pipes its output through cat(l V). 
Otherwise, man pipes its output through more( 1) to handle paging and underlining on the screen. 

OPTIONS 
-t man arranges for the specified manual pages to be troff ed to a suitable raster output device (see 

troff(l) or vtroff(l)). If both the - and -t flags are given, man updates the troffed versions of 
each named title (if necessary), but does not display them. 

-Mpath 
Change the search path for manual pages. path is a colon-separated list of directories that contain 
manual page directory subtrees. For example, /usr/share/man/u _ man:/usr/share/man/a _ man 
makes man search in the standard System V locations. When used with the -k or-f options, the 
-M option must appear first. Each directory in the path is assumed to contain subdirectories of 
the form man[l-81-p]. 

-T macro-package 
man uses macro-package rather than the standard -man macros defined in 
/usr/share/lib/tmac/tmac.an for formatting manual pages. 

-kkeyword ... 
man prints out one-line summaries from the whatis database (table of contents) that contain any 
of the given keywords. 

-f filename ... 
man attempts to locate manual pages related to any of the givenfilenames. It strips the leading 
pathname components from each filename, and then prints one-line summaries containing the 
resulting basename or names. 

MANUAL PAGES 

Manual pages are troff( 1 )/nroff( 1) source files prepared with the -man macro package. Refer to man(7), 
or Formatting Documents for more information. 

Sun Release 4.0 Last change: 12 January 1988 325 



MAN( 1) USER COMMANDS MAN(l) 

When formatting a manual page, man examines the first line to determine whether it requires special pro
cessing. 

Referring to Other Manual Pages 
If the first line of the manual page is a reference to another manual page entry fitting the pattern: 

.so man?*/ sourcefile 

man processes the indicated file in place of the current one. The reference must be expressed as a path
name relative to to the root of the manual page directory subtree. 

When the second or any subsequent line starts with .so, man ignores it; troff(l) or nroff(l) processes the 
request in the usual manner. 

Preprocessing Manual Pages 
If the first line is a string of the form: 

'\" X 

where X is separated from the the '"' by a single SP ACE and consists of any combination of characters in 
the following list, man pipes its input to troff(l) or nroff(l) through the corresponding preprocessors. 

e eqn(l), or neqn for nroff 
r refer(l) 
t tbl(l), and col(l V) for nroff 
v vgrind(l) 

If eqn or neqn is invoked, it will automatically read the file /usr/pub/eqnchar (see eqnchar(7)). 

ENVIRONMENT 

FILES 

MANPATH 

PAGER 

TCAT 

TROFF 

If set, its value overrides /usr/share/man as the default search path. (The -M flag, in 
turn, overrides this value.) 

A program to use for interactively delivering man's output to the screen. If not set, 
'more -s' (see more(l)) is used. 

The name of the program to use to display troffed manual pages. If not set, 'Ipr -t' (see 
lpr( 1)) is used. 

The name of the formatter to use when the -t flag is given. If not set, troff is used. 

/usr/share/man root of the standard manual page directory subtree 
/usr/share/man/man? I• 

unformatted manual entries 
/usr/share/man/cat?/• nroffed manual entries 
/usr/share/man/fmt?/* troffed manual entries 
/usr/share/man/whatis table of contents and keyword database 
/usr/share/Iib/tmac/tmac.an 

standard -man macro package 
/usr/pub/eqnchar 

SEE ALSO 

BUGS 

326 

cat(lV), col(l V), eqn(l), lpr(l), more(l), nroff(l), refer(l), tbl(l), troff(l), vgrind(l), vtroff(l), 
whatis(l), eqnchar(7), man(7), catman(8) 

The manual is supposed to be reproducible either on a phototypesetter or on an ASCII terminal. However, 
on a terminal some information (indicated by font changes, for instance) is necessarily lost. 

Some dumb terminals cannot process the vertical motions produced by thee (eqn(l)) preprocessing flag. 
To prevent garbled output on these terminals, when you use e also use t, to invoke col(l V) implicitly. This 
workaround has the disadvantage of eliminating superscripts and subscripts - even on those terminals that 
can display them. CTRL-Q will clear a terminal that gets confused by eqn(l) output. 

Last change: 12 January 1988 Sun Release 4.0 



MESG( 1) USER COMMANDS MESG( 1) 

NAME 
mesg - permit or deny messages on the terminal 

SYNOPSIS 
mesg [ n] [ y] 

DESCRIPTION 
mesg with argument n forbids messages with write( 1) by revoking non-user write permission on the user's 
terminal. mesg with argument y reinstates permission. All by itself, mesg reports the current state without 
changing it. 

FILES 
/dev/tty• 

SEE ALSO 
write(l), talk(l) 

DIAGNOSTICS 
Exit status is O if messages are receivable, 1 if not, 2 on error. 

Sun Release 4.0 Last change: 9 September 1987 327 



MKDIR( 1) USER COMMANDS MKDIR(l) 

NAME 
mkdir - make a directory 

SYNOPSIS 
mkdir [ -p ] dirname . .. 

DESCRIPTION 
mkdir creates directories. Standard entries, '.', for the directory itself, and ' •• ' for its parent, are made 
automatically. 

The -p flag allows missing parent directories to be created as needed. 

The current umask(2) setting determines the mode in which directories are created. Modes may be 
modified after creation by using chmod(l V). 

mkdir requires write permission in the parent directory. 

SEE ALSO 
chmod(lV), rm(l), mkdir(2), umask(2) 

328 Last change: 9 September 1987 Sun Release 4.0 



MKSTR( 1) USER COMMANDS MKSTR( 1) 

NAME 
rnkstr - create an error message file by massaging C source files 

SYNOPSIS 
mkstr [ - ] messagefile prefix filename . .. 

DESCRIPTION 
mkstr creates files of error messages. You can use mkstr to make programs with large numbers of error 
diagnostics much smaller, and to reduce system overhead in running the program - as the error messages 
do not have to be constantly swapped in and out. 

mkstr processes each of the specified filenames, placing a massaged version of the input file in a file with a 
name consisting of the specified prefix and the original source. file name. A typical example of using mkstr 
would be: 

mkstr pistrings processed * .c 

This command would cause all the error messages from the C source files in the current directory to be 
placed in the file pistrings and processed copies of the source for these files to be placed in files whose 
names are prefixed with processed. 

To process the error messages in the source to the message file, mkstr keys on the string 'error("' in the 
input stream. Each time it occurs, the C string starting at the '"' is placed in the message file followed by a 
null character and a NEWLINE character; the null character terminates the message so it can be easily used 
when retrieved, the NEWLINE character makes it possible to sensibly cat the error message file to see its 
contents. The massaged copy of the input file then contains a lseek pointer into the file which can be used 
to retrieve the message, that is: 

oops: 

} 

OPTIONS 

char efilname[] = "/usr/lib/pi_strings"; 
int efil = -1; 

error(al, a2, a3, a4) 
{ 

} 

char 
buf[256]; 
if (efil < 0) { 

} 

efil = open(efilname, 0); 
if (efil < 0) { 

perror (efilname); 
exit (1); 

if (lseek(efil, (long) al, 0) 11 read(efil, buf, 256) <= 0) 
goto oops; 

printf(buf, a2, a3, a4); 

- Place error messages at the end of the specified message file for recompiling part of a large mkstred 
program. 

SEE ALSO 
xstr(l) 

Sun Release 4.0 Last change: 9 September 1987 329 



MORE(l) USER COMMANDS MORE(l) 

NAME 
more, page - browse or page through a text file 

SYNOPSIS 
more [ -cdflsu] [-lines] [ +linenumber] [+/pattern] [filename ... ] 

page [ -cdflsu] [-lines] [ +linenumber] [+/pattern] [filename ... ] 

DESCRIPTION 
more is a filter that displays the contents of a text file on the terminal, one screenful at a time. It normally 
pauses after each screenful, and prints --More-- at the bottom of the screen. more provides a two-line 
overlap between screens for continuity. If more is reading from a file rather than a pipe, the percentage of 
characters displayed so far is also shown. 

more scrolls up to display one more line in response to a RETURN character; it displays another screenful 
in response to a SPACE character. Other commands are listed below. 

page clears the screen before displaying the next screenful of text; it only provides a one-line overlap 
between screens. 

more sets the terminal to noecho mode, so that the output can be continuous. Commands that you type do 
not normally show up on your terminal, except for the / and ! commands. 

If the standard output is not a terminal, more acts just like cat(lV), except that a header is printed before 
each file in a series. 

OPTIONS 

330 

-c Clear before displaying. Redrawing the screen instead of scrolling for faster displays. This option 
is ignored if the terminal does not have the ability to clear to the end of a line. 

-d Display error messages rather than ringing the terminal bell if an unrecognized command is used 
This is helpful for inexperienced users. 

-f Do not fold long lines. This is useful when lines contain nonprinting characters or escape 
sequences, such as those generated when nroff(l) output is piped through ul(l). 

-I Do not treat FORMFEED characters {CTRL-D) as "page breaks." If -I is not used, more pauses to 
accept commands after any line containing a "L character {CTRL-D). Also, if a file begins with a 
FORMFEED, the screen is cleared before the file is printed. 

-s Squeeze. Replace multiple blank lines with a single blank line. This is helpful when viewing 
nroff( 1) output, on the screen. 

-u Suppress generation of underlining escape sequences. Normally, more handles underlining, such 
as that produced by nroff(l), in a manner appropriate to the terminal. If the terminal can perform 
underlining or has a stand-out mode, more supplies appropriate escape sequences as called for in 
the text file. 

-lines Display the indicated number of lines in each screenful, rather than the default (the number of 
lines in the terminal screen less two). 

+line number 
Start up at linenumber. 

+/pattern 
Start up two lines above the line containing the regular expression pattern. Note: unlike editors, 
this construct should not end with a '/'. If it does, then the trailing slash is taken as a character in 
the search pattern. 

Last change: 9 September 1987 Sun Release 4.0 



MORE( 1) USER COMMANDS MORE( 1) 

USAGE 
Environment 

more uses the terminal's termcap(5) entry to determine its display characteristics, and looks in the 
environment variable MORE for any preset options. For instance, to page through files using the -c mode 
by default, set the value of this variable to -c. (Normally, the command sequence to set up this environ
ment variable is pla~ed in the .login or .profile file). 

Commands 
The commands take effect immediately; it is not necessary to type a carriage return. Up to the time when 
the command character itself is given, the user may type the line kill character to cancel the numerical 
argument being formed. In addition, the user may type the erase character to redisplay the '--More-
(xx % ) ' message. 

In the following commands, i is a numerical argument (1 by default). 

iSPACE Display another screenful, or i more lines if i is specified. 

iRETURN Display another line, or i more lines, if specified. 

i"D (CTRL-D) Display (scroll down) 11 more lines. i is given, the scroll size is set to i. 

id Same as "D. 

iz Same as SPACE, except that i, if present, becomes the new default number of lines per screen-
ful. 

is Skip i lines and then print a screenful. 

if Skip i screenfuls and then print a screenful. 

i"B (CTRL-B) Skip back i screenfuls and then print a screenful. 

b Same as "B (CTRL-D). 

q 
Q Exit from more. 

= Display the current line number. 

v Drop into the vi(l) editor at the current line of the current file. 

h Help. Give a description of all the more commands. 

ii pattern Search for the i th occurrence of the regular expression pattern. Display the screenful starting 
two lines prior to the line that contains the i th match for the regular expression pattern, or the 
end of a pipe, whichever comes first. If more is displaying a file and there is no such match, 
its position in the file remains unchanged. Regular expressions can be edited using erase and 
kill characters. Erasing back past the first column cancels the search command. 

in Search for the i th occurrence of the last pattern entered. 

Single quote. Go to the point from which the last search started. If no search has been per
formed in the current file, go to the beginning of the file. 

!command Invoke a shell to execute command. The characters % and!, when used within command are 
replaced with the current filename and the previous shell command, respectively. If there is no 
current filename, % is not expanded. Prepend a backslash to these characters to escape expan
sion. 

i:n Skip to the i th next filename given in the command line, or to the last filename in the list if i is 
out of range. 

i:p Skip to the i th previous filename given in the command line, or to the first filename if i is out 
of range. If given while more is positioned within a file, go to the beginning of the file. If 
more is reading from a pipe, more simply rings the terminal bell. 

Sun Release 4.0 Last change: 9 September 1987 331 



MORE( 1) USER COMMANDS MORE(l) 

FILES 

:f Display the current filename and line number. 

:q 
:Q Exit from more (same as q or Q ). 

Dot. Repeat the previous command. 

"\ Halt a partial display of text. more stops sending output, and displays the usual --More-
prompt. Unfortunately, some output is lost as a result. 

/etc/termcap 
/usr/Iib/more.help 

terminal data base 
help file 

SEE ALSO 
cat(lV), csh(l), man(l), script(l), sh(l), environ(SV), termcap(S) 

BUGS 
Skipping backwards is too slow on large files. 

332 Last change: 9 September 1987 Sun Release 4.0 



MT( 1) USER COMMANDS MT(l) 

NAME 
mt - magnetic tape control 

SYNOPSIS 
mt [ -f tapename ] command [ count ] 

DESCRIPTION 
mt sends commands to a magnetic tape drive. If tape name is not specified, the environment variable TAPE 
is used; if TAPE does not exist, mt uses the device /dev/rmt12. Note: tapename must refer to a raw (not 
block) tape device. By default mt performs the requested operation once. Operations may be performed 
multiple times by specifying a count argument. 

The available commands are listed below. Only as many characters as are required to uniquely identify a 
command need be specified. 

mt returns a O exit status when the operation(s) were successful, 1 if the command was unrecognized, and 
2 if an operation failed. 

OPTIONS 

FILES 

eof, weof 
Write count EOF marks at the current position on the tape. 

fsf Forward space count files. 

fsr Forward space count records. 

bsf Back space count files. 

bsr Back space count records. 

For the following commands, count is ignored: 

rewind Rewind the tape. 

offline, rewoffl 
Rewind the tape and place the tape unit off-line. 

status Print status information about the tape unit. 

retension 
Wind the tape to the end of the reel and then rewind it, smoothing out the tape tension. ( count is 
ignored.) 

erase Erase the entire tape. 

/dev/rmt* 
/dev/rar* 
/dev/rst* 
/dev/rxt* 

raw magnetic tape interface 
raw Archive cartridge tape interface 
raw SCSI tape interface 
raw Xylogics tape interface 

SEE ALSO 

BUGS 

dd(l), ar(4S), mtio(4), st(4S), environ(SV) 

Not all devices support all options. For example, ar(4S) and st(4S) currently do not support the fsr, bsf, or 
bsr options; but they are the only ones that currently support the retension and rewind options. Half-inch 
tapes, in particular, do not support the retension option. 

Sun Release 4.0 Last change: 9 September 1987 333 



MV(l) USER COMMANDS MV(l) 

NAME 
mv - move or rename files 

SYNOPSIS 
mv [ - ] [ -fi ] filename] filename2 
mv [ - ] [ -fi] directory] directory2 
mv [ - ] [ -fi ] [ . . . directory . . . directory 

DESCRIPTION 
mv moves files and directories around in the file system. A side effect of mv is to rename a file or direc
tory. The three major forms of mv are shown in the synopsis above. 

The first form of mv moves (changes the name ot)filenamel tofilename2. If filename2 already exists, it is 
removed before filename] is moved. If filename2 has a mode which forbids writing, mv prints the mode 
(see chmod(2)) and reads the standard input to obtain a line; if the line begins with y, the move takes place, 
otherwise mv exits. 

The second form of mv moves (changes the name of) directory] to directory2, only if directory2 does not 
already exist - if it does, the third form applies. 

The third form of mv moves one or more filenames and directories, with their original names, into the last 
directory in the list. 

mv refuses to move a file or directory onto itself. 

OPTIONS 
Interpret all the following arguments to mv as file names. This allows file names starting with 
minus. 

-f Force. Override any mode restrictions and the -i switch. The -f option also suppresses any warn
ing messages about modes which would potentially restrict overwriting. 

-i Interactive mode. mv displays the name of the file or directory followed by a question mark 
whenever a move would replace an existing file or directory. If you type a line starting with y, mv 
moves the specified file or directory, otherwise mv does nothing with that file or directory. 

SEE ALSO 

BUGS 

334 

cp(l), ln(l), chmod(2), rename(2) 

If filename] andfilename2 are on different file systems, then mv must copy the file and delete the original. 
In this case the owner name becomes that of the copying process and any linking relationship with other 
files is lost. 

mv will not move a directory from one file system to another. 

Last change: 23 September 1985 Sun Release 4.0 



NEWGRP( 1) USER COMMANDS NEWGRP(l) 

NAME 
newgrp - log in to a new group 

SYNOPSIS 
newgrp [ - ] [ group ] 

DESCRIPTION 

FILES 

newgrp changes a user's group identification. Only the group-ID is changed; the user remains a member 
of all groups previously established by setgroups (see getgroups(2)). The user remains logged in and the 
current directory is unchanged, but the group-ID of newly-created files will be set to the new effective 
group-ID (see open(2V)). The user is always given a new shell, replacing the current shell, regardless of 
whether newgrp terminated successfully or due to an error condition (such as an unknown group). 

Exported variables retain their values after invoking newgrp; however, all unexported variables are either 
reset to their default value or set to null. System variables (such as HOME, LOGNAME, PATH, SHELL, 
TERM, and USER), unless exported by the system or explicitly exported by the user, are reset to default 
values. Note: the shell command export (see sh(l)) is the method to export variables, while the C shell 
command setenv (see csh(l)) implicitly exports its argument 

With no arguments, newgrp changes the group identification back to the group specified in the user's pass
word file entry. 

If the first argument to newgrp is a'-', the environment is changed to what would be expected if the user 
actually logged in again. 

A password is demanded if the group has a password and the user does not, or if the group has a password 
and the user is not listed in /etc/group as being a member of that group. 

/etc/group 
/etc/passwd 

system group file 
system password file 

SEE ALSO 

BUGS 

login(l), su(l), csh(l), sh(l), open(2V), getgroups(2), initgroups(3), environ(5V), group(5), passwd(5) 

There is no convenient way to enter a password into /etc/group. Use of group passwords is not 
encouraged, because, by their very nature, they encourage poor security practices. Group passwords may 
disappear in the future. 

Sun Release 4.0 Last change: 16 November 1987 335 



NICE( 1) USER COMMANDS NICE( 1) 

NAME 
nice - run a command at low priority 

SYNOPSIS 
nice [ -number ] command [ arguments ] 

DESCRIPTION 

FILES 

There are two distinct versions of nice: it is built in to the C shell, and is an executable program available 
in /usr/bin/nice for use with the Bourne shell. 

nice executes command with a higher "nice" value. The higher the value, the lower the command's 
scheduling priority. If the number argument is present, the nice value is incremented by that amount, up to 
a limit of 20. The default number is 10. 

The super-user may run commands with priority higher than normal by using a negative nice value, such as 
-10. 

/usr/bin/nice 

SEE ALSO 
csh( 1 ), nice(3C), renice(8) 

DIAGNOSTICS 

BUGS 

336 

nice returns the exit status of the subject command. 

The nice C shell built-in has a slightly different syntax than the nice command described here. When using 
the built-in, the additional+ option, as in: 

nice +n 
sets the nice value to n rather than incrementing by n. 

Although you can increase the nice value for any process you own, only the super-user can decrement that 
value. 

Last change: 9 September 1987 Sun Release 4.0 



NL(l) USER COMMANDS NL(l) 

NAME 
nl - line numbering filter 

SYNOPSIS 
nl [ -p ] [ -h type ] [ -b type ] [ -ft ype ] [ -v start ] [ -i incr ] [ -I num ] [ -s sep ] [ -w width] 

[ -nfmt] [ -d delim ]filename 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
nl reads lines from filename ( or the standard input), numbers them according to the options in effect, and 
sends its output to the standard output. 

nl views the text it reads in terms of logical pages. Line numbering is normally reset at the start of each 
page. A logical page is composed of header, body and footer sections. The start of each page section is 
signaled by input lines containing section delimiters only: 

Start of file 

\:\:\: 
header 

\:\: 
body 

\: 
footer 

Empty sections are valid. Different line-numbering options are available within each section. The default 
scheme is no numbering for headers and footers. 

OPTIONS 

-p 

-b type 

-h type 

-ftype 

-v start 

-i incr 

-ssep 

-wwidth 

-nfmt 

Sun Release 4.0 

Do not restart numbering at logical page delimiters. 

Specify which logical page body lines are to be numbered. type is one of: 
a number all lines 
t number lines with printable text only (the default) 
n , no line numbering 
p rexp number only lines that contain the regular expression rexp 

Same as -b type except for the header. The default type for the logical page header is n (no 
lines numbered). 

Same as -b type except for the footer. The default for logical page footer is n (no lines num
bered). 

start is the initial value used to number logical page lines. The default is 1. 

incr is the increment by which to number logical page lines. The default is 1. 

sep is the character(s) used to separate the line number from the corresponding text line. The 
default is a TAB. 

width is the number of characters to be used for the line-number field. The default is 6. 

fmt is the line numbering format. Recognized values are: 
rn rightjustified, leading zeroes suppressed (the default) 
In leftjustified, leading zeroes suppressed 
rz rightjustified, leading zeroes kept 

Last change: 21 December 1987 337 



NL(l) 

-lnum 

-dxx 

EXAMPLE 

USER COMMANDS NL(l) 

num is the number of blank lines to be considered as one. For example, -12 results in only the 
second adjacent blank being numbered (if the appropriate -ha, -ba, and/or -fa option is set). 
The default is 1. 

The delimiter characters specifying the start of a logical page section may be changed from 
the default characters (\:) to two user-specified characters. If only one character is entered, 
the second character remains the default character (:). No space should appear between the 
-d and the delimiter characters. To enter a backslash, use two backslashes. 

The command: 

nl -vlO -ilO -d!+ filename] 

will number filename] starting at line number 10 with an increment of ten. The logical page delimiters are 
!+. 

SEE ALSO 
pr(lV) 

338 Last change: 21 December 1987 Sun Release 4.0 



NM(l) USER COMMANDS NM(l) 

NAME 
nm - print name list 

SYNOPSIS 
nm [ -gnoprsua] [[filename] ... 

Sun386i SYNOPSIS 
/usr/bin/nm [-oxhvnefurp VT] filename ... 

DESCRIPTION 
nm prints the name list (symbol table) of each object.filename in the argument list. If an argument is an 
archive, a listing for each object file in the archive will be produced. If no filename is given, the symbols in 
a.out are listed. 

Output Format 
Each symbol name is preceded by its value (blanks if undefined) and one of the letters: 

A absolute 

B bss segment symbol 

C common symbol 

D data segment symbol 

f filename 

t a static function symbol 

T text segment symbol 

U undefined 

debug, giving symbol table entries (see -a below) 

The type letter is upper case if the symbol is external, and lower case if it is local. The output is sorted 
alphabetically. 

Sun386i DESCRIPTION 
The Sun386i version of the System V compatibility package includes lusrlbinlnm, which allows the System 
V options to be used and creates the same output as the System V nm(l) command. 

The System V nm command displays the symbol table of COPP files. filename may be a relocatable or 
absolute common object file; or it may be an archive of relocatable or absolute common object files. For 
each symbol, the following information will be printed: 

name The name of the symbol. 

value Its value expressed as an offset or an address depending on its storage class. 

class Its storage class. 

type Its type and derived type. If the symbol is an instance of a structure or of a union then the struc
ture or union tag will be given following the type (e.g., struct-tag). If the symbol is an array, 
then the array dimensions will be given following the type (e.g., char[ n ][ m ]). Note that the 
object file must have been compiled with the -g option of the cc(l V) command for this infor
mation to appear. 

size Its size in bytes, if available. (must be compiled with cc-g). 

line The source line number at which it is defined, if available. (must be compiled with cc-g). 

section For storage classes static and external, the object file section containing the symbol (e.g., text, 
data or bss). 

OPTIONS 
-a Print all symbols. 

-g Print only global (external) symbols. 

Sun Release 4.0 Last change: 18 February 1988 339 



NM(l) USER COMMANDS NM(l) 

-n Sort numerically rather than alphabetically. 

-o Prepend file or archive element name to each output line rather than only once. 

-p Do not sort; print in symbol-table order. 

-r Sort in reverse order. 

-s Sort according to the size of the external symbol (computed from the difference between the value 
of the symbol and the value of the symbol with the next higher value). This difference is the value 
printed. 

-u Print only undefined symbols. 

Sun386i OPTIONS 
-o Print the value and size of a symbol in octal instead of decimal. 

-x Print the value and size of a symbol in hexadecimal instead of decimal. 

-h Do not display the output header data. 

-v Sort external symbols by value before they are printed. 

-n Sort external symbols by name before they are printed. 

--e Print only external and static symbols. 

-f Produce full output. Print redundant symbols (.text, .data, .lib, and .bss), normally suppressed. 

-u Print undefined symbols only. 

-r Prepend the name of the object file or archive to each output line. 

-p Produce easily parsable, terse output Each symbol name is preceded by its value (blanks if 
undefined) and one of the letters U (undefined), A (absolute), T (text segment symbol), D (data 
segment symbol), S (user defined segment symbol), R (register symbol), F (file symbol), or C 
(common symbol). If the symbol is local (non-external), the type letter is in lower case. 

-V Print the version of the System V nm command executing on the standard error output. 

-T By default, System V nm prints the entire name of the symbols listed. Since object files can 
have symbols names with an arbitrary number of characters, a name that is longer than the 
width of the column set aside for names will overflow its column, forcing every column after 
the name to be misaligned. The -T option causes System V nm to truncate every name which 
would otherwise overflow its column and place an asterisk as the last character in the displayed 
name to mark it as truncated 

Options may be used in any order, either singly or in combination, and may appear anywhere in the com
mand line. Therefore, both /usr/bin/nm name --e -v and /usr/bin/nm -ve name print the static and exter
nal symbols in name, with external symbols sorted by value. 

EXAMPLE 
example% nm 

prints the symbol list of the file named a.out, the default output file for the C, compiler. 

Sun386i BUGS 
When all the symbols are printed, they must be printed in the order they appear in the symbol table in order 
to preserve scoping information. Therefore, the -v and -n options should be used only in conjunction with 
the --e option. 

SEE ALSO 
ar(lV), as(l), cc(l V), ld(l), tmpnam(3S), a.out(S), ar(5), cofT(S) 

Sun386i DIAGNOSTICS 
nm: name: cannot open 

if name cannot be read. 

340 Last change: 18 February 1988 Sun Release 4.0 



NM(l) USER COMMANDS NM(l) 

nm: name: bad magic 
if name is not a common object file. 

nm: name: no symbols 
if the symbols have been stripped from name. 

Sun Release 4.0 Last change: 18 February 1988 341 



NOHUP(lV) USER COMMANDS NOHUP( lV) 

NAME 
nohup - run a command immune to hangups and quits 

SYNOPSIS 
nohup command [ arguments ] 

DESCRIPTION 
There are three distinct versions of nohup: it is built in to the C shell, and is an executable program avail
able in /usr/bin/nohup and /usr/Sbin/nohup when using the Bourne shell. 

The Bourne shell version of nohup executes command such that it is immune to HUP (hangup) and TERM 
(terminate) signals. If the standard output is a terminal, it is redirected to the file nohup.out. The standard 
error is redirected to follow the standard output 

The priority is incremented by 5. nohup should be invoked from the shell with '&' in order to prevent it 
from responding to interrupts or input from the next user. 

SYSTEM V DESCRIPTON 
Processes run by nohup are immune to HUP (hangup) and QUIT ( quit) signals; nohup does not arrange to 
make them immune to a TERM (terminate) signal, so unless they arrange to be immune to a TERM signal, 
or the shell makes them immune to a TERM signal, they will receive that signal. If nohup.out is not writ
able in the current directory, output is redirected to $HOME/nohup.out. If the standard error is a terminal, 
it is redirected to the standard output, otherwise it is not redirected. The priority of the process run by 
nohup is not altered. 

EXAMPLE 
It is frequently desirable to apply nohup to pipelines or lists of commands. This can be done only by plac
ing pipelines and command lists in a single file, called a shell script The command 

example% nohup sh script 

applies to everything in script. (If the script is to be executed often, then the need to type sh can be elim
inated by giving script execute permission). Add an ampersand and the contents of script are run in the 
background with interrupts also ignored (see sh(l)): 

example% nohup script & 

FILES 
nohup.out 
$HOME/nohup.out 

SEE ALSO 

BUGS 

342 

chmod(l V), csh(l), nice(l), sh(l), signal(3) 

If you use csh(l), then commands executed with '&' are automatically immune to HUP signals while in the 
background. 

There is a C shell built-in command nohup that provides immunity from terminate, but does not redirect 
output to nohup.out. 

nohup does not recognize command sequences. For instance, 

nohup command] ; command2. 

applies only to command] and the command: 

nohup(commandl;command2.) 

is syntactically incorrect. 

Be careful of where the standard error is redirected. The following command may put error messages on 
tape, making it unreadable: 

nohup cpio -o <list >ldev/rmt/lm& 

Last change: 10 January 1988 Sun Release 4.0 



NOHUP(lV) USER COMMANDS 

while 

nohup cpio -o <list >ldev/rmt/lm 2>errors& 

puts the error messages into the file errors. 

Sun Release 4.0 Last change: 10 January 1988 

NOHUP(lV) 

343 



NROFF( 1) USER COMMANDS NROFF( 1) 

NAME 
nroff - format documents for display or line-printer 

SYNOPSIS 
nroff [ -ehig ] [ -mname ] [ -nN] [ -opagelist ] [ -raN] [ -sN] [ -Tname ] 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
nroff formats text in the named.files for typewriter-like devices. See also troff(l). The full capabilities of 
nroff and nroff are described in Formatting Documents. 

If no file argument is present, nroff reads the standard input. An argument consisting of a '-' is taken to be 
a file name corresponding to the standard input 

OPTIONS 

344 

Options may appear in any order so long as they appear before the files. 

-e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

-h Use output TAB characters during horizontal spacing to speed output and reduce output character 
count. TAB settings are assumed to be every 8 nominal character widths. 

-i Read standard input after the input files are exhausted 

-q Invoke the simultaneous input-output mode of the rd request. 

-mname 
Prepend the macro file /usr/share/lib/tmac/tmac.name to the input files. 

-nN Number first generated page N. 

-opagelist 
Print only pages whose page numbers appear in the comma-separated list of numbers and ranges. 
A range N-M means pages N through M; an initial -N means from the beginning to page N; and a 
final N- means from N to the end. 

-raN Set register a ( one-character) to N. 

-sN Stop every N pages. nroff will halt prior to every N pages (defaultN=l) to allow paper loading or 

-Tname 

changing, and will resume upon receipt of a NEWLINE. 

Prepare output for a device of the specified name. Known names are: 

37 Teletype Corporation Model 37 terminal -this is the default. 
crt I lpr I tn300 GE TenniNet 300, or any line printer or terminal without half-line capa

bility. 
300 DASI-300. 
300-12 DASI-300 - 12-pitch. 
JOOS I 302 I dtc DAS1-300S. 
300S-12 I 302-12 I dtc12 

382 
382-12 

DAS1-300S. 
DASI-382 (fancy DTC 382). 
DASI-82 (fancy DTC 382 - 12-pitch). 
DASI-450 (Diablo Hyterm). 
DASI-450 (Diablo Hyterm)- 12-pitch. 

450 I ipsi 
450-12 I ipsi12 
450-12-8 
450X 

DASI-450 (Diablo Hyterm) - 12-pitch and lines-per-inch. 
DAS1-450X (Diablo Hyterm). 

832 AJ 832. 
833 AJ 833. 

Last change: 22 December 1987 Sun Release 4.0 



NROFF( 1) USER COMMANDS NROFF( 1) 

832-12 
833-12 
epson 
itoh 
itoh-12 
nee 
nec12 
nec-t 
qume 
qume12 
xerox 
xerox12 
x-ecs 
x-ecs12 

AJ 832 - 12-pitch. 
AJ 833 - 12-pitch. 
EpsonFX80. 
C:ITOHsO Prowriter. 
C:ITOHsO Prowriter - 12-pitch. 
NEC 55?0s0 or NEC 77?0s0 Spinwriter. 
NEC 55?0s0 or NEC 77?0s0 Spinwriter - 12-pitch. 
NEC 55?0/77?0s0 Spinwriter - Tech-Math/Times-Romanthimble. 
Qume Sprint - 5 or9. 
Qume Sprint-5 or 9,12-pitch. 
Xerox 17?0 or Diablo 16?0. 
Xerox 17?0 or Diablo 16?0 - 12-pitch. 
Xerox/Diablo 1730/630 - Extended Character Set. 
Xerox/Diablo 1730/630 - Extended Character Set, 12-pitch. 

EXAMPLE 

FILES 

The following command: 

example% nrofl'-s4-me users.guide 

formats users.guide using the -me macro package, and stopping every 4 pages. 

/tmp/ta• temporary file 
/usr/share/lib/tmac/tmac. * 

standard macro files 
/usr/share/lib/term/• terminal driving tables for nroff 
/usr/share/Iib/term/README 

index to terminal description files 

SEE ALSO 
checknr(l), eqn(l), tbl(l), trofl'(l), col(lV), term(5), man(7), me(7), ms(7) 

F orma.tting Documents 

Sun Release 4.0 Last change: 22 December 1987 345 



OBJDUMP(l) USER COMMANDS OBJDUMP(l) 

NAME 
objdump - dump selected parts of a COFF object file 

SYNOPSIS 
objdump [ option [ modifier ... ] ] filename ... 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

The objdump command dumps selected parts of each of its object filename arguments. This command is 
compatible with System V in all its options. It will accept both object files and archives of object files. 

objdump command attempts to format the information it dumps in a meaningful way, printing certain 
information in character, hex, octal or decimal representation as appropriate. 

OPTIONS 

346 

-a Dump the archive header of each member of each archive file argument 

-g Dump the global symbols in the symbol table of an archive. 

-f Dump each file header. 

-o Dump each optional header. 

-h Dump section headers. 

-s Dump section contents. 

-r Dump relocation information. 

-I Dump line number information. 

-t Dump symbol table entries. 

-z name Dump line number entries for the named function. 

-c Dump the string table. 

-L Interpret and print the contents of the .lib sections. 

Modifiers 
The following modifiers are used in conjunction with the options listed above. 

-d number Dump the section number, number, or the range of sections starting at number and ending at 
the number specified by +d. 

+d number Dump sections in the range either beginning with first section or beginning with section 
specified by -d. 

-n name Dump information pertaining only to the named entity. This modifier applies to -h, -s, -r, -I, 
and-t. 

-p Suppress printing of the headers. 

-t index Dump only the indexed symbol table entry. The -t used in conjunction with +t, specifies a 
range of symbol table entries. 

+t index Dump the symbol table entries in the range ending with the indexed entry. The range begins at 
the first symbol table entry or at the entry specified by the -t option. 

-u Underline the name of the file for emphasis. 

-v Dump information in symbolic representation rather than numeric (e.g., C_STATIC instead of 
OX02). This modifier can be used with all the above options except -s and -o. 

-z name ,number 
-z name number Dump line number entry or range of line numbers starting at number for the 
named function. 

Last change: 19 February 1988 Sun Release 4.0 



OBJDUMP( 1) USER COMMANDS OBJDUMP(l) 

+z number Dump line numbers starting at either function name or number specified by -z, up to number 
specified by +z. 

White space separating an option and its modifier is optional. 

SEE ALSO 
coff(5), ar(5) 

Sun Release 4.0 Last change: 19 February 1988 347 



OD( lV) USER COMMANDS OD( lV) 

NAME 
od - octal, decimal, hex, and ascii dump 

SYNOPSIS 
od [ -format ] [filename ] [ [+]offset[.] [b] [label] ] 

DESCRIPTION 
od displays file, or its standard input, in one or more dump formats as selected by the first argument. If the 
first argument is missing, -o (octal) is the default Dumping continues until end-of-file. 

Format Arguments 
The meanings of the format argument characters are: 

a Interpret bytes as characters and display them with their ASCII names. If the p character is given 
also, bytes with even parity are underlined. If the P character is given, bytes with odd parity are 
underlined. Otherwise the parity bit is ignored. 

b Interpret bytes as unsigned octal. 

c Interpret bytes as ASCII characters. Certain non-graphic characters appear as C escapes: NULL=\0, 
backspace=\b, formfeed=\f, NEWLINE=\n, RETURN=\r, TAB=\t; others appear as 3-digit octal 
numbers. Bytes with the parity bit set are displayed in octal. 

d Interpret (short) words as unsigned decimal. 

f Interpret long words as floating point 

h Interpret (short) words as unsigned hexadecimal. 

Interpret (short) words as signed decimal. 

I Interpret long words as signed decimal. 

o Interpret (short) words as unsigned octal. 

s[n] Look for strings of ASCII graphic characters, terminated with a null byte. n specifies the minimum 
length string to be recognized. By default, the minimum length is 3 characters. 

v Show all data. By default, display lines that are identical to the last line shown are not output, but are 
indicated with an '*' in column 1. 

w[n] Specifies the number of input bytes to be interpreted and displayed on each output line. If w is not 
specified, 16 bytes are read for each display line. If n is not specified, it defaults to 32. 

x Interpret (short) words as hexadecimal. 

An upper case format character implies the long or double precision form of the object 

The offset argument specifies the byte offset into the file where dumping is to commence. By default this 
argument is interpreted in octal. A different radix can be specified; if • is appended to the argument, then 
offset is interpreted in decimal. If offset begins with x or Ox, it is interpreted in hexadecimal. If b (B) is 
appended, the offset is interpreted as a block count, where a block is 512 (1024) bytes. If the file argument 
is omitted, the offset argument must be preceded by +. 

The radix of the displayed address will be the same as the radix of the offset, if specified; otherwise it will 
be octal. 

label will be interpreted as a pseudo-address for the first byte displayed. It will be shown in () following 
the file offset It is intended to be used with core images to indicate the real memory address. The syntax 
for label is identical to that for offset. 

SYSTEM V DESCRIPTION 

348 

The a, f, h, I, v, and w formats are not supported. The s format interprets (short) words as signed decimal, 
rather than searching for strings. The options for interpreting long or double-precision forms are not sup
ported. The label argument is not supported The B suffix to the offset argument is not supported. 

Last change: 9 September 1987 Sun Release 4.0 



OD( lV) USER COMMANDS OD( lV) 

SEE ALSO 

BUGS 

adb(l), dbx(l), dbxtool(l) 

A file name argument can't start with+. A hexadecimal offset can't be a block count. Only one file name 
argument can be given. 

It is an historical botch to require specification of object, radix, and sign representation in a single character 
argument 

Sun Release 4.0 Last change: 9 September 1987 349 



OLDCOMP ACT ( 1) USER COMMANDS OLDCOMP ACT ( 1 ) 

NAME 
oldcompact, olduncompact, oldccat - compress and uncompress files, and cat them 

SYNOPSIS 
/usr/old/compact [filename. . . ] 

uncompact [filename .. . ] 

ccat [filename. . . ] 

DESCRIPTION 

FILES 

Note: This program is considered to be obsolete, and will not be distributed or supported in future Sun 
releases. 

compact compresses the named files using an adaptive Huffman code. If no file names are given, the stan
dard input is compacted to the standard output. compact operates as an on-line algorithm. Each time a 
byte is read, it is encoded immediately according to the current prefix code. This code is an optimal Huff
man code for the set of frequencies seen so far. It is unnecessary to prepend a decoding tree to the 
compressed file since the encoder and the decoder start in the same state and stay synchronized. Further
more, compact and uncompact can operate as filters. In particular: 

... I compact I uncompact I ... 
operates as a (very slow) no-op. 

When an argument file is given, it is compacted and the resulting file is placed in file.C; file is removed. 
The first two bytes of the compacted file code the fact that the file is compacted. This code is used to 
prohibit recompaction. 

The amount of compression to be expected depends on the type of file being compressed. Typical values 
of compression are: Text (38%), Pascal Source (43%), C Source (36%) and Binary (19%). These values 
are the percentages of file bytes reduced. 

uncompact restores the original file from a file calledfi/e .C which was compressed by compact. If no file 
names are given, the standard input is uncompacted to the standard output. 

ccat cats the original file from a file compressed by compact, without uncompressing the file. 

*.C 

SEE ALSO 

compacted file created by compact, removed by uncompact 

350 

Gallager, Robert G., Variations on a Theme of Huffman, I.E.E.E. Transactions on Information Theory, vol. 
IT-24, no. 6, November 1978, pp. 668 - 674. 

Last change: 24 September 1987 Sun Release 4.0 



OLDEY ACC ( 1) USER COMMANDS OLDEY ACC ( 1 ) 

NAME 
oldeyacc - modified yacc allowing much improved error recovery 

SYNOPSIS 
/usr/old/eyacc [ -v ] [ grammar ] 

DESCRIPTION 
eyacc is a version of yacc(l), that produces tables used by the Pascal system and its error recovery rou
tines. eyacc fully enumerates test actions in its parser when an error token is in the look-ahead set This 
prevents the parser from making undesirable reductions when an error occurs before the error is detected. 
The table format is different in eyacc than it was in the old yacc, as minor changes had been made for 
efficiency reasons. 

SEE ALSO 
yacc(l) 

BUGS 

Practical LR Error Recovery by Susan L. Graham, Charles B. Haley and W. N. Joy; SIGPLAN Conference 
on Compiler Construction, August 1979. 

pc and its error recovery routines should be made into a library of routines for the new yacc. 

Sun Release 4.0 Last change: 24 September 1987 351 



OLDFILEMERGE ( 1 ) USER COMMANDS OLDFILEMERGE ( 1 ) 

NAME 
oldfilemerge - window-based file comparison and merging program 

SYNOPSIS 
/usr/old/filemerge [ -br ] [ -a ancestor ] [ -l listfile ] [ left.file [ rightfile [ out.file ] ] ] 

DESCRIPTION 
Note: This program is considered to be obsolete, and will not be distributed or supported in future Sun 
releases. 

filemerge is a window-based version of diff( 1 ), for comparing and merging text files. It displays two files 
for side-by-side comparison, each in a read-only text-subwindow. Beneath them, an editing subwindow 
can be used to construct a merged version-one which contains selected lines from either or both input 
files, along with any additional edits you may make. 

leftfile and right.file are the files to be compared, and outfile is name of the file containing the merged ver
sion. If out.file is a directory, then the output is placed in the file outfilelleftfile. If out.file is omitted, the 
output file is named filemerge. out by default If no filename arguments are given, you can enter them 
from within the tool itself. 

OPTIONS 
-b Ignore leading blanks in comparisons. 

-r Read-only mode. Do not display the editing subwindow. 

-a ancestor 

-1 listfile 

Compare both files with respect to ancestor. A minus-sign indicates lines that have been deleted 
relative to the ancestor. A plus-sign indicates lines added relative to the ancestor. 

Process a list of filename pairs. With this option, leftfile and right.file are the names of directories, 
and list.file contains a list of filenames that appear in both. filemerge compares the versions of 
each file between the two directories, and allows you to create a merged version (typically in the 
directory outfile). The SHIFf-Load command button, which is selected by holding the SHIFf key 
while clicking on the Load button, reads in the next pair named in the list If listfile is ' - ', then the 
list of files is read from the standard input. 

USAGE 

352 

The text in the editing subwindow (outfile) is initially the same as that in leftfile. To construct a merged 
version, you can directly edit the text of outfile with textedit commands, or you can change a selected 
difference to match rightfile (the one on the right) by clicking the Right button in the top panel. 

Differences 
At any given time, one of the displayed ''differences'' is current. The current difference is indicated by 
emboldening the symbol adjacent to each line, and also by the notation "i of n" displayed in the control 
panel. Once a difference is current, you can use the Left and Right buttons to apply either the left-hand or 
the right-hand version of the text to outfile. The Next and Prev buttons select the next or previous differ
ence, respectively. 

Property Sheet 
You can customize filemerge using the property sheet to set or alter various display and control options. 
To bring up the property sheet, press the Props function key (typically L3) while the mouse is over any 
part of the filemerge window. 

Menus 
There are pop-up menus associated with several of the control panel items, and a menu associated with the 
editing subwindow. The former provide to select any command function obtained with a modified mouse
button (such as SHIFf-Next ); the editing subwindow's menu has items that control the filename and direc
tory location of the merged output. To bring up a menu, move the mouse-cursor to the command button, or 
to the editing subwindow, and hold down the RIGHT mouse-button. Select a desired menu item by releas
ing the mouse-button after moving the cursor on top of it. 

Last change: 9 September 1987 Sun Release 4.0 



OLDFILEMERGE ( 1 ) USER COMMANDS OLDFILEMERGE ( 1 ) 

Command Buttons 
Next Make the next difference current. The subwindow scrolls, if necessary, to display it. 

Prev 

Right 

CTRL-Right 

Left 

Undo 

SHIFf-Next 12 Make the first difference current. (Also a menu item from the Next menu.) 

Make the previous difference current. 

SHIFf-Prev 12 Make the last difference current. (Also a menu item from the Prev menu.) 

Apply right-hand version of the current difference to outfile. If autoadvance is in effect, 
advance to the next difference. 

SHIFf-Right 12 Apply the right-hand version and advance to the next difference, unless 
autoadvance is in effect. (Also a menu item from the Right menu.) 

Apply the right-hand version for the current difference, and for all subsequent differences 
up to the end of the file. 

Apply the left-hand version of the current difference. 

Undo the last Right or Left operation. You can Undo up to 100 stacked operations. You 
cannot undo an Undo. 

SHIFf-Undo 12 Undo all the operations since the last Load, or the last 100 operations. 

Scroll-Lock When in effect, the three text-subwindows scroll in unison. Otherwise each subwindow 
scrolls independently. 

i of n The number of the current difference, i, out of n detected differences. Popping up a menu 
on this item allows you to jump to a selected difference. 

Load Load the files whose names appear by the prompts Filel: and File2:. 

SHIFf-Load 12 When the -1 option is used, load the files from the directories shown in 
Filel and File2 corresponding to the next name in the list (taken from the listfile argument). 

Done Save outfile and close the tool. The name used to save the file appears in the namestripe, in 
the same fashion as textedit(l). 

SHIFf-Done 12 Save without closing. You can also save the merged version using the Save 
item in the editing subwindow's menu. 

Quit Exit the tool. You must explicitly save your merged outfile, either with the Done button or 
the Save item in the editing subwindow's menu. 

Properties 

FILES 

Hitting the L3 function key brings up a property sheet that controls several filemerge parameters. The 
information in the property sheet is stored in the file /. filemergerc. The property panel items have the fol
lowing meanings: 

Apply 

Reset 

Done 

Any changes you have made to the property sheet will now take effect. 

Reset the property sheet to the state it had at the time of the last Apply. 

Close the property sheet. 

autoadvance Advance to the next difference after each Left or Rightoperation. 

Toplines Number of lines in the top two subwindows. 

Bottom lines Number of lines in the bottom sub window. 

Columns 

/. filemergerc 
filemerge.out 

Number of columns in the left (and also right) subwindow. 

file storing property sheet information 
default output file 

Sun Release 4.0 Last change: 9 September 1987 353 



OLDFILEMERGE ( 1 ) USER COMMANDS OLDFILEMERGE ( 1) 

SEE ALSO 
diff(l), sdifT(l), textedit(l) 

BUGS 
Using the Find function key gets the subwindows out of sync for scrolling. To resync them, turn Scroll
Lock first off, and then on. 

354 Last change: 9 September 1987 Sun Release 4.0 



OLDMAKE(l) USER COMMANDS OLDMAKE(l) 

NAME 
oldmake - maintain, update, and regenerate groups of programs 

SYNOPSIS 
/usr/old/make [ -f makefile ] . . . [ -bdeikmnpqrsSt ] [ target . . . ] [ macro-name =value . . . ] 

DESCRIPTION 
make executes a list of shell commands associated with each target, typically to create or update a file of 
the same name. makefile contains entries for targets that describe how to bring them up to date with 
respect to the files and/or other targets on which each depends, called dependencies. 

A target is out of date when the file it describes is missing, or when one (or more) of its dependency files 
has a more recent modification time than that of the target file. make recursively scans the list of depen
dencies for each target argument (or the first target entry in the makefile if no target argument is supplied) 
to generate a list of targets to check. It then checks, from the bottom up, each target against any files it 
depends on to see if it is out of date. If so, make rebuilds that target 

To rebuild a target, make executes the set of shell commands, called a rule, associated with it. This rule 
may be listed explicitly in a makefile entry for that target, or it may be supplied implicitly by make. 

If no makefile is specified on the command line, make uses the first file it finds with a name from the fol
lowing list: 

makefile, Makefile, s.makefile, s.Makefile, SCCS/s.makefile, SCCS/s.Makefile. 

If no target is specified on the command line, make uses the first target defined in makefile. If a target has 
no makefile entry, or if its entry has no rule, make attempts to update that target using an implicit rule. 

OPTIONS 
-f makefile 

Use the description file makefile. A'-' as the makefile argument denotes the standard input. The 
contents of makefile, when present, override the builtin rules. When more than one '-f makefile' 
argument pairs appear, make takes input from each makefile in the order listed (just as if they 
were run through cat(lV)). 

-b This option has no effect, but is present for compatibility reasons. 

-d Debug mode. Print out detailed information on files and times examined. 

-e Environment variables override assignments within makefiles. 

-i Ignore error codes returned by invoked commands. 

-k When a nonzero error status is returned by an invoked command, abandon work on the current 
target but continue with other branches that do not depend on that target 

-n No execution mode. Print commands, but do not execute them. Even lines beginning with an @ 
are printed. However, if a command line contains the $(MAKE) macro, that line is always exe
cuted (see the discussion ofMAKEFLAGS in Environment Variables and Macros). 

-p Print out the complete set of macro definitions and target descriptions. 

-q Question mode. make returns a zero or nonzero status code depending on whether or not the tar-
get file is up to date. 

-r Do not use the the implicit rules make supplies by default. Implicit rules defined in the makefile 
remain in effect. 

-s Silent mode. Do not print command lines before executing them. 

-S Undo the effect of the -k option. 

-t Touch the target files (bringing them up to date) rather than performing commands listed in their 
rules. 

Sun Release 4.0 Last change: 16 November 1987 355 



OLDMAKE( 1) USER COMMANDS OLDMAKE(l) 

ma.cro-name =value 
Macro definition. This definition overrides any definition for the specified macro that occurs in 
the makefile itself, or in the environment. See Macros and Environment Variables and Macros, 
for details. 

USAGE 

356 

Refer to Doing More with SunOS: Beginner's Guide and Prograrruning Utilities and Libraries for tutorial 
information about make. 

Targets and Rules 
There need not be an actual file named by a target, but every dependency in the dependency list must be 
either the name of a file, or the name of another target. 

If the target has no dependency list and no rule, or if the target has no entry in the makefile, make attempts 
to produce an entry by selecting a rule from its its set of implicit rules. If none of the implicit rules apply, 
make uses the rule specified in the .DEFAULT target (if it appears in the makefile). Otherwise make stops 
and produces an error message. 

Makefile Target Entries 
A target entry has the following format: 

target ... : [dependency] . . . [; command] ... 
[comma.nd] 

The first line contains the name of a target (or a space-separated list of target names), terminated with a 
colon (:). This may be followed by a dependency, or a dependency list that make checks in the order 
listed. The dependency list may be terminated with a semicolon (;), which in turn can be followed by a 
Bourne shell command. Subsequent lines in the target entry begin with a TAB, and contain Bourne shell 
commands. These commands comprise a rule for building the target, and are performed when the target is 
updated by make. 

Shell commands may be continued across input lines by escaping the NEWLINE with a backslash ( \ ). The 
continuing line must also start with a TAB. 

To rebuild a target, make expands any macros, strips off initial TAB characters and passes each resulting 
command line to a Bourne shell for execution. 

The first nonblank line that does not begin with a TAB or # begins another target or macro definition. 

Makefile Special Characters 
.• Conditional dependency branch. When used in place of a colon(:) the double-colons allow a tar

get to be checked and updated with respect to more than one dependency list The double-colons 
allow the target to have more than one branch entry in the makefile, each with a different depen
dency list and a different rule. make checks each branch, in order of appearance, to see if the tar
get is outdated with respect to its dependency list If so, make updates the target according to 
dependencies and rule for that branch. 

# Start a comment The comment ends at the next NEWLINE. 

$ Macro expansion. See Macros, below, for details. 

Following the TAB, if the first character of a command line is a'-', make ignores any nonzero 
error code it may return. make normally terminates when a command returns nonzero status, 
unless the -i or -k options are in effect. 

@ Following the TAB, if the first character is a'@', make does not print the command line before 
executing it. 

If'-' and'@' appear as the first two characters after the TAB, both apply. 

$$ The dollar-sign, escaped from macro expansion. Can be used to pass variable expressions begin
ning with $ to the shell. 

Last change: 16 November 1987 Sun Release 4.0 



OLDMAKE(l) USER COMMANDS OLDMAKE(l) 

Command Execution 
Command lines are executed one at a time, each by its own shell. Shell commands, notably cd, are ineffec
tual across an unescaped NEWLINE in the makefile. A line is printed (after macro expansion) as it is exe
cuted, unless it starts with a '@', there is a .SILENT entry in the dependency hierarchy of the current target, 
or make is run with the -s option. Although the -n option specifies printing without execution, lines con
taining the macro $(MAKE) are executed regardless, and lines containing the @ special character are 
printed. The -t (touch) option updates the modification date of a file without executing any rules. This can 
be dangerous when sources are maintained by more than one person. 

To take advantage of the Bourne shell if control structure for branching, use a command line of the form: 
if 
expression; \ 
then 
command;\ 
command;\ 

elif 
expression; \ 

else 
command;\ 
fi 

Although composed of several input lines, the escaped NEWLINE characters insure that make treats them 
all as one command line. To take advantage of the Bourne shell for control statement, use a command line 
of the form: 

for var in list ; do \ 
command;\ 

done 
To write shell variables, use double dollar-signs ( $$ ). This escapes expansion of the dollar-sign by make. 

Signals 
INT and QUIT signals received from the keyboard halt make and remove the target file being processed 
(unless it is in the dependency list for .PRECIOUS). 

Special-Function Targets 
When incorporated in a makefile, the following target names perform special functions . 

. DEFAULT If this target is defined in the makefile, its rule is used when there is no entry in the makefile 
for a given target and none of the implicit rules applies. make ignores the dependency list 
for this target. 

.PRECIOUS List of files not to delete. Files listed as dependencies for this target are not removed if 
make is interrupted while rebuilding them . 

.SILENT Run silently. When this target appears in the makefile, make does not echo commands 
before executing them. 

JGNORE Ignore errors. When this target appears in the makefile, make ignores nonzero error codes 
returned from commands . 

.SUFFIXES The suffixes list for selecting implicit rules (see Implicit Rules). 

Include Files 

make has an include file capability. If the word include appears as the first seven letters of a line, and is 
followed by a SPACE or a TAB, the string that follows is taken as a filename. The text of the named file is 
read in at the current location in the makefile. include files can be nested to a depth of no more than about 
16. 

Sun Release 4.0 Last change: 16 November 1987 357 



OLDMAK.E( 1) USER COMMANDS OLDMAKE(l) 

358 

Macros 
Entries of the form 

macro-name =value 

define macros. name is the name of the macro, and value, which consists of all characters up to a comment 
character or unescaped NEWLINE, is the value. Words in a macro value are delimited by SPACE, TAB, and 
escaped NEWLINE characters, and the terminating NEWLINE. 

Subsequent references to the macro, of the forms: $(name) or ${name} are replaced by value. The 
parentheses or brackets can be omitted in a reference to a macro with a single-character name. 

Macros definitions can contain references to other macros, but the nested references aren't expanded 
immediately. Instead, they are expanded along with references to the macro itself. 

Substitutions within macros can be made as follows: 

$(name:strl =str2) 

where strl is either a suffix, or a word to be replaced in the macro definition, and str2 is the replacement 
suffix or word. 

Dynamically Maintained Macros 
There are several dynamically maintained macros that are useful as abbreviations within rules. 

$* The basename of the current target. It is assigned only for implicit rules. 

$< The name of the file on which the target is assumed to depend. This macro is only assigned for 
implicit rules, or within the .DEFAULT target's rule. 

$@ The name of the current target. It is assigned only for rules in targets that are explicitly defined in 
the makefile. 

$? The list of dependencies with respect to which the target is out of date. This macro is assigned 
only for explicit rules. 

$% The library member. The $% macro is only evaluated when the target is an archive library 
member of the form: lib(file .o ). In this case, $@ evaluates to lib and$% evaluates to the library 
member,file .o. 

All of these macros but $? can be modified to apply either to the filename part, or the directory part of the 
strings they stand for, by adding an upper case For D, respectively (and enclosing the resulting name in 
parentheses or braces). Thus, '$(@D)' refers to the directory part of the string '$@'. If there is no direc
tory part, '.' is generated. 

Environment Variables and Macros 
After reading in its implicit rules, make reads in variables from the environment, treating them as if they 
were macro definitions. Only then does make read in a makefile. Thus, macro assignments within a 
makefile override environment variables, provided that the -e option is not in effect. In tum, make exports 
environment variables to each shell it invokes. Macros not read in from the environment are not exported. 

The MAKEFLAGS macro is a special case. When present as an environment variable, make takes its 
options (except for-f, -p, and-d) from MAKEFLAGS in combination with any flags entered on the com
mand line. make retains this combined value, exports it automatically to each shell it forks, and reads its 
value to obtain options for any make commands it invokes. Note, however that flags passed with 
MAKEFLAGS even though they are in effect, are not shown in the output produced by make. 

The MAKE macro is another special case. It has the value make by default, and temporarily overrides the 
-n option for any line that contains a reference to it. This allows nested invocations of make written as: 

$(MAKE) ... 

to run recursively, so that the command make -n can be used to test an entire hierarchy of makefiles. 

Last change: 16 November 1987 Sun Release 4.0 



OLDMAKE( 1) USER COMMANDS OLDMAKE(l) 

For compatibility with the 4.2 BSD make, the MFLAGS macro is set from the MAKEFLAGS variable by 
prepending a'-'. MFLAGS is not exported automatically. 

make supplies the following macros for compilers and their options: 
cc C compiler, cc (1 V) CFLAGS C compiler options 
FC FORTRAN 77 compiler, 177 (1) FFLAGS FORTRAN 77 compiler options 

RFLAGS FORTRAN 77 compiler options with Ratfor (.r) source files 
PC Pascal compiler, pc (1) PFLAGS Pascal compiler options 
M2C · Modula-2 compiler M2FLAGS Modula-2 compiler options 
GET SCCS (1) get command GFLAGS secs get options 
AS the assembler, as (1) ASFLAGS assembler options 
LD the linker, Id (1) LDFLAGS linker options 
LEX lex (1) LFLAGS lex options 
YACC yacc (1) YFLAGS yacc options 
Unless these macros are read in as environment variables, their values are not exported by make. If you 
run make with any these set in the environment, it is a good idea to add commentary to the makefile to 
indicate what value each takes. If -r is in effect, make ignores these macro definitions. 

When set to a single-word value such as /usr/bin/csh, the SHELL macro indicates the name of an alternate 
shell to use for invoking commands. Note: to improve normal performance make executes command lines 
that contain no shell metacharacters directly. Such builtin commands as dirs, or set in the C shell are not 
recognized unless the command line includes a metacharacter (for instance, a semicolon). 

Implicit Rules 
make supplies implicit rules for certain types of targets that have no explicit rule defined in the makefile. 
For these types of targets, make attempts to select an implicit rule by looking for an association between 
the target and a file in the directory that shares its basename. That file, if found, is presumed to be a depen
dency file. The implicit rule is selected according to the target's suffix (which may be null), and that of the 
dependency file. If there is no such dependency file, if the suffix of either dependency or target is not the 
suffixes list, or if there is no implicit rule defined for that pair of suffixes, no rule is selected. make either 
uses the default rule that you have supplied (if any), or stops. 

The suffixes list is a target with each known suffix listed as a dependency, by default: 

.SUFFIXES: .o .c .c - .mod .m0<C .sym .def .def- .p .p - .f .r- .r .r - .y .y - .I .C 
.s .s - .sh .sh - .h .h -

Multiple suffix-list targets accumulate; a .SUFFIXES target with no dependencies clears the list of suffixes. 
Order is significant; make selects a rule that corresponds to the target's suffix and the first dependency-file 
suffix found in the list 

A tilde (-) refers to the s.prefix of an secs history file (see sccs(l)). If make cannot locate a history file 
(with a name of the form s.basename.suffix) in the current working directory, it checks for one in the SCCS 
subdirectory (if that directory exists) for one from which to get(l) the dependency file. 

An implicit rule is a target of the form: 

dt: 
rule 

where t is the suffix of the target, d is the suffix of the dependency, and rule is the implicit rule for building 
such a target from such a dependency. Both d and t must appear in the suffixes list for make to recognize 
the target as one that defines an implicit rule. 

An implicit rule with only one suffix describes how to build a target having a null ( or no) suffix, from a 
dependency having the indicated suffix. For instance, the .c rule describes how to build the executable file 
from a C source file,file.c. 

Implicit rules are supplied for the following suffixes and suffix pairs: 

Sun Release 4.0 Last change: 16 November 1987 359 



OLDMAKE(l) USER COMMANDS OLDMAKE(l) 

.c .c - .p .p - .mod .mod- .f .f .F .F- .r .r - .sh .sh - .c.o .c .o .c .c .p.o .p .o .p .p 

.mod.o .mod-.o .mod-.mod .def.sym .def .sym .def-.def .f.o .f.f .F.o .F-.o .F-.F .r.o 

.r -.o .r-.r .s.o .s-.o .s-.s .sh -.sh .y.o .y-.o .l.o .C.o .y.c .y -.c .y-.y .l.c .C.c .C.I .c.a 

.c -.a .s-.a .h-.h 

These rules can be changed within a makefile, and additional implicit rules can be added. To print out 
make' s internal rules, use the following command. Note: this command only works with the Bourne Shell: 

$ make -fp - 2>/dev/null <ldev/null 

If you are using the C shell, use this command to print out make's internal rules: 

example% (make -fp - <ldev/null >ldev/tty) >&/dev/null 

Library Maintenance 
If a target name contains parentheses, as with: 

lib.a(member) 

it is assumed to be the name of an archive (ar(l V)) library. The string within the parentheses refers to a 
member of the library. (If the string contains more than one word, the only first word is used.) A member 
of an archive can be explicitly made to depend on a file with a matching filename. For instance, given a 
directory that contains the files meml.c and mem2.c, along with a makefile with the entries: 

lib.a: lib.a(meml.o) lib.a(mem2.0) 

lib.a(meml.o): meml.o 
ar rv lib.a meml.o 

lib.a(mem2.o): mem2.o 
ar rv lib.a mem2.o 

make, when run, compiles the .c files into relocatable object (.o) files using the .c.o implicit rule. It then 
loads the freshly compiled version of each file into the library according to the explicit rules in the 
lib.a()targets. 

Implicit rules pertaining to archive libraries have the form .XX.a where the XX is the suffix from which the 
archive member is to be made. An unfortunate byproduct of the current implementation requires that XX to 
be different from the suffix of the archive member itself. For instance, the target lib(/ile .o) cannot depend 
upon thefile.o explicitly, but instead, must be made to depend on a source file, such asfile.c. For this rea
son it is recommended that you define an explicit target in the makefile for each library member to main
tain, as shown above. 

A target name of the form 

library((entry-point)) 

refers to the member of a randomized object library (see ranlib(l)) that defines the symbol entry-point. 

EXAMPLES 

360 

This makefile says that pgm depends on two files a.o and b.o, and that they in tum depend on their 
corresponding source files (a.c and b.c) along with a common file incl.h: 

pgm: a.o b.o 
cc a.o b.o -o $@ 

a.o: incl.h a.c 
cc-c a.c 

b.o: incl.h b.c 
cc-c b.c 

The following makefile uses the builtin inference rules to express the same dependencies: 

Last change: 16 November 1987 Sun Release 4.0 



OLDMAKE( 1) USER COMMANDS OLDMAKE(l) 

FILES 

pgm: a.o b.o 
cc a.o b.o -o pgm 

a.o b.o: incl.h 

[Mm]akefile 
s.[Mm ]akefile 
SCCS/s.[m.M]akefile 
/usr/bin/ csh 

DIAGNOSTICS 
Don't know how to make target • Stop. 

There is no makefile entry for target, and none of make's implicit rules apply (there is no depen
dency file with a suffix in the suffixes list, or the target's suffix is not in the list). 

* * * target removed. 
make was interrupted in the middle of trying to build target. Rather than leaving a partially
completed version that is newer than its dependencies, make removes the file associated with tar
get. 

*** Error code n. 
The previous shell command returned a nonzero error code. In this case make stops, unless either 
the -k or the -i option is set, the target .IGNORE appears, or the command is prefixed with a'-' 
in the makefile. 

*** signal message 
The previous shell command was aborted due to a signal. If'- core dumped' appears after the 
message, a core file was created. 

SEE ALSO 
ar(lV), cat(lV), cc(lV), cd(l), csh(l), get(l), lex(l), ranlib(l), sccs(l), sh(l) 

Doing More with SunOS: Beginner's Guide 
Programming Utilities and Libraries 

BUGS 

Some commands return nonzero status inappropriately; use -i to overcome the difficulty. 

Filenames with the characters=,:, and@ will not work. 

You cannot build lib(li/e .o) from file .o. 

The macro substitution $(a:.o=.c) does not work. 

Options supplied by MAKEFLAGS should appear in output from make. 

Sun Release 4.0 Last change: 16 November 1987 361 



OLDPRMAIL ( 1 ) USER COMMANDS OLDPRMAIL(l) 

NAME 
oldprmail - display waiting mail 

SYNOPSIS 
/usr/old/prmail [ user ] ... 

DESCRIPTION 
Note: This program is considered to be obsolete, and will not be distributed or supported in future Sun 
releases. 

prmail displays waiting mail for you, or the specified users. The mail is not disturbed. 

FILES 
/var/spool/mail/• waiting mail files 

SEE ALSO 
biff(l), mail(l), from(l), binmail(l) 

362 Last change: 31 March 1987 Sun Release 4.0 



OLDPTI( 1) USER COMMANDS OLDPTI(l) 

NAME 
oldpti - phototypesetter interpreter 

SYNOPSIS 
/usr/old/pti [filename ... ] 

DESCRIPTION 
Note: This program is considered to be obsolete, and will not be distributed or supported in future Sun 
releases. 

pti shows the commands in a stream from the standard output of troff(l) using troff's -t option, interpret
ing the commands as they would act on the typesetter. Horizontal motions show as counts in internal units 
and are marked with < and > indicating left and right motion. Vertical space is called leading and is also 
indicated. 

The output is really cryptic unless you are an experienced Cl NT hardware person. It is better to use 
'troff -a'. 

SEE ALSO 
troff(l) 

Sun Release 4.0 Last change: 16 November 1987 363 



OLDSETKEYS ( 1 ) USER COMMANDS OLDSETKEYS ( 1 ) 

NAME 
oldsetk:eys - modify interpretation of the keyboard 

SYNOPSIS 
/usr/old/setkeys [ reset I nosunview I [ [ lefty] [ noarrows ] ] ] [ sunl I sun2 I sun3 ] 

Sun386i SYNOPSIS 
setkeys [ reset I nosunview I [ [ lefty ] [ noarrows ] ] ] [ sunl I sun2 I sun3 ] 

DESCRIPTION 
setkeys has been superseded by the Input category in defaultsedit(l), and by the program 
input_from_defaults (1). It is retained for backwards compatibility on Sun-2, Sun-3 and Sun-4 systems. 

Sun386i DESCRIPTION 
setkeys changes the kernel's keyboard translation tables, converting a keyboard to one of a number of 
commonly desired configurations. It takes an indication of the modifications to be performed, and option
ally, the kind of keyboard attached to the user's machine. It affects all keyboard input for the machine it is 
run on (in or out of the window system) until that effect is superseded by rebooting, or by running 'setkeys 
reset'. 

OPTIONS 

364 

modifications 
Empty, or one of reset, nosunview, or some combination of lefty and noarrows. By default, the 
keyboard is set to produce the Sun View function-key codes (Stop, Props, Front, Close, Find, 
Again, Undo, Copy, Paste and Cut; Sun View 1 Beginner's Guide. On Sun2 and Sun3 keyboards, 
this is meaningless; on the Sunl, those functions are assigned to two columns of the right 
numeric-function pad. 

Lefty Indicate the Sun View functions are to be produced from keys on the right side of the keyboard, 
convenient for using the mouse in the left hand. 

On the Sun2 and Sun3 systems, the Sun View functions are reflected to the outside columns of the 
right function pad; those right-side functions are distributed in a more complicated fashion dic
tated by keeping the arrow keys together; see below. Also, the Line Feed key, immediately below 
Return, is converted to a second Control. 

On the Sunl, Lefty is the same as the default, since there is no left function pad. 

Noarrows 
Reassign the keys with cursor arrows on their caps to produce simple function codes (so they may 
be used with filters in the textsw, or mapped input in the ttysw). 

Nosunview 
Valid only on a Sun2 or Sun3 keyboard, and incompatible with Lefty, Noarrows, or Reset. This 
option assigns new codes to keys Fl and L2 - LlO, codes that are not normally produced any
where on the keyboard. These codes may be selected by a mapi or mapo operation defined in a 
user's .ttyswrc file. 

This option supports a measure of backwards compatibility to programs that apply some other 
interpretation to the affected function keys. It allows them to access the new codes when the stan
dard codes would be preempted by Sun View functions (for instance, in a tty(l) subwindow). 

Reset Incompatible with Lefty, Noarrows, or Nosunview; it causes the keyboard to be reset to its origi
nal interpretation. 

keyboard-type 
One of sun 1, sun2, or sun3. Normally, this option is omitted; the type of keyboard attached to the 
system is obtained from the kernel. If included, the option is believed in preference to the kernel's 
information. setkeys treats Sun2 and Sun3 keyboards identically except when the modification is 
Reset. 

Note: the keyboard type is not necessarily the same as the machine type. A Sunl keyboard is the 

Last change: 1 October 1987 Sun Release 4.0 



OLDSETKEYS ( 1 ) USER COMMANDS OLDSETKEYS ( 1 ) 

VflOO-style keyboard shipped with Model lOOUs, while Sun2 and Sun3 keyboards may be 
attached interchangeably to Sun-2 and Sun-3 machines. A Sun3 keyboard is distinguished by its 
aerodynamic housing, and the presence of Caps and Alternate keys. 

Options may appear in any order, and case is not significant. The accompanying diagrams show the exact 
distribution of codes for each combination of keyboard and arguments to setkeys. 

EXAMPLES 
The command 

setkeys lefty noarrows 

puts the Sun View functions on the right pad of the keyboard, replacing arrow keys by the corresponding 
right-function codes, and displacing right-function codes to the left pad. 

The command: 

setkeys sunl reset 

restores a Sunl keyboard to its original arrangement. 

SEE ALSO 
defaultsedit(l), input_from_defaults(l), kb(4M) 

Sun View 1 Beginner's Guide 

BUGS 

setkeys affects the kernel's key tables, which in tum affects all users logged in to the system. 

DIAGRAMS 
Sunl, reset: 

A V < > 
standard TFl TF2 TF3 TF4 
typing 7 8 9 
array 4 5 6 

1 2 3 En-
0 ter 

def a ult / lefty: 
A V < > 

standard Again RFl Stop RF2 
typing Undo RF3 Props RF4 
array Put RFS Front RF6 

Get RF7 Close RFS 
Delete Find 

default/ lefty, noarrow: 
TFl TF2 TF3 TF4 

standard ] Again RFl Stop RF2 
typing ] Undo RF3 Props RF4 
array ] Put RFS Front RF6 

] Get RF7 Close RF8 
Delete Find 

Sun Release 4.0 Last change: 1 October 1987 365 



OLDSETKEYS ( 1 ) USER COMMANDS OLDSETKEYS ( 1 ) 

Sun2 & Sun3, 
reset / def a ult: 

TFl TF2 •.. 
Stop Again [ standard RFl RF2 RF3 
Props Undo [ typing RF4 RFS RF6 
Front Put [ array RF7 RF9 
Close Get [ Retn < RFU > 
Find Delete [ LF RFI3 V RF15 
noarrows (only): 

TFl TF2 ... 
Stop Again [ standard RFl RF2 RF3 
Props Undo [ typing RF4 RFS RF6 
Front Put [ array RF7 RFS RF9 
Close Get [ Retn RFlO RFU RF12 
Find Delete [ LF RFI3 RF14 RF15 
lefty: 

TFl TF2 ... 
Stop RFl [ standard Again < Stop 
RF6 RF4 [ typing Undo > Props 
RF9 RF7 [ array Put Front 
RF12 RFlO [ Retn Get RFU Close 
RF15 RFI3 [ Ctrl Delete V Find 
lefty, noarrows 

TFl TF2 ... 
Stop RFl [ standard Again RF2 Stop 
RF6 RF4 [ typing Undo RFS Props 
RF9 RF7 [ array Put RFS Front 
RF12 RFlO [ Ret Get RFU Close 
RF15 RF13 [ Ctrl Delete RF14 Find 
nosunview: 

LFll TF2 ... 
Stop TFll [ standard RFl RF2 RF3 
LF12 TF12 [ typing RF4 RFS RF6 
LF13 TF13 [ array RF7 RF9 
LF14 TF14 [ Ret < RFU > 
LF15 TF15 [ LF RFI3 V RF15 

366 Last change: 1 October 1987 Sun Release 4.0 



OLDSUN3CVT ( 1 ) USER COMMANDS OLDSUN3CVT ( 1 ) 

NAME 
oldsun3cvt - convert large Sun-2 system executables to Sun-3 system executables 

SYNOPSIS 
/usr/old/sun3cvt [ oldfile [ newfile ] ] 

DESCRIPTION 

FILES 

Note: This program is considered to be obsolete, and will not be distributed or supported in future Sun 
releases. 

sun3cvt converts an old Sun-2 system program file (predating Sun release 3.0) into a Sun-3 system execut
able file. 

The default oldfile is a.out. The default newfile is sun3.out. 

sun3cvt attempts to create a file of the same type (magic number). However, for sharable-text files with 
less than 128kb of text, the new file will not be sharable (since Sun-3 data segments must begin on 128kb 
boundaries). Also, most programs have some text in the data segment as a consequence of the new larger 
Sun-3 system page and segment sizes. 

execve(2) executes an old Sun-2 system program file, but the program's text is not sharable. Old pure-text 
programs with text segments larger than 128kb can be made sharable on machines running release 3.0 or 
subsequent releases by using sun3cvt. 

a.out 
sun3.out 

default old.file 
default newfile 

SEE ALSO 
execve(2) 

Sun Release 4.0 Last change: 16 November 1987 367 



OLDSYSLOG ( 1) USER COMMANDS OLDSYSLOG ( 1 ) 

NAME 
oldsyslog - make a system log entry 

SYNOPSIS 
/usr/old/syslog [ - ] [ -p ] [ -i name ] [ -level ] [ message . . . ] 

DESCRIPTION 
Note: This program is considered to be obsolete, and will not be distributed or supported in future Sun 
releases. 

syslog sends the specified message (or stdin if'-' is specified) as a system log entry to the syslog daemon. 
The log entry is sent to the daemon on the machine specified by the loghost entry in the /etc/hosts file. 

OPTIONS 

FILES 

Each line of the standard input is sent as a log entry. 

-p syslog will log its process ID in addition to the other information. 

-i name The specified name will be used as the " ident " for the log entry. 

-level The message will be logged at the specified level. The level can be specified numerically, in the 
range 1 through 9, or symbolically using the names specified in the include file 
/usr/include/syslog.h (with the leading LOG_ stripped oft). syslog-HELP will list the valid sym
bolic level names. Only the super-user can make log entries at levels less than or equal to 
SALERT. 

/usr/etc/syslogd syslog daemon 

/usr/include/syslog.h 

SEE ALSO 

names of logging levels 

syslog(3), syslogd(8) 

368 Last change: 31 March 1987 Sun Release 4.0 



OLDTEKTOOL ( 1 ) USER COMMANDS OLDTEKTOOL ( 1 ) 

NAME 
oldtektool- SunView Tektronix 4014 terminal-emulator window 

SYNOPSIS 
/usr/old/tektool [ -s[lcdeg[ce]m[l2]] [ -[er] command-line ] [ -f fontdir] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
tektool emulates a Tektronix 4014 terminal with the enhanced graphics module. It does this in much the 
same way as shelltool (see shelltool(l)) emulates a regular glass tty. When tektool is invoked, a command 
(usually a shell) is started up, its output and input are connected to the emulator, and a new window is 
formed. The default window is the entire screen. When the emulator is running, keys TF(l) through TF(3), 
(usually function keys Fl-F3 (see kbd(4S)) have special meaning. 

TF (1) 

TF (2) 

TF (3) 

Unshifted, this is the 4014 PAGE button. Shifted, this is the 4014 RESET button. 

Copy screen. The raster image (/usr/include/rasterfile.h) of the 4014 screen is piped to a 
command found in the TEKCOPY environment variable. If TEKCOPY is not found in the 
environment, 'lpr-v' is used. The copy button is unaffected by window manipulations, and 
will transmit the contents of the 4014 screen only. 

Release page full condition. 

These functions are also available through the tool menu. When in graphics input (GIN) mode and the 
4014 crosshairs are visible, the left hand mouse button may be used as the space bar to terminate GIN 
mode. 

OPTIONS 
-s 

Sun Release 4.0 

Specifies the Tektronix 4014 strap options with the following modifiers: 

Received LINEFEED characters also generate RETURN characters. 
c Received RETURN characters also generate LINEFEED characters. 
d Received DELETE characters are used as low order Y axis ( LOY ) addresses. 
e Echo keyboard input. 
g Graphic input mode (GIN) terminator specification. If this strap is followed by 

a c, GIN mode data is terminated by a RETURN character. If it is followed by 
a e, GIN mode data is terminated by a RETURN character followed by an EOT 
character. If this strap is not present, no characters are sent after GIN mode 
data. 

m Page full control specification. If this strap is followed by a 1, tektool will 
stop accepting tty input when a LINEFEED character is done past the last line 
in margin 1. This is the 4014 page full condition. The page full condition it 
released by a PAGE or a RELEASE or any ASCII keyboard input. If this strap 
is followed by a 2, the page full condition happens at the end of margin 2. If 
this strap is not present, the page full condition never occurs. 

If the -s option is not given, the environment is searched for the TEKSTRAPS 
variable which provides the modifiers. The straps may also be set by the pro
perty sheet available by selecting the PROPS menu item. If no straps are 
specified the d strap is assumed. -f f ontdir Look for fonts in the directory 
specified by fontdir. The fonts must be called tekfontO through tekfont3. 
Fonts must be in vfont(5) format. If this option is not given, the font directory 
is obtained from the TEKFONTS environment variable (if it exists). If no font 
directory is specified, /usr/Iib/fonts/tekfonts is used. 

Last change: 21 December 1987 369 



OLDTEKTOOL ( 1) USER COMMANDS OLDTEKTOOL ( 1 ) 

FILES 

-c comma.nd-line 
Take terminal emulator input from a shell which in turn runs the comma.nd-line following 
the -c option. 

-r comma.nd-line 
Run comma.nd-line to provide input to the terminal emulator. This must be the last option, 
since the remainder of the arguments are used by the command. 

/usr/lib/fonts/tekfonts/tekfont[0-3] 

SEE ALSO 

BUGS 

sunview(l), shelltool(l), kbd(4S), vfont(5) 

Installing the Sun0S 

Special point plot mode is not supported. 

Z-axis stuff, except for defocusing, is not supported. 

Defocused alpha characters are not supported. 

DIAGNOSTICS 
copy command failed The copy command in the TEKCOPY environment variable or in the property 

sheet could not be executed. 

CAVEATS 

370 

Like all 4014 emulators, this does not duplicate every nuance of the 4014. For instance, certain programs 
redraw stuff already on the screen in order to highlight things with the storage flash. This will not work 
here. Also, even though the emulator supports the full 4096 point addressing of the 4014, it cannot display 
this on the screen. All points will be rounded to the nearest available pixel. This may cause some funny 
effects. 

The tektool window may be treated just like other windows; it can be overlaid, moved, reshaped etc. 
However, when the window is reshaped, the contents will not scale. 

Last change: 21 December 1987 Sun Release 4.0 



OLDVC( 1) USER COMMANDS OLDVC( 1) 

NAME 
oldvc - version control 

SYNOPSIS 
/usr/old/vc [ -a ] [ -s ] [ -t ] [ -cc ] [ keyword =value] . .. 

DESCRIPTION 
The vc command copies lines from the standard input to the standard output under control of its arguments 
and the control statements encountered in the standard input. In the process of performing the copy opera
tion, a reference to a user-declared keyword is replaced by its character-string value, when appearing in a 
plain text line or control statement. 

Copying lines from the standard input to the standard output is conditional, based on tests (in control state
ments) of keyword values specified either in control statements, or as vc command-line arguments. 

OPTIONS 

USAGE 

-a Force replacement of keyword references in all text lines, and not just in vc statements. 

-s Silent. Suppress warning messages (but not error messages) that are normally printed on the diag-
nostic output. 

-t If a TAB character appears on a line, all characters from the beginning of a line, up to and includ
ing the first TAB, are ignored for the purpose of detecting a control statement. If the TAB precedes 
a control statement, the leading text is discarded. 

-cc Specify an alternate control character to use instead of ':'. 

vc distinguishes between text input lines and version control statement lines. A version control statement 
(control statement) is a single line beginning with a control character. The default control character is 
colon (: ), except as modified by the -cc option. Input lines beginning with a backslash ( \ ), and followed 
by a control character, are not control lines and are copied to the standard output as text with the backslash 
removed. Lines beginning ·Nith a backslash, but not followed by a control character, are copied in their 
entirety. 

Keyword Replacement 
A keyword is composed of 9 or less alphanumeric characters; the first must be alphabetic. A value is any 
printable ASCII character or character string. An unsigned string of digits is treated as a numeric value in 
control operations. Keyword values may not contain any SPACE or TAB characters. 

Keyword replacement is performed whenever a keyword, surrounded by control characters, is encountered 
on a version control statement. The -a option forces replacement of keywords in all lines of text. An 
uninterpreted control character may be included in a value by preceding it with '\ '. If a literal '\' is 
desired, then it too must be preceded by a ' \ '. 

Version Control Statements 
: dcl keyword [,keyword] 

Declare a keyword. All keywords must be declared. 

: asg keyword=value 

Assign a value to a keyword. An asg statement overrides any previous assignment for the 
corresponding keyword, including those on the vc command line. Keywords declared, but not 
assigned values, have null values. 

:if [not] condition 

:end Skip lines of the standard input. When condition is TRUE, all lines between the if statement and 
the matching end statement are copied to the standard output. Otherwise, the intervening lines are 
discarded and ignored, including intervening control statements. Intervening if and end control 
statements are recognized solely for the purpose of maintaining the proper if-end matching. The 
not argument inverts the sense of the condition. When it is used, intervening lines are included in 

Sun Release 4.0 Last change: 16 November 1987 371 



OLDVC(l) USER COMMANDS OLDVC(l) 

the output only when the conditions is false. 

condition is a logical expression composed of comparisons and logical operators. A comparison 
consists of two text values (may be keyword references) separated by a comparison operator. 
Each value must be separated from all operators by at least one SPACE • Numeric strings are 
treated as unsigned integers for certain comparisons. The comparison operators are: 

= equal (string) 
!= not equal (string) 
> greater than (numeric) 
< less than (numeric) 

For instance, the line: 

:if XXX != yyy 

tests to see whether the string 'xxx' is not equal to 'yyy', which is true; subsequent intervening 
lines are therefore included. 

The logical sense of comparisons can be combined using the logical operators (in order of pre
cedence): 

( ) logical grouping 

& and 
I or 

For instance, the line 

:if XXX = yyy I XXX != yyy 

is true because either comparison will make it true, while 

:if XXX = yyy & XXX != yyy 

is false, because in this case, both comparisons must be true. 

: : text Force keyword replacement on lines that are copied to the standard output, independent from the 
-a option. The two leading control characters are removed, and keywords surrounded by control 
characters in text are replaced by their value before the line is copied to the output file. 

:on 
:off Turn on or off keyword replacement on all lines. 

:ctl c Change the control character to c. 

:msg message 
Print message on the diagnostic output. 

:err message 
Print the given message, followed by: 

ERROR: err statement on line ... (915) 

on the diagnostic output; vc halts execution, and returns an exit code of 1. 

SEE ALSO 
help(l) 

DIAGNOSTICS 
Use help(l) for explanations. 

372 Last change: 16 November 1987 Sun Release 4.0 



ON( lC) USER COMMANDS ON( lC) 

NAME 
on - execute a command on a remote system, but with the local environment 

SYNOPSIS 
on [ -i ] [ -d ] [ -n ] host command [ argument ] ... 

DESCRIPTION 
The on program is used to execute commands on another system, in an environment similar to that invok
ing the program. All environment variables are passed, and the current working directory is preserved. To 
preserve the working directory, the working file system must be either already mounted on the host or be 
exported to it. Relative path names will only work if they are within the current file system; absolute path 
names may cause problems. 

The standard input is connected to the standard input of the remote command, and the standard output and 
the standard error from the remote command are sent to the corresponding files for the on command. 

OPTIONS 
-i Interactive mode. Use remote echoing and special character processing. This option is needed for 

programs that expect to be talking to a terminal. All terminal modes and window size changes are 
propagated. 

-d Debug mode. Print out some messages as work is being done. 

-n No Input. This option causes the remote program to get EOF when it reads from the standard input, 
instead of passing the standard input from the standard input of the on program. For example, -n 
is necessary when running commands in the background with job control. 

SEE ALSO 
exports(5), rexd(8C) 

DIAGNOSTICS 

BUGS 

unknown host Host name not found. 

cannot connect to server 
Host down or not running the server. 

can't find Problem finding the working directory. 

can't locate mount point 
Problem finding current file system. 

Other error messages may be passed back from the server. 

The Sun View window system can get confused by the environment variables. 

When the working directory is remote mounted over NFS, a "Z hangs the window. 

Sun Release 4.0 Last change: 9 September 1987 373 



ORGANIZER ( 1 ) USER COMMANDS ORGANIZER( 1) 

NAME 
organizer - file and directory manager 

SYNOPSIS 
organizer 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

374 

organizer is a Sun View application for viewing and manipulating files and directories. It performs many 
of the functions of the Is, cd, cp, rm, mv, mkdir, rmdir, backup, restore, find, and cbmod commands 
with a visual interface. 

At any given time, the organizer window normally shows the files and directories in a single directory, 
representing each file or directory with an appropriate illustrated icon. The illustration indicates whether a 
file is a directory, contains text, is an executable program, or optionally a user-defined file type. 

When organizer is switched into Map mode, the icons are arranged to indicate the hierarchy of files and 
directories. Double clicking on a directory icon shows the contents of that directory in a new column. 

Several display modes are available, and can be set for an individual organizer window or for all organ
izer windows. You can select whether hidden files are shown, whether just the name, the name and infor
mation, or name and icon are shown for each file and directory, and how the contents are sorted. 

Text files can be "opened" by double clicking on the file's icon. The contents of the file are then shown 
and can be edited in a separate text editor window. Double-clicking always opens files; in user-defined file 
types, you can specify the OPEN, EDIT, and PRINT applications. 

You can move down through the directory hierarchy by double clicking on a directory icon, and up by dou
ble clicking on the up arrow button on the command panel. 

Copying, moving, and deleting require you to select one or more files. To select a file, click the left button 
on it (don't double click-this will open the file). To select additional files to be operated on, click the 
middle button on each additional file. Copying and moving operations require a destination directory. 
After the files are selected, change directories to the desired destination as described above, and then 
"drop" the files with the Drop button on the command panel. If the copy involves overwriting an identi
cally named file, organizer will prepend copy_ or_ to the filename of the new file. 

/usr/include/images/• file and directory icons 

Last change: 19 February 1988 Sun Release 4.0 



OVERVIEW ( 1) USER COMMANDS OVERVIEW ( 1) 

NAME 
overview - run a program from Sun View that takes over the screen 

SYNOPSIS 
overview [ -w ] [ generic _tool _flags ] pro gram_ name [ arguments ] ... 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
Bitmap graphics based programs that are not SunView based can be run from SunView using overview. 
overview shows an icon in Sun View when overview is brought up iconic (-Wi flag) or when the program 
being run by overview is suspended (for example, using CTRL-Z). Opening the overview icon, or starting 
overview non-iconic, starts the program named on the command line. overview suppresses Sun View so 
that Sun View window applications will not interfere with the program's display output or input devices. 

overview runs programs that fit the following profile: 

own display 

keyboard input from stdio 

The program needs to own the bits on the screen. It does not use the sun
view library to arbitrate the use of the display and input devices between 
processes. 

The program takes keyboard input from stdin directly. 

mouse input from /dev/mouse The program takes locator input from the mouse directly. 

OPTIONS 
-w This flag is used to specify that the program being run creates its own Sun Windows window in 

order to receive the serialized input stream from the keyboard and mouse that is provided by the 
SunWindows kernel driver. -w tells overview to not convert SunWindows input into ASCII 

which is then sent to the program being run under overview via a pty. X and NeWS are programs 
that fall in this category (as of Dec 86, which is subject to change in the future). 

SEE ALSO 
sunview(l) 

BUGS 
Users of overview on a Sun-3/110 should be aware of the impact of plane groups on pre-3.2 applications. 
You cannot successfully run pre-3.2 applications under overview if overview itself is running in the color 
buffer. If you start overview so that it is not running in the overlay plane, then the enable plane is not be 
properly set up for viewing the application. This means that you cannot run overview with the -Wf or -Wb 
generic tool arguments. Also, you cannot run overview on a desktop created by sunview using the -
Shit_ color_ only option. 

Sun Release 4.0 Last change: 21 December 1987 375 



PACK(l) USER COMMANDS PACK(l) 

NAME 
pack, peat, unpack - compress and expand files 

SYNOPSIS 
pack [ - ] [ -f] filename . .. 

peat filename . .. 

unpack filename ... 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 

376 

pack attempts to store the specified files in a packed form using Huffman (minimum redundancy) codes on 
a byte-by-byte basis. Wherever possible (and useful), each input file filename is replaced by a packed file 
filename .z with the same access modes, access and modified dates, and owner as those of filename. If 
pack is successful, filename will be removed. 

Packed files can be restored to their original form using unpack or peat. 

The amount of compression obtained depends on the size of the input file and the frequency distribution of 
its characters. 

Because a decoding tree forms the first part of each .z file, it is usually not worthwhile to pack files smaller 
than three blocks unless the distribution of characters is very skewed This may occur with printer plots or 
pictures. 

Typically, large text-files are reduced to 60-75% of their original size. Load modules, which use a larger 
character set and have a more uniform distribution of characters, show little compression. Their packed 
versions come in at about 90% of the original size. 

No packing will occur if: 
the file appears to be alreao y packed 
the file name has more than 12 characters 
the file has links 
the file is a directory 
the file cannot be opened 
no disk storage blocks will be saved by packing 
a file called name .z already exists 
the .z file cannot be created 
an I/0 error occurred during processing 

The last segment of the filename must contain no more than 12 characters to allow space for the appended 
.z extension. Directories cannot be packed. 

peat does for packed files what cat(l V) does for ordinary files, except that peat cannot be used as a filter. 
The specified files are unpacked and written to the standard output. To view a packed file named name .z 
use: 

peat filename .z 

or just: 

peat filename 

To make an unpacked copy without destroying the packed version, use 

pcatfilename> newname 

Last change: 21 December 1987 Sun Release 4.0 



PACK( 1) USER COMMANDS 

Failure may occur if: 
the filename (exclusive of the .z) has more than 12 characters; 
the file cannot be opened; 
the file does not appear to be the output of pack. 

PACK( 1) 

unpack expands files created by pack. For each file filename specified in the command, a search is made 
for a file called filename .z (or just filename, if filename ends in .z). If this file appears to be a packed, it is 
replaced by its expanded version. The new file has the .z suffix stripped from its name, and has the same 
access mcdes, access and modification dates, and owner as those of the packed file. Failure may occur for 
the same reasons that it may in peat, as well as for the following: 

• a file with the "unpacked" name already exists 

• the unpacked file cannot be created. 

OPTIONS 
Print compression statistics for the following filename or names on the standard output. Subse
quent '-'s between filenames toggle statistics off and on. 

-f Force packing of filename. This is useful for causing an entire directory to be packed, even if 
some of the files will not benefit. 

DIAGNOSTICS 
pack returns the number of files that it failed to compress. 

peat returns the number of files it was unable to unpack. 

unpack returns the number of files it was unable to unpack. 

SEE ALSO 
cat(lV) 

Sun Release 4.0 Last change: 21 December 1987 377 



PAGESIZE ( 1) USER COMMANDS PAGESIZE ( 1 ) 

NAME 
pagesize - display the size of a page of memory 

SYNOPSIS 
pagesize 

DESCRIPTION 
pagesize prints the size of a page of memory in bytes, as returned by getpagesize(2). This program is use
ful in constructing portable shell scripts. 

SEE ALSO 
getpagesize(2) 

378 Last change: 9 September 1987 Sun Release 4.0 



PASSWD(l) USER COMMANDS PASSWD(l) 

NAME 
passwd, chfn, chsh - change password file information 

SYNOPSIS 
passwd [ -fs ] [ -F filename ] [ username ] 

chfn [ -f] [ -F filename ] [ username ] 

chsh [ -s ] [ -F filename ] [ username ] 

DESCRIPTION 
passwd changes (or installs) a password, login shell (-s option), or full name (-f option) associated with 
the user username (your own by default). chsh is equivalent to passwd with the -s option, and chfn is 
equivalent to passwd with the -f option. 

When changing a password, passwd prompts for the old password and then for the new one. You must 
supply both, and the new password must be typed twice to forestall mistakes. 

New passwords should be at least five characters long, if they combine upper-case and lower-case letters, 
or at least six characters long if in monocase. Users that persist in entering shorter passwords are 
compromising their own security. The number of significant characters in a password is eight, although 
longer passwords will be accepted. 

Only the owner of the name or the super-user may change a password; the owner must prove he knows the 
old password. 

When changing a login shell, passwd displays the current login shell and then prompts for the new one. 
The new login shell must be one of the approved shells listed in /etc/shells unless you are the super-user. 
If /etdshells does not exist, the only shells that may be specified are /bin/sh and /bin/csh. 

The super-user may change anyone's login shell; normal users may only change their own login shell. 

When changing a full name, passwd displays the current full name, enclosed between brackets, and 
prompts for a new full name. If you type a carriage return, the full name is not changed. If the full name is 
to be made blank, you must type the word ''none''. 

The super-user may change anyone's full name; normal users may only change their own. 

Use yppasswd(l) to change your password in the network Yellow Pages. This will not affect your local 
password, or your password on any remote machines on which you have accounts. On Sun386i systems, 
passwd calls yppasswd automatically if you do not have an entry in the local passwd file. 

OPTIONS 

FILES 

-s Change the login shell. 

-r Change the full name. 

-F filename 
Treatfilename as the password file. 

/etc/passwd 
/etc/shells 

file containing all of this information 
The list of approved shells 

SEE ALSO 

BUGS 

finger(l), login(l), yppasswd(l), crypt(3), passwd(5), 

passwd changes a local password, but not a password in the network Yellow Pages. Refer to yppasswd(l) 
for information on how to change a YP password. 

There is no way to change the login shell or the full name in the Yellow Pages. 

Sun Release 4.0 Last change: 18 February 1988 379 



PASTE( 1) USER COMMANDS PASTE( 1) 

NAME 
paste - join corresponding lines of several files, or subsequent lines of one file 

SYNOPSIS 
paste filename] filename2 ... 
paste -dlist filename] filename2 ... 
paste -s [ -dlist ]filename] filename2 ... 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
In the first two forms, paste concatenates corresponding lines of the given input files filename] , filename2, 
etc. It treats each file as a column or columns of a table and pastes them together horizontally (parallel 
merging). It is the counterpart of cat(lV) which concatenates vertically, that is, one file after the other. In 
the last form above, paste replaces the function of an older command with the same name by combining 
subsequent lines of the input file (serial merging). In all cases, lines are glued together with the TAB char
acter, or with characters from an optionally specified list. paste can be used as a filter, if - is used in place 
of a filename. 

OPTIONS 
-d 

-s 

Without this option, the NEWLINE characters of each but the last file (or last line in case of the -s 
option) are replaced by a TAB character. This option allows replacing the TAB character by one 
or more alternate characters in list. The list is used circularly; when exhausted, it is reused. In 
parallel merging (no -s option), the lines from the last file are always terminated with a NEWLINE 
character, not from the list. list may contain the special escape sequences: \n (NEWLINE), \t 
(tab), \\ (backslash),and \0 (empty string, not a null character). Quoting may be necessary, if 
characters have special meaning to the shell. 

Merge subsequent lines rather than one from each input file. Use TAB for concatenation, unless 
list is specified with -d. Regardless of the list, the very last character of the file is forced to be a 
NEWLINE. 

EXAMPLES 
Is I paste - - - -

List directory in four columns. 

paste -s -d "\ t\ n" filename 
Combine pairs of lines into lines. 

SEE ALSO 
cat(lV), cut(l), grep(l V), pr(l V) 

DIAGNOSTICS 
line too long 

Output lines are restricted to 511 characters. 

too many files 
Except for -s option, no more than 12 input files may be specified 

380 Last change: 12 January 1988 Sun Release 4.0 



PERFMETER ( 1) USER COMMANDS PERFMETER ( 1 ) 

NAME 
perfmeter - display system performance values in a meter or strip chart 

SYNOPSIS 
perfmeter [ -s sample-time ] [ -b h-hand-int ] [ -m m-hand-int ] 

[ -M smax minmax maxmax ] [ -v value ] [ hostname ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
Sun0S for information on how to install optional software. 

DESCRIPTION 
perfmeter is a Sun View utility that displays performance values (statistics) for a given hostname. If no 
host is specified, statistics the current host is metered. The rstatd(8C) daemon must be running on the 
machine being metered 

When open, perfmeter displays a performance value in the form of a strip chart. When closed, it displays 
a meter dial. By default, the display is updated with a sample-time of 2 seconds. The hour hand of the 
meter represents the average over a 20-second interval; the minute hand, the average over 2 seconds. The 
default value displayed is the percent of CPU being utilized. 

The maximum scale value for the strip chart will automatically double or halve to accommodate increasing 
or decreasing values for the host machine. This scale can be restricted to a certain range with the -M 
option. 

OPTIONS 
-s sample-time 

Set the sample time to sample-time seconds. 

-h h-hand-int 
Set the hour-hand interval to h-hand-int seconds. 

-m m-hand-int 
Set the minute hand interval to m-hand-int seconds. 

-M smax minmax maxmax 
Set a range of maximum values for the strip chart. Values for each of the arguments should be 
powers of 2. smax sets the starting maximum-value. minmax sets the lowest allowed maximum
value for the scale. maxmax sets the highest allowed maximum-value. 

-v value 
Set the performance value to be monitored to one of: 

cpu Percent of CPU being utilized 

pkts Ethernet packets per second. 

page Paging activity in pages per second. 

swap Jobs swapped per second. 

intr Number of device interrupts per second. 

disk Disk traffic in transfers per second 

cntxt Number of context switches per second. 

load Average number of runnable processes over the last minute. 

coils Collisions per second detected on the ethemet. 

errs Errors per second on receiving packets. 

Sun Release 4.0 Last change: 21 January 1988 381 



PERFMETER ( 1 ) USER COMMANDS PERFMETER ( 1 ) 

USAGE 
Commands 

FILES 

You can change the statistic being displayed by clicking the RIGHT mouse button, and then choosing the 
desired menu item. The other meter parameters can be modified by moving the pointer onto the tool ( either 
open or closed), and typing: 

m Decrease minutehandintv by one 

M Increase minutehandintv by one 

h Decrease hourhandintv by one 

H Increase hourhandintv by one 

1-9 Set sampletime to a range from 1 to 9 seconds. 

/etc/servers starts statistics server 

SEE ALSO 
sunview(l), netstat(8C), rstatd(8C), vmstat(8) 

382 Last change: 21 January 1988 Sun Release 4.0 



PG(lV) USER COMMANDS PG( lV) 

NAME 
pg - page through a file on a soft-copy terminal 

SYNOPSIS 
/usr/Sbin/pg [ -cefns] [-number] [ -p string] [ +linenumber] [+/pattern/] [filename ... ] 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the SunOS for information on how to 
install this command. 

The pg command is a filter that allows you to page through filename, one screenful at a time, on a soft
copy terminal. With a filename of'-', or no filename specified, pg reads from the standard input. Each 
screenful is followed by a prompt. If the user types a RETURN, another page is displayed; other possibili
ties are enumerated below. 

This command is different from previous paginators in that it allows you to back up and review something 
that has already passed. The method for doing this is explained below. 

In order to determine terminal attributes, pg scans the terminfo(SV) data base for the terminal type 
specified by the environment variable TERM. If TERM is not defined, the terminal type dumb is assumed. 

The responses that may be typed when pg pauses can be divided into three categories: those causing further 
perusal, those that search, and those that modify the perusal environment. 

Commands which cause further perusal normally take a preceding address, an optionally signed number 
indicating the point from which further text should be displayed. This address is interpreted in either pages 
or lines depending on the command. A signed address specifies a point relative to the current page or line, 
and an unsigned address specifies an address relative to the beginning of the file. Each command has a 
default address that is used if none is provided. 

The perusal commands and their defaults are as follows: 

(+l)< NEWLINE> or< SPACE> 
Display one page. The address is specified in pages. 

(+l) I With a relative address pg will simulate scrolling the screen, forward or backward, the number of 
lines specified. With an absolute address this command prints a screenful beginning at the 
specified line. 

(+l) d or "D 
Simulate scrolling half a screen forward or backward. 

The following perusal commands take no address . 

• or "L Redisplay the current page of text. 

$ Display the last full window in the file. Use with caution when the input is a pipe. 

The following commands are available for searching for text patterns in the text. The regular expressions 
described in ed(l) are available. They must always be terminated by a < NEWLINE >, even if the -n 
option is specified. 

ii pattern/ 
Search forward for the i th ( default i = 1) occurrence of pattern. Searching begins immediately 
after the current page and continues to the end of the current file, without wrap-around. 

i"pattern" 
i?pattern? 

Sun Release 4.0 

Search backwards for the ith (default i=l) occurrence of pattern. Searching begins immediately 
before the current page and continues to the beginning of the current file, without wrap-around. 
The " notation is useful for Adds 100 terminals which will not properly handle the ? . 

Last change: 16 November 1987 383 



PG( lV) USER COMMANDS PG( lV) 

After searching, pg will normally display the line found at the top of the screen. This can be modified by 
appending m or b to the search command to leave the line found in the middle or at the bottom of the win
dow from now on. The suffix t can be used to restore the original situation. 

The user of pg can modify the environment of perusal with the following commands: 

in Begin perusing the ith next file in the command line. The i is an unsigned number, default value 
is 1. 

ip Begin perusing the ith previous file in the command line. i is an unsigned number, default is 1. 

iw Display another window of text. If i is present, set the window size to i. 

sfilename 
Save the input in the named file. Only the current file being perused is saved. The white space 
between the sand filename is optional. This command must always be terminated by a< NEW
LINE >, even if the -n option is specified. 

h Help by displaying an abbreviated summary of available commands. 

q or Q Quit pg. 

!command 
command is passed to the shell, whose name is taken from the SHELL environment variable. If 
this is not available, the default shell is used. This command must always be terminated by a< 
NEWLINE >, even if the -n option is specified. 

At any time when output is being sent to the terminal, the user can hit the quit key, normally A(CTRL 
backslash) or the BREAK (interrupt) key. This causes pg to stop sending output, and display the prompt. 
The user may then enter one of the above commands in the normal manner. Unfortunately, some output is 
lost when this is done, due to the fact that any characters waiting in the terminal's output queue are flushed 
when the quit signal occurs. 

If the standard output is not a terminal, then pg acts just like cat(l V), except that a header is printed before 
each file (if there is more than one). 

OPTIONS 

384 

The command line options are: 

-number 
An integer specifying the size (in lines) of the window that pg is to use instead of the default. (On 
a terminal containing 24 lines, the default window size is 23). 

-p string 
Use string as the prompt. If the prompt string contains a '%d', the first occurrence of' %d' in the 
prompt will be replaced by the current page number when the prompt is issued. The default 
prompt string is ': '. 

-c Home the cursor and clear the screen before displaying each page. This option is ignored if 
clear_ screen is not defined for this terminal type in the term info( 5V) data base. 

-e do not pause at the end of each file. 

-f Inhibit pg from splitting lines. Normally, pg splits lines longer than the screen width, but some 
sequences of characters in the text being displayed (for instance, escape sequences for underlin
ing) generate undesirable results. The 

-n Automatic end of command as soon as a command letter is entered. Normally, commands must 
be terminated by a < NEWLINE > character. 

-s Print all messages and prompts in standout mode (usually inverse video). 

+line number 
Start up at linenumber. 

Last change: 16 November 1987 Sun Release 4.0 



PG( IV) USER COMMANDS PG( IV) 

+/pattern/ 
Start up at the first line containing the regular expression pattern. 

EXAMPLE 

FILES 

A sample usage of pg in reading system news would be 

news I pg -p "(Page %d):" 

/usr/share/Iib/terminf o/• 

/tmp/pg* 
terminal information data base 
temporary file when input is from a pipe 

SEE ALSO 

BUGS 

NOTES 

cat(lV), crypt(l), ed(l), grep(lV), more(l), terminfo(SV) 

If terminal TAB characters are not set every eight positions, undesirable results may occur. 

When using pg as a filter with another command that changes the terminal 1/0 options (for instance, 
crypt(l)), terminal settings may not be restored correctly. 

While waiting for terminal input, pg responds to BREAK , DEL , and A by terminating execution. Between 
prompts, however, these signals interrupt pg's current task and place the user in prompt mode. These 
should be used with caution when input is being read from a pipe, since an interrupt is likely to terminate 
the other commands in the pipeline. 

Users of more(l) will find that the z and f commands are available, and that the terminal /,\or? may be 
omitted from the searching commands. 

Sun Release 4.0 Last change: 16 November 1987 385 



PLOT( lG) USER COMMANDS PLOT(lG) 

NAME 
plot, aedplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, t300, t300s, t4013, t450, tek - graphics 
filters for various plotters 

SYNOPSIS 
plot [ -Tterminal ] 

DESCRIPTION 
plot reads plotting instructions (see plot(5)) from the standard input and produces plotting instructions suit
able for a particular terminal on the standard output 

If no terminal is specified, the environment variable TERM is used. The default terminal is tek. 

ENVIRONMENT 

FILES 

386 

Except for ver, the following terminal-types can be used with 'lpr -g' see lpr(l)) to produce plotted out
put: 

264812648alh81hp26481hp2648a 
Hewlett Packard 2648 graphics terminal. 

300 DASI 300 or GSI terminal (Diablo mechanism). 

300s I JOOS DASI 300s terminal (Diablo mechanism). 

450 DASI Hyterm 450 terminal (Diablo mechanism). 

4013 Tektronix 4013 storage scope. 

40141 tek Tektronix 4014 and 4015 storage scope with Enhanced Graphics Module. (Use 
4013 for Tektronix 4014 or 4015 without the Enhanced Graphics Module). 

aed AED 512 color graphics terminal. 

bgplot I bitgraph 
BBN bitgraph graphics terminal. 

crt Any crt terminal capable of running vi(l). 

dumb I un I unknown 
Dumb terminals without cursor addressing or line printers. 

gigi I vt125 DEC vtl25 terminal. 

h7 I hp7 I hp7221 
Hewlett Packard 7221 graphics terminal. 

Imagen plotter. 

Benson Varian printer-plotter 

implot 

var 

ver Versatec D1200A printer-plotter. The output is scan-converted and suitable input 
to 'lpr-v'. 

/usr/bin/t300 
/usr/bin/t300s 
/usr/bin/t4013 
/usr/bin/t450 
/usr/bin/aedplot 
/usr/bin/crtplot 
/usr/bin/gigiplot 
/usr/bin/implot 
/usr/bin/plot 
/usr/bin/bgplot 
/usr/bin/dumbplot 
/usr/bin/hpplot 

Last change: 22 December 1987 Sun Release 4.0 



PLOT( lG) 

/usr/bin/vplot 
/usr/bin/tek 
/usr/bin/t450 
/usr/bin/t300 
/usr /bin/t300s 
/usr/bin/vplot 
/var/tmp/vplotnnnnnn 

SEE ALSO 

USER COMMANDS 

lpr(l), vi(l), graph(lG), plot(3X), plot(5), rasterfile(5) 

Sun Release 4.0 Last change: 22 December 1987 

PLOT(lG) 

387 



PR(IV) USER COMMANDS PR(lV) 

NAME 
pr- prepare file(s) for printing, perhaps in multiple columns 

SYNOPSIS 
pr [ - I+ n ] [ -fmt ] [ -h string] [ -In ] [ -sc ] [ -wn ] [filename ] ... 

SYSTEM V SYNOPSIS 
/usr/Sbin/pr [ - I + n ] [ -adfmprt ] [ -eek ] [ -h string ] 

[ -ick ] [ -In ] [ -nck ] [ -on ] [ -sc ] 
[ -wn] [filename] ... 

DESCRIPTION 
pr prepares one or more filenames for printing. By default, the output is separated into pages headed by a 
date, the name of the file, and the page number. pr prints its standard input if there are no filename argu
ments. FORMFEED characters in the input files cause page breaks in the output, as expected. 

By default, columns are of equal width, separated by at least one SPACE; lines that do not fit are truncated. 
If the -s option is used, lines are not truncated and columns are separated by the separation character. 

Inter-terminal messages using write(l) are forbidden during a pr. 

OPTIONS 

388 

Options apply to all following.filenames but may be reset between.filenames: 

-f Use FORMFEED characters instead of NEWLINE characters to separate pages. A 
FORMFEED lis assumed to use up two blank lines at the top of a page. Thus this option 
does not affect the effective page length. 

-m Print all.filenames simultaneously, each in one column, for example: 
Print Print The 
the the third 
lines 
of 
file 
one. 

lines 
of 
file 
two. 

file's 
lines 
go 
here. 

-t Do not print the 5-line header or the 5-line trailer normally supplied for each page. Pages 
are not separated when this option is used, even if the -f option was used. The -t option 
is intended for applications where the results should be directed to a file for further pro
cessing. 

-h string 
Use string, instead of the file name, in the page header. 

-In Take the length of the page to be n lines instead of the default 66. 

-sc Separate columns by the single character c instead of by the appropriate amount of white 
space. A missing c is taken to be a TAB. 

-wn For multicolumn output, take the width of the page to be n characters instead of the 
default 72. 

-n Produce n-column output. For example: 
Print of in 
the one three 
lines file columns. 

Columns are not balanced; if, for example, there are as many lines in the file as there are 
lines on the page, only one column will be printed. Even if the -t option (see below) is 
specified, blank lines will be printed at the end of the output to pad it to a full page. 

+n Begin printing with page n. 

Last change: 9 September 1987 Sun Release 4.0 



PR(lV) USER COMMANDS PR( lV) 

SYSTEM V OPTIONS 
When the -n option is specified for multicolumn output, columns are balanced. For example, if there are as 
many lines in the file as there are lines to be printed, and two columns are to be printed, each column will 
contain half the lines of the file. If the -t option is specified, no blank lines will be printed to pad the last 
page. 

The options -e and -i are assumed for multicolumn output. The -m option overrides the -k and -a 
options. 

The -f option does not assume that FORMFEED uses up two blank lines; blank lines will be printed after 
the FORMFEED if necessary. 

-a 

-d 

-p 

-r 

-eek 

-ick 

-nck 

-ok 

When combined with the -n option, print multicolumn output across the page. For 
example: 

Print 
of 
in 

the 
one 
three 

Double-space the output. 

lines 
file 
columns. 

Pause before beginning each page if the output is directed to a terminal (pr) will ring the 
bell at the terminal and wait for a RETURN). 

Do Not print diagnostic reports if a file cannot be opened, or if it is empty. 

Expand input TAB characters to character positions k+l, 2*k+l, 3*k+l, etc. If k is O or 
is omitted, default TAB settings at every eighth position are assumed. TAB characters in 
the input are expanded into the appropriate number of SPACE characters. If c (any non
digit character) is given, it is treated as the input TAB character ( default for c is the TAB 
character). 

In output, replace white space wherever possible by inserting TAB characters to character 
positions k+l, 2*k+l, 3*k+l, etc. If k is O or is omitted, default TAB settings at every 
eighth position are assumed. If c (any non-digit character) is given, it is treated as the 
output TAB (default for c is the TAB character). 

Provide k-digit line numbering (default fork is 5). The number occupies the first k+l 
character positions of each column of normal output or each line of -m output. If c (any 
non-digit character) is given, it is appended to the line number to separate it from what
ever follows (default for c is a TAB). 

Offset each line by k character positions. The number of character positions per line is 
the sum of the width and offset. 

EXAMPLES 
Print a file called dreadnought on the printer - this is the simplest use of pr: 

example% pr dreadnought I lpr 
example% 

Produce three laminations of a file called ridings side by side in the output, with no headers or trailers, the 
results to appear in the file called Yorkshire: 

example% pr -m -t ridings ridings 
example% 

FILES 
/dev/tty* to suspend messages. 

SEE ALSO 
lpr(l), write(l), cat(lV) 

Sun Release 4.0 Last change: 9 September 1987 389 



PR( lV) USER COMMANDS PR( lV) 

DIAGNOSTICS 
can't print O cols, using 1 

-0 was specified as a -n option. 

pr: bad key 
key An illegal option was given. 

pr: No room for columns. 
The number 0f columns requested won't fit on the page. 

pr: Too many args 
More than 10 files were specified with the -m option. 

file: error 
filename could not be opened. This diagnostic is not printed if pr is printing on a terminal. 

SYSTEM V DIAGNOSTICS 
pr: bad option 

BUGS 

390 

An illegal option was given. 

pr: width too small 
The number of columns requested won't fit on the page. 

pr: too many files 
More than 10 files were specified with the -m option. 

pr: page-buffer overflow 
The formatting required is more complicated than pr can handle. 

pr: out of space 
pr could not allocate a buffer it required. 

pr:filename-- empty file 
filename was empty. This diagnostic is printed after all the files are printed if pr is printing on a 
terminal. 

pr: can't openfilename 
filename could not be opened. This diagnostic is printed after all the files are printed if pr is 
printing on a terminal. 

The options described above interact with each other in strange and as yet to be defined ways. 

Last change: 9 September 1987 Sun Release 4.0 



PRINTENV ( 1 ) USER COMMANDS PRINTENV ( 1 ) 

NAME 
printenv - display environment variables currently set 

SYNOPSIS 
printenv [ variable ] 

DESCRIPTION 
printenv prints out the values of the variables in the environment. If a variable is specified, only its value 
is printed. 

SEE ALSO 
csh( 1 ), sh( 1 ), stty( 1 V), tset(l ), environ(5V) 

DIAGNOSTICS 
If a variable is specified and it is not defined in the environment, printenv returns an exit status of 1. 

Sun Release 4.0 Last change: 9 September 1987 391 



PROF( 1) USER COMMANDS PROF( 1) 

NAME 
prof - display profile data 

SYNOPSIS 
prof [ -alosz] [ -v -low [-high] ] [ image-file [ profile-file ... ] ] 

DESCRIPTION 
prof produces an execution profile of a program. The profile data is taken from the profile file which is 
created by programs compiled with the -p option of cc(l V) and other compilers. That option also links in 
versions of the library routines (see mooitor(3)) which are compiled for profiling. The symbol table in the 
executable image file image-file (a.out by default) is read and correlated with the profile file profile-file 
(moo.out by default). For each external symbol, the percentage of time spent executing between that sym
bol and the next is printed (in decreasing order), together with the number of times that routine was called 
and the number of milliseconds per call. If more than one profile file is specified, the prof output shows 
the sum of the profile information in the given profile files. 

To tally the number of calls to a routine, the modules that make up the program must be compiled with the 
'cc -p' option (see cc(lv)). This option also means that the profile file is produced automatically. 

A single function may be split into subfunctions for profiling by means of the MARK macro (see prof(3)). 

Beware of quantization errors. 

The profiled program must call exit(2) or return normally for the profiling information to be saved in the 
moo.out file. 

OPTIONS 
-a Report all symbols rather than just external symbols. 

-I Sort the output by symbol value. 

-o Sort the output by number of calls. 

-s Produce a summary profile file in moo.sum. This is really only useful when more than one profile 
file is specified. 

-z Display routines which have zero usage (as indicated by call counts and accumulated time). 

-v [ -low [ -high ]] 
Suppress all printing and produce a graphic version of the profile on the standard output for 
display by the plot(lG) filters. When plotting, the numbers low and high, (by default O and 100), 
select a percentage of the profile to be plotted, with accordingly higher resolution. 

ENVIRONMENT 

FILES 

PROFDIR 
If this environment variable contains a value, place profiling output within that directory, in a file 
named pid.programname. pid is the process ID, and programname is the name of the program 
being profiled, as determined by removing any path prefix from the argv[O] with which the pro
gram was called. If the variable contains a NULL value, no profiling output is produced. Other
wise, profiling output is placed in the file moo.out. 

a.out executable file containing namelist 
$PROFDIR/pid.pro gramname 
moo.out profiling output 
moo.sum summary profile 

SEE ALSO 
gprof(l), tcov(l), plot(lG), cc(l V), exit(2), profil(2), mooitor(3) 

392 Last change: 22 December 1987 Sun Release 4.0 



PROF( 1) USER COMMANDS PROF( 1) 

BUGS 
prof is confused by the FORTRAN compiler which puts the entry points at the bottom of subroutines and 
functions. 

Sun Release 4.0 Last change: 22 December 1987 393 



PRS(l) USER COMMANDS PRS(l) 

NAME 
prs - display selected portions an SCCS history 

SYNOPSIS 
/usr/sccs/prs [ -ael ] [ -d [ dataspec ] ] [ -r [ SID ] ] filename ... 

DESCRIPTION 
prs prints, on the standard output, parts or all of an SCCS file (see sccsfile(5)) in a user supplied format. If 
a directory is named, prs behaves as though each file in the directory were specified as a named file, except 
that non-SCCS files (last component of the path name does not begin with s.), and unreadable files are 
silently ignored. If a name of'-' is given, the standard input is read, in which case each line is taken to be 
the name of an SCCS file or directory to be processed; non-SCCS files and unreadable files are silently 
ignored. 

OPTIONS 
Options apply independently to each named file. 

-a Request printing of information for both removed, that is, delta type = R, (see rmdel(l)) and 
existing, that is, delta type = D, deltas. If the -a option is not specified, information for existing 
deltas only is provided. 

-e Request information for all deltas created earlier than and including the delta designated using the 
-r option. 

-I Request information for all deltas created later than and including the delta designated using the 
-r option. 

-d [ dataspec ] 

-r [SID] 

Specify the output data specification. The dataspec is a string consisting of SCCS file data key
words (see DATA KEYWORDS) interspersed with optional user supplied text. 

Specify the SCCS Identification SID string of a delta for which information is desired. If no SID is 
specified, the SID of the most recently created delta is assumed. 

In the absence of the -d options, prs displays a default set of information consisting of: delta-type, release 
number and level number, date and time last changed, user-name of the person who changed the file, lines 
inserted, changed, and unchanged, the MR numbers, and the comments. 

DATA KEYWORDS 

394 

Data keywords specify which parts of an SCCS file are to be retrieved and output. All parts of an SCCS file 
(see sccsfile(5)) have an associated data keyword. There is no limit on the number of times a data keyword 
may appear in a dataspec. 

The information printed by prs consists of: 1) the user supplied text; and 2) appropriate values (extracted 
from the SCCS file) substituted for the recognized data keywords in the order of appearance in the 
dataspec. The format of a data keyword value is either Simple (S), in which keyword substitution is direct, 
or Multi-line (M), in which keyword substitution is followed by a RETURN. 

User supplied text is any text other than recognized data keywords. A TAB is specified by \t and 
RETURN/NEWLINE is specified by \n. 

Last change: 5 January 1988 Sun Release 4.0 



PRS(l) USER COMMANDS PRS(l) 

TABLE 1. SCCS Files Data Keywords 

Keyword Data Item File Section Value Format 

:Dt: Delta information Delta Table See below* s 
:DL: Delta line statistics :Li:/ :Lei:/ :Lu: s 
:Li: Lines inserted by Delta II nnnnn s 
:Ld: Lines deleted by Delta nnnnn s 
:Lu: Lines unchanged by Delta nnnnn s 
:DT: Delta type D orR s 
:I: SCCS ID string (SID) :R:.:L:.:B:.:S: s 
:R: Release number nnnn s 
:L: Level number nnnn s 
:B: Branch number nnnn s 
:S: Sequence number nnnn s 
:D: Date Delta created :Dy:/:Dm:/:Dd: s 
:Dy: Year Delta created nn s 
:Dm: Month Delta created II nn s 
:Dd: Day Delta created nn s 
:T: Time Delta created :Th:::Tm:::Ts: s 
:Th: Hour Delta created nn s 
:Tm: Minutes Delta created nn s 
:Ts: Seconds Delta created nn s 
:P: Programmer who created Delta II logname s 
:DS: Delta sequence number nnnn s 
:DP: Predecessor Delta seq-no. nnnn s 
:DI: Seq-no. of deltas incl., :Dn:/:Dx:/:Dg: s 

excl., ignored 
:Dn: Deltas included (seq #) :DS: :DS: ••• s 
:Dx: Deltas excluded (seq #) :DS: :DS: •.. s 
:Dg: Deltas ignored (seq #) :DS: :DS: ••• s 
:MR: MR numbers for delta text M 
:C: Comments for delta text M 
:UN: User names User Names text M 
:FL: Flag list Flags text M 
:Y: Module type flag text s 
:MF: MR validation flag yes or no s 
:MP: MR validation pgm name text s 
:KF: Keyword error/warning flag II yes or no s 
:BF: Branch flag II yes or no s 
:J: Joint edit flag yes or no s 
:LK: Locked releases :R: ... s 
:Q: User defined keyword text s 
:M: Module name text s 
:FB: Floor boundary :R: s 
:CB: Ceiling boundary :R: s 
:Ds: Default SID :I: s 
:ND: Null delta flag yes or no s 
:FD: File descriptive text Comments text M 
:BD: Body Body text M 
:GB: Gotten body II text M 
:W: A form of what string NIA :Z::M:\t:I: s 
:A: A form of what string NIA :Z::Y: :M: :I::Z: s 
:Z: what string delimiter NIA @(#) s 
:F: SCCS file name NIA text s 
:PN: SCCS file path name NIA text s 

* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP: 

Sun Release 4.0 Last change: 5 January 1988 395 



PRS(l) USER COMMANDS 

EXAMPLES 
The following command: 

/usr/sccs/prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file 

may produce on the standard output: 
Users and/or user IDs for s.file are: 
xyz 
131 
abc 

The command: 

/usr/sccs/prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -rs.file 

may produce on the standard output: 

Newest delta for pgm main.c: 3. 7 Created 77 /12/1 By cas 

As a special case: 

/usr/sccs/prs s.file 

may produce on the standard output: 

D 1.177/12/100:00:00 cas 1 000000/00000/00000 
MRs: 
bl78-12345 
bl79-54321 
COMMENTS: 
this is the comment line for s.file initial delta 

PRS(l) 

for each delta table entry of the "D" type. The only option argument allowed to be used with the special 
case is the -a option. 

FILES 
/tmp/pr????? 

SEE ALSO 
admin(l), delta(l), get(l), help(l), sccs(l), sccsfile(5) 

Programming Utilities and Libraries 

DIAGNOSTICS 
Use help(l) for explanations. 

396 Last change: 5 January 1988 Sun Release 4.0 



PRT(l) USER COMMANDS PRT( 1) 

NAME 
prt - display the delta and commentary history of an SCCS file 

SYNOPSIS 
/usr/sccs/prt [-abdefistu] [-y [SID]] [-c [cutoff]] [-r [rev-cutoff]] filename ... 

DESCRIPTION 
Note: the prt command is an older version of prs(l) that in most circumstances is more convenient to use, 
but is less flexible than prs. 

prt prints part or all of an SCCS file in a useful format. If a directory is named, prt behaves as though each 
file in the directory were specified as a named file, except that non-SCCS files (last component of the path
name does not begin withs.) and unreadable files are silently ignored. If a name of'-' is given, the stan
dard input is read; each line of the standard input is taken to be the name of an SCCS file to be processed. 
Again, non-SCCS files and unreadable files are silently ignored. 

The keyletter arguments are as follows. Each is explained as though only one named file is to be pro
cessed, but the effects of any keyletter argument apply independently to each named file. 

-a Print those types of deltas normally not printed by the d keyletter. These are types R (removed). 
This keyletter is effective only if the d keyletter is also specified (or assumed). 

-b Print the body of the SCCS file. 

-d This key letter normally prints delta table entries of the D type. 

-e This keyletter implies the d, i, u, f, and t keyletters and is provided for convenience. 

-f Print the flags of the named file. 

-i Print the serial numbers of those deltas included, excluded, and ignored. This keyletter is effec-
tive only if the d key letter is also specified (or assumed). 

The following format is used to print those portions of the SCCS file as specified by the above 
keyletters. The printing of each delta table entry is preceded by a NEWLINE. 

• Type of delta (D or R). 
• SPACE. 
• SCCS identification string (SID). 
• TAB. 
• Date and time of creation (in the form YY/MM/DD HH:MM:SS). 
• SPACE. 
• Creator. 
• TAB. 
• Serial number. 
• SPACE. 
• Predecessor delta's serial number. 
• TAB. 
• Statistics (in the form inserted/deleted/unchanged). 
• NEWLINE. 
• "Included:TAB", followed by SID's of deltas included, followed by NEWLINE (only if there 

were any such deltas and if i keyletter was supplied). 
• "Excluded:TAB", followed by SID's of deltas excluded, followed by NEWLINE (see note 

above). 
• "Ignored:TAB", followed by SID's of deltas ignored, followed by NEWLINE (see note above). 
• ''MRs:T AB'', followed by MR numbers related to the delta, followed by NEWLINE ( only if any 

MR numbers were supplied). 
• Lines of comments (delta commentary), followed by newline (if any were supplied). 

-s Print only the first line of the delta table entries; that is, only up to the statistics. This keyletter is 
effective only if the d key letter is also specified ( or assumed). 

Sun Release 4.0 Last change: 9 September 1987 397 



PRT( 1) USER COMMANDS PRT( 1) 

-t Print the descriptive text contained in the file. 

-u Print the login-names and/or numerical group IDs of those users allowed to make deltas. 

-y[SID] Print the delta table entries to stop when the delta just printed has the specified SID. If no delta in 
the table has the specified SID, the entire table is printed. If no SID is specified, the first delta in 
the delta table is printed This keyletter will print the entire delta table entry for each delta as a 
single line (the NEWLINE in the normal multi-line format of the d keyletter are replaced by SPACE 
characters) preceded by the name of the SCCS file being processed, followed by a:, followed by a 
TAB. This keyletter is effective only if the d key letter is also specified ( or assumed). 

-c[cutoff] 
Stop printing the delta table entries if the delta about to be printed is older than the specified cutoff 
date-time (see get(l) for the format of date-time). If no date-time is supplied, the epoch 0000 
GMT Jan. 1, 1970 is used. As with they keyletter, this keyletter will cause the entire delta table 
entry to be printed as a single line and to be preceded by the name of the SCCS file being pro
cessed, followed by a : , followed by a tab. This keyletter is effective only if the d key letter is also 
specified (or assumed). 

-r [rev-cutoff] 
Begin printing the delta table entries when the delta about to be printed is older than or equal to 
the specified cutoff date-time (see get(l) for the format of date-time). If no date-time is supplied, 
the epoch 0000 GMT Jan. 1, 1970 is used. (In this case, nothing will be printed). As with they 
keyletter, this keyletter will cause the entire delta table entry to be printed as a single line and to 
be preceded by the name of the SCCS file being processed, followed by a :, followed by a tab. 
This keyletter is effective only if the d keyletter is also specified (or assumed). 

If any keyletter but y, c, orris supplied, the name of the file being processed (preceded by one NEWLINE 
and followed by two NEWLINE characters) is printed before its contents. 

If none of the u, f, t, or b keyletters is supplied, the d key letter is assumed. 

Note: the sand i keyletters, and the c and r keyletters are mutually exclusive; therefore, they may not be 
specified together on the same prt command. 

The form of the delta table as produced by the y, c, and r key letters makes it easy to sort multiple delta 
tables in chronological order. 

When both the y and c or the y and r keyletters are supplied, prt will stop printing when the first of the two 
conditions is met. 

SEE ALSO 
admin(l), get(l), delta(l), prs(l), what(l), help(l), sccs(l), sccsfile(5) 

Programming Utilities and Libraries 

DIAGNOSTICS 
Use help(l) for explanations. 

398 Last change: 9 September 1987 Sun Release 4.0 



PS ( 1) USER COMMANDS PS( 1) 

NAME 
ps - display the status of current processes 

SYNOPSIS 
ps [ -acCegklnrStuvwx U ] [ num ] [ kernel_ name ] [ c _dump _jtle ] [ swap _jtle ] 

DESCRIPTION 
ps displays information about processes. Normally, only those processes that are running with your effec
tive user ID and are attached to a controlling terminal (see termio(4)) are shown. Additional categories of 
processes can be added to the display using various options. In particular, the -a option allows you to 
include processes that are not owned by you (that do not have your user ID), and the -x option allows you 
to include processes without control terminals. When you specify both -a and -x, you get processes 
owned by anyone, with or without a control terminal. The -r option restricts the list of processes printed to 
"running" processes: runnable processes, those in page wait, or those in disk or other short-term waits. 

ps displays the process ID, under PID; the control terminal (if any), under TI; the cpu time used by the pro
cess so far, including both user and system time), under CPU; the state of the process, under STAT; and 
finally, an indication of the COMMAND that is running. 

The state is given by a sequence of four letters, for example, 'RWNA'. 

First letter indicates the runnability of the process: 

Second letter 

Third letter 

Fourth letter 

R Runnable processes, 
T Stopped processes, 
P Processes in page wait, 
D Processes in disk (or other short term) waits, 
S Processes sleeping for less than about 20 seconds, 
I Processes that are idle (sleeping longer than about 20 seconds), 
Z Processes that have terminated and that are waiting for their parent process to 

do a wait(2) ("zombie" processes). 

indicates whether a process is swapped out; 
blank (that is, a SPACE) in this position indicates that the process is loaded (in 

memory). 
W Process is swapped out 
> Process has specified a soft limit on memory requirements and has exceeded 

that limit; such a process is (necessarily) not swapped. 

indicates whether a process is running with altered CPU scheduling priority (nice): 
blank (that is, a SPACE) in this position indicates that the process is running without 

special treatment. 
N The process priority is reduced, 
< The process priority has been raised artificially. 

indicates any special treatment of the process for virtual memory replacement. The 
letters correspond to options to the vadvise(2) system call. Currently the possibilities 
are: 
blank 
A 

s 

(that is, a SPACE) in this position stands for VA_NORM. 
Stands for VA_ ANOM. An A typically represents a program which is doing 
garbage collection. 
Stands for VA_SEQL. An Sis typical of large image processing programs that 
are using virtual memory to sequentially address voluminous data. 

kernel_ name specifies the location of the system namelist. If the -k option is given, c _dump _file tells ps 
where to look for the core dump. Otherwise, the core dump is located in the file /vmcore and this argu
ment is ignored. swap _jtle gives the location of a swap file other than the default, /dev/drum. 

OPTIONS 

-a Include information about processes owned by others. 

Sun Release 4.0 Last change: 14 January 1988 399 



PS( 1) USER COMMANDS PS( 1) 

-c Display the command name, as stored internally in the system for purposes of accounting, rather than 
the command arguments, which are kept in the process' address space. This is more reliable, if less 
informative, since the process is free to destroy the latter information. 

-C Display raw CPU time in the %CPU field instead of the decaying average. 

-e Display the environment as well as the arguments to the command 

-g Display all processes. Without this option, ps only prints "interesting" processes. Processes are 
deemed to be uninteresting if they are process group leaders. This normally eliminates top-level 
command interpreters and processes waiting for users to login on free terminals. 

-k Normally, kernel_name defaults to /vmunix, c_dump_jde is ignored, and swap_file defaults to 
/dev/drum. With the -k option in effect, these arguments default to /vmunix, /vmcore, and 
/dev/drum, respectively. 

-I Display a long listing, with fields PPID, CP, PRI, NI, SZ, RSS and WCHAN as described below. 

-n Produce numerical output for some fields. In a long listing, the WCHAN field is printed numerically 
rather than symbolically, or, in a user listing, the USER field is replaced by a UID field 

-r Restrict output to "running" processes. 

-S Display accumulated CPU time used by this process and all of its reaped children. 

tx Restrict output to processes whose controlling terminal is x (which should be specified as printed by 
ps, for example, t3 for /dev/tty3, tco for /dev/console, tdO for /dev/ttydO, t? for processes with no 
terminal, etc). This option must be the last one given. 

-u Display user-oriented output This includes fields USER, %CPU, %MEM, SZ, RSS and START as 
described below. 

-v Display a version of the output containing virtual memory. This includes fields RE, SL, PAGEIN, 
SIZE, RSS, LIM, %CPU and %MEM, described below. 

-w Use a wide output format (132 columns rather than 80); if repeated, that is, -ww, use arbitrarily wide 
output. This information is used to decide how much of long commands to print. 

-x Include processes with no controlling terminal. 

-U Update a private database where ps keeps system information. Thus, 'ps -U' should be included in 
the /etc/re file. 

num A process number may be given, in which case the output is restricted to that process. This option 
must also be last. 

DISPLAY FORMATS 

400 

Fields that are not common to all output formats: 
USER Name of the owner of the process. 
%CPU CPU utilization of the process; this is a decaying average over up to a minute of previous 

(real) time. Since the time base over which this is computed varies (since processes may be 
very young) it is possible for the sum of all %CPU fields to exceed 100%. 

NI Process scheduling increment (see getpriority(2) and nice(3C).) 
SIZE 
sz 
RSS 

LIM 

%MEM 

RE 

SL 

The combined size of the data and stack segments (in kilobyte units) 

Real memory (resident set) size of the process (in kilobyte units). 

Soft limit on memory used, specified using a call to getrlimit(2); if no limit has been 
specified then shown as xx. 

Percentage of real memory used by this process. 

Residency time of the process (seconds in core). 

Sleep time of the process (seconds blocked). 

Last change: 14 January 1988 Sun Release 4.0 



PS ( 1) 

FILES 

PAGEIN 

um 
PPID 

CP 

PRI 

START 

WCHAN 

F 

USER COMMANDS PS ( 1) 

Number of disk I/O's resulting from references by the process to pages not loaded in core. 

Numerical user-ID of process owner. 

Numerical ID of parent of process. 

Short-term CPU utilization factor (used in scheduling). 

Process priority (non-positive when in non-interruptible wait). 

Time the process was created if that was today, or the date it was created if that was before 
today. 

Event on which process is waiting (an address in the system). A symbol is chosen that 
classifies the address, unless numerical output is requested (see then flag). In this case, the 
address is printed in hexadecimal. 

Flags associated with process as in <sys/proc.h>:. 

SLOAD 
SSYS 
SLOCK 
SSWAP 
STRC 
SWTED 
SULOCK 
SPAGE 
SKEEP 
SOMASK 
SWEXIT 
SPHYSIO 
SVFORK 
SVFDONE 
SNOVM 
SPAGI 
SSEQL 
SUANOM 
STIMO 
SPGLDR 
STRACNG 
SOWEUPC 
SSEL 
SFAVORD 
SLKDONE 
STRCSYS 

0000001 in core 
0000002 swapper or pager process 
0000004 process being swapped out 
0000008 save area flag 
0000010 process is being traced 
0000020 parent has been told that this process stopped 
0000040 user settable lock in core 
0000080 process in page wait state 
0000100 another flag to prevent swap out 
0000200 restore old mask after taking signal 
0000400 working on exiting 
0000800 doing physical 1/0 
0001000 process resulted from vfork() 
0002000 another vfork flag 
0004000 no vm, parent in a vfork() 
0008000 init data space on demand, from inode 
0010000 user warned of sequential vm behavior 
0020000 user warned of anomalous vm behavior 
0040000 timing out during sleep 
0080000 process is session process group leader 
0100000 process is tracing another process 
0200000 owe process an addupc() call at next ast 
0400000 selecting; wakeup/waiting danger 
2000000 favored treatment in swapout and pageout 
4000000 record-locking has been done 
8000000 tracing system calls 

A process that has exited and has a parent, but has not yet been waited for by the parent is marked 
<defunct>; a process that is blocked trying to exit is marked <exiting>; otherwise, ps makes an educated 
guess as to the file name and arguments given when the process was created by examining memory or the 
swap area. The method is inherently somewhat unreliable and in any event a process is entitled to destroy 
this information, so the names cannot be counted on too much. 

/vmunix 
/dev/kmem 
/dev/drum 
/vmcore 
/dev 
/etc/psdatabase 

system namelist 
kernel memory 
swap device 
core file 
searched to find swap device and terminal names 
system namelist, device, and wait channel information 

Sun Release 4.0 Last change: 14 January 1988 401 



PS( 1) USER COMMANDS PS(l) 

SEE ALSO 

BUGS 

402 

kill(l), w(l), getpriority(2), getrlimit(2), wait(2), vadvise(2), nice(3C), termio(4), pstat(8) 

Things can change while ps is running; the picture it gives is only a close approximation to the current 
state. 

Last change: 14 January 1988 Sun Release 4.0 



PTX( 1) USER COMMANDS PTX(l) 

NAME 
ptx - generate a permuted index 

SYNOPSIS 
ptx [ -f] [ -t ] [ -w n ] [ -g n ] [ -o only ] [ -i ignore ] [ -b break] [ -r ] [ input [ output ] ] 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
ptx generates a permuted index of the contents of file input onto file output ( defaults are standard input and 
output). ptx has three phases: the first does the permutation, generating one line for each keyword in an 
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the sorted lines 
are rotated so the keyword comes at the middle of the page. ptx produces output in the form: 

.xx " tail " "before keyword " "keyword and after " "head " 

where .xx may be an nroff(l) or trotT(l) macro for user-defined formatting. The before keyword and key
word and after fields incorporate as much of the line as will fit around the keyword when it is printed at the 
middle of the page. tail and head, at least one of which is an empty string"", are wrapped-around pieces 
small enough to fit in the unused space at the opposite end of the line. When original text must be dis
carded, '/' marks the spot 

OPTIONS 

FILES 

-f Fold upper and lower case letters for sorting. 

-t Prepare the output for the phototypesetter; the default line length is 100 characters. 

-w n Use the next argument, n, as the width of the output line. The default line length is 72 characters. 

-g n Use the next argument, n, as the number of characters to allow for each gap among the four parts 
of the line as finally printed. The default gap is 3 characters. 

-o only Use as keywords only the words given in the only file. 

-i ignore 
Do not use as keywords any words given in the ignore file. If the -i and -o options are missing, 
use /usr/lib/eign as the ignore file. 

-b break 
Use the characters in the break file to separate words. In any case, TAB, NEWLINE, and SPACE 
characters are always used as break characters. 

-r Take any leading nonblank characters of each input line to be a reference identifier (as to a page 
or chapter) separate from the text of the line. Attach that identifier as a 5th field on each output 
line. 

/usr/bin/sort 
/usr/lib/eign 

SEE ALSO 
nrotT(l), trofT(l) 

BUGS 

Line length counts do not account for overstriking or proportional spacing. 

Sun Release 4.0 Last change: 21 December 1987 403 



PWD( 1) USER COMMANDS PWD(l) 

NAME 
pwd - display the pathname of the current working directory 

SYNOPSIS 
pwd 

DESCRIPTION 
pwd prints the pathname of the working ( current) directory. 

If you are using csh(l), you can use the dirs builtin command to do the same job more quickly; but dirs 
can give a different answer in the rare case that the current directory or a containing directory was moved 
after the shell descended into it. This is because pwd searches back up the directory tree to report the true 
pathname, whereas dirs remembers the pathname from the last cd(l) command. The example below illus
trates the differences. 

example% cd /usr/wendy/january/reports 
example% pwd 
/usr/wendy/january/reports 
example% dirs 
/january/reports 

example% mv /january /february 
example% pwd 
/usr/wendy/february/reports 
example% dirs 
/january/reports 

example% 

pwd and dirs also give different answers when you change directory through a symbolic link. For exam
ple: 

example% cd /usr/wendy/january/reports 
example% pwd 
/usr/wendy/january/reports 
example% dirs 
/january/reports 

example% Is -1 /usr/wendy/january 
lrwxrwxrwx 1 wendy 17 Jan 30 1983 /usr/wendy/january ·> /usr/wendy/1984/jan/ 
example% cd /usr/wendy/january 
example% pwd 
/usr/wendy/1984/jan 
example% dirs 
/usr/wendy/january 

SEE ALSO 
cd(l), csh(l) 

404 Last change: 9 September 1987 Sun Release 4.0 



QUOTA( 1) USER COMMANDS QUOTA(l) 

NAME 
quota- display a user's disk quota and usage 

SYNOPSIS 
quota [ -v ] [ username ] 

DESCRIPTION 

quota displays users' disk usage and limits. Only the super-user may use the optional username argument 
to view the limits of users other than himself. 

quota without options displays only warnings about mounted file systems where usage is over quota. 
Remotely mounted file systems which are mounted with the "noquota" option (see fstab(5)) are ignored. 

OPTIONS 
-v Display user's quotas on all mounted file systems where quotas exist. 

FILES 
quotas 
/etc/mtab 

SEE ALSO 

quota file at the file system root 
list of currently mounted filesystems 

quotactl(2), fstab(5), edquota(8), quotaon(8), rquotad(8C) 

Sun Release 4.0 Last change: 9 September 1987 405 



RANLIB( 1) USER COMMANDS RANLIB( 1) 

NAME 
ranlib - convert archives to random libraries 

SYNOPSIS 
ranlib [ -t] archive ... 

DESCRIPTION 
ranlib converts each archive to a form that can be linked more rapidly. ranlib does this by adding a table 
of contents called __ .SYMDEF to the beginning of the archive. ranlib uses ar(l V) to reconstruct the 
archive. Sufficient temporary file space must be available in the file system that contains the current direc
tory. 

OPTIONS 
-t ranlib only "touches" the archives and does not modify them. This is useful after copying an 

archive or using the -t option of make( 1) to avoid having Id( 1) complain about an "out of date" 
symbol table. 

SEE ALSO 

BUGS 

406 

ar(lV), ld(l), lorder(l), make(l) 

Because generation of a library by ar and randomization of the library by ranlib are separate processes, 
phase errors are possible. The linker, Id, warns when the modification date of a library is more recent than 
the creation date of its dictionary; but this means that you get the warning even if you only copy the 
library. 

Last change: 9 September 1987 Sun Release 4.0 



RASFIL TER8TO 1 ( 1 ) USER COMMANDS RASFILTER8T01 ( 1 ) 

NAME 
rasfilter8tol - convert an 8-bit deep rasterfile to a 1-bit deep rasterfile 

SYNOPSIS 
rasfilter8tol [ -d ] [ -rgba threshold ] [ infile [ outfile ]] 

DESCRIPTION 
rasfilter8tol reads the 8-bit deep rasterfile infile (the standard input default) and converts it to the 1-bit 
deep rasterfile outfile (standard output default) by thresholding or ordered dither. The output format is Sun 
standard rasterfile format (see /usr/include/rasterfile.h). This command is useful for viewing 8-bit 
rasterfiles on devices that can only display monochrome images. 

OPTIONS 
-d Use ordered dither to convert the input file instead of thresholding. 

-rgba threshold 
Set the threshold for the red, green, blue, and average pixel color values. Pixels whose color 
values are greater than or equal to all of the thresholds are given a value of O (white) in the output 
rasterfile; other pixels are set to 1 (black). The average threshold defaults to 128, the individual 
thresholds to zero. 

EXAMPLE 
The command 

example% screendump -f /dev/cgtwo I rasfilter8tol 

prints a monochromatic representation of the /dev/cgtwo frame buffer on the printer named versatec using 
the v output filter (see /etdprintcap ). 

FILES 
/usr/Iib/rasfilters/• filters for non-standard rasterfile formats 
/usr/include/rasterfile.h 

SEE ALSO 
lpr(l), rastrepl(l), screendump(l), screenload(l) 

File 110 Facilities/or Pixrects in the Pixrect Reference Manual. 

Sun Release 4.0 Last change: 24 September 1987 407 



RASTREPL ( 1 ) USER COMMANDS RASTREPL ( 1 ) 

NAME 
rastrepl - magnify a raster image by a factor of two 

SYNOPSIS 
rastrepl [ infile [ outfile ]] 

DESCRIPTION 
rastrepl reads the rasterfile infile (the standard input default) and converts it to the rasterfile outfile (the 
standard output default) which is twice as large in width and height Pixel replication is used to magnify 
the image. The output file has the same type as the input file. 

EXAMPLES 
The following command: 

example% screendump I rastrepl I Ipr 

sends a rasterfile containing the current frame buffer contents to the Versatec plotter, doubling the size of 
the image so that it fills a single page. 

FILES 
/usr/Iib/rasfilters/• 

SEE ALSO 

filters for non-standard rasterfile formats 

lpr(l), screendump(l), screenload(l) 

File //0 Facilities for Pixrects in the Pixrect Reference Manual. 

408 Last change: 24 September 1987 Sun Release 4.0 



RCP( lC) USER COMMANDS RCP( lC) 

NAME 
rep - remote file copy 

SYNOPSIS 
rep [ -p ] filename] filename2 
rep [ -p -r ]filename ... directory 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rep copies files between machines. Each filename or directory argument is either a remote file name of the 
form: 

hostname :path 

or a local file name (containing no':' characters, or a'/' before any ':'s). 

If a filename is not a full path name, it is interpreted relative to your home directory on hostname. A path 
on a remote host may be quoted (using\,", or') so that the metacharacters are interpreted remotely. 

rep does not prompt for passwords; your current local user name must exist on hostname and allow remote 
command execution by rsh(lC). 

rep handles third party copies, where neither source nor target files are on the current machine. Hostnames 
may also take the form 

username@hostname :filename 

to use username rather than your current local user name as the user name on the remote host. rep also 
supports Internet domain addressing of the remote host, so that: 

username@host .domain :filename 

specifies the usemame to be used, the hostname, and the domain in which that host resides. Filenames that 
are not full path names will be interpreted relative to the home directory of the user named username, on 
the remote host. 

The destination hostname may also take the form hostname .username :filename to support destination 
machines that are running older versions of rep. 

OPTIONS 

FILES 

-p 

-r 

.eshre 

.login 

.profile 

Attempt to give each copy the same modification times, access times, and modes as the original 
file. 

Copy each subtree rooted at filename; in this case the destination must be a directory. 

SEE ALSO 

BUGS 

ftp( 1 C), rlogin( 1 C), rsh( 1 C) 

rep is meant to copy between different hosts; attempting to rep a file onto itself, as with: 

myhost% rep tmp/file myhost:/tmp/file 

results in a severely corrupted file. 

rep does not detect all cases where the target of a copy might be a file in cases where only a directory 
should be legal. 

Sun Release 4.0 Last change: 16 December 1987 409 



RCP( lC) USER COMMANDS RCP( lC) 

410 

rep can become confused by output generated by commands in a .profile, .eshre, or .login file on the 
remote host. 

rep requires that the source host have permission to execute commands on the remote host when doing 
third-party copies. 

If you forget to quote metacharacters intended for the remote host you get an incomprehensible error mes
sage. 

Last change: 16 December 1987 Sun Release 4.0 



RDIST( 1) USER COMMANDS RDIST( 1) 

NAME 
rdist - remote file distribution program 

SYNOPSIS 
rdist [ -bhinqRvwy ] [ -d macro = value ] [ -f distfile ] [ -m host] .... [ package ... ] 

rdist [ -bhinqRvwy] -c pathname ... [login@]hostname[:destpath] 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rdist maintains copies of files on multiple hosts. It preserves the owner, group, mode, and modification 
time of the master copies, and can update programs that are executing. Normally, a copy on a remote host 
is updated if its size or modification time differs from the original on the local host. rdist reads the indi
cated distfile for instructions on updating files and/or directories. If distfile is '-', the standard input is 
used. If no -f option is present, rdist first looks in its working directory for distfile, and then for Distfile, 
for instructions. 

rdist updates each package specified on the command line; if none are given, all packages are updated 
according to their entries in the distfile. 

OPTIONS 
-b 

-h 

-i 

-n 

-q 

-R 

-v 

-w 

-y 

Binary comparison. Perform a binary comparison and update files if they differ, rather than 
merely comparing dates and sizes. 

Follow symbolic links. Copy the file that the link points to rather than the link itself. 

Ignore unresolved links. rdist will normally try to maintain the link structure of files being 
transfered and warn the user if all the links cannot be found. 

Print the commands without executing them. This option is useful for debugging a distfile. 

Quiet mode. Do not display the files being updated on the standard output. 

Remove extraneous files. If a directory is being updated, remove files on the remote host that do 
not correspond to those in the master (local) directory. This is useful for maintaining truly identi-
cal copies of directories. 

Verify that the files are up to date on all the hosts. Any files that are out of date are displayed, but 
no files are updated, nor is any mail sent. 

Whole mode. The whole file name is appended to the destination directory name. Normally, only 
the last component of a name is used when renaming files. This preserves the directory structure 
of the files being copied, instead of flattening the directory structure. For instance, renaming a list 
of files such as ( dirl/0 dir2/f2) to dir3 would create files dir3/dirl/O and dir3/dir2/f2 instead 
of dir3/0 and dir3/f2. When the -w option is used with a filename that begins with , everything 
except the home directory is appended to the destination name. 

Younger mode. Do not update remote copies that are younger than the master copy, but issue a 
warning message instead. 

-d macro =value 
Define macro to have value. This option is used to define or override macro definitions in the 
distfile. value can be the empty string, one name, or a list of names surrounded by parentheses 
and separated by white space. 

-c pathname ... [login@]hostname[:destpath] 

Sun Release 4.0 

Update each pathname on the named host. (Relative filenames are taken as relative to your home 
directory.) If the 'login@' prefix is given, the update is performed with the user ID of login. If 
the ':destpath' is given, the remote file is installed as that pathname. 

Last change: 1 February 1988 411 



RDIST( 1) USER COMMANDS RDIST( 1) 

-f distfile 

-m host 

Use the description file distfile. A'-' as the distfile argument denotes the standard input. 

Limit which machines are to be updated. Multiple -m arguments can be given to limit updates to 
a subset of the hosts listed in the distfile. 

USAGE 
Packages 

412 

A typical package begins with a label composed of the package name followed by a colon: 

package: 

This label allows you to group any number of file-to-host and file-to-timestamp mappings into a single dis
tribution package. If no package label appears in the distfile, the default package includes all mappings in 
the file. 

A file-to-host mapping specifies a list of files or directories to distribute, their destination host(s), and any 
rdist primitives to use in performing the update. A mapping of this sort takes the form: 

( pathname ... ) -> ( hostname ... ) primitive ; [primitive ;] ... 

In this case, each pathname is the full pathname of a local file or directory to distribute; each hostname is 
the name of a remote host on which those files are to be copied, and primitive is one of the rdist primitive 
listed under Primitives, below. If there is only one pathname or hostname, the surrounding parentheses 
can be omitted. A hostname can also take the form: 

login@hostname 

in which case the update is performed as the user named login. 

A file-to-timestamp mapping is used to monitor which local files are updated with respect to a local 
''timestamp'' file. This mapping takes the form: 

(filename ... ) :: timestamp-file primitive; [primitive ;] ... 

In this case, timestamp-file is the name of a file, the modification time of which is compared with each 
named file on the local host. If a file is newer than time-stamp-file, rdist displays a message to that effect. 
If there is only one filename, the parentheses can be omitted. 

White Space Characters 
NEWLINE, TAB, and SP ACE characters are all treated as white space; a mapping continues across input 
lines until the start of the next mapping: either a single filename followed by a '->' or the opening 
parenthesis of a filename list 

Comments 
Comments begin with# and end with a NEWLINE. 

Macros 
rdist has a limited macro facility. Macros are only expanded in filename or hostname lists, and in the argu
ment lists of certain primitives. Macros cannot be used to stand for primitives or their options, or the '->' 
or'::' symbols. 

A macro definition is a line of the form: 

macro = value 

A macro reference is a string of the form: 

${macro} 

although (as with make(l)) the braces can be omitted if the macro name consists of just one character. 

Last change: 1 February 1988 Sun Release 4.0 



RDIST( 1) USER COMMANDS RDIST( 1) 

Metacharacters 
The shell meta-characters: [, ], {, }, • and? are recognized and expanded (on the local host only) just as 
they are with csh(l). Metacharacters can be escaped by prepending a backslash. 

The character is also expanded in the same way as with csh, however, it is expanded separately on the 
local and destination hosts. 

Filenames 
File names that do not begin with / or are taken to be relative to user's home directory on each destination 
host. Note that they are not relative to the current working directory. 

Primitives 
The following primitives can be used to specify actions rdist is to take when updating remote copies of 
each file. 

install -bhiRvwy [newname] 
Copy out-of-date files and directories (recursively). If no install primitive appears in the 
package entry, or if no newname option is given, the name of the local file is given to the 
remote host's copy. If absent from the remote host, parent directories in a filename's path 
are created. To help prevent disasters, a non-empty directory on a target host is not replaced 
with a regular file or a symbolic link by rdist. However, when using the -R option, a non
empty directory is removed if the corresponding filename is completely absent on the master 
host. The options for install have the same semantics as their command line counterparts, 
but are limited in scope to a particular map. The login name used on the destination host is 
the same as the local host unless the destination name is of the format login@host. In that 
case, the update is performed under the username login. 

notify address ... 
Send mail to the indicated DARPA address of the form: 

user@host 

that lists the files updated and any errors that may have occurred. If an address does not contain a '@host' 
suffix, rdist uses the name of the destination host to complete the address. 

except filename ... 
Omit from updates the files named as arguments. 

except_patpattern ... 

Omit from updates the filenames that match each regular-expression pattern (see ed(l) for more informa
tion on regular expressions. Note that\ and$ characters must be escaped in the distfile. Shell variables can 
also be used within a pattern, however shell filename expansion is not supported. 

special ffilename] . . . "command-line " 

EXAMPLE 

Specify a Bourne shell, sh(l) command line to execute on the remote host after each named file is 
updated. If no filename argument is present, the command-line is performed for every updated 
file, with the shell variable FILE set to the file's name on the local host. The quotation marks 
allow command-line to span input lines in the distfile; multiple shell commands must be separated 
by semicolons (;). 

The default working directory for the shell executing each command-line is the user's home direc
tory on the remote host. 

The following sample distfile instructs rdist to maintain identical copies of a shared library, a shared
library initialized data file, several include files, and a directory, on hosts named berm es and magus. On 
magus, commands are executed as root rdist notifies merlin@druid whenever it discovers that a local 
file has changed relative to a timestamp file. 

Sun Release 4.0 Last change: 1 February 1988 413 



RDIST( 1) USER COMMANDS RDIST( 1) 

FILES 

HOSTS = ( hermes root@magus ) 

FILES = ( /usr/Iocal/Iib/libcant.so.1.1 
/usrlocal/Iib/Iibcant.sa.1.1 /usr/Iocal/include/{ * .h} 
/usr/Iocal/bin ) 

${FILES}-> ${HOSTS} 
install-R; 

${FILES} :: /usr/local/lib/timestamp 
notify merlin@druid ; 

/tmp/rdist• temporary file for update lists 

SEE ALSO 
csh(l), ed(l), sh(l), stat(2) 

DIAGNOSTICS 

BUGS 

A complaint about mismatch of rdist version numbers may really stem from some problem with starting 
your shell, for example, you are in too many groups. 

Source files must reside or be mounted on the local host 

There is no easy way to have a special command executed only once after all files in a directory have been 
updated. 

Variable expansion only works for name lists; there should be a general macro facility. 

rdist aborts on files that have a negative modification time (before Jan 1, 1970). 

There should be a "force" option to allow replacement of non-empty directories by regular files or sym
links. A means of updating file modes and owners of otherwise identical files is also needed. 

CAVEATS 

414 

root does not have its accustomed access privileges on NFS mounted file systelI'.S. Using rdist to copy to 
such a file system may fail, or the copies may be owned by user ''nobody.'' 

Last change: 1 February 1988 Sun Release 4.0 



REFER( 1) USER COMMANDS REFER(l) 

NAME 
refer - expand and insert references from a bibliographic database 

SYNOPSIS 
ref er [ -hen ] [ -ar ] [ -cstring ] [ -kx ] [ -lm,n ] [ -p filename ] [ -skeys ] filename . .. 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the Sun0S for information on how to install optional software. 

DESCRIPTION 
refer is a preprocessor for nroff(l), or troff(l), that finds and formats references. The input files (standard 
input by default) are copied to the standard output, except for lines between '. [' and '. ]' command lines, 
Such lines are assumed to contain keywords as for lookbib(l), and are replaced by information from a 
bibliographic data base. The user can avoid the search, override fields from it, or add new fields. The 
reference data, from whatever source, is assigned to a set of troff strings. Macro packages such as ms(7) 
print the finished reference text from these strings. A flag is placed in the text at the point of reference. By 
default, the references are indicated by numbers. 

When refer is used with eqn(l), neqn, or tbl(l), refer should be used first in the sequence, to minimize the 
volume of data passed through pipes. 

OPTIONS 

FILES 

-b 

-e 

Bare mode -do not put any flags in text (neither numbers or labels). 

Accumulate references instead of leaving the references where encountered, until a sequence of 
the form: 

.[ 
$LIST$ 
.] 

is encountered, and then write out all references collected so far. Collapse references to the same 
source. 

-n Do not search the default file. 

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted, all author 
names are reversed 

-cstring 
Capitalize (with SMALL CAPS) the fields whose key-letters are in string. 

-kx Instead of numbering references, use labels as specified in a reference data line beginning with the 
characters %x; By default, xis L. 

-Im,n Instead of numbering references, use labels from the senior author's last name and the year of 
publication. Only the first m letters of the last name and the last n digits of the date are used. If 
either of morn is omitted, the entire name or date, respectively, is used. 

-pfilename 
Take the next argument as a file of references to be searched. The default file is searched last. 

-skeys Sort references by fields whose key-letters are in the keys string, and permute reference numbers 
in the text accordingly. Using this option implies the -e option. The key-letters in keys may be 
followed by a number indicating how many such fields are used, with a + sign taken as a very 
large number. The default is AD, which sorts on the senior author and date. To sort on all authors 
and then the date, for instance, use the options '-sA+ T'. 

/usr/dict/papers 
/usr/Iib/refer 

directory of default publication lists and indexes 
directory of programs 

Sun Release 4.0 Last change: 21 December 1987 415 



REFER( 1) USER COMMANDS REFER( 1) 

SEE ALSO 
addbib(l}, eqn(l}, indxbib(l}, lookbib(l}, nroff(l}, roffbib(l}, sortbib(l}, tbl(l}, troff(l) 

416 Last change: 21 December 1987 Sun Release 4.0 



REV( 1) USER COMMANDS REV( 1) 

NAME 
rev - reverse the order of characters in each line 

SYNOPSIS 
rev [filename] ... 

DESCRIPTION 
rev copies the named files to the standard output, reversing the order of characters in every line. If no file 
is specified, the standard input is copied. 

Sun Release 4.0 Last change: 9 September 1987 417 



RLOGIN ( lC) USER COMMANDS RLOGIN(1C) 

NAME 
rlogin - remote login 

SYNOPSIS 
rlogin [ -L ] [ -8 ] [ -ec ] [ -I username ] hostname 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rlogin establishes a remote login session from your terminal to the remote machine named hostname. 

Hostnames are listed in the hosts database, which may be contained in the /etc/hosts file, the Yellow Pages 
hosts database, the Internet domain name server, or a combination of these. Each host has one official 
name (the first name in the database entry), and optionally one or more nicknames. Either official host
names or nicknames may be specified in hostname. 

Each remote machine may have a file named /etc/hosts.equiv containing a list of trusted hostnames with 
which it shares usemames. Users with the same usemame on both the local and remote machine may 
rlogin from the machines listed in the remote machine's /etc/hosts.equiv file without supplying a pass
word. Individual users may set up a similar private equivalence list with the file .rhosts in their home 
directories. Each line in this file contains two names: a hostname and a username separated by a SPACE. 
An entry in a remote user's .rhosts file permits the user named username who is logged into hostname to 
rlogin to the remote machine as the remote user without supplying a password. If the name of the local 
host is not found in the /etc/hosts.equiv file on the remote machine, and the local usemame and hostname 
are not found in the remote user's .rhosts file, then the remote machine will prompt for a password. Host
names listed in /etc/hosts.equiv and .rhosts files must be the official hostnames listed in the hosts database; 
nicknames may not be used in either of these files. 

To counter security problems, the .rhosts file must be owned by either the remote user or by root. 

The remote terminal type is the same as your local terminal type (as given in your environment TERM vari
able). The terminal or window size is also copied to the remote system if the server supports the option, 
and changes in size are reflected as well. All echoing takes place at the remote site, so that ( except for de
lays) the remote login is transparent. Flow control using "S (CTRL-S) and "Q (CTRL-Q) and flushing of in
put and output on interrupts are handled properly. 

ESCAPES 
Lines that you type which start with the tilde character are "escape sequences" (the escape character can be 
changed using the -e options): 

susp 

dsusp 

Disconnect from the remote host - this is not the same as a logout, because the local host breaks 
the connection with no warning to the remote end. 

Suspend the login session (only if you are using the C shell). susp is your "suspend" character, 
usually "Z, (CTRL-Z), see tty(l). 

Suspend the input half of the login, but output will still be seen (only if you are using the C shell). 
dsusp is your "deferred suspend" character, usually "Y, (CTRL-Y), see tty(l). 

OPTIONS 
-L Allow the rlogin session to be run in "litout" mode. 

418 

-8 Pass eight-bit data across the net instead of seven-bit data. 

-ec Specify a different escape character, c, for the line used to disconnect from the remote host. 

-lusername 
Specify a different username for the remote login. If you do not use this option, the remote user
name used is the same as your local usemame. 

Last change: 17 December 1987 Sun Release 4.0 



RLOGIN(lC) USER COMMANDS 

FILES 
/usr/bosts'* for hostna.me version of the command 
/ etc/hosts.equiv list of trusted hostnames with shared usemames 
/.rhosts private list of trusted hostname/usemame combinations 

SEE ALSO 
rsh(lC), stty(l V), tty(l), ypcat(l), hosts(5), named(8c) 

BUGS 
This implementation can only use the TCP network service. 
More of the environment should be propagated. 

Sun Release 4.0 Last change: 17 December 1987 

RLOGIN(lC) 

419 



RM(l) USER COMMANDS RM(l) 

NAME 
rm, rmdir - remove (unlink) files or directories 

SYNOPSIS 
rm [ - ] [ -fir ] filename . .. 

rmdir directory . .. 

DESCRIPTION 
rm 

rm removes (directory entries for) one or more files. If an entry was the last link to the file, the contents of 
that file are lost. (See ln(l) for more information about multiple links to files.) 

To remove a file, you must have write permission in its directory; but you do not need read or write permis
sion on the file itself. If you do not have write permission on the file and the standard input is a terminal, 
rm displays the file's permissions and waits for you to type in a response. If your response begins with y 
the file is deleted; otherwise the file is left alone. 

rmdir 
rmdir removes each named directory. rmdir only removes empty directories. 

OPTIONS 
Treat the following arguments as filenames '-' so that you can specify filenames starting with a 
minus. 

-f Force files to be removed without displaying permissions, asking questions or reporting errors. 

-i Ask whether to delete each file, and, under -r, whether to examine each directory. Sometimes 
called the interactive option. 

-r Recursively delete the contents of a directory, its subdirectories, and the directory itself. 

SEE ALSO 
ln(l), su(l) 

BUGS 
'rm -r' removes a directory and its files only if your real user ID has write permission on that directory. 

DIAGNOSTICS 
rm: filename: No such file or directory 

filename does not exist. rm will also return false (1) if rm was invoked with 'echo $status' and 
filename was not found 

WARNING 

420 

It is forbidden to remove the file' •• ' to avoid the antisocial consequences of inadvertently doing something 
like 'rm -r .*'. 

Last change: 12 January 1988 Sun Release 4.0 



RMDEL( 1) USER COMMANDS RMDEL( 1) 

NAME 
rmdel - remove a delta from an SCCS file 

SYNOPSIS 
/usr/sccs/rmdel -rS/D filename ... 

DESCRIPTION 

FILES 

rmdel removes the delta specified by the SID from each named SCCS filename. The delta to be removed 
must be the newest (most recent) delta in its branch in the delta chain of each named SCCS file. In addition, 
the SID specified must not be that of a version being edited for the purpose of making a delta (that is, if a 
p-file (see get(l)) exists for the named SCCS file, the SID specified must not appear in any entry of the p
file). 

If a directory is named, rmdel behaves as though each file in the directory were specified as a named file, 
except that non-SCCS files (last component of the path name does not begin with 's' .) and unreadable files 
are silently ignored. If a name of'-' is given, the standard input is read; each line of the standard input is 
taken to be the name of an SCCS file to be processed; non-SCCS files and unreadable files are silently ig
nored. 

The exact permissions necessary to remove a delta are documented in the Source Code Control System 
User's Guide. Simply stated, they are either 1) if you make a delta you can remove it; or 2) if you own the 
file and directory you can remove a delta. 

x-file 
z-file 
p-file 

(see delta(l)) 
(see delta(l)) 

SEE ALSO 
delta(l), get(l), help(l), prs(l), sccs(l), sccsfile(5). 

Programming Utilities and Libraries 
Source Code Control System User's Guide 

DIAGNOSTICS 
Use help(l) for explanations. 

Sun Release 4.0 Last change: 9 September 1987 421 



ROFFBIB( 1) USER COMMANDS ROFFBIB( 1) 

NAME 
roftbib - format and print a bibliographic database 

SYNOPSIS 
roffbib [ -e] [ -h] [ -mfilename] [ -np] [ -olist] [ -Q] [ -raN] [ -sN] [ -Tterm] [ -V] 

[ -x] [filename ] ... 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
roffbib prints out all records in a bibliographic database, in bibliography format rather than as footnotes or 
endnotes. Generally it is used in conjunction with sortbib: 

example% sortbib database I roflbib 

OPTIONS 

FILES 

422 

roffbib accepts all options understood by nroff(l) except-i and-q. 

-e Produce equally-spaced words in adjusted lines using full terminal resolution. 

-h Use output tabs during horizontal spacing to speed output and reduce output character count. TAB 
settings are assumed to be every 8 nominal character widths. 

-mfilename 
Prepend the macro file /usr/share/lib/tmac/tmac.name to the input files. There should be a space 
between the -m and the macro filename. This set of macros will replace the ones defined in 
/usr/share/Iib/tmac/tmac.bib. 

-np Number first generated page p. 

-olist Print only page numbers that appear in the comma-separated list of numbers and ranges. A range 
N-M means pages N through M; an initial -N means from the beginning to page N; a final N
means from page N to end. 

-Q Queue output for the phototypesetter. Page offset is set to 1 inch. 

-raN Set register a (one-character) to N. The command-line argument-rNl will number the references 
starting at 1. 

Four command-line registers control formatting style of the bibliography, much like the number 
registers of ms(7). The flag -rV2 will double space the bibliography, while -rVl will double 
space references but single space annotation paragraphs. The line length can be changed from the 
default 6.5 inches to 6 inches with the -rL6i argument, and the page offset can be set from the de
fault of Oto one inch by specifying -rOli (capital 0, not zero). 

-sN Halt prior to every N pages for paper loading or changing (default N =1). To resume, enter NEW
LINE or RETURN. 

-T Specify term as the terminal type. 

-V Send output to the Versatec. Page offset is set to 1 inch. This option not available on Sun386i 
systems. 

-x If abstracts or comments are entered following the % X field key, roffbib will format them into 
paragraphs for an annotated bibliography. Several % X fields may be given if several annotation 
paragraphs are desired. 

/usr /share/Iib/tmac/tmac. bib 
file of macros used by nroff/troff 

Last change: 18 February 1988 Sun Release 4.0 



ROFFBIB( 1) USER COMMANDS ROFFBIB( 1) 

SEE ALSO 
addbib(l), indxbib(l), Iookbib(l), nroff(l) refer(l), sortbib(l), 

refer - a Bibliography System in Formatting Documents 

BUGS 
Users have to rewrite macros to create customized formats. 

Sun Release 4.0 Last change: 18 February 1988 423 



RPCGEN( 1) USER COMMANDS RPCGEN(l) 

NAME 
rpcgen - an RPC protocol compiler 

SYNOPSIS 
rpcgen infile 
rpcgen -c 1-h 1-11-m [ -o outfile ] [ infile ] 
rpcgen -s transport [ -o outfile ] [ infile ] 

DESCRIPTION 
rpcgen is a tool that generates C code to implement an RPC protocol. The input to rpcgen is a language 
similar to C known as RPC Language (Remote Procedure Call Language). Information about the syntax of 
RPC Language is available in the 'rpcgen' Programming Guide in the Network Programming manual. 

rpcgen is normally used as in the first synopsis where it takes an input file and generates four output files. 
If the infile is named proto.x, then rpcgen will generate a header file in proto.h, XDR routines in 
proto_xdr.c, server-side stubs in proto_svc.c, and client-side stubs in proto_clnt.c. 

The other synopses shown above are used when one does not want to generate all the output files, but only 
a particular one. Their usage is described in the USAGE section below. 

The C-preprocessor, cpp(l), is run on all input files before they are actually interpreted by rpcgen, so all 
the cpp directives are legal within an rpcgen input file. For each type of output file, rpcgen defines a spe
cial cpp symbol for use by the rpcgen programmer: 

RPC HDR 
RPC_XDR 
RPC SVC 
RPC_CLNT 

defined when compiling into header files 
defined when compiling into XDR routines 
defined when compiling into server-side stubs 
defined when compiling into client-side stubs 

In addition, rpcgen does a little preprocessing of its own. Any line beginning with '%' is passed directly 
into the output file, uninterpreted by rpcgen. 

You can customize some of your XDR routines by leaving those data types undefined. For every data type 
that is undefined, rpcgen will assume that there exists a routine with the name xdr _ prepended to the name 
of the undefined type. 

OPTIONS 
-c Compile into XDR routines. 

-h Compile into C data-definitions (a header file) 

-I Compile into client-side stubs. 

-m Compile into server-side stubs, but do not generate a "main" routine. This option is useful for do-
ing callback-routines and for people who need to write their own "main" routine to do initializa
tion. 

-o outfile 
Specify the name of the output file. If none is specified, standard output is used (-c, -h, -I and -s 
modes only). 

-s transport 
Compile into server-side stubs, using the the given transport. The supported transports are udp 
and tcp. This option may be invoked more than once so as to compile a server that serves multi
ple transports. 

SEE ALSO 
cpp(lJ 

'rpcgen' Programming Guide in Network Programming 

424 Last change: 18 January 1988 Sun Release 4.0 



RPCGEN( 1) USER COMMANDS RPCGEN(l) 

BUGS 
Nesting is not supported. As a work-around, structures can be declared at top-level, and their name used 
inside other structures in order to achieve the same effect. 

Name clashes can occur when using program definitions, since the apparent scoping does not really apply. 
Most of these can be avoided by giving unique names for programs, versions, procedures and types. 

Sun Release 4.0 Last change: 18 January 1988 425 



RSH( lC) USER COMMANDS RSH( lC) 

NAME 
rsh - remote shell 

SYNOPSIS 
rsh [ -I username ] [ -n ] hostname command 

rsh hostname [ -I username ] [ -n ] command 

hostname [ -I username ] [ ~n ] command 

AVAILABILITY 
This command is available with the Networldng Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 

rsh connects to the specified host name and executes the specified command. rsh copies its standard input 
to the remote command, the standard output of the remote command to its standard output, and the standard 
error of the remote command to its standard error. Interrupt, quit and terminate signals are propagated to 
the remote command; rsh normally terminates when the remote command does. 

If you omit command, instead of executing a single command, rsh logs you in on the remote host using 
rlogin(lC). Shell metacharacters which are not quoted are interpreted on the local machine, while quoted 
metacharacters are interpreted on the remote machine. See EXAMPLES. 

Hostnames are given in the hosts database, which may be contained in the /etdhosts file, the Yellow Pages 
hosts database, the Internet domain name database, or some combination of the three. Each host has one 
official name (the first name in the database entry) and optionally one or more nicknames. Official host
names or nicknames may be given as hostname. 

If the name of the file from which rsh is executed is anything other than ''rsh,'' rsh takes this name as its 
hostname argument This allows you to create a symbolic link to rsh in the name of a host which, when 
executed, will invoke a remote shell on that host. The /usr/hosts directory is provided to be populated with 
symbolic links in the names of commonly used hosts. By including /usr/hosts in your shell's search path, 
you can run rsh by typing hostname to your shell. 

Each remote machine may have a file named /etdhosts.equiv containing a list of trusted hostnames with 
which it shares usemames. Users with the same usemame on both the local and remote machine may rsh 
from the machines listed in the remote machine's /etdhosts file. Individual users may set up a similar 
private equivalence list with the file .rhosts in their home directories. Each line in this file contains two 
names: a hostname and a username separated by a space. The entry permits the user named username who 
is logged into hostname to use rsh to access the remote machine as the remote user. If the name of the lo
cal host is not found in the /etdhosts.equiv file on the remote machine, and the local username and host
name are not found in the remote user's .rhosts file, then the access is denied. The hostnames listed in the 
/etc/hosts.equiv and .rhosts files must be the official hostnames listed in the hosts database; nicknames 
may not be used in either of these files. 

rsh will not prompt for a password if access is denied on the remote machine unless the command argu
ment is omited. 

OPTIONS 

426 

-I username 
Use username as the remote usemame instead of your local usemame. In the absence of this op
tion, the remote usemame is the same as your local usemame. 

-n Redirect the input of rsh to /dev/null. You sometimes need this option to avoid unfortunate in
teractions between rsh and the shell which invokes it. For example, if you are running rsh and in
voke a rsh in the background without redirecting its input away from the terminal, it will block 
even if no reads are posted by the remote command. The -n option will prevent this. 

Last change: 17 December 1987 Sun Release 4.0 



RSH( IC) USER COMMANDS RSH( IC) 

The type of remote shell (sh, rsh, or other) is determined by the user's entry in the file /etc/passwd on the 
remote system. 

EXAMPLES 

FILES 

The command: 

example% rsh lizard cat lizard.file>> example.file 

appends the remote file lizard.file from the machine called lizard to the file called example.file on the 
machine called example, while the command: 

example% rsh lizard cat lizard.file">>" another.lizard.file 

appends the file lizard.file on the machine called lizard to the file another .lizard.file which also resides on 
the machine called lizard. 

/etc/hosts 
/usr/hostsl* 
/ etc/passwd 

SEE ALSO 

BUGS 

rlogin(lC), vi(l), ypcat(l), hosts(5), named(8c) 

You cannot run an interactive command (such as vi( 1) ); use rlogin if you wish to do so. 

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for reasons too 
complicated to explain here. 

The current local environment is not passed to the remote shell. 

Sometimes the -n option is needed for reasons that are less than obvious. For example, the command: 

example% rsh somehost dd if=/dev/nrmtO bs=20b I tar xvpBf -

will put your shell into a strange state. Evidently, what happens is that the tar terminates before the rsh. 
The rsh then tries to write into the "broken pipe" and, instead of terminating neatly, proceeds to compete 
with your shell for its standard input. Invoking rsh with the -n option avoids such incidents. 

Note: this bug occurs only when rsh is at the beginning of a pipeline and is not reading standard input. Do 
not use the -n if rsh actually needs to read standard input. For example, 

example% tar cf - .1 rsh sundial dd of=/dev/rmtO obs=20b 

does not produce the bug. If you were to use the -n in a case like this, rsh would incorrectly read from 
/dev/null instead of from the pipe. 

Sun Release 4.0 Last change: 17 December 1987 427 



RUP(lC) USER COMMANDS RUP( lC) 

NAME 
rup - show host status of local machines (RPC version) 

SYNOPSIS 
rup [ -h ] [ -I ] [ -t ] [ host. . . ] 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rup gives a status similar to uptime for remote machines; It broadcasts on the local networ~ and displays 
the responses it receives. 

Normally, the listing is in the order that responses are received, but this order can be changed by specifying 
one of the options listed below. 

When host arguments are given, rather than broadcasting rup will only query the list of specified hosts. 

A remote host will only respond if it is running the rstatd daemon, which is normally started up from 
inetd(8C). 

OPTIONS 

FILES 

-h 

-I 

-t 

Sort the display alphabetically by host name. 

Sort the display by load average. 

Sort the display by up time. 

/ etc/servers 

SEE ALSO 
ruptime( 1 C), inetd(8C), rstatd(8C) 

BUGS 
Broadcasting does not work through gateways. 

428 Last change: 17 December 1987 Sun Release 4.0 



RUPTIME ( lC) USER COMMANDS RUPTIME( lC) 

NAME 
ruptime - show host status of local machines 

SYNOPSIS 
ruptime [ -alrtu] 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
ruptime gives a status line like uptime for each machine on the local network; these are formed from 
packets broadcast by each host on the network once a minute. 

Machines for which no status report has been received for 5 minutes are shown as being down. 

Normally, the listing is sorted by host name, but this order can be changed by specifying one of the options 
listed below. 

OPTIONS 

FILES 

-a Count even those users who have been idle for an hour or more. 

-I Sort the display by load average. 

-r Reverse the sorting order. 

-t Sort the display by up time. 

-u Sort the display by number of users. 

/var/spool/rwho/whod. • 
data files 

SEE ALSO 
rup(lC), rwho(lC) 

Sun Release 4.0 Last change: 17 December 1987 429 



RUSERS( lC) USER COMMANDS RUSERS( lC) 

NAME 
rusers - who's logged in on local machines (RPC version) 

SYNOPSIS 
rusers [ -ahilu ] [ host. . . ] 

AVAILABILITY 
This command is available with the Networki.ng Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
The rusers command produces output similar to users(l) and who(l), but for remote machines. It broad
casts on the local network, and prints the responses it receives. Normally, the listing is in the order that 
responses are received, but this order can be changed by specifying one of the options listed below. When 
host arguments are given, rather than broadcasting rusers will only query the list of specified hosts. 

The default is to print out a listing in the style of users(l) with one line per machine. When the -1 flag is 
given, a rwho(lC) style listing is used. In addition, if a user has not typed to the system for a minute or 
more, the idle time is reported 

A remote host will only respond if it is running the rusersd daemon, which is normally started up from 
inetd(8C). 

OPTIONS 
-a Give a report for a machine even if no users are logged on. 

-h Sort alphabetically by host name. 

-i Sort by idle time. 

-I Give a longer listing in the style of who(l). 

-u Sort by number of users. 

FILES 
/etc/servers 

SEE ALSO 
rwho(lC), users(l), who(l), inetd(8C), rusersd(8C) 

BUGS 
Broadcasting does not work through gateways. 

430 Last change: 17 December 1987 Sun Release 4.0 



RWALL(lC) USER COMMANDS RWALL( lC) 

NAME 
rwall - write to all users over a network 

SYNOPSIS 
/usr/etc/rwall hostname . .. 
/usr/etc/rwall -n netgroup . .. 
/usr/etc/rwall -h hostname -n netgroup 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

rwall reads a message from standard input until EOF. It then sends this message, preceded by the line 
'Broadcast Message ... ', to all users logged in on the specified host machines. With the -n option, it 
sends to the specified network groups, which are defined in netgroup(5). 

A machine can only receive such a message if it is running rwalld(8C), which is normally started up from 
/etc/servers by the daemon inetd(8C). 

/etc/servers 

SEE ALSO 

BUGS 

wall(l), netgroup(5), inetd(8C), rwalld(8C), shutdown(8) 

The timeout is fairly short in order to be able to send to a large group of machines (some of which may be 
down) in a reasonable amount of time. Thus the message may not get through to a heavily loaded machine. 

Sun Release 4.0 Last change: 17 December 1987 431 



RWHO(lC) USER COMMANDS RWHO(lC) 

NAME 
rwho - who's logged in on local machines 

SYNOPSIS 
rwho [-a] 

AVAILABILITY 
The rwho service daemon, rwhod(8C) must be enabled for this command to return useful results. Refer to 
finger(l), rup(lC) and rusers(lC) for alternatives. 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
The rwho command produces output similar to who( 1 ), but for all machines on your network. If no report 
has been received from a machine for 5 minutes, rwho assumes the machine is down, and does not report 
users last known to be logged into that machine. 

If a user has not typed to the system for a minute or more, rwho reports this idle time. If a user has not 
typed to the system for an hour or more, the user is omitted from the output of rwho unless the -a flag is 
given. 

OPTIONS 
-a Report all users whether or not they have typed to the system in the past hour. 

FILES 
/var/spool/rwbo/whod.• 

information about other machines 
SEE ALSO 

finger(l), rup(lC), ruptime(lC), rusers(lC), who(l), rwhod(8C) 
BUGS 

Does not work through gateways. 
This is unwieldy when the number of machines on !.'te local net is large. 

432 Last change: 17 December 1987 Sun Release 4.0 



SACT(l) USER COMMANDS SACT(l) 

NAME 
sact - print current SCCS file editing activity 

SYNOPSIS 
/usr/sccs/sact filename . .. 

DESCRIPTION 
sact informs the user of any SCCS files which have had one or more 'get ---e' commands applied to them, 
that is, there are files out for editing, and deltas are pending. If a directory is named on the command line, 
sact behaves as though each file in the directory were specified as a named file, except that non-SCCS files 
and unreadable files are silently ignored. If a name of'-' is given, the standard input is read with each line 
being taken as the name of an SCCS file to be processed. 

The output for each named file consists of five fields separated by SPACE characters. 

Field 1 Specifies the SID of a delta that currently exists in the SCCS file to which changes 
will be made to make the new delta. 

Specifies the SID for the new delta to be created. Field 2 

Field 3 Contains the logname of the user who will make the delta (that is, executed a get(l) 
for editing). 

SEE ALSO 

Field 4 

Field5 

Contains the date that 'get -e' was executed. 

Contains the time that 'get -e' was executed. 

delta(l), get(l), help(l), sccs(l), unget(l) 

Programming Utilities and Libraries 

DIAGNOSTICS 
Use help(l) for explanations. 

Sun Release 4.0 Last change: 9 September 1987 433 



SCCS( 1) USER COMMANDS SCCS (1) 

NAME 
sccs - front end for the Source Code Control System (SCCS) 

SYNOPSIS 
secs [ -r] [ -dprefixpath] [ -pfinalpath] command [SCCS-flags ... ] [filename ... ] 

DESCRIPTION 
The secs command is a front end to the utility programs of the Source Code Control System (SCCS). 

secs normally prefixes each filename, or the last component of each filename, with the string 'SCCS/s.', be
cause you normally keep your SCCS database files in a directory called SCCS, and each database file starts 
with an 's.' prefix. If the environment variable PROJECTDIR is set, and is an absolute pathname (that is, 
begins with a slash) secs will search for SCCS files in the directory given by that variable. If it is a relative 
pathname (that is, does not begin with a slash), it is treated as the name of a user, and secs will search in 
that user's home directory for a directory named src or source. If that directory is found, secs will search 
for SCCS files in the directory given by that variable. 

secs program options must appear before the command argument. Flags to be passed to the actual SCCS 
command (utility program) must appear after the command argument. These flags are specific to the com
mand being used, and are discussed in Programming Utilities and Libraries 

secs also includes the capability to run 'set user id' to another user to provide additional protection. Cer
tain commands (such as admin(l)) cannot be run 'set user id' by all users, since this would allow anyone 
to change the authorizations. Such commands are always run as the real user. 

OPTIONS 

USAGE 

-r Run secs as the real user rather than as whatever effective user secs is 'set user id' to. 

-dprefixpath 
Define the prefix portion of the pathname for the SCCS database files. The default prefix portion 
of the pathname is the current directory. prefixpath is prefixed to the entire pathname. See EX
AMPLES. 

This flag overrides any directory specified by the PROJECTDIR environment variable. 

-pfinalpath 
Define the name of a lower directory in which the SCCS files will be found; SCCS is the default. 
finalpath is appended before the final component of the pathname. See EXAMPLES. 

Additional secs Commands 

434 

Several "pseudo-commands" are available in addition to the usual SCCS commands. These are: 

create 

enter 

edit 

delget 

deledit 

fix 

create is used when creating new s. files. Fm: example, given a C source language file 
called 'obscure.c', create would perform the following actions: (1) create the 's.' file 
called 's.obscure.c' in the SCCS directory; (2) rename the original source file to 
',obscure.c'; (3) do an 'secs get' on 'obscure.c'. Compared to the SCCS admin command, 
create does more of the startup work for you and should be used in preference to admin. 

enter is just like create, except that it does not do the final 'secs get'. It is usually used if 
an 'secs edit' is to be performed immediately after the enter. 

Get a file for editing. 

Perform a delta on the named files and then get new versions. The new versions have ID 
keywords expanded, and so cannot be edited. 

Same as delget, but produces new versions suitable for editing. deledit is useful for making 
a "checkpoint" of your current editing phase. 

Remove the named delta, but leaves you with a copy of the delta with the changes that were 
in it. fix must be followed by a -r flag. fix is useful for fixing small compiler bugs, etc. 
Since fix does not leave audit trails, use it carefully. 

Last change: 24 September 1987 Sun Release 4.0 



SCCS( 1) 

clean 

unedit 

info 

check 

tell 

diffs 

print 

EXAMPLES 

USER COMMANDS SCCS ( 1) 

Remove everything from the current directory that can be recreated from SCCS files. clean 
checks for and does not remove any files being edited. If 'clean -b' is used, branches are 
not checked to see if they are currently being edited. Note: -b is dangerous if you are keep
ing the branches in the same directory. 

"Undo" the last edit or 'get -e' and return a file to its previous condition. If you unedit a 
file being edited, all changes made since the beginning of the editing session are lost. 

Display a list of all files being edited. If the -b flag is given, branches (that is, SID's with 
two or fewer components) are ignored. If the -u flag is given (with an optional argument), 
only files being edited by you (or the named user) are listed. 

Check for files currently being edited, like info, but returns an exit code rather than a listing: 
nothing is printed if nothing is being edited, and a non-zero exit status is returned if anything 
is being edited. check may thus be included in an "install" entry in a makefile, to ensure 
that everything is included in an SCCS file before a version is installed. 

Display a list of files being edited on the standard output. Filenames are separated by NEW
LINE characters. Take the -b and -u flags like info and check. 

Compare (in diff-like format) the current version of the program you have out for editing 
and the versions in SCCS format diffs accepts the same arguments as diff, except that the 
-c flag must be specified as -C instead, because the -c flag is taken as a flag to get indicat
ing which version is to be compared with the current version. 

Print verbose information about the named files. print does an 'secs prs-e' followed by an 
'secs get -p -m' on each file. 

The command: 

example% secs -d/usr/include get sys/inode.h 

converts to: 

get /usr/include/sys/SCCS/s.inode.h 

The intent here is to create aliases such as: 

alias syssccs secs -d/usr/src 

which will be used as: 

example% syssccs get cmd/who.c 

The command: 

example% secs -pprivate get usr/include/stdio.h 

converts to: 

get usr/include/private/s.stdio.h 

To put a file called myprogram.c into SCCS format for the first time, assuming also that there is no SCCS 
directory already existing: 

Sun Release 4.0 

example% mkdir SCCS 
example% secs create myprogram.c 
myprogram.c: 
1.1 
14 lines 
after you have verified that everything is all right 
you remove the version of the file that starts with a comma: 
example% rm ,myprogram.c 
example% 

Last change: 24 September 1987 435 



SCCS( 1) USER COMMANDS SCCS ( 1) 

436 

To get a copy of myprogram.c for editing, edit that file, then place it back in the SCCS database: 

example% secs edit myprogram.c 
1.1 
new delta 1.2 
14 lines 
example% vi myprogram.c 
your editing session 
example% secs delget myprogram.c 
comments? Added abusive responses for compatibility with rest of system 
1.2 
7 inserted 
7 deleted 
7 unchanged 
1.2 
14 lines 
example% 

To get a file from another directory: 

example% secs -p/usr/src/sccs/ get cc.c 

or: 

example% secs get /usr/src/sccs/cc.c 

To make a delta of a large number of files in the current directory: 

example% secs delta •.c 

To get a list of files being edited that are not on branches: 

example% secs info -b 

To delta everything that you are editing: 

example% secs delta 'secs tell -u' 

In a makefile, to get source files from an SCCS file if it does not already exist: 

SRCS = dist of source files> 
$(SRCS): 

SCCS get $(REL)$@ 

Regular secs Commands 
The "regular" SCCS commands are described very briefly below. It is unlikely that you ever need to use 
these commands because the user interface is so complicated, and the secs front end command does 99.9% 
of the interesting tasks for you. 

admin Create new SCCS files and changes parameters of existing SCCS files. You can use 'secs 
create' to create new SCCS files, or use 'secs admin' to do other things. 

cdc Change the commentary material in an SCCS delta. 

comb Combine SCCS deltas and reconstructs the SCCS files. 

delta Permanently introduces changes that were made to a file previously retrieved using 'secs 
get'. You can use 'secs delget' as the more useful version of this command since 'secs del
get' does all of the useful work and more. 

get Extract a file from the SCCS database, either for compilation, or for editing when the -e op
tion is used. Use 'secs get' if you really need it, but 'secs delget' will normally have done 
this job for you. Use sccs edit instead of get with the -e option. 

help Supposed to help you interpret SCCS error messages, but usually just parrots the message 

Last change: 24 September 1987 Sun Release 4.0 



SCCS( 1) USER COMMANDS SCCS(l) 

FILES 

prs 

rmdel 

sccsdiff 

and is generally not considered very helpful. 

Display information about what is happening in an SCCS file. 

Remove a delta from an SCCS file. 

Compare two versions of an SCCS file and generates the differences between the two ver
sions. 

val Determine if a given SCCS file meets specified criteria. If you use the secs command, you 
should not need to use val, because its user interface is unbelievable. 

what Display SCCS identification information. 

/usr/sccs/• 

SEE ALSO 
admin(l), cdc(l), comb(l), delta(l), get(l), help(l), prs(l), rmdel(l), sact(l), sccsdiff(l), unget(l), 
val(l), what(l), sccsfile(5) 

Programming Utilities and Libraries 

Sun Release 4.0 Last change: 24 September 1987 437 



SCCSD IFF ( 1 ) USER COMMANDS SCCSDIFF ( 1 ) 

NAME 
sccsdiff - compare two versions of an SCCS file 

SYNOPSIS 
/usr/sccs/sccsdiff -r SID 1 -r SID2 [ -p ] [ -diffopts] filenames 

DESCRIPTION 
sccsdiff compares two versions of an SCCS file and generates the differences between the two versions. 
Any number of SCCS files may be specified, but options apply to all files. 

OPTIONS 
-rSID? SIDI and SID2 specify the deltas of an SCCS file that are to be compared. Versions are passed to 

diff(l) in the order given. 

-p Pipe output for each file through pr(l V). 

-diffopts 
The -c, -e, -f, -h, -b and -D options of diff can be specified here. 

FILES 
/tmp/get????? temporary files 

SEE ALSO 
diff(l), get(l), help(l), pr(l V), sccs(l) 

Programming Utilities and Libraries 

DIAGNOSTICS 
filename: No differences 

If the two versions are the same. 
Use help(l) for explanations. 

438 Last change: 9 September 1987 Sun Release 4.0 



SCREENBLANK ( 1 ) USER COMMANDS SCREENBLANK ( 1 ) 

NAME 
screenblank - tum off the screen when the mouse and keyboard are idle 

SYNOPSIS 
screenblank [ -m ] [ -k ] [ -d interval ] [ -e interval ] [ -f frame-buffer ] 

DESCRIPTION 
screenblank turns off the display when the mouse and keyboard are idle for an extended period (the de
fault is 10 minutes). screenblank will continue to run until killed by hand, using 'kill -9 processid' or by 
logging out. 

OPTIONS 

FILES 

-m Do not check whether the mouse has been idle. 

-k Do not check whether the keyboard has been idle. 

-d interval 
Disable after interval seconds. interval is a number of the form xxx .xxx where each x is a decimal 
digit The default is 600 seconds (10 minutes). 

-e interval 
Enable within interval seconds. interval is the time between successive polls for keyboard or 
mouse activity. If a poll detects keyboard or mouse activity, the display is resumed. interval is a 
number of seconds, of the form xxx .xxx where each x is a decimal digit. The default is 0.25 
seconds. 

-r frame-buffer 

/dev/fb 

frame-buffer is the path name of the frame-buffer on which video disabling/enabling applies. The 
defaults is /dev/fb. 

SEE ALSO 
lockscreen(l), sunview(l) 

BUGS 
When not running sunview(l), only the RETURN key resumes video display. 

Sun Release 4.0 Last change: 9 September 1987 439 



SCREENDUMP ( 1 ) USER COMMANDS SCREENDUMP ( 1) 

NAME 
screendump - dump a frame-buffer image to a file 

SYNOPSIS 
screendump [ -ceo8] [ -f frame-buffer] [ -t type] [ -xyXY value ] [filename ] 

DESCRIPTION 
screendump reads the contents of a frame buffer and writes the display image to filename (the default is 
the standard output ) in Sun standard rasterfile format 

If the frame buffer has both an overlay plane and color planes, screendump examines the overlay enable 
plane and tries to make the output file represent what is visible on the screen. It maps the overlay plane 
foreground and background colors into the closest values present in the color map for the color planes. 

OPTIONS 
-c Dump the frame-buffer contents directly without making a temporary copy in a memory pixrect. 

Saves time and memory but lengthens the time the frame-buffer must be inactive to guarantee a 
consistent screen dump. 

-e Set the output rasterfile type to 2, RT_ BYTE_ ENCODED. For most images this saves a significant 
amount of space compared to the standard format 

-o Dump the frame-buffer overlay plane only (ignored if the display does not have an overlay plane). 

-8 Dump the frame-buffer color planes only (ignored if the display does not have color planes). 

-f frame-buffer 
Dump the specified frame-buffer device (default is /dev/fb). 

-t type Set the output rasterfile type (default 1, RT_STANDARD). 

-x value 
-y value 

Set the x or y coordinate of the upper left comer of the area to be dumped to the given value. 

-X value 
-Y value 

Set the width or height of the area to be dumped to the given value. 

EXAMPLES 

FILES 

440 

The command: 

example% screendump save.this.image 

writes the current contents of the console frame buffer into the file save.this.image, 

while the command: 

example% screendump -f /dev/cgtwo save.color.image 

writes the current contents of the color frame buffer /dev/cgtwo into the file save.color .image. 

The command: 

example% screendump I lpr-Pversatec -v 

sends a rasterfile containing the current frame-buffer to the linevrn1ter, selecting the printer versatec, and 
the v output filter (see /etdprintcap ). 

/usr/include/rasterfile.h 
/usr/Iib/rasfilters/• 
/dev/fb 
/etc/printcap 

definition of rasterfile format 
filters for non-standard rasterfile formats 
default frame buffer device 

Last change: 6 November 1987 Sun Release 4.0 



SCREENDUMP ( 1 ) USER COMMANDS SCREENDUMP ( 1 ) 

SEE ALSO 
lpr(l), rastrepl(l), screenload(l), rasfilter8tol(l) 

Pixrect Reference Manual 

BUGS 
The output file or the screen may be corrupted if the frame-buffer contents are modified while the dump is 
in progress. 

Sun Release 4.0 Last change: 6 November 1987 441 



SCREENLOAD ( 1 ) USER COMMANDS SCREENLOAD ( 1 ) 

NAME 
screenload - load a frame-buffer image from a file 

SYNOPSIS 
screenload [ -dopr] [ -fframe-buffer] [ -xyXY value] [ -bgnw] [ -h count data ... ] [ -i color] 

[filename] 

DESCRIPTION 
screenload reads a Sun standard rasterfile (see rasterfile(5)) and displays it on a frame-buffer. screenload 
is able to display monochrome images on a color display, but cannot display color images on a mono
chrome display. If the input file contains a color image, a frame-buffer has not been explicitly specified, 
and /dev/fb is a monochrome frame-buffer, screenload looks for a color frame-buffer with one of the stan
dard device names. 

If the image contained in the input file is larger than the actual resolution of the display, screenload clips 
the right and bottom edges of the image. If the input image is smaller than the display (for example, load
ing an 1152-by-900 image on a 1600-by-1280 high resolution display), screenload centers the image on 
the display surface and fills the border area with solid black (by default). Various options may be used to 
change the image location, or to change or disable the fill pattern. 

OPTIONS 

442 

-d 

-o 

-p 

-r 

Print a warning message if the display size does not match the rasterfile image size. 

Load the image on the overlay plane of the display (ignored if the display does not have an over
lay plane). 

Wait for a NEWLINE to be typed on the standard input before exiting. 

Reverse the foreground and background of the output image. Useful when loading a screendump 
made from a reverse video screen. 

-f frame-buffer 
Display the image on the specified frame-buffer device (default /dev/fb). 

-x value 
-y value 

Set the x or y coordinate of the upper left corner of the image on the display to the given value. 

-X value 
-¥ value 

Set the maximum width or height of the displayed image to the given value. 

-b Fill the border area with a pattern of solid ones (default). On a monochrome display this results in 
a black border; on a color display the color map value selected by the -i option determines the 
border color. 

-g Fill the border area with a pattern of "desktop grey". On a monochrome display this results in a 
border matching the default background pattern used by SunView; on a color display the color 
map value selected by the -i option determines the foreground border color, though the pattern is 
the same as on a monochrome display. 

-n Do not fill the border area. 

-w Fill the border area with a pattern of solid zeros. On a monochrome display this results in a white 
border; on a color display the color map value at index O determines the border color. 

-h count data ... 
Fill the border area with the bit pattern described by the following count 16-bit hexadecimal con
stants. Note: a "1" bit is black and a "O" bit is white on the monochrome display; on a color 
display the color map value selected by the -i option determines the border foreground color. The 
number of hex constants in the pattern is limited to 16. 

-i color Fill the border area with the given color value (default 255). 

Last change: 23 November 1987 Sun Release 4.0 



SCREENLOAD ( 1 ) USER COMMANDS SCREENLOAD ( 1 ) 

EXAMPLES 
The command: 

example% screenload saved.display.image 

loads the raster image contained in the file saved.display.image on the display type indicated by the 
rasterfile header in that file. 

FILES 

example% screenload -f /dev/cgtwo monochrome.image 

reloads the raster image in the file monochrome.image on the color frame-buffer device /dev/cgtwo. 

The command: 

example% screenload -bl ffff small.saved.image 

is equivalent to the -b option (fill border with black), while 

example% screenload -h4 8888 8888 2222 2222 small.saved.image 

is equivalent to the -g option (fill border with desktop grey). 

/usr/include/rasterfile.h 
/usr/lib/rasfilters/• 
/dev/fb 

definition of rasterfile format 
filters for non-standard rasterfile formats 
default frame buffer device 

SEE ALSO 

rasfilter8tol(l), rastrepl(l), screendump(l), screenload(l) 

Pixrect Reference Manual 

Sun Release 4.0 Last change: 23 November 1987 443 



SCRIPT( 1) USER COMMANDS SCRIPT( 1) 

NAME 
script - make typescript of a terminal session 

SYNOPSIS 
script [ -a ] [filename ] 

DESCRIPTION 
script makes a typescript of everything printed on your terminal. The typescript is written to filename, or 
appended to filename if the -a option is given. It can be sent to the line printer later with lpr(l). If no file 
name is given, the typescript is saved in the file typescript. 

The script ends when the forked shell exits. 

OPTIONS 
-a Append the script to the specified file instead of writing over it. 

SEE ALSO 
lpr(l) 

BUGS 
script places everything in the log file. This is not what the naive user expects. 

444 Last change: 9 September 1987 Sun Release 4.0 



SDIFF( 1) USER COMMANDS SDIFF( 1) 

NAME 
sdiff - contrast two text files by displaying them side-by-side 

SYNOPSIS 
sdiff [ -I ] [ -o outfile ] [ -s ] [ -w n ] filename] filename2 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the Sun0S 
for information on how to install optional software. 

DESCRIPTION 
sdiff uses the output of diff to produce a side-by-side listing of two files indicating those lines that are dif
ferent. Each line of the two files is printed with a blank gutter between them if the lines are identical, a < in 
the gutter if the line only exists in filename], a> in the gutter if the line only exists infilename2, and a I for 
lines that are different. See EXAMPLES. 

OPTIONS 
-w n Use n as the width of the output line. The default line length is 130 characters. 

-I Only print the left side of any identical lines. 

-s Silent. Do not print identical lines. 

-o outfile 
Use the next argument, output, as the name of an output file created as an interactively controlled 
merging of filename] and filename2. Identical lines of filename] and filename2 are copied to out
put. Sets of differences, as produced by difT, are printed; where a set of differences share a com
mon gutter character. After printing each set of differences, sdiff prompts with a % and waits for 
you to type one of the following commands: 

Append the left column to the output file. 

r Append the right column to the output file. 

s Turn on silent mode; do not print identical lines. 

v Turn off silent mode. 

e I Call the ed( 1) with the left column. 

e r Call ed( 1) with the right column. 

e b Call ed(l) with the concatenation of left and right columns. 

e Call ed( 1) with a zero length file. 

On exit from ed(l), the resulting file is concatenated to the named output file. 

q Exit from the program. 

EXAMPLES 
A sample output of sdiff would look like this: 

SEE ALSO 
diff(l), ed(l) 

Sun Release 4.0 

X 

a 
b 
C 

d 

y 
a 

< 
< 

d 
> C 

Last change: 21 December 1987 445 



SED( lV) USER COMMANDS SED( lV) 

NAME 
sed - stream editor 

SYNOPSIS 
sed [ -n] [ -e script] [ -f sfilename] [filename ] ... 

DESCRIPTION 
sed copies the filenames (standard input default) to the standard output, edited according to a script of com
mands. 

OPTIONS 

USAGE 

-n Suppress the default output. 

-e script 
script is an edit command for sed. If there is just one -e option and no -r options, the -e flag may 
be omitted. 

-f sfilename 
Take the script from sfilename. 

sed Scripts 

446 

sed scripts consist of editing commands, one per line, of the following form: 

[ address [, address ] ] function [ arguments ] 

In normal op~ration sed cyclically copies a line of input into a pattern space (unless there is something left 
after a D command), sequentially applies all commands with addresses matching that pattern space until 
reaching the end of the script, copies the pattern space to the standard output (except under-n), and finally, 
deletes the pattern space. 

Some commands use a hold space to save all or part of the pattern space for subsequent retrieval. 

An address is either: 

a decimal number linecount, which is cumulativ~ across input files; 

a $, which addresses the last input line; 

or a context address, which is a /regular expression/ in the style of ed(l); 

with the following exceptions: 

\?RE? In a context address, the construction \ ?regular expression?, where ? is any character, is 
identical to /regular expression/. Note: in the context address \xabc\xdefx, the second x 
stands for itself, so that the regular expression is abcxdef. 

\n Matches a NEWLINE embedded in the pattern space. 

Matches any character except the NEWLINE ending the pattern space. 

null A command line with no address selects every pattern space. 

address Selects each pattern space that matches. 

address] , address2 
Selects the inclusive range from the first pattern space matching addrressl to the first pat
tern space matching address2. Selects only one line if address] is greater than or equal 
to address2. 

Last change: 4 January 1988 Sun Release 4.0 



SED( lV) USER COMMANDS SED( lV) 

Comments 
If the first nonwhite character in a line is a '#' (pound sign), sed treats that line as a comment, and ignores 
it If, however, the first such line is of the form: 

#n 

sed runs as if the -n flag were specified. 

Functions 
The maximum number of permissible addresses for each function is indicated in parentheses in the list 
below. 

An argument denoted text consists of one or more lines, all but the last of which end with\ to hide the 
NEWLINE. Backslashes in text are treated like backslashes in the replacement string of an s command, and 
may be used to protect initial SP ACE and TAB characters against the stripping that is done on every script 
line. 

An argument denoted rfilename or wfilename must terminate the command line and must be preceded by 
exactly one SPACE. Each wfilename is created before processing begins. There can be at most 10 distinct 
wfilename arguments. 

(l)a\ 
text Append: place text on the output before reading the next input line. 

(2) b label Branch to the ':' command bearing the label. Branch to the end of the script if label is emp
ty. 

(2)c\ 
text Change: delete the pattern space. With O or 1 address or at the end of a 2 address range, 

place text on the output. Start the next cycle. 

(2) d Delete the pattern space. Start the next cycle. 

(2) D Delete the initial segment of the pattern space through the first NEWLINE. Start the next cy-
cle. 

(2) g Replace the contents of the pattern space by the contents of the hold space. 

(2) G Append the contents of the hold space to the pattern space. 

(2) h Replace the contents of the hold space by the contents of the pattern space. 

(2) H Append the contents of the pattern space to the hold space. 

(1) i\ 
text Insert: place text on the standard output 

(2) I List the pattern space on the standard output in an unambiguous form. Non-printing charac
ters are spelled in two digit ASCII and long lines are folded. 

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next line 
of input. 

(2) N Append the next line of input to the pattern space with an embedded newline. (The current 
line number changes.) 

(2) p Print copy the pattern space to the standard output. 

(2) P Copy the initial segment of the pattern space through the first NEWLINE to the standard out
put. 

( 1) q Quit: branch to the end of the script. Do not start a new cycle. 

(2) r rfilename 
Read the contents of rfilename. Place them on the output before reading the next input line. 

Sun Release 4.0 Last change: 4 January 1988 447 



SED( lV) USER COMMANDS SED( lV) 

(2) sf regular expressionlreplacement!fiags 
Substitute the replacement string for instances of the regular expression in the pattern 
space. Any character may be used instead of'/'. For a fuller description see ed(l). flags is 
zero or more of: 

n n= 1 - 512. Substitute for just the nth occurrence of the 
regular expression. 

g Global: substitute for all nonoverlapping instances of the regular expres
sion rather than just the first one. 

p Print the pattern space if a replacement was made. 

w wfilename 
Write: append the pattern space to wfilename if a replacement was made. 

(2) t label Test: branch to the':' command bearing the label if any substitutions have been made since 
the most recent reading of an input line or execution of at. If label is empty, branch to the 
end of the script. 

(2) w wfilename 
Write: append the pattern space to wfilename. 

(2) x Exchange the contents of the pattern and hold spaces. 

(2) ylstringl /string2! 
Transform: replace all occurrences of characters in string 1 with the corresponding character 
in string2. The lengths of string] and string2 must be equal. 

(2)!function Do not: apply the function (or group, if function is '{') only to lines not selected by the 
address( es). 

(0): label 

(1) = 

(2){ 

(0) 

This command does nothing; it bears a label for band t commands to branch to. Note: the 
maximum length of label is seven characters. 

Place the current line number on the standard output as a line. 

Execute the following commands through a matching '}' only when the pattern space is 
selected. 

An empty command is ignored. 

System V sed Scripts 
Initial SPACE and TAB characters are not stripped from text lines. 

DIAGNOSTICS 

448 

Too many commands 
The command list contained more than 200 commands. 

Too much command text 
The command list was too big for sed to handle. Text in the a, c, and i commands, text read in by 
r commands, addresses, regular expressions and replacement strings ins commands, and transla
tion tables in y commands all require sed to store data internally. 

Command line too long 
A command line was longer than 4000 characters. 

Too many line numbers 
More than 256 decimal number linecounts were specified as addresses in the command list. 

Too many files in w commands 
More than 10 different files were specified in w commands or w options for s commands in the 
command list. 

Too many labels 
More than 50 labels were specified in the command list. 

Last change: 4 January 1988 Sun Release 4.0 



SED( IV) USER COMMANDS SED(lV) 

Unrecognized command 
A command was not one of the ones recognized by sed. 

Extra text at end of command 
A command had extra text after the end. 

Illegal line number 
An address was neither a decimal number linecount, a $, nor a context address. 

Space missing before filename 
There was no space between a r or w command, or the w option for a s command, and the 
filename specified for that command. 

Too many {'s 
There were more { than } in the list of commands to be executed. 

Too many }'s 
There were more } than { in the list of commands to be executed. 

No addresses allowed 
A command that takes no addresses had an address specified. 

Only one address allowed 
A command that takes one address had two addresses specified. 

"\digit" out of range 
The number in a \n item in a regular expression or a replacement string in a s command was 
greater than 9. 

Bad number 
One of the endpoints in a range item in a regular expression (that is, an item of the form {n} or 
{n,m}) was not a number 

Range endpoint too large 
One of the endpoints in a range item in a regular expression was greater than 255. 

More than 2 numbers given in \{ \} 
More than two endpoints were given in a range expression. 

} expected after \ 
A \ appeared in a range expression and was not followed by a } . 

First number exceeds second in \{ \} 
The first endpoint in a range expression was greater than the second. 

Illegal or missing delimiter 
The delimiter at the end of a regular expression was absent. 

\( \) imbalance 
There were more \( than \), or more \) than \(, in a regular expression. 

[ ] imbalance 
There were more [ than ], or more ] than [, in a regular expression. 

First RE may not be null 
The first regular expression in an address or in as command was null (empty). 

Ending delimiter missing on substitution 
The ending delimiter in a s command was absent. 

Ending delimiter missing on string 
The ending delimiter in a y command was absent. 

Transform strings not the same size 
The two strings in a y command were not the same size. 

Sun Release 4.0 Last change: 4 January 1988 449 



SED( lV) USER COMMANDS SED( lV) 

Suffix too large - 512 max 
The suffix in a s command, specifying which occurrence of the regular expression should be re
placed, was greater than 512. 

Label too long 
A label in a command was longer than 8 characters. 

Duplicate labels 
The same label was specified by more than one: command. 

File name too long 
The filename specified in a r or w command, or in the w option for a s command, was longer than 
1024 characters. 

Output line too long. 
An output line was longer than 4000 characters long. 

Too many appends or reads after line n 
More than 20 a or r commands were to be executed for line n. 

Hold space overflowed. 
More than 4000 characters were to be stored in the hold space. 

SEE ALSO 

BUGS 

450 

awk(l), ed(l), lex(l), grep(l V) 

Editing Text Files 

There is a combined limit of 200 -e and -f arguments. In addition, there are various internal size limits 
which, in rare cases, may overflow. To overcome these limitations, either combine or break out scripts, or 
use a pipeline of sed commands. 

Last change: 4 January 1988 Sun Release 4.0 



SELECTION_ SVC ( 1 ) USER COMMANDS SELECTION_ SVC ( 1 ) 

NAME 
selection svc - Sun View selection service 

SYNOPSIS 
selection_ svc [ -d ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
The Sun View selection service handles the state and rank of various selections for its client programs. A 
selection service is started automatically by sunview(l). However, you can also start one explicitly using 
the ®command. 

OPTIONS 
-d Debug a client program. Use the alternate socket provided for testing and debugging a client pro

gram. The second selection service invoked with the -d handles a different set of selections, and 
can co-exist with one started in the normal fashion. Each service responds only to requests direct
ed to its own socket. The client to be debugged can be directed to use the ''debugging'' service 
by using the seln_use_test_service() procedure, as described in the SunView 1 System 
Programmer's Guide. 

SEE ALSO 
sunview(l) 

Sun View 1 Beginner's Guide 

Sun View 1 System Programmer's Guide 

Sun Release 4.0 Last change: 21 December 1987 451 



SH( 1) USER COMMANDS SH( 1) 

NAME 
sh - shell, the standard UNIX system command interpreter and command-level language 

SYNOPSIS 
sh [ -acefhiknstuvx ] [ arguments ] 

DESCRIPTION 

sh, the Bourne shell, is the standard UNIX-system command interpreter. It executes commands read from a 
terminal or a file. 

Definitions 

A blank is a TAB or a SPACE character. A name is a sequence of letters, digits, or underscores beginning 
with a letter or underscore. A parameter is a name, a digit, or any of the characters *, @, #,?, -, $, and! . 

Invocation 
If the shell is invoked through execve(2), execv(3), or execl(3), and the first character of argument zero is 
'-', commands are initially read from /etc/profile and from $HOME/.profile, if such files exist. Thereafter, 
commands are read as described below, which is also the case when the shell is invoked as sh. 

OPTIONS 

USAGE 

The flags below are interpreted by the shell on invocation only; unless the -c or -s flag is specified, the first 
argument is assumed to be the name of a file containing commands, and the remaining arguments are 
passed as positional parameters for use with the commands that file contains. 

-i If the -i flag is present or if the shell input and output are attached to a terminal, this shell is in
teractive. In this case TERMINATE is ignored (so that 'kill O' does not kill an interactive shell) 
and INTERRUPT is caught and ignored (so that wait is interruptible). In all cases, QUIT is ignored 
by the shell. 

-s If the -s flag is present or if no arguments remain commands are read from the standard input. 
Any remaining arguments specify the positional parameters. Shell output ( except for Special 
Commands) is written to file descriptor 2. 

-c string 
If the -c flag is present commands are read from string. 

The remaining flags and arguments are described under the set command, under Special Commands, 
below. 

Refer to Doing More with SunOS: Beginner's Guide for more information about using the shell as a pro
gramming language. 

Commands 

452 

A simple c~mmand is a sequence of nonblank words separated by blanks. The first word specifies the 
name of the command to be executed. Except as specified below, the remaining words are passed as argu
ments to the invoked command. The command name is passed as argument O (see execve(2)). The value 
of a simple command is its exit status if it terminates normally, or (octal) 200+status if it terminates abnor
mally (see sigvec(2) for a list of status values). 

A pipeline is a sequence of one or more commands separated by 'I ' (or, for historical compatibility, by 
'"'). The standard output of each command but the last is connected by a pipe (see pipe(2)) to the standard 
input of the next command. Each command is run as a separate process; the shell normally waits for the 
last command to terminate before prompting for or accepting the next input line. The exit status of a pipe
line is the exit status of its last command. 

A list is a sequence of one or more simple commands or pipelines, separated by';','&','&&', or 'II', 
and optionally terminated by';' or'&'. Of these four symbols,';' and'&' have equal precedence, which 
is lower than that of' && ' and 'I I '. The symbols ' && ' and 'I I ' also have equal precedence. A semi
colon (;) sequentially executes the preceding pipeline; an ampersand (&) asynchronously executes the 
preceding pipeline (the shell does not 'r_Vait for that pipeline to finish). The symbols && and 11 are used to 
indicate conditional execution of the list that follows. With && , list is executed only if the preceding 

Last change: 5 January 1988 Sun Release 4.0 



SH( 1) USER COMMANDS SH( 1) 

pipeline (or command) returns a zero exit status. With I I , list is executed only if the preceding pipeline (or 
command) returns a nonzero exit status. An arbitrary number of NEWLINE characters may appear in a list, 
instead of semicolons, to delimit commands. 

A command is either a simple command or one of the following constructions. Unless otherwise stated, the 
value returned by a command is that of the last simple command executed in the construction. 

for name [ in word . . . ] 
do list done 
Each time a for command is executed, name is set to the next word taken from the in word list. If 
in word . . . is omitted, then the for command executes the do list once for each positional param
eter that is set (see Parameter Substitution below). Execution ends when there are no more 
words in the list. 

case word in [pattern[ I pattern] ... ) list ;; ] ... esac 
A case command executes the list associated with the first pattern that matches word. The form 
of the patterns is the same as that used for filename generation (see Filename Generation) except 
that a slash, a leading dot, or a dot immediately following a slash need not be matched explicitly. 

if list then list [ elif list then list ] ... [ else list ] fl 
The list following if is executed and, if it returns a zero exit status, the list following the first then 
is executed. Otherwise, the list following elif is executed and, if its value is zero, the list follow
ing the next then is executed. Failing that, the else list is executed. If no else list or then list is 
executed, then the if command returns a zero exit status. 

while list do list done 
A while command repeatedly executes the while list and, if the exit status of the last command in 
the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do list 
are executed, then the while command returns a zero exit status; until may be used in place of 
while to negate the loop termination test. 

( list ) Execute list in a subshell. 
{list;} list is simply executed. 
name () {list;} 

Define a function which is referenced by name. The body of the function is the list of commands 
between { and } . Execution of functions is described below (see Execution). 

The following words are only recognized as the first word of a command and when not quoted: 

if then else elif fl case esac for while until do done { } 

Comments 
A word beginning with # and all the following characters up to a NEWLINE are ignored. 

Command Substitution 
The shell reads commands from the string between two grave accents (") and the standard output from 
these commands may be used as all or part of a word. Trailing NEWLINE characters from the standard out
put are removed. 

No interpretation is done on the string before the string is read, except to remove backslashes ( \) used to 
escape other characters. Backslashes may be used to escape a grave accent (') or another backslash ( \) 
and are removed before the command string is read. Escaping grave accents allows nested command sub
stitution. If the command substitution lies within a pair of double quotes (" ••• ' ••• ' ••• "), a backslash 
used to escape a double quote(\") will be removed; otherwise, it will be left intact. 

If a backslash is used to escape a NEWLINE character (\NEWLINE), both the backslash and the NEWLINE 
are removed (see Quoting, later). In addition, backslashes used to escape dollar signs (\$) are removed. 
Since no interpretation is done on the command string before it is read, inserting a backslash to escape a 
dollar sign has no effect. Backslashes that precede characters other than \, ', ", NEWLINE, and $ are left 
intact when the command string is read. 

Sun Release 4.0 Last change: 5 January 1988 453 



SH( 1) USER COMMANDS SH( 1) 

Parameter Substitution 

454 

The character $ is used to introduce substitutable parameters. There are two types of parameters, position
al and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be assigned 
values by set. Keyword parameters (also known as variables) may be assigned values by writing: 

name=value [ name=value ] ... 

Pattern-matching is not performed on value. There cannot be a function and a variable with the same 
name. 

${parameter } 
The value, if any, of the parameter is substituted. The braces are required only when parameter is 
followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If param
eter is '*' or '@', all the positional parameters, starting with $1, are substituted (separated by 
SPACE characters). Parameter $0 is set from argument zero when the shell is invoked. 

If the colon (:) is omitted from the following expressions, the shell only checks whether parameter is set or 
not. 
${parameter :-word} 

If parameter is set and is nonnull, substitute its value; otherwise substitute word. 
${parameter:=word} 

If parameter is not set or is null set it to word; the value of the parameter is substituted. Positional 
parameters may not be assigned to in this way. 

${parameter: ?word} 
If parameter is set and is nonnull, substitute its value; otherwise, print word and exit from the 
shell. If word is omitted, the message 'parameter null or not set' is printed. 

${parameter :+word} 
If parameter is set and is nonnull, substitute word; otherwise substitute nothing. 

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following 
example, pwd is executed only if d is not set or is null: 

echo ${d:-'pwd'} 

The following parameters are automatically set by the shell: 
# The number of positional parameters in decimal. 

Flags supplied to the shell on invocation or by the set command. 
? The decimal value returned by the last synchronously executed command. 
$ The process number of this shell. 

The process number of the last background command invoked. 

The following parameters are used by the shell: 
HOME The default argument (home directory) for the cd command. 
PATH The search path for commands (see Execution below). 
CDPATH 

The search path for the cd command. 
MAIL If this parameter is set to the name of a mail file and the MAILP A TH parameter is not set, 

the shell informs the user of the arrival of mail in the specified file. 
MAILCHECK 

This parameter specifies how often (in seconds) the shell will check for the arrival of 
mail in the files specified by the MAILPATH or MAIL parameters. The default value is 
600 seconds (10 minutes). If set to 0, the shell will check before each prompt. 

MAILPATH 
A colon (:) separated list of filenames. If this parameter is set, the shell informs the user 
of the arrival of mail in any of the specified files. Each filename can be followed by % 
and a message that will be printed when the modification time changes. The default mes
sage is 'you have mail'. 

PSl Primary prompt string, by default'$ '. 
PS2 Secondary prompt string, by default '> '. 

Last change: 5 January 1988 Sun Release 4.0 



SH( 1) USER COMMANDS SH( 1) 

IFS Internal field separators, normally SP ACE, TAB, and NEWLINE. 
SHELL When the shell is invoked, it scans the environment (see Environment below) for this 

name. 

The shell gives default values to PATH, PSl, PS2, MAILCHECK and IFS. HOME and MAIL are set by lo
gin(l). 

Blank Interpretation 
After parameter and command substitution, the results of substitution are scanned for internal field separa
tor characters (those found in IFS) and split into distinct arguments where such characters are found. Ex
plicit null arguments ("" or ") are retained. Implicit null arguments (those resulting from parameters that 
have no values) are removed. 

Input/Output 
A command's input and output may be redirected using a special notation interpreted by the shell. The fol
lowing may appear anywhere in a simple command or may precede or follow a command and are not 
passed on to the invoked command. Note: parameter and command substitution occurs before word or di
git is used. 

<word 
>Word 

>>word 

<<[- ]word 

Use file word as standard input (file descriptor 0). 
Use file word as standard output (file descriptor 1). If the file does not exist it is created; 
otherwise, it is truncated to zero length. 
Use file word as standard output. If the file exists output is appended to it (by first seek
ing to the EOF); otherwise, the file is created. 
After parameter and command substitution is done on word, the shell input is read up to 
the first line that literally matches the resulting word, or to an EOF. If, however, '-' is ap-
pended to: 

• leading TAB characters are stripped from word before the shell input is read 
(but after parameter and command substitution is done on word), 

• leading TAB characters are stripped from the shell input as it is read and be
fore each line is compared with word, and 

• shell input is read up to the first line that literally matches the resulting 
word, or to an EOF. 

If any character of word (see Quoting, later), no additional processing is done to the shell 
input. If no characters of word are quoted: 

• parameter and command substitution occurs, 
• (escaped) \NEWLINE is ignored, and 
• '\' must be used to quote the characters '\', '$', and '' '. 

The resulting document becomes the standard input. 
<&digit Use the file associated with file descriptor digit as standard input. Similarly for the standard out-

put using >&digit. 
<&- The standard input is closed. Similarly for the standard output using '>&-'. 

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that 
specified by the digit (instead of the default O or 1). For example: 

... 2>&1 

associates file descriptor 2 with the file currently associated with file descriptor 1. 

The order in which redirections are specified is significant. The shell evaluates redirections left-to-right. 
For example: 

... bxxx2>&1 

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the file associated with file 
descriptor 1 (namely, file xxx ). If the order of redirections were reversed, file descriptor 2 would be associ
ated with the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associated with 
file XXX. 

Sun Release 4.0 Last change: 5 January 1988 455 



SH( 1) USER COMMANDS SH( 1) 

456 

Using the terminology introduced on the first page, under Commands, if a command is composed of 
several simple commands, redirection will be evaluated for the entire command before it is evaluated for 
each simple command. That is, the shell evaluates redirection for the entire list, then each pipeline within 
the list, then each command within each pipeline, then each list within each command. 

If a command is followed by & the default standard input for the command is the empty file /dev/null. 
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking 
shell as modified by input/output specifications. 

Filename Generation 
Before a command is executed, each command word is scanned for the characters '•', '?',and'['. If one 
of these characters appears the word is regarded as a pattern. The word is replaced with alphabetically 
sorted filenames that match the pattern. If no filename is found that matches the pattern, the word is left 
unchanged. The character '.' at the start of a filename or immediately following a '/', as well as the char
acter'/' itself, must be matched explicitly. 

Quoting 

• Matches any string, including the null string. 
? Matches any single character. 
[ ... ] Matches any one of the enclosed characters. A pair of characters separated by '-' 

matches any character lexically between the pair, inclusive. If the first character follow
ing the opening [ is a ! any character not enclosed is matched. 

The following characters have a special meaning to the shell and cause termination of a word unless quot
ed: 

; & ( ) I A < > NEWLINE SPACE TAB 

A character may be quoted (made to stand for itself) by preceding it with a backslash (\) or inserting it 
between a pair of quote marks (" or ""). During processing, the shell may quote certain characters to 
prevent them from taking on a special meaning. Backslashes used to quote a single character are removed 
from the word before the command is executed. The pair \NEWLINE is removed from a word before com
mand and parameter substitution. 

All characters enclosed between a pair of single quote marks("), except a single quote, are quoted by the 
shell. Backslash has no special meaning inside a pair of single quotes. A single quote may be quoted in
side a pair of double quote marks (for example,""'). 

Inside a pair of double quote marks(""), parameter and command substitution occurs and the shell quotes 
the results to avoid blank interpretation and file name generation. If $• is within a pair of double quotes, 
the positional parameters are substituted and quoted, separated by quoted spaces ("$1 $2 ... "); however, 
if $@ is within a pair of double quotes, the positional parameters are substituted and quoted, separated by 
unquoted spaces ("$1" "$2" ... ). \ quotes the characters\,',", and$. The pair \NEWLINE is removed 
before parameter and command substitution. If a backslash precedes characters other than \, ', ", $, and 
NEWLINE, then the backslash itself is quoted by the shell. 

Prompting 
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any time 
a NEWLINE is typed and further input is needed to complete a command, the secondary prompt (the value 
of PS2) is issued. 

Environment 
The environment (see environ(5V)) is a list of name-value pairs that is passed to an executed program in 
the same way as a normal argument list. The shell interacts with the environment in several ways. On in
vocation, the shell scans the environment and creates a parameter for each name found, giving it the 
corresponding value. If the user modifies the value of any of these parameters or creates new parameters, 
none of these affects the environment unless the export command is used to bind the shell's parameter to 
the environment (see also 'set -a'). A parameter may be removed from the environment with the unset 
command. The environment seen by any executed command is thus composed of any unmodified name
value pairs originally inherited by the shell, minus any pairs removed by unset, plus any modifications or 

Last change: 5 January 1988 Sun Release 4.0 



SH( 1) USER COMMANDS SH( 1) 

additions, all of which must be noted in export commands. 

The environment for any simple command may be augmented by prefixing it with one or more assignments 
to parameters. Thus: 

TERM=450 cmd 

and 

(export TERM; TERM=450; cmd) 

are equivalent (as far as the execution of cmd is concerned). 

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the com
mand name. The following first prints a=b c and c: 

echo a=b c 
set -k 
echo a=b c 

Signals 
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by&; 
otherwise signals have the values inherited by the shell from its parent, with the exception of signal 11 (but 
see also the trap command below). 

Execution 
Each time a command is executed, the above substitutions are carried out If the command name matches 
one of the Special Commands listed below, it is executed in the shell process. If the command name does 
not match a Special Command, but matches the name of a defined function, the function is executed in the 
shell process (note how this differs from the execution of shell procedures). The positional parameters $1, 
$2, .... are set to the arguments of the function. If the command name matches neither a Special Com
mand nor the name of a defined function, a new process is created and an attempt is made to execute the 
command using execve(2). 

The shell parameter PATH defines the search path for the directory containing the command. Alternative 
directory names are separated by a colon (:). The default path is :/usr/ucb:/bin:/usr/bin (specifying 
/usr/ucb, /bin, and /usr/bin, in addition to the current directory). Directories are searched in order. The 
current directory is specified by a null path name, which can appear immediately after the equal sign 
{PATH=: . .. ), between the colon delimiters ( ... : : ... ) anywhere else in the path list, or at the end of the 
path list ( ... : ). If the command name contains a / the search path is not used. Otherwise, each directory in 
the path is searched for an executable file. If the file has execute permission but is not an binary executable 
(see a.out(5) for details) or an executable script (with a first line beginning with#!) it is assumed to be a 
file containing shell commands, and a subshell is spawned to read it A parenthesized command is also ex
ecuted in a subshell. 

The location in the search path where a command was found is remembered by the shell (to help avoid un
necessary execs later). If the command was found in a relative directory, its location must be re
determined whenever the current directory changes. The shell forgets all remembered locations whenever 
the PATH variable is changed or the 'hash-r' command is executed (see below). 

Special Commands 
Input/output redirection is now permitted for these commands. File descriptor 1 is the default output loca
tion. 

No effect; the command does nothing. A zero exit code is returned . 
• filename 

Read and execute commands from filename and return. The search path specified by PATH is 
used to find the directory containing filename. 

break [ n ] 
Exit from the enclosing for or while loop, if any. If n is specified break n levels. 

Sun Release 4.0 Last change: 5 January 1988 457 



SH( 1) 

458 

USER COMMANDS SH( 1) 

continue [ n ] 

cd[ arg] 

Resume the next iteration of the enclosing for or while loop. If n is specified resume at then 'th 
enclosing loop. 

Change the current directory to argument. The shell parameter HOME is the default argument. 
The shell parameter CDPATH defines the search path for the directory containing argument. Al
ternative directory names are separated by a colon(:). The default path is <null> (specifying the 
current directory). Note: the current directory is specified by a null path name, which can appear 
immediately after the equal sign or between the colon delimiters anywhere else in the path list. If 
argument begins with a / the search path is not used. Otherwise, each directory in the path is 
searched for argument. 

echo [ argument . . . ] 
Echo arguments. See echo( 1 V) for usage and description. 

eval[ argument ... ] 
The arguments are read as input to the shell and the resulting command(s) executed. 

exec [ argument . . . ] 
The command specified by the arguments is executed in place of this shell without creating a new 
process. Input/output arguments may appear and, if no other arguments are given, modify the 
shell's input/output. 

exit [ n ] 
Exit a shell with the exit status specified by n. If n is omitted the exit status is that of the last com
mand executed (an EOF will also cause the shell to exit.) 

export [ name ... ] 
The given names are marked for automatic export to the environment of subsequently-executed 
commands. If no arguments are given, variable names that have been marked for export during 
the current shell's execution are listed. (Variable names exported from a parent shell are listed 
only if they have been exported again during the current shell's execution.) Function names are 
not exported 

getopts Use in shell scripts to parse positional parameters and check for legal options. See getopts(l) for 
usage and description. 

hash [ -r ] [ name . . . ] 
For each name, the location in the search path of the command specified by name is determined 
and remembered by the shell. The -r option causes the shell to forget all remembered locations. 
If no arguments are given, information about remembered commands is presented. hits is the 
number of times a command has been invoked by the shell process. cost is a measure of the work 
required to locate a command in the search path. If a command is found in a "relative" directory 
in the search path, after changing to that directory, the stored location of that command is recalcu
lated. Commands for which this will be done are indicated by an asterisk(*) adjacent to the hits 
information. cost will be incremented when the recalculation is done. 

login [ argument . . . ] 
Equivalent to 'exec login argument .... ' See login(l) for usage and description. 

newgrp [ argument . . . ] 
Equivalent to 'exec newgrp argument .... ' See newgrp(l) for usage and description. 

pwd Print the current working directory. See pwd(l) for usage and description. 
read [ name . . . ] 

One line is read from the standard input and, using the internal field separator, IFS (normally 
SP ACE or TAB), to delimit word boundaries, the first word is assigned to the first name, the second 
word to the second name, etc., with leftover words assigned to the last name. Lines can be con
tinued using \NEWLINE. Characters other than NEWLINE can be quoted by preceding them with a 
backslash. These backslashes are removed before words are assigned to names, and no interpreta
tion is done on the character that follows the backslash. The return code is O unless an EOF is en
countered 

Last change: 5 January 1988 Sun Release 4.0 



SH( 1) USER COMMANDS SH( 1) 

readonly [ name . . . ] 
The given names are marked readonly and the values of the these names may not be changed by 
subsequent assignment. If no arguments are given, a list of all readonly names is printed. 

return [ n ] 
Exit a function with the return value specified by n. If n is omitted, the return status is that of the 
last command executed. 

set [ -aefltkntuvx- [ argument ... ] ] 
-a Mark variables which are modified or created for export. 
-e Exit immediately if a command exits with a nonzero exit status. 
-f Disable filename generation. 
-h Locate and remember function commands as functions are defined (function commands 

are normally located when the function is executed). 
-k All keyword arguments are placed in the environment for a command, not just those that 

precede the command name. 
-n Read commands but do not execute them. 
-t Exit after reading and executing one command. 
-u Treat unset variables as an error when substituting. 
-v Print shell input lines as they are read. 
-x Print commands and their arguments as they are executed. 

Do not change any of the flags; useful in setting $1 to '-'. 
Using '+' rather than ' - ' turns off these flags. These flags can also be used upon invocation of the 
shell. The current set of flags may be found in '$-'. The remaining arguments are positional 
parameters and are assigned, in order, to $1, $2, and so on. If no arguments are given, the values 
of all names are printed. 

shift [ n ] 
The positional parameters are shifted to the left, from position n+l to position 1, and so on. Previ
ous values between $1 and $n are discarded. If n is not given, it is assumed to be 1. 

test Evaluate conditional expressions. See test(l V) for usage and description. 
times Print the accumulated user and system times for processes run from the shell. 
trap [ arg ] [ n ] ... 

The command arg is to be read and executed when the shell receives signal(s) n. (Note: arg is 
scanned once when the trap is set and once when the trap is taken.) Trap commands are executed 
in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the 
current shell is ineffective. If arg is absent all trap(s) n are reset to their original values. If arg is 
the null string this signal is ignored by the shell and by the commands it invokes. If n is O the 
command arg is executed on exit from the shell. The trap command with no arguments prints a 
list of commands associated with each signal number. 

type [ name . . . ] 
For each name, indicate how it would be interpreted if used as a command name. 

umask [ ooo ] 
The user file-creation mode mask is set to ooo (see csh(l)). The three octal digits refer to 
read/write/execute permissions for owner, group, and others, respectively. The value of each 
specified digit is subtracted from the corresponding "digit" specified by the system for the creation 
of a file. For example, umask 022 removes group and others write permission (files normally 
created with mode 777 become mode 755; files created with mode 666 become mode 644). The 
current value of the mask is printed if ooo is omitted. 

unset [ name . . . ] 
For each name, remove the corresponding variable or function. The variables PATH, PS1, PS2, 
MAILCHECK and IFS cannot be unset. 

wait [ n ] 
Wait for the background process whose process ID is n and report its termination status. If n is 
omitted, all the shell's currently active background processes are waited for and the return code 
will be zero. 

Sun Release 4.0 Last change: 5 January 1988 459 



SH( 1) USER COMMANDS SH( 1) 

EXIT STATUS 

FILES 

Errors detected by the shell, such as syntax errors, return a nonzero exit status. If the shell is being used 
noninteractively execution of the shell file is abandoned. Otherwise, the shell returns the exit status of the 
last command executed (see also the exit command above). 

/etc/profile 
$HOME/.profile 
/tmp/sh* 
/dev/null 

SEE ALSO 

BUGS 

csh(l), cd(l), echo(lV), env(l), getopts(l), Iogin(l), newgrp(l), pwd(l), test(lV), wait(l), dup(2), 
fork(2), execve(2), pipe(2), sigvec(2), wait(2), execl(3), a.out(S), environ(SV) 

Doing More with SunOS: Beginner's Guide 

If a command is executed, and a command with the same name is installed in a directory in the search path 
before the directory where the original command was found, the shell will continue to exec the original 
command. Use the hash command to correct this situation. 

If you move the current directory or one above it, pwd may not give the correct response. Use the cd com
mand with a full path name to correct this situation. 

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus cannot be waited for. 

For wait n, if n is not an active process ID, all the shell's currently active background processes are waited 
for and the return code will be zero. 

WARNINGS 

460 

Words used for filenames in input/output redirection are not interpreted for filename generation (see File 
Name Generation, above). For example, 'cat filel >a*' will create a file named 'a*'. 

Because commands in pipelines are run as separate processes, variables set in a pipeline have no effect on 
the parent shell. 

If you get the error message 'cannot fork, too many processes', try using the wait(l) command to clean 
up your background processes. If this does not help, the system process table is probably full or you have 
too many active foreground processes. There is a limit to the number of process IDs associated with your 
login, and to the number the system can keep track of. 

Last change: 5 January 1988 Sun Release 4.0 



SHELL TOOL ( 1 ) USER COMMANDS SHELLTOOL ( 1) 

NAME 
shelltool - run a shell ( or other program) in a Sun View terminal window 

SYNOPSIS 
shelltool [ -C] [ -B boldstyle] [ -I command] [generic-tool-arguments] [program [arguments]] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
shelltool is a standard Sun View facility for shells or other programs that may use a standard tty-based in
terface. 

When invoked, shelltool runs a program, (usually a shell) in an interactive terminal emulator based on a tty 
sub window. Keyboard input is passed to that program. If the program is a shell, it accepts commands and 
runs programs in the usual way. 

cmdtool(l), which provides moused-based editing, logging, and scrolling capabilities, also supports shell
level programs. See Sun View 1 Beginner's Guide for more information. 

To run graphics programs, use gfxtool(l). 

OPTIONS 

USAGE 

-C Redirect system console output to this shelltool. 

-B boldstyle 
Set the style for displaying bold text to boldstyle. boldstyle can be a string specifying one of the 
choices for the ffty/Bold_style default, see Defaults Options, below, or it may be a numerical 
value for one of those choices, from O to 8, corresponding to the placement of the choice in the 
list. 

-I command 
Pass command to the shell. SP ACE characters within the command must be escaped. 

generic-tool-arguments 
shelltool accepts the generic tool arguments listed in sunview(l). 

If a program argument is present, shelltool runs it. If no program is given, shelltool runs the program indi
cated by the SHELL environment variable, or /usr/bin/sh by default. 

Defaults Options 
These options are available through defaultsedit(l). 

/Tty/Bold_style 
Select a style for emphasized text: 
None Disable emphasis. 
Offset_X Thicken characters horizontally. 
Off set_ Y Thicken characters vertically. 
Offset_ X _and_ Y Thicken characters both horizontally and vertical! y. 
Offset_ XY Thicken characters diagonally. 
Offset_X_and_XY Thicken character both horizontally and diagonally. 
Offset_ Y _and_ XY Thicken characters both vertically and diagonally. 
Offset X and Y and XY - - - - -
Invert 

Thicken characters horizontally, vertically and diagonally. 
Display emphasis as inverse video (the standard default). 

/Tty/Inverse_ mode 
Select a style for inverse video display: 
Enable Enable inverse mode for inverted text. 
Disable Disable inverse mode for inverted text. 

Sun Release 4.0 Last change: 7 January 1988 461 



SHELL TOOL ( 1) USER COMMANDS SHELL TOOL ( 1 ) 

462 

Same as bold Display inverted text as bold text. 

/Tty/Underline_ mode 
Select a style for underlined text: 
Enable Enable underline mode for underlined text. 
Disable 
Same as bold 

/Tty/Retained 

Disable underline mode for underlined text. 
Display underlined text as bold text. 

When set to "Yes", hidden tty sub window areas are retained in memory. This enhances the speed 
of repainting the screen at the expense of memory area. "No" is the standard default; it specifies 
that tty subwindows are not retained. 

The Terminal Emulator 
The tty subwindow is a terminal emulator. Whenever a tty subwindow is created, the startup file /.ttyswrc 
is read for initialization parameters that are specific to the tty subwindow. 

The .ttyswrc File 
A sample .ttyswrc file can be found in /usr/lib/ttyswrc. The command format for this file is: 

# Comment. 
set variable Tum on the specified variable. 
mapi key text When key is typed pretend text was input. 
mapo key text When key is typed pretend text was output. 

The only currently defined variable is pagemode. key is one of Ll-Ll5, Fl-F15, Tl-Tl5, Rl-Rl5, LEFf, 
or RIGHT (see note below). text may contain escapes such as \E, \n, "X, etc. (ESCAPE, NEWLINE, and 
CTRL-X, respectively). See termcap(5) for the format of the string escapes that are recognized. Note: 
mapi and mapo may be replaced by another keymapping mechanism in the future. 

When using the default kernel keyboard tables, the keys Ll, LEFf, RIGHT, BREAK, R8, RlO, R12, and R14 
cannot be mapped in this way; they send special values to the tty subwindow. Also, when using the default 
kernel keyboard tables, Ll-LlO are now used by SunView. See input_from_defaults(l) and kbd(4S) for 
more information on how to change the behavior of the keyboard. 

It is possible to have terminal-based programs drive the tool in which its tty subwindow resides by sending 
special escape sequences. These escape sequences may also be sent by typing a key appropriately mapped 
using the mapo function described above. The following functions pertain to the tool in which the tty 
subwindow resides~ not the tty subwindow itself. 

\E[lt 
\E[2t 
\E[3t 
\E[3;TOP;LEFTt 
\E[4t 
\E[ 4;WIDTH;HTt 
\E[St 
\E[6t 
\E[7t 
\E[8;ROWS;COLSt 
\E[llt 
\E[13t 
\E[14t 
\E[18t 
\E[20t 
\E[2lt 
\E]ktext> \E\ 
\E]l<file>\E\ 

-open 
- close (become iconic) 
- move, with interactive feedback 
- move, to TOP LEFT (pixel coordinates) 
- stretch, with interactive feedback 
- stretch, to WIDTH HT size (in pixels) 
-front 
-back 
- refresh 
- stretch, to ROWS COLS size (in characters) 
- report if open or iconic by sending \E[lt or \E[2t 
- report position by sending \E[3;TOP;LEFTt 
- report size in pixels by sending \E[ 4;W1DTH;HTt 
- report size in characters by sending \E[8;ROWS;COLSt 
- report icon label by sending \E]Llabel\E\ 
- report tool header by sending \E]llabel\E\ 
- set tool header to <text> 
- set icon to the icon contained in <file>; <file> must be in iconedit out-
put format 

Last change: 7 January 1988 Sun Release 4.0 



SHELL TOOL ( 1) USER COMMANDS SHELL TOOL ( 1 ) 

\E]Ldabel>\E\ 
\E[>OPT; ..• h 
\E[>OPT; ••• k 
\E[>OPT; •• .I 

- set icon label to <label> 
- turn SB OPT on (OPT= 1 => pagemode), for example, \E[>1;3;4h 
- report OPT; sends \E[>OPTI or \E[>OPTh for each OPT 
- turn OPT off (OPT = 1 => pagemode), for example, \E[>1;3;41 

See EXAMPLES for an example of using this facility. 

Selections 
Terminal subwindows support a selection facility that allows you to capture a block of text, move it 
between windows, and replicate it. You can make a selection by clicking the left button on the mouse at the 
top-left character of the block to capture, and then clicking the middle button on the bottom-right character. 
The selected text is highlighted. Multiple clicks of the LEFf mouse button capture: 

1 click a character 
2 clicks a word 
3 clicks a line 
4 clicks a screenful 

You can also make a selection by moving the mouse while holding the select button, and then releasing it. 
The selection is deselected if you type any key or new output is written to the window that holds the selec
tion. 

Menu 
To manipulate your selection, press the menu button over the terminal subwindow. A ttysw menu appears 
with the menu items discussed below: 

Copy, then Paste When there is a selection in any window, the entire item is active. Selecting it 
copies the selection both to the clipboard and to the insertion point (cursor). It 
copies selections in tty, text, command, and panel subwindows, and It is intended 
to bridge the gap between Stuff and the selection facility (see SunView 1 
Beginner's Guide. When there is no selection but there is text on the clipboard, 
only Paste is active. In this case, the contents of the clipboard are copied to the 
insertion point (cursor). When there is no selection and nothing on the clipboard, 
this item is inactive. 

Enable Page Mode 
Disable Page Mode Toggle page mode on and off. Page mode prevents output from scrolling off the 

screen. It is an alternative to more(l). When page mode is on, the cursor changes 
to resemble a tiny stop-sign when ever a screenful of output is displayed. To res
tart output, type any key, or select the Continue menu item that temporarily re
places Enable Page Mode. 

Stuff is provided for backward compatibility. It copies the selection to the insertion 
point (cursor) as though they had been typed from the keyboard. Stuff can only 
handle selections made in a tty subwindow. 

Flush Input Occasionally the input buffer fills up and the terminal emulator appears to freeze. 
If this happens, the 'Flush Input' appears in the menu; choosing it clears the 
buffer and allows you to continue. 

EXAMPLES 
The following aliases can be put into your /.cshrc file: 

Sun Release 4.0 

# dynamically set the name stripe of the tool: 
alias header 'echo -n "\E]l\!*\E\"' 
# dynamically set the label on the icon: 
alias iheader 'echo -n "\E]L\!*\E\"' 
# dynamically set the image on the icon: 
alias icon 'echo -n "\E]I\!*\E]\"' 

Last change: 7 January 1988 463 



SHELL TOOL ( 1) USER COMMANDS SHELLTOOL ( 1) 

FILES 
/.ttyswrc 
/usr /Iib/ttyswrc 
/usr/bin/shelltool 
/usr/bin/sunview 
/usr/demo/* 

SEE ALSO 

BUGS 

464 

cmdtool(l), defaultsedit(l), gfxtool(l), input_from_defaults(l), more(l), rlogin(lC), sunview(l), 
kbd(4S), termcap(5) 

Sun View 1 Beginner's Guide 

If more than 256 characters are input to a terminal emulator subwindow without an intervening NEWLINE, 
the terminal emulator may hang. If this occurs, an alert will come up with a message saying 'Too many 
keystrokes in input buffer'. Choosing the Flush Input Buffer menu item may correct the problem. This 
is a bug for a terminal emulator subwindow running on top of or rlogin(lC) to a machine with pre-4.0 
release kernel. 

Last change: 7 January 1988 Sun Release 4.0 



SIZE ( 1) USER COMMANDS SIZE ( 1) 

NAME 
size - display the size of an object file 

SYNOPSIS 
size [ object-file ... ] 

Sun386i SYNOPSIS 
/usr/bin/size [-n] [-f] [-o] [-x] [-V]filename ... 

DESCRIPTION 
size prints the (decimal) number of bytes required by the text, data, and bss portions, and their sum in hex 
and decimal, of each object-file argument. If no file is specified, a.out is used. 

Sun386i DESCRIPTION 
The Sun386i version of the System V compatibility package includes /usr/bin/size, which allows the Sys
tem V options to be used, and creates the same output as the System V size( 1) command; it produces sec
tion size information in bytes for each loaded section in COFF files. The size of the text, data, and bss 
(uninitialized data) sections is printed, as well as the sum of the sizes of these sections. If an archive file is 
given, it displays the information for all archive members. 

Sun386i OPTIONS 
-n Includes NOLOAD sections in the size. 

-f Produces full output, that is, it prints the size of every loaded section, followed by the section 
name in parentheses. 

-o Print numbers in octal, instead of the default which is decimal. 

-x Print numbers in hexadecimal. 

-V Supply version information. 

Sun386i CAVEATS 
Since the size of bss sections is not known until link-edit time, this command does not give the true total 
size of pre-linked objects. 

Sun386i DIAGNOSTICS 
size: name: cannot open 

name cannot be read. 

size: name: bad magic 
name is not an appropriate common object file. 

SEE ALSO 
cc(l V), size(l), a.out(5), coff(5), ar(5) 

Sun Release 4.0 Last change: 18 February 1988 465 



SLEEP( 1) USER COMMANDS SLEEP( 1) 

NAME 
sleep - suspend execution for a specified interval 

SYNOPSIS 
sleep time 

DESCRIPTION 
sleep suspends execution for time seconds. It is used to execute a command after a certain amount of time 
as in: 

(sleep 105; command)& 

or to execute a command every so often, as in: 
while true 
do 

command 
sleep 37 

done 

SEE ALSO 
sleep(3) 

BUGS 
time must be less than 2,147,483,647 seconds. 

466 Last change: 9 September 1987 Sun Release 4.0 



SNAP(l) USER COMMANDS SNAP(l) 

NAME 
snap - Sun View application for system and network administration 

SYNOPSIS 
snap 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
snap simplifies the execution of a variety of system administration tasks in the user-friendly environment 
of a SunView window. snap eases the following tasks: personal or centralized backup and restoration of 
files, management of users accounts and user groups, software installation, network administration, and 
management of devices such as printers, terminals, modems, and the peripheral box containing disk and 
tape drives. 

Anyone can use snap, but the operations allowed depend on the secondary group membership of the user at 
the time that snap is invoked. There are four secondary user groups specifically recognized by snap, 
membership in which bestows various powers over the corresponding area of system administration. These 
are: 

accounts users and user groups. 

devices printers, terminals, modems, and peripheral box. 

operator centralized backup and restoration of files, and installation of software. 

networks domains and systems, including the New User Accounts feature and Automatic System Instal-
lation features. 

A user's snap privileges depend upon which of these four groups he or she belongs to. If they get an ac
count through New User Accounts, or if an administrator adds them using the defaults, new users become 
members of the primary group users, and are given all snap privileges. This can be changed by changing 
the secondary group membership of the primary group users with snap. Note: this does not change the 
group membership of existing users, but only of new users. The secondary group membership of existing 
users must be changed individually. 

Accounts 
An administrator using snap can create new user accounts and remove existing ones, change a user's snap 
privileges, and control users' access to their accounts. New users can create their own accounts as they 
first login if the New User Accounts feature is activated as described under Networks below. 

Devices 
Epson and Epson-like printers (most printers using the Centronics parallel interface), text serial printers, 
and HP Laserjet and compatible printers can be administered with snap. The supported terminal types are 
vt-100 and wyse. The supported modem types are Hayes Smartmodem or a modem that is compatible with 
Hayes Smartmodem. For all other types of terminals, modems, or printers, the software must be configured 
manually. See System and Network Administration for details. 

snap can add or remove, display and change information about, or disable or enable either a printer, a ter
minal, a modem, or the peripheral box containing disk and tape drives. Devices not added using snap can 
not be manipulated with snap. 

Operator 

Regardless of the primary or secondary group membership of users, they can backup and restore their own 
files with snap. 

Backup and removal of all files can be done by members of the operator group. 

Networks 

Much of the network setup must be done when the first machine in the network, the master server, is start
ed up, and when each client is connected and booted for the first time. Some of this information can never 
be changed. 

Sun Release 4 .0 Last change: 19 February 1988 467 



SNAP( 1) USER COMMANDS SNAP( 1) 

Once the master and slave servers are installed, snap can be used to add and assign diskless clients to 
servers, remove them, modify their network roles, and perform all the functions listed above under Ac
counts, Devices, and Operator on any system in the network. 

If desired, you can also enable or disable the feature that allows a user to create his own account while log
ging in (New User Accounts), and the automatic system installation feature, two possible security loo
pholes. 

SEE ALSO 

468 

Sun386i System and Network Administration 
System and Network Administration 

Last change: 19 February 1988 Sun Release 4.0 



SOELIM( 1) USER COMMANDS SOELIM(l) 

NAME 
soelim - resolve and eliminate .so requests from nroff or troff input 

SYNOPSIS 
soelim [filename ... ] 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
soelim reads the specified files or the standard input and performs the textual inclusion implied by the 
nrofT(l) directives of the form 

.so somefile 

when they appear at the beginning of input lines. This is useful since programs such as tbl(l) do not nor
mally do this; it allows the placement of individual tables in separate files to be run as a part of a large do
cument. 

An argument consisting of'-' is taken to be a file name corresponding to the standard input. 

Note: inclusion can be suppressed by using ' ' ' instead of' • ', that is, 

' so /usr/share/Iib/tmac.s 

EXAMPLE 
A sample usage of soelim would be 

soelim exum? .n I tbl I nroff 

SEE ALSO 
colcrt(l), more(l), nroff(l), tbl(l) 

Sun Release 4.0 Last change: 9 September 1987 469 



SORT(l) USER COMMANDS SORT(l) 

NAME 
sort - sort and collate lines 

SYNOPSIS 
sort [ -bdfiMnr ] [ -tc ] [ sort-field ... ] [ -emu ] [ -o[ ]outputfile ] [ -T directory ] 

[ -y kmem ] [ -z recsz ] filename . .. 

SYSTEM V SYNOPSIS 
/usr/5bin/sort [ -bdfiMnr ] [ -tc ] [ sort-field ... ] [ -emu ] [ -o[ ]outputfile ] [ -T directory ] 

[ -y kmem ] [ -z recsz ] filename . .. 

DESCRIPTION 
The sort program sorts and collates lines contained in the named files, and writes the result onto the stan
dard output. If no filename argument is given, or if '-' appears as an argument, sort accepts input from the 
standard input. 

Output lines are normally sorted on a character-by-character basis, from left to right within a line. The de
fault collating sequence is the ASCII character set. Lines can also be sorted according to the contents of 
one or more fields specified by a sort-field, specification, using the +sw (starting-word), -ew (end-at
word), and the -tc (set-TAB-character/word delimiter) options, as described under OPTIONS below. When 
no word delimiter is specified, one or more adjacent white-space characters (SPACE and TAB) signify the 
end of the previous word; the lines: 

xyz 
xyz 

are collated as: 

xyz 
xyz 

Each sort-field is evaluated in command-line order; later fields are applied to the sorting sequence only 
when all earlier fields compare equally. When all specified fields compare equally between two or more 
lines, that subset of lines is sorted on a character-by-character basis, from left to right. 

SYSTEM V DESCRIPTION 
When no fields are specified in the command line, the System V version of sort treats leading blanks as 
significant, even with the -n (numeric collating sequence) option; the lines: 

123 
23 

are collated as: 

23 
123 

OPTIONS 

470 

Collating Flags 
-b Ignore leading SPACE characters when determining the starting and ending positions of a field. 

-d Dictionary order. Only letters, digits and the white-space characters SPACE and TAB are 
significant in comparisons. 

-f Fold in lower case. Treat upper- and lower-case letters equally in collating comparisons. 

-i Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons. 

-M Month order. The first three non-blank characters of the field are folded to upper case and collat-
ed according to the sequence: JAN FEB . . . DEC. Field values outside this range appear earlier 
than JAN. The-M option implies the-b option. 

-n Numeric collating sequence. An initial numeric string, consisting of optional blanks, optional 
minus signs, and zero or more digits with an optional decimal point, is sorted by arithmetic value. 

Last change: 9 September 1987 Sun Release 4.0 



SORT(l) USER COMMANDS SORT(l) 

The -n option implies the -b option, but only when at least one sort-field is specified on the com
mand line. 

-r Reverse the current collating sequence. 

Field Specification Options 
-tc Use c as the word delimiter character; unlike white-space characters, adjacent delimiters indicate 

word breaks; if: is the delimiter character, :: delimits an empty word. 

sort-field 
This is a combination of options that specifies a field, within each line, to sort on. A sort-field 
specification can take either of the following forms: 

+sw[cf] 
+sw-ew[cf] 

where sw is the number of the starting word (beginning with '0') to include in the field, ew is the 
number of the word before which to end the field, and cf is a string containing collating flags 
(without a leading '-' .) When included in a sort-field specification, these flags apply only to the 
field being specified, and when given, override other collating flags given in separate arguments 
(which otherwise apply to an entire line). 

If the -ew option is omitted, the field continues to the end of a line. 

You can apply a character offset to sw and ew to indicate that a field is to start or end a given number 
of characters within a word, using the notation: 'w .c '. A starting position specified in the form: 
'+w.c' indicates the character in position c (beginning with O for the first character), within word w 
(1 and 1.0 are equivalent). An ending position specified in the form: '-w.c' indicates that the field 
ends at the character just prior to position c (beginning with O for the delimiter just prior to the first 
character), within word w. If the -b flag is in effect, c is counted from the first non-white-space or 
non-delimiter character in the field, otherwise, delimiter characters are counted. 

Other Options 
-c Check that the input file is sorted according to the ordering rules; give no output unless the file is 

out of sort 

-m Merge only, the input files are already sorted. 

-u Unique. Emit only the first line in each set of lines for which all sorting fields compare equally. 

-ooutputfile 
-o outputfile 

Direct output to the file specified as outputfile, instead of the standard output. This file may be the 
same as one of the input files. 

-ykmem 

-z recsz 

The amount of main memory used by the sort has a large impact on its performance. Sorting a 
small file in a large amount of memory is a waste. If this option is omitted, sort begins using a 
system default memory size, and continues to add space as needed. If this option is given sort 
starts with kmem, kilobytes of memory, if allowed, or as close to that amount as possible. Supply
ing -yO guarantees that sort starts with a minimum of memory. By convention, -y (with no argu
ment) starts with maximum memory. 

The size of the longest line read is recorded in the sort phase so that buffers can be allocated dur
ing the merge phase. If the sort phase is omitted because either of the -c or -m options is in ef
fect, a default size of 1024 bytes is used. Lines longer than the buffer size terminate sort abnor
mally. Supplying the actual number of bytes in the longest line to be merged (or some larger 
value) avoids this. 

-T directory 
The directory argument is the name of a directory in which to place temporary files. 

Sun Release 4.0 Last change: 9 September 1987 471 



SORT(l) USER COMMANDS SORT(l) 

EXAMPLES 
Sort the contents of infile with word number 1 (the second word) as the sort key: 

sort + 1 -2 infile 

Sort, in reverse order, the contents of infilel and infile2, placing the output in outputfile and using the first 
character of the second field as the sort key: 

sort -r -o outputfile + 1.0 -1.1 infilel infile2 

Sort, in reverse order, the contents of infilel and infile2 using the first non-blank character of the second 
field as the sort key: 

sort -r + I.Ob -1.lb infilel infile2 

Print the password file {passwd(5)) sorted by the numeric user ID (the third colon-separated field): 

sort-t: +2n -3 /etc/passwd 

Print the lines of the already sorted file infile, suppressing all but the first occurrence of lines having the 
same third field (the options -mu with just one input file make the choice of a unique representative from a 
set of equal lines predictable): 

sort -mu +2 -3 infile 

FILES 
/usr/tmp/stm??? 

SEE ALSO 
comm(l), join(l), rev(l), uniq(l). 

DIAGNOSTICS 

472 

Comments and exits with non-zero status for various trouble conditions (such as when input lines are too 
long), and for disorders discovered under the ~ option. 

When the last line of an input file is missing a NEWLINE, sort appends one, prints a warning message, and 
continues. 

Last change: 9 September 1987 Sun Release 4.0 



SORTBIB ( 1) USER COMMANDS SORTBIB(l) 

NAME 
sortbib - sort a bibliographic database 

SYNOPSIS 
sortbib [ -sKEYS ] database . .. 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
sortbib sorts files of records containing refer key-letters by user-specified keys. Records may be separated 
by blank lines, or by '.[' and '.]' delimiters, but the two styles may not be mixed together. This program 
reads through each database and pulls out key fields, which are sorted separately. The sorted key fields 
contain the file pointer, byte offset, and length of corresponding records. These records are delivered using 
disk seeks and reads, so sortbib may not be used in a pipeline to read standard input. 

By default, sortbib alphabetizes by the first %A and the %0 fields, which contain the senior author and 
date. The -s option is used to specify new KEYS. For instance, -sATD will sort by author, title, and date, 
while -sA+O will sort by all authors, and date. Sort keys past the fourth are not meaningful. No more 
than 16 databases may be sorted together at one time. Records longer than 4096 characters will be truncat
ed. 

sortbib sorts on the last word on the %A line, which is assumed to be the author's last name. A word in 
the final position, such as 'jr.' or 'ed.', will be ignored if the name beforehand ends with a comma. Au
thors with two-word last names or unusual constructions can be sorted correctly by using the nroff conven
tion '\O' in place of a blank. A %Q field is considered to be the same as %A, except sorting begins with 
the first, not the last, word. sortbib sorts on the last word of the %0 line, usually the year. It also ignores 
leading articles (like 'A' or 'The') when sorting by titles in the %Tor %J fields; it will ignore articles of 
any modern European language. If a sort-significant field is absent from a record, sortbib places that 
record before other records containing that field. 

SEE ALSO 
addbib(l), indxbib(l), lookbib(l), refer(l), roflbib(l) 

refer in F orma.tting Documents 

BUGS 

Records with missing author fields should probably be sorted by title. 

Sun Release 4 .0 Last change: 21 December 1987 473 



SPELL( 1) USER COMMANDS SPELL( 1) 

NAME 
spell, spellin, spellout - report spelling errors 

SYNOPSIS 
spell [ -bvx] [ -d hlist] [ -s hstop] [ -b spellhist] [filename ] ... 

spellin [ inlist ] 

spellout [ -d ] outlist 

DESCRIPTION 
spell collects words from the named files, and looks them up in a hashed spelling list derived from the sys
tem dictionary. Words that do not appear in the list, or cannot be derived from those that do appear by ap
plying certain inflections, prefixes or suffixes, are displayed on the standard output 

If there are no filename arguments, words to check are collected from the standard input. spell ignores 
most troff(l}, tbl(l}, and eqn(l) constructs. Copies of all output words are accumulated in the history file, 
and a stop list filters out misspellings (for example, thier=thy-y+ier) that would otherwise pass. 

The standard spelling list is based on many sources, and while more haphazard than an ordinary dictionary, 
is also more effective in respect to proper names and popular technical words. Coverage of the specialized 
vocabularies of biology, medicine and chemistry is light. 

spellin adds words from the standard input to a hashed spelling list, and writes the resulting hashed list to 
the standard output If an inlist argument is supplied, the input words are hashed together with that existing 
spelling list If not, spellin creates a new list from scratch. 

spellout looks up each word from the standard input, compares them with outlist, and displays those that 
are missing from that list. With the -d option, spellout displays input words that appear in the list. 

OPTIONS 

FILES 

NOTE 

-b 

-v 

Check British spelling. Besides preferring "centre", "colour", "travelled", and so on, this op
tion insists upon -ise in words like standardize, despite what Fowler and the OED say. 

Print all words not literally in the spelling list, as well as plausible derivations from spelling list 
words. 

-x Print every plausible stem with'=' for each word. 

-d hlist Use the file hlist as the hashed spelling list. 

-s hstop 
Use hstop as the hashed stop list. 

-h spellhist 
Place misspelled words with a user/date stamp in file spellhist. 

/usr/dict/hlist[ab] 
/usr/dict/bstop 
/usr/dict/words 
/usr/lib/spell 

hashed spelling lists, American & British 
hashed stop list 
system dictionary-list of properly spelled words and roots 
program called by the /usr/bin/spell shell script 

Misspelled words can be monitored by default by setting the H variable in /usr/bin/spell to the name of a 
file that has permission mode 666. 

SEE ALSO 
deroff( 1 ), sed( 1 V), sort( 1 V}, tee( 1) 

474 Last change: 5 January 1988 Sun Release 4.0 



SPELL( 1) USER COMMANDS SPELL( 1) 

BUGS 

The spelling list's coverage is uneven; new installations may wish to monitor the output for several months 
to gather local additions. 

British spelling was done by an American. 

Sun Release 4.0 Last change: 5 January 1988 475 



SPLINE( lG) USER COMMANDS SPLINE( lG) 

NAME 
spline - interpolate smooth curve 

SYNOPSI~ 
spline [ -aknpx ] ... 

DESCRIPTION 
spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It produces a 
similar set, which is approximately equally spaced and includes the input set, on the standard output. The 
cubic spline output (R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed., 349ft) has 
two continuous derivatives, and sufficiently many points to look smooth when plotted, for example by 
graph(lG). 

OPTIONS 
-a Supply abscissas automatically (they are missing from the input); spacing is given by the next argu

ment, or is assumed to be 1 if next argument is not a number. 

-k The constant k used in the boundary value computation 

is set by the next argument. By default k = 0. 

-n Space output points so that approximately n intervals occur between the lower and upper x limits. 
(Default n = 100.) 

-p Make output periodic, that is, match derivatives at ends. First and last input values should normally 
agree. 

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calculated from the 
data. Automatic abcissas start at lower limit (default 0). 

SEE ALSO 
graph(lG) 

R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed. 

DIAGNOSTICS 
When data is not strictly monotonic in x, spline reproduces the input without interpolating extra points. 

BUGS 
A limit of 1000 input points is enforced silently. 

476 Last change: 9 September 1987 Sun Release 4.0 



SPLIT( 1) USER COMMANDS SPLIT( 1) 

NAME 
split - split a file into pieces 

SYNOPSIS 
split [ -number ] [ infile [ outfile ] ] 

DESCRIPTION 
split reads infile and writes it in n -line pieces ( default 1000) onto a set of output files ( as many files as 
necessary). The name of the first output file is outfile with aa appended, the second file is outfile ab, and so 
on lexicographically. 

If no outfile is given, xis used as default (output files will be called xaa, xab, etc.). 

If no infile is given, or if'-' is given in its stead, then the standard input file is used. 

OPTIONS 
-number 

Number of lines in each piece. 

Sun Release 4.0 Last change: 9 September 1987 477 



STRINGS( 1) USER COMMANDS STRINGS( 1) 

NAME 
strings - find printable strings in an object file or binary 

SYNOPSIS 
strings [ - ] [ -o ] [ -number ] filename ... 

DESCRIPTION 
strings looks for ASCII strings in a binary file. A string is any sequence of 4 or more printing characters 
ending with a NEWLINE or a NULL. 

strings is useful for identifying random object files and many other things. 

OPTIONS 
Look everywhere in the file for strings. If this flag is omitted, strings only looks in the initialized 
data space of object files. 

-o Precede each string by its offset in the file. 

-number 
Use number as the minimum string length rather than 4. 

SEE ALSO 
od(lV) 

BUGS 
The algorithm for identifying strings is extremely primitive. 

478 Last change: 9 September 1987 Sun Release 4.0 



STRIP( 1) USER COMMANDS STRIP( 1) 

NAME 
strip - remove symbols and relocation bits from an object file 

SYNOPSIS 
strip filename . .. 

DESCRIPTION 
strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler and 
linker. This is useful to save space after a program has been debugged. 

The effect of strip is the same as use of the -s option of Id( 1 ). 

SEE ALSO 
ld(l), sun3cvt(l), a.out(5) 

BUGS 
Unstripped 2.0 binary files will not run if stripped by the 3.0 version. A message of the form: 

pid xu: killed due to swap problems in 1/0 error mapping page. 

when attempting to run a program indicates that this is the problem. 

Sun Release 4.0 Last change: 9 September 1987 479 



STIY(lV) USER COMMANDS SITY( lV) 

NAME 
stty - set or alter the options for a terminal 

SYNOPSIS 
stty [ -ag ] [ option ] ... 

SYSTEM V SYNOPSIS 
/usr/5bin/stty [ -ag ] [ option ] ... 

DESCRIPTION 
sets certain terminal 

stty l/0 options for the device that is the current standard output. Without arguments, it reports the settings 
of certain terminal options for the device that is the standard output; the settings are reported on the stan
dard error. 

Detailed information about the modes listed in the first five groups below may be found in termio(4). 
Options in the last group are implemented using options in the previous groups. Note: many combinations 
of options make no sense, but no sanity checking is performed. 

SYSTEM V DESCRIPTION 
stty sets or reports terminal options for the device that is the current standard input; the settings are 
reported on the standard output. 

OPTIONS 

480 

-a Report all of the option settings. 

-g Report current settings in a form that can be used as an argument to another stty command. 

Special Requests 
speed The terminal speed alone is printed on the standard output. 

size The terminal (window) sizes are printed on the standard output, first rows and then columns. 

Control Modes 
[-]parenb Enable parity generation and detection. With a '-', disable parity checking. 

[-]parodd Select odd parity. With a'-', select even parity. 

cs5 cs6 cs7 cs8 
Select character size. 

0 Hang up phone line immediately. 

50 75110 134150 200 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb 
Set terminal baud rate to the number given, if possible. (Not all speeds are supported by all 
hardware interfaces.) 

[-]hupcl 

[-]hup 

[-]cstopb 

[-]cread 

[-]clocal 

Input Modes 
[-]ignbrk 

[-]brkint 

[-]ignpar 

[-]parmrk 

[-]inpck 

Hang up connection on last close. With a'-', do not hang up connection. 

Same as hupcl. 

Use two stop bits per character. With a'-', use one stop bit per character. 

Enable the receiver. With a'-', disable the receiver. 

Assume a line without modem control. With a '-', assume a line with modem control. 

Ignore break on input. With a'-', do not ignore a break on input. 

Signal SIGINT on break. With a'-', do not signal. 

Ignore parity errors. With a '-', do not ignore parity errors. 

Mark parity errors With a'-', do not mark parity errors. 

Enable input parity checking. With a'-', disable input parity checking. 

Last change: 26 February 1988 Sun Release 4.0 



STTY( lV) 

[-]istrip 

[-]inlcr 

[-]igncr 

[-]icrnl 

[-]iuclc 

[-]ixon 

[-]ixany 

[-]decctlq 

[-]ixoff 

[-]tandem 

[-]imaxbel 

Output Modes 
[-]opost 

[-]olcuc 

[-]onlcr 

[-]ocrnl 

[-]onocr 

[-]onlret 

[-]ofill 

[-]ofdel 

USER COMMANDS 

Strip input characters to seven bits. With a'-', do not strip input characters. 

Map NEWLINE to RETURN on input. With a'-', do not map on input. 

Ignore RETURN on input. With a '-', do not ignore RETURN on input. 

Map RETURN to NEWLINE on input. With a'-'' do not map. 

Map upper-case alphabetics to lower case on input. With a'-', do not map. 

STTY( lV) 

Enable START/STOP output control. With a '-', disable output control. When enabled, 
output is stopped by sending a STOP character and started by sending a ST ART character. 

Allow any character to restart output. With a '-', only restart with a START character. 

Same as -ixany. 

Request that the system send ST ART/STOP characters when the input queue is nearly 
empty/full. With a'-', request that the system not send START/STOP characters. 

Same as ixoff. 

Request that the system send a BEL character to your terminal, and not to flush the input 
queue, if a character received when the input queue is full. With a '-', request that it flush 
the input queue and not send a BEL character. 

Post-process output. With a '-', do not post-process output; ignore all other output modes. 

Map lower-case alphabetics to upper case on output With a'-', do not map. 

Map NEWLINE to RETURN-NEWLINE on output. With a'-', do not map. 

Map RETURN to NEWLINE on output. With a '-', do not map. 

Do not place RETURN characters at column zero. With a'-', do place RETURN characters 
at column zero. 

On the terminal NEWLINE performs the RETURN function. With a'-', NEWLINE does not 
perform the RETURN function. 

Use fill characters for delays. With a'-', use timing for delays. 

Fill characters are DEL characters. With a'-', fill characters are NUL characters. 

crO crl cr2 cr3 
Select style of delay for RETURN characters. 

nIO nil Select style of delay for LINEFEED characters. 

tabO tabl tab2 tab3 

bsO bsl 

ff{) ffl 

vtO vtl 

Local Modes 
[-]isig 

[-]icanon 

[-]cbreak 

[-]xcase 

Sun Release 4.0 

Select style of delay for horizontal TAB characters. 

Select style of delay for BACKSPACE characters. 

Select style of delay for form FORMFEED characters. 

Select style of delay for vertical TAB characters. 

Enable the checking of characters against the special characters INTR and QUIT. With a 
'-', disable this checking. 

Enable canonical input (ERASE, KILL, WERASE, and RPRNT processing). With a '-', disable 
canonical input. 

Same as -icanon. 

Perform canonical upper/lower-case presentation. With a '-', do not perform canonical 
upper/lower-case presentation. 

Last change: 26 February 1988 481 



STTY(lV) USER COMMANDS STIY( lV) 

482 

[-]echo Echo back every character typed. With a'-', do not echo back. 

[-]echoe Echo the ERASE character as a sequence of BACKSPACE-SPACE-BACKSPACE. With a'-', 
echo the ERASE character as itself. 

[-]crterase Same as echoe. 

[-]echok Echo NEWLINE after echoing a KILL character. With a '-', do not echo NEWLINE after 
echoing a KILL character. 

lfkc Same as echok; obsolete. 

[-]echonl Echo NEWLINE, even if echo is not set. With a '-', do not echo NEWLINE if echo is not 
set 

[-]noflsh 

[-]tostop 

[-]echoctl 

[-]ctlecho 

[-]echoprt 

[-]prterase 

[-]echoke 

[-]crtkill 

Disable flush after INTR or QUIT. With a'-', enable flush. 

Stop background jobs that attempt to write to the terminal. With a '-', allow background 
jobs to write to the terminal. 

Echo control characters as x (and delete as '?' .) Print two BACKSPACE characters follow
ing the EOF character (default CTRL-D). With a'-', echo control characters as themselves. 

Same as echoctl. 

Echo erased characters backwards within'\' and'/'; used on printing terminals. With a'-', 
echo erased characters as indicated by echoe. 

Same as echoprt. 

Echo the KILL character by erasing each character on the line as indicated by echoprt and 
echoe. With a'-', echo the KILL character as indicated by echoctl and echok. 

Same as echoke. 

control-character c 

mini 

time i 

rowsn 

columns i 

cols i 

Set control-character to c, where control-character is one of erase, kill, intr, quit, eof, eol, 
eol2, start, stop, susp, rprnt, flush, werase, or lnext. If c is preceded by a caret ("), 
(escaped from the shell) then the value used is the corresponding CTRL character (for 
instance, '"D' is a CTRL-D); '"?' is interpreted as DEL and '" -' is interpreted as undefined. 

Set the MIN value to i. 

Set the TIME value to i. 

Set the recorded number of rows on the terminal to i. 

Set the recorded number of columns on the terminal to i. 

An alias for columns i. 

Combination Modes 
cooked Process the ERASE, WERASE, KILL, INTR, QUIT, EOF, EOL, EOL2, STOP, START, 

SUSP, RPRNT, FLUSH, and LNEXT, characters specially, and perform output post
processing. 

evenp or parity 
Enable parenb and cs7. 

oddp Enable parenb, cs7, and parodd. 

-parity, -evenp, or-oddp 

[-]raw 

Disable parenb, and set cs8. 

Enable raw input and output. With a'-', disable raw 1/0. In raw mode, there is no special 
processing of the ERASE, WERASE, KILL, INTR, QUIT, EOF, EOL, EOL2, STOP, START, 
SUSP, RPRNT, FLUSH, nor LNEXT characters, nor is there any output post-processing. 

Last change: 26 February 1988 Sun Release 4.0 



STIY(lV) 

[-]nl 

[-]lease 

[-]LCASE 

[-]tabs 
tab3 

ek 

sane 

ert 

dee 

term 

SEE ALSO 

USER COMMANDS STIY ( IV) 

Unset icrnl, onlcr. With a '-', set them. In addition -nl unsets inlcr, igner, oernl, and 
onlret. 

Set xease, iuelc, and olcue. With a'-', unset them. 

Same as lease (-lease). 

Preserve TAB characters when printing. With a'-', or with tab3, expand TAB characters to 
SPACE characters. 

Reset the ERASE and KILL characters back to normal: DEL and CTRL-U). 

Reset all modes to some reasonable values. 

Set options for a CRT (eehoe, eehoetl, and, if>= 1200 baud, eehoke.) 

Set all modes suitable for Digital Equipment Corp. operating systems users (ERASE, KILL, 
and INTR characters to "?, "U, and "C, deeetlq, and ert.) 

Set all modes suitable for the terminal type term, where term is one of tty33, tty37, vt05, 
tn300, ti700, or tek. 

ioctl(2), termio(4) 

Sun Release 4.0 Last change: 26 February 1988 483 



STTY _FROM_ DEF AUL TS ( 1 ) USER COMMANDS STIY _FROM_ DEFAULTS ( 1 ) 

NAME 
stty _from_ defaults - set terminal editing characters from the defaults database 

SYNOPSIS 
stty _from_ defaults 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
stty_from_defaults is a utility provided with the Sun View environment. 

stty _from _defaults sets the three editing characters (to erase a character, erase a word, and kill a line) ac
cording to the choices in your defaults database. It does not set any other tty options. If you run stty( 1 V) 
in your .login or re.local files, you may want to run stty_from_defaults immediately after it. This will 
override any settings of sttyerase, sttywerase, or sttykill, so that you will have the same character-editing 
behavior with Sun View application programs. 

To specify the editing characters stty_from_defaults will set, run defaultsedit(l) and select the "Text" 
category. The editing characters are called Edit_ back_ char, Edit_ back_ word, and Edit_ back _line. Type 
the value you want to the right of each item. To specify CTRL-X, type 'X' - that is, the three characters 
'\',''"'',and 'X'. To specify DEL, type'?'. 

If you do not specify your own values, the default values are DEL, CTRL-W, and CTRL-U, respectively. 

SEE ALSO 
defaultsedit( 1 ), stty( 1 V), sunview(l) 

Sun View 1 Beginner's Guide 

484 Last change: 21 December 1987 Sun Release 4.0 



SU( 1) USER COMMANDS SU( 1) 

NAME 
su - super-user, temporarily switch to a new user ID 

SYNOPSIS 
su [ - ] [ -f ] [ -c command ] [ username ] 

DESCRIPTION 
su creates a new shell process that has the user ID for the specified username as its real and effective user 
ID. su asks for the password, just as if you were logging in as username, and, if the password is given, 
changes the real and effective user IDs and group IDs and group set to those of username and invokes the 
shell specified in the password file for that username, without changing the current directory. The user en
vironment is thus unchanged except for HOME and SHELL, which are taken from the password file for the 
user being substituted (see environ(5V)). If username is root, USER is changed to root. The new user ID 
stays in force until the shell exits. 

The new shell will not be a login shell, so it will not read username 's .login or .profile files, but it will read 
any other configuration files for that user (for instance, the .cshrc file for the C shell) just as if that user had 
invoked a new shell. 

If no username is specified, root is assumed. If the wheel group (group 0) has members, only they can su 
to root, even with the root password. To remind the super-user of his responsibilities, the shell substitutes 
'#' for '$' or '%' in its usual prompt. 

OPTIONS 

FILES 

Perform a complete login. Remove all variables from the environment except for TERM, set 
USER to username, set HOME and SHELL as specified above, set PATH to 
:/usr/ucb:/bin:/usr/bin, change directories to username's home directory, and tell the shell to 
read username 's .login or .profile file. 

-f Perform a fast su by passing the -f flag to the shell. This flag is for use with the C shell; it will 
prevent the C shell from reading username 's .cshrc file. 

-c command 

.cshrc 

.login 

.profile 

Execute command after logging in as the new user. 

SEE ALSO 

BUGS 

csh(l), sh(l), environ(5V) 

su fails when run from within a subdirectory of a directory that username either cannot search, or cannot 
read (that is, username does not have both read and execute permission). 

su fails to reset the user ID to root when the current working directory is in an NFS-mounted file system, 
and does not have its search permission set for ''other" users. 

Sun Release 4.0 Last change: 6 January 1988 485 



SUM(l) USER COMMANDS SUM(l) 

NAME 
sum - calculate a checksum for a file 

SYNOPSIS 
sum filename 

SYSTEM V SYNOPSIS 
/usr/5bin/sum [ -r ] filename 

DESCRIPTION 
sum calculates and displays a 16-bit checksum for the named file, and also displays the size of the file in 
kilobytes. It is typically used to look for bad spots, or to validate a file communicated over some transmis
sion line. The checksum is calculated by an algorithm which may yield different results on machines with 
16-bit ints and machines with 32-bit ints, so it cannot always be used to validate that a file has been 
transferred between machines with different-sized ints. 

SYSTEM V DESCRIPTION 
sum calculates and prints a 16-bit checksum for the named file, and also prints the number of 512-byte 
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated over some 
transmission line. This algorithm is independent of the size of ints on the machine. 

SYSTEM V OPTIONS 
The option -r causes the (machine-dependent) algorithm used by the non-System V sum to be used in 
computing the checksum. 

SEE ALSO 
wc(l) 

DIAGNOSTICS 
Read error is indistinguishable from EOF on most devices; check the block count 

486 Last change: 9 September 1987 Sun Release 4.0 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

NAME 
sunview - the Sun View window environment 

SYNOPSIS 
sunview [ -i ] [ -p ] [ -B 1-F 1-P ] [ -S ] [-Shit_ color_ only ] [-overlay_ only ] [ -toggle_ enable ] 

[ -b red green blue ] [ -d display-device ] [ -f red green blue ] [ -k keyboard-device ] 
[ -m mouse-device ] [ -nl--s startup-filename ] [ -background raster-filename ] 
[ -pattern on I off I gray I iconedit-filename] 

DESCRIPTION 
sunview starts up the Sun View environment and (unless you have specified otherwise) a default layout of a 
few useful "tools," or window-based applications. 

See Start-up Processing below to learn how to specify your own initial layout of tools. Some of the 
behavior of sunview is controlled by settings in your defaults database; see Sun View Defaults below, and 
def aultsedit( 1) for more infonnation. 

To exit sun view use the Exit Sun View menu item. In an emergency, type CTRL-D then CTRL-Q (there is 
no confirmation in this case). 

OPTIONS 
-i Invert the background and foreground colors used on the screen. On a monochrome monitor, this 

option provides a video reversed image. On a color monitor, colors that are not used as the back
ground and foreground are not affected. 

-p Print to the standard output the name of the window device used for the sunview background. 

-B Use the "background color" ( -b) for the background. 

-F Use the "foreground color" ( -f) for the background. 

-P Use a stipple pattern for the background. This option is assumed unless -F or -B is specified. 

-S Set Click-to-type mode, allowing you to select a window by clicking in it. Having done so, input 
is directed to that window regardless of the position of the pointer, until you click to select some 
other window. 

-Sbit_ color_ only 
For multiple plane group frame buffers, only let windows be created in the 8 bit color plane group. 
This frees up the black and white overlay plane to have a separate desktop running on it. This op
tion is usually used with the -toggle_ enable option . See Multiple Desktops on the Same 
Screen, below. 

-overlay_ only 
For multiple plane group frame buffers, only let windows be created in the black and white over
lay plane group. This frees up the 8 bit color plane group to have a separate desktop running in it. 
This option is usually used with the -toggle_ enable option. See Multiple Desktops on the Same 
Screen, below. 

-toggle_ enable 
For multiple plane group frame buffers, when sliding the pointer between different desktops run
ning within different plane groups on the same screen, change the enable plane to allow viewing 
of the destination desktop. See Multiple Desktops on the Same Screen, below. 

-b red green blue 
Specify values for the red, green and blue components of the background color. If this option is 
not specified, each component of the background color is 255 (white). Sun 3/110 system users 
that use this option should use the -Shit_ color_ only option as well. 

-d display-device 
Use display-device as the output device, rather than /dev/fb the default frame buffer device. 

Sun Release 4.0 Last change: 14 January 1988 487 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

-f red green blue 
Specify values for the red, green and blue components of the foreground color. If this option is 
not specified, each component of the foreground color is O (black). Sun 3/110 system users that 
use this option should use the -Sbit _color_ only option as well. 

-k keyboard-device 
Accept keyboard input from keyboard-device, rather than /dev/kbd, the default keyboard device. 

-m mouse-device 
Use mouse-device as the system pointing device (locator), rather than /dev/mouse, the default 
mouse device. 

-n Bypass startup processing by ignoring the /usr/Iib/sunview and /sunview (and /.suntools) files. 

-s startup-filename 
Read startup commands from startup-filename instead of /usr/Iib/sunview or / .sunview). 

-background raster-filename 
Use the indicated raster file as the image in your background The raster file can be created with 
screendump(l). Screen dumps produced on color monitors currently do not work as input to this 
option. Small images are centered on the screen. 

-pattern on I ofT I gray I iconedit-filename 
Use the indicated "pattern" to cover the background. on means to use the default desktop gray 
pattern. ofT means to not use the default desktop gray pattern. gray means to use a 50% gray 
color on color monitors. iconedit-filename is the name of a file produced with iconedit(l) which 
contains an image that is to be replicated over the background. 

USAGE 

488 

Windows 
The Sun View environment always has one window open, referred to as the background, which covers the 
whole screen. A solid color or pattern is its only content Each application is given its own window which 
lies on top of some of the background (and possibly on top of other applications). A window obscures any 
part of another window which lies below it. 

Input to Windows 
Mouse input is always directed to the window that the pointer is in at the time. Keyboard input can follow 
mouse input or, it can remain within a designated window using the Click-to-Type default setting. If you 
are not using Click-to-Type, and the pointer is on the background, keyboard input is discarded. Input ac
tions (mouse motions, button clicks, and keystrokes) are synchronized, which means that you can "type
ahead" and "mouse-ahead," even across windows. 

Mouse Buttons 
LEFI' mouse button 

Click to select or choose objects. 

MIDDLE mouse button 
In text, click once to shorten or lengthen your selection. In graphic applications or on 
the desktop, press and hold to move objects. 

RIGHT mouse button 
Press and hold down to invoke menus. 

Menus 
sunview provides pop-up menus. There are two styles of pop-up menus: an early style, called "stacking 
menus," and a newer style, called "walking menus" (also known as "pull-right menus"). In the current 
release, walking menus are the default; stacking menus are still available as a defaults option. 

Usually, a menu is invoked by pressing and holding the RIGHT mouse button. The menu remains on the 
screen as long as you hold the RIGIIT mouse button down. To choose a menu item, move the pointer onto 
it (it is then highlighted), then release the RIGHT mouse button. 

Last change: 14 January 1988 Sun Release 4.0 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

Another available option is "stay-up menus." A stay-up menu is invoked by pressing and releasing the 
RIGHT mouse button. The menu appears on the screen after you release the RIGHT mouse button. To 
choose a menu item, move the pointer onto it (it is then highlighted), then press and release the RIGHT 
mouse button a second time. Stay-up menus are an option in your defaults database; see Sun View De
faults below. 

With walking menus, any menu item can have an arrow pointing ( =>) to the right. Moving the pointer onto 
this arrow pops up a "sub-menu," with additional items. Choosing the item with an arrow (the "pull-right 
item") invokes the first item on the sub-menu. 

The Sun View Menu 
You can use the default SunView menu to start SunView applications and perform some useful functions. 
To invoke it, hold down the RIGITT mouse button when the pointer is anywhere in the background. 

The default Sun View menu consists of four sub-menus, labeled Shells, Editors, Tools, and Services, along 
with an Exit Sun View item. These sub-menus contain the following items: 

Sun Release 4.0 

Shells 

Editors 

Tools 

Services 

Command Tool Bring up a cmdtool(l), a scrollable window-based terminal emulator 
that supports a shell. 

Shell Tool Bring up a shelltool(l), an tty-based terminal emulator that supports a 
shell. 

Graphics Tool Bring up a gfxtool(l), for running graphics programs. 

Console Bring up a Console window, a cmdtool with the -C flag, to act as the 
system console. Since many system messages can be directed to the 
console, there should always be a console window on the screen. 

Text Editor Bring up a textedit(l), for reading and editing text files. 

Defaults Editor Bring up a defaultsedit(l), for browsing or changing your defaults 
settings. 

Icon Editor Bring up a new iconedit(l). 

Font Editor Bring up a fontedit(l). 

Mail Tool Bring up a mailtool(l), for reading and sending mail. 

Dbx (Debug) Tool 
Bring up a dbxtool(l), a window-based source debugger. 

Performance Meter 
Bring up a perfmeter(l) to monitor system performance. 

Clock Bring up a new clock( 1 ). 

Redisplay All Redraw the entire screen. Use this to repair damage done by processes that 
wrote to the screen without consulting the Sun View system. 

Printing There are two items on this submenu, Check Printer Queue and Print Select
ed Text. Check Printer Queue displays the printer queue in your console; 
Print Selected Text sends selected text to the standard printer. 

Last change: 14 January 1988 489 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

490 

Remote Login There are two items on this submenu, 'Command Tool' and 'Shell Tool'. 
Each creates a terminal emulator that prompts for a machine name and then 
starts a shell on that machine. 

Save Layout Writes out a / .sunview file that sunview can then use when starting up again. 
An existing /.sunview file is saved as /.sunview-. 

Lock Screen Completely covers the screen with a graphics display, and "locks" the worksta
tion until you type your password. When you "unlock" the workstation, the 
screen is restored as it was when you locked it. See Iockscreen(l) for details. 

Exit Sun View 
Exit from sunview, including all windows, and kill processes associated with them. You return to 
the shell from which you started sunview. 

You can specify your own SunView menu; see Sun View Defaults below for details. 

The Frame Menu 
A small set of universal functions are available through the Frame menu. There are also accelerators for 
some of these functions, described under Frame Menu Accelerators, below. 

You can invoke the Frame menu when the cursor is over a part of the application that does not provide an 
application-specific menu, such as the frame header (broad stripe holding the application's name), the 
border stripes of the window, and the icon. 

Close 
Open Toggle the application between closed (iconic) and open state. Icons are placed on the 

screen according to the icon policy in your defaults database; see Sun View Defaults 
below. When a window is closed, its underlying processes continue to run. 

Move 

Resize 

Front 

Back 

Props 

Redisplay 

Quit 

Moves the application window to another spot on the screen. Move has a sub-menu 
with two items: Unconstrained and Constrained. 

Unconstrained Move the window both horizontally and vertically. 

Constrained Moves are either vertical or horizontal, but not both. 

Choosing Move invokes an Unconstrained move. 

Shrink or stretch the size of a window on the screen. Resize has a sub-menu containing: 

Unconstrained Resize the window both horizontally and vertically. 

Constrained Resize vertically or horizontally, but not both. 

Choosing Resize invokes an Unconstrained resize. 

UnZoom 

Zoom Zoom expands a window vertically to the full height of the screen. 
UnZoom undoes this. 

FullScreen Make a window the full height and width of the screen. 

Bring the window to "the top of the pile." The whole window becomes visible, and hides 
any window it happens to overlap on the screen. 

Put the window on the "bottom of the pile". The window is hidden by any window 
which overlaps it 

Display the property sheet. (Only active for applications that provide a property sheet.) 

Redraw the contents of the window. 

Notify the application to terminate gracefully. Requires confirmation. 

Last change: 14 January 1988 Sun Release 4.0 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

Frame Menu Accelerators 
Accelerators are provided for some Frame menu functions. You can invoke these functions by pushing a 
single button in the window's frame header or outer border. See the Sun View Beginner's Guide for more 
details. 

Open 

Move 

Resize 

Zoom 
UnZoom 

Front 

Back 

Click the LEFT mouse button when the pointer is over the icon. 

Press and hold the MIDDLE mouse button while the pointer is in the frame header or 
outer border. A bounding box that tracks the mouse is displayed while you hold the 
button down. When you release the button, the window is redisplayed within the 
bounding box. If the pointer is near a comer, the move is Unconstrained. If it is in 
the center third of an edge, the move is Constrained. 

Hold the CTRL key and press and hold the MIDDLE mouse button while the pointer 
is in the frame header or outer border. A bounding box is displayed, and one side or 
comer tracks the mouse. If the pointer is near a comer when you press the mouse 
button, the resize is Unconstrained; if in the middle third of an edge, the resize is 
Constrained. 

Hold the CTRL key and click the LEFf mouse button while the pointer is in the frame 
header or outer border. 

Click the LEFT mouse button while the pointer is on the frame header or outer bord
er. 

Hold the SHIFT key and click the LEFT mouse button while the pointer is on the 
frame header or outer border. 

In addition, you can use two function keys as even faster accelerators. To expose a window that is partially 
hidden, press the Front function key (normally LS) while the pointer is anywhere in that window. Or, if 
the window is completely exposed, use the Front key to hide it. Similarly, to close an open window, press 
the Open key (normally L7) while the pointer is anywhere in that window. If the window is iconic, use the 
Open key to open it. 

In applications with multiple windows, you can often adjust the border between two windows up or down, 
without changing the overall size of the application: hold the CTRL key, press the MIDDLE mouse button 
over the boundary between the two windows, and adjust the size of the (bounded) subwindow as with 
Resize. 

Startup Processing: The .sunview File 
Unless you override it, sunview starts up with a predefined layout of windows. The default layout is 
specified in the file /usr/lib/sunview. If there is a file called .sunview in your home directory, it is used in
stead. For compatibility with earlier releases, if there is no .sun view file in your home directory, but a 
.suntools file instead, the latter file is used. 

Sun View Defaults 
Sun View allows you to customize the behavior of applications and packages by setting options in a de
faults database (one for each user). Use defaultsedit(l) to browse and edit your defaults database. Select 
the "Sun View" category to see the following items (and some others): 

Walking_ menus 

Click_ to_ Type 

Sun Release 4.0 

If enabled, the Sun View menu, the Frame menu, and many applications will use 
walking menus. Applications that have not been converted will still use stacking 
menus. If disabled, applications will use stacking menus. The default value is "En
abled." 

If enabled, keyboard input will stay in a window until you click the LEFT or MIDDLE 
mouse button in another window. If disabled, keyboard input will follow the mouse. 
The default value is "Disabled." 

Last change: 14 January 1988 491 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

492 

Font You can change the SunView default font by giving the full pathname of the font 
you want to use. Some alternate fonts are in the directory 
/usr/lib/fonts/fixedwidthfonts. The default font from the SunOS 2.0 release was 
/usr/lib/fonts/fixedwidtbfonts/screen.r.13. The default value is null, which has the 
same effect as specifying /usr/lib/fonts/fixedwidthfonts/screen.r.11. 

Rootmenu _ filename You can change the Sun View menu by giving the full pathname of a file that 
specifies your own menu. See The Sun View Menu File below for details. The de
fault value is null, which gives you the menu found in /usr/lib/rootmenu. 

Icon _gravity 

Audible bell 

Visible bell 

Determine which edge of the screen ("North", "South", "East", or "West'') icons will 
place themselves against. The default value is "North." 

If enabled, the "bell" command will produce a beep. The default value is ''Enabled. 

If enabled, the "bell" command will cause the screen to flash. The default value is 
"Enabled." 

Root Pattern Used to specify the "pattern" that covers the background. "on" means to use the de
fault desktop gray pattern. "off' means to not use the default desktop gray pattern. 
"gray" means to use a 50% gray color on color monitors. Anything else is the name 
of a file produced with iconedit( 1) which contains an image that is replicated all 
over the background. The default value is "on." 

After you have set the options you want in the "SunView" category, click on the Save button in de
raultsedit; then exit sunview and restart it. 

Select the "Menu" category to see the following items (and some others): 

Stay_ up If enabled, menus are invoked by pressing and releasing the RIGHT mouse button; 
the menu appears after you release the RIGHT mouse button. To choose a menu item, 
point at it, then press and release the RIGHT mouse button a second time. The de
fault value is "False". 

Items _in_ column_ major 
If enabled, menus that have more than one column are presented in "column major" 
order (the way ls(l) presents file names). This may make a large menu easier to 
read. The default value is "False." 

After you have set the options you want in the "Menu" category, click on the Save button in defaultsedit. 
Any applications you start after saving your changes will be affected by your new choices. For all defaults 
categories except for "Sun View", you do not need to exit sunview and restart it. 

The Sun View Menu File 
The file called /usr/lib/rootmenu contains the specification of the default Sun View menu. You can change 
the SunView menu by creating your own file and giving its name in the Rootmenu_filename item in the 
Sun View Defaults. 

Lines in the file have the following format: The left side is a menu item to be displayed, and the right side 
is a command to be executed when that menu item is chosen. You can also include comment lines (begin
ning with a'#') and blank lines. 

The menu item can be a string, or the full pathname of an icon file delimited by angle brackets (unless 
Walking_menus is disabled in the SunView defaults). Strings with embedded blanks must be delimited by 
double quotes. 

There are four reserved-word commands that can appear on the right side. 

EXIT 

REFRESH 

MENU 

Exit sunview (requires confirmation). 

Redraw the entire screen. 

This menu item is a pull-right item with a submenu. If a full pathname follows the 
MENU command, the submenu contents are taken from that file. Otherwise, all the lines 

Last change: 14 January 1988 Sun Release 4.0 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

between a MENU command and a matching END command are added to the submenu. 

END Mark the end of a nested submenu. The left side of this line should match the left side 
of a line with a MENU command. 

If the command is not one of these four reserved-word commands, it is treated as a command line and exe
cuted. No shell interpretation is done, although you can run a shell as a command. 

Here is a menu file that demonstrates some of these features: 

Quit EXIT 

mailtool Mail reader 

My tools 

Click to type 

Follow mouse 

Print selection 

Nested menu 

MENU /home/me/mytools.menu 

swin-c 

swin-m 

sh -c get_ selection I lpr 

MENU 

Command Tool cmdtool 

Shell Tool 

Nested menu 

Icon menu 

shelltool 

END 

MENU 

<./usr/include/images/textedit.icon> 

<./usr/include/images/ dbxtool.icon> 

Icon menu END 

Multiple Screens 

textedit 

dbxtool 

The sun view program runs on either a monochrome or color screen. Each screen on a machine with multi
ple screens may have a separate sunview running. The keyboard and mouse input devices can be shared 
between screens. Using adjacentscreens(l) you can set up the pointer to slide from one screen to another 
when you move it off the edge of a screen. 

To set up an instance of sun view on two screens: 

1. Invoke sunview on the first display as you normally would. This starts an instance of sunview on the 
default frame buffer (/dev/fb). 

2. In a shelltool, run 'sunview -d device &'. This starts another device. (A typically choice might be 
/dev/cgone). 

3. In that same shelltool, run 'adjacentscreens /dev/fb -r device'. This sets up the cursor to switch 
between screens as it crosses the right or left edge of the respective screens. 

Multiple Desktops on the Same Screen 
Machines that support multiple plane groups, such as the Sun-3/110 system can support independent sun
view processes on each plane group. They can share keyboard and mouse input in a manner similar to that 
for multiple screens. To set up two plane groups: 

1. Invoke sunview in the color plane group by running 'sunview -Sbit_color_only -toggle_enable'. 
This starts sunview on the default frame buffer named /dev/fb, but limits access to the color plane 
group. 

2. In a shelltool, run 'sunview -d /dev/bwtwo -toggle_enable -n &.' This starts sunview in the over
lay plane accessed by /dev/bwtwo. 

3. Run 'adjacentscreens -c /dev/fb -I /dev/bwtwo'. This sets up the pointer to switch between desk
tops as it crosses the right or left edge of the respective desktops. 

Sun Release 4.0 Last change: 14 January 1988 493 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

Pre-3.2 applications cannot be run on the -8bit_color_only desktop, because they do not write to the over
lay plane. 

switcher(l), another application for switching between desktops, uses some amusing video wipe anima
tion. It can also be used to toggle the enable plane. See switcher(!) for details. 

Genetic Tool Arguments 
Most window-based tools take the following arguments in their command lines: 

FLAG (LONG FLAG) ARGUMENTS NOTES 
-Ww (-width) columns 
-Wh (-height) lines 
-Ws (-size) xy x and y are in pixels 
-Wp (-position) xy x and y are in pixels 
-WP (-icon _position) xy x and y are in pixels 
-WI (-label) "string" 
-Wi (-iconic) makes the application start iconic (closed) 
-Wt (-font) filename 
-Wn (-no_name_stripe) 
-Wf (-foreground_ color) red green blue 0-255 (no color-full color) 
-Wb (-background_ color) red green blue 0-255 (no color-full color) 
-Wg (-set_ def a ult_ color) (apply color to subwindows too) 
-WI (-icon_ image) filename (for applications with non-default icons) 
-WL (-icon_label) "string" (for applications with non-default icons) 
-WT (-icon _font) filename (for applications with non-default icons) 
-WH (-help) print this table 

Each flag option may be specified in either its short form or its long form; the two are completely 
synonymous. 

Sun View Applications 
Some of the applications that run in the Sun View environment: 

clock(l), cmdtool(l), dbxtool(l), defaultsedit(l), fontedit(l), gfxtool(l), iconedit(l), 
lockscreen(l), mailtool(l), overview(!), perfmeter(l), shelltool(l), 
tektool(l), textedit(l), traffic(!) 

Some of the utility programs that run in or with the Sun View environment: 

adjacentscreens( 1 ), clear _functions( 1 ), get _selection(l ), stty _from_ defaults( 1 ), 
swin(l), switcher(l), toolplaces(l) 

ENVIRONMENT 

FILES 

494 

DEFAULTS_FILE 
The value of this environment variable indicates the file from which Sun View defaults 
are read. When it is undefined, defaults are read from the .defaults file in your home 
directory. 

/.sunview 
/usr/bin/sunview 
/usr/lib/rootmenu 
/usr/lib/fonts/fixedwidthfontsl* 
/dev/winx 
/dev/ptypx 
/dev/ttypx 
/dev/fb 
/dev/kbd 

Last change: 14 January 1988 Sun Release 4.0 



SUNVIEW(l) USER COMMANDS SUNVIEW(l) 

/dev/mouse 
/etc/utmp 

SEE ALSO 

BUGS 

adjacentscreens( 1 ), clear _functions( 1 ), clock( 1 ), cmdtool( 1 ), dbxtool( 1 ), defaultsedit( 1 ), fontedit( 1 ), 
get_selection(l), gfxtool(l), iconedit(l), lockscreen(l), mailtool(l), overview(!), perfmeter(l), screen
dump(l), shelltool(l), stty _from_defaults(l), swin(l), switcher(l), tektool(l), textedit(l), tool
places( 1 ), traffic( 1) 

Console messages ignore window boundaries unless redirected to a console window. This can disrupt the 
sunview desktop display. The display can be restored using the Redisplay All item on the Sun View menu. 
To prevent this, use the Console item to start a console window. 

With an optical mouse, sometimes the arrow-shaped cursor does not move at start-up; moving the mouse in 
large circles on its pad normally brings it to life. 

sunview requires that the /etc/utmp file be given read and write permission for all users. 

On a color display, colors may "go strange" when the cursor is in certain windows that request a large 
number of colors. 

When running multiple desktops, only one console window can be used. 

In Click-to-type mode, it is impossible to exit from sun view by typing CTRL-D CTRL-Q. 

Sun Release 4.0 Last change: 14 January 1988 495 



SWIN ( 1) USER COMMANDS SWIN ( 1) 

NAME 
swin - set or get Sun View user input options 

SYNOPSIS 
swin [ -cghm] [ -r event value shift_state] [ -s event value shift_state] [ -t seconds] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
The swin (set window; analogous to stty(l V)) command lets you change some of the input behavior of 
your Sun View environment By default, your keyboard input follows your pointer. This means that in ord
er to type to a window you position the pointer over the window. This is called keyboard{ollows-mouse 
mode. 

You can specify that the keyboard input continues to go to the same window, regardless of the pointer posi
tion, until you take some specific action, like clicking the mouse. When this is done, you can roam around 
the screen with the pointer and not change the window to which keyboard input is directed. Running Sun
View like this is said to be operating in click-to-type mode. 

When running in click-to-type mode, one user action sets the type-in point in the window that you want to 
receive keyboard input. The default user action to do this is the clicking of the LEFT mouse button while 
positioning the pointer over the new type-in point. This user action can be changed. 

Another user action restores the previous type-in point in the window that you want to receive keyboard in
put. The default user action to do this is the clicking of the MIDDLE mouse button while positioning the 
pointer over the window. This user action can be changed. 

OPTIONS 

496 

-c Turn on click-to-type mode using the default user actions: the LEFf mouse button sets the type-in 
point and the MIDDLE mouse button restores the type-in point You can use the defaultsedit(l) 
program to set click-to-type on permanently; see the Click_to_Type option of sunview(l). 

-g Get the state of the user input options controlled by swin. If no arguments are supplied to swin 
then -g is implied. 

-h Print out a help message that briefly describes the options to swin. 

-m Run in keyboard-follows-mouse mode. 

-s event value shift _state 
Set the user action that sets the type-in point and sets the keyboard input window. The event 
identifies the particular user action and is one of: 

LOC WINENTER 
pointer entering a window 

MS LEFT 
LEFT mouse button 

MS MIDDLE 
MIDDLE mouse button 

MS RIGHT 
RIGHT mouse button 

decimal number 
-place the decimal number of a firm event here; see list of events in 
/usr/include/sundev/vuid_event.h (avoid function keys, normally unused control-ascii 
characters are OK, normally unused SHIFT keys are OK). 

Last change: 21 December 1987 Sun Release 4.0 



SWIN ( 1) USER COMMANDS SWIN ( 1) 

FILES 

value identifies the transition of the event and is one of: 

ENTER the pointer entering a window (use with LOC _ WINENTER) 

DOWN the button associated with event went down 

UP the button associated with event went up (avoid this) 

The shift_state identifies the state of the SHIFT keys at the time of the event/value pair in order for 
that pair to be used to control the keyboard input window. The shift _state is one of: 

SHIFT DONT CARE - -
Ignore the state of the SHIFT keys 

SHIFT ALL UP 
All the SHIFT keys must be up 

SHIFT LEFT 
The left SHIFT' key must be down (not the key labeled LEFT) 

SHIFT RIGIIT 
the right SHIFT key must be down (not the key labeled RIGITT) 

SHIFT LEFTCTRL 
the left CTRL key must be down 

SHIFT RIGITTCTRL 
the right CTRL key must be down 

-r event value shift _state 
Set the user action that restores the type-in point and sets the keyboard input window. This user 
action is swallowed so that the application that owns the window does not see it. However, if the 
window already has keyboard input or if the window refuses keyboard input then this user action 
is passed on through to the application. The parameters to this command are like those for -s. 
The following example shows modifying the default click-to-type user actions so that a SHIFT left 
is required for the restore user event: 

example% swin ·C -r MS_MIDDLE DOWN SHIFT_LEFT 

-t seconds 
Sun View synchronizes input so that it does not hand out the next user action until the application 
fielding the current user action finishes its processing. This allows type-ahead and mouse-ahead. 
If an application does not finish processing within a given length of time (process virtual time; not 
wall clock time), the next user action is handed out anyway. This avoids any one application from 
hanging the workstation. The -t command sets this time limit. A seconds value of O tells Sun
View to run unsynchronized; beware of race conditions in this mode. The default seconds value is 
2 and the -c command makes it 10 seconds. 

/usr/include/sundev/vuid event.h 
list of event codes 

SEE ALSO 
defaultsedit(l), stty(l V), sunview(l) 

Sun View 1 Beginner's Guide 

DIAGNOSTICS 
swin not passed parent window in environment 

swin does not work unless Sun View is started already. 

Sun Release 4.0 Last change: 21 December 1987 497 



SWIN ( 1) USER COMMANDS SWIN ( 1) 

BUGS 
swin gets you no help in preventing you from specifying -r or -s parameters that are not sensible. 

498 Last change: 21 December 1987 Sun Release 4.0 



SWITCHER ( 1 ) USER COMMANDS SWITCHER ( 1 ) 

NAME 
switcher - switch attention between multiple Sun View desktops on the same physical screen 

SYNOPSIS 
switcher [ -dframe-buffer] [ -s n 111 r Ii Io If] [ -m x y] [ -n] [ -e O 11] 

AVAILABILITY 
This command is available for Sun-2, Sun-3 and Sun-4 systems with the Sun View 1 User's software instal
lation option. Refer to Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
switcher is used as an alternative to adjacentscreens(l) for getting between desktops on the Sun-3/110. 
Clicking the switcher icon gets you to another desktop using some amusing video-wipe animation. When 
using walking menus, a menu is available to invoke the switch as well. switcher can also be used to sim
ply set the enable plane to O or 1 should it get out of wack. 

OPTIONS 
-dframe-buffer 

The frame buffer is a frame buffer device name, such as /dev/fb, /dev/cgfour or /dev/bwtwo, on 
which the desktop that you want to get to resides. This name is the same one supplied to sunview 
The -d flag is optional; if not specified, the default device is /dev/fb 

-s n 111 r I i I o I r 
The -s flag specifies the type of animation used when switching: n (now), I (left wipe), r (right 
wipe), i (tunnel in), o (tunnel out), or f (fade). The -s flag is optional because if not specified, the 
default animation is to switch immediately. n (now) mode. 

-mx y The -m indicates what the mouse position should be on the destination desktop after the switch. 
An (x y) value-pair of (-1 -1) says to use the position of the mouse on the desktop at the time of 
the switch as the mouse position on the destination desktop. The -m flag is optional; if not 
specified, the default is (-1 -1). 

-n The -n flag means no switcher icon is wanted so do the switch right now and exit switcher after 
the switch. This is handy if you want to switch from a root menu command. 

-e O 11 The -e flag causes the overlay enable plane of the device specified with the -d flag to be set to ei
ther O (show color) or 1 (show black and white). switcher run with this option has nothing to do 
with Sun View, only the enable plane is set. 

EXAMPLE 

A common multiple desktop configuration for the Sun-s/110 is one monochrome and one color desktop. 
You could set up an instance of sunview(l) on each plane group in the following way: 

1. Invoke sunview in the color plane group by running: 

example% sun view -8bit _color_ only -toggle_ enable 

This starts sunview on the default frame buffer named /dev/fb but limits access to the color plane 
group. 

2. In a shelltool(l), run: 

example% sunview -d /dev/bwtwo -toggle_ enable & 

This starts sunview in the overlay plane that is accessed by /dev/bwtwo. 

3. In a shelltool on the original desktop run: 

example% switcher -d /dev/bwtwo -s i & 

Clicking on the switcher icon when it is visible moves you to the /dev/bwtwo desktop. 

4. In a shelltool on the /dev/bwtwo desktop run: 

example% switcher-so & 

Sun Release 4.0 Last change: 18 February 1988 499 



SWITCHER ( 1 ) USER COMMANDS SWITCHER ( 1 ) 

Clicking on the switcher icon when it is visible moves you back to the /dev/fb desktop. 

FILES 
/usr/bin/switcher 
/dev/bwtwo 
/dev/fb 
/dev/cgfour 

SEE ALSO 
adjacentscreens(l), shelltool(l), sunview(l) 

500 Last change: 18 February 1988 Sun Release 4.0 



SYMORDER ( 1 ) USER COMMANDS SYMORDER ( 1 ) 

NAME 
symorder - rearrange a list of symbols 

SYNOPSIS 
symorder orderlist symbolfile 

DESCRIPTION 
orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line. 

symbolfile is updated in place to put the requested symbols first in the symbol table, in the order specified. 
This is done by swapping the old symbols in the required spots with the new ones. If all of the order sym
bols are not found, an error is generated. 

This program was specifically designed to cut down on the overhead of getting symbols from /vmunix. 

Sun386i DESCRIPTION 

FILES 

Symbols specified on the command line are moved to the beginning of the output symbol table, not 
swapped. Therefore, the symbols specified on the command line will appear in order at the beginning of 
the output symbol table, followed by the original symbol table with the gaps created by the moved symbols 
closed. 

/vmunix 

SEE ALSO 
nlist(3) 

Sun Release 4.0 Last change: 18 February 1988 501 



SYNC(l) USER COMMANDS SYNC(l) 

NAME 
sync - update the super block; force changed blocks to the disk 

SYNOPSIS 
sync 

DESCRIPTION 
sync forces any information on its way to the disk to be written out immediately. sync can be called to en
sure that all disk writes are completed before the processor is halted abnormally. 

SEE ALSO 
cron(8), fsck(8), halt(8), reboot(8) 

502 Last change: 9 September 1987 Sun Release 4.0 



SYSEX( 1) USER COMMANDS SYSEX(l) 

NAME 
sysex - invoke the system exerciser 

SYNOPSIS 
sysex 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
sysex is the system exerciser for Sun386i systems. 

This program is designed to run under the SunView environment, but a dumb terminal interface is provid
ed. The program tests subsystems of a Sun386i system, printing information to the console and log files. 
Most commands are accessible by way of buttons, toggle switches, or menus. A startup file .sysexrc, can 
be created by experienced users to set runtime parameters. 

USAGE 
Subwindows 

Control Panel Tells which version of the exerciser is running. User controls sysex executions through 
the toggles, buttons, and sliders in this panel. 

Perfmon window Graphically displays system statics. The standard Sun View perfmeter(l). 

Console window Displays the system messages and sysex error messages. 

Status Window Displays pass counts and error counts for all tests that are currently selected. Also 
displays system pass count, and total system errors. Elapsed time signifies time since 
start button is pressed 

Load Sliders 
These slide bars allow the user to modulate the load on the system. 

1/0-CPU Load 
Moving this slider changes the balance between I/0-intensive and compute-intensive tests that are 
running. 

SYSTEM LOAD 
Moving this slider increases and decreases the system activity generated by sysex. 

Test Toggles 
Each test selection on the control panel is selectable by moving the cursor over to the toggle and pressing 
the left mouse button. 

The tests are displayed by device groups in the control panel. A test is enabled when a check mark is seen 
in the box. Clicking left on the group label acts as a group enable/disable for all Wed tests in that device 
group. Currently there are tests for physical memory and virtual memory, fixed disk, diskette, Ethernet, 
and color frame buffer. 

Command Buttons 
Command buttons exist for the following commands: 

Quit Sysex Stop all current tests and exit the exerciser. All logs will be saved. 

Log Files 

Options 

Print Screen 

Start Tests 

Stop Tests 

Pause 

Sun Release 4.0 

Display menu for choosing a log to view, reset, or print. 

Display window through which .sysexrc parameters can be modified. 

Take screendump of the current screen. 

Start all test from passO that have been selected. Resets pass count. Toggles to Stop 
Tests. Begin elapsed time count 

Stop all tests that are running. Toggles to Start Tests. 

Pause tests by issuing SIGSTP. 

Last chan2e: 11 Februarv 1988 503 



SYSEX( 1) USER COMMANDS SYSEX( 1) 

Continue Continue testing from the stopped state without resetting pass count. Toggles to 
Pause,leaves pass counts intact. Will continue elapsed time count if Continued from a 
Pause. 

Logs 
When the user selects the DISPLAY LOGS button and chooses from the log menu, a scrollable pop-up win
dow will display the log, which can be one of /var/sysex/sysex.info, /var/sysex/sysex.error, or 
/etc/adm/messages. Logs contain messages classified as INFO, WARNING, ERROR, or FAT AL. The INFO 
file contains all messages; the ERROR file contains only error and fatal messages. 

Variables 
The sysex program has several variables than can be set in the .sysexrc file. Some of the variables pertain 
to only one test and others are global to all tests. Clicking Done will save changes to the .sysexrc file. 
Clicking Cancel leaves options unchanged. 

verbose Display messages about what is currently taking place. 

verify Run through a cursory pass of tests to see all subsystems present. 

run_on_err 
Halt subsystem testing when an error occurs. 

sysex _halt_ on_ err 
Stop sysex if an error occurs in any subsystem. 

core Create core dump in /varlsysex. 

single _pass 
Run one pass of each selected device test. 

For the expert user, more commands are available by clicking the manufacturing cycle to Enabled. This 
displays the following options: 

f dc wait Variable wait time between executions of the diskette test. 

vmem wait 
Variable delay between successive executions of the virtual memory test. 

debug Display all messsages to aid analysis of problem systems. 

check_ eeprom 
Read NVRAM configuration information and display values. 

intervention 
Turn on or off the confirmer for all destructive tests, or for tests requiring media. 

FILES 

504 

/usr/sysex/sysex 
/var/sysex/core 
/var/sysex/sysex.inf o 
/var/sysex/sysex.error 

Last change: 11 February 1988 Sun Release 4.0 



SYSWAIT( 1) USER COMMANDS SYSWAIT( 1) 

NAME 
syswait - execute a command, suspending termination until user input 

SYNOPSIS 
syswait message command 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
syswait executes a specified command, suspending termination until the user types any character. message 
is the message prompting the user to type a character to terminate the command. command is the command 
to be executed. 

EXAMPLE 
The following example invokes a cmdtool and executes 'Is •.c', but waits for the user to type a character 
before terminating the Is and closing the cmdtool window. 

cmdtool syswait "Press any key to quit ... " "Is •.c" & 

Sun Release 4.0 Last change: 19 February 1988 505 



TABS( lV) USER COMMANDS TABS(1V) 

NAME 
tabs - set tab stops on a terminal 

SYNOPSIS 
/usr/Sbin/tabs [ tabspec ] [ -Ttype ] [ +mn ] 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the Sun0S 
for information on how to install optional software. 

DESCRIPTION 
tabs can be used to specify TAB stops on terminals that support remotely-settable hardware TAB charac
ters. TAB stops are set according to the tabspec option, as described below, and previous settings are 
erased. 

Four types of tab specification are accepted for tabspec. They are: 

-code Set the TAB stops according to the canned TAB setting specified by code, as given by fspec(5). 

-n Set the TAB stops at intervals of n columns, that is, at l+n, 1+2*n, and so on, as per the -n 

nl ,n2, ... 

specification as given by fspec(5). 

Set the TAB stops at positions nl , n2, and so on, as per the nl ,n2, . . . specification as given by 
fspec(5). 

--file Read the first line of the file specified by file, searching for a format specification as given by 
fspec(5). If this line contains a format specification, set the TAB stops accordingly, otherwise set 
them to every 8 columns. This type of specification may be used to make sure that a file contain
ing a TAB specification is displayed with correct TAB settings. For example, it can be used with 
the pr( 1 V) command: 

tabs - -file; pr file 
If no tabspec is given, the default value is -8, the standard default TAB setting. The lowest column number 
is 1. Note: for tabs, column 1 always refers to the leftmost column on a terminal, even one whose column 
markers begin at 0, (such as the DASI 300, DASI 300s, and DASI 450). TAB and margin setting is per
formed by echoing to the proper sequences to the standard output. 

OPTIONS 

BUGS 

506 

-Ttype tabs usually needs to know the type of terminal in order to set TAB characters, and always needs 
to know to set margins. type is a name listed in term(5). If no -T flag is supplied, tabs uses the 
value of the environment variable TERM. If TERM is not defined in the environment (see 
environ(5V)), tabs tries a default sequence that will work for many terminals. 

+mn The margin argument may be used for some terminals. It moves all TAB stops over n columns by 
making column n+l the left margin. If +mis given without a value of n, the value assumed is 10. 
For a TermiNet, the first value in the tab list should be 1, or the margin will move even further to 
the right. The normal (leftmost) margin on most terminals is obtained by +mO. The margin for 
most terminals is reset only when the +m flag is given explicitly. pr(lV), tput(lV), fspec(5), 
terminfo(SV), environ(SV), term(5) 

There is no consistency between different terminals regarding ways of clearing tabs and setting the left 
margin. 

tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set 64. 

Last change: 7 January 1988 Sun Release 4.0 



TAIL(l) USER COMMANDS TAIL(l) 

NAME 
tail - display the last part of a file 

SYNOPSIS 
tail+ I-number [ lbc] [fr] [filename] 

DESCRIPTION 
tail copies filename to the standard output beginning at a designated place. If no file is named, the standard 
input is used. 

OPTIONS 
Options are all jammed together, not specified separately with their own'-' signs. 

+number 
Begin copying at distance number from the beginning of the file. number is counted in units of 
lines, blocks or characters, according to the appended option I, b, or c. When no units are 
specified, counting is by lines. If number is not specified, the value 10 is used. 

-number 
Begin copying at distance number from the end of the file. number is counted in units of lines, 
blocks or characters, according to the appended option I, b, or c. When no units are specified, 
counting is by lines. If number is not specified, the value 10 is used. 

I number is counted in units of lines. 

b number is counted in units of blocks. 

c number is counted in units of characters. 

r Copy lines from the end of the file in reverse order. The default for r is to print the entire file in 
reverse order. 

f If the input file is not a pipe, do not terminate after the line of the input file has been copied, but 
enter an endless loop, sleeping for a second and then attempting to read and copy further records 
from the input file. This option may be used to monitor the growth of a file that is being written 
by some other process. For example, the command: 

tail -f fred 

will print the last ten lines of the file fred, followed by any lines that are appended to fred 
between the time tail is initiated and killed. As another example, the command: 

tail - lScf fred 

will print the last 15 characters of the file fred, followed by any lines that are appended to fred 
between the time tail is initiated and killed. 

SEE ALSO 
dd(l) 

BUGS 

Data for a tail relative to the end of the file is stored in a buffer, and thus is limited in size. 

Various kinds of anomalous behavior may happen with character special files. 

Sun Release 4.0 Last change: 9 September 1987 507 



TALK( 1) USER COMMANDS TALK(l) 

NAME 
talk - talk to another user 

SYNOPSIS 
talk person [ ttyname ] 

DESCRIPTION 

FILES 

talk is a visual communication program which copies lines from your terminal to that of another user. 

If you wish to talk to someone on your own machine, then person is just the person's login name. If you 
wish to talk to a user on another host, then person is one of the following forms : 

host!user 
host.user 
host:user 
user@host 

though user@host is perhaps preferred. 

If you want to talk to a user who is logged in more than once, the ttyname argument may be used to indi
cate the appropriate terminal name. 

When first called, talk sends the message: 

Message from TalkDaemon@his _ machine attime ... 
talk: connection requested by your_ name@your _machine. 
talk: respond with: talk your_ name@your _ machine 

to the user you wish to talk to. At this point, the recipient of the message should reply by typing: 

example% talk your_ name@your _ machine 

It does not matter from which machine the recipient replies, as long as their login name is the same. Once 
communication is established, the two parties may type simultaneously, with their output appearing in 
separate windows. Typing CTRL-L redraws the screen, while your erase, kill, and word kill characters 
will work in talk as normal. To exit, just type your interrupt character; talk then moves the cursor to the 
bottom of the screen and restores the terminal. 

Permission to talk may be denied or granted by use of the mesg command. At the outset talking is allowed. 
Certain commands, in particular nrotT(l) and pr(l V) disallow messages in order to prevent messy output. 

/etc/hosts 
/etc/utmp 

to find the recipient's machine 
to find the recipient's tty 

SEE ALSO 
mail(l), mesg(l), nrofT(l), pr(lV), who(l), write(l), talkd(8C) 

508 Last change: 9 September 1987 Sun Release 4.0 



TAR(l) USER COMMANDS TAR(l) 

NAME 
tar - create tape archives, and add or extract files 

SYNOPSIS 
tar [ - ] crtux [ bBefFhilmopvwX014578] [ tarfile] [ blocksize] [exclude-file] [ -I include-file] 

filename] filename2 . . . -C directory filenameN ... 

DESCRIPTION 
tar archives and extracts multiple files onto a single tar, file archive, called a tarfile. A tarfile is usually a 
magnetic tape, but it can be any file. tar's actions are controlled by the first argument, the key, a string of 
characters containing exactly one function letter from the set crtux, and one or more of the optional func
tion modifiers listed below. Other arguments to tar are file or directory names that specify which files to 
archive or extract. In all cases, the appearance of a directory name refers recursively to the files and sub
directories of that directory. 

FUNCTION LETTERS 
c Create a new tarfile and write the named files onto it. 

r Write the named files on the end of the tarfile. Note: this option does not work with quarter-inch 
archive tapes. 

t List the table of contents of the tarfile. 

u Add the named files to the tarfile if they are not there or if they have been modified since they 
were last archived. Note: this option does not work with quarter-inch archive tapes. 

x Extract the named files from the tarfile. If a named file matches a directory with contents written 
onto the tape, this directory is (recursively) extracted. The owner, modification time, and mode 
are restored (if possible). If no filename arguments are given, all files in the archive are extracted. 
Note: if multiple entries specifying the same file are on the tape, the last one overwrites all earlier 
versions. 

FUNCTION MODIFIERS 
b Use the next argument as the blocking factor for tape records. The default blocking factor is 20 

blocks. The block size is determined automatically when reading tapes (key letters x and t). This 
determination of the blocking factor may be fooled when reading from a pipe or a socket (see the 
B key letter below). The maximum blocking factor is determined only by the amount of memory 
available to tar when it is run. Larger blocking factors result in better throughput, longer blocks 
on nine-track tapes, and better media utilization. 

B Force tar to perform multiple reads (if necessary) so as to read exactly enough bytes to fill a 
block. This option exists so that tar can work across the Ethernet, since pipes and sockets return 
partial blocks even when more data is coming. 

e If any unexpected errors occur tar will exit immediately with a positive exit status. 

f Use the next argument as the name of the tarfile. If f is omitted, use the device indicated by the 
TAPE environment variable, if set. Otherwise, use /dev/rmt8 by default. If tarfile is given as '-', 
tar writes to the standard output or reads from the standard input, whichever is appropriate. Thus, 
tar can be used as the head or tail of a filter chain. tar can also be used to copy hierarchies with 
the command: 

example% cd fromdir; tar cf-. I (cd todir; tar xfflp -) 

F With one F argument specified, exclude all directories named SCCS from tarfile. With two argu
ments FF, exclude all directories named SCCS, all files with .o as as their suffix, and all files 
named errs, core, and a.out. 

h Follow symbolic links as if they were normal files or directories. Normally, tar does not follow 
symbolic links. 

Ignore directory checksum errors. 

Sun Release 4.0 Last change: 16 February 1988 509 



TAR( 1) USER COMMANDS TAR(l) 

Display error messages if all links to archived files cannot be resolved. If I is not used, no error 
messages are printed. 

m Do not extract modification times of extracted files. The modification time will be the time of ex
traction. 

o Suppress information specifying owner and modes of directories which tar normally places in the 
archive. Such information makes former versions of tar generate an error message like: 

<filename>!: cannot create 

when they encounter it. 

p Restore the named files to their original modes, ignoring the present umask(2). SetUID and sticky 
information are also extracted if you are the super-user. This option is only useful with the x key 
letter. 

v Verbose. Normally tar does its work silently; this option displays the name of each file tar treats, 
preceded by the function letter. When used with the t function, v displays the tarfile entries in a 
form similar to 'Is -I'. 

w Wait for user confirmation before taking the specified action. If you use w, tar displays the action 
to be taken followed by the file name, and then waits for a y response to proceed. No action is 
taken on the named file if you type anything other than a line beginning with y. 

X Use the next argument as a file containing a list of named files (or directories) to be excluded from 
the tarfile when using the key letters c, x, or t. Multiple X arguments may be used, with one ex
clude file per argument. 

014578 Select an alternate drive on which the tape is mounted. The numbers 2, 3, 6, and 9 do not specify 
valid drives. The default is /dev/rmt8. 

If a file name is preceded by-I then the filename is opened. A list filenames, one per line, is treated as if 
each appeared separately on the command line. Be careful of trailing white space in both include and ex
clude file lists. 

In the case where excluded files (see X flag) also exist, excluded files take precedence over all included 
files. So, if a file is specified in both the include and exclude files (or on the command line), it will be ex
cluded. 

If a file name is preceded by -C in a c (create) or r (replace) operation, tar will perform a chdir (see 
csh(l)) to that file name. This allows multiple directories not related by a close common parent to bear
chived using short relative path names. See EXAMPLES below. 

Note: the -C option only applies to one following directory name and one following file name. 

EXAMPLES 

510 

To archive files from /usr/include and from /etc, one might use: 

example% tar c -C /usr include -C /etc . 

If you get a table of contents from the resulting tarfile, you will see something like: 

include/ 
include/a.out.h 
and all the other files in /usr/include .. Jchown 
and all the other files in /etc 

Here is a simple example using tar to create an archive of your home directory on a tape mounted on drive 
/dev/rmtO: 

example% cd 
example% tar cvf /dev/rmtO. 
messages from tar 

Last change: 16 February 1988 Sun Release 4.0 



TAR(l) USER COMMANDS TAR(l) 

The c option means create the archive; the v option makes tar tell you what it is doing as it works; the f 
option means that you are specifically naming the file onto which the archive should be placed (/dev/rmtO 
in this example). 

Now you can read the table of contents from the archive like this: 

example% tar tvf /dev/rmtO display table of contents of the archive 
(access user-id/group-id size mod. date filename) 
rw-r--r-- 1677/40 2123 Nov 718:15:1985 Jarchive/test.c 

example% 

You can extract files from the archive like this: 

example% tar xvf /dev/rmtO 
messages from tar 
example% 

extract files from the archive 

If there are multiple archive files on a tape, each is separated from the following one by an EOF marker. 
tar does not read the EOF mark on the tape after it finishes reading an archive file because tar looks for a 
special header to decide when it has reached the end of the archive. Now if you try to use tar to read the 
next archive file from the tape, tar does not know enough to skip over the EOF mark and tries to read the 
EOF mark as an archive instead. The result of this is an error message from tar to the effect: 

tar: blocksize=O 

This means that to read another archive from the tape, you must skip over the EOF marker before starting 
another tar command. You can accomplish this using the mt command, as shown in the example below. 
Assume that you are reading from /dev/nrmtO. 

example% tar xvfp /dev/nrmtO 
messages from tar 
example% mt fsf 1 
example% tar xvfp /dev/nrmtO 
messages from tar 
example% 

read first archive from tape 

skip over the end-of-file marker 
read second archive from tape 

Finally, here is an example using tar to transfer files across the Ethernet First, here is how to archive files 
from the local machine (example) to a tape on a remote system (host): 

example% tar cvtb - 20 filenames I rsh host dd of=/dev/rmtO obs=20b 
messages from tar 
example% 

In the example above, we are creating a tarfile with the c key letter, asking for verbose output from tar 
with the v option, specifying the name of the output tarfile using the f option (the standard output is where 
the tarfile appears, as indicated by the'-' sign), and specifying the blocksize (20) with the b option. If you 
want to change the blocksize, you must change the blocksize arguments both on the tar command and on 
the dd command. 

Now, here is how to use tar to get files from a tape on the remote system back to the local system: 
example% rsh -n host dd if=/dev/rmtO bs=20b I tar xvBtb - 20 filenames 
messages from tar 
example% 

In the example above, we are extracting from the tarfile with the x key letter, asking for verbose output 
from tar with the v option, telling tar it is reading from a pipe with the B option, specifying the name of 
the input tarfile using the f option (the standard input is where the tarfile appears, as indicated by the '-' 
sign), and specifying the blocksize (20) with the b option. 

Sun Release 4.0 Last change: 16 February 1988 511 



TAR( I) USER COMMANDS TAR(l) 

FILES 
/dev/rmt? 
/dev/rar? 
/dev/rst? 
/tmp/tar• 

half-inch magnetic tape interface 
quarter-inch magnetic tape interface 
SCSI tape interface 

ENVIRONMENT 
TAPE If specified, in the environment, the value of TAPE indicates the default tape device. 

SEE ALSO 

BUGS 

512 

cpio(l), csh(l), umask(2), tar(5), dump(8), restore(8) 

Neither the r option nor the u option can be used with quarter-inch archive tapes, since these tape drives 
cannot backspace. 

There is no way to ask for the nth occurrence of a file. 

Tape errors are handled ungracefully. 

The u option can be slow. 

There is no way selectively to follow symbolic links. 

When extracting tapes created with the r or u options, directory modification times may not be set correct
ly. 

Files with names longer that 100 characters cannot be processed. 

Filename substitution wildcards do not work for extracting files from the archive. To get around this, use a 
command of the form: 

tar xvf ... /dev/rstO 'tar tf ... /dev/rstO I grep 'pattern" 

Last change: 16 February 1988 Sun Release 4.0 



TBL( 1) USER COMMANDS TBL(l) 

NAME 
tbl - format tables for nroff or troff 

SYNOPSIS 
tbl [ -ms ] [ -mm ] [filename ] ... 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
tbl is a preprocessor for formatting tables for nroff(l) or troff(l). The inputfilenames are copied to the 
standard output, except that lines between .TS and • TE command lines are assumed to describe tables and 
are reformatted. Details are given in Formatting Documents. 

If no arguments are given, tbl reads the standard input, so tbl may be used as a filter. When tbl is used 
with eqn(l) or neqn the tbl command should be first, to minimize the volume of data passed through pipes. 

OPTIONS 
-ms Copy the -ms macro package to the front of the output file. 

-mm Copy the -mm macro package to the front of the output file. 

EXAMPLE 
As an example, letting represent a TAB (which should be typed as a genuine TAB) the input 

yields 

Sun Release 4.0 

"" 
.TS 
css 
ccs 
CCC 

Inn. 
Household Population 
Town\tHouseholds 
\tNumber\tSize 
Bedminster\t789\t3.26 
Bernards Twp.\t3087\t3.74 
Bernardsville\t2018\t3.30 
Bound Brook\t3425\t3.04 
Branchburg\t1644\t3.49 
Bridgewater\t7897\t3.81 
Far Hills\t240\t3.19 
.TE 

Household Population 
Town Households 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Branchburg 
Bridgewater 
Far Hills 

Number Size 
789 3.26 

3087 3.74 
2018 3.30 
3425 3.04 
1644 3.49 
7897 3.81 
240 3.19 

Last change: 21 December 1987 513 



TBL( 1) USER COMMANDS TBL( 1) 

SEE ALSO 
eqn(l), nroff(l), troff(l) 

Formatting Documents 

514 Last change: 21 December 1987 Sun Release 4.0 



TCOPY( 1) USER COMMANDS TCOPY(l) 

NAME 
tcopy - copy a magnetic tape 

SYNOPSIS 
tcopy source [ destination ] 

DESCRIPTION 
tcopy copies the magnetic tape mounted on the tape drive specified by the source argument. The only as
sumption made about the contents of a tape is that there are two tape marks at the end. 

When only a source drive is specified, tcopy scans the tape, and displays information about the sizes of 
records and tape files. If a destination is specified, tcopy makes a copies the source tape onto the destina
tion tape, with blocking preserved. As it copies, tcopy produces the same output as it does when only 
scanning a tape. 

SEE ALSO 
mt(l) 

Sun Release 4.0 Last change: 9 September 1987 515 



TCOV( 1) USER COMMANDS TCOV( 1) 

NAME 
tcov - construct test coverage analysis and statement-by-statement profile 

SYNOPSIS 
tcov [ -a ] [ -n ] srcfile .. . 

AVAILABILITY 
Sun-2, Sun-3, and Sun-4 systems only. 

DESCRIPTION 
tcov produces a test coverage analysis and statement-by-statement profile of a C or FORTRAN program. 
When a program in a file named file .c or file .f is compiled with the -a option, a corresponding file .d file is 
created. Each time the program is executed, test coverage information is accumulated in file .d. 

tcov takes source files as arguments. It reads the corresponding file .d file and produces an annotated listing 
of the program with coverage data infile.tcov. Each straight-line segment of code (or each line if the -a 
option to tcov is specified) is prefixed with the number of times it has been executed; lines which have not 
been executed are prefixed with#####. 

Note: the profile produced includes only the number of times each statement was executed, not execution 
times; to obtain times for routines use gprof( 1) or prof( 1 ). 

OPTIONS 
-a Display an execution count for each statement; if -a is not specified, an execution count is 

displayed only for the first statement of each straight-line segment of code. 

-n Display table of the line numbers of the n most frequently executed statements and their execution 
counts. 

EXAMPLES 
The command: 

example% cc -a -o prog prog.c 

compiles with the -a option - produces prog.d 

The command: example% prog 

executes the program'-' accumulates data in prog.d 

The command: 

example% tcov prog.c produces an annotated listing in file prog.tcov 

FILES 
file.c 
file.f 
file.d 
file.tcov 
/usr/Iib/bb link.o 

SEE ALSO 

input C program file 
input FORTRAN program file 
input test coverage data file 
output test coverage analysis listing file 
entry and exit routines for test coverage analysis 

cc(lV), gprof(l), prof(l), exit(2) 
DIAGNOSTICS 

premature end of file 
Issued for routines containing no statements. 

BUGS 
The analyzed program must call exit(2) or return normally for the coverage information to be saved in the 
.d file. 

516 Last change: 18 February 1988 Sun Release 4.0 



TEE(l) USER COMM:ANDS TEE(l) 

NAME 
tee - replicate the standard output 

SYNOPSIS 
tee [ -ai] [filename] ... 

DESCRIPTION 
tee transcribes the standard input to the standard output and makes copies in the filenames. 

OPTIONS 
-a Append the output to the filenames rather than overwriting them. 

-i Ignore interrupts. 

Sun Release 4.0 Last change: 9 September 1987 517 



TELNET(lC) USER COMMANDS TELNET( lC) 

NAME 
telnet - user interface to a remote system using the TELNET protocol 

SYNOPSIS 
telnet [ host [ port ] ] 

AVAILABILITY 

This command is available with the Networkjng Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 

USAGE 

telnet communicates with another host using the TELNET protocol. If telnet is invoked without arguments, 
it enters command mode, indicated by its prompt (telnet>). In this mode, it accepts and executes the com
mands listed below. If it is invoked with arguments, it performs an open command (see below) with those 
arguments. 

Once a connection has been opened, telnet enters input mode. In this mode, text typed is sent to the re
mote host The input mode entered will be either "character at a time" or "line by line" depending on 
what the remote system supports. 

In ''character at a time'' mode, most text typed is immediately sent to the remote host for processing. 

In ''line by line'' mode, all text is echoed locally, and (normally) only completed lines are sent to the re
mote host. The "local echo character" (initially '"E') may be used to turn off and on the local echo (this 
would mostly be used to enter passwords without the password being echoed). 

In either mode, if the localchars toggle is TRUE (the default in line mode; see below), the user's quit, intr, 
and flush characters are trapped locally, and sent as TELNET protocol sequences to the remote side. There 
are options (see toggle autoflush and toggle autosynch below) which cause this action to flush subsequent 
output to the terminal (until the remote host acknowledges the TELNET sequence) and flush previous termi
nal input (in the case of quit and intr). 

While connected to a remote host, telnet command mode may be entered by typing the telnet "escape 
character" (initially 'T, (control-right-bracket)). When in command mode, the normal terminal editing 
conventions are available. 

Telnet Commands 

518 

The following commands are available. Only enough of each command to uniquely identify it need be 
typed (this is also true for arguments to the mode, set, toggle, and display commands). 

open host [ port ] 
Open a connection to the named host. If no port number is specified, telnet will attempt to contact 
a TELNET server at the default port. The host specification may be either a host name (see 
hosts(5)) or an Internet address specified in the "dot notation" (see inet(3N)). 

close Close a TELNET session and return to command mode. 

quit Close any open TELNET session and exit telnet. An EOF (in command mode) will also close a 
session and exit 

z Suspend telnet. This command only works when the user is using a shell that supports job con
trol, such as csh(l). 

mode type 
type is either line (for "line by line" mode) or character (for "character at a time" mode). The 
remote host is asked for permission to go into the requested mode. If the remote host is capable of 
entering that mode, the requested mode will be entered. 

status Show the current status of telnet. This includes the peer one is connected to, as well as the 
current mode. 

Last change: 17 December 1987 Sun Release 4.0 



TELNET( IC) USER COMMANDS TELNET(lC) 

display [ argument ... ] 
Display all, or some, of the set and toggle values (see below). 

? [ command] 
Get help. With no arguments, telnet print a help summary. If a comm3J1d is specified, telnet will 
print the help information for just that command. 

send arguments 
Send one or more special character sequences to the remote host. The following are the argu
ments which may be specified (more than one argument may be specified at a time): 

escape Send the current telnet escape character (initially 'T). 

synch Send the TELNET SYNCH sequence. This sequence causes the remote system to discard 
all previously typed (but not yet read) input. This sequence is sent as TCP urgent data 
(and may not work if the remote system is a 4.2 BSD system -- if it does not work, a 
lower case "r" may be echoed on the terminal). 

brk Send the TELNET BRK (Break) sequence, which may have significance to the remote 
system. 

ip Send the TELNET IP (Interrupt Process) sequence, which should cause the remote system 
to abort the currently running process. 

ao Sends the TELNET AO (Abort Output) sequence, which should cause the remote system 
to flush all output from the remote system to the user's terminal. 

ayt Sends the TELNET AYT (Are You There) sequence, to which the remote system may or 
may not choose to respond. 

ec Sends the TELNET EC (Erase Character) sequence, which should cause the remote sys
tem to erase the last character entered 

el Sends the TELNET EL (Erase Line) sequence, which should cause the remote system to 
erase the line currently being entered. 

ga Sends the TELNET GA (Go Ahead) sequence, which likely has no significance to the re
mote system. 

nop Sends the TELNET NOP (No Operation) sequence. 

? Prints out help information for the send command. 

set argument value 

Sun Release 4.0 

Set any one of a number of telnet variables to a specific value. The special value ''off' turns off 
the function associated with the variable. The values of variables may be interrogated with the 
display command. The variables which may be specified are: 

echo This is the value (initially 'AE') which, when in "line by line" mode, toggles between 
doing local echoing of entered characters (for normal processing), and suppressing echo
ing of entered characters (for entering, say, a password). 

escape This is the telnet escape character (initially 'T) which causes entry into telnet command 
mode (when connected to a remote system). 

interrupt 
If telnet is in localchars mode (see toggle localchars below) and the interrupt character 
is typed, a TELNET IP sequence (see send ip above) is sent to the remote host The ini
tial value for the interrupt character is taken to be the terminal's intr character. 

quit If telnet is in localchars mode (see toggle localchars below) and the quit character is 
typed, a TELNET BRK sequence (see send brk above) is sent to the remote host. The ini
tial value for the quit character is taken to be the terminal's quit character. 

Last change: 17 December 1987 519 



TELNET(lC) USER COMMANDS TELNET( IC) 

jlushoutput 
If telnet is in localchars mode (see toggle localchars below) and thejlushoutput charac
ter is typed, a TELNET AO sequence (see send ao above) is sent to the remote host. The 
initial value for the flush character is taken to be the terminal's flush character. 

erase If telnet is in localchars mode (see toggle localchars below), and if telnet is operating in 
"character at a time" mode, then when this character is typed, a TELNET EC sequence 
(see send ec above) is sent to the remote system. The initial value for the erase character 
is taken to be the terminal's erase character. 

kill If telnet is in localchars mode (see toggle localchars below), and if telnet is operating in 
"character at a time" mode, then when this character is typed, a TELNET EL sequence 
(see send el above) is sent to the remote system. The initial value for the kill character is 
taken to be the terminal's kill character. 

eof If telnet is operating in ''line by line'' mode, entering this character as the first character 
on a line will cause this character to be sent to the remote system. The initial value of the 
eof character is taken to be the terminal's eof character. 

toggle arguments ... 

520 

Toggle (between TRUE and FALSE) various flags that control how telnet responds to events. 
More than one argument may be specified. The state of these flags may be interrogated with the 
display command. Valid arguments are: 

localchars 
If this is TRUE, then the flush, interrupt, quit, erase, and kill characters (see set above) 
are recognized locally, and transformed into (hopefully) appropriate TELNET control se
quences (respectively ao, ip, brk, ec, and el; see send above). The initial value for this 
toggle is TRUE in "line by line" mode, and FALSE in "character at a time" mode. 

autoflush 
If autoflush and localchars are both TRUE, then when the ao, intr, or quit characters are 
recognized (and transformed into TELNET sequences; see set above for details), telnet 
refuses to display any data on the user's terminal until the remote system acknowledges 
(via a TELNET Timing Mark option) that it has processed those TELNET sequences. The 
initial value for this toggle is TRUE if the terminal user had not done an "stty noflsh", oth
erwise FALSE (see stty(lV)). 

autosynch 
If autosynch and localchars are both TRUE, then when either the intr or quit characters is 
typed (see set above for descriptions of the intr and quit characters), the resulting TEL
NET sequence sent is followed by the TELNET SYNCH sequence. This procedure should 
cause the remote system to begin throwing away all previously typed input until both of 
the TELNET sequences have been read and acted upon. The initial value of this toggle is 
FALSE. 

crmod Toggle carriage return mode. When this mode is enabled, most carriage return characters 
received from the remote host will be mapped into a carriage return followed by a line 
feed. This mode does not affect those characters typed by the user, only those received 
from the remote host. This mode is not very useful unless the remote host only sends 
carriage return, but never line feed. The initial value for this toggle is FALSE. 

debug Toggle socket level debugging (useful only to the super-user). The initial value for this 
toggle is FALSE. 

options Toggle the display of some internal telnet protocol processing (having to do with TEL

NET options). The initial value for this toggle is FALSE. 

netdata Toggle the display of all network data (in hexadecimal format). The initial value for this 
toggle is FALSE. 

Last change: 17 December 1987 Sun Release 4.0 



TELNET(lC) USER COMMANDS 

? Display the legal toggle commands. 

SEE ALSO 

BUGS 

csh(l), rlogin(lC), stty(l V) inet(3N), hosts(5) 

There is no adequate way for dealing with flow control. 

On some remote systems, echo has to be turned off manually when in ''line by line'' mode. 

There is enough settable state to justify a .telnetrc file. 

No capability for a .telnetrc file is provided. 

TELNET( lC) 

In "line by line" mode, the terminal's EOF character is only recognized (and sent to the remote system) 
when it is the first character on a line. 

Sun Release 4.0 Last change: 17 December 1987 521 



TEST( lV) USER COMMANDS 

NAME 
test - return true or false according to a conditional expression 

SYNOPSIS 
test expression 

[ expression ] 

DESCRIPTION 

TEST(lV) 

test evaluates the expression expression and, if its value is true, returns a zero (true) exit status; otherwise, 
a non-zero (false) exit. status is returned. test returns a non-zero exit if there are no arguments. 

SYSTEM V DESCRIPTION 
The actions of the System V version of test are the same, except for the following primitives: 

-f filename True if filename exists and is a regular file. 

-I string Not supported. 

USAGE 
Primitives 

The following primitives are used to construct expression. 

-bfilename 
True if filename exists and is a block special device. 

-cfilename 
True if filename exists and is a character special device. 

-dfilename 
True if filename exists and is a directory. 

-(filename 
True if filename exists and is not a directory. 

-gfilename 
True if filename exists and its set-group-ID bit is set. 

-bfilename 
True if filename exists and is a symbolic link. 

-kfilename 
True if filename exists and its sticky bit is set. 

-I string the length of the string. 

-n sl True if the length of the string sl is non-zero. 

-pfilename 
True if filename exists and is a named pipe (FIFO). 

-r filename 
True if filename exists and is readable. 

-sfilename 
True if filename exists and has a size greater than zero. 

-t [fildes] 
True if the open file whose file descriptor number isfildes (1 by default) is associated with a ter
minal device. 

-ufilename 
True if filename exists and its set-user-ID bit is set 

-wfilename 
True if filename exists and is writable. 

522 Last change: 9 September 1987 Sun Release 4.0 



TEST( lV) USER COMMANDS TEST( lV) 

-xfilename 
True if filename exists and is executable. 

-z sl True if the length of string sl is zero. 

sl = s2 True if the strings sl and s2 are equal. 

sl != s2 True if the strings sl and s2 are not equal. 

sl True if sl is not the null string. 

nl -eq n2 True if the integers nl and n2 are algebraically equal. 

nl -nen2 True if nl is not equal to n2. 

nl -gtn2 True if nl is greater than n2 . 

nl -gen2 True if nl is greater than or equal to n2. 

nl -ltn2 True if nl is less than n2. 

nl -Ien2 True if nl is less than or equal to n2. 

Operators 
The above primaries may be combined with the following operators: 

Unary negation operator. 

-a Binary and operator. 

-o Binary or operator. 

(expression) 
Parentheses for grouping. 

-a has higher precedence than -o. Notice that all the operators and flags are separate arguments to test. 
Notice also that parentheses are meaningful to the Shell and must be escaped. 

SEE ALSO 
find(l), sh(l) 

WARNING 

NOTE 

In the second form of the command (that is, the one that uses [], rather than the word test), the square 
brackets must be delimited by blanks. 

Some UNIX systems do not recognize the second form of the command. 

The test command is built into the Bourne shell, which chooses the 4.2 BSD or the System V version of 
test, depending on whether /usr/Sbin appears before /usr/bin in the shell's PATH variable. This is con
sistent with the behavior of other commands present in both /usr/bin and /usr/Sbin. 

The fact that test is built into the shell also means that a program named test cannot be run without specify
ing a pathname; if the program is in the current directory, . / test will suffice. 

Sun Release 4.0 Last change: 9 September 1987 523 



TEXTEDIT ( 1 ) USER COMMANDS TEXTEDIT ( 1 ) 

NAME 
textedit - Sun View window- and mouse-based text editor 

SYNOPSIS 
textedit [generic-tool-arguments] [ -Ea on I off] [ -adjust_is_pending_delete] [ -Ei on I off] 

[-auto_indent] [-Eoon I off] [-okay_to_overwrite] [-Eron I off] [-read_only] 
[ -Ee N] [ -checkpoint count ] [ -EL lines ] [-lower_ context lines ] [ -Em pixels ] 
[ -margin pixels ] [ -En N] [-number_ of_ lines lines ] [ -Es N] [ -scratch_ window lines] 
[ -ES N] [ -multi_click_space radius] [ -EtN] [ -tab_width tabstop] [ -ET N] 
[ -multi_click_timeout intrvl] [ -Eu N] [ -history_limit max] [-EUN] 
[ -upper~ context lines] filename 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
textedit is a mouse-oriented text editor that runs within the Sun View environment. It creates a window 
containing two text subwindows. The top subwindow (referred to as the "scratch" window) can be used to 
store small pieces of text. The bottom subwindow (referred to as the "edit" window) displays the contents 
of filename, if given. 

The name of the file currently being edited is displayed in the left-hand portion of the frame header. The 
name of the current working directory is displayed in the right-hand portion. 

OPTIONS 
generic-tool-arguments 

524 

textedit accepts the Sun View generic tool arguments listed in sunview(l). 

-Ea on I off 
-adjust_ is _pending_ delete 

-Ei on I off 

Choose whether or not an adjustment to a selection makes the selection "pending-delete." 
The default is off. This option corresponds to, and overrides, the adjust_ is _pending_ delete 
Text defaults entry. 

-auto _indent Choose whether or not to automatically indent newly-opened lines. The default is off. 
Corresponds to the auto_indent Text default 

-Eoonloff 
-okay_ to_ overwrite 

-Er on I off 

Set behavior to the Store as New File menu item. If on a Store as New File to the current 
file is treated as a Save Current File. If off (the standard default), Store as New File 
operations using the current filename result in an error message. Corresponds to 
Store_ self_ is_ save. 

-read_ only Turn read-only mode on or off. When on, text cannot be modified. 

-EcN 
-checkpoint count 

-EL lines 

Checkpoint after every count editing operations. If count is O (the standard default), no 
checkpointing takes place. Each character typed, each Paste, and each Cut counts as an 
editing operation. Corresponds to checkpoint_frequency. 

-lower context lines 
- Specify the minimum number of lines to keep between the caret and the bottom of the text 

subwindow. The default is 2. Corresponds to lower_ context. 

Last change: 12 January 1988 Sun Release 4.0 



TEXTEDIT ( 1 ) USER COMMANDS TEXTEDIT ( 1 ) 

USAGE 

-Em pixels 
-margin pixels 

Set the scrollbar margin width in pixels. The default is 4. Corresponds to left_margin. 

-EnN 
-number of lines lines 

- - Set the number of lines in the bottom subwindow. The default is 45. 

-EsN 
-scratch window lines 

-ESN 

Set the number of lines in the scratch window. A zero value means that there is no scratch 
window. The standard default is 1. Corresponds to scratch_window. 

-multi_ click_ space radius 

-EtN 

Set the radius, in pixels, within which clicks must occur to be treated as a multi-click selec
tion. The default is 3 pixels. Corresponds to multi_click_space. 

-tab_ width tabstop 

-ETN 

Set the number of SPACE characters displayed per TAB stop. The default is 8. This option 
has no effect on the characters in the file. Corresponds to tab_ width. 

-multi click timeout intrvl 

-EuN 

Set the interval, in milliseconds, within which any two clicks must occur to be treated as a 
multi-click selection. The default is 390 milliseconds. Corresponds to 
multi click timeout. 

-history_ limit max 

-EUN 

Set the maximum number of editing operations that can be undone or replayed. The default 
is 50. Corresponds to history_ limit. 

-upper_ context lines 
Set the minimum number of lines to keep between the caret and the top of the text subwin
dow. The default is 2. Corresponds to upper_ context. 

For a description of how to use the facilities of the text subwindows, see the Sun View 1 Beginner's Guide. 

Signal Processing 
If textedit hangs, for whatever reason, you can send a SIGHUP signal to its process ID, which forces it to 
write any changes (if possible): 

kill -HUP pid 

The edits are written to the file textedit.pid in its working directory. If that fails, textedit successively tries 
to write to a file by that name in /var/tmp, and then /tmp. In addition, whenever textedit catches a fatal 
signal, such as SIGILL, it tries to write out the edits before aborting. 

Defaults Options 
There are several dozen user-specified defaults that affect the behavior of the text-based facilities. See de
faultsedit( 1) for a complete description. Important defaults entries in the Text category are: 

Edit_ back_ char Set the character for erasing to the left of the caret. The standard default is DELETE. 

Edit back word - -

Sun Release 4.0 

Note: the tty erase character-setting has no effect on textedit. Text-based tools refer 
only to the defaults database key settings. 

Set the character for erasing the word to the left of the caret. The standard default is 
CTRL-W. 

Last change: 12 January 1988 525 



TEXTEDIT ( 1 ) USER COMMANDS TEXTEDIT ( 1 ) 

526 

Edit back line - - Set the character for erasing all characters to the left of the caret. The standard de
fault is CTRL-U. 

Checkpoint _frequency 

Making a selection 

If set to O (the standard default) no checkpointing is done. For any value greater 
than zero, a checkpoint is made each time the indicated number of editing operations 
has been performed since the last checkpoint. Each character typed, each Paste, and 
each Cut counts as an editing operation. The checkpoint file has a name of the form: 
filename%%, where filename is the name of the file being edited. 

In textedit, the mouse is used to specify a selection, which is a character span to operate on. The mouse is 
also used to position the insertion point and to invoke a menu of commands. 

The assignment of commands to the mouse buttons is: 

Mouse button Description 

LEFf 

MIDDLE 

RIGHT 

Starts a new selection and moves the insertion point to the end of the 
selection nearest the mouse cursor. 

Extends a selection, and moves the insertion point. 

Displays a menu of operations, explained below. 

There are two types of selections: a primary selection is indicated by video-inversion of the span of charac
ters, and tends to persist. A secondary selection is indicated by underlining the span of characters and only 
exists while one of the four function keys corresponding to the commands Cut, Find, Paste, or Copy, is 
depressed. 

In addition, a selection can be "pending-delete," as indicated by overlaying the span of characters with a 
light gray pattern. A selection is made pending-delete by holding the CTRL key while clicking the LEFf or 
MIDDLE mouse buttons. If a primary selection is pending-delete, it is only deleted when characters are in
serted, either by type-in or by Paste or Copy. If a secondary selection is pending-delete, it is deleted when 
the function key is released, except in the case of the Find, which des':'!ects the secondary selection. 

You can make adjusted selections switch to pending-delete using the adjust_ is _pending_ delete defaults 
entry, or the -Ea option. In this case, CTRL-Middle makes the selection not pending-delete. 

Commands that operate on the primary selection do so even if the primary selection is not in the window 
that issued the command. 

Inserting Text and Command Characters 
For the most part, typing any of the standard keys either inserts the corresponding character at the insertion 
point, or erases characters. However, certain key combinations are treated as commands. Some of the 
most useful are: 

Command 

Cut-Primary 
Find-Primary 

Copy-to-Clipboard 
Paste-Clip board 
Copy-then-Paste 

Go-to-EOF 

Character 

Meta-X 
Meta-F 

Meta-C 
Meta-V 
Meta-P 

CTRL-RETURN 

Description 

Erases, and moves to the Clipboard, the primary selection. 
Searches the text for the pattern specified by the primary 
selection or by the Clipboard, if there is no primary selection. 
Copies the primary selection to the Clipboard. 
Inserts the Clipboard contents at the insertion point. 
Copies the primary selection to the insertion point (through 
the Clipboard). 
Moves the insertion point to the end of the text, positioning 
the text so that the insertion point is visible. 

Last change: 12 January 1988 Sun Release 4.0 



TEXTEDIT ( 1 ) USER COMMANDS TEXTEDIT ( 1 ) 

Function Keys 
The commands indicated by use of the function keys are: 

Command Sun-213 Key Description 

Stop L1 
Again L2 

Undo IA 
Front LS 

Copy L6 

Open L7 

Paste L8 

Find L9 

Cut LlO 

CAPSLOCK Fl 

Aborts the current command. 
Repeats the previous editing sequence since a 
primary selection was made. 
Undoes a prior editing sequence. 
Makes the window completely visible ( or 
hides it, if it is already exposed). 
Copies the primary selection, either to the 
Clipboard or at the closest end of the secondary 
selection. 
Makes the window iconic ( or normal, if it is already 
iconic). 
Copies either the secondary selection or the Clipboard at 
the insertion point. 
Searches for the pattern specified by, in order, the 
secondary selection, the primary selection, or the Clipboard. 
Erases, and moves to the Clipboard, either the primary or 
the secondary selection. 
Forces all subsequently typed alphabetic characters 
to be upper-case. 
This key is a toggle; striking it a second time undoes the 
effect of the first strike. 

Find usually searches the text forwards, towards the end. Holding down the SHIFf key while invoking 
Find searches backward through the text, towards the beginning. If the pattern is not found before the 
search encounters either extreme, it "wraps around" and continues from the other extreme. Find starts the 
search at the appropriate end of the primary selection, if the primary selection is in the subwindow that the 
search is made in; otherwise it starts at the insertion point, unless the subwindow cannot be edited, in which 
case it starts at the beginning of the text. 

CTRL-Find invokes the Find and Replace pop-up frame. 

The default assignment of function keys can be modified using defaultsedit(l). 

Menu Items 
File A pull-right menu item for file operations. 

Edit A pull-right menu item equivalent of the editing function keys. The Edit submenu provides 
Again, Undo, Copy, Paste, and Cut (same as function keys L2, IA, L6, LS, and LlO). 

Display A pull-right menu item for controlling the way text is displayed and line display format. 

Find A pull-right menu item for find and delimiter matching operations. 

Extras A user definable pull-right menu item. The Extras standard submenu is controlled by 
/usr/Iib/text_extras_menu. This file has the same syntax as .rootmenu file. See sun
view(l). 

Only those items that are active appear as normal text in the menu; inactive items (which are inappropriate 
at the time) are "grayed out". 

User Defined Commands 
The file /usr/Iib/text_ extras_ menu specifies filter programs that are included in the text subwindow Ex
tras pull-right menu item. The file /.textswrc specifies filter programs that are assigned to (available) 
function keys. These filters are applied to the contents of the primary selection. Their output is entered at 
the caret 

Sun Release 4.0 Last change: 12 January 1988 527 



TEXTEDIT ( 1 ) USER COMMANDS TEXTEDIT ( 1 ) 

FILES 

The file /usr/Iib/textswrc is a sample containing a set of useful filters. It is not read automatically. 

/ .textswrc specifies bindings of filters to function keys 
/usr/Iib/text extras menu 

/usr/bin 
filename% 

textedit.pid 
/tmp/Text* 

- -
specifies bindings of filters for the extras menu pull-right items 
contains useful filters, including shift_lines and capitalize. 
prior version of filename is available here after a Save Current File menu opera
tion 
edited version of filename; generated in response to fatal internal errors 
editing session logs 

SEE ALSO 
defaultsedit(l), kill(l), sunview(l), textswrc(5) 

Sun View 1 Beginner's Guide 

DIAGNOSTICS 

BUGS 

528 

Cannot open file 'filename', aborting! 
filename does not exist or cannot be read. 

textedit produces the following exit status codes: 

0 normal termination 
1 standard Sun View help message was printed 
2 help message was requested and printed 
3 abnormal termination in response to a signal, usually due to an internal error 
4 abnormal termination during initialization, usually due to a missing file or running out of 

swap space 

Multi-click to change the current selection does not work for Adjust Selection. 

Handling of long lines is incorrect in certain scrolling situations. 

There is no way to replay any editing sequence except the most recent. 

'textedit newfile' fails if newfile does not exist. 

Last change: 12 January 1988 Sun Release 4.0 



TEXTEDIT _FILTERS ( 1 ) USER COMMANDS TEXTEDIT _FILTERS ( 1 ) 

NAME 
textedit_filters, align_equals, capitalize, insert_brackets, shift_lines - filters provided with textedit(l) 

SYNOPSIS 
align_equals 

capitalize 

insert brackets I r 

shift lines n 

DESCRIPTION 

FILES 

Each of these filters can be mapped to function keys in your .textswrc file, and applied to the current selec
tion. See Sun View 1 Beginner's Guide for details. When one is as a command (perhaps in a pipeline), it is 
applied to the standard input. 

align_equals lines up the '=' (equal signs) in C assignment statements. Some programmers feel that this 
makes for improved readability. It aligns all equal signs with the rightmost equal sign in the selection (or 
the standard input), by padding with spaces between the sign and the previous nonwhite character; it re
places the selection with the aligned text (or writes this text to the standard output). 

For instance: 
big_long_expression = z; 
abc = x; 
mediun_expression = y; 
z += 1; 

becomes: 
big_long_expression = z; 
abc = x; 
mediun_expression = y; 
z += 1; 

capitalize changes the capitalization of the selection (or the standard input) and replaces it (or writes to the 
standard output). If the text is all capitals, it is converted to all lowercase. 

If the text is all lowercase or of mixed cases and contains no white space (such as a NEWLINE, SPACE, or 
TAB), it is converted to all capitals. If there is white space, then the case of the first character in each word 
is inverted. 

insert_ brackets surrounds the selection (or the standard input) with brackets. l and r are left- and right
bracket characters, respectively. 

shift_lines adjusts indention of the the selection (or the standard input) by n spaces, and replaces the selec
tion with the adjusted text (or writes to the standard output). shift_lines adjusts to the left when n is nega
tive. 

ltmp/Cap.pid 
/tmp/Ins.pid 

SEE ALSO 
textedit( 1) 

Sun View 1 Beginner's Guide 

Sun Release 4.0 Last change: 22 December 1987 529 



TFfP( IC) USER COMMANDS TFfP( IC) 

NAME 
tftp- trivial file transfer program 

SYNOPSIS 
tftp [host] 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 

Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
tftp is the user interface to the Internet TFfP (Trivial File Transfer Protocol), which allows users to transfer 
files to and from a remote machine. The remote host may be specified on the command line, in which case 
tftp uses host as the default host for future transfers (see the connect command below). 

USAGE 
Commands 

530 

Once tftp is running, it issues the prompt: tftp> and recognizes the following commands: 

connect host-name [ port ] 
Set the host (and optionally port) for transfers. Note: the TFfP protocol, unlike the FfP protocol, 
does not maintain connections between transfers; thus, the connect command does not actually 
create a connection, but merely remembers what host is to be used for transfers. You do not have 
to use the connect command; the remote host can be specified as part of the get or put commands. 

mode transfer-mode 
Set the mode for transfers; transfer-mode may be one of ascii or binary. The default is ascii. 

put filename 
put localfile remotefile 
put filename] filename2 ... filenameN remote-directory 

Transfer a file, or a set of files, to the specified remote file or directory. The destination can be in 
one of two forms: a filename on the remote host if the host has already been specified, or a string 
of the form 

host :filename 

to specify both a host and filename at the same time. If the latter form is used, the specified host 
becomes the default for future transfers. If the remote-directory form is used, the remote host is 
assumed to be running the UNIX system. 

get filename 
get remotename 

localname 
get filename] filename2 ... filenameN 

Get a file or set of files from the specified remote sources. source can be in one of two forms: a 
filename on the remote host if the host has already been specified, or a string of the form 

host:filename 

to specify both a host and filename at the same time. If the latter form is used, the last host 
specified becomes the default for future transfers. 

quit Exit tftp. An EOF also exits. 

verbose Toggle verbose mode. 

trace Toggle packet tracing. 

status Show current status. 

rexmt retransmission-timeout 
Set the per-packet retransmission timeout, in seconds. 

Last change: 26 February 1988 Sun Release 4.0 



TFTP( lC) USER COMMANDS TFTP( lC) 

timeout total-transmission-timeout 
Set the total transmission timeout, in seconds. 

ascii Shorthand for mode ascii. 

binary Shorthand for mode binary. 

? [ command-name ••• ] 
Print help information. 

WARNING 

BUGS 

The default transfer-mode is ascii. This differs from pre-4.0 Sun (and pre-4.3 BSD) releases, so explicit 
action must now be taken when transferring non-ASCII files such as executable commands. 

Because there is no user-login or validation within the TFrP protocol, many remote sites restrict file access 
in various ways. Approved methods for file access are specific to each site, and therefore cannot be docu
mented here. 

Sun Release 4.0 Last change: 26 February 1988 531 



TIME( lV) USER COMMANDS TIME( lV) 

NAME 
time - time a command 

SYNOPSIS 
time [ command ] 

DESCRIPTION 

There are three distinct versions of time: it is built in to the C shell, and is an executable program available 
in /usr/bin/time and /usr/5bin/time when using the Bourne shell. In each case, times are displayed on the 
diagnostic output stream. 

In the case of the C shell, a time command with no command argument simply displays a summary of time 
used by this shell and its children. When arguments are given the specified simple command is timed and 
the C shell displays a time summary as described in csh(l). 

The time commands in /usr/bin/time and /usr/5bin/time time the given command, which must be 
specified, that is, command is not optional as it is in the C shell's timing facility. When the command is 
complete, time displays the elapsed time during the command, the time spent in the system, and the time 
spent in execution of the command. Times are reported in seconds. The only difference between the ver
sions in /usr/bin/time and /usr/5bin/time is between their output formats; /usr/bin/time prints all three 
times on the same line, while /usr/5bin/time prints them on separate lines. 

EXAMPLES 
The three examples here show the differences between the csh version of time and the versions in 
/usr/bin/time and /usr/bin/time. The example assumes that csh is the shell in use . 

example% time wc /usr/share/man/manl/csh.1 
1876 11223 65895 /usr/share/man/manl/csh.1 
2.7u 0.9s 0:03 91 % 3+5k 19+2io lpf+Ow 
example%/usr /bin/time wc /usr/share/man/manl/csh.1 
1876 11223 65895 /usr/share/man/manl/csh.1 
4.3 real 2.7 user 1.0 sys 
example% /usr/Sbin/time we /usr/share/man/manl/csh.1 
1876 11223 65895 /usr/share/man/manl/csh.1 
real 4.3 
user 2.7 
sys 1.0 
example% 

. 

SEE ALSO 
csh(l) 

BUGS 

BUGS 

532 

Elapsed time is accurate to the second, while the CPU times are measured to the 50th second. Thus the sum 
of the CPU times can be up to a second larger than the elapsed time. 

When the command being timed is interrupted, the timing values displayed may not always be accurate. 

Last change: 22 December 1987 Sun Release 4.0 



TIP( lC) USER COMMANDS TIP( lC) 

NAME 
tip, cu - terminal emulator, telephone connection to a remote system 

SYNOPSIS 
tip [ -v ] [ -speed-entry ] hostname I phone-number 

cu phone-number [ -t ] [ -s speed] [ -a acu ] [ -I line ] [ -# ] 

DESCRIPTION 
tip establishes a full-duplex terminal connection to a remote host. Once the connection is established, a 
remote session using tip behaves like an interactive session on a local terminal. 

The preferred interface for remote connections is tip; cu is included for those who are familiar with the 
"call UNIX" command of the version 7 UNIX system. This manual page describes only tip. 

The remote file (described in the remote(5) manual page) contains entries describing remote systems and 
line speeds used by tip. 

Each host has a default baud rate for the connection, or you can specify a speed with the -speed-entry 
command line argument. 

When phone-number is specified, tip looks for an entry in the remote file of the form: 

tip -speed-entry 

When it finds such an entry, it sets the connection speed accordingly. If it finds no such entry, tip interprets 
-speed-entry as if it were a system name, resulting in an error message. 

If you omit -speed-entry, tip uses the tipO entry to set a speed for the connection. 

When establishing the connection tip sends a connection message to the remote system. The default value 
for this message can be found in the remote file. 

When tip attempts to connect to a remote system, it opens the associated device with an exclusive-open 
ioctl(2) call. Thus only one user at a time may access a device. This is to prevent multiple processes from 
sampling the terminal line. In addition, tip honors the locking protocol used by uucp(lC). 

When tip starts up it reads commands from the file .tiprc in your home directory. 

OPTIONS 

USAGE 

-v Display commands from the .tiprc file as they are executed. 

Typed characters are normally transmitted directly to the remote machine (which does the echoing as well). 

At any time that tip prompts for an argument (for example, during setup of a file transfer) the line typed 
may be edited with the standard erase and kill characters. A null line in response to a prompt, or an inter
rupt, aborts the dialogue and returns you to the remote machine. 

Commands 
A tilde ( - ) appearing as the first character of a line is an escape signal which directs tip to perform some 
special action. tip recognizes the following escape sequences: 

•Ao 
Drop the connection and exit (you may still be logged in on the remote machine). 

·c [name] 
Change directory to name (no argument implies change to your home directory). 

-! Escape to a shell (exiting the shell returns you to tip). 

-> Copy file from local to remote. 

-< Copy file from remote to local. 

Sun Release 4.0 Last change: 19 January 1988 533 



TIP( lC) USER COMMANDS TIP( lC) 

-pfrom [to] 
Send a file to a remote host running the UNIX system. When you use the put command, the 
remote system runs the command string 

cat> to 

while tip sends it the from file. If the to file is not specified, the from file name is used. This com
mand is actually a UNIX-system-specific version of the ,->, command. 

-tfrom [ to ] 
Take a file from a remote host running the UNIX system. As in the put command the to file 
defaults to the from file name if it is not specified. The remote host executes the command string 

cat from ; echo "'A 

to send the file to tip. 

-1 Pipe the output from a remote command to a local process. The command string sent to the local 
system is processed by the shell. 

-c Connect a program to the remote machine. The command string sent to the program is processed 
by the shell. The program inherits file descriptors O as remote line input, 1 as remote line output, 
and 2 as tty standard error. 

-$ Pipe the output from a local process to the remote host The command string sent to the local sys-
tem is processed by the shell. 

-# Send a BREAK to the remote system. 

-s Set a variable (see the discussion below). 

_,..Z Stop tip (only available when run under a shell that supports job control, such as the C shell). 

-"'y Stop only the "local side" of tip (only available when run under a shell that supports job control, 
such as the C shell); the "remote side" of tip, the side that displays output from the remote host, is 
left running. 

-? Get a summary of the tilde escapes. 

Copying files requires some cooperation on the part of the remote host. When a-> or -< escape is used to 
send a file, tip prompts for a file name (to be transmitted or received) and a command to be sent to the 
remote system, in case the file is being transferred from the remote system. The default end of transmis
sion string for transferring a file from the local system to the remote is specified as the oe capability in the 
remote(5) file, but may be changed by the set command. While tip is transferring a file the number of 
lines transferred will be continuously displayed on the screen. A file transfer may be abortedwith an inter
rupt. 

AUTO-CALL UNITS 

534 

tip may be used to dial up remote systems using a number of auto-call unit's (ACU's). When the remote 
system description contains the du capability, tip uses the call-unit (cu), ACU type (at), and phone numbers 
(pn) supplied. Normally tip displays verbose messages as it dials. See remote(5) for details of the remote 
host specification. 

Depending on the type of auto-dialer being used to establish a connection the remote host may have gar
bage characters sent to it upon connection. The user should never assume that the first characters typed to 
the foreign host are the first ones presented to it. The recommended practice is to immediately type a kill 
character upon establishing a connection (most UNIX systems either support@ or CTRL-U as the initial kill 
character). 

tip currently supports the Ventel MD-212+ modem and DC Hayes-compatible modems. 

Last change: 19 January 1988 Sun Release 4.0 



TIP( lC) USER COMMANDS TIP( lC) 

REMOTE HOST DESCRIPTIONS 
Descriptions of remote hosts are normally located in the system-wide file /etc/remote. However, a user 
may maintain personal description files (and phone numbers) by defining and exporting the REMOTE shell 
variable. The remote file must be readable by tip, but a secondary file describing phone numbers may be 
maintained readable only by the user. This secondary phone number file is /etc/phones, unless the shell 
variable PHONES is defined and exported. As described in remote(5), the phones file is read when the host 
description's phone number(s) capability is an '@'. The phone number file contains lines of the form: 

system-name phone-number 

Each phone number found for a system is tried until either a connection is established, or an end of file is 
reached. Phone numbers are constructed from '0123456789-=*', where the'=' and'*' are used to indi
cate a second dial tone should be waited for (ACU dependent). 

TIP INTERNAL VARIABLES 
tip maintains a set of variables which are used in normal operation. Some of these variables are read-only 
to normal users (root is allowed to change anything of interest). Variables may be displayed and set 
through the -s escape. The syntax for variables is patterned after vi(l) and mail(l). Supplying all as an 
argument to the -s escape displays all variables that the user can read. Alternatively, the user may request 
display of a particular variable by attaching a? to the end. For example ,-s escape?' displays the current 
escape character. 

Variables are numeric, string, character, or Boolean values. Boolean variables are set merely by specifying 
their name. They may be reset by prepending a ! to the name. Other variable types are set by appending 
an = and the value. The entire assignment must not have any blanks in it. A single set command may be 
used to interrogate as well as set a number of variables. 

Variables may be initialized at run time by placing set commands (without the -s prefix) in a .tiprc file in 
one's home directory. The -v option makes tip display the sets as they are made. Comments preceded by 
a# sign can appear in the .tiprc file. 

Finally, the variable names must either be completely specified or an abbreviation may be given. The fol
lowing list details those variables known to tip. 

beautify 
(bool) Discard unprintable characters when a session is being scripted; abbreviated be. If the ob 
capability is present, beautify is initially set to off; otherwise, beautify is initially set to on. 

baudrate 
(num) The baud rate at which the connection was established; abbreviated ha. If a baud rate was 
specified on the command line, baudrate is initially set to the specified value; otherwise, if the hr 
capability is present, baudrate is initially set to the value of that capability; otherwise, baudrate 
is set to 300 baud. Once tip has been started, baudrate can only changed by the super-user. 

dialtimeout 
(num) When dialing a phone number, the time (in seconds) to wait for a connection to be esta
blished; abbreviated dial. dialtimeout is initially set to 60 seconds, and can only changed by the 
super-user. 

disconnect 
(str) The string to send to the remote host to disconnect from it; abbreviated di. If the di capability 
is present, disconnect is initially set to the value of that capability; otherwise, disconnect is set to 
a null string ('"'). 

echocheck 

Sun Release 4.0 

(bool) Synchronize with the remote host during file transfer by waiting for the echo of the last 
character transmitted; abbreviated ec. If the ec capability is present, echocheck is initially set to 
on; otherwise, echocheck is initially set to off. 

Last change: 19 January 1988 535 



TIP(lC) USER COMMANDS TIP( lC) 

536 

eofread (str) The set of characters which signify an EOT during a -< file transfer command; abbreviated 
eofr. If the ie capability is present, eofread is initially set to the value of that capability; other
wise, eofread is set to a null string('"'). 

eofwrite 
(str) The string sent to indicate EQT during a-> file transfer command; abbreviated eofw. If the 
oe capability is present, eofread is initially set to the value of that capability; otherwise, eofread 
is set to a null string(""). 

eol (str) The set of characters which indicate an end-of-line. tip will recognize escape characters only 
after an end-of-line. If the el capability is present, eol is initially set to the value of that capability; 
otherwise, eol is set to a null string(""). 

escape (char) The command prefix (escape) character; abbreviated es. If the es capability is present, 
escape is initially set to the value of that capability; otherwise, escape is set to ' - '. 

etimeout 
(num) The amount of time, in seconds, that tip should wait for the echo-check response when 
echocheck is set; abbreviated et. If the et capability is present, etimeout is initially set to the 
value of that capability; otherwise, etimeout is set to 10 seconds. 

exceptions 
(str) The set of characters which should not be discarded due to the beautification switch; abbrevi
ated ex. If the ex capability is present, exceptions is initially set to the value of that capability; 
otherwise, exceptions is set to '\t\n\f\b'. 

force (char) The character used to force literal data transmission; abbreviated fo. If the fo capability is 
present, force is initially set to the value of that capability; otherwise, force is set to \J77 (which 
disables it). 

framesize 
(num) The amount of data (in bytes) to buffer between file system writes when receiving files; 
abbreviated fr. If the fs capability is present, framesize is initially set to the value of that capabil
ity; otherwise, framesize is set to 1024. 

half duplex 
(bool) Do local echoing because the host is half-duplex; abbreviated hdx. If the hd capability is 
present, half duplex is initially set to on; otherwise, half duplex is initially set to off. 

host (str) The name of the host to which you are connected; abbreviated ho. host is permanently set to 
the name given on the command line or in the HOST environment variable. 

Iocalecho 
(bool) A synonym for half duplex; abbreviated le. 

log (str) The name of the file to which to log information about outgoing phone calls. log is initially 
set to /var/adm/aculog, and can only be inspected or changed by the super-user. 

parity (str) The parity to be generated and checked when talking to the remote host; abbreviated par. 
The possible values are: 

none 
zero Parity is not checked on input, and the parity bit is set to zero on output. 

one Parity is not checked on input, and the parity bit is set to one on output. 

even Even parity is checked for on input and generated on output. 

odd Odd parity is checked for on input and generated on output. 

If the pa capability is present, parity is initially set to the value of that capability; otherwise, par
ity is set to none. 

Last change: 19 January 1988 Sun Release 4.0 



TIP( lC) USER COMMANDS TIP( IC) 

phones The file in which to find hidden phone numbers. If the environment variable PHONES is set, 
phones is set to the value of PHONES; otherwise, phones is set to /etc/phones. The value of 
phones cannot be changed from within tip. 

prompt (char) The character which indicates an end-of-line on the remote host; abbreviated pr. This 
value is used to synchronize during data transfers. The count of lines transferred during a file 
transfer command is based on receipt of this character. If the pr capability is present, prompt is 
initially set to the value of that capability; otherwise, prompt is set to \n. 

raise (bool) Upper case mapping mode; abbreviated ra. When this mode is enabled, all lower case 
letters will be mapped to upper case by tip for transmission to the remote machine. If the ra capa
bility is present, raise is initially set to on; otherwise,. raise is initially set to off. 

raise char 
(char) The input character used to toggle upper case mapping mode; abbreviated re. If the re 
capability is present, raisechar is initially set to the value of that capability; otherwise, raisechar 
is set to \J77 (which disables it). 

rawftp (bool) Send all characters during file transfers; do not filter non-printable characters, and do not do 
translations like \n to \r. Abbreviated raw. If the rw capability is present, rawftp is initially set 
to on; otherwise, rawftp is initially set to off. 

record (str) The name of the file in which a session script is recorded; abbreviated rec. If the re capabil
ity is present, record is initially set to the value of that capability; otherwise, record is set to 
tip.record. 

remote The file in which to find descriptions of remote systems. If the environment variable REMOTE is 
set, remote is set to the value of REMOTE; otherwise, remote is set to /etc/remote. The value of 
remote cannot be changed from within tip. 

script (bool) Session scripting mode; abbreviated sc. When script is on, tip will record everything 
transmitted by the remote machine in the script record file specified in record. If the beautify 
switch is on, only printable ASCII characters will be included in the script file (those characters 
between 040 and 0177). The variable exceptions is used to indicate characters which are an 
exception to the normal beautification rules. If the sc capability is present, script is initially set to 
on; otherwise, script is initially set to off. 

tabexpand 
(bool) Expand TAB characters to SPACE characters during file transfers; abbreviated tab. When 
tabexpand is on, each tab is expanded to 8 SPACE characters. If the tb capability is present, 
tabexpand is initially set to on; otherwise, tabexpand is initially set to off. 

tandem (bool) Use XON/XOFF flow control to limit the rate that data is sent by the remote host; abbrevi
ated ta. If the nt capability is present, tandem is initially set to off; otherwise, tandem is initially 
set to on. 

verbose (bool) Verbose mode; abbreviated verb; When verbose mode is enabled, tip prints messages 
while dialing, shows the current number of lines transferred during a file transfer operations, and 
more. If the nv capability is present, verbose is initially set to off; otherwise, verbose is initially 
set to on. 

SHELL 
(str) The name of the shell to use for the -! command; default value is /bin/sh, or taken from the 
environment. 

HOME (str) The home directory to use for the -c command; default value is taken from the environment. 

Sun Release 4.0 Last change: 19 January 1988 537 



TIP( IC) USER COMMANDS 

EXAMPLES 
An example of the dialogue used to transfer files is given below. 

arpa % tip monet 
[connected] 
•• • (assume we are talking to a UNIX system) .. 
ucbmonet login: sam 
Password: 
monet% cat> sylvester.c 
-> Filename: sylvester .c 
32 lines transferred in 1 minute 3 seconds 
monet% 
monet% -< Filename: reply.c 
List command for remote host: cat reply.c 
65 lines transferred in 2 minutes 
monet% 
•• • (or, equivalently) .. 
monet% -p sylvester.c 
.• • (actually echoes as 7put] sylvester.c) .. 
32 lines transferred in 1 minute 3 seconds 
monet% 
monet% -t reply.c 
•• • (actually echoes as 7take] reply.c) .. 
65 lines transferred in 2 minutes 
monet% 
•• • (to print a file locally) . . 
monet% -!Local command: pr-h sylvester.c I Ipr 
List command for remote host: cat sylvester.c 
monet% _,.D 
[EQT] 
•• • (back on the local system) . .. 

ENVIRONMENT 
The following environment variables are read by tip. 

REMOTE The location of the remote file. 

PHONES The location of the file containing private phone numbers. 

HOST A default host to connect to. 

HOME One's log-in directory (for chdirs). 

SHELL The shell to fork on a 'T escape. 

FILES 
-1.tiprc initialization file 
/var/spool/uucp/LCK .. * 

lock file to avoid conflicts with UUCP 
/var/adm/aculog file in which outgoing calls are logged 
/etc/phones 
/etdremote 

SEE ALSO 
mail(l), uucp(lC), vi(l), ioctl(2), phones(S), remote(S) 

BUGS 

TIP( IC) 

There are two additional variables chardelay and linedelay that are currently not implemented. 

538 Last change: 19 January 1988 Sun Release 4.0 



TOOLPLACES ( 1 ) USER COMMANDS TOOLPLACES ( 1 ) 

NAME 
toolplaces - display current Sun View window locations, sizes, and other attributes 

SYNOPSIS 
toolplaces [ -olOlu ] [ -help ] 

AVAILABILITY 
This command is available with the Sun View 1 User's software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
toolplaces generates position, size, label, and program attributes for the windows running on a Sun View 
screen at the time of execution. (toolplaces does not work when Sun View is not running.) 

Many people redirect standard output from toolplaces to the .sunview file, so as to reuse the current win
dow system attributes each time they execute sunview(l). 

For each window on the screen at execution time, toolplaces shows: 

the tool name 
the "open" window position 
the size of the window in pixels 
the "closed," or icon, window position 
an indicator of whether the window is open or closed 
the label at the top of the window 
the name of the program running in the window, if a 

program is running there 
any flags or options to a program running in the window 

toolplaces describes each window on one output line, as long as necessary, using the current sunview for
mat. 

Current sunview format consists of window tool descriptions, one per line, as in this example (the\ indi
cates that the current line continues on the next line): 

shelltool -Wp 491 795-Ws 580 87 -WP O 836 -C 
clock -Wp 120120-Ws 122 55-WP 1086 826-Wi \ 

-WI" open clock" -S-r-d wdm 
shelltool -Wp 491166-Ws 650 567-WP 702 836 \ 

-WI due rlogin due 
shelltool -Wp O 0-Ws 650 525-WP 64 836 \ 

-WI "Small Window: /usr/bin/csh" 
shelltool -Wp 501 0-Ws 650 812-WP 128 836 \ 

-WI "Big Window: /usr/bin/csh" 

OPTIONS 

FILES 

-o Show window tool information in the old suntools format for window attributes, but specifies the 
appropriate tool names for each tool. 

-0 Show window tool information in the old suntools format for window attributes, specifying tool
name as the name for each tool. 

-u Show the updated window tool information in the order that you originally specified it. 

-help Show help information preceding tool attributes. 

/.sunview format file for sunview(l) 

Sun Release 4.0 Last change: 12 January 1988 539 



TOOLPLACES ( 1) 

SEE ALSO 
sunview(l) 

Sun View 1 Beginner's Guide 

540 

USER COMMANDS TOOLPLACES ( 1 ) 

Last change: 12 January 1988 Sun Release 4.0 



TOUCH( lV) USER COMMANDS TOUCH( lV) 

NAME 
touch - update the access and modification times of a file 

SYNOPSIS 
touch [ -c ] [ -f ] filename . .. 

SYSTEM V SYNOPSIS 
touch [ -c ] [ -a ] [ -m ] [ mmddhhmm [yy] ] filename . .. 

DESCRIPTION 
touch sets the access and modification times of each argument to the current time. A file is created if it 
does not already exist 

touch is valuable when used in conjunction with make(l), where, for instance, you might want to force a 
complete rebuild of a program composed of many pieces. In such a case, you might type: 

example% touch •.c 
example% make 

make( 1) would then see that all the .c files were more recent than the corresponding .o files, and would 
start the compilation from scratch. 

OPTIONS 
-c Do not create filename if it does not exist. 

-f Attempt to force the touch in spite of read and write permissions on filename. 

SYSTEM V OPTIONS 
-a Update only the access time. 

-m Update only the modification time. 

mmddhhmm [yy] 
Update the times to the specified time rather than to the current time. The first mm is the month, 
dd is the day of the month, hh is the hour, and the second mm is the minute; if yy is specified, it is 
the last two digits of the year, otherwise the current year is used. 

SEE ALSO 

BUGS 

make(l), utimes(2) 

It is difficult to touch a file whose name consists entirely of digits in the System V touch, as it will interpret 
the first such non-flag argument as a time. You must ensure that there is a character in the name which is 
not a digit, by specifying it as .!name rather than name. 

Sun Release 4.0 Last change: 9 September 1987 541 



TPUT(lV) USER COMMANDS TPUT(lV) 

NAME 
tput- initialize a terminal or query the terminfo database 

SYNOPSIS 
/usr/Sbin/tput [ -Ttype ] capability [ parameter ... ] 

/usr/Sbin/tput [ -Ttype ] init 

/usr/Sbin/tput [ -Ttype ] longname 

/usr/Sbin/tput [ -Ttype ] reset 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
tput uses the terminfo(5V) database to make the values of terminal-dependent capabilities and information 
available to the shell, to initialize or reset the terminal, or return the long name of the requested terminal 
type. Normally, the terminal type is taken from the environment variable TERM; if the -Ttype option is 
specified, the terminal type is taken from that option. 

tput displays a string if the given capability is a string capability, or an integer if it is an integer capability; 
it displays no output if the capability is a boolean. 

If capability is a boolean, tput returns true (0) if that capability is set, or false (1) otherwise. If capability 
is a string, tput returns true (0) if that capability is set, or false (1) otherwise. If capability is an integer, a 
value of true (0) is returned whether or not the capability is set for the terminal. To determine if an integer 
capability is set, you must examine the standard output 

For a complete list of capabilities and the capability associated with each, see terminfo(5V). 

If capability is a string capability that takes parameters, the parameter arguments are instantiated into the 
string. An all-numeric parameter argument is passed to the attribute as a number. 

OPTIONS 
-Ttype Indicate the type of terminal. If this option is supplied, the environment variables LINES and 

COLUMNS are not used. 

init If the terminfo database is present and an entry for the user's terminal exists, emit the terminal's 
initialization strings, set up any delays specified, and tum the expansion of TAB characters on or 
off, as specified by the terminal's entry in the terminfo database. If the terminal has a TAB char
acter, and either has a capability for setting TAB characters or initially has its TAB characters set 
every 8 SP ACE characters, expansion of TAB characters is turned off, otherwise expansion of TAB 
characters is turned on. If expansion of TAB characters is turned on, and the terminal has a capa
bility for setting TAB characters, TAB stops are set to every eight columns. If an entry does not 
contain the information needed for any of these actions, that action is silently skipped. 

reset Emit the terminal's reset strings, and set up delays and TAB characters as specified. If the reset 
strings are not present, but initialization strings are, the initialization strings are used. 

longname 
If the terminfo database is present and an entry for the user's terminal exists, emit the long name 
of the terminal. The long name is the last name in the first line of the terminal's description in the 
term info database. 

EXIT CODES 
O The boolean or string capability is set, or the capability is an integer type and is present. 

1 The capability is not set. 

2 Usage error. 

3 The terminal is of an unknown type, or the term info database is not present 

542 Last change: 20 January 1988 Sun Release 4.0 



TPUT( lV) USER COMMANDS TPUT( lV) 

4 Unknown terminfo capability. 

-1 The integer capability is not defined for this terminal type. 

EXAMPLES 

FILES 

tput init 

tput -Tsun reset 

tput cup O 0 

tput clear 

tput cols 

tput -Tsun cols 

bold='tput smso' 

Initialize the terminal according to the type of terminal in the environmental vari
able TERM. This command can be included in a .profile or .login file. 

Reset a Sun workstation console, sbelltool(l) window, or cmdtool(l) window, 
overriding the type of terminal in the environmental variable TERM. 

Send the sequence to move the cursor to row 0, column O (the upper left comer of 
the screen, usually known as the "home" cursor position). 

Echo the clear-screen sequence for the current terminal. 

Print the number of columns for the current terminal. 

Print the number of columns for the Sun workstation console or subwindow. 

oflbold='tput rmso' Set the shell variables bold, to begin stand-out mode sequence, and oflbold, to 
end standout mode sequence, for the current terminal. This might be followed by 
a prompt: 

echo "${bold}Please type in your name: ${oflbold}\c" 

tput be Set exit code to indicate if the current terminal is a hardcopy terminal. 

tput cup 23 4 Send the sequence to move the cursor to row 23, column 4. 

tput longname Print the long name from the term info database for the type of terminal specified 
in the environmental variable TERM. 

/usr/share/lib/terminfo/? I• 

/usr/Sinclude/curses.h 
/usr/Sinclude/term.b 
/usr/share/Iib/tabset/• 

.login 

.profile 

compiled terminal description database 
curses(3X) header file 
terminfo(5V) header file 
TAB settings for some terminals, in a format appropriate to be output to the termi
nal (escape sequences that set margins and TAB characters); for more information, 
see the Tabs and Initialization section of terminfo(5V) . 

SEE ALSO 
cmdtool(l), shelltool(l), stty(l V), curses(3X), terminfo(5V) 

Sun Release 4.0 Last change: 20 January 1988 543 



TR( lV) USER COMMANDS TR( lV) 

NAME 
tr - translate characters 

SYNOPSIS 
tr [ -eds ] [ string] [ string2 ] ] 

DESCRIPTION 
tr copies the standard input to the standard output with substitution or deletion of selected characters. The 
arguments string] and string2 are considered sets of characters. Any input character found in string] is 
mapped into the character in the corresponding position within string2. When string2 is short, it is padded 
to the length of string] by duplicating its last character. 

In either string the notation: 
a-b 

denotes a range of characters from a to b in increasing ASCII order. The character \, followed by 1, 2 or 3 
octal digits stands for the character whose ASCII code is given by those digits. As with the shell, the escape 
character \, followed by any other character, escapes any special meaning for that character. 

SYSTEM V DESCRIPTION 
When string2 is short, characters in string] with no corresponding character in string2 are not translated. 

In either string the following abbreviation conventions introduce ranges of characters or repeated charac
ters into the strings. Note: in the System V version, square brackets are required to specify a range. 

[a-z] Stands for the string of characters whose ASCII codes run from character a to character z, in
clusive. 

[a •n] Stands for n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, n is taken 
to be decimal. A zero or missing n is taken to be huge; this facility is useful for padding string2. 

OPTIONS 
Any combination of the options -c, -d, or -s may be used: 

-c Complement the set of characters in string] with respect to the universe of characters whose 
ASCII codes are 01 through 0377 octal; 

-d Delete all input characters in string]. 

-s Squeeze all strings of repeated output characters that are in string2 to single characters. 

EXAMPLE 
The following example creates a list of all the words infilenamel one per line infilename2, where a word 
is taken to be a maximal string of alphabetics. The second string is quoted to protect ' \' from the shell. 
012 is the ASCII code for NEWLINE. 

tr -cs A-Za-z '\012' <filename]> filename2 

In the System V version, this would be specified as: 

tr -cs '[A-Z][a-z]' '[\012• ]' <filename]> filename2 

SEE ALSO 
ed(l), expand(l), ascii(7) 

BUGS 
Will not handle ASCII NUL in string] or string2. tr always deletes NUL from input 

544 Last change: 9 September 1987 Sun Release 4.0 



TRACE( 1) USER COMMANDS TRACE( 1) 

NAME 
trace - trace system calls and signals 

SYNOPSIS 
trace [ -ct ] [ -o filename ] command 

trace [ -ct ] [ -o filename ] -p pid 

DESCRIPTION 
trace intercepts the system calls and signals of a process. The name of the system call, its arguments and 
result are listed on the standard output or on the file given as an argument to the -o option. The -c option 
can be used to get a quick summary of system call and signal counts instead of having a full trace. 

Given a command it runs the command tracing all system calls until exit(2). 

Given a process ID using the -p option, it "attaches" itself to the process and begins tracing. The trace 
may be terminated at any time by a keyboard interrupt signal (CTRL-C). trace will respond by detaching it
self from the traced process leaving it to continue running. 

Each line in the trace contains the system call name, followed by its arguments in parentheses and its result. 
Error returns (result = -1) have the error name and error message appended. Signals are printed as a signal 
name followed by the signal number. The -t option prefixes each line of the trace with the time of day. 
Arguments are printed according to their type. Structure pointers are always printed as hex addresses. 
Character pointers are dereferenced and printed as a quoted string. Non-printing characters in strings are 
represented by escape codes. Only the first 32 bytes of strings are printed; longer strings have two dots ap
pended following the closing quote. 

The quick brown fox jumps over t .. 

Strings with more than 50% non-printing characters are assumed to contain binary data and are represented 
by a NULL string followed by two dots. 

EXAMPLE 
example% trace date 
gettimeofday (Ox21474, Ox2147c) = 0 
gettimeofday (Ox21474, 0) = 0 
gettimeofday (Oxemc78, Ox214ac) = 0 
ioctl (1, Ox40067408, OxemalO) = -1 ENOTTY (Inappropriate ioctl for device) 
fstat (1, Oxefffa30) = 0 
getpagesize O = 8192 
brk (Ox27640) = 0 
close (0) = 0 
Thu Dec 4 14:16:36 PST 1986 
write (1, "Thu Dec 414:16:36 PST 1986\n", 29) = 29 
close (1) = 0 
close (2) = 0 
exit (0) =? 
example% 

SEE ALSO 
exit(2), ptrace(2) 

Sun Release 4.0 Last change: 9 September 1987 545 



TRACE( 1) USER COMMANDS 

BUGS 

546 

Programs that use the setuid bit do not have effective user ID privileges while being traced. 

Child processes of a traced process are not traced. 

A traced process ignores SIGSTOP. 

A traced process runs slowly. 

Last change: 9 September 1987 

TRACE(l) 

Sun Release 4.0 



TRAFFIC( lC) USER COMMANDS TRAFFIC( lC) 

NAME 
traffic - Sun View program to display Ethernet traffic 

SYNOPSIS 
traffic [ -h host ] [ -s subwindows ] 

AVAILABILITY 
This command is available when both the Networking Tools and Programs and the Sun View 1 User's 
software options are installed. Refer to Installing the SunOS for information on how to install optional 
software. 

DESCRIPTION 
traffic graphically displays ethernet traffic. It gets statistics from etherd(8C), running on machine host. 
The tool is divided into subwindows, each giving a different view of network traffic. 

OPTIONS 

-h host Specify a host from which to get statistics. The default value of host is the machine that traffic is 
running on. 

-s subwindows 
Specify the number of subwindows to display initially. The default value of subwindows is 1. 

SUBWINDOWS 
To the right of each subwindow is a panel that selects what the subwindow is viewing. When Size is 
checked, than the size distribution of packets is displayed. Proto is for protocol, Src is for source of pack
et, and Dst is for destination of packet. Since it is not possible to show all possible sources, when Src is 
selected, only the 8 highest sources are displayed (and similarly for Dst ). 

For each of these choices, the distribution is displayed by a histogram. The panel above each subwindow 
controls characteristics of the histograms. At the left of the panel is a shaded square, corresponding to one 
of the two shades of bars in the histogram. You can switch the shade by either clicking on the square with 
the left button, or bringing up a menu over the square with the right mouse button. When the light colored 
square is visible, then the slider in the center of the panel controls how often the light colored bars are up
dated. When the dark square is visible, then the slider refers to the dark bars of the histogram. To the right 
of the slider is a choice of Abs versus Rel. This selects whether the height of the histogram is Absolute in 
packets per second, or Relative in percent of total packets on the ethernet. Next in the panel are three small 
horizontal bars. When selected (that is, when a check mark appears to the left of the three bars), a horizon
tal grid appears on the histogram. Finally the button marked Delete Me will delete the subwindow. 

The right hand panel also has a choice for Load Load is represented as a strip chart, rather than a histo
gram. The maximum value of the graph represents a load of 100%, that is 10 megabits per second on the 
ethernet. When Load is selected, there is only one slider, and no Rel versus Abs choice. 

At the very top of the tool is a panel that contains filters, as well as a Split button that splits the tool and 
creates a new subwindow, and a Quit button that exits the tool. The filters apply to all the subwindows. 
When a filter is selected, a check mark appears to the left of the word Filter. There can be more than one 
filter active at the same time. The meaning of each filter is as follows. Src is a host or net, which can be 
specified either by name or address. (similarly for Dst). Proto is an ip protocol, and can either be a name 
(such as udp, icmp) or a number. Lnth is either a packet length, or a range of lengths separated by a dash. 

SEE ALSO 

etherd(8C) 

BUGS 

If multiple copies of traffic are using the same copy of etherd, and one of them invokes a filter, then all the 
copies of traffic will be filtered. 

Sun Release 4.0 Last change: 21 December 1987 547 



TROFF( 1) USER COMMANDS TROFF(l) 

NAME 
troff - typeset or format documents 

SYNOPSIS 
troff [ -abfiqtwz ] [ -mpackage ] [ -nN ] [ -opagelist ] [ -pN ] [ -raN ] 

[ -sN] [filenames] ... 

AVAILABILITY 
This command is available with the Text Processing Tools software installation option. Refer to Installing 
the SunOS for information on how to install optional software. 

DESCRIPTION 
troff formats text in the filenames. For historical reasons, output goes to a CAT/4 phototypesetter attached 
to /dev/cat, but nobody uses a CAT/4 anymore. Ordinarily, postprocessing software converts output to a 
form that can be printed on newer typesetters or laser printers. Default font width tables correspond to 
Times Roman on PostScript™ printers. See also the nroff(l) manual page, which describes a formatter for 
typewriter-like devices. 

Input to troff is expected to consist of text interspersed with formatting requests and macros. If no 
filename argument is present, troff reads standard input. A'-' as afilename argument indicates that stan
dard input is to be read at that point in the list of input files; troff reads the files named ahead of the '-' in 
the arguments list, then text from the standard input, and then text from the files named after the'-'. 

If the file /etc/adm/tracct is writable, troff keeps printer accounting records there. The integrity of that 
file may be secured by making troff a "set-user-ID" program (see chmod(l V) for details on the setuid per
mission bit.) 

OPTIONS 

548 

Options may appear in any order, but they all must appear before the firstfilename. 

-a Send a printable ASCII approximation of the results to the standard output. 

-i Read the standard input after the input files are exhausted. 

-q Disable echoing during a .rd request. 

-t Direct output to the standard output instead of the printer. Since this output is non-ASCII 
it is generally redirected to lpr -t. 

-mpackage 
Prepend the macro file /usr/lib/tmac/tmac.package to the input filenames. (Note that 
most references to macro packages include the leading "m" as part of the name; the 
man(7) macro package resides in /usr/Iib/tmac/tmac.an). 

-nN Number first generated page N. 

-olist Print only pages whose page numbers appear in the comma-separated list of numbers and 
ranges. A range N-M means pages N through M; an initial -N means from the begin
ning to page N; and a final N- means from N to the end. 

-raN Set register a ( one-character) to N. 

Some options of troff only apply if you have a CAT/4 typesetter attached to your system. These options 
remain present for backward compatibility. However, this version of troff does not support this typesetter 
by default. 

-b Report whether the typesetter is busy or available. No text processing is done. 

-f Refrain from feeding paper out and stopping at the end of the print job on the typesetter. 

-w Wait until typesetter is available, if currently busy. 

-z Suppress all formatted output. Display only terminal messages produced by .tm requests 
and diagnostics. 

Last change: 21 December 1987 Sun Release 4.0 



TROFF( 1) USER COMMANDS TROFF( 1) 

FILES 

-pN Print all characters in point size N while retaining all prescribed spacings and motions, to 
reduce elasped time on the typesetter. 

-sN Stop the phototypesetter every N pages. troff produces a trailer so you can change 
cassettes; resume by pressing the typesetter's start button. 

/tmp/ta• 
/usr/lib/tmac/tmac.• 
/usr/lib/term/• 
/usr/lib/font/• 
/dev/cat 
I etc/adm/tracct 

temporary file 
standard macro files 
terminal driving tables for nroff 
font width tables for alternate mounted troff fonts 
phototypesetter 
accounting statistics for /dev/cat 

SEE ALSO 
checknr(l), chmod(lV), eqn(l), lpr(l), nroff(l), tbl(l), col(lV), printcap(S), man(7), me(7), ms(7), 
lpd(8) 

Formatting Documents 

Using nroff and troff 

DIAGNOSTICS 
No /dev/cat: try -t or -a 

Sun Release 4.0 

The CAT/4 typesetter is not accessible from your machine. Combine the -t option of troff with 
the -t option of lpr(l) to get output on a laser printer or typesetter. For information on how to in
form lpd(8) of a PostScript printer attached to a remote host, see printcap(S). 

Last change: 21 December 1987 549 



TRUE(l) USER COMMANDS TRUE( 1) 

NAME 
true, false - provide truth values 

SYNOPSIS 
true 

false 

DESCRIPTION 
true and false are usually used in a Bourne shell script They test for the appropriate status "true" or 
"false" before running (or failing to run) a list of commands. 

EXAMPLE 
The following Bourne shell script will be executed while the case status is "true". 

while true 

SEE ALSO 

do 
command list 

done 

csh(l), sh(l) 

DIAGNOSTICS 
true has exit status zero. 

550 Last change: 9 September 1987 Sun Release 4.0 



TSET( 1) USER COMMANDS TSET(l) 

NAME 
tset, reset - establish or restore terminal characteristics 

SYNOPSIS 
tset [ -InQrsS ] [ -ec ] [ -kc ] [ -m fport-lD [ baudrate] : type ] ... ] [type] 

reset [ - ] [ -ec ][ -I ] [ -kc ] [ -n ] [ -Q ] [ -r ] [ -s ] [ -S ] 
-m [ indent ] [ test baudrate ]: type ] ... [ type ] 

DESCRIPTION 
tset sets up your terminal, typically when you first log in. It does terminal dependent processing such as 
setting erase and kill characters, setting or resetting delays, sending any sequences needed to properly ini
tialized the terminal, and the like. tset first determines the type of terminal involved, and then does neces
sary initializations and mode settings. The type of terminal attached to each port is specified in the 
/etc/ttytab database. type names for terminals may be found in the termcap(5) database. If a port is not 
wired permanently to a specific terminal (not hardwired) it is given an appropriate generic identifier such as 
dialup. 

reset clears the terminal settings by turning off CBREAK and RAW modes, output delays and parity check
ing, turns on NEWLINE translation, echo and TAB expansion, and restores undefined special characters to 
their default state. It then sets the modes as usual, based on the terminal type (which will probably over
ride some of the above). (See stty(l V) for more information.) All arguments to tset may be used with 
reset. reset also uses the rs= and rf= (reset string and file) instead of the initialization string and file from 
/etc/termcap. This is useful after a program dies and leaves the terminal in a funny state. Often in this si
tuation, characters will not echo as you type them. You may have to type 
'<LINEFEED>reset<LINEFEED>' since '<RETURN>' may not work. 

When no arguments are specified, tset reads the terminal type from the TERM environment variable and 
re-initializes the terminal, and performs initialization of mode, environment and other options at login time 
to determine the terminal type and set up terminal modes. 

When used in a startup script (.profile for sh(l) users or .login for csh(l) users) it is desirable to give infor
mation about the type of terminal you will usually use on ports that are not hardwired. These ports are 
identified in /etc/ttyab as dialup or plugboard, etc. Any of the alternate generic names given in 
/etc/termcap may be used for the identifier. Refer to the -m option under OPTIONS for more information. 
If no mapping applies and a final type option, not preceded by a -m, is given on the command line then 
that type is used; otherwise the type found in the /etc/ttytab database is used as the terminal type. This 
should always be the case for hardwired ports. 

It is usually desirable to return the terminal type, as finally determined by tset, and information about the 
terminal's capabilities, to a shell's environment. This can be done using the-, -s, or-S options. (Refer to 
OPTIONS for more information.) 

For the Bourne shell, put this command in your .profile file: 

eval 'tset -s options ... ' 

or using the C shell, put this command in your .login file: 

eval 'tset -s options ... ' 

With the C shell, it is also convenient to make an alias in your .cshrc file: 

alias tset 'eval 'tset-s \!•'' 

This also allows the command: 

tset 2621 

to be invoked at any time to set the terminal and environment. Note to Bourne Shell users: It is not possi
ble to get this aliasing effect with a shell script, because shell scripts cannot set the environment of their 
parent. If a process could set its parent's environment, none of this nonsense would be necessary in the 
first place. 

Sun Release 4.0 Last change: 23 September 1987 551 



TSET( 1) USER COMMANDS TSET( 1) 

Once the terminal type is known, tset sets the terminal driver mode. This normally involves sending an in
itialization sequence to the terminal, setting the single character erase (and optionally the line-kill (full line 
erase)) characters, and setting special character delays. TAB and NEWLINE expansion are turned off during 
transmission of the terminal initialization sequence. 

On terminals that can backspace but not overstrike (such as a CRT), and when the erase character is '#', the 
erase character is changed as if -e had been used. 

OPTIONS 

552 

The name of the terminal finally decided upon is output on the standard output This is intended 
to be captured by the shell and placed in the TERM environment variable. 

-ec Set the erase character to be the named character con all terminals. Default is the backspace key 
on the keyboard, usually AH (CTRL-H). The character c can either be typed directly, or entered 
using the circumflex-character notation used here. 

-ic Set the interrupt character to be the named character con all terminals. Default is AC (CTRL-C). 
The character c can either be typed directly, or entered using the circumflex-character notation 
used here. 

-I Suppress transmitting terminal-initialization strings. 

-kc Set the line kill character to be the named character con all terminals. Default is AU {CTRL-U). 
The kill character is left alone if -k is not specified. Control characters can be specified by 
prefixing the alphabetical character with a circumflex (as in CTRL-U) instead of entering the actu
al control key itself. This allows you to specify control keys that are currently assigned. 

-n Specify that the new tty driver modes should be initialized for this terminal. Probably useless 
since stty new is the default 

-Q Suppress printing the 'Erase set to' and 'Kill set to' messages. 

-r In addition to other actions, reports the terminal type. 

-s Output commands to set and export TERM and TERMCAP. This can be used with 
set noglob 
eval 'tset -s ... 
unset noglob 

to bring the terminal information into the environment. Doing so makes programs such as vi( 1) 
start up faster. If the SHELL environment variable ends with csh, C shell commands are output, 
otherwise Bourne shell commands are output. 

-S Similar to the -s option, but produces two strings containing suitable values for the ( environment) 
variables TERM and TERMCAP, respectively, and can be used as follows: 

set noglob 
set t=('tset -S ... ') 
setenv TERM $t[l] 
setenv TERMCAP "$t[2]" 
unset t 
unset noglob 

Since -s loads these values, its use is preferred. If the SHELL environment variable does not end 
with csh, -S produces the same Bourne shell commands that -s does. 

Last change: 23 September 1987 Sun Release 4.0 



TSET(l) USER COMMANDS TSET(l) 

-m fport-ID[baudrate]:type] ... 

EXAMPLES 

Specify (map) a terminal type when connected to a generic port (such as dialup or plugboard) 
identified by port-ID. The baudrate argument can be used to check the baudrate of the port and 
set the terminal type accordingly. The target rate is prefixed by any combination of the following 
operators to specify the conditions under which the mapping is made: 

> Greater than 

@ Equals or "at" 

< Less than 

It is not the case that (negates the above operators) 

? Prompt for the terminal type. If no response is given, then type is selected by 
default. 

In the following example, the terminal type is set to adm3a if the port is a dialup with a speed of 
greater than 300 or to dw2 if the port is a dialup at 300 baud or less. In the third case, the question 
mark preceding the terminal type indicates that the user is to verify the type desired. A NULL 
response indicates that the named type is correct. Otherwise, the user's response is taken to be the 
type desired. 

tset-m 'dialup>300:adm3a' -m 'dialup:dw2' -m 'plugbo.ard:?adm3a' 

To prevent interpretation as metacharacters, the entire argument to-m should be enclosed in sin
gle quotes. When using the C shell, exclamation points should be preceded by a backslash(\). 

These examples all use the '-' option. A typical use of tset in a .profile or .login will also use the -e and 
-k options, and often the -n or -Q options as well. These options have been omitted here to keep the ex
amples short. 

To select a 2621, you might put the following sequence of commands in your .login file (or .profile for 
Bourne shell users). 

set noglob 
eval 'tset-s 2621' 
unset noglob 

If you have an h 19 at home which you dial up on, but your office terminal is hardwired and known in 
/etc/ttytab, you might use: 

set noglob 
eval 'tset -s -m dialup:h19' 
unset noglob 

If you have a switch which connects to various ports (making it impractical to identify which port you may 
be connected to), and use various terminals from time to time, you can select from among those terminals 
according to the speed or baud rate. In the example below, tset will prompt you for a terminal type if the 
baud rate is greater than 1200 (say, 9600 for a terminal connected by an RS-232 line), and use a Wyse 50 
by default. If the baud rate is less than or equal to 1200, it will select a 2621. Note the placement of the 
question mark, and the quotes to protect the > and ? from interpretation by the shell. 

set noglob 
eval 'tset-s -m 'switch>1200:?wy' -m 'switch<=l200:2621'' 
unset noglob 

All of the above entries will fall back on the terminal type specified in /etc/ttytab if none of the conditions 
hold. The following entry is appropriate if you always dial up, always at the same baud rate, on many dif
ferent kinds of terminals, and the terminal you use most often is an adm3a. 

Sun Release 4.0 

set noglob 
eval 'tset -s ?adm3a' 
unset noglob 

Last change: 23 September 1987 553 



TSET( 1) USER COMMANDS TSET(l) 

FILES 

If the file /etc/ttytab is not properly set up and you want to make the selection based only on the baud rate, 
you might use the following: 

set noglob 
eval 'tset -s -m '>1200:wy' 2621' 
unset noglob 

Here is a fancy example to illustrate the power of tset and to hopelessly confuse anyone who has made it 
this far. It quietly sets the erase character to BACKSPACE, and kill to CTRL-U. If the port is switched, it 
selects a Concept 100 for speeds less than or equal to 1200, and asks for the terminal type otherwise (the 
default in this case is a Wyse 50). If the port is a direct dialup, it selects Concept 100 as the terminal type. 
If logging in over the ARPANET, the terminal type selected is a Datamedia 2500 terminal or emulator. 
(Note the backslash escaping the NEWLINE at the end of the first line in the example.) 

set noglob 
eval 'tset -e -k"U -Q -s -m 'switch<=1200:concept100' -m \ 
dialup:conceptlOO-m arpanet:dm2500' 
unset noglob 

I etc/ttytab port name to terminal type mapping database 
/etc/termcap terminal capability database 

'switch:?wy' -m 

/usr/share/Iib/tabset/• TAB setting sequences for various terminals. Pointed to by termcap entries . 
.login 
.profile 

SEE ALSO 

BUGS 

554 

csh(l), sh(l), vi(l), stty(lV), ttytab(5), termcap(5), environ(5V) 

The tset command is one of the first commands a user must master when getting started on a UNIX system. 
Unfortunately, it is one of the most complex, largely because of the extra effort the user must go through to 
get the environment of the login shell set. Something needs to be done to make all this simpler, either the 
login program should do this stuff, or a default shell alias should be made, or a way to set the environment 
of the parent should exist. 

This program cannot intuit personal choices for erase, interrupt and line kill characters, so it leaves these 
set to the local system standards. 

It could well be argued that the shell should be responsible for ensuring that the terminal remains in a sane 
state; this would eliminate the need for the reset program. 

Last change: 23 September 1987 Sun Release 4.0 



TSORT(l) USER COMMANDS TSORT(l) 

NAME 
tsort - topological sort 

SYNOPSIS 
tsort [filename ] 

DESCRIPTION 

tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of 
items mentioned in the input filename. If no filename is specified, the standard input is understood. 

The input consists of pairs of items (nonempty strings) separated by SPACE characters. Pairs of different 
items indicate ordering. Pairs of identical items indicate presence, but not ordering. 

SEE ALSO 
lorder(l) 

BUGS 
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file. 

Sun Release 4.0 Last change: 9 September 1987 555 



TTY( 1) USER COMMANDS TTY(l) 

NAME 
tty - display the name of the terminal 

SYNOPSIS 
tty[-s] 

DESCRIPTION 
tty prints the pathname of the user's terminal unless the -s (silent) option is given. In either case, the exit 
value is zero if the standard input is a terminal, and one if it is not. 

OPTIONS 
-s Silent. Does not print the pathname of the user's terminal. 

556 Last change: 9 September 1987 Sun Release 4.0 



UL( 1) USER COMMANDS UL(l) 

NAME 
ul - do underlining 

SYNOPSIS 
ul [ -i ] [ -t terminal ] [filename. . . ] 

DESCRIPTION 
ul reads the named filenames (or the standard input if none are given) and translates occurrences of under
scores to the sequence which indicates underlining for the terminal in use, as specified by the environment 
variable TERM. ul uses the /etc/termcap file to determine the appropriate sequences for underlining. If the 
terminal is incapable of underlining, but is capable of a standout mode then that is used instead. If the ter
minal can overstrike, or handles underlining automatically, ul degenerates to cat(l V). If the terminal can
not underline, underlining is ignored. 

OPTIONS 

FILES 

-t terminal 
Override the terminal kind specified in the environment. If the terminal cannot underline, under
lining is ignored. 

-i Indicate underlining by a separate line containing appropriate dashes '-'; this is useful when you 
want to look at the underlining which is present in an nroff(l) output stream on a CRT-terminal. 

/etc/termcap 

SEE ALSO 

BUGS 

cat(lV), colcrt(l), man{l), nroff(l) 

nroff usually generates a series of backspaces and underlines intermixed with the text to indicate underlin
ing. ul makes attempt to optimize the backward motion. 

Sun Release 4.0 Last change: 9 September 1987 557 



UNAME( lV) USER COMMANDS UNAME(lV) 

NAME 
uname - display the name of the current system 

SYNOPSIS 
uname [ -mnrsva ] 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the SunOS for information on how to in
stall this command. uname prints the current system name of the system on the standard output. 

OPTIONS 
-m Print the machine hardware name. 

-n Print the nodename (the nodename may be a name that the system is known by to a communica-
tions network). 

-r Print the operating system release. 

-s Print the system name (default). 

-v Print the operating system version. 

-a Print all the above information. 

SEE ALSO 
uname(2V) 

558 Last change: 24 September 1987 Sun Release 4.0 



UNGET( 1) USER COMMANDS UNGET(l) 

NAME 
unget - undo a previous get of an SCCS file 

SYNOPSIS 
/usr/sccs/unget [ -ns ] [ -rS/D ] filename . .. 

DESCRIPTION 
Unget undoes the effect of a 'get -e' done prior to creating the intended new delta. If a directory is 
named, unget behaves as though each file in the directory were specified as a named file, except that non
SCCS files and unreadable files are silently ignored. If a name of'-' is given, the standard input is read 
with each line being taken as the name of an SCCS file to be processed. 

OPTIONS 
Options apply independently to each named file. 

-n Retain the gotten file '-'itisnormally 

-s Suppress displaying the intended delta's SID. 

-rS/D Uniquely identify which delta is no longer intended. This would have been specified by get as the 

SEE ALSO 

"new delta"). The -r option is necessary only if two or more outstanding gets for editing on the 
same SCCS file were done by the same person (login name). A diagnostic results if the specified 
SID is ambiguous, or if it is necessary but omitted from the command line. 

delta(l), get(l), help(l), sact(l), sccs(l) 

DIAGNOSTICS 
Use help(l) for explanations. 

Sun Release 4.0 Last change: 9 September 1987 559 



UNIFDEF( 1) USER COMMANDS UNIFDEF( 1) 

NAME 
unifdef - resolve and remove if def ed lines from cpp input 

SYNOPSIS 
unifdef [ -c I t ] [ -Dname ] [ -Uname ] [ -idname ] [ -iuname ] ... [filename ] 

DESCRIPTION 
unif def removes if de fed lines from a file while otherwise leaving the file alone. It is smart enough to deal 
with the nested ifdefs, comments, single and double quotes of C syntax, but it does not do any including or 
interpretation of macros. Neither does it strip out comments, though it recognizes and ignores them. You 
specify which symbols you want defined with -D options, and which you want undefined with -U options. 
Lines within those if defs will be copied to the output, or removed, as appropriate. Any if def, ifndef, else, 
and endif lines associated with filename will also be removed. 

ifdefs involving symbols you do not specify are untouched and copied out along with their associated if def, 
else, and endif lines. 

If an ifdefX occurs nested inside another ifdefX, then the inside if def is treated as if it were an unrecog
nized symbol. If the same symbol appears in more than one argument, only the first occurrence is 
significant. 

unif def copies its output to the standard output and will take its input from the standard input if no filename 
argument is given. 

OPTIONS 
-c Complement the normal operation. Lines that would have been removed or blanked are retained, 

and vice versa. 

-I Replace ''lines removed'' lines with blank lines. 

-t Plain text option. unif def refrains from attempting to recognize comments and single and double 

-idname 

-iuname 

quotes. 

Ignore, but print out, lines associated with the defined symbolfilename. If you use ifdefs to delimit 
non-C lines, such as comments or code which is under construction, then you must tell unifdef 
which symbols are used for that purpose so that it won't try to parse for quotes and comments 
within them. 

Ignore, but print out, lines associated with the undefined symbolfilename. 

SEE ALSO 
cpp(l), diff(l) 

DIAGNOSTICS 
Premature EOF 

Inappropriate else or endif. 

Exit status is O if output is exact copy of input, 1 if not, 2 if trouble. 

BUGS 
Does not know how to deal with cpp(l) constructs such as 

#if defined(X) II defined(Y) 

560 Last change: 9 September 1987 Sun Release 4.0 



UNIQ( 1) USER COMMANDS UNIQ( 1) 

NAME 
uniq - remove or report adjacent duplicate lines 

SYNOPSIS 
uniq [ -cdu [ + 1-n ] [ inputfile [ outputfile ] ] 

DESCRIPTION 
uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding copies of 
repeated lines are removed; the remainder is written on the output file. Note: repeated lines must be adja
cent in order to be found; see sort( 1 V). 

OPTIONS 
-c Supersede -u and -d and generate an output report in default style but with each line preceded by 

a count of the number of times it occurred. 

The normal output of uniq is the union of the -u and -d options. 

-d Write one copy of just the repeated lines. 

-u Copy only those lines which are not repeated in the original file. 

The n arguments specify skipping an initial portion of each line in the comparison: 

+n The first n characters are ignored. Fields are skipped before characters. 

-n The first n fields together with any blanks before each are ignored A field is defined as a string 
of non-SPACE, non-TAB characters separated by SPACE and TAB characters from its neighbors. 

SEE ALSO 
comm(l), sort(lV) 

Sun Release 4.0 Last change: 9 September 1987 561 



UNITS(l) USER COMMANDS UNITS ( 1) 

NAME 
units - conversion program 

SYNOPSIS 
units 

DESCRIPTION 
units converts quantities expressed in various standard scales to their equivalents in other scales. It works 
interactively in this fashion: 

You have: inch 
You want cm 

* 2.540000e+OO 
/ 3.937008e-01 

A quantity is specified as a multiplicative combinatio!} of units optionally preceded by a numeric multiplier. 
Powers are indicated by suffixed positive integers, division by the usual sign: 

You have: 15 lbs f orce/in2 
You want atm 

* 1.020689e+OO 
/ 9.797299e-01 

units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not Celsius to 
Fahrenheit Most familiar units, abbreviations, and metric prefixes are recognized, together with a gen
erous leavening of exotica and a few constants of nature including: 

pi Ratio of circumference to diameter, 
c Speed of light, 
e Charge on an electron, 
g Acceleration of gravity, 
force Same as g, 
mole Avogadro's number, 
water Pressure head per unit height of water, 
au Astronomical unit 

pound is not recognized as a unit of mass; lb is. pound refers to a British pound. Compound names are 
run together (for instance, lightyear). British units that differ from their U.S. counterparts are prefixed 
thus: brgallon. Currency is denoted belgiumfranc, britainpound, . . . For a complete list of units, type: 

cat /usr/Iib/units 

FILES 
/usr/Iib/units 

BUGS 
Do not base your financial plans on the currency conversions. 

562 Last change: 9 September 1987 Sun Release 4.0 



UNIX2DOS ( 1 ) USER COMMANDS UNIX2DOS ( 1 ) 

NAME 
unix2dos - convert text file from SunOS format to DOS format 

SYNOPSIS 
unix2dos [ -iso ] [ - 7 ] originalfile convertedfile 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
unix2dos adds carriage returns and converts end of file characters in Sun0S format text files to conform to 
DOS requirements. 

This command may be invoked from either DOS or SunOS. However, the filenames must conform to the 
conventions of the environment in which the command is invoked. 

If the original file and the converted file are the same, unix2dos will rewrite the original file after convert
ing it. 

OPTIONS 
-iso Convert ISO standard characters to the corresponding character in the DOS extended character 

set. 

- 7 Convert 8 bit Sun0S characters to 7 bit DOS characters. 

DIAGNOSTICS 
File filename not found, or no read permission 

The input file you specified does not exist, or you do not have read permission ( check with the 
SunOS command ls -1). 

Bad output filename filename, or no write permission 
The output file you specified is either invalid, or you do not have write permission for that file or 
the directory that contains it. Check also that the drive or diskette is not write-protected. 

Error while writing to temporary file 
An error occurred while converting your file, possibly because there is not enough space on the 
current drive. Check the amount of space on the current drive using the DIR command. Also be 
certain that the default diskette or drive is write-enabled (not write-protected). Note that when this 
error occurs, the original file remains intact. 

Could not rename tmpfile to filename. 
Translated tmpfile name = filename. 

The program could not perform the final step in converting your file. Your converted file is stored 
under the name indicated on the second line of this message. 

SEE ALSO 
Sun386i Advanced Skills 
DOS Reference Manual 

Sun Release 4.0 Last change: 19 February 1988 563 



UNLOAD(l) USER COMMANDS UNLOAD( 1) 

NAME 
unload, unloadc - unload Application SunOS or Developer's Toolkit optional clusters 

SYNOPSIS 
unload.filename .. . 

unloadc cluster . . . 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
unload unloads the Application SunOS or Developer's Toolkit clusters that contain the specified file argu
ments. unloadc unloads the specified Application SunOS or Developer's Toolkit clusters. 

Without arguments, unload and unloadc display a summary of the clusters in the Application SunOS and 
Developer's Toolkit, including the load state and size of each cluster. 

EXAMPLES 

FILES 

To unload the cluster that contains the spell command: 

example% unload spell 
About to unload the spellcheck cluster, confirm (y/n): y 
Unloading the spellcheck cluster ... 
The spellcheck cluster has been unloaded. 
space used by clusters: 5358K bytes 
total space remaining: 20962K bytes 
example% 

To display a summary of the clusters in the Application SunOS and Developer's Toolkit: 

example% unload 
Application SunOS Clusters: 

availablecluster size (bytes) 

yes accounting 265K 
no advanced admin 501K 

Developer's Toolkit Clusters: 
availablecluster size (bytes) 

no base devel 6907K 

space used by clusters: 6021K bytes 
total space remaining: 20432K bytes 

/ export/loaded/appl 
where Application SunOS clusters are loaded (or mounted) 

/ export/loaded/ devel 
where Developer's Toolkit clusters are loaded (or mounted) 

/usr /lib/load/* 
data files 

SEE ALSO 

564 

cluster(l), load(l), toc(5) 
Sun386i Setup and Maintenance 

Last change: 19 February 1988 Sun Release 4.0 



UNLOAD(!) USER COMMANDS 

DIAGNOSTICS 
The file filename is not in any of the optional software clusters. 

The specified file is not part of the Application SunOS or Developer's Toolkit 
The cluster cluster is not loaded. 

The specified cluster is not loaded on disk. 
There is no cluster cluster. 

The specified cluster is not part of the Application SunOS or Developer's Toolkit. 
The Application SunOS (and/or) Developer's Toolkit are mounted. 

UNLOAD(!) 

The Application SunOS or Developer's Toolkit or both are mounted across the network and can 
not be loaded or unloaded. 

Sun Release 4.0 Last change: 19 February 1988 565 



UPTIME( 1) USER COMMANDS UPTIME( 1) 

NAME 
uptime - show how long the system has been up 

SYNOPSIS 
uptime 

DESCRIPTION 
uptime prints the current time, the length of time the system has been up, and the average number of jobs 
in the run queue over the last 1, 5 and 15 minutes. It is, essentially, the first line of a w(l) command. 

EXAMPLE 

FILES 

example% uptime 
6:47am up 6 days, 16:38, 1 users, load average: 0.69, 0.28, 0.17 
example% 

/vmunix system name list 

SEE ALSO 
w(l) 

566 Last change: 9 September 1987 Sun Release 4.0 



USERS( 1) USER COMMANDS 

NAME 
users - display a compact list of users logged in 

SYNOPSIS 
users 

DESCRIPTION 
users lists the login names of the users currently on the system in a compact, one-line format: 

example% users 
paul george ringo 
example% 

FILES 
/etc/utmp 

SEE ALSO 
who(l) 

Sun Release 4.0 Last change: 9 September 1987 

USERS( 1) 

567 



UUCP( lC) USER COMMANDS UUCP( lC) 

NAME 
uucp, uulog, uuname - system to system copy 

SYNOPSIS 
uucp [ -acCdfmr ] [ -esystem ] [ -nusername ] [ -ggrade ] [ -sspool ] [ -xdebug ] source-file ... 

destination-file 

uulog [ -ssystem ] [ -uusername ] 

uuname [-I] 

AVAILABILITY 
This command is available with the uucp software installation option. Refer to Installing the SunOS for in
formation on how to install optional software. 

DESCRIPTION 
uucp copies each source-file to the named destination-file. A filename may be a path name on your 
machine, or may have the form 

system-name !pathname 

where system-name is taken from a list of system names that uucp knows about. Shell metacharacters ? , *, 
and [] appearing in the pathname part will be expanded on the appropriate system. 

Pathnames may be one of: 

• a full pathname; 

• a pathname preceded by usernamel; where username is a usemame on the specified sys
tem and is replaced by that user's login directory; 

• a pathname preceded by /; such a pathname will be replaced by the "public uucp" direc
tory on the remote machine; 

• anything else is prefixed by the pathname of the current directory. 

If the result is an erroneous pathname for the remote system, the copy will fail. If the destination-file is a 
directory, the last component of the source-file name is used. 

uucp preserves execute permissions across the transmission and gives 0666 read and write permissions 
(see chmod(2)). 

uulog maintains a summary log of uucp and uux(lC) transactions in the file /var/spool/uucp/LOGFILE, 
by gathering information from partial log files named /var/spool/uucp/LOG.*.?. It removes the partial log 
files. 

uuname lists the uucp names of systems that can be accessed using uucp. 

OPTIONS 

568 

uucp Options 
-a Avoid doing a getwd(3) to find the current directory. This is sometimes used for efficiency. 

-c Use the source file when copying out rather than copying the file to the spool directory. This is 
the default. 

-C Make a copy of outgoing files in the uucp spool directory, rather than copying the source file 
directly to the target system. This lets you remove the source file after issuing the uucp com
mand. 

-d Make all necessary directories for the file copy. 

-f Do not make intermediate directories for the file copy. 

-m Send mail to the requester when the copy is complete. 

-r Do not start the transfer, just queue the job. 

Last change: 22 December 1987 Sun Release 4.0 



UUCP( lC) USER COMMANDS UUCP( lC) 

-esystem 
Send the uucp command to the system system to be executed there. This works only when the re
mote machine allows uucp to be executed by /usr/lib/uucp/uuxqt. 

-nusername 

-ggrade 

Notify username on remote system (by mail) that a file was sent. 

grade is a single letter or number; lower ASCII values transmit a job earlier during a particular 
conversation. The default grade is n. By way of comparison, uux(lC) defaults to 'A'; mail is 
usually sent at grade 'C'. 

-sspool Use spool as the spool directory instead of the default. 

-xdebug 
Turn on the debugging at level debug. 

uulog Options 
-ssystem 

Print information about work involving system system. 

-uusername 
Print information about work done for the specified username. 

uuname options 
-I Display the local system-name. 

FILES 
/var/spool/uucp spool directory 
/usr/Iib/uucp/ ADMIN list of known systems and descriptions 
/usr/Iib/uucp/* other data and program files 
/var/spool/uucp/LOG FILE 

SEE ALSO 
mail(l), uux(lC), chmod(2), getwd(3) 

System and Network Administration 

WARNING 

BUGS 

The domain of remotely accessible files can (and for obvious security reasons, usually should) be severely 
restricted. You will very likely not be able to fetch files by pathname; ask a responsible person on the re
mote system to send them to you. For the same reasons you will probably not be able to send files to arbi
trary pathnames. 

All files received by uucp will be owned by the user ID uucp. 

The -m option will only work sending files or receiving a single file. Receiving multiple files specified by 
special shell characters ? , *, and [ ] will not activate the -m option. 

Sun Release 4.0 Last change: 22 December 1987 569 



UUENCODE(lC) USER COMMANDS UUENCODE ( lC) 

NAME 
uuencode, uudecode - encode a binary file, or decode its ASCII representation 

SYNOPSIS 
uuencode [ source-file ] file-label 

uudecode [ encoded-file ] 

DESCRIPTION 
uuencode converts a binary file into an ASCII-encoded representation that can be sent using mail(l). It en
codes the contents of source-file, or the standard input if no source-file argument is given. The file-label 
argument is required. It is included in the encoded file's header as the name of the file into which 
uudecode is to place the binary (decoded) data. uuencode also includes the ownership and permission 
modes of source-file, so thatfile-label is recreated with those same ownership and permission modes. 

If the remote host is a UNIX system with the sendmail(8) mail-message delivery daemon, you can pipe the 
output of uuencode through mail( 1) to the recipient named decode on the remote host. This recipient is 
typically an alias for the uudecode program (see aliases(5) for details), which allows a binary file to be 
decoded (extracted) from a mail message automatically. If this alias is absent on a particular host, the en
coded file can be mailed to a user, who can run it through uudecode manually. 

uudecode reads an encoded-file, strips off any leading and trailing lines added by mailer programs, and re
creates the original binary data with the filename and the mode and owner specified in the header. 

The encoded file is an ordinary ASCII text file; it can be edited by any text editor. But it is best only to 
change the mode or file-label in the header to avoid corrupting the decoded binary. 

SEE ALSO 

BUGS 

570 

mail(l), uucp(lC), uusend(lC), uux(lC), aliases(5), uuencode(5), sendmail(8) 

The encoded file's size is expanded by 35% (3 bytes become 4, plus control information), causing it to take 
longer to transmit than the equivalent binary. 

The user on the remote system who is invoking uudecode (typically uucp) must have write permission on 
the file specified in the file-label. 

Since both uuencode and uudecode run with user ID set to uucp, uudecode can fail with ''permission 
denied" when attempted in a directory that does not have write permission allowed for "other." 

Last change: 23 November 1987 Sun Release 4.0 



UUSEND( lC) USER COMMANDS UUSEND( lC) 

NAME 
uusend - send a file to a remote host 

SYNOPSIS 
uusend [ -m mode ] sourcefile sysl !sys2 ! .. . !remotefile 

AVAILABILITY 
This command is available with the uucp software installation option. Refer to Installing the SunOS for in
formation on how to install optional software. 

DESCRIPTION 
uusend sends a file to a given location on a remote system. The system need not be directly connected to 
the local system, but a chain of uucp(lC) links needs to connect the two systems. 

The sourcefile can be'-', meaning to use the standard input. Both of these options are primarily intended 
for internal use of uusend. 

The remotefile can include the username or I syntax. 

OPTIONS 
-mmode 

Take the mode of the file on the remote end from the octal number specified as mode. The mode 
of the input file is used if the -m option is not specified. 

SEE ALSO 

BUGS 

uucp(lC), uuencode(lC), uux(lC) 

This command should not exist, since uucp should handle it. 

All systems along the line must have the uusend command available and allow remote execution of it. 

Some UUCP systems have a bug where binary files cannot be the input to a uux command. If this bug ex
ists in any system along the line, the file will show up severely corrupted. 

Sun Release 4.0 Last change: 21 December 1987 571 



UUSTAT( lC) USER COMMANDS UUSTAT( lC) 

NAME 
uustat - uucp status inquiry and job control 

SYNOPSIS 
uustat -a 1-m 1-p I 1-kjobid ] 1-rjobid ] 

uustat [ -ssystem ] [ -uuser ] 

AVAILABILITY 
This command is available with the software installation option. Refer to Installing the SunOS for infor
mation on how to install optional software. 

DESCRIPTION 
uustat displays the status of, or cancels, previously specified uucp(lC) commands. It also reports the 
status of uucp connections to other systems. When no options are given, uustat displays the status of all 
uucp requests issued by the current user. 

OPTIONS 

572 

Only one of the following options can be specified at a time: 

-a Output all jobs in queue. 

-m Report the status of accessibility of all machines. 

-p Execute a ps -flp for all the PIDs listed in the lock files. 

-q List the jobs queued for each machine. If a status file exists for the machine, its date, time 
status information are reported. In addition, if a number appears in parentheses next to the 
number of C or X files, it is the age in days of the oldest C./X. file for that system. The Retry 
field represents the number of hours until the next possible call. The Count is the number of 
failure attempts. For systems with a moderate number of outstanding jobs, this could take 30 
seconds or more to execute. An example of the output from -q is: 

eagle 3C 04/07-11:07NO DEVICES AVAILABLE 
mh3bs3 2C 07/07-10:42SUCCESSFUL 

This indicates the number of command files that are waiting for each system. Each command 
file may have zero or more files to be sent (zero means to call the system and see if work is to be 
done). The date and time refer to the previous interaction with the system followed by the status 
of the interaction. 

-kjobid Kill the uucp request with job identification of jobid. You must either own the job to be killed, or 
be the super-user. 

-rjobid Rejuvenatejobid. The files associated withjobid are touched so that their modification time is set 
to the current time. This prevents the cleanup daemon from deleting the job until the jobs 
modification time reaches the next limit imposed by the daemon. 

The following options can be specified separately or together: 

-ssys Report the status of all uucp requests for remote system sys. 

-uuser Report the status of all uucp requests issued by user. 

Output for both the -s and -u options has the following format: 

eaglenOOOO 4/07-11:01:03(POLL) 
eagleNlbd7 4/07-11:07Seagledan522 /usr/dan/ A 
eagleClbd8 4/07-11:07Seagledan59 D.3b2al2ce4924 
4/07-11:07Seagledanrmail mike 

Last change: 23 December 1987 Sun Release 4.0 



UUSTAT(lC) USER COMMANDS UUSTAT( lC) 

FILES 

The first field is the job ID. This is followed by the date and time. The next field is either an Sor R 
depending on whether the job is to send or request a file. This is followed by the user ID of the user who 
queued the job. The next field contains the size of the file, or in the case of a remote execution request, 
the name of the command. When the size appears in this field, the file name is also given. This can either 
be the name given by the user, or an internal name created for data files associated with remote exe
cutions (rmail in this example). 

/var/spool/uucp/* uucp spool directories 

SEE ALSO 
uucp(lC) 

Sun Release 4.0 Last change: 23 December 1987 573 



UUX( IC) USER COMMANDS UUX(lC) 

NAME 
uux - remote system command execution 

SYNOPSIS 
uux [ - ] [ -nrz ] [ -gx ] [ -xn ] command-string 

AVAILABILITY 
This command is available with the uucp software installation option. Refer to Installing the SunOS for in
formation on how to install optional software. 

DESCRIPTION 
uux will gather O or more files from various systems, execute a command on a specified system and send 
the standard output to a file on a specified system. 

The command-string is made up of one or more arguments that look like a shell command line, except that 
the command and file names may be prefixed by 'system-name! '. A null system-name is interpreted as the 
local system. 

File names may be one of: 

• a full pathname; 

• a pathname preceded by x:xxl; where .ox is a username on the specified system and is 
replaced by that user's login directory; 

• a pathname preceded by ' /'; such a pathname is replaced by the "public uucp" direc
tory on the remote machine; 

• anything else is prefixed by the current directory. 

The'-' option sends the standard input to the uux command as the standard input to the command-string. 

Any special shell characters such as < >, ;, and I should be quoted either by quoting the entire command
string, or quoting the special characters as individual arguments. 

OPTIONS 
-n Do not return any indication by mail(l) of success or failure of the job. 

-r Do not start uucico, just queue the job. 

-z Return an indication by mail only if the job fails. 

-gx Set service grade or classification to x .The defaultis A. 

-xn Set debugging level to n. (5, 7, and 9 are good numbers to try; they give increasing amounts of 
detail.) 

EXAMPLE 

FILES 

The command 

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.difr' 

will get the fl files from the usg and pwba machines, execute a diff command and put the results in fl.diff 
in the local directory. 

/var/spool/uucp 
/usr/Iib/uucp/ * 

spool directory 
other data and programs 

SEE ALSO 
mail( 1 }, uucp( 1 C}, sendmail(8) 

System and Network Administration 

574 Last change: 21 December 1987 Sun Release 4.0 



UUX( lC) USER COMMANDS UUX( lC) 

WARNING 

BUGS 

An installation may, and for security reasons generally will, limit the list of commands executable on 
behalf of an incoming request from uux. Typically, a restricted site will permit little other than the receipt 
of mail using uux. 

Only the first command of a shell pipeline may have a 'system-name!'. All other commands are executed 
on the system of the first command. 

The use of the shell metacharacter * will probably not do what you want it to do. 

The shell tokens << and >> are not implemented. 

There is no notification of denial of execution on the remote machine. 

Sun Release 4.0 Last change: 21 December 1987 575 



VACATION( 1) USER COMMANDS VACATION ( 1) 

NAME 
vacation - reply to mail automatically 

SYNOPSIS 
vacation [ -I ] 
vacation [ -j ] [ -aalias ] [ -tN ] username 

DESCRIPTION 
vacation automatically replies to incoming mail. The reply is contained in the file .vacation.msg, that you 
create in your home directory. 

This file should include a header with at least a 'Subject:' line (it should not include a 'From:' or a 'To:' 
line). For example: 

Subject: I am on vacation 
I am on vacation until July 22. If you have something urgent, 
please contact Joe Jones (jones@f40). 

--John 

If the string $SUBJECT appears in the .vacation.msg file, it is replaced with the subject of the original mes
sage when the reply is sent; thus, a • vacation.msg file such as 

Subject: I am on vacation 
I am on vacation until July 22. 
Your mail regarding "$SUBJECT" will be read when I return. 
If you have something urgent, please contact Joe Jones (jones@f40). 

--John 

will include the subject of the message in the reply. 

No message is sent if the 'To:' or the 'Cc:' line does not list the user to whom the original message was 
sent or one of a number of aliases for them, if the initial From line includes the string -REQUEST@, or if 
a 'Precedence: bulk' or 'Precedence: junk' line is included in the header. 

OPTIONS 

USAGE 

576 

-I Initialize the .vacation.pag and .vacation.dir files and start vacation. 

If the -I flag is not specified, and a user argument is given, vacation reads the first line from the standard 
input (for a 'From:' line, no colon). If absent, it produces an error message. The following options may 
be specified: 

-aalias Indicate that alias is one of the valid aliases for the user running vacation, so that mail addressed 
to that alias generates a reply. 

-j Do not check whether the recipient appears in the 'To:' or the 'Cc:' line. 

-tN Change the interval between repeat replies to the same sender. The default is 1 week. A trailing 
s, m, h, d, or w scales N to seconds, minutes, hours, days, or weeks respectively. 

To start vacation, create a .forward file in your home directory containing a line of the form: 

\username, "1/usr/ucb/vacation username" 

where username is your login name. 

Then type in the command: 

vacation-I 

To stop vacation, remove the .forward file, or move it to a new name. 

If vacation is run with no arguments, it will permit you to interactively tum vacation on or off. It will 
create a • vacation.msg file for you, or edit an existing one, using the editor specified by the VISUAL or ED
ITOR environment variable, or vi( 1) if neither of those environment variables are set. If a .forward file is 

Last change: 25 November 1987 Sun Release 4.0 



VACATION (1 ) USER COMMANDS VACATION ( 1) 

FILES 

present in your home directory, it will ask whether you want to remove it and tum off vacation. If it is not 
present in your home directory, it creates it for you, and automatically performs a 'vacation-I' function, 
turning on vacation. 

.forward 
$HOME/. vacation.mesg 

A list of senders is kept in the files .vacation.pag and .vacation.dir in your home directory. 

SEE ALSO 
vi( 1 ), sendmail(8) 

Sun Release 4.0 Last change: 25 November 1987 577 



VAL(l) USER COMMANDS VAL(l) 

NAME 
val - validate an SCCS file 

SYNOPSIS 
/usr/sccs/val-

/usr/sccs/val [ -s ] [ -m name ] [ -rSID ] [ -y type ] filename . .. 

DESCRIPTION 
val determines if the specified filenames are SCCS files meeting the characteristics specified by the optional 
argument list Arguments to val may appear in any order. val can process up to 50 files on a single com
mand line. 

val has a special argument,'-', which reads the standard input until an EOF condition is detected. Each 
line read is independently processed as if it were a command line argument list 

val generates diagnostic messages on the standard output for each command line and file processed and 
also returns a single 8-bit code upon exit as described below. 

OPTIONS 
Options apply independently to each named file on the command line. 

-s Silence diagnostic messages normally generated for errors detected while processing the specified 
files. 

-mname 
filename is compared with the SCCS %M% keyword infilename. 

-r SID The argument value SID (SCCS ID String) is an SCCS delta number. A check is made to determine 
if the SID is ambiguous (for instance, 'r l' is ambiguous because it physically does not exist but 
implies 1.1, 1.2, etc. which may exist) or invalid (for instance, 'r 1.0' or 'r 1.1.0' are invalid be
cause neither case can exist as a valid delta number). If the SID is valid and not ambiguous, a 
check is made to determine if it actually exists. 

-y type type is compared with the SCCS % Y% keyword infilename. 

The 8-bit code returned by val is a disjunction of the possible errors, that is, can be interpreted as a bit 
string where (moving from left to right) set bits are interpreted as follows: 

bit O = missing file argument; 
bit 1 = unknown or duplicate option; 
bit 2 = corrupted SCCS file; 
bit 3 =cannot open file or file not SCCS; 
bit 4 = SID is invalid or ambiguous; 
bit 5 = SID does not exist; 
bit 6 = % Y%, -y mismatch; 
bit 7 = % M % , -m mismatch; 

Note: val can process two or more files on a given command line and in tum can process multiple com
mand lines (when reading the standard input). In these cases an aggregate code is returned- logical OR 
of the codes generated for each command line and file processed. 

SEE ALSO 
admin(l), delta(l), get(l), help(l), prs(l), sccs(l) 

Programming Utilities and Libraries 

DIAGNOSTICS 
Use help(l) for explanations. 

578 Last change: 9 September 1987 Sun Release 4.0 



VFONTINFO ( 1 ) USER COMMANDS VFONTINFO ( 1 ) 

NAME 
vfontinfo - inspect and print out information about fonts 

SYNOPSIS 
/usr/Iib/vfontinfo [ -v ] fontname [ characters ] 

AVAILABILITY 
This command is available with the Versatec Printer software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
vf ontinf o allows you to examine a font in the UNIX system format. It prints out all the information in the 
font header and information about every non-null (width > 0) glyph. This can be used to make sure the 
font is consistent with the format. 

The fontname argument is the name of the font you wish to inspect. It writes to the standard output. If it 
cannot find the file in your working directory, it looks in /usr/Iib/vfont (the place most of the fonts are 
kept). 

The characters, if given, specify certain characters to show. If omitted, the entire font is shown. 

OPTIONS 
-v Verbose. The bits of the glyph itself are shown as an array of X's and SPACE characters, in addi

tion to the header information. 

FILES 
/usr/Iib/vfont 
/usr /Iib/vpd 

SEE ALSO 

Versatec daemon 

vswap(l), vwidth(l), vfont(5) 

Sun Release 4.0 Last change: 23 November 1987 579 



VGRIND( 1) USER COMMANDS VGRIND( 1) 

NAME 
vgrind - grind nice program listings 

SYNOPSIS 
vgrind [ - ] [ -ftnxWw] [ sn ] [ -h header ] [ -d defs-file ] [ -Ilanguage ] filename . .. 

AVAILABILITY 
This command is available for Sun-2, Sun-3 and Sun-4 systems with the Text Processing Tools software in
stallation option. Refer to Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
vgrind formats the program sources named by the filename arguments in a nice style using troff(l). Com
ments are placed in italics, keywords in bold face, and as each function is encountered its name is listed on 
the page margin. 

vgrind runs in two basic modes, filter mode or regular mode. In filter mode vgrind acts as a filter in a 
manner similar to tbl(l). The standard input is passed directly to the standard output except for lines 
bracketed by the troff-like macros: 

.vS starts processing 

• v E ends processing 

These lines are formatted as described above. The output from this filter can be passed to troff for output. 
There need be no particular ordering with eqn(l) or tbl. 

In regular mode vgrind accepts input filenames, processes them, and passes them to troff for output. 

In both modes vgrind passes any lines beginning with a decimal point without conversion. 

OPTIONS 

580 

Note: arguments to the -I and-s options follow the option names immediately, with no intervening space. 
All other arguments and options must be separated with white space. 

Take from standard input (default if-f is specified). 

-f Force filter mode. 

-t Similar to the same option in troff; that is, formatted text goes to the standard output. 

-n Do not make keywords boldface. 

-x Output the index file in a ''pretty'' format The index file itself is produced whenever vgrind is 
run with a file called index present in the current directory. The index of function definitions can 
then be run off by giving vgrind the -x option and the file index as argument. 

-W Force output to the (wide) Versatec printer rather than the (narrow) Varian. 

-w Consider TAB characters to be spaced four columns apart instead of the usual eight. 

-sn Specify a point size to use on output (exactly the same as the argument of a troff .ps point size re-
quest). 

-b header 
Specify a particular header to put on every output page ( default is the current file name). 

-d defs-file 
Specify an alternate language definitions file (default is /usr/Iib/vgrindefs). 

-llanguage 
Specify the language to use. Among the languages currently known are: Bourne shell (-lsh), C 
(-le, the default), C-shell (-lcsh), emacs MLisp, (-lml), FORTRAN (-If), Icon (-II), ISP (-i), LDL 
(-ILDL), Model (-Im), Pascal (-Ip), and RATFOR (-Ir). 

Last change: 18 February 1988 Sun Release 4.0 



VGRIND( 1) USER COMMANDS VGRIND(l) 

ENVIRONMENT 

FILES 

In regular mode vgrind feeds its intermediate output to the text formatter given by the value of the TROFF 
environment variable, or to TROFF if this variable is not defined in the environment. This mechanism al
lows for local variations in troff's name. 

index file where source for index is created 
/usr/lib/vgrindefs language descriptions 
/usr/lib/vfontedpr preprocessor 
/usr/share/lib/tmac/tmac. vgrind 

macro package 

SEE ALSO 

BUGS 

ctags(l), eqn(l), tbl(l), trofT(l), vgrindefs(5) 

vgrind assumes that a certain programming style is followed: 

C 

FORTRAN 

MLisp 

Model 

Pascal 

Function names can be preceded on a line only by SP ACE, TAB, or an asterisk. 
The parenthesized arguments must also be on the same line. 

Function names need to appear on the same line as the keywords function or sub
routine. 

Function names should not appear on the same line as the preceding def un. 

Function names need to appear on the same line as the keywords is beginproc. 

Function names need to appear on the same line as the keywords/ unction or pro-
cedure. 

If these conventions are not followed, the indexing and marginal function name comment mechanisms will 
fail. 

More generally, arbitrary formatting styles for programs mostly look bad. The use of spaces to align 
source code fails miserably; if you plan to vgrind your program you should use TAB characters. This is 
somewhat inevitable since the fonts vgrind uses are variable width. 

The mechanism of eta gs( 1) in recognizing functions should be used here. 

The -w option is a crock, but there is no other way to achieve the desired effect. 

The macros defined in tmac.vgrind do not coexist gracefully with those of other macro packages, making 
filter mode difficult to use effectively. 

Sun Release 4.0 Last change: 18 February 1988 581 



VI(l) USER COMMANDS VI(l) 

NAME 
vi, view - visual display editor based on ex( 1) 

SYNOPSIS 
vi [ -Ir Rx ] [ -t tag ] [ -wnnn ] [ +command ] filename . .. 

view ... 

DESCRIPTION 
vi (visual) is a display oriented text editor based on ex(l). ex and vi are, in fact, the same text editor; it is 
possible to get to the command mode of ex from within vi and vice-versa. 

The view command runs vi with the readonly variable set. With view, you can browse through files in
teractively without making any changes. 

OPTIONS 
-I Set up for editing LISP programs. 

-r Recover the named files after a crash. 

-R Edit files in read only state. This has the same effect as the view command. 

-x Prompt for a key with which to encrypt the file or files being edited. 

-t tag Edit the file containing tag. There must be a tags database in the directory, built by ctags( 1 ), that 
contains a reference to tag. 

+c01nmand 
Start the editing session by executing command. 

+command 
Start the editing session by executing command. 

ENVIRONMENT 

FILES 

BUGS 

582 

The editor recognizes the environment variable EXINIT as a command (or list of commands separated by I 
characters) to run when it starts up. If this variable is undefined, the editor checks for startup commands in 
the file /.exrc file, which you must own. However, if there is a .exrc owned by you in the current directo
ry, the editor takes its startup commands from this file - overriding both the file in your home directory 
and the environment variable. 

ctags(l), ex(l) 

Editing Text Files 
Getting Started with SunOS: Beginner's Guide 

Software TAB characters using CTRL-T work only immediately after the autoindent. 

SHIFT-left and SHIFT-right on intelligent terminals do not make use of insert and delete character opera
tions in the terminal. 

The wrapmargin option can be fooled since it looks at output columns when blanks are typed. If a long 
word passes through the margin and onto the next line without a break, then the line will not be broken. 

Repeating a change which wraps over the margin when wrap margin is in effect does not generally work 
well: sometimes it just makes a mess of the change, and sometimes even leaves you in insert mode. A way 
to work around the problem is to replicate the changes using y (yank) and p (put). 

Insert/delete within a line can be slow if TAB characters are present on intelligent terminals, since the ter
minals need help in doing this correctly. 

Saving text on deletes in the named buffers is somewhat inefficient. 

Last change: 22 December 1987 Sun Release 4.0 



VI(l) USER COMMANDS Vl(l) 

The source command does not work when executed as ':source'; there is no way to use the ':append', 
':change', and ':insert' commands, since it is not possible to give more than one line of input to a':' es
cape. To use these on a ':global' you must Q to ex command mode, execute them, and then reenter the 
screen editor with vi or open. 

When using the -r option to recover a file, you must write the recovered text before quitting or you will 
lose it. vi does not prevent you from exiting without writing unless you make changes. 

vi does not adjust when the Sun View window in which it runs is resized. 

RESTRICTIONS 
The encryption facilities of vi are not available on software shipped outside the U.S. 

Sun Release 4.0 Last change: 22 December 1987 583 



VPLOT( 1) USER COMMANDS 

NAME 
vplot - plot graphics for a Versatec printer 

SYNOPSIS 
vplot [ -VW ] [ -b /pr-argument ] filename 

AVAILABILITY 

VPLOT( 1) 

This command is available with the Versatec Printer software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
vplot reads plot(5) format graphics input from the file specified by filename (the standard input if no 
filename is specified) and produces a plot on the Varian or Versatec printer. 

OPTIONS 
-V Force output to the standard Versatec printer. 

-W Force output to the (wide) Versatec printer rather than the standard Versatec printer. 

-b /pr-argument 
argument (the next argument on the command line) specifies extra arguments to lpr(l). 

SEE ALSO 
lpr(l), plot(lG), plot(5) 

584 Last change: 21 December 1987 Sun Release 4.0 



VSWAP(l) USER COMMANDS VSWAP(l) 

NAME 
vswap - convert a foreign font file 

SYNOPSIS 
/usr/Iib/vswap [ -r] 

AVAILABILITY 
This command is available with the Versatec Printer software installation option. Refer to Installing the 
Sun0S for information on how to install optional software. 

DESCRIPTION 
Without the -r option, vswap translates its standard input (which must be a vfont(5) file in the reversed
byte order) into a locally correct vfont file on its standard output. With the -r option, vswap translates its 
standard input (which must be a vfont file in the local-byte order) into a byte-reversed vfont file on its stan
dard output. 

The UNIX system vfont representation for fonts is a binary file containing machine-dependent elements -
short (16-bit) integers, in particular. There are (at least) two common ways of representing a 16-bit integer. 
A program compiled on a VAX will expect the VAX format, while the same program compiled on a 
machine using a Motorola 68000-family processor or a SP ARC processor will expect the reverse format. 
vswap can be used to convert font files created on a VAX to the format required to use them on Suns. (All 
Suns use the same vfont format, regardless of the native byte order of the proce_ssor, including Suns that 
use the Intel 80386 processor. Programs that will be run on Suns that use the Intel 80386 processor must 
be aware of this, and convert the machine-dependent elements when they read or write vfont files.) It can 
also convert Sun-format font files to VAX format (with the -r option). 

SEE ALSO 
troff(l), vfont(5) 

BUGS 
A machine-independent font format should be defined. 

Sun Release 4.0 Last change: 10 January 1988 585 



VTROFF(l) USER COMMANDS VTROFF( 1) 

NAME 
vtroff - troff to a raster plotter 

SYNOPSIS 
vtrofT [ -wx ] [ -F majorfont] [ -llength ] [ -123 minorfont ] troff-arguments 

AVAILABILITY 
This command is available with the Versatec Printer software installation option. Refer to Installing the 
Sun0S for information on how to install optional software. 

DESCRIPTION 
vtrofT runs troff(l) sending its output through various programs to produce typeset output on a raster 
plotter such as a Benson-Varian or or a Versatec. 

OPTIONS 

FILES 

-w Specify that a wide output device be used; the default is to use a narrow device. 

-x Simulate photo-typesetter output exactly. As with, using the width tables for the C.A.T. photo-
typesetter. 

-F fontname 

-)length 

Specify fontname as the desired font. This will place normal, italic and bold versions of the font 
on positions 1, 2, and 3. The default font is a Hershey font. argument and then the font name. 

Split the output onto successive pages every length inches rather than the default 11 inches. 

-123 minorf ont 
Place a font only on a single position specified by-n (where n is 1, 2, or 3) and the minor font 
name. A .r will be added to the minor font name if needed. Thus 

vtrofT -ms paper 

will set a paper in the Hershey font, while 
vtrofT -F nonie -ms paper 

will set the paper in the (sans serif) nonie font. 

/usr/share/Iib/tmac/tmac. vcat 

/usr/lib/fontinfo/• 
/usr/lib/vfont 

default font mounts and bug fixes 
fixes for other fonts 
directory containing fonts 

SEE ALSO 

BUGS 

586 

trofT(l), vfont(5) 

Since some macro packages work correctly only if the fonts named R, I, B, and S are mounted, and since 
the Versatec fonts have different widths for individual characters than the fonts found on the typesetter, the 
following dodge was necessary: If you do not use the .fp troff directive then you get the widths of the stan
dard typesetter fonts suitable for shipping the output of troff over the network to the computer center A 
machine for phototypesetting. If, however, you remount the R, I, B and S fonts, then you get the width 
tables for the Versatec. 

Last change: 21 December 1987 Sun Release 4.0 



VWIDTH(l) USER COMMANDS VWIDTH(l) 

NAME 
vwidth - make a troff width table for a font 

SYNOPSIS 
/usr/lib/vwidth/onifi/e pointsize > ftxx.c 

cc -c ftxx.c 

mv ftxx.o /usr/lib/font/ftxx 

AVAILABILITY 
This command is available with the Versatec Printer software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

vwidth translates from the width information stored in the vfont style format to the format expected by 
trotT(l)- an object file in a.out(5) format. troff should look directly in the font file but it doesn't. 

vwidth should be used after editing a font with fontedit(l). It is not necessary to use vwidth unless you 
have made a change that would affect the width tables. Such changes include numerically editing the 
width field, adding a new character, and moving or copying a character to a new position. It is not always 
necessary to use vwidth if the physical width of the glyph (for instance the number of columns in the bit 
matrix) has changed, but if it has changed much the logical width should probably be changed and vwidth 
run. 

vwidth produces a C program on its standard output. This program should be run through the C compiler 
and the object (that is, the .o file) saved. The resulting file should be placed in /usr/lib/font in the file ftxx 
where xx is a one or two letter code that is the logical (internal to troff) font name. This name can be 
found by looking in the file /usr/Iib/fontinfoifname * where /name is the external name of the font. 

/usr/Iib/font 
a.out 

SEE ALSO 
trotT(l), vtrotT(l), fontedit(l), a.out(5), vfont(5) 

Sun Release 4.0 Last change: 21 December 1987 587 



W( 1) USER COMMANDS W(l) 

NAME 
w - who is logged in, and what are they doing 

SYNOPSIS 
w [ -hs ] [ user ] 

DESCRIPTION 
w displays a summary of the current activity on the system, including what each user is doing. The head
ing line shows the current time of day, how long the system has been up, the number of users logged into 
the system, and the load averages. The load average numbers give the number of jobs in the run queue 
averaged over 1, 5 and 15 minutes. 

The fields displayed are: the users login name, the name of the tty the user is on, the time of day the user 
logged on (in hours:minutes), the idle time - that is, the number of minutes since the user last typed any
thing (in hours:minutes), the CPU time used by all processes and their children on that terminal (in 
minutes:seconds), the CPU time used by the currently active processes (in minutes:seconds), the name and 
arguments of the current process. 

If a user name is included, output is restricted to that user. 

OPTIONS 
-h 

-s 

Suppress the heading. 

Produce a short form of output. In the short form, the tty is abbreviated, the login time and CPU 
times are left off, as are the arguments to commands. 

-1 

EXAMPLE 

Produce a long form of output, which is the default. 

FILES 

example% w 
7:36am up 6 days, 16:45, 1 users, load average: 0.20, 0.23, 0.18 
User tty login@ idle J CPU PCPU what 
ralph console 7:10am 1 10:05 4:31 w 
example% 

/etc/utmp 
/dev/kmem 
/dev/drum 

SEE ALSO 

BUGS 

588 

ps(l), who(l), utmp(5) 

The notion of the "current process" is muddy. The current algorithm is 'the highest numbered process on 
the terminal that is not ignoring interrupts, or, if there is none, the highest numbered process on the termi
nal'. This fails, for example, in critical sections of programs like the shell and editor, or when faulty pro
grams running in the background fork and fail to ignore interrupts. In cases where no process can be 
found, w prints'-'. 

The CPU time is only an estimate, in particular, if someone leaves a background process running after log
ging out, the person currently on that terminal is "charged" with the time. 

Background processes are not shown, even though they account for much of the load on the system. 

Sometimes processes, typically those in the background, are printed with null or garbaged arguments. In 
these cases, the name of the command is printed in parentheses. 

w does not know about the new conventions for detecting background jobs. It will sometimes find a back
ground job instead of the right one. 

Last change: 9 September 1987 Sun Release 4.0 



WAIT( 1) USER COMMANDS WAIT(l) 

NAME 
wait - wait for a process to finish 

SYNOPSIS 
wait 

DESCRIPTION 
Wait until all processes started with & or bg have completed, and report on abnormal terminations. 

Because the wait(2) system call must be executed in the parent process, the shell itself executes wait, 
without creating a new process. 

SEE ALSO 
csh(l), sh(l), wait(2) 

BUGS 

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus cannot be waited for. 
This bug does not apply to csh(l). 

Sun Release 4.0 Last change: 9 September 1987 589 



WALL(l) USER COMMANDS WALL(l) 

NAME 
wall - write to all users logged in 

SYNOPSIS 
wall [ -a ] [filename ] 

DESCRIPTION 

FILES 

wall reads the standard input until an EOF. It then sends this message, preceded by 'Broadcast Messagt 
••• ', to all logged in users. If .filename is given, then the message is read in from that file. Normally, 
pseudo-terminals that do not correspond to rlogin sessions are ignored. Thus when in sunview(l), the mes
sage appears only on the console window. However, -a will send the message even to such pseudo
terminals. 

The sender should be super-user to override any protections the users may have invoked. 

/dev/tty? 
/etc/utmp 

SEE ALSO 
mesg(l), sunview(l), write(l) 

590 Last change: 9 September 1987 Sun Release 4.0 



WC(l) USER COMMANDS WC(l) 

NAME 
wc - display a count of lines, words and characters 

SYNOPSIS 
wc [ -lwc] [filename ... ] 

DESCRIPTION 
wc counts lines, words, and characters in filenames, or in the standard input if no filename appears. It also 
keeps a total count for all named files. A word is a string of characters delimited by SP ACE, TAB, or NEW
LINE characters. 

OPTIONS 
When filenames are specified on the command line, their names will be printed along with the counts. 

The default is -lwc (count lines, words, and characters). 

Count lines. 

w Count words. 

c Count characters. 

EXAMPLE 
example% 
wc /usr/share/man/manl/ { csh.1,sh.1,telnet.1} 

1876 11223 65895 /usr/share/man/manl/csh.1 
674 3310 20338 /usr/share/man/manl/sh.1 
260 1110 6834 /usr/share/man/manl/telnet.1 

2810 15643 93067 total 
example% 

Sun Release 4.0 Last change: 9 September 1987 591 



WHAT(l) USER COMMANDS WHAT(l) 

NAME 
what - identify the version of files under SCCS 

SYNOPSIS 
what filename 

DESCRIPTION 
what searches the given filenames for all occurrences of the pattern that get( 1) substitutes for % Z % ( this 
is@(#) at this printing) and prints out what follows until the first , >,NEWLINE,\, or NULL character. For 
example, if the C program in file program.c contains 

char ident[ ] = " @(#)identification information "; 

and program.c is compiled to yield program.o and a.out, the command 
what r.c r.o a.out 

will print 

r.c: identification information 

r.o: identification information 

a.out: identification information 

what is intended to be used in conjunction with the SCCS command get(l), which automatically inserts 
identifying information, but it can also be used where the information is inserted manually. 

SEE ALSO 
file(l), get(l), help(l), sccs(l) 

Programming Utilities and Libraries 

DIAGNOSTICS 
Use help(l) for explanations. 

BUGS 
It is possible that an unintended occurrence of the pattern @(#) could be found just by chance, but this 
causes no harm in nearly all cases. 

592 Last change: 24 September 1987 Sun Release 4.0 



WHATIS( 1) USER COMMANDS WHATIS ( 1) 

NAME 
whatis - display a one-line summary about a keyword 

SYNOPSIS 
whatis comma.nd . .. 

DESCRIPTION 
whatis looks up a given command and displays the header line from the manual section. You can then run 
the man(l) command to get more information. If the line starts 'name(section) .. . ' you can do 
'man section name' to get the documentation for it. Try 'whatis ed' and then you should do 
'man 1 ed' to get the manual page for ed(l). 

whatis is actually just the -f option to the man(l) command. 

FILES 
/usr/share/man/whatis data base 

SEE ALSO 
man(l), catman(8) 

Sun Release 4.0 Last change: 9 September 1987 593 



WHEREIS(l) USER COMMANDS WHEREIS(l) 

NAME 
whereis - locate the binary, source, and manual page files for a command 

SYNOPSIS 
whereis [ -bmsu ] [ -BMS directory. . . -f] filename ... 

DESCRIPTION 
whereis locates source/binary and manuals sections for specified files. The supplied names are first 
stripped of leading pathname components and any (single) trailing extension of the form .ext, for example, 
.c. Prefixes of s. resulting from use of source code control are also dealt with. whereis then attempts to lo
cate the desired program in a list of standard places: 

/usr/bin 
/usr/bin 
/usr/Sbin 
/usr/games 
/usr/hosts 
/usr/include 
/usr/Iocal 
/usr/etc 
/usr/Iib 
/usr/share/man 
/usr/src 
/usr/ucb 

OPTIONS 
-b Search only for binaries. 

-m 

-s 

-u 

-B 

-M 
-S 
-f 

Search only for manual sections. 

Search only for sources. 

Search for unusual entries. A file is said to be unusual if it does not have one entry of each re
quested type. Thus 'whereis -m -u *' asks for those files in the current directory which have 
no documentation. 

Change or otherwise limit the places where whereis searches for binaries. 

Change or otherwise limit the places where whereis searches for manual sections. 

Change or otherwise limit the places where whereis searches for sources. 

Terminate the last directory list and signals the start of file names, ~d must be used when any of 
the -B, -M, or -S options are used. 

EXAMPLE 

FILES 

Find all files in /usr/bin which are not documented in /usr/share/man/manl with source in /usr/src/cmd: 

example% cd /usr/ucb 
example% whereis -u -M /usr/share/man/manl -S /usr/src/cmd -f * 

/usr/src/• 
/usr/{doc,man}/• 
I etc, /usr/ {lib,bin,ucb,old,new ,local} 

SEE ALSO 
chdir(2) 

594 Last change: 9 September 1987 Sun Release 4.0 



WHEREIS( 1) USER COMMANDS WHEREIS( 1) 

BUGS 
Since whereis uses chdir(2) to run faster, pathnames given with the -M, -S, or -B must be full; that is, 
they must begin with a '/'. 

Sun Release 4.0 Last change: 9 September 1987 595 



WHICH(l) USER COMMANDS WHICH(l) 

NAME 
which - locate a command; display its pathname or alias 

SYNOPSIS 
which [filename ] ... 

DESCRIPTION 

FILES 

which takes a list of names and looks for the files which would be executed had these names been given as 
commands. Each argument is expanded if it is aliased, and searched for along the user's path. Both aliases 
and path are taken from the user's .cshrc file. 

/.cshrc 

SEE ALSO 

source of aliases and path values 

csh(l) 

DIAGNOSTICS 

BUGS 

596 

A diagnostic is given for names which are aliased to more than a single word, or if an executable file with 
the argument name was not found in the path. 

Only aliases and paths from /.cshrc are used; importing from the current environment is not attempted. 
Must be executed by csh(l), since only csh knows about aliases. 

To compensate for /.cshrc files in which aliases depend upon the prompt variable being set, which sets 
this variable. If the /.cshrc produces output or prompts for input when prompt is set, which may produce 
some strange results. 

Last change: 9 September 1987 Sun Release 4.0 



WHO(l) USER COMMANDS WHO(l) 

NAME 
who - who is logged in on the system 

SYNOPSIS 
who [who-file] [ am i] 

DESCRIPTION 
Used without arguments, who lists the login name, terminal name, and login time for each current user. 
who gets this information from the /etc/utmp file. 

If a filename argument is given, the named file is examined instead of /etc/utmp. Typically the named file 
is /var/adm/wtmp, which contains a record of all logins since it was created. In this case, who lists logins, 
logouts, and crashes. Each login is listed with user name, terminal name (with /dev/ suppressed), and date 
and time. Logouts produce a similar line without a user name. Reboots produce a line with ' ' in place of 
the device name, and a fossil time indicating when the system went down. Finally, the adjacent pair of en
tries 'I' and '}' indicate the system-maintained time just before and after a date command changed the 
system's idea of the time. 

With two arguments, as in 'who am i' (and also 'who is who'), who tells who you are logged in as: it 
displays your hostname, login name, terminal name, and login time. 

EXAMPLES 

FILES 

example% who am i 
example!ralph ttypO Apr 27 11:24 
example% 

example% who 
mktg ttymO Apr 27 11: 11 
joe ttypO Apr 27 11:25 
ralph ttypl Apr 27 11:30 
example% 

/etc/utmp 
/var/adm/wtmp 

SEE ALSO 
w(l), whoami(l), utmp(5) 

Sun Release 4.0 Last change: 23 September 1987 597 



WHOAMl(l) USER COMMANDS WHOAMl(l) 

NAME 
whoami - display the effective current usemame 

SYNOPSIS 
whoami 

DESCRIPTION 
whoami displays your login name; whoami works even if you have used su(l) to temporarily adopt anoth
er user ID, since it gets its information from the /etc/utmp file. 

FILES 
/ etc/passwd usemame data base 
/etc/utmp database of users currently logged in. 

SEE ALSO 
su(l), who(l), utmp(5) 

598 Last ch~nge: 9 September 1987 Sun Release 4.0 



WHOIS( 1) USER COMMANDS WHOIS(l) 

NAME 
whois - DARPA Internet user name directory service 

SYNOPSIS 
whois [ -h host] identifier 

DESCRIPTION 

whois searches for an ARPANET directory entry for an identifier which is either a name (such as "Smith") 
or a handle (such as "SRI-NIC"). You can force a name-only search by preceding the name with a period; 
you can force a handle-only search by preceding the handle with an exclamation point. See EXAMPLES. 

If you are searching for a group or organization entry, you can have the entire membership list of the group 
displayed with the record by preceding the argument with '*' ( an asterisk). 

You may of course use an exclamation point and asterisk, or a period and asterisk together. 

EXAMPLES 
example% whois Smith 

looks for name or handle SMITH. 

example% whois !SRI-NIC 

looks for handle SRI-NIC only. 

example% whois .Smith, John 

looks for name JOHN SMITH only. 

Adding' ••• ' to the name or handle argument will match anything from that point; that is, 'ZU .. . ' will 
match ZUL, ZUM, etc. 

Sun Release 4.0 Last change: 9 September 1987 599 



WRITE( 1) USER COMMANDS WRITE( 1) 

NAME 
write- write a message to another user 

SYNOPSIS 
write username [ ttyname ] 

DESCRIPTION 
write copies lines from your standard input to user's screen. 

When you type a write command, the person you are writing to sees a message like this: 

Message from hostname !yourname on yourttyname 

After typing the write command, enter the text of your message. What you type appears line-by-line on 
the other user's screen. Conclude by typing an EOF indication (CTRL-D) or an interrupt. At this point 
write displays EOT on your recipient's screen and exits. 

To write to a user who is logged in more than once, use the ttyname argument to indicate the appropriate 
terminal name. 

You can grant or deny other users permission to write to you by using the mesg command ( default allows 
writing). Certain commands, nroff(l) and pr(l V) in particular, do not allow anyone to write to you while 
you are using them in order to prevent messy output. 

If write finds the character '!' at the beginning of a line, it calls the shell to execute the rest of the line as a 
command. 

Two people can carry on a conversation by writing" to each other. When the other person receives the 
message indicating you are writing to him, he can then write back to you if he wishes. However, since you 
are now simultaneously typing and receiving messages, you end up with garbage on your screen unless you 
work out some sort of scheduling scheme with your partner. You might try the following conventional 
protocol: when you first write to another user, wait for him to write back before starting to send. Each per
son should end each message with a distinctive signal - -o- (for over") is standard - so that the other 
knows when to begin a reply. To end your conversation, type -oo- (for over and out") before finishing the 
conversation. 

EXAMPLE 

600 

Here is an example of a short dialog between two people on different terminals. Two users called Horace" 
and Eudora" are logged in on a system calledjones". To illustrate the process, both users' screens are 
shown side-by-side: 
Eudora's Terminal Horace's Terminal 

Horace is staring at his screen 
jones % write horace 
how about a squash game tonight? -o-

Message from jones!eudora on tty09 at 17:05 ... 
how about a squash game tonight? -o-
jones % write eudora 
I'm playing tiddlywinks with Carmeline -o

Message from jones!horace on tty03 at 17:06 ... 
I'm playing tiddlywinks with Carmeline -o-
How about the beach on Sunday? -o-

How about the beach on Sunday? -o
Sorry, I'm washing my tent that day -o

Sorry, I'm washing my tent that day-o-
See you when I get back from Peru -oo-

"D 
jones% 

See you when I get back from Peru -oo-

EOF 
I hear rack of llama is very tasty -oo
"D 

Last change: 9 September 1987 Sun Release 4.0 



WRITE( 1) USER COMMANDS 

I hear rack of llama is very tasty -oo
EOF jones% 

FILES 
/etc/utmp 
/usr/bin/sh 

SEE ALSO 

to find user 
to execute! 

mail(l), mesg(l), pr(l V), talk(l), troff(l), who(l) 

Sun Release 4.0 Last change: 9 September 1987 

WRITE(l) 

601 



XARGS( 1) USER COMMANDS XARGS(l) 

NAME 
xargs - construct the arguments list(s) and execute a command 

SYNOPSIS 
xargs [ -ptx ] [ -lnumber ] [ -ireplstr ] [ -nnumber ] [ -ssize ] [ ~eofstr ] 

[ command [ initial-arguments ] ] 

AVAILABILITY 
This command is available with the System V software installation option. Refer to Installing the SunOS 
for information on how to install optional software. 

DESCRIPTION 
xargs combines the fixed initial-arguments with arguments read from the standard input, to execute the 
specified command one or more times. The number of arguments read for each command invocation, and 
the manner in which they are combined are determined by the options specified. 

command, which may be a shell file, is searched for using one's $PATH. If command is omitted, 
/usr/bin/echo is used. 

Arguments read in from the standard input are defined to be contiguous strings of characters delimited by 
white space. Empty lines are always discarded. Blanks and tabs may be embedded as part of an argument 
if they are escaped or quoted. Characters enclosed in quotes (single or double) are taken literally, and the 
delimiting quotes are removed. Outside of quoted strings, a '\' (backslash) will escape the character it pre
cedes. 

Each arguments-list is constructed starting with the initial-arguments, followed by some number of argu
ments read from the standard input (Exception: see-i option). Options -i, -1, and-n determine how argu
ments are selected for each command invocation. When none of these options are coded, the initial
arguments are followed by arguments read continuously from the standard input until an internal buffer is 
full, and then command is executed with the accumulated arguments. This process is repeated until there 
are none left. When there are option conflicts (for instance, -I versus -n), the last option takes precedence. 

xargs will terminate if it receives a return code of -1, or if it cannot execute command. When command is 
a shell script, it should explicitly exit (see sh(l)) with an appropriate value to avoid accidentally returning 
with-I. 

OPTIONS 

602 

-p 

-t 

-x 

Prompt mode. The user is asked whether to execute command each invocation. Trace mode (-t) is 
turned on to print the command instance to be executed, followed by a ? ••• prompt. A reply of y 
( optionally followed by anything) will execute the command; anything else, including just a car
riage return, skips that particular invocation of command. 

Trace mode. The command and each constructed argument list are echoed to file descriptor 2 just 
prior to their execution. 

Terminate xargs if any argument list would be greater than size characters; -x is forced by the op
tions -i and-I. When neither of the options -i, -I, or-n are coded, the total length of all argu
ments must be within the size limit. 

-Inumber 

-ireplstr 

command is executed for each nonempty number lines of arguments from the standard input. The 
last invocation of command will be with fewer lines of arguments if fewer than number remain. A 
line is considered to end with the first NEWLINE unless the last character of the line is a SPACE or 
a TAB; a trailing SPACE/f AB signals continuation through the next non-empty line. If number is 
omitted, 1 is assumed. Option -x is forced. 

Insert mode: command is executed for each line from the standard input, taking the entire line as a 
single argument, inserting it in initial-arguments for each occurrence of replstr. A maximum of 5 
arguments in initial-arguments may each contain one or more instances of replstr. SPACE and 
TAB characters at the beginning of each line are thrown away. Constructed arguments may not 

Last change: 21 December 1987 Sun Release 4.0 



XARGS( 1) USER COMMANDS XARGS( 1) 

grow larger than 255 characters, and option -x is also forced. {} is assumed for replstr if not 
specified. 

-nnumber 
Execute command using as many standard input arguments as possible, up to number arguments 
maximum. Fewer arguments will be used if their total size is greater than size characters, and for 
the last invocation if there are fewer than number arguments remaining. If option -x is also cod
ed, each number arguments must fit in the size limitation, else xargs terminates execution. 

-ssize The maximum total size of each argument list is set to size characters; size must be a positive in
teger less than or equal to 470. If -s is not coded, 470 is taken as the default. Note: the character 
count for size includes one extra character for each argument and the count of characters in the 
command name. 

-eeofstr 
eofstr is taken as the logical EOF string. '_' (underbar) is assumed for the logical EOF string if -e 
is not coded. The value -e with no eofstr coded turns off the logical EOF string capability (under
bar is taken literally). xargs reads the standard input until either EOF or the logical EOF string is 
encountered. 

EXAMPLES 

FILES 

The following will move all files from directory $1 to directory $2, and echo each move command just be
fore doing it: 

Is $1 I xargs -i -t 

The following will combine the output of the parenthesized commands onto one line, which is then echoed 
to the end of file log: 

(logname; date; echo $0 $•) I xargs »log 

The user is asked which files in the current directory are to be archived and archives them into arch(l) 1.) 
one at a time, or 2.) many at a time. 

1. Is I xargs -p -I ar r arch 
2. Is I xargs -p -I I xargs ar r arch 

The following will execute diff(l) with successive pairs of arguments originally typed as shell arguments: 

echo $• I xargs -n2 diff 

/usr/bin/echo 

SEE ALSO 
arch(l), diff(l), sh(l) 

Sun Release 4.0 Last change: 21 December 1987 603 



XSEND( 1) USER COMMANDS XSEND( 1) 

NAME 
xsend, xget, enroll - send or receive secret mail 

SYNOPSIS 
xsend username 

xget 

enroll 

DESCRIPTION 

FILES 

These commands implement a secure communication channel, which is like mail( 1 ), but no one can read 
the messages except the intended recipient. The method embodies a public-key cryptosystem using knap
sacks. 

To receive messages, use enroll; it asks you for a password that you must subsequently quote in order to 
receive secret mail. 

To receive secret mail, use xget. It asks for your password, then gives you the messages. 

To send secret mail, use xsend in the same manner as the ordinary mail command. Unlike mail, xsend ac
cepts only one target. A message announcing the receipt of secret mail is also sent by ordinary mail. 

/var/spool/secretmaiV•.key keys 
/var/spool/secretmail/• .[0-9] messages 

SEE ALSO 
mail(l) 

BUGS 
The knapsack public-key cryptosystem is known to be breakable. 

Secret mail should be integrated with ordinary mail. 

The announcement of secret mail makes "traffic analysis" possible. 

RESTRICTIONS 
These facilities are not available on software shipped outside the U.S. 

604 Last change: 9 September 1987 Sun Release 4.0 



XSTR( 1) USER COMMANDS XSTR(l) 

NAME 
xstr - extract strings from C programs to implement shared strings 

SYNOPSIS 
xstr [ - ] [ -cv] [ -I array] [filename] 

DESCRIPTION 
xstr maintains a file called strings into which strings in component parts of a large program are hashed. 
These strings are replaced with references to this common area. This serves to implement shared constant 
strings, which are most useful if they are also read-only. 

The command 

xstr-c name 

extracts the strings from the C source in name, replacing string references by expressions of the form 
&xstr[number] for some number. An appropriate declaration of xstr is prepended to the file. The result
ing C text is placed in the file x.c, to then be compiled. The strings from this file are placed in the strings 
data base if they are not there already. Repeated strings and strings which are suffixes of existing strings 
do not cause changes to the data base. 

After all components of a large program have been compiled a file xs.c declaring the common xstr space 
can be created by a command of the form 

xstr 

This xs.c file should then be compiled and loaded with the rest of the program. If possible, the array can be 
made read-only (shared) saving space and swap overhead. 

xstr can also be used on a single file. A command 

xstr name 

creates files x.c and xs.c as before, without using or affecting any strings file in the same directory. 

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings or if there is con
ditional code which contains strings which may not, in fact, be needed. xstr reads from the standard input 
when the argument'-' is given. An appropriate command sequence for running xstr after the C prepro
cessor is: 

cc -E name.c I xstr -c -
cc-c x.c 
mv x.o name.o 

xstr does not touch the file strings unless new items are added; thus make(l) can avoid remaking xs.o un
less truly necessary. 

OPTIONS 
-cfilename 

Take C source text fromfilename. 

-v Verbose: display a progress report indicating where new or duplicate strings were found. 

FILES 

-l array 

strings 
x.c 
xs.c 
/tmp/xs* 

Sun Release 4.0 

Specify the named array in program references to abstracted strings. The default array name is 
xstr. 

data base of strings 
massaged C source 
C source for definition of array "xstr" 
temp file when "xstr name" doesn't touch strings 

Last change: 22 February 1988 605 



XSTR( 1) USER COMMANDS XSTR(l) 

SEE ALSO 
make(l), mkstr(l) 

BUGS 
If a string is a suffix of another string in the data base, but the shorter string is seen first by xstr both strings 
will be placed in the data base, when just placing the longer one there would do. 

606 Last change: 22 February 1988 Sun Release 4.0 



YACC( 1) USER COMMANDS YACC(l) 

NAME 
yacc - yet another compiler-compiler: parsing program generator 

SYNOPSIS 
yacc [ -dv ] grammar 

DESCRIPTION 
yacc converts a context-free grammar into a set of tables for a simple automaton which executes an LR(l) 
parsing algorithm. The grammar may be ambiguous; specified precedence rules are used to break ambigui
ties. 

The output file, y.tab.c, must be compiled by the C compiler to produce a function named yyparse( ). The 
yyparse() function must be loaded with the lexical analyzer yylex( ), as well as main() and yyerror( ), an 
error handling routine. These routines must be supplied by the user; lex(l) is useful for creating lexical 
analyzers usable by yacc-produced parsers. 

OPTIONS 

FILES 

-d Generate the file y .tab.h with the define statements that associate the yacc-assigned "token codes" 
with the user-declared "token names" so that source files other than y.tab.c can access the token 
codes. 

-v Prepare the file y.output containing a description of the parsing tables and a report on conflicts 
generated by ambiguities in the grammar. 

.y.output 
y.tab.c 
y.tab.h 
yacc.tmp, yacc.acts 
/usr/Iib/yaccpar 

description of parsing tables and conflict report 
output parser 
defines for token names 
temporary files 
parser prototype for C programs 

SEE ALSO 
lex(l) 

yacc in Programming Utilities and Libraries 
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974 

DIAGNOSTICS 

BUGS 

The number of reduce-reduce and SHIFT-reduce conflicts is reported on the standard output; a more de
tailed report is found in they.output file. Similarly, if some rules are not reachable from the start symbol, 
this is also reported. 

Because file names are fixed, at most one yacc process should be active in a given directory at a time. 

Sun Release 4.0 Last change: 24 September 1987 (JJ7 



YES(l) USER COMMANDS YES ( 1) 

NAME 
yes - be repetitively affirmative 

SYNOPSIS 
yes [expletive] 

DESCRIPTION 
yes repeatedly outputs y, or if expletive is given, that is output repeatedly. Termination is by typing an 
interrupt character. 

608 Last change: 9 September 1987 Sun Release 4.0 



YPCAT( 1) USER COMMANDS YPCAT( 1) 

NAME 

ypcat - print values in a YP data base 

SYNOPSIS 
ypcat [ -kt ] [ -d domainname ] mname 

ypcat-x 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
ypcat prints out values in a Yellow Pages (YP) map specified by mname, which may be either a map name 
or a map nickname . Since ypcat uses the YP network services, no YP server is specified. 

To look at the network-wide password database, passwd.byname, (with the nickname passwd). type in: 

ypcat passwd 

Refer to ypfiles(5) and ypserv(8) for an overview of the Yellow Pages. 

OPTIONS 
-k Display the keys for those maps in which the values are null or the key is not part of the value. 

(None of the maps derived from files that have an ASCII version in /etc fall into this class.) 

-t Inhibit translation of mname to map name. For example, 'ypcat -t passwd' will fail because 
there is no map named passwd, whereas' ypcat passwd' will be translated to 'ypcat 
passwd.byname'. 

-d domainname 
Specify a domain other that the default domain. The default domain is returned by domainname. 

-x Display the map nickname table. This lists the nicknames (mnames) the command knows of, and 
indicates the mapname associated with each nickname. 

SEE ALSO 
domainname(l), ypmatch(l), ypfiles(5), ypserv(8) 

Sun Release 4.0 Last change: 17 December 1987 609 



YPMATCH( 1) USER COMMANDS YPMATCH(l) 

NAME 
ypmatch - print the value of one or more keys from a YP map 

SYNOPSIS 
ypmatch [ -d domain ] [ -k ] [ -t ] key . . . mname 

ypmatch-x 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
ypmatch prints the values associated with one or more keys from the Yellow Pages (YP) map specified by 
mname, which may be either a mapname or an map nickname. 

Multiple keys can be specified; the same map will be searched for all . The keys must be exact values in
sofar as capitalization and length are concerned. No pattern matching is available. If a key is not matched, 
a diagnostic message is produced. 

OPTIONS 
-d 

-k 

-t 

-x 

SEE ALSO 

Specify a domain other than the default domain. 

Before printing the value of a key, print the key itself, followed by a':' colon. This is useful only 
if the keys are not duplicated in the values, or you've specified so many keys that the output could 
be confusing. 

Inhibit translation of nickname to mapname. For example, 'ypmatch -t zippy passwd ' will fail 
because there is no map named passwd, while 'ypmatch zippy passwd ' will be translated to 'yp
match zippy passwd.byname '. 

Display the map nickname table. This lists the nicknames (mnames) the command knows of, and 
indicates the mapname associated with each nickname. 

ypcat(l), ypfiles(5) 

610 Last change: 17 December 1987 Sun Release 4.0 



YPP ASSWD ( 1 ) USER COMMANDS YPPASSWD ( 1 ) 

NAME 
yppasswd - change your network password in the Yellow Pages 

SYNOPSIS 
yppasswd [ name ] 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
yppasswd changes (or installs) a network password associated with the user name (your own name by de
fault) in the Yellow Pages. The Yellow Pages password may be different from the one on your own 
machine. 

yppasswd prompts for the old Yellow Pages password, and then for the new one. You must type in the old 
password correctly for the change to take effect The new password must be typed twice, to forestall mis
takes. 

New passwords must be at least four characters long, if they use a sufficiently rich alphabet, and at least six 
characters long if monocase. These rules are relaxed if you are insistent enough. Only the owner of the 
name or the super-user may change a password; in either case you must prove you know the old password. 

The Yellow Pages password daemon, yppasswdd(8C) must be running on your YP server in order for the 
new password to take effect 

SEE ALSO 

BUGS 

passwd(l), ypfiles(5), yppasswdd(8C) 

The update protocol passes all the information to the server in one RPC call, without ever looking at it. 
Thus if you type in your old password incorrectly, you will not be notified until after you have entered your 
new password. 

Sun Release 4.0 Last change: 17 December 1987 611 



YPWHICH(l) USER COMMANDS YPWHICH(l) 

NAME 
ypwhich - which host is the YP server or map master? 

SYNOPSIS 
ypwhich [ -d [ domain ] ] [ -Vl I -V2 ] [ hostname ] 
ypwhich [ -t mapname ] [ -d domain ] -m [ mname ] 
ypwhich-x 

AVAILABILITY 
This command is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
ypwhich tells which YP server supplies Yellow Pages services to a YP client, or which is the master for a 
map. If invoked without arguments, it gives the YP server for the local machine. If hostname is specified, 
that machine is queried to find out which YP master it is using. 

Refer to ypfiles(5) and ypserv(8) for an overview of the Yellow Pages. 

OPTIONS 
-d Use domain instead of the default domain. 

-Vl Which server is serving v.1 YP protocol-speaking client processes. 

-V2 Which server is serving v .2 YP protocol client processes. 

If neither version is specified, ypwhich attempts attempts to locate the server that supplies the 
(current) v.2 services. If there is no v.2 server currently bound, ypwhich then attempts to locate 
the server supplying the v.1 services. Since YP servers and YP clients are both backward compati
ble, the user need seldom be concerned about which version is currently in use. 

-tmapname 
Inhibit nickname translation; useful if there is a mapname identical to a nickname. This is not true 
of any Sun-supplied map. 

-m Find the master YP server for a map. No hostname can be specified with-m. mname can be a 
mapname, or a nickname for a map. When mname is omitted, produce a list available maps. 

-x Display the map nickname table. This lists the nicknames (mnames) the command knows of, and 
indicates the mapname associated with each nickname. 

SEE ALSO 
ypfiles(5), rpcinfo(8C), ypserv(8), ypset(8) 

612 Last change: 17 December 1987 Sun Release 4.0 



INTR0(2) SYSTEM CALLS INTR0(2) 

NAME 
intro - introduction to system calls and error numbers 

SYNOPSIS 
#include <errno.h> 

DESCRIPTION 
This section describes all of the system calls. A '(2V)' heading indicates that the system call performs dif
ferently when called from programs that use the System V libraries (programs compiled using 
/usr/Sbin/cc). On these pages, both the regular behavior and the System V behavior is described. 

Most of these calls have one or more error returns. An error condition is indicated by an otherwise impos
sible return value. This is almost always '-1'; the individual descriptions specify the details. An error 
number is also made available in the external variable errno. errno is not cleared on successful calls, so it 
should be tested only after an error has been indicated. Note: a number of system calls overload the mean
ings of these error numbers, and the meanings must be interpreted according to the type and circumstances 
of the call. 

As with normal arguments, all return codes and values from functions are of type integer unless otherwise 
noted. 

Each system call description attempts to list all possible error numbers. The following is a complete list of 
the error numbers and their names as given in <errno.h>. 

Error O Unused. 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a file in some way forbidden except to its 
owner or super-user. It is also returned for attempts by ordinary users to do things allowed only to 
the super-user. 

2 ENOENT No such file or directory 
This error occurs when a filename is specified and the file should exist but does not, or when one 
of the directories in a pathname does not exist. 

3 ESRCH No such process 
The process or process group whose number was given does not exist, or any such process is 
already dead. 

4 EINTR Interrupted system call 
An asynchronous signal (such as interrupt or quit) that the process has elected to catch occurred 
during a system call. If execution is resumed after processing the signal, and the system call is not 
restarted, it will appear as if the interrupted system call returned this error condition. 

5 EIO I/0 error 
Some physical I/0 error occurred. This error may in some cases occur on a call following the one 
to which it actually applies. 

6 ENXIO No such device or address 
I/0 on a special file refers to a subdevice that does not exist, or beyond the limits of the device. It 
may also occur when, for example, a tape drive is not on-line or no disk pack is loaded on a drive. 

7 E2BIG Arg list too long 
An argument list longer than 1,048,576 bytes is presented to execve(2) or a routine that called 
execve( ). 

8 ENOEXEC Exec format error 
A request is made to execute a file which, although it has the appropriate permissions, does not 
start with a valid magic number (see a.out(5)). 

9 EBADF Bad file number 

Sun Release 4.0 

Either a file descriptor refers to no open file, or a read (respectively, write) request is made to a file 
that is open only for writing (respectively, reading). 

Last change: 26 January 1988 613 



INTR0(2) SYSTEM CALLS INTR0(2) 

614 

10 ECHILD No children 
A wait(2) was executed by a process that had no existing or unwaited-for child processes. 

11 EAGAIN No more processes 
A fork(2) failed because the system's process table is full or the user is not allowed to create any 
more processes, or a system call failed because of insufficient resources. 

12 ENOMEM Not enough memory 
During an execve(2), sbrk( ), or brk(2), a program asks for more address space or swap space 
than the system is able to supply, or a process size limit would be exceeded. A lack of swap space 
is normally a temporary condition; however, a lack of address space is not a temporary condition. 
The maximum size of the text, data, and stack segments is a system parameter. Soft limits may be 
increased to their corresponding hard limits. 

13 EACCES Permission denied 
An attempt was made to access a file in a way forbidden by the protection system. 

14 EFAULT Bad address 
The system encountered a hardware fault in attempting to access the arguments of a system call. 

15 ENOTBLK Block device required 
A file that is not a block device was mentioned where a block device was required, for example, in 
mount(2). 

16 EBUSY Device busy 
An attempt was made to mount a file system that was already mounted or an attempt was made to 
dismount a file system on which there is an active file (open file, mapped file, current directory, or 
mounted-on directory). 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate context, for example, link(2). 

18 EXDEV Cross-device link 
A hard link to a file on another file system was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system call to a device (for example, an attempt to 
read a write-only device) or an attempt was made to use a device not configured by the system. 

20 ENOTDIR Not a directory 
A non-directory was specified where a directory is required, for example, in a path prefix or as an 
argument to chdir(2). 

21 EISDIR Is a directory 
An attempt was made to write on a directory. 

22 EINV AL Invalid argument 
A system call was made with an invalid argument; for example, dismounting a non-mounted file 
system, mentioning an unknown signal in sigvec() or kill(), reading or writing a file for which 
Iseek() has generated a negative pointer, or some other argument inappropriate for the call. Also 
set by math functions, see intro(3). 

23 ENFILE File table overflow 
The system's table of open files is full, and temporarily no more open() calls can be accepted. 

24 EMFILE Too many open files 
A process tried to have more open files than the system allows a process to have. The customary 
configuration limit is 64 per process. 

25 ENOTIY Inappropriate ioctl for device 
The code used in an ioctl() call is not supported by the object that the file descriptor in the call 
refers to. 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) SYSTEM CALLS INTR0(2) 

26 unused 

27 EFBIG File too large 
The size of a file exceeded the maximum file size (1,082,201,088 bytes). 

28 EN OSPC No space left on device" 
A write() to an ordinary file, the creation of a directory or symbolic link, or the creation of a 
directory entry failed because no more disk blocks are available on the file system, or the alloca
tion of an inode for a newly created file failed because no more inodes are available on the file 
system. 

29 ESPIPE Illegal seek 
An lseek() was issued to a socket or pipe. This error may also be issued for other non-seekable 
devices. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a file system mounted read-only. 

31 EMLINK Too many links 
An attempt was made to make more than 32767 hard links to a file. 

32 EPIPE Broken pipe 
An attempt was made to write on a pipe or socket for which there is no process to read the data. 
This condition normally generates a signal; the error is returned if the signal is caught or ignored. 

33 EDOM Math argument 
The argument of a function in the math library (as described in section 3M) is out of the domain of 
the function. 

34 ERANGE Result too large 
The value of a function in the math library (as described in section 3M) is unrepresentable within 
machine precision. 

35 EWOULDBLOCK Operation would block 
An operation that would cause a process to block was attempted on an object in non-blocking 
mode (see ioctl(2)). 

36 EINPROGRESS Operation now in progress 
An operation that takes a long time to complete (such as a connect(2)) was attempted on a non
blocking object (see ioctl(2)). 

37 EALREADY Operation already in progress 
An operation was attempted on a non-blocking object that already had an operation in progress. 

38 ENOTSOCK Socket operation on non-socket 
Self-explanatory. 

39 ED EST ADDRREQ Destination address required 
A required address was omitted from an operation on a socket. 

40 EMSGSIZE Message too long 
A message sent on a socket was larger than the internal message buffer. 

41 EPROTOTYPE Protocol wrong type for socket 
A protocol was specified that does not support the semantics of the socket type requested. For 
example, you cannot use the ARPA Internet UDP protocol with type SOCK_ STREAM. 

42 ENOPROTOOPf Option not supported by protocol 
A bad option was specified in a setsockopt() or getsockopt(2) call. 

43 EPROTONOSUPPORT Protocol not supported 
The protocol has not been configured into the system or no implementation for it exists. 

Sun Release 4.0 Last change: 26 January 1988 615 



INTR0(2) SYSTEM CALLS INTR0(2) 

616 

44 ESOCKTNOSUPPORT Socket type not supported 
The support for the socket type has not been configured into the system or no implementation for 
it exists. 

45 EOPNOTSUPP Operation not supported on socket 
For example, trying to accept a connection on a datagram socket. 

46 EPFNOSUPPORT Protocol family not supported 
The protocol family has not been configured into the system or no implementation for it exists. 

47 EAFNOSUPPORT Address family not supported by protocol family 
An address incompatible with the requested protocol was used. For example, you should not 
necessarily expect to be able to use PUP Internet addresses with ARPA Internet protocols. 

48 EADDRINUSE Address already in use 
Only one usage of each address is normally permitted. 

49 EADDRNOTA VAIL Can't assign requested address 
Normally results from an attempt to create a socket with an address not on this machine. 

50 ENETDOWN Network is down 
A socket operation encountered a dead network. 

51 ENETUNREACH Network is unreachable 
A socket operation was attempted to an unreachable network. 

52 ENETRESET Network dropped connection on reset 
The host you were connected to crashed and rebooted. 

53 ECONNABORTED Software caused connection abort 
A connection abort was caused internal to your host machine. 

54 ECONNRESET Connection reset by peer 
A connection was forcibly closed by a peer. This normally results from the peer executing a shut
down(2) call. 

55 ENOBUFS No buffer space available 
An operation on a socket or pipe was not performed because the system lacked sufficient buffer 
space. 

56 EISCONN Socket is already connected 
A connect() request was made on an already connected socket; or, a sendto() or sendmsg() 
request on a connected socket specified a destination other than the connected party. 

57 ENOTCONN Socket is not connected 
An request to send or receive data was disallowed because the socket is not connected. 

58 ESHUTDOWN Can't send after socket shutdown 
A request to send data was disallowed because the socket had already been shut down with a pre
vious shutdown(2) call. 

59 unused 

60 ETIMEDOUT Connection timed out 
A connect request or an NFS request failed because the party to which the request was made did 
not properly respond after a period of time. (The timeout period is dependent on the communica
tion protocol.) 

61 ECONNREFUSED Connection refused 
No connection could be made because the target machine actively refused it. This usually results 
from trying to connect to a service that is inactive on the foreign host. 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) SYSTEM CALLS INTR0(2) 

62 ELOOP Too many levels of symbolic links 
A pathname lookup involved more than 20 symbolic links. 

63 ENAMETOOLONG File name too long 
A component of a pathname exceeded 255 characters, or an entire pathname exceeded 1024 char
acters. 

64 EHOSTDOWN Host is down 
A socket operation failed because the destination host was down. 

65 EHOSTUNREACH Host is unreachable 
A socket operation was attempted to an unreachable host. 

66 ENOTEMPTY Directory not empty 
An attempt was made to remove a directory with entries other than '.' and ' •• ' by performing a 
rmdir() system call or a rename() system call with that directory specified as the target direc
tory. 

67 unused 

68 unused 

69 EDQUOT Disc quota exceeded 
A write() to an ordinary file, the creation of a directory or symbolic link, or the creation of a 
directory entry failed because the user's quota of disk blocks was exhausted, or the allocation of 
an inode for a newly created file failed because the user's quota of inodes was exhausted. 

70 EST ALE Stale NFS file handle 
An NFS client referenced a file that it had opened but that had since been deleted. 

71 EREMOTE Too many levels of remote in path 
An attempt was made to remotely mount a file system into a path that already has a remotely 
mounted component. 

72 ENOSTR Not a stream device 
A putmsg(2) or getmsg(2) system call was attempted on a file descriptor that is not a STREAMS 
device. 

73 ETIME Timer expired 
The timer set for a STREAMS ioctl(2) call has expired. The cause of this error is device specific 
and could indicate either a hardware or software failure, or perhaps a timeout value that is too 
short for the specific operation. The status of the ioctl(2) operation is indeterminate. 

74 ENOSR Out of stream resources 
During a STREAMS open(2V), either no STREAMS queues or no STREAMS head data structures 
were available. 

75 ENOMSG No message of desired type 
An attempt was made to receive a message of a type that does not exist on the specified message 
queue; see msgop(2). 

76 EBADMSG Not a data message 
During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a STREAMS device, something 
has come to the head of the queue that cannot be processed. That something depends on the sys
tem call: 

read(2) control information or a passed file descriptor. 
getmsg(2) passed file descriptor. 
ioctl(2) control or data information. 

77 EIDRM Identifier removed 

Sun Release 4.0 

This error is returned to processes that resume execution due to the removal of an identifier from 
the IPC system's name space (see msgctl(2), semctl(2), and shmctl(2)). 

Last change: 26 January 1988 617 



INTR0(2) SYSTEM CALLS INTR0(2) 

DEFINITIONS 

618 

Descriptor 
An integer assigned by the system when a file is referenced by open(2V), dup(2), or pipe(2) or a socket is 
referenced by socket(2) or socketpair(2) that uniquely identifies an access path to that file or socket from a 
given process or any of its children. 

Directory 
A directory is a special type of file that contains entries that are references to other files. Directory entries 
are called links. By convention, a directory contains at least two links, '.' and ' •• ',referred to as dot and 
dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent directory. 

Effective User ID, Effective Group ID, and Access Groups 
Access to system resources is governed by three values: the effective user ID, the effective group ID, and 
the group access list. 

The effective user ID and effective group ID are initially the process's real user ID and real group ID 
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possibly by 
one of its ancestors) (see execve(2)). 

The group access list is an additional set of group ID's used only in determining resource accessibility. 
Access checks are performed as described below in File Access Permissions'. 

File Access Permissions 
Every file in the file system has a set of access permissions. These permissions are used in determining 
whether a process may perform a requested operation on the file (such as opening a file for writing). 
Access permissions are established at the time a file is created. They may be changed at some later time 
through the chmod(2) call. 

File access is broken down according to whether a file may be: read, written, or executed. Directory files 
use the execute permission to control if the directory may be searched. 

File access permissions are interpreted by the system as they apply to three different classes of users: the 
owner of the file, those users in the file's group, anyone else. Every file has an independent set of access 
permissions for each of these classes. When an access check is made, the system decides if permission 
should be granted by checking the access information applicable to the caller. 

Read, write, and execute/search permissions on a file are granted to a process if: 

The process's effective user ID is that of the super-user. 

The process's effective user ID matches the user ID of the owner of the file and the owner permis
sions allow the access. 

The process's effective user ID does not match the user ID of the owner of the file, and either the 
process's effective group ID matches the group ID of the file, or the group ID of the file is in the 
process's group access list, and the group permissions allow the access. 

Neither the effective user ID nor effective group ID and group access list of the process match the 
corresponding user ID and group ID of the file, but the permissions for "other users" allow access. 

Otherwise, permission is denied. 

File Name 
Names consisting of up to 255 characters may be used to name an ordinary file, special file, or directory. 

These characters may be selected from the set of all ASCII character excluding \0 (null) and the ASCII code 
for I (slash). (The parity bit, bit 8, must be 0.) 

Note: it is generally unwise to use*,?, [,or] as part of filenames because of the special meaning attached 
to these characters by the shell. See sh(l). Although permitted, it is advisable to avoid the use of unprint
able characters in filenames. 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) SYSTEM CALLS INTR0(2) 

Message Queue Identifier 
A message queue identifier (msqid) is a unique positive integer created by a msgget(2) system call. Each 
msqid has a message queue and a data structure associated with it. The data structure is referred to as 
msqid _ ds() and contains the following members: 

struct 
ushort 
ushort 
ushort 
ushort 
time t 
time t 
time t 

ipc _perm msg_perm; 
msg_qnum; 
msg_qbytes~ 
msg_lspid; 
msg_lrpid; 
msg_stime; 
msg_rtime; 
msg_ctime; 

I* operation permission struct *I 
I* number of msgs on q */ 
I* max number of bytes on q *I 
/* pid of last msgsnd operation *I 
/* pid of last msgrcv operation *I 
I* last msgsnd time *I 
I* last msgrcv time *I 
I* last change time *I 
I* Times measured in secs since *I 
I* 00:00:00 GMT, Jan. 1, 1970 *I 

msg_perm() is an ipc _perm structure that specifies the message operation permission (see below). This 
structure includes the following members: 

ushort cuid; I* creator user id*/ 
ushort cgid; I* creator group id *I 
ushort uid; I* user id *I 
ushort gid; I* group id *I 
ushort mode; I* rlw permission *I 

msg_qnum is the number of messages currently on the queue. msg_qbytes is the maximum number of 
bytes allowed on the queue. msg_lspid is the process ID of the last process that performed a msgsnd 
operation. msg_ lrpid is the process ID of the last process that performed a msgrcv operation. msg_ stime 
is the time of the last msgsnd operation, msg_rtime is the time of the last msgrcv operation, and 
msg_ ctime is the time of the last msgctl(2) operation that changed a member of the above structure. 

Message Operation Permissions 
In the msgop(2) and msgctl(2) system call descriptions, the permission required for an operation is given 
as "{token}", where "token" is the type of permission needed interpreted as follows: 

00400 Read by user 
00200 Write by user 
00060 Read, Write by group 
00006 Read, Write by others 

Read and Write permissions on a msqid are granted to a process if one or more of the following are true: 

The effective user ID of the process is super-user. 

The effective user ID of the process matches msg_perm.[c]uid in the data structure associated 
with msqid and the appropriate bit of the "user" portion (0600) of msg_perm.mode is set. 

The effective user ID of the process does not match msg_perm.[c]uid and the effective group ID 
of the process matches msg_perm.[c]gid and the appropriate bit of the "group" portion (060) of 
msg_perm.mode is set. 

The effective user ID of the process does not match msg_perm.[c]uid and the effective group ID 
of the process does not match msg_perm.[c]gid and the appropriate bit of the "other" portion (06) 
of msg_perm.mode is set. 

Otherwise, the corresponding permissions are denied. 

Parent Process ID 

A new process is created by a currently active process (see fork(2)). The parent process ID of a process is 
the process ID of its creator. 

Sun Release 4.0 Last change: 26 January 1988 619 



INTR0(2) SYSTEM CALLS INTR0(2) 

620 

Path Name and Path Prefix 
A pathname is a null-terminated character string starting with an optional slash (/), followed by zero or 
more directory names separated by slashes, optionally followed by a filename. The total length of a path
name must be less than {MAXPATHLEN} (1024) characters. 

More precisely, a pathname is a null-terminated character string constructed as follows: 

<path-name>: :=<file-name> I <path-prefix><.file-name> I / 
<path-prefix>::=<rtprefix>I l<rtprefix> 
<rtprefix >:: =<dirname >II <rtprefix><dirname>I 

where <.file-name> is a string of 1 to 255 characters other than the ASCII slash and null, and <dirname> is 
a string of 1 to 255 characters (other than the ASCII slash and null) that names a directory. 

If a pathname begins with a slash, the search begins at the root directory. Otherwise, the search begins at 
the current working directory. 

A slash, by itself, names the root directory. A dot ( • ) names the current working directory. 

A null pathname also refers to the current directory. However, this is not true of all UNIX systems. (On 
such systems, accidental use of a null pathname in routines that do not check for it may corrupt the current 
working directory.) For portable code, specify the current directory explicitly using '"." ', rather than '"" '. 

Proce~ Group ID 

Each active process is a member of a process group that is identified by a positive integer called the process 
group ID. This ID is the process ID of the group leader. This grouping permits the signaling of related 
processes (see killpg(2)) and the job control mechanisms of csh(l). 

Proce~ID 
Each active process in the system is uniquely identified by a positive integer called a process ID. The range 
of this ID is from O to 30000. 

Real User ID and Real Group ID 

Each user on the system is identified by a positive integer termed the real user ID. 

Each user is also a member of one or more groups. One of these groups is distinguished from others and 
used in implementing accounting facilities. The positive integer corresponding to this distinguished group 
is termed the real group ID. 

All processes have a real user ID and real group ID. These are initialized from the equivalent attributes of 
the process that created it. 

Root Directory and Current Working Directory 
Each process has associated with it a concept of a root directory and a current working directory for the 
purpose of resolving path name searches. A process's root directory need not be the root directory of the 
root file system. 

Semaphore Identifier 
A semaphore identifier (semid) is a unique positive integer created by a semget(2) system call. Each semid 
has a set of semaphores and a data structure associated with it. The data structure is referred to as 
semid _ ds and contains the following members: 

struct 
ushort 
time t 
time t 

ipc _perm sem _perm; 
sem_nsems; 
sem_otime; 
sem_ctime; 

I* operation permission struct *I 
I* number of sems in set *I 
I* last operation time *I 
I* last change time *I 
I* Times measured in secs since *I 
I* 00:00:00 GMT, Jan. 1, 1970 *I 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) SYSTEM CALLS INTR0(2) 

sem _perm is an ipc _perm structure that specifies the semaphore operation permission (see below). This 
structure includes the following members: 

ushort cuid; 
ushort cgid; 
ushort uid; 
ushort gid; 
ushort mode; 

I* creator user id *I 
I* creator group id *I 
I* user id *I 
I* group id *I 
I* r/a permission *I 

The value of sem _nsems is equal to the number of semaphores in the set. Each semaphore in the set is 
referenced by a positive integer referred to as a sem _ num. sem _ num values run sequentially from O to the 
value of sem _ nsems minus 1. sem _ otime is the time of the last semop(2) operation, and sem _ ctime is the 
time of the last semctl(2) operation that changed a member of the above structure. 

A semaphore is a data structure that contains the following members: 

ushort 
short 
ushort 
ushort 

semval; 
sempid; 
semncnt; 
semzcnt; 

I* semaphore value *I 
I* pid of last operation *I 
I* # awaiting semval > cval *I 
I* # awaiting semval = 0 *I 

semval is a non-negative integer. sempid is equal to the process ID of the last process that performed a 
semaphore operation on this semaphore. semncnt is a count of the number of processes that are currently 
suspended awaiting this semaphore's semval to become greater than its current value. semzcnt is a count 
of the number of processes that are currently suspended awaiting this semaphore's semval to become zero. 

Semaphore Operation Permissions 
In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is given 
as 11 {token} 11

, where "token" is the type of permission needed interpreted as follows: 

00400 Read by user 
00200 Alter by user 
00060 Read, Alter by group 
00006 Read, Alter by others 

Read and Alter permissions on a semid are granted to a process if one or more of the following are true: 

The effective user ID of the process is super-user. 

The effective user ID of the process matches sem_perm.[c]uid in the data structure associated 
with semid and the appropriate bit of the "user'' portion (0600) of sem _perm.mode is set. 

The effective user ID of the process does not match sem_perm.[c]uid and the effective, group ID 
of the process matches sem _perm.[ c ]gid and the appropriate bit of the "group" portion (060) of 
sem _perm.mode is set. 

The effective user ID of the process does not match sem_perm.[c]uid and the effective group ID 
of the process does not match sem_perm.[c]gid and the appropriate bit of the "other" portion (06) 
of sem _perm.mode is set. 

Otherwise, the corresponding permissions are denied. 

Sun Release 4.0 Last change: 26 January 1988 621 



INTR0(2) SYSTEM CALLS INTR0(2) 

622 

Shared Memory Identifier 
A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) system call. Each 
shmid has a segment of memory (referred to as a shared memory segment) and a data structure associated 
with it. The data structure is referred to as shmid_ds and contains the following members: 

struct 
int 
ushort 
ushort 
short 
time t 
time t 
time t 

ipc _perm shm _perm; 
shm_segsz; 
shm_cpid; 
shm_lpid; 
shm _ nattch; 
shm_atime; 
shm_dtime; 
shm_ctime; 

I* operation permission struct *I 
I* size of segment *I 
I* creator pid *I 
I* pid of last operation *I 
I* number of current attaches *I 
I* last attach time *I 
I* last detach time *I 
/* last change time *I 
I* Times measured in secs since *I 
I* 00:00:00 GMT, Jan. 1, 1970 *I 

shm_perm is an ipc_perm structure that specifies the shared memory operation permission (see below). 
This structure includes the following members: 

ushort cuid; I* creator user id *I 
ushort cgid; I* creator group id *I 
ushort uid; I* user id *I 
ushort gid; I* group id *I 
ushort mode; I* r/w permission *I 

shm _ segsz specifies the size of the shared memory segment. shm _ cpid is the process ID of the process 
that created the shared memory identifier. shm _lpid is the process ID of the last process that performed a 
shmop(2) operation. shm_ nattch is the number of processes that currently have this segment attached. 
shm_atime is the time of the last shmat operation, shm_dtime is the time of the last shmdt operation, and 
shm _ ctime is the time of the last shmctl(2) operation that changed one of the members of the above struc
ture. 

Shared Memory Operation Permi~ions 
In the shmop(2) and shmctl(2) system call descriptions, the permission required for an operation is given 
as 11 {token} 11

, where "token" is the type of permission needed interpreted as follows: 

00400 Read by user 
00200 Write by user 
00060 Read, Write by group 
00006 Read, Write by others 

Read and Write permissions on a shmid are granted to a process if one or more of the following are true: 

The effective user ID of the process is super-user. 

The effective user ID of the process matches shm_perm.[c]uid in the data structure associated 
with shmid and the appropriate bit of the "user" portion (0600) of shm_perm.mode is set. 

The effective user ID of the process does not match shm_perm.[c]uid and the effective group ID 
of the process matches shm_perm.[c]gid and the appropriate bit of the "group" portion (060) of 
shm_perm.mode is set. 

The effective user ID of the process does not match shm_perm.[c]uid and the effective group ID 
of the process does not match shm _perm.[ c ]gid and the appropriate bit of the "other" portion (06) 
of shm _perm.mode is set. 

Otherwise, the corresponding permissions are denied. 

Sockets and Address Families 
A socket is an endpoint for communication between processes. Each socket has queues for sending and 
receiving data. 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) SYSTEM CALLS INTR0(2) 

Sockets are typed according to their communications properties. These properties include whether mes
sages sent and received at a socket require the name of the partner, whether communication is reliable, the 
format used in naming message recipients, etc. 

Each instance of the system supports some collection of socket types; consult socket(2) for more informa
tion about the types available and their properties. 

Each instance of the system supports some number of sets of communications protocols. Each protocol set 
supports addresses of a certain format. An Address Family is the set of addresses for a specific group of 
protocols. Each socket has an address chosen from the address family in which the socket was created. 

Special Processes 
The processes with a process ID's of 0, 1, and 2 are special. Process O is the scheduler. Process 1 is the ini
tialization process init, and is the ancestor of every other process in the system. It is used to control the 
process structure. Process 2 is the paging daemon. 

Super-user 
A process is recognized as a super-user process and is granted special privileges if its effective user ID is 0. 

Tty Group ID 
Each active process can be a member of a terminal group that is identified by a positive integer called the 
tty group ID. This grouping is used to arbitrate between multiple jobs contending for the same terminal (see 
csh(l), and termio(4), and to terminate a group of related processes upon termination of one of the 
processes in the group (see exit(2) and sigvec(2)). 

STREAMS 

A set of kernel mechanisms that support the development of network services and data communication 
drivers. It defines interface standards for character input/output within the kernel and between the kernel 
and user level processes. The STREAMS mechanism is composed of utility routines, kernel facilities and a 
set of data structures. 

Stream 
A stream is a full-duplex data path within the kernel between a user process and driver routines. The pri
mary components are a stream head, a driver and zero or more modules between the stream head and 
driver. A stream is analogous to a Shell pipeline except that data flow and processing are bidirectional. 

Stream Head 
In a stream, the stream head is the end of the stream that provides the interface between the stream and a 
user process. The principle functions of the stream head are processing STREAMS-related system calls, 
and passing data and information between a user process and the stream. 

Driver 
In a stream, the driver provides the interface between peripheral hardware and the stream. A driver can 
also be a pseudo-driver, such as a multiplexor or emulator, and need not be associated with a hardware 
device. 

Module 
A module is an entity containing processing routines for input and output data. It always exists in the mid
dle of a stream, between the stream's head and a driver. A module is the STREAMS counterpart to the 
commands in a Shell pipeline except that a module contains a pair of functions which allow independent 
bidirectional (downstream and upstream) data flow and processing. 

Downstream 
In a stream, the direction from stream head to driver. 

Upstream 
In a stream, the direction from driver to stream head. 

Message 

In a stream, one or more blocks of data or information, with associated STREAMS control structures. Mes
sages can be of several defined types, which identify the message contents. Messages are the only means of 

Sun Release 4.0 Last change: 26 January 1988 623 



INTR0(2) SYSTEM CALLS INTR0(2) 

transferring data and communicating within a stream. 

Message Queue 
In a stream, a linked list of messages awaiting processing by a module or driver. 

Read Queue 
In a stream, the message queue in a module or driver containing messages moving upstream. 

Write Queue 
In a stream, the message queue in a module or driver containing messages moving downstream. 

Multiplexor 
A multiplexor is a driver that allows STREAMS associated with several user processes to be connected to a 
single driver, or several drivers to be connected to a single user process. STREAMS does not provide a 
general multiplexing driver, but does provide the facilities for constructing them, and for connecting multi
plexed configurations of STREAMS. 

SEE ALSO 

624 

csh(l), sh(l), brk(2), chdir(2), chmod(2), connect(2), dup(2), execve(2), exit(2), fork(2), getmsg(2), 
getsockopt(2), ioctl(2), killpg(2), link(2), mount(2), msgctl(2), msgget(2), msgop(2), open(2V), pipe(2), 
putmsg(2), read(2), semctl(2), semget(2), semop(2), setsockopt(2), shmctl(2), shmget(2), shmop(2), 
shutdown(2), sigvec(2), socket(2), socketpair(2), wait(2), intro(3), perror(3) termio(4), a.out(5) 

.. 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) 

LIST OF SYSTEM CALLS 
Name 

_exit() 
accept() 
access() 
acct() 
adjtime() 
async _daemon() 
audit() 
auditon() 
auditsvc() 
bind() 
brk() 
chdir() 
chmod() 
chown() 
chroot() 
close() 
connect() 
creat() 
dup2() 
dup() 
execve() 
fchmod() 
fchown() 
fcntl() 
flock() 
fork() 
fstat() 
fsync() 
ftruncate() 
getauid() 
getdents() 
getdirentries( ) 
getdomainname() 
getdtablesize( ) 
getegid() 
geteuid() 
getgid() 
getgroups() 
gethostid() 
gethostname() 
getitimer() 
getmsg() 
getpagesize( ) 
getpeername() 
getpgrp() 
getpid() 
getppid() 
getpriority( ) 
getrlimit() 
getrusage( ) 

Sun Release 4.0 

SYSTEM CALLS INTR0(2) 

Appears on Page 

exit(2) 
accept(2) 
access(2) 
acct(2) 
adjtime(2) 
nfssvc(2) 
audit(2) 
auditon(2) 
auditsvc(2) 
bind(2) 
brk(2) 
chdir(2) 
chmod(2) 
chown(2) 
chroot(2) 
close(2) 
connect(2) 
creat(2) 
dup(2) 
dup(2) 
execve(2) 
chmod(2) 
chown(2) 
fcntl(2V) 
flock(2) 
fork(2) 
stat(2) 
fsync(2) 
truncate(2) 
getauid(2) 
getdents(2) 
getdirentries(2) 
getdomainname(2) 
getdtablesize(2) 
getgid(2) 
getuid(2) 
getgid(2) 
getgroups(2) 
gethostid(2) 
gethostname(2) 
getitimer(2) 
getmsg(2) 
getpagesize(2) 
getpeername(2) 
setpgrp(2V) 
getpid(2) 
getpid(2) 
getpriority(2) 
getrlimit(2) 
getrusage(2) 

Description 

terminate a process 
accept a connection on a socket 
determine accessibility of file 
turn accounting on or off 
correct the time to allow synchronization of the system clock 
NFS daemons 
write a record to the audit log 
manipulate auditing 
write audit records to specified file descriptor 
bind a name to a socket 
change data segment size 
change current working directory 
change mode of file 
change owner and group of a file 
change root directory 
delete a descriptor 
initiate a connection on a socket 
create a new file 
duplicate a descriptor 
duplicate a descriptor 
execute a file 
change mode of file 
change owner and group of a file 
file control 
apply or remove an advisory lock on an open file 
create a new process 
get file status 
synchronize a file's in-core state with that on disk 
set a file to a specified length 
get and set user audit identity 
gets directory entries in a filesystem independent format 
gets directory entries in a filesystem independent format 
get/set name of current domain 
get descriptor table size 
get group identity 
get user identity 
get group identity 
get or set group access list 
get unique identifier of current host 
get/set name of current host 
get/set value of interval timer 
get next message off a stream 
get system page size 
get name of connected peer 
set and/or return the process group of a process 
get process identification 
get process identification 
get/set program scheduling priority 
control maximum system resource consumption 
get infonnation about resource utilization 

Last change: 26 January 1988 625 



INTR0(2) 

626 

getsockname() 
getsockopt() 
gettimeof day( ) 
getuid() 
ioctl() 
kill() 
killpg() 
link() 
listen() 
Iseek() 
lstat() 
mincore() 
mkdir() 
mknod() 
mmap() 
mount() 
mprotect() 
msgctl() 
msgget() 
msgop() 
msgrcv() 
msgsnd() 
msync() 
munmap() 
nfssvc() 
open() 
pipe() 
poll() 
profil() 
ptrace() 
putmsg() 
quotactl() 
read() 
readlink() 
readv() 
reboot() 
recv() 
recvfrom() 
recvmsg() 
rename() 
rmdir() 
sbrk() 
select() 
semctl() 
semget() 
semop() 
send() 
sendmsg() 
sendto() 
setaudit() 
setauid() 
setdomainname() 
setgroups() 

SYSTEM CALLS INTR0(2) 

getsockname(2) 
getsockopt(2) 
gettimeofday(2) 
getuid(2) 
ioctl(2) 
kill(2V) 
killpg(2) 
link(2) 
listen(2) 
lseek(2) 
stat(2) 
mincore(2) 
mkdir(2) 
mknod(2) 
mmap(2) 
mount(2) 
mprotect(2) 
msgctl(2) 
msgget(2) 
msgop(2) 
msgop(2) 
msgop(2) 
msync(2) 
munmap(2) 
nfssvc(2) 
open(2V) 
pipe(2) 
poll(2) 
profil(2) 
ptrace(2) 
putmsg(2) 
quotactl(2) 
read(2V) 
readlink(2) 
read(2V) 
reboot(2) 
recv(2) 
recv(2) 
recv(2) 
rename(2) 
rmdir(2) 
brk(2) 
select(2) 
semctl(2) 
semget(2) 
semop(2) 
send(2) 
send(2) 
send(2) 
setuseraudit(2) 
getauid(2) 
getdomainname(2) 
getgroups(2) 

get socket name 
get and set options on sockets 
get or set the date and time 
get user identity 
control device 
send a signal to a process or a group of processes 
send signal to a process group 
make a hard link to a file 
listen for connections on a socket 
move read/write pointer 
get file status 
determine residency of memory pages 
make a directory file 
make a special file 
map pages of memory 
mount file system 
set protection of memory mapping 
message control operations 
get message queue 
message operations 
message operations 
message operations 
synchronize memory with physical storage 
unmap pages of memory. 
NFS daemons 
open or create a file for reading or writing 
create an interprocess communication channel 
STREAMS input/output multiplexing 
execution time profile 
process trace 
send a message on a stream 
manipulate disk quotas 
read input 
read value of a symbolic link 
read input 
reboot system or halt processor 
receive a message from a socket 
receive a message from a socket 
receive a message from a socket 
change the name of a file 
remove a directory file 
change data segment size 
synchronous I/0 multiplexing 
semaphore control operations 
get set of semaphores 
semaphore operations 
send a message from a socket 
send a message from a socket 
send a message from a socket 
set the audit classes for a specified user ID 
get and set user audit identity 
get/set name of current domain 
get or set group access list 

Last change: 26 January 1988 Sun Release 4.0 



INTR0(2) 

sethostname( ) 
setitimer( ) 
setpgrp() 
setpriority() 
setregid() 
setreuid() 
setrlimit( ) 
setsockopt() 
settimeof day() 
setuseraudit() 
shmat() 
shmctl() 
shmdt() 
shmget() 
shmop() 
shutdown() 
sigblock() 
sigpause() 
sigsetmask() 
sigstack() 
sigvec() 
socket() 
socketpair( ) 
stat() 
statfs() 
swapon() 
symlink() 
sync() 
syscall() 
tell() 
truncate() 
umask() 
uname() 
unlink() 
unmount() 
utimes() 
vadvise() 
vfork() 
vhangup() 
wait3() 
wait4() 
wait() 
WIFEXITED() 
WIFSIGNALED() 
WIFSTOPPED() 
write() 
writev() 

Sun Release 4.0 

SYSTEM CALLS INTR0(2) 

gethostname(2) 
getitimer(2) 
setpgrp(2V) 
getpriority(2) 
setregid(2) 
setreuid(2) 
getrlimit(2) 
getsockopt(2) 
gettimeofday(2) 
setuseraudit(2) 
shmop(2) 
shmctl(2) 
shmop(2) 
shmget(2) 
shmop(2) 
shutdown(2) 
sigblock(2) 
sigpause(2) 
sigsetmask(2) 
sigstack(2) 
sigvec(2) 
socket(2) 
socketpair(2) 
stat(2) 
statfs(2) 
swapon(2) 
symlink(2) 
sync(2) 
syscall(2) 
lseek(2) 
truncate(2) 
umask(2) 
uname(2V) 
unlink(2) 
unmount(2) 
utimes(2) 
vadvise(2) 
vfork(2) 
vhangup(2) 
wait(2) 
wait(2) 
wait(2) 
wait(2) 
wait(2) 
wait(2) 
write(2V) 
write(2V) 

get/set name of current host 
get/set value of interval timer 
set and/or return the process group of a process 
get/set program scheduling priority 
set real and effective group IDs 
set real and effective user IDs 
control maximum system resource consumption 
get and set options on sockets 
get or set the date and time 
set the audit classes for a specified user ID 
shared memory operations 
shared memory control operations 
shared memory operations 
get shared memory segment identifier 
shared memory operations 
shut down part of a full-duplex connection 
block signals 
atomically release blocked signals and wait for interrupt 
set current signal mask 
set and/or get signal stack context 
software signal facilities 
create an endpoint for communication 
create a pair of connected sockets 
get file status 
get file system statistics 
add a swap device for interleaved paging/swapping 
make symbolic link to a file 
update super-block 
indirect system call 
move read/write pointer 
set a file to a specified length 
set file creation mode mask 
get name of current system 
remove directory entry 
remove a file system 
set file times 
give advice to paging system 
spawn new process in a virtual memory efficient way 
virtually "hangup" the current control terminal 
wait for process to terminate or stop 
wait for process to terminate or stop 
wait for process to terminate or stop 
wait for process to terminate or stop 
wait for process to terminate or stop 
wait for process to terminate or stop 
write output 
write output 

Last change: 26 January 1988 627 



ACCEPT(2) SYSTEM CALLS ACCEPT{2) 

NAME 
accept - accept a connection on a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

ns = accept(s, addr, addrlen) 
int ns, s; 
struct sockaddr •addr; 
int •addrlen; 

DESCRIPTION 
The argument s is a socket that has been created with socket(2), bound to an address with bind(2), and is 
listening for connections after a listen(2). accept() extracts the first connection on the queue of pending 
connections, creates a new socket with the same properties of sand allocates a new file descriptor, ns, for 
the socket. If no pending connections are present on the queue, and the socket is not marked as non
blocking, accept() blocks the caller until a connection is present. If the socket is marked non-blocking and 
no pending connections are present on the queue, accept() returns an error as described below. The 
accepted socket, ns, is used to read and write data to and from the socket which connected to this one; it is 
not used to accept more connections. The original sockets remains open for accepting further connections. 

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known 
to the communications layer. The exact format of the addr parameter is determined by the domain in 
which the communication is occurring. The addrlen is a value-result parameter; it should initially contain 
the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the address 
returned. This call is used with connection-based socket types, currently with SOCK_ STREAM. 

It is possible to select(2) a socket for the purposes of doing an accept() by selecting it for read. 

RETURN VALUE 
The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the 
accepted socket. 

ERRORS 
The accept() will fail if: 

EBADF The descriptor is invalid. 

ENOTSOCK The descriptor references a file, not a socket. 

EOPNOTSUPP The referenced socket is not of type SOCK_ STREAM. 

EFAULT The addr parameter is not in a writable part of the user address space. 

EWOULDBWCK The socket is marked non-blocking and no connections are present to be accepted. 

SEE ALSO 
bind{2), connect(2), listen(2), select(2), socket(2) 

628 Last change: 25 September 1987 Sun Release 4.0 



ACCESS(2) SYSTEM CALLS ACCESS(2) 

NAME 
access - determine accessibility of file 

SYNOPSIS 
#include <sys/file.h> 

#define R_OK 4 
#define W_OK 2 
#define X_OK 1 
#define F_OK 0 

I• test for read permission•/ 
I• test for write permission•/ 
I• test for execute (search) permission •/ 
I• test for presence of file •/ 

accessible = access(path, mode) 
int accessible; 
char •path; 
int mode; 

DESCRIPTION 
path points to a path name naming a file. access( ) checks the named file for accessibility according to 
mode, which is an inclusive or of the bits R _ OK, W _ OK and x _ oK. Specifying mode as F _ OK (that is, 0) tests 
whether the directories leading to the file can be searched and the file exists. 

The real user ID and the group access list (including the real group ID) are used in verifying permission, so 
this call is useful to set-UID programs. 

The owner of a file has permission checked with respect to the owner read, write, and execute mode bits, 
members of the file's group other than the owner have permission checked with respect to the group mode 
bits, and all others have permissions checked with respect to the other mode bits. 

Notice that only access bits are checked. A directory may be indicated as writable by access, but an 
attempt to open it for writing will fail (although files may be created there); a file may look executable, but 
execve( ) will fail unless it is in proper format. 

RETURN V ALOE 
If path cannot be found or if any of the desired access modes would not be granted, then a -1 value is 
returned; otherwise a O value is returned. 

ERRORS 
access() to the file is denied if one or more of the following are true: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EROFS 

EACCES 

EFAULT 

EIO 

SEE ALSO 
chmod(2), stat(2) 

Sun Release 4.0 

The length of a component of path exceeds 255 characters, or the length of path exceeds 
1023 characters. 

The file named by path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

The file named by path is on a read-only file system and write access was requested. 

Permission bits of the file mode do not permit the requested access to the file named by 
path. 

path points outside the process's allocated address space. 

An I/0 error occurred while reading from or writing to the file system. 

Last change: 22 November 1987 629 



ACCT(2) SYSTEM CALLS ACCT(2) 

NAME 
acct - turn accounting on or off 

SYNOPSIS 
int acct (path) 
char *path; 

DESCRIPTION 
acct() is used to enable or disable the process accounting. If process accounting is enabled, an accounting 
record will be written on an accounting file for each process that terminates. Termination can be caused by 
one of two things: an exit() call or a signal; see exit(2) and sigvec(2). The effective user ID of the calling 
process must be super-user to use this call. 

path points to a path name naming the accounting file. The accounting file format is given in acct(5). 

The accounting routine is enabled if path is not a NULL pointer and no errors occur during the system call. 
It is disabled if path is a NULL pointer and no errors occur during the system call. 

If accounting is already turned on, and a successful acct() call is made with a non-NULL path, all subse
quent accounting records will be written to the new accounting file. 

RETURN VALUE 
The value -1 is returned if an error occurs, and external variable errno is set to indicate the cause of the 
error. Otherwise the value O is returned. 

ERRORS 
acct() will fail if one of the following is true: 

EPERM The caller is not the super-user. 

ENOTDIR A component of the path prefix of path is not a directory. 

EINVAL 

ENAMETOOLONG 

ENOENT 

EACCES 

EACCES 

ELOOP 

EROFS 

EFAULT 

EIO 

Support for accounting was not configured into the system. 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix of path. 

The file referred to by path is not a regular file. 

Too many symbolic links were encountered in translating the path name. 

The named file resides on a read-only file system. 

path points outside the process's allocated address space. 

An 1/0 error occurred while reading from or writing to the file system. 

SEE ALSO 

BUGS 

NOTES 

630 

exit(2), sigvec(2), acct(5), sa(8) 

No accounting is produced for programs running when a crash occurs. In particular non-terminating pro
grams are never accounted for. 

Accounting is automatically disabled when the file system the accounting file resides on runs out of space; 
it is enabled when space once again becomes available. 

Last change: 20 November 1987 Sun Release 4.0 



ADJTIME(2) SYSTEM CALLS ADJTIME(2) 

NAME 
adjtime - correct the time to allow synchronization of the system clock 

SYNOPSIS 
#include <sys/time.h> 

int adjtime(delta, olddelta) 
struct timeval •delta; 
struct timeval •olddelta; 

DESCRIPTION 
adjtime() adjusts the system's notion of the current time, as returned by gettimeofday(2), advancing or 
retarding it by the amount of time specified in the struct timeval pointed to by delta. 

The adjustment is effected by speeding up (if that amount of time is positive) or slowing down (if that 
amount of time is negative) the system's clock by some small percentage, generally a fraction of one per
cent. Thus, the time is always a monotonically increasing function. A time correction from an earlier call 
to adjtime() may not be finished when adjtime() is called again. If olddelta is not a NULL pointer, then 
the structure it points to will contain, upon return, the number of microseconds still to be corrected from the 
earlier call. If olddelta is a NULL pointer, the corresponding information will not be returned. 

This call may be used in time servers that synchronize the clocks of computers in a local area network. 
Such time servers would slow down the clocks of some machines and speed up the clocks of others to 
bring them to the average network time. 

Only the super-user may adjust the time of day. 

The adjustment value will be silently rounded to the resolution of the system clock. 

RETURN 
A O return value indicates that the call succeeded. A -1 return value indicates an error occurred, and in this 
case an error code is stored into the global variable errno. 

ERRORS 
The following error codes may be set in errno: 

EFAULT delta or olddelta points outside the process's allocated address space, or olddelta 
points to a region of the process' allocated address space that is not writable. 

EPERM The process's effective user ID is not that of the super-user. 

SEE ALSO 
date(l V), gettimeofday(2) 

Sun Release 4.0 Last change: 20 November 1987 631 



AUDIT(2) 

NAME 
audit - write a record to the audit log 

SYNOPSIS 
#include <sys/Iabel.h> 
#include <sys/audit.h> 

audit (record) 
audit_record_t *record; 

DESCRIPTION 

SYSTEM CALLS AUDIT{2) 

The audit() system call is used to write a record to the system audit log file. The data pointed to by record 
is written to the audit log file. The data should be a well-formed audit record as described by audit.log(5). 
The kernel sets the time stamp value in the record and performs a minimal check on the data before writing 
it to the audit log file. 

Only the super-user may successfully execute this call. 

RETURN VALUE 
If the call succeeds, a value of O is returned. If an error occurs, the value -1 is returned. 

ERRORS 
EPERM The process's effective user ID is not super-user. 

EINVAL The length specified in the audit record is too short, or more than MAXAUDIT
DATA. 

EFAULT 

SEE ALSO 

Record points outside the process's allocated address space. 

auditsvc(2), getauid(2), setuseraudit(2), audit_args(3), audit.Iog(5), auditd(8) 

632 Last change: 25 September 1987 Sun Release 4.0 



AUDITON(2) 

NAME 
auditon - manipulate auditing 

SYNOPSIS 
#include <sys/Iabel.h> 
#include <sys/audit.h> 

auditon ( condition) 
int condition; 

DESCRIPTION 

SYSTEM CALLS AUDIT0N(2) 

The auditon() system call sets system auditing to the requested condition if and only if the current state of 
auditing allows that transition. Legitimate values for condition are: 

AUC UNSET on/off has not been decided yet 
AUC AUDITING auditing is to be done 
AUC NOAUDIT auditing is not to be done 

The permitted transitions are: 

Any condition may be changed back to itself. 

AUC_UNSET may be changed toAUC_AUDITING or AUC_NOAUDIT. 

AUC_AUDITING may be changed to AUC_NOAUDIT. 

AUC_NOAUDIT may be changed to AUC_AUDITING. 

Once changed, it is not possible to get back to AUC _UNSET. 

Only the super-user may successfully execute this call. 

RETURN VALUE 
If the call succeeds the old audit condition value is returned. If an error occurs, the value -1 is returned. 

ERRORS 
EPERM 

EINVAL 

SEE ALSO 

Neither of the process's effective or real user ID is super-user. 

The condition specified is outside the range of valid values, or the current condi
tion precludes the requested change. 

audit(2), setuseraudit(2) 

Sun Release 4.0 Last change: 25 September 1987 633 



AUDITSVC ( 2) SYSTEM CALLS AUDITSVC ( 2) 

NAME 
auditsvc - write audit records to specified file descriptor 

SYNOPSIS 
auditsvc(f d, limit) 
int fd; 
int limit; 

DESCRIPTION 
The auditsvc() system call specifies the audit log file to the kernel. The kernel writes audit records to this 
file until an exceptional condition occurs and then the call returns. The parameter fd is a file descriptor that 
identifies the audit file. Programs should open this file for writing before calling auditsvc. The parameter 
limit specifies a value between O and 100, instructing auditsvc() to return when the percentage of free disk 
space on the audit filesystem drops below this limit. Thus, the invoking program can take action to avoid 
running out of disk space. The auditsvc() system call does not return until one of the following conditions 
occurs: 

• The process receives a signal that is not blocked or ignored. 

• An error is encountered writing to the audit log file. 

• The minimum free space (as specified by limit), has been reached. 

Only processes with a real or effective user ID of super-user may execute this call successfully. 

RETURN VALUE 
This call only returns on an error. 

ERRORS 

634 

EPERM 

EBUSY 

EBADF 

EPIPE 

EFBIG 

EINTR 

ENOSPC 

EDQUOT 

EDQUOT 

EIO 

ENXIO 

EWOULDBLOCK 

EAGAIN 

EBUSY 

The process's effective or real user ID is not super-user. 

A second process attempted to perform this call. 

d is not a valid descriptor open for writing. 

An attempt is made to write to a pipe that is not open for reading by any process 
(or to a socket of type SOCK_STREAM that is connected to a peer socket.) Note: 
an attempted write of this kind will also cause you to receive a SIGPIPE signal 
from the kernel. If you've not made a special provision to catch or ignore this sig
nal, your process will die. 

An attempt was made to write a file that exceeds the process's file size limit or the 
maximum file size. 

The call is forced to terminate prematurely due to the arrival of a signal whose 
sv _ INTERRUPT bit in sv _ flags is set (see sigvec(2)). signa1(3V), in the System 
V compatibility library, sets this bit for any signal it catches. 

There is no free space remaining on the file system containing the file. 

The user's quota of disk blocks on the file system containing the file has been 
exhausted. 

Audit filesystem space is below the specified limit. 

An I/0 error occurred while reading from or writing to the file system. 

A hangup occurred on the stream being written to. 

The file was marked for 4.2BSD-style non-blocking I/0, and no data could be 
written immediately. 

The descriptor referred to a stream, was marked for System V-style non-blocking 
I/0, and no data could be written immediately. 

A second process attempted to perform this call. 

Last change: 25 September 1987 Sun Release 4.0 



AUDITSVC ( 2) SYSTEM CALLS AUDITSVC(2) 

SEE ALSO 
audit(2), sigvec(2), signal(3V), audit.log(S), auditd(8) 

Sun Release 4.0 Last change: 25 September 1987 635 



BIND(2) SYSTEM CALLS BIND(2) 

NAME 
bind - bind a name to a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

bind(s, name, namelen) 
int s; 
struct sockaddr •name; 
int namelen; 

DESCRIPTION 
bind() assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in a name 
space (address family) but has no name assigned. bind() requests that the name pointed to by name be 
assigned to the socket. 

NOTES 
Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller 
when it is no longer needed (using unlink(2)). 

The rules used in name binding vary between communication domains. Consult the manual entries in sec
tion 4 for detailed information. 

RETURN VALUE 
If the bind is successful, a O value is returned. A return value of -1 indicates an error, which is further 
specified in the global errno. 

ERRORS 

636 

The bind() call will fail if: 

EBADF 

ENOTSOCK 

EADDRNOTAVAIL 

EADDRINUSE 

EINVAL 

EINVAL 

EACCES 

EFAULT 

s is not a valid descriptor. 

s is a descriptor for a file, not a socket. 

The specified address is not available from the local machine. 

The specified address is already in use. 

name/en is not the size of a valid address for the specified address family. 

The socket is already bound to an address. 

The requested address is protected, and the current user has inadequate permission 
to access it 

The name parameter is not in a valid part of the user address space. 

The following errors are specific to binding names in the UNIX domain. 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EIO 

EROFS 

EISDIR 

A component of the path prefix of the path name in name is not a directory. 

The length of a component of the path name in name exceeds 255 characters, or 
the length of the path name in name exceeds 1023 characters. 

A component of the path prefix of the path name in name does not exist. 

Search permission is denied for a component of the path prefix of the path name in 
name. 

Too many symbolic links were encountered in translating the path name in name. 

An I/0 error occurred while making the directory entry or allocating the inode. 

The inode would reside on a read-only file system. 

A null path name was specified. 

Last change: 20 November 1987 Sun Release 4.0 



BIND(2) SYSTEM CALLS BIND(2) 

SEE ALSO 
connect(2), getsockname(2), listen(2), socket(2), unlink(2) 

Sun Release 4.0 Last change: 20 November 1987 637 



BRK(2) SYSTEM CALLS BRK(2) 

NAME 
brk, sbrk - change data segment size 

SYNOPSIS 
#include <sys/types.h> 

int brk(addr) 
caddr _ t addr; 

caddr _t sbrk(incr) 
int incr; 

DESCRIPTION 
brk() sets the system's idea of the lowest data segment location not used by the program (called the break) 
to addr (rounded up to the next multiple of the system's page size). 

In the alternate function sbrk( ), incr more bytes are added to the program's data space and a pointer to the 
start of the new area is returned. 

When a program begins execution using execve( ) the break is set at the highest location defined by the 
program and data storage areas. 

The getrlimit(2) system call may be used to determine the maximum permissible size of the data segment; 
it will not be possible to set the break beyond the rlim _ max value returned from a call to getrlimit( ), that 
is to say, "etext + rlim.rlim_max." (See end(3) for the definition of etext.) 

RETURN VALUE 
brk() returns O on success, while sbrk() returns the old break value. If the break cannot be set, brk() 
returns -1; sbrk() returns (caddr_t)-1 on error. 

ERRORS 
brk() and sbrk() will fail and no additional memory will be allocated if one of the following are true: 

ENOMEM The data segment size limit, as set by setrlimit (see getrlimit(2)), would be 
exceeded. 

ENOMEM 

ENOMEM 

ENOMEM 

The maximum possible size of a data segment (compiled into the system) would 
be exceeded. 

Insufficient space exists in the swap area to support the expansion. 

Out of address space; the new break value would extend into an area of the 
address space defined by some previously established mapping (see mmap(2). 

SEE ALSO 

BUGS 

638 

execve(2), mmap(2), getrlimit(2), malloc(3), end(3) 

Setting the break may fail due to a temporary lack of swap space. It is not possible to distinguish this from 
a failure caused by exceeding the maximum size of the data segment without consulting getrlimit( ). 

Last change: 16 February 1988 Sun Release 4.0 



CHDIR(2) SYSTEM CALLS CHDIR(2) 

NAME 
chdir - change current working directory 

SYNOPSIS 
int chdir (path) 
char •path; 

int f chdir (fd) 
int fd; 

DESCRIPTION 
chdir() and f chdir cause a directory to become the current working directory, that is, the starting point for 
pathnames not beginning with '/'. 

In order for a directory to become the current directory, a process must have execute (search) access to the 
directory. 

The path argument to chdir() points to the pathname of a directory. The/ d argument to f chdir is the open 
file descriptor of a directory. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

WARNING 
f chdir is provided as a performance enhancement and is guaranteed to fail under certain conditions. In 
particular, if auditing is active the call will never succeed, and EINV AL will be returned. Applications 
which use this system call must be coded to detect this failure and switch to using chdir() from that point 
on. 

Sun Release 4.0 Last change: 20 November 1987 639 



CHM0D(2) SYSTEM CALLS CHM0D(2) 

NAME 
chmod, fchmod - change mode of file 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/stat.h> 

int chmod(path, mode) 
char •path; 
int mode; 

int fchmod(fd, mode) 
int fd, mode; 

DESCRIPTION 
The file whose name is given by path or referenced by the descriptor/ d has its mode changed to mode . 
Modes are constructed by ORing together some combination of the following: 

S _ ISUID 04000 set user ID on execution 
S _ISGID 02000 set group ID on execution 
S_ISVTX 01000 save text image after execution (sticky bit) 
s IREAD 00400 read by owner 
S IWRITE 00200 write by owner 
s IEXEC 00100 execute (search on directory) by owner 

00070 read, write, execute (search) by group 
00007 read, write, execute (search) by others 

These bit patterns are defined in <sys/stat.h>. 

The effective user ID of the process must match the owner of the file or be super-user to change the mode 
of a file. 

If the effective user ID of the process is not super-user and the process attempts to set the set group ID bit 
on a file owned by a group which is not in its group access list, mode bit 02000 (set group ID on execution) 
is cleared. 

If mode bit 01()00 is set on a directory, an unprivileged user may not delete or rename files of other users in 
that directory. 

If a user other than the super-user writes to a file, the set user ID and set group ID bits are turned off. This 
makes the system somewhat more secure by protecting set-user-ID (set-group-ID) files from remaining 
set-user-ID (set-group-ID) if they are modified, at the expense of a degree of compatibility. 

RETURN V ALOE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 

640 

chmod() will fail and the file mode will be unchanged if: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EPERM 

EINVAL 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The file referred to by path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

The effective user ID does not match the owner of the file and the effective user ID 
is not the super-user. 

f d refers to a socket, not to a file. 

Last change: 20 November 1987 Son Release 4 .0 



CHM:0D(2) SYSTEM CALLS CHM0D(2) 

EROFS The file referred to by path resides on a read-only file system. 

EFAULT path points outside the process's allocated address space. 

EIO An I/0 error occurred while reading from or writing to the file system. 

FILES 

fchmod() will fail if: 

EBADF The descriptor is not valid. 

EROFS The file referred to by fd resides on a read-only file system. 

EPERM The effective user ID does not match the owner of the file and the effective user ID is not the 
super-user. 

EIO An I/0 error occurred while reading from or writing to the file system. 

/usr/include/sys/stat.h 

SEE ALSO 
chown(2), open(2V), stat(2), sticky(8) 

Sun Release 4.0 Last change: 20 November 1987 641 



CHOWN(2) SYSTEM CALLS CHOWN(2) 

NAME 
chown, fchown - change owner and group of a file 

SYNOPSIS 
int chown(path, owner, group) 
char •path; 
int owner, group; 

int fchown(fd, owner, group) 
intfd,owner,group; 

DESCRIPTION 
The file that is named by path or referenced by/ d has its owner and group changed as specified. Only the 
super-user may change the owner of the file, because if users were able to give files away, they could 
defeat the file-space accounting procedures. The owner of the file may change the group to a group of 
which he is a member; the super-user may change the group arbitrarily. 

fchown() is particularly useful when used in conjunction with the file locking primitives (see ftock(2)). 

If owner or group is specified as -1, the corresponding ID of the file is not changed. 

If a process whose effective user ID is not super-user successfully changes the group ID of a file, the set
user-ID and set-group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared. 

If the final component of path is a symbolic link, the ownership and group of the symbolic link is changed, 
not the ownership and group of the file or directory to which it points. 

RETURN VALUE 
Zero is returned if the operation was successful; -1 is returned, and a more specific error code is placed in 
the global variable errno, if an error occurs. 

ERRORS 

642 

chown() will fail and the file will be unchanged if: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EPERM 

EROFS 

EFAULT 

EIO 

fchown() will fail if: 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The file referred to by path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

The user ID specified by owner is not the current owner ID of the file, or the group 
ID specified by group is not the current group ID of the file and is not in the pro
cess' group access list, and the effective user ID is not the super-user. 

The file referred to by path resides on a read-only file system. 

path points outside the process's allocated address space. 

An 1/0 error occurred while reading from or writing to the file system. 

EBADF fd does not refer to a valid descriptor. 

EINVAL 
f d refers to a socket, not a file. 

EPERM The user ID specified by owner is not the current owner ID of the file, or the group ID specified by 
group is not the current group ID of the file and is not in the group access list, and the effective 
user ID is not the super-user. 

EROFS The file referred to by fd resides on a read-only file system. 

Last change: 7 January 1988 Sun Release 4.0 



CHOWN(2) SYSTEM CALLS CHOWN(2) 

EIO An I/0 error occurred while reading from or writing to the file system. 

SEE ALSO 
chmod(2), flock(2) 

Sun Release 4.0 Last change: 7 January 1988 643 



CHROOT(2) SYSTEM CALLS CHROOT(2) 

NAME 
chroot - change root directory 

SYNOPSIS 
int chroot ( dirname) 
char •dirname; 

int f chroot (f d) 
int fd; 

DESCRIPTION 
chroot() and f chroot cause a directory to become the root directory, the starting point for path names 
beginning with '/'. The current working directory is unaffected by this call. This root directory setting is 
inherited across execve(2) and by all children of this process created with fork(2) calls. 

In order for a directory to become the root directory a process must have execute (search) access to the 
directory and either the effective user ID of the process must be super-user or the target directory must be 
the system root or a loop-back mount of the system root (see lofs(4S)). fchroot is further restricted in that 
while it is always possible to change to the system root using this call, it is not guaranteed to succeed in any 
other case, even should/d be in all respects valid. 

The dirname argument to chroot() points to a path name of a directory. The/ d argument to f chroot is the 
open file descriptor of the directory which is to become the root. 

The •• entry in the root directory is interpreted to mean the root directory itself. Thus, •• cannot be used to 
access files outside the subtree rooted at the root directory. Instead, fchroot can be used to set the root 
back to a directory which was opened before the root directory was changed. 

WARNING 
The only use of f chroot that is appropriate is to change back to the system root. While it may succeed in 
some other cases, it is guaranteed to fail if auditing is enabled. Super-user processes are not exempt from 
this limitation. 

RETURN V ALOE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate an error. 

ERRORS 

644 

chroot() will fail and the root directory will be unchanged if one or more of the following are true: 

ENOTDIR 

ENOTDIR 

EINVAL 

ENAMETOOLONG 

ENOENT 

EACCES 

EACCES 

ELOOP 

EPERM 

EFAULT 

EIO 

EBADF 

A component of the path prefix of dirname is not a directory. 

The file referred to by dirname is not a directory. 

fchroot attempted to change to a directory which is not the system root and exter
nal circumstances, such as auditing, do not allow this. 

The length of a component of dirname exceeds 255 characters, or the length of 
dirname exceeds 1023 characters. 

The directory referred to by dirname does not exist. 

Search permission is denied for a component of the path prefix of dirname. 

Search permission is denied for the directory referred to by dirname. 

Too many symbolic links were encountered in translating dirname. 

The effective user ID is not super-user. 

dirname points outside the process's allocated address space. 

An 1/0 error occurred while reading from or writing to the file system. 

The descriptor is not valid. 

Last change: 20 November 1987 Sun Release 4.0 



CHROOT(2) SYSTEM CALLS CHROOT(2) 

SEE ALSO 
chdir(2), execve(2), fork(2), lofs(4S) 

Sun Release 4.0 Last change: 20 November 1987 645 



CLOSE(2) SYSTEM CALLS CLOSE(2) 

NAME 
close - delete a descriptor 

SYNOPSIS 
int close (des) 
int des; 

DESCRIPTION 
The close() call deletes a descriptor from the per-process object reference table. If this is the last reference 
to the underlying object, then it will be deactivated. For example, on the last close of a file the current seek 
pointer associated with the file is lost; on the last close of a socket(2) associated naming information and 
queued data are discarded; on the last close of a file holding an advisory lock the lock is released (see 
flock(2) for further information). 

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the number of 
active descriptors per process, close() is necessary for programs that deal with many descriptors. 

When a process forks (see fork(2)), all descriptors for the new child process reference the same objects as 
they did in the parent before the fork. If a new process is then to be run using execve(2), the process would 
normally inherit these descriptors. Most of the descriptors can be rearranged with dup(2) or deleted with 
close() before the execve( ) is attempted, but if some of these descriptors will still be needed if the 
execve() fails, it is necessary to arrange for them to be closed if the execve() succeeds. The fcntl(2V) 
operation F _ SETFD can be used to arrange that a descriptor will be closed after a successful execve, or to 
restore the default behavior, which is to not close the descriptor. 

If a STREAMS (see intro(2)) file is closed, and the calling process had previously registered to receive a 
SIGPOLL signal (see sigvec(2)) for events associated with that file (see I_SETSIG in streamio(4)), the cal
ling process will be unregistered for events associated with the file. The last close() for a stream causes 
that stream to be dismantled. If the descriptor is not marked for no-delay mode and there have been no sig
nals posted for the stream, close() waits up to 15 seconds, for each module and driver, for any output to 
drain before dismantling the stream. If the descriptor is marked for no-delay mode or if there are any pend
ing signals, close() does not wait for output to drain, and dismantles the stream immediately. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and the global 
integer variable errno is set to indicate the error. 

ERRORS 
close( ) will fail if: 

EBADF 

EINTR 

dis not an active descriptor. 

A signal was caught before the close completed. 

SEE ALSO 

646 

accept(2), dup(2), execve(2), fcntl(2V), flock(2), intro(2), open(2V), pipe(2), sigvec(2), socket(2), sock
etpair(2), streamio( 4) 

Last change: 20 November 1987 Sun Release 4 .0 



CONNECT(2) SYSTEM CALLS CONNECT(2) 

NAME 
connect - initiate a connection on a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

connect(s, name, namelen) 
int s; 
struct sockaddr •name; 
int namelen; 

DESCRIPTION 
The parameter s is a socket If it is of type SOCK_ DGRAM, then this call specifies the peer with which the 
socket is to be associated; this address is that to which datagrams are to be sent, and the only address from 
which datagrams are to be received. If it is of type SOCK_STREAM, then this call attempts to make a con
nection to another socket. The other socket is specified by name which is an address in the communica
tions space of the socket. Each communications space interprets the name parameter in its own way. Gen
erally, stream sockets may successfully connect() only once; datagram sockets may use connect() multi
ple times to change their association. Datagram sockets may dissolve the association by connecting to an 
invalid address, such as a null address. 

RETURN VALUE 
If the connection or binding succeeds, then O is returned. Otherwise a -1 is returned, and a more specific 
error code is stored in errno. 

ERRORS 
The call fails if: 

EBADF 

ENOTSOCK 

EINVAL 

EADDRNOTAVAIL 

EAFNOSUPPORT 

EISCONN 

ETIMEDOUT 

ECONNREFUSED 

ENETUNREACH 

EADDRINUSE 

EFAULT 

EINPROGRESS 

EALREADY 

EINTR 

s is not a valid descriptor. 

s is a descriptor for a file, not a socket. 

namelen is not the size of a valid address for the specified address family. 

The specified address is not available on the remote machine. 

Addresses in the specified address family cannot be used with this socket. 

The socket is already connected. 

Connection establishment timed out without establishing a connection. 

The attempt to connect was forcefully rejected. The calling program should 
close(2) the socket descriptor, and issue another socket(2) call to obtain a new 
descriptor before attempting another connect(2) call. 

The network is not reachable from this host. 

The address is already in use. 

The name parameter specifies an area outside the process address space. 

The socket is non-blocking and the connection cannot be completed immediately. 
It is possible to select(2) for completion by selecting the socket for writing. 

The socket is non-blocking and a previous connection attempt has not yet been 
completed. 

The connection attempt was interrupted before any data arrived by the delivery of 
a signal. 

The following errors are specific to connecting names in the UNIX domain. These errors may not apply in 
future versions of the UNIX IPC domain. 

ENOTDIR A component of the path prefix of the path name in name is not a directory. 

Sun Release 4.0 Last change: 20 November 1987 647 



CONNECT(2) 

ENAMETOOLONG 

ENOENT 

ENOENT 

EACCES 

ELOOP 

EIO 

ENOTSOCK 

EPROTOTYPE 

SEE ALSO 

SYSTEM CALLS CONNECT(2) 

The length of a component of the path name in name exceeds 255 characters, or 
the length of the entire path name in name exceeds 1023 characters. 

A component of the path prefix of the path name in name does not exist. 

The socket referred to by the path name in name does not exist. 

Search permission is denied for a component of the path prefix of the path name in 
name. 

Too many symbolic links were encountered in translating the path name in name. 

An 1/0 error occurred while reading from or writing to the file system. 

The file referred to by name is not a socket. 

The file referred to by name is a socket of a type other than the type of s (e.g., sis 
a SOCK_ DGRAM socket, while name refers to a SOCK_ STREAM socket). 

accept(2), close(2), connect(2), getsockname(2), select(2), socket(2) 

648 Last change: 20 November 1987 Sun Release 4.0 



CREAT(2) SYSTEM CALLS CREAT(2) 

NAME 
creat - create a new file 

SYNOPSIS 
int creat(name, mode) 
char *name; 
int mode; 

DESCRIPTION 
This interface is made obsolete by open(2V). 

creat() creates a new ordinary file or prepares to rewrite an existing file named by the path name pointed 
to by name. If the file did not exist, it is given mode mode, as modified by the process's mode mask (see 
umask(2)). Also see chmod(2) for the construction of the mode argument. 

If the file exists, its mode and owner remain unchanged, but it is truncated to O length. Otherwise, the file's 
owner ID is set to the effective user ID of the process. 

The file's group ID is set to either: 

• the effective group ID of the process, if the filesystem was not mounted with the BSD file-creation 
semantics flag (see mount(2)) and the set-gid bit of the parent directory is clear, or 

• the group ID of the directory in which the file is created. 

The low-order 12 bits of the file mode are set to the value of mode, modified as follows: 

• All bits set in the process's file mode creation mask are cleared. See umask(2). 

• The "save text image after execution" (sticky) bit of the mode is cleared. See chmod(2). 

• The ''set group ID on execution'' bit of the mode is cleared if the effective user ID of the process is not 
super-user and the process is not a member of the group of the created file. 

Upon successful completion, the file descriptor is returned and the file is open for writing, even if the mode 
does not permit writing. The file pointer is set to the beginning of the file. The file descriptor is set to 
remain open across execve(2) system calls. See fcnt1(2V). 

NOTES 
The mode given is arbitrary; it need not allow writing. This feature has been used in the past by programs 
to construct a simple exclusive locking mechanism. It is replaced by the O _ EXCL open mode, or flock(2) 
facility. 

RETURN VALUE 
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descriptor which 
only permits writing. 

ERRORS 
creat( ) will fail and the file will not be created or truncated if one of the following occur: 

ENOTDIR A component of the path prefix of name is not a directory. 

ENAMETOOLONG 

ENOENT 

ELOOP 

EACCES 

EACCES 

EACCES 

EISDIR 

Sun Release 4.0 

The length of a componeni of name exceeds 255 characters, or the length of name 
exceeds 1023 characters. 

A component of the path prefix of name does not exist. 

Too many symbolic links were encountered in translating name. 

Search permission is denied for a component of the path prefix of name. 

The file referred to by name does not exist and the directory in which it is to be 
created is not writable. 

The file referred to by name exists, but it is unwritable. 

The file referred to by name is a directory. 

Last change: 22 November 1987 649 



CREAT{2) 

EMFILE 

ENFILE 

ENOSPC 

ENOSPC 

EDQUOT 

EDQUOT 

EROFS 

ENXIO 

EIO 

EFAULT 

EOPNOTSUPP 

SEE ALSO 

SYSTEM CALLS 

There are already too many files open. 

The system file table is full. 

CREAT(2) 

The directory in which the entry for the new file is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

There are no free inodes on the file system on which the file is being created. 

The directory in which the entry for the new file is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the 
directory has been exhausted. 

The user's quota of inodes on the file system on which the file is being created has 
been exhausted. 

The file referred to by name resides, or would reside, on a read-only file system. 

The file is a character special or block special file, and the associated device does 
not exist. 

An 1/0 error occurred while making the directory entry or allocating the inode. 

name points outside the process's allocated address space. 

The file was a socket (not currently implemented). 

close(2), chmod(2), execve(2), fcntl(2V), flock(2), mount(2), open(2V), write(2V), umask(2) 

650 Last change: 22 November 1987 Sun Release 4.0 



DUP(2) SYSTEM CALLS DUP(2) 

NAME 
dup, dup2 - duplicate a descriptor 

SYNOPSIS 
int dup( oldd) 
int oldd; 

int dup2( oldd, newd) 
int oldd, newd; 

DESCRIPTION 
dup() duplicates an existing object descriptor. The argument oldd is a small non-negative integer index in 
the per-process descriptor table. The value must be less than the size of the table, which is returned by 
getdtablesize(2). The new descriptor returned by the call is the lowest numbered descriptor that is not 
currently in use by the process. 

In the second form of the call, the value of the new descriptor desired is specified. If that descriptor is 
already in use, the descriptor is first deallocated as if a close(2) call had been done first. 

The new descriptor has the following in common with the original: 

It refers to the same object that the old descriptor referred to. 

It uses the same file pointer as the old descriptor. (that is, both file descriptors share one file 
pointer). 

It has the same access mode (read, write or read/write) as the old descriptor. 

Thus if newd and oldd are duplicate references to an open file, read(2V), write(2V) and lseek(2) calls all 
move a single pointer into the file, and append mode, non-blocking 1/0 and asynchronous 1/0 options are 
shared between the references. If a separate pointer into the file is desired, a different object reference to 
the file must be obtained by issuing an additional open(2V) call. The close-on-exec flag on the new file 
descriptor is unset. 

The new file descriptor is set to remain open across exec system calls. See fcntl(2V). 

RETURN VALUE 
The value -1 is returned if an error occurs in either call. The external variable errno indicates the cause of 
the error. 

ERRORS 
dup() and dup2() fail if: 

EBADF 

EMFILE 

SEE ALSO 

oldd or newd is not a valid active descriptor. 

Too many descriptors are active. 

accept(2), close(2), fcntl(2V), getdtablesize(2), lseek(2), open(2V), pipe(2), read(2V), socket(2), socket
pair(2), write(2V) 

Sun Release 4.0 Last change: 25 September 1987 651 



EXECVE(2) SYSTEM CALLS EXECVE(2) 

NAME 
execve - execute a file 

SYNOPSIS 
int execve(path, argv, envp) 
char *path, **argv, **envp; 

DESCRIPTION 

652 

execve() transforms the calling process into a new process. The new process is constructed from an ordi
nary file, whose name is pointed to by path, called the newprocess.file. This file is either an executable 
object file, or a file of data for an interpreter. An executable object file consists of an identifying header, 
followed by pages of data representing the initial program (text) and initialized data pages. Additional 
pages may be specified by the header to be initialized with zero data. See a.out(5). 

An interpreter file begins with a line of the form '#! interpreter [arg]'. When an interpreter file is 
execve'd, the system execve's the specified interpreter. If the optional arg is specified, it becomes the first 
argument to the interpreter, and the name of the originally execve'd file becomes the second argument; 
otherwise, the name of the originally execve'd file becomes the first argument. The original argument are 
shifted over to become the subsequent arguments. The zeroth argument, normally the name of the 
execve' d file, is left unchanged. 

There can be no return from a successful execve() because the calling core image is lost. This is the 
mechanism whereby different process images become active. 

The argument argv is a pointer to a NULL-terminated array of character pointers to null-terminated charac
ter strings. These strings constitute the argument list to be made available to the new process. By conven
tion, at least one argument must be present in this array, and the first element of this array should be the 
name of the executed program (that is, the last component of path). 

The argument envp is also a pointer to a NULL-terminated array of character pointers to null-terminated 
strings. These strings pass information to the new process which are not directly arguments to the com
mand (see environ(5V)). 

Descriptors open in the calling process remain open in the new process, except for those for which the 
close-on-exec flag is set (see close(2) and fcntl(2V)). Descriptors which remain open are unaffected by 
execve. 

Ignored signals remain ignored across an execve, but signals that are caught are reset to their default 
values. Blocked signals remain blocked regardless of changes to the signal action. The signal stack is reset 
to be undefined (see sigvec(2) for more information). 

Each process has a real user ID and group ID and an effective user ID and group ID. The real ID identifies 
the person using the system; the effective ID determines their access privileges. execve() changes the 
effective user or group ID to the owner or group of the executed file if the file has the "set-user-ID" or 
"set-group-ID" modes. The real user ID and group ID are not affected. 

The shared memory segments attached to the calling process will not be attached to the new process (see 
shmop(2)). 

Profiling is disabled for the new process; see profil(2). 

The new process also inherits the following attributes from the calling process: 

process ID 
parent process ID 
process group ID 
access groups 
semadj values 
working directory 
root directory 
control terminal 

see getpid(2) 
see getpid(2) 
see setpgrp(2V) 
see getgroups(2) 
seesemop(2) 
see chdir(2) 
see chroot(2) 
see termio(4) 

Last change: 22 November 1987 Sun Release 4.0 



EXECVE(2) SYSTEM CALLS EXECVE(2) 

trace flag seeptrace(2) request 0) 
resource usages see getrusage(2) 
interval timers see getitimer(2) 
resource limits see getrlimit(2) 
file mode mask see umask(2) 
signal mask see sigvec(2), sigsetmask(2) 

When the executed program begins, it is called as follows: 

main(argc, argv, envp) 
int argc; 
char **argv, **envp; 

where argc is the number of elements in argv (the "arg count") and argv points to the array of character 
pointers to the arguments themselves. 

envp is a pointer to an array of strings that constitute the environment of the process. A pointer to this array 
is also stored in the global variable environ. Each string consists of a name, an"=", and a null-terminated 
value. The array of pointers is terminated by a null pointer. The shell sh(l) passes an environment entry 
for each global shell variable defined when the program is called. See environ(5V) for some convention
ally used names. 

RETURN VALUE 
If execve() returns to the calling process an error has occurred; the return value will be -1 and the global 
variable errno will contain an error code. 

ERRORS 
execve() will fail and return to the calling process if one or more of the following are true: 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

ENOENT 

ELOOP 

EACCES 

EACCES 

EACCES 

ENOEXEC 

ENOMEM 

E2BIG 

EFAULT 

EFAULT 

EIO 

CAVEATS 

A component of the path prefix of the new process file is not a directory. 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

One or more components of the path prefix of the new process file does not exist. 

The new process file does not exist. 

Too many symbolic links were encountered in translating path. 

Search permission is denied for a component of the new process file's path prefix. 

The new process file is not an ordinary file. 

Execute permission is denied for the new process file. 

The new process file has the appropriate access permission, but has an invalid 
magic number in its header. 

The new process file requires more virtual memory than is allowed by the imposed 
maximum (getrlimit(2)). 

The number of bytes in the new process file's argument list is larger than the 
system-imposed limit. The limit in the system as released is 1,048,576 bytes 
(NCARGS in <Sys/param.h> ). 

The new process file is not as long as indicated by the size values in its header. 

path, argv, or envp points to an illegal address. 

An 1/0 error occurred while reading from the file system. 

If a program is setuid() to a non-super-user, but is executed when the real user ID is super-user, then the 
program has some of the powers of a super-user as well. 

Sun Release 4.0 Last change: 22 November 1987 653 



EXECVE(2) SYSTEM CALLS EXECVE(2) 

SEE ALSO 

654 

sh(l), chdir(2), chroot(2), close(2), exit(2), fcntl(2V), fork(2), getgroups(2), getitimer(2), getpid(2), 
getrlimit(2), getrusage(2), profil(2), ptrace(2), semop(2), setpgrp(2V), shmop(2), sigvec(2), execl(3), 
termio(4), a.out(5), environ(5V) 

Last change: 22 November 1987 Sun Release 4.0 



EXIT(2) SYSTEM CALLS EXIT(2) 

NAME 
_exit - terminate a process 

SYNOPSIS 
_ exit(status) 
int status; 

DESCRIPTION 
_exit() terminates a process with the following consequences: 

All of the descriptors open in the calling process are closed. This may entail delays, for example, waiting 
for output to drain; a process in this state may not be killed, as it is already dying. 

If the parent process of the calling process is executing a wait() or is interested in the SIGCHLD signal, 
then it is notified of the calling process's termination and the low-order eight bits of status are made avail
able to it; see wait(2). 

The parent process ID of all of the calling process's existing child processes are also set to 1. This means 
that the initialization process (see intro(2)) inherits each of these processes as well. Any stopped children 
are restarted with a hangup signal (SIGHUP). 

Each attached shared memory segment is detached and the value of shm _ nattach in the data structure 
associated with its shared memory identifier is decremented by 1. 

For each semaphore for which the calling process has set a semadj value (see semop(2)), that semadj value 
is added to the semval of the specified semaphore. 

If process accounting is enabled (see acct(2)), an accounting record is written to the accounting file. 

Most C programs will call the library routine exit(3) which performs cleanup actions in the standard I/0 
library before calling _ exit. 

RETURN VALUE 
This call never returns. 

SEE ALSO 
acct(2), fork(2), intro(2), semop(2), wait(2), exit(3) 

Sun Release 4.0 Last change: 25 September 1987 655 



FCNTL(2V) 

NAME 
fend - file control 

SYNOPSIS 
#include <fcntl.h> 

int fcntl (des, cmd, arg) 
int des, cmd, arg; 

DESCRIPTION 

SYSTEM CALLS FCNTL(2V) 

fcntl() performs a variety of functions on open descriptors. The argument des is an open descriptor to be 
operated on by cmd as follows: 

656 

F DUPFD Return a new descriptor as follows: 

F GETFD 

F SETFD 

F GETFL 

F SETFL 

F GETLK 

Lowest numbered available descriptor greater than or equal to arg. 

Refers to the same object as the original descriptor. 

New descriptor shares the same file pointer if the object was a file (that 
is, both descriptors share one file pointer). 

Same access mode (read, write or read/write). 

Same descriptor status flags (both descriptors share the same descriptor 
status flags). 

The close-on-exec flag associated with the new descriptor is set to remain 
open across execve(2) system calls. 

Get the close-on-exec flag associated with the descriptor des. If the low-order bit 
is 0, the file will remain open across execve, otherwise the file will be closed upon 
execution of execve. 

Set the close-on-exec flag associated with des to the low order bit of arg (0 or 1 as 
above). Note: this flag is a per-process and per-descriptor flag; setting or clearing 
it for a particular descriptor will not affect the flag on descriptors copied from it 
by a dup(2) or F _DUPFD operation, nor will it affect the flag on other processes 
instances of that descriptor. 

Get descriptor status flags (see fcntl(S) for their definitions). 

Set descriptor status flags (see fcntl(S) for their definitions). Only the following 
flags can have their values changed: O_APPEND, O_SYNC, and O_NDELAY, and 
the FASYNC, FNDELAY, and FNBIO flags defined in <sys/file.h>. 

In the 4.2BSD environment, the O_NDELAY and FNDELAY flags are the same 
flag; in the System V environment, the O_NDELAY and FNBIO flags are the same 
flag. The FNDELA Y and FNBIO flags may be used in either environment; the 
meaning of those flags is not dependent on the environment in which a program is 
built. 

As the descriptor status flags are shared with descriptors copied from a given 
descriptor by a dup(2) or F _ DUPFD operation, and by other processes instances of 
that descriptor, a F _ SETFL operation will affect those other descriptors and other 
instances of the given descriptor as well. In addition, setting or clearing the 
FNDELA Y flag on a descriptor will cause an FIONBIO ioctl(2) to be performed on 
the object referred to by that descriptor, setting or clearing non-blocking mode, 
and setting or clearing the FASYNC flag on a descriptor will cause an FIOASYNC 
ioctl(2) to be performed on the object referred to by that descriptor, setting or 
clearing asynchronous mode. Thus, all descriptors referring to that object will be 
affected. 

Get a description of the first lock that would block the lock specified in the flock() 

Last cham2e: 8 Januarv 1988 



FCNTL(2V) SYSTEM CALLS FCNTL(2V) 

NOTES 

F_SETLK 

F SETLKW 

structure pointed to by arg. The information retrieved overwrites the information 
in the flock() structure. If no lock is found that would prevent this lock from 
being created, then the structure is passed back unchanged except for the lock type 
which will be set to F _ UNLCK. 

Set or clear an advisory record lock according to the flock() structure pointed to 
by arg. F _SETLK is used to establish shared (F _RDLCK) and exclusive 
(F _ WRLCK) locks, or to remove either type of lock (F _ UNLCK). If the specified 
lock cannot be applied, f cntl() will return with an error value of -1. 

This cmd is the same as F _ SETLK except that if a shared or exclusive lock is 
blocked by other locks, the requesting process will sleep until the lock may be 
applied. 

F GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG sig
nals; process groups are returned as negative values. 

F SETOWN Set the process or process group to receive SIGIO and SIGURG signals; process 
groups are specified by supplying arg as negative, otherwise arg is interpreted as a 
process ID. 

The SIGIO facilities are enabled by setting the FASYNC flag with F _SETFL. 

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee 
exclusive access (processes may still access files without using advisory locks, possibly resulting in incon
sistencies). 

The record locking mechanism allows two types of locks: shared locks (F _ RDLCK) and exclusive locks 
(F _ WRLCK). More than one process may hold a shared lock for a particular segment of a file at any given 
time, but multiple exclusive, or both shared and exclusive, locks may not exist simultaneously on any seg
ment 

In order to claim a shared lock, the descriptor must have been opened with read access. The descriptor on 
which an exclusive lock is being placed must have been opened with write access. 

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate 
lock type with a cmd of F _SETLK or F _SETLKW; the previous lock will be released and the new lock applied 
(possibly after other processes have gained and released the lock). 

If the cmd is F _SETLKW and the requested lock cannot be claimed immediately (for instance, another pro
cess holds an exclusive lock that partially or completely overlaps the current request) then the calling pro
cess will block until the lock may be acquired. Processes blocked awaiting a lock may be awakened by 
signals. 

Care should be taken to avoid deadlock situations in applications in which multiple processes perform 
blocking locks on a set of common records. 

The record that is to be locked or unlocked is described by the flock() structure, which is defined in 
<fcntl.h> and includes the following members: 

short l_type; I* F_RDLCK, F_WRLCK, or F_UNLCK *I 
short l_ whence; I* flag to choose starting offset *I 
long I_ start; I* relative offset, in bytes *I 
long l_len; I* length, in bytes; 0 means lock to EOF *I 
short l_pid; I* returned with F _ GETLK *I 

Sun Release 4.0 Last change: 8 January 1988 657 



FCNTL(2V) SYSTEM CALLS FCNTL(2V) 

The flock structure describes the type (l_type), starting offset (I_whence), relative offset (l_start), and size 
(I _len) of the segment of the file to be affected. I_ whence must be set to 0, 1, or 2 to indicate that the rela
tive offset will be measured from the start of the file, current position, or end-of-file, respectively. The pro
cess id field (l_pid) is only used with the F _GETLK cmd to return the description of a lock held by another 
process. 

Locks may start and extend beyond the current end-of-file, but may not be negative relative to the begin
ning of the file. A lock may be set to always extend to the end-of-file by setting I_len to zero (0). If such a 
lock also has I_ whence and I_start set to zero (0), the entire file will be locked. Changing or unlocking a 
segment from the middle of a larger locked segment leaves two smaller segments at either end. Locking a 
segment that is already locked by the calling process causes the old lock type to be removed and the new 
lock type to take affect. All locks associated with a file for a given process are removed when the file is 
closed or the process terminates. Locks are not inherited by the child process in a fork(2) system call. 

In order to maintain consistency in the network case, data must not be cached on client machines. For this 
reason, file buffering for an NFS file is turned off when the first lock is attempted on the file. Buffering will 
remain off as long as the file is open. Programs that do I/0 buffering in the user address space, however, 
may have inconsistent results (the standard I/0 package, for instance, is a common source of unexpected 
buffering). 

The advisory record locking capabilities of fcntl() are implemented throughout the network by the net
work lock daemon; see lockd (8C). If the file server crashes and is rebooted, the lock daemon will 
attempt to recover all locks that were associated with that server. If a lock cannot be reclaimed, the process 
that held the lock will be issued a SIGLOST signal. 

RETURN VALUE 
Upon successful completion, the value returned depends on cmd as follows: 
F_DUPFD A new descriptor. 
F _ GETFD Value of flag ( only the low-order bit is defined). 
F - GETFL Value of flags. 
F_GETOWN 

Value of descriptor owner. 
other Value other than -1. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 

658 

fcntl() will fail if one or more of the following are true: 

EBADF des is not a valid open descriptor. 

EMFILE cmd is F _ DUPFD and the maximum allowed number of descriptors are currently 
open. 

EINVAL 

EFAULT 

EINVAL 

EBADF 

EAGAIN 

EINTR 

cmd is F _DUPFD and arg is negative or greater than the maximum allowable 
number (see getdtablesize(2)). 

cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and arg points to an invalid address. 

cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and the data arg points to is not 
valid. 

cmd is F _ SETLK or F _ SETLKW and the process does not have the appropriate 
read or write permissions on the file. 

cmd is F _SETLK, the lock type (l_type) is F _RDLCK (shared lock), and the segment 
of the file to be locked already has an exclusive lock held by another process. 
This error will also be returned if the lock type is F WRLCK (exclusive lock) and 
another process already has the segment locked with either a shared or exclusive 
lock. 

cmd is F _ SETLKW and a signal interrupted the process while it was waiting for 
the lock to be granted. 

Last change: 8 January 1988 Sun Release 4.0 



FCNTL(2V) SYSTEM CALLS FCNTL(2V) 

ENOLCK cmd is F _ SETLK or F _ SETLKW and there are no more file lock entries available. 

SEE ALSO 

BUGS 

close(2), execve(2), flock(2), fork(2), getdtablesize(2), ioctl(2), open(2V), sigvec(2), lockf(3), fcntl(5), 
lockd(8C) 

File locks obtained through the f cntl() mechanism do not interact in any way with those acquired via 
flock(2). They do, however, work correctly with the exclusive locks claimed by lockf(3). 

F _ GETLK returns F _ UNLCK if the requesting process holds the specified lock. Thus, there is no way for a 
process to determine if it is still holding a specific lock after catching a SIG LOST signal. 

In a network environment, the value of l_pid returned by F _ GETLK is next to useless. 

Sun Release 4.0 Last change: 8 January 1988 659 



FLOCK(2) SYSTEM CALLS FLOCK(2) 

NAME 

flock - apply or remove an advisory lock on an open file 

SYNOPSIS 

#include <sys/file.h> 

#define LOCK_ SH 
#define LOCK EX 
#define LOCK NB 

#define LOCK_ UN 

flock(fd, operation) 
int f d, operation; 

1 
2 
4 
8 

I* shared lock •/ 
/• exclusive lock•/ 
I• don't block when locking •/ 
/•unlock•/ 

DESCRIPTION 

NOTES 

flock() applies or removes an advisory lock on the file associated with the file descriptor f d. A lock is 
applied by specifying an operation parameter that is the inclusive OR of LOCK_ SH or LOCK_ EX and, pos
sibly, LOCK_ NB. To unlock an existing lock, the operation should be LOCK_ UN. 

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee 
exclusive access (that is, processes may still access files without using advisory locks, possibly resulting in 
inconsistencies). 

The locking mechanism allows two types of locks: shared locks and exclusive locks. More than one pro
cess may hold a shared lock for a file at any given time, but multiple exclusive, or both shared and 
exclusive, locks may not exist simultaneously on a file. 

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate 
lock type; the previous lock will be released and the new lock applied (possibly after other processes have 
gained and released the lock). 

Requesting a lock on an object that is already locked normally causes the caller to block until the lock may 
be acquired. If LOCK _NB is included in operation, then this will not happen; instead the call will fail and 
the error EWOULDBLOCK will be returned. 

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or fork(2) do not 
result in multiple instances of a lock, but rather multiple references to a single lock. If a process holding a 
lock on a file forks and the child explicitly unlocks the file, the parent will lose its lock. 

Processes blocked awaiting a lock may be awakened by signals. 

RETURN VALUE 
Zero is returned on success, -1 on error, with an error code stored in errno. 

ERRORS 
The flock() call fails if: 

EWOULDBLOCK 

EBADF 

EOPNOTSUPP 

The file is locked and the LOCK_ NB option was specified. 

The argument fd is an invalid descriptor. 

The argument f d refers to an object other than a file. 

SEE ALSO 

BUGS 

660 

close(2), dup(2), execve(2), fcntl(2V), fork(2), open(2V), lockf(3), lockd(8C) 

Locks obtained through the flock() mechanism are known only within the system on which they were 
placed. Thus, multiple clients may successfully acquire exclusive locks on the same remote file. If this 
behavior is not explicitly desired, the fcnt1(2V) or lockf(3) system calls should be used instead; these make 
use of the services of the network lock manager (see lockd(8C)). 

Last change: 19 November 1987 Sun Release 4.0 



FORK(2) SYSTEM CALLS FORK(2) 

NAME 
fork - create a new process 

SYNOPSIS 
int forkO 

DESCRIPTION 
fork() creates a new process. The new process (child process) is an exact copy of the calling process 
except for the following: 

RETURN VALUE 

The child process has a unique process ID. 

The child process has a different parent process ID (that is, the process ID of the parent process). 

The child process has its own copy of the parent's descriptors. These descriptors reference the 
same underlying objects, so that, for instance, file pointers in file objects are shared between the 
child and the parent, so that an lseek(2) on a descriptor in the child process can affect a subse
quent read(2V) or write(2V) by the parent. This descriptor copying is also used by the shell to 
establish standard input and output for newly created processes as well as to set up pipes. 

All semadj values are cleared; see semop(2). 

The child processes resource utilizations are set to O; see setrlimit(2). The it_ value and 
it_interval values for the ITIMER_REAL timer are reset to O; see getitimer(2). 

Upon successful completion, fork( ) returns a value of O to the child process and returns the process ID of 
the child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no child 
process is created, and the global variable errno is set to indicate the error. 

ERRORS 
fork() will fail and no child process will be created if one or more of the following are true: 

EAGAIN 

EAGAIN 

ENOMEM 

SEE ALSO 

The system-imposed limit on the total number of processes under execution would 
be exceeded. This limit is determined when the system is generated. 

The system-imposed limit on the total number of processes under execution by a 
single user would be exceeded. This limit is determined when the system is gen
erated. 

There is insufficient swap space for the new process. 

execve(2), getitimer(2), getrlimit(2), lseek(2), read(2V), semop(2), wait(2), write(2V) 

Sun Release 4.0 Last change: 27 January 1988 (i61 



FSYNC(2) SYSTEM CALLS FSYNC(2) 

NAME 
fsync - synchronize a file's in-core state with that on disk 

SYNOPSIS 
int fsync(f d) 

int fd; 

DESCRIPTION 
fsync() moves all modified data and attributes of/ d to a permanent storage device: all in-core modified 
copies of buffers for the associated file have been written to a disk when the call returns. Note: this is dif
ferent than sync(8) which schedules disk 1/0 for all files (as though an fsync() had been done on all files) 
but returns before the 1/0 completes. 

fsync() should be used by programs which require a file to be in a known state; for example, a program 
which contains a simple transaction facility might use it to ensure that all modifications to a file or files 
caused by a transaction were recorded on disk. 

RETURN VALUE 
A O value is returned on success. A -1 value indicates an error. 

ERRORS 
The fsync() fails if: 

fd is not a valid descriptor. 

f d refers to a socket, not a file. 

EBADF 

EINVAL 

EIO An 1/0 error occurred while reading from or writing to the file system. 

SEE ALSO 
cron(8), sync(8) 

BUGS 
The current implementation of this call is expensive for large files. 

662 Last change: 19 November 1987 Sun Release 4.0 



GETAUID(2) SYSTEM CALLS GETAU1D(2) 

NAME 
getauid, setauid - get and set user audit identity 

SYNOPSIS 
getauid() 

setauid(auid) 
int auid; 

DESCRIPTION 
The getauid() system call returns the audit user ID for the current process. This value is initially set at 
login time and inherited by all child processes. This value does not change when the rea]/effective user IDs 
change, so it can be used to identify the logged-in user, even when running a setuid program. The audit 
user ID governs audit decisions for a process. 

The getauid() system calls sets the audit user ID for the current process. Only the super-user may success
fully execute these calls. 

RETURN V ALOE 
The getauid() call returns the audit user ID of the current process on successful operation, and returns -1 
for all errors. 

The getauid() call returns O on successful operation, and -1 for all errors. 

ERRORS 
EPERM 

EINVAL 

SEE ALSO 

The process's effective user ID is not super-user. 

The parameter auid is not a valid uid. 

getuid(2), setuseraudit(2), audit(8) 

Sun Release 4.0 Last change: 25 September 1987 (j63 



GETDENTS ( 2) SYSTEM CALLS GETDENTS ( 2) 

NAME 
getdents - gets directory entries in a filesystem independent format 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/dirent.h> 

int getdents(fd, buf, nbytes) 
int fd; 
char •buf; 
int nbytes; 

DESCRIPTION 
getdents() attempts to put directory entries from the directory referenced by the file descriptor/ d into the 
buffer pointed to by bu/, in a filesystem independent format. Up to nbytes bytes of data will be transferred. 

The data in the buffer is a series of dirent structures each containing the following entries: 

off t d_off; 
u_long d_fileno; 
u short d _ reclen; 
u short d _ namlen; 
char d_name[MAXNAMLEN + l]; /• see below•/ 

The d _ off entry contains a value which is interpretable only by the filesystem that generated it. It may be 
supplied as an offset to lseek(2) to find the entry following the current one in a directory. The d _ fileno 
entry is a number which is unique for each distinct file in the filesystem. Files that are linked by hard links 
(see link(2)) have the same d_fileno. The d_reclen entry is the length, in bytes, of the directory record. 
The d _ name entry contains a null terminated file name. The d _ namlen entry specifies the length of the file 
name. Thus the actual size of d _ name may vary from 1 to MAXNAMLEN+ 1. 

The structures are not necessarily tightly packed. The d _reclen entry may be used as an offset from the 
beginning of a dirent structure to the next structure, if any. 

Upon return, the actual number of bytes transferred is returned. The current position pointer associated 
with/ d is set to point to the directory entry following the last one returned. The pointer is not necessarily 
incremented by the number of bytes returned by getdents. If the value returned is zero, the end of the 
directory has been reached. The current position pointer may be set and retrieved by lseek(2). It is not 
safe to set the current position pointer to any value other than a value previously returned by Iseek(2), or 
the value of a d _ off entry in a dirent structure returned by getdents, or zero. 

RETURN VALUE 
If successful, the number of bytes actually transferred is returned. Otherwise, a -1 is returned and the glo
bal variable errno is set to indicate the error. 

ERRORS 
getdents() will fail if one or more of the following are true: 

EINVAL 

EBADF 

ENOTDIR 

EFAULT 

EIO 

EINTR 

nbytes is not large enough for one directory entry. 

f d is not a valid file descriptor open for reading. 

The file referenced by/ d is not a directory. 

buf points outside the allocated address space. 

An I/0 error occurred while reading from or writing to the file system. 

A read from a slow device was interrupted before any data arrived by the delivery 
of a signal. 

SEE ALSO 
link(2), lseek(2), open(2V), directory(3) 

664 Last change: 20 November 1987 Sun Release 4.0 



GETDENTS ( 2) SYSTEM CALLS GETDENTS (2) 

NOTES 
It is strongly recommended, for portability reasons, that programs that deal with directory entries use the 
directory(3) interface rather than directly calling getdents. 

Sun Release 4.0 Last change: 20 November 1987 665 



GETDIRENTRIES ( 2) SYSTEM CALLS GETDIRENTRIES (2) 

NAME 
getdirentries - gets directory entries in a filesystem independent format 

SYNOPSIS 
int getdirentries(fd, buf, nbytes, basep) 
int fd; 
char •buf; 
int nbytes; 
long •basep; 

DESCRIPTION 
This system call is now obsolete. It is superseded by the getdents(2) system call, which returns directory 
entries in a new format specified in <sys/dirent.h>. The file, <sys/dir.h>, has also been modified to use 
the new directory entry formal Programs which currently call getdirentries() should be modified to use 
the new system call and the new include file <Sys/dirent.h> or, preferably, to use the directory(3) library 
routines. The getdirentries( ) system call is retained in the current SunOS release only for purposes of 
backwards binary compatibility and will be removed in a future major release. 

getdirentries() attempts to put directory entries from the directory referenced by the file descriptor f d into 
the buffer pointed to by bu/, in a filesystem independent formal Up to nbytes bytes of data will be 
transferred. nbytes must be greater than or equal to the block size associated with the file, see stat(2). 
Sizes less than this may cause errors on certain filesystems. 

The data in the buffer is a series of structures each containing the following entries: 

unsigned long d _ fileno; 
unsigned short d _reclen; 
unsigned short d _ namlen; 
char d_name[MAXNAMELEN + l]; /• see below•/ 

The d _ fileno entry is a number which is unique for each distinct file in the filesystem. Files that are linked 
by hard links (see link(2)) have the same d_fileno. The d_reclen entry is the length, in bytes, of the direc
tory record. The d _ name entry contains a null terminated file name. The d _ namlen entry specifies the 
length of the file name. Thus the actual size of d _ name may vary from 2 to MAXNAMELEN+ 1. 

The structures are not necessarily tightly packed. The d_reclen entry may be used as an offset from the 
beginning of a direct structure to the next structure, if any. 

Upon return, the actual number of bytes transferred is returned. The current position pointer associated 
with f d is set to point to the next block of entries. The pointer is not necessarily incremented by the 
number of bytes returned by getdirentries. If the value returned is zero, the end of the directory has been 
reached. The current position pointer may be set and retrieved by lseek(2). getdirentries() writes the 
position of the block read into the location pointed to by basep. It is not safe to set the current position 
pointer to any value other than a value previously returned by lseek(2) or a value previously returned in the 
location pointed to by basep or zero. 

RETURN VALUE 
If successful, the number of bytes actually transferred is returned. Otherwise, a -1 is returned and the glo
bal variable errno is set to indicate the error. 

ERRORS 

666 

getdirentries() will fail if one or more of the following are true: 

EBADF fd is not a valid file descriptor open for reading. 

EFAULT 

EIO 

EINTR 

Either buf or basep point outside the allocated address space. 

An 1/0 error occurred while reading from or writing to the file system. 

A read from a slow device was interrupted before any data arrived by the delivery 
of a signal. 

Last change: 20 November 1987 Sun Release 4 .0 



GETDIRENTRIES ( 2) SYSTEM CALLS GETDIRENTRIES ( 2) 

SEE ALSO 
getdents(2), link(2), lseek(2), open(2V), stat(2), directory(3) 

Sun Release 4.0 Last change: 20 November 1987 fJ67 



GETDOMAINNAME ( 2) SYSTEM CALLS GETOOMAINNAME ( 2) 

NAME 
getdomainname, setdomainname - get/set name of current domain 

SYNOPSIS 
int getdomainname(name, namelen) 
char •name; 
int namelen; 

int setdomainname(name, namelen) 
char •name; 
int namelen; 

DESCRIPTION 
getdomainname() returns the name of the domain for the current processor, as previously set by get
domainname. The parameter namelen specifies the size of the array pointed to by name. The returned 
name is null-terminated unless insufficient space is provided. 

getdomainname() sets the domain of the host machine to be name, which has length namelen. This call is 
restricted to the super-user and is normally used only when the system is bootstrapped. 

The purpose of domains is to enable two distinct networks that may have host names in common to merge. 
Each network would be distinguished by having a different domain name. At the current time, only the 
Yellow Pages service makes use of domains. 

RETURN VALUE 
If the call succeeds a value of O is returned. If the call fails, then a value of -1 is returned and an error 
code is placed in the global location errno. 

ERRORS 
The following errors may be returned by these calls: 

EFAULT The name parameter gave an invalid address. 

EPERM The caller was not the super-user. This error only applies to setdomainname. 

BUGS 
Domain names are limited to 255 characters. 

668 Last change: 20 November 1987 Sun Release 4.0 



GETDT ABLESIZE ( 2) 

NAME 
getdtablesize - get descriptor table size 

SYNOPSIS 
nds = getdtablesize() 
int nds; 

DESCRIPTION 

SYSTEM CALLS GETDTABLESIZE ( 2) 

Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots. The entries in 
the descriptor table are numbered with small integers starting at 0. The call getdtablesize() returns the 
size of this table. 

SEE ALSO 
close(2), dup(2), open(2V) 

Sun Release 4.0 Last change: 25 September 1987 669 



GETGID(2) 

NAME 
getgid, getegid - get group identity 

SYNOPSIS 
gid = getgidO 
int gid; 

egid = getegidO 
int egid; 

DESCRIPTION 

SYSTEM CALLS 

getgid() returns the real group ID of the current process, getegid() the effective group ID. 

The real GID is specified at login time. 

GETGID(2) 

The effective GID is more transient, and determines additional access permission during execution of a 
"setGID" process, and it is for such processes that getgid() is most useful. 

SEE ALSO 
getuid(2),setregid(2),setuid(3) 

670 Last change: 27 January 1988 Sun Release 4.0 



GETGROUPS ( 2) SYSTEM CALLS GETGROUPS (2) 

NAME 
getgroups, setgroups - get or set group access list 

SYNOPSIS 
#include <sys/param.h> 

int getgroups(gidsetlen, gidset) 
int gidsetlen, •gidset; 

int setgroups(ngroups, gidset) 
int ngroups, •gidset; 

DESCRIPTION 
getgroups 

getgroups() gets the current group access list of the user process and stores it in the array gidset. The 
parameter gidsetlen indicates the number of entries that may be placed in gidset. getgroups() returns the 
actual number of entries placed in the gidset array. No more than NGROUPS, as defined in <Sys/param.h>, 
will ever be returned. 

setgroups 
setgroups() sets the group access list of the current user process according to the array gidset. The param
eter ngroups indicates the number of entries in the array and must be no more than NGROUPS, as defined 
in <sys/param.h>. 

Only the super-user may set new groups. 

RETURN VALUE 
getgroups 

A return value of greater than zero indicates the number of entries placed in the array pointed to by gidset. 
A return value of -1 indicates that an error occurred, and the error code is stored in the global variable 
errno. 

setgroups 
AO value is returned on success, -1 on error, with a error code stored in errno. 

ERRORS 
Either call fails if: 

EFAULT 

getgroup fails if: 

EINVAL 

setgroups() fails if: 

EPERM 

SEE ALSO 
initgroups(3) 

Sun Release 4.0 

The address specified for gidset is outside the process address space. 

The argument gidsetlen is smaller than the number of groups in the group set. 

The caller is not the super-user. 

Last change: 20 November 1987 671 



GETHOSTID ( 2) SYSTEM CALLS 

NAME 
gethostid - get unique identifier of current host 

SYNOPSIS 
hostid = gethostid() 
long hostid; 

DESCRIPTION 

GETHOSTID ( 2) 

gethostid() returns the 32-bit identifier for the current hos4 which should be unique across all hosts. On a 
Sun workstation, this number is taken from the CPU board's ID PROM. 

SEE ALSO 
hostid(l) 

672 Last change: 25 September 1987 Sun Release 4.0 



GETHOSTNAME ( 2) SYSTEM CALLS GETHOSTNAME ( 2) 

NAME 
gethostname, sethostname - get/set name of current host 

SYNOPSIS 
int gethostname(name, namelen) 
char *name; 
int namelen; 

int sethostname(name, namelen) 
char •name; 
int namelen; 

DESCRIPTION 
gethostname() returns the standard host name for the current processor, as previously set by sethostname. 
The parameter name/en specifies the size of the array pointed to by name. The returned name is null
terminated unless insufficient space is provided. 

sethostname() sets the name of the host machine to be name, which has length name/en. This call is res
tricted to the super-user and is normally used only when the system is bootstrapped. 

RETURN VALUE 
If the call succeeds a value of O is returned. If the call fails, then a value of -1 is returned and an error 
code is placed in the global location errno. 

ERRORS 
The following errors may be returned by these calls: 

EFAULT 

EPERM 

SEE ALSO 
gethostid(2) 

BUGS 

The name or name/en parameter gave an invalid address. 

The caller was not the super-user. Note that this error only applies to sethost
name. 

Host names are limited to MAXHOSTNAMELEN (from <Syslparam.h>) characters, currently 64. 

Sun Release 4.0 Last change: 20 November 1987 673 



GETITIMER ( 2) SYSTEM CALLS GETITIMER ( 2) 

NAME 
getitimer, setitimer - get/set value of interval timer 

SYNOPSIS 
#include <sys/time.h> 

int getitimer (which, value) 
int which; 
struct itimerval *value; 

int setitimer (which, value, ovalue) 
int which; 
struct itimerval *value, *ovalue; 

DESCRIPTION 

NOTES 

The system provides each process with three interval timers, defined in <sys/time.h>. The getitimer() call 
stores the current value of the timer specified by which into the structure pointed to by value. The setiti
mer( ) call sets the value of the timer specified by which to the value specified in the structure pointed to 
by value, and if ovalue is not a NULL pointer, stores the previous value of the timer in the structure pointed 
to by ovalue. 

A timer value is defined by the itimerval structure, which includes the following members: 

struct timevalit_interval;/* timer interval *I 
struct timevalit_ value; I* current value *I 

If it_ value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-zero, it 
specifies a value to be used in reloading it_ value when the timer expires. Setting it_ value to zero disables 
a timer, however, it_ value and it_interval must still be initialized. Setting it_interval to zero causes a 
timer to be disabled after its next expiration (assuming it_ value is non-zero). 

Time values smaller than the resolution of the system clock are rounded up to this resolution. 

The three timers are: 

ITIMER REAL 

ITIMER VIRTUAL 

!TIMER PROF 

Decrements in real time. A SIGALRM signal is delivered when this timer expires. 

Decrements in process virtual time. It runs only when the process is executing. A 
SIGVT ALRM signal is delivered when it expires. 

Decrements both in process virtual time and when the system is running on behalf 
of the process. It is designed to be used by interpreters in statistically profiling the 
execution of interpreted programs. Each time the ITIMER_PROF timer expires, 
the SIGPROF signal is delivered. Because this signal may interrupt in-progress 
system calls, programs using this timer must be prepared to restart interrupted sys
tem calls. 

Three macros for manipulating time values are defined in <sys/time.h>. timerclear sets a time value to 
zero, timerisset tests if a time value is non-zero, and timercmp compares two time values (beware that>= 
and<= do not work with this macro). 

RETURN VALUE 
If the calls succeed, a value of O is returned. If an error occurs, the value -1 is returned, and a more precise 
error code is placed in the global variable errno. 

ERRORS 

674 

The possible errors are: 

EFAULT 

EINVAL 

The value or ovalue parameter specified a bad address. 

The value parameter specified a time that was too large to be handled. 

Last change: 21 November 1987 Sun Release 4.0 



GETITIMER ( 2) SYSTEM CALLS GETITIMER ( 2) 

SEE ALSO 
sigvec(2), gettimeof day(2) 

Sun Release 4.0 Last change: 21 November 1987 675 



GETMSG(2) SYSTEM CALLS GETMSG(2) 

NAME 
getmsg - get next message from a stream 

SYNOPSIS 
#include <stropts.h> 

int getmsg(fd, ctlptr, dataptr, flags) 

int fd; 

struct strbuf •ctlptr; 

struct strbuf •dataptr; 

int •flags; 

DESCRIPTION 
getmsg() retrieves the contents of a message (see intro(2)) located at the stream head read queue from a 
STREAMS file, and places the contents into user specified buffer(s). The message must contain either a 
data part, a control part or both. The data and control parts of the message are placed into separate buffers, 
as described below. The semantics of each part is defined by the STREAMS module that generated the mes
sage. 

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each point to a strbuf structure 
that contains the following members: 

int maxlen; I• maximum buff er length •/ 
int len; /• length of data•/ 
char •buf; I• ptr to buffer•/ 

where buf points to a buffer in which the data or control information is to be placed, and maxlen indicates 
the maximum number of bytes this buffer can hold. On return, len contains the number of bytes of data or 
control information actually received, or is O if there is a zero-length control or data part, or is -1 if no data 
or control information is present in the message. flags may be set to the values O or RS_HIPRI and is used 
as described below. 

ctlptr is used to hold the control part from the message and dataptr is used to hold the data part from the 
message. If ctlptr ( or dataptr) is a NULL pointer or the maxlen field is -1, the control ( or data) part of the 
message is not processed and is left on the stream head read queue and len is set' to -1. If the maxlen 
field is set to O and there is a zero-length control (or data) part, that zero-length part is removed from the 
read queue and len is set to 0. If the maxlen field is set to O and there are more than zero bytes of control 
(or data) information, that information is left on the read queue and len is set to 0. If the maxlen field in 
ctlptr or dataptr is less than, respectively, the control or data part of the message, maxlen bytes are 
retrieved. In this case, the remainder of the message is left on the stream head read queue and a non-zero 
return value is provided, as described below under RETURN VALUE. If information is retrieved from a 
priority message,.flags is set to RS_HIPRI on return. 

By default, getmsg() processes the first priority or non-priority message available on the stream head read 
queue. However, a process may choose to retrieve only priority messages by setting.flags to RS_HIPRI. In 
this case, getmsg() will only process the next message if it is a priority message. 

If O _NDELA Y has not been set, getmsg() blocks until a message, of the type(s) specified by flags (priority 
or either), is available on the stream head read queue. If o _NDELA Y has been set and a message of the 
specified type(s) is not present on the read queue, getmsg() fails and sets errno to EAGAIN. 

If a hangup occurs on the stream from which messages are to be retrieved, getmsg() will continue to 
operate normally, as described above, until the stream head read queue is empty. Thereafter, it will return 
0 in the len fields of ctlptr and dataptr. 

RETURN VALUE 

676 

Upon successful completion, a non-negative value is returned A value of O indicates that a full message 
was read successfully. A return value of MORECTL indicates that more control information is waiting for 
retrieval. A return value of MORED AT A indicates that more data is waiting for retrieval. A return value of 

Last change: 20 November 1987 Sun Release 4.0 



GETMSG(2) SYSTEM CALLS GETMSG(2) 

MORECTLIMOREDATA indicates that both types of infonnation remain. Subsequent getmsg() calls will 
retrieve the remainder of the message. If an error occurred, a -1 is returned and the global variable errno 
is set to indicate the error. 

ERRORS 
getmsg() fails if one or more of the following are true: 

EAGAIN The o _ND ELA Y flag is set, and no messages are available. 

EBADF / d is not a valid file descriptor open for reading. 

EBADMSG 

EFAULT 

EINTR 

The queued message to be read is not valid for getmsg. 

ctlptr, dataptr, or flags points to a location outside the allocated address space. 

A signal was caught during the getmsg( ) system call. 

EINVAL An illegal value was specified in flags, or the stream referenced by fd is linked 
under a multiplexor. 

ENOSTR A stream is not associated with/d. 

A getmsg() can also fail if a STREAMS error message had been received at the stream head before the call 
to getmsg. The error returned is the value contained in the STREAMS error message. 

SEE ALSO 
intro(2), poll(2), putmsg(2), read(2), write(2) 

Sun Release 4.0 Last change: 20 November 1987 677 



GETP AGESIZE ( 2) 

NAME 
getpagesize - get system page size 

SYNOPSIS 
pagesize = getpagesizeO 
int pagesize; 

DESCRIPTION 

SYSTEM CALLS GETP AGESIZE ( 2) 

getpagesize( ) returns the number of bytes in a page. Page granularity is the granularity of many of the 
memory management calls. 

The page size is a system page size and may not be the same as the underlying hardware page size. 

SEE ALSO 
pagesize(l), sbrk(2) 

678 Last change: 16 February 1988 Sun Release 4.0 



GE1PEERNAME ( 2) SYSTEM CALLS 

NAME 
getpeemame - get name of connected peer 

SYNOPSIS 
int getpeername(s, name, namelen) 
int s; 
struct sockaddr •name; 
int •namelen; 

DESCRIPTION 

GE1PEERNAME(2) 

getpeername() returns the name of the peer connected to socket s. The int pointed to by the name/en 
parameter should be initialized to indicate the amount of space pointed to by name. On return it contains 
the actual size of the name returned (in bytes). The name is truncated if the buffer provided is too small. 

DIAGNOSTICS 
A O is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

The arguments is not a valid descriptor. 

The argument s is a file, not a socket 

The socket is not connected. 

Insufficient resources were available in the system to perform the operation. 

EBADF 

ENOTSOCK 

ENOTCONN 

ENOBUFS 

EFAULT The name parameter points to memory not in a valid part of the process address 
space. 

SEE ALSO 
accept(2), bind(2), getsockname(2), socket(2) 

Sun Release 4.0 Last change: 20 November 1987 679 



GETPID(2) SYSTEM CALLS 

NAME 
getpid, getppid - get process identification 

SYNOPSIS 
pid = getpidO 
int pid; 

ppid = getppidO 
int ppid; 

DESCRIPTION 

GETPID(2) 

getpid() returns the process ID of the current process. Most often it is used to generate uniquely-named 
temporary files. 

getppid() returns the process ID of the parent of the current process. 

SEE ALSO 
gethostid(2) 

680 Last change: 25 September 1987 Sun Release 4.0 



GETPRIORITY ( 2) SYSTEM CALLS GETPRIORITY ( 2) 

NAME 
getpriority, setpriority - get/set program scheduling priority 

SYNOPSIS 
#include <sys/time.h> 
#include <sys/resource.h> 

int getpriority(which, who) 
int which, who; 

int setpriority(which, who, prio) 
int which, who, prio; 

DESCRIPTION 
The scheduling priority of the process, process group, or user, as indicated by which and who is obtained 
with the getpriority() call and set with the setpriority() call. Priorities are values in the range -20 to 20. 
The default priority is O; lower priorities cause more favorable scheduling. 

which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a 
process identifier for PRIO _PROCESS, process group identifier for PRIO _PGRP, and a user ID for 
PRIO _ USER). A zero value of who denotes the current process, process group, or user. 

The getpriority() call returns the highest priority (lowest numerical value) enjoyed by any of the specified 
processes. The setpriority() call sets the priorities of all of the specified processes to the value specified 
by prio. If prio is less than -20, a value of -20 is used; if it is greater than 20, a value of 20 is used. Only 
the super-user may lower priorities. 

RETURN VALUE 
Since getpriority() can legitimately return the value -1, it is necessary to clear the external variable errno 
prior to the call, then check it afterward to determine if a -1 is an error or a legitimate value. The setprior
ity() call returns O if there is no error, or -1 if there is. 

ERRORS 
getpriority() and setpriority() may return one of the following errors: 

ESRCH 

EINVAL 

No process was located using the which and who values specified. 

which was not one of PRIO _PROCESS, PRIO _PGRP, or PRIO _ USER. 

In addition to the errors indicated above, setpriority() may fail with one of the following errors returned: 

EPERM 

EACCES 

A process was located, but neither its effective nor real user ID matched the effec
tive user ID of the caller, and neither the effective nor the real user ID of the pro
cess executing the setpriority() was super-user. 

The call to getpriority() would have changed a process' priority to a value lower 
than its current value, and the effective user ID of the process executing the call 
was not that of the super-user. 

SEE ALSO 

BUGS 

nice(l), fork(2), renice(8) 

It is not possible for the process executing setpriority() to lower any other process down to its current 
priority, without requiring super-user privileges. 

Sun Release 4.0 Last change: 20 November 1987 681 



GETRLIMIT ( 2) SYSTEM CALLS GETRLIMIT ( 2) 

NAME 
getrlimit, setrlimit - control maximum system resource consumption 

SYNOPSIS 
#include <sys/time.h> 
#include <sys/resource.h> 

int getrlimit(resource, rip) 
int resource; 
struct rlimit •rip; 

int setrlimit(resource, rip) 
int resource; 
struct rlimit •rip; 

DESCRIPTION 

682 

Limits on the consumption of system resources by the current process and each process it creates may be 
obtained with the getrlimit( ) call, and set with the setrlimit( ) call. 

The resource parameter is one of the following: 

RLIMIT CPU the maximum amount of cpu time (in seconds) to be used by each process. 

RLIMIT FSIZE 

RLIMIT DATA 

RLIMIT _ STACK 

RLIMIT CORE 

RLIMIT RSS 

the largest size, in bytes, of any single file that may be created. 

the maximum size, in bytes, of the data segment for a process; this defines how far 
a program may extend its break with the sbrk() (see brk(2)) system call. 

the maximum size, in bytes, of the stack segment for a process; this defines how 
far a program's stack segment may be extended automatically by the system. 

the largest size, in bytes, of a core file that may be created. 

the maximum size, in bytes, to which a process's resident set size may grow. This 
imposes a limit on the amount of physical memory to be given to a process; if 
memory is tight, the system will prefer to take memory from processes that are 
exceeding their declared resident set size. 

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may 
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until 
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and 
soft limits on a resource, 

struct rlimit { 
int rlim _ cur; 
int rlim_max; 

}; 

I• current (soft) limit•/ 
/• hard limit •I 

Only the super-user may raise the maximum limits. Other users may only alter rlim _ cur within the range 
from Oto rlim _ max or (irreversibly) lower rlim _ max. 

An "infinite" value for a limit is defined as RLIM_INFINITY (Ox7flllllT). 

Because this information is stored in the per-process information, this system call must be executed directly 
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to 
csh(l). 

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way: 
a brk() or sbrk() call will fail if the data space limit is reached, or the process will be killed when the 
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!). 

A file 1/0 operation which would create a file that is too large generates a signal SIGXFSZ; this normally 
terminates the process, but may be caught. When the soft CPU time limit is exceeded, a signal SIGXCPU is 
sent to the offending process. 

Last change: 21 November 1987 Sun Release 4.0 



GETRLIMIT ( 2) SYSTEM CALLS GETRLIMIT ( 2) 

RETURN VALUE 
A O return value indicates that the call succeeded, changing or returning the resource limit. A return value 
of -1 indicates that an error occurred, and an error code is stored in the global location errno. 

ERRORS 
The possible errors are: 

EFAULT 

EINVAL 

EPERM 

SEE ALSO 

The address specified by rip is invalid. 

An invalid resource was specified; or in a setrlimit() call, the new rlim _ cur 
exceeds the new rlim max. 

The limit specified to setrlimit() would have raised the maximum limit value, and 
the caller is not the super-user. 

csh(l), sh(l), brk(2) quotactl(2), 

BUGS 
There should be limit and unlimit commands in sh(l) as well as in csh(l). 

Sun Release 4.0 Last change: 21 November 1987 683 



GETRUSAGE(2) SYSTEM CALLS GETRUSAGE(2) 

NAME 
getrusage - get information about resource utilization 

SYNOPSIS 
#include <sys/time.h> 
#include <sys/resource.h> 

getrusage( who, rusage) 
int who; 
struct rusage *rusage; 

DESCRIPTION 

684 

getrusage( ) returns information about the resources utilized by the current process, or all its terminated 
child processes. The who parameter is one of RUSAGE_SELF or RUSAGE_ CIDLDREN. The buffer to which 
rusage points will be filled in with the following structure: 

struct rusage { 

}; 

struct timeval ru_utime; 
struct timeval ru _stime; 
int ru_maxrss; 
int ru_ixrss; 
int ru_idrss; 
int ru_isrss; 
int ru_minflt; 
int ru_majflt; 
int ru_nswap; 
int ru_inblock; 
int ru_oublock; 
int ru_msgsnd; 
int ru_msgrcv; 
int ru _ nsignals; 
int ru_nvcsw; 
int ru_nivcsw; 

f * user time used *f 
f* system time used *f 

f * integral shared text memory size *f 
f* integral unshared data size *f 

f* integral unshared stack size *f 
f* page reclaims *f 
f * page faults *f 
f* swaps •I 
f * block input operations •I 
/• block output operations •I 
f * messages sent *f 
I• messages received *f 
f * signals received *f 
f* voluntary context switches *f 
f * involuntary context switches *f 

The fields are interpreted as follows: 

ru utime 
the total amount of time spent executing in user mode. Time is given in seconds:microseconds. 

ru stime 
the total amount of time spent in the system executing on behalf of the process(es). Time is given 
in seconds:microseconds. 

ru maxrss 

ru ixrss 

ru idrss 

the maximum resident set size utilized. Size is given in pages (the size of a page, in bytes, is 
given by the getpagesize(2) system call). 

an "integral" value indicating the amount of memory used by the text segment which was also 
shared among other processes. This value is expressed in units of pages * clock ticks (1 tick = 
1/50 second). The value is calculated by summing the number of shared memory pages in use 
each time the internal system clock ticks, and then averaging over 1 second intervals. 

- an integral value of the amount of unshared memory residing in the data segment of a process. 
The value is given in pages * clock ticks. 

Last change: 25 September 1987 Sun Release 4.0 



GETRUSAGE(2) SYSTEM CALLS GETRUSAGE(2) 

ru isrss 
an integral value of the amount of unshared memory residing in the stack segment of a process. 
The value is given in pages * clock ticks. 

ru minflt 
the number of page faults serviced without any I/0 activity; here I/0 activity is avoided by 
''reclaiming'' a page frame from the list of pages awaiting reallocation. 

ru_majflt 
the number of page faults serviced which required I/0 activity. 

ru_nswap 
the number of times a process was "swapped" out of main memory. 

ru inblock 
the number of times the file system had to perform input. 

ru oublock 
the number of times the file system had to perform output. 

ru_msgsnd 
the number of messages sent over sockets. 

ru_msgrcv 
the number of messages received from sockets. 

ru _ nsignals 
the number of signals delivered. 

ru nvcsw 
the number of times a context switch resulted due to a process voluntarily giving up the processor 
before its time slice was completed (usually to await availability of a resource). 

ru_nivcsw 
the number of times a context switch resulted due to a higher priority process becoming runnable 
or because the current process exceeded its time slice. 

NOTES 
The numbers ru_inblock and ru_oublock account only for real I/0; data supplied by the caching mechan
ism is charged only to the first process to read or write the data. 

ERRORS 
getrusage( ) will fail if: 

EINVAL 

EFAULT 

SEE ALSO 

The who parameter is not a valid value. 

The address specified by the rusage argument is not in a valid portion of the 
process's address space. 

gettimeofday(2), wait(2) 

BUGS 
There is no way to obtain information about a child process which has not yet terminated. 

Sun Release 4.0 Last change: 25 September 1987 685 



GETSOCKNAME ( 2) SYSTEM CALLS GETSOCKNAME ( 2) 

NAME 
getsockname - get socket name 

SYNOPSIS 
getsockname(s, name, namelen) 
int s; 
struct sockaddr •name; 
int •namelen; 

DESCRIPTION 
getsockname() returns the current name for the specified socket The name/en parameter should be initial
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name 
returned (in bytes). 

DIAGNOSTICS 
A O is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

EBADF 

ENOTSOCK 

ENOBUFS 

EFAULT 

The arguments is not a valid descriptor. 

The argument s is a file, not a socket. 

Insufficient resources were available in the system to perform the operation. 

The name parameter points to memory not in a valid part of the process address 
space. 

SEE ALSO 
bind(2), getpeername(2), socket(2) 

BUGS 
Names bound to sockets in the UNIX domain are inaccessible; getsockname( ) returns a zero length name. 

686 Last change: 25 September 1987 Sun Release 4.0 



GETSOCKOPT ( 2) SYSTEM CALLS GETSOCKOPT (2) 

NAME 
getsockopt, setsockopt - get and set options on sockets 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

int getsockopt(s, level, optname, optval, optlen) 
int s, level, optname; 
char •optval; 
int •optlen; 

int setsockopt(s, level, optname, optval, optlen) 
int s, level, optname; 
char •optval; 
int optlen; 

DESCRIPTION 
getsockopt() and setsockopt() manipulate options associated with a socket. Options may exist at multiple 
protocol levels; they are always present at the uppermost ''socket'' level. 

When manipulating socket options the level at which the option resides and the name of the option must be 
specified. To manipulate options at the "socket" level, /eve/ is specified as SOL_SOCKET. To manipulate 
options at any other level the protocol number of the appropriate protocol controlling the option is supplied. 
For example, to indicate that an option is to be interpreted by the TCP protocol, level should be set to the 
protocol number of TCP; see getprotoent(3N). 

The parameters optval and opt/en are used to access option values for setsockopt. For getsockopt() they 
identify a buffer in which the value for the requested option(s) are to be returned. For getsockopt, opt/en is 
a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on 
return to indicate the actual size of the value returned. If no option value is to be supplied or returned, 
optval may be supplied as 0. 

optname and any specified options are passed uninterpreted to the appropriate protocol module for interpre
tation. The include file <sys/socket.h> contains definitions for "socket" level options, described below. 
Options at other protocol levels vary in format and name; consult the appropriate entries in section (4P). 

Most socket-level options take an int parameter for optva/. For setsockopt, the parameter should non-zero 
to enable a boolean option, or zero if the option is to be disabled. SO _LINGER uses a struct linger param
eter, defined in <sys/socket.h>, which specifies the desired state of the option and the linger interval (see 
below). 

The following options are recognized at the socket level. Except as noted, each may be examined with get
sockopt() and set with setsockopt. 

SO _DEBUG toggle recording of debugging information 
SO REUSEADDR toggle local address reuse 
so KEEP ALIVE toggle keep connections alive 
SO DONTROUTE toggle routing bypass for outgoing messages 
so LINGER linger on close if data present 
SO BROADCAST toggle permission to transmit broadcast messages 
SO OOBINLINE toggle reception of out-of-band data in band 
SO SNDBUF set buffer size for output 
SO RCVBUF set buffer size for input 
so TYPE get the type of the socket (get only) 
SO ERROR get and clear error on the socket (get only) 

SO_ DEBUG enables debugging in the underlying protocol modules. SO_ REUSEADDR indicates that the 
rules used in validating addresses supplied in a bind(2) call should allow reuse of local addresses. 
SO_ KEEP ALIVE enables the periodic transmission of messages on a connected socket. Should the 

Sun Release 4.0 Last change: 20 November 1987 687 



GETSOCKOPT ( 2) SYSTEM CALLS GETSOCKOPT ( 2) 

connected party fail to respond to these messages, the connection is considered broken and processes using 
the socket are notified using a SIGPIPE signal. so_ DONTROUTE indicates that outgoing messages should 
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface 
according to the network portion of the destination address. 

SO_LINGER controls the action taken when unsent messags are queued on socket and a close(2) is per
formed. If the socket promises reliable delivery of data and so_ LINGER is set, the system will block the 
process on the close() attempt until it is able to transmit the data or until it decides it is unable to deliver the 
information (a timeout period, termed the linger interval, is specified in the setsockopt() call when 
SO _LINGER is requested). If SO _LINGER is disabled and a close() is issued, the system will process the 
close in a manner that allows the process to continue as quickly as possible. 

The option SO_BROADCAST requests permission to send broadcast datagrams on the socket. Broadcast 
was a privileged operation in earlier versions of the system. With protocols that support out-of-band data, 
the so_ OOBINLINE option requests that out-of-band data be placed in the normal data input queue as 
received; it will then be accessible with recv() or read() calls without the MSG_OOB flag. SO_SNDBUF 
and SO _RCVBUF are options to adjust the normal buffer sizes allocated for output and input buffers, 
respectively. The buffer size may be increased for high-volume connections, or may be decreased to limit 
the possible backlog of incoming data. The system places an absolute limit on these values. Finally, 
SO_TYPE and SO_ERROR are options used only with getsockopt. SO_TYPE returns the type of the 
socket, such as SOCK_ STREAM; it is useful for servers that inherit sockets on startup. SO_ ERROR returns 
any pending error on the socket and clears the error status. It may be used to check for asynchronous 
errors on connected datagram sockets or for other asynchronous errors. 

RETURN VALUE 
A O is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

EBADF 

ENOTSOCK 

ENOPROTOOPT 

EFAULT 

The arguments is not a valid descriptor. 

The argument s is a file, not a socket 

The option is unknown at the level indicated. 

The address pointed to by optval is not in a valid part of the process address space. 
For getsockopt, this error may also be returned if optlen is not in a valid part of 
the process address space. 

SEE ALSO 
ioctl(2), socket(2), getprotoent(3N) 

BUGS 
Several of the socket options should be handled at lower levels of the system. 

688 Last change: 20 November 1987 Sun Release 4.0 



GETTIMEOFDA Y ( 2) SYSTEM CALLS GETTIMEOFDA Y ( 2) 

NAME 
gettimeof day, settimeof day - get or set the date and time 

SYNOPSIS 
#include <sys/time.h> 

int gettimeofday( tp, tzp) 
struct timeval •tp; 
struct timezone •tzp; 

int settimeofday(tp, tzp) 
struct timeval •tp; 
struct timezone •tzp; 

DESCRIPTION 
The system's notion of the current Greenwich time and the current time zone is obtained with the 
gettimeof day( ) call, and set with the settimeof day( ) call. The current time is expressed in elapsed 
seconds and microseconds since 00:00 GMT, January 1, 1970 (zero hour). The resolution of the system 
clock is hardware dependent; the time may be updated continuously, or in "ticks." 

tp points to a timeval structure, which includes the following members: 

long tv _sec; /• seconds since Jan. 1, 1970 •/ 
long tv _usec; I• and microseconds•/ 

If tp is a NULL pointer, the current time information is not returned or set. 

tzp points to a timezone() structure, which includes the following members: 

int tz_minuteswest; /• of Greenwich•/ 
int tz _ dsttime; /• type of dst correction to apply •/ 

The timezone() structure indicates the local time zone (measured in minutes westward from Greenwich), 
and a flag that indicates the type of Daylight Saving Time correction to apply. Note: this flag does not indi
cate whether Daylight Saving Time is currently in effect. 

Also note that the offset of the local time zone from GMT may change over time, as may the rules for Day
light Saving Time correction. The localtime() routine (see ctime(3)) obtains this information from a file 
rather than from gettimeof day. Programs should use localtime() to convert dates and times; the 
timezone() structure is filled in by gettimeof day() for backward compatibility with existing programs. 

The flag indicating the type of Daylight Saving Time correction should have one of the following values 
(as defined in <sys/time.h> ): 

0 DST _NONE: Daylight Savings Time not observed 

1 DST_ USA: United States DST 
2 DST_AUST: Australian DST 
3 DST_ WET: Western European DST 
4 DST_ MET: Middle European DST 
5 DST_ EET: Eastern European DST 

6 DST_ CAN: Canadian DST 
7 DST_ GB: Great Britain and Eire DST 

8 DST_RUM: Rumanian DST 

9 DST_ TUR: Turkish DST 

10 DST_AUSTALT: Australian-style DST with shift in 1986 

If tzp is a NULL pointer, the time zone information is not returned or set. 

Only the super-user may set the time of day or the time zone. 

RETURN 
A -1 return value indicates an error occurred; in this case an error code is stored in the global variable 
errno. 

Sun Release 4.0 Last change: 20 November 1987 689 



GETIIMEOFDA Y ( 2) SYSTEM CALLS GEITIMEOFDA Y ( 2) 

ERRORS 
The following error codes may be set in errno: 

An argument address referenced invalid memory. EFAULT 

EPERM A user other than the super-user attempted to set the time or time zone. 

SEE ALSO 

BUGS 

690 

date(l V), adjtime(2), ctime(3) 

Time is never correct enough to believe the microsecond values. There should a mechanism by which, at 
least, local clusters of systems might synchronize their clocks to millisecond granularity. 

Last change: 20 November 1987 Sun Release 4.0 



GETU1D(2) 

NAME 
getuid, geteuid - get user identity 

SYNOPSIS 
uid = getuid() 
int uid; 

euid = geteuidO 
int euid; 

DESCRIPTION 

SYSTEM CALLS 

getuid() returns the real user ID of the current process, geteuid() the effective user ID. 

GETU1D(2) 

The real user ID identifies the person who is logged in. The effective user ID gives the process additional 
permissions during execution of "set-user-ID" mode processes, which use getuid() to determine the real
user-id of the process that invoked them. 

SEE ALSO 
getgid(2),setreuid(2) 

Sun Release 4.0 Last change: 25 September 1987 691 



I0CTL(2) SYSTEM CALLS I0CTL(2) 

NAME 
ioctl - control device 

SYNOPSIS 
int ioctl(des, request, arg) 
int des, request; 

DESCRIPTION 
ioctl() performs a special function on the object referred to by the open descriptor des. The set of func
tions that may be performed depends on the object that des refers to. For example, many operating charac
teristics of character special files (for instance, terminals) may be controlled with ioctl() requests. The 
writeups in section 4 discuss how ioctl() applies to various objects. 

The request codes for particular functions are specified in include files specific to objects or to families of 
objects; the writeups in section 4 indicate which include files specify which requests. 

For most ioctl() functions, arg is a pointer to data to be used by the function or to be filled in by the func
tion. Other functions may ignore arg or may treat it directly as a data item; they may, for example, be 
passed an int value. 

RETURN VALUE 
If an error has occurred, a value of -1 is returned and errno is set to indicate the error. 

If no error has occurred, a value of O is returned by most functions. Some specialized functions may return 
non-zero values on success; see the description of the function in the writeup for the object. 

ERRORS 
ioctl() will fail if one or more of the following are true: 

EBADF des is not a valid descriptor. 

ENOTIY The specified request does not apply to the kind of object to which the descriptor 
des refers. 

EINV AL request or arg is not valid. 

EFAULT request requires a data transfer to or from a buffer pointed to by arg, but some 
part of the buffer is outside the process's allocated space. 

ioctl() will also fail if the object on which the function is being performed detects an error. In this case, an 
error code specific to the object and the function will be returned. 

SEE ALSO 
execve(2), fcntl(2V), filio(4), mtio(4), sockio(4), streamio(4), termio(4) 

692 Last change: 24 November 1987 Sun Release 4.0 



KILL(2V) SYSTEM CALLS KILL(2V) 

NAME 
kill - send a signal to a process or a group of processes 

SYNOPSIS 
kill(pid, sig) 

int pid, sig; 

DESCRIPTION 
kill() sends the signal sig to a process or a group of processes. The process or group of processes to which 
the signal is to be sent is specified by pid. sig may be one of the signals specified in sigvec(2), or it may be 
0, in which case error checking is performed but no signal is actually sent. This can be used to check the 
validity of pid. 

The real or effective user ID of the sending process must match the real or saved set-user ID of the receiv
ing process, unless the effective user ID of the sending process is super-user. A single exception is the sig
nal SIGCONT, which may always be sent to any descendant of the current process. 

In the following discussion, ''system processes'' are processes, such as processes O and 2, that are not run
ning a regular user program. 

If pid is greater than zero, the signal is sent to the process whose process ID is equal to pid. pid may equal 
1. 

If pid is 0, the signal is sent to all processes, except system processes, process 1, and the process sending 
the signal, whose process group ID is equal to the process group ID of the sender; this is a variant of 
killpg(2). 

If pid is -1 and the effective user ID of the sender is not super-user, the signal is sent to all processes, 
except system processes, process 1, and the process sending the signal, whose real or saved set-user ID 
matches the real or effective ID of the sender. 

If pid is -1 and the effective user ID of the sender is super-user, the signal is sent to all processes except 
system processes, process 1, and the process sending the signal. 

If pid is negative but not -1, the signal is sent to all processes, except system processes, process 1, and the 
process sending the signal, whose process group ID is equal to the absolute value of pid; this is a variant of 
killpg(2). 

Processes may send signals to themselves. 

SYSTEM V DESCRIPTION 
If a signal is sent to a group of processes (as with, if pid is O or negative), and if the process sending the 
signal is a member of that group, the signal is sent to that process as well. 

The signal SIGKILL cannot be sent to process 1. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
kill() will fail and no signal will be sent if any of the following occur: 

EINV AL sig is not a valid signal number. 

ESRCH No process can be found corresponding to that specified by pid. 

EPERM The effective user ID of the sending process is not super-user, and neither its real 
nor effective user ID matches the real or saved set-user ID of the receiving pro
cess. 

SYSTEM V ERRORS 
kill() will also fail, and no signal will be sent, if the following occurs: 

EINV AL sig is SIOK.ILL and pid is 1. 

Sun Release 4.0 Last change: 21 November 1987 693 



KILL(2V) SYSTEM CALLS KILL(2V) 

SEE ALSO 
getpid(2), killpg(2), setpgrp(2V), sigvec(2) 

694 Last change: 21 November 1987 Sun Release 4.0 



KILLPG(2) SYSTEM CALLS KILLPG(2) 

NAME 
killpg - send signal to a process group 

SYNOPSIS 
int killpg(pgrp, sig) 

int pgrp, sig; 

DESCRIPTION 
kill pg() sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals. 

The real or effective user ID of the sending process must match the real or saved set-user ID of the receiv
ing process, unless the effective user ID of the sending process is super-user. A single exception is the sig
nal SIGCONT, which may always be sent to any descendant of the current process. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and the global 
variable errno is set to indicate the error. 

ERRORS 
kill pg() will fail and no signal will be sent if any of the following occur: 

EINV AL sig is not a valid signal number. 

ESRCH No processes were found in the specified process group. 

EPERM The effective user ID of the sending process is not super-user, and neither its real 
nor effective user ID matches the real or saved set-user ID of one or more of the 
target processes. 

SEE ALSO 
kill(2V), setpgrp(2V), sigvec(2) 

Sun Release 4.0 Last change: 20 November 1987 695 



LINK(2) SYSTEM CALLS LINK(2) 

NAME 
link - make a hard link to a file 

SYNOPSIS 
int link(namel, name2) 
char *namel, *name2; 

DESCRIPTION 
name] points to a path name naming an existing file. name2 points to a path name naming a new directory 
entry to be created. A hard link to the first file is created; the link has the name pointed to by name2 . The 
file named by namel must exist. 

With hard links, both files must be on the same file system. Unless the caller is the super-user, the file 
named by namel must not be a directory. Both the old and the new link() share equal access and rights to 
the underlying object. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
link() will fail and no link will be created if one or more of the following are true: 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EACCES 

EACCES 

ELOOP 

ENOENT 

EEXIST 

EPERM 

EXDEV 

ENOSPC 

EDQUOT 

EIO 

EROFS 

EFAULT 

SEE ALSO 
symlink(2), unlink(2) 

696 

A component of the path prefix of namel or name2 is not a directory. 

The length of a component of namel or name2 exceeds 255 characters, or the 
length of name] or name2 exceeds 1023 characters. 

A component of the path prefix of namel or name2 does not exist. 

Search permission is denied for a component of the path prefix of namel or 
name2. 

The requested link requires writing in a directory for which write permission is 
denied. 

Too many symbolic links were encountered in translating namel or name2. 

The file referred to by name] does not exist. 

The link referred to by name2 does exist. 

The file named by name] is a directory and the effective user ID is not super-user. 

The link named by name2 and the file named by namel are on different file sys
tems. 

The directory in which the entry for the new link is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

The directory in which the entry for the new link is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the 
directory has been exhausted. 

An I/0 error occurred while reading from or writing to the file system to make the 
directory entry. 

The requested link requires writing in a directory on a read-only file system. 

One of the path names specified is outside the process's allocated address space. 

Last change: 20 November 1987 Sun Release 4.0 



LISTEN(2) SYSTEM CALLS 

NAME 
listen - listen for connections on a socket 

SYNOPSIS 
listen(s, backlog) 
int s, backlog; 

DESCRIPTION 

LISTEN(2) 

To accept connections, a socket is first created with socket(2), a backlog for incoming connections is 
specified with listen() and then the connections are accepted with accept(2). The listen() call applies only 
to sockets of type SOCK_ STREAM or SOCK_ SEQ PACKET. 

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a 
connection request arrives with the queue full the client will receive an error with an indication of 
ECONNREFUSED. 

RETURN VALUE 
AO return value indicates success; -1 indicates an error. 

ERRORS 
The call fails if: 

EBADF 

ENOTSOCK 

EOPNOTSUPP 

SEE ALSO 

The arguments is not a valid descriptor. 

The argument s is not a socket. 

The socket is not of a type that supports the operation listen. 

accept(2), connect(2), socket(2) 

BUGS 
The backlog is currently limited (silently) to 5. 

Sun Release 4.0 Last change: 25 September 1987 697 



LSEEK(2) SYSTEM CALLS LSEEK(2) 

NAME 
lseek, tell - move read/write pointer 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/file.h> 

off_ t lseek( des, offset, whence) 
int des; 
off_ t off set; 
int whence; 

DESCRIPTION 

NOTES 

The descriptor des refers to a file or device open for reading and/or writing. lseek() sets the file pointer 
associated with des as follows: 

If whence is L _SET, the pointer is set to off set bytes. 

If whence is L_INCR, the pointer is set to its current location plus offset. 

If whence is L _ XTND, the pointer is set to the size of the file plus off set. 

Some devices are incapable of seeking. The value of the pointer associated with such a device is 
undefined. 

The obsolete function tell(fildes) is identical to lseek(fildes, OL, L _INCR). 

Seeking far beyond the end of a file, then writing, may create a gap or "hole", which occupies no physical 
space and reads as zeros. 

RETURN VALUE 
Upon successful completion, the resulting pointer location, as measured in bytes from beginning of the file, 
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
lseek() will fail and the file pointer will remain unchanged if: 

EBADF 
ESPIPE 

EINVAL 

SEE ALSO 
dup(2), open(2V) 

698 

des is not an open file descriptor. 

des is associated with a pipe or a socket. 

whence is not a proper value. 

Last change: 21 November 1987 Sun Release 4.0 



MINCORE(2) SYSTEM CALLS MINCORE(2) 

NAME 
mincore - determine residency of memory pages 

SYNOPSIS 
mincore(addr, Jen, vec) 
caddr_t addr; int Jen; result char *vec; 

DESCRIPTION 
mincore() returns the primary memory residency status of pages in the address space covered by mappings 
in the range [addr, addr + len). The status is returned as a char-per-page in the character array referenced 
by *vee (which the system assumes to be large enough to encompass all the pages in the address range). 
The least significant bit of each character is set to 1 to indicate that the referenced page is in primary 
memory, 0 if it is not. The settings of other bits in each character is undefined and may contain other infor
mation in the future. 

RETURN VALUE 
min core() returns O on success, -1 on failure. 

ERRORS 
mincore() will fail if: 

EFAULT 

EINVAL 

ENOMEM 

SEE ALSO 
mmap(2) 

Sun Release 4.0 

*Vee includes an out-of-range or otherwise inaccessible address. 

addr is not a multiple of the page size as returned by getpagesize(2). 

Addresses in the range [addr, addr + len) are invalid for the address space of a 
process, or specify one or more pages which are not mapped. 

Last change: 25 September 1987 699 



MKDIR(2) SYSTEM CALLS MKDIR(2) 

NAME 
mkdir - make a directory file 

SYNOPSIS 
int mkdir(patb, mode) 
char •path; 
int mode; 

DESCRIPTION 
mkdir() creates a new directory file with name path. The mode of the new file is initialized from mode. 

The low-order 9 bits of mode are modified such that all bits set in the process's file mode creation mask are 
cleared (see umask(2)). 

The set-gid bit of mode is ignored. The set-gid bit of the new file is inherited from that of the parent direc
tory. 

The directory's owner ID is set to the process's effective user ID. 

The directory's group ID is set to either: 

• the effective group ID of the process, if the filesystem was not mounted with the BSD file
creation semantics flag (see mount(2)) and the set-gid bit of the parent directory is clear, or 

• the group ID of the directory in which the file is created. 

RETURN VALUE 
A O return value indicates success. A -1 return value indicates an error, and an error code is stored in 
errno. 

ERRORS 

700 

mkdir() will fail and no directory will be created if: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

ENOENT 

EACCES 

ELOOP 

EROFS 

EEXIST 

ENOSPC 

ENOSPC 

ENOSPC 

EDQUOT 

EDQUOT 

EDQUOT 

EIO 

EFAULT 

A component of the path prefix of path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

The file referred to by path resides on a read-only file system. 

The file referred to by path exists. 

The directory in which the entry for the new file is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

The new directory cannot be created because there is no space left on the file sys
tem which will contain the directory. 

There are no free inodes on the file system on which the file is being created. 

The directory in which the entry for the new file is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the 
directory has been exhausted. 

The new directory cannot be created because the user's quota of disk blocks on 
the file system which will contain the directory has been exhausted. 

The user's quota of inodes on the file system on which the file is being created has 
been exhausted. 

An I/0 error occurred while reading from or writing to the file system. 

path points outside the process's allocated address space. 

Last change: 21 November 1987 Sun Release 4.0 



MKDIR(2) SYSTEM CALLS MKDIR(2) 

SEE ALSO 
cbmod(2), mount(2), rmdir(2), stat(2), umask(2) 

Sun Release 4.0 Last change: 21 November 1987 701 



MKNOD(2) SYSTEM CALLS MKNOD(2) 

NAME 
mknod - make a special file 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/stat.h> 

int mknod(path, mode, dev) 
char *path; 
int mode, dev; 

DESCRIPTION 
mknod() creates a new file named by the path name pointed to by path. The mode of the new file (includ
ing file type bits) is initialized from mode. The values of the file type bits which are permitted are: 

#define s IFCHR 
#define s IFBLK 
#define s IFREG 
#define s IFIFO 

0020000 
0060000 
0100000 
0010000 

I* character special * / 
/• block special•/ 
/• regular •/ 
I• FIFO special•/ 

Values of mode other than those above are undefined and should not be used. 

The protection part of the mode is modified by the process's mode mask (see umask(2)). 

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is set to 
either: 

• the effective group ID of the process, if the filesystem was not mounted with the BSD file
creation semantics flag (see mount(2)) and the set-gid bit of the parent directory is clear, or 

• the group ID of the directory in which the file is created. 

If mode indicates a block or character special file, dev is a configuration dependent specification of a char
acter or block 1/0 device. If mode does not indicate a block special or character special device, dev is 
ignored. 

mknod() may be invoked only by the super-user for file types other than FIFO special. 

RETURN VALUE 
Upon successful completion a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 

702 

mknod() fails and the file mode remains unchanged if: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

ENOENT 

EACCES 

ELOOP 

EPERM 

EIO 

EISDIR 

ENOSPC 

A component of the path prefix of path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

An attempt was made to create a file of type other than FIFO special and the 
process's effective user ID is not super-user. 

An 1/0 error occurred while reading from or writing to the file system. 

The specified mode would have created a directory. 

The directory in which the entry for the new file is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

Last change: 5 January 1988 Sun Release 4.0 



MKN0D(2) 

ENOSPC 

EDQUOT 

EDQUOT 

EROFS 

EEXIST 

EFAULT 

SEE ALSO 

SYSTEM CALLS MKN0D(2) 

There are no free incxles on the file system on which the file is being created. 

The directory in which the entry for the new file is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the 
directory has been exhausted. 

The user's quota of inodes on the file system on which the node is being cr,eated 
has been exhausted. 

The file referred to by path resides on a read-only file system. 

The file referred to by path exists. 

path points outside the process's allocated address space. 

chmod(2), stat(2), umask(2) 

Sun Release 4.0 Last change: 5 January 1988 703 



MMAP(2) SYSTEM CALLS MMAP(2) 

NAME 
mmap - map pages of memory 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/mman.h> 
caddr_t mmap(addr, len, prot, flags, fd, ofT) 
caddr _ t addr; 
int len, prot, flags, fd; 
ofT_t off; 

DESCRIPTION 

704 

mmap() establishes a mapping between the process's address space at an address paddr for Zen bytes to 
the memory object represented by fd at off for Zen bytes. The value of paddr is an implementation
dependent function of the parameter addr and values of flags, further described below. A successful 
mmap() call returns paddr as its result. The address ranges covered by [paddr, paddr + Zen) and [off, off 
+ Zen) must be legitimate for the address space of a process and the object in question, respectively. 

The mapping established by mmap() replaces any previous mappings for the process's pages in the range 
[paddr,paddr + Zen). 

The parameter prot determines whether read, execute, write, or some combination of accesses are permit
ted to the pages being mapped. The protection options are defined in <Sys/mman.h> as: 

#define PROT_READ Ox4 I• page can be read•/ 
#define PROT_WRITE Ox2 I• page can be written•/ 
#define PROT_EXECUTE Oxl /• page can be executed •I 
#define PROT_NONE OxO /• page can not be accessed•/ 

Not all implementations literally provide all possible combinations. PROT _ WRITE is often implemented 
as PROT_READIPROT_WRITE and PROT_EXECUTE as PROT_READIPROT_EXECUTE. However, no 
implementation will permit a write to succeed where PROT _ WRITE has not been set. The behavior of 
PROT_ WRITE can be influenced by setting MAP _PRIVATE in the flags parameter, described below. 

The parameter flags provides other information about the handling of the mapped pages. The options are 
defined in <sys/mman.h> as: 

#define MAP_ SHARED 
#define MAP_ PRIVATE 
#define MAP_ TYPE 
#define MAP_ FIXED 
#define MAP_ RENAME 

1 
2 
Oxf 
OxlO 
Ox20 

/• Share changes•/ 
/• Changes are private •/ 
/• Mask for type of mapping •/ 
/• Interpret addr exactly •/ 
/• Assign page to file•/ 

MAP_ SHARED and MAP _PRIVATE describe the disposition of write references to the memory object. If 
MAP_ SHARED is specified, write references will change the memory object. If MAP_ PRIVATE is 
specified, the initial write reference will create a private copy of the memory object page and redirect the 
mapping to the copy. The mapping type is retained across a fork(2). 

MAP_ FIXED informs the system that the value of paddr must be addr, exactly. The use of MAP_ FIXED is 
discouraged, as it may prevent an implementation from making the most effective use of system resources. 

When MAP_ FIXED is not set, the system uses addr as a hint in an implementation-defined manner to arrive 
at paddr. The paddr so chosen will be an area of the address space which the system deems suitable for a 
mapping of Zen bytes to the specified object. All implementations interpret an addr value of zero as grant
ing the system complete freedom in selecting paddr, subject to constraints described below. A non-zero 
value of addr is taken to be a suggestion of a process address near which the mapping should be placed. 
When the system selects a value for paddr, it will never place a mapping at address 0, nor will it replace 
any extant mapping, nor map into areas considered part of the potential data or stack "segments". 

Last change: 16 February 1988 Sun Release 4.0 



MMAP(2) SYSTEM CALLS MMAP(2) 

MAP_RENAME causes the pages currently mapped in the range [paddr, paddr + Zen) to be effectively 
renamed to be the file pages at [off, off + Zen). The currently mapped pages must be mapped as 
MAP_PRIVATE. MAP_RENAME implies a MAP_FIXED interpretation of addr. fd must be open for writ
ing. MAP _RENAME affects the size of the memory object referenced by fd: the size is max(off + Zen - 1, 
jlen) ( where jlen was the previous length of the object). After the pages are renamed, a mapping to them is 
reestablished with the parameters as specified in the renaming mmap. 

The parameter off is constrained to be aligned and sized according to the value returned by getpagesize (2). 
When MAP_ FIXED is specified, the parameter addr must also meet these constraints. The system performs 
mapping operations over whole pages. Thus, while the parameter Zen need not meet a size or alignment 
constraint, the system will include in any mapping operation any partial page specified by the range [paddr, 
paddr + Zen). 

It should be noted that the system will always zero-fill any partial pages at the end of an object. Further, 
the system will never write out any modified portions of the last page of an object which are beyond its 
end. References to whole pages following the end of an object will result in the delivery of a SIGBUS sig
nal. SIGBUS signals may also be delivered on various filesystem conditions, including quota exceeded 
errors. 

RETURN VALUE 
A successful mmap() returns the address at which the mapping was placed (paddr ). A failing mmap() 
returns-I. 

ERRORS 
mmap() will fail if: 

EBADF fd is not open. 

EACCES fd is not open for read and PROT _ READ or PROT _ EXECUTE were specified, or 
fd is not open for write and PROT _ WRITE was specified for a MAP_ SHARED 
type mapping. 

ENXIO Addresses in the range [off, off+ Zen) are invalid for fd. 

EINV AL The arguments addr (if MAP_ FIXED was specified) and off are not multiples of 
the page size as returned by getpagesize (2). 

EINVAL The MAP_TYPE field in flags is invalid (neither MAP_PRIVATE or 
MAP _SHARED). 

ENO DEV f d refers to an object for which mmap() is meaningless, such as a terminal; or if 
the object does support mmap() and MAP_ RENAME was specified then the 
object is unable to support MAP _RENAME (for instance, MAP _RENAME to a 
frame buffer or other device). 

ENOMEM MAP_ FIXED was specified, and the range [addr, addr + Zen) exceeds that allowed 
for the address space of a process; OR MAP_ FIXED was not specified and there is 
insufficient room in the address space to effect the mapping. 

ENOS PC MAP_ RENAME was specified and there is no space left on the filesystem to hold 
the pages. 

ETXTBSY One or more pages specified by an mmap() MAP_ RENAME operation are not 
mapped MAP _PRIVATE. 

SEE ALSO 
fork(2), getpagesize(2), munmap(2), mprotect(2) 

BUGS 
MAP_ RENAME is not implemented. 

Sun Release 4.0 Last change: 16 February 1988 705 



MOUNT(2) SYSTEM CALLS MOUNT(2) 

NAME 
mount - mount file system 

SYNOPSIS 
#include <sys/mount.h> 

int mount(type, dir, M_NEWTYPElflags, data) 
char •type; 
char •dir; 
int Bags; 
caddr_t data; 

DESCRIPTION 

706 

mount() attaches a file system to a directory. After a successful return, references to directory dir will 
refer to the root directory on the newly mounted file system. dir is a pointer to a null-terminated string con
taining a path name. dir must exist already, and must be a directory. Its old contents are inaccessible while 
the file system is mounted. 

mount() may be invoked only by the super-user. 

The flags argument is constructed by the logical OR of the following bits (defined in <sys/mount.h> ): 

M RDONLY 
mount filesystem read-only. 

M NOSUID 
ignore set-uid bit on execution. 

M NEWTYPE 
this flag must always be set 

M GRPID 
use BSD file-creation semantics (see open(2V)). 

M REMOUNT 
change options on an existing mount. 

M NOSUB 
disallow mounts beneath this filesystem. 

M MULTI 
evaluate each pathname as a unit, rather than one component at a time (This option has 
no effect unless the particular filesystem type is specified as supporting it.) 

Physically write-protected and magnetic tape file systems must be mounted read-only or errors will occur 
when access times are updated, whether or not any explicit write is attempted. 

The type string indicates the type of the filesystem. data is a pointer to a structure which contains the type 
specific arguments to mount. Below is a list of the filesystem types supported and the type specific argu
ments to each: 

"4.2" 
struct ufs _ args { 

char •fspec; /• Block special file to mount•/ 
}; 

"nfs" 
#include <nfs/nfs.h> 
#include <netinet/in.h> 
struct nfs args { 

struct sockaddr _in •addr; I• file server address •/ 
fbandle t •th; /• File handle to be mounted •I 
int flags; /• flags•/ 

Last change: 24 November 1987 Sun Release 4.0 



MOUNT(2) 

}; 

RETURN VALUE 

int 
int 
int 
int 
char 
int 
int 
int 
int 
char 

wsize; 
rsize; 
timeo; 
retrans; 
•hostname; 
acregmin; 
acregmax; 
acdirmin; 
acdirmax; 
•netname; 

SYSTEM CALLS MOUNT(2) 

/• write size in bytes •I 
/• read size in bytes •I 
/• initial timeout in .1 secs •/ 
I• times to retry send•/ 
/• server's hostname •/ 
/• attr cache file min secs•/ 
/• attr cache file max secs•/ 
/• attr cache dir min secs•/ 
/• attr cache dir max secs•/ 
/• server's netname •I 

Upon successful completion a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
mount() fails when one of the following occurs: 

EPERM 

ENODEV 

ENAMETOOLONG 

ENOENT 

EACCES 

ENOTDIR 

EBUSY 

The caller is not the super-user. 

The file system type specified by type is not valid or is not configured into the sys
tem. 

The length of a component of the path name of dir exceeds 255 characters, or the 
length of the entire path name of dir exceeds 1023 characters. 

A component of dir does not exist. 

Search permission is denied for a component of the path prefix of dir. 

The file named by dir is not a directory. 

Another process current! y holds a reference to dir. 

EFAULT dir points outside the process's allocated address space. 

ELOOP Too many symbolic links were encountered in translating the path name of dir. 

For a 4.2 file system, mount() fails when one of the following occurs: 

ENOTBLK /spec is not a block device. 

ENXIO 

EMFILE 

EINVAL 

ENOMEM 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EACCES 

EFAULT 

ELOOP 

Sun Release 4.0 

The major device number of /spec is out of range (this indicates no device driver 
exists for the associated hardware). 

No space remains in the mount table. 

The super block for the file system had a bad magic number or an out of range 
block size. 

Not enough memory was available to read the cylinder group information for the 
file system. 

A component of the path prefix of /spec is not a directory. 

The length of a component of the path name of /spec exceeds 255 characters, or 
the length of the entire path name of /spec exceeds 1023 characters. 

A component of /spec does not exist. 

Search permission is denied for a component of the path prefix of /spec. 

/spec points outside the process's allocated address space. 

Too many symbolic links were encountered in translating the path name off spec. 

Last change: 24 November 1987 707 



MOUNT(2) SYSTEM CALLS MOUNT(2) 

EIO An 1/0 error occurred while reading from or writing to the file system. 

SEE ALSO 
unmount(2), open(2V), mount(8) 

BUGS 
Some of the error codes need translation to more obvious messages. 

708 Last change: 24 November 1987 Sun Release 4.0 



lMPROTECT ( 2) SYSTEM CALLS lMPROTECT ( 2) 

NAME 
mprotect - set protection of memory mapping 

SYNOPSIS 
#include <sys/mman.h> 
mprotect(addr, ten, prot) 
caddr _ t addr; int ten, prot; 

DESCRIPTION 
mprotect() changes the access protections on the mappings specified by the range [addr, addr + len) to be 
that specified by prot. Legitimate values for prot are the same as those permitted for mmap(2). 

RETURN VALUE 
mprotect( ) returns O on success, -1 on failure. 

ERRORS 
mprotect() will fail if: 

EACCES 

EINVAL 

prot specifies a protection which violates the access permission the process has to 
the underlying memory object. 

addr is not a multiple of the page size as returned by getpagesize(2). 

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address space of a 
process, or specify one or more pages which are not mapped. 

When mprotect() fails for reasons other than EINV AL, the protections on some of the pages in the range 
[addr, addr + len) will have been changed. If the error occurs on some page at address addr2, then the 
protections of all whole pages in the range [addr, addr2) have been modified. 

SEE ALSO 
getpagesize(2), mmap(2) 

Sun Release 4.0 Last change: 25 September 1987 709 



MSGCTL{2) SYSTEM CALLS MSGCTL(2) 

NAME 
msgctl - message control operations 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgctl (msqid, cmd, buf) 
int msqid, cmd; 
struct msqid _ ds * buf; 

DESCRIPTION 
msgctl() provides a variety of message control operations as specified by cmd. The following cmd s are 
available: 

IPC STAT 

IPC SET 

IPC RMID 

Place the current value of each member of the data structure associated with msqid 
into the structure pointed to by buf. The contents of this structure are defined in 
intro(2). {READ} 

Set the value of the following members of the data structure associated with msqid 
to the corresponding value found in the structure pointed to by buf: 

msg_perm.uid 
msg_perm.gid 
msg_perm.mode I• only low 9 bits •/ 
msg_qbytes 

This cmd can only be executed by a process that has an effective user ID equal to 
either that of super-user, or to the value of msg_perm.cuid or msg_perm.uid in 
the data structure associated with msqid. Only super-user can raise the value of 
msg_qbytes. 

Remove the message queue identifier specified by msqid from the system and des
troy the message queue and data structure associated with it. This cmd can only 
be executed by a process that has an effective user ID equal to either that of 
super-user, or to the value of msg_perm.cuid or msg_perm.uid in the data struc
ture associated with msqid. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 

710 

msgctl() will fail if: 

EINVAL 

EINVAL 

EACCES 

EPERM 

EPERM 

EFAULT 

msqid is not a valid message queue identifier. 

cmd is not a valid command. 

cmd is equal to IPC_STAT and {READ} operation permission is denied to the _cal
ling process (see intro(2)). 

cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the calling pro
cess is not equal to that of super-user, or to the value of msg_perm.cuid or 
msg_perm.uid in the data structure associated with msqid. 

cmd is equal to IPC _SET, an attempt is being made to increase to the value of 
msg_ qbytes, and the effective user ID of the calling process is not equal to that of 
super-user. 

buf points to an illegal address. 

Last change: 21 November 1987 Sun Release 4.0 



MSGCTL(2) SYSTEM CALLS MSGCTL(2) 

SEE ALSO 
intro(2), msgget(2), msgop(2) 

Sun Release 4.0 Last change: 21 November 1987 711 



MSGGET(2) SYSTEM CALLS MSGGET(2) 

NAME 
msgget - get message queue 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgget(key, msgflg) 
key_t key; 
int msgflg; 

DESCRIPTION 
msgget() returns the message queue identifier associated with key. 

A message queue identifier and associated message queue and data structure (see intro(2)) are created for 
key() if one of the following are true: 

• key is equal to IPC _PRIVATE. 

• key does not already have a message queue identifier associated with it, and (msgflg & 
IPC_CREAT) is ''true''. 

Upon creation, the data structure associated with the new message queue identifier is initialized as follows: 

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to the effec-
tive user ID and effective group ID, respectively, of the calling process. 

• The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg. 

• msg_qnum, msg_lspid, msg_Irpid, msg_stime, and msg_rtime are set equal to 0. 

• msg_ ctime is set equal to the current time. 

• msg_ qbytes is set equal to the system-wide standard value of the maximum number of bytes 
allowed on a message queue. 

RETURN VALUE 
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned. Oth
erwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
msgget() will fail if one or more of the following are true: 

EACCES A message queue identifier exists for key, but operation permission (see intro(2)) 
as specified by the low-order 9 bits of msgflg would not be granted. 

ENOENT 

ENOSPC 

EEXIST 

A message queue identifier does not exist for key() and (msgflg & IPC_CREAT) 
is ''false''. 

A message queue identifier is to be created but the system-imposed limit on the 
maximum number of allowed message queue identifiers system wide would be 
exceeded. 

A message queue identifier exists for key() but ( (msgflg & IPC _ CREAT) & 

(msgflg & IPC_EXCL)) is ''true''. 

SEE ALSO 
intro(2), msgctl(2), msgop(2) 

712 Last change: 21 November 1987 Sun Release 4.0 



MSGOP(2) SYSTEM CALLS MSGOP(2) 

NAME 
msgop, msgsnd, msgrcv - message operations 

SYNOPSIS 
#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

int msgsnd(msqid, msgp, msgsz, msgflg) 
int msqid; 
struct msgbuf *msgp; 
int msgsz, msgflg; 

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) 
int msqid; 
struct msgbuf *msgp; 
int msgsz; 
long msgtyp; 
int msgflg; 

DESCRIPTION 
msgsnd() is used to send a message to the queue associated with the message queue identifier specified by 
msqid. {WRITE} msgp points to a structure containing the message. This structure is composed of the fol
lowing members: 

long 
char 

mtype; 
mtext[]; 

I* message type *I 
I* message text *I 

mtype is a positive integer that can be used by the receiving process for message selection (see msgrcv 
below). mtext is any text of length msgsz bytes. msgsz can range from Oto a system-imposed maximum. 

msgfig specifies the action to be taken if one or more of the following are true: 

The number of bytes already on the queue is equal to msg_qbytes (see intro (2)). 

The total number of messages on all queues system-wide is equal to the system-imposed limit. 

These actions are as follows: 

If (msgflg & IPC _ NOW AIT) is return immediately. 

If (msgflg & IPC_NOWAIT) is the calling process will suspend execution until one of the following 
occurs: 

The condition responsible for the suspension no longer exists, in which case the message 
is sent. 

msqid is removed from the system (see msgctl(2)). When this occurs, errno is set equal 
to EIDRM, and a value of-1 is returned. 

The calling process receives a signal that is to be caught. In this case the message is not 
sent and the calling process resumes execution in the manner prescribed in signal(3). 

Upon successful completion, the following actions are taken with respect to the data structure associated 
with msqid (see intro(2)). 

msg_qnum is incremented by 1. 

msg_lspid is set equal to the process ID of the calling process. 

msg_stime is set equal to the current time. 

msgrcv() reads a message from the queue associated with the message queue identifier specified by msqid 
and places it in the structure pointed to by msgp. {READ} This structure is composed of the following 
members: 

Sun Release 4 .0 Last change: 20 November 1987 713 



MSGOP(2) SYSTEM CALLS MSGOP(2) 

long 
char 

mtype; 
mtext[]; 

/• message type •I 
/• message text •/ 

mtype is the received message's type as specified by the sending process. mtext is the text of the message. 
msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz bytes if it is larger 
than msgsz and (msgflg & MSG_NOERROR) is The truncated part of the message is lost and no indication of the 
truncation is given to the calling process. 

msgtyp specifies the type of message requested as follows: 

If msgtyp is equal to 0, the first message on the queue is received. 

If msgtyp is greater than 0, the first message of type msgtyp is received. 

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the abso
lute value of msgtyp is received. 

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as 
follows: 

If (msgflg & IPC _NOWAIT) is of -1 and errno set to ENOMSG. 

If (msgflg & IPC _NOW AIT) is following occurs: 

A message of the desired type is placed on the queue. 

msqid is removed from the system. When this occurs, errno is set equal to EIDRM, and a 
value of -1 is returned. 

The calling process receives a signal that is to be caught. In this case a message is not 
received and the calling process resumes execution in the manner prescribed in signal(3). 

Upon successful completion, the following actions are taken with respect to the data structure associated 
with msqid (see intro (2)). 

msg_ qnum is decremented by 1. 

msg_lrpid is set equal to the process ID of the calling process. 

msg_rtime is set equal to the current time. 

RETURN V ALOES 
Upon successful completion, the return value is as follows: 

msgsnd() returns a value of 0. 

msgrcv() returns a value equal to the number of bytes actually placed into mtext. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 

714 

msgsnd() will fail and no message will be sent if one or more of the following are true: 

EINVAL 

EIDRM 

EACCES 

EINVAL 

EAGAIN 

EINVAL 

EFAULT 

EINTR 

msqid is not a valid message queue identifier. 

The message queue referred to by msqid was removed from the system. 

Operation permission is denied to the calling process (see intro(2)). 

mtype is less than 1. 

The message cannot be sent for one of the reasons cited above and (msgflg & 
IPC_NOWAIT) is 

msgsz is less than zero or greater than the system-imposed limit. 

msgp points to an illegal address. 

The call was interrupted by the delivery of a signal. 

Last change: 20 November 1987 Sun Release 4.0 



MSGOP(2) SYSTEM CALLS MSGOP(2) 

msgrcv() will fail and no message will be received if one or more of the following are true: 

EINV AL msqid is not a valid message queue identifier. 

EIDRM The message queue referred to by msqid was removed from the system. 

EACCES 

EINVAL 

E2BIG 

ENOMSG 

EFAULT 

EINTR 

SEE ALSO 

Operation permission is denied to the calling process. 

msgsz is less than 0. 

mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 

The queue does not contain a message of the desired type and (msgtyp & 
IPC_NOWAIT) is 

msgp points to an illegal address. 

The call was interrupted by the delivery of a signal. 

intro(2), msgctl(2), msgget(2), signal(3) 

Sun Release 4.0 Last change: 20 November 1987 715 



MSYNC(2) SYSTEM CALLS MSYNC(2) 

NAME 
msync - synchronize memory with physical storage 

SYNOPSIS 
#include <sys/mman.h> 
msync(addr, Jen, flags) 
caddr _ t addr; int Jen, flags; 

DESCRIPTION 
msync() writes all modified copies of pages over the range [addr, addr + len) to their permanent storage 
locations. msync() optionally invalidates any copies so that further references to the pages will be 
obtained by the system from their permanent storage locations. 

Values for flags are defined in <sys/mman.h> as: 

#define MS _ASYNC Oxl /• Return immediately •/ 
#define MS_INVALIDATE Ox2 /• Invalidate mappings•/ 

and are used to control the behavior of msync. One or more flags may be specified in a single call. 

MS_ASYNC returns msync() immediately once all 1/0 operations are scheduled; normally, msync() will 
not return until all 1/0 operations are complete. MS_INVALIDATE invalidates all cached copies of data 
from memory objects, requiring them to be re-obtained from the object's permanent storage location upon 
the next reference. 

msync() should be used by programs which require a memory object to be in a known state, for example in 
building transaction facilities. 

RETURN VALUE 
AO value is returned on success. A-1 value indicates an error. 

ERRORS 

716 

msync() fails if: 

EIO 

ENOMEM 

EINVAL 

EINVAL 

An 1/0 error occurred while reading from or writing to the file system. 

Addresses in the range [addr, addr + len) are outside the valid range for the 
address space of a process. 

Either addr is not a multiple of the current page size, or len is negative. 

One of the flags MS_ASYNC orMS_INVALID is invalid. 

Last change: 25 September 1987 Sun Release 4.0 



MUNMAP(2) 

NAME 
munmap - unmap pages of memory. 

SYNOPSIS 
#include <sys/mman.h> 
munmap(addr, len) 
caddr_t addr; int len; 

DESCRIPTION 

SYSTEM CALLS MUNMAP(2) 

munmap() removes the mappings for pages in the range [addr, addr + Zen). Further references to these 
pages will result in the delivery of a SIGSEGV signal to the process, unless these pages are considered part 
of the "data" or "stack" segments. 

brk() and mmap() often perform implicit munmap' s. 

RETURN VALUE 
munmap() returns O on success, -1 on failure. 

ERRORS 
munmap() will fail if: 

addr is not a multiple of the page size as returned by getpagesize(2). EINVAL 

EINVAL Addresses in the range [addr, addr + Zen) are outside the valid range for the 
address space of a process. 

SEE ALSO 
brk(2), getpagesize(2), mmap(2) 

Sun Release 4.0 Last change: 25 September 1987 717 



NFSSVC(2) SYSTEM CALLS NFSSVC(2) 

NAME 
nfssvc, async_daemon - NFS daemons 

SYNOPSIS 
nfssvc (sock) 
int sock; 

async _daemon() 

DESCRIPTION 
nfssvc() starts an NFS daemon listening on socket sock. The socket must be AF_ INET, and 
SOCK_DGRAM (protocol UDP/IP). The system call will return only if the socket is invalid. 

async _daemon() implements the NFS daemon that handles asynchronous I/0 for an NFS client. This sys
tem call never returns. 

Both system calls result in kernel-only processes with user memory discarded. 

SEE ALSO 
mountd(8C) 

BUGS 

718 

There should be a way to dynamically create kernel-only processes instead of having to make system calls 
from userland to simulate this. 

Last change: 25 September 1987 Sun Release 4.0 



OPEN(2V) SYSTEM CALLS OPEN(2V) 

NAME 
open - open or create a file for reading or writing 

SYNOPSIS 
#include <fcntl.h> 

int open(path, flags [ , mode ] ) 
char *path; 
int flags, mode; 

DESCRIPTION 
path points to the pathname of a file. open() opens the named file for reading and/or writing, as specified 
by the flags argument, and returns a descriptor for that file. The flags argument may indicate the file is to 
be created if it does not already exist (by specifying the o _ CREAT flag), in which case the file is created 
with mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)). If 
the path is a null string, the kernel maps this null pathname to '.', the current directory. flags values are 
constructed by ORing flags from the following list (only one of the first three flags below may be used): 

0 RDONLY 

0 WRONLY 

0 RDWR 

0 NDELAY 

0 SYNC 

0 APPEND 

0 CREAT 

Sun Release 4.0 

Open for reading only. 

Open for writing only. 

Open for reading and writing. 

When opening a FIFO with O _ RDONL Y or O _ WRONL Y set: 

If O_NDELAY is set: 

An open() for reading-only will return without delay. An open() for 
writing-only will return an error if no process currently has the file open 
for reading. 

If O _ND ELA Y is clear: 

An open() for reading-only will block until a process opens the file for 
writing. An open() for writing-only will block until a process opens the 
file for reading. 

When opening a file associated with a communication line: 

If O _NDELA y is set: 

The open will return without waiting for carrier. The first time the pro
cess attempts to perform 1/0 on the open file it will block (not currently 
implemented). 

If O_NDELAY is clear: 

The open will block until carrier is present. 

When opening a regular file, this flag affects subsequent writes. If set, each 
write(2V) will wait for both the file data and file status to be physically updated. 

If set, the file pointer will be set to the end of the file prior to each write. 

If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to 
the effective user ID of the process. The group ID of the file is set to either: 

• the effective group ID of the process, if the filesystem was not mounted with 
the BSD file-creation semantics flag (see mount(2)) and the set-gid bit of the 
parent directory is clear, or 

• the group ID of the directory in which the file is created. 

The low-order 12 bits of the file mode are set to the value of mode, modified as 
follows (see creat(2)): 

Last change: 20 November 1987 719 



OPEN(2V) SYSTEM CALLS OPEN(2V) 

• All bits set in the file mode creation mask of the process are cleared. See 
umask(2). 

• The "save text image after execution" bit of the mode is cleared. See 
chmod(2). 

• The "set group ID on execution" bit of the mode is cleared if the effective user 
ID of the process is not super-user and the process is not a member of the 
group of the created file. 

O TRUNC If the file exists, its length is truncated to O and the mode and owner are 
unchanged. 

o EXCL If O_EXCL and O_CREAT are set, open() will fail if the file exists. This can be 
used to implement a simple exclusive access locking mechanism. If O_EXCL is 
set and the last component of the pathname is a symbolic link, the open will fail 
even if the symbolic link points to a non-existent name. 

The file pointer used to mark the current position within the file is set to the beginning of the file. 

The new descriptor is set to remain open across execve(2) system calls; see close(2) and fcntl(2V). 

There is a system enforced limit on the number of open file descriptors per process, whose value is returned 
by the getdtablesize(2) call. 

SYSTEM V DESCRIPTION 
If the O _NDELAY flag is set on an open, that flag is set for that file descriptor (see fcntl(2V) and may 
affect subsequent reads and writes. See read(2V) and write(2V). 

RETURN VALUE 
The value -1 is returned if an error occurs, and external variable errno is set to indicate the cause of the 
error. Otherwise a non-negative numbered file descriptor for the new open file is returned. 

ERRORS 

720 

open() fails if: 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

ENOENT 

ELOOP 

EACCES 

EACCES 

EACCES 

EISDIR 

ENXIO 

EMFILE 

ENFILE 

A component of the path prefix of path is not a directory. 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

o _ CREA T is not set and the named file does not exist. 

A component of the path prefix of path does not exist. 

Too many symbolic links were encountered in translating path. 

Search permission is denied for a component of the path prefix of path. 

The required permissions (for reading and/or writing) are denied for the file 
named by path. 

The file referred to by path does not exist, o _ CREA T is specified, and the direc
tory in which it is to be created does not permit writing. 

The named file is a directory, and the arguments specify it is to be opened for 
writing. 

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process 
has the file open for reading. 

The system limit for open file descriptors per process has already been reached. 

The system file table is full. 

Last change: 20 November 1987 Sun Release 4.0 



OPEN(2V) 

ENOSPC 

ENOSPC 

EDQUOT 

EDQUOT 

EROFS 

EROFS 

ENXIO 

EINTR 

EIO 

ENOSR 

ENXIO 

EIO 

EFAULT 

EEXIST 

EOPNOTSUPP 

SEE ALSO 

SYSTEM CALLS OPEN(2V) 

The file does not exist, o _ CREAT is specified, and the directory in which the entry 
for the new file is being placed cannot be extended because there is no space left 
on the file system containing the directory. 

The file does not exist, O _ CREAT is specified, and there are no free inodes on the 
file system on which the file is being created. 

The file does not exist, o _ CREAT is specified, and the directory in which the entry 
for the new file is being placed cannot be extended because the user's quota of 
disk blocks on the file system containing the directory has been exhausted. 

The file does not exist, O_CREAT is specified, and the user's quota of inodes on 
the file system on which the file is being created has been exhausted. 

The named file does not exist, O _ CREAT is specified, and the file system on which 
it is to be created is a read-only file system. 

The named file resides on a read-only file system, and the file is to be opened for 
writing. 

The file is a character special or block special file, and the associated device does 
not exist. 

A signal was caught during the open() system call. 

A hangup or error occurred during a STREAMS open. 

A stream could not be allocated. 

A STREAMS module or driver open routine failed. 

An I/0 error occurred while reading from or writing to the file system. 

path points outside the process's allocated address space. 

O_EXCL and O_CREAT were both specified and the file exists. 

An attempt was made to open a socket (not currently implemented). 

chmod(2), close(2), creat(2), dup(2), fcntl(2V), getdtablesize(2), getmsg(2), lseek(2), mount(2), 
putmsg(2), read(2V), umask(2), write(2V) 

Sun Release 4.0 Last change: 20 November 1987 721 



PIPE(2) SYSTEM CALLS PIPE(2) 

NAME 
pipe - create an interprocess communication channel 

SYNOPSIS 
pipe(fildes) 
int fildes[2]; 

DESCRIPTION 
The pipe() system call creates an I/0 mechanism called a pipe and returns two file descriptors, fildes [0] 
andfildes[l]. fildes[O] is opened for reading andfildes[l] is opened for writing. When the pipe is written 
using the descriptor fildes [1] up to 4096 bytes of data are buffered before the writing process is blocked. A 
read only file descriptorfi/des[O] accesses the data written tofildes[l] on a FIFO (first-in-first-out)basis. 

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse
quent fork() calls) will pass data through the pipe with read() and write() calls. 

The shell has a syntax to set up a linear array of processes connected by pipes. 

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) returns 
an end-of-file. 

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in the system. 

A signal is generated if a write on a pipe with only one end is attempted. 

RETURN VALUE 
The function value zero is returned if the pipe was created; -1 if an error occurred. 

ERRORS 
The pipe() call will fail if: 

EMFILE Too many descriptors are active. 

ENFILE The system file table is full. 

EFAULT The fildes file descriptor pair is in an invalid area of the process's address space. 

SEE ALSO 
sh(l), fork(2), read(2V), socketpair(2), write(2V) 

BUGS 
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will occur. 

722 Last change: 25 September 1987 Sun Release 4.0 



POLL(2) SYSTEM CALLS POLL(2) 

NAME 
poll - STREAMS I/0 multiplexing 

SYNOPSIS 
#include <stropts.h> 
#include <poll.h> 

int poll(f ds, nf ds, timeout) 
struct pollfd *fds; 
unsigned long nfds; 
int timeout; 

DESCRIPTION 
poll() provides users with a mechanism for multiplexing input/output over a set of file descriptors that 
reference open streams (see intro(2)). poll() identifies those streams on which a user can send or receive 
messages, or on which certain events have occurred. A user can receive messages using read(2V) or 
getmsg(2) and can send messages using write(2V) and putmsg(2). Certain ioct1(2) calls, such as 
I_RECVFD and I_SENDFD (see streamio(4)), can also be used to receive and send messages. 

f ds specifies the file descriptors to be examined and the events of interest for each file descriptor. It is a 
pointer to an array with one element for each open file descriptor of interest. The array's elements are 
pollf d structures which contain the following members: 

int fd; f * file descriptor *f 
short events; f * requested events *f 
short revents; f* returned events *f 

where f d specifies an open file descriptor and events and revents are bitmasks constructed by ORing any 
combination of the following event flags: 

POLLIN A non-priority or file descriptor passing message (see I_RECVFD) is present on 
the stream head read queue. This flag is set even if the message is of zero length. 
In revents, this flag is mutually exclusive with POLLPRI. 

POLLPRI 

POLLOUT 

POLLERR 

POLLHUP 

A priority message is present on the stream head read queue. This flag is set 
even if the message is of zero length. In revents, this flag is mutually exclusive 
with POLLIN. 

The first downstream write queue in the stream is not full. Priority control mes
sages can be sent (see putmsg(2)) at any time. 

An error message has arrived at the stream head. This flag is only valid in the 
revents bitmask; it is not used in the events field. 

A hangup has occurred on the stream. This event and POLLOUT are mutually 
exclusive; a stream can never be writable if a hangup has occurred. However, this 
event and POLLIN or POLLPRI are not mutually exclusive. This flag is only valid 
in the revents bitmask; it is not used in the events field. 

POLLNVAL The specified fd value does not belong to an open stream. This flag is only valid 
in the revents field; it is not used in the events field. 

For each element of the array pointed to by fds, poll() examines the given file descriptor for the event(s) 
specified in events. The number of file descriptors to be examined is specified by nf ds. If nf ds exceeds the 
system limit of open files (see getdtablesize(2)), poll() will fail. 

If the value f d is less than zero, events is ignored and re vents is set to O in that entry on return from poll. 

The results of the poll() query are stored in the re vents field in the pollf d structure. Bits are set in the 
revents bitmask to indicate which of the requested events are true. If none are true, none of the specified 
bits is set in revents when the poll() call returns. The event flags POLLHUP, POLLERR, and POLLNVAL 
are always set in revents if the conditions they indicate are true; this occurs even though these flags were 
not present in events. 

Sun Release 4.0 Last change: 21 November 1987 723 



POLL(2) SYSTEM CALLS POLL(2) 

If none of the defined events have occurred on any selected file descriptor, poll() waits at least timeout mil
liseconds for an event to occur on any of the selected file descriptors. On a computer where millisecond 
timing accuracy is not available, timeout is rounded up to the nearest legal value available on that system. 
If the value timeout is 0, poll() returns immediately. If the value of timeout is -1, poll() blocks until·a 
requested event occurs or until the call is interrupted. poll() is not affected by the O _ND ELA Y flag. 

RETURN VALUE 
Upon successful completion, a non-negative value is returned. A positive value indicates the total number 
of file descriptors that has been selected (for instance, file descriptors for which the revents field is non
zero). A value of O indicates that the call timed out and no file descriptors have been selected. Upon 
failure, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
poll() fails if one or more of the following are true: 

EAGAIN Allocation of internal data structures failed, but the request should be attempted 
again. 

EFAULT 

EINTR 

EINVAL 

Some argument points outside the allocated address space. 

A signal was caught during the poll() system call. 

The argument nf ds is less than zero, or nf ds is greater than the system limit of 
open files. 

SEE ALSO 
getdtablesize(2), getmsg(2), intro(2), ioctl(2), putmsg(2), read(2V), write(2V), streamio(4) 

724 Last change: 21 November 1987 Sun Release 4.0 



PROFIL(2) SYSTEM CALLS PROFIL(2) 

NAME 
profil - execution time profile 

SYNOPSIS 
profil(buff, bufsiz, offset, scale) 
char •buff; 
int bufsiz, offset, scale; 

DESCRIPTION 
profil() enables run-time execution profiling, and reserves a buffer for maintaining raw profiling statistics. 
buff points to an area of core of length bufsiz (in bytes). After the call to profil, the user's program counter 
(pc) is examined at each clock tick (10 milliseconds on Sun-4 systems, 20 milliseconds on Sun-2 and Sun-3 
systems); offset is subtracted from its value, and the result multiplied by scale. If the resulting number 
corresponds to a word within the buffer, that word is incremented. 

scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: OxlOOOO gives a 1-to-l 
mapping of pc values to words in buff; Ox8000 maps each pair of instruction words together. Ox2 maps all 
instructions onto the beginning of bu.ff (producing a non-interrupting core clock). 

Profiling is turned off by giving a scale of O or 1. It is rendered ineffective by giving a bufsiz of 0. 
Profiling is turned off when an execve() is executed, but remains on in child and parent both after a fork(). 
Profiling is turned off if an update in buff would cause a memory fault. 

RETURN VALUE 
A 0, indicating success, is always returned. 

SEE ALSO 
gprof(l), getitimer(2), monitor(3) 

Sun Release 4.0 Last change: 27 January 1988 725 



PTRACE(2) SYSTEM CALLS P1RACE(2) 

NAME 
ptrace - process trace 

SYNOPSIS 
#include <signal.h> 
#include <sys/ptrace.h> 
#include <sys/wait.h> 

ptrace(request, pid, addr, data [, addr2]) 
enum ptracereq request; 
int pid; 
char *addr; 
int data; 
char *addr2; 

DESCRIPTION 

726 

ptrace( ) provides a means by which a process may control the execution of another process, and examine 
and change its core image. Its primary use is for the implementation of breakpoint debugging. There are 
five arguments whose interpretation depends on the request argument. Generally, pid is the process ID of 
the traced process. A process being traced behaves normally until it encounters some signal whether inter
nally generated like "illegal instruction" or externally generated like "interrupt". See sigvec(2) for the list. 
Then the traced process enters a stopped state and the tracing process is notified using wait(2). When the 
traced process is in the stopped state, its core image can be examined and modified using ptrace. If 
desired, another ptrace() request can then cause the traced process either to terminate or to continue, pos
sibly ignoring the signal. 

Note: several different values of the request argument can make ptrace() return data values - since -1 is 
a possibly legitimate value, to differentiate between -1 as a legitimate value and -1 as an error code, you 
should clear the errno global error code before doing a ptrace() call, and then check the value of errno 
afterwards. 

The value of the request argument determines the precise action of the call: 

PTRACE TRACEME 
This request is the only one used by the traced process; it declares that the process is to be traced 
by its parent. All the other arguments are ignored. Peculiar results will ensue if the parent does 
not expect to trace the child. 

PTRACE PEEKTEXT 
PTRACE PEEKDATA 

The word in the traced process's address space at addr is returned. If the instruction and data 
spaces are separate (for example, historically on a PDP-11), request PTRACE_PEEKTEXT indi
cates instruction space while PTRACE_PEEKDATA indicates data space. Otherwise, either 
request may be used, with equal results; addr must be even on a Sun-2 system or a multiple of 4 
on a Sun-4 system. The child must be stopped. The input data and addr2 are ignored. 

PTRACE PEEKUSER 
The word of the system's per-process data area corresponding to addr is returned. addr must be a 
valid offset within the kernel's per-process data pages. This space contains the registers and other 
information about the process; its layout corresponds to the user structure in the system (see 
<sys/user.h> ). 

PTRACE POKETEXT 
PTRACE POKEDATA 

The given data is written at the word in the process's address space corresponding to addr. addr 
must be even on a Sun-2 system or a multiple of 4 on a Sun-4 system. No useful value is returned. 
If the instruction and data spaces are separate, request PTRACE_PEEKTEXT indicates instruction 
space while PTRACE_PEEKDATA indicates data space. The PTRACE_POKETEXT request must 
be used to write into a process's text space even if the instruction and data spaces are not separate. 

Last change: 18 February 1988 Sun Release 4.0 



PTRACE(2) SYSTEM CALLS P1RACE(2) 

PTRACE POKEUSER 
The process's system data is written, as it is read with request PTRACE_PEEKUSER. Only a few 
locations can be written in this way: the general registers, the floating point status and registers, 
and certain bits of the processor status word. 

PTRACE CONT 
The data argument is taken as a signal number and the child's execution continues at location 
addr as if it had incurred that signal. Normally the signal number will be either O to indicate that 
the signal that caused the stop should be ignored, or that value fetched out of the process's image 
indicating which signal caused the stop. If addr is (int *)I then execution continues from where it 
stopped. addr must be a multiple of 4 on a Sun-4 system. 

PTRACE KILL 
The traced process terminates, with the same consequences as exit(2). 

PTRACE SINGLESTEP 
Execution continues as in request PTRACE_CONT; however, as soon as possible after execution 
of at least one instruction, execution stops again. The signal number from the stop is SIGTRAP. 
On Sun-2, Sun-3, and Sun386i systems, the status register T-bit is used and just one instruction is 
executed. This is part of the mechanism for implementing breakpoints. On a Sun-4 system this 
will return an error since there is no hardware assist for this feature. Instead, the user should 
insert breakpoint traps in the debugged program with PTRACE_POKETEXT. 

PTRACE ATTACH 
Attach to the process identified by the pid argument and begin tracing it. Process pid does not 
have to be a child of the requestor, but the requestor must have permission to send process pid a 
signal and the effective user IDs of the requesting process and process pid must match. 

PTRACE DETACH 
Detach the process being traced. Process pid is no longer being traced and continues its execu
tion. The data argument is taken as a signal number and the process continues at location addr as 
if it had incurred that signal. 

PTRACE GETREGS 
The traced process's registers are returned in a structure pointed to by the addr argument The 
registers include the general purpose registers, the program counter and the program status word. 
The "regs" structure defined in <machine/reg.h> describes the data that is returned. 

PTRACE SETREGS 
The traced process's registers are written from a structure pointed to by the addr argument. The 
registers include the general purpose registers, the program counter and the program status word. 
The "regs" structure defined in <machine/reg.h> describes the data that is set. 

PTRACE GETFPREGS 
(Sun-3, Sun-4 and Sun386i systems only) The traced process's PPP status is returned in a structure 
pointed to by the addr argument. The status includes the 68881 (80387 on Sun386i systems) float
ing point registers and the control, status, and instruction address registers. The "fp_status" struc
ture defined in <machine/reg.h> describes the data that is returned. On Sun-2 systems this will 
return an error since there is no user visible floating point state. The fp state structure defined in 
<machine/fp.h> describes the data that is returned on a Sun386i system~ 

PTRACE SETFPREGS 

Sun Release 4.0 

(Sun-3, Sun-4 and Sun386i systems only) The traced process's PPP status is written from a struc
ture pointed to by the addr argument. The status includes the PPP floating point registers and the 
control, status, and instruction address registers. The "fp_status" structure defined in 
<machine/reg.h> describes the data that is set. On Sun-2 systems this will return an error since 
there is no user visible floating point state. The "fp_state" structure defined in <machine/fp.h> 
describes the data that is returned on a Sun386i system. 

Last change: 18 February 1988 727 



PTRACE(2) SYSTEM CALLS PTRACE(2) 

728 

PTRACE GETFPAREGS 
(a Sun-3 system with FPA only) The traced process's FPA registers are returned in a structure 
pointed to by the addr argument. The "fpa_regs" structure defined in <machine/reg.h> describes 
the data that is returned. 

PTRACE SETFPAREGS 
(a Sun-3 system with FPA only) The traced process's FPA registers are written from a structure 
pointed to by the addr argument. The "fpa_regs" structure defined in <machine/reg.h> describes 
the data that is set. 

PTRACE READTEXT 
PTRACE READDATA 

Read data from the address space of the traced process. If the instruction and data spaces are 
separate, request PTRACE _ READTEXT indicates instruction space while PTRACE _ READDAT A 
indicates data space. The addr argument is the address within the traced process from where the 
data is read, the data argument is the number of bytes to read, and the addr2 argument is the 
address within the requesting process where the data is written. 

PTRACE WRITETEXT 
PTRACE WRITEDATA 

Write data into the address space of the traced process. If the instruction and data spaces are 
separate, request PTRACE _ READTEXT indicates instruction space while PTRACE _ READDAT A 
indicates data space. The addr argument is the address within the traced process where the data is 
written, the data argument is the number of bytes to write, and the addr2 argument is the address 
within the requesting process from where the data is read. 

PTRACE SETWRBKPT 
(Sun386i systems only) Set a write breakpoint at location addr in the process being traced. When
ever a write is directed to this location a breakpoint will occur and a SIGTRAP signal will be sent 
to the process. The data argument specifies which debug register should be used for the address 
of the breakpoint and must be in the range O through 3, inclusive. The addr2 argument specifies 
the length of the operand in bytes, and must be one of 1, 2, or 4. 

PTRACE SETACBKPT 
(Sun386i systems only) Set an access breakpoint at location addr in the process being traced. 
When location addr is read or written a breakpoint will occur and the process will be sent a 
SIGTRAP signal. The data argument specifies which debug register should be used for the 
address of the breakpoint and must be in the range O through 3, inclusive. The addr2 argument 
specifies the length of the operand in bytes, and must be one of 1, 2, or 4. 

PTRACE CLRBKPT 
(Sun386i systems only) Clears all break points set with PTRACE SETACBKPT or 
PTRACE _ SETWRBKPT. 

PTRACE SYSCALL 
Execution continues as in request PTRACE_CONT; until the process makes a system call. The 
process receives a SIGTRAP signal and stops. At this point the arguments to the system call may 
be inspected in the process user structure using the PTRACE_PEEKUSER request. The system 
call number is available in place of the 8th argument. Continuing with another 
PTRACE _ SYSCALL will stop the process again at the completion of the system call. At this point 
the result of the system call and error value may be inspected in the process user structure. 

PTRACE DUMPCORE 
Dumps a core image of the traced process to a file. The name of the file is obtained from the addr 
argument. 

As indicated, these calls (except for requests PTRACE_TRACEME, PTRACE_ATTACH and 
PTRACE_DETACH) can be used only when the subject process has stopped. The wait() call is used to 
determine when a process stops; in such a case the "termination" status returned by wait() has the value 

Last change: 18 February 1988 Sun Release 4.0 



PTRACE(2) SYSTEM CALLS P1RACE(2) 

WSTOPPED to indicate a stop rather than genuine termination. 

To forestall possible fraud, ptrace() inhibits the setUID and setGID facilities on subsequent execve(2) calls. 
If a traced process calls execve, it will stop before executing the first instruction of the new image, showing 
signal SIGTRAP. 

On the Sun, "word" also means a 32-bit integer. 

RETURN VALUE 
In general, a O value is returned if the call succeeds. Note: this is not always true because requests such as 
PTRACE_PEEKTEXT and PTRACE_PEEKDATA return legitimate values. If the call fails then a -1 is 
returned and the global variable errno is set to indicate the error. 

ERRORS 
EIO 

ESRCH 

ESRCH 

EIO 

EIO 

EPERM 

Therequestcodeisinvalid. 

The specified process does not exist. 

The request requires the process to be one which is traced by the current process 
and stopped, but it is not stopped or it is not being traced by the current process. 

The given signal number is invalid. 

The specified address is out of bounds. 

The specified process cannot be traced. 

SEE ALSO 

BUGS 

adb(l), intro(2), ioctl(2), sigvec(2), wait(2) 

ptrace( ) is unique and arcane; it should be replaced with a special file which can be opened and read and 
written. The control functions could then be implemented with ioct1(2) calls on this file. This would be 
simpler to understand and have much higher performance. 

The requests PTRACE_TRACEME through PTRACE_SINGLESTEP are standard UNIX system ptrace() 
requests. The requests PTRACE_ATTACH through PTRACE_DUMPCORE and the fifth argument, addr2, 
are unique to SunOS. 

The request PTRACE_TRACEME should be able to specify signals which are to be treated normally and 
not cause a stop. In this way, for example, programs with simulated floating point (which use "illegal 
instruction" signals at a very high rate) could be efficiently debugged. 

The error indication, -1, is a legitimate function value; errno, (see intro(2)), can be used to clarify what it 
means. 

Sun Release 4.0 Last change: 18 February 1988 729 



PUTMSG(2) SYSTEM CALLS PUTMSG(2) 

NAME 
putmsg - send a message on a stream 

SYNOPSIS 
#include <stropts.h> 

int putmsg (fd, ctlptr, dataptr, flags) 

int fd; 

struct strbuf •ctlptr; 

struct strbuf •dataptr; 

int flags; 

DESCRIPTION 
putmsg() creates a message (see intro(2)) from user specified buffer(s) and sends the message to a 
STREAMS file. The message may contain either a data part, a control part or both. The data and control 
parts to be sent are distinguished by placement in separate buffers, as described below. The semantics of 
each part is defined by the STREAMS module that receives the message. 

f d specifies a file descriptor referencing an open stream. ctlptr and dataptr each point to a strbuf structure 
that contains the following members: 

int maxlen; /• not used•/ 
int len; /• length of data •/ 
char •buf; I• ptr to buffer•/ 

ctlptr points to the structure describing the control part, if any, to be included in the message. The buf field 
in the strbuf structure points to the buffer where the control information resides, and the Jen field indicates 
the number of bytes to be sent. The maxlen field is not used in putmsg() (see getmsg(2)). In a similar 
manner, dataptr specifies the data, if any, to be included in the message. flags may be set to the values O or 
RS_ HIPRI and is used as described below. 

To send the data part of a message, dataptr must not be a NULL pointer and the len field of dataptr must 
have a value of O or greater. To send the control part of a message, the corresponding values must be set 
for ctlptr. No data (control) part will be sent if either dataptr (ctlptr) is a NULL pointer or the Jen field of 
dataptr (ctlptr) is set to -1. 

If a control part is specified, and flags is set to RS_ HIPRI, a priority message is sent. If flags is set to 0, a 
non-priority message is sent. If no control part is specified, and flags is set to RS _mPRI, putmsg() fails and 
sets errno to EINV AL. If no control part and no data part are specified, and flags is set to 0, no message is 
sent, and O is returned. 

For non-priority messages, putmsg() will block if the stream write queue is full due to internal flow con
trol conditions. For priority messages, putmsg() does not block on this condition. For non-priority mes
sages, putmsg() does not block when the write queue is full and o _ND ELA Y is set. Instead, it fails and 
sets errno to EAGAIN. 

putmsg() also blocks, unless prevented by lack of internal resources, waiting for the availability of mes
sage blocks in the stream, regardless of priority or whether O _NDELAY has been specified. No partial 
message is sent. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 

730 

putmsg() fails if one or more of the following are true: 

EAGAIN A non-priority message was specified, the O _NDELA Y flag is set and the stream 
write queue is full due to internal flow control conditions. 

Last change: 20 November 1987 Sun Release 4.0 



PUTMSG(2) 

EAGAIN 

EBADF 

EFAULT 

EINTR 

EINVAL 

EINVAL 

ENOSTR 

SYSTEM CALLS PUTMSG(2) 

Buffers could not be allocated for the message that was to be created. 

f d is not a valid file descriptor open for writing. 

ct/ptr or dataptr points outside the allocated address space. 

A signal was caught during the putmsg() system call. 

An undefined value was specified in flags, or flags is set to RS_ HIP RI and no con
trol part was supplied. 

The stream referenced by f dis linked below a multiplexor. 

A stream is not associated with f d. 

ENXIO A hangup condition was generated downstream for the specified stream. 

ERANGE The size of the data part of the message does not fall within the range specified by 
the maximum and minimum packet sizes of the topmost stream module. This 
value is also returned if the control part of the message is larger than the max
imum configured size of the control part of a message, or if the data part of a mes
sage is larger than the maximum configured size of the data part of a message. 

A putmsg() also fails if a STREAMS error message had been processed by the stream head before the call 
to putmsg. The error returned is the value contained in the STREAMS error message. 

SEE ALSO 
intro(2), getmsg(2), poll(2), read(2V), write(2V) 

Sun Release 4.0 Last change: 20 November 1987 731 



QUOTACTL ( 2) SYSTEM CALLS QUOTACTL ( 2) 

NAME 
quotactl - manipulate disk quotas 

SYNOPSIS 
#include <ofs/quota.h> 

int quotactl(cmd, special, uid, addr) 
int cmd; 
char •special; 
int uid; 
caddr _ t addr; 

DESCRIPTION 
The quotactl() call manipulates disk quotas. cmd indicates a command to be applied to the user ID uid. 
special is a pointer to a null-terminated string containing the path name of the block special device for the 
file system being manipulated. The block special device must be mounted as a UFS file system (see 
mount(2)). addr is the address of an optional, command specific, data structure which is copied in or out 
of the system. The interpretation of addr is given with each command below. 

Q_QUOTAON 
Turn on quotas for a file system. addr points to the path name of file containing the quotas for the 
file system. The quota file must exist; it is normally created with the quotacheck(8) program. 
This call is restricted to the super-user. 

Q_QUOTAOFF 
Turn off quotas for a file system. addr and uid are ignored. This call is restricted to the super
user. 

Q_GETQUOTA 
Get disk quota limits and current usage for user uid. addr is a pointer to a dqblk structure 
(defined in <ofs/quota.h>). Only the super-user may get the quotas of a user other than himself. 

Q_SETQUOTA 
Set disk quota limits and current usage for user uid. addr is a pointer to a dqblk structure (defined 
in <ofs/quota.h>). This call is restricted to the super-user. 

Q_SETQLIM 

Q_SYNC 

Set disk quota limits for user uid. addr is a pointer to a dqblk structure (defined in 
<ufs/quota.h>). This call is restricted to the super-user. 

Update the on-disk copy of quota usages for a file system. If special is null then all file systems 
with active quotas are sync'ed. addr and uid are ignored. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 

732 

A quotactl() call will fail when one of the following occurs: 

EINVAL 
The kernel has not been compiled with the QUOTA option. 

EINVAL 
cmd is invalid. 

ESRCH No disc quota is found for the indicated user or quotas have not been turned on for this file system. 

EPERM The call is privileged and the caller was not the super-user. 

ENODEV 
special is not a mounted UFS file system. 

Last change: 21 November 1987 Sun Release 4.0 



QUOT ACTL ( 2) SYSTEM CALLS QUOTACTL(2) 

ENOTBLK 

EACCES 

special is not a block device. 

(Q_ QUOTA ON) The quota file pointed to by addr exists but is either not a regular file or is not on 
the file system pointed to by special. 

EBUSY Q_ QUOTA ON attempted while another Q_ QUOT AON or Q_ QUOTAOFF is in progress. 

EUSERS 
The quota table is full. 

ENOENT 
The file specified by special or addr does not exist. 

EFAULT 
addr or special are invalid. 

SEE ALSO 

BUGS 

quota(l), getrlimit(2), mount(2), quotacheck(8), quotaon(8) 

There should be some way to integrate this call with the resource limit interface provided by setrlimit and 
getrlimit(2). 

Incompatible with Melbourne quotas. 

Sun Release 4.0 Last change: 21 November 1987 733 



READ(2V) SYSTEM CALLS READ(2V) 

NAME 
read, readv - read input 

SYNOPSIS 
int read(d, buf, nbytes) 
int d; 
char *buf; 
int nbytes; 

#include <sys/types.h> 
#include <sys/uio.h> 

int readv(d, iov, iovcnt) 
int d; 
struct iovec *iov; 
int iovcnt; 

DESCRIPTION 

734 

read() attempts to read nbytes of data from the object referenced by the descriptor d into the buffer pointed 
to by buf. readv() performs the same action, but scatters the input data into the iovcnt buffers specified by 
the members of the iov array: iov[O], iov[l], ... , iov[iovcnt-1]. 

For readv, the iovec structure is defined as 

struct iovec { 
caddr_t iov_base; 
int iov _len; 

}; 

Each iovec entry specifies the base address and length of an area in memory where data should be placed. 
readv() will always fill an area completely before proceeding to the next. 

On objects capable of seeking, the read() starts at a position given by the pointer associated with d (see 
lseek(2)). Upon return from read, the pointer is incremented by the number of bytes actually read. 

Objects that are not capable of seeking always read from the current position. The value of the pointer 
associated with such an object is undefined. 

Upon successful completion, read() and readv() return the number of bytes actually read and placed in 
the buffer. The system guarantees to read the number of bytes requested if the descriptor references a nor
mal file which has that many bytes left before the end-of-file, but in no other case. 

If the returned value is 0, then end-of-file has been reached. 

A read() or readv() from a STREAMS (see Intro(2)) file can operate in three different modes: "byte
stream" mode, "message-nondiscard" mode, and "message-discard" mode. The default is byte-stream 
mode. This can be changed using the I_SRDOPT ioctl() request (see streamio(4)), and can be tested with 
the I_ GRDOPT ioctl. In byte-stream mode, read() and readv() will retrieve data from the stream until as 
many bytes as were requested are transferred, or until there is no more data to be retrieved. Byte-stream 
mode ignores message boundaries. 

In STREAMS message-nondiscard mode, read() and readv() will retrieve data until as many bytes as were 
requested are transferred, or until a message boundary is reached. If the read( ) or readv() does not 
retrieve all the data in a message, the remaining data are left on the stream, and can be retrieved by the 
next read, readv, or getmsg(2) call. Message-discard mode also retrieves data until as many bytes as were 
requested are transferred, or a message boundary is reached. However, unread data remaining in a mes
sage after the read() or readv() returns are discarded, and are not available for a subsequent read, readv, 
or getmsg. 

When attempting to read from a descriptor associated with an empty pipe, socket, FIFO, or stream: 

If the object the descriptor is associated with is marked for 4.2BSD-style non-blocking I/0 (with 
the FIONBIO ioctl (2), or an fcntl() using the FNDELA Y flag from <sys/file.h> or the O _ND ELA Y 

Last change: 20 November 1987 Sun Release 4 .0 



READ(2V) SYSTEM CALLS READ(2V) 

flag from <sys/fcntl.h> in the 4.2BSD environment), the read will return -1 and errno will be set 
to EWOULDBLOCK. 

If the descriptor is marked for System V-style non-blocking I/0 (with an fcntl() using the FNBIO 
flag from <sys/file.h> or the O _NDELAY flag from <sys/fcntl.h> in the System V environment), 
and does not refer to a stream, the read will return 0. Note: this is indistinguishable from end-of
file. 

If the descriptor is marked for System V-style non-blocking I/0, and refers to a stream, the read 
will return-1 and errno will be set to EAGAIN. 

If neither the descriptor nor the object it refers to are marked for non-blocking I/0, the read will 
block until data is available to be read or the object is has been ''disconnected''. A pipe or FIFO is 
''disconnected'' when no process has the object open for writing; a socket that was connected is 
"disconnected" when the connection is broken; a stream is "disconnected" when a hangup con
dition occurs (for instance, when carrier drops on a terminal). 

If the descriptor or the object is marked for non-blocking I/0, and less data are available than are requested 
by the read() or readv, only the data that are available are returned, and the count indicates how many 
bytes of data were actually read. 

When reading from a STREAMS file, handling of zero-byte messages is determined by the current read 
mode setting. In byte-stream mode, read() and readv() accept data until as many bytes as were requested 
are transferred, or until there is no more data to read, or until a zero-byte message block is encountered. 
read() and readv() then return the number of bytes read, and places the zero-byte message back on the 
stream to be retrieved by the next read, readv, or getmsg. In the two other modes, a zero-byte message 
returns a value of O and the message is removed from the stream. When a zero-byte message is read as the 
first message on a stream, a value of O is returned regardless of the read mode. 

A read() or readv() from a STREAMS file can only process data messages. It cannot process any type of 
protocol message and will fail if a protocol message is encountered at the streamhead. 

RETURN VALUE 
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and the global vari
able errno is set to indicate the error. 

ERRORS 
read() and readv() will fail if one or more of the following are true: 

EBADF dis not a valid file descriptor open for reading. 

EISDIR 

EBADMSG 

EFAULT 

EIO 

EINTR 

EINVAL 

EINVAL 

EWOULDBLOCK 

EAGAIN 

EINVAL 

Sun Release 4.0 

d refers to a directory which is on a file system mounted using the NFS. 

The message waiting to be read on a stream is not a data message. 

buf points outside the allocated address space. 

An I/0 error occurred while reading from or writing to the file system. 

A read from a slow device wa~ interrupted before any data arrived by the delivery 
of a signal. 

The stream is linked below a multiplexor. 

The pointer associated with d was negative. 

The file was marked for 4.2BSD-style non-blocking I/0, and no data were ready to 
be read. 

The descriptor referred to a stream, was marked for System V-style non-blocking 
I/0, and no data were ready to be read. 

In addition, readv() may return one of the following errors: 

iovcnt was less than or equal to 0, or greater than 16. 

Last change: 20 November 1987 735 



READ(2V) SYSTEM CALLS READ(2V) 

EINVAL 

EINVAL 

EFAULT 

One of the iov _ten values in the iov array was negative. 

The sum of the iov _ten values in the iov array overflowed a 32-bit integer. 

Part of iov points outside the process's allocated address space. 

A read() or readv() from a STREAMS file will also fail if an error message is received at the streamhead. 
In this case, errno is set to the value returned in the error message. If a hangup occurs on the stream being 
read, read() will continue to operate normally until the stream head read queue is empty. Thereafter, it 
will return 0. 

SEE ALSO 

736 

dup(2), fcntt(2V), getmsg(2), intro(2), ioct1(2), lseek(2), open(2V), pipe(2), setect(2), socket(2), socket
pair(2), streamio(4) 

Last change: 20 November 1987 Sun Release 4.0 



READLINK ( 2) SYSTEM CALLS READ LINK ( 2) 

NAME 
readlink - read value of a symbolic link 

SYNOPSIS 
int readlink(path, buf, bufsiz) 
char *path, *buf; 
int bufsiz; 

DESCRIPTION 
readlink() places the contents of the symbolic link referred to by path in the buffer bu/which has size buf
siz. The contents of the link are not null terminated when returned. 

RETURN VALUE 
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error occurs, placing 
the error code in the global variable errno. 

ERRORS 
readlink() will fail and the buffer will be unchanged if: 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EINVAL 

EIO 

EFAULT 

SEE ALSO 
stat(2), symlink(2) 

Sun Release 4.0 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

The named file is not a symbolic link. 

An 1/0 error occurred while reading from or writing to the file system. 

path or bu/extends outside the process's allocated address space. 

Last change: 22 November 1987 737 



REBOOT{2) SYSTEM CALLS REBOOT{2) 

NAME 
reboot - reboot system or halt processor 

SYNOPSIS 
#include <sys/reboot.h> 

int reboot(howto [ , bootargs ] ) 
int howto; 
char * bootargs; 

DESCRIPTION 
reboot() reboots the system, and is invoked automatically in the event of unrecoverable system failures. 
howto is a mask of options passed to the bootstrap program. The system call interface permits only 
RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags are used in scripts stored 
on the console storage media, or used in manual bootstrap procedures. When none of these options (for 
instance RB_AUTOBOOT) is given, the system is rebooted from file /vmunix in the root file system of unit 
0 of a disk chosen in a processor specific way. An automatic consistency check of the disks is then nor
mally performed. 

The bits of howto are: 

RB HALT 
the processor is simply halted; no reboot takes place. RB_ HALT should be used with caution. 

RB ASKNAME 
Interpreted by the bootstrap program itself, causing it to inquire as to what file should be booted. 
Normally, the system is booted from the file "vmunix" without asking. 

RB SINGLE 
Normally, the reboot procedure involves an automatic disk consistency check and then multi-user 
operations. RB_ SINGLE prevents the consistency check, rather simply booting the system with a 
single-user shell on the console. RB_SINGLE is interpreted by the init(8) program in the newly 
booted system. 

RB DUMP 
A system core dump is performed before rebooting. 

RB STRING 
The optional argument bootargs is passed to the bootstrap program. See boot(8S) for details. 
This option overrides RB_SINGLE but the same effect can be achieved by including -s as an 
option in bootargs. 

Only the super-user may reboot() a machine.· 

RETURN VALUES 
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the global vari
able errno. 

ERRORS 
EPERM 

FILES 
/vmunix 

SEE ALSO 

The caller is not the super-user. 

crash(8S), halt(8), init(8), intro(8), reboot(8) 

738 Last change: 21 November 1987 Sun Release 4.0 



RECV(2) SYSTEM CALLS RECV(2) 

NAME 
recv, recvfrom, recvmsg - receive a message from a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

int recv(s, buf, Jen, flags) 
int s; 
char *buf; 
int Jen, flags; 

int recvfrom(s, buf, Jen, flags, from, fromJen) 
int s; 
char *buf; 
int Jen, flags; 
struct sockaddr *from; 
int *fromJen; 

int recvmsg(s, msg, flags) 
int s; 
struct msghdr *msg; 
int flags; 

DESCRIPTION 
s is a socket created with socket(2). recv, recvfrom, and recvmsg are used to receive messages from 
another socket recv() may be used only on a connected socket (see connect(2)), while recvfrom() and 
recvmsg( ) may be used to receive data on a socket whether it is in a connected state or not. 

If from is not a NULL pointer, the source address of the message is filled in. fromlen is a value-result 
parameter, initialized to the size of the buffer associated withfrom, and modified on return to indicate the 
actual size of the address stored there. The length of the message is returned. If a message is too long to fit 
in the supplied buffer, excess bytes may be discarded depending on the type of socket the message is 
received from (see socket(2)). 

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is 
nonblocking (see ioctl(2)) in which case -1 is returned with the external variable errno set to 
EWOULDBWCK. 

The seJect(2) call may be used to determine when more data arrives. 

The flags parameter is formed by ORing one or more of the following: 

MSG OOB 
Read any "out-of-band" data present on the socket, rather than the regular "in-band" 
data. 

MSG_PEEK 
''Peek'' at the data present on the socket; the data is returned, but not consumed, so that a 
subsequent receive operation will see the same data. 

The recvmsg() call uses a msghdr structure to minimize the number of directly supplied parameters. This 
structure is defined in <sys/socket.h>, and includes the following members: 

caddr t msg_ name; I* optional address *I 
int msg_ nameJen; I* size or address *I 
struct iovec *msg_iov; I* scatter/gather array *I 
int msg_iovJen; I*# elements in msg_iov *I 
caddr _ t msg_ accrights; I* access rights sent/received *I 
int msg_ accrightslen; 

Sun Release 4.0 Last change: 20 November 1987 739 



RECV(2) SYSTEM CALLS RECV(2) 

Here msg_ name and msg_ namelen specify the destination address if the socket is unconnected; 
msg_name may be given as a NULL pointer if no names are desired or required. The msg_iov and 
msg_iovlen describe the scatter-gather locations, as described in read(2V). A buffer to receive any access 
rights sent along with the message is specified in msg_accrigbts, which has length msg_ accrigbtslen. 

RETURN VALUE 
These calls return the number of bytes received, or -1 if an error occurred. 

ERRORS 
The calls fail if: 

EBADF 

ENOTSOCK 

EINTR 

EFAULT 

EWOULDBLOCK 

SEE ALSO 

sis an invalid descriptor. 

s is a descriptor for a file, not a socket. 

The operation was interrupted by delivery of a signal before any data was avail
able to be received. 

The data was specified to be received into a non-existent or protected part of the 
process address space. 

The socket is marked non-blocking and the requested operation would block. 

connect(2), fcntl(2V), getsockopt(2), ioctl(2), read(2V), select(2), send(2), socket(2) 

740 Last change: 20 November 1987 Sun Release 4.0 



RENAME(2) SYSTEM CALLS RENAME(2) 

NAME 
rename - change the name of a file 

SYNOPSIS 
int rename(from, to) 
char •from, •to; 

DESCRIPTION 
rename() renames the link named from as to. If to exists, then it is first removed. Bothfrom and to must 
be of the same type (that is, both directories or both non-directories), and must reside on the same file sys
tem. 

rename() guarantees that an instance of to will always exist, even if the system should crash in the middle 
of the operation. 

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or directory to 
which it points. 

CAVEAT 
The system can deadlock if a loop in the file system graph is present. This loop takes the form of an entry 
in directory a, say a/filel, being a hard link to directory b, and an entry in directory b, say b/file2, being a 
hard link to directory a. When such a loop exists and two separate processes attempt to perform 'rename 
a/filel b/file2' and 'rename b/file2 a/filel', respectively, the system may deadlock attempting to lock both 
directories for modification. Hard links to directories should be replaced by symbolic links by the system 
administrator. 

RETURN VALUE 
A O value is returned if the operation succeeds, otherwise rename( ) returns -1 and the global variable 
errno indicates the reason for the failure. 

ERRORS 
rename() will fail and neither of the argument files will be affected if any of the following are true: 

ENOTDIR A component of the path prefix of either from or to is not a directory. 

ENAMETOOLONG 

ENOENT 

ENOENT 

EACCES 

EACCES 

ELOOP 

EXDEV 

ENOSPC 

EDQUOT 

EIO 

EROFS 

EFAULT 

EINVAL 

Sun Release 4.0 

The length of a component of either from or to exceeds 255 characters, or the 
length of either from or to exceeds 1023 characters. 

A component of the path prefix of either from or to does not exist. 

The file named by from does not exist. 

A component of the path prefix of either from or to denies search permission. 

The requested rename requires writing in a directory with a mode that denies write 
permission. 

Too many symbolic links were encountered while translating either from or to. 

The link named by to and the file named by from are on different logical devices 
(file systems). 

The directory in which the entry for the new name is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

The directory in which the entry for the new name is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the 
directory has been exhausted. 

An 1/0 error occurred while reading from or writing to the file system. 

The requested rename requires writing in a directory on a read-only file system. 

Either or both of from or to point outside the process's allocated address space. 

from is a parent directory of to, or an attempt is made to rename '.' or ' •• '. 

Last change: 21 November 1987 741 



RENAME(2) 

ENOTEMPTY 

EBUSY 

SEE ALSO 
open(2V) 

742 

SYSTEM CALLS RENAME(2) 

to is a directory and is not empty. 

to is a directory and is the mount point for a mounted file system. 

Last change: 21 November 1987 Sun Release 4 .0 



RMDIR(2) SYSTEM CALLS RMDIR(2) 

NAME 
rmdir - remove a directory file 

SYNOPSIS 
int rmdir(path) 
char •path; 

DESCRIPTION 
rmdir() removes a directory file whose name is given by path. The directory must not have any entries 
other than '.' and ' •• '. 

RETURN VALUE 
A O is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored in the global 
location errno. 

ERRORS 
The named file is removed unless one or more of the following are true: 

ENOTDIR 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EINVAL 

ELOOP 

ENOTEMPTY 

EACCES 

EACCES 

EBUSY 

EROFS 

EFAULT 

SEE ALSO 
mkdir(2), unlink(2) 

Sun Release 4.0 

A component of the path prefix of path is not a directory. 

The file referred to by path is not a directory. 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The directory referred to by path does not exist. 

The directory referred to by path is the current directory, '.'. 

Too many symbolic links were encountered in translating path. 

The directory referred to by path contains files other than '.' and ' •• ' in it. 

Search permission is denied for a component of the path prefix of path. 

Write permission is denied for the directory containing the link to be removed. 

The directory to be removed is the mount point for a mounted file system. EIO An 
1/0 error occurred while reading from or writing to the file system. 

The directory to be removed resides on a read-only file system. 

path points outside the process's allocated address space. 

Last change: 21 November 1987 743 



SELECT(2) SYSTEM CALLS SELECT(2) 

NAME 
select - synchronous I/0 multiplexing 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/time.h> 

int select (width, readfds, writefds, exceptfds, timeout) 
int width; 
fd _ set *readfds, *writefds, *exceptfds; 
struct timeval *timeout; 

FD_ SET (fd, &fdset) 
FD_ CLR (fd, &fdset) 
FD _ISSET (fd, &fdset) 
FD_ZERO (&fdset) 
int fd; 
fd_set fdset; 

DESCRIPTION 
select() examines the I/0 descriptor sets whose addresses are passed in readfds, writefds, and exceptfds to 
see if some of their descriptors are ready for reading, ready for writing, or have an exceptional condition 
pending. width is the number of bits to be checked in each bit mask that represent a file descriptor; the 
descriptors from O through width- I in the descriptor sets are examined. Typically width has the value 
returned by getdtablesize(2) for the maximum number of file descriptors. On return, select() replaces the 
given descriptor sets with subsets consisting of those descriptors that are ready for the requested operation. 
The total number of ready descriptors in all the sets is returned. 

The descriptor sets are stored as bit fields in arrays of integers. The following macros are provided for 
manipulating such descriptor sets: FD_ZERO (&fdset) initializes a descriptor set fdset to the null set. 
FD_ SET(fd, &fdset ) includes a particular descriptor fd in fdset. FD_ CLR(fd, &fdset) removes fd from 
fdset. FD_ ISSET(fd, &fdset) is nonzero if fd is a member off dset, zero otherwise. The behavior of these 
macros is undefined if a descriptor value is less than zero or greater than or equal to FD_ SETSIZE, which is 

normally at least equal to the maximum number of descriptors supported by the system. 

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the selection to complete. If 
timeout is a NULL pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be a 
non-NULL pointer, pointing to a zero-valued timeval structure. 

Any of readf ds, writefds, and exceptfds may be given as NULL pointers if no descriptors are of interest. 

Using select() to open a socket for reading is analogous to performing an accept(2) call. 

RETURN VALUE 
select() returns the number of ready descriptors that are contained in the descriptor sets, or -1 if an error 
occurred. If the time limit expires then select() returns 0. If select() returns with an error, including one 
due to an interrupted call, the descriptor sets will be unmodified. 

ERRORS 

744 

An error return from select( ) indicates: 

EBADF One of the descriptor sets specified an invalid descriptor. 

EINTR A signal was delivered before any of the selected events occurred, or before the 
time limit expired. 

EINVAL 

EFAULT 

A component of the pointed-to time limit is outside the acceptable range: t sec 
must be between O and 108

, inclusive. t usec must be greater-than or equal to 0, 
and less than 106

• -

One of the pointers given in the call referred to a non-existent portion of the pro
cess' address space. 

Last change: 20 January 1988 Sun Release 4.0 



SELECT(2) SYSTEM CALLS SELECT(2) 

SEE ALSO 

BUGS 

accept(2), connect(2), gettimeofday(2), read(2V), write(2V), recv(2), send(2), getdtablesize(2) 

Although the provision of getdtablesize(2) was intended to allow user programs to be written independent 
of the kernel limit on the number of open files, the dimension of a sufficiently large bit field for select 
remains a problem. The default size FD_SETSIZE (currently 256) is somewhat larger than the current ker
nel limit to the number of open files. However, in order to accommodate programs which might potentially 
use a larger number of open files with select, it is possible to increase this size within a program by provid
ing a larger definition of FD_ SETSIZE before the inclusion of <sys/types.h>. 

select() should probably return the time remaining from the original timeout, if any, by modifying the time 
value in place. This may be implemented in future versions of the system. Thus, it is unwise to assume 
that the timeout pointer will be unmodified by the select( ) call. 

Sun Release 4.0 Last change: 20 January 1988 745 



SEMCTL(2) SYSTEM CALLS SEMCTL(2) 

NAME 
semctl - semaphore control operations 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semctl (semid, semnum, cmd, arg) 
int semid, cmd; 
int semnum; 
union semun { 

} arg; 

val; 
struct semid _ ds * buf; 
ushort •array; 

DESCRIPTION 

746 

semctl( ) provides a variety of semaphore control operations as specified by cmd. 

The following cmds are executed with respect to the semaphore specified by semid and semnum: 

GETV AL Return the value of semval (see intro(2)). {READ} 

SETVAL 

GETPID 

GETNCNT 

GETZCNT 

Set the value of semval to arg.val. {ALTER} When this cmd is success
fully executed, the semadj value corresponding to the specified sema
phore in all processes is cleared. 

Return the value of sempid. {READ} 

Return the value of semncnt. {READ} 

Return the value of semzcnt. {READ} 

The following cmds return and set, respectively, every semval in the set of semaphores. 

GETALL 

SETALL 

Place semvals into the array pointed to by arg.array. {READ} 

Set semvals according to the array pointed to by arg .array. {ALTER} When this cmd is 
successfully executed the semadj values corresponding to each specified semaphore in all 
processes are cleared. 

The following cmds are also available: 

IPC _STAT Place the current value of each member of the data structure associated 
with semid into the structure pointed to by arg .bu/. The contents of this 
structure are defined in intro(2). {READ} 

IPC SET Set the value of the following members of the data structure associated 
with semid to the corresponding value found in the structure pointed to 
by arg.buf: 

sem _perm.uid 
sem _perm.gid 
sem_perm.mode I• only low 9 bits •I 

This cmd can only be executed by a process that has an effective user ID 
equal to either that of super-user, or to the value of sem _perm.cuid or 
sem _perm.uid in the data structure associated with semid. 

Last change: 21 November 1987 Sun Release 4.0 



SEMCTL(2) 

IPC RMID 

RETURN VALUE 

SYSTEM CALLS SEMCTL(2) 

Remove the semaphore identifier specified by semid from the system and 
destroy the set of semaphores and data structure associated with it. This 
cmd can only be executed by a process that has an effective user ID equal 
to either that of super-user, or to the value of sem _perm.cuid or 
sem _perm.uid in the data structure associated with semid. 

Upon successful completion, the value returned depends on cmd as follows: 
GETVAL The value of semval. 
GETPID The value of sempid. 
GETNCNT The value of semncnt. 
GETZCNT 
All others 

The value of semzcnt. 
A value of 0. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
semctl( ) will fail if one or more of the following are true: 

semid is not a valid semaphore identifier. 

semnum is less than zero or greater than sem_nsems. 

cmd is not a valid command. 

Operation permission is denied to the calling process (see intro(2)). 

EINVAL 

EINVAL 

EINVAL 

EACCES 

ERANGE cmd is SETV AL or SET ALL and the value to which semval is to be set is greater 
than the system imposed maximum. 

EPERM 

EFAULT 

SEE ALSO 

cmd is equal to IPC _ RMID or IPC _ SET and the effective user ID of the calling 
process is not equal to that of super-user, or to the value of sem_perm.cuid or 
sem _perm.uid in the data structure associated with semid. 

arg.buf points to an illegal address. 

intro(2), semget(2), semop(2). 

Sun Release 4.0 Last change: 21 November 1987 747 



SEMGET{2) SYSTEM CALLS SEMGET{2) 

NAME 
semget - get set of semaphores 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semget(key, nsems, semflg) 
key_t key; 
int nsems, semflg; 

DESCRIPTION 
semget() returns the semaphore identifier associated with key. 

A semaphore identifier and associated data structure and set containing nsems semaphores (see intro(2)) 
are created for key if one of the following are true: 

• key is equal to IPC _PRIVATE. 

• key does not already have a semaphore identifier associated with it, and (semflg & IPC _ CREAT) is 
"true". 

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows: 

• sem _perm.cuid, sem _perm.uid, sem _perm.cgid, and sem _perm.gid are set equal to the effec-
tive user ID and effective group ID, respectively, of the calling process. 

• The low-order 9 bits of sem _perm.mode are set equal to the low-order 9 bits of sem.flg. 

• sem _nsems is set equal to the value of nsems. 

• sem _ otime is set equal to O and sem _ ctime is set equal to the current time. 

RETURN VALUE 
Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Other
wise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
semget() will fail if one or more of the following are true: 

EINV AL nsems is either less than or equal to zero or greater than the system-imposed limit 

EACCES 

EINVAL 

ENOENT 

ENOSPC 

ENOSPC 

EEXIST 

A semaphore identifier exists for key, but operation permission (see intro(2)) as 
specified by the low-order 9 bits of sem.flg would not be granted. 

A semaphore identifier exists for key, but the number of semaphores in the set 
associated with it is less than nsems and nsems is not equal to zero. 

A semaphore identifier does not exist for key and (sem.flg & IPC _ CREAT) is 
''false''. 

A semaphore identifier is to be created but the system-imposed limit on the max
imum number of allowed semaphore identifiers system wide would be exceeded. 

A semaphore identifier is to be created but the system-imposed limit on the max
imum number of allowed semaphores system wide would be exceeded. 

A semaphore identifier exists for key but ( (semjlg & IPC _ CREA T) and (semjlg & 
IPC_EXCL)) is "true". 

SEE ALSO 
intro(2), semctl{2), semop(2) 

748 Last change: 21 November 1987 Sun Release 4 .0 



SEMOP(2) SYSTEM CALLS SEMOP(2) 

NAME 
semop - semaphore operations 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semop(semid, sops, nsops) 
int semid; 
struct sembuf *sops; 
int nsops; 

DESCRIPTION 
semop() is used to atomically perform an array of semaphore operations on the set of semaphores associ
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore
operation structures. nsops is the number of such structures in the array. The contents of each structure 
includes the following members: 

short sem _ num; I* semaphore number *I 
short sem _ op; I* semaphore operation •/ 
short sem_ flg; I• operation flags •/ 

Each semaphore operation specified by sem _ op is performed on the corresponding semaphore specified by 
semid and sem num. 

sem _ op specifies one of three semaphore operations as follows: 

Sun Release 4.0 

If sem _ op is a negative integer, one of the following will occur: {ALTER} 

• If semval (see intro(2)) is greater than or equal to the absolute value of sem_op, the 
absolute value of sem _ op is subtracted from semval. Also, if (sem_ fig & SEM _ UNDO) 
is "true", the absolute value of sem_op is added to the calling process's semadj value 
(see exit(2)) for the specified semaphore. 

• If semval is less than the absolute value of sem _ op and (sem _ fig & IPC _NOW AIT) is 
"true", semop() will return immediately. 

• If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is 
"false", semop() will increment the semncnt associated with the specified semaphore 
and suspend execution of the calling process until one of the following conditions occur. 

semval becomes greater than or equal to the absolute value of sem _ op. When this 
occurs, the value of semncnt associated with the specified semaphore is decre
mented, the absolute value of sem _ op is subtracted from semval and, if (sem _ fig 
& SEM_UNDO) is "true", the absolute value of sem_op is added to the calling 
process's semadj value for the specified semaphore. 

The semid for which the calling process is awaiting action is removed from the 
system (see semctl(2)). When this occurs, errno is set equal to EIDRM, and a 
value of -1 is returned. 

The calling process receives a signal that is to be caught. When this occurs, the 
value of semncnt associated with the specified semaphore is decremented, and the 
calling process resumes execution in the manner prescribed in signal(2). 

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg & 
SEM_UNDO) is "true", the value of sem_op is subtracted from the calling process's semadj 
value for the specified semaphore. {ALTER} 

Last change: 21 November 1987 749 



SEMOP(2) SYSTEM CALLS SEMOP(2) 

If sem _ op is zero, one of the following will occur: {READ} 

• If semval is zero, semop() will return immediately. 

• If semval is not equal to zero and (sem _ fig & IPC _ NOW AIT) is "true", semop() will 
return immediately. 

• If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is ''false'', semop() will 
increment the semzcnt associated with the specified semaphore and suspend execution 
of the calling process until one of the following occurs: 

semval becomes zero, at which time the value of semzcnt associated with the 
specified semaphore is decremented. 

The semid for which the calling process is awaiting action is removed from the 
system. When this occurs, errno is set equal to EIDRM, and a value of -1 is 
returned. 

The calling process receives a signal that is to be caught. When this occurs, the 
value of semzcnt associated with the specified semaphore is decremented, and the 
calling process resumes execution in the manner prescribed in signal(2). 

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by 
sops is set equal to the process ID of the calling process. 

RETURN V ALOE 
Upon successful completion, the value of semval at the time of the call for the last operation in the array 
pointed to by sops is returned. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
semop() will fail if one or more of the following are true for any of the semaphore operations specified by 
sops: 

EINVAL 

EIDRM 

EFBIG 

E2BIG 

EACCES 

EAGAIN 

ENOSPC 

EINVAL 

ERANGE 

EFAULT 

EINTR 

semid is not a valid semaphore identifier. 

The set of semaphores referred to by msqid was removed from the system. 

sem_num is less than zero or greater than or equal to the number of semaphores 
in the set associated with semid. 

nsops is greater than the system-imposed maximum. 

Operation permission is denied to the calling process (see intro(2)). 

The operation would result in suspension of the calling process but (sem _fig & 
IPC_NOWAIT) is "true". 

The limit on the number of individual processes requesting an SEM _ UNDO would 
be exceeded. 

The number of individual semaphores for which the calling process requests a 
SEM _ UNDO would exceed the limit 

An operation would cause a semval or semadj value to overflow the system
imposed limit. 

sops points to an illegal address. 

The call was interrupted by the delivery of a signal. 

SEE ALSO 
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2), sigoal(2) 

750 Last change: 21 November 1987 Sun Release 4.0 



SEND(2) SYSTEM CALLS SEND(2) 

NAME 
send, sendto, sendmsg - send a message from a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

int send(s, msg, len, flags) 
int s; 
char •msg; 
int len, flags; 

int sendto(s, msg, len, flags, to, tolen) 
int s; 
char •msg; 
int len, flags; 
struct sockaddr •to; 
int tolen; 

int sendmsg(s, msg, flags) 
int s; 
struct msghdr •msg; 
int flags; 

DESCRIPTION 
s is a socket created with socket(2). send, sendto, and sendmsg() are used to transmit a message to 
another socket. send() may be used only when the socket is in a connected state, while sendto() and 
sendmsg() may be used at any time. 

The address of the target is given by to with tolen specifying its size. The length of the message is given by 
len. If the message is too long to pass atomically through the underlying protocol, then the error 
EMSGSIZE is returned, and the message is not transmitted. 

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some locally detected 
errors. 

If no buffer space is available at the socket to hold the message to be transmitted, then send() normally 
blocks, unless the socket has been placed in non-blocking I/0 mode. The select(2) call may be used to 
determine when it is possible to send more data. 

The flags parameter is formed by ORing one or more of the following: 

MSG_OOB 
Send "out-of-band" data on sockets that support this notion. The underlying protocol 
must also support "out-of-band" data. Currently, only SOCK_STREAM sockets created 
in the AF_ INET address family support out-of-band data. 

MSG DONTROUTE 
The SO _DONTROUTE option is turned on for the duration of the operation. This is usu
ally used only by diagnostic or routing programs. 

See recv(2) for a description of the msghdr structure. 

RETURN VALUE 

These calls return the number of bytes sent, or -1 if an error occurred. 

ERRORS 
The calls fail if: 

EBADF 

ENOTSOCK 

EINVAL 

Sun Release 4.0 

sis an invalid descriptor. 

s is a descriptor for a file, not a socket. 

len is not the size of a valid address for the specified address family. 

Last change: 20 November 1987 751 



SEND(2) 

EINTR 

EFAULT 

EMSGSIZE 

EWOULDBLOCK 

ENOBUFS 

ENOBUFS 

SEE ALSO 

SYSTEM CALLS SEND(2) 

The operation was interrupted by delivery of a signal before any data could be 
buffered to be sent. 

The data was specified to be sent to a non-existent or protected part of the process 
address space. 

The socket requires that message be sent atomically, and the size of the message 
to be sent made this impossible. 

The socket is marked non-blocking and the requested operation would block. 

The system was unable to allocate an internal buffer. The operation may succeed 
when buffers become available. 

The output queue for a network interface was full. This generally indicates that 
the interface has stopped sending, but may be caused by transient congestion. 

connect(2), fcntl(2V), getsockopt(2), recv(2), select(2), socket(2), write(2V) 

752 Last change: 20 November 1987 Sun Release 4.0 



SETPGRP(2V) SYSTEM CALLS SETPGRP(2V) 

NAME 
setpgrp, getpgrp - set and/or return the process group of a process 

SYNOPSIS 
int setpgrp(pid, pgrp) 
int pgrp; 
int pid; 

int getpgrp(pid) 
int pid; 

SYSTEM V SYNOPSIS 
int setpgrp () 

int getpgrp ( ) 

DESCRIPTION 
setpgrp 

setpgrp() sets the process group of the specified process, (pid) to the process group specified by pgrp. If 
pid is zero, then the call applies to the current (calling) process. 

If the effective user ID is not that of the super-user, then the process to be affected must have the same 
effective user ID as that of the caller or be a descendant of that process. 

getpgrp 
getpgrp() returns the process group of the indicated process. If pid is zero, then the call applies to the cal
ling process. 

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input. 
Processes that have the same process group as the terminal run in the foreground and may read from the 
terminal, while others block with a signal when they attempt to read. 

This call is thus used by programs such as csh(l) to create process groups in implementing job control. 
The TIOCGPGRP and TIOCSPGRP calls described in termio(4) are used to get/set the process group of 
the control terminal. 

SYSTEM V DESCRIPTION 
setpgrp 

setpgrp() sets the process group of the calling process to match its process ID, and returns the new process 
group ID. 

getpgrp 
getpgrp() returns the process group of the calling process. 

RETURN VALUE 
setpgrp() returns O when the operation was successful. If the request failed, -1 is returned and the global 
variable errno indicates the reason. 

ERRORS 
setpgrp() fails, and the process group is not altered when one of the following occurs: 

ESRCH 

EPERM 

SEE ALSO 

The requested process does not exist. 

The effective user ID of the requested process is different from that of the caller 
and the process is not a descendent of the calling process. 

csh(l), execve(2), fork(2), getpid(2), getuid(2), intro(2), kill(2V), signal(3), termio(4) 

Sun Release 4.0 Last change: 22 January 1988 753 



SE1REGID ( 2) SYSTEM CALLS SE1REGID ( 2) 

NAME 
setregid - set real and effective group IDs 

SYNOPSIS 
int setregid(rgid, egid) 
int rgid, egid; 

DESCRIPTION 
setregid() is used to set the real and effective group IDs of the calling process. If rgid is -1, the real GID is 
not changed; if egid is -1, the effective GID is not changed. The real and effective GIDs may be set to dif
ferent values in the same call. 

If the effective user ID of the calling process is super-user, the real GID and the effective GID can be set to 
any legal value. 

If the effective user ID of the calling process is not super-user, either the real GID can be set to the saved 
setGID from execve(2), or the effective GID can either be set to the saved setGID or the real GID. Note: if a 
setGID process sets its effective GID to its real GID, it can still set its effective GID back to the saved set
GID. 

In either case, if the real GID is being changed (that is, if rgid is not -1), or the effective GID is being 
changed to a value not equal to the real GID, the saved setGID is set equal to the new effective GID. 

If the real GID is changed from its current value, the old value is removed from the groups access list (see 
getgroups(2)) if it is present in that list, and the new value is added to the groups access list if it is not 
already present and if this would not cause the number of groups in that list to exceed NGROUPS, as 
defined in <sys/param.h>. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
setregid() will fail and neither of the group IDs will be changed if: 

EPERM The calling process' effective UID is not the super-user and a change other than 
changing the real GID to the saved setGID, or changing the effective GID to the 
real GID or the saved GID, was specified. 

SEE ALSO 
getgid(2),execve(2),setreuid(2),setuid(3) 

754 Last change: 16 February 1988 Sun Release 4.0 



SETREUID ( 2) SYSTEM CALLS SETREUID ( 2) 

NAME 
setreuid - set real and effective user IDs 

SYNOPSIS 
int setreuid(ruid, euid) 
int ruid, euid; 

DESCRIPTION 
setreuid() is used to set the real and effective user IDs of the calling process. If ruid is -1, the real user ID 
is not changed; if euid is -1, the effective user ID is not changed. The real and effective user IDs may be 
set to different values in the same call. 

If the effective user ID of the calling process is super-user, the real user ID and the effective user ID can be 
set to any legal value. 

If the effective user ID of the calling process is not super-user, either the real user ID can be set to the effec
tive user ID, or the effective user ID can either be set to the saved set-user ID from execve(2) or the real 
user ID. Note: if a set-UID process sets its effective user ID to its real user ID, it can still set its effective 
user ID back to the saved set-user ID. 

In either case, if the real user ID is being changed (that is, if ruid is not-1), or the effective user ID is being 
changed to a value not equal to the real user ID, the saved set-user ID is set equal to the new effective user 
ID. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
setreuid() will fail and neither of the user IDs will be changed if: 

EPERM The calling process' effective user ID is not the super-user and a change other than 
changing the real user ID to the effective user ID, or changing the effective user ID 
to the real user ID or the saved set-user ID, was specified. 

SEE ALSO 
execve(2), getuid(2),setregid(2), setuid(3) 

Sun Release 4.0 Last change: 21 November 1987 755 



SETUSERAUDIT ( 2) SYSTEM CALLS 

NAME 
setuseraudi~ setaudit - set the audit classes for a specified user ID 

SYNOPSIS 
#include <sys/label.h> 
#include <sys/audit.h> 

setuseraudit(uid, state) 
int uid; 
audit_ state_ t •state; 

setaudit(state) 
audit_state_t •state; 

DESCRIPTION 

SETUSERAUDIT ( 2) 

The setuseraudit() system call sets the audit state for all processes whose audit user ID matches the 
specified user ID. The parameter state specifies the audit classes to audit for both successful and unsuccess
ful operations. 

The setaudit system call sets the audit state for the current process. 

Only processes with the real or effective user ID of the super-user may successfully execute these calls. 

RETURN VALUE 
If the call succeeds, a value of O is returned. If an error occurs, the value -1 is returned. 

ERRORS 
EPERM The process' real or effective user ID is not super-user. 

EFAULT 

SEE ALSO 

The state parameter points outside the processes' allocated address space. 

audit(2), audit_args(3), audit_control(5), audit.log(5) 

756 Last change: 25 September 1987 Sun Release 4.0 



SHMCTL(2) SYSTEM CALLS SHMCTL(2) 

NAME 
shmctl - shared memory control operations 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

int shmctl (shmid, cmd, but) 
int shmid, cmd; 
struct sh mid_ ds * buf; 

DESCRIPTION 
shmctl() provides a variety of shared memory control operations as specified by cmd. The following cmd s 
are available: 

IPC STAT 

IPC SET 

IPC RMID 

RETURN VALUE 

Place the current value of each member of the data structure associated with shmid 
into the structure pointed to by buf. The contents of this structure are defined in 
intro(2). {READ} 

Set the value of the following members of the data structure associated with shmid 
to the corresponding value found in the structure pointed to by buf: 

shm _perm.uid 
shm _perm.gid 
shm _perm.mode /• only low 9 bits *f 

This cmd can only be executed by a process that has an effective user ID equal to 
that of super-user, or to the value of shm _perm.cuid or shm _perm.uid in the 
data structure associated with shmid. 

Remove the shared memory identifier specified by shmid from the system. If no 
processes are currently mapped to the corresponding shared memory segment, 
then the segment is removed and the associated resources are reclaimed. Other
wise, the segment will persist, although shmget(2) will not be able to locate it, 
until it is no longer mapped by any process. This cmd can only be executed by a 
process that has an effective user ID equal to that of super-user, or to the value of 
shm _perm.cuid or shm _perm.uid in the data structure associated with shmid. 

Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
shmctl() will fail if one or more of the following are true: 

EINV AL shmid is not a valid shared memory identifier. 

EINVAL 

EACCES 

EPERM 

EFAULT 

SEE ALSO 

cmd is not a valid command. 

cmd is equal to IPC_STAT and {READ} operation permission is denied to the cal
ling process (see intro(2)). 

cmd is equal to IPC _ RMID or IPC _ SET and the effective user ID of the calling 
process is not equal to that of super-user, or to the value of shm _perm.cuid or 
shm _perm.uid in the data structure associated with shmid. 

buf points to an illegal address. 

intro(2), shmget(2), shmop(2) 

Sun Release 4.0 Last change: 21 November 1987 757 



SHMGET(2) SYSTEM CALLS SHMGET(2) 

NAME 
shmget - get shared memory segment identifier 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

int shmget(key, size, shmflg) 
key_t key; 
int size, shmflg; 

DESCRIPTION 
shmget( ) returns the shared memory identifier associated with key. 

A shared memory identifier and associated data structure and. shared memory segment of at least size bytes 
(see intro(2)) are created for key if one of the following are true: 

• key is equal to IPC _PRIVATE. 

• key does not already have a shared memory identifier associated with it, and (shmflg & 
IPC_CREAT) is ''true''. 

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows: 

• shm _perm.cuid, shm _perm.uid, shm_perm.cgid, and shm _perm.gid are set equal to the effec-
tive user ID and effective group ID, respectively, of the calling process. 

• The low-order 9 bits of shm _perm.mode are set equal to the low-order 9 bits of shmjlg. 

• shm _ segsz is set equal to the value of size. 

• shm _lpid, shm _nattch, shm _ atime, and shm _ dtime are set equal to 0. 

• shm _ ctime is set equal to the current time. 

RETURN VALUE 
Upon successful completion, a non-negative integer, namely a shared memory identifier, is returned. Oth
erwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 

758 

shmget( ) will fail if one or more of the following are true: 

EINV AL size is less than the system-imposed minimum or greater than the system-imposed 
maximum. 

EACCES 

EINVAL 

ENOENT 

ENOSPC 

ENOMEM 

EEXIST 

A shared memory identifier exists for key but operation permission (see intro(2)) 
as specified by the low-order 9 bits of shmjlg would not be granted. 

A shared memory identifier exists for key but the size of the segment associated 
with it is less than size and size is not equal to zero. 

A shared memory identifier does not exist for key and (shmflg & IPC _ CREAT) is 
"false". 

A shared memory identifier is to be created but the system-imposed limit on the 
maximum number of allowed shared memory identifiers system wide would be 
exceeded. 

A shared memory identifier and associated shared memory segment are to be 
created but the amount of available physical memory is not sufficient to fill the 
request. 

A shared memory identifier exists for key but ( (shmjlg & IPC _ CREAT) and 
(shmflg &IPC_EXCL)) is "true". 

Last change: 21 November 1987 Sun Release 4.0 



SHMGET(2) SYSTEM CALLS SHMGET(2) 

SEE ALSO 
intro(2), shmctl(2), shmop(2) 

Sun Release 4.0 Last change: 21 November 1987 759 



SHMOP(2) SYSTEM CALLS SHMOP(2) 

NAME 
shmop, shmat, shmdt - shared memory operations 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

char •shmat(shmid, shmaddr, shmflg) 
int shmid; 
char •shmaddr; 
int shmflg; 

int shmdt(shmaddr) 
char •shmaddr; 

DESCRIPTION 
shmat() maps the shared memory segment associated with the shared memory identifier specified by 
shmid into the data segment of the calling process. Upon successful completion, the address of the mapped 
segment is returned. 

The shared memory segment is mapped at the address specified by one of the following criteria: 

• If shmaddr is equal to zero, the segment is mapped at an address selected by the system. Ordi
narily, applications should invoke shmat() with shmaddr equal to zero so that the operating sys
tem may make the best use of available resources. 

• If shmaddr is not equal to zero and (shmjig & SHM_RND) is "true", the segment is mapped at the 
address given by (shmaddr - (shmaddr modulus SHMLBA)). 

• If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false", the segment is mapped at 
the address given by shmaddr. 

The segment is mapped for reading if (shmflg & SHM_RDONLY) is "true" {READ}, otherwise it is 
mapped for reading and writing {READ/WRITE}. 

shmdt() unmaps from the calling process's address space the shared memory segment that is mapped at 
the address specified by shmaddr. The shared memory segment must have been mapped with a prior 
shmat() function call. The segment and contents are retained until explicitly removed by means of the 
IPC_RMID function (see shmctl(2)). 

RETURN VALUES 
Upon successful completion, the return values are as follows: 

• shmat() returns the data segment start address of the mapped shared memory segment. 

• shmdt() returns a value of 0. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 

760 

shmat() will fail and not map the shared memory segment if one or more of the following are true: 

EINVAL 

EACCES 

ENOMEM 

EINVAL 

EINVAL 

shmid is not a valid shared memory identifier. 

Operation permission is denied to the calling process (see intro(2)). 

The available data space is not large enough to accommodate the shared memory 
segment. 

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus 
SHMLBA)) is an illegal address. 

shmaddr is not equal to zero, (shmflg & SHM_RND) is "false", and the value of 
shmaddr is an illegal address. 

Last change: 21 November 1987 Sun Release 4.0 



SHMOP(2) SYSTEM CALLS SHMOP(2) 

EMFILE The number of shared memory segments mapped to the calling process would 
exceed the system-imposed limit. 

shmdt() will fail and not unmap the shared memory segment if: 

EINVAL 
shmaddr is not the data segment start address of a shared memory segment. 

SEE ALSO 
execve(2), exit(2), fork(2), intro(2), shmct1(2), shmget(2) 

Sun Release 4.0 Last change: 21 November 1987 761 



SHUTOOWN(2) SYSTEM CALLS 

NAME 
shutdown - shut down part of a full-duplex connection 

SYNOPSIS 
shutdown(s, how) 
int s, how; 

DESCRIPTION 

SHUTOOWN(2) 

The shutdown() call causes all or part of a full-duplex connection on the socket associated with s to be 
shut down. If how is 0, then further receives will be disallowed. If how is 1, then further sends will be 
disallowed. If how is 2, then further sends and receives will be disallowed. 

DIAGNOSTICS 
A O is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

EBADF 

ENOTSOCK 

ENOTCONN 

SEE ALSO 
connect(2), socket(2) 

BUGS 

sis not a valid descriptor. 

s is a file, not a socket. 

The specified socket is not connected. 

The how values should be defined constants. 

762 Last change: 25 September 1987 Sun Release 4.0 



SIG BLOCK ( 2) 

NAME 
sigblock, sigmask - block signals 

SYNOPSIS 
#include <signal.h> 

oldmask = sigblock(mask); 
int mask; 

mask = sigmask(signum) 

DESCRIPTION 

SYSTEM CALLS SIGBLOCK(2) 

sigblock() adds the signals specified in mask to the set of signals currently being blocked from delivery. 
Signals are blocked if the appropriate bit in mask is a 1; the inacro sigmask() is provided to construct the 
mask for a given signum. The previous mask is returned, and may be restored using sigsetmask(2). 

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed by the sys
tem. 

RETURN V ALOE 
The previous set of masked signals is returned. 

SEE ALSO 
kill(2V), sigsetmask{2), sigvec(2), signal(3) 

Sun Release 4.0 Last change: 20 January 1988 763 



SIGPAUSE ( 2) SYSTEM CALLS SIGPAUSE ( 2) 

NAME 
sigpause - atomically release blocked signals and wait for interrupt 

SYNOPSIS 
sigpause(sigmask) 

int sigmask; 

DESCRIPTION 
sigpause() assigns sigmask to the set of masked signals and then waits for a signal to arrive; on return the 
set of masked signals is restored. sigmask is usually Oto indicate that no signals are now to be blocked. 
sigpause() always terminates by being interrupted, returning EINTR. 

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables modified on the 
occurrence of the signal are examined to determine that there is no work to be done, and the process pauses 
awaiting work by using sigpause() with the mask returned by sigblock. 

SEE ALSO 
sigblock(2), sigvec(2), signa1(3) 

764 Last change: 25 September 1987 Sun Release 4.0 



SIGSETMASK ( 2) 

NAME 
sigsetmask - set current signal mask 

SYNOPSIS 
#include <signal.h> 

sigsetmask(mask); 
int mask; 

mask = sigmask(signum) 

DESCRIPTION 

SYSTEM CALLS SIGSETMASK ( 2) 

sigsetmask() sets the current signal mask (those signals that are blocked from delivery). Signals are 
blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the mask for a 
given signum. 

The system quietly disallows SIG KILL, SIGSTOP, or SIGCONT from being blocked. 

RETURN VALUE 
~ The previous set of masked signals is returned. 

SEE ALSO 
kill{2V), sigblock(2), sigpause(2), sigvec(2), signa1(3) 

Sun Release 4.0 Last change: 25 September 1987 765 



SIG ST ACK ( 2) SYSTEM CALLS SIG ST ACK ( 2) 

NAME 
sigstack - set and/or get signal stack context 

SYNOPSIS 
#include <signal.h> 

int sigstack (ss, oss) 
struct sigstack •ss, •oss; 

DESCRIPTION 

NOTES 

sigstack() allows users to define an alternate stack, called the '' signal stack'', on which signals are to be 
processed. When a signal's action indicates its handler should execute on the signal stack (specified with a 
sigvec(2) call), the system checks to see if the process is currently executing on that stack. If the process is 
not currently executing on the signal stack, the system arranges a switch to the signal stack for the duration 
of the signal handler's execution. 

A signal stack is specified by a sigstack() structure, which includes the following members: 

char •ss_sp; /• signal stack pointer•/ 
int ss _ onstack; /• current status •I 

ss_sp is the initial value to be assigned to the stack pointer when the system switches the process to the sig
nal stack. Note that, on machines where the stack grows downwards in memory, this is not the address of 
the beginning of the signal stack area. ss _ onstack field is zero or non-zero depending on whether the pro
cess is currently executing on the signal stack or not. 

If ss is not a NULL pointer, sigstack() sets the signal stack state to the value in the sigstack() structure 
pointed to by ss. Note: if ss _ onstack is non-zero, the system will think that the process is executing on the 
signal stack. If ss is a NULL pointer, the signal stack state will be unchanged. If oss is not a NULL pointer, 
the current signal stack state is stored in the sigstack( ) structure pointed to by oss. 

Signal stacks are not ''grown'' automatically, as is done for the normal stack. If the stack overflows 
unpredictable results may occur. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
sigstack() will fail and the signal stack context will remain unchanged if one of the following occurs. 

EFAULT Either ss or oss points to memory that is not a valid part of the process address 
space. 

SEE ALSO 
sigvec(2), setjmp(3), signal(3) 

766 Last change: 24 November 1987 Sun Release 4 .0 



SIGVEC(2) SYSTEM CALLS SIGVEC(2) 

NAME 
sigvec - software signal facilities 

SYNOPSIS 
#include <signal.h> 

int sigvec(sig, vec, ovec) 
int sig; 
struct sigvec •vec, •ovec; 

DESCRIPTION 
The system defines a set of signals that may be delivered to a process. Signal delivery resembles the 
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process con
text is saved, and a new one is built. A process may specify a handler to which a signal is delivered, or 
specify that a signal is to be blocked or ignored. A process may also specify that a default action is to be 
taken by the system when a signal occurs. Normally, signal handlers execute on the current stack of the 
process. This may be changed, on a per-handler basis, so that signals are taken on a special signal stack. 

All signals have the same priority. Signal routines execute with the signal that caused their invocation 
blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked 
from delivery to a process. The signal mask for a process is initialized from that of its parent (normally 0). 
It may be changed with a sigblock(2) or sigsetmask(2) call, or when a signal is delivered to the process. 

A process may also specify a set of.flags for a signal that affect the delivery of that signal. 

When a signal condition arises for a process, the signal is added to a set of signals pending for the process. 
If the signal is not currently blocked by the process then it is delivered to the process. When a signal is 
delivered, the current state of the process is saved, a new signal mask is calculated (as described below), 
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine 
returns normally the process will resume execution in the context from before the signal's delivery. If the 
process wishes to resume in a different context, then it must arrange to restore the previous context itself. 

When a signal is delivered to a process a new signal mask is installed for the duration of the process' signal 
handler (or until a sigblock() or sigsetmask() call is made). This mask is formed by taking the current 
signal mask, adding the signal to be delivered, and ORing in the signal mask associated with the handler to 
be invoked. 

The action to be taken when the signal is delivered is specified by a sigvec() structure, which includes the 
following members: 

void 
int 
int 

(•sv _ handler)O; 
sv_mask; 
sv_flags; 

#define SV ONST ACK OxOOOl 
#define SV INTERRUPT Ox0002 
#define SV RESETHAND Ox0004 

/• signal handler•/ 
/• signal mask to apply •/ 
I• see signal options •I 

I• take signal on signal stack•/ 
/• do not restart system on signal return•/ 
I• reset signal handler to SIG_DFL when signal taken•/ 

If the SV _ ONST ACK bit is set in the flags for that signal, the system will deliver the signal to the process on 
the signal stack specified with sigstack(2), rather than delivering the signal on the current stack. 

If vec is not a NULL pointer, sigvec() assigns the handler specified by sv _ handler, the mask specified by 
sv _ mask, and the flags specified by sv _flags to the specified signal. If vec is a NULL pointer, sigvec() does 
not change the handler, mask, or flags for the specified signal. 

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. The system enforces 
this restriction silently. 

If ovec is not a NULL pointer, the handler, mask, and flags in effect for the signal before the call to sigvec() 
are returned to the user. A call to sigvec() with vec a NULL pointer and ovec not a NULL pointer can be 
used to determine the handling information currently in effect for a signal without changing that 

Sun Release 4.0 Last change: 22 November 1987 767 



SIGVEC(2) SYSTEM CALLS SIGVEC(2) 

768 

information. 

The following is a list of all signals with names as in the include file <signal.h>: 

SIGHUP 1 hangup 
SIGINT 2 interrupt 
SIGQUIT 3* quit 
SIGILL 4• illegal instruction 
SIGTRAP 5• trace trap 
SIGABRT 6* abort (generated by abort(3) routine) 
SIG EMT 7 * emulator trap 
SIGFPE 8* arithmetic exception 
SIGKILL 9 kill (cannot be caught, blocked, or ignored) 
SIGBUS 10* bus error 
SIGSEGV 11 * segmentation violation 
SIGSYS 12* bad argument to system call 
SIG PIPE 13 write on a pipe or other socket with no one to read it 
SIGALRM 14 alarm clock 
SIGTERM 15 software termination signal 
SIGURG 16e urgent condition present on socket 
SIGSTOP 17t stop (cannot be caught, blocked, or ignored) 
SIGTSTP 18t stop signal generated from keyboard 
SIGCONT 19e continue after stop (cannot be blocked) 
SIGCHLD 20. child status has changed 
SIGTTIN 21t background read attempted from control terminal 
SIGTTOU 22t background write attempted to control terminal 
SIGIO 23• I/0 is possible on a descriptor (see fcntl(2V)) 
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2)) 
SIGXFSZ 25 file size limit exceeded (see setrlimit(2)) 
SIGVTALRM 26 virtual time alarm (see setitimer(2)) 
SIGPROF 27 profiling timer alarm (see setitimer(2)) 
SIGWINCH 28e window changed (see termio(4) and win(4S)) 
SIGLOST 29* resource lost (see lockd(8C)) 
SIGUSRl 30 user-defined signal 1 
SIGUSR2 31 user-defined signal 2 

The starred signals in the list above cause a core image if not caught or ignored. 

Once a signal handler is installed, it remains installed until another sigvec() call is made, or an execve(2) is 
performed, unless the SV _ RESETHAND bit is set in the flags for that signal. In that case, the value of the 
handler for the caught signal will be set to SIG_ DFL before entering the signal-catching function, unless the 
signal is SIGILL or SIGTRAP. Also, if this bit is set, the bit for that signal in the signal mask will not be 
set; unless the signal mask associated with that signal blocks that signal, further occurrences of that signal 
will not be blocked. The SV _RESETHAND flag is not available in 4.2BSD, hence it should not be used if 
backward compatibility is needed. 

The default action for a signal may be reinstated by setting the signal's handler to SIG_DFL; this default is 
termination except for signals marked with • or t. Signals marked with • are discarded if the action is 
SIG_DFL; signals marked with t cause the process to stop. If the process is terminated, a "core image" 
will be made in the current working directory of the receiving process if the signal is one for which an 
asterisk appears in the above list and the following conditions are met: 

The effective user ID and the real user ID of the receiving process are equal. 

The effective group ID and the real group ID of the receiving process are equal. 

Last change: 22 November 1987 Sun Release 4.0 



SIGVEC(2) SYSTEM CALLS SIGVEC(2) 

NOTES 

CODES 

An ordinary file named core exists and is writable or can be created. If the file must be created, it 
will have the following properties: 

• a mode of 0666 modified by the file creation mask (see umask(2)) 

• a file owner ID that is the same as the effective user ID of the receiving process. 

• a file group ID that is the same as the file group ID of the current directory 

If the handler for that signal is SIG _IGN, the signal is subsequently ignored, and pending instances of the 
signal are discarded. 

Note: the signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored. 

If a caught signal occurs during certain system calls, the call is normally restarted. The call can be forced 
to terminate prematurely with an EINTR error return by setting the SV _INTERRUPT bit in the flags for that 
signal. The SV _INTERRUPT flag is not available in 4.2BSD, hence it should not be used if backward com
patibility is needed. The affected system calls are read(2V) or write(2V) on a slow device (such as a ter
minal or pipe or other socket, but not a file) and during a wait(2). 

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal stack, and the 
restart/interrupt and reset-signal-handler flags. 

The execve(2) call resets all caught signals to default action and resets all signals to be caught on the user 
stack. Ignored signals remain ignored; the signal mask remains the same; signals that interrupt system calls 
continue to do so. 

SIGPOLL is a synonym for SIGIO. A SIGIO will be issued when a file descriptor corresponding to a 
STREAMS (see intro(2)) file has a "selectable" event pending. Unless that descriptor has been put into 
asynchronous mode (see fcntl (2V), a process must specifically request that this signal be sent using the 
I_SETSIG ioct1(2) call (see streamio(4)). Otherwise, the process will never receive SIGPOLL. 

The handler routine can be declared: 

void handler(sig, code, scp, addr) 
int sig, code; 
struct sigcontext •scp; 
char •addr; 

Here sig is the signal number; code is a parameter of certain signals that provides additional detail; scp is a 
pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from before the sig
nal; and addr is additional address information. 

Programs that must be portable to UNIX systems other than 4.2BSD should use the signal(3) interface 
instead. 

The following defines the codes for signals which produce them. All of these symbols are defined in 
<signal.h>: 

Condition Signal Code 
Sun codes: 

Illegal instruction SIGILL ILL_INSTR_FAULT 
Integer division by zero SIGFPE FPE INTDIV TRAP - -
IEEE floating pt inexact SIGFPE FPE FLTINEX TRAP - -
IEEE floating pt division by zero SIGFPE FPE _ FLTDIV _ TRAP 
IEEE floating pt underflow SIGFPE FPE FLTUND TRAP - -
IEEE floating pt operand error SIGFPE FPE FLTOPERR TRAP - -
IEEE floating pt overflow SIGFPE FPE FLTOVF FAULT - -
Hardware bus error SIGBUS BUS HWERR 
Address alignment error SIGBUS BUS_ALIGN 
No mapping fault SIGSEGV SEGV NOMAP 

Sun Release 4.0 Last change: 22 November 1987 769 



SIGVEC(2) SYSTEM CALLS SIGVEC(2) 

ADDR 

Protection fault SIGSEGV SEGV PROT 
Object error SIGSEGV SEGV _ CODE(code)=SEGV _ OBJERR 
Object error number SIGSEGV SEGV _ERRNO(code) 

SP ARC codes: 
Privileged instruction violation SIGILL ILL PRIVINSTR FAULT - -
Bad stack SIGILL ILL STACK 
Trap #n (1 <= n <= 127) SIGILL ILL_TRAP_FAULT(n) 
Tag overflow SIGEMT EMT TAG 

MC680XO codes: 
Privilege violation SIGILL ILL PRIVVIO FAULT - -
Coprocessor protocol error SIGILL ILL INSTR FAULT - -
Trap #n (1 <= n <= 14) SIGILL ILL_TRAPn _FAULT 
A-line op code SIGEMT EMT_ EMU1010 
F-line op code SIGEMT EMT EMUllll 
CHK or CHK2 instruction SIGFPE FPE CHKINST TRAP - -
TRAPV or TRAPcc or cpTRAPcc SIGFPE FPE TRAPV TRAP - -
IEEE floating pt compare unordered SIGFPE FPE FLTBSUN TRAP - -
IEEE floating pt signaling NaN SIGFPE FPE _FLTNAN _ TRAP 

The addr signal handler parameter is defined as follows: 

Signal Code Addr 
Sun: 

SIGILL 
SIGEMT 
SIGFPE 
SIGBUS 
SIGSEGV 

SPARC: 
SIGBUS 

MC680XO: 
SIGBUS 

Any 
Any 
Any 
BUS HWERR 
Any 

BUS ALIGN 

BUS ALIGN 

address of faulted instruction 
address of faulted instruction 
address of faulted instruction 
address that caused fault 
address that caused fault 

address of faulted instruction 

address that caused fault 

The accuracy of addr is machine dependent. For example, certain machines may supply an address that is 
on the same page as the address that caused the fault. If an appropriate addr cannot be computed it will be 
set to SIG_NOADDR. 

RETURN VALUE 
A O value indicated that the call succeeded. A -1 return value indicates an error occurred and errno is set 
to indicate the reason. 

ERRORS 
sigvec() will fail and no new signal handler will be installed if one of the following occurs: 

EFAULT 

EINVAL 

EINVAL 

EINVAL 

Either vec or ovec is not a NULL pointer and points to memory that is not a valid part of 
the process address space. 

Sig is not a valid signal number. 

An attempt was made to ignore or supply a handler for SIG KILL or SIGSTOP. 

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored). 

SEE ALSO 

770 

execve(2), fcntl(2V), fork(2), getrlimit(2), getitimer(2), ioct1(2), kill(2V), ptrace(2), read(2V), sig
block(2), sigpause(2), sigsetmask(2), sigstack(2), setjmp(3), signal(3), umask(2), vfork(2), wait(2), 
write(2V), streamio(4), termio(4), win(4S), lockd(8C) 

Last change: 22 November 1987 Sun Release 4.0 



SOCKET(2) SYSTEM CALLS SOCKET(2) 

NAME 
socket - create an endpoint for communication 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

int socket(domain, type, protocol) 
int domain, type, protocol; 

DESCRIPTION 
socket() creates an endpoint for communication and returns a descriptor. 

The domain parameter specifies a communications domain within which communication will take place; 
this selects the protocol family which should be used. The protocol family generally is the same as the 
address family for the addresses supplied in later operations on the socket. These families are defined in 
the include file <sys/socket.h>. The currently understood formats are 

PF UNIX (UNIX system internal protocols), 

PF INET (ARPA Internet protocols), and 

PF IMPLINK (Th1P ''host at Th1P'' link layer). 

The socket has the indicated type, which specifies the semantics of communication. Currently defined 
types are: 

SOCK STREAM 
SOCK OGRAM 
SOCK RAW 
SOCK_ SEQ PACKET 
SOCK RDM 

A SOCK_ STREAM type provides sequenced, reliable, two-way connection based byte streams. An out
of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports datagrams 
(connectionless, unreliable messages of a fixed (typically small) maximum length). A SOCK_SEQPACKET 
socket may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams 
of fixed maximum length; a consumer may be required to read an entire packet with each read system call. 
This facility is protocol specific, and presently not implemented for any protocol family. SOCK_RAW 
sockets provide access to internal network interfaces. The types SOCK_ RAW, which is available only to 
the super-user, and SOCK_RDM, for which no implementation currently exists, are not described here. 

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol 
exists to support a particular socket type within a given protocol family. However, it is possible that many 
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol 
number to use is particular to the "communication domain" in which communication is to take place; see 
protocols( 5). 

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in 
a connected state before any data may be sent or received on it. A connection to another socket is created 
with a connect(2) call. Once connected, data may be transferred using read(2V) and write(2V) calls or 
some variant of the send(2) and recv(2) calls. When a session has been completed a close(2) may be per
formed. Out-of-band data may also be transmitted as described in send(2) and received as described in 
recv(2). 

The communications protocols used to implement a SOCK_ STREAM insure that data is not lost or dupli
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted 
within a reasonable length of time, then the connection is considered broken and calls will indicate an error 
with -1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols 
optionally keep sockets ''warm'' by forcing transmissions roughly every minute in the absence of other 
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a 

Sun Release 4.0 Last change: 20 November 1987 771 



SOCKET(2) SYSTEM CALLS SOCKET(2) 

extended period (for instance 5 minutes). A SIGPIPE signal is raised if a process sends on a broken 
stream; this causes naive processes, which do not handle the signal, to exit. 

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only differ
ence is that read(2V) calls will return only the amount of data requested, and any remaining in the arriving 
packet will be discarded. 

SOCK_ DGRAM and SOCK_ RAW sockets allow sending of datagrams to correspondents named in send(2) 
calls. Datagrams are generally received with recv(2), which returns the next datagram with its return 
address. 

An fcntl(2V) call can be used to specify a process group to receive a SIGURG signal when the out-of-band 
data arrives. It may also enable non-blocking 1/0 and asynchronous notification of 1/0 events with SIGIO 
signals. 

The operation of sockets is controlled by socket level options. These options are defined in the file 
<sys/socket.h>. getsockopt(2) and getsockopt(2) are used to set and get options, respectively. 

RETURN VALUE 
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket. 

ERRORS 
The socket( ) call fails if: 

EPROTONOSUPPORT The protocol type or the specified protocol is not supported within this domain. 

EMFILE The per-process descriptor table is full. 

ENFILE The system file table is full. 

EACCESS Permission to create a socket of the specified type and/or protocol is denied. 

ENOBUFS Insufficient buffer space is available. The socket cannot be created until sufficient 
resources are freed. 

EPROTOTYPE The protocol is the wrong type for the socket. 

SEE ALSO 

772 

accept(2), bind(2), close(2), connect(2), fcnt1(2V), getsockname(2), getsockopt(2), ioct1(2), listen(2), 
read(2V), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2V), protocols(5) 

Inter-Process Communication Primer in Network Programming 

Last change: 20 November 1987 Sun Release 4.0 



SOCKE1PAIR (2) SYSTEM CALLS SOCKE1PAIR (2) 

NAME 
socketpair - create a pair of connected sockets 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 

socketpair(d, type, protocol, sv) 
int d, type, protocol; 
int sv[2]; 

DESCRIPTION 
The socketpair() system call creates an unnamed pair of connected sockets in the specified address family 
d, of the specified type and using the optionally specified protocol. The descriptors used in referencing the 
new sockets are returned in sv[O] and sv[l]. The two sockets are indistinguishable. 

DIAGNOSTICS 
socketpair() returns a -1 on failure, otherwise it returns the number of the second file descriptor it creates. 

ERRORS 
The call succeeds unless: 

EMFILE Too many descriptors are in use by this process. 

EAFNOSUPPORT The specified address family is not supported on this machine. 

EPROTONOSUPPORT The specified protocol is not supported on this machine. 

EOPNOSUPPORT The specified protocol does not support creation of socket pairs. 

EFAULT The address sv does not specify a valid part of the process address space. 

SEE ALSO 
read{2V), write(2V), pipe(2) 

BUGS 
This call is currently implemented only for the AF_ UNIX address family. 

Sun Release 4.0 Last change: 25 September 1987 773 



STAT(2) SYSTEM CALLS STAT(2) 

NAME 
stat, lstat, fstat - get file status 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/stat.h> 

int stat(path, but) 
char •path; 
struct stat * buf; 

int lstat(path, but) 
char •path; 
struct stat * buf; 

int fstat(f d, but) 
int fd; 
struct stat * buf; 

DESCRIPTION 

774 

stat() obtains information about the file named by path. Read, write or execute permission of the named 
file is not required, but all directories listed in the path name leading to the file must be searchable. 

lstat() is like stat() except in the case where the named file is a symbolic link, in which case lstat() 
returns information about the link, while stat() returns information about the file the link references. 

/stat obtains the same information about an open file referenced by the argument descriptor, such as would 
be obtained by an open(2V) call. 

buf is a pointer to a stat() structure into which information is placed concerning the file. A stat() structure 
includes the following members: 

dev t st_dev; I• device inode resides on•/ 
ino t st_ino; /• this inode's number •I 
u short st_mode; I• protection •I 
short st_nlink; I• number of hard links to the file•/ 
short st_uid; I• user ID of owner •I 
short st_gid; I• group ID of owner •I 
dev _t st_rdev; I• the device type, for inode that is device •I 
ofT t st_size; /• total size of file, in bytes •I 
time t st_atime; I• file last access time •I 
time t st_mtime; I• file last modify time •I 
time t st_ctime; I• file last status change time •I 
long st_ blksize; I• optimal blocksize for file system i/o ops •/ 
long st_blocks; I• actual number of blocks allocated•/ 

st atime Time when file data was last read or modified. Changed by the following system calls: 
mknod(2), utimes(2), read(2V), write(2V), and truncate(2). For reasons of efficiency, 
st_ a time is not set when a directory is searched, although this would be more logical. 

st mtime 

st ctime 

Time when data was last modified. It is not set by changes of owner, group, link count, or 
mode. Changed by the following system calls: mknod(2), utimes(2), write(2V). 

Time when file status was last changed. It is set both both by writing and changing the 
inode. Changed by the following system calls: chmod(2) chown(2), link(2), mknod(2), 
rename(2), unlink(2), utimes(2), write(2V), truncate(2). 

The status information word st mode has bits: 
#define S IFMT 0170000 
#define S IFIFO 0010000 
#define s IFCHR 0020000 

I• type of file•/ 
I• fifo special•/ 
/• character special•/ 

Last change: 22 November 1987 Sun Release 4.0 



STAT(2) SYSTEM CALLS STAT(2) 

#define S IFDIR 0040000 I* directory *I 
#define S IFBLK 0060000 /• block special •/ 
#define S IFREG 0100000 f * regular file *f 
#define S IFLNK 0120000 f* symbolic link *I 
#define S IFSOCK 0140000 I* socket *I 
#define S ISUID 0004000 f* set user id on execution *I 
#define S ISGID 0002000 f * set group id on execution •/ 
#define S ISVTX 0001000 /• save swapped text even after use *I 
#define S IREAD 0000400 I* read permission, owner *I 
#define S IWRITE 0000200 I* write permission, owner *I 
#define S IEXEC 0000100 /• execute/search permission, owner *I 

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)). 

RETURN VALUE 
Upon successful completion a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
stat() and lstat() will fail if one or more of the following are true: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

ENOENT 

EACCES 

ELOOP 

EFAULT 

The file referred to by path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

buf or path points to an invalid address. 

EIO An I/0 error occurred while reading from or writing to the file system. 

f stat( ) will fail if one or both of the following are true: 

EBADF fd is not a valid open file descriptor. 

EFAULT 

EIO 

CAVEAT 

buf points to an invalid address. 

An I/0 error occurred while reading from or writing to the file system. 

The st_atime and st_mtime fields of the stat() are not contiguous. Programs that depend on them being 
contiguous (in calls to utimes(2) or utime(3C)) will not work. 

SEE ALSO 
chmod(2), chown(2), link(2), mknod(2), read(2V), readlink(2), rename(2), truncate(2), unlink(2), 
utimes(2), write(2V) 

Sun Release 4.0 Last change: 22 November 1987 775 



STATFS (2) SYSTEM CALLS STATFS(2) 

NAME 
statf s - get file system statistics 

SYNOPSIS 
#include <sys/vfs.h> 

int statfs(path, but) 
char *path; 
struct statfs * buf; 

int fstatfs(fd, but) 
int fd; 
struct statfs * buf; 

DESCRIPTION 
statfs() returns information about a mounted file system. path is the path name of any file within the 
mounted filesystem. buf is a pointer to a statfs() structure defined as follows: 

typedef struct { 
long val[2]; 

} fsid_t; 

struct statf s { 
long f _type; I* type of info, zero for now *I 
long f _ bsize; I* fundamental file system block size *I 
long f _ blocks; I* total blocks in file system *I 
long f _ bfree; I* free blocks *I 
long f _ bavail; I* free blocks available to non-super-user *I 
long f _ files; I* total file nodes in file system *I 
long f _ fTree; I* free file nodes in fs *I 
fsid_t f _fsid; I* file system id *I 
long f _spare[7]; I* spare for later *I 

}; 

Fields that are undefined for a particular file system are set to -1. fstatfs returns the same information 
about an open file referenced by descriptor f d. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, -1 is returned and the global variable 
errno is set to indicate the error. 

ERRORS 

776 

statfs() fails if one or more of the following are true: 

ENOTDIR A component of the path prefix of path is not a directory. 

ENAMETOOLONG 

ENOENT 

EACCES 

BLOOP 

EFAULT 

EIO 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The file referred to by path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Too many symbolic links were encountered in translating path. 

buf or path points to an invalid address. 

An 1/0 error occurred while reading from or writing to the file system. 

fstatfs fails if one or both of the following are true: 

EBADF fd is not a valid open file descriptor. 

Last change: 22 November 1987 Sun Release 4.0 



STATFS (2) 

EFAULT 

EIO 

Sun Release 4.0 

SYSTEM CALLS STATFS(2) 

befpoints to an invalid address. 

An 1/0 error occurred while reading from the file system. 

Last change: 22 November 1987 777 



SWAPON(2) SYSTEM CALLS SWAPON(2) 

NAME 
swapon - add a swap device for interleaved paging/swapping 

SYNOPSIS 
int swapon(special) 
char •special; 

DESCRIPTION 
swapon() makes the block device special available to the system for allocation for paging and swapping. 
The names of potentially available devices are known to the system and defined at system configuration 
time. The size of the swap area on special is calculated at the time the device is first made available for 
swapping. 

RETURN VALUE 
If an error has occurred, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
ENOTDIR 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EPERM 

ENOTBLK 

EBUSY 

ENODEV 

ENXIO 

EIO 

EFAULT 

SEE ALSO 
config(8), swapon(8) 

BUGS 

A component of the path prefix of special is not a directory. 

The length of a component of special exceeds 255 characters, or the length of spe
cial exceeds 1023 characters. 

The device referred to by special does not exist. 

Search permission is denied for a component of the path prefix of special. 

Too many symbolic links were encountered in translating special. 

The caller is not the super-user. 

The file referred to by special is not a block device. 

The device referred to by special has already been made available for swapping. 

The device referred to by special was not configured into the system as a swap . 
device. 

The major device number of the device referred to by special is out of range (this 
indicates no device driver exists for the associated hardware). 

An I/0 error occurred while reading from or writing to the file system or opening 
the swap device. 

special points outside the process's address space. 

There is no way to stop swapping on a disk so that the pack may be dismounted. 

This call will be upgraded in future versions of the system. 

778 Last change: 22 November 1987 Sun Release 4.0 



SYMLINK(2) SYSTEM CALLS SYMLINK(2) 

NAME 
symlink - make symbolic link to a file 

SYNOPSIS 
int symlink(namel, name2) 
char *namel, *name2; 

DESCRIPTION 
A symbolic link name2 is created to name] (name2 is the name of the file created, name] is the string used 
in creating the symbolic link). Either name may be an arbitrary path name; the files need not be on the 
same file system. 

The file that the symbolic link points to is used when an open(2V) operation is performed on the link. A 
stat(2) on a symbolic link returns the linked-to file, while an lstat returns information about the link itself. 
This can lead to surprising results when a symbolic link is made to a directory. To avoid confusion in pro
grams, the readlink(2) call can be used to read the contents of a symbolic link. 

RETURN VALUE 
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in errno 
and a -1 value is returned. 

ERRORS 
The symbolic link is made unless one or more of the following are true: 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EACCES 

ELOOP 

EEXIST 

EIO 

EROFS 

ENOSPC 

ENOSPC 

ENOSPC 

EDQUOT 

EDQUOT 

EDQUOT 

EFAULT 

SEE ALSO 

A component of the path prefix of name2 is not a directory. 

The length of a component of either namel or name2 exceeds 255 characters, or 
the length of either namel or name2 exceeds 1023 characters. 

A component of the path prefix of name2 does not exist. 

Search permission is denied for a component of the path prefix of name2 . 

Too many symbolic links were encountered in translating name2. 

The file referred to by name2 already exists. 

An 1/0 error occurred while reading from or writing to the file system. 

The file name2 would reside on a read-only file system. 

The directory in which the entry for the new symbolic link is being placed cannot 
be extended because there is no space left on the file system containing the direc
tory. 

The new symbolic link cannot be created because there is no space left on the file 
system which will contain the link. 

There are no free inodes on the file system on which the file is being created. 

The directory in which the entry for the new symbolic link is being placed cannot 
be extended because the user's quota of disk blocks on the file system containing 
the directory has been exhausted. 

The new symbolic link cannot be created because the user's quota of disk blocks 
on the file system which will contain the link has been exhausted. 

The user's quota of inodes on the file system on which the file is being created has 
been exhausted. 

namel or name2 points outside the process's allocated address space. 

ln(l), link(2), readlink(2), unlink(2) 

Sun Release 4.0 Last change: 11 January 1988 779 



SYNC(2) SYSTEM CALLS SYNC(2) 

NAME 
sync - update super-block 

SYNOPSIS 
syncO 

DESCRIPTION 
sync() writes out all information in core memory that should be on disk. This includes modified super 
blocks, modified inodes, and delayed block I/0. 

sync() should be used by programs that examine a file system, for example fsck(8), df(l), etc. sync() is 
mandatory before a boot. 

SEE ALSO 
fsync(2), cron(8) 

BUGS 
The writing, although scheduled, is not necessarily complete upon return from sync(). 

780 Last change: 27 January 1988 Sun Release 4 .0 



SYSCALL(2) SYSTEM CALLS SYSCALL(2) 

NAME 
syscall - indirect system call 

SYNOPSIS 
#include <sys/syscall.h> 

int syscall(number, arg, ... ) 

DESCRIPTION 
syscall() performs the system call whose assembly language interface has the specified number, and argu
ments arg .... Symbolic constants for system calls can be found in the header file <sys/syscall.h>. 

On Sun-2, Sun-3, and Sun-4 systems, the value of register dO after the system call is returned. On Sun386i 
systems, the value of register %eax is returned. 

SEE ALSO 
intro(2), pipe(2) 

DIAGNOSTICS 

BUGS 

When the C-bit is set, syscall() returns -1 and sets the external variable errno (see intro(2)). 

There is no way to simulate system calls such as pipe(2), which return values in register dl on Sun-2, 
Sun-3, and Sun-4 systems or in register %edx on Sun386i systems. 

Sun Release 4.0 Last change: 18 February 1988 781 



TRUNCATE ( 2) SYSTEM CALLS TRUNCATE ( 2) 

NAME 
truncate, ftruncate - set a file to a specified length 

SYNOPSIS 
#include <sys/types.h> 

int truncate(path, length) 
char *path; 
off _t length; 

int ftruncate(f d, length) 
int fd; 
off _t length; 

DESCRIPTION 
truncate() causes the file referred to by path (or for ftruncate() the object referred to by fd) to have a size 
equal to length bytes. If the file was previously longer than length, the extra bytes are removed from the 
file. If it was shorter, bytes between the old and new lengths are read as zeroes. With ftruncate, the file 
must be open for writing. 

RETURN VALUES 
A value of O is returned if the call succeeds. If the call fails a -1 is returned, and the global variable errno 
specifies the error. 

ERRORS 
truncate( ) succeeds unless: 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EACCES 

EACCES 

BLOOP 

EISDIR 

EROFS 

EIO 

EFAULT 

A component of the path prefix of path is not a directory. 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The file referred to by path does not exist. 

Search permission is denied for a component of the path prefix of path. 

Write permission is denied for the file referred to by path. 

Too many symbolic links were encountered in translating path. 

The file referred to by path is a directory. 

The file referred to by path resides on a read-only file system. 

An I/0 error occurred while reading from or writing to the file system. 

path points outside the process's allocated address space. 

ftruncate( ) succeeds unless: 

EINVAL 

EINVAL 

EIO 

f d is not a valid descriptor of a file open for writing. 

f d refers to a socket, not to a file. 

An I/0 error occurred while reading from or writing to the file system. 

SEE ALSO 
open(2V) 

BUGS 
These calls should be generalized to allow ranges of bytes in a file to be discarded. 

782 Last change: 22 November 1987 Sun Release 4.0 



UMASK(2) SYSTEM CALLS UMASK(2) 

NAME 
umask - set file creation mode mask 

SYNOPSIS 
int umask(numask) 

int numask; 

DESCRIPTION 
umask() sets the process's file mode creation mask to nwnask and returns the previous value of the mask. 
The low-order 9 bits of numask are used whenever a file is created, clearing corresponding bits in the file 
mode (see chmod(2)). This clearing allows each user to restrict the default access to his files. 

The mask is inherited by child processes. 

RETURN VALUE 
The previous value of the file mode mask is returned by the call. 

SEE ALSO 
chmod(2), mknod(2), open(2V) 

Sun Release 4.0 Last change: 28 January 1988 783 



UNAME(2V) SYSTEM CALLS UNAME(2V) 

NAME 
uname - get name of current system 

SYNOPSIS 
#include <sys/utsname.h> 

int uname(name) 

struct utsname *name; 

DESCRIPTION 

FILES 

Note: This system call is only available for use with the System V compatibility libraries. These are located 
in the directory /usr/Slib, and are compiled using the System V version of the C compiler, /usr/Sbin/cc. 

uname() stores information identifying the current system in the structure pointed to by name. 

uname() uses the structure defined in <sys/utsname.h> whose members are: 

char sysname[9]; 
char nodename[65]; 
char release[9]; 
char version[9]; 
char machine[9]; 

uname() returns a null-terminated string giving the standard host name for the current processor in 
nodename. This name will be same as the name returned by the gethostname(2) system call. It also 
returns a null-terminated character string naming the current operating system in sysname. release and 
version further identify the operating system. machine contains a name that identifies the hardware of the 
current processor. 

/usr/Slib 
/usr/Sbin/cc 

SEE ALSO 
gethostname(2), uname(l V) 

784 Last change: 27 January 1988 Sun Release 4.0 



UNLINK(2) SYSTEM CALLS UNLINK(2) 

NAME 
unlink - remove directory entry 

SYNOPSIS 
int unlink(path) 
char •path; 

DESCRIPTION 
unlink() removes the directory entry named by the path name pointed to by path. If this entry was the last 
link to the file, and no process has the file open, then all resources associated with the file are reclaimed. If, 
however, the file was open in any process, the actual resource reclamation is delayed until it is closed, even 
though the directory entry has disappeared. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
The unlink() succeeds unless: 

ENOTDIR 

ENAMETOOLONG 

ENOENT 

EINVAL 

EACCES 

EACCES 

ELOOP 

EPERM 

EBUSY 

EIO 

EROFS 

EFAULT 

SEE ALSO 

A component of the path prefix of path is not a directory. 

The length of a component of path exceeds 255 characters, or the length of path 
exceeds 1023 characters. 

The file referred to by path does not exist. 

The file referred to by path is the current directory, '.'. 

Search permission is denied for a component of the path prefix of path. 

Write permission is denied for the directory containing the link to be removed. 

Too many symbolic links were encountered in translating path. 

The file referred to by path is a directory and the effective user ID of the process is 
not the super-user. 

The entry to be unlinked is the mount point for a mounted file system. 

An I/0 error occurred while reading from or writing to the file system. 

The file referred to by path resides on a read-only file system. 

path points outside the process's allocated address space. 

close(2), link(2), rmdir(2) 

Sun Release 4.0 Last change: 22 November 1987 785 



UNMOUNT(2) SYSTEM CALLS UNMOUNT(2) 

NAME 
unmount - remove a file system 

SYNOPSIS 
unmount(name) 
char •name; 

DESCRIPTION 
unmount() announces to the system that the directory name is no longer to refer to the root of a mounted 
file system. The directory name reverts to its ordinary interpretation. 

RETURN VALUE 
unmount() returns O if the action occurred; -1 if if the directory is inaccessible or does not have a 
mounted file system, or if there are active files in the mounted file system. 

ERRORS 
unmount() may fail with one of the following errors: 

EPERM 

ENOTDIR 

EINVAL 

EBUSY 

ENAMETOOLONG 

ENOENT 

EACCES 

EFAULT 

ELOOP 

EIO 

The caller is not the super-user. 

A component of the path prefix of name is not a directory. 

name is not the root of a mounted file system. 

A process is holding a reference to a file located on the file system. 

The length of a component of the path name exceeds 255 characters, or the length 
of the entire path name exceeds 1023 characters. 

name does not exist. 

Search permission is denied for a component of the path prefix. 

name points outside the process's allocated address space. 

Too many symbolic links were encountered in translating the path name. 

An 1/0 error occurred while reading from or writing to the file system. 

SEE ALSO 
mount(2), mount(8), 

BUGS 
The error codes are in a state of disarray; too many errors appear to the caller as one value. 

786 Last change: 25 September 1987 Sun Release 4.0 



UTIMES(2) SYSTEM CALLS UTIMES (2) 

NAME 
utimes - set file times 

SYNOPSIS 
#include <sys/types.h> 

int utimes(file, tvp) 
char *file; 
struct timeval *tvp; 

DESCRIPTION 
utimes() sets the access and modification times of the file named by file. 

If tvp is NULL, the access and modification times are set to the current time. A process must be the owner 
of the file or have write permission for the file to use utimes() in this manner. 

If tvp is not NULL, it is assumed to point to an array of two timeval structures. The access time is set to the 
value of the first member, and the modification time is set to the value of the second member. Only the 
owner of the file or the super-user may use utimes() in this manner. 

In either case, the inode-changed time of the file is set to the current time. 

RETURN VALUE 
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
utimes( ) will fail if one or more of the following are true: 

ENOTDIR A component of the path prefix of file is not a directory. 

ENAMETOOLONG The length of a component of file exceeds 255 characters, or the length of file 
exceeds 1023 characters. 

ENOENT 

EACCES 

ELOOP 

EPERM 

EACCES 

EIO 

EROFS 

EFAULT 

SEE ALSO 
stat(2) 

Sun Release 4.0 

The file referred to by file does not exist. 

Search permission is denied for a component of the path prefix of file. 

Too many symbolic links were encountered in translatingfile. 

The effective user ID of the process is not super-user and not the owner of the file, 
and tvp is not NULL. 

The effective user ID of the process is not super-user and not the owner of the file, 
write permission is denied for the file, and tvp is NULL. 

An 1/0 error occurred while reading from or writing to the file system. 

The file system containing the file is mounted read-only. 

file or tvp points outside the process's allocated address space. 

Last change: 22 November 1987 787 



VADVISE(2) SYSTEM CALLS VADVISE(2) 

NAME 
vadvise - give advice to paging system 

SYNOPSIS 
#include <sys/vadvise.h> 

vadvise(param) 
int param; 

DESCRIPTION 

BUGS 

788 

vadvise() is used to inform the system that process paging behavior merits special consideration. Parame
ters to vadvise() are defined in the file <vadvise.h>. Currently, two calls t vadvise() are implemented. 

The call 

vadvise(V A_ ANOM); 

advises that the paging behavior is not likely to be well handled by the system's default algorithm, since 
reference information is collected over macroscopic intervals (for instance, 10-20 seconds) will not serve 
to indicate future page references. The system in this case will choose to replace pages with little emphasis 
placed on recent usage, and more emphasis on referenceless circular behavior. It is essential that processes 
which have very random paging behavior (such as LISP during garbage collection of very large address 
spaces) call vadvise, as otherwise the system has great difficulty dealing with their page-consumptive 
demands. 

The call 

vadvise(VA_NORM); 

restores default paging replacement behavior after a call to 

vadvise(VA_ANOM); 

Will go away soon, being replaced by a per-page vadvise() facility. 

Last change: 25 September 1987 Sun Release 4.0 



VFORK(2) SYSTEM CALLS VFORK(2) 

NAME 
vfork - spawn new process in a virtual memory efficient way 

SYNOPSIS 
#include <vfork.h> 

pid =:= vfork() 

int pid; 

DESCRIPTION 
vfork() can be used to create new processes without fully copying the address space of the old process, 
which is horrendously inefficient in a paged environment. It is useful when the purpose of fork(2) would 
have been to create a new system context for an execve(2). vfork() differs from fork() in that the child 
borrows the parent's memory and thread of control until a call to execve(2) or an exit ( either by a call to 
exit(2) or abnormally.) The parent process is suspended while the child is using its resources. 

vfork() returns O in the child's context and (later) the pid of the child in the parent's context. 

vfork() can normally be used just like fork. It does not work, however, to return while running in the 
child's context from the procedure which called vfork() since the eventual return from vfork() would then 
return to a no longer existent stack frame. Be careful, also, to call _exit() rather than exit( ) if you cannot 
execve, since exit() will flush and close standard 1/0 channels, and thereby mess up the parent processes 
standard I/0 data structures. (Even with fork() it is wrong to call exit() since buffered data would then be 
flushed twice.) 

On Sun-4 machines, the parent inherits the values of local and incoming argument registers from the child. 
Since this violates the usual data flow properties of procedure calls, the file <vfork.h> must be included in 
programs that are compiled using global optimization. 

SEE ALSO 
execve(2), exit(2), fork(2), ioctl(2), sigvec(2), wait(2), 

DIAGNOSTICS 

BUGS 

Same as for fork(2). 

This system call will be eliminated when proper system sharing mechanisms are implemented. Users 
should not depend on the memory sharing semantics of vfork() as it will, in that case, be made 
synonymous to fork(2). 

To avoid a possible deadlock situation, processes that are children in the middle of a vfork() are never sent 
SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result in an EOF indi
cation. 

Sun Release 4.0 Last change: 14 November 1987 789 



VHANGUP(2) SYSTEM CALLS VHANGUP(2) 

NAME 
vhangup- virtually "hangup" the current control terminal 

SYNOPSIS 
vhangup() 

DESCRIPTION 
vhangup() is used by the initialization process init(8) (among others) to arrange that users are given 
"clean" terminals at login, by revoking access of the previous users' processes to the terminal. To affect 
this, vhangup() searches the system tables for references to the control terminal of the invoking process, 
revoking access permissions on each instance of the terminal that it finds. Further attempts to access the 
terminal by the affected processes will yield I/0 errors (EBADF). Finally, a SIGHUP (hangup signal) is 
sent to the process group of the control terminal. 

SEE ALSO 
init(8) 

BUGS 
Access to the control terminal using /dev/tty is still possible. 

This call should be replaced by an automatic mechanism that takes place on process exit. 

790 Last change: 25 September 1987 Sun Release 4.0 



WAIT(2) SYSTEM CALLS WAIT(2) 

NAME 
wait, wait3, wait4, WIFSTOPPED, WIFSIGNALED, WIFEXITED - wait for process to terminate or stop 

SYNOPSIS 
#include <sys/wait.h> 

int wait(statusp) 
union wait •statusp; 

int wait((union wait *)0) 

#include <sys/time.h> 
#include <sys/resource.h> 

int wait3(statusp, options, rusage) 
union wait •statusp; 
int options; 
struct rusage •rusage; 

int wait4(pid, statusp, options, rusage) 
int pid; 
union wait •statusp; 
int options; 
struct rusage •rusage; 

WIFSTOPPED(status) 
union wait status; 

WIFSIGNALED(status) 
union wait status; 

WIFEXITED(status) 
union wait status; 

DESCRIPTION 
wait() delays its caller until a signal is received or one of its child processes terminates or stops due to trac
ing. If any child has died or stopped due to tracing and this has not been reported using wait, return is 
immediate, returning the process ID and exit status of one of those children. If that child had died, it is dis
carded. If there are no children, return is immediate with the value -1 returned. If there are only running 
or stopped but reported children, the calling process is blocked. 

If status is not a NULL pointer, then on return from a successful wait() call the status of the child process 
whose process ID is the return value of wait() is stored in the wait() union pointed to by status. The 
w _ status member of that union is an int; it indicates the cause of termination and other information about 
the terminated process in the following manner: 

Sun Release 4.0 

• If the low-order 8 bits of w _ status are equal to O 177, the child process has stopped; the 8 
bits higher up from the low-order 8 bits of w _ status contain the number of the signal that 
caused the process to stop. See ptrace(2) and sigvec(2). 

• If the low-order 8 bits of w _ status are non-zero and are not equal to O 177, the child pro
cess terminated due to a signal; the low-order 7 bits of w _ status contain the number of 
the signal that terminated the process. In addition, if the low-order seventh bit of 
w_status (that is, bit 0200) is set, a "core image" of the process was produced; see 
sigvec(2). 

• Otherwise, the child process terminated due to an exit() call; the 8 bits higher up from 
the low-order 8 bits of w _ status contain the low-order 8 bits of the argument that the 
child process passed to exit; see exit(2). 

Last change: 26 January 1988 791 



WAIT{2) SYSTEM CALLS WAIT{2) 

NOTES 

Other members of the wait() union can be used to extract this information more conveniently: 

• If the w_stopval member has the value WSTOPPED, the child process has stopped; the 
value of the w _ stopsig member is the signal that stopped the process. 

• If the w _ termsig member is non-zero, the child process terminated due to a signal; the 
value of the w _ termsig member is the number of the signal that terminated the process. 
If the w _ coredump member is non-zero, a core dump was produced. 

• Otherwise, the child process terminated due to an exit() call; the value of the w _retcode 
member is the low-order 8 bits of the argument that the child process passed to exit. 

The other members of the wait() union merely provide an alternate way of analyzing the status. The value 
stored in thew _status field is compatible with the values stored by other versions of the UNIX system, and 
an argument of type int * may be provided instead of an argument of type union wait * for compatibility 
with those versions. 

wait3() is an alternate interface that allows both non-blocking status collection and the collection of the 
status of children stopped by any means. The status parameter is defined as above. The options parameter 
is used to indicate the call should not block if there are no processes that have status to report 
{WNOHANG}, and/or that children of the current process that are stopped due to a SIGTTIN, SIGTTOU, 
SIGTSTP, or SIGSTOP signal are eligible to have their status reported as well {WUNTRACED}. A ter
minated child is discarded after it reports status, and a stopped process will not report its status more than 
once. If rusage is not a NULL pointer, a summary of the resources used by the terminated process and all 
its children is returned. (This information is currently not available for stopped processes.) 

When the WNOHANG option is specified and no processes have status to report, wait3() returns 0. The 
WNOHANG and WUNTRACED options may be combined by ORing the two values. 

wait4() is another alternate interface. With a pid argument of 0, it is equivalent to wait3. If pid has a 
nonzero value, then wait4() returns status only for the indicated process ID, but not for any other child 
processes. 

WIFSTOPPED, WIFSIGNALED, WIFEXITED, are macros that take an argument status, of type 'union 
wait', as returned by wait, wait2, wait3, or wait4. WIFSTOPPED evaluates to true (1) when the process 
for which the wait() call was made is stopped, or to false (0) otherwise. WIFSIGNALED evaluates to true 
when the process was terminated with a signal. WIFEXITED evaluates to true whe the process exited by 
using an exit(2) call. 

If a parent process terminates without waiting on its children, the initialization process (process ID = 1) 
inherits the children. 

wait, wait3, and wait4() are automatically restarted when a process receives a signal while awaiting termi
nation of a child process, unless the SV _INTERRUPT bit is set in the flags for that signal. 

RETURN V ALOE 
If wait() returns due to a stopped or terminated child process, the process ID of the child is returned to the 
calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

wait3() and wait4() return O if WNO HANG is specified and there are no stopped or exited children, and 
return the process ID of the child process if they return due to a stopped or terminated child process. Other
wise, they return a value of -1 and set errno to indicate the error. 

ERRORS 

792 

wait, wait3, or wait4 will fail and return immediately if one or more of the following are true: 

ECIIlLD 

EFAULT 

The calling process has no existing unwaited-for child processes. 

The status or rusage arguments point to an illegal address. 

Last change: 26 January 1988 Sun Release 4.0 



WAIT(2) SYSTEM CALLS WAIT(2) 

wait, wait3, and wait4 will terminate prematurely, return -1, and set errno t EINTR upon the arrival of a 
signal whose SY _INTERRUPT bit in its flags field is set (see sigvec(2) and siginterrupt(3)). signal(3V), in 
the System V compatibility library, sets this bit for any signal it catches. 

SEE ALSO 
exit(2), getrusage(2), ptrace(2), sigvec(2), siginterrupt(3), signal(3) 

WARNINGS 
Calls to wait with an argument of O should be cast to type 'unionwait*', as in: 

wait( (union wait*) 0) 

Otherwise lint(l V) will complain. 

Sun Release 4.0 Last change: 26 January 1988 793 



WRITE(2V) SYSTEM CALLS WRITE(2V) 

NAME 
write, writev - write output 

SYNOPSIS 
int write(d, buf, nbytes) 
int d; 
char •buf; 
int nbytes; 

#include <sys/types.h> 
#include <sys/uio.h> 

int writev(d, iov, iovcnt) 
int d; 
struct iovec •iov; 
int iovcnt; 

DESCRIPTION 

794 

write() attempts to write nbytes of data to the object referenced by the descriptor d from the buffer pointed 
to by bu/. writev() performs the same action, but gathers the output data from the iovcnt buffers specified 
by the members of the iov array: iov[O], iov[l], ... , iov[iovcnt-1]. 

For writev, the iovec structure is defined as 

struct iovec { 
caddr_t iov_base; 
int iov _Ien; 

}; 

Each iovec entry specifies the base address and length of an area in memory from which data should be 
written. writev() will always write a complete area before proceeding to the next. 

On objects capable of seeking, the write() starts at a position given by the pointer associated with d, see 
Iseek(2). Upon return from write, the pointer is incremented by the number of bytes actually written. 

Objects that are not capable of seeking always write from the current position. The value of the pointer 
associated with such an object is undefined. 

If the O _APPEND flag of the file status flags is set, the file pointer will be set to the end of the file prior to 
each write. 

For regular files, if the O _ SYNC flag of the file status flags is set, the write will not return until both the file 
data and file status have been physically updated. This function is for special applications that require extra 
reliability at the cost of performance. For block special files, if o _ SYNC is set, the write will not return 
until the data has been physically updated. 

If the real user is not the super-user, then write() clears the set-user-id bit on a file. This prevents penetra
tion of system security by a user who "captures" a writable set-user-id file owned by the super-user. 

For STREAMS (see intro(2)) files, the operation of write() and writev() are determined by the values of 
the minimum and maximum packet sizes accepted by the stream. These values are contained in the top
most stream module. Unless the user pushes (see I_PUSH in streamio(4)) the topmost module, these 
values can not be set or tested from user level. If the total number of bytes to be written falls within the 
packet size range, that many bytes will be written. If the total number of bytes to be written does not fall 
within the range and the minimum packet size value is zero, write( ) and writev( ) will break the data to be 
written into maximum packet size segments prior to sending the data downstream (the last segment may 
contain less than the maximum packet size). If the total number of bytes to be written does not fall within 
the range and the minimum value is non-zero, write() and writev() will fail with errno set to ERANGE. 
Writing a zero-length buffer (the total number of bytes to be written is zero) sends zero bytes with zero 
returned. 

Last change: 20 November 1987 Sun Release 4.0 



WRITE(2V) SYSTEM CALLS WRITE(2V) 

When a descriptor or the object it refers to is marked for non-blocking I/0, and the descriptor refers to an 
object subject to flow control, such as a socket, a pipe (or FIFO), or a stream, write() and writev() may 
write fewer bytes than requested; the return value must be noted, and the remainder of the operation should 
be retried when possible. If such an object's buffers are full, so that it cannot accept any data, then: 

• If the object the descriptor is associated with is marked for 4.2BSD-style non-blocking 
I/0 (with the FIONBIO ioctl(2), or an fcntl() using the FNDELA Y flag from <sys/file.h> 
or the O_NDELAY flag from <sys/fcntl.h> in the 4.2BSD environment), the write will 
return -1 and errno will be set to EWOULDBLOCK. 

• If the descriptor is marked for System V-style non-blocking I/0 (with an fcntl() using 
the FNBIO flag from <sys/file.h> or the o .... ND ELA Y flag from <sys/fcntl.h> in the Sys
tem V environment), and does not refer to a stream, the write will return 0. 

• If the descriptor is marked for System V-style non-blocking I/0, and refers to a stream, 
the write will return -1 and errno will be set to EAGAIN. 

• If neither the descriptor nor the object it refers to are marked for non-blocking I/0, the 
write will block until space becomes available. 

RETURN VALUE 
Upon successful completion the number of bytes actually writen is returned. Otherwise a -1 is returned 
and the global variable errno is set to indicate the error. 

ERRORS 
write() and writev( ) will fail and the file pointer will remain unchanged if one or more of the following 
are true: 

EBADF 

EPIPE 

EFBIG 

d is not a valid descriptor open for writing. 

An attempt is made to write to a pipe that is not open for reading by any process 
(or to a socket of type SOCK_STREAM that is connected to a peer socket.) Note: 
an attempted write of this kind will also cause you to receive a SIGPIPE signal 
from the kernel. If you've not made a special provision to catch or ignore this sig
nal, your process will die. 

An attempt was made to write a file that exceeds the process's file size limit or the 
maximum file size. 

EFAULT Part of iov or data to be written to the file points outside the process's allocated 
address space. 

The call is forced to terminate prematurely due to the arrival of a signal whose SV _INTERRUPT bit in 
sv_flags is set (see sigvec(2)). signal(3V), in the System V compatibility library, sets this bit for any sig
nal it catches. 

EINVAL 

EINVAL 

ENOSPC 

EDQUOT 

EIO 

ENXIO 

ERANGE 

EWOULDBLOCK 

EAGAIN 

Sun Release 4.0 

The stream is linked below a multiplexor. 

The pointer associated with d was negative. 

There is no free space remaining on the file system containing the file. 

The user's quota of disk blocks on the file system containing the file has been 
exhausted. 

An I/0 error occurred while reading from or writing to the file system. 

A hangup occurred on the stream being written to. 

d refers to a stream, the total number of bytes to be written is outside the 
minimum and maximum write range, and the minimum value is non-zero. 

The file was marked for 4.2BSD-style non-blocking I/0, and no data could be 
written immediately. 

The descriptor referred to a stream, was marked for System V-style non-blocking 

Last change: 20 November 1987 795 



WRITE(2V) SYSTEM CALLS WRITE(2V) 

I/0, and no data could be written immediately. 

In addition, writev( ) may return one of the following errors: 

EINV AL iovcnt was less than or equal to 0, or greater than 16. 

EINVAL One of the iov _ Jen values in the iov array was negative. 

EINV AL The sum of the iov _len values in the iov array overflowed a 32-bit integer. 

A write to a STREAMS file can fail if an error message has been received at the stream head. In this case, 
errno is set to the value included in the error message. 

SEE ALSO 
dup(2), fcntl(2V), intro(2), ioct1(2), lseek(2), open(2V), pipe(2), select(2), sigvec(2), signal(3V) 

796 Last change: 20 November 1987 Sun Release 4.0 



INTR0(3) C LIBRARY FUNCTIONS INTRO (3) 

NAME 
Intro - introduction to user-level library functions 

DESCRIPTION 

FILES 

Section 3 describes user-level library routines. In this release, most user-library routines are listed in 
alphabetical order regardless of their subsection headings. (This eliminates having to search through 
several subsections of the manual.) However, due to their special-purpose nature, the routines from the fol
lowing libraries are broken out into the indicated subsections: 

• The Lightweight Processes Library, in subsection 3L. 

• The RPC Services Library, in subsection 3R. 

• The System V Compatibility Library, in subsection 3V. This library contains System V versions of 
functions that are not yet merged into the standard Sun libraries. To use them functions, compile pro
grams with /usr/Sbin/cc, instead of /usr/bin/cc. 

The main C library, /usr/lib/libc.a, contains many of the functions described in this section, along with 
entry points for the system calls described in Section 2. This library also includes the Internet networking 
routines listed under the 3N subsection heading, and routines provided for compatibility with other UNIX 
operating systems, listed under 3C. Functions associated with the "standard 1/0 library" are listed under 
3S. 

User-level routines for access to data structures within the kernel and other processes are listed under 3K. 
To use these functions, compile programs with the -lkvm option for the C compiler, cc(l V). 

Math library functions are listed under 3M. To use them, compile programs with the the -Im cc(l V) 
option. 

Various specialized libraries, the routines they contain, and the compiler options needed to link with them, 
are listed under 3X. 

/usr /lib/libc.a 
/usr/lib/lib*.a 
/usr/lib/lib*.a 
/usr/Sbin/cc 

C Library (2, 3, 3N and 3C) 
other "standard" C libraries 
special-purpose C libraries 

SEE ALSO 
cc(l V), ld(l), nm(l), intro(2) 

LIST OF LIBRARY FUNCTIONS 

Name Appears on Page 

bstring(3) 
byteorder(3N) 
ctime(3) 
ctype(3) 
curses(3X) 
dbm(3X) 
directory(3) 
ethers(3N) 
inet(3N) 
intro(3L) 
intro(3M) 
intro(3R) 
intro(3V) 
mp(3X) 
ndbm(3) 
plot(3X) 

Description 

bit and byte string operations 
convert values between host and network byte order 
convert date and time 
character classification and conversion macros and functions 
cursor addressing and screen display library 
data base subroutines 
directory operations 
Ethernet address mapping operations 
Internet address manipulation 
introduction to the lightweight process library (L WP) 
introduction to mathematical library functions 
introduction to RPC service library and protocols 
introduction to System V functions 
multiple precision integer arithmetic 
data base subroutines 
graphics interface 

"''"'" 



INTR0(3) 

798 

_crypt() 
a641() 
abort() 
abs() 
addexportent() 
addexportent() 
addmnten t() 
addmntent() 
alloca() 
alloca() 
alphasort() 
alphasort() 
arc() 
asctime() 
assert() 
atof() 
atoi() 
atol() 
audit() 
audit_ args() 
audit_text() 
auth _destroy() 
authdes _create() 
authdes _getcred() 
authnon _create() 
authunix _create() 
authunix _create_ default() 
hemp() 
bcopy() 
bindresvport() 
bsearch() 
bzero() 
calloc() 
callrpc() 
cbc _crypt() 
cfree() 
circle() 
clearerr() 
clnt _broadcast() 
clnt_ call() 
clnt _destroy() 
clnt_freeres() 
clnt_geterr() 
clnt_pcreateerror() 
clnt _perrno() 
clnt_perror() 
clnt_sperrno() 
clnt _ sperror( ) 

C LIBRARY FUNCTIONS INTR0(3) 

rpc(3N) 
string(3) 
termcap(3X) 
values(3) 
xdr(3N) 
crypt(3) 
a641(3) 
abort(3) 
abs(3) 
exportent(3) 
exportent(3) 
getmntent(3) 
getmnten t(3) 
malloc(3) 
malloc(3) 
scandir(3) 
scandir(3) 
plot(3X) 
ctime(3) 
assert(3) 
strtod(3) 
strtol(3) 
strtol(3) 
getacinfo(3) 
audit_ args(3) 
audit_args(3) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
bstring(3) 
bstring(3) 
bindresvport(3N) 
bsearch(3) 
bstring(3) 
malloc(3) 
rpc(3N) 
des_crypt(3) 
malloc(3) 
plot(3X) 
ferror(3S) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 

library routines for remote procedure calls 
string operations 
terminal independent operation routines 
machine-dependent values 
library routines for external data representation 
password and data encryption 
convert between long integer and base-64 ASCII string 
generate a fault 
integer absolute value 
get exported file system information 
get exported file system information 
get file system descriptor file entry 
get file system descriptor file entry 
memory allocator 
memory allocator 
scan a directory 
scan a directory 
graphics interface 
convert date and time 
program verification 
convert string to double-precision number 
convert string to integer 
convert string to integer 
get audit control file information 
produce text audit message 
produce text audit message 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
bit and byte string operations 
bit and byte string operations 
bind a socket to a privileged IP port 
binary search a sorted table 
bit and byte string operations 
memory allocator 
RPC services routines 
fast DES encryption 
memory allocator 
graphics interface 
stream status inquiries 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 

Last change: 21 October 1987 Sun Release 4.0 



INTR0(3) 

clntra\V_create() 
clnttcp _create() 
clntudp _create() 
clock() 
closedir() 
closelog() 
closepl() 
cont() 
control() 
crypt() 
ctermid() 
cuserid() 
dbm _ clearerr( ) 
dbm _close() 
dbm _delete() 
dbm _error() 
dbm _fetch() 
dbm _ firstkey() 
dbm _ nextkey() 
dbm_open() 
dbm _store() 
dbminit() 
decimal_ to_ double() 
decimal_ to_ extended() 
decimal_ to_ single() 
delete() 
des_ crypt() 
des_ setparity() 
dn_comp() 
dn _expand() 
double_ to_ decimal() 
drand48() 
dysize() 
ecb _crypt() 
econvert() 
ecvt() 
edata() 
encrypt() 
end() 
endac() 
endexportent() 
endfsent() 
endgraent() 
endgrent() 
endhostent() 
endmntent() 
endnetent() 
endnetgrent() 
endprotoent() 
endp\Vaent() 
endp\Vent() 
endservent() 
endttyent() 

Sun Release 4.0 

C LIBRARY FUNCTIONS INTR0(3) 

rpc(3N) 
rpc(3N) 
rpc(3N) 
clock(3C) 
directory (3) 
syslog(3) 
plot(3X) 
plot(3X) 
getacinf o(3) 
crypt(3) 
ctermid(3S) 
cuserid(3S) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
ndbm(3) 
dbm(3X) 
decimal_ to_ floating(3) 
decimal_ to_ floa tin g(3) 
decimal_ to_ floating(3) 
dbm(3X) 
des_ crypt(3) 
des_crypt(3) 
resolver(3) 
resolver(3) 
floating_ to_ decimal(3) 
drand48(3) 
ctime(3) 
des_crypt(3) 
econvert(3) 
econvert(3) 
end(3) 
crypt(3) 
end(3) 
getacinf o(3) 
exportent(3) 
getfsent(3) 
getgraent(3) 
getgrent(3) 
gethostent(3N) 
getmntent(3) 
getnetent(3N) 
getnetgrent(3N) 
getprotoent(3N) 
getpwaent(3) 
getpwent(3) 
getservent(3N) 
getttyent(3) 

RPC services routines 
RPC services routines 
RPC services routines 
report CPU time used 
directory operations 
control system log 
graphics interface 
graphics interface 
get audit control file information 
password and data encryption 
generate filename for terminal 
get character login name of the user 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
data base subroutines 
convert decimal record to floating-point value 
convert decimal record to floating-point value 
convert decimal record to floating-point value 
data base subroutines 
fast DES encryption 
fast DES encryption 
resolver routines 
resolver routines 
convert floating-point value to decimal record 
generate uniformly distributed pseudo-random numbers 
convert date and time 
fast DES encryption 
output conversion 
output conversion 
last locations in program 
password and data encryption 
last locations in program 
get audit control file information 
get exported file system information 
get file system descriptor file entry 
get group adjunct file entry 
get group file entry 
get network host entry 
get file system descriptor file entry 
get network entry 
get network group entry 
get protocol entry 
get password adjunct file entry 
get password file entry 
get service entry 
get ttytab file entry 

Last change: 21 October 1987 799 



INTR0(3) 

800 

endusershell() 
erand48() 
erase() 
errno() 
etext() 
ether_ a ton() 
ether_ hostton( ) 
ether _line() 
ether_ ntoa() 
ether_ ntohost() 
execl() 
execle() 
execlp() 
execv() 
execvp() 
exit() 
exportent() 
extended_ to_ decimal() 
fclose() 
fconvert() 
fcvt() 
fdate() 
fdopen() 
feof() 
ferror() 
fetch() 
mush() 
ffs() 
fgetc() 
fgetgraent( ) 
fgetgrent() 
fgetpwaent() 
fgetpwent() 
fgets() 
file() 
file_to_decimal() 
fileno() 
firstkey() 
floatingpoint() 
fopen() 
fprintf() 
fputc() 
fputs() 
fread() 
free() 
freopen() 
fscanf() 
fseek() 
ftell() 
ftime() 
ftok() 
ftw() 
func _to_ decimal() 

C LIBRARY FUNCTIONS INTR0(3) 

getusershell(3) 
drand48(3) 
plot(3X) 
perror(3) 
end(3) 
ethers(3N) 
ethers(3N) 
ethers(3N) 
ethers(3N) 
ethers(3N) 
execl(3) 
execl(3) 
execl(3) 
execl(3) 
execl(3) 
exit(3) 
exportent(3) 
floating_ to_ decimal(3) 
fclose(3S) 
econvert(3) 
econvert(3) 
fdate(3) 
fopen(3S) 
ferror(3S) 
ferror(3S) 
dbm(3X) 
fclose(3S) 
bstring(3) 
getc(3S) 
getgraent(3) 
getgrent(3) 
getpwaent(3) 
getpwent(3) 
gets(3S) 
getacinf o(3) 
string_to_decimal(3) 
ferror(3S) 
dbm(3X) 
floatingpoint(3) 
fopen(3S) 
printf(3S) 
putc(3S) 
puts(3S) 
fread(3S) 
malloc(3) 
fopen(3S) 
scanf(3S) 
fseek(3S) 
fseek(3S) 
time(3C) 
ftok(3) 
ftw(3) 
string_ to_ decimal(3) 

get legal user shells 
generate uniformly distributed pseudo-random numbers 
graphics interface 
system error messages 
last locations in program 
Ethernet address mapping operations 
Ethernet address mapping operations 
Ethernet address mapping operations 
Ethernet address mapping operations 
Ethernet address mapping operations 
execute a file 
execute a file 
execute a file 
execute a file 
execute a file 
terminate a process after performing cleanup 
get exported file system information 
convert floating-point value to decimal record 
close or flush a stream 
output conversion 
output conversion 
return date and time in an ASCII string 
open a stream 
stream status inquiries 
stream status inquiries 
data base subroutines 
close or flush a stream 
bit and byte string operations 
get character or integer from stream 
get group adjunct file entry 
get group file entry 
get password adjunct file entry 
get password file entry 
get a string from a stream 
get audit control file information 
parse characters into decimal record 
stream status inquiries 
data base subroutines 
IEEE floating point definitions 
open a stream 
formatted output conversion 
put character or word on a stream 
put a string on a stream 
buffered binary input/output 
memory allocator 
open a stream 
formatted input conversion 
reposition a stream 
reposition a stream 
get date and time 
standard interprocess communication package 
walk a file tree 
parse characters into decimal record 

Last change: 21 October 1987 Sun Release 4.0 



INTR0(3) 

fwrite() 
gcd() 
gconvert() 
gcvt() 
get() 
get_ myaddress( ) 
getacdir() 
getacffg() 
getacmin() 
getauditffagsbin() 
getauditffagschar() 
getc() 
getchar() 
getcwd() 
getenv() 
getexportent() 
getexportopt( ) 
getfauditffags() 
getfsent() 
getf sfile( ) 
getfsspec() 
getf stype( ) 
getgraent( ) 
getgranam( ) 
getgrent() 
getgrgid() 
getgrnam() 
gethostbyaddr() 
gethostbyname() 
gethostent( ) 
getlogin() 
getmntent() 
getnetbyaddr() 
getnetbyname() 
getnetent( ) 
getnetgrent( ) 
getnetname( ) 
getopt() 
getpass() 
getprotobyname() 
getprotobynumber() 
getprotoent() 
getpw() 
getpwaent() 
getpwanam() 
getpwent() 
getpwnam() 
getpwuid() 
getrpcbyname() 
getrpcbynumber() 
getrpcent( ) 
gets() 
getservbyname() 

Sun Release 4.0 

C LIBRARY FUNCTIONS 

fread(3S) 
mp(3X) 
econvert(3) 
econvert(3) 
getacinfo(3) 
rpc(3N) 
getacinfo(3) 
getacinfo(3) 
getacinf o(3) 
getauditffags(3) 
getauditffags(3) 
getc(3S) 
getc(3S) 
getcwd(3) 
getenv(3) 
exportent(3) 
exportent(3) 
getfaudffgs(3) 
getfsent(3) 
getfsent(3) 
getfsent(3) 
getf sent(3) 
getgraent(3) 
getgraent(3) 
getgrent(3) 
getgrent(3) 
getgrent(3) 
gethostent(3N) 
gethostent(3N) 
gethostent(3N) 
getlogin(3) 
getmntent(3) 
getnetent(3N) 
getnetent(3N) 
getnetent(3N) 
getnetgrent(3N) 
rpc(3N) 
getopt(3) 
getpass(3) 
getprotoent(3N) 
getprotoent(3N) 
getprotoent(3N) 
getpw(3) 
getpwaent(3) 
getpwaent(3) 
getpwent(3) 
getpwent(3) 
getpwent(3) 
getrpcent(3N) 
getrpcent(3N) 
getrpcent(3N) 
gets(3S) 
getservent(3N) 

buffered binary input/output 
multiple precision integer arithmetic 
output conversion 
output conversion 
get audit control file information 
RPC services routines 
get audit control file information 
get audit control file information 
get audit control file information 
convert audit flag specifications 
convert audit flag specifications 
get character or integer from stream 
get character or integer from stream 
get pathname of current working directory 
return value for environment name 
get exported file system information 
get exported file system information 
generates the process audit state 
get file system descriptor file entry 
get file system descriptor file entry 
get file system descriptor file entry 
get file system descriptor file entry 
get group adjunct file entry 
get group adjunct file entry 
get group file entry 
get group file entry 
get group file entry 
get network host entry 
get network host entry 
get network host entry 
get login name 
get file system descriptor file entry 
get network entry 
get network entry 
get network entry 
get network group entry 
RPC services routines 
get option letter from argument vector 
read a password 
get protocol entry 
get protocol entry 
get protocol entry 
get name from uid 
get password adjunct file entry 
get password adjunct file entry 
get password file entry 
get password file entry 
get password file entry 
get RPC entry 
get RPC entry 
get RPC entry 
get a string from a stream 
get service entry 

Last change: 21 October 1987 

INTR0(3) 

801 



INTR0(3) 

getservbyport() 
getservent() 
getttyent() 
getttynam() 
getusershell() 
getw() 
getwd() 
gmtime() 
grpauth() 
gsignal() 
gtty() 
hasmntopt() 
hcreate() 
hdestroy() 
host2netname() 
hsearch() 
htonl() 
htons() 
index() 
inet_addr() 
inet _lnaof() 
inet_ makeaddr() 
inet _ netof() 
inet_network() 
inet _ ntoa() 
information() 
initgroups() 
initstate( ) 
innetgr() 
insque() 
isalnum() 
isalpha() 
isascii() 
isatty() 
iscntrl() 
isdigit() 
isgraph() 
islower() 
isprint() 
ispunct() 
mecure() 
isspace() 
isupper() 
isxdigit() 
itom() 
jrand48() 
key_ decryptsession() 
key_ encryptsession() 
key _geodes() 
key_ setsecret() 
kvm _close() 
kvm _getcmd() 
kvm _getproc() 

802 

C LIBRARY FUNCTIONS INTR0(3) 

getservent(3N) 
getservent(3N) 
getttyent(3) 
getttyent(3) 
getusershell(3) 
getc(3S) 
getwd(3) 
ctime(3) 
pwdauth(3) 
ssignal(3) 
stty(3C) 
getmnten t(3) 
hsearch(3) 
hsearch(3) 
rpc(3N) 
hsearch(3) 
byteorder(3N) 
byteorder(3N) 
string(3) 
inet(3N) 
inet(3N) 
inet(3N) 
inet(3N) 
inet(3N) 
inet(3N) 
getacinf o(3) 
initgroups(3) 
random(3) 
getnetgrent(3N) 
insque(3) 
ctype(3) 
ctype(3) 
ctype(3) 
ttyname(3) 
ctype(3) 
ctype(3) 
ctype(3) 
ctype(3) 
ctype(3) 
ctype(3) 
issecure(3) 
ctype(3) 
ctype(3) 
ctype(3) 
mp(3X) 
drand48(3) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
kvm _ open(3K) 
kvm _getu(3K) 
kvm _ nextproc(3K) 

get service entry 
get service entry 
get ttytab file entry 
get ttytab file entry 
get legal user shells 
get character or integer from stream 
get current working directory pathname 
convert date and time 
password authentication routines 
software signals 
set and get terminal state 
get file system descriptor file entry 
manage hash search tables 
manage hash search tables 
RPC services routines 
manage hash search tables 
convert values between host and network byte order 
convert values between host and network byte order 
string operations 
Internet address manipulation 
Internet address manipulation 
Internet address manipulation 
Internet address manipulation 
Internet address manipulation 
Internet address manipulation 
get audit control file information 
initialize group access list 
routines for changing random number generators 
get network group entry 
insert/remove element from a queue 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
find name of a terminal 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
indicates whether system is running secure 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
multiple precision integer arithmetic 
generate uniformly distributed pseudo-random numbers 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
specify a kernel to examine 
get the u-area or invocation arguments for a process 
read system process structures 

Last change: 21 October 1987 Sun Release 4.0 



INTR0(3) 

kvm_getu() 
kvm _ nextproc() 
kvm _ nlist() 
kvm_open() 
kvm_read() 
kvm _ setproc( ) 
kvm _ write( ) 
164a() 
label() 
lcong48() 
ldaclose() 
ldahread() 
ldaopen() 
ldclose() 
ldfcn() 
ldfbread() 
ldgetname() 
ldlinit() 
ldlitem() 
ldlread() 
ldlseek() 
ldnlseek() 
ldnrseek() 
ldnshread() 
ldnsseek() 
ldohseek() 
ldopen() 
ldrseek() 
ldshread() 
ldsseek() 
ldtbindex() 
ldtbread() 
ldtbseek() 
Hind() 
line() 
linemod() 
localtime() 
lockf() 
longjmp() 
lrand48() 
lsearch() 
madd() 
malloc() 
malloc _debug() 
malloc _ verify( ) 
mdiv() 
memalign() 
memccpy() 
memchr() 
memcmp() 
memcpy() 
memory() 
memset() 

Sun Release 4.0 

C LIBRARY FUNCTIONS INTR0(3) 

kvm _getu(3K) 
kvm _ nextproc(3K) 
kvm _ nlist(3K) 
kvm _ open(3K) 
kvm _read(3K) 
kvm _ nextproc(3K) 
kvm _read(3K) 
a641(3) 
plot(3X) 
drand48(3) 
ldclose(3X) 
ldahread(3X) 
ldopen(3X) 
ldclose(3X) 
ldfcn(3) 
ldfhread(3X) 
ldgetname(3X) 
ldlread(3X) 
ldlread(3X) 
ldlread(3X) 
ldlseek(3X) 
ldlseek(3X) 
ldrseek(3X) 
ldshread(3X) 
ldsseek(3X) 
ldohseek(3X) 
ldopen(3X) 
ldrseek(3X) 
ldshread(3X) 
ldsseek(3X) 
ldtbindex(3X) 
ldtbread(3X) 
ldtbseek(3X) 
lsearch(3) 
plot(3X) 
plot(3X) 
ctime(3) 
lockf(3) 
setjmp(3) 
drand48(3) 
lsearch(3) 
mp(3X) 
malloc(3) 
malloc(3) 
malloc(3) 
mp(3X) 
malloc(3) 
memory(3) 
memory(3) 
memory(3) 
memory(3) 
memory(3) 
memory(3) 

get the u-area or invocation arguments for a process 
read system process structures 
obtain kernel symbol table information 
specify a kernel to examine 
copy data to or from a kernel image or running system 
read system process structures 
copy data to or from a kernel image or running system 
convert between long integer and base-64 ASCII string 
graphics interface 
generate uniformly distributed pseudo-random numbers 
close a COFF file 
read the archive header of a member of a COFF archive file 
open a COFF file for reading 
close a COFF file 
common object file access routines 
read the file header of a COFF file 
retrieve symbol name for COFF file symbol table entry 
manipulate line number entries of a COFF file function 
manipulate line number entries of a COFF file function 
manipulate line number entries of a COFF file function 
seek to line number entries of a section of a COFF file 
seek to line number entries of a section of a COFF file 
seek to relocation entries of a section of a COFF file 
read an indexed/named section header of a COFF file 
seek to an indexed/named section of a COFF file 
seek to the optional file header of a COFF file 
open a COFF file for reading 
seek to relocation entries of a section of a COFF file 
read an indexed/named section header of a COFF file 
seek to an indexed/named section of a COFF file 
compute the index of a symbol table entry of a COFF file 
read an indexed symbol table entry of a COFF file 
seek to the symbol table of a COFF file 
linear search and update 
graphics interface 
graphics interface 
convert date and time 
advisory record locking on files 
non-local goto 
generate uniformly distributed pseudo-random numbers 
linear search and update 
multiple precision integer arithmetic 
memory allocator 
memory allocator 
memory allocator 
multiple precision integer arithmetic 
memory allocator 
memory operations 
memory operations 
memory operations 
memory operations 
memory operations 
memory operations 

Last change: 21 October 1987 803 



INTR0(3) 

mfree() 
min() 
mkstemp() 
mktemp() 
moncontrol() 
monitor() 
monstartup() 
mout() 
move() 
mrand48() 
msub() 
mtox() 
mult() 
netname2host() 
netname2user() 
nextkey() 
nice() 
nlist() 
nrand48() 
ntohl() 
ntohs() 
on_exit() 
opendir() 
openlog() 
openpl() 
optarg() 
optind() 
pause() 
pclose() 
perror() 
pmap _getmaps() 
pmap _getport( ) 
pmap _ rmtcall( ) 
pmap_set() 
pmap _unset() 
point() 
popen() 
pow() 
printf() 
prof() 
psignal() 
putc() 
putchar() 
putenv() 
putpwent() 
puts() 
putw() 
pwdauth() 
qsort() 
rand() 
random() 
rcmd() 
re_comp() 

804 

C LIBRARY FUNCTIONS INTR0(3) 

mp(3X) 
mp(3X) 
mktemp(3) 
mktemp(3) 
monitor(3) 
monitor(3) 
monitor(3) 
mp(3X) 
plot(3X) 
drand48(3) 
mp(3X) 
mp(3X) 
mp(3X) 
rpc(3N) 
rpc(3N) 
dbm(3X) 
nice(3C) 
nlist(3) 
drand48(3) 
byteorder(3N) 
byteorder(3N) 
on_exit(3) 
directory(3) 
syslog(3) 
plot(3X) 
getopt(3) 
getopt(3) 
pause(3C) 
popen(3S) 
perror(3) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
plot(3X) 
popen(3S) 
mp(3X) 
printf(3S) 
prof(3) 
psignal(3) 
putc(3S) 
putc(3S) 
putenv(3) 
putpwent(3) 
puts(3S) 
putc(3S) 
pwdauth(3) 
qsort(3) 
rand(3C) 
random(3) 
rcmd(3N) 
regex(3) 

multiple precision integer arithmetic 
multiple precision integer arithmetic 
make a unique file name 
make a unique file name 
prepare execution profile 
prepare execution profile 
prepare execution profile 
multiple precision integer arithmetic 
graphics interface 
generate uniformly distributed pseudo-random numbers 
multiple precision integer arithmetic 
multiple precision integer arithmetic 
multiple precision integer arithmetic 
RPC services routines 
RPC services routines 
data base subroutines 
change priority of a process 
get entries from name list 
generate uniformly distributed pseudo-random numbers 
convert values between host and network byte order 
convert values between host and network byte order 
name termination handler 
directory operations 
control system log 
graphics interface 
get option letter from argument vector 
get option letter from argument vector 
stop until signal 
open or close a pipe (for 1/0) from or to a process 
system error messages 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
graphics interface 
open or close a pipe (for 1/0) from or to a process 
multiple precision integer arithmetic 
formatted output conversion 
profile within a function 
system signal messages 
put character or word on a stream 
put character or word on a stream 
change or add value to environment 
write password file entry 
put a string on a stream 
put character or word on a stream 
password authentication routines 
quicker sort 
simple random number generator 
routines for changing random number generators 
routines for returning a stream to a remote command 
regular expression handler 

Last change: 21 October 1987 Sun Release 4.0 



INTR0(3) 

re_exec() 
readdir() 
realloc() 
regex() 
regexp() 
registerrpc( ) 
remexportent( ) 
remque() 
res_init() 
res_ mkquery() 
res_send() 
resolver() 
rewind() 
rewinddir() 
rexec() 
rindex() 
rpc _ createrr() 
rpow() 
rresvport( ) 
rtime() 
ruserok() 
scandir() 
scanf() 
seconvert( ) 
seed48() 
seekdir() 
setac() 
setbuf() 
setbuff er() 
setegid() 
seteuid() 
setexportent( ) 
setfsent() 
setgid() 
setgraent( ) 
setgrent() 
sethostent( ) 
setjmp() 
setkey() 
setlineb uf() 
setlogmask() 
setmntent() 
setnetent( ) 
setnetgrent( ) 
setprotoent() 
setpwaent( ) 
setpwent() 
setpwfile() 
setrgid() 
setruid() 
setservent( ) 
setstate() 
setttyent( ) 

Sun Release 4.0 

C LIBRARY FUNCTIONS INTR0(3) 

regex(3) 
directory (3) 
malloc(3) 
regex(3) 
regexp(3) 
rpc(3N) 
exportent(3) 
insque(3) 
resolver(3) 
resolver(3) 
resolver(3) 
resolver(3) 
fseek(3S) 
directory (3) 
rexec(3N) 
string(3) 
rpc(3N) 
mp(3X) 
rcmd(3N) 
rtime(3N) 
rcmd(3N) 
scandir(3) 
scanf(3S) 
econvert(3) 
drand48(3) 
directory(3) 
getacinfo(3) 
setbuf(3S) 
setbuf(3S) 
setuid(3) 
setuid(3) 
exportent(3) 
getfsent(3) 
setuid(3) 
getgraent(3) 
getgrent(3) 
gethostent(3N) 
setjmp(3) 
crypt(3) 
setbuf(3S) 
syslog(3) 
getmntent(3) 
getnetent(3N) 
getnetgrent(3N) 
getprotoent(3N) 
getpwaent(3) 
getpwent(3) 
getpwent(3) 
setuid(3) 
setuid(3) 
getservent(3N) 
random(3) 
getttyent(3) 

regular expression handler 
directory operations 
memory allocator 
regular expression handler 
regular expression compile and match routines 
RPC services routines 
get exported file system information 
insert/remove element from a queue 
resolver routines 
resolver routines 
resolver routines 
resolver routines 
reposition a stream 
directory operations 
return stream to a remote command 
string operations 
RPC services routines 
multiple precision integer arithmetic 
routines for returning a stream to a remote command 
get remote time 
routines for returning a stream to a remote command 
scan a directory 
formatted input conversion 
output conversion 
generate uniformly distributed pseudo-random numbers 
directory operations 
get audit control file information 
assign buffering to a stream 
assign buffering to a stream 
set user and group ID 
set user and group ID 
get exported file system information 
get file system descriptor file entry 
set user and group ID 
get group adjunct file entry 
get group file entry 
get network host entry 
non-local goto 
password and data encryption 
assign buffering to a stream 
control system log 
get file system descriptor file entry 
get network entry 
get network group entry 
get protocol entry 
get password adjunct file entry 
get password file entry 
get password file entry 
set user and group ID 
set user and group ID 
get service entry 
routines for changing random number generators 
get ttytab file entry 

Last change: 21 October 1987 805 



INTR0(3) 

setuid() 
setusershell() 
setvbuf() 
sf convert() 
sgcon vert( ) 
sigfpe() 
siginterrupt() 
signal() 
single_ to_ decimal() 
sleep() 
space() 
sprintf() 
srand() 
srand48() 
srandom() 
sscanf() 
ssignal() 
store() 
strcat() 
strchr() 
strcmp() 
strcpy() 
strcspn() 
strdup() 
string_ to_ decimal( )(3) 
strlen() 
strncat() 
strncmp() 
strncpy() 
strpbrk() 
strrchr() 
strspn() 
strtod() 
strtok() 
strtol() 
stty() 
svc _ destroy( ) 
svc_fds() 
svc _freeargs( ) 
svc _getargs( ) 
svc _getcaller( ) 
svc _getreq() 
svc _register( ) 
svc_run() 
svc _ sendreply() 
svc _ unregister( ) 
svcerr _ auth() 
svcerr _ decode( ) 
svcerr _ noproc( ) 
svcerr _ noprog( ) 
svcerr_progvers() 
svcerr_systemerr() 
svcerr _ weakauth() 

806 

C LIBRARY FUNCTIONS INTR0(3) 

setuid(3) 
getusershell(3) 
setbuf(3S) 
econvert(3) 
econvert(3) 
sigfpe(3) 
siginterrupt(3) 
signal(3) 
floating_ to_ decimal(3) 
sleep(3) 
plot(3X) 
printf(3S) 
rand(3C) 
drand48(3) 
random(3) 
scanf(3S) 
ssignal(3) 
dbm(3X) 
string(3) 
string(3) 
string(3) 
string(3) 
string(3) 
string(3) 
string_ to_ decimal(3) 
string(3) 
string(3) 
string(3) 
string(3) 
string(3) 
string(3) 
string(3) 
strtod(3) 
string(3) 
strtol(3) 
stty(3C) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 
rpc(3N) 

set user and group ID 
get legal user shells 
assign buffering to a stream 
output conversion 
output conversion 
signal handling for specific SIGFPE codes 
allow signals to interrupt system calls 
simplified software signal facilities 
convert floating-point value to decimal record 
suspend execution for interval 
graphics interface 
formatted output conversion 
simple random number generator 
generate uniformly distributed pseudo-random numbers 
routines for changing random number generators 
formatted input conversion 
software signals 
data base subroutines 
string operations 
string operations 
string operations 
string operations 
string operations 
string operations 
parse characters into decimal record 
string operations 
string operations 
string operations 
string operations 
string operations 
string operations 
string operations 
convert string to double-precision number 
string operations 
convert string to integer 
set and get terminal state 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 
RPC services routines 

Last change: 21 October 1987 Sun Release 4.0 



INTR0(3) C LIBRARY FUNCTIONS INTR0(3) 

svcf d _ create( ) rpc(3N) RPC services routines 
svcralV_create() rpc{3N) RPC services routines 
svctcp _create() rpc(3N) RPC services routines 
svcudp _create() rpc(3N) RPC services routines 
swab() SlVab(3) swap bytes 
sys_ err list() perror(3) system error messages 
sys_nerr() perror(3) system error messages 
sys_ siglist( ) psignal(3) system signal messages 
syslog() syslog(3) control system log 
system() system(3) issue a shell command 
tdelete() tsearch(3) manage binary search trees 
telldir() directory(3) directory operations 
tempnam() tmpnam(3S) create a name for a temporary file 
tfind() tsearch(3) manage binary search trees 
tgetent() termcap(3X) terminal independent operation routines 
tgetflag() termcap(3X) terminal independent operation routines 
tgetnum() termcap(3X) terminal independent operation routines 
tgetstr() termcap(3X) terminal independent operation routines 
tgoto() termcap(3X) terminal independent operation routines 
time() time(3C) get date and time 
timegm() ctime(3) convert date and time 
timelocal() ctime(3) convert date and time 
times() times(3C) get process times 
timezone() timezone(3C) get time zone name given offset from GMT 
tmpfile() tmpfile(3S) create a temporary file 
tmpnam() tmpnam(3S) create a name for a temporary file 
toascii() ctype(3) character classification and conversion macros and functions 
tololVer( ) ctype(3) character classification and conversion macros and functions 
toupper() ctype(3) character classification and conversion macros and functions 
tputs() termcap(3X) terminal independent operation routines 
tsearch() tsearch(3) manage binary search trees 
ttyname() ttyname(3) find name of a terminal 
ttyslot() ttyslot(3) find the slot in the utmp file of the current process 
twalk() tsearch(3) manage binary search trees 
tzset() ctime(3) convert date and time 
tzsetwall( ) ctime(3) convert date and time 
ualarm() ualarm(3) schedule signal after interval in microseconds 
ulimit() ulimit(3C) get and set user limits 
ungetc() ungetc(3S) push character back into input stream 
user2netname() rpc{3N) RPC services routines 
usleep() usleep{3) suspend execution for interval in microseconds 
utime() utime(3C) set file times 
valloc() malloc(3) memory allocator 
varargs() varargs(3) handle variable argument list 
vfprintf() vprintf(3S) print formatted output of a varargs argument list 
vlimit() vlimit(3C) control maximum system resource consumption 
vprintf() vprintf(3S) print formatted output of a varargs argument list 
vsprintf() vprintf(3S) print formatted output of a varargs argument list 
vtimes() vtimes(3C) get information about resource utilization 
xdr _accepted _reply() xdr(3N) XOR functions 
xdr _array() xdr(3N) XOR functions 
xdr _authunix _parms() xdr(3N) XOR functions 
xdr_bool() xdr(3N) XOR functions 

Sun Release 4.0 Last change: 21 October 1987 807 



INTR0(3) C LIBRARY FUNCTIONS INTR0(3) 

xdr _bytes() xdr(3N) XOR functions 
xdr _ callhdr() xdr(3N) XOR functions 
xdr _ callmsg() xdr(3N) XOR functions 
xdr_char() xdr(3N) XOR functions 
xdr _ destroy( ) xdr(3N) XOR functions 
xdr _double() xdr(3N) XOR functions 
xdr_enum() xdr(3N) XOR functions 
xdr _float() xdr(3N) XOR functions 
xdr _getpos() xdr(3N) XOR functions 
xdr _inline() xdr(3N) XOR functions 
xtom() mp(3X) multiple precision integer arithmetic 
yp_all() ypclnt(3N) Yellow Pages client interface 
yp __ bind() ypclnt(3N) Yellow Pages client interface 
yp_first() ypclnt(3N) Yellow Pages client interface 
yp _get_ default_ domain() ypclnt(3N) Yellow Pages client interface 
yp _master() ypclnt(3N) Yellow Pages client interface 
yp_match() ypclnt(3N) Yellow Pages client interface 
yp_next() ypclnt(3N) Yellow Pages client interface 
yp_order() ypclnt(3N) Yellow Pages client interface 
yp_unbind() ypclnt(3N) Yellow Pages client interface 
yp _update() ypupdate(3N) update YP information 
ypclnt() ypclnt(3N) Yellow Pages client interface 
yperr _string() ypclnt(3N) Yellow Pages client interface 
ypprot_ err() ypclnt(3N) Yellow Pages client interface 

808 Last change: 21 October 1987 Sun Release 4.0 



A64L(3) C LIBRARY FUNCTIONS A64L(3) 

NAME 
a641, 164a- convert between long integer and base-64 ASCII string 

SYNOPSIS 
long a64l(s) 
char •s; 

char •164a(l) 
long l; 

DESCRIPTION 

BUGS 

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a notation by 
which long integers can be represented by up to six characters; each character represents a "digit" in a 
radix-64 notation. 

The characters used to represent "digits" are '.' for 0, '/' for 1, 0 through 9 for 2-11, A through Z for 
12-37, and a through z for 38-63. 

a641() takes a pointer to a NULL-terminated base-64 representation and returns a corresponding long value. 
If the string pointed to by s contains more than six characters, a641() will use the first six. 

164a() takes a long argument and returns a pointer to the corresponding base-64 representation. If the 
argument is 0, 164a() returns a pointer to a NULL string. 

The value returned by 164a() is a pointer into a static buffer, the contents of which are overwritten by each 
call. 

Sun Release 4.0 Last change: 6 October 1987 809 



ABORT(3) C LIBRARY FUNCTIONS ABORT(3) 

NAME 
abort - generate a fault 

SYNOPSIS 
abort() 

DESCRIPTION 
abort() first closes all open files if possible, then sends an IOT signal to the process. This signal usually 
results in termination with a core dump, which may be used for debugging. 

It is possible for abort() to return control if SIGIOT is caught or ignored, in which case the value returned 
is that of the kill(2V) system call. 

SEE ALSO 
adb(l), exit(2), kill(2V), signal(3) 

DIAGNOSTICS 

810 

If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is produced and 
the message 'abort- core dumped' is written by the shell. 

Last change: 6 October 1987 Sun Release 4.0 



ABS(3) C LIBRARY FUNCTIONS ABS (3) 

NAME 
abs - integer absolute value 

SYNOPSIS 
abs(i) 
inti; 

DESCRIPTION 
abs() returns the absolute value of its integer operand. 

SEE ALSO 
rint(3M) for f abs() 

BUGS 
Applying the abs() function to the most negative integer generates a result which is the most negative 
integer. That is, abs(Ox80000000) returns Ox80000000 as a result. 

Sun Release 4.0 Last change: 6 October 1987 811 



ALARM(3C) COMPATIBILITY FUNCTIONS ALARM(3C) 

NAME 
alarm - schedule signal after specified time 

SYNOPSIS 
alarm(seconds) 
unsigned seconds; 

DESCRIPTION 
alarm() sends signal SIGALRM, see sigvec(2), to the invoking process in a number of seconds given by 
the argument. Unless caught or ignored, the signal terminates the process. 

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any alarm 
request is canceled. Because of scheduling delays, resumption of execution of when the signal is caught 
may be delayed an arbitrary amount. The longest specifiable delay time is 2147483647 seconds. 

The return value is the amount of time previously remaining in the alarm clock. 

SEE ALSO 
sigpause(2), sigvec(2), signal(3), sleep(3), ualarm(3), usleep(3) 

812 Last change: 6 October 1987 Sun Release 4.0 



ASSERT(3) C LIBRARY FUNCTIONS ASSERT(3) 

NAME 
assert - program verification 

SYNOPSIS 
#include <assert.h> 

assert( expression) 

DESCRIPTION 
assert() is a macro that indicates expression is expected to be true at this point in the program. It exits (see 
exit(2) with a diagnostic comment on the standard output when expression is false (0). Compiling with the 
cc(l V) option -DNDEBUG effectively deletes assert() from the program. 

SEE ALSO 
cc(l V) exit(2) 

DIAGNOSTICS 
Assertion failed: file/ line n 

f is the source file and n the source line number of the assert( ) statement. 

Sun Release 4.0 Last change: 6 October 1987 813 



AUDIT_ ARGS ( 3) C LIBRARY FUNCTIONS AUDIT_ ARGS ( 3) 

NAME 
audit_ args, audit_ text - produce text audit message 

SYNOPSIS 
#include <sys/label.h> 
#include <sys/audit.h> 

audit_args(event, argc, argv) 
int event; 
int argc; 
char **argv; 

audit_text(event, error, retval, argc, argv) 
int event; 
int error; 
int retval; 
int argc; 
char * *argv; 

DESCRIPTION 
These functions provide text interfaces to the audit(2) system call. In both calls, the event parameter 
identifies the event class of the action, and argc is the number of strings found in the vector argv. The 
error parameter is used to determine the failure or success of the audited operation. A negative value is 
always audited. A zero value is audited as a successful event. A positive value is audited as an event 
failure. The retval parameter is the return value or exit code that the invoking program will have. 

audit_args() is equivalent to audit_text() with error and retval parameters of-1. 

SEE ALSO 
audit(2) 

814 Last change: 6 October 1987 Sun Release 4.0 



BINDRESVPORT ( 3N) NETWORK FUNCTIONS 

NAME 
bindresvport- bind a socket to a privileged IP port 

SYNOPSIS 
#include <sys/types.h> 
#include <netinet/in.h> 

int bindresvport(sd, sin) 
int sd; 
struct sockaddr _in •sin; 

DESCRIPTION 

BINDRESVPORT ( 3N) 

bindresvport() is used to bind a socket descriptor to a privileged IP port, that is, a port number in the range 
0-1023. The routine returns O if it is successful, otherwise -1 is returned and errno set to reflect the cause 
of the error. This routine differs with rresvport (see rcmd(3N)) in that this works for any IP socket, 
whereas rresvport( ) only works for TCP. 

Only root can bind to a privileged port; this call will fail for any other users. 

SEE ALSO 
rcmd(3N) 

Sun Release 4.0 Last change: 22 november 1987 815 



BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3) 

NAME 
bsearch - binary search a sorted table 

SYNOPSIS 
#include <search.h> 

char •bsearch ((char*) key, (char*) base, nel, sizeof (•key), compar) 
unsigned nel; 
int (•compar)( ); 

DESCRIPTION 
bsearch() is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a pointer into 
a table indicating where a datum may be found. The table must be previously sorted in increasing order 
according to a provided comparison function. key points to a datum instance to be sought in the table. 
base points to the element at the base of the table. nel is the number of elements in the table. com.par is the 
name of the comparison function, which is called with two arguments that point to the elements being com
pared. The function must return an integer less than, equal to, or greater than zero as accordingly the first 
argument is to be considered less than, equal to, or greater than the second. 

EXAMPLE 

816 

The example below searches a table containing pointers to nodes consisting of a string and its length. The 
table is ordered alphabetically on the string in the node pointed to by each entry. 

This code fragment reads in strings and either finds the corresponding node, in which case it prints out the 
string and its length, or it prints an error message. 

Last change: 6 October 1987 Sun Release 4.0 



BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3) 

NOTES 

#include <stdio.h> 
#include <search.h> 
#define T ABSIZE 
struct node { 

1000 
I• these are stored in the table •/ 

}; 

char •string; 
int length; 

struct node table[T ABSIZE]; /• table to be searched •I 

{ 

•I 
int 

struct node •node_ptr, node; 
int node_compare( ); /• routine to compare 2 nodes •I 
char str_space[20]; I• space to read string into•/ 

node.string = str _ space; 
while (scanf(" %s", node.string)!= EOF) { 

} 

node_ptr = (struct node *)bsearch((char *)(&node), 
(char *)table, TABSIZE, 
sizeof(struct node), node_compare); 

if (node_ptr != NULL) { 
(void)printf("string = %20s, length= %d\n", 

node _ptr->string, node _ptr->length); 
} else { 

(void)printf("not found: %s\n", node.string); 
} 

This routine compares two nodes based on an 
alphabetical ordering of the string field. 

node_ compare(node1, node2) 
struct node •nodel, •node2; 
{ 

return strcmp(nodel->string, node2->string); 
} 

The pointers to the key and the element at the base of the table should be of type pointer-to-element, and 
cast to type pointer-to-character. 

The comparison function need not compare every byte, so arbitrary data may be contained in the elements 
in addition to the values being compared. 

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to
element. 

SEE ALSO 
hsearch(3), lsearch(3), qsort(3), tsearch(3) 

Sun Release 4.0 Last change: 6 October 1987 817 



BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3) 

DIAGNOSTICS 
A NULL pointer is returned if the key cannot be found in the table. 

818 Last change: 6 October 1987 Sun Release 4.0 



BSTRING(3) C LIBRARY FUNCTIONS BSTRING(3) 

NAME 
bstring, bcopy, hemp, bzero, ffs - bit and byte string operations 

SYNOPSIS 
bcopy(bl, b2, length) 
char •bl, •b2; 
int length; 

int bcmp(bl, b2, length) 
char •bl, •b2; 
int length; 

bzero(b, length) 
char •b; 
int length; 

int ffs(i) 
inti; 

DESCRIPTION 
The functions bcopy, hemp, and bzero() operate on variable length strings of bytes. They do not check 
for NULL bytes as the routines in string(3) do. 

bcopy() copies length bytes from string bl to the string b2. Overlapping strings are handled correctly. 

hemp() compares byte string bl against byte string b2, returning zero if they are identical, non-zero other
wise. Both strings are assumed to be length bytes long. hemp() of length zero bytes always returns zero. 

bzero places length O bytes in the string b. 

ffs finds the first bit set in the argument passed it and returns the index of that bit Bits are numbered start
ing at 1 from the right A return value of zero indicates that the value passed is zero. 

CAVEAT 
The hemp() and hcopy() routines take parameters backwards from strcmp() and strcpy. 

SEE ALSO 
string(3) 

Sun Release 4.0 Last change: 23 November 1987 819 



BYTEORDER ( 3N) NE1WORK FUNCTIONS BYTEORDER ( 3N) 

NAME 
byteorder, htonl, htons, ntohl, ntohs - convert values between host and network byte order 

SYNOPSIS 
#include <sys/types.h> 
#include <netinet/in.h> 

netlong = htonl(hostlong); 
u _long netlong, hostlong; 

netshort = htons(bostshort); 
u _ short netshort, hostshort; 

hostlong = ntohl(netlong); 
u _ long hostlong, netlong; 

hostshort = ntohs(netshort); 
u _ short hostshort, netshort; 

DESCRIPTION 
These routines convert 16 and 32 bit quantities between network byte order and host byte order. On Sun-2, 
Sun-3 and Sun-4 systems, these routines are defined as NULL macros in the include file <netinet/in.h>. On 
Sun386i systems, these routines are functional since its host byte order is different from network byte 
order. 

These routines are most often used in conjunction with Internet addresses and ports as returned by 
gethostent(3N) and getservent(3N). 

SEE ALSO 
gethostent(3N), getservent(3N) 

820 Last change: 18 February 1988 Sun Release 4.0 



CLOCK(3C) COMPATIBILITY FUNCTIONS CLOCK(3C) 

NAME 
clock - report CPU time used 

SYNOPSIS 
long clock ( ) 

DESCRIPTION 

clock() returns the amount of CPU time (in microseconds) used since the first call to clock. The time 
reported is the sum of the user and system times of the calling process and its terminated child processes 
for which it has executed wait(2) or system(3). 

The resolution of the clock is 16.667 milliseconds. 

SEE ALSO 

BUGS 

wait(2), system(3), times(3C), times(3V) 

The value returned by clock() is defined in microseconds for compatibility with systems that have CPU 
clocks with much higher resolution. Because of this, the value returned will wrap around after accumulat
ing only 2147 seconds of CPU time (about 36 minutes). 

Sun Release 4.0 Last change: 6 October 1987 821 



CRYPT(3) C LIBRARY FUNCTIONS CRYPT(3) 

NAME 
crypt, _ crypt, setkey, encrypt - password and data encryption 

SYNOPSIS 
char •crypt(key, salt) 
char •key, •salt; 

char • _ crypt(key, salt) 
char •key, •salt; 

setkey(key) 
char •key; 

encrypt(block, edflag) 
char •block; 

DESCRIPTION 
crypt() is the password encryption routine, based on the NBS Data Encryption Standard, with variations 
intended (among other things) to frustrate use of hardware implementations of the DES for key search. 

The first argument to crypt() is normally a user's typed password. The second is a 2-character string 
chosen from the set [a-zA-Z0-91]. Unless it starts with '##' or'#$', the salt string is used to perturb the 
DES algorithm in one of 4096 different ways, after which the password is used as the key to encrypt repeat
edly a constant string. The returned value points to the encrypted password, in the same alphabet as the 
salt. The first two characters are the salt itself. 

If the salt string starts with '##', pwdauth(3) is called. If pwdauth returns TRUE, the salt is returned from 
crypt. Otherwise, NULL is returned. If the salt string starts with'#$', grpauth (see pwaudth(3)) is called. 
If grpauth returns TRUE, the salt is returned from crypt. Otherwise, NULL is returned. If there is a valid 
reason not to have this authentication happen, calling _ crypt avoids authentication. 

The setkey and encrypt entries provide (rather primitive) access to the DES algorithm. The argument of set
key is a character array of length 64 containing only the characters with numerical value O and 1. If this 
string is divided into groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which is 
set into the machine. This is the key that will be used with the above mentioned algorithm to encrypt or 
decrypt the string block with the function encrypt. 

The argument to the encrypt entry is a character array of length 64 containing only the characters with 
numerical value O and 1. The argument array is modified in place to a similar array representing the bits of 
the argument after having been subjected to the DES algorithm using the key set by setkey. If edflag is zero, 
the argument is encrypted; if non-zero, it is decrypted. 

SEE ALSO 
login(l}, passwd(l}, getpass(3}, pwdauth(3}, passwd(5) 

BUGS 
The return value points to static data whose content is overwritten by each call. 

822 Last change: 6 October 1987 Sun Release 4.0 



CTERMID ( 3S) STANDARD I/0 FUNCTIONS CTERMID ( 3S) 

NAME 
ctermid - generate filename for terminal 

SYNOPSIS 
#include <Stdio.h> 
char •ctermid (s) 
char •s; 

DESCRIPTION 

NOTES 

ctermid() generates the pathname of the controlling terminal for the current process, and stores it in a 
string. 

Ifs is a NULL pointer, the string is stored in an internal static area, the contents of which are overwritten at 
the next call to ctermid, and the address of which is returned. Otherwise, s is assumed to point to a charac
ter array of at least I_ctermid elements; the path name is placed in this array and the value of sis returned. 
The constant I ctermid is defined in the <stdio.h> header file. 

The difference between ctermid() and ttyname(3) is that ttyname() must be handed a file descriptor and 
returns the actual name of the terminal associated with that file descriptor, while ctermid() returns a string 
(/dev/tty) that will refer to the terminal if used as a file name. Thus ttyname() is useful only if the process 
already has at least one file open to a terminal. ctermid() is useful largely for making code portable to 
(non-UNIX) systems where the current terminal is referred to by a name other than /dev/tty. 

SEE ALSO 
ttyname(3) 

Sun Release 4.0 Last change: 6 October 1987 823 



CTIME(3) C LIBRARY FUNCTIONS CTIME(3) 

NAME 
ctime, localtime, gmtime, asctime, dysize, timelocal, timegm, tzset, tzsetwall - convert date and time 

SYNOPSIS 
#include <time.h> 

struct tm *localtime(clock) 
long *clock; 

struct tm *gmtime(clock) 
long *clock; 

char *asctime(tm) 
struct tm *tm; 

char *ctime(clock) 
long *clock; 

int dysize(y) 
int y; 

time _t timelocal(tm) 
struct tm *tm; 

time_t timegm(tm) 
struct tm *tm; 

void tzset( ) 

void tzsetwall() 

DESCRIPTION 

824 

localtime() and gm time() return pointers to structures containing the time, broken down into various com
ponents of that time represented in a particular time zone. localtime() breaks down a time specified by the 
clock() argument, correcting for the time zone and any time zone adjustments (such as Daylight Savings 
Time). Before doing so, localtime() calls tzset (if tzset has not been called in the current process). 
gm time() breaks down a time specified by the clock() argument into GMT, which is the time the system 
uses. 

asctime converts a time value contained in a "tm" structure to a 26-character string of the form: 

Sun Sep 16 01:03:52 1973\n\0 

Each field has a constant width. asctime returns a pointer to the string. 

ctime() converts a long integer, pointed to by clock, to a 26-character string of the form produced by asc
time. It first breaks down clock() to a struct tm by calling localtime( ), and then calls asctime to convert 
that struct tm to a string. 

dysize returns the number of days in the argument year, either 365 or 366. 

timelocal() and timegm() convert the time specified by the tm argument to a time value that represents 
that time expressed as the number of seconds since Jan. 1, 1970, 00:00, Greenwich Mean Time. timelo
cal() converts a struct tm that represents local time, correcting for the time zone and any time zone adjust
ments (such as Daylight Savings Time). Before doing so, timelocal{) calls tzset (if tzset has not been 
called in the current process). timegm() converts a struct tm that represents GMT. 

tzset uses the value of the environment variable TZ to set time conversion information used by localtime( ). 
If TZ is absent from the environment, the best available approximation to local wall clock time is used by 
localtime( ). If TZ appears in the environment but its value is a NULL string, Greenwich Mean Time is 
used; if TZ appears and begins with a slash, it is used as the absolute pathname of the tzfile-format (see 
tzfile(5)) file from which to read the time conversion information; if TZ appears and begins with a character 
other than a slash, it is used as a pathname relative to a system time conversion information directory. 

Last change: 6 October 1987 Sun Release 4.0 



CTIME(3) C LIBRARY FUNCTIONS CTIME(3) 

FILES 

tzsetwall sets things up so that localtime() returns the best available approximation of local wall clock 
time. 

Declarations of all the functions and externals, and the "tm" structure, are in the <time.h> header file. The 
structure ( of type) struct tm includes the following fields: 

int tm_sec; I* seconds (0 · 59) *I 
int tm _min; I* minutes (0 - 59) *I 
int tm _ hour; I* hours (0 - 23) *I 
int tm _ mday; I* day of month (1 - 31) *I 
int tm _ mon; I* month of year (0 - 11) *I 
int tm _year; I* year - 1900 *I 
int tm _ wday; I* day of week (Sunday = 0) *I 
int tm _yday; I* day of year (0 - 365) *I 
int tm _isdst; I* 1 if DST in effect *I 
char *tm _ zone; I* abbreviation of timezone name *I 
long tm _gmtoff; I* offset from GMT in seconds *I 

tm _isdst is non-zero if Daylight Savings Time is in effect. tm _zone points to a string that is the name used 
for the local time zone at the time being converted. tm _gmtoff is the offset (in seconds) of the time 
represented from GMT, with positive values indicating East of Greenwich. 

/usr/share/Iib/zoneinfo standard time conversion information directory 
/usr/share/lib/zoneinfo/localtime 

local time zone file 
SEE ALSO 

BUGS 
gettimeofday(2), ctime(3V), getenv(3), time(3C), environ(SV), tzfile(S) 

The return values point to static data, whose contents are overwritten by each call. The tm zone field of a 
returned struct tm points to a static array of characters, which will also be overwritten at the next call (and 
by calls to tzset or tzsetwall). 

Sun Release 4.0 Last change: 6 October 1987 825 



CTYPE(3) C LIBRARY FUNCTIONS CTYPE(3) 

NAME 
ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii, isgraph, 
toupper, tolower, toascii - character classification and conversion macros and functions 

SYNOPSIS 
#include <ctype.h> 

isalpha(c) 

CHARACTER CLASSIFICATION MACROS 
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero 
for true, zero for false. isascii is defined on all integer values; the rest are defined only where isascii(c) is 
true and on the single non-ASCII value EOF (see stdio(3S)). 

isalpha(c) c is a letter 

isupper(c) 

islower(c) 

isdigit(c) 

isxdigit(c) 

isalnum(c) 

isspace(c) 

ispunct(c) 

isprint(c) 

iscntrl(c) 

isascii(c) 

c is an upper case letter 

c is a lower case letter 

C is a digit [0-9]. 

c is a hexadecimal digit [0-9], [A-F], or [a-f]. 

c is an alphanumeric character, that is, c is a letter or a digit 

c is a space, tab, carriage return, newline, vertical tab, or formfeed 

c is a punctuation character (neither control nor alphanumeric) 

c is a printing character, code 040(8) (space) through 0176 (tilde) 

c is a delete character (0177) or ordinary control character (less than 040). 

c is an ASCII character, code less than 0200 

isgraph(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde). 

CHARACTER CONVERSION MACROS 
These macros perform simple conversions on single characters. 

toupper(c) 

tolower(c) 

toascii(c) 

converts c to its upper-case equivalent. Note: this only works where c is known to 
be a lower-case character to start with (presumably checked using islower). 

converts c to its lower-case equivalent. Note: this only works where c is known to 
be a upper-case character to start with (presumably checked using isupper). 

masks c with the correct value so that c is guaranteed to be an ASCII character in 
the range O through Ox7f. 

DIAGNOSTICS 
If the argument to any of these macros is not in the domain of the function, the result is undefined. 

SEE ALSO 
ctype(3V), stdio(3S}, ascii(7) 

826 Last change: 6 October 1987 Sun Release 4.0 



CURSES(3X) MISCELLANEOUS LIBRARY FUNCTIONS 

NAME 
curses - cursor addressing and screen display library 

SYNOPSIS 
cc [flags ] files -lcurses -ltermcap [ libraries ] 

DESCRIPTION 

CURSES(3X) 

These routines give the user a method of updating screens with reasonable optimization. They keep an 
image of the current screen, and the user sets up an image of a new one. Then the refresh() tells the rou
tines to make the current screen look like the new one. In order to initialize the routines, the routine 
initscr() must be called before any of the other routines that deal with windows and screens are used. The 
routine end win() should be called before exiting. 

SEE ALSO 
tic(8V), ioctl(2), curses(3V), getenv(3), tty(4), terminfo(SV), term(SV), termcap(S) 

Programming Utilities and Libraries 

Curses Functions 
addch(ch) 
addstr(str) 
box( win,vert,hor) 
cbreak() 
clear() 
clearok(scr ,boolf) 
clrtobot() 
clrtoeol() 
delch() 
deleteln() 
delwin(win) 
echo() 
endwin() 
erase() 
ffusok(win,boo/f) 
getch() 
getcap(name) 
getstr(str) 
gettmode() 
getyx( win,y ,x) 
inch() 
initscr() 
insch(c) 
insertln() 
leaveok( win,boo/f) 
longname(termbu.f.name) 
move(y,.x) 
m vcur(lasty ,lastx,newy ,newx) 
newwin (lines ,cols ,be gin _y ,be gin_ x) 
nl() 
nocbreak() 
noecho() 
nonl() 
noraw() 
overlay(winl ,win2) 
overwrite(winl ,win2) 
printw(fmt,argl ,arg2, .. . ) 
raw() 

add a character to stdscr 
add a string to stdscr 
draw a box around a window 
set cbreak mode 
clear stdscr 
set clear flag for scr 
clear to bottom on stdscr 
clear to end of line on stdscr 
delete a character 
delete a line 
delete win 
set echo mode 
end window modes 
erase stdscr 
set flush-on-refresh flag for win 
get a char through stdscr 
get terminal capability name 
get a string through stdscr 
get tty modes 
get (y,x) co-ordinates 
get char at current (y,.x) co-ordinates 
initialize screens 
insert a char 
insert a line 
set leave flag for win 
get long name from termbuf 
move to (y ,x) on stdscr 
actually move cursor 
create a new window 
set NEWLINE mapping 
unset cbreak mode 
unset echo mode 
unset NEWLINE mapping 
unset raw mode 
overlay winl on win2 
overwrite winl on top of win2 
printf on stdscr 
set raw mode 

Sun Release 4.0 Last change: 25 September 1987 827 



CURSES(3X) MISCELLANEOUS LIBRARY FUNCTIONS 

828 

refresh() 
resetty() 
savetty() 
scanw(fmt,argl ,arg2, .. . ) 
scroll( win) 
scrollok( win,boo/f) 
setterm(name) 
standend() 
standout() 
subwin(win,lines,cols,begin _y,begin _x) 
touchline(win,y,sx,ex) 
touchoverlap(winJ ,win2) 
touchwin( win) 
unctrl(ch) 
waddch(win,ch) 
waddstr(win,str) 
wclear( win) 
wclrtobot( win) 
wclrtoeol( win) 
wdelch ( win,c) 
wdeleteln( win) 
werase( win) 
wgetch( win) 
wgetstr (win,str) 
winch(win) 
winsch (win,c) 
winsertln( win) 
wmove( win,y ,x) 
wprintw(winfmt,argl ,arg2, .. . ) 
wrefresh( win) 
wscanw( win/mt ,ar gl ,ar g2, ... ) 
wstandend( win) 
wstandout( win) 

make current screen look like stdscr 
reset tty flags to stored value 
stored current tty flags 
scanf through stdscr 
scroll win one line 
set scroll flag 
set term variables for name 
end standout mode 
start standout mode 
create a subwindow 
mark line y sx through sy as changed 
mark overlap of winl on win2 as changed 
''change'' all of win 
printable version of ch 
add char to win 
add string to win 
clear win 
clear to bottom of win 
clear to end of line on win 
delete char from win 
delete line from win 
erase win 
get a char through win 
get a string through win 
get char at current (y,x) in win 
insert character into win 
insert line into win 
set current (y ,x) co-ordinates on win 
printf on win 
make screen look like win 
scanf through win 
end standout mode on win 
start standout mode on win 

Last change: 25 September 1987 

CURSES(3X) 

Sun Release 4.0 



CUSERID ( 3S) ST AND ARD 1/0 FUNCTIONS 

NAME 
cuserid - get character login name of the user 

SYNOPSIS 
#include <stdio.h> 

char •cuserid (s) 
char •s; 

DESCRIPTION 

CUSERID ( 3S) 

cuserid() generates a character-string representation of the login name that the owner of the current pro
cess is logged in under. Ifs is a NULL pointer, this representation is generated in an internal static area, the 
address of which is returned. Otherwise, sis assumed to point to an array of at least I_cuserid characters; 
the representation is left in this array. The constant l_cuserid is defined in the <Stdio.h> header file. 

SEE ALSO 
getlogin(3 ), getpwent(3) 

DIAGNOSTICS 
If the login name cannot be found, cuserid() returns a NULL pointer; ifs is not a NULL pointer, a NULL 
character ('\0') will be placed at s[O]. 

Sun Release 4.0 Last change: 6 October 1987 829 



DBM(3X) MISCELLANEOUS LIBRARY FUNCTIONS DBM(3X) 

NAME 
dbm, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey - data base subroutines 

SYNOPSIS 
#include <dbm.h> 

typedef struct { 
char •dptr; 
int dsize; 

} datum; 

dbminit(file) 
char •file; 

dbmclose() 

datum fetch(key) 
datum key; 

store(key, content) 
datum key, content; 

delete(key) 
datum key; 

datum firstkey() 

datum nextkey(key) 
datum key; 

DESCRIPTION 
Note: the dbm() library has been superceded by ndbm(3), and is now implemented using ndbm. 

These functions maintain key/content pairs in a data base. The functions will handle very large (a billion 
blocks) databases and will access a keyed item in one or two file system accesses. The functions are 
obtained with the loader option -ldbm. 

keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to 
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two 
files. One file is a directory containing a bit map and has .dir as its suffix. The second file contains all data 
and has .pag as its suffix. 

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files file .dir 
and file .pag must exist. (An empty database is created by creating zero-length .dir and .pag files.) 

A database may be closed by calling dbmclose. You must close a database before opening a new one. 

Once open, the data stored under a key is accessed by fetch( ) and data is placed under a key by store. A 
key (and its associated contents) is deleted by delete. A linear pass through all keys in a database may be 
made, in an (apparently) random order, by use of firstkey() and nextkey. firstkey() will return the first 
key in the database. With any key nextkey() will return the next key in the database. This code will 
traverse the data base: 

for (key= firstkey( ); key.dptr != NULL; key= nextkey(key)) 

SEE ALSO 
ndbm(3) 

DIAGNOSTICS 

BUGS 

830 

All functions that return an int indicate errors with negative values. A zero return indicates no error. Rou
tines that return a datum indicate errors with a NULL (0) dptr. 

The .pag file will contain holes so that its apparent size is about four times its actual content. Older ver
sions of the UNIX operating system may create real file blocks for these holes when touched. These files 

Last change: 24 November 1987 Sun Release 4.0 



DBM(3X) MISCELLANEOUS LIBRARY FUNCTIONS DBM(3X) 

cannot be copied by normal means (cp(l), cat(l V), tp(5), tar(l), ar(l)) without filling in the holes. 

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes). 
Moreover all key/content pairs that hash together must fit on a single block. store() will return an error in 
the event that a disk block fills with inseparable data. 

delete() does not physically reclaim file space, although it does make it available for reuse. 

The order of keys presented by firstkey() and nextkey() depends on a hashing function, not on anything 
interesting. 

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is risky. 

Sun Release 4 .0 Last change: 24 November 1987 831 



DECIMAL_TO_FLOATING(3) C LIBRARY FUNCTIONS DECIMAL_TO_FLOATING(3) 

NAME 
decimal_to_single, decimal_to_double, decimal_to_extended - convert decimal record to floating-point 
value 

SYNOPSIS 
#include <floatingpoint.h> 

void decimal_to_single(px, pm, pd, ps) 
single •px; 
decimal_ mode •pm; 
decimal_ record •pd; 
fp _exception_ field_ type •ps; 

void decimal_to_double(px, pm, pd, ps) 
double •px; 
decimal_ mode •pm; 
decimal_record •pd; 
fp _exception_ field_ type •ps; 

void decimal_ to_ extended(px, pm, pd, ps) 
extended •px; 
decimal_ mode •pm; 
decimal _record •pd; 
fp _exception_ field_ type • ps; 

DESCRIPTION 
The decimal_to_floating() functions convert the decimal record at *pd into a floating-point value at *px, 
observing the modes specified in *pm and setting exceptions in *ps. If there are no IEEE exceptions, *ps 
will be zero. 

pd->sign and pd->/pclass are always taken into account. pd->exponent and pd->ds are used when pd
>/pclass is fp _normal or fp _subnormal. In these cases pd->ds must contain one or more ascii digits fol
lowed by a NULL. *px is set to a correctly rounded approximation to 

(pd->sign)• (pd->ds)• 10• •(pd->exponent) 

Thus if pd->exponent == -2 and pd->ds == "1234", *px will get 12.34 rounded to storage precision. pd
>ds cannot have more than DECIMAL_STRING_LENGTH-1 significant digits because one character is 
used to terminate the string with a NULL. If pd->more != 0 on input then additional nonzero digits follow 
those inpd->ds;fp _inexact is set accordingly on output in *ps. 

*px is correctly rounded according to the IEEE rounding modes in pm->rd. *ps is set to contain 
fp _inexact, fp _underflow, or fp _ overflow if any of these arise. 

pd->ndigits, pm->d/, and pm->ndigits are not used. 

strtod(3), scanf(3), fscanf(3), and sscanf(3) all use decimal_to_double. 

SEE ALSO 
scanf(3S), scanf(3V), strtod(3) 

832 Last change: 23 October 1987 Sun Release 4.0 



DES_CRYPT(3) C LIBRARY FUNCTIONS DES_CRYPT(3) 

NAME 
des_ crypt, ecb _ crypt, cbc _ crypt, des_ setparity - fast DES encryption 

SYNOPSIS 
#include <des_ crypt.h> 

int ecb_crypt(key, data, datalen, mode) 
char •key; 
char •data; 
unsigned datalen; 
unsigned mode; 

int cbc_crypt(key, data, datalen, mode, ivec) 
char •key; 
char •data; 
unsigned datalen; 
unsigned mode; 
char •ivec; 

void des_ setparity(key) 
char •key; 

DESCRIPTION 
ecb _crypt() and cbc _crypt() implement the NBS DES (Data Encryption Standard). These routines are 
faster and more general purpose than crypt(3). They also are able to utilize DES hardware if it is available. 
ecb_crypt() encrypts in ECB (Electronic Code Book) mode, which encrypts blocks of data independently. 
cbc_crypt() encrypts in CBC (Cipher Block Chaining) mode, which chains together successive blocks. 
CBC mode protects against insertions, deletions and substitutions of blocks. Also, regularities in the clear 
text will not appear in the cipher text. 

Here is how to use these routines. The first parameter, key, is the 8-byte encryption key with parity. To set 
the key's parity, which for DES is in the low bit of each byte, use des _setparity. The second parameter, 
data, contains the data to be encrypted or decrypted. The third parameter, data/en, is the length in bytes of 
data, which must be a multiple of 8. The fourth parameter, mode, is formed by OR'ing together some 
things. For the encryption direction 'or' in either DES_ENCRYPT or DES_DECRYPT. For software versus 
hardware encryption, 'or' in either DES_HW or DES_SW. If DES_HW is specified, and there is no hardware, 
then the encryption is performed in software and the routine returns DESERR _NOHWDEVICE. For 
cbc _crypt, the parameter ivec is the the 8-byte initialization vector for the chaining. It is updated to the 
next initialization vector upon return. 

SEE ALSO 
des(l), crypt(3) 

DIAGNOSTICS 
DESERR NONE No error. 
DESERR NOHWDEVICE 

DESERR HWERR 
Encryption succeeded, but done in software instead of the requested hardware. 
An error occurred in the hardware or driver. 

DESERR BADPARAM Bad parameter to routine. 

Given a result status stat, the macro DES_FAILED(stat) is false only for the first two statuses. 

RESTRICTIONS 
These routines are not available for export outside the U.S. 

Sun Release 4.0 Last change: 6 October 1987 833 



DIRECTORY ( 3) C LIBRARY FUNCTIONS DIRECTORY ( 3) 

NAME 
directory, opendir, readdir, telldir, seekdir, rewinddir, closedir- directory operations 

SYNOPSIS 
#include <sys/types.h> 
#include <dirent.h> 

DIR *opendir(filename) 
char •filename; 

struct dirent 
•readdir( dirp) 
DIR •dirp; 

long 
telldir( dirp) 
DIR •dirp; 

seekdir(dirp, loc) 
DIR •dirp; 
long loc; 

rewinddir( dirp) 
DIR *dirp; 

closedir( dirp) 
DIR •dirp; 

DESCRIPTION 
opendir() opens the directory named by filename and associates a directory stream with it opendir() 
returns a pointer to be used to identify the directory stream in subsequent operations. The pointer NULL 
is returned if filename cannot be accessed or is not a directory, or if it cannot malloc(3) enough memory to 
hold the whole thing. 

readdir() returns a pointer to the next directory entry. It returns NULL upon reaching the end of the direc
tory or detecting an invalid seekdir() operation. 

telldir() returns the current location associated with the named directory stream. 

seekdir() sets the position of the next readdir() operation on the directory stream. The new position 
reverts to the one associated with the directory stream when the telldir() operation was performed. 
Values returned by telldir() are good only for the lifetime of the DIR pointer from which they are derived. 
If the directory is closed and then reopened, the telldir() value may be invalidated due to undetected direc
tory compaction. It is safe to use a previous telldir() value immediately after a call to opendir() and 
before any calls to readdir. 

rewinddir() resets the position of the named directory stream to the beginning of the directory. 

closedir() closes the named directory stream and frees the structure associated with the DIR pointer. 

EXAMPLES 

834 

Sample code which searchs a directory for entry ''name'' is: 

dirp = opendir(" ."); 
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp)) 

if (!strcmp( dp->d _ name, name)) { 
closedir (dirp); 
return FOUND; 

} 
closedir (dirp); 
return NOT_FOUND; 

Last change: 6 October 1987 Sun Release 4.0 



DIRECTORY ( 3) C LIBRARY FUNCTIONS DIRECTORY ( 3) 

NOTES 
The directory() library routines now use a new include file, <dirent.h>. This replaces the file, 
<sys/dir.h>, used in previous releases. Furthermore, with the use of this new file, the readdir() routine 
returns directory entries whose structure is named struct dirent rather than struct direct as before. The 
file, <sys/dir.h>, is retained in the current SunOS release for purposes of backwards source code compati
bility; programs which use the directory() library and the file, <Sys/dir.h>, will continue to compile and 
run without source code modifications. However, existing programs should convert to the use of the new 
include file, <dirent.h>, as <Sys/dir .h> will be removed in a future major release. 

SEE ALSO 
close(2), lseek(2), open(2V), read(2V), getwd(3), malloc(3), dir(5) 

Sun Release 4.0 Last change: 6 October 1987 835 



DRAND48(3) C LIBRARY FUNCTIONS DRAND48(3) 

NAME 

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate uniformly dis
tributed pseudo-random numbers 

SYNOPSIS 
double drand48() 

double erand48(xsubi) 
unsigned short xsubi[3]; 

long lrand48() 

long nrand48(xsubi) 
unsigned short xsubi[3]; 

long mrand48() 

long jrand48(xsubi) 
unsigned short xsubi[3]; 

void srand48(seedval) 
long seedval; 

unsigned short •seed48(seed16v) 
unsigned short seed16v[3]; 

void lcong48(param) 
unsigned short param[7]; 

DESCRIPTION 

836 

This family of functions generates pseudo-random numbers using the well-known linear congruential algo
rithm and 48-bit integer arithmetic. 

Functions drand48() and drand48() return non-negative double-precision floating-point values uniformly 
distributed over the interval (0.0, 1.0). 

Functions drand48() and drand48() return non-negative long integers uniformly distributed over the 
interval (0, 231). 

Functions drand48() and drand48() return signed long integers uniformly distributed over the interval 
(-231, 231). 

Functions drand48, seed48, and lcong48() are initialization entry points, one of which should be invoked 
before either drand48, drand48, or drand48() is called. (Although it is not recommended practice, con
stant default initializer values will be supplied automatically if drand48, drand48, or drand48() is called 
without a prior call to an initialization entry point.) Functions drand48, drand48, and drand48() do not 
require an initialization entry point to be called first. 

All the routines work by generating a sequence of 48-bit integer values, Xi, according to the linear 
congruential formula 

Xn+l = (aXn + C )mod m n ~o. 
The parameter m = 248

; hence 48-bit integer arithmetic is pelformed. Unless lcong48() has been invoked, 
the multiplier value a and the addend value c are given by 

a = 5DEECE66D 16 = 273673163155 8 

C =B16= 13g. 

The value returned by any of the functions drand48, drand48, drand48, drand48, drand48, or 
drand48() is computed by first generating the next 48-bit Xi in the sequence. Then the appropriate 
number of bits, according to the type of data item to be returned, are copied from the high-order (leftmost) 
bits of Xi and transformed into the returned value. 

Last change: 6 October 1987 Sun Release 4.0 



DRAND48(3) C LIBRARY FUNCTIONS DRAND48(3) 

The functions drand48, drand48, and drand48() store the last 48-bit X; generated in an internal buffer; 
that is why they must be initialized prior to being invoked The functions drand48, drand48, and 
drand48() require the calling program to provide storage for the successive X; values in the array specified 
as an argument when the functions are invoked. That is why these routines do not have to be initialized; 
the calling program merely has to place the desired initial value of X; into the array and pass it as an argu
ment. By using different arguments, functions drand48, drand48, and drand48() allow separate modules 
of a large program to generate several independent streams of pseudo-random numbers, that is, the 
sequence of numbers in each stream will not depend upon how many times the routines have been called to 
generate numbers for the other streams. 

The initializer function drand48() sets the high-order 32 bits of X; to the 32 bits contained in its argument. 
The low-order 16 bits of X; are set to the arbitrary value 330E16• 

The initializer function seed48() sets the value of X; to the 48-bit value specified in the argument array. In 
addition, the previous value of X; is copied into a 48-bit internal buffer, used only by seed48, and a pointer 
to this buffer is the value returned by seed48. This returned pointer, which can just be ignored if not 
needed, is useful if a program is to be restarted from a given point at some future time - use the pointer to 
get at and store the last X; value, and then use this value to reinitialize via seed48() when the program is 
restarted. 

The initialization function lcong48() allows the user to specify the initial X;, the multiplier value a, and the 
addend value c. Argument array elements param [0-2] specify X;, param [3-5] specify the multiplier a, and 
param[6] specifies the 16-bit addend c. After lcong48() has been called, a subsequent call to either 
drand48() or seed48() will restore the "standard" multiplier and addend values, a and c, specified on the 
previous page. 

SEE ALSO 
rand(3C) 

Sun Release 4.0 Last change: 6 October 1987 837 



ECONVERT ( 3) C LIBRARY FUNCTIONS ECONVERT ( 3 ) 

NAME 

econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert, ecvt, fcvt, gcvt- output conversion 

SYNOPSIS 
#include dfoatingpoint.h> 

char *econvert(value, ndigit, decpt, sign, buf) 
double value; 
int ndigit, *decpt, *sign; 
char *buf; 

char *fconvert(value, ndigit, decpt, sign, buf) 
double value; 
int ndigit, *decpt, *sign; 
char *buf; 

char *gconvert(value, ndigit, trailing, buf) 
double value; 
int ndigit; 
int trailing; 
char *buf; 

char *seconvert(value, ndigit, decpt, sign, buf) 
single *value; 
int ndigit, *decpt, *sign; 
char *buf; 

char *sfconvert(value, ndigit, decpt, sign, but) 
single *value; 
int ndigit, *decpt, *sign; 
char *buf; 

char *sgconvert(value, ndigit, trailing, but) 
single *value; 
int ndigit; 
int trailing; 
char *buf; 

char *ecvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *fcvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *gcvt(value, ndigit, but) 
double value; 
int ndigit; 
char *buf'; 

DESCRIPTION 

838 

econvert() converts the value to a NULL-terminated string of ndigit ASCII digits in buf and returns a 
pointer to buf. buf should contain at least ndigit + 1 characters. The position of the decimal point relative to 
the beginning of the string is stored indirectly through decpt. Thus buf == "314" and *decpt == l 
corresponds to the numerical value 3.14, while buf == "314" and *decpt == -1 corresponds to the numeri
cal value .0314. If the sign of the result is negative, the word pointed to by sign is nonzero; otherwise it is 
zero. The least significant digit is rounded. 

Last change: 21 January 1988 Sun Release 4.0 



ECONVERT ( 3 ) C LIBRARY FUNCTIONS ECONVER T ( 3 ) 

fconvert is identical to econvert, except that the correct digit has been rounded for Fortran F-format output 
with ndigit digits to the right of the decimal point. ndigit can be negative to indicate rounding to the left of 
the decimal point. The return value is a pointer to buf. buf should contain at least 3IO+max(O,ndigit) char
acters to accomodate any double-precision value. 

gconvert() converts the value to a NULL-terminated ASCII string in buf and returns a pointer to buf. It pro
duces ndigit significant digits in fixed-decimal format, like Fortran F, if possible, and otherwise in floating
decimal format, like Fortran E; in either case buf is ready for printing, with sign and exponent. The result 
corresponds to that obtained by 

(void) sprintf(buf," %gw.n" ,value); 
If trailing= 0, trailing zeros and a trailing point are suppressed. If trailing!= 0, trailing zeros and a trailing 
point are retained. 

seconvert, sf convert, and sgconvert() are single-precision versions of these functions, and are more 
efficient than the corresponding double-precision versions. A pointer rather than the value itself is passed 
to avoid C's usual conversion of single-precision arguments to double. 

ecvt() and fcvt() are obsolete versions of econvert() and fconvert() that create a string in a static data 
area, overwritten by each call, and return values that point to that static data. These functions are therefore 
not reentrant. 

gcvt() is an obsolete version of gconvert() that always suppresses trailing zeros and point. 

IEEE Infinities and NaNs are treated similarly by these functions. "NaN" is returned for NaN, and "Inf" 
or "Infinity" for Infinity. The longer form is produced when ndigit >= 8. 

SEE ALSO 
printf(3S) 

Sun Release 4.0 Last change: 21 January 1988 839 



END(3) C LIBRARY FUNCTIONS END(3) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern end; 
extern etext; 
extern edata; 

DESCRIPTION 
These names refer neither to routines nor to locations with interesting contents. The address of etext is the 
first address above the program text, edata above the initialized data region, and end() above the uninitial
ized data region. 

When execution begins, the program break (the first location beyond the data) coincides with end, but it is 
reset by the routines brk(2), malloc(3), standard input/output (stdio(3S) and stdio(3V)), the profile (-p) 
option of cc( 1 V), and so on. Thus, the current value of the program break should be determined by 
sbrk(O) (see brk(2)). 

SEE ALSO 
cc(l V), brk(2), malloc(3), stdio(3S), stdio(3V) 

840 Last change: 30 January 1988 Sun Release 4.0 



ETHERS(3N) NETWORK FUNCTIONS ETHERS(3N) 

NAME 
ethers, ether_ ntoa, ether_ aton, ether _ntohost, ether_ hostton, ether_ line - Ethernet address mapping opera-
tions 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <net/if.h> 
#include <netinet/in.h> 
#include <netinet/if _ ether .h> 

char* 
ether_ ntoa(e) 

struct ether_ addr •e; 

struct ether addr * 
ether_ aton(s) 

char •s; 

ether_ ntohost(hostname, e) 
char •hostname; 
struct ether _addr •e; 

ether_ hostton(hostname, e) 
char •hostname; 
struct etber _addr •e; 

ether _line(I, e, hostname) 
char •I; 
struct ether_ addr •e; 
char •hostname; 

DESCRIPTION 

FILES 

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations or their 
corresponding host names, and vice versa. 

The function ether_ ntoa( ) converts a 48 bit Ethernet number pointed to by e to its standard ACSII 
representation; it returns a pointer to the ASCII string. The representation is of the form: x:.x:.x:.x:x:x where 
x is a hexadecimal number between O and ff. The function ether_ a ton() converts an ASCII string in the 
standard representation back to a 48 bit Ethernet number; the function returns NULL if the string cannot be 
scanned successfully. 

The function ether_ ntohost() maps an Ethernet number (pointed to by e) to its associated hostname. The 
string pointed to by hostname must be long enough to hold the hostname and a NULL character. The func
tion returns zero upon success and non-zero upon failure. Inversely, the function ether_ hostton() maps a 
hostname string to its corresponding Ethernet number; the function modifies the Ethernet number pointed 
to by e. The function also returns zero upon success and non-zero upon failure. 

The function ether _line() scans a line (pointed to by /) and sets the hostname and the Ethernet number 
(pointed to by e ). The string pointed to by hostname must be long enough to hold the hostname and a 
NULL character. The function returns zero upon success and non-zero upon failure. The format of the 
scanned line is described by ethers(5). 

/etc/ethers 

SEE ALSO 
ethers(5) 

(or the Yellow Pages maps ethers.byaddr and ethers.byname) 

Sun Release 4.0 Last change: 16 February 1988 841 



EXECL(3) C LIBRARY FUNCTIONS EXECL(3) 

NAME 
execl, execv, execle, execlp, execvp - execute a file 

SYNOPSIS 
execl(name, argO, argl, ... , argn, (char •)0) 
char •name, •argO, •argl, ... , •argn; 

execv(name,argv) 
char •name, •argv[ ]; 

execle(name, argO, argl, ... , argn, ( char * )0, envp) 
char •name, •argO, •argl, ... , •argn, •envp[ ]; 

execlp(name, argO, argl, ... , argn, (char •)0) 
char •name, •argO, •argl, ... , •argn; 

execvp(name,argv) 
char •name, •argv[ ]; 

extern char ••environ; 

DESCRIPTION 

842 

These routines provide various interfaces to the execve() system call. Refer to execve(2) for a description 
of their properties; only brief descriptions are provided here. 

exec in all its forms overlays the calling process with the named file, then transfers to the entry point of the 
core image of the file. There can be no return from a successful exec; the calling core image is lost 

The filename argument is a pointer to the name of the file to be executed. The pointers arg [0], arg [1] ... 
address NULL-terminated strings. Conventionally arg [0] is the name of the file. 

Two interfaces are available. execl( ) is useful when a known file with known arguments is being called; 
the arguments to execl() are the character strings constituting the file and the arguments; the first argument 
is conventionally the same as the file name (or its last component). A (char •)O argument must end the 
argument list. The cast to type char* insures portability. 

The execv( ) version is useful when the number of arguments is unknown in advance; the arguments to 
execv() are the name of the file to be executed and a vector of strings containing the arguments. The last 
argument string must be followed by a O pointer. 

When a C program is executed, it is called as follows: 

main(argc,argv,envp) 
int argc; 
char ••argv, ••envp; 

where argc is the argument count and argv is an array of character pointers to the arguments themselves. 
As indicated,· argc is conventionally at least one and the first member of the array points to a string contain
ing the name of the file. 

argv is directly usable in another execv() because argv [argc] is 0. 

envp is a pointer to an array of strings that constitute the environment of the process. Each string consists 
of a name, an '=', and a NULL-terminated value. The array of pointers is terminated by a NULL pointer. 
The shell sh( 1) passes an environment entry for each global shell variable defined when the program is 
called. See environ(5V) for some conventionally used names. The C run-time start-off routine places a 
copy of envp in the global cell environ, which is used by execv() and execl() to pass the environment to 
any subprograms executed by the current program. 

execlp() and execvp( ) are called with the same arguments as execl() and execv, but duplicate the shell's 
actions in searching for an executable file in a list of directories. The directory list is obtained from the 
environment. 

Last change: 18 February 1988 Sun Release 4.0 



EXECL(3) 

FILES 
/usr/bin/sh 

SEE ALSO 

C LIBRARY FUNCTIONS 

shell, invoked if command file found by execlp( ) or execvp() 

csh(l), sh(l), execve(2), fork(2), a.out(5), environ(SV) 

Programming Utilities and Libraries 

DIAGNOSTICS 

EXECL(3) 

If the file cannot be found, if it is not executable, if it does not start with a valid magic number (see 
a.out(5)), if maximum memory is exceeded, or if the arguments require too much space, a return consti
tutes the diagnostic; the return value is -1. Even for the super-user, at least one of the execute-permission 
bits must be set for a file to be executed. 

Sun Release 4.0 Last change: 18 February 1988 843 



EXIT(3) C LIBRARY FUNCTIONS EXIT(3) 

NAME 
exit - terminate a process after performing cleanup 

SYNOPSIS 
exit(status) 
int status; 

DESCRIPTION 
exit() terminates a process by_ calling exit(2) after calling any termination handlers named by calls to 
on_ exit. Normally, this is just the Standard 1/0 library function_ cleanup. exit() never returns. 

SEE ALSO 
exit(2), intro(3S), on_ exit(3) 

844 Last change: 6 October 1987 Sun Release 4.0 



EXPORTENT ( 3) C LIBRARY FUNCTIONS EXPORTENT ( 3) 

NAME 
exportent, getexportent, setexportent, addexportent, remexportent, endexportent, getexportopt - get 
exported file system information 

SYNOPSIS 
#include <stdio.h> 
#include <exportent.h> 
FILE •setexportent() 
struct exportent •getexportent(filep) 

FILE •filep; 
int addexportent(filep, dirname, options) 

FILE •filep; 
char •dirname; 
char •options; 

int remexportent(filep, dirname) 
FILE •filep; 
char •dirname; 

char •getexportopt(xent, opt) 
struct exportent •xent; 
char •opt; 

void endexportent(filep) 
FILE •filep; 

DESCRIPTION 

FILES 

These routines access the exported filesystem information in /etc/xtab. 

setexportent( ) opens the export information file and returns a file pointer to use with getexportent, 
addexportent, remexportent, and endexportent. getexportent() reads the next line from filep and 
returns a pointer to an object with the following structure containing the broken-out fields of a line in the 
file, /etdxtab The fields have meanings described in exports(5). 

#define ACCESS_ OPT "access" I• machines that can mount fs •/ 
#define ROOT_ OPT "root" I• machines with root access offs •/ 
#define RO_ OPT "ro" I• export read-only •I 
#define ANON_OPT "anon" I• uid for anonymous requests •I 
#define SECURE_OPT "secure" I• require secure NFS for access •I 
#define WINDOW_ OPT "window" I• expiration window for credential •I 
struct exportent { 

}; 

char •xent_dirname; 
char •xent_options; 

I• directory (or file) to export •I 
I• options, as above •/ 

addexportent() adds the ex portent() to the end of the open file filep. It returns O if successful and -1 on 
failure. remexportent() removes the indicated entry from the list. It also returns O on success and -1 on 
failure. getexportopt() scans the xent _ options field of the exportent() structure for a substring that 
matches opt. It returns the string value of opt, or NULL if the option is not found. 

endexportent() closes the file. 

/etc/exports 
/etc/xtab 

SEE ALSO· 
exports(5), exportfs(8) 

Sun Release 4.0 Last change: 4 January 1987 845 



EXPORTENT(3) C LIBRARY FUNCTIONS EXPORTENT(3) 

DIAGNOSTICS 
NULL pointer (0) returned on EOF or error. 

BUGS 
The returned exportent() structure points to static information that is overwritten in each call. 

846 Last change: 4 January 1987 Sun Release 4.0 



FCLOSE(3S) ST AND ARD I/0 FUNCTIONS 

NAME 
fclose, ffl.ush - close or flush a stream 

SYNOPSIS 

#include <stdio.h> 

fclose(stream) 
FILE *stream; 

fflush(stream) 
FILE *stream; 

DESCRIPTION 

FCLOSE(3S) 

fclose() writes out any buffered data for the named stream, and closes the named stream. Buffers allocated 
by the standard input/output system are freed. 

fclose() is performed automatically for all open files upon calling exit(3). 

fflush() writes out any buffered data for the named output stream. The named stream remains open. 

SEE ALSO 
close(2), exit(3), fopen(3S), setbuf(3S) 

DIAGNOSTICS 
These functions return O for success, and EOF if any error (such as trying to write to a file that has not been 
opened for writing) was detected. 

Sun Release 4.0 Last change: 6 October 1987 847 



FDATE(3F) FORTRAN LIBRARY ROUTINES FDATE(3F) 

NAME 
fdate - return date and time in an ASCII string 

SYNOPSIS 
subroutine fdate(string) 
character•24 string 

character•24 function f date() 

DESCRIPTION 
fdate() returns the current date and time as a 24 character string in the format described under ctime(3). 
Neither NEWLINE nor NULL will be included. 

fdate() can be called either as a function or as a subroutine. If called as a function, the calling routine must 
define its type and length. For example: 

character•24 f date 
write(*,* )fdate() 

SEE ALSO 
ctime(3 ), time(3F) 

848 Last change: 6 October 1987 Sun Release 4.0 



FERROR(3S) STANDARD I/0 FUNCTIONS 

NAME 
ferror, feof, clearerr, fileno - stream status inquiries 

SYNOPSIS 
#include <stdio.h> 

ferror(stream) 
FILE •stream; 

feof(stream) 
FILE •stream; 

clearerr(stream) 
FILE •stream; 

fileno(stream) 
FILE •stream; 

DESCRIPTION 

FERROR(3S) 

ferror() returns non-zero when an error has occurred reading from or writing to the named stream, other
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed. 

NOTE 

feof() returns non-zero when EOF has previously been detected reading the named input stream, otherwise 
zero. Unless cleared by clearerr, the EOF indication lasts until the stream is closed. 

clearerr() resets the error indication and EOF indication to zero on the named stream. 

fileno() returns the integer file descriptor associated with the stream; see open(2V). 

All these functions are implemented as macros; they cannot be redeclared. 

SEE ALSO 
open(2V), f open(3S) 

Sun Release 4.0 Last change: 6 October 1987 849 



FLOATING_TO_DECIMAL(3) C LIBRARY FUNCTIONS FLOATING_TO_DECIMAL(3) 

NAME 
single _to_ decimal, double_ to_ decimal, extended_ to_ decimal - convert floating-point value to decimal 
record 

SYNOPSIS 
#include <floatingpoint.h> 

void single_to_decimal(px, pm, pd, ps) 
single *PX; 
decimal_mode *pm; 
decimal_record *pd; 
fp _exception_ field_ type *ps; 

void double_ to_ decimal(px, pm, pd, ps) 
double *PX; 
decimal_ mode *pm; 
decimal _record *pd; 
fp _exception_ field_ type *ps; 

void extended_ to_ decimal(px, pm, pd, ps) 
extended *px; 
decimal_mode *pm; 
decimal_record *pd; 
fp _exception_ field_ type *ps; 

DESCRIPTION 

850 

The floating_to_decimal() functions convert the floating-point value at *px into a decimal record at *pd, 
observing the modes specified in * pm and setting exceptions in * ps. If there are no IEEE exceptions, * ps 
will be zero. 

If *px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set Otherwise pd->exponent and 
pd->ds are also set so that 

(pd->sign)*(pd->ds)*lO**(pd->exponent) 

is a correctly rounded approximation to *px. pd->ds has at least one and no more than 
DECIMAL_ STRING_ LENGTH-I significant digits because one character is used to terminate the string 
with a NULL. 

pd->ds is correctly rounded according to the IEEE rounding modes inpm->rd. *ps hasfp _inexact set if the 
result was inexact, and hasfp _overjlow set if the string result does not fit in pd->ds because of the limita
tion DECIMAL_STRING_LENGTH. 

If pm->df == floatingJorm, then pd->ds always contains pm->ndigits significant digits. Thus if *px == 
12.34 andpm->ndigits == 8, thenpd->ds will contain 12340000 andpd->exponent will contain-6. 

If pm->df == fixed Jorm and pm->ndigits >= 0, then pd->ds always contains pm->ndigits after the point 
and as many digits as necessary before the point. Since the latter is not known in advance, the total number 
of digits required is returned in pd->ndigits; if that number>= DECIMAL_STRING_LENGTH, then ds is 
undefined pd->exponent always gets -pm->ndigits. Thus if *px == 12.34 and pm->ndigits == 1, then 
pd->ds gets 123,pd->exponent gets-I, andpd->ndigits gets 3. 

If pm->df == fixed Jorm and pm->ndigits < 0, then pm->ds always contains -pm->ndigits trailing zeros; 
in other words, rounding occurs -pm->ndigits to the left of the decimal point, but the digits rounded away 
are retained as zeros. The total number of digits required is in pd->ndigits. pd->exponent always gets 0. 
Thus if •px == 12.34 and pm->ndigits == -1, then pd->ds gets 10, pd->exponent gets 0, and pd->ndigits 
gets 2. 

pd->more is not used. 

Last change: 23 October 1987 Sun Release 4.0 



FLOATING_TO_DECIMAL(3) C LIBRARY FUNCTIONS FLOATING_TO_DECIMAL(3) 

econvert(3), fconvert, gconvert, printf(3S), and sprintf, all use double_to_decimal. 

SEE ALSO 
econvert(3), printf(3S) 

Sun Release 4.0 Last change: 23 October 1987 851 



FLOATINGPOINT ( 3) C LIBRARY FUNCTIONS FLOATING POINT ( 3) 

NAME 
floatingpoint - IEEE floating point definitions 

SYNOPSIS 
#include <sys/ieeefp.h> 
#include dloatingpoint.h> 

DESCRIPTION 

852 

This file defines constants, types, variables, and functions used to implement standard floating point accord
ing to ANSI/IEEE Std 754-1985. The variables and functions are implemented in libc.a. The included file 
<sys/ieeefp.h> defines certain types of interest to the kernel. 

IEEE Rounding Modes: 

fp _direction_ type 

f p _ direction 

f p _precision_ type 

fp _precision 

SIGFPE handling: 

The type of the IEEE rounding direction mode. Note: the order of enumeration 
varies according to hardware. 

The IEEE rounding direction mode currently in force. This is a global variable 
that is intended to reflect the hardware state, so it should only be written indirectly 
through a function like " .}S 3 2 "ieee _ flags( set.direction, ... )"" '"' "" "" "" "" 
that also sets the hardware state. 

The type of the IEEE rounding precision mode, which only applies on systems that 
support extended precision such as Sun-3 systems with 68881 's. 

The IEEE rounding precision mode currently in force. This is a global variable 
that is intended to reflect the hardware state on systems with extended precision, 
so it should only be written indirectly through a function like 
ieee_ flags("set" ,"precision", ... ). 

sigfpe_code_type The type of a SIGFPE code. 

sigfpe _handler_ type The type of a user-definable SIGFPE exception handler called to handle a particu
lar SIGFPE code. 

SIGFPE DEFAULT A macro indicating the default SIGFPE exception handling, namely to perform the 
exception handling specified by calls to ieee _ handler(3M), if any, and otherwise 
to dump core using abort(3 ). 

SIGFPE IGNORE A macro indicating an alternate SIGFPE exception handling, namely to ignore and 
continue execution. 

SIGFPE ABORT A macro indicating an alternate SIGFPE exception handling, namely to abort with 
a core dump. 

IEEE Exception Handling: 

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions. 

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit 
number. 

fp exception field type 
- - - The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to the 

IEEE exceptions numbered by fp _exception_ type. Thus fp _inexact corresponds 
to the least significant bit and fp _invalid to the fifth least significant bit. Note: 
some operations may set more than one exception. 

fp accrued exceptions 
- - The IEEE exceptions between the time this global variable was last cleared, and 

the last time a function like ieee _ flags(" get"," exception", . .. ) was called to 
update the variable by obtaining the hardware state. 

Last change: 21 October 1987 Sun Release 4.0 



FLOATINGPOINT ( 3) C LIBRARY FUNCTIONS FLOATING POINT ( 3) 

FILES 

ieee _ handlers An array of user-specifiable signal handlers for use by the standard SIGFPE 
handler for IEEE arithmetic-related SIGFPE codes. Since IEEE trapping modes 
correspond to hardware modes, elements of this array should only be modified 
with a function like ieee _handler(3M) that performs the appropriate hardware 
mode update. If no sigf pe _ handler has been declared for a particular IEEE
related SIGFPE code, then the related ieee _ handlers will be invoked. 

IEEE Formats and Classification: 

single ;extended 

fp _ class_ type 

IEEE Base Conversion: 

Definitions of IEEE formats. 

An enumeration of the various classes of IEEE values and symbols. 

The functions described under floating_to_decimal(3) and decimal_to_floating(3) not only 
satisfy the IEEE Standard, but also the stricter requirements of correct rounding for all arguments. 

DECIMAL STRING LENGTH - -
The length of a decimal_string. 

decimal_string The digit buffer in a decimal_record. 

decimal record The canonical form for representing an unpacked decimal floating-point number. 

decimal form The type used to specify fixed or floating binary to decimal conversion. 

decimal mode A struct that contains specifications for conversion between binary and decimal. 

decimal_string_form An enumeration of possible valid character strings representing floating-point 
numbers, infinities, or NaNs. 

/usr/include/sys/ieeefp.h 
/ usr/include/floatin gpoint.h 
I usr /lib/Jibe.a 

SEE ALSO 
abort(3), decimal_to _ floating(3), econvert(3), floating_to _decimal(3), ieee _ flags(3M), 
ieee _ handler(3M), sigfpe(3 ), string_ to_ decimal(3 ), strtod(3) 

Sun Release 4.0 Last change: 21 October 1987 853 



FOPEN(3S) ST AND ARD I/0 FUNCTIONS FOPEN(3S) 

NAME 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
#include <stdio.h> 

FILE •fopen(filename, type) 
char •filename, •type; 

FILE •freopen(filename, type, stream) 
char •filename, •type; 
FILE •stream; 

FILE •fdopen(fildes, type) 
char •type; 

DESCRIPTION 
fopen() opens the file named by filename and associates a stream with it. If the open succeeds, fopen() 
returns a pointer to be used to identify the stream in subsequent operations. 

filename points to a character string that contains the name of the file to be opened. 

type is a character string having one of the following values: 

r open for reading 

w truncate or create for writing 

a append: open for writing at end of file, or create for writing 

r+ open for update (reading and writing) 

w+ truncate or create for update 

a+ append; open or create for update at EOF 

freopen() opens the file named by filename and associates the stream pointed to by stream with it The 
type argument is used just as in fopen. The original stream is closed, regardless of whether the open ulti
mately succeeds. If the open succeeds, freopen() returns the original value of stream. 

freopen() is typically used to attach the preopened streams associated with stdio, stdout, and stderr to 
other files. 

f dopen() associates a stream with the file descriptor fildes. File descriptors are obtained from calls like 
open, dup, creat, or pipe(2), which open files but do not return streams. Streams are necessary input for 
many of the Section 3S library routines. The type of the stream must agree with the mode of the open file. 

When a file is opened for update, both input and output may be done on the resulting stream. However, 
output may not be directly followed by input without an intervening fseek() or rewind, and input may not 
be directly followed by output without an intervening fseek, rewind, or an input operation which 
encounters end-of-file. 

SEE ALSO 
open(2V), pipe(2), fclose(3S), fopen(3V), fseek(3S) 

DIAGNOSTICS 

BUGS 

854 

f open, freopen, and f dopen() return a NULL pointer on failure. 

In order to support the same number of open files that the system does, f open() must allocate additional 
memory for data structures using calloc() after 64 files have been opened This confuses some programs 
which use their own memory allocators. 

Last change: 18 November 1987 Sun Release 4.0 



FREAD(3S) STANDARD 1/0 FUNCTIONS FREAD(3S) 

NAME 
fread, fwrite - buffered binary input/output 

SYNOPSIS 
#include <stdio.h> 

fread(ptr, size, nitems, stream) 
FILE •stream; 

fwrite(ptr, size, nitems, stream) 
FILE •stream; 

DESCRIPTION 
fread() reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of 
data is a sequence of bytes (not necessarily terminated by a NULL byte) of length size. It returns the 
number of items actually read. fread() stops appending bytes if an EOF or error condition is encountered 
while reading stream, or if nitems items have been read. fread( ) leaves the file pointer in stream, if 
defined, pointing to the byte following the last byte read if there is one. fread() does not change the con
tents of stream. 

fwrite( ) appends at most nitems of data from the block pointed to by ptr to the named output stream. It 
returns the number of items actually written. fwrite() stops appending when it has appended nitems items 
of data or if an error condition is encountered on stream. fwrite( ) does not change the contents of the 
block pointed to by ptr. 

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof specifies the length of an item 
pointed to by ptr. If ptr points to a data type other than cha.r it should be cast into a pointer to char. 

If size or nitems is non-positive, no characters are read or written and O is returned by both fread() and 
fwrite(). 

SEE ALSO 
read(2V), write(2V), fopen(3S), getc(3S), gets(3S), putc(3S), puts(3S), printf(3S), scanf(3S), 

DIAGNOSTICS 
fread() and fwrite( ) return O upon end of file or error. 

Sun Release 4.0 Last change: 30 January 1988 855 



FSEEK(3S) ST AND ARD I/0 FUNCTIONS FSEEK(3S) 

NAME 
fseek, ftell, rewind - reposition a stream 

SYNOPSIS 
#include <stdio.h> 

fseek(stream, offset, ptrname) 
FILE •stream; 
long offset; 

long ftell(stream) 
FILE •stream; 

rewind(stream) 
FILE •stream; 

DESCRIPTION 
fseek() sets the position of the next input or output operation on the stream. The new position is at the 
signed distance offset bytes from the beginning, the current position, or the end of the file, according as 
ptrname has the value 0, 1, or 2. 

rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is returned. 

fseek() and rewind() undo any effects of ungetc(3S). 

After fseek() or rewind, the next operation on a file opened for update may be either input or output. 

ftell() returns the offset of the current byte relative to the beginning of the file associated with the named 
stream. 

SEE ALSO 
lseek(2), f open(3S), popen(3S), ungetc(3S) 

DIAGNOSTICS 
fseek( ) returns -1 for improper seeks, otherwise zero. An improper seek can be, for example, an fseek() 
done on a file that has not been opened using fopen; in particular, fseek() may not be used on a terminal, 
or on a file opened using popen(3S). 

WARNING 

856 

Although on the UNIX system an offset returned by ftell( ) is measured in bytes, and it is permissible to 
seek to positions relative to that offset, portability to a (non-UNIX) system requires that an offset be used by 
fseek() directly. Arithmetic may not meaningfully be performed on such an offset, which is not necessarily 
measured in bytes. 

Last change: 6 October 1987 Sun Release 4.0 



FTOK(3) C LIBRARY FUNCTIONS Ff0K(3) 

NAME 
ftok - standard interprocess communication package 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ipc.h> 

key _t ftok(path, id) 
char •path; 
char id; 

DESCRIPTION 
All interprocess communication facilities require the user to supply a key to be used by the msgget(2), 
semget(2), and shmget(2) system calls to obtain interprocess communication identifiers. One suggested 
method for forming a key is to use the ftok() subroutine described below. Another way to compose keys is 
to include the project ID in the most significant byte and to use the remaining portion as a sequence 
number. There are many other ways to form keys, but it is necessary for each system to define standards 
for forming them. If some standard is not adhered to, it will be possible for unrelated processes to uninten
tionally interfere with each other's operation. Therefore, it is strongly suggested that the most significant 
byte of a key in some sense refer to a project so that keys do not conflict across a given system. 

ftok() returns a key based on path and ID that is usable in subsequent msgget, semget, and shmget() sys
tem calls. path must be the path name of an existing file that is accessible to the process. ID is a character 
which uniquely identifies a project Note: ftok() will return the same key for linked files when called with 
the same ID and that it will return different keys when called with the same file name but different IDs. 

SEE ALSO 
intro(2), msgget(2), semget(2), shmget(2) 

DIAGNOSTICS 
ftok() returns (key_ t) -1 if path does not exist or if it is not accessible to the process. 

WARNING 

If the file whose path is passed to ftok() is removed when keys still refer to the file, future calls to ftok() 
with the same path and ID will return an error. If the same file is recreated, then ftok() is likely to return a 
different key than it did the original time it was called. 

Sun Release 4.0 Last change: 6 October 1987 857 



FTW(3) C LIBRARY FUNCTIONS FTW(3) 

NAME 
ftw - walk a file tree 

SYNOPSIS 
#include <ftw.h> 

int ftw(path, fn, depth) 
char *path; 
int (*fn)(); 
int depth; 

DESCRIPTION 
ftw() recursively descends the directory hierarchy rooted in path. For each object in the hierarchy, ftw() 
calls fn, passing it a pointer to a NULL-terminated character string containing the name of the object, a 
pointer to a stat() structure (see stat(2)) containing information about the object, and an integer. Possible 
values of the integer, defined in the <ftw.h> header file, are FfW_F for a file, FfW_D for a directory, 
FfW _ DNR for a directory that cannot be read, and FfW _NS for an object for which stat() could not suc
cessfully be executed. If the integer is FfW _ DNR, descendants of that directory will not be processed. If 
the integer is FfW _ NS, the stat() structure will contain garbage. An example of an object that would cause 
FfW _NS to be passed to fn would be a file in a directory with read but without execute (search) permission. 

ftw() visits a directory before visiting any of its descendants. 

The tree traversal continues until the tree is exhausted, an invocation off n returns a nonzero value, or some 
error is detected within ftw() (such as an 1/0 error). If the tree is exhausted, ftw() returns zero. If fn 
returns a nonzero value, ftw() stops its tree traversal and returns whatever value was returned by fn. If 
ftw() detects an error, it returns -1, and sets the error type in errno. 

ftw() uses one file descriptor for each level in the tree. The depth argument limits the number of file 
descriptors so used. If depth is zero or negative, the effect is the same as if it were 1. depth must not be 
greater than the number of file descriptors currently available for use. ftw() will run more quickly if depth 
is at least as large as the number of levels in the tree. 

SEE ALSO 

BUGS 

858 

stat(2), malloc(3) 

Because ftw() is recursive, it is possible for it to terminate with a memory fault when applied to very deep 
file structures. 

It could be made to run faster and use less storage on deep structures at the cost of considerable complex
ity. 

ftw() uses malloc(3) to allocate dynamic storage during its operation. If ftw() is forcibly terminated, such 
as by longjmp() being executed by fn or an interrupt routine, ftw() will not have a chance to free that 
storage, so it will remain permanently allocated. A safe way to handle interrupts is to store the fact that an 
interrupt has occurred, and arrange to have fn return a nonzero value at its next invocation. 

Last change: 22 November 1987 Sun Release 4.0 



GETACINFO ( 3 ) C LIBRARY FUNCTIONS GETACINFO ( 3 ) 

NAME 
getacinfo, getacdir, getacflg, getacmin, setac, endac - get audit control file information 

SYNOPSIS 
int getacdir(dir, len) 
char •dir; 
int len; 

int getacmin(min _ val) 
int •min_val; 

int getacflg(auditstring, len) 
char •auditstring; 
int len; 

void setac( ) 

void endac() 

DESCRIPTION 
When first called, getacdir() provides information about the first audit directory in the audit_control file; 
thereafter, it returns the next directory in the file. Successive calls list all the directories listed in 
audit_ control(5) The parameter len specifies the length of the buffer dir . On return, dir points to the direc
tory entry. 

getacmin() reads the minimum value from the audit_ control file and returns the value in min_ val. The 
minimum value specifies how full the file system to which the audit files are being written can get before 
the script audit_ warn is invoked. 

getacflg() reads the system audit value from the audit_control file and returns the value in auditstring. 
The parameter len specifies the length of the buffer auditstring. 

Calling setac rewinds the audit_control file to allow repeated searches. 

Calling endac closes the audit_ control file when processing is complete. 

RETURN VALUE 
Upon successful completion of all getac. . . functions, a zero is returned. getacmin() and getacflg() return 
a 1 on EOF. Only getacdir() returns a 2 if the directory search had to start from the beginning because 
another getac. . . function was called between calls to getacdir. 

ERRORS 
Upon unsuccessful completion, a value of -2 is returned and errno is set to indicate the error. -3 is 
returned if the directory entry format in the. audit_ control file is incorrect. If the input buffer is too short 
to accommodate the record, getacdir() and getacflg() return an error code of-3. Only getacdir() returns 
a -1 on end of file. 

SEE ALSO 
audit_ control(5) 

Sun Release 4.0 Last change: 22 November 1987 859 



GETAUDITFLAGS ( 3) C LIBRARY FUNCTIONS GETAUDITFLAGS ( 3) 

NAME 
getauditflagsbin, getauditflagschar - convert audit flag specifications 

SYNOPSIS 
#include <sys/label.h> 
#include <sys/audit.h> 
#include <sys/auevents.h> 

int getauditflagsbin(auditstring, masks) 
char •auditstring; 
audit_state_t •masks; 

int getauditflagschar(auditstring, masks, verbose) 
char •auditstring; 
audit_state_t •masks; 
int verbose; 

DESCRIPTION 
getauditflagsbin() converts the character representation of audit values pointed to by auditstring into 
audit_ state_ t fields pointed to by masks. These fields indicate which events are to be audited when they 
succeed and which are to be audited when they fail. The character string syntax is described in 
audit_control(5). 

getauditflagschar() converts the audit_state_t fields pointed to by masks into a string pointed to by audit
string. If verbose is zero, the short (2-character) flag names are used. If verbose is non-zero, the long flag 
names are used. auditstring should be large enough to contain the ASCII representation of the events. 

auditstring contains a series of event names, each one identifying a single audit class, separated by com
mas. The audit_state_t fields pointed to by masks correspond to binary values defined in audi.t.h. 

DIAGNOSTICS 
-1 is returned on error and O on success. 

SEE ALSO 
audit.log(5), audit_ control(5) 

BUGS 
This is not a very extensible interface. 

860 Last change: 6 October 1987 Sun Release 4.0 



GETC(3S) STANDARD I/0 FUNCTIONS GETC(3S) 

NAME 
getc, getchar, fgetc, getw - get character or integer from stream 

SYNOPSIS 
#include <stdio.h> 

int getc(stream) 
FILE *Stream; 

int getchar( ) 

int fgetc(stream) 
FILE *Stream; 

int getw(stream) 
FILE *stream; 

DESCRIPTION 
getc() returns the next character (that is, byte) from the named input stream, as an integer. It also moves 
the file pointer, if defined, ahead one character in stream. getchar() is defined as getc(stdin). getc and 
getchar are macros. 

fgetc() behaves like getc, but is a function rather than a macro. fgetc() runs more slowly than getc, but it 
takes less space per invocation and its name can be passed as an argument to a function. 

getw( ) returns the next C int ( word) from the named input stream. getw( ) increments the associated file 
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from 
machine to machine. getw() assumes no special alignment in the file. 

SEE ALSO 
ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S), ungetc(3S) 

DIAGNOSTICS 
These functions return the integer constant EOF at EOF or upon an error. The EOF condition is remembered, 
even on a terminal, and all subsequent attempts to read will return EOF until the condition is cleared with 
clearerr (see ferror(3S)) Because EOF is a valid integer, ferror(3S) should be used to detect getw() 
errors. 

WARNING 

BUGS 

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then com
pared against the integer constant EOF, the comparison may never succeed, because sign-extension of a 
character on widening to integer is machine-dependent. 

Because it is implemented as a macro, getc() treats a stream argument with side effects incorrectly. In par
ticular, getc(*f++) does not work sensibly. fgetc() should be used instead. 

Because of possible differences in word length and byte ordering, files written using putw() are machine
dependent, and may not be readable using getw() on a different processor. 

Sun Release 4.0 Last change: 18 November 1987 861 



GETCWD(3) C LIBRARY FUNCTIONS GETCWD(3) 

NAME 
getcwd - get pathname of current working directory 

SYNOPSIS 
char *getcwd (buf, size) 
char *huf; 
int size; 

DESCRIPTION 
getcwd() returns a pointer to the current directory pathname. The value of size must be at least two greater 
than the length of the pathname to be returned. 

If buf is a NULL pointer, getcwd() will obtain size bytes of space using malloc(3). In this case, the pointer 
returned by getcwd() may be used as the argument in a subsequent call to free. 

The function is implemented by using popen(3S) to pipe the output of the pwd(l) command into the 
specified string space. 

EXAMPLE 
char *cwd, *getcwd( ); 

if ((cwd = getcwd((char *)NULL, 64)) == NULL) { 
perror ("pwd"); 
exit (1); 

} 
printf("%s\n", cwd); 

SEE ALSO 
malloc(3 ), popen(3S), pwd( 1) 

DIAGNOSTICS 

BUGS 

862 

Returns NULL with errno set if size is not large enough, or if an error ocurrs in a lower-level function. 

Since this function uses popen() to create a pipe to the pwd command, it is slower than getwd() and gives 
poorer error diagnostics. getcwd() is provided only for compatibility with other UNIX operating systems. 

Last change: 22 November 1987 Sun Release 4.0 



GETENV(3) C LIBRARY FUNCTIONS 

NAME 
getenv - return value for environment name 

SYNOPSIS 
char •getenv(name) 
char •name; 

DESCRIPTION 

GETENV(3) 

getenv() searches the environment list (see environ(5V)) for a string of the form name=value, and returns 
a pointer to the string value if such a string is present, otherwise NULL pointer. 

SEE ALSO 
environ(5V), execve(2), putenv(3) 

Sun Release 4.0 Last change: 6 October 1987 863 



GETF AUDITFLAGS ( 3) C LIBRARY FUNCTIONS GETF AUDITFLAGS ( 3) 

NAME 
getfauditflags - generates the process audit state 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/audit.h> 
#include <sys/label.h> 

void getfauditflags( usremasks, usrdmasks, lastmasks) 
audit_state_t •usremasks; 
audit_state_t •usrdmasks; 
audit_ state_ t * lastmasks; 

DESCRIPTION 
getf auditflags generates the process audit state from the user audit value as input to getf auditflags and the 
system audit value as specified in the audit_control file. getfauditflags obtains the system audit value by 
calling getacflg. The user audit value, pointed to by usremasks and usrdmasks is passed into 
getfauditflags. 

usremasks points to audit_state_t fields which contains two values. The first value defines which events are 
always to be audited when they they succeed. The second value defines defines which events are always to 
be audited when they they fail. 

usrdmasks also points to audit_state_t fields which contains two values. The first value defines which 
events are never to be audited when they they succeed. The second value defines defines which events are 
never to be audited when they they fail. 

The structures pointed to by usremasks and usrdmasks may be obtained from the passwd.adjunct file by 
calling getpwaent() which returns a pointer to a strucure containing all passwd.adjunct fields for a user. 

lastmasks points to the return audit_state_t structure. This structure contains two values which define the 
process audit state. The first value defines which events are to be audited when they succeed and the 
second value defines which events are to be audited when they fail. 

Both usremasks and usrdmasks override the values in the system audit values. 

SEE ALSO 
getauditflags(3), getacinfo(3), audit.log(5), audit_control(S) 

864 Last change: 6 October 1987 Sun Release 4.0 



GETFSENT ( 3 ) C LIBRARY FUNCTIONS GETFSENT ( 3 ) 

NAME 
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry 

SYNOPSIS 
#include <fstab.h> 

struct fstab *getfsent() 

struct fstab *getfsspec(spec) 
char *spec; 

struct fstab *getfsfile(file) 
char *file; 

struct fstab *getfstype(type) 
char *type; 

int setfsent( ) 

int endfsent() 

DESCRIPTION 

FILES 

These routines are included for compatibility with 4.2 BSD; they have been superseded by the 
getmntent(3) library routines. 

getfsent, getfsspec, getfstype, and getfsfi/e each return a pointer to an object with the following structure 
containing the broken-out fields of a line in the file system description file, <fstab.h>. 

struct fstab { 
char 
char 
char 

}; 

int 
int 

*fs_spec; 
*fs_file; 
*fs_type; 
fs_freq; 
fs_passno; 

The fields have meanings described in fstab(5). 

getfsent() reads the next line of the file, opening the file if necessary. 

getfsent() opens and rewinds the file. 

endfsent closes the file. 

getfsspec and getfsfile sequentially search from the beginning of the file until a matching special file name 
or file system file name is found, or until EOF is encountered. getfstype does likewise, matching on the file 
system type field. 

/etc/fstab 

SEE ALSO 
fstab(5) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
The return value points to static information which is overwritten in each call. 

Sun Release 4.0 Last change: 6 October 1987 865 



GETGRAENT(3) C LIBRARY FUNCTIONS GETGRAENT ( 3) 

NAME 
getgraent, getgranam, setgraent, endgraent, fgetgraent - get group adjunct file entry 

SYNOPSIS 
#include <grpadj.h> 

struct group_adjunct •getgraent() 

struct group_ adjunct * getgranam(name) 
char •name; 

struct group_ adjunct •fgetgraent(f) 
FILE •f; 

void setgraent() 

void endgraent() 

DESCRIPTION 
getgraent() and getgranam() each return pointers to an object with the following structure containing the 
broken-out fields of a line in the group adjunct file. Each line contains a group_adjunct structure, defined 
in the <grpadj.h> header file. 

struct group_ adjunct { 
char •gra_name; 
char * gra _passwd; 
}; 

I• the name of the group •I 
I• the encrypted group password•/ 

When first called, getgraent() returns a pointer to a group _adjunct structure corresponding to the first line 
in the file. Thereafter, it returns a pointer to the next group_ adjunct structure in the file. So successive 
calls may be used to traverse the entire file. 

For locating a particular group, getgranam() searches through the file until it finds group filename, then 
returns a pointer to that structure. 

A call to getgraent() rewinds the group adjunct file to allow repeated searches. A call to endgraent() 
closes the group adjunct file when processing is complete. 

SEE ALSO 
getlogin(3), getgrent(3), getpwaent(3), getpwent(3), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

BUGS 
All information is contained in a static area, so it must be copied if it is to be saved. 

866 Last change: 14 December 1987 Sun Release 4.0 



GETGRENT(3) C LIBRARY FUNCTIONS GETGRENT ( 3) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry 

SYNOPSIS 
#include <grp.h> 

struct group *getgrent() 

struct group *getgrgid(gid) 
int gid; 

struct group *getgrnam(name) 
char *name; 

setgrent() 

endgrent() 

struct group *fgetgrent(f) 
FILE *f; 

DESCRIPTION 
getgrent, getgrgid() and getgrnam() each return pointers to an object with the following structure con
taining the broken-out fields of a line in the group file. Each line contains a "group" structure, defined in 
the <grp.h> header file. 

struct group { 

}; 

char *gr_name; 
char *gr_passwd; 
int 
char 

gr_gid; 
**gr_mem; 

The members of this structure are: 

gr_ name The name of the group. 
gr _passwd The encrypted password of the group. 
gr _gid The numerical group ID. 
gr mem A NULL-terminated array of pointers to the individual member names. 

getgrent() when first called returns a pointer to the first group structure in the file; thereafter, it returns a 
pointer to the next group structure in the file; so, successive calls may be used to search the entire file. get
grgid() searches from the beginning of the file until a numerical group ID matching gid is found and 
returns a pointer to the particular structure in which it was found. getgrnam() searches from the beginning 
of the file until a group name matching name is found and returns a pointer to the particular structure in 
which it was found. If an end-of-file or an error is encountered on reading, these functions return a NULL 
pointer. 

A call to getgrent() has the effect of rewinding the group file to allow repeated searches. endgrent() may 
be called to close the group file when processing is complete. 

fgetgrent() returns a pointer to the next group structure in the stream/, which must refer to an open file in 
the same format as the group file /etdgroup. - · 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

FILES 
/etc/group 

SEE ALSO 
getlogin(3), getpwent(3), group(5), ypserv(8) 

Sun Release 4.0 Last change: 14 December 1987 867 



GETGRENT(3) C LIBRARY FUNCTIONS GETGRENT ( 3) 

BUGS 

All information is contained in a static area, so it must be copied if it is to be saved. 

Unlike the corresponding routines for passwords (see getpwent(3)), which always search the entire file, 
these routines start searching from the current file location. 

WARNING 

868 

The above routines use <stdio.h>, which increases the size of programs, not otherwise using standard 1/0, 
more than might be expected. 

Last change: 14 December 1987 Sun Release 4.0 



GETHOSTENT ( 3N) NETWORK FUNCTIONS GETHOSTENT ( 3N) 

NAME 
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netdb.h> 

struct hostent *gethostent() 

struct hostent *gethostbyname(name) 
char *name; 

struct hostent *gethostbyaddr(addr, len, type) 
char *addr; int len, type; 

sethostent(stayopen) 
int stayopen 
endhostent() 

DESCRIPTION 

FILES 

gethostent, gethostbyname, and gethostbyaddr() each return a pointer to an object with the following 
structure containing the broken-out fields of a line in the network host data base, /etc/hosts. 

struct hostent { 
char *h_name; 
char **h_aliases; 
int h _ addrtype; 
int h _length; 
char *h_addr; 

}; 

I* official name of host *I 
I* alias list *I 
I* address type *I 
I* length of address *I 
I* address *I 

The members of this structure are: 

h name 

h aliases 

h_addrtype 

h_length 

h addr 

Official name of the host. 

A zero terminated array of alternate names for the host. 

The type of address being returned; currently always AF _!NET. 

The length, in bytes, of the address. 

A pointer to the network address for the host. Host addresses are returned in net
work byte order. 

gethostent() reads the next line of the file, opening the file if necessary. 

sethostent() opens and rewinds the file. If the stayopen flag is non-zero, the host data base will not be 
closed after each call to gethostent() (either directly, or indirectly through one of the other "gethost" 
calls). 

endhostent() closes the file. 

gethostbyname() and gethostbyaddr() sequentially search from the beginning of the file until a matching 
host name or host address is found, or until end-of-file is encountered. Host addresses are supplied in net
work order. 

/etc/hosts 

SEE ALSO 
hosts(5), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

Sun Release 4.0 Last change: 14 December 1987 869 



GETHOSTENT ( 3N) NETWORK FUNCTIONS GETHOSTENT ( 3N) 

BUGS 

870 

All information is contained in a static area so it must be copied if it is to be saved. Only the Internet 
address format is currently understood. 

Last change: 14 December 1987 Sun Release 4.0 



GETLOGIN ( 3) C LIBRARY FUNCTIONS GETLOGIN ( 3) 

NAME 
getlogin - get login name 

SYNOPSIS 
char •getlogin() 

DESCRIPTION 

FILES 

getlogin() returns a pointer to the login name as found in /etc/utmp. It may be used in conjunction with 
getpwnam to locate the correct password file entry when the same user ID is. shared by several login 
names. 

If getlogin() is called within a process that is not attached to a terminal, or if there is no entry in /etc/utmp 
for the process's terminal, it returns a NULL pointer. The correct procedure for determining the login 
name is to call cuserid, or to call getlogin() and, if it fails, to call getpwuid(getuid( ) ). 

/etc/utmp 

SEE ALSO 
cuserid(3S), getpwent(3), utmp(5) 

DIAGNOSTICS 
Returns a NULL pointer if the name is not found. 

BUGS 
The return values point to static data whose content is overwritten by each call. 

getlogin() does not work for processes running under a pty (for example, emacs shell buffers, or shell 
tools) unless the program "fakes" the login name in the /etc/utmp file. 

Sun Release 4.0 Last change: 6 October 1987 871 



GETMNTENT ( 3) C LIBRARY FUNCTIONS GETMNTENT ( 3) 

NAME 
getmntent, setmntent, addmntent, endmntent, hasmntopt - get file system descriptor file entry 

SYNOPSIS 
#include <stdio.h> 
#include <mntent.h> 

FILE *setmntent(filep, type) 
char * filep; 
char *type; 

struct mntent *getmntent(filep) 
FILE *filep; 

int addmntent(filep, mnt) 
FILE *filep; 
struct mntent *mnt; 

char *hasmntopt(mnt, opt) 
struct mntent *mnt; 
char *opt; 

int endmntent(filep) 
FILE *filep; 

DESCRIPTION 

FILES 

These routines replace the getfsent() routines for accessing the file system description file /etc/fstab. They 
are also used to access the mounted file system description file /etc/mtab. 

setmntent() opens a file system description file and returns a file pointer which can then be used with 
getmntent, addmntent, or endmntent. The type argument is the same as in fopen(3). getmntent() reads 
the next line from filep and returns a pointer to an object with the following structure containing the 
broken-out fields of a line in the filesystem description file, <mntent.h>. The fields have meanings 
described in fstab(5). 

struct mntent { 
char *mnt_fsname; f* file system name•/ 

}; 

char *mnt_dir; 
char •mnt_type; 
char *mnt_opts; 
int mot_ freq; 
int mot _passno; 

f * file system path prefix *f 
f* 4.2, nfs, swap, or xx *f 
I• ro, quota, etc. •I 
I• dump frequency, in days •I 
/• pass number on parallel fsck •/ 

addmntent() adds the mntent structure mnt to the end of the open file filep. Note: filep has to be opened 
for writing if this is to work. hasmntopt() scans the mnt_opts field of the mntent structure mnt for a sub
string that matches opt. It returns the address of the substring if a match is found, 0 otherwise. 
endmntent() closes the file. 

/etc/fstab 
/etc/mtab 

SEE ALSO 
fopen(3S}, getfsent(3), fstab(5) 

DIAGNOSTICS 
NULL pointer (0) returned on EDF or error. 

872 Last change: 26 February 1988 Sun Release 4.0 



GETMNTENT ( 3) C LIBRARY FUNCTIONS GETMNTENT ( 3) 

BUGS 
The returned mntent structure points to static information that is overwritten in each call. 

Sun Release 4.0 Last change: 26 February 1988 873 



GETNETENT ( 3N) NETWORK FUNCTIONS GETNETENT ( 3N) 

NAME 
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry 

SYNOPSIS 
#include <netdb.h> 

struct netent •getnetent() 

struct netent •getnetbyname(name) 
char •name; 

struct netent •getnetbyaddr(net, type) 
long net; 
int type; 

setnetent(stayopen) 
int stayopen; 

endnetent( ) 

DESCRIPTION 

FILES 

getnetent, getnetbyname, and getnetbyaddr() each return a pointer to an object with the following struc
ture containing the broken-out fields of a line in the network data base, /etc/networks. 

struct netent { 
char •n_name; 

••n_aliases; 
n _ addrtype; 
n_net; 

/• official name of net•/ 
/• alias list •/ 

}; 

char 
int 
long 

I• net number type •I 
I• net number •/ 

The members of this structure are: 

n name 

n_aliases 

n_addrtype 

n net 

The official name of the network. 

A zero terminated list of alternate names for the network. 

The type of the network number returned; currently only AF _!NET. 

The network number. Network numbers are returned in machine byte order. 

getnetent() reads the next line of the file, opening the file if necessary. 

getnetent( ) opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be 
closed after each call to getnetent() (either directly, or indirectly through one of the other "getnet" calls). 

endnetent() closes the file. 

getnetbyname() and getnetbyaddr() sequentially search from the beginning of the file until a matching 
net name or net address and type is found, or until end-of-file is encountered. Network numbers are sup
plied in host order. 

I etc/networks 

SEE ALSO 
networks(5), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved 

Only Internet network numbers are currently understood. 

874 Last change: 14 December 1987 Sun Release 4.0 



GETNETGRENT ( 3N) NETWORK FUNCTIONS GETNETGRENT ( 3N) 

NAME 
getnetgrent, setnetgrent, endnetgrent, innetgr - get network group entry 

SYNOPSIS 
innetgr(netgroup, machine, user, domain) 
char *netgroup, *machine, *user, *domain; 

setnetgrent(netgroup) 
char *netgroup 

endnetgrent() 

getnetgrent(machinep, userp, domainp) 
char **machinep, **userp, **domainp; 

DESCRIPTION 

FILES 

inngetgr returns 1 or 0, depending on whether netgroup contains the machine, user, domain triple as a 
member. Any of the three strings mo.chine, user, or domo.in can be NULL, in which case it signifies a wild 
card. 

getnetgrent() returns the next member of a network group. After the call, mo.chinep will contain a pointer 
to a string containing the name of the machine part of the network group member, and similarly for userp 
and domo.inp. If any of mo.chinep, userp or domo.inp is returned as a NULL pointer, it signifies a wild card. 
getnetgrent() will use malloc(3) to allocate space for the name. This space is released when a endnet
grent() call is made. getnetgrent( ) returns 1 if it succeeding in obtaining another member of the network 
group, 0 if it has reached the end of the group. 

getnetgrent() establishes the network group from which getnetgrent() will obtain members, and also res
tarts calls to getnetgrent() from the beginning of the list If the previous setnetgrent() call was to a dif
ferent network group, a endnetgrent() call is implied. endnetgrent() frees the space allocated during the 
getnetgrent( ) calls. 

/ etc/netgroup 

Sun Release 4.0 Last change: 14 December 1987 875 



GETOPT(3) C LIBRARY FUNCTIONS GETOPT(3) 

NAME 
getopt, optarg, optind - get option letter from argument vector 

SYNOPSIS 
int getopt(argc, argv, optstring) 
int argc; 
char **argv; 
char •optstring; 

extern char •optarg; 
extern int optind, opterr; 

DESCRIPTION 
getopt() returns the next option letter in argv that matches a letter in optstring. optstring must contain the 
option letters the command using getopt() will recognize; if a letter is followed by a colon, the option is 
expected to have an argument, or group of arguments, which must be separated from it by white space. 

optarg is set to point to the start of the option argument on return from getopt. 

getopt() places in optind() the argv index of the next argument to be processed. optind() is external and 
is initialized to 1 before the first call to getopt. 

When all options have been processed (that is, up to the first non-option argument), getopt() returns -1. 
The special option"-" may be used to delimit the end of the options; when it is encountered, -1 will be 
returned, and ''-'' will be skipped. 

DIAGNOSTICS 
getopt() prints an error message on the standard error and returns a question mark (?) when it encounters 
an option letter not included in optstring or no option-argument after an option that expects one. This error 
message may be disabled by setting opterr to 0. 

EXAMPLE 

876 

The following code fragment shows how one might process the arguments for a command that can take the 
mutually exclusive options a and b, and the option o, which requires an option argument: 

1nain(argc,argv) 
int argc; 
char **argv; 
{ 

int c; 
extern char •optarg; 
extern int optind; 

while ((c = getopt(argc, argv, "abo:")) != -1) 
switch (c) { 
case 'a': 

case 'b': 

if (bflg) 
errflg++; 

else 
aflg++; 

break; 

if (aflg) 
errflg++; 

else 
bproc (); 

break; 

Last change: 6 October 1987 Sun Release 4.0 



GETOPT(3) 

} 

SEE ALSO 
getopts(l) 

WARNING 

C LIBRARY FUNCTIONS 

case 'o': 

case '?': 

} 

ofile = optarg; 
break; 

errflg++; 

if (errflg) { 

} 

(void)fprintf(stderr, "usage: ••• "); 
exit (2); 

for (; optind < argc; optind++) { 
if (access(argv[optind], 4)) { 

GETOPT(3) 

Changing the value of the variable optind, or calling getopt() with different values of argv, may lead to 
unexpected results. 

Sun Release 4.0 Last change: 6 October 1987 877 



GETPASS(3) C LIBRARY FUNCTIONS GETPASS(3) 

NAME 
getpass - read a password 

SYNOPSIS 
char •getpa~(prompt) 
char •prompt; 

DESCRIPTION 

FILES 

getpa~() reads up to a NEWLINE or EOF from the file /dev/tty, or if that cannot be opened, from the stan
dard input, after prompting with the NULL-terminated string prompt and disabling echoing. A pointer is 
returned to a NULL-terminated string of at most 8 characters. An interrupt will terminate input and send an 
interrupt signal to the calling program before returning. 

/dev/tty 

SEE ALSO 
crypt(3), getpass(3V) 

WARNING 

BUGS 

878 

The above routine uses <stdio.h>, which increases the size of programs not otherwise using standard I/0, 
more than might be expected. 

The return value points to static data whose content is overwritten by each call. 

Last change: 6 October 1987 Sun Release 4.0 



GETPROTOENT ( 3N) NETWORK FUNCTIONS GETPROTOENT ( 3N) 

NAME 
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry 

SYNOPSIS 
#include <netdb.h> 

struct protoent •getprotoent() 

struct protoent •getprotobyname(name) 
char •name; 

struct protoent •getprotobynumber(proto) 
int proto; 

setprotoent(stayopen) 
int stayopen; 

endprotoent() 

DESCRIPTION 

FILES 

getprotoent, getprotobyname, and getprotobynumber() each return a pointer to an object with the fol
lowing structure containing the broken-out fields of a line in the network protocol data base, /etdprotocols. 

struct protoent { 
char •p_name; 
char * * p _aliases; 
int p _proto; 

}; 

The members of this structure are: 

/• official name of protocol •I 
/• alias list •/ 
I• protocol number •I 

p name The official name of the protocol. 
p aliases A zero terminated list of alternate names for the protocol. 
p _proto The protocol number. 

getprotoent( ) reads the next line of the file, opening the file if necessary. 

getprotoent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be 
closed after each call to getprotoent() (either directly, or indirectly through one of the other "getproto" 
calls). 

endprotoent() closes the file. 

getprotobyname() and getprotobynumber() sequentially search from the beginning of the file until a 
matching protocol name or protocol number is found, or until end-of-file is encountered. 

I etc/protocols 

SEE ALSO 
protocols(5), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

BUGS 

All information is contained in a static area so it must be copied if it is to be saved. Only the Internet pro
tocols are currently understood. 

Sun Release 4.0 Last change: 14 December 1987 879 



GETPW(3) 

NAME 
getpw - get name from uid 

SYNOPSIS 
getpw(uid, buf) 
char •buf; 

DESCRIPTION 

C LIBRARY FUNCTIONS 

Getpw is made obsolete by getpwent(3). 

GETPW(3) 

getpw() searches the password file for the (numerical) uid, and fills in buf with the corresponding line; it 
returns non-zero if uid could not be found The line is NULL-terminated. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3), passwd(5) 

DIAGNOSTICS 
Non-zero return on error. 

880 Last change: 6 October 1987 Sun Release 4.0 



GETPW AENT ( 3) C LIBRARY FUNCTIONS GETPW AENT ( 3) 

NAME 
getpwaent, getpwanam, setpwaent, endpwaent, fgetpwaent - get password adjunct file entry 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/Iabel.h> 
#include <sys/audit.h> 
#include <pwdadj.h> 

struct passwd_adjunct *getpwaent() 

struct passwd_adjunct *getpwanam(name) 
char *name; 

struct passwd _adjunct •fgetpwaent(f) 
FILE *f; 

void setpwaent() 

void endpwaent() 

DESCRIPTION 
Both getpwaent() and getpwanam( ) return a pointer to an object with the following structure containing 
the broken-out fields of a line in the password adjunct file. Each line in the file contains a passwd _ adjunct 
structure, declared in the <pwdadj.h> header file: 

struct passwd _ adjunct { 
char •pwa_name; 
char *pwa_passwd; 
blabel t pwa_minimum; 
blabel t pwa_maximum; 
blabel t pwa _def; 
audit_state_t pwa_au_always; 
audit_ state_ t pwa _ au _never; 
int pwa version; 
}; 

When first called, getpwaent() returns a pointer to a passwd_adjunct structure describing data from the 
first line in the file. Thereafter, it returns a pointer to a passwd_adjunct structure describing data from the 
next line in the file. So successive calls can be used to search the entire file. 

getpwanam() searches from the beginning of the file until it finds a login name matching name, then 
returns a pointer to the particular structure in which it was found 

Calling getpwaent() rewinds the password adjunct file to allow repeated searches. Calling endpwaent() 
closes the password adjunct file when processing is complete. 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

SEE ALSO 
getpwent(3), getgrent(3), passwd.adjunct(5), ypserv(8) 

BUGS 
All information is contained in a static area, so it must be copied if it is to be saved. 

Sun Release 4.0 Last change: 14 December 1987 881 



GETPWENT(3) C LIBRARY FUNCTIONS GETPWENT ( 3) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile, fgetpwent - get password file entry 

SYNOPSIS 
#include <pwd.h> 

struct passwd * getpwent() 

struct passwd •getpwuid(uid) 
int uid; 

struct passwd •getpwnam(name) 
char •name; 

int setpwent( ) 

int endpwent() 

setpwfile(name) 
char •name; 

struct passwd •fgetpwent(f) 
FILE •f; 

DESCRIPTION 

882 

getpwent, getpwuid() and getpwnam() each return a pointer to an object with the following structure 
containing the broken-out fields of a line in the password file. Each line in the file contains a "passwd" 
structure, declared in the <pwd.h> header file: 

struct passwd {/•see getpwent(3) •/ 
char •pw_name; 
char •pw_passwd; 
int pw_uid; 
int pw_gid; 
int pw_quota; 
char •pw_comment; 
char •pw_gecos; 
char •pw_dir; 
char •pw_shell; 

}; 
struct passwd •getpwent( ), •getpwuid( ), •getpwnam( ); 

This structure is declared in <pwd.h> so it is not necessary to redeclare it 

The fields pw _ quota and pw _ comment are unused; the others have meanings described in passwd(5). 
When first called, getpwent() returns a pointer to the first passwd structure in the file; thereafter, it returns 
a pointer to the next passwd structure in the file; so successive calls can be used to search the entire file. 
getpwuid() searches from the beginning of the file until a numerical user ID matching uid is found and 
returns a pointer to the particular structure in which it was found. getpwnam() searches from the begin
ning of the file until a login name matching name is found, and returns a pointer to the particular structure 
in which it was found. If an end-of-file or an error is encountered on reading, these functions return a 
NULL pointer. 

A call to getpwent() has the effect of rewinding the password file to allow repeated searches. endpwent() 
may be called to close the password file when processing is complete. 

setpwfile() changes the default password file to name thus allowing alternate password files to be used. 
Note: it does not close the previous file. If this is desired, endpwent() should be called prior to it. 

fgetpwent() returns a pointer to the next passwd structure in the stream/, which matches the format of the 
password file /etdpasswd. 

Last change: 28 January 1988 Sun Release 4.0 



GETPWENT ( 3) C LIBRARY FUNCTIONS GETPWENT ( 3) 

FILES 
I etc/passwd 

SEE ALSO 
getgrent(3), getlogin(3), getpwent(3V), passwd(5), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

BUGS 
All information is contained in a static area, so it must be copied if it is to be saved. 

Sun Release 4.0 Last change: 28 January 1988 883 



GETRPCENT ( 3N) NETWORK FUNCTIONS GETRPCENT ( 3N) 

NAME 
getrpcent, getrpcbyname, getrpcbynumber - get RPC entry 

SYNOPSIS 
#include <netdb.h> 

struct rpcent •getrpcent() 

struct rpcent •getrpcbyname(name) 
char •name; 

struct rpcent •getrpcbynumber(number) 
int number; 

setrpcent (stayopen) 
int stayopen 

endrpcent () 

DESCRIPTION 

FILES 

getrpcent, getrpcbyname, and getrpcbynumber() each return a pointer to an object with the following 
structure containing the broken-out fields of a line in the rpc program number data base, /etc/rpc. 

struct rpcent { 
char •r _ name; 
char ••r _aliases; 
long r _ number; 

}; 

/• name of server for this rpc program •/ 
/• alias list •I 
/• rpc program number •/ 

The members of this structure are: 
r _ name The name of the server for this rpc program. 
r aliases A zero terminated list of alternate names for the rpc program. 
r number The rpc program number for this service. 

getrpcent( ) reads the next line of the file, opening the file if necessary. 

getrpcent( ) opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be 
closed after each call to getrpcent() ( either directly, or indirectly through one of the other '' getrpc'' calls). 

endrpcent closes the file. 

getrpcbyname() and getrpcbynumber() sequentially search from the beginning of the file until a match
ing rpc program name or program number is found, or until end-of-file is encountered. 

/etc/rpc 

SEE ALSO 
rpc(5), rpcinfo(8C), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. 

884 Last change: 14 December 1987 Sun Release 4.0 



GETS(3S) ST AND ARD 1/0 FUNCTIONS GETS(3S) 

NAME 
gets, fgets - get a string from a stream 

SYNOPSIS 
#include <stdio.h> 

char •gets(s) 
char •s; 

char •fgets(s, n, stream) 
char •s; 
FILE •stream; 

DESCRIPTION 
gets( ) reads characters from the standard input stream, stdio, into the array pointed to by s, until a NEW
LINE character is read or an EOF condition is encountered. The NEWLINE character is discarded and the 
string is terminated with a NULL character. gets() returns its argument 

fgets() reads characters from the stream into the array pointed to by s, until n-1 characters are read, a 
NEWLINE character is read and transferred to s, or an EOF condition is encountered. The string is then ter
minated with a NULL character. fgets() returns its first argument. 

SEE ALSO 
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S) 

DIAGNOSTICS 
If EOF is encountered and no characters have been read, no characters are transferred to s and a NULL 
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been 
opened for reading, a NULL pointer is returned. Otherwise s is returned. 

Sun Release 4.0 Last change: 6 October 1987 885 



GETSERVENT ( 3N) NE1WORK FUNCTIONS GETSERVENT ( 3N) 

NAME 
getservent, getservbyport, getservbyname, setservent, endservent - get service entry 

SYNOPSIS 
#include <netdb.h> 

struct servent •getservent() 

struct servent •getservbyname(name, proto) 
char •name, •proto; 

struct servent •getservbyport(port, proto) 
int port; char •proto; 

setservent(stayopen) 
int stayopen; 

endservent() 

DESCRIPTION 

FILES 

getservent, getservbyname, and getservbyport each return a pointer to an object with the following struc
ture containing the broken-out fields of a line in the network services data base, /etc/services. 

struct servent { 
char •s _ name; 
char * * s _aliases; 
int s_port; 
char •s_proto; 

}; 

The members of this structure are: 

/• official name of service •I 
/• alias list •/ 
/• port service resides at•/ 
I• protocol to use •I 

s name The official name of the service. 
s _ aliases A zero terminated list of alternate names for the service. 
s _port The port number at which the service resides. Port numbers are returned 

in network byte order. 
s _proto The name of the protocol to use when contacting the service. 

getservent( ) reads the next line of the file, opening the file if necessary. 

getservent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be 
closed after each call to getservent() (either directly, or indirectly through one of the other "getserv" 
calls). 

endservent() closes the file. 

getservbyname() and getservbyport( ) sequentially search from the beginning of the file until a matching 
protocol name or port number is found, or until end-of-file is encountered. If a protocol name is also sup
plied (non-NULL), searches must also match the protocol. 

I etc/services 

SEE ALSO 
getprotoent(3N), services(5), ypserv(8) 

DIAGNOSTICS 

BUGS 

886 

A NULL pointer is returned on end-of-file or error. 

All information is contained in a static area so it must be copied if it is to be saved. Expecting port 
numbers to fit in a 32 bit quantity is probably naive. 

Last change: 14 December 1987 Sun Release 4.0 



GETITYENT ( 3) C LIBRARY FUNCTIONS GETTTYENT ( 3) 

NAME 
getttyent, getttynam, setttyent, endttyent - get ttytab file entry 

SYNOPSIS 
#include <ttyent.h> 

struct ttyent •getttyent() 

struct ttyent •getttynam(name) 
char •name; 

setttyent( ) 

endttyent() 

DESCRIPTION 
getttyent() and getttynam() each return a pointer to an object with the following structure containing the 
broken-out fields of a line from the tty description file. 

struct ttyent { 
char 
char 
char 
int 
char 
char 

}; 

•ty_name; 
•ty_getty; 
•ty_type; 
ty_status; 
•ty _ window; 
•ty_comment; 

I• terminal device name•/ 
I• command to execute, usually getty •I 
/• terminal type for termcap (3X) •I 
I• status flags (see below for defines)•/ 
I• command to start up window manager•/ 
/• usually the location of the terminal •I 

#define TTY_ON Oxl /• enable logins (startup getty) •I 
/• allow root to login•/ #define TTY SECURE Ox2 

ty_name 

ty_getty 

ty_type 

ty_status 

ty_window 

ty_comment 

is the name of the character-special file in the directory /dev. For various 
reasons, it must reside in the directory /dev. 

is the command (usually getty(8)) which is invoked by init to initialize 
tty line characteristics. In fact, any arbitrary command can be used; a 
typical use is to initiate a terminal emulator in a window system. 

is the name of the default terminal type connected to this tty line. This is 
typically a name from the termcap{5) data base. The environment vari
able TERM is initialized with this name by getty(8) or login(l). 

is a mask of bit fields which indicate various actions to be allowed on this 
tty line. The following is a description of each flag. 

TTY_ON 
Enables logins (that is, init(8) will start the specified 
"getty" command on this entry). 

TTY_SECURE 
Allows root to login on this terminal. Note: TTY_ ON 
must be included for this to be useful. 

is the command to execute for a window system associated with the line. 
The window system will be started before the command specified in the 
ty _getty entry is executed. If none is specified, this will be NULL. 

is the trailing comment field, if any; a leading delimiter and white space 
will be removed. 

getttyent() reads the next line from the ttytab file, opening the file if necessary; getttyent() rewinds the 
file; endttyent() closes it. 

Sun Release 4.0 Last change: 6 October 1987 887 



GETITYENT ( 3) C LIBRARY FUNCTIONS GETTTYENT ( 3) 

getttynam() searches from the beginning of the file until a matching name is found ( or until EOF is 
encountered). 

FILES 
I etc/ttytab 

SEE ALSO 
login(l), ttyslot(3), ttyslot(3V), gettytab(5), ttytab(5), termcap(5), getty(8), init(8) 

DIAGNOSTICS 
NULL pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. 

888 Last change: 6 October 1987 Sun Release 4.0 



GETUSERSHELL ( 3) C LIBRARY FUNCTIONS 

NAME 
getusershell, setusershell, endusershell - get legal user shells 

SYNOPSIS 
char •getusershell() 

setusershell() 

endusershell() 

DESCRIPTION 

GETUSERSHELL ( 3) 

getusershell() returns a pointer to a legal user shell as defined by the system manager in the file /etc/shells. 
If /etdshells does not exist, the two standard system shells /usr/bin/sh and /usr/bin/csh are returned. 

FILES 

getusershell() reads the next line (opening the file if necessary); setusershell() rewinds the file; enduser
shell( ) closes it. 

/etc/shells 
/usr /bin/ csh 

DIAGNOSTICS 
The routine getusershell() returns a NULL pointer (0) on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. 

Sun Release 4.0 Last change: 6 October 1987 889 



GETWD(3) C LIBRARY FUNCTIONS GETWD(3) 

NAME 
getwd - get current working directory pathname 

SYNOPSIS 
#include <sys/param.h> 

char •getwd(pathname) 
char pathname[MAXPATHLEN]; 

DESCRIPTION 
getwd() copies the absolute pathname of the current working directory to pathname and returns a pointer 
to the result. 

DIAGNOSTICS 
getwd() returns zero and places a message in pathname if an error occurs. 

FILES 
/tmp/.getwd 

890 

It exists for the sole purpose of the getwd() library routine; no other software 
should depend on its existence or contents. 

Last change: 18 January 1988 Sun Release 4.0 



HSEARCH(3) C LIBRARY FUNCTIONS HSEARCH(3) 

NAME 
hsearch, hcreate, hdestroy - manage hash search tables 

SYNOPSIS 
#include <search.h> 

ENTRY * hsearch (item, action) 
ENTRY item; 
ACTION action; 

int hcreate (nel) 
unsigned net; 

void hdestroy ( ) 

DESCRIPTION 

NOTES 

hsearch() is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a pointer 
into a hash table indicating the location at which an entry can be found. item is a structure of type ENTRY 
( defined in the <search.h> header file) containing two pointers: item.key points to the comparison key, and 
item.data points to any other data to be associated with that key. (Pointers to types other than character 
should be cast to pointer-to-character.) action is a member of an enumeration type ACTION indicating the 
disposition of the entry if it cannot be found in the table. ENTER indicates that the item should be inserted 
in the table at an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution 
is indicated by the return of a NULL pointer. 

hcreate( ) allocates sufficient space for the table, and must be called before hsearch() is used. nel is an 
estimate of the maximum number of entries that the table will contain. This number may be adjusted 
upward by the algorithm in order to obtain certain mathematically favorable circumstances. 

hdestroy() destroys the search table, and may be followed by another call to hcreate. 

hsearch() uses open addressing with a multiplicative hash function. 

EXAMPLE 
The following example will read in strings followed by two numbers and store them in a hash table, dis
carding duplicates. It will then read in strings and find the matching entry in the hash table and print it out. 

#include <Stdio.h> 
#include <Search.h> 
struct info { I* this is the info stored in the table *I 

I* other than the key. *' 
}; 
#define 

int age, room; 

NUM EMPL 5000 I*# of elements in search table •/ 
main() 
{ 

/• space to store strings •/ 
char string_ space[NUM _ EMPL* 20]; 
I• space to store employee info •/ 
struct info info_space[NUM_EMPL]; 
I* next avail space in string_space •/ 
char •str _ptr = string_space; 
I• next avail space in info_space •/ 
struct info *info_ptr = info_space; 
ENTRY item, •found item, •hsearch( ); 
I* name to look for in table •/ 
char name_to_find[30]; 
int i = O; 
I* create table•/ 

T .:i~t ch~nPe'. 6 Octoher 1987 891 



HSEARCH(3) 

SEE ALSO 

C LIBRARY FUNCTIONS 

(void) hcreate{NUM_EMPL); 
while (scanf(" %s%d%d", str_ptr, &info_ptr->age, 

&info_ptr->room) != 
EOF && i++ < 
NUM_EMPL) { 

ENTER); 
} 

/• put info in structure, and structure in item •I 
item.key = str _ptr; 
item.data = (char •)info_ptr; 
str_ptr += strlen(str_ptr) + l; 
info _ptr++; 
/• put item into table •/ 
(void) hsearch(item, 

I• access table •I 
item.key= name_to_find; 
while (scanf(" %s", item.key) != EOF) { 

if ((found_item = hsearch(item, 
FIND)) != NULL) { 

} 
} 

/• if item is in the table •I 
(void)printf("found %s, age = %d, room = %d\n", 

found _item->key, 
( (struct info *)found_ item->data)->age, 
((struct info •)found_item->data)->room); 

} else { 

} 

(void)printf("no such employee %s\n", 
name_ to_ find) 

bsearch(3}, lsearch(3}, malloc(3}, string(3}, tsearch(3) 

DIAGNOSTICS 

HSEARCH(3) 

hsearch() returns a NULL pointer if either the action is FIND and the item could not be found or the 
action is ENTER and the table is full. 

hcreate( ) returns zero if it cannot allocate sufficient space for the table. 

WARNING 
hsearch() and hcreate() use malloc(3) to allocate space. 

BUGS 
Only one hash search table may be active at any given time. 

892 Last change: 6 October 1987 Sun Release 4.0 



INET(3N) NE1WORK FUNCTIONS INET(3N) 

NAME 
inet inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa - Internet address mani
pulation 

SYNOPSIS 
#include <Sys/types.h> 
#include <Sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 

unsigned long 
inet _ addr( cp) 
char •cp; 

inet _ network( cp) 
char •cp; 

struct in _addr 
inet_makeaddr(net, Ina) 
int net, Ina; 

inet_lnaof(in) 
struct in_addr in; 

inet _ netof(in) 
struct in_ addr in; 

char* 
inet _ntoa(in) 
struct in_addr in; 

DESCRIPTION 
The routines inet_addr() and inet_network() each interpret character strings representing numbers 
expressed in the Internet standard '.' notation, returning numbers suitable for use as Internet addresses 
and Internet network numbers, respectively. The routine inet _ makeaddr() takes an Internet network 
number and a local network address and constructs an Internet address from it. The routines 
inet _ netof( ) and inet _ lnaof() break apart Internet host addresses, returning the network number and 
local network address part, respectively. 

The routine inet _ ntoa() returns a pointer to a string in the base 256 notation '' d.d.d.d'' described 
below. 

All Internet address are returned in network order (bytes ordered from left to right). All network 
numbers and local address parts are returned as machine format integer values. 

INTERNET ADDRESSES 
Values specified using the '.' notation take one of the following forms: 

a.b.c.d 
a.b.c 
a.b 
a 

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to 
the four bytes of an Internet address. Note: when an Internet address is viewed as a 32-bit integer 
quantity on Sun386i systems, the bytes referred to above appear as d.c.b.a. That is, Sun386i bytes are 
ordered from right to left. 

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in 
the right most two bytes of the network address. This makes the three part address format convenient 
for specifying Class B network addresses as '' 128.net.host' '. 

Sun Release 4.0 Last change: 18 February 1988 893 



INET(3N) NETWORK FUNCTIONS INET(3N) 

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the 
right most three bytes of the network address. This makes the two part address format convenient for 
specifying Class A network addresses as "net.host". 

When only one part is given, the value is stored directly in the network address without any byte rear
rangement. 

All numbers supplied as ''parts' ' in a '.' notation may be decimal, octal, or hexadecimal, as specified 
in the C language (that is, a leading Ox or OX implies hexadecimal; otherwise, a leading O implies 
octal; otherwise, the number is interpreted as decimal). 

SEE ALSO 
gethostent(3N), getnetent(3N), hosts(5), networks(5), 

DIAGNOSTICS 

BUGS 

894 

The value -1 is returned by inet_addr() and inet_network() for malformed requests. 

The problem of host byte ordering versus network byte ordering is confusing. A simple way to 
specify Class C network addresses in a manner similar to that for Class B and Class A is needed. 

The return value from inet_ntoa() points to static information which is overwritten in each call. 

Last change: 18 February 1988 Sun Release 4.0 



INITGROUPS ( 3) C LIBRARY FUNCTIONS 

NAME 
initgroups - initialize group access list 

SYNOPSIS 
initgroups(name, basegid) 
char •name; 
int basegid; 

DESCRIPTION 

INITGROUPS ( 3 ) 

initgroups() reads through the group file and sets up, using the setgroups call (see getgroups(2)), the 
group access list for the user specified in name. The basegid is automatically included in the groups 
list. Typically this value is given as the group number from the password file. 

FILES 
/etc/group 

SEE ALSO 
getgroups(2), getgrent(3) 

DIAGNOSTICS 
initgroups() returns -1 if it was not invoked by the super-user. 

BUGS 
initgroups() uses the routines based on getgrent(3). If the invoking program uses any of these rou
tines, the group structure will be overwritten in the call to initgroups. 

Sun Release 4.0 Last change: 6 October 1987 895 



INSQUE(3) C LIBRARY FUNCTIONS INSQUE(3) 

NAME 
insque, remque - insert/remove element from a queue 

SYNOPSIS 
struct qelem { 

}; 

struct qelem •q_forw; 
struct qelem •q_ back; 
char q_data[ ]; 

insque( elem, pred) 
struct qelem •elem, •pred; 

remque(elem) 
struct qelem •elem; 

DESCRIPTION 

896 

insque() and remque() manipulate queues built from doubly linked lists. Each element in the queue 
must be in the form of ''struct qelem' '. insque() inserts elem in a queue immediately after pred; 
remque() removes an entry elem from a queue. 

Last change: 6 October 1987 Sun Release 4.0 



ISSECURE ( 3 ) C LIBRARY FUNCTIONS ISSECURE ( 3 ) 

NAME 
issecure - indicates whether system is running secure 

SYNOPSIS 
int issecure( ) 

DESCRIPTION 
This function tells whether the system has been configured to run in secure mode. It returns O if the 
system is not running secure, and non-zero if the system is running secure. 

Sun Release 4.0 Last change: 6 October 1987 897 



KVM_GETU (3K) KERNEL VM LIBRARY FUNCTIONS KVM_GETU(3K) 

NAME 
kvm _getu, kvm _getcmd - get the u-area or invocation arguments for a process 

SYNOPSIS 
#include <kvm.h> 
#include <Sys/param.h> 
#include <Sys/user .h> 
#include <Sys/proc.h> 

struct user •kvm _getu(kd, proc) 
kvm_t •kd; 
struct proc •proc; 

int kvm_getcmd(kd, proc, u, arg, env) 
kvm_t •kd; 
struct proc •proc; 
struct user •u; 
char •••arg; 
char * * •env; 

DESCRIPTION 
kvm _getu() reads the u-area of the process specified by proc to an area of static storage associated 
with kd and returns a pointer to it. Subsequent calls to kvm _getu() will overwrite the static u-area. 

kd is a pointer to a kernel identifier returned by kvm _ open(3K). proc is a pointer to a copy (in the 
current process' address space) of a proc structure (obtained, for instance, by a prior 
kvm _ nextproc(3K) call). 

kvm _getcmd( ) constructs a list of string pointers that represent the command arguments and environ
ment that were used to initiate the process specified by proc. 

kd is a pointer to a kernel identifier returned by kvm _ open(3K). u is a pointer to a copy (in the 
current process' address space) of a user structure (obtained, for instance, by a prior kvm_getu() call). 
If arg is not NULL, then the command line arguments are formed into a NULL-terminated array of 
string pointers. The address of the first such pointer is returned in arg. If env is not NULL, then the 
environment is formed into a NULL-terminated array of string pointers. The address of the first of 
these is returned in env. 

The pointers returned in arg and env refer to data allocated by malloc(3) and should be freed (by a 
call to free (see malloc(3)) when no longer needed. Both the string pointers and the strings them
selves are deallocated when freed. 

Since the environment and command line arguments may have been modified by the user process, 
there is no guarantee that it will be possible to reconstruct the original command at all. Thus, 
kvm _getcmd() will make the best attempt possible, returning -1 if the user process data is unrecog
nizable. 

RETURN VALUE 
kvm _getu() returns a NULL pointer if an error occurred. 

kvm _getcmd( ) returns a value of O on successful completion. Otherwise -1 is returned. 

SEE ALSO 

NOTES 

898 

execve(2), kvm _ nextproc(3K), kvm _ open(3K), kvm _ read(3K), malloc(3) 

If kvm _getcmd( ) returns -1, the caller still has the option of using the command line fragment that is 
stored in the u-area. 

Last change: 6 October 1987 Sun Release 4.0 



KYM_ NEXTPROC ( 3K) KERNEL VM LIBRARY FUNCTIONS KVM _NEXTPROC ( 3K) 

NAME 
kvm _getproc, kvm _ nextproc, kvm _setproc - read system process structures 

SYNOPSIS 
#include <kvm.h> 
#include <Sys/param.h> 
#include <Sys/time.h> 
#include <Sys/proc.h> 

struct proc •kvm_getproc(kd, pid) 
kvm_t •kd; 
int pid; 

struct proc •kvm_nextproc(kd) 
kvm_t •kd; 

int kvm _ setproc(kd) 
kvm_t •kd; 

DESCRIPTION 
kvm _ nextproc() may be used to sequentially read all of the system process structures from the kernel 
identified by kd (see kvm_open(3K)). Each call to kvm_nextproc() returns a pointer to the static 
memory area that contains a copy of the next valid process table entry. There is no guarantee that the 
data will remain valid across calls to kvm _ nextproc, kvm _ setproc, or kvm _getproc. Therefore, if 
the process structure must be saved, it should be copied to non-volatile storage. 

For performance reasons, many implementations will cache a set of system process structures. Since 
the system state is liable to change between calls to kvm _ nextproc, and since the cache may contain 
obsolete information, there is no guarantee that every process structure returned refers to an active pro
cess, nor is it certain that all processes will be reported 

kvm_setproc() rewinds the process list, enabling kvm_nextproc() to rescan from the beginning of the 
system process table. kvm _setproc() will always flush the process structure cache, allowing an appli
cation to re-scan the process table of a running system. 

kvm _getproc() locates the proc structure of the process specified by pid and returns a pointer to it. 
kvm _getproc() does not interact with the process table pointer manipulated by kvm _ nextproc, how
ever, the restrictions regarding the validity of the data still apply. 

RETURN VALUE 
kvm _getproc() and kvm _ nextproc() return a NULL pointer if an error has occurred. 

kvm_setproc() returns a value of O on successful completion. Otherwise -1 is returned. 

SEE ALSO 
kvm _getu(3K), kvm _ open(3K), kvm _read(3K) 

Sun Release 4.0 Last change: 6 October 1987 899 



KYM_ NLIST ( 3K) KERNEL YM LIBRARY FUNCTIONS KYM_ NLIST ( 3K) 

NAME 
kvm _ nlist - get entries from kernel symbol table 

SYNOPSIS 
#include <kvm.h> 
#include <nlist.h> 

int kvm _ nlist(kd, nl) 
kvm_t •kd; 
struct nlist •nl; 

DESCRIPTION 
kvm_nlist() examines the symbol table from the kernel image identified by kd (see kvm_open(3K)) 
and selectively extracts a list of values and puts them in the array of nlist() structures pointed to by 
nl. The name list pointed to by nl() consists of an array of structures containing names, types and 
values. The n_name field of each such structure is taken to be a pointer to a character string 
representing a symbol name. The list is terminated by an entry with a NULL pointer ( or a pointer to a 
NULL string) in the n _name field. For each entry in nl, if the named symbol is present in the kernel 
symbol table, its value and type are placed in the n _ value and n _ type fields. If a symbol cannot be 
located, the corresponding n _ type field of nl( ) is set to zero. 

RETURN VALUE 
Upon normal completion, kvm _ nlist() returns the number of symbols that were not located in the 
symbol table. If an error occurs, nlist() returns -1 and sets all of the n _ type fields in members of 
the array pointed to by nl() to zero. 

SEE ALSO 
kvm_~pen(3K), kvm_read(3K), nlist(3), a.out(5) 

900 Last change: 24 November 1987 Sun Release 4.0 



KVM_OPEN(3K) KERNEL VM LIBRARY FUNCTIONS KVM_OPEN(3K) 

NAME 
kvm _ open, kvm _ close - specify a kernel to examine 

SYNOPSIS 
#include <kvm.h> 
#include <f cntl.h> 

kvm_t *kvm_open(namelist, corefile, swapfile, flag, errstr) 
char *namelist, *corefile, *Swapfile; 
int flag; 
char *errstr; 

int kvm _ close(kd) 
kvm_t *kd; 

DESCRIPTION 
kvm_open() initializes a set of file descriptors to be used in subsequent calls to Kernel VM routines. 
It returns a pointer to a kernel identifier that must be used as the kd argument in subsequent Kernel 
VM function calls. 

The namelist argument specifies an unstripped executable file whose symbol table will be used to 
locate various offsets in corefile. If namelist is NULL, the symbol table of the currently running ker
nel is used to determine offsets in the core image. In this case, it is up to the implementation to 
select an appropriate way to resolve symbolic references (for instance, using /vmunix as a default 
namelist file). 

corefile specifies a file that contains an image of physical memory, for instance, a kernel crash dump 
file (see savecore(8)) or the special device /dev/mem. If corefile is NULL, the currently running ker
nel is accessed (using /dev/mem and /dev/kmem). 

swapfile specifies a file that represents the swap device. If both corefile and swapfile are NULL, the 
swap device of the "currently running kernel" is accessed. Otherwise, if swapfile is NULL, 
kvm _open() may succeed but subsequent kvm _getu(3K) function calls may fail if the desired infor
mation is swapped out. 

flag is used to specify read or write access for corefile and may have one of the following values: 

O _ RDONLY open for reading 

0 RDWR open for reading and writing 

errstr is used to control error reporting. If it is a NULL pointer, no error messages will be printed. If 
it is non-NULL, it is assumed to be the address of a string that will be used to prefix error messages 
generated by kvm _ open. Errors are printed to stderr. A useful value to supply for errstr would be 
argv[O]. This has the effect of printing the process name in front of any error messages. 

kvm _close() closes all file descriptors that were associated with kd. These files are also closed on 
exit(2) and execve(2). kvm _close() also resets the proc pointer associated with kvm _ nextproc(3K) 
and flushes any cached kernel data. 

RETURN VALUE 

FILES 

Upon successful completion, kvm _open() returns a non-NULL value that is suitable for use with sub
sequent Kernel VM function calls. If an error occurs, no files are opened and O is returned. 

Upon successful completion, kvm _close() closes all file descriptors associated with kd and returns 
zero. Otherwise -1 is returned. 

/vmunix 
/dev/kmem 
/dev/mem 
/dev/drum 

Sun Release 4.0 Last change: 18 November 1987 901 



KVM_OPEN(3K) KERNEL VM LIBRARY FUNCTIONS KVM_OPEN(3K) 

SEE ALSO 
execve(2), exit(2), kvm_getu(3K), kvm_nextproc(3K), kvm_nlist(3K), kvm_read(3K), savecore(8) 

902 Last change: 18 November 1987 Sun Release 4.0 



KVM_READ(3K) KERNEL VM LIBRARY FUNCTIONS KVM_READ(3K) 

NAME 
kvm_read, kvm_write - copy data to or from a kernel image or running system 

SYNOPSIS 
#include <kvm.h> 

int kvm_read(kd, addr, buf, nbytes) 
kvm_t •kd; 
unsigned long addr; 
char •buf; 
unsigned nbytes; 

int kvm _ write(kd, addr, buf, nbytes) 
kvm_t •kd; 
unsigned long addr; 
char •buf; 
unsigned nbytes; 

DESCRIPTION 
kvm_read() transfers data from the kernel image specified by kd (see kvm_open(3K)) to the address 
space of the process. nbytes bytes of data are copied from the kernel virtual address given by addr to 
the buffer pointed to by buf. 

kvm _write() is like kvm _read, except that the direction of data transfer is reversed. In order to use 
this function, the kvm _ open(3K) call that returned kd must have specified write access. 

RETURN VALUE 
Upon normal completion, the number of bytes successfully transferred is returned. Otherwise -1 is 
returned. 

SEE ALSO 
kvm _getu(3K), kvm _ nlist(3K), kvm _ open(3K) 

Sun Release 4.0 Last change: 6 October 1987 903 



LDAHREAD(3X) MISCELLANEOUS LIBRARY FUNCTIONS 

NAME 
ldahread - read the archive header of a member of a COFF archive file 

SYNOPSIS 
#include <Stdio.h> 
#include <ar.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

int ldahread (ldptr, arhead) 
LDFILE *ldptr; 
ARCHDR *arhead; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

LDAHREAD(3X) 

If TYPE(ldptr) is the archive file magic number, ldahread reads the archive header of the COFF file 
currently associated with ldptr into the area of memory beginning at arhead. 

ldahread returns SUCCESS or FAILURE. ldahread will fail if TYPE(ldptr) does not represent an 
archive file, or if it cannot read the archive header. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), intro(5), ldfcn(5) 

904 Last change: 19 February 1988 Sun Release 4.0 



LDCLOSE ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDCLOSE ( 3X) 

NAME 
ldclose, ldaclose - close a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldfcn.h> 

int ldclose (Idptr) 
LDFILE •ldptr; 

int ldaclose (ldptr) 
LDFILE •ldptr; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldopen(3X) and ldclose() are designed to provide uniform access to both simple COFF object files and 
COFF object files that are members of archive files. Thus an archive of COFF files can be processed 
as if it were a series of simple COFF files. 

If TYPE(ldptr) does not represent an archive file, ldclose() will close the file and free the memory 
allocated to the LDFILE structure associated with ldptr. If TYPE(ldptr) is the magic number of an 
archive file, and if there are any more files in the archive, ldclose() will reinitialize OFFSET(ldptr) to 
the file address of the next archive member and return FAILURE. The LDFILE structure is prepared 
for a subsequent ldopen(3X). In all other cases, ldclose() returns SUCCESS. 

ldaclose() closes the file and frees the memory allocated to the LDFILE structure associated with ldptr 
regardless of the value of TYPE(ldptr). ldaclose() always returns SUCCESS. The function is often 
used in conjunction with ldaopen. 

The program must be loaded with the object file access routine library libld.a. 

intro(S) describes INCDIR and UBDIR. 

SEE ALSO 
fclose(3S), ldfcn(3), ldopen(3X), intro(S) 

Sun Release 4.0 Last change: 19 February 1988 905 



LDFCN(3) C LIBRARY FUNCTIONS LDFCN(3) 

NAME 
Id.fen - common object file access routines 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

906 

These routines are for reading COPP object files and archives containing COPP object files. Although 
the calling program must know the detailed structure of the parts of the object file that it processes, 
the routines effectively insulate the calling program from knowledge of the overall structure of the 
object file. 

The interface between the calling program and the object file access routines is based on the defined 
type LDFILE, defined as struct ldfile, declared in the header file ldfcn.h. The primary purpose of this 
structure is to provide uniform access to both simple object files and to object files that are members 
of an archive file. 

The function ldopen(3X) allocates and initializes the LDFILE structure and returns a pointer to the 
structure to the calling program. The fields of the LDFILE structure may be accessed individually 
through macros defined in Idfcn.h and contain the following information: 

LDFILE * ldptr; 

TYPE(ldptr) The file magic number used to distinguish between archive members and simple 
object files. 

IOPTR{ldptr) The file pointer returned by f open and used by the standard input/output functions. 

OPFSET(ldptr) The file address of the beginning of the object file; the offset is non-zero if the 
object file is a member of an archive file. 

HEADER(ldptr) The file header structure of the object file. 

The object file access functions themselves may be divided into four categories: 

( 1) Functions that open or close an object file 

ldopen(3X) and ldaopen(see ldopen(3X)) 
open a common object file 

ldclose(3X) and Idaclose[see ldclose(3X)] 
close a common object file 

(2) Functions that read header or symbol table information 

ldahread(3X) 
read the archive header of a member of an archive file 

ldfhread(3X) 
read the file header of a common object file 

ldshread(3X) and ldnshread[see ldshread(3X)] 
read a section header of a common object file 

ldtbread(3X) 
read a symbol table entry of a common object file 

ldgetname(3X) 
retrieve a symbol name from a symbol table entry or from the string table 

(3) Functions that position an object file at (seek to) the start of the section, relocation, or 
line number information for a particular section. 

Last change: 19 February 1988 Sun Release 4.0 



LDFCN(3) C LIBRARY FUNCTIONS 

ldobseek(3X) 
seek to the optional file header of a common object file 

ldsseek(3X) and ldnsseek[see ldsseek(3X)] 
seek to a section of a common object file 

ldrseek(3X) and ldnrseek[see ldrseek(3X)] 

LDFCN(3) 

seek to the relocation information for a section of a common object file 
ldlseek(3X) and ldnlseek[see ldlseek(3X)] 

seek to the line number information for a section of a common object file 
ldtbseek(3X) 

seek to the symbol table of a common object file 

(4) The unction ldtbindex(3X), which returns the index of a particular common object file 
symbol table entry. 

These functions are described in detail on their respective manual pages. 

All the functions except ldopen(3X), ldgetname(3X), ldtbindex(3X) return either SUCCESS or 
FAILURE, both constants defined in ldfcn.h. ldopen(3X) and ldaopen[(see ldopen(3X)] both return 
pointers to an LDFILE structure. 

Additional access to an object file is provided through a set of macros defined in ldfcn.h. These mac
ros parallel the standard input/output file reading and manipulating functions, translating a reference of 
the LDFILE structure into a reference to its file descriptor field. 

The following macros are provided: 

GETC(ldptr) 
FGETC(ldptr) 
GETW(ldptr) 
UNGETC(c, ldptr) 
FGETS(s, n, ldptr) 
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr) 
FSEEK(ldptr, offset, ptrname) 
FfELL(ldptr) 
REWIND(ldptr) 
FEOF(ldptr) 
FERROR(ldptr) 
FILENO(ldptr) 
SETBUF(ldptr, but) 
STROFFSET(ldptr) 

The STROFFSET macro calculates the address of the string table. See the manual entries for the 
corresponding standard input/output library functions for details on the use of the rest of the macros. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X), ldfbread(3X), ldlread(3X), ldlseek(3X), 
Idohseek(3X), ldopen(3X), ldrseek(3X), ldlseek(3X), ldsbread(3X), ldtbindex(3X), ldtbread(3X), 
ldtbseek(3X), stdio(3S), intro(5) 

WARNING 

The macro FSEEK defined in the header file ldf cn.b translates into a call to the standard input/output 
function fseek(3S). FSEEK should not be used to seek from the end of an archive file since the end 
of an archive file may not be the same as the end of one of its object file members. 

Sun Release 4.0 Last change: 19 February 1988 907 



LDFHREAD ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDFHREAD ( 3X) 

NAME 
ldflrread - read the file header of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

int ldfhread (ldptr, filehead) 
LDFILE *ldptr; 
FILHDR *filehead; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldfhread() reads the file header of the COFF file currently associated with ldptr into the area of 
memory beginning at file head. 

ldfhread() returns SUCCESS or FAIL URE. ldfbread() will fail if it cannot read the file header. 

In most cases the use of ldfhread() can be avoided by using the macro HEADER(ldptr) defined in 
ldfcn.h (see ldfcn(3)). The information in any field, fieldname, of the file header may be accessed 
using HEADER(ldptr).fieldname. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X) 

908 Last change: 19 February 1988 Sun Release 4.0 



LDGETNAME ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDGETNAME ( 3X) 

NAME 
ldgetname - retrieve symbol name for COFF file symbol table entry 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <Syms.h> 
#include <ldf cn.h> 

char •ldgetname (ldptr, symbol) 
LDFILE •ldptr; 
SYMENT •symbol; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldgetname() returns a pointer to the name associated with symbol as a string. The string is contained 
in a static buffer local to ldgetname() that is overwritten by each call to ldgetname( ), and therefore 
must be copied by the caller if the name is to be saved. 

ldgetname() can be used to retrieve names from object files without any backward compatibility prob
lems. ldgetname() will return NULL ( defined in stdio.h) for an object file if the name cannot be 
retrieved. This situation can occur: 

• if the "string table" cannot be found, 

• if not enough memory can be allocated for the string table, 

• if the string table appears not to be a string table (for example, if an auxiliary entry is handed to 
ldgetname() that looks like a reference to a name in a nonexistent string table), or 

• if the name's offset into the string table is past the end of the string table. 

Typically, ldgetname() will be called immediately after a successful call to ldtbread() to retrieve the 
name associated with the symbol table entry filled by ldtbread(). 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X}, ldfcn(3}, ldopen(3X), ldtbread(3X), ldtbseek(3X) 

Sun Release 4.0 Last change: 19 February 1988 909 



LDLREAD ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDLREAD ( 3X) 

NAME 
ldlread, ldlinit, ldlitem - manipulate line number entries of a COFF file function 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <linenum.h> 
#include <ldf cn.h> 

int ldlread(ldptr, fcnindx, linenum, linent) 
LDFILE •ldptr; 
long f cnindx; 
unsigned short linenum; 
LINENO •linent; 

int ldlinit(ldptr, fcnindx) 
LDFILE * ldptr; 
long fcnindx; 

int ldlitem(ldptr, linenum, linent) 
LDFILE •ldptr; 
unsigned short linen um; 
LINENO •linent; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldlread() searches the line number entries of the COFF file currently associated with ldptr. ldlread() 
begins its search with the line number entry for the beginning of a function and confines its search to 
the line numbers associated with a single function. The function is identified by fcnindx, the index of 
its entry in the object file symbol table. ldlread() reads the entry with the smallest line number equal 
to or greater than linenum into the memory beginning at linent. 

ldlinit() and ldlitem() together perform exactly the same function as ldlread( ). After an initial call 
to ldlread() or ldlinit( ), Idlitem() may be used to retrieve a series of line number entries associated 
with a single function. Idlinit() simply locates the line number entries for the function identified by 
fcnindx. ldlitem() finds and reads the entry with the smallest line number equal to or greater than line
num into the memory beginning at linent( ). 

ldlread(), ldlinit(), and ldlitem() each return either SUCCESS or FAILURE. ldlread() will fail if 
there are no line number entries in the object file, if fcnindx does not index a function entry in the 
symbol table, or if it finds no line number equal to or greater than linenum. ldlinit() will fail if there 
are no line number entries in the object file or if fcnindx does not index a function entry in the sym
bol table. ldlitem() will fail if it finds no line number equal to or greater than linenum. 

The programs must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), Idfcn(3), ldopen(3X), ldtbindex(3X) 

910 Last change: 19 February 1988 Sun Release 4.0 



LDLSEEK ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDLSEEK ( 3X) 

NAME 
ldlseek, ldnlseek - seek to line number entries of a section of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

int ldlseek (ldptr, sectindx) 
LDFILE •Idptr; 
unsigned short sectindx; 

int ldnlseek (ldptr, sectname) 
LDFILE •ldptr; 
char •sectname; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldlseek() seeks to the line number entries of the section specified by sectindx of the COFF file 
currently associated with ldptr. 

ldnlseek() seeks to the line number entries of the section specified by sectname. 

ldlseek() and ldnlseek() return SUCCESS or FAILURE. ldlseek() will fail if sectindx is greater than 
the number of sections in the object file; ldnlseek() will fail if there is no section name corresponding 
with •sectname. Either function will fail if the specified section has no line number entries or if it 
cannot seek to the specified line number entries. 

Note that the first section has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X), ldshread(3X) 

Sun Release 4.0 Last change: 19 February 1988 911 



LDOHSEEK ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS 

NAME 
ldohseek - seek to the optional file header of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

int ldohseek (ldptr) 
LDFILE •Idptr; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

LDOHSEEK ( 3X) 

ldohseek() seeks to the optional file header of the COFF file currently associated with ldptr. 

ldohsee() returns SUCCESS or FAILURE. ldohseek() will fail if the object file has no optional header 
or if it cannot seek to the optional header. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X), ldfbread(3X) 

912 Last change: 19 February 1988 Sun Release 4.0 



LDOPEN(3X) MISCELLANEOUS LIBRARY FUNCTIONS LDOPEN(3X) 

NAME 
ldopen, ldaopen - open a COFF file for reading 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

LDFILE •Idopen (filename, ldptr) 
char •filename; 
LDFILE * ldptr; 

LDFILE •Idaopen (filename, oldptr) 
char •filename; 
LDFILE •oldptr; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldopen() and ldclose(3X) are designed to provide uniform access to both simple object files and 
object files that are members of archive files. Thus an archive of COFF files can be processed as if it 
were a series of simple COFF files. 

If ldptr has the value NULL, then ldopen() will open filename and allocate and initialize the LDFILE 
structure, and return a pointer to the structure to the calling program. 

If ldptr is valid and if TYPE(ldptr) is the archive magic number, ldopen() will reinitialize the LDFILE 
structure for the next archive member of filename. 

ldopen() and ldclose(3X) are designed to work in concert. ldclose will return FAILURE only when 
TYPE(ldptr) is the archive magic number and there is another file in the archive to be processed. 
Only then should ldopen() be called with the current value of ldptr. In all other cases, in particular 
whenever a new filename is opened, Id open() should be called with a NULL ldptr argument. 

The following is a prototype for the use of ldopen() and ldclose(3X). 

I• for each filename to be processed •I 

ldptr = NULL; 
do 
{ 

if ( (ldptr = Idopen(filename, ldptr)) != NULL ) 
{ 

} 

/• check magic number •/ 
/• process the file •/ 

} while (Idclose(Idptr) == FAILURE ); 

If the value of oldptr is not NULL, ldaopen() will open filename anew and allocate and initialize a 
new LDFILE structure, copying the TYPE, OFFSET, and HEADER fields from oldptr. ldaopen() 
returns a pointer to the new LDFILE structure. This new pointer is independent of the old pointer, 
oldptr. The two pointers may be used concurrently to read separate parts of the object file. For 
example, one pointer may be used to step sequentially through the relocation information, while the 
other is used to read indexed symbol table entries. 

Both ldopen() and ldaopen() open filename for reading. Both functions return NULL if filename can
not be opened, or if memory for the LDFILE structure cannot be allocated A successful open does 
not insure that the given file is a COFF file or an archived object file. 

Sun Release 4.0 Last change: 19 February 1988 913 



LDOPEN(3X) MISCELLANEOUS LIBRARY FUNCTIONS LDOPEN(3X) 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
fopen(3S), ldclose(3X), Idfcn(3) 

914 Last change: 19 February 1988 Sun Release 4.0 



LDRSEEK ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDRSEEK ( 3X) 

NAME 
ldrseek, ldnrseek - seek to relocation entries of a section of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

int ldrseek (ldptr, sectindx) 
LDFILE •Idptr; 
unsigned short sectindx; 

int ldnrseek (ldptr, sectname) 
LDFILE * ldptr; 
char *sectname; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldrseek() seeks to the relocation entries of the section specified by sectindx of the COFF file currently 
associated with ldptr. 

ldnrseek() seeks to the relocation entries of the section specified by sectname. 

ldrseek() and ldnrseek() return SUCCESS or FAILURE. ldrseek() will fail if sectindx is greater than 
the number of sections in the object file; ldnrseek() will fail if there is no section name corresponding 
with sectname. Either function will fail if the specified section has no relocation entries or if it can
not seek to the specified relocation entries. 

Note: the first section has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X), ldshread(3X) 

Sun Release 4.0 Last change: 19 February 1988 915 



LDSHREAD ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDSHREAD ( 3X) 

NAME 
ldshread, ldnshread - read an indexed/named section header of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <Scnhdr .h> 
#include <ldfcn.h> 

int ldshread (ldptr, sectindx, secthead) 
LDFILE •Idptr; 
unsigned short sectindx; 
SCNHDR •secthead; 

int ldnshread (ldptr, sectname, secthead) 
LDFILE •Idptr; 
char •sectname; 
SCNHDR •secthead; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
Idshread() reads the section header specified by sectindx of the COPP file currently associated with 
ldptr into the area of memory beginning at secthead. 

ldnshread() reads the section header specified by sectname into the area of memory beginning at sect
head. 

ldshread() and ldnshread() return SUCCESS or FAILURE. ldshread() will fail if sectindx is greater 
than the number of sections in the object file; ldnshread() will fail if there is no section name 
corresponding with sectname. Either function will fail if it cannot read the specified section header. 

Note: the first section header has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X) 

916 Last change: 19 February 1988 Sun Release 4.0 



LDSSEEK ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS 

NAME 
ldsseek, ldnsseek - seek to an indexed/named section of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filehdr .h> 
#include <ldf cn.h> 

int ldsseek (ldptr, sectindx) 
LDFILE *ldptr; 
unsigned short sectindx; 

int ldnsseek (ldptr, sectname) 
LDFILE *ldptr; 
char *sectname; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

LDSSEEK ( 3X) 

ldsseek() seeks to the section specified by sectindx of the COFF file currently associated with ldptr. 

ldnsseek() seeks to the section specified by sectname. 

ldsseek() and ldnsseek() return SUCCESS or FAILURE. ldsseek() will fail if sectindx is greater than 
the number of sections in the object file; ldnsseek() will fail if there is no section name corresponding 
with sectname. Either function will fail if there is no section data for the specified section or if it 
cannot seek to the specified section. 

Note: the first section has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X), ldshread(3X) 

Sun Release 4.0 Last change: 19 February 1988 917 



LDTBINDEX ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS LDTBINDEX ( 3X) 

NAME 
ldtbindex - compute the index of a symbol table entry of a COFF file 

SYNOPSIS 
#include <stdio.h> 
#include <filehdr.h> 
#include <syms.h> 
#include <ldf cn.h> 

long ldtbindex (Idptr) 
LDFILE •ldptr; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldtbindex() returns the (long) index of the symbol table entry at the current position of the COFF file asso
ciated with ldptr. 

The index returned by Id th index() may be used in subsequent calls to ldtbread(3X). However, since 
ldtbindex() returns the index of the symbol table entry that begins at the current position of the object file, 
if ldtbindex() is called immediately after a particular symbol table entry has been read, it will return the 
index of the next entry. 

ldtbindex() will fail if there are no symbols in the object file, or if the object file is not positioned at the 
beginning of a symbol table entry. 

Note that the first symbol in the symbol table has an index of zero. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X), ldtbread(3X), ldtbseek(3X) 

918 Last change: 19 February 1988 Sun Release 4.0 



LDTBREAD ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS 

NAME 
ldtbread - read an indexed symbol table entry of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include <filebdr .h> 
#include <Syms.h> 
#include <ldf cn.h> 

int ldtbread (ldptr, symindex, symbol) 
LDFILE •Idptr; 
long symindex; 
SYMENT *symbol; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

LDTBREAD ( 3X) 

ldtbread() reads the symbol table entry specified by symindex of the COFF file currently associated 
with ldptr into the area of memory beginning at symbol. 

ldtbread() returns SUCCESS or FAILURE. ldtbread() will fail if symindex is greater than or equal to 
the number of symbols in the object file, or if it cannot read the specified symbol table entry. 

Note: the first symbol in the symbol table has an index of zero. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
Idclose(3X), ldfcn(3), ldopen(3X), ldtbseek(3X), ldgetname(3X) 

Sun Release 4.0 Last change: 19 February 1988 919 



LDTBSEEK ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS 

NAME 
ldtbseek - seek to the symbol table of a COFF file 

SYNOPSIS 
#include <Stdio.h> 
#include dilehdr .h> 
#include <ldf cn.h> 

int ldtbseek (ldptr) 
LDFILE *ldptr; 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ldtbseek() seeks to the symbol table of the COFF file currently associated with ldptr. 

LDTBSEEK ( 3X) 

ldtbseek() returns SUCCESS or FAIL URE. ldtbseek() will fail if the symbol table has been stripped 
from the object file, or if it cannot seek to the symbol table. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldfcn(3), ldopen(3X), ldtbread(3X) 

920 Last change: 19 February 1988 Sun Release 4.0 



LOCKF(3) C LIBRARY FUNCTIONS LOCKF(3) 

NAME 
lockf - advisory record locking on files 

SYNOPSIS 
#include <unistd.h> 

#define F - ULOCK 
#define F _ LOCK 
#define F _ TLOCK 
#define F _ TEST 3 

int lockf(fd, cmd, size) 
int fd, cmd; 
long size; 

0 I• Unlock a previously locked section •I 
1 /• Lock a section for exclusive use •/ 
2 I• Test and lock a section (non-blocking) •/ 
I• Test section for other process' locks •/ 

DESCRIPTION 

NOTES 

lockf() may be used to test, apply, or remove an advisory record lock on the file associated with the 
open descriptor fd. (See f cntl(2V) for more information about advisory record locking.) 

A lock is obtained by specifying a cmd parameter of F _ LOCK or F _ TLOCK. To unlock an existing 
lock, the F _ ULOCK cmd is used. F _ TEST is used to detect if a lock by another process is present on 
the specified segment. 

F _ LOCK and F _ TLOCK requests differ only by the action taken if the lock may not be immediately 
granted. F _TLOCK returns a -1 by the function and sets errno to EAGAIN if the section is already 
locked by another process. F _ LOCK will cause the process to sleep until the lock may be granted or 
a signal is caught. 

size is the number of contiguous bytes to be locked or unlocked. The lock starts at the current file 
offset in the file and extends forward for a positive size or backward for a negative size (preceeding 
but not including the current offset). A segment need not be allocated to the file in order to be 
locked; however, a segment may not extend to a negative offset relative to the beginning of the file. 
If size is zero, the lock will extend from the current offset through the EOF. If such a lock starts at 
offset 0, then the entire file will be locked (regardless of future file extensions). 

The descriptor fd must have been opened with O _ WR ONLY or O _ RDWR permission in order to estab
lish locks with this function call. 

All locks associated with a file for a given process are removed when the file is closed or the process 
terminates. Locks are not inherited by the child process in a fork(2) system call. 

RETURN VALUE 
Zero is returned on success, -1 on error, with an error code stored in errno. 

ERRORS 
lockf() will fail if one or more of the following are true: 

EBADF fd is not a valid open descriptor. 

EBADF 

EAGAIN 

EINTR 

ENOLCK 

Sun Release 4.0 

cmd is F_LOCK or F_TLOCK and the process does not have write permission 
on the file. 

cmd is F _ TLOCK or F _ TEST and the section is already locked by another pro
cess. 

cmd is F _ LOCK and a signal interrupted the process while it was waiting for 
the lock to be granted. 

cmd is F_LOCK, F_TLOCK, or F_ULOCK and there are no more file lock 
entries available. 

Last change: 22 November 1987 921 



LOCKF(3) C LIBRARY FUNCTIONS LOCKF(3) 

SEE ALSO 
fcntl(2V), flock(2), fork(2), lockd(8C) 

BUGS 
File locks obtained through the lockf() mechanism do not interact in any way with those acquired 
using flock(2). They do, however, work correctly with the locks claimed by fcntl(2V). 

922 Last change: 22 November 1987 Sun Release 4.0 



LSEARCH(3) C LIBRARY FUNCTIONS LSEARCH(3) 

NAME 
lsearch, lfind - linear search and update 

SYNOPSIS 
#include <stdio.h> 
#include <Search.h> 

char *lsearch ((char *)key, (char *)base, nelp, sizeof(*key), compar) 
unsigned •nelp; 

int (*compar)( ); 

char *lfind ((char *)key, (char *)base, nelp, sizeof(*key), compar) 
unsigned •nelp; 
int 

(*compar)( ); 

DESCRIPTION 

NOTES 

lsearch() is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer 
into a table indicating where a datum may be found. If the datum does not occur, it is added at the 
end of the table. key() points to the datum to be sought in the table. base points to the first element 
in the table. nelp points to an integer containing the current number of elements in the table. The 
integer is incremented if the datum is added to the table. compar is the name of the comparison 
function which the user must supply (strcmp, for example). It is called with two arguments that point 
to the elements being compared. The function must return zero if the elements are equal and non-zero 
otherwise. 

lfind() is the same as Isearch( ) except that if the datum is not found, it is not added to the table. 
Instead, a NULL pointer is returned. 

The pointers to the key and the element at the base of the table should be of type pointer-to-element, 
and cast to type pointer-to-character. 

The comparison function need not compare every byte, so arbitrary data may be contained in the ele
ments in addition to the values being compared. 

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to
element. 

EXAMPLE 
This fragment will read in S T ABSIZE strings of length S ELSIZE and store them in a table, eliminat
ing duplicates. 

Sun Release 4.0 

#include <Stdio.h> 
#include <search.h> 
#define 
TABSIZE SO 
#define 
ELSIZE 120 

char line[ELSIZE], tab[T ABSIZE][ELSIZE], * lsearch( ); 
unsigned nel = O; 
int strcmp( ); 

while (f gets(line, 
ELSIZE, stdio) != NULL && 

nel < T ABSIZE) 
(void) lsearch(line, (char •)tab, &nel, ELSIZE, strcmp); 

Last change: 6 October 1987 923 



LSEARCH(3) C LIBRARY FUNCTIONS LSEARCH(3) 

SEE ALSO 
bsearch(3 ), hsearch(3 ), tsearch(3) 

DIAGNOSTICS 
If the searched for datum is found, both lsearch() and Hind() return a pointer to it. Otherwise, 
Hind() returns NULL and lsearch() returns a pointer to the newly added element. 

BUGS 
Undefined results can occur if there is not enough room in the table to add a new item. 

924 Last change: 6 October 1987 Sun Release 4.0 



MALLOC(3) C LIBRARY FUNCTIONS MALLOC(3) 

NAME 
malloc, free, realloc, calloc, cfree, memalign, valloc, alloca, malloc _ debug, malloc _ verify - memory allo
cator 

SYNOPSIS 
char •manoc(size) 
unsigned size; 

free(ptr) 
char •ptr; 

char •reanoe(ptr, size) 
char •ptr; 
unsigned size; 

char •calloc(nelem, elsize) 
unsigned nelem, elsize; 

cfree(ptr) 
char •ptr; 

char •memalign(alignment, size) 
unsigned alignment; 
unsigned size; 

char •vanoc(size) 
unsigned size; 

#include <anoca.h> 
char •alloea(size) 
int size; 

DESCRIPTION 
These routines provide a general-purpose memory allocation package. They maintain a table of free blocks 
for efficient allocation and coalescing of free storage. When there is no suitable space already free, the 
allocation routines call sbrk() (see brk(2)) to get more memory from the system. 

Each of the allocation routines returns a pointer to space suitably aligned for storage of any type of object. 
Each returns a NULL pointer if the request cannot be completed (see DIAGNOSTICS). 

malloc() returns a pointer to a block of at least size bytes, which is appropriately aligned. A NULL (0) 
pointer is returned if size is O or if size bytes of memory cannot be allocated. 

free() releases a previously allocated block. Its argument is a pointer to a block previously allocated by 
malloc, canoe, realloc, malloc, or memalign. 

realloc() changes the size of the block referenced by ptr to size bytes and returns a pointer to the (possibly 
moved) block. The contents will be unchanged up to the lesser of the new and old sizes. For backwards 
compatibility, reanoc() accepts a pointer to a block freed since the most recent call to malloc, calloc, real
loe, vanoc, or memalign. Note: using realloc() with a block freed before the most recent call to malloc, 
canoe, realloc, valloc, or memalign is an error. 

calloe() uses malloe() to allocate space for an array of nelem elements of size elsize, initializes the space 
to zeros, and returns a pointer to the initialized block. The block can be freed with free() or cfree. 

memalign() allocates size bytes on a specified alignment boundary, and returns a pointer to the allocated 
block. The value of the returned address is guaranteed to be an even multiple of alignment. Note: the 
value of alignment must be a power of two, and must be greater than or equal to the size of a word. 

valloc(size) is equivalent to memalign(getpagesize( ), size). 

alloca() allocates size bytes of space in the stack frame of the caller, and returns a pointer to the allocated 
block. This temporary space is automatically freed when the caller returns. 

Sun Release 4.0 Last change: 18 November 1987 925 



MALLOC(3) C LIBRARY FUNCTIONS MALLOC(3) 

ERRORS 
malloc, calloc, realloc, valloc, memalign, cfree, and free() will each fail if one or more of the following 
are true: 

EINVAL 

EINVAL 

ENOMEM 

The requested allocation size is zero or an invalid argument was specified. The 
value of ptr passed to free, cfree, or realloc() must be a pointer to a block previ
ously allocated by malloc, calloc, realloc, valloc, or memalign. 

The allocation heap is found to have been corrupted. More detailed information 
may be obtained by enabling range checks using malloc _ debug. 

size bytes of memory could not be allocated. 

DIAGNOSTICS 

FILES 

BUGS 

926 

More detailed diagnostics can be made available to programs using malloc, calloc, realloc, valloc, 
memalign, cfree, and free, by including a special relocatable object file at link time (see FILES). This file 
also provides routines for control of error handling and diagnosis, as defined below. Note: these routines 
are not defined in the standard library. 

int malloc _ debug(level) 
int level; 

int malloc _verify() 

malloc _debug() sets the level of error diagnosis and reporting during subsequent calls to malloc, calloc, 
realloc, valloc, memalign, cfree, and free. The value of level is interpreted as follows: 

Level O malloc, calloc, realloc, valloc, memalign, cfree, and free behave the same as in 
the standard library. 

Level 1 

Level 2 

The routines abort with a message to the standard error if errors are detected in 
arguments or in the heap. If a bad block is encountered, its address and size are 
included in the message. 

Same as level 1, except that the entire heap is examined on every call to the above 
routines. 

malloc _ debug() returns the previous error diagnostic level. The default level is 1. 

malloc _verify() attempts to determine if the heap has been corrupted. It scans all blocks in the heap (both 
free and allocated) looking for strange addresses or absurd sizes, and also checks for inconsistencies in the 
free space table. malloc _verify() returns 1 if all checks pass without error, and otherwise returns 0. The 
checks can take a significant amount of time, so it should not be used indiscriminately. 

/usr/lib/debug/malloc.o diagnostic versions of malloc() routines. 

alloca() is both machine- and compiler-dependent; its use is discouraged. 

Since realloc( ) accepts a pointer to a block freed since the last call to malloc, calloc, realloc, valloc, or 
memalign, a degradation of performance results. The semantics of free() should be changed so that the 
contents of a previously freed block are undefined. 

Last change: 18 November 1987 Sun Release 4.0 



MALLOC(3) 

SEE ALSO 
brk(2) 

C LIBRARY FUNCTIONS MALLOC(3) 

Stephenson, C.J., Fast Fits, in Proceedings of the ACM 9th Symposium on Operating Systems, SIGOPS 
Operating Systems Review, vol. 17, no. 5, October 1983. 
Core Wars, in Scientific American, May 1984. 

Sun Release 4.0 Last change: 18 November 1987 927 



MEMORY(3) C LIBRARY FUNCTIONS MEMORY(3) 

NAME 
memory, memccpy, memchr, memcmp, memcpy, memset - memory operations 

SYNOPSIS 

#include <memory .h> 

char •memccpy (sl, s2, c, n) 
char •sl, •s2; 
int c, n; 

char •memchr (s, c, n) 
char •s; 
int c, n; 

int memcmp (sl, s2, n) 
char •sl, •s2; 
int n; 

char •memcpy (sl, s2, n) 
char •sl, •s2; 
int n; 

char •memset (s, c, n) 
char •s; 
int c, n; 

DESCRIPTION 

NOTE 

BUGS 

928 

These functions operate as efficiently as possible on memory areas (arrays of characters bounded by a 
count, not terminated by a NULL character). They do not check for the overflow of any receiving 
memory area. 

memccpy() copies characters from memory area s2 into sl, stopping after the first occurrence of 
character c has been copied, or after n characters have been copied, whichever comes first It returns 
a pointer to the character after the copy of c in sl , or a NULL pointer if c was not found in the first n 
characters of s2. 

memchr() returns a pointer to the first occurrence of character c in the first n characters of memory 
area s, or a NULL pointer if c does not occur. 

memcmp() compares its arguments, looking at the first n characters only, and returns an integer less 
than, equal to, or greater than 0, according as sl is lexicographically less than, equal to, or greater 
than s2. 

memcpy() copies n characters from memory area s2 to sl. It returns sl. 

memset( ) sets the first n characters in memory area s to the value of character c. It returns s. 

For user convenience, all these functions are declared in the <memory.h> header file. 

memcmp() uses native character comparison, which is signed on some machines and unsigned on 
other machines. Thus the sign of the value returned when one of the characters has its high-order bit 
set is implementation-dependent. 

Character movement is performed differently in different implementations. Thus overlapping moves 
may yield swprises. 

Last change: 6 October 1987 Sun Release 4.0 



MKTEMP(3) C LIBRARY FUNCTIONS MKTEMP(3) 

NAME 
mktemp, mkstemp - make a unique file name 

SYNOPSIS 
char •mktemp(template) 
char •template; 

mkstemp( template) 
char •template; 

DESCRIPTION 
mktemp() creates a unique file name, typically in a temporary filesystem, by replacing template with 
a unique file name, and always returns the address of template. The string in template should contain 
a file name with six trailing Xs; mktemp() replaces the Xs with a letter and the current process ID. 
The letter will be chosen so that the resulting name does not duplicate an existing file. mkstemp() 
makes the same replacement to the template but returns a file descriptor for the template file open for 
reading and writing. mkstemp() avoids the race between testing whether the file exists and opening it 
for use. 

Notes: 

• mktemp() and mkstemp() actually change the template string which you pass; this means that you 
cannot use the same template string more than once - you need a fresh template for every unique 
file you want to open. 

• When mktemp() or mkstemp() are creating a new unique filename they check for the prior 
existence of a file with that name. This means that if you are creating more than one unique 
filename, it is bad practice to use the same root template for multiple invocations of mktemp() or 
mkstemp(). 

SEE ALSO 
getpid(2), open(2V), tmpfile(3S), tmpnam(3S) 

DIAGNOSTICS 

BUGS 

mkstemp() returns an open file descriptor upon success. It returns -1 if no suitable file could be 
created. 

It is possible to run out of letters. 

Sun Release 4.0 Last change: 20 January 1988 929 



MONITOR(3) C LIBRARY FUNCTIONS MONITOR(3) 

NAME 
monitor, monstartup, moncontrol - prepare execution profile 

SYNOPSIS 
#include <a.out.h> 

monitor(lowpc, highpc, buffer, bufsize, nfunc) 
int (*lowpc)(), (*highpc)(); 
short buffer[ ] ; 

monstartup(lowpc, highpc) 
int (*lowpc)(), (*highpc)(); 

moncontrol(mode) 

DESCRIPTION 

930 

There are two different forms of monitoring available. An executable program created by 'cc -p' 
automatically includes calls for the prof(l) monitor, and includes an initial call with default parameters 
to its start-up routine monstartup. In this case, monitor() need not be called explicitly, except to 
gain fine control over profil(2) buffer allocation. An executable program created by 'cc -pg' 
automatically includes calls for the gprof(l) monitor. 

monstartup() is a high-level interface to profil(2). lowpc and highpc specify the address range that is 
to be sampled; the lowest address sampled is that of lowpc and the highest is just below highpc. 
monstartup() allocates space using sbrk (see brk(2)) and passes it to monitor() (as described below) 
to record a histogram of program-counter values, and calls to certain functions. Only calls to func
tions compiled with 'cc -p' are recorded. 

On Sun-2, Sun-3, and Sun-4 systems, an entire program can be profiled with: 

extern etext(); 

monstartup(N _ TXTOFF(O), etext); 

On Sun386i systems, the equivalent code sequence is: 

extern etext( ); 
extern _start(); 

monstartup(_start, etext); 

etext lies just above all the program text, see end(3). 

To stop execution monitoring and post results to the file moo.out, use: 

monitor(O); 

prof(l) can then be used to examine the results. 

moncontrol() is used to selectively control profiling within a program. This works with both prof(l) 
and gprof(l). Profiling begins when the program starts. To stop the collection of profiling statistics, 
use: 

moncontrol(O) 

To resume the collection of statistics, use: 

moncontrol(l) 

This allows you to measure the cost of particular functions. Note: an output file is be produced upon 
program exit, regardless of the state of moncontrol. 

monitor() is a low level interface to profil(2). lowpc and highpc are the addresses of two functions; 
buffer is the address of a (user supplied) array of bu/size short integers. At most nfunc call counts can 
be kept. 

Last change: 18 February 1988 Sun Release 4.0 



MONITOR(3) C LIBRARY FUNCTIONS MONIT0R(3) 

For the results to be significant, especially where there are small, heavily used routines, it is suggested 
that the buffer be no more than a few times smaller than the range of locations sampled. monitor() 
divides the buffer into space to record the histogram of program counter samples over the range lowpc 
to highpc, and space to record call counts of functions compiled with the cc -p. 

To profile the entire program on Sun-2, Sun-3, and Sun-4 systems using the low-level interface to 
profil(2), it is sufficient to use 

extern etext( ) ; 

monitor(N_TXTOFF(O), etext, buf, bufsize, nfunc); 
On Sun386i systems, the equivalent calls are: 

extern etext( ); 
extern _start(); 

monitor(_start, etext, buf, bufsize, nfunc); 

FILES 
moo.out 

SEE ALSO 
cc(l V), prof(l), gprof(l), brk(2), profil(2), end(3) 

Sun Release 4.0 Last change: 18 February 1988 931 



MP(3X) MISCELLANEOUS LIBRARY FUNCTIONS MP(3X) 

NAME 

mp, itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow, xtom, mtox, rnfree - multiple preci
sion integer arithmetic 

SYNOPSIS 
#include <mp.h> 

madd(a, b, c) 
MINT •a, *b, •c; 

msub(a, b, c) 
MINT •a, •b, •c; 

mult(a, b, c) 
MINT •a, *b, •c; 

mdiv(a, b, q, r) 
MINT •a, •b, *q, •r; 

min(a) 
MINT •a; 

mout(a) 
MINT •a; 

pow(a, b, c, d) 
MINT *a, *b, *c, •d; 

gcd(a, b, c) 
MINT •a, •b, •c; 

rpow(a, n, b) 
MINT *a, •b; 
short n; 

msqrt(a, b, r) 
MINT •a, •b, •r; 

sdiv(a, n, q, r) 
MINT •a, •q; 
short n, •r; 

MINT •itom(n) 
short n; 

MINT •xtom(s) 
char •s; 

char •mtox(a) 
MINT •a; 

void mfree(a) 
MINT •a; 

DESCRIPTION 

932 

These routines perform arithmetic on integers of arbitrary length. The integers are stored using the 
defined type MINT. Pointers to a MINT should be initialized using the function itom, which sets the 
initial value to n. Alternatively, xtom may be used to initialize a MINT from a string of hexadecimal 
digits. mfree() may be used to release the storage allocated by these routines. 

madd, msub() and molt() assign to their third arguments the sum, difference, and product, respec
tively, of their first two arguments. mdiv() assigns the quotient and remainder, respectively, to its 
third and fourth arguments. sdiv is like mdiv() except that the divisor is an ordinary integer. msqrt 

Last change: 6 October 1987 Sun Release 4.0 



MP(3X) MISCELLANEOUS LIBRARY FUNCTIONS MP(3X) 

produces the square root and remainder of its first argument. mpow calculates a raised to the power 
b, while pow() calculates this reduced modulo m. min() and moot() do decimal input and output. 
mtox() provides the inverse of xtom. 

Use the -Imp loader option to obtain access to these functions. 

DIAGNOSTICS 
Illegal operations and running out of memory produce messages and core images. 

FILES 
/usr/Iib/Iibmp.a 

Sun Release 4.0 Last change: 6 October 1987 933 



NDBM(3) C LIBRARY FUNCTIONS NDBM(3) 

NAME 
ndbm, dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey, 
dbm _ error, dbm_ clearerr - data base subroutines 

SYNOPSIS 
#include <ndbm.h> 

typedef struct { 
char *dptr; 
int dsize; 

} datum; 

DBM *dbm_ open(file, flags, mode) 
char *file; 
int flags, mode; 

void dbm_close (db) 
DBM *db; 

datum dbm_fetch(db, key) 
DBM *db; 
datum key; 

int dbm_store(db, key, content, flags) 
DBM *db; 
datum key, content; 
int flags; 

int dbm_delete(db, key) 
DBM *db; 
datum key; 

datum dbm_firstkey(db) 
DBM *db; 

datum dbm_nextkey(db) 
DBM *db; 

int dbm_error(db) 
DBM *db; 

int dbm_clearerr(db) 
DBM *db; 

DESCRIPTION 

934 

These functions maintain key/content pairs in a data base. The functions will handle very large (a billion 
blocks) databases and will access a keyed item in one or two file system accesses. This package replaces 
the earlier dbm(3X) library, which managed only a single database. 

keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to 
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two 
files. One file is a directory containing a bit map and has .dir as its suffix. The second file contains all data 
and has .pag as its suffix. 

Before a database can be accessed, it must be opened by dbm_open. This will open and/or create the files 
file .dir and file .pag depending on the flags parameter (see open(2V) ). 

A database is closed by calling dbm _ close. 

Once open, the data stored under a key is accessed by dbm _fetch() and data is placed under a key by 
dbm_store. The flags field can be either DBM_INSERT or DBM_REPLACE. DBM_INSERT will only 
insert new entries into the database and will not change an existing entry with the same key. 
DBM_REPLACE will replace an existing entry if it has the same key. A key (and its associated contents) is 

Last change: 24 November 1987 Sun Release 4.0 



NDBM(3) C LIBRARY FUNCTIONS NDBM(3) 

contents) is deleted by dbm_delete. A linear pass through all keys in a database may be made, in an 
(apparently) random order, by use of dbm_firstkey() and dbm_nextkey. dbm_firstkey() will return 
the first key in the database. dbm _ nextkey() will return the next key in the database. This code will 
traverse the data base: 

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db)) 

dbm _error() returns non-zero when an error has occurred reading or writing the database. 
dbm_ clearerr() resets the error condition on the named database. 

SEE ALSO 
open(2V), dbm(3X) 

DIAGNOSTICS 

BUGS 

All functions that return an int indicate errors with negative values. A zero return indicates no error. 
Routines that return a datum indicate errors with a NULL (0) dptr. If dbm _ store called with a flags 
value of DBM_ INSERT finds an existing entry with the same key it returns 1. 

The .pag file will contain holes so that its apparent size is about four times its actual content. Older 
versions of the UNIX operating system may create real file blocks for these holes when touched. 
These files cannot be copied by normal means ( cp( 1 ), cat( 1 V), tar( 1 ), ar( 1)) without filling in the 
holes. 

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 4096 
bytes). Moreover all key/content pairs that hash together must fit on a single block. dbm _store() 
will return an error in the event that a disk block fills with inseparable data. 

dbm _ delete( ) does not physically reclaim file space, although it does make it available for reuse. 

The order of keys presented by dbm _ firstkey() and dbm _ nextkey() depends on a hashing function, 
not on anything interesting. 

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is risky. 

Sun Release 4.0 Last change: 24 November 1987 935 



NICE(3C) COMPATIBILITY FUNCTIONS NICE(3C) 

NAME 
nice - change priority of a process 

SYNOPSIS 
int nice(incr) 

DESCRIPTION 
The scheduling priority of the process is augmented by incr. Positive priorities get less service than 
normal. Priority 10 is recommended to users who wish to execute long-running programs without 
undue impact on system performance. 

Negative increments are illegal, except when specified by the super-user. The priority is limited to the 
range -20 (most urgent) to 20 (least). Requests for values above or below these limits result in the 
scheduling priority being set to the corresponding limit 

The priority of a process is passed to a child process by fork(2). For a privileged process to return to 
normal priority from an unknown state, nice() should be called successively with arguments -40 (goes 
to priority -20 because of truncation), 20 (to get to 0), then O (to maintain compatibility with previous 
versions of this call). 

RETURN VALUE 
Upon successful completion, nice() returns 0. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
The priority is not changed if: 

EACCES The value of incr specified was negative, and the effective user ID is not 
super-user. 

SEE ALSO 
nice(l), fork(2), getpriority(2), renice(8) 

936 Last change: 22 November 1987 Sun Release 4.0 



NLIST(3) C LIBRARY FUNCTIONS NLIST(3) 

NAME 
nlist - get entries from symbol table 

SYNOPSIS 
#include <nlist.h> 

int nlist(filename, nl) 
char *filename; 
struct nlist •nl; 

DESCRIPTION 
nlist() examines the symbol table from the executable image whose name is pointed to by filename, 
and selectively extracts a list of values and puts them in the array of nlist() structures pointed to by 
nl. The name list pointed to by nl() consists of an array of structures containing names, types and 
values. The n _ name field of each such structure is taken to be a pointer to a character string 
representing a symbol name. The list is terminated by an entry with a NULL pointer ( or a pointer to a 
NULL string) in the n _ name field. For each entry in nl, if the named symbol is present in the execut
able image's symbol table, its value and type are placed in the n _value and n _ type fields. If a symbol 
cannot be located, the corresponding n _type field of nl() is set to zero. 

RETURN VALUE 
Upon normal completion, nlist() returns the number of symbols that were not located in the symbol 
table. If an error occurs, nlist() returns -1 and sets all of the n _type fields in members of the array 
pointed to by nl() to zero. 

SEE ALSO 
a.out(5) 
coff(5) 

DIAGNOSTICS 
On Sun-2, Sun-3, and Sun-4 systems, type entries are set to O if the file cannot be read or if it does 
not contain a valid name list. 

On Sun386i systems, the type entries may be zero even when the name list succeeded, but the value 
entries will be zero only when the file cannot be read or does not contain a valid name list There
fore, on Sun386i systems, the value entry can be used to determine whether the command succeeded. 

Sun Release 4.0 Last change: 18 February 1988 937 



ON_EXIT(3) C LIBRARY FUNCTIONS ON_EXIT(3) 

NAME 
on exit - name termination handler 

SYNOPSIS 
int on_ exit(procp, arg) 
void (*procp)(); 
caddr_t arg; 

DESCRIPTION 
on_exit() names a routine to be called after a program calls exit(3) or returns normally, and before its 
process terminates. The routine named is called as 

(•procp)(status, arg); 
where status is the argument with which exit() was called, or zero if main returns. Typically, arg is 
the address of an argument vector to ( * procp ), but may be an integer value. Several calls may be 
made to on_ exit, specifying several termination handlers. The order in which they are called is the 
reverse of that in which they were given to on_exit. 

SEE ALSO 
gprof( 1 ), tcov( 1 ), exit(3) 

DIAGNOSTICS 

BUGS 

NOTES 

938 

on_exit() returns zero normally, or nonzero if the procedure name could not be stored. 

Currently there is a limit of 20 termination handlers, including any invoked implicitly (for example, by 
gprof(l) or tcov(l) processing). Calls to on_exit() beyond this number will fail. 

This call is specific to the SunOS operating system and should not be used if portability is a concern. 

Standard 1/0 exit processing is always done last. 

Last change: 6 October 1987 Sun Release 4.0 



PAUSE(3C) COMPATIBILITY FUNCTIONS PAUSE(3C) 

NAME 
pause - stop until signal 

SYNOPSIS 
pause() 

DESCRIPTION 
pause() never returns normally. It is used to give up control while waiting for a signal from kill(2V) 
or an interval timer, see getitimer(2). Upon termination of a signal handler started during a pause, 
the pause() call will return. 

RETURN VALUE 
Always returns -1. 

ERRORS 
pause() always returns: 

EINTR The call was interrupted. 

SEE ALSO 
kill(2V), getitimer(2), select(2), sigpause(2) 

Sun Release 4.0 Last change: 6 October 1987 939 



PERROR(3) C LIBRARY FUNCTIONS PERROR(3) 

NAME 
perror, sys_ errlist, sys_ nerr, errno - system error messages 

SYNOPSIS 
perror(s) 
char *s; 
int sys_nerr; 
char *sys_errlist[ ]; 
int errno; 

DESCRIPTION 
perror( ) produces a short error message on the standard error describing the last error encountered 
during a call to a system or library function. If s is not a NULL pointer and does not point to a null 
string, the string it points to is printed, followed by a colon, followed by a space, followed by the 
message and a NEWLINE. If s is a NULL pointer or points to a null string, just the message is printed, 
followed by a NEWLINE. To be of most use, the argument string should include the name of the pro
gram that incurred the error. The error number is taken from the external variable errno (see 
intro(2)), which is set when errors occur but not cleared when non-erroneous calls are made. 

To simplify variant formatting of messages, the vector of message strings sys_ errlist() is provided; 
errno can be used as an index in this table to get the message string without the newline. sys_ nerr() 
is the number of messages provided for in the table; it should be checked because new error codes 
may be added to the system before they are added to the table. 

SEE ALSO 
intro(2), psignal(3) 

940 Last change: 22 November 1987 Sun Release 4.0 



PLOT(3X) MISCELLANEOUS LIBRARY FUNCTIONS PLOT(3X) 

NAME 
plot, openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graphics inter
face 

SYNOPSIS 
openpl() 

erase() 

label(s) 
cbar s[ ]; 

line(xl, yl, x2, y2) 

circle(x, y, r) 

arc(x, y, xO, yO, xl, yl) 

move(x, y) 

cont(x, y) 

point(x, y) 

linemod(s) 
char s[ ]; 

space(xO, yO, xl, yl) 

closepl() 

DESCRIPTION 
These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for 
a description of their effect. open pl() must be used before any of the others to open the device for 
writing. closepl() flushes the output. 

String arguments to label() and linemod() are NULL-terminated, and do not contain NEWLINE charac
ters. 

Various flavors of these functions exist for different output devices. They are obtained by the follow
ing Id( 1) options: 

-lplot 

-1300 

-1300s 

-1450 

-14014 

device-independent graphics stream on standard output for plot(lG) filters 

GSI 300 terminal 

GSI 300S terminal 

GSI 450 terminal 

Tektronix 4014 terminal 

-lplotaed AED 512 color graphics terminal 

-lplotbg BBN bitgraph graphics terminal 

-lplotdumb 
Dumb terminals without cursor addressing or line printers 

-lplotgigi DEC Gigi terminals 

-lplot2648 Hewlett Packard 2648 graphics terminal 

-lplot7221 Hewlett Packard 7221 graphics terminal 

-Iplotimagen 
Imagen laser printer (default 240 dots-per-inch resolution). 

Sun Release 4.0 Last change: 6 October 1987 941 



PLOT(3X) 

FILES 
/usr/lib/Iibplot.a 
/usr /Iib/lib300.a 
/usr /Iib/lib300s.a 
/usr/Iib/lib450.a 
/usr /Iib/lib4014.a 
/usr/lib/Iibplotaed.a 
/usr/lib/Iibplotbg.a 
/usr/lib/Iibplotdumb.a 
/usr/lib/Iibplotgigi.a 
/usr/lib/Iibplot2648.a 
/usr/lib/Iibplot7221.a 
/usr/lib/Iibplotimagen.a 

SEE ALSO 

MISCELLANEOUS LIBRARY FUNCTIONS 

graph(lG), ld(l), plot(lG), plot(5) 

942 Last change: 6 October 1987 

PLOT(3X) 

Sun Release 4.0 



POPEN(3S) STANDARD 1/0 FUNCTIONS POPEN(3S) 

NAME 
popen, pclose - open or close a pipe (for 1/0) from or to a process 

SYNOPSIS 
#include <Stdio.h> 

FILE *popen(command, type) 
char *command, *type; 

pclose(stream) 
FILE *stream; 

DESCRIPTION 
The arguments to popen() are pointers to NULL-terminated strings containing, respectively, a shell 
command line and an 1/0 mode, either r for reading or w for writing. popen() creates a pipe 
between the calling process and the command to be executed. The value returned is a stream pointer 
such that one can write to the standard input of the command, if the 1/0 mode is w, by writing to the 
file stream; and one can read from the standard output of the command, if the 1/0 mode is r, by read
ing from the file stream. 

A stream opened by popen() should be closed by pclose, which waits for the associated process to 
terminate and returns the exit status of the command. 

Because open files are shared, a type r command may be used as an input filter, reading its standard 
input (which is also the standard input of the process doing the popen) and providing filtered input on 
the stream, and a type w command may be used as an output filter, reading a stream of output written 
to the stream process doing the popen() and further filtering it and writing it to its standard output 
(which is also the standard input of the process doing the popen). 

popen() always calls sh(l), never csh(l). 

SEE ALSO 
csh(l), sh(l), pipe(2), wait(2), fclose(3S), fopen(3S), system(3) 

DIAGNOSTICS 

BUGS 

popen() returns a NULL pointer if the pipe or process cannot be created, or if it cannot allocate as 
much memory as it needs. 

pclose() returns -1 if stream is not associated with a 'popened' command. 

If the original and 'popened' processes concurrently read or write a common file, neither should use 
buffered 1/0, because the buffering gets all mixed up. Similar problems with an output filter may be 
forestalled by careful buffer flushing, for instance, with mush; see fclose(3S). 

Sun Release 4.0 Last change: 6 October 1987 943 



PRINTF(3S) STANDARD 1/0 FUNCTIONS PRINTF(3S) 

NAME 
printf, fprintf, sprintf - formatted output conversion 

SYNOPSIS 
#include <Stdio.h> 
int printf(format [ , arg ] ... ) 
char •format; 

int fprintf(stream, format [ , arg ] •.• ) 
FILE •stream; 
char •format; 

char •sprintf(s, format [ , arg ] ••• ) 
char •s, •format; 

#include <varargs.h> 
int _ doprnt(format, args, stream) 
char •format; 
va_list args; 
FILE •stream; 

DESCRIPTION 

944 

printf() places output on the standard output stream stdout. fprintf() places output on the named 
output stream. sprintf() places "output", followed by the NULL character (\0), in consecutive bytes 
starting at •s; it is the user's responsibility to ensure that enough storage is available. printf() and 
fprintf() return the number of characters transmitted. The return value of sprintf() is not normally 
used, but cast to type void instead. printf() and fprintf() return an EOF if an output error was 
encountered. 

Each of these functions converts, formats, and prints its arg s under control of the format. The / ormat 
is a character string which contains two types of objects: plain characters, which are simply copied to 
the output stream, and conversion specifications, each of which causes conversion and printing of zero 
or more args. The results are undefined if there are insufficient args for the format. If the format is 
exhausted while arg s remain, the excess arg s are simply ignored. 

Each conversion specification is introduced by the character % . After the % , the following appear in 
sequence: 

Zero or more flags, which modify the meaning of the conversion specification. 

An optional decimal digit string specifying a minimum.field width. If the converted value has 
fewer characters than the field width, it will be padded on the left (or right, if the left
adjustment flag '-', described below, has been given) to the field width. The padding is with 
blanks unless the field width digit string starts with a zero, in which case the padding is with 
zeros. 

A precision that gives the minimum number of digits to appear for the d, i, o, u, x, or X 
conversions, the number of digits to appear after the decimal point for the e, E, and f conver
sions, the maximum number of significant digits for the g and G conversion, or the maximum 
number of characters to be printed from a string in s conversion. The precision takes the 
form of a period (.) followed by a decimal digit string; a NULL digit string is treated as zero. 
Padding specified by the precision overrides the padding specified by the field width. 

An optional I (ell) specifying that a following d, i, o, u, x, or X conversion character applies 
to a long integer arg. An I before any other conversion character is ignored. 

A character that indicates the type of conversion to be applied. 

A field width or precision or both may be indicated by an asterisk (*) instead of a digit string. In this 
case, an integer arg supplies the field width or precision. The arg that is actually converted is not 
fetched until the conversion letter is seen, so the args specifying field width or precision must appear 

Last change: 20 January 1988 Sun Release 4.0 



PRINTF(3S) STANDARD I/0 FUNCTIONS PRINTF(3S) 

before the arg (if any) to be converted. A negative field width argument is taken as a '-' flag fol
lowed by a positive field width. If the precision argument is negative, it will be changed to zero. 

The flag characters and their meanings are: 
The result of the conversion will be left-justified within the field. 

+ The result of a signed conversion will always begin with a sign ( + or -). 
blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the 

result. This implies that if the blank and + flags both appear, the blank flag will be 
ignored. 

# This flag specifies that the value is to be converted to an "alternate form."For c, d, i, s, 
and u conversions, the flag has no effect. For o conversion, it increases the precision to 
force the first digit of the result to be a zero. For x or X conversion, a non-zero result 
will have Ox or OX prefixed to it. For e, E, f, g, and G conversions, the result will 
always contain a decimal point, even if no digits follow the point (normally, a decimal 
point appears in the result of these conversions only if a digit follows it). For g and G 
conversions, trailing zeroes will not be removed from the result (which they normally are). 

The conversion characters and their meanings are: 

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), unsigned octal (o), unsigned 
decimal (u), or unsigned hexadecimal notation (x and X), respectively; the letters abcdef 
are used for x conversion and the letters ABCDEF for X conversion. The precision 
specifies the minimum number of digits to appear; if the value being converted can be 
represented in fewer digits, it will be expanded with leading zeroes. (For compatibility 
with older versions, padding with leading zeroes may alternatively be specified by 
prepending a zero to the field width. This does not imply an octal value for the field 
width.) The default precision is 1. The result of converting a zero value with a precision 
of zero is a NULL string. 

f The float or double arg is converted to decimal notation in the style "[-]ddd.ddd" where 
the number of digits after the decimal point is equal to the precision specification. If the 
precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and no 
decimal point are printed. 

e,E The float or double arg is converted in the style "[-]d.ddde±ddd," where there is one 
digit before the decimal point and the number of digits after it is equal to the precision; 
when the precision is missing, 6 digits are produced; if the precision is zero, no decimal 
point appears. The E format code will produce a number with E instead of e introducing 
the exponent. The exponent always contains at least two digits. 

g,G The float or double arg is printed in style for e (or in style E in the case of a G format 
code), with the precision specifying the number of significant digits. The style used 
depends on the value converted: style e or E will be used only if the exponent resulting 
from the conversion is less than -4 or greater than the precision. Trailing zeroes are 
removed from the result; a decimal point appears only if it is followed by a digit. 

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as ''Infinity'' 
or "NaN'' respectively. 

c The character arg is printed. 
s The arg is taken to be a string (character pointer) and characters from the string are 

printed until a NULL character (\0) is encountered or until the number of characters indi
cated by the precision specification is reached. If the precision is missing, it is taken to 
be infinite, so all characters up to the first NULL character are printed. A NULL value for 
arg will yield undefined results. 

% Print a % ; no argument is converted. 

In no case does a non-existent or small field width cause truncation of a field; if the result of a 
conversion is wider than the field width, the field is simply expanded to contain the conversion result. 
Padding takes place only if the specified field width exceeds the actual width. Characters generated 

Sun Release 4.0 Last change: 20 January 1988 945 



PRINTF(3S) STANDARD 1/0 FUNCTIONS PRINTF(3S) 

by printf() and fprintf() are printed as if putc(3S) had been called. 

EXAMPLES 

NOTE 

To print a date and time in the form "Sunday, July 3, 10:02," where weekday and month are pointers 
to NULL-terminated strings: 

printf(" %s, %s %i, %d: %.2d", weekday, month, day, hour, min); 

To print 1t to 5 decimal places: 

printf("pi = %.Sr', 4 • atan(l. O)); 

These routines call _ doprnt, which is an implementation-dependent routine. Each uses the variable
length argument facilities of varargs(3). Although it is possible to use _doprnt to take a list of argu
ments and pass them on to a routine like printf, not all implementations have such a routine. We 
strongly recommend that you use the routines described in vprintf(3S) instead. 

SEE ALSO 
econvert(3), printf(3V), putc(3S), scanf(3S), varargs(3), vprintf(3S) 

BUGS 
Very wide fields (>128 characters) fail. 

946 Last change: 20 January 1988 Sun Release 4.0 



PROF(3) C LIBRARY FUNCTIONS PROF(3) 

NAME 
prof - profile within a function 

SYNOPSIS 
#define MARK 
#include <prof.h> 

void MARK (name) 

DESCRIPTION 
MARK will introduce a mark called name that will be treated the same as a function entry point. Exe
cution of the mark will add to a counter for that mark, and program-counter time spent will be 
accounted to the immediately preceding mark or to the function if there are no preceding marks within 
the active function. 

name may be any combination of up to six letters, numbers or underscores. Each name in a single 
compilation must be unique, but may be the same as any ordinary program symbol. 

For marks to be effective, the symbol MARK must be defined before the header file <prof.h> is 
included. This may be defined by a preprocessor directive as in the synopsis, or by a command line 
argument, such as: 

cc -p -DMARK foo.c 

If MARK is not defined, the MARK (name) statements may be left in the source files containing them 
and will be ignored. 

EXAMPLE 
In this example, marks can be used to determine how much time is spent in each loop. Unless this 
example is compiled with MARK defined on the command line, the marks are ignored. 

SEE ALSO 

#include <prof.h> 
func() 
{ 

int i, j; 

MARK (loopl); 
for (i = O; i < 2000; i++) { 

} 

MARK (loop2); 
for (j = O; j < 2000; j++) { 

} 
} 

prof(l), profil(2), monitor(3) 

Sun Release 4.0 Last change: 6 October 1987 947 



PSIGNAL(3) C LIBRARY FUNCTIONS PSIGNAL(3) 

NAME 
psignal, sys _siglist - system signal messages 

SYNOPSIS 
psignal(sig, s) 
unsigned sig; 
char •s; 

char •sys_siglist[ ]; 

DESCRIPTION 
psignal() produces a short message on the standard error file describing the indicated signal. First the 
argument string s is printed, then a colon, then the name of the signal and a NEWLINE. Most usefully, 
the argument string is the name of the program which incurred the signal. The signal number should 
be from among those found in <signal.h>. 

To simplify variant formatting of signal names, the vector of message strings sys_ siglist() is provided; 
the signal number can be used as an index in this table to get the signal name without the newline. 
The define NSIG defined in <signal.h> is the number of messages provided for in the table; it should 
be checked because new signals may be added to the system before they are added to the table. 

SEE ALSO 
perror(3 ), signal(3) 

948 Last change: 22 November 1987 Sun Release 4.0 



PUTC(3S) STANDARD 1/0 FUNCTIONS PUTC(3S) 

NAME 
putc, putchar, fputc, putw - put character or word on a stream 

SYNOPSIS 
#include <Stdio.h> 

int putc( c, stream) 
char c; 
FILE •stream; 

int putchar(c) 
char c; 

int fputc( c, stream) 
char c; 
FILE •stream; 

int putw(w, stream) 
int w; 
FILE •stream; 

DESCRIPTION 
putc() writes the character c onto the standard 1/0 output stream stream (at the position where the file 
pointer, if defined, is" pointing). It returns the character written. 

putchar(c) is defined as putc(c, stdout). putc() and putchar() are macros. 

fputc() behaves like putc, but is a function rather than a macro. fputc() runs more slowly than putc, 
but it takes less space per invocation and its name can be passed as an argument to a function. 

putw() writes the C int (word) w to the standard 1/0 output stream stream (at the position of the file 
pointer, if defined). The size of a word is the size of an integer and varies from machine to machine. 
putw() neither assumes nor causes special alignment in the file. 

Output streams are by default buffered if the output refers to a file and line-buffered if the output 
refers to a terminal. When an output stream is unbuffered, information is queued for writing on the 
destination file or terminal as soon as written; when it is buffered, many characters are saved up and 
written as a block. When it is line-buffered, each line of output is queued for writing on the destina
tion terminal as soon as the line is completed ( that is, as soon as a NEWLINE character is written or 
terminal input is requested). setbuf(3S), setbuffer, or setvbuf may be used to change the stream's 
buffering strategy. 

SEE ALSO 
fclose(3S), ferror(3S), fopen(3S), fread(3S), getc(3S), printf(3S), puts(3S), setbuf(3S), 

DIAGNOSTICS 

BUGS 

On success, putc, fputc, and putchar return the value that was written. On error, those functions 
return the constant EOF. putw() returns ferror(stream), so that it returns O on success and 1 on 
failure. 

Because it is implemented as a macro, putc() treats a stream argument with side effects improperly. 
In particular, putc(c, •f++ ); does not work sensibly. fputc() should be used instead. 

Errors can occur long after the call to putc. 

Because of possible differences in word length and byte ordering, files written using putw() are 
machine-dependent, and may not be read using getw() on a different processor. 

Sun Release 4.0 Last change: 10 October 1987 949 



PUTENV(3) C LIBRARY FUNCTIONS PUTENV(3) 

NAME 
putenv - change or add value to environment 

SYNOPSIS 
int putenv(string) 
char •string; 

DESCRIPTION 
string() points to a string of the form 'name = value' putenv() makes the value of the environment 
variable name equal to value by altering an existing variable or creating a new one. In either case, 
the string pointed to by string() becomes part of the environment, so altering the string will change 
the environment. The space used by string() is no longer used once a new string-defining name is 
passed to putenv. 

SEE ALSO 
execve(2), getenv(3), malloc(3), environ(5V). 

DIAGNOSTICS 
putenv() returns non-zero if it was unable to obtain enough space using malloc(3) for an expanded 
environment, otherwise zero. 

WARNINGS 

950 

putenv() manipulates the environment pointed to by environ, and can be used in conjunction with 
getenv. However, envp (the third argument to main) is not changed. 

This routine uses malloc(3) to enlarge the environment. 

After putenv() is called, environmental variables are not in alphabetical order. 

A potential error is to call putenv() with an automatic variable as the argument, then exit the calling 
function while string() is still part of the environment 

Last change: 6 October 1987 Sun Release 4.0 



PUTPWENT ( 3) C LIBRARY FUNCTIONS 

NAME 
putpwent - write password file entry 

SYNOPSIS 
#include <pwd.h> 

int putpwent(p, f) 
struct passwd •p; 
FILE •f; 

DESCRIPTION 

PUTPWENT ( 3) 

putpwent() is the inverse of getpwent(3 ). Given a pointer to a passwd structure created by 
getpwent() (or getpwuid() or getpwnam), putpwent() writes a line on the stream/, which matches 
the format of lines in the password file /etc/passwd. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3) 

DIAGNOSTICS 
putpwent() returns non-zero if an error was detected during its operation, otherwise zero. 

WARNING 
The above routine uses <stdio.h>, which increases the size of programs, not otherwise using standard 
1/0, more than might be expected. 

BUGS 
This routine is of limited utility, since most password files are maintained as Yellow Pages files, and 
cannot be updated with this routine. 

Sun Release 4.0 Last change: 6 October 1987 951 



PUTS(3S) STANDARD 1/0 FUNCTIONS 

NAME 
puts, fputs - put a string on a stream 

SYNOPSIS 
#include <Stdio.h> 

puts(s) 
char •s; 

fputs(s, stream) 
char •s; 
FILE •stream; 

DESCRIPTION 

PUTS(3S) 

puts() writes the NULL-terminated string pointed to by s, followed by a NEWLINE character, to the 
standard output stream stdout. 

fputs() writes the NULL-terminated string pointed to by s to the named output stream. 

Neither function writes the terminal SM NULL character. 

DIAGNOSTICS 

NOTES 

Both routines return EOF on error. This will happen if the routines try to write on a file that has not 
been opened for writing. 

puts() appends a NEWLINE while fputs() does not. 

SEE ALSO 
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S) 

952 Last change: 6 October 1987 Sun Release 4.0 



PWDAUTH(3) C LIBRARY FUNCTIONS PWDAUTH(3) 

NAME 
pwdauth, grpauth - password authentication routines 

SYNOPSIS 
int pwdautb(user, password) 
char •user; 
char •password; 

int grpauth(group, password) 
char •group; 
char •password; 

DESCRIPTION 

FILES 

pwdauth() and grpauth() determine whether the given guess at a password is valid for the given 
user or group. If the password is valid, the functions return 0. 

A password is valid if the password when encrypted matches the encrypted password in the appropri
ate file. For pwdauth, if the password.adjunct file exists, the encrypted password will be in either 
the local or the Yellow Pages version of that file. Otherwise, either the local or YP passwd file will 
be used. For grpauth, the group.adjunct file (if it exists) or the group file (otherwise) will be 
checked on the local machine and then using the YP. In all cases, the local files will be checked 
before the YP files. Also, if the adjunct files exist, the main file will never be used for authentication 
even if they include encrypted passwords. 

Both pwdauth() and grpauth() interface to the authentication daemon, rpc.pwdauthd, to do the 
checking of the adjunct files. This daemon must be running on any system that provides password 
authentication. 

/ etc/passwd 
/etc/group 

SEE ALSO 
getgraent(3), getgrent(3), getpwaent(3}, getpwent(3), pwdauthd(8C) 

Sun Release 4.0 Last change: 14 December 1987 953 



QSORT(3) C LIBRARY FUNCTIONS QSORT(3) 

NAME 
qsort - quicker sort 

SYNOPSIS 
qsort(base, nel, width, compar) 
char •base; 
int (•compar)(); 

DESCRIPTION 

NOTES 

qsort() is an implementation of the quicker-sort algorithm. It sorts a table of data in place. 

base points to the element at the base of the table. nel is the number of elements in the table. width 
is the size, in bytes, of each element in the table. com.par is the name of the comparison function, 
which is called with two arguments that point to the elements being compared. As the function must 
return an integer less than, equal to, or greater than zero, so must the first argument to be considered 
be less than, equal to, or greater than the second. 

The pointer to the base of the table should be of type pointer-to-element, and cast to type pointer-to
character. 

The comparison function need not compare every byte, so arbitrary data may be contained in the ele
ments in addition to the values being compared. 

The order in the output of two items which compare as equal is unpredictable. 

SEE ALSO 
sort(lV), bsearch(3), lsearch(3), string(3) 

EXAMPLE 

954 

The following program sorts a simple array: 
static int intcompare(ij) 

int •i, •j; 
{ 

return(•i - •j); 
} 

main() 
{ 

} 

int a[lO]; 
int i; 

a[O] = 9; 
a[l] = 8; 
a[2] = 7; 
a[3] = 6; 
a[4] = 5; 
a[S] = 4; 
a[6] = 3; 
a[7] = 2; 
a[8] = 1; 
a[9] = O; 

qsort( a,10 ,sizeof(int ),intcom pare) 

for (i=O; klO; i++) printf(" %d,a[i]); 
printf "0); 

Last change: 16 February 1988 Sun Release 4.0 



RAND(3C) COMPATIBILITY FUNCTIONS RAND(3C) 

NAME 
rand, srand - simple random number generator 

SYNOPSIS 
srand(seed) 
int seed; 

rand() 

DESCRIPTION 

NOTE 

rand() uses a multiplicative congruential random number generator with period 232 to return succes
sive pseudo-random numbers in the range from O to 231-1. 

srand() can be called at any time to reset the random-number generator to a random starting point. 
The generator is initially seeded with a value of 1. 

The spectral properties of rand() leave a great deal to be desired. drand48(3) and random(3) pro
vide much better, though more elaborate, random-number generators. 

SEE ALSO 

BUGS 

drand48(3), random(3), rand(3V) 

The low bits of the numbers generated are not very random; use the middle bits. In particular the 
lowest bit alternates between O and 1. 

Sun Release 4.0 Last change: 6 October 1987 955 



RANDOM(3) C LIBRARY FUNCTIONS RANDOM(3) 

NAME 

random, srandom, initstate, setstate - better random number generator; routines for changing generators 

SYNOPSIS 
long random() 

srandom(seed) 
int seed; 

char •initstate(seed, state, n) 
unsigned seed; 
char •state; 
int n; 

char •setstate(state) 
char •state; 

DESCRIPTION 
random() uses a non-linear additive feedback random number generator employing a default table of 
size 31 long integers to return successive pseudo-random numbers in the range from O to 231-1. The 
period of this random number generator is very large, approximately 16x(231-1 ). 

random/srandom have (almost) the same calling sequence and initialization properties as rand/srand. 
The difference is that rand(3C) produces a much less random sequence - in fact, the low dozen bits 
generated by rand go through a cyclic pattern. All the bits generated by random() are usable. For 
example, 

random( )&01 

will produce a random binary value. 

Unlike srand, srandom() does not return the old seed; the reason for this is that the amount of state 
information used is much more than a single word. (Two other routines are provided to deal with 
restarting/changing random number generators). Like rand(3C), however, random() will by default 
produce a sequence of numbers that can be duplicated by calling srandom() with 1 as the seed. 

The initstate() routine allows a state array, passed in as an argument, to be initialized for future use. 
The size of the state array (in bytes) is used by initstate() to decide how sophisticated a random 
number generator it should use - the more state, the better the random numbers will be. (Current 
"optimal" values for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts 
will be rounded down to the nearest known amount. Using less than 8 bytes will cause an error). 
The seed for the initialization (which specifies a starting point for the random number sequence, and 
provides for restarting at the same point) is also an argument. initstate() returns a pointer to the pre
vious state information array. 

Once a state has been initialized, the setstate() routine provides for rapid switching between states. 
setstate( ) returns a pointer to the previous state array; its argument state array is used for further ran
dom number generation until the next call to initstate() or setstate. 

Once a state array has been initialized, it may be restarted at a different point either by calling init
state() (with the desired seed, the state array, and its size) or by calling both setstate() (with the state 
array) and srandom() (with the desired seed). The advantage of calling both setstate() and sran
dom() is that the size of the state array does not have to be remembered after it is initialized 

With 256 bytes of state information, the period of the random number generator is greater than 269
, 

which should be sufficient for most purposes. 

SEE ALSO 
rand(3C) 

956 Last change: 6 October 1987 Sun Release 4.0 



RANDOM(3) 

EXAMPLE 

DIAGNOSTICS 

C LIBRARY FUNCTIONS 

f * Initialize and array and pass it in to initstate. *I 

static long state1[32] = { 

main() 
{ 

3, 
Ox9a319039,0x32d9c024,0x9b663182,0x5dalf342, 
Ox7449e56b,Oxbebldbb0,0xab5c5918,0x946554fd, 
Ox8c2e680~0xeb3d799~0xbllee0b7,0x2d436b86, 
Oxda672e2a,Ox1588ca88,0xe369735d,Ox904f35t7, 
Oxd7158fd6,0x6fa6f051,0x616e6b96,0xac94efdc, 
Oxde3b81e0,0xdf0a6fb5,0xf103bc02,0x48f340fb, 
Ox36413f93,0xc622c298,0xf5a42ab8,0x8a88d77b, 
Oxf5ad9d0e,Ox8999220b,Ox27fb47b9 
}; 

unsigned seed; 
int n; 

seed= 1; 
n = 128; 
initstate(seed, statel, n); 

setstate(statel); 
printf(" %d0,random0); 

} 

RANDOM(3) 

If initstate() is called with less than 8 bytes of state information, or if setstate() detects that the state infor
mation has been garbled, error messages are printed on the standard error output. 

BUGS 
About '213 the speed of rand(3C). 

Sun Release 4.0 Last change: 6 October 1987 957 



RCMD(3N) NETWORK FUNCTIONS RCMD(3N) 

NAME 
rcmd, rresvport, ruserok - routines for returning a stream to a remote command 

SYNOPSIS 
int rcmd(ahost, inport, focuser, remuser, cmd, fd2p) 
char **ahost; 
int inport; 
char *locuser, *remuser, *cmd; 
int *fd2p 

int rresvport(port) 
int *port; 

ruserok(rhost, super-user, ruser, loser) 
char *rhost; 
int super-user; 
char *ruser, *loser; 

DESCRIPTION 

FILES 

rcmd() is a routine used by the super-user to execute a command on a remote machine using an 
authentication scheme based on reserved port numbers. rresvport( ) is a routine which returns a 
descriptor to a socket with an address in the privileged port space. ruserok() is a routine used by 
servers to authenticate clients requesting service with rcmd. All three functions are present in the 
same file and are used by the rshd(8C) server (among others). 

rcmd() looks up the host *ahost using gethostbyname (see gethostent(3N)), returning -1 if the host 
does not exist. Otherwise *ahost is set to the standard name of the host and a connection is esta
blished to a server residing at the well-known Internet port inport. 

If the connection succeeds, a socket in the Internet domain of type SOCK_ STREAM is returned to the 
caller, and given to the remote command as its standard input (file descriptor 0) and standard output 
(file descriptor 1). If fd2p is non-zero, then an auxiliary channel to a control process will be set up, 
and a descriptor for it will be placed in *f d2p. The control process will return diagnostic output from 
the command (file descriptor 2) on this channel, and will also accept bytes on this channel as signal 
numbers, to be forwarded to the process group of the command. If fd2p is 0, then the standard error 
(file descriptor 2) of the remote command will be made the same as its standard output and no provi
sion is made for sending arbitrary signals to the remote process, although you may be able to get its 
attention by using out-of-band data. 

The protocol is described in detail in rshd(8C). 

The rresvport() routine is used to obtain a socket with a privileged address bound to it. This socket 
is suitable for use by rcmd() and several other routines. Privileged Internet ports are those in the 
range O to 1023. Only the super-user is allowed to bind an address of this sort to a socket. 

ruserok() takes a remote host's name, as returned by a gethostbyaddr (see gethostent(3N)) routine, 
two user names and a flag indicating whether the local user's name is that of the super-user. It then 
checks the files /etc/hosts.equiv and, possibly, .rhosts in the local user's home directory to see if the 
request for service is allowed. A O is returned if the machine name is listed in the /etc/hosts.equiv 
file, or the host and remote user name are found in the .rhosts file; otherwise ruserok() returns -1. 
If the super-user flag is 1, the checking of the /etc/hosts.equiv file is bypassed. 

/ etc/hosts.equiv 
.rhosts 

SEE ALSO 
rlogin(lC), rsh(lC), intro(2), gethostent(3N), rexec(3N), rexecd(8C), rlogind(8C), rshd(8C) 

958 Last change: 22 November 1987 Sun Release 4.0 



RCMD(3N) NETWORK FUNCTIONS RCMD(3N) 

DIAGNOSTICS 
rcmd() returns a valid socket descriptor on success. It returns -1 on error and prints a diagnostic 
message on the standard error. 

rresvport( ) returns a valid, bound socket descriptor on success. It returns -1 on error with the global 
value errno set according to the reason for failure. The error code EAGAIN is overloaded to mean 
"All network ports in use." 

Sun Release 4.0 Last change: 22 November 1987 959 



REALPATH(3) C LIBRARY FUNCTIONS 

NAME 
realpath - returns the real file name. 

SYNOPSIS 
char •realpath(file _ name, resolved_ name) 
char •file_ name, resolved_ name; 

DESCRIPTION 
realpath() resolves all links and all references 
resolved name. 

It can handle both relative and absolute path names. 

RETURN VALUE 

to "." 

REALPA TH ( 3) 

and It It in file _name and stores it in 

If there is no error, it returns a pointer to the resolved_ name. Otherwise it returns a NULL pointer 
and places the name of the offending file in resolved _name. 

SEE ALSO 
getwd(3) 

WARNINGS 
It operates on null-terminated strings. 

It does not check for overflow of the receiving string. 

960 Last change: 16 February 1988 Sun Release 4.0 



REGEX(3) C LIBRARY FUNCTIONS REGEX(3) 

NAME 
regex, re_ comp, re_ exec - regular expression handler 

SYNOPSIS 
char •re_ comp(s) 
char •s; 

re_exec(s) 
char •s; 

DESCRIPTION 
re_ comp() compiles a string into an internal form suitable for pattern matching. re_ exec() checks the 
argument string against the last string passed to re_comp. 

re_comp() returns a NULL pointer if the string s was compiled successfully; otherwise a string con
taining an error message is returned. If re_ comp() is passed O or a NULL string, it returns without 
changing the currently compiled regular expression. 

re_ exec() returns 1 if the string s matches the last compiled regular expression, 0 if the string s failed 
to match the last compiled regular expression, and -1 if the compiled regular expression was invalid 
(indicating an internal error). 

The strings passed to both re_comp() and re_exec() may have trailing or embedded NEWLINE char
acters; they are terminated by NULL characters. The regular expressions recognized are described in 
the manual entry for ed( 1 ), given the above difference. 

SEE ALSO 
ed(l), ex(l), grep(l V) 

DIAGNOSTICS 
re_ exec( ) returns -1 for an internal error. 

re_comp() returns one of the following strings if an error occurs: 

No previous regular expression 

Regular expression too long 

unmatched \( 

missing] 

too many \(\) pairs 

unmatched \) 

Sun Release 4.0 Last change: 6 October 1987 961 



REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3) 

NAME 
regexp - regular expression compile and match routines 

SYNOPSIS 
#define INIT <declarations> 
#define GETC() <getc code> 
#define PEEKC() <peekc code> 
#define UNGETC(c) <ungetc code> 
#define RETURN(pointer) <return code> 
#define ERROR(val) <error code> 

#include <regexp.h> 

char •compile(instring, expbuf, endbuf, eof) 
char •instring, •expbuf, •endbuf; 
int eof; 

int step(string, expbuf) 
char •string, •expbuf; 

extern char •Joel, •loc2, •Iocs; 

extern int circf, sed, nbra; 

DESCRIPTION 
This page describes general-purpose regular expression matching routines. 

The interface to this file is unpleasantly complex. Programs that include this file must have the fol
lowing five macros declared before the '#include <regexp.h>' statement These macros are used by 
the compile routine. 

GETC() 

PEEKC() 

UNGETC(c) 

RETURN(pointer) 

Return the value of the next character in the regular expression pattern. Suc
cessive calls to GETC() should return successive characters of the regular 
expression. 

Return the next character in the regular expression. Successive calls to 
PEEKC() should return the same character, which should also be the next 
character returned by GETC( ). 

Returns the argument c by the next call to GETC() or PEEKC(). No more 
that one character of pushback is ever needed and this character is guaranteed 
to be the last character read by GETC(). The value of the macro UNGETC(c) 
is always ignored. 

This macro is used on normal exit of the compile routine. The value of the 
argument pointer is a pointer to the character after the last character of the 
compiled regular expression. This is useful to programs that have memory 
allocation to manage. 

ERRORS 
ERROR(val) This is the abnormal return from the compile() routine. The argument val is 

an error number (see table below for meanings). This call should never 
return. 

ERROR MEANING 
11 Range endpoint too large. 
16 Bad number. 
25 ''\ digit'' out of range. 
36 Illegal or missing delimiter. 
41 No remembered search string. 
42 \( \) imbalance. 
43 Too many \(. 

962 Last change: 20 January 1988 Sun Release 4.0 



REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3) 

44 More than 2 numbers given in\{ \}. 
45 } expected after \. 
46 First number exceeds second in \{ \}. 
49 [ ] imbalance. 
50 Regular expression too long. 

The syntax of the compile() routine is as follows: 

compile(instring, expbuf, endbuf, eof) 

The first parameter instring is never used explicitly by the compile() routine but is useful for pro
grams that pass down different pointers to input characters. It is sometimes used in the INIT() 
declaration (see below). Programs that call functions to input characters or have characters in an 
external array can pass down a value of ((char *) 0) for this parameter. 

The next parameter expbuf is a character pointer. It points to the place where the compiled regular 
expression will be placed. 

The parameter endbuf is one more than the highest address where the compiled regular expression 
may be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to ERROR(50) 
is made. 

The parameter eof is the character that marks the end of the regular expression. For example, in an 
editor like ed(l), this character would usually a '/'. 

Each program that includes this file must have a #define statement for INIT( ). This definition will be 
placed right after the declaration for the function compile() and '{' (opening curly brace). It is used 
for dependent declarations and initializations. Most often it is used to set a register variable to point 
the beginning of the regular expression so that this register variable can be used in the declarations for 
GETC( ), PEEKC( ), and UNG ETC(). Otherwise it can be used to declare external variables that might 
be used by GETC(), PEEKC(), and UNGETC(). See the example below of the declarations taken 
from grep(lV). 

There are other functions in this file that perform actual regular expression matching, one of which is 
the function step(). The call to step() is as follows: 

step(string, expbuf) 

The first parameter to step() is a pointer to a string of characters to be checked for a match. This 
string should be NULL-terminated. 

The second parameter expbuf is the compiled regular expression that was obtained by a call of the 
function compile. 

The function step() returns non-zero if the given string matches the regular expression, and zero if the 
expressions do not match. If there is a match, two external character pointers are set as a side effect 
to the call to step(). The variable set in step() is locl . This is a pointer to the first character that 
matched the regular expression. The variable loc2, which is set by the function advance(), points to 
the character after the last character that matches the regular expression. Thus if the regular expres
sion matches the entire line, locl will point to the first character of string and loc2 will point to the 
NULL at the end of string. 

step() uses the external variable circf which is set by compile() if the regular expression begins with 
,",. If this is set then step() will try to match the regular expression to the beginning of the string 
only. If more than one regular expression is to be compiled before the first is executed the value of 
circf should be saved for each compiled expression and circf should be set to that saved value before 
each call to step(). 

The function advance() is called from step() with the same arguments as step(). The purpose of 
step() is to step through the string argument and call advance() until advance() returns non-zero 
indicating a match or until the end of string is reached. If one wants to constrain string to the begin
ning of the line in all cases, step() need not be called; simply call advance(). 

Sun Release 4.0 Last change: 20 January 1988 963 



REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3) 

When advance() encounters a * or \{ \} sequence in the regular expression, it will advance its pointer 
to the string to be matched as far as possible and will recursively call itself trying to match the rest of 
the string to the rest of the regular expression. As long as there is no match, advance() will back up 
along the string until it finds a match or reaches the point in the string that initially matched the * or 
\{ \}. It is sometimes desirable to stop this backing up before the initial point in the string is reached. 
If the external character pointer locs is equal to the point in the string at sometime during the backing 
up process, advance() will break out of the loop that backs up and will return zero. This could be 
used by an editor like ed(l) or sed(l) for substitutions done globally (not just the first occurrence, but 
the whole line) so, for example, expressions like s/y•//g do not loop forever. 

The additional external variables sed and nbra are used for special purposes. 

EXAMPLES 

FILES 

The following is an example of how the regular expression macros and calls could look in a command 
like grep(lV): 

#define INIT register char •sp = instring; 
#define GETC() (*Sp++) 
#define PEEKC() (*Sp) 
#define UNGETC(c) (-sp) 
#define RETURN(c) return; 
#define ERROR(c) regerr() 

#include <regexp.h> 

(void) compile(•argv, expbuf, &expbuf[ESIZE], '\0'); 

if (step(linebuf, expbuf)) 
succeed (); 

/usr/include/regexp.h 

SEE ALSO 
ed(l), grep(lV), sed(lV) 

BUGS 
The handling of circf is difficult 

964 Last change: 20 January 1988 Sun Release 4.0 



RESOLVER ( 3) C LIBRARY FUNCTIONS RESOLVER ( 3) 

NAME 
resolver, res_mkquery, res_send, res_init, dn_comp, dn_expand - resolver routines 

SYNOPSIS 
#include <Sys/types.h> 
#include <netinet/in.h> 
#include <arpa/nameser .h> 
#include <arpa/resolv .h> 

res_mkquery(op, dname, class, type, data, datalen, newrr, buf, buflen) 
int op; 
char •dname; 
int class, type; 
char •data; 
int datalen; 
struct rrec •newrr; 
char •buf; 
int buflen; 

res_send(msg, msglen, answer, anslen) 
char •msg; 
int msglen; 
char •answer; 
int anslen; 

res_init() 

dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr) 
char •exp_dn, •comp_dn; 
int length; 
char ••dnptrs, **lastdnptr; 

dn_expand(msg, msglen, comp_dn, exp_dn, length) 
char •msg, •comp_dn, exp_dn; 
int msglen, length; 

DESCRIPTION 
These routines are used for making, sending and interpreting packets to Internet domain name servers. 
Global information that is used by the resolver routines is kept in the variable _res. Most of the 
values have reasonable defaults and can be ignored. Options stored in _res.options are defined in 
resolv.h and are as follows. Options are a simple bit mask and are OR'ed in to enable. 

RES_ INIT True if the initial name server address and default domain name are initialized 
(that is, res _init has been called). 

RES_DEBUG Print debugging messages. 

RES AAONLY 

RES USEVC 

RES STA YO PEN 

RES IGNTC 

RES RECURSE 

RES DEFNAMES 

Sun Release 4.0 

Accept authoritative answers only. res _send will continue until it finds an 
authoritative answer or finds an error. Currently this is not implemented. 

Use TCP connections for queries instead of UDP. 

Used with RES_USEVC to keep the TCP connection open between queries. 
This is useful only in programs that regularly do many queries. UDP should 
be the normal mode used. 

Unused currently (ignore truncation errors, that is, do not retry with TCP). 

Set the recursion desired bit in queries. This is the default. (res _send does not 
do iterative queries and expects the name server to handle recursion.) 

Append the default domain name to single label queries. This is the default. 

Last change: 6 October 1987 965 



RESOLVER ( 3) C LIBRARY FUNCTIONS RESOLVER ( 3) 

FILES 

res _init reads the initialization file to get the default domain name and the Internet address of the ini
tial hosts running the name server. If this line does not exist, the host running the resolver is tried. 
res_ mkquery makes a standard query message and places it in buf. res_ mkquery will return the size 
of the query or -1 if the query is larger than buflen. op is usually QUERY but can be any of the 
query types defined in nameser.h. dname is the domain name. If dname consists of a single label 
and the RES_DEFNAMES flag is enabled (the default), dname will be appended with the current 
domain name. The current domain name is defined in a system file and can be overridden by the 
environment variable LOCALDOMAIN. newrr is currently unused but is intended for making update 
messages. 

res _send sends a query to name servers and returns an answer. It will call res _init if RES_ INIT is not 
set, send the query to the local name server, and handle timeouts and retries. The length of the mes
sage is returned or -1 if there were errors. 

dn _ expand Expands the compressed domain name comp_ dn to a full domain name. Expanded names 
are converted to upper case. msg is a pointer to the beginning of the message, exp_ dn is a pointer to 
a buffer of size length for the result The size of compressed name is returned or -1 if there was an 
error. 

dn _ comp Compresses the domain name exp_ dn and stores it in comp_ dn. The size of the compressed 
name is returned or -1 if there were errors. length is the size of the array pointed to by comp_ dn. 
dnptrs is a list of pointers to previously compressed names in the current message. The first pointer 
points to to the beginning of the message and the list ends with NULL. lastdnptr is a pointer to the 
end of the array pointed to dnptrs. A side effect is to update the list of pointers for labels inserted 
into the message by dn _comp as the name is compressed. If dnptr is NULL, we do not try to 
compress names. If lastdnptr is NULL, we do not update the list. 

I etc/resolve.conf see resolve.conf(5) 

SEE ALSO 
resolve.conf(5), named(8) 

966 Last change: 6 October 1987 Sun Release 4.0 



REXEC(3N) NETWORK FUNCTIONS REXEC(3N) 

NAME 
rexec - return stream to a remote command 

SYNOPSIS 
rem= rexec(ahost, inport, user, passwd, cmd, fd2p); 
char * *ahost; 
u_short inport; 
char *user, *passwd, *cmd; 
int *fd2p; 

DESCRIPTION 
rexec() looks up the host *ahost using gethostbyname (see gethostent(3N)), returning -1 if the host does 
not exist. Otherwise *ahost is set to the standard name of the host. If a username and password are both 
specified, then these are used to authenticate to the foreign host; otherwise the environment and then the 
user's .netrc file in his home directory are searched for appropriate information. If all this fails, the user is 
prompted for the information. 

The port inport specifies which well-known DARPA Internet port to use for the connection; it will normally 
be the value returned from the call getservbyname("exec", "tcp") (see getservent(3N)). The protocol for 
connection is described in detail in rexecd(8C). 

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote 
command as its standard input and standard output. If fd2p is non-zero, then a auxiliary channel to a con
trol process will be setup, and a descriptor for it will be placed in *fd2p. The control process will return 
diagnostic output from the command (unit 2) on this channel, and will also accept bytes on this channel as 
signal numbers, to be forwarded to the process group of the command. If fd2p is 0, then the standard error 
(unit 2 of the remote command) will be made the same as its standard output and no provision is made for 
sending arbitrary signals to the remote process, although you may be able to get its attention by using out
of-band data. 

SEE ALSO 
gethostent(3N), getservent(3N), rcmd(3N), rexecd(8C) 

BUGS 

There is no way to specify options to the socket() call that rexec() makes. 

Sun Release 4.0 Last change: 18 November 1987 967 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

NAME 
rpc - library routines for remote procedure calls 

SYNOPSIS AND DESCRIPTION 

968 

These routines allow C programs to make procedure calls on other machines across the network. 
First, the client calls a procedure to send a data packet to the server. Upon receipt of the packet, the 
server calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, 
the procedure call returns to the client. 

#include <rpc/rpc.h> 

void 
auth _ destroy(auth) 
AUTH •auth; 

AUTH * 

A macro that destroys the authentication information associated with auth. Destruction usu
ally involves deallocation of private data structures. The use of auth is undefined after calling 
auth _destroy(). 

authnone _create() 

AUTH * 

Create and returns an RPC authentication handle that passes nonusable authentication informa
tion with each remote procedure call. This is the default authentication used by RPC. 

authdes _ create(name, window, syncaddr, ckey) 
char •name; 
unsigned window; 
struct sockaddr •addr; 
des_ block •ckey; 

authdes _create() is the first of two routines which interface to the RPC secure authentication 
system, known as DES authentication. The second is authdes_getucred(), below. Note: the 
keyserver daemon keyserv(8C) must be running for the DES authentication system to work. 

authdes_create(), used on the client side, returns an authentication handle that will enable the 
use of the secure authentication system. The first parameter name is the network name, or 
netname, of the owner of the server process. This field usually represents a hostname derived 
from the utility routine host2netname, but could also represent a user name using 
user2netname. The second field is window on the validity of the client credential, given in 
seconds. A small window is more secure than a large one, but choosing too small of a win
dow will increase the frequency of resynchronizations because of clock drift. The third param
eter syncaddr is optional. If it is NULL, then the authentication system will assume that the 
local clock is always in sync with the server's clock, and will not attempt resynchronizations. 
If an address is supplied, however, then the system will use the address for consulting the 
remote time service whenever resynchronization is required. This parameter is usually the 
address of the RPC server itself. The final parameter ckey is also optional. If it is NULL, then 
the authentication system will generate a random DES key to be used for the encryption of 
credentials. If it is supplied, however, then it will be used instead. 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

authdes_getucred(adc, uid, gid, grouplen, groups) 
struct authdes_cred •adc; 
short •uid; 
short •gid; 
short •grouplen; 
int •groups; 

AUTH * 

authdes getucred( ), the second of the two DES authentication routines, is used on the server 
side for converting a DES credential, which is operating system independent, into a credential. 
This routine differs from utility routine netname2user in that authdes _getucred( ) pulls its 
information from a cache, and does not have to do a Yellow Pages lookup every time it is 
called to get its information. 

authunix _ create(host, uid, gid, len, aup _gids) 
char •host; 
int uid, gid, len, •aup.gids; 

AUTH * 

Create and return an RPC authentication handle that contains authentication information. The 
parameter host is the name of the machine on which the information was created; uid is the 
user's user ID ; gid is the user's current group ID ; len and aup _gids refer to a counted array 
of groups to which the user belongs. It is easy to impersonate a user. 

authunix _create_ default() 

Calls authunix _ create( ) with the appropriate parameters. 

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out) 
char •host; 
u_long prognum, versnum, procnum; 
char •in, •out; 
xdrproc_t inproc, outproc; 

Sun Release 4.0 

Call the remote procedure associated with prognum, versnum, and procnum on the machine, 
host. The parameter in is the address of the procedure's argument(s), and out is the address 
of where to place the result(s); inproc is used to encode the procedure's parameters, and 
outproc is used to decode the procedure's results. This routine returns zero if it succeeds, or 
the value of enum clnt_stat cast to an integer if it fails. The routine clnt_perrno() is handy 
for translating failure statuses into messages. 

W aming: calling remote procedures with this routine uses UDP/IP as a transport; see 
clntudp_create() for restrictions. You do not have control of timeouts or authentication 
using this routine. 

Last change: 16 February 1988 969 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

970 

enum clot stat 
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult) 
u _Iong prognum, versnum, procnum; 
char •in, •out; 
xdrproc_t. inproc, outproc; 
resultproc _ t eachresult; 

Like callrpc( ), except the call message is broadcast to all locally connected broadcast nets. 
Each time it receives a response, this routine calls eachresult( ), whose form is: 

eachresult( out, addr) 
char •out; 
struct sockaddr _ in * addr; 

where out is the same as out passed to clnt_broadcast(), except that the remote procedure's 
output is decoded there; addr points to the address of the machine that sent the results. If 
eachresult() returns zero, clot_ broadcast() waits for more replies; otherwise it returns with 
appropriate status. 

Warning: broadcast sockets are limited in size to the maximum transfer unit of the data link. 
For ethernet, this value is 1500 bytes. 

enum clot stat 
clnt_call(clnt, procnum, inproc, in, outproc, out, tout) 
CLIENT •clot; 
u_Iong 
procnum; 
xdrproc_t inproc, outproc; 
char •in, •out; 
struct timeval tout; 

A macro that calls the remote procedure procnum associated with the client handle, clnt, 
which is obtained with an RPC client creation routine such as clnt_create(). The parameter 
in is the address of the procedure's argument(s), and out is the address of where to place the 
result(s); inproc is used to encode the procedure's parameters, and outproc is used to decode 
the procedure's results; tout is the time allowed for results to come back. 

clnt _ destroy(clnt) 
CLIENT •clot; 

A macro that destroys the client's RPC handle. Destruction usually involves deallocation of 
private data structures, including clnt itself. Use of clnt is undefined after calling 
clnt_destroy(). ff the RPC library opened the associated socket, it will close it also. Other
wise, the socket remains open. 

CLIENT* 
clot_ create(host, prog, vers, proto) 
char •host; 
u_long prog, vers; 
char *proto; 

Generic client creation routine. lwst identifies the name of the remote host where the server 
is located. proto indicates which kind of transport protocol to use. The currently supported 
values for this field are "udp" and "tcp". Default timeouts are set, but can be modified using 
clnt_control(). 

Warning: Using UDP has its shortcomings. Since UDP-based RPC messages can only hold up 
to 8 Kbytes of encoded data, this transport cannot be used for procedures that take large argu
ments or return huge results. 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

bool t 
clnt_control(cl, req, info) 
CLIENT •cl; 
char •info; 

A macro used to change or retrieve various information about a client object. req indicates 
the type of operation, and info is a pointer to the information. For both UDP and TCP, the 
supported values of req and their argument types and what they do are: 

CLSET TIMEOUT 
CLGET TIMEOUT 

struct timeval 
struct timeval 

set total timeout 
get total timeout 

Note: if you set the timeout using clnt_control(), the timeout parameter passed to clnt_call() 
will be ignored in all future calls. 

CLGET SERVER ADDR struct sockaddr - -
The following operations are valid for UDP only: 

CLSET RETRY TIMEOUT - -
CLGET RETRY TIMEOUT - -

struct timevalset the retry timeout 
struct timevalget the retry timeout 

get server's address 

The retry timeout is the time that UDP RPC waits for the server to reply before retransmitting 
the request. 

clnt_freeres(clnt, outproc, out) 
CLIENT •clnt; 
xdrproc _t outproc; 
char •out; 

void 

A macro that frees any data allocated by the RPC/XDR system when it decoded the results of 
an RPC call. The parameter out is the address of the results, and outproc is the XDR routine 
describing the results. This routine returns one if the results were successfully freed, and zero 
otherwise. 

clnt _geterr( clnt, errp) 
CLIENT •clot; 
struct rpc_err •errp; 

void 

A macro that copies the error structure out of the client handle to the structure at address 
errp. 

clnt _pcreateerror(s) 
char •s; 

Sun Release 4.0 

Print a message to standard error indicating why a client RPC handle could not be created. 
The message is prepended with string s and a colon. Used when a clnt_create(), 
clntraw _create(), clnttcp _create(), or clntudp _create() call fails. 

Last change: 16 February 1988 971 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

972 

void 
clnt _perrno(stat) 
enum clnt_stat stat; 

Print a message to standard error corresponding to the condition indicated by stat. Used after 
callrpc(). 

clnt_perror(clnt, s) 
CLIENT •clnt; 
char •s; 

char* 

Print a message to standard error indicating why an RPC call failed; clnt is the handle used to 
do the call. The message is prepended with string s and a colon. Used after clnt_call(). 

clnt_spcreateerror 
char •s; 

Like clnt_pcreateerror(), except that it returns a string instead of printing to the standard 
error. 

Bugs: returns pointer to static data that is overwritten on each call. 

char* 
clnt _ sperrno(stat) 
enum clnt_stat stat; 

Take the same arguments as clot _perrno( ), but instead of sending a message to the standard 
error indicating why an RPC call failed, return a pointer to a string which contains the mes
sage. The string ends with a NEWLINE. 

clnt_sperrno() is used instead of clnt_perrno() if the program does not have a standard 
error (as a program running as a server quite likely does not}, or if the programmer does not 
want the message to be output with printf, or if a message format different than that sup
ported by clnt_perrno() is to be used. Note: unlike clnt_sperror() and clnt_spcreaterror(), 
clnt _ sperrno() does not return pointer to static data so the result will not get overwritten on 
each call. 

char* 
clnt_sperror(rpch, s) 
CLIENT •rpch; 
char •s; 

Like clnt_perror(), except that (like clnt_sperrno()) it returns a string instead of printing to 
standard error. 

Bugs: returns pointer to static data that is overwritten on each call. 

CLIENT* 
clntraw _ create(prognum, versnum) 
u _long prognum, versnum; 

This routine creates a toy RPC client for the remote program prognum, version versnum. The 
transport used to pass messages to the service is actually a buffer within the process's address 
space, so the corresponding RPC server should live in the same address space; see 
svcraw create(). This allows simulation of RPC and acquisition of RPC overheads, such as 
round trip times, without any kernel interference. This routine returns NULL if it fails. 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

CLIENT* 
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz) 
struct sockaddr _in *addr; 
u_long prognum, versnum; 
int *sockp; 
u_int sendsz, recvsz; 

This routine creates an RPC client for the remote program prognum, version versnum; the 
client uses TCP/IP as a transport. The remote program is located at Internet address *addr. If 
addr->sin _port is zero, then it is set to the actual port that the remote program is listening 
on (the remote portmap service is consulted for this information). The parameter sockp is a 
socket; if it is RPC _ ANYSOCK, then this routine opens a new one and sets sockp. Since 
TCP-based RPC uses buffered 1/0 , the user may specify the size of the send and receive 
buffers with the parameters sendsz and recvsz; values of zero choose suitable defaults. This 
routine returns NULL if it fails. 

CLIENT* 
clntudp _ create(addr, pron um, versnum, wait, sockp) 
struct sockaddr _ in * addr; 
u_long prognum, versnum; 
struct timeval wait; 
int *sockp; 

This routine creates an RPC client for the remote program prognum, version versnum; the 
client uses use UDP/IP as a transport. The remote program is located at Internet address addr. 
If addr->sin _port is zero, then it is set to actual port that the remote program is listening on 
(the remote portmap service is consulted for this information). The parameter sockp is a 
socket; if it is RPC_ANYSOCK, then this routine opens a new one and sets sockp. The UDP 
transport resends the call message in intervals of wait time until a response is received or 
until the call times out The total time for the call to time out is specified by clnt_call(). 

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this 
transport cannot be used for procedures that take large arguments or return huge results. 

host2netname(name, host, domain) 
char *name; 
char *host; 
char *domain; 

Convert from a domain-specific hostname to an operating-system independent netname. Return 
TRUE if it succeeds and FALSE if it fails. Inverse of netname2host(). 

key_ decryptsession(remotename, deskey) 
char *remotename; 
des_ block *deskey; 

Sun Release 4.0 

key_decryptsession() is an interface to the keyserver daemon, which is associated with RPC's 
secure authentication system (DES authentication). User programs rarely need to call it, or its 
associated routines key_ encryptsession( ), key _gendes() and key_ setsecret( ). System com
mands such as login and the RPC library are the main clients of these four routines. 

key_ decryptsession() takes a server netname and a des key, and decrypts the key by using 
the the public key of the the server and the secret key associated with the effective uid of the 
calling process. It is the inverse of key_ encryptsession( ). 

Last change: 16 February 1988 973 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

974 

key_ encryptsession(remotename, deskey) 
char •remotename; 
des_ block •deskey; 

key_ encryptsession() is a keyserver interface routine. It takes a server netname and a des 
key, and encrypts it using the public key of the the server and the secret key associated with 
the effective uid of the calling process. It is the inverse of key_ decryptsession( ). 

key_gendes(deskey) 
des_ block •deskey; 

key _geodes() is a keyserver interface routine. It is used to ask the keyserver for a secure 
conversation key. Choosing one at "random" is usually not good enough, because the com
mon ways of choosing random numbers, such as using the current time, are very easy to 
guess. 

key_ setsecret(key) 
char •key; 

key_setsecret() is a keyserver interface routine. It is used to set the key for the effective uid 
of the calling process. 

void 
get_ myaddress(addr) 
struct sockaddr _in •addr; 

Stuff the machine's IP address into •addr, without consulting the library routines that deal 
with /etc/hosts. The port number is always set to htons(PMAPPORT). 

getnetname(name) 
char name[MAXNETNAMELEN]; 

getnetname() installs the unique, operating-system independent netname of the caller in the 
fixed-length array name. Returns TRUE if it succeeds and FALSE if it fails. 

netname2host(name, host, hostlen) 
char •name; 
char •host; 
int hostlen; 

Convert from an operating-system independent netname to a domain-specific hostname. 
Returns TRUE if it succeeds and FALSE if it fails. Inverse of host2netname(). 

netname2user(name, uidp, gidp, gidlenp, gidlist) 
char •name; 
int •uidp; 
int •gidp; 
int •gidlenp; 
int •gidlist; 

Convert from an operating-system independent netname to a domain-specific user ID. Returns 
TRUE if it succeeds and FALSE if it fails. Inverse of user2netname( ). 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

struct pmaplist * 
pmap _getmaps(addr) 
struct sockaddr _ in * addr; 

u short 

A user interface to the portmap service, which returns a list of the current RPC program-to
port mappings on the host located at IP address •addr. This routine can return NULL . The 
command 'rpcinfo -p' uses this routine. 

pmap _getport(addr, prognum, versnum, protocol) 
struct sockaddr _in •addr; 
u_Iong prognum, versnum, protocol; 

A user interface to the portmap service, which returns the port number on which waits a ser
vice that supports program number prognum, version versnum, and speaks the transport proto
col associated with protocol. The value of protocol is most likely IPPROTO _ UDP or 
IPPROTO _ TCP. A return value of zero means that the mapping does not exist or that the 
RPC system failured to contact the remote portmap service. In the latter case, the global 
variable rpc _ createerr() contains the RPC status. 

enum clnt _ stat 
pmap _rmtcall(addr, prognum, versnum, procnum, inproc, in, outproc, out, tout, portp) 
struct sockaddr _ in * addr; 
u _ Iong prognum, versnum, procnum; 
char •in, •out; 
xdrproc_t inproc, outproc; 
struct timeval tout; 
u _long •portp; 

A user interface to the portmap service, which instructs portmap on the host at IP address 
•addr to make an RPC call on your behalf to a procedure on that host. The parameter *portp 
will be modified to the program's port number if the procedure succeeds. The definitions of 
other parameters are discussed in callrpc() and clnt_call(). This procedure should be used 
for a "ping" and nothing else. See also clnt_broadcast(). 

pmap _ set(prognum, versnum, protocol, port) 
u_Iong prognum, versnum, protocol; 
u _ short port; 

A user interface to the portmap service, which establishes a mapping between the triple 
[prognum,versnum,protocol] and port on the machine's portmap service. The value of proto
col is most likely IPPROTO_UDP or IPPROTO_TCP. This routine returns one if it succeeds, 
zero otherwise. Automatically done by svc_register(). 

pmap _ unset(prognum, versnum) 
u _Iong prognum, versnum; 

Sun Release 4.0 

A user interface to the portmap service, which destroys all mapping between the triple 
[prognum,versnum,*] and ports on the machine's portmap service. This routine returns one 
if it succeeds, zero otherwise. 

Last change: 16 February 1988 975 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

976 

registerrpc(prognum, versnum, procnum, procname, inproc, outproc) 
u _long prognum, versnum, procnum; 
char *(*procname) () ; 
xdrproc_t inproc, outproc; 

Register procedure procname with the RPC service package. If a request arrives for program 
prognum, version versnum, and procedure procnum, procname is called with a pointer to its 
parameter(s); progname should return a pointer to its static result(s); inproc is used to decode 
the parameters while outproc is used to encode the results. This routine returns zero if the 
registration succeeded, -1 otherwise. 

Warning: remote procedures registered in this form are accessed using the UDP/IP transport; 
see svcudp _create() for restrictions. 

struct rpc _ createerr rpc _ createerr; 

A global variable whose value is set by any RPC client creation routine that does not succeed. 
Use the routine clnt_pcreateerror() to print the reason why. 

svc _ destroy(xprt) 
SVCXPRT * 
xprt; 

A macro that destroys the RPC service transport handle, xprt. Destruction usually involves 
deallocation of private data structures, including xprt itself. Use of xprt is undefined after cal
ling this routine. 

fd_set svc_fdset; 

A global variable reflecting the RPC service side's read file descriptor bit mask; it is suitable 
as a parameter to the select system call. This is only of interest if a service implementor does 
not call svc_run(), but rather does his own asynchronous event processing. This variable is 
read-only (do not pass its address to select!), yet it may change after calls to svc_getreqset() 
or any creation routines. 

int SVC _f ds; 

Similar to svc _fedset( ), but limited to 32 descriptors. This interface is obsoleted by 
svc_fdset(). 

svc_freeargs(xprt, inproc, in) 
SVCXPRT *xprt; 
xdrproc _t inproc; 
char •in; 

A macro that frees any data allocated by the RPC/XDR system when it decoded the arguments 
to a service procedure using svc _getargs( ). This routine returns 1 if the results were success
fully freed, and zero otherwise. 

svc _getargs(xprt, inproc, in) 
SVCXPRT *xprt; 
xdrproc_t inproc; 
char •in; 

A macro that decodes the arguments of an RPC request associated with the RPC service tran
sport handle, xprt. The parameter in is the address where the arguments will be placed; 
inproc is the XDR routine used to decode the arguments. This routine returns one if decoding 
succeeds, and zero otherwise. 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) . NETWORK FUNCTIONS RPC(3N) 

struct sockaddr in * 
svc _getcaller(xprt) 
SVCXPRT *xprt; 

The approved way of getting the network address of the caller of a procedure associated with 
the RPC service transport handle, xprt. 

svc __getreqset(rdfds) 
fd_set •rdfds; 

This routine is only of interest if a service implementor does not call svc_run(), but instead 
implements custom asynchronous event processing. It is called when the select system call 
has determined that an RPC request has arrived on some RPC socket(s) ; rdfds is the resultant 
read file descriptor bit mask. The routine returns when all sockets associated with the value 
of rd/ ds have been serviced. 

svc __getreq(rdfds) 
int rdfds; 

Similar to svc _getreqset( ), but limited to 32 descriptors. This interface is obsoleted by 
svc__getreqset( ). 

svc _register(xprt, prognum, versnum, dispatch, protocol) 
SVCXPRT *xprt; 
u_long prognum, versnum; 
void (*dispatch) (); 
u_long protocol; 

Associates prognum and versnum with the service dispatch procedure, dispatch. If protocol is 
zero, the service is not registered with the portmap service. If protocol is non-zero, then a 
mapping of the triple [prognum,versnum,protoco[J to xprt->xp_port is established with the 
local portmap service (generally protocol is zero, IPPROTO _ UDP or IPPROTO _ TCP ). The 
procedure dispatch has the following form: 

dispatch(request, xprt) 
struct svc _req •request; 
SVCXPRT *xprt; 

The svc _register( ) routine returns one if it succeeds, and zero otherwise. 

svc_run() 

This routine never returns. It waits for RPC requests to arrive, and calls the appropriate ser
vice procedure using svc_getreq() when one arrives. This procedure is usually waiting for a 
select( ) system call to return. 

svc_sendreply(xprt, outproc, out) 
SVCXPRT •xprt; 
xdrproc _ t outproc; 
char •out; 

Sun Release 4.0 

Called by an RPC service's dispatch routine to send the results of a remote procedure call. 
The parameter xprt is the request's associated transport handle; outproc is the XOR routine 
which is used to encode the results; and out is the address of the results. This routine returns 
one if it succeeds, zero otherwise. 

Last change: 16 February 1988 977 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

978 

void 
svc _ unregister(prognum, versnum) 
u_long prognum, versnum; 

void 

Remove all mapping of the double [prognum,versnum] to dispatch routines, and of the triple 
fprognum,versnum,*] to port number. 

svcerr _auth(xprt, why) 
SVCXPRT *xprt; 
enum auth_stat why; 

void 

Called by a service dispatch routine that refuses to perform a remote procedure call due to an 
authentication error. 

svcerr _ decode(xprt) 
SVCXPRT *xprt; 

void 

Called by a service dispatch routine that cannot successfully decode its parameters. See also 
svc __getargs( ). 

svcerr _ noproc(xprt) 
SVCXPRT *xprt; 

void 

Called by a service dispatch routine that does not implement the procedure number that the 
caller requests. 

svcerr _ noprog(xprt) 
SVCXPRT *xprt; 

void 

Called when the desired program is not registered with the RPC package. Service implemen
tors usually do not need this routine. 

svcerr _progvers(xprt) 
SVCXPRT *xprt; 

void 

Called when the desired version of a program is not registered with the RPC package. Service 
implementors usually do not need this routine. 

svcerr _ systemerr(xprt) 
SVCXPRT *xprt; 

void 

Called by a service dispatch routine when it detects a system error not covered by any partic
ular protocol. For example, if a service can no longer allocate storage, it may call this rou
tine. 

svcerr _ weakauth(xprt) 
SVCXPRT *xprt; 

Called by a service dispatch routine that refuses to perform a remote procedure call due to 
insufficient (but correct) authentication parameters. The routine calls svcerr _ auth(xprt, 
AUTH_TOOWEAK). 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

SVCXPRT * 
svcralV_create() 

This routine creates a toy RPC service transport, to which it returns a pointer. The transport 
is really a buffer within the process's address space, so the corresponding RPC client should 
live in the same address space; see clntralV _create(). This routine allows simulation of RPC 
and acquisition of RPC overheads (such as round trip times), without any kernel interference. 
This routine returns NULL if it fails. 

SVCXPRT * 
svctcp _ create(sock, send_ buf _ size, recv _ buf _ size) 
int sock; 
u_int send_buf_size, recv_buf_size; 

void 

This routine creates a TCP/IP-based RPC service transport, to which it returns a pointer. The 
transport is associated with the socket sock, which may be RPC_ANYSOCK, in which case a 
new socket is created. If the socket is not bound to a local TCP port, then this routine binds 
it to an arbitrary port. Upon completion, xprt->xp_sock is the transport's socket descriptor, 
and xprt->xp_port is the transport's port number. This routine returns NULL if it fails. 
Since TCP-based RPC uses buffered 1/0 , users may specify the size of buffers; values of zero 
choose suitable defaults. 

svcf d _ create(f d, sendsize, recvsize) 
int fd; 
u_int sendsize; 
u _ int recvsize; 

Create a service on top of any open descriptor. Typically, this descriptor is a connected 
socket for a stream protocol such as TCP. sendsize and recvsize indicate sizes for the send and 
receive buffers. If they are zero, a reasonable default is chosen. 

SVCXPRT * 
svcudp _ create(sock) 
int sock; 

This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The 
transport is associated with the socket sock, which may be RPC_ANYSOCK , in which case a 
new socket is created. If the socket is not bound to a local UDP port, then this routine binds 
it to an arbitrary port. Upon completion, xprt->xp_sock is the transport's socket descriptor, 
and xprt->xp_port is the transport's port number. This routine returns NULL if it fails. 

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this 
transport cannot be used for procedures that take large arguments or return huge results. 

user2netname(name, uid, domain) 
char •name; 
int uid; 
char •domain; 

Convert from a domain-specific usemame to an operating-system independent netname. 
Returns TRUE if it succeeds and FALSE if it fails. Inverse of netname2user( ). 

xdr _accepted_ reply(xdrs, ar) 
XDR •xdrs; 
struct accepted _reply •ar; 

Used for encoding RPC reply messages. This routine is useful for users who wish to generate 
RPC-style messages without using the RPC package. 

Sun Release 4.0 Last change: 16 February 1988 979 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

980 

xdr _ authunix _parms(xdrs, aupp) 
XDR *xdrs; 
struct authunix _parms *aupp; 

Used for describing UNIX credentials. This routine is useful for users who wish to generate 
these credentials without using the RPC authentication package. 

void 
xdr _ callhdr(xdrs, chdr) 
XDR *xdrs; 
struct rpc _msg *chdr; 

Used for describing RPC call header messages. This routine is useful for users who wish to 
generate RPC-style messages without using the RPC package. 

xdr _ callmsg(xdrs, cmsg) 
XDR *xdrs; 
struct rpc_msg *cmsg; 

Used for describing RPC call messages. This routine is useful for users who wish to generate 
RPC-style messages without using the RPC package. 

xdr _opaque_ auth(xdrs, ap) 
XDR *xdrs; 
struct opaque_auth *ap; 

Used for describing RPC authentication information messages. This routine is useful for users 
who wish to generate RPC-style messages without using the RPC package. 

xdr _pmap(xdrs, regs) 
XDR *Xdrs; 
struct pmap *regs; 

Used for describing parameters to various portmap procedures, externally. This routine is 
useful for users who wish to generate these parameters without using the pmap interface. 

xdr _pmaplist(xdrs, rp) 
XDR *xdrs; 
struct pmaplist **rp; 

Used for describing a list of port mappings, externally. This routine is useful for users who 
wish to generate these parameters without using the pmap interface. 

xdr _rejected_ reply(xdrs, rr) 
XDR *Xdrs; 
struct rejected _reply *rr; 

Used for describing RPC reply messages. This routine is useful for users who wish to gen
erate RPC-style messages without using the RPC package. 

xdr _replymsg(xdrs, rmsg) 
XDR *xdrs; 
struct rpc_msg *rmsg; 

Used for describing RPC reply messages. This routine is useful for users who wish to gen
erate RPC style· messages without using the RPC package. 

Last change: 16 February 1988 Sun Release 4.0 



RPC(3N) NETWORK FUNCTIONS RPC(3N) 

void 
xprt _register(xprt) 
SVCXPRT *xprt; 

void 

After RPC service transport handles are created, they should register themselves with the RPC 
service package. This routine modifies the global variable svc_fds(). Service implementors 
usually do not need this routine. 

xprt_ unregister(xprt) 
SVCXPRT *xprt; 

SEE ALSO 

Before an RPC service transport handle is destroyed, it should unregister itself with the RPC 
service package. This routine modifies the global variable svc _fds( ). Service implementors 
usually do not need this routine. 

xdr(3N), keyserv(8C) 

Network Programming: 

Sun Release 4.0 Last change: 16 February 1988 981 



RTIME(3) C LIBRARY FUNCTIONS RTIME(3) 

NAME 
rtime - get remote time 

SYNOPSIS 
#include <Sys/types.h> 
#include <Sys/time.h> 
#include <netinet/in.h> 

int rtime(addrp, timep, timeout) 
struct sockaddr _in •addrp; 
struct timeval •timep; 
struct timeval •timeout; 

DESCRIPTION 
rtime( ) consults the Internet Time Server at the address pointed to by addrp and returns the remote 
time in the timeval struct pointed to by timep. Normally, the UDP protocol is used when consulting 
the Time Server. The timeout parameter specifies how long the routine should wait before giving up 
when waiting for a reply. If timeout is specified as NULL, however, the routine will instead use TCP 
and block until a reply is received from the time server. 

The routine returns O if it is successful. Otherwise, it returns -1 and errno is set to reflect the cause 
of the error. 

SEE ALSO 
timed(8C) 

982 Last change: 22 November 1987 Sun Release 4.0 



SCANDIR(3) C LIBRARY FUNCTIONS SCANDIR(3) 

NAME 
scandir, alphasort - scan a directory 

SYNOPSIS 
#include <Sys/types.h> 
#include <Sysldir.h> 

scandir(dirname, namelist, select, compar) 
char •dirname; 
struct direct ••namelist; 
int (•select)(); 
int (•compar)(); 

alphasort(dl, d2) 
struct direct ••dl, ••d2; 

DESCRIPTION 
scandir() reads the directory dirname and builds an array of pointers to directory entries using mal
loc(3 ). The second parameter is a pointer to an array of structure pointers. The third parameter is a 
pointer to a routine which is called with a pointer to a directory entry and should return a non zero 
value if the directory entry should be included in the array. If this pointer is NULL, then all the direc
tory entries will be included. The last argument is a pointer to a routine which is passed to qsort(3) 
to sort the completed array. If this pointer is NULL, the array is not sorted. alphasort() is a routine 
which will sort the array alphabetically. 

scandir() returns the number of entries in the array and a pointer to the array through the parameter 
namelist. 

SEE ALSO 
directory(3 ), malloc(3 ), qsort(3) 

DIAGNOSTICS 

Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allocate enough 
memory to hold all the data structures. 

Sun Release 4.0 Last change: 6 October 1987 983 



SCANF(3S) ST AND ARD I/0 FUNCTIONS SCANF(3S) 

NAME 
scanf, fscanf, sscanf - formatted input conversion 

SYNOPSIS 
#include <Stdio.h> 

scanf(format [ , pointer ] ... ) 
char •format; 

fscanf(stream, format [ , pointer ] ... ) 
FILE •stream; 
char •format; 

sscanf(s, format [ , pointer ] ... ) 
char •s, •format; 

DESCRIPTION 

984 

scanf() reads from the standard input stream stdio. fscanf() reads from the named input stream. sscanf() 
reads from the character string s. Each function reads characters, interprets them according to a format, 
and stores the results in its arguments. Each expects, as arguments, a control string format, described 
below, and a set of pointer arguments indicating where the converted input should be stored. The results 
are undefined in there are insufficient args for the format. If the format is exhausted while args remain, 
the excess args are simply ignored. 

The control string usually contains conversion specifications, which are used to direct interpretation of 
input sequences. The control string may contain: 

1. White-space characters (SPACE, TAB, or NEWLINE) which, except in two cases described 
below, cause input to be read up to the next non-white-space character. 

2. An ordinary character (not '% '), which must match the next character of the input stream. 
3. Conversion specifications, consisting of the character '%', an optional assignment suppressing 

character '* ', an optional numerical maximum field width, an optional I ( ell) or h indicating 
the size of the receiving variable, and a conversion code. 

A conversion specification directs the conversion of the next input field; the result is placed in the variable 
pointed to by the corresponding argument, unless assignment suppression was indicated by '*'. The 
suppression of assignment provides a way of describing an input field which is to be skipped. An input 
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the 
field width, if specified, is exhausted. For all descriptors except"[" and "c", white space leading an input 
field is ignored. 

The conversion character indicates the interpretation of the input field; the corresponding pointer argument 
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following 
conversion characters are legal: 

% A single % is expected in the input at this point; no assignment is done. 
d A decimal integer is expected; the corresponding argument should be an integer pointer. 
u An unsigned decimal integer is expected; the corresponding argument should be an 

unsigned integer pointer. 
o An octal integer is expected; the corresponding argument should be an integer pointer. 
x A hexadecimal integer is expected; the corresponding argument should be an integer 

pointer. 
An integer is expected; the corresponding argument should be an integer pointer. It will 
store the value of the next input item interpreted according to C conventions: a leading 
"O" implies octal; a leading "Ox" implies hexadecimal; otherwise, decimal. 

n Stores in an integer argument the total number of characters (including white space) that 
have been scanned so far since the function call. No input is consumed. 

Last change: 18 November 1987 Sun Release 4.0 



SCANF(3S) ST AND ARD I/0 FUNCTIONS SCANF(3S) 

e,f,g A floating point number is expected; the next field is converted accordingly and stored 
through the corresponding argument, which should be a pointer to afloat. The input for
mat for floating point numbers is as described for string_to_decimal(3), with 
fortran _exponent zero. 

s A character string is expected; the corresponding argument should be a character pointer 
pointing to an array of characters large enough to accept the string and a terminating \0, 
which will be added automatically. The input field is terminated by a white space char
acter. 

c A character is expected; the corresponding argument should be a character pointer. The 
normal skip over white space is suppressed in this case; to read the next non-space char
acter, use % ls. If a field width is given, the corresponding argument should refer to a 
character array, and the indicated number of characters is read. 
Indicates string data; the normal skip over leading white space is suppressed. The left 
bracket is followed by a set of characters, which we will call the scanset, and a right 
bracket; the input field is the maximal sequence of input characters consisting entirely of 
characters in the scanset. The circumflex ("),when it appears as the first character in the 
scanset, serves as a complement operator and redefines the scanset as the set of all char
acters not contained in the remainder of the scanset string. There are some conventions 
used in the construction of the scanset. A range of characters may be represented by the 
construct.first-last, thus [0123456789] may be expressed [0-9]. Using this convention, 
first must be lexically less than or equal to last, or else the dash will stand for itself. The 
dash will also stand for itself whenever it is the first or the last character in the scanset 
To include the right square bracket as an element of the scanset, it must appear as the first 
character (possibly preceded by a circumflex) of the scanset, and in this case it will not 
be syntactically interpreted as the closing bracket. The corresponding argument must 
point to a character array large enough to hold the data field and the terminating \0, which 
will be added automatically. At least one character must match for this conversion to be 
considered successful. 

The conversion characters d, u, o, x, and i may be preceded by I or h to indicate that a pointer to long or to 
short rather than to int is in the argument list. Similarly, the conversion characters e, r, and g may be pre
ceded by I to indicate that a pointer to double rather than to float is in the argument list. The I or h 
modifier is ignored for other conversion characters. 

Avoid this common error: because printf(3S) does not require that the lengths of conversion descriptors 
and actual parameters match, coders sometimes are careless with the scanf() functions. But converting %f 
to &double or %If to &float does not work; the results are quite incorrect. 

scanf() conversion terminates at EOF, at the end of the control string, or when an input character conflicts 
with the control string. In the latter case, the offending character is left unread in the input stream. 

scanf() returns the number of successfully matched and assigned input items; this number can be zero in 
the event of an early conflict between an input character and the control string. The constant EOF is 
returned upon end of input. Note: this is different from 0, which means that no conversion was done; if 
conversion was intended, it was frustrated by an inappropriate character in the input. 

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first 
conflict or conversion, the number of successfully matched items is returned. 

EXAMPLES 
The call: 

int i, n; float x; char name[SO]; 
n = scanf("%d%f%s", &i, &x, name); 

with the input line: 
25 54.32E-1 thompson 

Sun Release 4.0 Last change: 18 November 1987 985 



SCANF(3S) STANDARD I/0 FUNCTIONS SCANF(3S) 

will assign ton the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or: 

int i, j; float x; char name[SO]; 
(void) scanf (" %i%2d%f%•d %[0-9]", &j, &i, &x, name); 

with input: 

011 56789 0123 56a72 

will assign 9 to j, 56 to i, 189 .0 to x, skip O 123, and place the string 56\0 in name. The next call to 
getchar() (see getc(3S)) will return a. Or: 

int i, j, s, e; char name[SO]; 
(void) scanf("%i %i %n%s%n", &i, &j, &s, name, &e); 

with input: 

Oxll Oxy johnson 

will assign 17 to i, 0 to j, 6 to s, will place the string xy\0 in name, and will assign 8 to e. Thus, the length 
of name is e - s = 2. The next call to getchar() (see getc(3S)) will return a SPACE. 

SEE ALSO 
getc(3S), printf(3S), scanf(3V), stdio(3S), string_ to_ decimal(3), strtol(3) 

DIAGNOSTICS 
These functions return EOF on end of input, and a short count for missing or illegal data items. 

BUGS 
The success of literal matches and suppressed assignments is not directly determinable. 

WARNINGS 
Trailing white space (including a NEWLINE) is left unread unless matched in the control string. 

986 Last change: 18 November 1987 Sun Release 4.0 



SETBUF(3S) ST AND ARD I/0 FUNCTIONS SETBUF(3S) 

NAME 
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream 

SYNOPSIS 
#include <stdio.h> 

setbuf(stream, buf) 
FILE *stream; 
char *buf; 

setbuff er(stream, buf, size) 
FILE *stream; 
char *buf; 
int size; 

setlinebuf(stream) 
FILE *stream; 

int setvbuf(stream, buf, type, size) 
FILE *stream; 
char *buf; 
int type, size; 

DESCRIPTION 
The three types of buffering available are unbuffered, block buffered, and line buffered. When an 
output stream is unbuffered, information appears on the destination file or terminal as soon as written; 
when it is block buffered many characters are saved up and written as a block; when it is line buf
fered characters are saved up until a NEWLINE is encountered or input is read from stdin. fflush() 
(see fclose(3S)) may be used to force the block out early. Normally all files are block buffered. A 
buffer is obtained from malloc(3) upon the first getc() or putc(3S) on the file. If the standard stream 
stdout refers to a terminal it is line buffered. The standard stream stderr is unbuffered by default. 

setbuf() can be used after a stream has been opened but before it is read or written. It causes the 
array pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL 
pointer, input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the 
<stdio.h> header file, tells how big an array is needed: 

char buf[BUFSIZ]; 

setbuffer, an alternate form of setbuf, can be used after a stream has been opened but before it is 
read or written. It uses the character array buf whose size is determined by the size argument instead 
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely 
unbuffered. 

setvbuf() can be used after a stream has been opened but before it is read or written. type determines 
how stream will be buffered. Legal values for type ( defined in <stdio.h>) are: 

IOFBF fully buffers the input/output. 

IOLBF 

IONBF 

line buffers the output; the buffer will be flushed when a NEWLINE is written, the 
buffer is full, or input is requested. 

completely unbuffers the input/output. 

If buf is not the NULL pointer, the array it points to will be used for buffering, instead of an automati
cally allocated buff er. size specifies the size of the buff er to be used. 

setlinebuf() is used to change the buffering on a stream from block buffered or unbuffered to line 
buffered. Unlike setbuf, setbuffer, and setvbuf, it can be used at any time that the file descriptor is 
active. 

Sun Release 4.0 Last change: 30 January 1988 987 



SETBUF(3S) STANDARD 1/0 FUNCTIONS SETBUF(3S) 

NOTE 

A file can be changed from unbuffered or line buffered to block buffered by using freopen() (see 
fopen(3S)). A file can be changed from block buffered or line buffered to unbuffered by using freo
pen() followed by setbuf() with a buffer argument of NULL. 

A common source of error is allocating buffer space as an ''automatic'' variable in a code block, and 
then failing to close the stream in the same block. 

SEE ALSO 
fclose(3S), fopen(3S), fread(3S), getc(3S), malloc(3), printf(3S), putc(3S), puts(3S), setbuf(3V) 

DIAGNOSTICS 

988 

If an illegal value for type or size is provided, setvbuf() returns a non-zero value. Otherwise, the 
value returned will be zero. 

Last change: 30 January 1988 Sun Release 4.0 



SETJMP(3) C LIBRARY FUNCTIONS SETJMP(3) 

NAME 
setjmp, longjmp, sigsetjmp, siglongjmp - non-local goto 

SYNOPSIS 
#include <Setjmp.h> 

int setjmp(env) 
jmp _ buf env; 

Iongjmp(env, val) 
jmp _ buf env; 
int val; 

int _setjmp(env) 
jmp _ buf env; 

_longjmp(env, val) 
jmp _ buf env; 
int val; 

int sigsetjmp(env, savemask) 
sigjmp _ buf env; 
int savemask; 

siglongjmp(env, val) 
sigjmp _ buf env; 
int val; 

DESCRIPTION 
setjmp() and longjmp() are useful for dealing with errors and interrupts encountered in a low-level 
subroutine of a program. 

setjmp() saves its stack environment in env for later use by longjmp. A normal call to se1jmp() 
returns zero. setjmp() also saves the register environment. If a longjmp() call will be made, the 
routine which called setjmp() should not return until after the longjmp() has returned control (see 
below). 

longjmp() restores the environment saved by the last call of setjmp, and then returns in such a way 
that execution continues as if the call of setjmp() had just returned the value val to the function that 
invoked setjmp; however, if val were zero, execution would continue as if the call of setjmp() had 
returned one. This ensures that a "return" from setjmp() caused by a call to longjmp() can be dis
tinguished from a regular return from setjmp. The calling function must not itself have returned in 
the interim, otherwise long.imp() will be returning control to a possibly non-existent environment. All 
memory-bound data have values as of the time longjmp() was called. The CPU and floating-point 
data registers are restored to the values they had at the time that setjmp() was called. But, because 
the register storage class is only a hint to the C compiler, variables declared as register variables may 
not necessarily be assigned to machine registers, so their values are unpredictable after a longjmp. 
This is especially a problem for programmers trying to write machine-independent C routines. 

setjmp() and longjmp() save and restore the signal mask (see sigsetmask(2)), while _setjmp and 
_longjmp manipulate only the C stack and registers. If the savemask flag to sigsetjmp is non-zero, 
the signal mask is saved, and a subsequent siglongjmp using the same env will restore the signal 
mask. If the savemask. flag is zero, the signal mask is not saved, and a subsequent siglongjmp using 
the same env will not restore the signal mask. In all other ways, _setjmp and sigsetjmp function in 
the same way that setjmp() does, and _Iongjmp and siglongjmp function in the same way that 
longjmp() does. 

None of these functions save or restore any floating-point status or control registers, in particular the 
MC68881 fpsr, fpcr, or fpiar, the Sun-3 FPA fpamode or fpastatus, and the Sun-4 %fsr. See 
ieee_flags(3M) to save and restore floating-point status or control information. 

Sun Release 4.0 Last change: 24 November 1987 989 



SETJMP(3) C LIBRARY FUNCTIONS SETJMP(3) 

EXAMPLE 
The following code fragment indicates the flow of control of the setjmp() and longjmp() combina
tion: 

function declaration 

jmp _ buf my_ environment; 

if ( setjmp (my_ environment)) { 
I• register variables have unpredictable values 
code after the return from longjmp 

} else { 
I• do not modify register vars 
this is the return from setjmp 

} 

SEE ALSO 

BUGS 

990 

cc(lV), sigsetmask(2), sigvec(2), ieee_flags(3M), signal(3), setjmp(3V) 

setjmp( ) does not save the current notion of whether the process is executing on the signal stack. 
The result is that a longjmp() to some place on the signal stack leaves the signal stack state incorrect. 

On Sun-2 and Sun-3 systems setjmp() also saves the register environment. Therefore, all data that 
are bound to registers are restored to the values they had at the time that setjmp() was called. All 
memory-bound data have values as of the time longjmp() was called. However, because the register 
storage class is only a hint to the C compiler, variables declared as register variables may not neces
sarily be assigned to machine registers, so their values are unpredictable after a longjmp. When using 
compiler options that specify automatic register allocation (see cc(l V)), the compiler will not attempt 
to assign variables to registers in routines that call setjmp. 

longjmp() never causes setjmp() to return zero in the Sun implementation; this is also true of many 
other implementations, including all System V implementations, so programmers should not depend on 
longjmp() being able to cause setjmp() to return zero. 

Last change: 24 November 1987 Sun Release 4.0 



SETUID(3) C LIBRARY FUNCTIONS 

NAME 
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID 

SYNOPSIS 
setuid(uid) 
seteuid( euid) 
setruid(ruid) 

setgid(gid) 
setegid(egid) 
setrgid(rgid) 

DESCRIPTION 

SETUID(3) 

setuid() (setgid) sets both the real and effective user ID (group ID) of the current process to as 
specified. 

seteuid() (setegid) sets the effective user ID (group ID) of the current process. 

setruid() (setrgid) sets the real user ID (group ID) of the current process. 

These calls are only permitted to the super-user or if the argument is the real or effective ID. 

SEE ALSO 
getgid(2), getuid(2), setregid(2), setreuid(2) 

DIAGNOSTICS 
Zero is returned if the user (group) ID is set; -1 is returned otherwise, with the global variable errno 
set as for setreuid() or setregid. 

Sun Release 4.0 Last change: 22 November 1987 991 



SIGFPE(3) C LIBRARY FUNCTIONS SIGFPE(3) 

NAME 
sigfpe - signal handling for specific SIGFPE codes 

SYNOPSIS 
#include <signal.h> 

#include dloatingpoint.h> 

sigfpe _handler_ type sigfpe( code, hdl) 
sigfpe_code_type code; 
sigfpe _handler_ type hdl; 

DESCRIPTION 

992 

This function allows signal handling to be specified for particular SIGFPE codes. A call to sigfpe() defines 
a new handler hdl for a particular SIGFPE code and returns the old handler as the value of the function 
sigfpe. Normally handlers are specified as pointers to functions; the special cases SIGFPE_IGNORE, 
SIGFPE_ABORT, and SIGFPE_DEFAULT allow ignoring, specifying core dump using abort(3), or default 
handling respectively. 

For these IEEE-related codes: 
FPE FLTINEX TRAP - -
FPE FLTDIV TRAP - -
FPE FLTUND TRAP - -
FPE FLTOVF TRAP - -
FPE FLTBSUN TRAP - -
FPE FLTOPERR TRAP - -
FPE FLTNAN TRAP - -

fp _inexact - floating inexact result 
fp _ division - floating division by zero 
fp _ underflow - floating underflow 
fp _ overflow - floating overflow 
fp _invalid - branch or set on unordered 
fp _invalid - floating operand error 
fp_invalid - floating Not-A-Number 

default handling is defined to be to call the handler specified to ieee _ handler(3M). 

For all other SIGFPE codes, defaul~handling is to core dump using abort(3). 

The compilation option -ffpa causes fpa recomputation to replace the default abort action for code 
FPE_FPA_ERROR. Note: SIGFPE_DEFAULT will restore abort rather than FPA recomputation for this 
code. 

Three steps are required to intercept an IEEE-related SIGFPE code with sigfpe: 

1) Set up a handler with sigf pe. 

2) Enable the relevant IEEE trapping capability in the hardware, perhaps by using 
assembly-language instructions. 

3) Perform a floating-point operation that generates the intended IEEE exception. 

Unlike ieee_handler(3M), sigfpe() never changes floating-point hardware mode bits affecting IEEE trap
ping. No IEEE-related SIGFPE signals will be generated unless those hardware mode bits are enabled. 

SIGFPE signals can be handled using sigvec(2), signal(3), sigfpe(3), or ieee_handler(3M). In a particular 
program, to avoid confusion, use only one of these interfaces to handle SIGFPE signals. 

Last change: 21 October 1987 Sun Release 4.0 



SIGFPE( 3) C LIBRARY FUNCTIONS SIGFPE(3) 

EXAMPLE 

FILES 

A user-specified signal handler might look like this: 
void sample_ handler( sig, code, scp, addr) 

int sig; I* sig == SIGFPE always *I 
int code; 
struct sigcontext *scp ; 
char *addr; 
{ 

Sample user-written sigfpe code handler. 
Prints a message and continues. 
struct sigcontext is defined in <signal.h>. 

*I 
printf(" ieee exception code %x occurred at pc %X \n" ,code,scp->sc_pc); 

} 

and it might be set up like this: 
extern void sample_handler(); 
main() 
{ 

sigfpe _ handler _type hdl, old_ handler!, old_ handler2; 

* save current overflow and invalid handlers; set the new 
* overflow handler to sample_ handler() and set the new 
* invalid handler to SIGFPE_ABORT (abort on invalid) 
*I 

I* 

hdl = (sigfpe_handler_type) sample_handler; 
old_handlerl = sigfpe(FPE_FLTOVF _TRAP, hdl); 
old_handler2 = sigfpe(FPE_FLTOPERR_TRAP, SIGFPE_ABORT); 

* restore old overflow and invalid handlers 
*I 

sigfpe(FPE_FLTOVF _TRAP, old_handlerl); 
sigfpe(FPE_FLTOPERR_TRAP, old_ handler2); 

} 

/usr/include/floatingpoint.h 
/usr/include/signal.h 

SEE ALSO 
sigvec(2), abort(3 ), floatingpoint(3 ), ieee _handler(3M), signal(3 ), 

DIAGNOSTICS 
sigfpe() returns BADSIG if code is not zero or a defined SIGFPE code. 

Sun Release 4.0 Last change: 21 October 1987 993 



SIGINTERRUPT ( 3) C LIBRARY FUNCTIONS SIG INTERRUPT ( 3 ) 

NAME 
siginterrupt - allow signals to interrupt system calls 

SYNOPSIS 
int siginterrupt(sig, flag) 
int sig, flag; 

DESCRIPTION 

NOTES 

siginterrupt() is used to change the system call restart behavior when a system call is interrupted by 
the specified signal. If the flag is false (0), then system calls will be restarted if they are interrupted 
by the specified signal and no data has been transferred yet System call restart is the default 
behavior on 4.2BSD, and on SunOS in the 4.2 environment, when the signal (3) routine is used. 

If the flag is true (1), then restarting of system calls is disabled. If a system call is interrupted by the 
specified signal and no data has been transferred, the system call will return -1 with ermo set to 
EINTR. Interrupted system calls that have started transferring data will return the amount of data actu
ally transferred. System call interrupt is the signal behavior found on older version of the UNIX 
operating systems, such as 4.lBSD and System V UNIX. It is the default behavior on SunOS in the 
System V environment when the signal() routine is used; therefore, this routine is useful in that 
environment only if a signal that a sigvec(2) specified should restart system calls is to be changed not 
to restart them. 

Note: the new 4.2BSD signal handling semantics are not altered in any other way. Most notably, sig
nal handlers always remain installed until explicitly changed by a subsequent sigvec call, and the sig
nal mask operates as documented in sigvec, unless the SV _ RESETHAND bit has , been used to specify 
that the pre-4.2BSD signal behavior is to be used. Programs may switch between restartable and inter
ruptible system call operation as often as desired in the execution of a program. 

Issuing a siginterrupt() call during the execution of a signal handler will cause the new action to take 
place on the next signal to be caught. 

This library routine uses an extension of the sigvec(2) system call that is not available in 4.2BSD, 
hence it should not be used if backward compatibility is needed 

RETURN VALUE 
A O value indicates that the call succeeded. A -1 value indicates that an invalid signal number has 
been supplied. 

SEE ALSO 
sigblock(2), sigpause(2), sigsetmask(2), sigvec(2), signal(3) 

994 Last change: 22 November 1987 Sun Release 4.0 



SIGNAL(3) C LIBRARY FUNCTIONS SIGNAL(3) 

NAME 
signal - simplified software signal facilities 

SYNOPSIS 
#include <Signal.h> 

void (*signal(sig, func))() 
void (*func)(); 

DESCRIPTION 
signal() is a simplified interface to the more general sigvec(2) facility. Programs that use signal() in 
preference to sigvec() are more likely to be portable to all systems. 

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop), 
by a program error (bus error, etc.), by request of another program (kill), or when a process is stopped 
because it wishes to access its control terminal while in the background (see termio(4)). Signals are 
optionally generated when a process resumes after being stopped, when the status of child processes 
changes, or when input is ready at the control terminal. Most signals cause termination of the receiv
ing process if no action is taken; some signals instead cause the process receiving them to be stopped, 
or are simply discarded if the process has not requested otherwise. Except for the SIGKILL and SIG
STOP signals, the signal() call allows signals either to be ignored or to interrupt to a specified loca
tion. The following is a list of all signals with names as in the include file <signal.h>: 

SIGHUP 1 hangup 
SIGINT 2 interrupt 
SIGQUIT 3* quit 
SIGILL 4• illegal instruction 
SIGTRAP 5* trace trap 
SIGABRT 6• abort (generated by abort(3) routine) 
SIG EMT 7 * emulator trap 
SIGFPE 8• arithmetic exception 
SIGKILL 9 kill (cannot be caught, blocked, or ignored) 
SIGBUS 10* bus error 
SIGSEGV 11* segmentation violation 
SIGSYS 12* bad argument to system call 
SIGPIPE 13 write on a pipe or other socket with no one to read it 
SIGALRM 14 alarm clock 
SIGTERM 15 software termination signal 
SIGURG 16e urgent condition present on socket 
SIGSTOP 17t stop (cannot be caught, blocked, or ignored) 
SIGTSTP 1st stop signal generated from keyboard 
SIGCONT 19• continue after stop ( cannot be blocked) 
SIGCHLD 20. child status has changed 
SIGTTIN 2lt background read attempted from control terminal 
SIGTTOU 22t background write attempted to control terminal 
SIGIO 23• 1/0 is ·possible on a descriptor (see fcntl(2V)) 
SIGXCPU 24 cpu time limit exceeded (see getrlimit(2)) 
SIGXFSZ 25 file size limit exceeded (see getrlimit(2)) 
SIGVTALRM 26 virtual time alarm (see getitimer{2)) 
SIGPROF 27 profiling timer alarm (see getitimer(2)) 
SIGWINCH 28• window changed (see termio(4) and win(4S)) 
SIGLOST 29• resource lost (see lockd(8C)) 
SIGUSRl 30 user-defined signal 1 
SIGUSR2 31 user-defined signal 2 

Sun Release 4.0 Last change: 22 November 1987 995 



SIGNAL(3) C LIBRARY FUNCTIONS SIGNAL(3) 

NOTES 

The starred signals in the list above cause a core image if not caught or ignored. 

If June is SIG_ DFL, the default action for signal sig is reinstated; this default is termination (with a 
core image for starred signals) except for signals marked with • or t. Signals marked with • are dis
carded if the action is SIG_DFL; signals marked with t cause the process to stop. If June is SIG_IGN 
the signal is subsequently ignored and pending instances of the signal are discarded. Otherwise, when 
the signal occurs further occurrences of the signal are automatically blocked and June is called. 

A return from the function unblocks the handled signal and continues the process at the point it was 
interrupted. Unlike previous signal facilities, the handler June remains installed after a signal has 
been delivered. 

If a caught signal occurs during certain system calls, terminating the call prematurely, the call is 
automatically restarted. In particular this can occur during a read(2V) or write(2V) on a slow device 
(such as a terminal; but not a file) and during a wait(2). 

The value of signal() is the previous (or initial) value of June for the particular signal. 

After a fork(2) or vfork(2) the child inherits all signals. An execve(2) resets all caught signals to the 
default action; ignored signals remain ignored. 

The handler routine can be declared: 

void handler(sig, code, scp, addr) 
int sig, code; 
struct sigcontext •scp; 
char •addr; 

Here sig is the signal number; code is a parameter of certain signals that provides additional detail; 
sep is a pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from 
before the signal; and addr is additional address information. See sigvec(2) for more details. 

RETURN VALUE 
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is . set to 
indicate the error. 

ERRORS 
signal() will fail and no action will take place if one of the following occur: 

EINV AL sig is not a valid signal number. 

EINVAL An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP. 

EINVAL An attempt is made to ignore SIGCONT (by default SIGCONT is ignored). 

SEE ALSO 

996 

kill(l), execve(2), fork(2), getitimer(2), getrlimit(2), kill(2V), ptrace(2), read(2V), sigblock(2), sig
pause(2), sigsetmask(2), sigstack(2), sigvec(2), vfork(2), wait(2), write(2V), setjmp{3), termio(4) 

Last change: 22 November 1987 Sun Release 4.0 



SLEEP(3) C LIBRARY FUNCTIONS SLEEP(3) 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 

sleep(~econds) 
unsigned seconds; 

DESCRIPTION 
sleep() suspends the current process from execution for the number of seconds specified by the argu
ment The actual suspension time may be up to 1 second less than that requested, because scheduled 
wakeups occur at fixed 1-second intervals, and may be an arbitrary amount longer because of other 
activity in the system. 

sleep() is implemented by setting an interval timer and pausing until it expires. The previous state of 
this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous 
value of the timer, the process sleeps only until the timer would have expired, and the signal which 
occurs with the expiration of the timer is sent one second later. 

SEE ALSO 
getitimer(2), sigpause(2), usleep(3) 

Sun Release 4.0 Last change: 6 October 1987 997 



SSIGNAL(3) C LIBRARY FUNCTIONS SSIGNAL(3) 

NAME 
ssignal, gsignal - software signals 

SYNOPSIS 
#include <Signal.h> 

int (•ssignal (sig, action))() 
int sig, (•action)(); 

int gsignal (sig) 
int sig; 

DESCRIPTION 
ssignal( ) and ssignal() implement a software facility similar to signal(3). 

Software signals made available to users are associated with integers in the inclusive range 1 through 
15. A call to ssignal() associates a procedure, action, with the software signal sig; the software signal, 
sig, is raised by a call to ssignal. Raising a software signal causes the action established for that sig
nal to be taken. 

The first argument to ssignal() is a number identifying the type of signal for which an action is to be 
established. The second argument defines the action; it is either the name of a (user-defined) action 
function or one of the manifest constants SIG_DFL (default)or SIG_IGN (ignore). ssignal() returns 
the action previously established for that signal type; if no action has been established or the signal 
number is illegal, ssignal() returns SIG_DFL. 

ssignal() raises the signal identified by its argument, sig: 

If an action function has been established for sig, then that action is reset to SIG_DFL and the 
action function is entered with argument sig. ssignal() returns the value returned to it by the 
action function. 

If the action for sig is SIG_IGN, ssignal() returns the value 1 and takes no other action. 

If the action for sig is SIG_DFL, ssignal() returns the value O and takes no other action. 

If sig has an illegal value or no action was ever specified for sig, ssignal() returns the value 0 
and takes no other action. 

SEE ALSO 
signal(3) 

998 Last change: 6 October 1987 Sun Release 4.0 



STDI0(3S) STANDARD I/0 FUNCTIONS STDI0(3S) 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include <Stdio.h> 

FILE •stdio; 
FILE •stdout; 
FILE •stderr; 

DESCRIPTION 
The functions described in section 3S constitute a user-level I/0 buffering scheme. The in-line macros 
getc(3S) and putc(3S) handle characters quickly. The macros getchar and putchar, and the higher 
level routines fgetc, getw, gets, fgets, scaof, fscaof, fread, fputc, putw, puts, fputs, priotf, fpriotf, 
fwrite all use or act as if they use getc() and putc() ; they can be freely intermixed. 

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type 
FILE. fopeo(3S) creates certain descriptive data for a stream and returns a pointer to designate the 
stream in all further transactions. Normally, there are three open streams with constant pointers 
declared in the <stdio.h> include file and associated with the standard open files: 

stdio standard input file 
stdout standard output file 
stderr standard error file 

A constant NULL (0) designates a nonexistent pointer. 

An integer constant EOF (-1) is returned upon end-of-file or error by most integer functions that deal 
with streams (see the individual descriptions for details). 

Any module that uses this package must include the header file of pertinent macro definitions, as fol
lows: 

#include <stdio.h> 

The functions and constants mentioned in sections labeled 3S of this manual are declared in that 
header file and need no further declaration. The constants and the following 'functions' are imple
mented as macros; redeclaration of these names is perilous: getc, getchar, putc, putchar, feof, ferror, 
fileoo, and clearerr. 

Output streams, with the exception of the standard error stream std err, are by default buffered if the 
output refers to a file and line-buffered if the output refers to a terminal. The standard error output 
stream stderr is by default unbuffered, but use of fopeo(3S) will cause it to become buffered or line
buffered. When an output stream is unbuffered, information is written to the destination file or termi
nal as soon as it is output to the stream; when it is buffered, many characters are saved up and written 
as a block. When it is line-buffered, each line of output is written to the destination file or terminal 
as soon as the line is completed (that is, as soon as a NEWLINE character is output or, if the output 
stream is stdout or stderr, as soon as input is read from stdio). setbuf(3S), setbuffer, setlinebuf, or 
setvbuf can be used to change the stream's buffering strategy. 

SEE ALSO 
open(2V), close(2), lseek(2), pipe(2), read(2V), write(2V), ctermid(3S), cuserid(3S), fclose(3S), 
ferror(3S), fopeo(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popeo(3S), printf(3S), putc(3S), 
puts(3S), scaof(3S), setbuf(3S), system(3), tmpfile(3S), tmpnam(3S), ungetc(3S) 

DIAGNOSTICS 
The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with 
fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer designates 
corrupt or otherwise unintelligible FILE data. 

Sun Release 4.0 Last change: 30 January 1988 999 



STDI0(3S) STANDARD 1/0 FUNCTIONS STDI0(3S) 

BUGS 

NOTES 

1000 

The standard buffered functions do not interact well with certain other library and system functions, 
especially vfork(2). 

The line buffering of output to terminals is almost always transparent, but may cause confusion or 
malfunctioning of programs which use standard 1/0 routines but use read(2V) to read from the stan
dard input, as calls to read() do not cause output to line-buffered streams to be flushed. 

In cases where a large amount of computation is done after printing part of a line on an output termi
nal, it is necessary to call fflush (see fclose(3S)) on the standard output before performing the compu
tation so that the output will appear. 

Last change: 30 January 1988 Sun Release 4.0 



STRING(3) C LIBRARY FUNCTIONS STRING(3) 

NAME 
string, strcat, strncat, strdup, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, 
strcspn, strtok, index, rindex - string operations 

SYNOPSIS 
#include <String.h> 

char •strcat(sl, s2) 
char •sl, •s2; 

char •strncat(sl, s2, n) 
char •sl, •s2; 
int n; 

char •strdup(sl) 
char •sl; 

int strcmp(sl, s2) 
char •sl, •s2; 

int strncmp(sl, s2, n) 
char •sl, •s2; 
int n; 

char •strcpy(sl, s2) 
char •sl, •s2; 

char •strncpy(sl, s2, n) 
char •sl, •s2; 
int n; 

int strlen(s) 
char •s; 

char •strchr(s, c) 
char •s; 
int c; 

char •strrchr(s, c) 
char •s; 
int c; 

char •strpbrk(sl, s2) 
char •sl, •s2; 

int strspn(sl, s2) 
char •sl, •s2; 

int strcspn(sl, s2) 
char •sl, •s2; 

char •strtok(sl, s2) 
char •sl, •s2; 

#include <Strings.h> 

char •index(s, c) 
char •s, c; 

char •rindex(s, c) 
char •s, c; 

DESCRIPTION 

These functions operate on NULL-terminated strings. They do not check for overflow of any receiving 
string. 

Sun Release 4.0 Last change: 6 October 1987 1001 



STRING(3) C LIBRARY FUNCTIONS STRING(3) 

NOTE 

strcat() appends a copy of string s2 to the end of string sl . strncat() appends at most n characters. 
Each returns a pointer to the NULL-terminated result 

strcmp() compares its arguments and returns an integer greater than, equal to, or less than 0, accord
ing as sl is lexicographically greater than, equal to, or less than s2. strncmp() ~es the same com
parison but compares at most n characters. 

strdup() returns a pointer to a new string which is a duplicate of the string pointed to by sl . The 
space for the new string is obtained using malloc(3 ). If the new string cannot be created, a NULL 
pointer is returned. 

strcpy() copies string s2 to sl, stopping after the NULL character has been copied. strncpy() copies 
exactly n characters, truncating or NULL-padding s2. The result will not be NULL-terminated if the 
length of s2 is n or more. Each function returns sl . 

strlen() returns the number of characters in s, not including the NULL-terminating character. 

strchr() (strrchr) returns a pointer to the first (last) occurrence of character c in string s, or a NULL 
pointer if c does not occur in the string. The NULL character terminating a string is considered to be 
part of the string. 

index() (rindex) returns a pointer to the first (last) occurrence of character c in string s, or a NULL 
pointer if c does not occur in the string. These functions are identical to strchr() (strchr) and merely 
have different names. 

strpbrk() returns a pointer to the first occurrence in string sl of any character from string s2, or a 
NULL pointer if no character from s2 exists in sl . 

strspn() (strcspn) returns the length of the initial segment of string sl which consists entirely of char
acters from (not from) string s2. 

strtok() considers the string sl to consist of a sequence of zero or more text tokens separated by 
spans of one or more characters from the separator string s2. The first call (with pointer sl specified) 
returns a pointer to the first character of the first token, and will have written a NULL character into 
sl immediately following the returned token. The function keeps track of its position in the string 
between separate calls, so that subsequent calls (which must be made with the first argument a NULL 
pointer) will work through the string sl immediately following that token. In this way subsequent 
calls will work through the string sl until no tokens remain. The separator string s2 may be different 
from call to call. When no token remains in sl , a NULL pointer is returned. 

For user convenience, all these functions, except for index() and rindex, are declared in the optional 
<String.h> header file. All these functions, including index() and rindex() but excluding strchr, 
strrchr, strpbrk, strspn, strcspn, and strtok, are declared in the optional <Strings.h> include file; 
these headers are set this way for backward compatibility. 

SEE ALSO 
malloc(3), bstring(3) 

WARNINGS 

1002 

strcmp() and strncmp() use native character comparison, which is signed on the Sun, but may be 
unsigned on other machines. Thus the sign of the value returned when one of the characters has its 
high-order bit set is implementation-dependent. 

On the Sun processor, as well as on many other machines, you can not use a NUIL pointer to indicate 
a NULL string. A NULL pointer is an error and results in an abort of the program. If you wish to 
indicate a NULL string, you must have a pointer that points to an explicit NULL string. On some 
implementations of the C language on some machines, a NULL pointer, if dereferenced, would yield a 
NULL string; this highly non-portable trick was used in some programs. Programmers using a NULL 
pointer to represent an empty string should be aware of this portability issue; even on machines where 
dereferencing a NUIL pointer does not cause an abort of the program, it does not necessarily yield a 

Last change: 6 October 1987 Sun Release 4.0 



STRING(3) C LIBRARY FUNCTIONS STRING(3) 

NULL string. 

Character movement is performed differently in different implementations. Thus overlapping moves 
may yield surprises. 

Sun Release 4.0 Last change: 6 October 1987 1003 



STRING_TO_DECIMAL(3) C LIBRARY FUNCTIONS STRING_TO_DECIMAL(3) 

NAME 
string_ to_ decimal, file_ to_ decimal, func _to_ decimal - parse characters into decimal record 

SYNOPSIS 
#include <floatingpoint.h> 
#include <Stdio.h> 

void string_ to_ decimal(pc,nmax,f ortran _ conventions,pd,pform,pechar) 
char **pc; 
int nmax; 
int fortran _ conventions; 
decimal _record •pd; 
enum decimal_string_form •pform; 
char **pechar; 

void file_ to_ decimal(pc,nmax,fortran _ conventions,pd,pform,pechar ,pf,pnread) 
char **pc; 
int nmax; 
int fortran_conventions; 
decimal_record •pd; 
enum decimal_string_form •pform; 
char ••pechar; 
FILE •pf; 
int •pnread; 

void runc _to_ decimal(pc,nmax,rortran _ conventions,pd,pf orm,pechar,pget,pnread,punget) 
char **pc; 
int nmax; 
int rortran _ conventions; 
decimal _record •pd; 
enum decimal_string_form •pform; 
char **pechar; 
int (*pget)( ); 
int •pnread; 
int (•punget)(); 

DESCRIPTION 

1004 

The char_to_decimal functions parse a numeric token from at most nmax characters in a string **pc 
or file *Pf or function (•pget)() into a decimal record •pd, classifying the form of the string in 
*pform and *pechar. The accepted syntax is intended to be sufficiently flexible to accomodate many 
languages: 

whitespace value 

or 

whitespace sign value 

where whitespace is any number of characters defined by isspace in /usr/include/ctype.h, sign is either 
of [+-], and value can be number, nan, or inf. inf can be INF (infJorm) or INFINITY (infinityJorm) 
without regard to case. nan can be NAN (nanJorm) or NAN(nstring) (nanstringJorm) without regard 
to case; nstring is any string of characters not containing ')' or NULL; nstring is copied to pd->ds and, 
currently, not used subsequently. number consists of 

significand 

or 

significand efield 

Last change: 21 January 1988 Sun Release 4.0 



STRING_TO_DECIMAL(3) C LIBRARY FUNCTIONS STRING_TO_DECIMAL(3) 

where significand must contain one or more digits and may contain one point; possible forms are 

digits 
digits. 
.digits 
digits .digits 

efield consists of 

echar digits 

or 

echar sign digits 

(intJorm) 
( int dot Jorm) 
( dotfrac Jorm) 
(intdotfrac Jorm) 

where echar is one of [Ee], and digits contains one or more digits. 

When fortran _conventions is nonzero, additional input forms are accepted according to various Fortran 
conventions: 
0 no Fortran conventions 
1 Fortran list-directed input conventions 
2 Fortran formatted input conventions, ignore blanks (BN) 
3 Fortran formatted input conventions, blanks are zeros (BZ) 

When fortran _ conventions is nonzero, echar may also be one of [Dd], and efield may also have the 
form 

sign digits 

When fortran _ conventions>= 2, blanks may appear in the digits strings for the integer, fraction, and 
exponent fields and may appear between echar and the exponent sign and after the infinity and NaN 
forms. If fortran _conventions== 2, the blanks are ignored. When fortran _conventions== 3, the 
blanks that appear in digits strings are interpreted as zeros, and other blanks are ignored. 

The form of the accepted decimal string is placed in *peform. If an efield is recognized, *pechar is 
set to point to the echar. 

On input, *pc points to the beginning of a character string buffer of length >= nmax. On output, *pc 
points to a character in that buffer, one past the last accepted character. string_ to_ decimal() gets its 
characters from the buffer; file_to_decimal() gets its characters from *pf and records them in the 
buffer, and places a null after the last character read. func _to_ decimal() gets its characters from an 
int function (*pget)( ). 

The scan continues until no more characters could possibly fit the acceptable syntax or until nmax 
characters have been scanned. If the nmax limit is not reached then at least one extra character will 
usually be scanned that is not part of the accepted syntax. file_to_decimal() and func_to_decimal() 
set *pnread to the number of characters read from the file; if greater than nmax, some characters were 
lost If no characters were lost, file_to_decimal() and func_to_decimal() attempt to push back, with 
ungetc(3S) or (*punget)(), as many as possible of the excess characters read, adjusting *pnread 
accordingly. If all unget calls are successful, then **pc will be NULL. No push back will be 
attempted if ( *punget)() is NULL. 

Typical declarations for •pget() and •punget() are: 
int xget() 

Sun Release 4.0 

{ . . . } 
int (*pget)() = xget ; 
int xunget(c) 
char c ; 
{ ... } 
int ( •pun get)() = xunget ; 

Last change: 21 January 1988 1005 



STRING_TO_DECIMAL(3) C LIBRARY FUNCTIONS STRING_TO_DECIMAL(3) 

FILES 

If no valid number was detected, pd->fpclass is set to fp_signaling, *pc is unchanged, and *pform is 
set to invalid form. 

atof and strtod(3) use string_to_decimal. scanf(3S) uses file_to_decimal. 

/usr/include/ctype.h 

SEE ALSO 
scanf(3S), strtod(3), ungetc(3S) 

1006 Last change: 21 January 1988 Sun Release 4.0 



STRT0D(3) C LIBRARY FUNCTIONS STRT0D(3) 

NAME 
strtod, atof - convert string to double-precision number 

SYNOPSIS 
double strtod(str, ptr) 
char •str, **ptr; 

double atof(str) 
char •str; 

DESCRIPTION 
strtod() returns as a double-precision floating-point number the value represented by the character 
string pointed to by str. The string is scanned up to the first unrecognized character, using 
string_ to_ decimal(3 ), with f ortran _ conventions set to 0. 

If the value of ptr is not ( char **)NULL, a pointer to the character terminating the scan is returned in 
the location pointed to by ptr. If no number can be formed, * ptr is set to str, and for historical com
patibility, 0.0 is returned, although a NaN would better match the IEEE Floating-Point Standard's 
intent. 

atof(str) is equivalent to strtod(str, (char **)NULL). Thus, when atof(str) returns 0.0 there is no 
way to determine whether str contained a valid numerical string representing 0.0 or an invalid numeri
cal string. 

SEE ALSO 
scanf(3S), string_to_decimal(3) 

DIAGNOSTICS 

Exponent overflow and underflow produce the results specified by the IEEE Standard. In addition, 
errno is set to ERANGE. 

Sun Release 4.0 Last change: 22 November 1987 1007 



STRTOL(3) C LIBRARY FUNCTIONS STRTOL(3) 

NAME 
strtol, atol, atoi - convert string to integer 

SYNOPSIS 
long strtol(str, ptr, base) 
char •str, **ptr; 
int base; 

long atol(str) 
char •str; 

int atoi(str) 
char •str; 

DESCRIPTION 
strtol() returns as a long integer the value represented by the character string pointed to by str. The 
string is scanned up to the first character inconsistent with the base. Leading ''white-space'' charac
ters (as defined by ~pace() in ctype(3)) are ignored 

If the value of ptr is not ( char **)NULL, a pointer to the character terminating the scan is returned in 
the location pointed to by ptr. If no integer can be formed, that location is set to str, and zero is 
returned. 

If base is positive (and not greater than 36), it is used as the base for conversion. After an optional 
leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored if base is 16. 

If base is zero, the string itself determines the base thusly: after an optional leading sign a leading 
zero indicates octal conversion, and a leading "Ox" or "OX" hexadecimal conversion. Otherwise, 
decimal conversion is used. 

Truncation from long to int can, of course, take place upon assignment or by an explicit cast 

atol(str) is equivalent to strtol(str, (char **)NULL, 10). 

atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10). 

SEE ALSO 
ctype(3), scanf(3S), strtod(3) 

BUGS 
Overflow conditions are ignored. 

1008 Last change: 6 October 1987 Sun Release 4.0 



STTY(3C) COMPATIBILITY FUNCTIONS STTY(3C) 

NAME 
stty, gtty - set and get terminal state 

SYNOPSIS 
#include <sgtty .h> 

stty(f d, but) 
int fd; 
struct sgttyb * buf; 

gtty(f d, but) 
int fd; 
struct sgttyb *buf; 

DESCRIPTION 
This interface is obsoleted by ioctl(2). 

stty() sets the state of the terminal associated with / d. stty() retrieves the state of the terminal asso
ciated with f d. To set the state of a terminal the call must have write permission. 

The stty() call is actually 

ioctl(f d, TIOCSETP' but) 

while the stty() call is 

ioctl(f d, TIOCGETP' but) 

See ioctl(2) and ttcompat(4M) for an explanation. 

DIAGNOSTICS 
If the call is successful O is returned, otherwise -1 is returned and the global variable errno contains 
the reason for the failure. 

SEE ALSO 
ioctl(2), ttcompat( 4M) 

Sun Release 4.0 Last change: 22 November 1987 1009 



SWAB(3) C LIBRARY FUNCTIONS SWAB(3) 

NAME 
swab - swap bytes 

SYNOPSIS 
swab(from, to, nbytes) 
char *from, *to; 

DESCRIPTION 

1010 

swab() copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent 
even and odd bytes. It is useful for carrying binary data between high-ender machines (IBM 360's, 
MC68000's, etc) and low-endian machines (such as Sun386i). 

nbytes should be even. 

The from and to addresses should not overlap in portable programs. 

Last change: 6 October 1987 Sun Release 4.0 



SYSLOG(3) C LIBRARY FUNCTIONS SYSLOG(3) 

NAME 
syslog, openlog, closelog, setlogmask - control system log 

SYNOPSIS 
#incluoe <Syslog.h> 

openlog(ident, logopt, facility) 
char *ident; 

syslog(priority, message, parameters ... ) 
char *message; 

closelog() 

setlogmask(maskpri) 

DESCRIPTION 
syslog() passes message to syslogd(8), which logs it in an appropriate system log, writes it to the system 
console, forwards it to a list of users, or forwards it to the syslogd on another host over the network. The 
message is tagged with a priority of priority. The message looks like a printf(3S) string except that %m is 
replaced by the current error message ( collected from errno ). A trailing NEWLINE is added if needed. 

Priorities are encoded as a/ acility and a level. The facility describes the part of the system generating the 
message. The level is selected from an ordered list: 

LOG EMERG A panic condition. This is normally broadcast to all users. 

LOG ALERT A condition that should be corrected immediately, such as a corrupted 
system database. 

LOG CRIT 

LOG ERR 

LOG WARNING 

LOG NOTICE 

LOG INFO 

LOG DEBUG 

Critical conditions, such as hard device errors. 

Errors. 

Warning messages. 

Conditions that are not error conditions, but that may require special han
dling. 

Informational messages. 

Messages that contain information normally of use only when debugging 
a program. 

If special processing is needed, openlog() can be called to initialize the log file. The parameter ident is a 
string that is prepended to every message. logopt is a bit field indicating logging options. Current values 
for logopt are: 

LOG PID 

LOG CONS 

LOG NDELAY 

LOG NOWAIT 

Sun Release 4.0 

Log the process ID with each message. This is useful for identifying 
specific daemon processes (for daemons that fork). 

Write messages to the system console if they cannot be sent to syslogd. 
This option is safe to use in daemon processes that have no controlling 
terminal, since syslog() forks before opening the console. 

Open the connection to syslogd immediately. Normally the open is 
delayed until the first message is logged. This is useful for programs that 
need to manage the order in which file descriptors are allocated. 

Do not wait for child processes that have been forked to log messages 
onto the console. This option should be used by processes that enable 
notification of child termination using SIGCHLD, since syslog() may oth
erwise block waiting for a child whose exit status has already been col
lected. 

Last change: 22 November 1987 1011 



SYSLOG(3) C LIBRARY FUNCTIONS SYSLOG(3) 

The facility parameter encodes a default facility to be assigned to all messages that do not have an explicit 
facility already encoded: 

LOG KERN 

LOG USER 

LOG MAIL 

LOG DAEMON 

LOG AUTH 

LOG LPR 

LOG NEWS 

LOG UUCP 

LOG CRON 

LOG LOCAL0-7 

Messages generated by the kernel. These cannot be generated by any 
user processes. 

Messages generated by random user processes. This is the default facil
ity identifier if none is specified. 

The mail system. 

System daemons, such as ftpd(8C), routed(8C), etc. 

The authorization system: login( 1 ), su( 1 ), getty(8), etc. 

The line printer spooling system: lpr(l), lpc(8), lpd(8), etc. 

Reserved for the USENET network news system. 

Reserved for the UUCP system; it does not currently use syslog. 

The cron/at facility; crontab(l), at(l), cron(8), etc. 

Reserved for local use. 

closelog() can be used to close the log file. 

setlogmask() sets the log priority mask to maskpri and returns the previous mask. Calls to syslog() with a 
priority not set in maskpri are rejected. The mask for an individual priority pri is calculated by the macro 
LOG_MASK(pri); the mask for all priorities up to and including toppri is given by the macro 
LOG_ UPTO(toppri). The default allows all priorities to be logged. 

EXAMPLES 
This call logs a message at priority LOG_ ALERT: 

syslog(LOG_ALERT, "who: internal error 23"); 

The FrP daemon ftpd would make this call to openlog() to indicate that all messages it logs should have 
an identifying string of ftpd, should be treated by syslogd as other messages from system daemons are, 
should include the process ID of the process logging the message: 

openlog("ftpd", LOG_PID, LOG_DAEMON); 

Then it would make the following call to setlogmask() to indicate that messages at priorities from 
LOG_EMERG through LOG_ERR should be logged, but that no messages at any other priority should be 
logged: 

setlogmask(LOG_ UPTO(LOG _ERR)); 

Then, to log a message at priority LOG_INFO, it would make the following call to syslog: 

syslog(LOG _INFO, "Connection from host %d", CallingHost); 

A locally-written utility could use the following call to syslog() to log a message at priority LOG_ INFO to 
be treated by syslogd as other messages to the facility LOG_ LOCAL2 are: 

syslog(LOG_INFOILOG_LOCAL2, "error: %m"); 

SEE ALSO 

1012 

at(l), crontab(l), logger(l), login(l), lpr(l), su(l), printf(3S), syslog.conf(5), cron(8), ftpd(8C), 
getty(8), lpc(8), lpd(8), routed(8C), syslogd(8) 

Last change: 22 November 1987 Sun Release 4.0 



SYSTEM(3) C LIBRARY FUNCTIONS SYSTEM(3) 

NAME 
system - issue a shell command 

SYNOPSIS 
system(string) 
char •string; 

DESCRIPTION 
system() gives the string to sh(l) as input, just as if the string had been typed as a command from a 
terminal. The current process performs a wait(2) system call, and waits until the shell terminates. 
system() then returns the exit status returned by wait. Unless the the shell was interrupted by a sig
nal, its termination status is contained in the 8 bits higher up from the low-order 8 bits of the value 
returned by wait. 

SEE ALSO 
sh(l), execve(2), wait(2), popen(3S) 

DIAGNOSTICS 
Exit status 127 (may be displayed as "32512") indicates the shell could not be executed. 

Sun Release 4.0 Last change: 22 January 1988 1013 



TERMCAP ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS TERMCAP ( 3X) 

NAME 
termcap, tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation routines 

SYNOPSIS 
char PC; 
char *BC; 
char *UP; 
short ospeed; 

tgetent(bp, name) 
char *hp, *name; 

tgetnum (id) 
char •id; 

tgetflag (id) 
char *id; 

char* 
tgetstr(id, area) 
char * id, **area; 

char* 
tgoto( cm, destcol, destline) 
char *cm; 

tputs(cp, affcnt, outc) 
register char *cp; 
int affcnt; 
int (•outc)(); 

DESCRIPTION 

1014 

These functions extract and use capabilities from the terminal capability data base termcap(5). These are 
low level routines; see curses(3X) for a higher level package. 

tgetent() extracts the entry for terminal name into the bp buffer, with the current size of the tty (usually a 
window). This allows pre-SunWindows programs to run in a window of arbitrary size. bp should be a 
character buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tgetflag, and 
tgetstr. tgetent() returns -1 if it cannot open the termcap() file, 0 if the terminal name given does not 
have an entry, and 1 if all goes well. It will look in the environment for a TERMCAP variable. If found, 
and the value does not begin with a slash, and the terminal type name is the same as the environment string 
TERM, the TERMCAP string is used instead of reading the termcap file. If it does begin with a slash, the 
string is used as a path name rather than /etc/termcap. This can speed up entry into programs that call 
tgetent, as well as to help debug new terminal descriptions or to make one for your terminal if you cannot 
write the file /etc/termcap. Note: if the window size changes, the "lines" and "columns" entries in bp 
are no longer correct. See the Sun View 1 Programmer's Guide for details regarding [how to handle] this. 

tgetnum() gets the numeric value of capability ID, returning -1 if is not given for the terminal. tgetflag() 
returns 1 if the specified capability is present in the terminal's entry, 0 if it is not. tgetstr() gets the string 
value of capability ID, placing it in the buffer at area, advancing the area pointer. It decodes the abbrevia
tions for this field described in termcap(5), except for cursor addressing and padding information. 
tgetstr() returns the string pointer if successful. Otherwise it returns zero. 

Last change: 6 October 1987 Sun Release 4.0 



TERMCAP ( 3X) MISCELLANEOUS LIBRARY FUNCTIONS TERMCAP ( 3X) 

FILES 

tgoto() returns a cursor addressing string decoded from cm to go to column destcol in line destline. It uses 
the external variables UP (from the up capability) and BC (if be is given rather than bs) if necessary to 
avoid placing \n, "D or "@ in the returned string. (Programs which call tgoto() should be sure to tum off 
the XTABS bit(s),since tgoto() may now output a tab. Note: programs using termcap() should in general 
tum off XTABS anyway since some terminals use "I (CTRL-1) for other functions, such as nondestructive 
space.) If a% sequence is given which is not understood, then tgoto() returns OOPS. 

tputs() decodes the leading padding information of the string cp; affcnt gives the number of lines affected 
by the operation, or 1 if this is not applicable, outc is a routine which is called with each character in tum. 
The external variable ospeed should contain the encoded output speed of the terminal as described in 
tty(4). The external variable PC should contain a pad character to be used (from the pc capability) if a 
NULL("@) is inappropriate. 

/usr/Iib/Iibtermcap.a -!termcap library 
/etc/termcap data base 

SEE ALSO 
ex(l), curses(3X), tty(4), termcap(S) 

Sun Release 4.0 Last change:~ October 1987 1015 



TIME(3C) COMPATIBILITY FUNCTIONS TIME(3C) 

NAME 

time, ftime - get date and time 

SYNOPSIS 

#include <Sys/types.h> 
#include <Sys/timeb.h> 

time_t timeofday = time((time_t •)O) 
time_t timeofday = time(tloc) 
time_t •tloc; 

ftime(tp) 
struct timeb •tp; 

DESCRIPTION 
time() returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. 

If tloc is non-NULL, the return value is also stored in the place to which tloc points. 

The ftime() entry fills in a structure pointed to by its argument, as defined by <Sys/timeb.h>: 
struct timeb 
{ 

}; 

time_ t time; 
unsigned short millitm; 
short timezone; 
short dstflag; 

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise 
interval, the local time zone (measured in minutes of time westward from Greenwich), and a flag that, 
if nonzero, indicates that Daylight Saving time applies locally during the appropriate part of the year. 

SEE ALSO 
date( 1 V), gettimeofday(2), ctime(3) 

1016 Last change: 6 October 1987 Sun Release 4.0 



TIMES(3C) 

NAME 
times - get process times 

SYNOPSIS 
#include <Sys/types.h> 
#include <Sys/times.h> 

times(butTer) 
struct tms •buffer; 

DESCRIPTION 

COMPATIBILITY FUNCTIONS 

This interface is obsoleted by getrusage(2). 

T1MES(3C) 

times() returns time-accounting infonnation for the cunent process and for the tenninated child 
processes of the current process. All times are in 1/HZ seconds, where HZ is 60. 

This is the structure returned by times: 
struct tms { 

}; 

time t tms_utime; 
time t tms _stime; 
time t tms_cutime; 
time t tms _ cstime; 

I• user time •I 
I• system time •I 
I• user time, children •/ 
I• sy~tem time, children •/ 

The children's times are the sum of the children's process times and their children's times. 

SEE ALSO 
time( 1 V), getrusage(2), wait(2), time(3C) 

Sun Release 4.0 Last change: 6 October 1987 1017 



TIMEZONE ( 3C) COMPATIBILITY FUNCTIONS TIMEZONE ( 3C) 

NAME 
timezone - get time zone name given offset from GMT 

SYNOPSIS 
char *timezone(zone, dst) 

DESCRIPTION 
timezone() attempts to return the name of the time zone associated with its first argument, which is meas
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is used, other
wise the Daylight Savings Time version. If the required name does not appear in a table built into the rou
tine, the difference from GMT is produced; for instance, in Afghanistan 'timezone(-(60*4+30), 0)' is 
appropriate because it is 4:30 ahead of GMT and the string GMT +4:30 is produced 

Note: the offset westward from Greenwich and an indication of whether Daylight Savings Time is in effect 
may not be sufficient to determine the name of the time zone, as the name may differ between different 
locations in the same time zone. Instead of using timezone() to determine the name of the time zone for a 
given time, that time should be converted to a' struct tm' using localtime (see ctime(3)) and the tm_zone 
field of that structure should be used. timezone() is retained for compatibility with existing programs. 

SEE ALSO 
ctime(3) 

1018 Last change: 6 October 1987 Sun Release 4.0 



TMPFILE ( 3S ) STANDARD 1/0 FUNCTIONS TMPFILE ( 3S) 

NAME 
tmpfile - create a temporary file 

SYNOPSIS 
#include <Stdio.h> 

FILE *tmpfile() 

DESCRIPTION 
tmpfile() creates a temporary file using a name generated by tmpnam(3S), and returns a correspond
ing FILE pointer. If the file cannot be opened, an error message is printed using perror(3), and a 
NULL pointer is returned. The file will automatically be deleted when the process using it terminates. 
The file is opened for update ("w+"). 

SEE ALSO 
creat(2), unlink(2), fopen(3S), mktemp(3), perror(3), tmpnam(3S) 

Sun Release 4.0 Last change: 6 October 1987 1019 



TMPNAM(3S) STANDARD 1/0 FUNCTIONS TMPNAM(3S) 

NAME 
tmpnam, tempnam - create a name for a temporary file 

SYNOPSIS 
#include <Stdio.h> 

char •tmpnam (s) 
char •s; 

char •tempnam (dir, pfx) 
char •dir, •pfx; 

DESCRIPTION 

NOTES 

These functions generate file names that can safely be used for a temporary file. 

tmpnam() always generates a file name using the path-prefix defined as P _tmpdir in the <stdio.h> 
header file. If s is NULL, tmpnam() leaves its result in an internal static area and returns a pointer to 
that area. The next call to tmpnam() will destroy the contents of the area. If s is not NULL, it is 
assumed to be the address of an array of at least L_tmpnam bytes, where L_tmpnam is a constant 
defined in <Stdio.h>; tmpnam() places its result in that array and returns s. 

tempnam() allows the user to control the choice of a directory. The argument dir points to the name 
of the directory in which the file is to be created. If dir is NULL or points to a string which is not a 
name for an appropriate directory, the path-prefix defined as P _tmpdir in the <stdio.h> header file is 
used If that directory is not accessible, /tmp will be used as a last resort. This entire sequence can 
be up-staged by providing an environment variable TMPDIR in the user's environment, whose value is 
the name of the desired temporary-file directory. 

Many applications pref er their temporary files to have certain favorite initial letter sequences in their 
names. Use the pfx argument for this. This argument may be NULL or point to a string of up to five 
characters to be used as the first few characters of the temporary-file name. 

tempnam() uses malloc to get space for the constructed file name, and returns a pointer to this area. 
Thus, any pointer value returned from tempnam() may serve as an argument to free (see malloc(3)). 
If tempnam() cannot return the expected result for any reason, that is, malloc failed, or none of the 
above mentioned attempts to find an appropriate directory was successful, a NULL pointer will be 
returned. 

These functions generate a different file name each time they are called. 

Files created using these functions and either /open or creat are temporary only in the sense that they 
reside in a directory intended for temporary use, and their names are unique. It is the user's responsi
bility to use unlink(2) to remove the file when its use is ended. 

SEE ALSO 

BUGS 

1020 

creat(2), unlink(2), fopen(3S), malloc(3), mktemp(3), tmpfile(3S) 

If called more than 17,576 times in a single process, these functions will start recycling previously 
used names. 

Between the time a file name is created and the file is opened, it is possible for some other process to 
create a file with the same name. This can never happen if that other process is using these functions 
or mktemp, and the file names are chosen so as to render duplication by other means unlikely. 

Last change: 1 February 1988 Sun Release 4.0 



TSEARCH(3) C LIBRARY FUNCTIONS TSEARCH(3) 

NAME 
tsearch, tfind, tdelete, twalk - manage binary search trees 

SYNOPSIS 
#include <Search.h> 

char *tsearch ((char *) key, (char **) rootp, compar) 
int (*compar)( ); 

char *tfind ((char *) key, (char **) rootp, compar) 
int (*compar)( ); 

char *tdelete ((char *) key, (char **) rootp, compar) 
int (*compar)( ); 

void twalk ((char *) root, action) 
void (*action)( ); 

DESCRIPTION 
tsearch, tfind, tdelete, and twalk() are routines for manipulating binary search trees. They are gen
eralized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user-supplied rou
tine. This routine is called with two arguments, the pointers to the elements being compared. It 
returns an integer less than, equal to, or greater than 0, according to whether the first argument is to 
be considered less than, equal to or greater than the second argument. The comparison function need 
not compare every byte, so arbitrary data may be contained in the elements in addition to the values 
being compared. 

tsearch() is used to build and access the tree. key is a pointer to a datum to be accessed or stored. 
If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to this found 
datum is returned. Otherwise, *key is inserted, and a pointer to it returned. Only pointers are copied, 
so the calling routine must store the data. rootp points to a variable that points to the root of the tree. 
A NULL value for the variable pointed to by rootp denotes an empty tree; in this case, the variable 
will be set to point to the datum which will be at the root of the new tree. 

Like tsearch, tfind() will search for a datum in the tree, returning a pointer to it if found. However, 
if it is not found, tfind() will return a NULL pointer. The arguments for tfind() are the same as for 
tsearch. 

tdelete() deletes a node from a binary search tree. The arguments are the same as for tsearch. The 
variable pointed to by rootp will be changed if the deleted node was the root of the tree. tdelete( ) 
returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not found. 

twalk() traverses a binary search tree. root is the root of the tree to be traversed. (Any node in a 
tree may be used as the root for a walk below that node.) action is the name of a routine to be 
invoked at each node. This routine is, in tum, called with three arguments. The first argument is the 
address of the node being visited. The second argument is a value from an enumeration data type 
typedef enum { preorder, postorder, endorder, leaf} VISIT; (defined in the <Search.h> header file), 
depending on whether this is the first, second or third time that the node has been visited ( during a 
depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The third argument is the 
level of the node in the tree, with the root being level zero. 

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to type 
pointer-to-character. Similarly, although declared as type pointer-to-character, the value returned 
should be cast into type pointer-to-element. 

EXAMPLE 
The following code reads in strings and stores structures containing a pointer to each string and a 
count of its length. It then walks the tree, printing out the stored strings and their lengths in alphabet
ical order. 

Sun Release 4.0 Last change: 6 October 1987 1021 



TSEARCH(3) 

1022 

C LIBRARY FUNCTIONS 

#include <Search.h> 
#include <Stdio.h> 
struct node { /• pointers to these are stored in the tree •I 

char •string; 
int length; 

}; 
char string_space[lOOOO]; 
struct node nodes[500]; 
struct node •root = NULL; 
main() 

I• space to store strings •/ 
I• nodes to store •I 
I• this points to the root •/ 

{ 

} 

I• 

int 

char •strptr = string_space; 
struct node •nodeptr = nodes; 
void print_node( ), twalk( ); 
int i = 0, node_compare( ); 
while (gets(strptr) != NULL && i++ < 500) { 

I• set node •I 

} 

nodeptr->string = strptr; 
nodeptr->length = strlen(strptr); 
/• put node into the tree •I 
(void) tsearch((char •)nodeptr, &root, 

node_ compare); 
I• adjust pointers, so we don't overwrite tree •/ 
strptr += nodeptr->length + 1; 
nodeptr++; 

twalk(root, print_node); 

This routine compares two nodes, based on an 
alphabetical ordering of the string field. 

node_ compare(nodel, node2) 
struct node •nodel, •node2; 
{ 

return strcmp(nodel->string, node2->string); 
} 

I• 

•I 
void 

This routine prints out a node, the first time 
twalk encounters it. 

print node(node, order, level) 
struct node ••node; 
VISIT order; 
int level; 
{ 

} 

if (order == preorder II order == leaf) { 
(void)printf("string = %20s, length = %d\n", 

( (••node)->string, (•node)->length); 
} 

Last change: 6 October 1987 

TSEARCH(3) 

Sun Release 4.0 



TSEARCH(3) C LIBRARY FUNCTIONS TSEARCH(3) 

SEE ALSO 
bsearch(3}, hsearch(3), lsearch(3) 

DIAGNOSTICS 
A NULL pointer is returned by tsearch( ) if there is not enough space available to create a new node. 

A NULL pointer is returned by tsearch, tfind() and tdelete() if rootp is NULL on entry. 

If the datum is found, both tsearch() and tfind() return a pointer to it. If not, tfind() returns NULL, 
and tsearch() returns a pointer to the inserted item. 

WARNINGS 

BUGS 

The root argument to twalk() is one level of indirection less than the rootp arguments to tsearch() 
and tdelete. 

There are two nomenclatures used to refer to the order in which tree nodes are visited. tsearch() 
uses preorder, postorder and endorder to respectively refer to visting a node before any of its children, 
after its left child and before its right, and after both its children. The alternate nomenclature uses 
preorder, inorder and postorder to refer to the same visits, which could result in some confusion over 
the meaning of postorder. 

If the calling function alters the pointer to the root, results are unpredictable. 

Sun Release 4.0 Last change: 6 October 1987 1023 



TTYNAME(3) C LIBRARY FUNCTIONS TIYNAME(3) 

NAME 
ttyname, isatty - find name of a terminal 

SYNOPSIS 
char *ttyname(filedes) 

isatty(filedes) 

DESCRIPTION 
ttyname() returns a pointer to the NULL-terminated path name of the terminal device associated with 
file descriptor filedes. 

isatty() returns 1 if filedes is associated with a terminal device, 0 otherwise. 

FILES 
/dev/• 

SEE ALSO 
ioctl(2), ttytab(5) 

DIAGNOSTICS 
ttyname() returns a NULL pointer if filedes does not describe a terminal device in directory /dev. 

BUGS 
The return value points to static data whose content is overwritten by each call. 

1024 Last change: 6 October 1987 Sun Release 4.0 



TTYSLOT(3) C LIBRARY FUNCTIONS TIYSLOT(3) 

NAME 
ttyslot - find the slot in the utmp file of the current process 

SYNOPSIS 
ttyslot() 

DESCRIPTION 

FILES 

ttyslot() returns the index of the current user's entry in the /etc/utmp file. This is accomplished by 
actually scanning the file /etdttys for the name of the terminal associated with the standard input, the 
standard output, or the error output (0, 1 or 2). 

/etc/ttys 
/etc/utmp 

DIAGNOSTICS 
A value of O is returned if an error was encountered while searching for the terminal name or if none 
of the above file descriptors is associated with a terminal device. 

Sun Release 4.0 Last change: 6 October 1987 1025 



UALARM(3) C LIBRARY FUNCTIONS UALARM(3) 

NAME 
ualarm - schedule signal after interval in microseconds 

SYNOPSIS 
unsigned ualarm(value, interval) 
unsigned value; 
unsigned interval; 

DESCRIPTION 
This is a simplified interface to setitimer (see getitimer(2)). 

ualarm() sends signal SIGALRM, see signal(3), to the invoking process in a number of microseconds 
given by the value argument. Unless caught or ignored, the signal terminates the process. 

If the interval argument is non-zero, the SIGALRM signal will be sent to the process every interval 
microseconds after the timer expires (for instance, after value microseconds have passed). 

Because of scheduling delays, resumption of execution of when the signal is caught may be delayed 
an arbitrary amount. The longest specifiable delay time is 2147483647 microseconds. 

The return value is the amount of time previously remaining in the alarm clock. 

SEE ALSO 
getitimer(2), sigpause(2), sigvec(2), alarm(3C), signal(3), sleep(3), usleep(3) 

1026 Last change: 6 October 1987 Sun Release 4.0 



ULTh1IT(3C) COMPATIBILITY FUNCTIONS ULTh1IT(3C) 

NAME 
ulimit - get and set user limits 

SYNOPSIS 
long ulimit(cmd, newlimit) 
int cmd; 
long newlimit; 

DESCRIPTION 
This function is included for System V compatibility. 

This routine provides for control over process limits. The cmd values available are: 

1 Get the process's file size limit. The limit is in units of 512-byte blocks and is inher
ited by child processes. Files of any size can be read. 

2 Set the process's file size limit to the value of newlimit. Any process may decrease 
this limit, but only a process with an effective user ID of super-user may increase the 
limit. ulimit() will fail and the limit will be unchanged if a process with an effective 
user ID other than the super-user attempts to increase its file size limit. 

3 Get the maximum possible break value. See brk(2). 

4 Get the size of the process' file descriptor table, as returned by getdtablesize(2). 

RETURN VALUE 
Upon successful completion, a non-negative value is returned. Otherwise a value of -1 is returned 
and errno is set to indicate the error. 

ERRORS 
The following error codes may be set in errno: 

EPERM A user other than the super-user attempted to increase the file size limit. 

SEE ALSO 
brk(2), getdtablesize(2), getrlimit(2), write(2V) 

Sun Release 4.0 Last change: 22 November 1987 1027 



UNGETC(3S) ST AND ARD 1/0 FUNCTIONS UNGETC(3S) 

NAME 
ungetc - push character back into input stream 

SYNOPSIS 
#include <Stdio.h> 

ungetc(c, stream) 
FILE •stream; 

DESCRIPTION 
ungetc() pushes the character c back onto an input stream. That character will be returned by the 
next getc( ) call on that stream. ungetc() returns c, and leaves the file stream unchanged. 

One character of pushback is guaranteed provided something has been read from the stream and the 
stream is actually buffered. In the case that stream is stdio, one character may be pushed back onto 
the buffer without a previous read statement 

If c equals EOF, ungetc() does nothing to the buffer and returns EOF. 

An fseek(3S) erases all memory of pushed back characters. 

SEE ALSO 
fseek(3S), getc(3S), setbuf(3S) 

DIAGNOSTICS 
ungetc() returns EOF if it cannot push a character back. 

1028 Last change: 18 November 1987 Sun Release 4.0 



USLEEP(3) C LIBRARY FUNCTIONS USLEEP(3) 

NAME 
usleep - suspend execution for interval in microseconds 

SYNOPSIS 
usleep(useconds) 
unsigned useconds; 

DESCRIPTION 
Suspend the current process for the number of microseconds specified by the argument. The actual 
suspension time may be an arbitrary amount longer because of other activity in the system, or because 
of the time spent in processing the call. 

The routine is implemented by setting an interval timer and pausing until it occurs. The previous state 
of this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previ
ous timer, the process sleeps only until the signal would have occurred, and the signal is sent a short 
time later. 

This routine is implemented using setitimer (see getitimer(2)); it requires eight system calls each time 
it is invoked. A similar but less compatible function can be obtained with a single select(2); it would 
not restart after signals, but would not interfere with other uses of setitimer. 

SEE ALSO 
getitimer(2), sigpause(2), alarm(3C), sleep(3), ualarm(3) 

Sun Release 4.0 Last change: 6 October 1987 1029 



UTIME(3C) COMPATIBILITY FUNCTIONS UTIME(3C) 

NAME 
utime - set file times 

SYNOPSIS 
#include <Sys/types.h> 

int utime(file, timep) 
char •file; 
time_t •timep; 

DESCRIPTION 
utime() sets the access and modification times of the file named by file. 

If the timep argument is NULL, the access and modification times are set to the current time. A pro
cess must be the owner of the file or have write permission for the file to use utime() in this manner. 

If the timep argument is not NULL, it is assumed to point to an array of two time_ t values. The 
access time is set to the value of the first member, and the modification time is set to the value of the 
second member. The times contained in that array are measured in seconds since 00:00:00 GMT Jan 
1, 1970. Only the owner of the file or the super-user may use utime() in this manner. 

In either case, the ''inode-changed'' time of the file is set to the current time. 

RETURN VALUE 
Upon successful completion a value of O is returned. Otherwise, a value of -1 is returned and errno 
is set to indicate the error. 

ERRORS 
utime() will fail if one or more of the following are true: 

ENOTDIR A component of the path prefix of file is not a directory. 

ENAMETOOLONG 

ENOENT 

EACCESS 

ELOOP 

EPERM 

EACCESS 

EIO 

EROFS 

EFAULT 

The length of a component of file exceeds 255 characters, or the length of file 
exceeds 1023 characters. 

The file referred to by file does not exist. 

Search permission is denied for a component of the path prefix of file. 

Too many symbolic links were encountered in translating file. 

The effective user ID of the process is not super-user and not the owner of the 
file, and timep is not NULL. 

The effective user ID is not super-user and not the owner of the file, write per
mission is denied for the file, and timep is NULL. 

An 1/0 error occurred while reading from or writing to the file system. 

The file system containing the file is mounted read-only. 

file or timep points outside the process's allocated address space. 

SEE ALSO 
stat(2), utimes(2) 

1030 Last change: 22 November 1987 Sun Release 4.0 



VALUES(3) C LIBRARY FUNCTIONS VALUES(3) 

NAME 
values - machine-dependent values 

SYNOPSIS 
#include <values.h> 

DESCRIPTION 
This file contains a set of manifest constants, conditionally defined for particular processor architec
tures. 

The model assumed for integers is binary representation (one's or two's complement), where the sign 
is represented by the value of the high-order bit. 

FILES 

BITS(type) 

HIBITS 

HIBITL 

HIBITI 

MAXSHORT 

MAXLONG 

MAXINT 

MAXFLOAT 

LN MAXFLOAT 

MAXDOUBLE 

LN MAXDOUBLE 

MINFLOAT 

LN MINFLOAT 

MINDOUBLE 

LN MINDOUBLE 

FSIGNIF 

DSIGNIF 

/usr/include/values.h 

SEE ALSO 
intro(3 ), intro(3M) 

Sun Release 4.0 

The number of bits in a specified type (for instance, int). 

The value of a short integer with only the high-order bit set (in most imple
mentations, Ox8000). 

The value of a long integer with only the high-order bit set (in most imple
mentations, Ox80000000). 

The value of a regular integer with only the high-order bit set (usually the 
same as HIBITS or HIBITL). 

The maximum value of a signed short integer (in most implementations, 
Ox7FFF = 32767). 

The maximum value of a signed long integer (in most implementations, 
Ox7FFFFFFF = 2147483647). 

The maximum value of a signed regular integer (usually the same as MAX
SHORT or MAXLONG). 

The maximum value of a single-precision floating-point number, and its natural 
logarithm. 

The maximum value of a double-precision floating-point number, and its 
natural logarithm. 

The minimum positive value of a single-precision floating-point number, and 
its natural logarithm. 

The minimum positive value of a double-precision floating-point number, and 
its natural logarithm. 

The number of significant bits in the mantissa of a single-precision floating
point number. 

The number of significant bits in the mantissa of a double-precision floating
point number. 

Last change: 6 October 1987 1031 



VARARGS(3) C LIBRARY FUNCTIONS VARARGS(3) 

NAME 
varargs - handle variable argument list 

SYNOPSIS 
#include <Varargs.h> 

function( va _alist) va _ dcl 

va _ list pvar ; 

va start 

f = va_arg(pvar, type); 

va_end(pvar); 

DESCRIPTION 

1032 

This set of macros provides a means of writing portable procedures that accept variable argument lists. 
Routines having variable argument lists (such as printf(3S)) but do not use varargs() are inherently 
nonportable, since different machines use different argument passing conventions. Routines with vari
able arguments lists must use varargs() functions in order to run correctly on Sun-4 systems. 

va _ alist is used in a function header to declare a variable argument list 

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl. 

va _ list is a type defined for the variable used to traverse the list. One such variable must always be 
declared. 

va _ start(pvar) is called to initialize pvar to the beginning of the list. 

va _ arg(pvar, type) will return the next argument in the list pointed to by pvar. The parameter type is 
a type name such that the type of a pointer to an object that has the specified type can be obtained 
simply by appending a * to type. If type disagrees with the type of the actual next argument (as pro
moted according to the default argument promotions), the behavior is undefined. 

In standard C, arguments that are char or short are converted to int and should be accessed as int, 
arguments that are unsigned char or unsigned short are converted to unsigned int and should be 
accessed as unsigned int, and arguments that are float are converted to double and should be 
accessed as double. Different types can be mixed, but it is up to the routine to know what type of 
argument is expected, since it cannot be determined at runtime. 

va _ end(pvar) is used to finish up. 

Multiple traversals, each bracketed by va _ start . . . va _ end, are possible. 

va_alist must encompass the entire arguments list. This insures that a #define statement can be used 
to redefine or expand its value. 

The argument list ( or its remainder) can be passed to another function using a pointer to a variable of 
type va_list- in which case a call to va_arg in the subroutine advances the argument-list pointer with 
respect to the caller as well. 

Last change: 6 October 1987 Sun Release 4.0 



VARARGS(3) C LIBRARY FUNCTIONS VARARGS(3) 

EXAMPLE 
This example is a possible implementation of execl(3). 

#include <varargs.h> 
#define MAXARGS 100 

I• execl is called by 
* execl(file, argl, arg2, ••• , (char •)0); 

execl ( va _ alist) 
va dcl 
{ 

va_list ap; 
char •file; 
char •args[MAXARGS]; 
int argno = 0; 

va_start (ap); 
file = va_arg(ap, char •); 
while ((args[argno++] = va_arg(ap, char *)) != (char •)0) 

' va_end (ap); 
return execv(file, args); 

} 

SEE ALSO 

BUGS 

execl(3), printf(3S) 

It is up to the calling routine to specify how many arguments there are, since it is not possible to 
determine this from the stack frame. For example, execl() is passed a zero pointer to signal the end 
of the list printf() can tell how many arguments are supposed to be there by the format. 

The macros va _ start and va _ end may be arbitrarily complex; for example, va _ start might contain an 
opening brace, which is closed by a matching brace in va _ end. Thus, they should only be used where 
they could be placed within a single complex statement. 

Sun Release 4.0 Last change: 6 October 1987 1033 



VLIMIT(3C) COMPATIBILITY FUNCTIONS VLIMIT(3C) 

NAME 
vlimit - control maximum system resource consumption 

SYNOPSIS 
#include <Sys/vlimit.h> 

vlimit(resource, value) int resource, value; 

DESCRIPTION 
This facility is superseded by getrlimit(2). 

Limits the consumption by the current process and each process it creates to not individually exceed 
value on the specified resource. If value is specified as -1, then the current limit is returned and the 
limit is unchanged. The resources which are currently controllable are: 

LIM NORAISE 

LIM CPU 

LIM FSIZE 

LIM DATA 

LIM STACK 

LIM CORE 

LIM MAXRSS 

A pseudo-limit; if set non-zero then the limits may not be raised. Only the 
super-user may remove the noraise restriction. 

the maximum number of CPU-seconds to be used by each process 

the largest single file which can be created 

the maximum growth of the data+stack region using sbrk (see brk(2)) beyond 
the end of the program text 

the maximum size of the automatically-extended stack region 

the size of the largest core dump that will be created. 

a soft limit for the amount of physical memory (in bytes) to be given to the 
program. If memory is tight, the system will prefer to take memory from 
processes which are exceeding their declared LIM_ MAXRSS. 

Because this information is stored in the per-process information this system call must be executed 
directly by the shell if it is to affect all future processes created by the shell; limit is thus a built-in 
command to csh(l). 

The system refuses to extend the data or stack space when the limits would be exceeded in the normal 
way; a break call fails if the data space limit is reached, or the process is killed when the stack limit 
is reached (since the stack cannot be extended, there is no way to send a signal!). 

A file 1/0 operation which would create a file which is too large will cause a signal SIGXFSZ to be 
generated, this normally terminates the process, but may be caught. When the cpu time limit is 
exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process the signal it 
is given 5 seconds grace by raising the CPU time limit 

SEE ALSO 
csb(l), sb(l), brk(2) 

BUGS 
If LIM_NORAISE is set, then no grace should be given when the CPU time limit is exceeded. 

There should be limit and unlimit commands in sh(l) as well as in csh(l). 

1034 Last change: 6 October 1987 Sun Release 4.0 



VPRINTF ( 3S ) ST AND ARD I/0 FUNCTIONS 

NAME 
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list 

SYNOPSIS 
#include <Stdio.h> 
#include <varargs.h> 

int vprintf(format, ap) 
char *format; 
va_list ap; 

int vfprintf(stream, format, ap) 
FILE •stream; 
char •format; 
va_list ap; 

char *vsprintf(s, format, ap) 
char •s, •format; 
va_Iist ap; 

DESCRIPTION 

VPRINTF ( 3S ) 

vprintf, vfprintf, and vsprintf() are the same as printf(3S), fprintf, and sprintf respectively, except 
that instead of being called with a variable number of arguments, they are called with an argument list 
as defined by varargs(3). 

EXAMPLE 
The following demonstrates how vfprintf() could be used to write an error routine. 

#include <Stdio.h> 

SEE ALSO 

#include <varargs.h> 

f * error should be called like: 
* error(function _ name, format, argl, arg2 .. . ); 
* Note: function name and format cannot be declared 
* separately because of the definition of varargs. 
•I 

/•V ARARGS0•/ 
void 
error ( va _ alist) 

va_dcl; 
{ 

} 

va_list args; 
char •fmt; 

va_start(args); 
/• print name of function causing error •/ 

(void) fprintf(stderr, "ERROR in %s: ", va_arg(args, char *)); 
fmt = va_arg(args, char *); 

/• print out remainder of message •/ 
(void) vfprintf(stderr, fmt, args); 
va_end(args); 
(void) abort(); 

printf(3S), varargs(3) 

Sun Release 4.0 Last change: 24 November 1987 1035 



VSYSLOG(3) C LIBRARY FUNCTIONS 

NAME 
vsyslog - log message with a varargs argument list 

SYNOPSIS 
#include <Syslog.h> 
#include <varargs.h> 

int vsyslog(priority, message, ap) 
char •message; 
va_list ap; 

DESCRIPTION 

VSYSLOG(3) 

vsyslog() is the same as syslog(3) except that instead of being called with a variable number of argu
ments, it is called with an argument list as defined by varargs(3). 

EXAMPLE 
The following demonstrates how vsyslog() could be used to write an error routine. 

#include <Syslog.h> 
#include <varargs.h> 

/• error should be called like: 
* error(pri, function_ name, format, argl, arg2 .. . ); 
* Note that pri, function_name, and format cannot be declared 
* separately because of the definition of varargs. 
•I 

/•V ARARGSO•/ 
void 
error( va _ alist) 

va_dcl; 
{ 

} 

va_list args; 
int pri; 
char •message; 

va_start(args); 
pri = va_arg(args, int); 

/• log name of function causing error •/ 
(void) syslog(pri, "ERROR in %s", va_arg(args, char *)); 
message = va_arg(args, char •); 

/• log remainder of message •/ 
(void) vsyslog(pri, fmt, args); 
va_end(args); 
(void) abort(); 

SEE ALSO 
syslog(3 ), varargs(3) 

1036 Last change: 10 October 1987 Sun Release 4.0 



VTIMES(3C) COMPATIBILITY FUNCTIONS VT1MES(3C) 

NAME 
vtimes - get information about resource utilization 

SYNOPSIS 
vtimes(par _ vm, ch_ vm) 
struct vtimes •par_vm, •ch_vm; 

DESCRIPTION 
This facility is superseded by getrusage(2). 

vtimes() returns accounting information for the current process and for the terminated child processes 
of the current process. Either par _vm or ch _vm or both may be 0, in which case only the information 
for the pointers which are non-zero is returned. 

After the call, each buffer contains information as defined by the contents of the include file 
<sys/vtimes.h>: 

struct vtimes { 
int vm_utime; I• user time (•HZ) •/ 
int vm stime; /• system time (•HZ) •/ 
/• divide ne;t two by utime+stime to get averages •/ 
unsigned vm _idsrss; I• integral of d+s rss •I 
unsigned vm_ixrss; /• integral of text rss •/ 
int vm _ maxrss; I• maximum rss •I 
int vm _ majflt; /• major page faults •/ 
int vm_minflt; I• minor page faults •I 
int vm_nswap; /• number of swaps •/ 
int vm _inblk; /• block reads •/ 
int vm _ oublk; /• block writes •I 

}; 

The vm _ utime and vm _ stime fields give the user and system time respectively in 60ths of a second 
(or 50ths if that is the frequency of wall current in your locality.) The vm_idrss and vm_ixrss meas
ure memory usage. They are computed by integrating the number of memory pages in use each over 
cpu time. They are reported as though computed discretely, adding the current memory usage (in 512 
byte pages) each time the clock ticks. If a process used 5 core pages over 1 cpu-second for its data 
and stack, then vm_idsrss would have the value 5*60, where vm_utime+vm_stime would be the 60. 
vm _idsrss integrates data and stack segment usage, while vm _ixrss integrates text segment usage. 
vm _ maxrss reports the maximum instantaneous sum of the text+data+stack core-resident page count. 

The vm _ majflt field gives the number of page faults which resulted in disk activity; the vm _ minflt 
field gives the number of page faults incurred in simulation of reference bits; vm_nswap is the 
number of swaps which occurred. The number of file system input/output events are reported in 
vm _inblk and vm _ oublk These numbers account only for real I/0; data supplied by the caching 
mechanism is charged only to the first process to read or write the data. 

SEE ALSO 
getrusage(2), wait(2) 

Sun Release 4.0 Last change: 6 October 1987 1037 



XDR(3N) NETWORK FUNCTIONS XDR(3N) 

NAME 
xdr - library routines for external data representation 

SYNOPSIS AND DESCRIPTION 

1038 

These routines allow C programmers to describe arbitrary data structures in a machine-independent 
fashion. Data for remote procedure calls are transmitted using these routines. 

xdr _array(xdrs, arrp, sizep, maxsize, elsize, elproc) 
XDR *xdrs; 
char **arrp; 
u_int *sizep, maxsize, elsize; 
xdrproc_t elproc; 

A filter primitive that translates between variable-length arrays and their corresponding exter
nal representations. The parameter arrp is the address of the pointer to the array, while sizep 
is the address of the element count of the array; this element count cannot exceed maxsize. 
The parameter elsize is the sizeof each of the array's elements, and elproc is an XOR filter 
that translates between the array elements' C form, and their external representation. This 
routine returns one if it succeeds, zero otherwise. 

xdr _ bool(xdrs, bp) 
XDR *xdrs; 
bool_t *hp; 

A filter primitive that translates between booleans (C integers) and their external representa
tions. When encoding data, this filter produces values of either one or zero. This routine 
returns one if it succeeds, zero otherwise. 

xdr _ bytes(xdrs, sp, sizep, maxsize) 
XDR *xdrs; 
char **sp; 
u_int *sizep, maxsize; 

A filter primitive that translates between counted byte strings and their external representa
tions. The parameter sp is the address of the string pointer. The length of the string is 
located at address sizep; strings cannot be longer than maxsize. This routine returns one if it 
succeeds, zero otherwise. 

xdr _ char(xdrs, cp) 
XDR *xdrs; 
char *cp; 

void 

A filter primitive that translates between C characters and their external representations. This 
routine returns one if it succeeds, zero otherwise. Note: encoded characters are not packed, 
and occupy 4 bytes each. For arrays of characters, it is worthwhile to consider xdr _bytes(), 
xdr_opaque() or xdr_string(). 

xdr _ destroy(xdrs) 
XDR *xdrs; 

A macro that invokes the destroy routine associated with the XOR stream, xdrs. Destruction 
usually involves freeing private data structures associated with the stream. Using xdrs after 
invoking xdr _destroy() is undefined. 

Last change: 16 February 1988 Sun Release 4.0 



XDR(3N) NETWORK FUNCTIONS XDR(3N) 

xdr _ double(xdrs, dp) 
XDR *xdrs; 
double *dp; 

A filter pnm1t1ve that translates between C double precision numbers and their external 
representations. This routine returns one if it succeeds, zero otherwise. 

xdr _ enum(xdrs, ep) 
XDR *xdrs; 
enum_t *ep; 

A filter pnm1t1ve that translates between C enums (actually integers) and their external 
representations. This routine returns one if it succeeds, zero otherwise. 

xdr _float(xdrs, fp) 
XDR *xdrs; 
float *fp; 

void 

A filter primitive that translates between C floats and their external representations. This rou
tine returns one if it succeeds, zero otherwise. 

xdr _free(proc, objp) 
xdrproc_t proc; 
char *objp; 

u int 

Generic freeing routine. The first argument is the XDR routine for the object being freed. The 
second argument is a pointer to the object itself. Note: the pointer passed to this routine is not 
freed, but what it points to is freed (recursively). 

xdr __getpos(xdrs) 
XDR *xdrs; 

long* 

A macro that invokes the get-position routine associated with the XDR stream, xdrs. The rou
tine returns an unsigned integer, which indicates the position of the XDR byte stream. A 
desirable feature of XDR streams is that simple arithmetic works with this number, although 
the XDR stream instances need not guarantee this. 

xdr _inline(xdrs, Jen) 
XDR *xdrs; 
int Jen; 

A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine 
returns a pointer to a contiguous piece of the stream's buffer; /en is the byte length of the 
desired buffer. Note: pointer is cast to long *· 
Warning: xdr _inline() may return NULL (0) if it cannot allocate a contiguous piece of a 
buffer. Therefore the behavior may vary among stream instances; it exists for the sake of 
efficiency. 

xdr _int(xdrs, ip) 
XDR *xdrs; 
int *ip; 

Sun Release 4.0 

A filter primitive that translates between C integers and their external representations. This 
routine returns one if it succeeds, zero otherwise. 

Last change: 16 February 1988 1039 



XDR(3N) NETWORK FUNCTIONS XDR(3N) 

1040 

xdr _long(xdrs, Ip) 
XOR *xdrs; 
long *Ip; 

void 

A filter primitive that translates between C long integers and their external representations. 
This routine returns one if it succeeds, zero otherwise. 

xdrmem_create(xdrs, addr, size, op) 
XOR *xdrs; 
char *addr; 
u_int size; 
enum xdr _ op op; 

This routine initializes the XOR stream object pointed to by xdrs. The stream's data is writ
ten to, or read from, a chunk of memory at location addr whose length is no more than size 
bytes long. The op determines the direction of the XOR stream (either XOR_ENCOOE, 
XOR_OECOOE, or XOR_FREE). 

xdr _ opaque(xdrs, cp, cot) 
XDR *xdrs; 
char *cp; 
u_int cot; 

A filter primitive that translates between fixed size opaque data and its external representation. 
The parameter cp is the address of the opaque object, and cnt is its size in bytes. This rou
tine returns one if it succeeds, zero otherwise. 

xdr _pointer(xdrs, objpp, objsize, xdrobj) 
XOR *xdrs; 
char **objpp; 
u_int objsize; 
xdrproc_t xdrobj; 

void 

Like xdr _reference() execpt that it serializes NULL pointers, whereas xdr _reference() does 
not Thus, xdr _pointer() can represent recursive data structures, such as binary trees or 
linked lists. 

xdrrec _ create(xdrs, sendsize, recvsize, handle, readit, writeit) 
XOR *xdrs; 
u_int sendsize, recvsize; 
char *handle; 
int (*readit) (), (*writeit) (); 

This routine initializes the XOR stream object pointed to by xdrs. The stream's data is writ
ten to a buffer of size sendsize; a value of zero indicates the system should use a suitable 
default. The stream's data. is read from a buffer of size recvsize; it too can be set to a suit
able default by passing a zero value. When a stream's output buffer is full, writeit is called. 
Similarly, when a stream's input buffer is empty, readit is called. The behavior of these two 
routines is similar to the system calls read and write, except that handle is passed to the 
former routines as the first parameter. Note: the XOR stream's op field must be set by the 
caller. 

W aming: this XOR stream implements an intermediate record stream. Therefore there are 
additional bytes in the stream to provide record boundary information. 

Last change: 16 February 1988 Sun Release 4.0 



XDR(3N) NETWORK FUNCTIONS XDR(3N) 

xdrrec _ endofrecord(xdrs, sendnow) 
XDR *xdrs; 
int sendnow; 

This routine can be invoked only on streams created by xdrrec _create(). The data in the 
output buffer is marked as a completed record, and the output buffer is optionally written out 
if sendnow is non-zero. This routine returns one if it succeeds, zero otherwise. 

xdrrec _ eof(xdrs) 
XDR *xdrs; 
int empty; 

This routine can be invoked only on streams created by xdrrec _ create(). After consuming 
the rest of the current record in the stream, this routine returns one if the stream has no more 
input, zero otherwise. 

xdrrec _ skiprecord(xdrs) 
XDR *xdrs; 

This routine can be invoked only on streams created by xdrrec _create(). It tells the XDR 
implementation that the rest of the current record in the stream's input buffer should be dis
carded. This routine returns one if it succeeds, zero otherwise. 

xdr _reference(xdrs, pp, size, proc) 
XDR *xdrs; 
char **pp; · 
u_int size; 
xdrproc_t proc; 

A primitive that provides pointer chasing within structures. The parameter pp is the address 
of the pointer; size is the sizeof the structure that *PP points to; and proc is an XDR procedure 
that filters the structure between its C form and its external representation. This routine 
returns one if it succeeds, zero otherwise. 

Warning: this routine does not understand NULL pointers. Use xdr _pointer() instead. 

xdr _setpos(xdrs, pos) 
XDR *xdrs; 
u_int pos; 

A macro that invokes the set pos1t10n routine associated with the XDR stream xdrs. The 
parameter pos is a position value obtained from xdr _getpos( ). This routine returns one if the 
XDR stream could be repositioned, and zero otherwise. 

Warning: it is difficult to reposition some types of XOR streams, so this routine may fail with 
one type of stream and succeed with another. 

xdr _ short(xdrs, sp) 
XDR *xdrs; 
short *sp; 

Sun Release 4.0 

A filter primitive that translates between C short integers and their external representations. 
This routine returns one if it succeeds, zero otherwise. 

Last change: 16 February 1988 1041 



XDR(3N) NETWORK FUNCTIONS XDR(3N) 

1042 

void 
xdrstdio _ create(xdrs, file, op) 
XDR *xdrs; 
FILE *file; 
enum xdr _ op op; 

This routine initializes the XDR stream object pointed to by xdrs. The XDR stream data is 
written to, or read from, the Standard 1/0 stream file. The parameter op determines the 
direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE). 

Warning: the destroy routine associated with such XDR streams calls fflush() on the file 
stream, but never fclose( ). 

xdr _ string(xdrs, sp, maxsize) 
XDR 
*xdrs; 
char **sp; 
u _int maxsize; 

A filter primitive that translates between C strings and their corresponding external representa
tions. Strings cannot be longer than maxsize. Note: sp is the address of the string's pointer. 
This routine returns one if it succeeds, zero otherwise. 

xdr _ u _ char(xdrs, ucp) 
XDR *xdrs; 
unsigned char *ocp; 

A filter primitive that translates between unsigned C characters and their external representa
tions. This routine returns one if it succeeds, zero otherwise. 

xdr _ u _int(xdrs, up) 
XDR *xdrs; 
unsigned *op; 

A filter primitive that translates between C unsigned integers and their external representa
tions. This routine returns one if it succeeds, zero otherwise. 

xdr _ u _long(xdrs, ulp) 
XDR •xdrs; 
unsigned long *nip; 

A filter primitive that translates between C unsigned long integers and their external represen
tations. This routine returns one if it succeeds, zero otherwise. 

xdr_u_short(xdrs, usp) 
XDR *xdrs; 
unsigned short *usp; 

A filter primitive that translates between C unsigned short integers and their external 
representations. This routine returns one if it succeeds, zero otherwise. 

Last change: 16 February 1988 Sun Release 4.0 



XDR(3N) NETWORK FUNCTIONS XDR(3N) 

xdr _ union(xdrs, dscmp, unp, choices, dfault) 
XDR *xdrs; 
int *dscmp; 
char *unp; 
struct xdr discrim *choices; 
bool_t (*d-;faultarm) (); I* may equal NULL *I 

A filter primitive that translates between a discriminated C union and its corresponding exter
nal representation. It first translates the discriminant of the union located at dscmp. This 
discriminant is always an enum_t. Next the union located at unp is translated. The parame
ter choices is a pointer to an array of xdr _discrim() structures. Each structure contains an 
ordered pair of [value ,proc ]. If the union's discriminant is equal to the associated value, then 
the proc is called to translate the union. The end of the xdr _ discrim() structure array is 
denoted by a routine of value NULL. If the discriminant is not found in the choices array, 
then the defaultarm procedure is called (if it is not NULL). Returns one if it succeeds, zero 
otherwise. 

xdr _ vector(xdrs, arrp, size, elsize, elproc) 
XDR *xdrs; 
char *arrp; 
u_int size, elsize; 
xdrproc_t elproc; 

A filter primitive that translates between fixed-length arrays and their corresponding external 
representations. The parameter arrp is the address of the pointer to the array, while size is is 
the element count of the array. The parameter elsize is the sizeof each of the array's ele
ments, and elproc is an XDR filter that translates between the array elements' C form, and 
their external representation. This routine returns one if it succeeds, zero otherwise. 

xdr_void() 

This routine always returns one. It may be passed to RPC routines that require a function 
parameter, where nothing is to be done. 

xdr _ wrapstring(xdrs, sp) 
XDR *xdrs; 
char **sp; 

SEE ALSO 
rpc(3N) 

A primitive that calls xdr_string(xdrs, sp,MAXUN.UNSIGNED ); where MAXUN.UNSIGNED 
is the maximum value of an unsigned integer. xdr _ wrapstring() is handy because the RPC 
package passes a maximum of two XDR routines as parameters, and xdr_string(), one of the 
most frequently used primitives, requires three. Returns one if it succeeds, zero otherwise. 

!vetwork Programming 

Sun Release 4.0 Last change: 16 February 1988 1043 



YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N) 

NAME 
ypclnt, yp _get_ default_ domain, yp _ bind, yp _ unbind, yp _ match, yp _ first, yp _ next, yp _ all, yp _ order, 
yp_master, yperr_string, ypprot_err - Yellow Pages client interface 

SYNOPSIS AND DESCRIPTION 

1044 

This package of functions provides an interface to the Yellow Pages (YP) network lookup service. 
The package can be loaded from the standard library, /usr/lib/libc.a. Refer to ypfiles(5) and 
ypserv(8) for an overview of the Yellow Pages, including the definitions of map and domain, and a 
description of the various servers, databases, and commands that comprise the YP. 

All input parameters names begin with in. Output parameters begin with out. Output parameters of 
type char ** should be addresses of uninitialized character pointers. Memory is allocated by the YP 
client package using malloc(3 ), and may be freed if the user code has no continuing need for it. For 
each outkey and outval, two extra bytes of memory are allocated at the end that contain NEWLINE and 
NULL, respectively, but these two bytes are not reflected in outkeylen or outvallen. indomain and 
inmap strings must be non-NULL and NULL-terminated. String parameters which are accompanied by a 
count parameter may not be NULL, but may point to NULL strings, with the count parameter indicating 
this. Counted strings need not be NULL-terminated. 

All functions in this package of type int return O if they succeed, and a failure code (YPERR_no:) 
otherwise. Failure codes are described under DIAGNOSTICS below. 

yp _ bind (indomain); 
char *indomain; 

void 

To use the YP services, the client process must be "bound" to a YP server that serves the 
appropriate domain using yp _bind(). Binding need not be done explicitly by user code; this 
is done automatically whenever a YP lookup function is called. yp _ bind() can be called 
directly for processes that make use of a backup strategy (for example, a local file) in cases 
when YP services are not available. 

yp _ unbind (indomain) 
char •indomain; 

Each binding allocates (uses up) one client process socket descriptor; each bound domain 
costs one socket descriptor. However, multiple requests to the same domain use that same 
descriptor. yp _unbind() is available at the client interface for processes that explicitly 
manage their socket descriptors while accessing multiple domains. The call to yp _ unbind() 
make the domain unbound, and free all per-process and per-node resources used to bind it. 

If an RPC failure results upon use of a binding, that domain will be unbound automatically. 
At that point, the ypclnt layer will retry forever or until the operation succeeds, provided that 
ypbind is running, and either 

a) the client process cannot bind a server for the proper domain, or 

b) RPC requests to the server fail. 

If an error is not RFC-related, or if ypbind is not running, or if a bound ypserv process 
returns any answer (success or failure), the ypclnt layer will return control to the user code, 
either with an error code, or a success code and any results. 

Last change: 22 January 1988 Sun Release 4.0 



YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N) 

yp_get_default_domain (outdomain); 
char **outdomain; 

The YP lookup calls require a map name and a domain name, at mmunum. It is assumed 
that the client process knows the name of the map of interest. Client processes should fetch 
the node's default domain by calling yp_get_default_domain(), and use the returned out
domain as the indomain parameter to successive YP calls. 

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen) 
char *indomain; 
char *inmap; 
char *inkey; 
int inkeylen; 
char * *outval; 
int *outvallen; 

yp_match() returns the value associated with a passed key. This key must be exact; no pat
tern matching is available. 

yp_first(indomain, inmap, outkey, outkeylen, outval, outvallen) 
char *indomain; 
char *inmap; 
char * *Outkey; 
int *outkeylen; 
char **Outval; 
int *outvallen; 

yp _ first() returns the first key-value pair from the named map in the named domain. 

yp_next(indomain, inmap, inkey, inkeylen, outkey, outkeylen, outval, outvallen); 
char *indomain; 
char *inmap; 
char *inkey; 
int inkeylen; 
char **outkey; 
int *outkeylen; 
char **outval; 
int *outvallen; 

yp_next() returns the next key-value pair in a named map. The inkey parameter should be 
the outkey returned from an initial call to yp _first() (to get the second key-value pair) or the 
one returned from the nth call to yp _next() (to get the nth + second key-value pair). 

Sun Release 4.0 

The concept of first (and, for that matter, of next) is particular to the structure of the YP map 
being processing; there is no relation in retrieval order to either the lexical order within any 
original (non-YP) data base, or to any obvious numerical sorting order on the keys, values, or 
key-value pairs. The only ordering guarantee made is that if the yp _first() function is called 
on a particular map, and then the yp _next() function is repeatedly called on the same map at 
the same server until the call fails with a reason of YPERR_NOMORE, every entry in the data 
base will be seen exactly once. Further, if the same sequence of operations is performed on 
the same map at the same server, the entries will be seen in the same order. 

Last change: 22 January 1988 1045 



YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N) 

1046 

Under conditions of heavy server load or server failure, it is possible for the domain to 
become unbound, then bound once again (perhaps to a different server) while a client is run
ning. This can cause a break in one of the enumeration rules; specific entries may be seen 
twice by the client, or not at all. This approach protects the client from error messages that 
would otherwise be returned in the midst of the enumeration. The next paragraph describes a 
better solution to enumerating all entries in a map. 

yp_all(indomain, inmap, incallback); 
char *indomain; 
char *inmap; 
struct ypall_ callback incallback; 

yp _all() provides a way to transfer an entire map from server to client in a single request 
using TCP (rather than UDP as with other functions in this package). The entire transaction 
take place as a single RPC request and response. You can use yp_all() just like any other YP 
procedure, identify the map in the normal manner, and supply the name of a function which 
will be called to process each key-value pair within the map. You return from the call to 
yp_all() only when the transaction is completed (successfully or unsuccessfully), or your 
foreach function decides that it does not want to see any more key-value pairs. 

The third parameter to yp _all() is 
struct ypall_callback *incallback { 
int (*foreach)(); 
char *data; 
}; 

The function for each is called 
foreach(instatus, inkey, inkeylen, inval, invallen, indata); 
int instatus; 
char *inkey; 
int inkeylen; 
char *inval; 
int invalllen; 
char *indata; 

The instatus parameter will hold one of the return status values defined in 
<rpcsvc/yp_prot.h> - either YP _TRUE or an error code. (See ypprot_err(), below, for a 
function which converts a YP protocol error code to a ypclnt layer error code.) 

The key and value parameters are somewhat different than defined in the synopsis section 
above. First, the memory pointed to by the inkey and inval parameters is private to the 
yp_all() function, and is overwritten with the arrival of each new key-value pair. It is the 
responsibility of the for each function to do something useful with the contents of that 
memory, but it does not own the memory itself. Key and value objects presented to the 
fore a ch function look exactly as they do in the server's map - if they were not NEWLINE
terminated or NULL-terminated in the map, they will not be here either. 

The indata parameter is the contents of the incallback->data element passed to yp _all(). 
The data element of the callback structure may be used to share state information between 
the f oreach function and the mainline code. Its use is optional, and no part of the YP client 
package inspects its contents - cast it to something useful, or ignore it as you see fit. 

The for each function is a Boolean. It should return zero to indicate that it wants to be called 
again for further received key-value pairs, or non-zero to stop the flow of key-value pairs. If 
foreach returns a non-zero value, it is not called again; the functional value of yp _all() is 
then 0. 

Last change: 22 January 1988 Sun Release 4.0 



YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N) 

FILES 

yp _ order(indomain, inmap, outorder); 
char *indomain; 
char *inmap; 
int *outorder; 

yp _order() returns the order number for a map. 

yp _ master(indomain, inmap, outname ); 
char *indomain; 
char *inmap; 
char **outname; 

yp _master() returns the machine name of the master YP server for a map. 

char *yperr _string(incode) 
int incode; 

yperr _string() returns a pointer to an error message string that is NULL-terminated but con
tains no period or NEWLINE. 

ypprot_err (incode) 
unsigned int incode; 

ypprot_err() takes a YP protocol error code as input, and returns a ypclnt layer error code, 
which may be used in tum as an input to yperr_string(). 

/usr/include/rpcsvc/ypclnt.h 
/usr/include/rpcsvc/yp _prot.h 
/usr /lib/libc.a 

SEE ALSO 
malloc(3), ypupdate(3N), ypfiles(5), ypserv(8) 

DIAGNOSTICS 
All integer functions return O if the requested operation is successful, or one of the following errors if 
the operation fails. 

#define YPERR BADARGS 
1 I* args to function are bad 

#define YPERR RPC 
2 I* RPC failure • domain has 

#define YPERR DOMAIN 
3 I* can't bind to server on 

#define YPERR MAP 
4 I* no such map in server's 

#define YPERR KEY 
5 I* no such key in map 

#define YPERR YPERR 
6 I* internal yp server or client 

#define YPERR RESRC 
7 I* resource allocation failure *I 

#define YPERR NOMORE 
8 I* no more records in map 

#define YPERR PMAP 
9 I* can't communicate with portmapper *I 

#define YPERR YPBIND 

Sun Release 4.0 Last change: 22 January 1988 1047 



YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N) 

10 /• can't communicate with ypbind •/ 

#define YPERR _ YPSERV 
11 /• can't communicate with ypserv •I 

#define YPERR_NODOM 
12 /• local domain name not set 

#define YPERR _ BADDBtR 
13 /• yp database is bad •/ 

#define YPERR_ VERStR 
14 /• yp version mismatch •/ 

#define YPERR _ ACCESS 
15 /• access violation •/ 

#define YPERR _ BUSY 
16 /• database busy •/ 

1048 Last change: 22 January 1988 Sun Release 4.0 



YPUPDA TE ( 3) C LIBRARY FUNCTIONS YPUPDA TE ( 3) 

NAME 
yp _ update - changes yp information 

SYNOPSIS 
#include <rpcsvc/ypclnt.h> 

yp_update(domain, map, ypop, key, keylen, data, datalen) 
char •domain; 
char •map; 
unsigned ypop 
char •key; 
int keylen; 
char •data; 
int datalen; 

DESCRIPTION 
yp _update() is used to make changes to the YP database. The syntax is the same as that of 
yp _match() except for the extra parameter ypop which may take on one of four values. If it is 
YPOP _ CHANGE then the data associated with the key will be changed to the new value. If the key is 
not found in the database, then yp _update() will return YPERR _KEY. If ypop has the value 
YPOP _ INSERT then the key-value pair will be inserted into the database. The error YPERR _ KEY is 
returned if the key already exists in the database. To store an item into the database without concern 
for whether it exists already or not, pass ypop as YPOP _ STORE and no error will be returned if the 
key already or does not exist. To delete an entry, the value of ypop should be YPOP _ DELETE. 

This routine depends upon secure RPC, and will not work unless the network is running secure RPC. 

SEE ALSO 
System and Network Administration 

Sun Release 4.0 Last change: 6 October 1987 1049 





INTR0(3L) LIGHTWEIGHT PROCESSES LIBRARY INTR0(3L) 

NAME 
intro - introduction to the lightweight process library (L WP) 

DESCRIPTION 
The lightweight process library (LWP) provides a mechanism to support multiple threads of control that 
share a single address space. Under SunOS, the address space is derived from a single forked ("heavy
weight") process. Each thread has its own stack segment (specified when the thread is created) so that it 
can access local variables and make procedure calls independently of other threads. The collection of 
threads sharing an address space is called a pod. Under Sun0S, threads share all of the resources of the 
heavyweight process that contains the pod, including descriptors and signal handlers. 

The LWP provides a means for creating and destroying threads, message exchange between threads, mani
pulating condition variables and monitors, handling synchronous exceptions, mapping asynchronous events 
into messages, mapping synchronous events into exceptions, arranging for special per-thread context, mul
tiplexing the clock for timeouts, and scheduling threads both preemptively and non-preemptively. 

The LWP system exists as a library of routines (/usr/lib/Iiblwp.a) linked in (-Uwp) with a client program 
which should #include the file <lwp/Iwp.h>. main is transparently converted into a lightweight process as 
soon as it attempts to use any LWP primitives. 

When an object created by a LWP primitive is destroyed, every attempt is made to clean up after it. For 
example, if a thread dies, all threads blocked on sends to or receives from that thread are unblocked, and all 
monitor locks held by the dead thread are released. 

Because there is no kernel support for threads at present, system calls effectively block the entire pod. By 
linking in the non-blocking 1/0 library (-lnbio) ahead of the LWP library, you can alleviate this problem 
for those system calls that can issue a signal when a system call would be profitable to try. This library 
(which redefines some system calls) uses asynchronous 1/0 and events (for example, SIGCHLD and 
SIGIO) to make blocking less painful. The system calls remapped by the nbio library are: open(2V), 
socket(2), pipe(2), close(2), read(2V), write(2V), send(2), recv(2), accept(2), connect(2), select(2), 
wait(2) 

RETURN VALUES 
LWP primitives return -1 on errors. Upon success, a non-negative integer is returned. See 
lwp _perror(3L) for details on error handling. 

FILES 
/usr/lib/Iiblwp.a 
/usr/Iib/libnbio.a 
/usr/include/Iwp/check.h 
/usr/include/Iwp/Iwp.h 
/usr/include/Iwp/lwperror.h 
/usr/include/lwp/lwpmachdep.h 
/usr/include/Iwp/stackdep.h 

SEE ALSO 
accept(2), close(2), connect(2), open(2V), pipe(2), read(2V), recv(2), select(2), send(2), socket(2), 
wait(2) write(2V), 
Lightweight Processes in the System Services Overview 

INDEX 
The following are the primitives currently supported, grouped roughly by function. 

Thread Creation 
lwp _ self( tid) 
Iwp _getstate(tid, statvec) 
lwp _ setregs( tid, machstate) 
lwp _getregs( tid, machstate) 
lwp _ping(tid) 
lwp _ create(tid, pc, prio, flags, stack, nargs, argl, ... , argn) 
Iwp _ destroy( tid) 

Sun Release 4.0 Last change: 18 November 1987 1051 



INTR0(3L) LIGHTWEIGHT PROCESSES LIBRARY 

lwp _ enumerate(vec, maxsize) 
pod_ setexit(status) 
pod _getexit() 
pod_ exit(status) 
SAMETHREAD(tl, t2) 

Thread Scheduling 
pod_ setmaxpri(maxprio) 
pod _getmaxpri() 
pod _getmaxsize( ) 
lwp_resched(prio) 
lwp_setpri(tid, prio) 
lwp _ sleep( timeout) 
lwp _ suspend( tid) 
lwp _resume(tid) 
lwp _yield( tid) 
lwp _join(tid) 

Error Handling 
lwp _geterr( ) 
lwp _perror(s) 
lwp _ errstr( ) 

Messages 
msg_send(tid, argbuf, argsize, resbuf, ressize) 
msg_recv(tid, argbuf, argsize, resbuf, ressize, timeout) 
MSG_ RECV ALL(tid, argbuf, argsize, resbuf, ressize, timeout) 
msg_reply(tid) 
msg_ enumsend( vec, maxsize) 
msg_ enumrecv( vec, maxsize) 

Event Mapping (Agents) 
agt _ create(agt, event, memory) 
agt_ enumerate(vec, maxsize) 
agt _ trap( event) 

Thread Synchronization: Monitors 
mon _ create(mid) 
moo_ destroy(mid) 
mon _ enter(mid) 
mon _ exit(mid) 
moo_ enumerate( vec, maxsize) 
mon_waiters (mid, owner, vec, maxsize) 
moo_ cond _ enter(mid) 
mon _ break(mid) 
MONITOR(mid) 
SAMEMON(ml, m2) 

Thread Synchronization: Condition Variables 
cv _ create( cv, mid) 

1052 

cv _ destroy( cv) 
cv _ wait(cv) 
CV - notify( CV) 

cv _send(cv, tid) 
cv _ broadcast(cv) 
cv _ enumerate(vec, maxsize) 
cv _ waiters(cv, vec, maxsize) 
SAMECV(cl, c2) 

Last change: 18 November 1987 

INTR0(3L) 

Sun Release 4.0 



IN1R0(3L) LIGHTWEIGHT PROCESSES LIBRARY 

Exception Handling 
exc _ handle(pattern, func, arg) 
exc _ unhandle() 
( •exc _ bound(pattern, arg) )() 
exc _ notify(pattern) 
exc _raise(pattern) 
exc _on_ exit(func, arg) 
exc _ uniqpatt() 

Special Context Handling 
Iwp_ctxinit(tid, cookie) 
lwp _ ctxremove( tid, cookie) 
Iwp _ ctxset(save, restore, ctxsize, optimise) 
lwp _ ctxmemget(mem, tid, ctx) 
lwp _ ctxmemset(mem, tid, ctx) 
lwp _ fpset( tid) 
Iwp _ libcset(tid) 

Stack Management 
CHECK(location, result) 

BUGS 

lwp _ setstkcache(minsize, numstks) 
lwp _ newstk() 
lwp_datastk(data, size, addr) 
Iwp_stkcswset(tid, limit) 
lwp _ checkstkset( tid, limit) 
STKTOP(s) 

There is no language support available from C. 

IN1R0(3L) 

There is no kernel support yet. Thus system calls in different threads cannot execute in parallel. 
Killing a process that uses the non-blocking 1/0 library may leave objects (such as its standard input) in a 
non-blocking state. This could cause confusion to the shell. 

Sun Release 4.0 Last change: 18 November 1987 1053 



IN1R0(3L) LIGHTWEIGHT PROCESSES LIBRARY IN1R0(3L) 

LIST OF LWP LIBRARY FUNCTIONS 
Name 

1054 

agt _create() 
agt _ enumerate( ) 
agt_trap() 
CHECK() 
cv _broadcast() 
cv _create() 
cv _ destroy( ) 
cv _ enumerate( ) 
cv _notify() 
cv_send() 
cv_wait() 
cv _ waiters( ) 
exc _bound() 
exc _handle() 
exc _notify() 
exc _on_ exit( ) 
exc _ raise( ) 
exc _ unhandle() 
exc _ uniqpatt() 
lwp _ checkstkset() 
lwp _ create( ) 
lwp _ ctxinit() 
lwp _ ctxremove( ) 
lwp _ ctxset() 
lwp _ ctxmemget() 
lwp_ctxmemset() 
lwp _destroy() 
lwp _ enumerate( ) 
lwp _ errstr( ) 
lwp _fpset() 
lwp _geterr( ) 
lwp _getstate( ) 
lwp _ setregs( ) 
lwp _getregs() 
lwp_ping() 
lwp_join() 
lwp _ libcset() 
lwp _ newstk() 
lwp _ datastk() 
lwp _perror() 
lwp _ resched() 
lwp_resume() 
lwp_self() 
lwp _ setpri() 
lwp _setstkcache() 
lwp _sleep() 
lwp _ stkcswset( ) 
lwp _suspend() 
lwp _yield() 
MINST ACKSZ() 

Appears on Page 

agt_create(3L) 
agt_ create(3L) 
agt_ create(3L) 
lwp_newstk(3L) 
cv _ create(3L) 
cv _ create(3L) 
cv _ create(3L) 
cv _ create(3L) 
cv _ create(3L) 
cv _ create(3L) 
cv _create(3L) 
cv _ create(3L) 
exc _handle(3L) 
exc _ handle(3L) 
exc _ handle(3L) 
exc _ handle(3L) 
exc _ handle(3L) 
exc _ handle(3L) 
exc _ handle(3L) 
lwp _ newstk(3L) 
lwp _ create(3L) 
lwp _ ctxinit(3L) 
lwp _ ctxinit(3L) 
lwp _ ctxinit(3L) 
lwp _ ctxinit(3L) 
lwp_ctxinit(3L) 
lwp _ create(3L) 
lwp _ status(3L) 
lwp _perror(3L) 
lwp _ ctxinit(3L) 
lwp_perror(3L) 
lwp _ status(3L) 
lwp _ status(3L) 
lwp _ status(3L) 
lwp _ status(3L) 
lwp _yield(3L) 
lwp _ ctxinit(3L) 
lwp _ newstk(3L) 
lwp _ newstk(3L) 
lwp _perror(3L) 
lwp _yield(3L) 
lwp _yield(3L) 
lwp _ status(3L) 
lwp _yield(3L) 
lwp _ newstk(3L) 
lwp _yield(3L) 
lwp _ newstk(3L) 
lwp _yield(3L) 
lwp _yield(3L) 
lwp _ newstk(3L) 

Description 

map L WP events into messages 
map L WP events into messages 
map L WP events into messages 
L WP stack management 
manage L WP condition variables 
manage L WP condition variables 
manage L WP condition variables 
manage L WP condition variables 
manage L WP condition variables 
manage L WP condition variables 
manage L WP condition variables 
manage L WP condition variables 
L WP exception handling 
L WP exception handling 
L WP exception handling 
L WP exception handling 
L WP exception handling 
L WP exception handling 
L WP exception handling 
L WP stack management 
L WP thread creation and destruction primitives 
special L WP context operations 
special L WP context operations 
special L WP context operations 
special L WP context operations 
special L WP context operations 
L WP thread creation and destruction primitives 
L WP status information 
L WP error handling 
special L WP context operations 
L WP error handling 
L WP status information 
L WP status information 
L WP status information 
L WP status information 
controlLWPscheduling 
special L WP context operations 
L WP stack management 
L WP stack management 
L WP error handling 
control L WP scheduling 
control L WP scheduling 
L WP status information 
control L WP scheduling 
L WP stack management 
control L WP scheduling 
L WP stack management 
control L WP scheduling 
control L WP scheduling 
L WP stack management 

Last change: I 8 November 1987 Sun Release 4.0 



IN1R0(3L) 

moo_ break() 
moo_ cond _enter() 
moo_ create( ) 
moo_ destroy() 
moo_ enter( ) 
moo_ enumerate() 
mon_exit() 
moo_ waiters( ) 
MONITOR() 
msg_ enumrecv() 
msg_ enumsend() 
msg_recv() 
MSG_RECVALL() 
msg_ reply( ) 
msg_send() 
pod_exit() 
pod _getexit() 
pod _getmaxpri() 
pod _getmaxsize( ) 
pod setexit( ) 
pod_ setmaxpri() 
SAMECV() 
SAMEMON() 
SAMETHREAD() 
STKTOP() 

Sun Release 4.0 

LIGHTWEIGHT PROCESSES LIBRARY IN1R0(3L) 

moo_ create(3L) 
moo_ create(3L) 
moo_ create(3L) 
moo_ create(3L) 
mon_create(3L) 
moo_ create(3L) 
mon_create(3L) 
moo_ create(3L) 
moo_ create(3L) 
msg_seod(3L) 
msg_seod(3L) 
msg_seod(3L) 
msg_seod(3L) 
msg_seod(3L) 
msg_ seod(3L) 
lwp _ create(3L) 
Iwp _ create(3L) 
pod _setmaxpri(3L) 
pod_ setmaxpri(3L) 
lwp _ create(3L) 
pod_ setmaxpri(3L) 
cv _ create(3L) 
moo_ create(3L) 
lwp _ create(3L) 
Iwp _ oewstk(3L) 

L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP routines to manage critical sections 
L WP send and receive messages 
L WP send and receive messages 
L WP send and receive messages 
L WP send and receive messages 
L WP send and receive messages 
L WP send and receive messages 
L WP thread creation and destruction primitives 
L WP thread creation and destruction primitives 
control L WP scheduling priority 
control L WP scheduling priority 
L WP thread creation and destruction primitives 
control L WP scheduling priority 
manage L WP condition variables 
L WP routines to manage critical sections 
L WP thread creation and destruction primitives 
L WP stack management 

Last change: 18 November 1987 1055 



AGT_CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY AGT_CREATE ( 3L) 

NAME 
agt_create, agt_enumerate, agt_trap - map L WP events into messages 

SYNOPSIS 
#include <lwp/Iwp.h> 

thread t 
agt_create(agt, event, memory) 
thread_ t •agt; 
int event; 
caddr _ t memory; 

int 
agt _ enumerate(vec, maxsize) 
thread_ t vec[ ] ; 
int maxsize; 

int 
agt _trap( event) 
int event; 

DESCRIPTION 

1056 

Agents are enuues that act like threads sending messages when an asynchronous event occurs. 
agt _create() creates an object called an agent which maps the asynchronous event event into messages 
that can be received with msg_receive. agt stores the handle on this object. event is a UNIX signal 
number. 

agt_trap() causes the event, event, to generate an exception (see exc_handle(3L)). Once initialized using 
agt_create() or agt_trap, an event can not be remapped to a different style of handling. If traps are 
enabled, an event will cause the termination of the thread running at the time of the trap if the trap excep
tion is not handled. If an exception handler is in place, an exception will be raised. If an agent exists for 
the event, the event is mapped into a message for the agent. If neither agent nor trap mapping is enabled, 
the default signal action (SIG_DFL) is applied to the pod. Use of standard UNIX signal handling facilities 
will defeat the event mapping mechanism. 

The message sent by the agent (in the argument buffer) will look like any other message with the sender 
being the agent. The receive buffer is NULL. A message is always sent by an agent to the thread which 
created the agent. 

All messages sent by an agent contain an eventinf o _ t. This structure indicates the thread running at the 
time the interrupt happened, and the particular event that occurred. Some agent messages contain more 
information if the particular event warrants it In this case, a struct containing an eventinf o _ t as its first 
element is passed as the argument buffer. Definitions of these structures are contained in <lwp/Iwp.h>. 

An agent appears to the owning thread just like another thread. It must therefore have some memory for 
holding its message, as the sender and receiver must belong to the same address space. memory is the 
space an agent will use to store its message. Typically, this is on the stack of the thread that created the 
agent. It must be of the correct size for the kind of event being created (most events need something to 
store an eventinf o _ t. SIGCHLD events need room fora sigchldev _ t.) 

You should reply to an agent (using msg_reply (see msg_send(3L)) as you would reply to a thread. 
Although agents do not ordinarily lose events, the next agent message will not be delivered until a reply is 
sent to the agent. Thus, an agent appears to the client as an ordinary thread sending messages. An agent 
will only lose events if the total number of unreplied-to events in a pod exceeds AGENTMEMORY. 

Iwp _destroy() is used to destroy an agent. All agents created by a thread automatically disappear when 
that thread dies. agt_enumerate() fills in a list with the ID's of all existing agents and returns the total 
number of agents. This primitive uses maxsize to avoid exceeding the capacity of the list. If the number of 
agents is greater than maxsize, only maxsize agents ID's are filled in vec. If maxsize is zero, 
agt _ enumerate( ) returns the total number of agents. 

Last change: 18 November 1987 Sun Release 4 .0 



AGT_CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY AGT_CREATE(3L) 

The special event LASTRITES is caused by the termination of a thread. An agent for LASTRITES will be 
informed about every thread that terminates, regardless of cause. The eventinfo _ code element of this 
agent will contain the stack argument that the dead thread was created with. Note: by allocating adjacent 
space above the thread stack, this argument can be used to point to private information about a thread. The 
eventinf o victimid element will contain the id of the dead thread. 

RETURN VALUE 
Upon successful completion, agt_create() and agt_trap() return 0. Otherwise, -1 is returned. 

agt _ enumerate( ) returns the total number of agents. 

ERRORS 
agt _trap() will fail if one or more of the following is true: 

LE_INV ALIDARG Event specified does not exist. 

LE_INUSE Agent in use for this event. 

agt _create() will fail if one or more of the following are true: 

LE_INV ALIDARG Attempt to create agent for non-existent event. 

LE_INUSE Trap mapping in use for this event. 

SEE ALSO 

BUGS 

exc_handle(3L), msg_send(3L) 

Signal handlers always take the SIG_DFL action when no agent manages the event. 

If a descriptor used by a parent of the pod (such as its standard input) is marked non-blocking by a thread, 
it should be reset when the pod terminates to prevent the parent from receiving EWOULDBLOCK errors on 
the descriptor. There is no way to prevent this from happening if a pod is terminated with extreme preju
dice (for instance, using SIGKILL). 

If an agent reports that a descriptor has 1/0 available, there may be more than one occurrence of I/0 avail
able from that descriptor. Thus, being informed that SIGIO has occurred on sockets may mean that there 
are several messages waiting to be received from s. Clients should be careful to clean out all 1/0 from a 
descriptor before going back to sleep. 

All system calls should be protected with loops testing for EINTR (and monitors if multiple threads can try 
to use system calls concurrently). An lwp_sleep() could result in a hidden clock interrupt for example. 

WARNINGS 

agt _ trap( ) should not be used for asynchronous events. If an unsuspecting thread which has no exception 
handler is running at the time of a trapped event, it will be terminated. 

Clients should not normally handle signals themselves since the agent mechanism assumes it is the only 
entity handling signals. 

Sun Release 4.0 Last change: 18 November 1987 1057 



CV _CREATE ( 3L) LIGHTWEIGHT PROCESSES LIBRARY CV _CREATE{3L) 

NAME 
cv_create, cv_destroy, cv_wait, cv_notify, cv_broadcast, cv_send, cv_enumerate, cv_waiters, SAMECV -
manage L WP condition variables 

SYNOPSIS 
#include <lwp/Iwp.h> 

CV t 
cv _ create( cv, mid) 
cv_t •cv; 
mon_tmid; 

int 
cv _ destroy( cv) 
cv_t cv; 

int 
cv _ wait(cv) 
cv_t cv; 

int 
CV - notify( CV) 

cv_t cv; 

int 
cv _send(cv, tid) 
cv_t cv; 
lwp_t tid 

int 
cv _ broadcast( cv) 
cv_t cv; 

int 
cv _ enumerate( vec, maxsize) 
cv _t vec[ ]; /• will contain list of all conditions•/ 
int maxsize; I• maximum size of vec •/ 

int 
cv waiters( cv, vec, maxsize) 
cv =t cv; /• condition variable being interrogated •/ 
thread_t vec[ ]; /• which threads are blocked on cv •/ 
int maxsize; I• maximum size of vec •/ 

SAMECV(cl, c2) 

DESCRIPTION 

1058 

Condition variables are useful for synchronization within monitors. By waiting on a condition variable, the 
currently-held monitor (a condition variable must always be used within a monitor) is released atomically 
and the invoking thread is suspended. When monitors are nested, monitor locks other than the current one 
are retained by the thread. At some later point, a different thread may awaken the waiting thread by issuing 
a notification on the condition variable. When the notification occurs, the waiting thread will queue to 
reacquire the monitor it gave up. It is possible to have different condition variables operating within the 
same monitor to allow selectivity in waking up threads. 

cv _create() creates a new condition variable (returned in cv) which is bound to the monitor specified by 
mid. It is illegal to access (using cv_wait, cv_notify, cv_send() or cv_broadcast) a condition variable 
from a monitor other than the one it is bound to. cv _destroy() removes a condition variable. 

Last change: 6 October 1987 Sun Release 4.0 



CV _CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY CV _CREA TE ( 3L) 

cv _wait() blocks the current thread and releases the monitor lock associated with the condition (which 
must also be the monitor lock most recently acquired by the thread). Other monitor locks held by the 
thread are not affected. The blocked thread is enqueued by its scheduling priority on the condition. 

cv _notify() awakens at most one thread blocked on the condition variable and causes the awakened thread 
to queue for access to the monitor released at the time it waited on the condition. It can be dangerous to 
use cv _notify() if there is a possibility that the thread being awakened is one of several threads that are 
waiting on a condition variable and the awakened thread may not be the one intended. In this case, use of 
cv _broadcast() is recommended. 

cv _broadcast() is the same as cv _notify() except that all threads blocked on the condition variable are 
awakened. cv _notify() and cv _broadcast() do nothing if no thread is waiting on the condition. For both 
cv _notify() and cv _ broadcast, the currently held monitor must agree with the one bound to the condition 
by cv _ create. 

cv _send() is like cv _notify() except that the particular thread tid is awakened. If this thread is not 
currently blocked on the condition, cv _send() reports an error. 

cv _ enumerate( ) lists the ID of all of the condition variables. The value returned is the total number of 
condition variables. The vector supplied is filled in with the ID's of condition variables. cv _waiters() lists 
the ID's of the threads blocked on the condition variable cv and returns the number of threads blocked on 
cv. For both cv _enumerate() and cv _ waiters, maxsize is used to avoid exceeding the capacity of the list 
vec. If the number of entries to be filled is greater than maxsize, only maxsize entries are filled in vec. It is 
legal in both of these primitives to specify a maxsize of 0. 

SAMECV is a convenient predicate used to compare two condition variables for equality. 

RETURN VALUE 
cv _ create, cv _destroy, cv _ send, cv _ wait, cv _notify, cv _ broadcast: 

A O return indicates success; -1 indicates an error. 

cv _enumerate() returns the total number of condition variables. 

cv _ waiters( ) returns the number of threads blocked on a condition variable. 

ERRORS 
cv _ destroy( ) will fail if one or more of the following is true: 

LE_INUSE Attempt to destroy condition variable being waited on by a thread. 

LE_NONEXIST Attempt to destroy non-existent condition variable. 

cv _wait() will fail if one or more of the following is true: 

LE_NOTOWNED Attempt to wait on a condition without possessing the correct monitor lock. 

LE_NONEXIST Attempt to wait on non-existent condition variable. 

cv _notify() will fail if one or more of the following is true: 

LE_NOTOWNED Attempt to notify condition variable without possessing the correct monitor. 

LE_NONEXIST Attempt to notify non-existent condition variable. 

cv _send() will fail if one or more of the following is true: 

LE_NOTOWNED 

LE_NONEXIST 

LE_NOWAIT 

Attempt to awaken condition variable without possessing the correct monitor lock. 

Attempt to awaken non-existent condition variable. 

The specified thread is not currently blocked on the condition. 

cv _broadcast() will fail if one or more of the following is true: 

LE_NOTOWNED Attempt to broadcast condition without possessing the correct monitor lock. 

LE_NONEXIST Attempt to broadcast non-existent condition variable. 

Sun Release 4.0 Last change: 6 October 1987 1059 



CV _CREA TE ( 3L) LIGHTWEIGHT PROCESSES LIBRARY CV _CREATE(3L) 

SEE ALSO 
mon _ create(3L) 

1060 Last change: 6 October 1987 Sun Release 4.0 



EXC_HANDLE ( 3L) LIGHTWEIGHT PROCESSES LIBRARY EXC_HANDLE ( 3L) 

NAME 
exc_handle, exc_unhandle, exc_bound, exc_notify, exc_raise, exc_on_exit, exc_uniqpatt- LWP exception 
handling 

SYNOPSIS 
#include <lwp/Iwp.h> 

int 
exc _ handle(pattern, func, arg) 
int pattern; 
caddr_t (*func)(); 
caddr _ t arg; 

int 
exc _raise(pattern) 
int pattern; 

int 
exc _ unhandle() 

caddr t 
( •exc _ bound(pattern, arg) )() 
int pattern; 
caddr_t •arg; 

int 
exc _ notify(pattern) 
int pattern; 

int 
exc _on_ exit(func, arg) 
void (•fulic)( ); 
caddr_t arg; 

int 
exc _ uniqpatt() 

DESCRIPTION 
These primitives can be used to manage exceptional conditions in a thread. Basically, raising an exception 
is a more general form of non-local goto or long.imp, but the invocation is pattern-based. It is also possible 
to notify an exception handler whereby a function supplied by the exception handler is invoked and control 
is returned to the raiser of the exception. Finally, one can establish a handler which is always invoked 
upon procedure exit, regardless of whether the procedure exits using a return or an exception raised to a 
handler established prior to the invocation of the exiting procedure. 

exc _handle() is used to establish an exception handler. exc _handle( ) returns O to indicate that a handler 
has been established. A return of -1 indicates an error in trying to establish the exception handler. If it 
returns something else, an exception has occurred and any procedure calls deeper than the one containing 
the handler have disappeared. All exception handlers established by a procedure are automatically dis
carded when the procedure terminates. 

exc_handle() binds a pattern to the handler, where a pattern is an integer, and two patterns match if their 
values are equal. When an exception is raised with exc _raise, the most recent handler that has established 
a matching pattern will catch the exception. A special pattern (CATCHALL) is provided which matches any 
exc _raise( ) pattern. This is useful for handlers which know that there is no chance the resources allocated 
in a routine can be reclaimed by previous routines in the call chain. 

The other two arguments to exc_handle() are a function and an argument to that function. exc_bound() 
retrieves these arguments from an exc _handle() call made by the specified thread. By using exc _bound() 
to retrieve and call a function bound by the exception handler, a procedure can raise a notification excep
tion which allows control to return to the raiser of the exception after the exception is handled. 

Sun Release 4.0 Last change: 6 October 1987 1061 



EXC"'""HANDLE(3L) LIGHTWEIGHT PROCESSES LIBRARY EXC_HANDLE(3L) 

exc_raise() allows the caller to transfer control (do a non-local goto) to the matching exc_handle. This 
matching exception handler is destroyed after the control transfer. At this time, it behaves as if 
exc _handle() returns with the pattern from exc _raise( ) as the return value. Note: June of exc _handle() is 
not called using exc_raise() - it is only there for notification exceptions. Because the exception handler 
returns the pattern that invoked it, it is possible for a handler that matches the CATCHALL pattern to reraise 
the exact exception it caught by using exc _raise( ) on the caught pattern. It is illegal to handle or raise the 
pattern O or the pattern -1. Handlers are searched for pattern matches in the reverse execution order that 
they are set (i.e., the most recently established handler is searched first). 

exc _ unhandle() destroys the most recently established exception handler set by the current thread. It is an 
error to destroy an exit-handler set up by exc_on_exit. When a procedure exits, all handlers and exit 
handlers set in the procedure are automatically deallocated. 

exc _notify() is a convenient way to use exc _ bound. The function which is bound to pattern is retrieved. 
If the function is not NULL, the function is called with the associated argument and the result is returned. If 
the function is NULL, exc _raise(pattern) is returned. 

exc _on_ exit() specifies an exit procedure and argument to be passed to the exit procedure, which is called 
when the procedure which sets an exit handler using exc _on_ exit() exits. The exit procedures (more than 
one may be set) will be called regardless if the setting procedure is exited using a return or an exc_raise. 
Because the exit procedure is called as if the handling procedure had returned, the argument passed to it 
should not contain addresses on the handler's stack. However, any value returned by the procedure which 
established the exit procedure is preserved no matter what the exit procedure returns. This primitive is 
used in the MONITOR macro to enforce the monitor discipline on procedures. 

Some signals can be considered to be synchronous traps. They are usually the starred(*) signals in the sig
nal(3) man pages. These are: SIGSYS, SIGBUS, SIGEMT, SIGFPE, SIGILL, SIGTRAP, SIGSEGV. If an 
event is marked as a trap using agt_trap (see agt_create(3L)) the event will generate exceptions instead of 
agent messages. This mapping is per-pod, not per-thread. A thread which handles the signal number of 
one of these as the pattern for exc _handle() will catch such a signal as an exception. The exception will 
be raised as an exc_notify() so either escape or notification style exceptions can be used, depending on 
what the matching exc _handle() provides. If the exception is not handled, the thread will terminate. Note: 
it can be dangerous to supply an exception handler to treat stack overflow since the client's stack is used in 
raising the exception. 

exc _ uniqpatt() returns an exception pattern that is not any of the pre-defined patterns (any of the synchro
nous exceptions or -1 or CATCHALL). Each call to exc_uniqpatt() results in a different pattern. If 
exc _ uniqpatt() cannot guarantee uniqueness, -1 is returned instead the first time this happens. Subse
quent calls after this error result in patterns which may be duplicates. 

RETURN VALUE 

1062 

exc _ uniqpatt() returns -1 the first time it fails. Otherwise, it returns a unique pattern. 

When exc _ handle() is called, a return value of O indicates success and -1 indicates error. When 
exc _handle() returns because of a matching exc _raise( ) call, it returns the pattern raised by exc _raise. 

Upon successful completion, exc _raise() transfers control to the matching exc _handle() and does not 
return. If there is an error, exc _raise() returns -1. 

Upon successful completion, exc_unhandle() returns 0. It returns -1 if there is an error. 

exc _bound() returns a pointer to a function or O if no function was bound. 

Upon successful completion, exc _notify() returns the return value of a function or transfers control to a 
matching exc _handle() and does not return. It returns -1 if there is an error. 

exc _on_ exit() returns 0. 

Last change: 6 October 1987 Sun Release 4.0 



EXC_HANDLE ( 3L) LIGHTWEIGHT PROCESSES LIBRARY EXC_HANDLE ( 3L) 

ERRORS 

BUGS 

exc _ unhandle( ) will fail if one or more of the following is true: 

LE_NONEXIST Attempt to remove an exit handler or a non-existent handler. 

exc _raise( ) will fail if one or more of the following is true: 

LE_NONEXIST 

LE_INV ALIDARG 

No context found to raise an exception to. 

Attempt to raise an illegal pattern (-1 or 0). 

exc _ handle( ) will fail if one or more of the following is true: 

LE_INV ALIDARG Attempt to handle an illegal pattern (-1 or 0). 

exc _ uniqpatt() will fail if one or more of the following is true: 

LE_REUSE Possible reuse of existing object. agt_create(3L) 

The stack may not contain useful information after an exception has been caught so post-exception debug
ging can be difficult. The reason for this is that a given handler may call procedures that trash the stack 
before reraising an exception. 

The distinction between traps and interrupts can be problematical. 

The environment restored on exc _raise() consists of the registers at the time of the exc _ handle. As a 
result, modifications to register variables between the times of exc _handle() and exc _raise( ) will not be 
seen. This problem does not occur in the sun4 implementation. 

WARNINGS 
exc _on_ exit( ) passes a simple type as an argument to the exit routine. If you need to pass a complex type, 
such as a thread _t, mon _t, or cv _t, pass a pointer to the object instead. 

Sun Release 4.0 Last change: 6 October 1987 1063 



L WP """"CREATE ( 3L) LIGHTWEIGHT PROCESSES LIBRARY L WP _CREATE ( 3L) 

NAME 
lwp_create, lwp_destroy, SAMETHREAD, pod_setexit, pod__getexit, pod_exit- LWP thread creation and 
destruction primitives 

SYNOPSIS 
#include <lwp/Iwp.h> 
#include <lwp/stackdep.h> 

int 
lwp _ create(tid, func, prio, flags, stack, nargs, argl, ... , argn) 
thread_ t •tid; 
void (*func)(); 
int prio; 
int flags; 
stkalign _ t •stack; 
int nargs; 
int argl, ... , argn; 

int 
Iwp _ destroy( tid) 
thread_ t tid; 

void 
pod setexit(status) 
int status; 

int 
pod _getexit(status) 
int status; 

void 
pod exit(status) 
int status 

SAMETHREAD(tl, t2) 

DESCRIPTION 

1064 

Iwp _ create( ) creates a lightweight process which starts at address June and has stack segment stack. If 
stack is NULL, the thread is created in a suspended state (see below) and no stack or pc is bound to the 
thread. prio is the scheduling priority of the thread (higher priorities are favored by the scheduler). The 
identity of the new thread is filled in the reference parameter tid. flags describes some options on the new 
thread. LWPSUSPEND creates the thread in suspended state (see lwp_yield(3L)). LWPNOLASTRITES 
will disable the LASTRITES agent message when the thread dies. The default (0) is to create the thread in 
running state with LASTRITES reporting enabled. LWPSERVER indicates that a thread is only viable as 
long as non-LWPSERVER threads are alive. The pod will terminate if the only living threads are marked 
L WPSERVER and blocked on a lwp resource (for instance, waiting for a message to be sent). nargs is the 
number (0 or more) of simple-type (int) arguments supplied to the thread. 

The first time a lwp primitive is used, the lwp library automatically converts the caller (i.e., main) into a 
thread with the highest available scheduling priority (see pod_setmaxpri(3L)). The identity of this thread 
can be retrieved using Iwp_self (see lwp_status(3L)). This thread has the normal Sunos stack given to 
any forked process. 

Scheduling is, by default, non-preemptive within a priority, and within a priority, threads enter the run 
queue on a FIFO basis (that is, whenever a thread becomes eligible to run, it goes to the end of the run 
queue of its particular priority). Thus, a thread continues to run until it voluntarily relinquishes control or 
an event (including thread creation) occurs to enable a higher priority thread. Some primitives may cause 
the current thread to block, in which case the unblocked thread with the highest priority runs next. When 
several threads are created with the same priority, they are queued for execution in the order of creation. 

Last change: 6 October 1987 Sun Release 4.0 



L WP '-CREA TE ( 3L) LIGHTWEIGHT PROCESSES LIBRARY LWP _CREATE ( 3L) 

This order may not be preserved as threads yield and block within a priority. If an agent owned by a thread 
with a higher priority is invoked, that thread will preempt the currently running one. 

There is no concept of ancestry in threads: the creator of a thread has no special relation to the thread it 
created. When all threads have died, the pod terminates. 

Iwp _destroy() is a way to explicitly terminate a thread or agent (instead of having an executing thread 
"fall though", which also terminates the thread). tid specifies the id of the thread or agent to be ter
minated. If tid is SELF, the invoking thread is destroyed. Upon termination, the resources (messages, 
monitor locks, agents) owned by the thread are released, in some cases resulting in another thread being 
notified of the death of its peer (by having a blocking primitive become unblocked with an error indica
tion). A thread may terminate itself explicitly, although self-.destruction is automatic when it returns from 
the procedure specified in the lwp _create() primitive. 

pod_setexit() sets the exit status for a pod. This value will be returned to the parent process of the pod 
when the pod dies (default is 0). exit(3) terminates the current thread, using the argument supplied to exit 
to set the current value of the exit status. on_ exit(3) establishes an action that will be taken when the entire 
pod terminates. pod_ exit() is available to terminate the pod immediately with the final actions established 
by on_ exit. If you wish to terminate the pod immediately, pod_ exit() or exit(2) should be used. 
pod _getexit() returns the current value of the pod's exit status. 

SAMETHREAD is a convenient predicate used to compare two threads for equality. 

RETURN VALUE 
Upon successful completion, Iwp_create, and lwp_destroy() return 0. Otherwise, -1 is returned. 
pod _getexit() returns the current exit status of the pod. 

ERRORS 
lwp _ create( ) will fail if one or more of the following are true: 

LE_NOROOM Unable to allocate memory for thread context. 

LE_INV ALIDARG Too many arguments (> 512). 

LE_ILLPRIO Illegal priority. 

lwp _destroy() will fail if one or more of the following are true: 

LE_NONEXIST Attempt to destroy a thread or agent that does not exist. 

SEE ALSO 
exit(3), lwp_yield(3L), on_exit(3), pod_setmaxpri(3L) 

WARNINGS 

Some special threads may be created silently by the lwp library. These include an idle thread that runs 
when no other activity is going on, and a reaper thread that frees stacks allocated by Iwp newstk. These 
special threads will show up in status calls. A pod will terminate if these special threads Me the only ones 
extant. 

Sun Release 4.0 Last change: 6 October 1987 1065 



L WP _CTXINIT ( 3L) LIGHTWEIGHT PROCESSES LIBRARY L WP _CTXINIT ( 3L) 

NAME 
lwp_ctxinit, lwp_ctxremove, lwp_ctxset, lwp_ctxmemget, lwp_ctxmemset, lwp_fpset, lwp_libcset - spe
cial L WP context operations 

SYNOPSIS 
#include <lwp/Iwp.h> 

int 
Iwp _ ctxset(save, restore, ctxsize, optimise) 
void (*save)(/* caddr t ctx, thread told, thread t new*/); 
void (*restore)(/* caddr_t ctx, thre"id_t old, thre-;d_t new*/); 
unsigned int ctxsize; 
int optimise; 

int 
lwp _ ctxinit( tid, cookie) 
thread_t tid; 
int cookie; 

int 

I* thread with special contexts *I 
I* type of context *I 

Iwp_ctxremove(tid, cookie) 
thread_t tid; 
int cookie; 

int 
lwp _ ctxmemget(mem, tid, ctx) 
caddr_t mem; 
thread_t tid; 
int ctx; 

int 
Iwp _ ctxmemset(mem, tid, ctx) 
caddr _ t mem; 
thread_t tid; 
int ctx; 

int 
Iwp _ fpset( tid) 
thread_t tid; 

int 
Iwp _ libcset(tid) 
thread_ t tid; 

I* thread utilizing floating point hardware *I 

I* thread utilizing errno *I 

DESCRIPTION 

1066 

Normally on a context switch, only machine registers are saved/restored to provide each thread its own vir
tual machine. However, there are other hardware and software resources which can be multiplexed in this 
way. For example, floating point registers can be used by several threads in a pod. As another example, 
the global value errno in the standard C library may be used by all threads making system calls. 

To accommodate the variety of contexts that a thread may need without requiring all threads to pay for 
unneeded switching overhead, Iwp _ ctxinit() is provided. This primitive allows a client to specify that a 
given thread requires certain context to be saved and restored across context switches (by default just the 
machine registers are switched). More than one special context may be given to a thread. 

To use Iwp _ ctxinit, it is first necessary to define a special context. Iwp _ ctxset() specifies save and restore 
routines, as well as the size of the context that will be used to hold the switchable state. The save routine 
will automatically be invoked when an active thread is blocked and the restore routine will be invoked 
when a blocked thread is restarted. These routines will be passed a pointer to a buffer (initialized to all O's) 
of size ctxsize which is allocated by the L WP library and used to hold the volatile state. In addition, the 

Last change: 22 November 1987 Sun Release 4.0 



L WP _CTXINIT ( 3L) LIGHTWEIGHT PROCESSES LIBRARY L WP _CTXIN1T ( 3L) 

identity of the thread whose special context is being saved (old) and the identity of the thread being res
tarted (new) are passed in to the save and restore routines. Iwp _ ctxset() returns a cookie used by subse
quent Iwp _ ctxinit() calls to refer to the kind of context just defined. If the optimise flag is TRUE, a special 
context switch action will not be invoked unless the thread resuming execution differs from the last thread 
to use the special context and also uses the special context. If the optimise flag is FALSE, the save routine 
will always be invoked immediately when the thread using this context is scheduled out and the restore 
routine will be invoked immediately when a new thread using this context is scheduled in. Note that an 
unoptimised special context is protected from threads which do not use the special context but which do 
affect the context state. lwp _ ctxremove() can be used to remove a special context installed by 
lwp _ ctxinit. 

Because context switching is done by the scheduler on behalf of a thread, it is an error to use an L WP 
primitive in an action done at context switch time. Also, the stack used by the save and restore routines 
belongs to the scheduler, so care should be taken not to use lots of stack space. As a result of these restric
tions, only knowledgeable users should write their own special context switching routines. 

Iwp _ ctxmemget and Iwp _ ctxmemset are used to retrieve and set (respectively) the memory associated 
with a given special context (ctx) and a given thread (tid). mem is the address of client memory that will 
hold the context information being retrieved or set. Note that the special context save and restore routines 
may be NULL, so pure data may be associated with a given thread using these primitives. 

Several kinds of special contexts are predefined. To allow a thread to share floating point hardware with 
other threads, the lwp _fpset() primitive is available. The floating-point hardware bound at compile-time is 
selected automatically. To multiplex the global variable errno, Iwp_libcset() is used to have errno 
become part of the context of thread tid. 

Special contexts can be used to assist in managing stacks. See Iwp _ newstk(3L) for details. 

RETURN VALUE 
Iwp _ ctxset() returns a cookie to be used by subsequent lwp _ ctxinit() calls, -1 if unable to define the con
text. 

ERRORS 
lwp _ ctxinit() will fail if one or more of the following are true: 

LE_INUSE This special context already set for this thread. 

lwp _ ctxremove( ) will fail if one or more of the following are true: 

LE_NONEXIST The specified context is not set for this thread. 

lwp _ ctxset() will fail if one or more of the following are true: 

LE_NOROOM Unable to allocate memory to define special context. 

SEE ALSO 
lwp _ newstk(3L) 

BUGS 
The floating point contexts should be initialized implicitly for those threads that use floating point. 

Sun Release 4.0 Last change: 22 November 1987 1067 



LWP_NEWSTK(3L) LIGHTWEIGHT PROCESSES LIBRARY L WP_ NEWSTK ( 3L) 

NAME 
lwp_checkstkset, lwp_stkcswset, CHECK, lwp_setstkcache, lwp_newstk, lwp_datastk, STKTOP - LWP 
stack management 

SYNOPSIS 
#include <lwp/lwp.h> 
#include <lwp/check.h> 
#include <lwp/lwpmachdep.h> 
#include <lwp/stackdep.h> 

CHECKOocation, result) 

int 
lwp _ checkstkset( tid, limit) 
thread_t tid; 
caddr _ t limit; 

int 
lwp_stkcswset(tid, limit) 
thread_ t tid; 
caddr _t limit; 

int 
lwp _ setstkcache(minstksz, numstks) 
int minstksz; 
int numstks; 

stkalign _ t * 
lwp _ newstk() 

stkalign _ t * 
lwp_datastk(data, size, addr) 
caddr_t data; 
int size; 
caddr _ t •addr; 

STKTOP(s) 

DESCRIPTION 

1068 

Stacks are problematical with lightweight processes. What is desired is that stacks for each thread are red
zone protected s·o that one thread's stack does not unexpectedly grow into the stack of another. In addition, 
stacks should be of infinite length, grown as needed. The process stack is a maximum-sized segment (see 
getrlimit(2).) This stack is redzone protected, and you can even try to extend it beyond its initial max
imum size in some cases. With SunOS 4.x, it is possible to efficiently allocate large stacks that have red 
zone protection, and the LWP library provides some support for this. For those systems that do not have 
flexible memory management, the L WP library provides assistance in dealing with the problems of main
taining multiple stacks. 

The stack used by main is the same stack that the system allocates for a/ orked process. For allocating 
other thread stacks, the client is free to use any statically or dynamically allocated memory (using memory 
from main 's stack is subject to the stack resource limit for any forked process). In addition, the LAS
TRITES agent message is available to free allocated resources when a thread dies. Any stack should be at 
least MINSTACKSZ stkalign _t's large because the LWP library will use the client stack to execute primi
tives. For very fast dynamically allocated stacks, a stack cacheing mechanism is available. 
lwp_setstkcache() allocates a cache of stacks. Each time the cache is empty, it is filled with numstks new 
stacks, each containing at least minstksz bytes. minstksz will automatically be augmented to take into 
account the stack needs of the LWP library. lwp_newstk() returns a cached stack that is suitable for use in 
an lwp _create() call. lwp _ setstkcache() must be called (once) prior to any use of lwp _ newstk. If run
ning under Sun0S 4.x, the stacks allocated by lwp_newstk() will be red-zone protected (an attempt to 
reference below the stack bottom will result in a SIGSEGV event). 

Last change: 6 October 1987 Sun Release 4.0 



L WP _NEWSTK ( 3L) LIGHTWEIGHT PROCESSES LIBRARY LWP_NEWSTK(3L) 

Threads created with stacks from lwp_newstk() should not use the NOLASTRITES flag. If they do, 
cached stacks will not be returned to the cache when a thread dies. 

lwp _ datastk() also returns a red-zone protected stack like lwp _ newstk() does. It copies any amount of 
data (subject to the size limitations imposed by lwp _ setstkcache) onto the stack above the stack top that it 
returns. data points to information of size bytes to be copied. The exact location where the data is stored is 
returned in the reference parameter addr. Because lwp_create() only passes simple types to the newly
created thread, lwp_datastk() is useful to pass a more complex argument: Call lwp_datastk() to get an 
initialized stack, and pass the address of the data structure (addr) as an argument to the new thread. 

A reaper thread running at the maximum pod priority is created by lwp_setstkcache. It's action may be 
delayed by other threads running at that priority, so it is suggested that the maximum pod priority not be 
used for client-created threads when lwp_newstk() is being used. Altering the maximum pod priority with 
pod_ setmaxpri() will have the side effect of increasing the reaper thread priority as well. 

The stack address passed to lwp_create() represents the top of the stack: the LWP library will not use any 
addresses at or above it. Thus, it is safe to store information above the stack top if there is room there. 

For stacks that are not protected with hardware redzones, some protection is still possible. For any thread 
tid with stack boundary limit made part of a special context with lwp _ checkstkset, the CHECK macro may 
be used. This macro, if used at the beginning of each procedure (and before local storage is initialized (it is 
okay to declare locals though)), will check that the stack limit has not been violated. If it has, the non-local 
location will be set to result and the procedure will return. CHECK is not perfect, as it is possible to call a 
procedure with many arguments after CHECK validates the stack, only to have these arguments clobber the 
stack before the new procedure is entered. 

lwp_stkcswset() checks at context-switch time the stack belonging to thread tid for passing stack boundary 
limit. In addition, a checksum at the bottom of the stack is validated to ensure that the stack did not tem
porarily grow beyond its limit. This is automated and more efficient than using CHECK, but by the time a 
context switch occurs, it's too late to do much but abort(3) if the stack was clobbered. 

To portably use statically allocated stacks, the macros in stackdep.h should be used. Declare a stacks to be 
an array of stkalign _t 's, and pass the stack to lwp _create() as STKTOP(s). 

RETURN VALUES 
lwp_newstk and lwp_datastk() return O on failure, else a valid new stack address. 

lwp _ setstkcache() returns the actual size of the stacks allocated in the cache. 

SEE ALSO 

BUGS 

getrlimit(2), abort(3) 

C should provide support for heap-allocated stacks at procedure entry time. The hardware should be 
segment-based to eliminate the problem altogether. 

WARNING 
lwp _ datastk() should not be directly used in a lwp _create() call since C does not guarantee the order in 
which arguments to a function are evaluated. 

Sun Release 4.0 Last change: 6 October 1987 1069 



L WP _PERR OR ( 3L) LIGHTWEIGHT PROCESSES LIBRARY L WP _PERROR ( 3L) 

NAME 
lwp_geterr, lwp_perror, lwp_errstr - L WP error handling 

SYNOPSIS 
#include <lwp/lwp.h> 
#include dwp/lwperror .h> 

lwp _err_ t lwp _geterr( ) ; 

void 
lwp _perror(s) 
char *s; 

char **lwp_errstr( ); 

DESCRIPTION 
When a primitive fails (returns -1), lwp _geterr() can be used to obtain the identity of the error (which is 
part of the context for each lwp ). lwp _perror() can be used to print an error message on the standard error 
file (analogous to perror(3)) when a lwp primitive returns an error indication. lwp _perror() uses the 
same mechanism as lwp _geterr() to obtain the last error. lwp _ errstr returns a pointer to the (NULL
terminated) list of error messages. 

lwp_libcset (see lwp_ctxinit(3L)) allows errno from the standard C library reflect a per-thread value 
rather than a per-pod value. 

SEE ALSO 
lwp _ ctxinit(3L), perror(3) 

1070 Last change: 22 November 1987 Sun Release 4.0 



L WP _STATUS ( 3L) LIGHTWEIGHT PROCESSES LIBRARY L WP _ST A TUS ( 3L) 

NAME 
lwp_self, lwp_ping, lwp_enumerate, lwp_getstate, lwp_setregs, lwp_getregs - L WP status information 

SYNOPSIS 
#include <lwp/Iwp.h> 
#include <lwp/Iwpmachdep.h> 

int 
Iwp enumerate(vec, maxsize) 
thr~d_t vec[ ]; I* list of id's to be filled in *I 
int maxsize; 

int 
lwp _ping(tid) 
thread_t tid; 

int 

I* number of elements in vec *I 

Iwp _getregs(tid, machstate) 
thread_ t tid; 
machstate _ t *machstate; 

int 
lwp _ setregs( tid, machstate) 
thread_ t tid; 
machstate _t *machstate; 

int 
Iwp _getstate( tid, statvec) 
thread_t tid; 
statvec _ t *statvec; 

int 
lwp _ self( tid) 
thread_ t *tid; 

DESCRIPTION 
lwp _self() returns the ID of the current thread in tid. This is the only way to retrieve the identity of main. 

lwp _ enumerate( ) fills in a list with the ID' s of all existing threads and returns the total number of threads. 
This primitive will use maxsize to avoid exceeding the capacity of the list. If the number of threads is 
greater than maxsize, only maxsize thread ID's are filled in vec. If maxsize is zero, lwp_enumerate() just 
returns the total number of threads. 

lwp_getstate() is used to retrieve the context of a given thread. It is possible to see what object (thread, 
monitor, etc.) if any that thread is blocked on, and the scheduling priority of the thread. 

lwp _ping returns O (no error) if the thread tid exists. Otherwise, -1 is returned. 

lwp_setregs sets the machine-dependent context (i.e., registers) of a thread. The next time the thread is 
scheduled in, this context is installed. Consult lwpmachdep.h for the details. lwp _getregs retrieves the 
machine-dependent context. Note: the registers may not be meaningful unless the thread in question is 
blocked or suspended because the state of the registers as of the most recent context switch is returned. 

RETURNS 
Upon successful completion, lwp _self and lwp _getstate() return 0, -1 on error. 

lwp _enumerate() returns the total number of threads. 

lwp _ping returns O if the specified thread exists, else -1. 

ERRORS 
lwp _getstate , Iwp _ping , and lwp _ setstate( ) will fail if one or more of the following is true: 

LE_NONEXIST Attempt to get the status of a non-existent thread. 

Sun Release 4 .0 Last change: 6 October 1987 1071 



LWP_YIELD(3L) LIGHTWEIGHT PROCESSES LIBRARY L WP_ YIELD ( 3L) 

NAME 
lwp_yield, lwp_suspend, lwp_resume, lwp_join, lwp_setpri, lwp_resched, lwp_sleep - control L WP 
scheduling 

SYNOPSIS 
#include <lwp/Iwp.h> 

int 
Iwp _yield(tid) 
thread_t tid; 

int 
lwp _ sleep( timeout) 
struct timeval *timeout; 

int 
Iwp_resched(prio) 
int prio; 

int 
Iwp _ setpri(tid, prio) 
thread_t tid; 
int prio; 

int 
Iwp _ suspend( tid) 
thread_t tid; 

int 
lwp_resume(tid) 
thread_t tid; 

int 
lwp join( tid) 
thread_t tid; 

DESCRIPTION 

1072 

lwp _yield() allows the currently running thread to voluntarily relinquish control to another thread with the 
same scheduling priority. On a uniprocessor, it is never the case that a thread can execute while a 
higher priority thread is eligible to run. If tid is THREADNULL, the next thread in the same priority 
queue of the yielding thread will run and the current thread will go the the end of the scheduling queue. 
Otherwise, it is the ID of the thread to run next, and the current thread will take second place in the 
scheduling queue. 

Iwp _sleep() blocks the thread executing this primitive for at least the time specified by timeout. 

Scheduling of threads is, by default, preemptive (higher priorities preempt lower ones) across priorities and 
non-preemptive within a priority. lwp_resched() moves the front thread for a given priority to the end of 
the scheduling queue. Thus, to ach.ieve a preemptive round-robin scheduling discipline, a high priority 
thread can periodically wake up and shuffle the queue of threads at a lower priority. Iwp _resched() does 
not affect threads which are blocked. If the priority of the rescheduled thread is the same as that of the 
caller, the effect is the same as lwp _yield. 

lwp_setpri() is used to alter (raise or lower) the scheduling priority of the specified thread. If tid is SELF, 
the priority of the invoking thread is set. Note: if the priority of the affected thread becomes greater than 
that of the caller and the affected thread is not blocked, the caller will not run next. Iwp _ setpri( ) can be 
used on either blocked or unblocked threads. 

lwp join() blocks the thread issuing the join until the thread tid terminates. More than one thread may join 
tid. 

Last change: 6 October 1987 Sun Release 4.0 



L WP_ YIELD ( 3L) LIGHTWEIGHT PROCESSES LIBRARY LWP_YIELD(3L) 

NOTE 

lwp _suspend() makes the specified thread ineligible to run. If tid is SELF, the caller is itself suspended. 
lwp _resume( ) undoes the effect of lwp _ suspend. If a blocked thread is suspended, it will not run until it 
has been unblocked as well as explicitly made eligible to run using lwp_resume. By suspending a thread, 
one can safely examine it without worrying that its execution-time state will change. 

When scheduling preemptively, be sure to use monitors to protect shared data structures such as those used 
by the standard 1/0 library. 

RETURN VALUE 
lwp _yield, lwp _sleep, lwp _resched, lwp _join, lwp _suspend, lwp _resume: 

A O return indicates success; -1 indicates an error. 

lwp _setpri: 

Upon successful completion, the previous priority is returned. Otherwise, -1 is returned. 

ERRORS 
lwp _yield() will fail if one or more of the following is true: 

LE_INV ALIDARG Attempt to yield to a blocked thread. 

LE_NONEXIST 

LE_ILLPRIO 

Attempt to yield to a non-existent thread. 

Attempt to yield to thread with different priority. 

lwp _sleep() will fail if one or more of the following is true: 

LE_INV ALIDARG Illegal timeout specified. 

lwp _resched() will fail if one or more of the following is true: 

LE_INV ALIDARG Attempt to reschedule thread at priority greater than that of the caller. 

LE_ILLPRIO The priority queue specified contains no threads to reschedule. 

lwp _ setpri() will fail if one or more of the following is true: 

LE_INV ALIDARG The priority specified is beyond the maximum available to the pod. 

LE_NONEXIST Attempt to set priority of a non-existent thread. 

lwp _join() will fail if one or more of the following are true: 

LE_NONEXIST Attempt to join a thread that does not exist. 

lwp _suspend() will fail if one or more of the following is true: 

LE_NONEXIST Attempt to suspend a non-existent thread. 

lwp _resume( ) will fail if one or more of the following is true: 

LE_NONEXIST Attempt to resume a non-existent thread. 

Sun Release 4.0 Last change: 6 October 1987 1073 



MON_CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY MON_CREATE(3L) 

NAME 
mon_create, mon_destroy, mon_enter, mon_exit, mon_enumerate, mon_waiters, mon_cond_enter, 
mon_break, MONITOR, SAMEMON - L WP routines to manage critical sections 

SYNOPSIS 
#include <lwp/lwp.h> 

int 
moo_ create(mid) 
mon_t •mid; 

int 
moo_ destroy(mid) 
mon_tmid; 

int 
moo_ enter(mid) 
mon_tmid; 

int 
moo_ exit(mid) 
mon_tmid; 

int 
mon_enumerate(vec, maxsize) 
mon _t vec[ ]; /• list of all monitors •I 
int maxsize; I• max size of vec •/ 

int 
moo_ waiters(mid, owner, vec, maxsize) 
mon_t mid; I• monitor in question •I 
thread_t •owner; I• which thread owns the monitor•/ 
thread_t vec[ ]; /• list of blocked threads•/ 
int maxsize; I• max size of vec •/ 

int 
moo_ cond _ enter(mid) 
mon_tmid; 

int 
moo_ break(mid) 
mon_tmid; 

MONITOR(mid) 

SAMEMON(ml, m2) 

DESCRIPTION 

1074 

Monitors are used to synchronize access to common resources. Although it is possible (on a uniprocessor) 
to use knowledge of how scheduling priorities work to serialize access to a resource, monitors (and condi
tion variables) provide a general tool to provide the necessary synchronization. 

moo_ create( ) creates a new monitor and returns its identity in mid. moo_ destroy( ) destroys a monitor, 
as well as any conditions bound to it (see cv _ create(3L)). Because the lifetime of a monitor can transcend 
the lifetime of the lwp that created it, monitor destruction is not automatic upon lwp destruction. 

mon_enter() blocks the calling thread (if the monitor is in use) until the monitor becomes free by being 
exited or by waiting on a condition (see cv _ create(3L)). Threads unable to gain entry into the monitor are 
queued for monitor service by the priority of the thread requesting monitor access, FCFS within a priority. 
Monitor calls may nest. If, while holding monitor Ml a request for monitor M2 is made, Ml will be held 
until M2 can be acquired. 

Last change: 6 October 1987 Sun Release 4.0 



MON_CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY MON_CREA TE ( 3L) 

moo_ cond _enter() will enter the monitor only if the monitor is not busy. Otherwise, an error is returned. 

moo_ enter() and moo_ cond _enter() will allow a thread which already has the monitor to reenter the 
monitor. In this case, the nesting level of monitor entries is returned. Thus, the first time a monitor is 
entered, moo_ enter() returns 0. The next time the monitor is entered, moo_ enter() returns 1. 
moo_ exit() frees the current monitor and allows the next thread blocked on the monitor (if any) to enter 
the monitor. However, if a monitor is entered more than once, moo_ exit() returns the previous monitor 
nesting level without freeing the monitor to other threads. Thus, if the monitor was not reentered, 
moo_ exit() returns 0. 

mon_enumerate() lists all the monitors in the system. The vector supplied is filled in with the ID's of the 
monitors. maxsize is used to avoid exceeding the capacity of the list. If the number of monitors is greater 
than maxsize, only maxsize monitor ID' s are filled in vec. 

moo_ waiters( ) puts the thread that currently owns the monitor in owner and all threads blocked on the 
monitor in vec (subject to the maxsize limitation), and returns the number of waiting threads. 

moo_ break() forces the release of a monitor lock not necessarily held by the invoking thread. This 
enables the next thread blocked on the monitor to enter it. 

MONITOR is a macro that can be used at the start of a procedure to indicate that the procedure is a moni
tor. It uses the exception handling mechanism to ensure that the monitor is exited automatically when the 
procedure exits. Ordinarily, this single macro replaces paired mon_enter- mon_exit() calls in a monitor 
procedure. 

SAMEMON is a convenient predicate used to compare two monitors for equality. 

Monitor locks are released automatically when the lwp holding them dies. This may have implications for 
the validity of the monitor invariant (a condition that is always true outside of the monitor) if a thread unex
pectedly terminates. 

RETURN VALUE 
moo_ create() returns the ID of a new monitor. 

AO return by mon_destroy() indicates success; -1 indicates error. 

mon_enter() returns the nesting level of the monitor. 

Upon successful completion, moo_ exit() returns the previous nesting level. It returns -1 if there is an 
error. 

moo_ enumerate( ) returns the total number of monitors. 

moo_ waiters() returns the number of threads waiting for the monitor. 

moo_ cond _enter() returns the nesting level of the monitor if the monitor is not busy. It return -1 if the 
monitor is busy. 

Upon successful completion, mon_break() returns 0. Otherwise, itreturns-1. 

ERRORS 
moo_ destroy( ) will fail if one or more of the following are true: 

LE_INUSE Attempt to destroy a monitor that has threads blocked on it. 

LE_NONEXIST Attempt to destroy non-existent monitor. 

moo_ exit() will fail if one or more of the following are true: 

LE_INV ALIDARG Attempt to exit a monitor that the thread does not own. 

LE_NONEXIST Attempt to exit non-existent monitor. 

moo_ cond _enter() will fail if one or more of the following are true: 

LE_INUSE 

LE_NONEXIST 

Sun Release 4.0 

The requested monitor is being used by another thread. 

Attempt to destroy non-existent monitor. 

Last change: 6 October 1987 1075 



MON_CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY 

moo_ break() will fail if one or more of the following are true: 

LE_NOTOWNED 

LE_NONEXIST 

SEE ALSO 
cv _ create(3L) 

BUGS 

Attempt to break a monitor lock that is not set. 

Attempt to break lock on non-existent monitor. 

There should be language support to enforce the monitor enter-exit discipline. 

1076 Last change: 6 October 1987 

MON_CREATE(3L) 

Sun Release 4.0 



MSG_SEND ( 3L) LIGHTWEIGHT PROCESSES LIBRARY MSG_SEND ( 3L) 

NAME 
msg_send, msg_recv, msg_reply, MSG_RECVALL, msg_enumsend, msg_enumrecv - LWP send and 
receive messages 

SYNOPSIS 
#include dwp/lwp.h> 

int 
msg_ send( dest, arg, argsize, res, ressize) 
thread_t dest; 
caddr_t arg; 
int argsize; 
caddr _t res; 
int ressize; 

int 

I* destination thread *I 
I* argument buffer *I 
I* size of argument buffer *I 
I* result buffer *I 
I* size of result buffer *I 

msg_recv(sender, arg, argsize, res, ressize, timeout) 
thread_t *sender; I* value-result: sending thread or agent *I 
caddr t *arg; I* argument buffer *I 
int *ai=°gsize; I* argument size *I 
caddr_t *res; I* result buffer *I 
int *ressize; I* result size *I 
struct timeval *timeout; I* POLL, INFINITY, else timeout *I 

int 
msg reply(sender) 
thre';id t sender;/* agent id or thread id *I 

int 
msg_ enumsend( vec, maxsize) 
thread_t vec[ ]; I* list of blocked senders *I 
int maxsize; 

int 
msg_enumrecv(vec, maxsize) 
thread_t vec[ ]; I* list of blocked receivers *I 
int maxsize; 

MSG_ RECV ALL(sender, arg, argsize, res, ressize, timeout) 

DESCRIPTION 
Each thread queues messages addressed to it as they arrive. Threads may either specify that a particular 
sender's message is to be received next, or that any sender's message may be received next. 

msg_send() specifies a message buffer and a reply buffer, and initiates one half of a rendezvous with the 
receiver. The sender will block until the receiver replies using msg_reply. msg_recv() initiates the other 
half of a rendezvous and blocks the invoking thread until a corresponding msg_ send() is received. When 
unblocked by msg_send, the receiver may read the message and generate a reply by filling in the reply 
buffer and issuing msg_reply. msg_reply() unblocks the sender. Once a reply is sent, the receiver should 
no longer access either the message or reply buffer. 

In msg_ send, argsize specifies the size in bytes of the argument buffer argbuf, which is intended to be a 
read-only (to the receiver) buffer. ressize specifies the size in bytes of the result buffer resbuf, which is 
intended to be a write-only (to the receiver) buffer. dest is the thread that is the target of the send. 

msg_recv() blocks the receiver until: 

• A message from the agent or thread bound to sender has been sent to the receiver or, 

• sender points to a THREADNULL-valued variable and any message has been sent to the receiver 
from an thread or agent, or, 

Sun Release 4.0 Last change: 6 October 1987 1077 



MSG~SEND ( 3L) LIGHTWEIGHT PROCESSES LIBRARY MSG_SEND ( 3L) 

• After the time specified by timeout elapses and no message is received. 

If timeout is POLL, msg_recv() returns immediately, returning success if the message expected has 
arrived; otherwise an error is returned. If timeout is INFINITY, msg_recv() blocks forever or until the 
expected message arrives. If timeout is any other value msg_recv() blocks for the time specified by 
timeout or until the expected message arrives, whichever comes first. When msg_recv() returns, sender is 
filled in with the identity of the sending thread or agent, and the buffer addresses and sizes specified by the 
matching send are stored in arg, argsize, res, and ressize. 

msg_ enumsend() and msg_ enumrecv() are used to list all of the threads blocked on sends (awaiting a 
reply) and receives (awaiting a send), respectively. The value returned is the number of such blocked 
threads. The vector supplied by the client is filled in (subject .to the maxsize limitation) with the ID's of the 
blocked threads. maxsize is used to avoid exceeding the capacity of the list. If the number of threads 
blocked on sends or receives is greater than maxsize, only maxsize thread ID's are filled in vec. If maxsize 
is 0, just the total number of blocked threads is returned. 

sender in msg_recv() is a reference parameter. If you wish to receive from any sender, be sure to reinitial
ize the thread sender points to as THREADNULL before each use (do not use the address ofTHREADNULL 
for the sender). Alternatively, use the MSG_ RECV ALL macro. This macro has the same parameters that 
msg_recv() does, but will ensure that the sender is properly initialized to allow receipt from any sender. 
MSG _RECVAIL returns the result from msg_recv. 

RETURN VALUE 
Upon successful completion, msg_send, msg_recv() and msg_reply() return 0. Otherwise, -1 is returned. 

msg_ enumsend() returns the number of threads blocked on msg_ send. 

msg_ enumrecv() returns the number of threads blocked on msg_recv. 

ERRORS 
msg_recv( ) will fail if one or more of the following is true: 

LE_TIMEOUT Timed out before message arrived. 

LE_INV ALIDARG An illegal timeout was specified or the sender address is that of THREADNULL. 

LE_NONEXIST The specified thread or agent does not exist. 

msg_ send() will fail if one or more of the following is true: 

LE_INV ALIDARG Attempt to send a message to yourself. 

LE_NONEXIST The specified destination thread does not exist or has terminated. 

msg_ reply() will fail if one or more of the following is true: 

LE_NOW AIT Attempt to reply to a sender that is not expecting a reply. 

LE_NONEXIST Attempt to reply to a sender that does not exist or has terminated. 

1078 Last change: 6 October 1987 Sun Release 4.0 



POD _SETMAXPRI ( 3L) LIGHTWEIGHT PROCESSES LIBRARY POD _SETMAXPRI ( 3L) 

NAME 
pod_setmaxpri, pod_getmaxpri, pod_getmaxsize - control L WP scheduling priority 

SYNOPSIS 
int 
pod_ setmaxpri(maxprio) 
int maxprio; 

int 
pod _getmaxpri() 

int 
pod _getmaxsize( ) 

DESCRIPTION 
The lwp library is self-initializing: the first time you use a primitive that requires threads to be supported, 
main is automatically converted into a thread. A pod will terminate when all client-created lightweight 
threads (including the thread bound to main) are dead. 

By default, only a single priority (MINPRIO) is available. However, by using pod_setmaxpri, you can 
make an arbitrary number (up to the limit imposed by the implementation) of priorities available. The 
main thread will receive the highest available scheduling priority at the time of initialization. By using 
pod_ setmaxpri() before any other lwp primitives, you can ensure that main will receive the same priority 
as the argument to pod_setmaxpri. pod_setmaxpri() can be called repeatedly, as long as the number of 
scheduling priorities (maxprio) increases with each call. 

pod _getmaxpri() returns the current number of available priorities. Priorities are numbered from 1 
(MINPRIO) to maxprio. 

The implementation-dependent maximum number of priorities available can be retrieved using 
pod_getmaxsize. This value will never be less than 255. 

RETURN VALUE 
pod_ setmaxpri() returns O if success; else -1. 

pod _getmaxsize( ) returns the maximum number of priorities that your system supports. 

pod _getmaxpri() returns the number of priority levels set by the most recent pod_ setmaxpri() call. 

ERRORS 
pod_ setmaxpri() will fail if one or more of the following are true: 

LE_INV ALIDARG Attempt to allocate more priorities than supported. 

LE_NOROOM No internal memory left to create pod. 

Sun Release 4.0 Last change: 6 October 1987 1079 





INTR0(3M) MATHEMATICAL LIBRARY INTR0(3M) 

NAME 
intro - introduction to mathematical library functions and constants 

SYNOPSIS 
#include <sys/ieeefp.h> 

#include dloatingpoint.h> 

#include <math.h> 

DESCRIPTION 
The include file <math.h> contains declarations of all the functions described in Section 3M that are 
implemented in the math library, libm. C programs should be linked with the the -Im option in order to 
use this library. 

<sys/ieeefp.h> and dloatingpoint.h> define certain types and constants used for libm exception handling, 
conforming to ANSI/IEEE Std 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic. 

ACKNOWLEDGEMENT 
The Sun version of libm is based upon and developed from ideas embodied and codes contained in 4.3 
BSD, which may not be compatible with earlier BSD or UNIX implementations. 

IEEE ENVIRONMENT 
The IEEE Standard specifies modes for rounding direction, precision, and exception trapping, and status 
reflecting accrued exceptions. These modes and status constitute the IEEE run-time environment. On Sun-
2 and Sun-3 systems without 68881 floating-point co-processors, only the default rounding direction to 
nearest is available, only the default non-stop exception handling is available, and accrued exception bits 
are not maintained. 

IEEE EXCEPTION HANDLING 
The IEEE Standard specifies exception handling for aint, ceil, floor, irint, remainder, riot, and sqrt, and 
suggests appropriate exception handling for fp _ class, copysign, fabs, finite, fmod, isinf, isnan, ilogb, 
ldexp, logb, nextafter, scalb, scalbn and signbit, but does not specify exception handling for the other 
libm functions. 

For these other unspecified functions the spirit of the IEEE Standard is generally followed in libm by han
dling invalid operand, singularity (division by zero), overflow, and underflow exceptions, as much as possi
ble, in the same way they are handled for the fundamental floating-point operations such as addition and 
multiplication. 

These unspecified functions are usually not quite correctly rounded, may not observe the optional rounding 
directions, and may not set the inexact exception correctly. 

SYSTEM V EXCEPTION HANDLING 
The System V Interface Definition (SVID) specifies exception handling for some libm functions: jO( ), jl( ), 
jn( ), yO( ), yl( ), yn( ), exp(), log(), loglO( ), pow(), sqrt(), hypot( ), lgamma( ), sinh( ), cosh( ), sin(), 
cos(), tan(), asin( ), acos( ), and atan2( ). See matherr(3M) for a discussion of the extent to which Sun's 
implementation of libm follows the SVID when it is consistent with the IEEE Standard and with hardware 
efficiency. 

Sun Release 4.0 Last change: 20 January 1988 1081 



INTR0(3M) MATHEMATICAL LIBRARY INTR0(3M) 

LIST OF MATH LIBRARY FUNCTIONS 
Name Appears on Page Description 

bessel(3M) Bessel functions 
frexp(3M) floating-point analysis 
hyperbolic(3M) hyperbolic functions 
ieee _functions(3M) IEEE classification 
ieee _ test(3M) IEEE tests for compliance 
ieee _ values(3M) returns double-precision IEEE infinity 
trig(3M) trigonometric functions 

acos() trig(3M) inverse trigonometric functions 
acosh() hyperbolic(3M) inverse hyperbolic function 
aint() rint(3M) convert to integral value in floating-point format 
anint() rint(3M) convert to integral value in floating-point format 
asin() trig(3M) inverse trigonometric function 
asinh() hyperbolic(3M) inverse hyperbolic function 
atan() trig(3M) inverse trigonometric function 
atan2() trig(3M) rectangular to polar conversion 
atanh() hyperbolic(3M) inverse hyperbolic function 
cbrt() sqrt(3M) cube root 
ceil() rint(3M) ceiling function 
copysign() ieee _functions(3M) copy sign bit 
cos() trig(3M) trigonometric function 
cosh() hyperbolic(3M) hyperbolic function 
erf() erf(3M) error function 
erfc() erf(3M) complementary error function 
exp() exp(3M) exponential function 
expml() exp(3M) exp(X)-1 
exp2() exp(3M) 2**X 
explO() exp(3M) lO**X 
fabs() ieee _ functions(3M) absolute value function 
finite() ieee _functions(3M) test for finite number 
Boor() rint(3M) floor function 
fmod() ieee _ f unctions(3M) floating-point remainder 
fp_class() ieee _functions(3M) classify operand 
frexp() frexp(3M) floating-point analysis 
hypot() hypot(3M) Euclidean distance 
ieee _ flags( ) ieee _ flags(3M) IEEE modes and status 
ieee _handler() ieee _ handler(3M) IEEE trapping 
ilogb() ieee _functions(3M) exponent extraction 
infinity() ieee _ values(3M) returns double-precision IEEE infinity 
irint() rint(3M) convert to integral value in integer format 
isinf() ieee _functions(3M) IEEE classification 
isnan() ieee _functions(3M) IEEE classification 
isnormal() ieee _functions(3M) IEEE classification 
issubnormal() ieee _ functions(3M) IEEE classification 
iszero() ieee _functions(3M) IEEE classification 
jO() bessel(3M) Bessel function 
jl() bessel(3M) Bessel function 
jn() bessel(3M) Bessel function 
ldexp() frexp(3M) exponent adjustment 
lgamma() lgamma(3M) log gamma function 
log() exp(3M) natural logarithm 

1082 Last change: 20 January 1988 Sun Release 4.0 



INTR0(3M) 

logb() 
loglp() 
log2() 
loglO() 
matherr() 
max_ normal() 
max_ subnormal() 
min_ normal() 
min_ subnormal() 
modf() 
nextafter( ) 
nint() 
pow() 
quiet_ nan() 
remainder() 
riot() 
scalb() 
scalbn() 
signaling_ nan() 
signbit() 
significand() 
sin() 
sincos() 
single _precision() 
sinh() 
sqrt() 
tan() 
tanh() 
yO() 
yl() 
yn() 

Sun Release 4.0 

MATHEMATICAL LIBRARY INTR0(3M) 

ieee _ test(3M) 
exp(3M) 
exp(3M) 
exp(3M) 
matherr(3M) 
ieee _ values(3M) 
ieee _ values(3M) 
ieee _ values(3M) 
ieee _ values(3M) 
frexp(3M) 
ieee _runctions(3M) 
rint(3M) 
exp(3M) 
ieee _ values(3M) 
ieee _ runctions(3M) 
rint(3M) 
ieee _test(3M) 
ieee _functions(3M) 
ieee _ values(3M) 
ieee _runctions(3M) 
ieee _ test(3M) 
trig(3M) 
trig(3M) 
single _precision(3M) 
hyperbolic(3M) 
sqrt(3M) 
trig(3M) 
hyperbolic(3M) 
bessel(3M) 
bessel(3M) 
bessel(3M) 

exponent extraction 
log(l+X) 
log base 2 
common logarithm 
math library exception-handling routines 
double-precision IEEE largest positive normalized number 
double-precision IEEE largest positive subnormal number 
double-precision IEEE smallest positive normalized number 
double-precision IEEE smallest positive subnormal number 
floating-point analysis 
IEEE .nearest neighbor 
convert to integral value in integer format 
power X**Y 
returns double-precision IEEE quiet NaN 
floating-point remainder 
convert to integral value in floating-point format 
exponent adjustment 
exponent adjustment 
returns double-precision IEEE signaling NaN 
IEEE sign bit test 
scalb(x,-ilogb(x)) 
trigonometric function 
simultaneous sin and cos 
single-precision libm access 
hyperbolic function 
square root 
trigonometric function 
hyperbolic function 
Bessel function 
Bessel function 
Bessel function 

Last change: 20 January 1988 1083 



BESSEL(3M) MATHEMATICAL LIBRARY 

NAME 
jO,jl,jn, yO, yl, yn -Bessel functions 

SYNOPSIS 
#include <math.h> 

double jO(x) 
double x; 

double jl(x) 
double x; 

double jn(n, x) 
double x; 
int n; 

double yO(x) 
doublex; 

double yl(x) 
double x; 

double yn(n, x) 
double x; 
int n; 

DESCRIPTION 

BESSEL(3M) 

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord
ers. 

SEE ALSO 
exp(3M) 

DIAGNOSTICS 
The functions y(), yl, and yn have logarithmic singularities at the origin, so they treat zero and negative 
arguments the way log does, as described in exp(3M). Such arguments are unexceptional for jO,jl, andjn. 

1084 . Last change: 6 October 1987 Sun Release 4 .0 



ERF(3M) 

NAME 
erf, erfc - error functions 

SYNOPSIS 
#include <math.h> 

double erf(x) 
double x; 

double erfc(x) 
double x; 

DESCRIPTION 

MATHEMATICAL LIBRARY 

erf(x) returns the error function of x; where erf (x):= (2N1t) J~ exp(-t2) dt. 

ERF(3M) 

erfc(x) returns 1.0-erf (x), computed however by other methods that avoid cancellation for large x. 

Sun Release 4 .0 Last change: 20 October 1987 1085 



EXP(3M) . MATHEMATICAL LIBRARY EXP(3M) 

NAME 
exp, expml, exp2, explO, log, loglp, log2, loglO, pow- exponential, logarithm, power 

SYNOPSIS 
#include <math.h> 

double exp(x) 
doublex; 

double expml(x) 
double x; 

double exp2(x) 
double x; 

double explO(x) 
doublex; 

double log(x) 
double x; 

double loglp(x) 
doublex; 

double log2(x) 
double x; 

double loglO(x) 
double x; 

double pow(x, y) 
double x, y; 

DESCRIPTION 

exp() returns the exponential function e**x. 

exp ml() returns e* * x-1 accurately even for tiny x. 

exp2() and explO() return 2**X and lO**x respectively. 

log() returns the natural logarithm of x. 

loglp() returns log(l +x) accurately even for tiny x. 

log2() and loglO() return the logarithm to base 2 and 10 respectively. 

pow() returns x**Y· pow(x,0.0) is 1 for all x, in conformance with 4.3BSD, as discussed in the Floating 
Point Programmers Guide. 

SEE ALSO 
matherr(3M) 

DIAGNOSTICS 

1086 

All these functions handle exceptional arguments in the spirit of ANSI/IEEE Std 754-1985. Thus for x == 
±0, log(x) is -oo with a division by zero exception; for x < 0, including -oo, log(x) is a quiet NaN with an 
invalid operation exception; for x = +oo or a quiet NaN, log(x) is x without exception; for x a signaling 
NaN, log(x) is a quiet NaN with an invalid operation exception; for x == 1, log(x) is O without exception; 
for any other positive x, log(x) is a normalized number with an inexact exception. 

In addition, exp,exp2,exp10, log,log2,log10, and pow() may also set errno and call matherr(3M). 

Last change: 21 January 1988 Sun Release 4.0 



FREXP(3M) MATHEMATICAL LIBRARY FREXP(3M) 

NAME 
frexp, modf, ldexp - traditional UNIX functions 

SYNOPSIS 
#include <math.h> 

double frexp(value, eptr) 
double value; 
int *eptr; 

double ldexp(x,n) 
double x; 
int n; 

double modf(value, iptr) 
double value, *iptr; 

DESCRIPTION 
These functions are provided for compatibility with other UNIX system implementations. They are not 
used internally in libm or libc. Better ways to accomplish similar ends may be found in 
ieee _functions(3M) and rint(3M). 

ldexp(x,n) returns x * 2**n computed by exponent manipulation rather than by actually performing an 
exponentiation or a multiplication. Note: ldexp(x,n) differs from scalbn(x,n), defined in 
ieee_functions(3M), only that in the event of IEEE overflow and underflow, ldexp(x,n) sets errno to 
ERANGE. 

Every non-zero number can be written uniquely as x * 2**n, where the significand xis in the range 0.5 <= 
/x/ < 1.0 and the exponent n is an integer. The function frexp() returns the significand of a double value as 
a double quantity, x, and stores the exponent n, indirectly through eptr. If value = 0, both results returned 
by frexp() are 0. 

modf() returns the fractional part of value and stores the integral part indirectly through iptr. Thus the 
argument value and the returned values modf() and *iptr satisfy 

(*iptr +mod!)== value 

and both results have the same sign as value. The definition of modf() varies among UNIX system imple
mentations, so avoid modf() in portable code. 

The results of frexp() and modf() are not defined when value is an IEEE infinity or NaN. 

SEE ALSO 
ieee _functions(3M), rint(3M) 

Sun Release 4.0 Last change: 21 January 1988 1087 



HYPERBOLIC (3M) MATHEMATICAL LIBRARY HYPERBOLIC (3M) 

NAME 
sinh, cosh, tanh, asinh, acosh, atanh - hyperbolic functions 

SYNOPSIS 
#include <math.h> 

double sinh(x) 
double x; 

double cosh(x) 
double x; 

double tanh(x) 
doublex; 

double asinh(x) 
double x; 

double acosh(x) 
double x; 

double atanh(x) 
doublex; 

DESCRIPTION 
These functions compute the designated direct and inverse hyperbolic functions for real arguments. They 
inherit much of their roundoff error from expml() and loglp, described in exp(3M). 

DIAGNOSTICS 
These functions handle exceptional arguments in the spirit of ANSI/IEEE Std 754-1985. Thus sinh() and 
cosh() return ±oo on overflow, acosh() returns a NaN if its argument is less than 1, and atanh() returns a 
NaN if its argument has absolute value greater than 1. In addition, sinh,cosh, and tanh() may also set 
errno and call matherr(3M). 

SEE ALSO 
e:xp(3M),matherr(3M) 

1088 Last change: 22 november 1987 Sun Release 4.0 



HYPOT(3M) 

NAME 
hypot - Euclidean distance 

SYNOPSIS 
#include <math.h> 

double hypot(x, y) 
double x, y; 

DESCRIPTION 
hypot() returns 

sqrt(x•x + y•y), 

MATHEMATICAL LIBRARY HYPOT(3M) 

taking precautions against unwarranted IEEE exceptions. On IEEE overflow, hypot() may also set errno 
and call matherr(3M). hypot(±oo, y) is +oo for any y, even a NaN, and is exceptional only for a signaling 
NaN. 

hypot(x,y) and atan2(3M) convert rectangular coordinates (x,y) to polar (r,8); hypot() computes r, the 
modulus or radius. 

SEE ALSO 
matherr(3M) 

Sun Release 4.0 Last change: 22 November 1987 1089 



IEEE _FLAGS (3M) MATHEMATICAL LIBRARY IEEE _FLAGS (3M) 

NAME 
ieee _ flags - mode and status function for IEEE standard arithmetic 

SYNOPSIS 
#include <sys/ieeefp.h> 

int ieee _ flags(action,mode,in,out) 
char *action, *mode, *in, **out; 

DESCRIPTION 

1090 

This function provides easy access to the modes and status required to fully exploit ANSI/IEEE Std 754-
1985 arithmetic in a C program. All arguments are pointers to strings. Results arising from invalid argu
ments and invalid combinations are undefined for efficiency. 

There are four types of action: "get", "set", "clear", and "clearall". There are three valid settings for 
mode, two corresponding to modes of IEEE arithmetic: 

''direction'', ... current rounding direction mode 
"precision", ... current rounding precision mode 

and one corresponding to status of IEEE arithmetic: 

"exception". 

There are 14 types of in and out: 

''nearest'', 
''tozero' ', 
"negative", 
"positive", 
"extended", 
"double", 
'' single' ', 
''inexact'', 
"division", 
''underflow'', 
''overflow'', 
''invalid'', 
"all", 
"common''. 

. .. accrued exception-occurred status 

... round toward nearest 

... round toward zero 

... round toward negative infinity 

... round toward positive infinity 

... di vision by zero exception 

... all five exceptions above 

. .. invalid, overflow, and division exceptions 

Note: "all" and "common" only make sense with "set" or "clear". 

For "clearall", ieee_flags() returns O and restores all default modes and status. Nothing will be assigned 
to out. Thus 

char *mode, *out, *in; 
ieee_flags("clearall" ,mode, in, &out); 

set rounding direction to ''nearest'', rounding precision to ''extended'', and all accrued exception-occurred 
status to zero. 

For "clear", ieee _ flags() returns O and restores the default mode or status. Nothing will be assigned to 
out. Thus 

char *out, *in; 
ieee _ flags("clear" ,"direction", in, &out); ... set rounding direction to round to nearest. 

Last change: 21 October 1987 Sun Release 4.0 



IEEE_FLAGS (3M) MATHEMATICAL LIBRARY IEEE_FLAGS (3M) 

FILES 

For "set", ieee_flags() returns O if the action is successful and 1 if the corresponding required status or 
mode is not available (for instance, not supported in hardware). Nothing will be assigned to out. Thus 

char *out, *in; 
ieee_flags ("set" ,"direction" ,"tozero" ,&out); ... set rounding direction to round toward zero; 

For "get", we have the following cases: 

Case 1: mode is "direction". In that case, out returns one of the four strings "nearest", "tozero", "posi
tive", "negative"; and ieee _ flags() returns a value corresponding to out according to the enum 
fp _direction_ type defined in <sys/ieeefp.h>. 

Case 2: mode is "precision". In that case, out returns one of the three strings "extended", "double", 
"single"; and ieee _flags() returns a value corresponding to out according to the enumfp _precision _type 
defined in <sys/ieeef p.h>. 

Case 3: mode is "exception''. In that case, out returns 

(a) "not available" if information on exception is not available, 
(b) "no exception" if no accrued exception, 
(c) the accrued exception that has the highest priority according to the list below 

(1) the exception named by in, 
(2) ''invalid'', 
(3) ''overflow'', 
(4) "division", 
(5) "underflow", 
(6) "inexact". 

In this case ieee _ flags() returns a five bit value where each bit ( cf. enum fp _exception_ type in 
<sys/ieeefp.h>) corresponds to an exception-occurred accrued status flag: 0 = off, 1 = on. The bit 
corresponding to a particular exception varies among architectures. 

Example: 

char *out; int k, ieee _flags(); 
ieee_flags ("clear" ,"exception" ,"all" ,&out); f* clear all accrued exceptions *f 

... (code that generates three exceptions: overflow, invalid, inexact) 

k = ieee _ flags(" get"," exception"," overflow" ,&out); 

then out= "overflow", and on a Sun-3, k=25. 

/usr/include/sys/ieeefp.h 
/usr/lib/libm.a 

Sun Release 4.0 Last change: 21 October 1987 1091 



IEEE_FUNCTIONS (3M) MATHEMATICAL LIBRARY IEEE_FUNCTIONS (3M) 

NAME 
ieee_functions, fp_class, finite, ilogb, isinf, isnan, isnormal, issubnormal, iszero, signbit, copysign, fabs, 
fmod, nextafter, remainder, scalbn - appendix and related miscellaneous functions for IEEE arithmetic 

SYNOPSIS 

1092 

#include <math.h> 

enum fp _class_ type f p _ class(x) 
double x; 

int finite(x) 
double x; 

int ilogb(x) 
double x; 

int isinf(x) 
double x; 

int isnan(x) 
doublex; 

int isnormal(x) 
double x; 

int issubnormal(x) 
double x; 

int iszero(x) 
doublex; 

int signbit(x) 
double x; 

double copysign(x,y) 
double x, y; 

double fabs(x) 
double x; 

double fmod(x,y) 
double x, y; 

double nextafter(x,y) 
double x, y; 

double remainder(x,y) 
double x, y; 

double scalbn(x,n) 
double x; int n; 

Last change: 20 January 1988 Sun Release 4.0 



IEEE_FUNCTIONS (3M) MATHEMATICAL LIBRARY IEEE_FUNCTIONS (3M) 

DESCRIPTION 

FILES 

Most of these functions provide capabilities required by ANSI/IEEE Std 754-1985 or suggested in its appen
dix. 

fp class(x) corresponds to the IEEE's classO and classifies x as zero, subnormal, normal, 00, or quiet or 
sigiialing NaN; <floatingpoint.h> defines enum fp _class_ type. The following functions return O if the 
indicated condition is not satisfied: 

finite(x) returns 1 if x is zero, subnormal or normal 
isinf(x) returns 1 if xis oo 
isnan(x) returns 1 if xis NaN 
isnormal(x) returns 1 if x is normal 
issubnormal(x) returns 1 if x is subnormal 
iszero(x) returns 1 if x is zero 
signbit(x) returns 1 if x 's sign bit is set 

ilogb(x) returns the unbiased exponent of x in integer format. ilogb(±oo) = +MAXINT and ilogb(O) = 
-MAXINT; <values.h> defines MAXINT as the largest int. ilogb(x) never generates an exception. When x 
is subnormal, ilogb(x) returns an exponent computed as if x were first normalized. 

co~ysign(x,y) returns x with y's sign bit. 

fabs(x) returns the absolute value of x. 

nextafter(x ,y) returns the next machine representable number from x in the direction y. 

remainder(x,y) and fmod(x,y) return a remainder of x with respect toy; that is, the result r is one of the 
numbers that differ from x by an integral multiple of y. Thus (x-r)/y is an integral value, ev:en though it 
might exceed MAXINT if it were explicitly computed as an int. Both functions return one of the two such r 
smallest iri magnitude. remainder(x,y) is the operation specified in ANSI/IEEE Std 754-1985; the result of 
fmod(x,y) may differ from remainder's result by ±y. The magnitude of remainder's result can not 
exceed half that of y; its sign might not agree with either x or y. The magnitude of fmod' s result is less 
than that of y; its sign agrees with that of x. Neither function can generate an exception as long as both 
arguments are normal or subnormal. remainder( x, 0), fmod( x, 0), remainder(oo, y ), and fmod(oo, y) 
are invalid operations that produce a NaN. 

scalbn(x,n) returns x• 2••n computed by exponent manipulation rather than by actually performing an 
exponentiation or a multiplication. Thus 

1 ~ scalbn(fabs(x ),-ilogb(x)) < 2 

for every x except 0, oo, and NaN. 

/usr/include/floatingpoint.h 
/usr /include/math.h 
/usr/include/values.h 
/usr/Iib/Iibm.a 

SEE ALSO 
floatingpoint(3), ieee _ environment(3M), matherr(3M) 

Sun Release 4.0 Last change: 20 January 1988 1093 



IEEE;__ HANDLER (3M) MATHEMATICAL LIBRARY IEEE_ HANDLER (3M) 

NAME 
ieee _ handler - IEEE exception trap handler function 

SYNOPSIS 
#include dloatingpoint.h> 

int ieee _ handler(action,exception,hdl) 
char action[], exception[]; 
sigfpe_handler _type hdl; 

DESCRIPTION 
This function provides easy exception handling to exploit ANSI/IEEE Std 754-1985 arithmetic in a C pro
gram. All arguments are pointers to strings. Results arising from invalid arguments and invalid combina
tions are undefined for efficiency. 

There are three types of action : "get", "set", and "clear". There are five types of exception : 
''inexact'' 
''division'' 
''underflow'' 
''overflow' ' 
"invalid" 
"all', 
''common'' 

... division by zero exception 

... all five exceptions above 

... invalid, overflow, and di vision exceptions 

Note: "all" and "common" only make sense with "set" or "clear". 

hdl contains the address of a signal-handling routine. dloatingpoint.h> defines sigfpe _ handler _type. 

"get" will get the location of the current handler routine for exception in hdl . "set" will set the routine 
pointed at by hdl to be the handler routine and at the same time enable the trap on exception, except when 
hdl == SIGFPE_DEFAULT or SIGFPE_IGNORE; then ieee_handler() will disable the trap on exception. 
When hdl == SIGFPE_ABORT, any trap on exception will dump core using abort(3). "clear" "all" dis
ables trapping on all five exceptions. 

Two steps are required to intercept an IEEE-related SIGFPE code with ieee_handler: 

1) Set up a handler with ieee _handler. 

2) Perform a floating-point operation that generates the intended IEEE exception. 

Unlike sigfpe(3), ieee_handler() also adjusts floating-point hardware mode bits affecting IEEE trapping. 
For "clear", "set" SIGFPE_DEFAULT, or "set" SIGFPE_IGNORE, the hardware trap is disabled. For 
any other ''set'', the hardware trap is enabled. 

SIGFPE signals can be handled using sigvec(2), signal(3), signal(3F), sigfpe(3), or ieee_handler(3M). In 
a particular program, to avoid confusion, use only one of these interfaces to handle SIGFPE signals. 

DIAGNOSTICS 

1094 

ieee _ handler() normally returns 0. In the case of "set", 1 will be returned if the action is not available 
(for instance, not supported in hardware). 

Last change: 21 October 1987 Sun Release 4.0 



IEEE_ HANDLER (3M) MATHEMATICAL LIBRARY 

EXAMPLE 
A user-specified signal handler might look like this: 

void sample_handler( sig, code, scp, addr) 
int sig; I* sig == SIGFPE always *I 
int code; 
struct sigcontext *scp ; 
char *addr; 
{ 

Sample user-written sigfpe code handler. 
Prints a message and continues. 
struct sigcontext is defined in <signal.h>. 

*I 

IEEE_ HANDLER (3M) 

printf("ieee exception code %x occurred at pc %X \n" ,code,scp->sc _pc); 

FILES 

} 

and it might be set up like this: 
extern void sample_handler(); 
main() 
{ 

sigfpe _handler_ type hdl, old_ handlerl, old_ handler2; 

* save current overflow and invalid handlers 
*I 

ieee_handler("get" ,"overflow" ,old_handlerl); 
ieee_handler("get" ,"invalid", old_handler2); · 

I* 
* set new overflow handler to sample_handler() and set new 
* invalid handler to SIGFPE_ABORT (abort on invalid) 
*I 

I* 

hdl = (sigfpe_handler_type) sample_handler; 
if(ieee _ handler(" set"," overflow" ,hdl) ! = 0) 

printf(" ieee _ handler can't set overflow \n" ); 
if(ieee_handler("set" ,"invalid" ,SIGFPE_ABORT) != 0) 

printf("ieee_handler can't set invalid \n"); 

* restore old overflow and invalid handlers 
*I 

} 

ieee _ handler(" set"," overflow", old _handler 1); 
ieee _ handler(" set"," invalid", old_ handler2); 

/usr/include/floatingpoint.h 
/usr/include/si gnal.h 
/usr/lib/libm.a 

SEE ALSO 
sigvec(2), abort(3), floatingpoint(3), sigfpe(3), signal(3), signal(3F) 

Sun Release 4.0 Last change: 21 October 1987 1095 



MATHEMATICAL LIBRARY IEEE_1EST(3M) 

NAME 
ieee_test, logb, scalb, significand - IEEE test functions for verifying standard compliance 

SYNOPSIS 
#include <math.h> 

double logb(x) 
doublex; 

double scalb(x,y) 
double x; double y; 

double significand(x) 
doublex; 

DESCRIPTION 

FILES 

These functions allow users to verify compliance to ANSI/IEEE Std 754-1985 by running certain test vec
tors distributed by the University of California. Their use is not otherwise recommended; instead use 
scalbn(x,n) and ilogb(x) described in ieee_functions(3M). See the Floating Point Programmers Guide 
for details. 

logb(x) returns the unbiased exponent of x in--floating-point format, for exercising the logb(L) test vector. 
logb(±oo) = +oo; logb(O) = -oo with a division by zero exception. logb(x) differs from ilogb(x) in returning 
a result in floating-point rather than integer format, in sometimes signaling IEEE exceptions, and in not nor
malizing subnormal x. 

scalb(x,(double)n) returns x * 2••n computed by exponent manipulation rather than by actually perform
ing an exponentiation or a multiplication, for exercising the scalb(S) test vector. Thus 

0 ~ scalb(fabs(x),-logb(x)) < 2 
for every x except 0, oo and NaN. scalb(x,y) is not defined when y is not an integral value. scalb(x,y) 
differs from scalbn(x,n) in that the second argument is in floating-point rather than integer format. 

significand(x) computes just 
scalb(x, (double) -ilogb(x)), 

for exercising the fraction-part(F) test vector. 

/usr/include/math.h 
/usr/Iib/Iibm.a 

SEE ALSO 
ffoatingpoint(3), ieee _ values(3M), ieee_functions(3M), matherr(3M) 

1096 Last change: 21 January 1988 Sun Release 4.0 



IEEE~ VALUES ( 3M) MATHEMATICAL LIBRARY IEEE_ VALUES (3M) 

NAME 
ieee_ values, min_subnormal, max_subnormal, min_normal, max_normal, infinity, quiet_nan, 
signaling_nan, HUGE, HUGE_ VAL - functions that return extreme values of IEEE arithmetic 

SYNOPSIS 
#include <math.h> 

double min_ subnormal() 

double max_ subnormal() 

double min_ normal() 

double max_ normal() 

double infinity() 

double quiet_nan(n) 
long n; 

double signaling_ nan(n) 
long n; 

#define HUGE (infinity()) 

#define HUGE_ VAL (infinity()) 

DESCRIPTION 

FILES 

These functions return special values associated with ANSI/IEEE Std 754-1985 double-precision floating
point arithmetic: the smallest and largest positive subnormal numbers, the smallest and largest positive nor
malized numbers, positive infinity, and a quiet and signaling NaN. The long parameters n to quiet_nan(n) 
and signaling_ nan(n) are presently unused but are reserved for future use to specify the significand of the 
returned NaN. 

None of these functions are affected by IEEE rounding or trapping modes or generate any IEEE exceptions. 

The macro HUGE returns +oo in accordance with previous SunOS releases. The macro HUGE_ VAL returns 
+oo in accordance with the System V Interface Definition. 

/usr/include/math.h 
/usr/lib/libm.a 

SEE ALSO 
ieee _functions(3M) 

Sun Release 4.0 Last change: 6 October 1987 1097 



LGAMMA(3M) 

NAME 
lgamma - log gamma function 

SYNOPSIS 
#include <math.h> 

extern int signgam; 

double lgamma(x) 
double x; 

DESCRIPTION 
lgamma()returns 

where 

forx > Oand 

for X < 1. 

MATHEMATICAL LIBRARY 

lnlr(x)I 

r(x) = fo'tx-le-tdt 

r(x) = 1t/(r(l-x) sin(1tx)) 

The external integer signgam returns the sign of r(x). 

IDIOSYNCRASIES 

LGAMMA(3M) 

Do not use the expression signgam•exp(lgamma(x)) to compute 'g := r(x)'. Instead compute lgamma() 
first: 

lg= lgamma(x); g = signgam•exp(lg); 

only after lgamma() has returned can signgam be correct. Note: r(x) must overflow when x is large 
enough, underflow when -x is large enough, and generate a division by zero exception at the singularities x 
a nonpositive integer. In addition, lgamma() may also set errno and call matherr(3M). 

SEE ALSO 
matherr(3M) 

1098 Last change: 22 November 1987 Sun Release 4.0 



MATHERR(3M) MATHEMATICAL LIBRARY MATHERR(3M) 

NAME 
matherr - math library exception-handling function 

SYNOPSIS 
#include <math.h> 

int matherr( exc) 
struct exception •exc; 

DESCRIPTION 
The SVID (System V Interface Definition) specifies that certain libm functions call matherr() when excep
tions are detected. Users may define their own mechanisms for handling exceptions, by including a func
tion named matherr( ) in their programs. matherr() is of the form described above. When an exception 
occurs, a pointer to the exception structure exc will be passed to the user-supplied matherr() function. 
This structure, which is defined in the <math.h> header file, is as follows: 

struct exception { 
int type; 
char •name; 
double argl, arg2, retval; 

}; 

The element type is an integer describing the type of exception that has occurred, from the following list of 
constants (defined in the header file): 

DOMAIN argument domain exception 
SING argument singularity 
OVERFLOW overflow range exception 
UNDERFLOW underflow range exception 

The element name points to a string containing the name of the function that incurred the exception. The 
elements argl and arg2 are the arguments with which the function was invoked. retval is set to the default 
value that will be returned by the function unless the user's matherr() sets it to a different value. 

If the user's matherr() function returns non-zero, no exception message will be printed, and errno will 
not be set. 

If matherr() is not supplied by the user, the default matherr exception-handling mechanisms, summarized 
in the table below, will be invoked upon exception: 

DOMAIN==fp _ invalid 
An IEEE NaN is usually returned, errno is set to EDOM, and a message is printed on standard 
error. pow(x,0.0) for any x and atan2(0.0,0.0) return numerical default results but set errno and 
print the message. 

SIN G==fp _ division 
An IEEE oo of appropriate sign is returned, errno is set to EDOM, and a message is printed on stan
dard error. 

OVERFLOW==fp _ overflow 
In the default rounding direction, an IEEE oo of appropriate sign is returned. In optional rounding 
directions, ±MAXDOUBLE, the largest finite double-precision number, is sometimes returned 
instead of ±oo. errno is set tp ERANGE. 

UNDERFLOW ==fp _ underflow 
An appropriately-signed zero, subnormal number, or smallest normalized number is returned, and 
errno is set to ERANGE. 

The facilities provided by matherr() are not available in situations such as compiling on a Sun-3 system 
with /usr/lib/f68881/Iibm.il or /usr/lib/ffpa/libm.il, in which case some libm functions are converted to 
atomic hardware operations. In these cases setting errno and calling matherr() are not worth the adverse 
performance impact, but regular ANSI/IEEE Std 754-1985 exception handling remains available. In any 

Sun Release 4.0 Last change: 20 January 1988 1099 



MATHERR(3M) MATHEMATICAL LIBRARY MATHERR(3M) 

1100 

case errno is not a reliable error indicator in that it may be unexpectedly set by a function in a handler for 
an asynchronous signal. 

DEFAULT ERROR HANDLING PROCEDURES 

Types of Errors 

<math.h> type DOMAIN SING OVERFLOW 

errno EDOM EDOM ERANGE 

IEEE Exception Invalid Operation Division by Zero Overflow 

<floatingpoint.h> type fp_invalid fp_division fp_overflow 

ACOS,ASIN: M,NaN - -
AT AN2(0,0): M, ±0.0 or ±7t - -
BESSEL: 
yO, yl, yn (x < 0) 
yO, yl, yn (x = 0) 

COSH,SINH: 

EXP: 

HYPOT: 

LGAMMA: 

LOO,LOOlO: 
(x< 0) 
(x= 0) 

POW: 
usual cases 
(x < 0) ** (y not an integer) 

0 ** 0 
0 ** (y < 0) 

SQRT: 

M 
NaN 

00 

IEEE Overflow 
IEEE Underflow 

1t 

M,NaN - -
- M,-oo -
- - IEEE Overflow 

- - IEEE Overflow 

- - IEEE Overflow 

- M,+oo IEEE Overflow 

M,NaN - -
- M,-oo -

- - IEEE Overflow 
M,NaN - -
M, 1.0 - -

- M,±oo -
M,NaN - -

ABBREVIATIONS 

Message is printed (EDOM exception). 
IEEE NaN result and invalid operation exception. 
IEEE oo result and division-by-zero exception. 
IEEE Overflow result and exception. 
IEEE Underflow result and exception. 
Closest machine-representable approximation to pi. 

UNDERFWW 

ERANGE 

Underflow 

fp_underflow 

-
-

-
-
-

IEEE Underflow 

-
-

-
-

IEEE Underflow 
-
-
-
-

The interaction of IEEE arithmetic and matherr( ) is not defined when executing under IEEE rounding 
modes other than the default round to nearest: matherr() may not be called on overflow or underflow, and 
the Sun-provided matherr() may return results that differ from those in this table. 

Last change: 20 January 1988 Sun Release 4.0 



MATHERR(3M) MATHEMATICAL LIBRARY 

EXAMPLE 
#include <math.h> 

int 
matherr(x) 
register struct exception *x; 
{ 

switch (x->type) { 
case 

DOMAIN: 
f* change sqrt to return sqrt(-argl), not NaN *f 
if (!strcmp(x->name, "sqrt")) { 

x->retval = sqrt(-x->argl); 
return (0); f* print message and set errno *f 

} f * fall through *f 
case 

} 

SING: 
f* all other domain or sing exceptions, print message and abort *f 
fprintf(stderr, "domain exception in %s\n", x->name); 
abort(); 
break; 

return (0); f* all other exceptions, execute default procedure *f 
} 

Sun Release 4.0 Last change: 20 January 1988 

MATHERR(3M) 

1101 



RINT(3M) MATHEMATICAL LIBRARY RINT(3M) 

NAME 
aint, anint, ceil, floor, rint, irint, nint- round to integral value in floating-point or integer format 

SYNOPSIS 
#include <math.h> 

double aint(x) 
double x; 

double anint(x) 
doublex; 

double ceil(x) 
double x; 

double ffoor(x) 
double x; 

double rint(x) 
double x; 

int irint(x) 
double x; 

int nint(x) 
double x; 

DESCRIPTION 

1102 

aint, anint, ceil, ffoor, and riot() convert a double value into an integral value in double format. They 
vary in how they choose the result when the argument is not already an integral value. Here an "integral 
value" means a value of a mathematical integer, which however might be too large to fit in a particular 
computer's int format. All sufficiently large values in a particular floating-point format are already 
integral; in IEEE double-precision format, that means all values >= 2**52. Zeros, infinities, and quiet 
NaNs are treated as integral values by these functions, which always preserve their argument's sign. 

aint() returns the integral value between x and 0, nearest x. This corresponds to IEEE rounding toward 
zero and to the Fortran generic intrinsic function aint. 

anint() returns the nearest integral value to x, except halfway cases are rounded to the integral value larger 
in magnitude. This corresponds to the Fortran generic intrinsic function anint. 

ceil() returns the least integral value greater than or equal to x. This corresponds to IEEE rounding toward 
positive infinity. 

ffoor() returns the greatest integral value less than or equal to x. This corresponds to IEEE rounding 
toward negative infinity. 

riot() rounds x to an integral value according to the current IEEE rounding direction. 

irint converts x into int format according to the current IEEE rounding direction. 

nint() converts x into int format rounding to the nearest int value, except halfway cases are rounded to the 
int value larger in magnitude. This corresponds to the Fortran generic intrinsic function nint. 

Last change: 15 October 1987 Sun Release 4.0 



SINGLE_PRECISION (3M) MATHEMATICAL LIBRARY 

NAME 
single_precision - Single-precision access to math library functions 

SYNOPSIS 
#include <math.h> 

FLOATFUNCTIONTYPE r - acos _ (x) 
FLOATFUNCTIONTYPE r_acosh_ (x) 
FLOATFUNCTIONTYPE r_aint_ (x) 
FLOATFUNCTIONTYPE r_anint_ (x) 
FLOATFUNCTIONTYPE r_asin_ (x) 
FLOATFUNCTIONTYPE r _ asinh _ (x) 
FLOATFUNCTIONTYPE r_atan_ (x) 
FLOATFUNCTIONTYPE r _ atanh _ (x) 
FLOATFUNCTIONTYPE r_atan2_ (x,y) 
FLOATFUNCTIONTYPE r_cbrt_ (x) 
FLOATFUNCTIONTYPE r_ceil_ (x) 
enum fp _class_ type ir _fp _class_ (x) 
FLOATFUNCTIONTYPE r_copysign_ (x,y) 
FLOATFUNCTIONTYPE r_cos_ (x) 
FLOATFUNCTIONTYPE r_cosh_ (x) 
FLOATFUNCTIONTYPE r_erf_ (x) 
FLOATFUNCTIONTYPE r_erfc_ (x) 
FLOATFUNCTIONTYPE r _exp_ (x) 
FLOATFUNCTIONTYPE r_expml_ (x) 
FLOATFUNCTIONTYPE r_exp2_ (x) 
FLOATFUNCTIONTYPE r_explO_ (x) 
FLOATFUNCTIONTYPE r_fabs_ (x) 
int ir _finite_ (x) 
FLOATFUNCTIONTYPE r _floor_ (x) 
FLOATFUNCTIONTYPE r_fmod_ (x,y) 
FLOATFUNCTIONTYPE r_hypot_ (x,y) 
int ir _ ilogb _ (x) 
int ir _irint_ (x) 
int ir _ isinf _ (x) 
int ir _ isnan _ (x) 
int ir_isnormal_ (x) 
int ir _ issubnormal_ (x) 
int ir _ iszero _ (x) 
int ir _ nint _ (x) 
FLOATFUNCTIONTYPE r_infinity_ () 
FLOATFUNCTIONTYPE r _jO _ (x) 
FLOATFUNCTIONTYPE r_jl_ (x) 
FLOATFUNCTIONTYPE r _jn _ (n,x) 
FLOATFUNCTIONTYPE r_lgamma_ (x) 
FLOATFUNCTIONTYPE r _logb _ (x) 
FLOATFUNCTIONTYPE r_log_ (x) 
FLOATFUNCTIONTYPE r_Ioglp_ (x) 
FLOATFUNCTIONTYPE r _ log2 _ (x) 
FLOATFUNCTIONTYPE r _ loglO _ (x) 
FLOATFUNCTIONTYPE r_max_normal_ () 
FLOATFUNCTIONTYPE r_max_subnormal_ () 
FLOATFUNCTIONTYPE r_min_normal_ () 
FLOATFUNCTIONTYPE r_min_subnormal_ () 
FLOATFUNCTIONTYPE r_nextafter_ (x,y) 

Sun Release 4.0 Last change: 21 October 1987 

SINGLE_PRECISION (3M) 

1103 



SINGLE_PRECISION (3M) MATHEMATICAL LIBRARY SINGLE_PRECISION (3M) 

FLOATFUNCTIONTYPE r _pow_ (x,y) 
FLOATFUNCTIONTYPE r_quiet_nan_ (n) 
FLOATFUNCTIONTYPE r _remainder - (x,y) 
FLOATFUNCTIONTYPE r _rint_ (x) 
FLOATFUNCTIONTYPE r_scalb_ (x,y) 
FLOATFUNCTIONTYPE r_scalbn_ (x,n) 
FLOATFUNCTIONTYPE r _ signaling_ nan_ (n) 
int ir _signbit_ (x) 
FLOATFUNCTIONTYPE r _significand _ (x) 
FLOATFUNCTIONTYPE r_sin_ (x) 
void r _ sin cos_ (x,s,c) 
FLOATFUNCTIONTYPE r_sinb_ (x) 
FLOATFUNCTIONTYPE r_sqrt_ (x) 
FLOATFUNCTIONTYPE r_tan_ (x) 
FLOATFUNCTIONTYPE r_tanb_ (x) 
FLOATFUNCTIONTYPE r _yO _ (x) 
FLOATFUNCTIONTYPE r_yl_ (x) 
FLOATFUNCTIONTYPE r _yn _ (n,x) 

float •x, *Y, •s, •c 
int *n 

DESCRIPTION 

FILES 

1104 

These functions are single-precision versions of certain libm functions. Primarily for use by Fortran pro
grammers, these functions may also be used in other languages. The single-precision floating-point results 
are deviously declared to avoid C's automatic type conversion to double. 

/usr/lib/libm.a 

Last change: 21 October 1987 Sun Release 4 .0 



SQRT(3M) 

NAME 
sqrt, cbrt - cube root, square root 

SYNOPSIS 
#include <math.h> 

double cbrt(x) 
double x; 

double sqrt(x) 
doublex; 

DESCRIPTION 

MATHEMATICAL LIBRARY SQRT(3M) 

sqrt(x) returns the square root of x, correctly rounded according to ANSI/IEEE 754-1985. In addition, 
sqrt() may also set errno and call matherr(3M). 

cbrt(x) returns the cube root of x. cbrt() is accurate to within 0. 7 ulps. 

SEE ALSO 
matherr(3M) 

Sun Release 4.0 Last change: 22 November 1987 1105 



TRIG{3M) MATHEMATICAL LIBRARY TRIG{3M) 

NAME 
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions 

SYNOPSIS 
#include <math.h> 

double sin(x) 
doublex; 

double cos(x) 
doublex; 

void sincos(x, s, c) 
double x, •s, •c; 

double tan(x) 
doublex; 

double asin(x) 
doublex; 

double acos(x) 
doublex; 

double atan(x) 
doublex; 

double atan2(y, x) 
double y, x; 

DESCRIPTION 
sin, cos, sincos, and tan() return trigonometric functions of radian arguments. The values of trigonometric 
functions of arguments exceeding rr./4 in magnitude are affected by the precision of the approximation to 
rr./2 used to reduce those arguments to the range -rr./4 to rr./4. Argument reduction may occur in hardware 
or software; if in software, the variable fp _pi defined in <math.h> allows changing that precision at run 
time. Trigonometric argument reduction is discussed in the Floating Point Programmers Guide. Note that 
sincos(x,s,c) allows simultaneous computation of •s = sin(x) and •c = cos(x). 

asin() returns the arc sin in the range -rr./2 to rr.{l. 

acos() returns the arc cosine in the range O to x. 

atan() returns the arc tangent of x in the range -Tr/2 to rr.{l. 

atan2(y,x) and hypot(3M) convert rectangular coordinates (x,y) to polar (r,0); atan2() computes 0, the 
argument or phase, by computing an arc tangent of y/x in the range -x to x. atan2(0.0,0.0) is ±0.0 or ±re, 
in conformance with 4.3BSD, as discussed in the Floating Point Programmers Guide. 

DIAGNOSTICS 
These functions handle exceptional arguments in the spirit of ANSI/IEEE Std 754-1985. sin(±oo), cos(±oo), 
tan(±oo), or asin(x) or acos(x) with lxl>l, return NaN. In addition, asin, acos, and atan2() may also set 
errno and call matherr(3M). 

SEE ALSO 
hypot(3M), matherr(3M) 

1106 Last change: 22 November 1987 Sun Release 4.0 



INTR0(3R) RPC SERVICES LIBRARY INTR0(3R) 

NAME 
intro - introduction to RPC service library functions and protocols 

DESCRIPTION 
These functions constitute the RPC service library. Most of these describe RPC protocols. The PROTOCOL 
section describes how to access the protocol description file. This file may be compiled with rpcgen(l) to 
produce data definitions and XOR routines. Procompiled versions of header files sometimes exist as 
<rpcsvc/*.h> and precompiled XOR routines and programming interfaces to the protocols sometimes exist 
in librpcsvc. Warning: some of these header files and XOR routines were hand-written because they 
existed before rpcgen. They do not correspond to their protocol description file. In order to get the link 
editor to load this library, use the -lrpcsvc option of cc(l V). Information about the availability of pro
gramming interfaces to these protocols is available under PROGRAMMING section of each manual page. 

Some routines in the librpcsvc library do not correspond to protocols, but are useful utilities for RPC pro
gramming. These are distinguished by the presence of the SYNOPSIS section instead of the usual PROTO
COL section. 

LIST OF STANDARD RPC SERVICES 
Name 

bootparam() 
ether() 
get() 
getrpcport( ) 
getsecretkey() 
ipalloc() 
key() 
klm_prot() 
mount() 
nlm_prot() 
pnp() 
public() 
rex() 
rnusers() 
rquota() 
rstat() 
rusers() 
rwall() 
secret() 
sm_inter() 
spray() 
xcrypt() 
yp() 
yppasswd() 

Sun Release 4.0 

Appears on Page 

bootparam(3R) 
ether(3R) 
publickey(3R) 
getrpcport(3R) 
publickey(3R) 

ipalloc(3R) 
publickey(3R) 
klm _prot(3R) 
mount(3R) 
nlm _prot(3R) 

pnp(3R) 
publickey(3R) 
rex(3R) 
rnusers(3R) 
rquota(3R) 
rstat(3R) 
rnusers(3R) 
rwall(3R) 
publickey(3R) 
sm_inter(3R) 
spray(3R) 
xcrypt(3R) 
yp(3R) 
yppasswd(3R) 

Description 

bootparam protocol 
monitor traffic on the Ethernet 
get secret key 
get RPC port number 
get secret key 
determine or temporarily allocate IP address 
get secret key 
protocol between kernel and local lock manager 
keep track of remotely mounted filesystems 
protocol between local and remote network lock managers 
Automated network installer 
get secret key 
remote execution protocol 
return information about users on remote machines 
implement quotas on remote machines 
get performance data from remote kernel 
return information about users on remote machines 
write to specified remote machines 
get secret key 
status monitor protocol 
scatter data in order to check the network 
hex encryption and utility routines 
Yellow Pages protocol 
update user password in Yellow Pages 

Last change: 4 September 1987 1107 



B001PARAM(3R) RPC SERVICES LIBRARY B001PARAM(3R) 

NAME 
bootparam - bootparam protocol 

PROTOCOL 
/usr/include/rpcsvdhootparam _prot.x 

DESCRIPTION 
The bootparam protocol is used for providing information to the diskless clients necessary for booting. 

PROGRAMMING 
#include <rpcsvc/hootparam.h> 

XOR Routines 
The following XDR routines are available in librpcsvc: 

xdr _hp_ whoami _ arg 
xdr _hp_ whoami _res 
xdr _ hp _getfile _ arg 
xdr _ hp _getfile _res 

SEE ALSO 
hootparams(S), hootparamd(8) 

1108 Last change: 6 October 1987 Sun Release 4.0 



ETHER(3R) RPC SERVICES LIBRARY 

NAME 
ether - monitor traffic on the Ethernet 

PROTOCOL 
/usr/include/rpcsvd ether .x 

DESCRIPTION 
The ether protocol is used for monitoring traffic on the ethemet. 

PROGRAMMING 
#include <rpcsvc/ ether .h> 
The following XDR routines are available in Iibrpcsvc: 

xdr etherstat 
xdr etheraddrs 
xdr etherhtable 
xdr etherhmem 
xdr addrmask 

SEE ALSO 
traffic(lC), etherfind(8C), etherd(8C) 

Sun Release 4.0 Last change: 6 October 1987 

ETHER(3R) 

1109 



GE1RPCPORT ( 3R) RPC SERVICES LIBRARY GETRPCPORT ( 3R) 

NAME 
getrpcport - get RPC port number 

SYNOPSIS 
int getrpcport(host, prognum, versnum, proto) 

char •host; 
int prognum, versnum, proto; 

DESCRIPTION 

1110 

getrpcport() returns the port number for version versnum of the RPC program prognum running on host 
and using protocol proto. It returns O if it cannot contact the portmapper, or if prognum is not registered. 
If prognum is registered but not with version versnum, it will ~till return a port number (for some version of 
the program) indicating that the program is indeed registered. The version mismatch will be detected upon 
the first call to the service. 

Last change: 6 October 1987 Sun Release 4.0 



KLM_PROT ( 3R) RPC SERVICES LIBRARY 

NAME 
klm_prot - protocol between kernel and local lock manager 

PROTOCOL 
/usr/include/rpcsvc/klm _prot.x 

DESCRIPTION 
The protocol is used for communication between kernel and local lock manager. 

PROGRAMMING 
#include <rpcsvc/klm _prot.h> 

XDR Routines 
The following XDR routines are available in librpcsvc: 

xdr _ klm _ testargs 
xdr _ klm _ testrply 
xdr _ klm _ Iockargs 
xdr _ klm _ unlockargs 
xdr klm stat 

SEE ALSO 
Iockd(8C) 

Sun Release 4.0 Last change: 6 October 1987 

KLM_PROT ( 3R) 

1111 



MOUNT(3R) RPC SERVICES LIBRARY MOUNT(3R) 

NAME 
mount - keep track of remotely mounted filesystems 

PROTOCOL 
/usr/include/rpcsvc/mount.x 

DESCRIPTION 
The mount protocol is separate from, but related to, the NFS protocol. It provides all of the operating sys
tem specific servies to get the NFS off the ground - looking up path names, validating user identity, and 
checking access permissions. Clients use the mount protocol to get the first file handle, which allows them 
entry into a remote filesystem. 

The mount protocol is kept separate from the NFS protocol to make it easy to plug in new access checking 
and validation methods without changing the NFS server protocol. 

Note: the protocol definition implies stateful servers because the server maintains a list of client's mount 
requests. The mount list information is not critical for the correct functioning of either the client or the 
server. It is intended for advisory use only, for example, to warn people when a server is going down. 

PROGRAMMING 
#include <rpcsvc/mount.h> 

The following XDR routines are available in librpcsvc: 
xdr _ exportbody 
xdr _ exports 
xdr fbandle 
xdr fbstatus 
xdr_groups 
xdr _mountbody 
xdr mountlist 
xdr_patb 

SEE ALSO 
mount(8), mountd(8C), showmount(8) 

NFS Protocol Spec, in Network Programming 

1112 Last change: 6 October 1987 Sun Release 4 .0 



IP ALLOC ( 3R) RPC SERVICES LIBRARY IP ALLOC ( 3R) 

NAME 
ipalloc - determine or temporarily allocate IP address 

PROTOCOL 
/usr/include/rpcsvc/ipalloc.x 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
ipalloc() is the protocol for allocating the IP address that a system should use. 

PROGRAMMING 
#include <rpcsvc/ipalloc.h> 

The following RPC calls are available in version 2 of this protocol: 

NULLPROC 
This is a standard null entry, used to ping a service to measure overhead or to discover servers. 

IP ALLOC 
Returns an IP address corresponding to a given Ethernet address, if possible. This RPC must be 
called using DES authentication, from a client authorized to allocate IP addresses. A cache of allo
cated addresses is maintained. 

The first action taken on receipt of this RPC is to verify that no existing mapping between the eth
eraddr and the netnum exists in the YP database. If one is found, then that is returned. Otherwise, 
an internal cache is checked, and if an entry is found there for the given etheraddr on the right 
network, that entry is used. If no address was found either in the YP database or in the cache, a 
new one may be allocated and returned, and the ip _success status is returned. 

If an unusable entry was found in the cache, this RPC returns ip _failure status. 

IP TONAME 
Used to determine whether a given IP address is known to the YP service, since YP allows a delay 
between the posting of an address and its availability in some locations on the network. 

IP FREE 

SEE ALSO 

This RPC is used to delete ipaddr entries from the cache when they are no longer needed there. It 
requires the same protections as the IP_ ALLOC RPC. 

ipallocd(8C), pnpboot(8C) 

Sun Release 4.0 Last change: 2 February 1988 1113 



NLM_PROT(3R) RPC SERVICES LIBRARY NLM_PROT ( 3R) 

NAME 
nlm_prot - protocol between local and remote network lock managers 

PROTOCOL 
/usr/include/rpcsvc/nlm _prot.x 

DESCRIPTION 
The network lock manager protocol is used for communication between local and remote lock managers. 

PROGRAMMING 
#include <rpcsvc/nlm _prot.h> 

XDR Routines 
The following XOR routines are available in librpcsvc: 

xdr _ nlm _ testargs 
xdr nlm testres 
xdr _nlm _lockargs 
xdr_nlm_cancargs 
xdr _ nlm _ unlockargs 
xdr nlm res 

SEE ALSO 
lockd(8C) 

1114 Last change: 6 October 1987 Sun Release 4 .0 



PNP(3R) RPC SERVICES LIBRARY PNP(3R) 

NAME 
pnp - automatic network installation 

PROTOCOL 
/usr/include/rpcsvc/pnprpc.x 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
pop() is used during unattended network installation, and routine booting, of Sun386i systems on a 
Sun386i network. Each network cable (subnetwork or full network) must have at least one pnpd(8C) 
server running on it to support PNP. 

PROGRAMMING 
#include <rpcsvc/pnprp~h> 

The following RPC calls are available in version 2 of the PNP protocol: 

NULLPROC 
Finds a PNP daemon on the local network. Used with clntudp_broadcast(), often to measure net
work overhead. 

PNP WHOAMI 
Used early in the boot process to acquire network configuration information about a system, or to 
determine that a system is not known by the network. 

PNP _ACQUIRE 
Used to acquire a server willing to configure a new system after a PNP _ WHOAMI request fails. 
This RPC is typically broadcast; any successful reply may be used. 

PNP SETUP 
Requests a network configuration from a PNP daemon that has responded to a previous 
PNP _ACQUIRE RPC. 

PNP POLL 
After a PNP _SETUP request, if the status is in_progress, the procedure is to wait 20 seconds, and 
issue a PNP _POLL request, and then check the status again. Once the status is success, the system 
will be configured for the network. Entries in the yp database may be added or old ones deleted, 
and file storage may be assigned, according to the architecture and boot type. 

If the server misses 5 PNP _ POLL requests, it will assume that the client system crashed and back out of the 
procedure. Similarly, if the client system does not receive responses from the server for 
PNP _MISSEDPOLLS consecutive requests, it should assume the server crashed and begin its PNP sequence 
again. 

SEE ALSO 
pnpboot(8C), pnpd(8C) 

Sun Release 4.0 Last change: 2 February 1988 lll5 



PUBLICKEY ( 3R) RPC SERVICES LIBRARY PUBLICKEY ( 3R) 

NAME 
publickey, getpublickey, getsecretkey - get public or secret key 

SYNOPSIS 
#include <rpc/rpc.h> 
#include <rpc/key _prot.h> 

getpublickey(netname, publickey) 
char netname[MAXNETNAMELEN+ l]; 
char publickey[HEXKEYBYTES+l]; 

getsecretkey(netname, secretkey, passwd) 
char netname[MAXNETNAMELEN+l]; 
char secretkey[HEXKEYBYTES+ l]; 
char •passwd; 

DESCRIPTION 
These routines are used to get public and secret keys from the YP database. getsecretkey() has an extra 
argument, passwd, which is used to decrypt the encrypted secret key stored in the database. Both routines 
return 1 if they are successful in finding the key, 0 otherwise. The keys are returned as NULL-terminated, 
hexadecimal strings. If the password supplied to getsecretkey() fails to decrypt the secret key, the routine 
will return 1 but the secretkey argument will be a NULL string (''' '). 

SEE ALSO 
publickey(5) 

RPC Programmer's Manual in Network Programming 

1116 Last change: 6 October 1987 Sun Release 4.0 



REX(3R) RPC SERVICES LIBRARY REX(3R) 

NAME 
rex - remote execution protocol 

PROTOCOL 
/usr/include/rpcsvc/rex.x 

DESCRIPTION 
This server will execute commands remotely. The working directory and environment of the command 
can be specified, and the standard input and output of the command can be arbitrarily redirected. An 
option is provided for interactive 1/0 for programs that expect to be running on terminals. Note: this ser
vice is only provided with the TCP transport. 

PROGRAMMING 
#include <sys/ioctl.h> 
#include <rpcsvc/rex.h> I* not compiled with rpgen 

The following XDR routines are available in librpcsvc: 

SEE ALSO 

xdr rex start 
xdr rex result 
xdr _rex _ ttymode 
xdr _rex _ ttysize 

on(lC), rexd(8C) 

Sun Release 4.0 Last change: 6 October 1987 1117 



RNUSERS ( 3R) RPC SERVICES LIBRARY 

NAME 
rnusers, rusers - return information about users on remote machines 

PROTOCOL 
/usr/include/rpcsvc/rnusers.x 

PROGRAMMING 
#include <rpcsvc/rusers.h> 
rnusers(host) 

char *host 
rusers(host, up) 

char *host 
struct utmpidlearr *op; 

RNUSERS ( 3R) 

rnusers() returns the number of users logged on to host (-1 if it cannot determine that number). rusers() 
fills the utmpidlearr structure with data about host, and returns O if successful. 

The following XOR routines are also available: 
xdr _ utmpidle 
xdr _utmpidlearr 

SEE ALSO 
rusers(lC) 

1118 Last change: 6 October 1987 Sun Release 4.0 



RQUOTA(3R) RPC SERVICES LIBRARY RQUOTA(3R) 

NAME 
rquota - implement quotas on remote machines 

PROTOCOL 
/usr/include/rpcsvc/rquota.x 

DESCRIPTION 
The rquota() protocol inquires about quotas on remote machines. It is used in conjunction with NFS, since 
NFS itself does not implement quotas. 

PROGRAMMING 
#include <rpcsvc/rquota.h> 

The following XDR routines are available in librpcsvc: 
xdr _getquota_ arg 
xdr _getquota _ rslt 
xdr_rquota 

SEE ALSO 
quota(l), quotact1(2) 

Sun Release 4.0 Last change: 6 October 1987 1119 



RSTAT(3R) RPC SERVICES LIBRARY RSTAT(3R) 

NAME 
rstat - get performance data from remote kernel 

PROTOCOL 
/usr/include/rpcsvc/rstat.x 

DESCRIPTION 
The rstat() protocol is used to gather statistics from remote kernel. Statistics are available on items such 
as paging, swapping and cpu utilization. 

PROGRAMMING 
#include <rpcsvc/rstat.h> 

havedisk(host) 
char •host; 

rstat(host, statp) 
char •host; 
struct statstime •statp; 

havedisk() returns 1 if host has a disk, 0 if it does not, and -1 if this cannot be determined. rstat( ) fills in 
the statstime structure for host, and returns O if it was successful. 

The following XOR routines are available in librpcsvc: 
xdr statstime 
xdr statsswtch 
xdr stats 

SEE ALSO 
perfmeter(l), rup(lC), rstatd(8C) 

1120 Last change: 6 October 1987 Sun Release 4.0 



RWALL(3R) RPC SERVICES LIBRARY 

NAME 
rwall - write to specified remote machines 

SYNOPSIS 
#include <rpcsvc/rwall.h> 

rwall(host, msg); 
char •host, •msg; 

DESCRIPTION 
host prints the string msg to all its users. It returns O if successful. 

RPC INFO 
program number: 

procs: 

WALLPROG 

W ALLPROC WALL 
Takes string as argument (wrapstring), returns no arguments. 
Executes wall on remote host with string. 

versions: 
RSTATVERS ORIG 

SEE ALSO 
rwall(lC), rwalld(8C), shutdown(8) 

Sun Release 4.0 Last change: 6 October 1987 

RWALL(3R) 

1121 



SM_INTER ( 3R) RPC SERVICES LIBRARY 

NAME 
sm_inter - status monitor protocol 

PROTOCOL 
/usr/include/rpcsvc/sm _inter .x 

DESCRIPTION 
The status monitor protocol is used for monitoring the status of remote hosts. 

PROGRAMMING 
#include <rpcsvc/sm _ inter .h> 

XDR Routines 
The following XDR routines are available in librpcsvc: 

xdr sm name 
xdr moo 
xdr moo id 
xdr sm stat res - - -
xdr sm stat 

SEE ALSO 
statd(8C) 

1122 Last change: 6 October 1987 

SM_INTER ( 3R) 

Sun Release 4.0 



SPRAY(3R) RPC SERVICES LIBRARY 

NAME 
spray - scatter data in order to check the network 

PROTOCOL 
/usr/include/rpcsvc/spray.x 

DESCRIPTION 
The spray protocol sends packets to a given machine to test the speed and reliability of it. 

PROGRAMMING 
#include <rpcsvc/spray .h> 

The following XDR routines are available in librpcsvc: 
xdr_sprayarr 
xdr _ spraycumul 

SEE ALSO 
spray(8C), sprayd(8C) 

Sun Release 4.0 Last change: 6 October 1987 

SPRAY(3R) 

1123 



XCRYPT(3R) RPC SERVICES LIBRARY XCRYPT(3R) 

NAME 
xcrypt, xdecrypt, passwd2des - hex encryption and utility routines 

SYNOPSIS 
xencrypt(data, key) 

char •data; 
char •key; 

xdecrypt(data, key) 
char •data; 
char •key; 

passwd2des(pass, key) 
char •pass; 
char •key; 

DESCRIPTION 
The routines xencrypt and xdecrypt take NULL-terminated hexadecimal strings as arguments, and encrypt 
them using the 8-byte key as input to the DES algorithm. The input strings must have a length that is a mul
tiple on 16 hex digits (64 bits is the DES block size). 

passwd2des converts a password, of arbitrary length, into an 8-byte DES key, with odd-parity set in the low 
bit of each byte. The high-order bit of each input byte is ignored. 

These routines are used by the DES authentication subsystem for encrypting and decrypting the secret keys 
stored in the publickey database. 

SEE ALSO 
des_ crypt(3 ), publickey(5) 

1124 Last change: 6 October 1987 Sun Release 4.0 



YP(3R) 

NAME 
yp - Yellow Pages protocol 

PROTOCOL 
/usr/include/rpcsvdyp.x 

DESCRIPTION 

RPC SERVICES LIBRARY YP(3R) 

The Yellow Pages Service is used for the administration of network-wide databases. The service is com
posed mainly of two programs: YPBINDPROG for finding a YP server and YPPROG for accessing the YP 
databases. 

PROGRAMMING 
Refer to ypclnt(3N) for information on the programmatic interface to YP servers and databases. 

SEE ALSO 
ypclnt(3N), yppasswd(3R) 

Sun Release 4.0 Last change: 6 October 1987 1125 



YPPASSWD ( 3R) RPC SERVICES LIBRARY YPPASSWD ( 3R) 

NAME 
yppasswd - update user password in Yellow Pages 

PROTOCOL 
/usr/include/rpcsvc/yppasswd.x 

DESCRIPTION 
The yppasswd protocol is used to change a user's password entry in the YP password database. 

PROGRAMMING 
#include <rpcsvc/yppasswd.h> 

yppasswd( old pass, newpw) 
char •oldpass 
struct passwd •newpw; 

If oldpass is indeed the old user password, this routine replaces the password entry with newpw. It returns 
0 if successful. 

SEE ALSO 
yppasswd(l), yppasswdd(8C) 

1126 Last change: 14 December 1987 Sun Release 4.0 



INTR0(3V) SYSTEM V LIBRARY INTR0(3V) 

NAME 
intro - introduction to System V functions 

SYNOPSIS 
/usr/Sbin/cc 

DESCRIPTION 
These functions are contained in the System V library, lusrl5libllibc.a. They are automatically linked 
when you compile a C program with the C compiler in /usr/Sbin/cc. 

LIST OF SYSTEM V LIBRARY FUNCTIONS 
Name 

_tolower() 
_toupper() 
addch() 
addstr() 
asctime() 
assert() 
attroft'() 
attron() 
attrset() 
baudrate() 
beep() 
box() 
cbreak() 
clear() 
clearerr() 
clearok() 
clrtobot() 
clrtoeol() 
ctime() 
ctype() 
curses() 
curses() 
delay_ output() 
delch() 
deleteln() 
delwin() 
doupdate() 
echo() 
endpwent() 
endwin() 
erase() 
erasechar() 
fdopen() 
feof() 
ferror() 
fgetc() 
f getpwent() 
fileno() 
fixterm() 
flash() 
flushinp() 
fopen() 

Appears on Page 

ctype(3V) 
ctype(3V) 
curses(3V) 
curses(3V) 
ctime(3V) 
assert(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
ferror(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
ctime(3V) 
ctype(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
getpwent(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
fopen(3V) 
ferror(3V) 
ferror(3V) 
getc(3V) 
getpwent(3V) 
ferror(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
fopen(3V) 

Description 

character classification and conversion macros and functions 
character classification and conversion macros and functions 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
convert date and time 
verify program assertion 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
stream status inquiries 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
convert date and time 
character classification and conversion macros and functions 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
get password file entry 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
open a stream 
stream status inquiries 
stream status inquiries 
get character or integer from stream 
get password file entry 
stream status inquiries 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
open a stream 

Sun Release 4.0 Last change: 4 September 1987 1127 



INTR0(3V) 

1128 

fprintf() 
freopen() 
fscanf() 
getc() 
getch() 
getchar() 
getpass() 
getpwent() 
getpwnam() 
getpwuid() 
getstr() 
gettmode() 
getw() 
getyx() 
gmtime() 
has_ic() 
has_il() 
idlok() 
inch() 
initscr() 
insch() 
insertln() 
intrflush() 
isalnum() 
isalpha() 
isascii() 
iscntrl() 
isdigit() 
isgraph() 
islower() 
isprint() 
ispunct() 
isspace() 
isupper() 
isxdigit() 
keypad() 
killchar() 
leaveok() 
Iocaltime() 
longname() 
meta() 
move() 
mvaddch() 
mvaddstr() 
mvcur() 
mvdelch() 
mvgetch() 
mvgetstr() 
mvinch() 
mvinsch() 
mvprintw() 
mvscanw() 
mvwaddch() 

SYSTEM V LIBRARY INTR0(3V) 

printf(3V) 
fopen(3V) 
scanf(3V) 
getc(3V) 
curses(3V) 
getc(3V) 
getpass(3V) 
getpwent(3V) 
getpwent(3V) 
getpwent(3V) 
curses(3V) 
curses(3V) 
getc(3V) 
curses(3V) 
ctime(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
ctype(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
ctime(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 

formatted output conversion 
open a stream 
formatted input conversion 
get character or integer from stream 
System V cursor addressing and screen display library 
get charac~er or integer from stream 
read a password 
get password file entry 
get password file entry 
get password file entry 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
get character or integer from stream 
System V cursor addressing and screen display library 
convert date and time 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functi~ 
character classification and conversion macros and funct 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
convert date and time 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 

Last change: 4 September 1987 Sun Release 4.0 



INTR0(3V) 

mvwaddstr() 
mvwdelch() 
mvwgetch() 
mvwgetstr() 
mvwin() 
mvwinch() 
mvwinsch() 
mvwprintw() 
mvwscanw() 
newpad() 
newterm() 
newwin() 
nice() 
nl() 
nocbreak() 
nodelay() 
noecho() 
nonl() 
noraw() 
overlay() 
overwrite( ) 
pnoutrefresh() 
printf() 
rand() 
raw() 
refresh() 
resetterm() 
resetty() 
saveterm() 
savetty() 
scanf() 
scanw() 
scroll() 
scrollok() 
set_term() 
setbuf() 
setbuffer() 
setgid() 
setlinebuf() 
setpwent() 
setpwfile( ) 
setscrreg( ) 
setterm() 
setuid() 
setupterm() 
setvbuf() 
signal() 
sleep() 
sprintf() 
srand() 
sscanf() 
standend() 
standout() 

Sun Release 4.0 

SYSTEM V LIBRARY INTR0(3V) 

curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
nice(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
printf(3V) 
rand(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
scanf(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
setbuf(3V) 
setbuf(3V) 
setuid(3V) 
setbuf(3V) 
getpwent(3V) 
getpwent(3V) 
curses(3V) 
curses(3V) 
setuid(3V) 
curses(3V) 
setbuf(3V) 
signal(3V) 
sleep(3V) 
printf(3V) 
rand(3V) 
scanf(3V) 
curses(3V) 
curses(3V) 

System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
change priority of a process 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
formatted output conversion 
simple random number generator 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
formatted input conversion 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
assign buffering to a stream 
assign buffering to a stream 
set user and group IDs 
assign buffering to a stream 
get password file entry 
get password file entry 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
set user and group IDs 
System V cursor addressing and screen display library 
assign buffering to a stream 
simplified software signal facilities 
suspend execution for interval 
formatted output conversion 
simple random number generator 
formatted input conversion 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 

Last change: 4 September 1987 1129 



INTR0(3V) 

subwin() 
timegm() 
timelocal() 
times() 
toascii() 
tolower() 
touchwin() 
toupper() 
traceoff() 
traceon() 
ttyslot() 
typeahead() 
t7.Set() 
t7.Setwall( ) 
unctrl() 
waddch() 
waddstr() 
wattroff() 
wattron() 
wattrset() 
wclear() 
wclrtobot() 
wclrtoeol( ) 
wdelch() 
wdeleteln() 
werase() 
wgetch() 
wgetstr() 
winch() 
winsch() 
winsertln() 
wmove() 
wnoutrefresh( ) 
wprintw() 
wrefresh() 
wscanw() 
wsetscrreg() 
wstandend() 
wstandout() 

1130 

curses(3V) 
ctime(3V) 
ctime(3V) 
times(3V) 
ctype(3V) 
ctype(3V) 
curses(3V) 
ctype(3V) 
curses(3V) 
curses(3V) 
ttyslot(3V) 
curses(3V) 
ctime(3V) 
ctime(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 
curses(3V) 

SYSIBM V LIBRARY INTR0(3V) 

System V cursor addressing and screen display library 
convert date and time 
convert date and time 
get process and child process times 
character classification and conversion macros and functions 
character classification and conversion macros and functions 
System V cursor addressing and screen display library 
character classification and conversion macros and functions 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
find the slot in the utmp file of the current process 
System V cursor addressing and screen display library 
convert date and time 
convert date and time 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 
System V cursor addressing and screen display library 

Last change: 4 September 1987 Sun Release 4 .0 



ASSERT(3V) SYSTEM V LIBRARY ASSERT(3V) 

NAME 
assert - verify program assertion 

SYNOPSIS 
#include <assert.h> 

assert(e:xpression) 
int expression; 

DESCRIPTION 
assert() is a macro that indicates expression is expected to be true at this point in the program. When it is 
executed, if expression is false (zero), assert() prints 

'Assertion failed: expression, file xyz, line nnn' 

on the standard error output and aborts. In the error message, xyz is the name of the source file and nnn the 
source line number of the assert() statement. 

Compiling with the cc(l V) option -DNDEBUG, or with the preprocessor control statement '#define NDE
BUG' ahead of the '#include <assert.h>' statement, will stop assertions from being compiled into the pro
gram. 

SEE ALSO 
cc(l V), abort(3) 

Sun Release 4.0 Last change: 6 October 1987 1131 



CTIME (3V) SYSTEM V LIBRARY CTIME(3V) 

NAME 
ctime, localtime, gmtime, asctime, timelocal, timegm, tzset, tzsetwall - convert date and time 

SYNOPSIS 
#include <time.h> 

struct tm *localtime(clock) 
long *clock; 

struct tm *gmtime(clock) 
long *clock; 

char *asctime(tm) 
struct tm *tm; 

char *ctime(clock) 
long *clock; 

time _t timelocal(tm) 
struct tm *tm; 

time_ t timegm(tm) 
struct tm *tm; 

void tzset( ) 

void tzsetwall() 

extern long timezone; 

extern int daylight; 

extern char *tzname[2]; 

DESCRIPTION 

1132 

localtime() and gm time() return pointers to structun:s containing the time, broken down into various com
ponents of that time represented in a particular time zone. localtime() breaks down a time specified by the 
clock() argument, correcting for the time zone and any time zone adjustments (such as Daylight Savings 
Time). Before doing so, localtime() calls tzset() (if tzset() has not been called in the current process). 
gm time() breaks down a time specified by the clock() argument into GMT, which is the time the system 
uses. 

asctime() converts a time value contained in a "tm" structure to a 26-character string of the form: 

Sun Sep 16 01:03:52 1973\n\O 

Each field has a constant width. asctime() returns a pointer to the string. 

ctime() converts a long integer, pointed to by clock, to a 26-character string of the form produced by asc
time( ). It first breaks down clock() to a struct tm by calling localtime, and then calls asctime() to con
vert that struct tm to a string. 

timelocal() and time gm() convert the time specified by the tm argument to a time value that represents 
that time expressed as the number of seconds since Jan. 1, 1970, 00:00, Greenwich Mean Time. timelo
cal() converts a struct tm that represents local time, correcting for the time zone and any time zone adjust
ments (such as Daylight Savings Time). Before doing so, timelocal() calls tzset() (if tzset() has not been 
called in the current process). timegm() converts a struct tm that represents GMT. 

tzset( ) uses the value of the environment variable 1Z to set time conversion information used by localtime. 
If TZ is absent from the environment, the best available approximation to local wall clock time is used by 
localtime. If TZ appears in the environment but its value is a NULL string, Greenwich Mean Time is used; 
if 1Z appears and begins with a slash, it is used as the absolute pathname of the tzfileformat (see tzfile(5)) 
file from which to read the time conversion information; if 1Z appears and begins with a character other 
than a slash, it is used as a pathname relative to a system time conversion information directory. 

Last change: 6 October 1987 Sun Release 4.0 



CTIME (3V) SYSTEM V LIBRARY CTIME(3V) 

FILES 

tzsetwall( ) sets things up so that localtime() returns the best available approximation of local wall clock 
time. 

Declarations of all the functions and externals, and the "tm" structure, are in the <time.h> header file. The 
structure (of type) struct tm includes the following fields: 

int tm_sec; I* seconds (0 · 59) *I 
int tm _ min; I* minutes (0 . 59) *I 
int tm _ hour; I* hours (0 · 23) *I 
int tm _mday; I* day of month (1 · 31) *I 
int tm _ mon; I* month of year (0 - 11) *I 
int tm _year; I* year - 1900 *I 
int tm _ wday; I* day of week (Sunday = 0) *f 
int tm _yday; I* day of year (0 · 365) *I 
int tm _isdst; I* 1 if DST in effect *I 
char *tm_zone; I* abbreviation of timezone name *I 
long tm _gmtoff; I* offset from GMT in seconds *I 

tm _isdst is non-zero if Daylight Savings Time is in effect. tm _ zone points to a string that is the name used 
for the local time zone at the time being converted. tm _gmtoff is the offset (in seconds) of the time 
represented from GMT, with positive values indicating East of Greenwich. 

The external long variable timezone contains the difference, in seconds, between GMT and local standard 
time (in PST, timezone is 8*60*60). If this difference is not a constant, timezone will contain the value of 
the offset on January 1, 1970 at 00:00 GMT. Since this is not necessarily the same as the value at some par
ticular time, the time in question should be converted to a "struct tm" using localtime (see ctime(3)) and 
the tm _gmtoff field of that structure should be used. The external variable daylight is non-zero if and only 
if Daylight Savings Time would be in effect within the current time zone at some time; it does not indicate 
whether Daylight Savings Time is currently in effect. 

The external variable tzname is an array of two char * pointers. The first pointer points to a character 
string that is the name of the current time zone when Daylight Savings Time is not in effect; the second 
one, if Daylight Savings Time conversion should be applied, points to a character string that is the name of 
the current time zone when Daylight Savings Time is in effect. These strings are updated by localtime() 
whenever a time is converted. If Daylight Savings Time is in effect at the time being converted, the second 
pointer is set to point to the name of the current time zone at that time, otherwise the first pointer is so set. 

timezone, daylight, and tzname are retained for compatibility with existing programs. 

/usr/share/lib/zoneinfo standard time conversion information directory 
I usr /share/Iib/zoneinf o/localtime 

local time zone file 
SEE ALSO 

BUGS 
gettimeofday(2), ctime(3), getenv(3), time(3C), environ(5V), tzfile(5) 

The return values point to static data, whose contents are overwritten by each call. The tm zone field of a 
returned struct tm points to a static array of characters, which will also be overwritten at the next call (and 
by calls to tzset() or tzsetwall). 

Sun Release 4.0 Last change: 6 October 1987 1133 



CTYPE(3V) SYSTEM V LIBRARY CTYPE(3V) 

NAME 
ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii, isgraph, 
toupper, tolower, toascii, _toupper, _tolower - character classification and conversion macros and func
tions 

SYNOPSIS 
#include <ctype.h> 

isalpha(c) 

CHARACTER CLASSIFICATION MACROS 
These macros classify ASCil-coded integer values by table lookup. Each is a predicate returning nonzero 
for true, zero for false. isascii is defined on all integer values; the rest are defined only where isascii(c) is 
true and on the single non-ASCII value EOF (see stdio(3V)). 

isalpha(c) c is a letter 

isupper(c) 

islower(c) 

isdigit(c) 

isxdigit(c) 

isalnum(c) 

isspace(c) 

ispunct(c) 

isprint(c) 

iscntrl(c) 

c is an upper case letter 

c is a lower case letter 

c is a digit [0-9]. 

c is a hexadecimal digit [0-9], [A-FJ, or [a-f]. 

c is an alphanumeric character, that is, c is a letter or a digit 

c is a space, tab, carriage return, newline, vertical tab, or formfeed 

c is a punctuation character (neither control nor alphanumeric) 

c is a printing character, code 040(8) (space) through 0176 (tilde) 

c is a delete character (0177) or ordinary control character (less than 040). 

isascii(c) c is an ASCII character, code less than 0200 

isgraph(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde). 

CHARACTER CONVERSION MACROS AND FUNCTIONS 

1134 

toupper and tolower are functions, rather than macros, and work correctly on all characters. The macros 
_toupper and _tolower are faster than the equivalent functions (toupper and tolower) but only work prop
erly on a restricted range of characters. 

These functions perform simple conversions on single characters. 

toupper(c) 

tolower(c) 

toascii(c) 

converts c to its upper-case equivalent. If c is not a lower-case letter, it is returned 
unchanged. 

converts c to its lower-case equivalent. If c is not an upper-case letter, it is 
returned unchanged. 

masks c with the correct value so that c is guaranteed to be an ASCII character in 
the range O thru Ox7f. 

These macros perform simple conversions on single characters. 

_toupper(c) converts c to its upper-case equivalent. Note that this only works where c is 
known to be a lower-case character to start with (presumably checked using 
islower). 

_tolower(c) converts c to its lower-case equivalent. Note: this only works where c is known to 
be a upper-case character to start with (presumably checked using isupper). 

Last change: 30 January 1988 Sun Release 4.0 



CTYPE(3V) SYSTEM V LIBRARY CTYPE(3V) 

DIAGNOSTICS 
If the argument to any of these macros is not in the domain of the function, the result is undefined 

SEE ALSO 
ctype(3), stdio(3V), ascii(7) 

Sun Release 4.0 Last change: 30 January 1988 1135 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

NAME 
curses - System V terminal screen handling and optimization package 

SYNOPSIS 

1136 

The curses manual page is organized as follows: 

In SYNOPSIS 
• compiling information 
• summary of parameters used by curses routines 
• alphabetical list of curses routines, showing their parameters 

In DESCRIPTION: 

• An overview of how curses routines should be used 

In ROUTINES, descriptions of curses routines are grouped under the appropriate topics: 
• Overall Screen Manipulation 
• Window and Pad Manipulation 
• Output 
• Input 
• Output Options Setting 
• Input Options Setting 
• Environment Queries 
• Soft Labels 
• Low-level Curses Access 
• Terminfo-Level Manipulations 
• Termcap Emulation 
• Miscellaneous 
• Use of curscr 

Then come sections on: 

• A TIRIBUTES 

• FUNCTION CALLS 

• LINE GRAPHICS 

/usr/Sbin/cc [flag ... ] file ... -lcurses [ library ... ] 

#include <curses.h> (automatically includes <stdio.h>, <termio.h>, and <unctrl.h> ). 

The parameters in the following list are not global variables; this is a summary of the parameters used by 
the curses library routines. All routines return the int values ERR or OK unless otherwise noted. Routines 
that return pointers always return NULL on error. (ERR, OK, and NULL are all defined in <curses.h>.) 
Routines that return integers are not listed in the parameter list below. 

boolbf 

char **area,*boolnames[ ], *boolcodes[ ], *boolfnames[ ], *hp 
char *cap, *capname, codename[2], erasechar, *filename, *fmt 
char *keyname, killchar, *label, *longname 
char *name, *numnames[ ], *numcodes[ ], *numfnames[] 
char *slk_label, *Str, *strnames[ ], *Strcodes[ ], *strfnames[] 
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type 

chtype attrs, ch, horch, vertch 

FILE *infd, *outfd 

int begin_ x, begin J, begline, bot, c, col, count 
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, tildes 
int (*init()), labfmt, labnum, line 
int ms, ncols, new, newcol, newrow, nlines, numlines 

Last change: 30 January 1988 Sun Release 4 .0 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

int oldcol, oldrow, overlay 
int pl, p2, p9, pmincol, pminrow, (*putc()), row 
int smaxcol, smaxrow, smincol, sminrow, start 
int tenths, top, visibility, x, y 

SCREEN •new, •newterm, •set_term 

TERMINAL •cur_term, •nterm, •oterm 

va _ list varglist 

WINDOW •curscr, •dstwin, •initscr, •newpad, •newwin, •orig 

WINDOW •pad, •srcwin, •stdscr, •subpad, •subwin, •win 

addch (ch) 
addstr (str) 
attrofT (attrs) 
attron (attrs) 
attrset (attrs) 
baudrate() 
beep() 
box (win, vertch, horch) 
cbreak() 
clear() 
clearok (win, bf) 
clrtobot() 
clrtoeol() 
copywin (srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol, overlay) 
curs_ set (visibility) 
def_prog_mode() 
def _shell _mode() 
del_curterm (oterm) 
delay_ output (ms) 
delch() 
deleteln() 
delwin (win) 
doupdate() 
draino (ms) 
echo() 
echochar (ch) 
endwin() 
erase() 
erasechar() 
filter() 
flash() 
flushinp() 
garbagedlines (win, beg line, numlines) 
getbegyx (win, y, x) 
getch() 
getmaxyx (win, y, x) 
getstr (str) 
getsyx (y, x) 
getyx (win, y, x) 
half delay (tenths) 
has_ic() 
has_il() 
idlok (win, bf) 

Sun Release 4.0 Last change: 30 January 1988 1137 



CURSES(3V) SYSTEM V LIBRARY 

1138 

inch() 
initscr() 
insch (ch) 
insertln() 
intrffush (win, bf) 
isendwin() 
keyname (c) 
keypad (win, bf) 
killchar() 
leaveok (win, bf) 
longname() 
meta (win, bf) 
move (y, x) 
mvaddch (y, x, ch) 
mvaddstr (y, x, str) 
mvcur (oldrow, oldcol, newrow, newcol) 
mvdelch (y, x) 
mvgetch (y, x) 
mvgetstr (y, x, str) 
mvinch (y, x) 
mvinsch (y, x, ch) 
mvprintw (y, x,fmt [, arg .. . ]) 
mvscanw (y, x,fmt [, arg . .. ] ) 
mvwaddch (win, y, x, ch) 
mvwaddstr (win, y, x, str) 
mvwdelch (win, y, x) 
mvwgetch (win, y, x) 
mvwgetstr (win, y, x, str) 
mvwin (win, y, x) 
mvwinch (win, y, x) 
mvwinsch (win, y, x, ch) 
mvwprintw (win, y, x,fmt [, arg .. . ] ) 
mvwscanw (win, y, x,fmt [, arg .. . ]) 
napms(ms) 
newpad (nlines, ncols) 
newterm (type, outfd, infd) 
newwin (nlines, ncols, begin_y, begin_x) 
nl() 
nocbreak() 
nodelay (win, bf) 
noecho() 
nonl() 
noraw() 
notimeout ( win, bf) 
overlay (srcwin, dstwin) 
overwrite (srcwin, dstwin) 
pechochar (pad, ch) 
pnoutrefresh (pad, pminrow, pmincol, sminrow. smincol, smaxrow, smaxcol) 
prefresh (pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 
printw (fmt [, arg ... ] ) 
putp (str) 
raw() 
refresh() 

Last change: 30 January 1988 

CURSES(3V) 

Sun Release 4.0 



CURSES(3V) 

reset _prog_ mode( ) 
reset_shell_mode() 
resetty() 
restartterm (term, fildes, errret) 
ripoffline (line, init) 
savetty() 
scanw (fmt [, arg ... ] ) 
scr _ dump (filename) 
scr _ init (filename) 
scr _ restore (filename) 
scroll (win) 
scrollok (win, bf) 
set_curterm (nterm) 
set_ term (new) 
setscrreg (top, bot) 
setsyx (y, x) 
setupterm (term,fildes, errret) 
slk _ clear( ) 
slk _ init (fmt) 
slk _ label (labnum) 
slk _ noutrefresh() 
slk _refresh() 
slk _restore() 
slk_set (labnum, label,fmt) 
slk _touch() 
standend() 
standout() 

SYSTEM V LIBRARY 

subpad (orig, nlines, ncols, begin_y, begin_x) 
subwin (orig, nlines, ncols, begin_y, begin_x) 
tgetent (bp, name) 
tgetflag (codename) 
tgetnum (codename) 
tgetstr (codename, area) 
tgoto (cap, col, row) 
tigetflag (capname) 
tigetnum (capname) 
tigetstr (capname) 
touchline (win, start, count) 
touchwin (win) 
tparm (str, pl, p2, ... , p9) 
tputs (str, count, putc) 
traceoff() 
traceon() 
typeahead (fildes) 
unctrl (c) 
ungetch (c) 
vidattr (attrs) 
vidputs (attrs, putc) 
vwprintw (win,fmt, varglist) 
vwscanw (win,fmt, varglist) 
waddch (win, ch) 
waddstr (win, str) 
wattroff (win, attrs) 

Sun Release 4.0 Last change: 30 January 1988 

CURSES(3V) 

1139 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

wattron (win, attrs) 
wattrset (win, attrs) 
wclear (win) 
wclrtobot (win) 
wclrtoeol (win) 
wdelch (win) 
wdeleteln (win) 
wechochar (win, ch) 
werase (win) 
wgetch (win) 
wgetstr (win, str) 
winch (win) 
winsch (win, ch) 
winsertln (win) 
wmove (win, y, x) 
wnoutrefresh (win) 
wprintw (win,fmt [, arg . .. ]) 
wrefresh (win) 
wscanw (win,fmt [, arg .. . ]) 
wsetscrreg (win, top, bot) 
wstandend (win) 
wstandout (win) 

DESCRIPTION 

1140 

The curses routines give the user a terminal-independent method of updating screens with reasonable 
optimization. 

In order to initialize the routines, the routine initscr() or newterm() must be called before any of the other 
routines that deal with windows and screens are used. (Three exceptions are noted where they apply.) The 
routine endwin() must be called before exiting. To get character-at-a-time input without echoing, (most 
interactive, screen oriented programs want this) after calling initscr() you should call 'cbreak ( ); noecho 
();' Most programs would additionally call 'nonl (); intrflush(stdscr, FALSE); keypad(stdscr, TRUE);'. 

Before a curses program is run, a terminal's TAB stops should be set and its initialization strings, if 
defined, must be output This can be done by executing the tset command in your .profile or .login file. 
For further details, see tset(l) and the Tabs and Initialization subsection of terminfo(5V). 

The curses library contains routines that manipulate data structures called windows that can be thought of 
as two-dimensional arrays of characters representing all or part of a terminal screen. A default window 
called stdscr is supplied, which is the size of the terminal screen. Others may be created with newwin( ). 
Windows are referred to by variables declared as WINDOW•; the type WINDOW is defined in <curses.h> 
to be a C structure. These data structures are manipulated with routines described below, among which the 
most basic are move() and addcb( ). (More general versions of these routines are included with names 
beginning with w, allowing you to specify a window. The routines not beginning with w usually affect 
stdscr.) Then refresh() is called, telling the routines to make the user's terminal screen look like stdscr. 
The characters in a window are actually of type chtype, so that other information about the character may 
also be stored with each character. 

Special windows called pads may also be manipulated. These are windows that are not constrained to the 
size of the screen and whose contents need not be displayed completely. See the description of newpad() 
under Window and Pad Manipulation for more information. 

In addition to drawing characters on the screen, video attributes may be included that cause the characters 
to show up in modes such as underlined or in reverse video on terminals that support such display enhance
ments. Line drawing characters may be specified to be output. On input, curses is also able to translate 
arrow and function keys that transmit escape sequences into single values. The video attributes, line draw
ing characters, and input values use names, defined in <curses.h>, such as A_REVERSE, ACS_HLINE, and 

Last change: 30 January 1988 Sun Release 4 .0 



CURSES (3V) SYSTEM V LIBRARY CURSES(3V) 

KEY_LEFf. 

curses also defines the WINDOW * variable, curscr, which is used only for certain low-level operations 
like clearing and redrawing a garbaged screen. curscr can be used in only a few routines. ff the window 
argument to clearok() is curscr, the next call to wrefresh( ) with any window will clear and repaint the 
screen from scratch. If the window argument to wrefresh( ) is curscr, the screen in immediately cleared 
and repainted from scratch. This is how most programs would implement a "repaint-screen" function. 
More information on using curscr is provided where its use is appropriate. 

The environment variables LINES and COLUMNS may be set to override curses's idea of how large a 
screen is. 

If the environment variable TERMINFO is defined, any program using curses will check for a local termi
nal definition before checking in the standard place. For example, if the environment variable TERM is set 
to sun, then the compiled terminal definition is found in /usr/share/Iib/terminfo/s/sun. (The s is copied 
from the first letter of sun to avoid creation of huge directories.) However, if TERMINFO is set to 
$HOME/myterms, curses will first check $HOME/myterms/s/sun, and, if that fails, will then check 
/usr/share/Iib/terminfo/s/sun. This is useful for developing experimental definitions or when write per
mission on /usr/share/Iib/terminfo is not available. 

The integer variables LINES and COLS are defined in <curses.h>, and will be filled in by initscr() with the 
size of the screen. (For more information, see the subsection Terminfo-Level Manipulations.) The con
stants TRUE and FALSE have the values 1 and 0, respectively. The constants ERR and OK are returned by 
routines to indicate whether the routine successfully completed. These constants are also defined in 
<curses.h>. 

ROUTINES 
Many of the following routines have two or more versions. The routines prefixed with w require a window 
argument. The routines prefixed with p require a pad argument. Those without a prefix generally use 
stdscr. 

The routines prefixed with mv require y and x coordinates to move to before performing the appropriate 
action. The mv routines imply a call to move() before the call to the other routine. The window argument 
is always specified before the coordinates. y always refers to the row (of the window), and x always refers 
to the column. The upper left comer is always (0,0), not (1,1). The routines prefixed with mvw take both a 
window argument and y and x coordinates. 

In each case, win is the window affected and pad is the pad affected. ( win and pad are always of type 
WINDOW * .) Option-setting routines require a boolean flag bf with the value TRUE or FALSE. (bf is 
always of type bool.) The types WINDOW, bool, and chtype are defined in <curses.h>. See the 
SYNOPSIS for a summary of what types all variables are. 

All routines return either the integer ERR or the integer OK, unless otherwise noted. Routines that return 
pointers always return NULL on error. 

Overall Screen Manipulation 
WINDOW •initscr() 

endwin() 

Sun Release 4.0 

The first routine called should almost always be initscr(). (The exceptions are 
slk _ init( ), filter(), and ripoffline( ).) This will determine the terminal type and 
initialize all curses data structures. initscr() also arranges that the first call to 
refresh() will clear the screen. ff errors occur, initscr() will write an appropriate 
error message to standard error and exit; otherwise, a pointer to stdscr is returned. 
If the program wants an indication of error conditions, newterm() should be used 
instead of initscr( ). initscr() should only be called once per application. 

A program should always call endwin() before exiting or escaping from curses 
mode temporarily, to do a shell escape or system(3) call, for example. This rou
tine will restore termio(4) modes, move the cursor to the lower left comer of the 
screen and reset the terminal into the proper non-visual mode. To resume after a 
temporary escape, call wrefresh() or doupdate( ). 

Last change: 30 January 1988 1141 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

isendwin() Returns TRUE if endwin() has been called without any subsequent calls to 
wrefresh( ). 

SCREEN •newterm(type, outfd, infd) 
A program that outputs to more than one terminal must use newterm() for each 
terminal instead of initscr( ). A program that wants an indication of error condi
tions, so that it may continue to run in a line-oriented mode if the terminal cannot 
support a screen-oriented program, must also use this routine. newterm( ) should 
be called once for each terminal. It returns a variable of type SCREEN* that 
should be saved as a reference to that terminal. The arguments are the type of the 
terminal to be used in place of the environment variable TERM; outf d, a stdio(3V) 
file pointer for output to the terminal; and inf d, another file pointer for input from 
the terminal. When it is done running, the program must also call endwin() for 
each terminal being used. If newterm() is called more than once for the same ter
minal, the first terminal referred to must be the last one for which endwin() is 
called. 

SCREEN •set_ term (new) 
This routine is used to switch between different terminals. The screen reference 
new becomes the new current terminal. A pointer to the screen of the previous 
terminal is returned by the routine. This is the only routine that manipulates 
SCREEN pointers; all other routines affect only the current terminal. 

Window and Pad Manipulation 
refresh() 

1142 

wrefresh (win) These routines (or prefresh(), pnoutrefresh(), wnoutrefresh(), or doupdate()) 
must be called to write output to the terminal, as most other routines merely mani
pulate data structures. wrefresh() copies the named window to the physical ter
minal screen, taking into account what is already there in order to minimize the 
amount of information that's sent to the terminal (called optimization). refresh() 
does the same thing, except it uses stdscr as a default window. Unless leaveok() 
has been enabled, the physical cursor of the terminal is left at the location of the 
window's cursor. The number of characters output to the terminal is returned. 

wnoutrefresh (win) 
doupdate() 

Note: refresh( ) is a macro. 

These two routines allow multiple updates to the physical terminal screen with 
more efficiency than wrefresh( ) alone. How this is accomplished is described in 
the next paragraph. 

curses keeps two data structures representing the terminal screen: a physical ter
minal screen, describing what is actually on the screen, and a virtual terminal 
screen, describing what the programmer wants to have on the screen. wrefresh( ) 
works by first calling wnoutrefresh( ), which copies the named window to the vir
tual screen, and then by calling doupdate( ), which compares the virtual screen to 
the physical screen and does the actual update. If the programmer wishes to out
put several windows at once, a series of calls to wrefresh() will result in alternat
ing calls to wnoutrefresh() and doupdate( ), causing several bursts of output to 
the screen. By first calling wnoutrefresh() for each window, it is then possible to 
call doupdate() once, resulting in only one burst of output, with probably fewer 
total characters transmitted and certainly less processor time used. 

WINDOW *newwin (nlines, ncols, begin_y, begin_x) 
Create and return a pointer to a new window with the given number of lines (or 
rows), nlines, and columns, ncols. The upper left comer of the window is at line 
begin_y, column begin _x. If either nlines or ncols is 0, they will be set to the 

Last change: 30 January 1988 Sun Release 4.0 



CURSES(3V) 

mvwin (win, y, x) 

SYSTEM V LIBRARY CURSES(3V) 

value of lines-begin_y and cols-begin_x. A new full-screen window is created 
by calling newwin(0,0,0,0). 

Move the window so that the upper left corner will be at position (y, x). If the 
move would cause the window to be off the screen, it is an error and the window 
is not moved. 

WINDOW •subwin (orig, nlines, ncols, begin_y, begin_x) 

delwin (win) 

Create and return a pointer to a new window with the given number of lines ( or 
rows), nlines, and columns, ncols. The window is at position ( begin_y, begin_x) 
on the screen. (This position is relative to the screen, and not to the window orig.) 
The window is made in the middle of the window orig, so that changes made to 
one window will affect both windows. When using this routine, often it will be 
necessary to call touchwin() or touchline() on orig before calling wrefresh. 

Delete the named window, freeing up all memory associated with it. In the case 
of overlapping windows, subwindows should be deleted before the main window. 

WINDOW •newpad (nlines, ncols) 
Create and return a pointer to a new pad data structure with the given number of 
lines (or rows), nlines, and columns, ncols. A pad is a window that is not res
tricted by the screen size and is not necessarily associated with a particular part of 
the screen. Pads can be used when a large window is needed, and only a part of 
the window will be on the screen at one time. Automatic refreshes of pads (for 
example, from scrolling or echoing of input) do not occur. It is not legal to call 
wrefresh() with a pad as an argument; the routines prefresh() or pnoutrefresh() 
should be called instead. Note: these routines require additional parameters to 
specify the part of the pad to be displayed and the location on the screen to be 
used for display. 

WINDOW •subpad (orig, nlines, ncols, begin_y, begin_x) 
Create and return a pointer to a subwindow within a pad with the given number of 
lines (or rows), nlines, and columns, ncols. Unlike subwin(), which uses screen 
coordinates, the window is at position (begin_y, begin_x) on the pad. The win
dow is made in the middle of the window orig, so that changes made to one win
dow will affect both windows. When using this routine, often it will be necessary 
to call touchwin() or touchline() on orig before calling prefresh( ). 

prefresh (pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 
pnoutrefresh (pad. pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

Sun Release 4.0 

These routines are analogous to wrefresh( ) and wnoutrefresh() except that pads, 
instead of windows, are involved. The additional parameters are needed to indi
cate what part of the pad and screen are involved. pminrow and pmincol specify 
the upper left corner, in the pad, of the rectangle to be displayed. sminrow, smin
col, smaxrow, and smaxcol specify the edges, on the screen, of the rectangle to be 
displayed in. The lower right comer in the pad of the rectangle to be displayed is 
calculated from the screen coordinates, since the rectangles must be the same size. 
Both rectangles must be entirely contained within their respective structures. 
Negative values of pminrow, pmincol, sminrow, or smincol are treated as if they 
were zero. 

Last change: 30 January 1988 1143 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

Output 

1144 

These routines are used to "draw" text on windows. 

addch (ch) 
waddch (win, ch) 
mvaddch (y, x, ch) 
mvwaddch (win, y, x, ch) 

echochar (ch) 
wechochar (win, ch) 
pechochar (pad, ch) 

addstr (str) 

The character ch is put into the window at the current cursor position of the win
dow and the position of the window cursor is advanced. Its function is similar to 
that of putchar() (see putc(3S)). At the right margin, an automatic newline is 
performed. At the bottom of the scrolling region, if scrollok() is enabled, the 
scrolling region will be scrolled up one line. 
If ch is a TAB, NEWLINE, or backspace, the cursor will be moved appropriately 
within the window. A NEWLINE also does a clrtoeol( ) before moving. TAB 
characters are considered to be at every eighth column. If ch is another control 
character, it will be drawn in the CTRL-X notation. (Calling winch() after adding 
a control character will not return the control character, but instead will return the 
representation of the control character.) 
Video attributes can be combined with a character by or-ing them into the parame
ter. This will result in these attributes also being set. (The intent here is that text, 
including attributes, can be copied from one place to another using inch() and 
addch().) See standout(), below. 
Note: ch is actually of type chtype, not a character. 
Note: addch( ), mvaddch( ), and mvwaddch() are macros. 

These routines are functionally equivalent to a call to addch (ch) followed by a 
call to refresh(), a call to waddch (win, ch) followed by a call to wrefresh (win), 
or a call to waddch (pad, ch) followed by a call to prefresh (pad). The 
knowledge that only a single character is being output is taken into consideration 
and, for non-control characters, a considerable performance gain can be seen by 
using these routines instead of their equivalents. In the case of pechochar( ), the 
last location of the pad on the screen is reused for the arguments to prefresh( ). 
Note: ch is actually of type chtype, not a character. 
Note: echochar( ) is a macro. 

waddstr (win, str) 
mvwaddstr (win, y, x, str) 
mvaddstr (y, x, str) These routines write all the characters of the null-terminated character string str 

on the given window. This is equivalent to calling waddch() once for each char
acter in the string. 
Note: addstr( ), mvaddstr( ), and mvwaddstr() are macros. 

attroff (attrs) 
wattroff (win, attrs) 
attron (attrs) 
wattron (win, attrs) 
attrset (attrs) 
wattrset (win, attrs) 
standend() 
wstandend (win) 
standout() 
wstandout (win) These routines manipulate the current attributes of the named window. These 

Last change: 30 January 1988 Sun Release 4.0 



CURSES(3V) 

beep() 
flash() 

box (win, vertch, horch) 

erase() 
werase (win) 

clear() 
wclear (win) 

clrtobot() 
wclrtobot (win) 

clrtoeol() 
wclrtoeol (win) 

delay_ output (ms) 

delch() 
wdelch (win) 
mvdelch (y, x) 
mvwdelch (win, y, x) 

Sun Release 4.0 

SYS1EM V LIBRARY CURSES(3V) 

attributes can be any combination of A_STANDOUT, A_REVERSE, A_BOLD, 
A_DIM, A_BLINK, A_UNDERLINE, and A_ALTCHARSET. These constants are 
defined in <curses.h> and can be combined with the C logical OR ( I ) operator. 
The current attributes of a window are applied to all characters that are written 
into the window with waddch( ). Attributes are a property of the character, and 
move with the character through any scrolling and insert/delete line/character 
operations. To the extent possible on the particular terminal, they will be 
displayed as the graphic rendition of the characters put on the screen. 
attrset (attrs) sets the current attributes of the given window to attrs. attroff 
(attrs) turns off the named attributes without turning on or off any other attributes. 
attron (attrs) turns on the named attributes without affecting any others. 
standout() is the same as attron(A_STANDOUT). standend() is the same as 
attrset(O), that is, it turns off all attributes. 
Note: attrs is actually of type chtype, not a character. 
Note: attroff( ), attron( ), attrset( ), standend( ), and standout() are macros. 

These routines are used to signal the terminal user. beep() will sound the audible 
alarm on the terminal, if possible, and if not, will flash the screen (visible bell), if 
that is possible. flash() will flash the screen, and if that is not possible, will sound 
the audible signal. If neither signal is possible, nothing will happen. Nearly all 
terminals have an audible signal (bell or beep) but only some can flash the screen. 

A box is drawn around the edge of the window, win. vertch and horch are the 
characters the box is to be drawn with. If vertch and horch are 0, then appropriate 
default characters, ACS_ VLINE and ACS_ BLINE, will be used. 

Note: vertch and horch are actually of type ch type, not characters. 

These routines copy blanks to every position in the window. 
Note: erase() is a macro. 

These routines are like erase() and werase( ), but they also call clearok( ), arrang
ing that the screen will be cleared completely on the next call to wrefresh() for 
that window, and repainted from scratch. 
Note: clear() is a macro. 

All lines below the cursor in this window are erased. Also, the current line to the 
right of the cursor, inclusive, is erased. 
Note: clrtobot() is a macro. 

The current line to the right of the cursor, inclusive, is erased. 
Note: clrtoeol( ) is a macro. 

Insert a ms millisecond pause in the output. It is not recommended that this rou
tine be used extensively, because padding characters are used rather than a proces
sor pause. 

The character under the cursor in the window is deleted. All characters to the 
right on the same line are moved to the left one position and the last character on 
the line is filled with a blank. The cursor position does not change (after moving 

Last change: 30 January 1988 1145 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

1146 

deleteln() 
wdeleteln (win) 

getyx (win, y, x) 

getbegyx (win, y, x) 
getmaxyx (win, y, x) 

insch (ch) 

to (y, x), if specified). (This does not imply use of the hardware "delete
character" feature.) 
Note: delch(), mvdelch(), and mvwdelch() are macros. 

The line under the cursor in the window is deleted. All lines below the current 
line are moved up one line. The bottom line of the window is cleared. The cursor 
position does not change. (This does not imply use of the hardware "delete-line" 
feature.) 
Note: deleteln() is a macro. 

The cursor position of the window is placed in the two integer variables y and x. 
This is implemented as a macro, so no ' & ' is necessary before the variables. 

Like getyx( ), these routines store the current beginning coordinates and size of 
the specified window. 
Note: getbegyx( ) and getmaxyx( ) are macros. 

winsch (win, ch) 
mvwinsch (win, y, x, ch) 
mvinsch (y, x, ch) The character ch is inserted before the character under the cursor. All characters 

to the right are moved one SPACE to the right, possibly losing the rightmost char
acter of the line. The cursor position does not change (after moving to (y, x), if 
specified). (This does not imply use of the hardware "insert-character" feature.) 
Note: ch is actually of type chtype, not a character. 

insertln() 
winsertln (win) 

move (y, x) 

Note: insch( ), mvinsch( ), and mvwinsch() are macros. 

A blank line is inserted above the current line and the bottom line is lost (This 
does not imply use of the hardware "insert-line" feature.) 
Note: insertln() is a macro. 

wmove (win, y, x) The cursor associated with the window is moved to line (row) y, column x. This 
does not move the physical cursor of the terminal until refresh( ) is called. The 
position specified is relative to the upper left comer of the window, which is (0, 
0). 
Note: move() is a macro. 

overlay (srcwin, dstwin) 
overwrite (srcwin, dstwin) 

These routines overlay srcwin on top of dstwin; that is, all text in srcwin is copied 
into dstwin. scrwin and dstwin need not be the same size; only text where the two 
windows overlap is copied. The difference is that overlay() is non-destructive 
(blanks are not copied), while overwrite() is destructive. 

copywin (srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol, overlay) 

printw (fmt [, arg .. . ]) 

This routine provides a finer grain of control over the overlay() and overwrite( ) 
routines. Like in the prefresh(J, routine, a rectangle is specified in the destination 
window, (dminrow, dmi.ncol) and (dmaxrow, dmaxcol), and the upper-left-comer 
coordinates of the source window, (sminrow, smincol). If the argument overlay is 
true, then copying is non-destructive, as in overlay(). 

wprintw (win,fmt [, arg ... ]) 
mvprintw (y, x,fmt [, arg .. . ]) 
mvwprintw (win, y, x,fmt [, arg .. . ]) 

Last change: 30 January 1988 Sun Release 4 .0 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

These routines are analogous to printf(3S). The string that would be output by 
printf(3S) is instead output using waddstr() on the given window. 

vwprintw (win,fmt, varglist) 

scroll (win) 

touch win (win) 

This routine corresponds to vprintf(3V). It performs a wprintw() using a vari
able argument list. The third argument is a va_list, a pointer to a list of argu
ments, as defined in <varargs.h>. See the vprintf(3V) and varargs(3) manual 
pages for a detailed description on how to use variable argument lists. 

The window is scrolled up one line. This involves moving the lines in the window 
data structure. As an optimization, if the window is stdscr and the scrolling 
region is the entire window, the phys~cal screen will be scrolled at the same time. 

touchline (win, start, count) 

Input 
getch() 
wgetch (win) 
mvgetch (y, x) 
mvwgetch (win, y, x) 

getstr (str) 

Throw away all optimization information about which parts of the window have 
been touched, by pretending that the entire window has been drawn on. This is 
sometimes necessary when using overlapping windows, since a change to one 
window will affect the other window, but the records of which lines have been 
changed in the other window will not reflect the change. touchline() only pre
tends that count lines have been changed, beginning with line start. 

A character is read from the terminal associated with the window. In NODELA Y 
mode, if there is no input waiting, the value ERR is returned. In DELAY mode, the 
program will hang until the system passes text through to the program. Depending 
on the setting of cbreak( ), this will be after one character (CBREAK mode), or 
after the first newline (NOCBREAK mode). In HALF-DELAY mode, the program 
will hang until a character is typed or the specified timeout has been reached. 
Unless noecho() has been set, the character will also be echoed into the desig
nated window. No refresh( ) will occur between the move( ) and the getch() 
done within the routines mvgetch() and mvwgetch( ). 
When using getch( ), wgetch( ), mvgetch( ), or mvwgetch( ), do not set both NOC
BREAK mode (nocbreak()) and ECHO mode (echo()) at the same time. Depend
ing on the state of the terminal driver when each character is typed, the program 
may produce undesirable results. 
If keypad (win, TRUE) has been called, and a function key is pressed, the token 
for that function key will be returned instead of the raw characters. (See 
keypad() under Input Options Setting.) Possible function keys are defined in 
<curses.h> with integers beginning with 0401, whose names begin with KEY_. If 
a character is received that could be the beginning of a function key (such as 
escape), curses will set a timer. If the remainder of the sequence is not received 
within the designated time, the character will be passed through, otherwise the 
function key value will be returned. For this reason, on many terminals, there will 
be a delay after a user presses the escape key before the escape is returned to the 
program. (Use by a programmer of the escape key for a single character routine is 
discouraged. Also see notimeout() below.) 
Note: getch( ), mvgetch( ), and mvwgetch() are macros. 

wgetstr (win, str) 
mvgetstr (y, x, str) 
mvwgetstr (win, y, x, str) 

A series of calls to getch() is made, until a newline, carriage return, or enter key 

Sun Release 4.0 Last change: 30 January 1988 1147 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

flushinp() 

ungetch (c) 

inch() 
winch (win) 
mvinch (y, x) 
mvwinch (win, y, x) 

scanw (fmt [,arg . .. ] ) 

is received. The resulting value is placed in the area pointed at by the character 
pointer str. The user's erase and kill characters are interpreted. As in mvgetch( ), 
no refresh() is done between the move() and getstr() within the routines 
mvgetstr() and mvwgetstr( ). 
Note: getstr( ), mvgetstr( ), and mvwgetstr() are macros. 

Throws away any typeahead that has been typed by the user and has not yet been 
read by the program. 

Place c back onto the input queue to be returned by the next call to wgetch( ). 

The character, of type chtype, at the current position in the named window is 
returned. If any attributes are set for that position, their values will be OR' ed into 
the value returned. The predefined constants A_ CHARTEXT and 
A_ATTRIBUTES, defined in <curses.h>, can be used with the C logical AND(&) 
operator to extract the character or attributes alone. 
Note: inch(), winch(), mvinch( ), and mvwinch() are macros. 

wscanw (win,fmt [, arg .. . ]) 
mvscanw (y, x,fmt [, arg .. . ]) 
mvwscanw (win, y, x,fmt [, arg .. . ]) 

These routines correspond to scanf(3V), as do their arguments and return values. 
wgetstr() is called on the window, and the resulting line is used as input for the 
scan. 

vwscanw (win,fmt, ap) This routine is similar to vwprintw() above in that performs a wscanw() using a 
variable argument list The third argument is a va _ list, a pointer to a list of argu
ments, as defined in <varargs.h>. See the vprintf(3V) and varargs(3) manual 
pages for a detailed description on how to use variable argument lists. 

Output Options Setting 

1148 

These routines set options within curses that deal with output. All options are initially FALSE, unless oth
erwise stated. It is not necessary to tum these options off before calling endwin( ). 

clearok (win, bf) 

idlok (win, bf) 

leaveok (win, bf) 

If enabled (bf is TRUE), the next call to wrefresh() with this window will clear 
the screen completely and redraw the entire screen from scratch. This is useful 
when the contents of the screen are uncertain, or in some cases for a more pleas
ing visual effect. 

If enabled (bf is TRUE), curses will consider using the hardware "insert/delete
line" feature of terminals so equipped. If disabled (bf is FALSE), curses will very 
seldom use this feature. (The "insert/delete-character" feature is always con
sidered.) This option should be enabled only if your application needs 
"insert/delete-line", for example, for a screen editor. It is disabled by default 
because "insert/delete-line" tends to be visually annoying when used in applica
tions where it is not really needed. If "insert/delete-line" cannot be used, curses 
will redraw the changed portions of all lines. 

Normally, the hardware cursor is left at the location of the window cursor being 
refreshed. This option allows the cursor to be left wherever the update happens to 
leave it. It is useful for applications where the cursor is not used, since it reduces 
the need for cursor motions. If possible, the cursor is made invisible when this 
option is enabled. 

Last change: 30 January 1988 Sun Release 4.0 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

setscrreg (top, bot) 
wsetscrreg (win, top, bot) 

scrollok (win, bf) 

nl() 
nonl() 

Input Options Setting 

These routines allow the user to set a software scrolling region in a window. top 
and bot are the line numbers of the top and bottom margin of the scrolling region. 
(Line O is the top line of the window.) If this option and scrollok() are enabled, 
an attempt to move off the bottom margin line will cause all lines in the scrolling 
region to scroll up one line. (Note: this has nothing to do with use of a physical 
scrolling region capability in the terminal, like that in the DEC VTlOO. Only the 
text of the window is scrolled; if idlok() is enabled and the terminal has either a 
scrolling region or "insert/delete-line" capability, they will probably be used by 
the output routines.) 
Note: setscrreg( ) and wsetscrreg() are macros. 

This option controls what happens when the cursor of a window is moved off the 
edge of the window or scrolling region, either from a newline on the bottom line, 
or typing the last character of the last line. If disabled (bf is FALSE), the cursor is 
left on the bottom line at the location where the offending character was entered. 
If enabled (bf is TRUE), wrefresh() is called on the window, and then the physi
cal terminal and window are scrolled up one line. (Note: in order to get the physi
cal scrolling effect on the terminal, it is also necessary to call idlok( ).) 

These routines control whether NEWLINE is translated into RETURN and 
LINEFEED on output, and whether RETURN is translated into NEWLINE on input. 
Initially, the translations do occur. By disabling these translations using nonl(), 
curses is able to make better use of the linefeed capability, resulting in faster cur
sor motion. 

These routines set options within curses that deal with input. The options involve using ioctl(2) and there
fore interact with curses routines. It is not necessary to turn these options off before calling endwin( ). 
For more information on these options, refer to Programming Utilities and Libraries. 

cbreak() 
nocbreak() 

echo() 
noecho() 

half delay (tenths) 

Sun Release 4.0 

These two routines put the terminal into and out of CBREAK mode, respectively. 
In CBREAK mode, characters typed by the user are immediately available to the 
program and erase/kill character processing is not performed. When in NOC
BREAK mode, the tty driver will buffer characters typed until a NEWLINE or 
RETURN is typed. Interrupt and flow-control characters are unaffected by this 
mode (see termio(4)). Initially the terminal may or may not be in CBREAK mode, 
as it is inherited, therefore, a program should call cbreak() or nocbreak() expli
citly. Most interactive programs using curses will set CBREAK mode. 
Note: cbreak() overrides raw(). See getch() under Input for a discussion of 
how these routines interact with echo() and noecho( ). 

These routines control whether characters typed by the user are echoed by getch() 
as they are typed. Echoing by the tty driver is always disabled, but initially 
getch() is in ECHO mode, so characters typed are echoed. Authors of most 
interactive programs prefer to do their own echoing in a controlled area of the 
screen, or not to echo at all, so they disable echoing by calling noecho( ). See 
getch() under Input for a discussion of how these routines interact with cbreak() 
and nocbreak( ). 

Half-delay mode is similar to CBREAK mode in that characters typed by the user 
are immediately available to the program. However, after blocking for tenths 
tenths of seconds, ERR will be returned if nothing has been typed. tenths must be 
a number between 1 and 255. Use nocbreak() to leave half-delay mode. 

Last change: 30 January 1988 1149 



CURSES(3V) 

intrflush (win, bf) 

keypad (win, bf) 

meta (win, bf) 

nodelay (win, bf) 

notimeout ( win, bf) 

raw() 
noraw() 

typeahead (fildes) 

Environment Queries 
baudrate() 

1150 

char erasechar( ) 

has_ic() 

has_il() 

char killchar() 

char * longname() 

SYSTEM V LIBRARY CURSES(3V) 

If this option is enabled, when an interrupt key is pressed on the keyboard (inter
rupt, break, quit) all output in the tty driver queue will be flushed, giving the effect 
of faster response to the interrupt, but causing curses to have the wrong idea of 
what is on the screen. Disabling the option prevents the flush. The default for the 
option is inherited from the tty driver settings. The window argument is ignored. 

This option enables the keypad of the user's terminal. If enabled, the user can 
press a function key (such as an arrow key) and wgetch() will return a single 
value representing the function key, as in KEY_ LEFf. If disabled, curses will not 
treat function keys specially and the program would have to interpret the escape 
sequences itself. If the keypad in the terminal can be turned on (made to transmit) 
and off (made to work locally), turning on this option will cause the terminal 
keypad to be turned on when wgetch() is called. 

If enabled, characters returned by wgetch( ) are transmitted with all 8 bits, instead 
of with the highest bit stripped. In order for meta() to work correctly, the km 
(has_meta_key) capability has to be specified in the terminal's terminfo(SV) 
entry. 

This option causes wgetch() to be a non-blocking call. If no input is ready, 
wgetch() will return ERR. If disabled, wgetch() will hang until a key is pressed. 

While interpreting an input escape sequence, wgetch() will set a timer while wait
ing for the next character. If notimeout (win, TRUE) is called, then wgetch() 
will not set a timer. The purpose of the timeout is to differentiate between 
sequences received from a function key and those typed by a user. 

The terminal is placed into or out of RAW mode. RAW mode is similar to 
CBREAK mode, in that characters typed are immediately passed through to the 
user program. The differences are that in RAW mode, the interrupt, quit, suspend, 
and flow control characters are passed through uninterpreted, instead of generating 
a signal. RAW mode also causes 8-bit input and output. The behavior of the 
BREAK key depends on other bits in the terminal driver that are not set by curses. 

curses does "line-breakout optimization" by looking for typeahead periodically 
while updating the screen. If input is found, and it is coming from a tty, the 
current update will be postponed until refresh() or doupdate() is called again. 
This allows faster response to commands typed in advance. Normally, the file 
descriptor for the input FILE pointer passed to newterm( ), or stdio in the case that 
initscr() was used, will be used to do this typeahead checking. The typeahead() 
routine specifies that the file descriptor fildes is to be used to check for typeahead 
instead. If fildes is -1, then no typeahead checking will be done. 

Note: fildes is a file descriptor, not a <stdio.h> FILE pointer. 

Returns the output speed of the terminal. The number returned is in bits per 
second, for example, 9600, and is an integer. 

The user's current erase character is returned. 

True if the terminal has insert- and delete-character capabilities. 

True if the terminal has insert- and delete-line capabilities, or can simulate them 
using scrolling regions. This might be used to check to see if it would be 
appropriate to turn on physical scrolling using scrollok( ). 

The user's current line-kill character is returned. 

This routine returns a pointer to a static area containing a verbose description of 

Last change: 30 January 1988 Sun Release 4.0 



CURSES(3V) 

Soft Labels 

SYSTEM V LIBRARY CURSES(3V) 

the current terminal. The maximum length of a verbose description is 128 charac
ters. It is defined only after the call to initscr() or newterm(). The area is 
overwritten by each call to newterm() and is not restored by set_term(), so the 
value should be saved between calls to newterm() if longname() is going to be 
used with multiple terminals. 

If desired, curses will manipulate the set of soft function-key labels that exist on many terminals. For 
those terminals that do not have soft labels, if you want to simulate them, curses will take over the bottom 
line of stdscr, reducing the size of stdscr and the variable LINES. curses standardizes on 8 labels of 8 
characters each. 

slk _ init (lab/mt) In order to use soft labels, this routine must be called before initscr() or 
newterm( ) is called. If initscr( ) winds up using a line from stdscr to emulate the 
soft labels, then lab/mt determines how the labels are arranged on the screen. Set
ting lab/mt to O indicates that the labels are to be arranged in a 3-2-3 arrangement; 
1 asks for a 4-4 arrangement 

slk_set (labnum, label, lab/mt) 

slk_refresh() 
slk _ noutrefresh() 

labnum is the label number, from 1 to 8. label is the string to be put on the label, 
up to 8 characters in length. A NULL string or a NULL pointer will put up a blank 
label. labfmt is one of 0, 1 or 2, to indicate whether the label is to be left-justified, 
centered, or right-justified within the label. 

These routines correspond to the routines wrefresh() and wnoutrefresh( ). Most 
applications would use slk _ noutrefresh() because a wrefresh( ) will most likely 
soon follow. 

char •slk _label (labnum) 

slk _ clear( ) 

slk _ restore( ) 

slk _touch() 

Low-Level curses Acee~ 

The current label for label number labnum, with leading and trailing blanks 
stripped, is returned. 

The soft labels are cleared from the screen. 

The soft labels are restored to the screen after a slk _clear(). 

All of the soft labels are forced to be output the next time a slk _ noutrefresh() is 
performed. 

The following routines give low-level access to various curses functionality. 
would be used inside of library routines. 

These routines typically 

def_prog_mode() 
def _shell_ mode() 

reset _prog_ mode() 
reset_shell_mode() 

resetty() 
savetty() 

getsyx (y, X) 

Sun Release 4.0 

Save the current terminal modes as the "program" (in curses) or "shell" (not in 
curses) state for use by the reset _prog_ mode() and reset_ shell_ mode() routines. 
This is done automatically by initscr( ). 

Restore the terminal to "program" (in curses) or "shell" (out of curses) state. 
These are done automatically by endwin() and doupdate() after an endwin( ), so 
they normally would not be called. 

These routines save and restore the state of the terminal modes. savetty( ) saves 
the current state of the terminal in a buffer and resetty( ) restores the state to what 
it was at the last call to savetty( ). 

The current coordinates of the virtual screen cursor are returned in y and x. Like 
getyx( ), the variables y and x do not take an & before them. If leaveok() is 

Last change: 30 January 1988 1151 



CURSES(3V) SYSIBM V LIBRARY CURSES(3V) 

1152 

currently TRUE, then -1, -1 will be returned. If lines may have been removed 
from the top of the screen using ripoffline() and the values are to be used beyond 
just passing them on to setsyx( ), the value y+stdscr-> _yoffset should be used for 
those other uses. 

Note: getsyx() is a macro. 

setsyx (y, x) The virtual screen cursor is set toy, x. If y and x are both -1, then leaveok() will 
be set The two routines getsyx() and setsyx( ) are designed to be used by a 
library routine that manipulates curses windows but does not want to mess up the 
current position of the program's cursor. The library routine would call getsyx() 
at the beginning, do its manipulation of its own windows, do a wnoutrefresh( ) on 
its windows, call setsyx( ), and then call doupdate( ). 

ripoffline (line, init) This routine provides access to the same facility that slk_init() uses to reduce the 
size of the screen. ripoffline() must be called before initscr() or newterm() is 
called. If line is positive, a line will be removed from the top of stdscr; if nega
tive, a line will be removed from the bottom. When this is done inside initscr( ), 
the routine init is called with two arguments: a window pointer to the 1-line win
dow that has been allocated and an integer with the number of columns in the win
dow. Inside this initialization routine, the integer variables LINES and COLS 
(defined in <curses.h>) are not guaranteed to be accurate and wrefresh() or 
doupdate() must not be called. It is allowable to call wnoutrefresh() during the 
initialization routine. 

ripoffline() can be called up to five times before calling initscr() or newterm( ). 

scr _ dump (filename) The current contents of the virtual screen are written to the file filename. 

scr _restore (filename) The virtual screen is set to the contents of filename, which must have been written 
using scr _dump(). The next call to doupdate() will restore the screen to what it 
looked like in the dump file. 

scr _init (filename) 

curs_ set (visibility) 

draino (ms) 

The contents of filename are read in and used to initialize the curses data struc
tures about what the terminal currently has on its screen. If the data is determined 
to be valid, curses will base its next update of the screen on this information 
rather than clearing the screen and starting from scratch. scr _ init() would be 
used after initscr() or a system(3) call to share the screen with another process 
that has done a scr_dump() after its endwin() call. The data will be declared 
invalid if the time-stamp of the tty is old or the terminfo(SV) capability nrrmc is 
true. 

The cursor is set to invisible, normal, or very visible for visibility equal to 0, 1 or 
2. 

Wait until the output has drained enough that it will only take ms more mil
liseconds to drain completely. 

garbagedlines (win, begline, numlin'es) 

napms (ms) 

This routine indicates to curses that a screen line is garbaged and should be 
thrown away before having anything written over the top of it. It could be used 
for programs such as editors that want a command to redraw just a single line. 
Such a command could be used in cases where there is a noisy communications 
line and redrawing the entire screen would be subject to even more communica
tion noise. Just redrawing the single line gives some semblance of hope that it 
would show up unblemished. The current location of the window is used to deter
mine which lines are to be redrawn. 

Sleep for ms milliseconds. 

Last change: 30 January 1988 Sun Release 4.0 



CURSES(3V) SYS1EM V LIBRARY CURSES(3V) 

Terminfo-Level Manipulations 
These low-level routines must be called by programs that need to deal directly with the terminfo(5V) data
base to handle certain tenninal capabilities, such as programming function keys. For all other functional
ity, curses routines are more suitable and their use is recommended. 

Initially, setupterm() should be called. (Note: setupterm() is automatically called by initscr() and 
newterm( ).) This will define the set of tenninal-dependent variables defined in the terminfo(5V) data
base. The terminfo(5V) variables lines and columns (see terminfo(5V)) are initialized by setupterm() as 
follows: if the environment variables LINES and COLUMNS exist, their values are used. If the above 
environment variables do not exist, and the window sizes in rows and columns as returned by the 
TIOCGWINSZ ioctl are non-zero, those sizes are used. Otherwise, the values for lines and columns 
specified in the terminfo(5V) database are used. 

The header files <curses.h> and <term.h> should be included, in this order, to get the definitions for these 
strings, numbers, and flags. Parameterized strings should be passed through tparm() to instantiate them. 
All terminfo(5V) strings (including the output of tparm() should be printed with tputs() or putp( ). 
Before exiting, reset_shell_mode() should be called to restore the tty modes. Programs that use cursor 
addressing should output enter_ ca_ mode upon startup and should output exit_ ca_ mode before exiting 
(see terminfo(5V)). (Programs desiring shell escapes should call reset_shell_mode() and output 
exit_ca_mode before the shell is called and should output enter_ca_mode and call reset_prog_mode() 
after returning from the shell. Note: this is different from the curses routines (see endwin( )) 

setupterm (term,fildes, errret) 
Reads in the terminfo(SV) database, initializing the terminfo(5V) structures, but 
does not set up the output virtualization structures used by curses. The terminal 
type is in the character string term; if term is NULL, the environment variable 
TERM will be used. All output is to the file descriptor fildes. If errret is not 
NULL, then setupterm() will return OK or ERR and store a status value in the 
integer pointed to by errret. A status of 1 in errret is normal, 0 means that the ter
minal could not be found, and -1 means that the terminfo(SV) database could not 
be found. If errret is NULL, setup term() will print an error message upon finding 
an error and exit. Thus, the simplest call is 'setupterm ((char *)O, 1, (int •)O)', 
which uses all the defaults. 

The terminfo(5V) boolean, numeric and string variables are stored in a structure 
of type TERMINAL. After setup term() returns successfully, the variable 
cur _term ( of type TERMINAL *) is initialized with all of the information that the 
terminfo(5V) boolean, numeric and string variables refer to. The pointer may be 
saved before calling setup term() again. Further calls to setupterm() will allo
cate new space rather than reuse the space pointed to by cur _term. 

set_curterm (nterm) nterm is of type TERMINAL * . set_curterm() sets the variable cur _term to 
nterm, and makes all of the terminfo(SV) boolean, numeric and string variables 
use the values from nterm. 

del_curterm (oterm) oterm is of type TERMINAL *· del_curterm() frees the space pointed to by 
oterm and makes it available for further use. If oterm is the same as cur _term, 
then references to any of the terminfo(5V) boolean, numeric and string variables 
thereafter may refer to invalid memory locations until another setupterm() has 
been called. 

restartterm (term,fildes, errret) 
Like setupterm() after a memory restore. 

char •tparm (str,pl'p
2

, .. . ,p
9

) 

Instantiate the string str with parms p.. A pointer is returned to the result of str 
with the parameters applied. 

1 

tputs (str, count,putc) Apply padding to the string strand output it. str must be a terminfo(5V) string 

Sun Release 4.0 Last change: 30 January 1988 1153 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

putp (str) 

vidputs (attrs, putc) 

vidattr ( attr s) 

variable or the return value from tparm( ), tgetstr( ), tigetstr() or tgoto( ). count 
is the number of lines affected, or 1 if not applicable. putchar() is a putc(3S)
like routine to which the characters are passed, one at a time. 

A routine that calls tputs() (str, 1, putchar( )). 

Output a string that puts the terminal in the video attribute mode attrs, which is 
any combination of the attributes listed below. The characters are passed to the 
putc(3S)-like routine putchar( ). 

Like vidputs( ), except that it outputs through putchar(3S). 

mvcur (oldrow, oldcol, newrow, newcol) 
Low-level cursor motion. 

The following routines return the value of the capability corresponding to the terminf o(SV) capname 
passed to them, such as xenl. 

tigetflag (capname) The value -1 is returned if capname is not a boolean capability. 

tigetnum (capname) The value -2 is returned if capname is not a numeric capability. 

tigetstr (capname) The value (char •)-1 is returned if capname is not a string capability. 

char •boolnames[ ], •boolcodes[ ], •boolfnames[] 
char •numnames[], •numcodes[], •numfnames[] 
char •strnames[ ], •strcodes[ ], •strfnames[] 

These null-terminated arrays contain the capnames, the termcap(5) codes, and 
the full C names, for each of the terminfo(SV) variables. 

Termcap Emulation 
These routines are included as a conversion aid for programs that use the termcap(3X) library. Their 
parameters are the same and the routines are emulated using the terminfo(SV) database. 

tgetent (bp. name) Look up termcap entry for name. The emulation ignores the buffer pointer bp. 

tgetflag (codename) Get the boolean entry for codename. 

tgetnum (codes) Get numeric entry for codename. 

char •tgetstr (codename, area) 
Return the string entry for codename. If area is not NULL, then also store it in the 
buffer pointed to by area and advance area. tputs() should be used to output the 
returned string. 

char •tgoto (cap, col, row) 
Instantiate the parameters into the given capability. The output from this routine 
is to be passed to tputs( ). 

tputs (str, affcnt, putc) See tputs() above, under Terminfo-Level Manipulations. 

Miscellaneous 

1154 

unctrl (c) 

char •keyname (c) 

filter() 

This macro expands to a character string which is a printable representation of the 
character c. Control characters are displayed in the "X notation. Printing charac
ters are displayed as is. 

unctrl() is a macro, defined in <unctrl.h>, which is automatically included by 
<curses.h>. 

A character string corresponding to the key c is returned. 

This routine is one of the few that is to be called before initscr() or newterm() is 
called. It arranges things so that curses thinks that there is a I-line screen. curses 
will not use any terminal capabilities that assume that they know what line on the 
screen the cursor is on. 

Last change: 30 January 1988 Sun Release 4 .0 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

Use of curscr 
The special window curscr can be used in only a few routines. If the window argument to clearok( ) is 
curscr, the next call to wrefresh( ) with any window will cause the screen to be cleared and repainted from 
scratch. If the window argument to wrefresh() is curscr, the screen is immediately cleared and repainted 
from scratch. (This is how most programs would implement a "repaint-screen" routine.) The source win
dow argument to overlay(), overwrite(), and copywin may be curscr, in which case the current contents 
of the virtual terminal screen will be accessed. 

0 bsolete Calls 
Various routines are provided to maintain compatibility in programs written for older versions of the curses 
library. These routines are all emulated as indicated below. 

crmode() Replaced by cbreak( ). 
fixterm() Replaced by reset_prog_mode( ). 
gettmode( ) A no-op. 
nocrmode() Replaced by nocbreak( ). 
resetterm() Replaced by reset_shell_mode( ). 
saveterm() Replaced by def _prog_ mode(). 
setterm() Replaced by setup term(). 

ATTRIBUTES 
The following video attributes, defined in <curses.h>, can be passed to the routines attron( ), attroff( ), 
and attrset( ), or OR' ed with the characters passed to addch( ). 

A_STANDOUT 
A_UNDERLINE 
A_REVERSE 
A_BLINK 
A_DIM 
A_BOLD 
A_ALTCHARSET 

A_CHARTEXT 
A_ATTRIBUTES 
A_NORMAL 

FUNCTION-KEYS 

Terminal's best highlighting mode 
Underlining 
Reverse video 
Blinking 
Half bright 
Extra bright or bold 
Alternate character set 

Bit-mask to extract character (described under winch) 
Bit-mask to extract attributes (described under winch) 
Bit mask to reset all attributes off 
(for example: 'attrset (A_NORMAL)' 

The following function keys, defined in <curses.h>, might be returned by getch() if keypad() has been 
enabled. Note: not all of these may be supported on a particular terminal if the terminal does not transmit a 
unique code when the key is pressed or the definition for the key is not present in the terminfo(5V) data
base. 

Name 

KEY_BREAK 
KEY_DOWN 
KEY_UP 
KEY_LEFT 
KEY_RIGHT 
KEY_HOME 
KEY _BACKSPACE 
KEY_FO 
KEY_F(n) 
KEY_DL 
KEY_IL 
KEY_DC 

Sun Release 4.0 

Value 

0401 
0402 
0403 
0404 
0405 
0406 
0407 
0410 
(KEY_FO+(n)) 
0510 
0511 
0512 

Key name 

break key (unreliable) 
The four arrow keys ... 

Home key (upward+left arrow) 
backspace (unreliable) 
Function keys. Space for 64 keys is reserved. 
Formula for f . 
Delete line n 
Insert line 
Delete character 

Last change: 30 January 1988 1155 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

KEY_IC 0513 Insert char or enter insert mode 
KEY_EIC 0514 Exit insert char mode 
KEY_CLEAR 0515 Clear screen 
KEY_EOS 0516 Clear to end of screen 
KEY_EOL 0517 Clear to end of line 
KEY_SF 0520 Scroll 1 line forward 
KEY_SR 0521 Scroll I line backwards (reverse) 
KEY_NPAGE 0522 Next page 
KEY_PPAGE 0523 Previous page 
KEY_STAB 0524 Set TAB 
KEY_CTAB 0525 Clear TAB 
KEY_CATAB 0526 Clear all TAB characters 
KEY_ENTER 0527 Enter or send 
KEY_SRESET 0530 soft (partial) reset 
KEY_RESET 0531 reset or hard reset 
KEY_PRINT 0532 print or copy 
KEY_LL 0533 home down or bottom (lower left) 

keypad is arranged like this: 
Al up A3 
left B2 right 
Cl down C3 

KEY_Al 0534 Upper left of keypad 
KEY_A3 0535 Upper right of keypad 
KEY_B2 0536 Center of keypad 
KEY_Cl 0537 Lower left of keypad 
KEY_C3 0540 Lower right of keypad 
KEY_BTAB 0541 Back TAB key 
KEY_BEG 0542 beg(inning) key 
KEY_CANCEL 0543 cancel key 
KEY_CLOSE 0544 close key 
KEY_COMMAND 0545 cmd (command) key 
KEY_COPY 0546 copy key 
KEY_CREATE 0547 create key 
KEY_END 0550 end key 
KEY_EXIT 0551 exit key 
KEY_FIND 0552 find key 
KEY_HELP 0553 help key 
KEY_MARK 0554 mark key 
KEY_MESSAGE 0555 message key 
KEY_MOVE 0556 move key 
KEY_NEXT 0557 next object key 
KEY_OPEN 0560 open key 
KEY_OJYITONS 0561 options key 
KEY_PREVIOUS 0562 previous object key 
KEY_REDO 0563 redo key 
KEY_REFERENCE 0564 ref( erence) key 
KEY_REFRESH 0565 refresh key 
KEY_REPLACE 0566 replace key 
KEY_REST ART 0567 restart key 
KEY_RESUME 0570 resume key 
KEY_SAVE 0571 save key 
KEY_SBEG 0572 shifted beginning key 
KEY _SCANCEL 0573 shifted cancel key 

1156 Last change: 30 January 1988 Sun Release 4.0 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

KEY_SCOMMAND 0574 shifted command key 
KEY_SCOPY 0575 shifted copy key 
KEY _SCREA TE 0576 shifted create key 
KEY_SDC 0577 shifted delete char key 
KEY_SDL 0600 shifted delete line key 
KEY_SELECT 0601 select key 
KEY_SEND 0602 shifted end key 
KEY_SEOL 0603 shifted clear line key 
KEY_SEXIT 0604 shifted exit key 
KEY_SFIND 0605 shifted find key 
KEY_SHELP 0606 shifted help key 
KEY_SHOME 0607 shifted home key 
KEY_SIC 0610 shifted input key 
KEY_SLEFf 0611 shifted left arrow key 
KEY_SMESSAGE 0612 shifted message key 
KEY_SMOVE 0613 shifted move key 
KEY_SNEXT 0614 shifted next key 
KEY _SOPITONS 0615 shifted options key 
KEY _SPREVIOUS 0616 shifted prev key 
KEY_SPRINT 0617 shifted print key 
KEY_SREDO 0620 shifted redo key 
KEY_SREPLACE 0621 shifted replace key 
KEY_SRIGHT 0622 shifted right arrow 
KEY_SRSUME 0623 shifted resume key 
KEY_SSAVE 0624 shifted save key 
KEY _SSUSPEND 0625 shifted suspend key 
KEY_SUNDO 0626 shifted undo key 
KEY_SUSPEND 0627 suspend key 
KEY_UNDO 0630 undo key 

LINE GRAPIDCS 
The following variables may be used to add line-drawing characters to the screen with waddce. When 
defined for the terminal, the variable will have the A_ ALTCHARSET bit turned on. Otherwise, the default 
character listed below will be stored in the variable. The names were chosen to be consistent with the DEC 
VTlOO nomenclature. 

Name 

ACS_ULCORNER 
ACS_LLCORNER 
ACS_URCORNER 
ACS_LRCORNER 
ACS_RTEE 
ACS_LTEE 
ACS_BTEE 
ACS_TIEE 
ACS_HLINE 
ACS_VLINE 
ACS_PLUS 
ACS_Sl 
ACS_S9 
ACS_DIAMOND 
ACS_CKBOARD 
ACS_DEGREE 
ACS_PLMINUS 

Sun Release 4.0 

Default Glyph Description 

+ upper left comer 
+ lower left comer 
+ upper right comer 
+ lower right comer 
+ right tee ( -D 
+ left tee 0-) 
+ bottom tee ( 1) 
+ top tee (T) 

horizontal line 
vertical line 

+ plus 
scan line 1 
scan line 9 

+ diamond 
checker board (stipple) 
degree symbol 

# plus/minus 

Last change: 30 January 1988 1157 



CURSES(3V) SYSTEM V LIBRARY CURSES(3V) 

ACS_BULLET 0 bullet 
ACS_LARROW < arrow pointing left 
ACS_RARROW > arrow pointing right 
ACS_DARROW V arrow pointing down 
ACS_UARROW arrow pointing up 
ACS_BOARD # board of squares 
ACS_LANTERN # lantern symbol 
ACS_BLOCK # solid square block 

RETURN VALUES 

FILES 

All routines return the integer OK upon successful completion and the integer ERR upon failure, unless 
otherwise noted in the preceding routine descriptions. 

All macros return the value of their w version, except setscrreg( ), wsetscrreg( ), getsyx( ), getyx( ), get
begy( ), getmaxyx( ). For these macros, no useful value is returned. 

Routines that return pointers always return (type*) NULL "on error. 

/usr/share/lib/terminfo 
.login 
.profile 

SEE ALSO 
cc(l V), ld(l), ioct1(2), plot(3X), printf(3S), putc(3S), scanf(3V), stdio(3V), system(3), varargs(3), 
vprintf(3V), termio(4), term(SV), terminfo(5V) 

WARNINGS 

1158 

The plotting library plot(3X) and the curses library curses(3V) both use the names erase() and move(). 
The curses versions are macros. If you need both libraries, put the plot(3X) code in a different source file 
than the curses(3V) code, and/or '#under move' and '#undef erase' in the plot(3X) code. 

Between the time a call to initscr() and endwin() has been issued, use only the routines in the curses 
library to generate output. Using system calls or the "standard 1/0 package" (see stdio(3V)) for output 
during that time can cause unpredictable results. 

Last change: 30 January 1988 Sun Release 4.0 



FERROR(3V) SYSTEM V LIBRARY FERROR(3V) 

NAME 
ferror, feof, clearerr, fileno - stream status inquiries 

SYNOPSIS 
#include <stdio.h> 

ferror(stream) 
FILE •stream; 

feof(stream) 
FILE •stream; 

clearerr(stream) 
FILE •stream; 

fileno(stream) 
FILE •stream; 

DESCRIPTION 

NOTE 

ferror() returns non-zero when an error has occurred reading from or writing to the named stream, other
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed. 

feof() returns non-zero when EOF has previously been detected reading the named input stream, otherwise 
zero. Unless cleared by clearerr, the EOF indication lasts until the stream is closed; however, operations 
which attempt to read from the stream will ignore the current state of the EOF indication and attempt to 
read from the file descriptor associated with the stream. 

clearerr() resets the error indication and EOF indication to zero on the named stream. 

fileno() returns the integer file descriptor associated with the stream; see open(2V). 

All these functions are implemented as macros; they cannot be redeclared. 

SEE ALSO 
open(2V), fopen(3S) 

Sun Release 4.0 Last change: 18 November 1987 1159 



FOPEN(3V) SYSTEM V LIBRARY FOPEN(3V) 

NAME 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
#include <stdio.h> 

FILE •fopen(filename, type) 
char •filename, •type; 

FILE •freopen(filename, type, stream) 
char •filename, •type; 
FILE •stream; 

FILE •fdopen(fildes, type) 
char •type; 

DESCRIPTION 
fopen() opens the file named by filename and associates a stream with it. If the open succeeds, fopen() 
returns a pointer to be used to identify the stream in subsequent operations. 

filename points to a character string that contains the name of the file to be opened. 

type is a character string having one of the following values: 

r open for reading 

w truncate or create for writing 

a append: open for writing at end of file, or create for writing 

r+ open for update (reading and writing) 

w+ truncate or create for update 

a+ append; open or create for update at EOF 

freopen() opens the file named by filename and associates the stream pointed to by stream with it. The 
type argument is used just as in fopen. The original stream is closed, regardless of whether the open ulti
mately succeeds. If the open succeeds, freopen() returns the original value of stream. 

freopen() is typically used to attach the preopened streams associ~ted with stdio, stdout, and stderr to 
other files. 

fdopen() associates a stream with the file descriptor ft.Ides. File descriptors are obtained from calls like 
open, dup, creat, or pipe(2), which open files but do not return streams. Streams are necessary input for 
many of the Section 3S library routines. The type of the stream must agree with the mode of the open file. 

When a file is opened for update, both input and output may be done on the resulting stream. However, 
output may not be directly followed by input without an intervening fseek() or rewind, and input may not 
be directly followed by output without an intervening fseek, rewind, or an input operation which 
encounters end-of-file. 

When a file is opened for append (that is, when type is a or a+), it is impossible to overwrite information 
already in the file. fseek() may be used to reposition the file pointer to any position in the file, but when 
output is written to the file, the current file pointer is disregarded. All output is written at the end of the file 
and causes the file pointer to be repositioned at the end of the output. If two separate processes open the 
same file for append, each process may write freely to the file without fear of destroying output being writ
ten by the other. The output from the two processes will be intermixed in the file in the order in which it is 
written. 

SEE ALSO 
open(2V), pipe(2), fclose(3S), fopen(3S), fseek(3S) 

DIAGNOSTICS 
fopen, freopen, and fdopen() return a NULL pointer on failure. 

1160 Last change: 18 November 1987 Sun Release 4.0 



FOPEN(3V) SYSTEM V LIBRARY FOPEN(3V) 

BUGS 
In order to support the same number of open files that the system does, f open() must allocate additional 
memory for data structures using calloc() after 64 files have been opened. This confuses some programs 
which use their own memory allocators. 

Sun Release 4.0 Last change: 18 November 1987 1161 



GETC(3V) SYSTEM V LIBRARY GETC(3V) 

NAME 
getc, getchar, fgetc, getw - get character or integer from stream 

SYNOPSIS 
#include <stdio.h> 

int getc(stream) 
FILE •stream; 

int getchar( ) 

int fgetc(stream) 
FILE •stream; 

int getw(stream) 
FILE •stream; 

DESCRIPTION 
getc() returns the next character (that is, byte) from the named input stream, as an integer. It also moves 
the file pointer, if defined, ahead one character in stream. getchar() is defined as getc(stdin). getc and 
getchar are macros. 

fgetc() behaves like getc, but is a function rather than a macro. fgetc() runs more slowly than getc, but it 
takes less space per invocation and its name can be passed as an argument to a function. 

getw() returns the next C int (word) from the named input stream. getw() increments the associated file 
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from 
machine to machine. getw() assumes no special alignment in the file. 

SEE ALSO 
ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S), ungetc(3S) 

DIAGNOSTICS 
These functions return the integer constant EOF at EOF or upon an error. Because EOF is a valid integer, 
ferror(3S) should be used to detect getw() errors. 

WARNING 

BUGS 

1162 

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then com
pared against the integer constant EOF, the comparison may never succeed, because sign-extension of a 
character on widening to integer is machine-dependent. 

Because it is implemented as a macro, getc() treats a stream argument with side effects incorrectly. In par
ticular, getc(*f++) does not work sensibly. fgetc() should be used instead. 

Because of possible differences in word length and byte ordering, files written using putw() are machine
dependent, and may not be readable using getw() on a different processor. 

Last change: 18 November 1987 Sun Release 4.0 



GETP ASS ( 3V) SYSTEM V LIBRARY GETP ASS ( 3V) 

NAME 
getpass - read a password 

SYNOPSIS 
char •getpass(prompt) 
char •prompt; 

DESCRIPTION 

FILES 

getpass() reads up to a NEWLINE or EOF from the file /dev/tty, after prompting with the NULL-terminated 
string prompt and disabling echoing. A pointer is returned to a NULL-terminated string of at most 8 char
acters. An interrupt will terminate input and send an interrupt signal to the calling program before return
ing. If /dev/tty cannot be opened, a NULL pointer is returned;. the standard input is not read. 

/dev/tty 

SEE ALSO 
crypt(3), getpass(3) 

WARNING 
The above routine uses <stdio.h>, which increases the size of programs not otherwise using standard I/0, 
more than might be expected. 

BUGS 
The return value points to static data whose content is overwritten by each call. 

Sun Release 4.0 Last change: 6 October 1987 1163 



GE1PWENT(3V) SYSTEM V LIBRARY GE1PWENT ( 3V) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile, fgetpwent - get password file entry 

SYNOPSIS 
#include <pwd.h> 

struct passwd * getpwent() 

struct passwd •getpwuid(uid) 
int uid; 

struct passwd •getpwnam(name) 
char •name; 

int setpwent( ) 

int endpwent() 

setpwfile(name) 
char •name; 

struct passwd •fgetpwent(f) 
FILE •f; 

DESCRIPTION 

1164 

getpwent, getpwuid() and getpwnam() each return a pointer to an object with the following structure 
containing the broken-out fields of a line in the password file. Each line in the file contains a ''passwd'' 
structure, declared in the <pwd.h> header file: 

struct passwd {/•see getpwent(3) •/ 
char •pw _ name; 
char •pw _passwd; 
int pw_uid; 
int pw_gid; 
char •pw_age; 
char •pw _ comment; 
char •pw _gecos; 
char •pw _ dir; 
char •pw _ shell; 

}; 

struct passwd •getpwent( ), •getpwuid( ), •getpwnam( ); 

This structure is declared in <pwd.h> so it is not necessary to redeclare it. 

The field pw _ comment is unused; the others have meanings described in passwd(5). When first called, 
getpwent() returns a pointer to the first passwd structure in the file; thereafter, it returns a pointer to the 
next passwd structure in the file; so successive calls can be used to search the entire file. getpwuid() 
searches from the beginning of the file until a numerical user ID matching uid is found and returns a pointer 
to the particular structure in which it was found. getpwnam() searches from the beginning of the file until 
a login name matching name is found, and returns a pointer to the particular structure in which it was 
found. If an end-of-file or an error is encountered on reading, these functions return a NULL pointer. 

A call to getpwent() has the effect of rewinding the password file to allow repeated searches. endpwent() 
may be called to close the password file when processing is complete. 

setpwfile() changes the default password file to name thus allowing alternate password files to be used. 
Note: it does not close the previous file. If this is desired, endpwent() should be called prior to it. 

fgetpwent() returns a pointer to the next passwd structure in the stream/, which matches the format of the 
password file /etc/passwd. 

Last change: 14 December 1987 Sun Release 4.0 



GETPWENT ( 3V) SYSTEM V LIBRARY GETPWENT ( 3V) 

The field pw_age is used to hold a value for ''password aging'' on some systems; ''password aging'' is not 
supported on Sun systems. As such, it is effectively not used. 

FILES 
/etc/passwd 
lvar/ypldomainname /passwd.byname 
/var/yp/domainname/passwd.byuid 

SEE ALSO 
getgrent(3), getlogin(3), getpwent(3), passwd(S), ypserv(8) 

DIAGNOSTICS 
A NULL pointer is returned on end-of-file or error. 

WARNING 

The above routines use the standard I/0 library, which causes them to increase the size of programs, not 
otherwise using standard I/0, more than might be expected. 

BUGS 
All information is contained in a static area, so it must be copied if it is to be saved. 

Sun Release 4.0 Last change: 14 December 1987 1165 



NICE(3V) SYSTEM V LIBRARY NICE(3V) 

NAME 
nice - change priority of a process 

SYNOPSIS 
int nice(incr) 

DESCRIPTION 
The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor
mal. Priority IO is recommended to users who wish to execute long-running programs without undue 
impact on system performance. 

Negative increments are illegal, except when specified by the super-user. The priority is limited to the 
range -20 (most urgent) to 19 (least). Requests for values above or below these limits result in the 
scheduling priority being set to the corresponding limit. 

The priority of a process is passed to a child process by fork(2). 

RETURN VALUE 
Upon successful completion, nice() returns the new scheduling priority. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

ERRORS 
The priority is not changed if: 

EPERM The value of incr specified was negative, or greater than 40, and the effective user 
ID is not super-user. 

SEE ALSO 
nice(l), fork(2), getpriority(2), renice(8) 

1166 Last change: 22 November 1987 Sun Release 4.0 



NLIST(3V) SYSTEM V LIBRARY NLIST(3V) 

NAME 
nlist - get entries from symbol table 

SYNOPSIS 
#include <nlist.h> 

int nlist(filename, nl) 
char •filename; 
struct nlist •nl; 

DESCRIPTION 
nlist() examines the symbol table from the executable image whose name is pointed to by filename, and 
selectively extracts a list of values and puts them in the array of nlist() structures pointed to by nl. The 
name list pointed to by nl() consists of an array of structures containing names, types and values. The 
n _ name field of each such structure is taken to be a pointer to a character string representing a symbol 
name. The list is terminated by an entry with a NULL pointer ( or a pointer to a NULL string) in the n _name 
field. For each entry in nl, if the named symbol is present in the executable image's symbol table, its value 
and type are placed in the n_value and n_type fields. If a symbol cannot be located, the corresponding 
n _ type field of nl() is set to zero. 

RETURN VALUE 
Upon normal completion, nlist() returns 0. If an error occurs, nlist() returns -1 and sets all of the n _ type 
fields in members of the array pointed to by nl() to zero. 

SEE ALSO 
a.out(5) 

Sun Release 4.0 Last change: 24 November 1987 1167 



PRINTF(3V) SYSTEM V LIBRARY PRINTF(3V) 

NAME 
printf, fprintf, sprintf - formatted output conversion 

SYNOPSIS 
#include <stdio.h> 
int printf(f ormat [ , arg ] ... ) 
char •format; 

int fprintf(stream, format [ , arg ] ... ) 
FILE •stream; 
char •format; 

int sprintf(s, format [ , arg ] ... ) 
char *s, •format; 

#include <varargs.h> 
int _ doprnt(format, args, stream) 
char •format; 
va _ list args; 
FILE •stream; 

DESCRIPTION 

1168 

printf() places output on the standard output stream stdout. fprintf() places output on the named output 
stream. sprintf() places "output", followed by the NULL character (\0), in consecutive bytes starting at 
•s; it is the user's responsibility to ensure that enough storage is available. printf, fprintf() and sprintf() 
return the number of characters transmitted (excluding the NULL character in the case of sprintf). 

If an output error is encountered printf, fprintf() and sprintf() return EOF. 

Each of these functions converts, formats, and prints its args under control of the format. The format is a 
character string which contains two types of objects: plain characters, which are simply copied to the out
put stream, and conversion specifications, each of which causes conversion and printing of zero or more 
args. The results are undefined if there are insufficient args for the format. If the format is exhausted 
while args remain, the excess args are simply ignored. 

Each conversion specification is introduced by the character % . After the % , the following appear in 
sequence: 

Zero or more flags, which modify the meaning of the conversion specification. 

An optional decimal digit string specifying a minimum field width. If the converted value has 
fewer characters than the field width, it will be padded on the left (or right, if the left-adjustment 
flag '-', described below, has been given) to the field width. The padding is with blanks unless 
the field width digit string starts with a zero, in which case the padding is with zeros. 

A precision that gives the minimum number of digits to appear for the d, i, o, u, x, or X conver
sions, the number of digits to appear after the decimal point for thee, E, and f conversions, the 
maximum number of significant digits for the g and G conversion, or the maximum number of 
characters to be printed from a string ins conversion. The precision takes the form of a period(.) 
followed by a decimal digit string; a NULL digit string is treated as zero. Padding specified by the 
precision overrides the padding specified by the field width. 

An optional I ( ell) specifying that a following d, i, o, u, x, or X conversion character applies to a 
long integer arg. An I before any other conversion character is ignored. 

A character that indicates the type of conversion to be applied. 

A field width or precision or both may be indicated by an asterisk ( *) instead of a digit string. In this case, 
an integer arg supplies the field width or precision. The arg that is actually converted is not fetched until 
the conversion letter is seen, so the args specifying field width or precision must appear before the arg (if 
any) to be converted. A negative field width argument is taken as a '-' flag followed by a positive field 
width. If the precision argument is negative, it will be changed to zero. 

Last change: 18 November 1987 Sun Release 4 .0 



PRINTF(3V) SYSTEM V LIBRARY PRINTF(3V) 

The flag characters and their meanings are: 
The result of the conversion will be left-justified within the field. 

+ The result of a signed conversion will always begin with a sign ( + or-). 
blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the result. 

This implies that if the blank and+ flags both appear, the blank flag will be ignored. 
# This flag specifies that the value is to be converted to an "alternate form. "For c, d, i, s, and u 

conversions, the flag has no effect. For o conversion, it increases the precision to force the first 
digit of the result to be a zero. For x or X conversion, a non-zero result will have Ox or OX 
prefixed to it. Fore, E, f, g, and G conversions, the result will always contain a decimal point, 
even if no digits follow the point (normally, a decimal point appears in the result of these 
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be 
removed from the result (which they normally are). 

The conversion characters and their meanings are: 

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), unsigned octal (o), unsigned decimal 
(u), or unsigned hexadecimal notation (x and X), respectively; the letters abcdef are used for x 
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum 
number of digits to appear; if the value being converted can be represented in fewer digits, it 
will be expanded with leading zeroes. (For compatibility with older versions, padding with 
leading zeroes may alternatively be specified by prepending a zero to the field width. This 
does not imply an octal value for the field width.) The default precision is 1. The result of 
converting a zero value with a precision of zero is a NULL string. 

f The float or double arg is converted to decimal notation in the style "[-]ddd.ddd" where the 
number of digits after the decimal point is equal to the precision specification. If the precision 
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are 
printed. 

e,E The float or double arg is converted in the style "[-]d.ddde±ddd," where there is one digit 
before the decimal point and the number of digits after it is equal to the precision; when the 
precision is missing, 6 digits are produced; if the precision is zero, no decimal point appears. 
The E format code will produce a number with E instead of e introducing the exponent. The 
exponent always contains at least two digits. 

g,G The float or double arg is printed in style fore (or in style E in the case of a G format code), 
with the precision specifying the number of significant digits. The style used depends on the 
value converted: style e or E will be used only if the exponent resulting from the conversion is 
less than --4 or greater than the precision. Trailing zeroes are removed from the result; a 
decimal point appears only if it is followed by a digit. 

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as ··infinity'· or 
"NaN" respectively. 

c The character arg is printed. 
s The arg is taken to be a string (character pointer) and characters from the string are printed 

until a NULL character (\0) is encountered or until the number of characters indicated by the 
precision specification is reached. If the precision is missing, it is taken to be infinite, so all 
characters up to the first NULL character are printed. A NULL value for arg will yield 
undefined results. 

% Print a%; no argument is converted. 

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is 
wider than the field width, the field is simply expanded to contain the conversion result. Padding takes 
place only if the specified field width exceeds the actual width. Characters generated by printf() and 
fprintf() are printed as if putc(3S) had been called. 

EXAMPLES 
To print a date and time in the form "Sunday, July 3, 10:02," where weekday and month are pointers to 
NULL-terminated strings: 

Sun Release 4.0 Last change: 18 November 1987 1169 



PRINTF(3V) SYSTEM V LIBRARY PRINTF(3V) 

NOTE 

printf(" %s, %s %i, %d: %.2d", weekday, month, day, hour, min); 

To print 1t to 5 decimal places: 

printf("pi = %.Sr', 4 * atan(l. 0)); 

These routines call _ doprnt, which is an implementation-dependent routine. Each uses the variable-length 
argument facilities of varargs(3). Although it is possible to use _ doprnt to take a list of arguments and 
pass them on to a routine like printf, not all implementations have such a routine. We strongly recommend 
that you use the routines described in vprintf(3S) instead. 

SEE ALSO 
econvert(3), printf(3S), putc(3S), scanf(3V), varargs(3), vprintf(3S) 

BUGS 
Very wide fields(> 128 characters) fail. 

1170 Last change: 18 November 1987 Sun Release 4.0 



RAND(3V) SYSTEM V LIBRARY RAND(3V) 

NAME 
rand, srand - simple random number generator 

SYNOPSIS 

srand(seed) 
int seed; 

rand() 

DESCRIPTION 

NOTE 

rand() uses a multiplicative congruential random number generator with period 232 to return successive 
pseudo-random numbers in the range from Oto 215-1. 

srand() can be called at any time to reset the random-number generator to a random starting point. The 
generator is initially seeded with a value of 1. 

The spectral properties of rand() leave a great deal to be desired. drand48(3) and random(3) provide 
much better, though more elaborate, random-number generators. 

SEE ALSO 

BUGS 

drand48(3), random(3), rand(3C) 

The low bits of the numbers generated are not very random; use the middle bits. In particular the lowest bit 
alternates between O and 1. 

Sun Release 4.0 Last change: 6 October 1987 1171 



SCANF(3V) SYSTEM V LIBRARY SCANF(3V) 

NAME 
scanf, fscanf, sscanf - formatted input conversion 

SYNOPSIS 
#include <Stdio.h> 

scanf(format [ , pointer ] ... ) 
char *format; 

fscanf(stream, format [ , pointer ] ... ) 
FILE *stream; 
char *format; 

sscanf(s, format [ , pointer ] ... ) 
char *S, *format; 

DESCRIPTION 

1172 

scanf() reads from the standard input stream stdin. fscanf() reads from the named input stream. sscanf() 
reads from the character string s. Each function reads characters, interprets them according to a format, 
and stores the results in its arguments. Each expects, as arguments, a control string format, described 
below, and a set of pointer arguments indicating where the converted input should be stored. The results 
are undefined in there are insufficient args for the format. If the format is exhausted while args remain, 
the excess args are simply ignored. 

The control string usually contains conversion specifications, which are used to direct interpretation of 
input sequences. The control string may contain: 

1. White-space characters (SPACE, TAB, NEWLINE, or FORMFEED) which, except in two cases 
described below, cause input to be read up to the next non-white-space character. 

2. An ordinary character (not'%'), which must match the next character of the input stream. 
3. Conversion specifications, consisting of the character'%', an optional assignment suppressing 

character '* ', an optional numerical maximum field width, an optional I (ell) or h indicating 
the size of the receiving variable, and a conversion code. 

A conversion specification directs the conversion of the next input field; the result is placed in the variable 
pointed to by the corresponding argument, unless assignment suppression was indicated by '* '. The 
suppression of assignment provides a way of describing an input field which is to be skipped. An input 
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the 
field width, if specified, is exhausted. For all descriptors except '' ['' and ''c' ', white space leading an input 
field is ignored. 

The conversion character indicates the interpretation of the input field; the corresponding pointer argument 
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following 
conversion characters are legal: 

% A single % is expected in the input at this point; no assignment is done. 
d A decimal integer is expected; the corresponding argument should be an integer pointer. 
u An unsigned decimal integer is expected; the corresponding argument should be an 

unsigned integer pointer. 
o An octal integer is expected; the corresponding argument should be an integer pointer. 
x A hexadecimal integer is expected; the corresponding argument should be an integer 

pointer. 
An integer is expected; the corresponding argument should be an integer pointer. It will 
store the value of the next input item interpreted according to C conventions: a leading 
''O'' implies octal; a leading ''Ox'' implies hexadecimal; otherwise, decimal. 

n Stores in an integer argument the total number of characters (including white space) that 
have been scanned so far since the function call. No input is consumed. 

e,f,g A floating point number is expected; the next field is converted accordingly and stored 
through the corresponding argument, which should be a pointer to afloat. The input for
mat for floating point numbers is as described for string_to_decimal(3), with 

Last change: 30 January 1988 Sun Release 4.0 



SCANF(3V) SYSTEM V LIBRARY SCANF(3V) 

f ortran _ exponent zero. 
s A character string is expected; the corresponding argument should be a character pointer 

pointing to an array of characters large enough to accept the string and a terminating \0, 
which will be added automatically. The input field is terminated by a white space char
acter. 

c A character is expected; the corresponding argument should be a character pointer. The 
normal skip over white space is suppressed in this case; to read the next non-space char
acter, use % ls. If a field width is given, the corresponding argument should refer to a 
character array, and the indicated number of characters is read. 
Indicates string data; the normal skip over leading white space is suppressed. The left 
bracket is followed by a set of characters, which we will call the scanset, and a right 
bracket; the input field is the maximal sequence of input characters consisting entirely of 
characters in the scanset. The circumflex ( "), when it appears as the first character in the 
scanset, serves as a complement operator and redefines the scanset as the set of all char
acters not contained in the remainder of the scanset string. There are some conventions 
used in the construction of the scanset. A range of characters may be represented by the 
construct.first-last, thus [0123456789] may be expressed [0-9]. Using this convention, 
first must be lexically less than or equal to last, or else the dash will stand for itself. The 
dash will also stand for itself whenever it is the first or the last character in the scanset. 
To include the right square bracket as an element of the scanset, it must appear as the first 
character (possibly preceded by a circumflex) of the scanset, and in this case it will not 
be syntactically interpreted as the closing bracket. The corresponding argument must 
point to a character array large enough to hold the data field and the terminating \0, which 
will be added automatically. At least one character must match for this conversion to be 
considered successful. 

The conversion characters d, u, o, x, and i may be preceded by l or h to indicate that a pointer to long or to 
short rather than to int is in the argument list. Similarly, the conversion characters e, f, and g may be pre
ceded by l to indicate that a pointer to double rather than to float is in the argument list. The l or h 
modifier is ignored for other conversion characters. 

Avoid this common error: because printf(3V) does not require that the lengths of conversion descriptors 
and actual parameters match, coders sometimes are careless with the scanf() functions. But converting %f 
to &double or %If to &float does not work; the results are quite incorrect. 

scanf() conversion terminates at EOF, at the end of the control string, or when an input character conflicts 
with the control string. In the latter case, the offending character is left unread in the input stream. 

scanf() returns the number of successfully matched and assigned input items; this number can be zero in 
the event of an early conflict between an input character and the control string. The constant EOF is 
returned upon end of input. Note: this is different from 0, which means that no conversion was done; if 
conversion was intended, it was frustrated by an inappropriate character in the input. 

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first 
conflict or conversion, the number of successfully matched items is returned. 

EXAMPLES 
The call: 

int i, n; float x; char name[50]; 
n = scanf(" %d%f%s", &i, &x, name); 

with the input line: 
25 54.32E-1 thompson 

will assign ton the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or: 
int i, j; float x; char name[50]; 
(void) scanf(" %i%2d%f%*d %[0-9]", &j, &i, &x, name); 

Sun Release 4.0 Last change: 30 January 1988 1173 



SCANF(3V) SYSTEM V LIBRARY SCANF(3V) 

with input: 

01156789 0123 56a72 

will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to 
getchar() (see getc(3S)) will return a. Or: 

int i, j, s, e; char name[SO]; 
(void) scanf("%i %i %n%s%n", &i, &j, &s, name, &e); 

with input: 
Oxll Oxy johnson 

will assign 17 to i, 0 to j, 6 to s, will place the string xy\O in name, and will assign 8 to e. Thus, the length 
of name is e - s = 2. The next call to getchar() (see getc(3S)) will return a SPACE. 

SEEA~SO 
getc(3S), printf(3V), stdio(3V), string_to_decimal(3), strtol(3), scanf(3S) 

DIAGNOSTICS 
These functions return EOF on end of input, and a short count for missing or illegal data items. 

BUGS 
The success of literal matches and suppressed assignments is not directly determinable. 

CAVEATS 
Trailing white space (including a NEWLINE) is left unread unless matched in the control string. 

1174 Last change: 30 January 1988 Sun Release 4.0 



SETBUF(3V) SYSTEM V LIBRARY SETBUF(3V) 

NAME 
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream 

SYNOPSIS 
#include <stdio.h> 

setbur(stream, but) 
FILE •stream; 
char •bur; 

setbutTer(stream, bur, size) 
FILE •stream; 
char •bur; 
int size; 

setlinebur(stream) 
FILE •stream; 

int setvbur(stream, bur, type, size) 
FILE •stream; 
char •bur; 
int type, size; 

DESCRIPTION 
The three types of buffering available are unbuffered, block buffered, and line buffered. When an output 
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is 
block buffered many characters are saved up and written as a block; when it is line buffered characters are 
saved up until a NEWLINE is encountered or input is read from any line buffered input stream. mush() 
(see rciose(3S)) may be used to force the block out early. Normally all files are block buffered. A buffer is 
obtained from malloc(3) upon the first getc() or putc(3S) on the file. 

By default, output to a terminal is line buffered, except for output to the standard stream stderr which is 
unbuffered, and all other input/output is fully buffered. 

setbur() can be used after a stream has been opened but before it is read or written. It causes the array 
pointed to by buf to be used instead of an automatically allocated buffer. If bu/ is the NULL pointer, 
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header 
file, tells how big an array is needed: 

char buflBUFSIZ]; 

setbuff er, an alternate form of setbuf, can be used after a stream has been opened but before it is read or 
written. It uses the character array buf whose size is determined by the size argument instead of an 
automatically allocated buffer. If bu/is the NULL pointer, input/output will be completely unbuffered. 

setvbuf() can be used after a stream has been opened but before it is read or written. type determines how 
stream will be buffered. Legal values for type (defined in <stdio.h>) are: 

_IOFBF fully buffers the input/output. 

IOLBF 

IONBF 

line buffers the output; the buffer will be flushed when a NEWLINE is written, the buffer is 
full, or input is requested. 

completely unbuffers the input/output. 

If buf is not the NULL pointer, the array it points to will be used for buffering, instead of an automatically 
allocated buffer. size specifies the size of the buffer to be used. 

setlinebuf() is used to change the buffering on a stream from block buffered or unbuffered to line buf
fered. Unlike setbuf, setbuff er, and setvbuf, it can be used at any time that the file descriptor is active. 

A file can be changed from unbuffered or line buffered to block buffered by using rreopen() (see 
ropen(3S)). A file can be changed from block buffered or line buffered to unbuffered by using rreopen() 
followed by setbuf() with a buffer argument of NULL. 

Sun Release 4.0 Last chanl!e: 30 Januarv 1988 117c; 



SETBUF{3V) SYSTEM V LIBRARY SETBUF{3V) 

NOTE 
A common source of error is allocating buffer space as an ''automatic'' variable in a code block, and then 
failing to close the stream in the same block. 

SEE ALSO 
fclose(3S), fopen(3V), fread{3S), getc(3S), malloc(3), printf(3V), putc(3S), puts(3S), setbuf(3S) 

DIAGNOSTICS 

1176 

If an illegal value for type or size is provided, setvbuf() returns a non-zero value. Otherwise, the value 
returned will be zero. 

Last change: 30 January 1988 Sun Release 4.0 



SETJMP(3V) SYSTEM V LIBRARY SETJMP(3V) 

NAME 
setjmp, longjmp, sigsetjmp, siglongjmp- non-local goto 

SYNOPSIS 
#include <Setjmp.h> 

int setjmp(env) 
jmp_buf env; 

longjmp( env, val) 
jmp _ buf env; 
int val; 

int _setjmp(env) 
jmp _ buf env; 

_longjmp(env, val) 
jmp _ buf env; 
int val; 

int sigsetjmp(env, savemask) 
sigjmp _ buf env; 
int savemask; 

siglongjmp(env, val) 
sigjmp _ buf env; 
int val; 

DESCRIPTION 
setjmp() and longjmp() are useful for dealing with errors and interrupts encountered in a low-level sub
routine of a program. 

setjmp() saves its stack environment in env for later use by longjmp. A normal call to setjmp() returns 
zero. setjmp() also saves the register environment. If a longjmp() call will be made, the routine which 
called setjmp() should not return until after the longjmp() has returned control (see below). 

longjmp() restores the environment saved by the last call of setjmp, and then returns in such a way that 
execution continues as if the call of setjmp() had just returned the value val to the function that invoked 
setjmp; however, if val were zero, execution would continue as if the call of setjmp() had returned one. 
This ensures that a ''return'' from setjmp() caused by a call to longjmp() can be distinguished from a reg
ular return from setjmp. The calling function must not itself have returned in the interim, otherwise 
longjmp() will be returning control to a possibly non-existent environment. All memory-bound data have 
values as of the time longjmp() was called. The CPU and floating-point data registers are restored to the 
values they had at the time that setjmp() was called. But, because the register storage class is only a hint 
to the C compiler, variables declared as register variables may not necessarily be assigned to machine 
registers, so their values are unpredictable after a longjmp. This is especially a problem for programmers 
trying to write machine-independent C routines. 

setjmp() and longjmp() manipulate only the C stack and registers; they do not save or restore the signal 
mask. _setjmp behaves identically to setjmp, and _longjmp behaves identically to longjmp. If the 
savemask flag to sigsetjmp is non-zero, the signal mask (see sigsetmask(2)) is saved, and a subsequent 
siglongjmp using the same env will restore the signal mask. If the savemask flag is zero, the signal mask is 
not saved, and a subsequent siglongjmp using the same env will not restore the signal mask. In all other 
ways, sigsetjmp functions in the same way that setjmp() does, and siglongjmp functions in the same way 
that longjmp() does. 

None of these functions save or restore any floating-point status or control registers, in particular the 
MC68881 fpsr, fpcr, or fpiar, the Sun-3 FPA fpamode or fpastatus, and the Sun-4 %fsr. See 
ieee _ flags(3M) to save and restore floating-point status or control information. 

Sun Release 4.0 Last change: 24 November 1987 1177 



SETIMP(3V) SYSTEM V LIBRARY SETJMP(3V) 

EXAMPLE 
The following code fragment indicates the flow of control of the setjmp() and longjmp() combination: 

function declaration 

jmp_buf my_environment; 

if ( setjmp (my_ environment)) { 
I• register variables have unpredictable values 
code after the return from longjmp 

} else { 
/• do not modify register vars 
this is the returnfrom setjmp 

} 

SEE ALSO 

BUGS 

1178 

cc{l V), sigsetmask(2), sigvec(2), ieee _ flags(3M), signal(3V), setjmp(3) 

setjmp() does not save the current notion of whether the process is executing on the signal stack. The 
result is that a longjmp() to some place on the signal stack leaves the signal stack state incorrect 

On Sun-2 and Sun-3 systems setjmp() also saves the register environment Therefore, all data that are 
bound to registers are restored to the values they had at the time that setjmp() was called. All memory
bound data have values as of the time longjmp() was called. However, because the register storage class 
is only a hint to the C compiler, variables declared as register variables may not necessarily be assigned to 
machine registers, so their values are unpredictable after a longjmp. When using compiler options that 
specify automatic register allocation (see cc(l V)), the compiler will not attempt to assign variables to regis
ters in routines that call setjmp. 

longjmp() never causes setjmp() to return zero in the Sun implementation; this is also true of many other 
implementations, including all System V implementations, so programmers should not depend on 
longjmp() being able to cause setjmp() to return zero. 

Last change: 24 November 1987 Sun Release 4.0 



SETUID(3V) SYSTEM V LIBRARY SETUID(3V) 

NAME 
setuid, setgid - set user and group IDs 

SYNOPSIS 
setuid(uid) 
setgid(gid) 

DESCRIPTION 
setuid() (setgid) is used to set the real user (group) ID and effective user (group) ID of the calling process. 

If the effective user ID of the calling process is super-user, the real user (group) ID and effective user 
(group) ID are set to uid (gid). 

If the effective user ID of the calling process is not super-user, but its real user (group) ID is equal to uid 
(gid), the effective user (group) ID is set to uid (gid). 

If the effective user (group) ID of the calling process is not super-user, but the saved set-user (group) ID 
from execve(2) is equal to uid (gid), the effective user (group) ID is set to uid (gid). 

SEE ALSO 
execve(2), getgid(2), getuid(2), setregid(2), setreuid(2), 

DIAGNOSTICS 
Zero is returned if the user (group) ID is set; -1 is returned otherwise, with the global variable errno set as 
for setreuid() (setregid). 

Sun Release 4.0 Last change: 22 November 1987 1179 



SIGNAL(3V) SYSTEM V LIBRARY SIGNAL(3V) 

NAME 
signal - simplified software signal facilities 

SYNOPSIS 
#include <signal.h> 

void (•signal(sig, func))() 
void (*func)(); 

DESCRIPTION 

1180 

signal() is a simplified interface to the more general sigvec(2) facility. Programs that use signal() in 
preference to sigvec() are more likely to be portable to all systems. 

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop), by a 
program error (bus error, etc.), by request of another program (kill), or when a process is stopped because it 
wishes to access its control terminal while in the background (see termio(4)). Signals are optionally gen
erated when a process resumes after being stopped, when the status of child processes changes, or when 
input is ready at the control terminal. Most signals cause termination of the receiving process if no action 
is taken; some signals instead cause the process receiving them to be stopped, or are simply discarded if the 
process has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal() call 
allows signals either to be ignored or to interrupt to a specified location. The following is a list of all sig
nals with names as in the include file <Signal.h>: 

SIGHUP 1 hangup 
SIGINT 2 interrupt 
SIGQUIT 3• quit 
SIGILL 4• illegal instruction 
SIGTRAP 5• trace trap 
SIGABRT 6* abort (generated by abort(3) routine) 
SIGEMT 7* emulator trap 
SIGFPE 8• arithmetic exception 
SIGKILL 9 kill (cannot be caught, blocked, or ignored) 
SIGBUS 10• bus error 
SIGSEGV 11 * segmentation violation 
SIGSYS 12• bad argument to system call 
SIG PIPE 13 write on a pipe or other socket with no one to read it 
SIGALRM 14 alarm clock 
SIGTERM 15 software termination signal 
SIGURG lf>e urgent condition present on socket 
SIGSTOP 17t stop (cannot be caught, blocked, or ignored) 
SIGTSTP 18t stop signal generated from keyboard 
SIGCONT 19e continue after stop (cannot be blocked) 
SIGCHLD 20. child status has changed 
SIGTTIN 21 t background read attempted from control terminal 
SIGTTOU 22t background write attempted to control terminal 
SIGIO 23e I/0 is possible on a descriptor (see fcnt1(2V)) 
SIGXCPU 24 cpu time limit exceeded (see getrlimit(2)) 
SIGXFSZ 25 file size limit exceeded (see getrlimit(2)) 
SIGVTALRM 26 virtual time alarm (see getitimer(2)) 
SIGPROF 27 profiling timer alarm (see getitimer(2)) 
SIGWINCH 2S. window changed (see termio(4) and win(4S)) 
SIGLOST 29• resource lost (see lockd(8C)) 
SIGUSRl 30 user-defined signal 1 
SIGUSR2 31 user-defined signal 2 

Last change: 22 November 1987 Sun Release 4 .0 



SIGNAL(3V) SYSTEM V LIBRARY SIGNAL(3V) 

NOTES 

The starred signals in the list above cause a core image if not caught or ignored. 

If June is SIG_DFL, the default action for signal sig is reinstated; this default is termination (with a core 
image for starred signals) except for signals marked with• or t. Signals marked with• are discarded if the 
action is SIG_DFL; signals marked with t cause the process to stop. If June is SIG_IGN the signal is subse
quently ignored and pending instances of the signal are discarded. Otherwise, when the signal occurs June 
is called. The value of June for the caught signal is reset to SIG_DFL before June is called, unless the signal 
is SIGILL or SIGTRAP 

A return from the function continues the process at the point it was interrupted. 

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call is 
interrupted. In particular this can occur during a read(2V) or write(2V) on a slow device (such as a termi
nal; but not a file) and during a wait(2). After the signal catching function returns, the interrupted system 
call may return a -1 to the calling process with errno set to EINTR. 

The value of signal() is the previous (or initial) value of June for the particular signal. 

After a fork(2) or vfork(2) the child inherits all signals. An execve(2) resets all caught signals to the 
default action; ignored signals remain ignored. 

The handler routine can be declared: 

void handler(sig, code, scp, addr) 
int sig, code; 
struct sigcontext *Sep; 
char *addr; 

Here sig is the signal number; code is a parameter of certain signals that provides additional detail; scp is a 
pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from before the sig
nal; and addr is additional address information. See sigvec(2) for more details. 

RETURN VALUE 
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set to indicate 
the error. 

ERRORS 
signal() will fail and no action will take place if one of the following occur: 

EINV AL sig is not a valid signal number. 

EINV AL An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP. 

EINVAL An attempt is made to ignore SIGCONT (by default SJGCONT is ignored). 

SEE ALSO 
kill(l), execve(2), fork(2), getitimer(2), getrlimit(2), kill(2V), ptrace(2), read(2V), sigblock(2), sig
pause(2), sigsetmask(2), sigstack(2), sigvec(2), vfork(2), wait(2), write(2V), setjmp(3), termio(4) 

Sun Release 4.0 Last change: 22 November 1987 1181 



SLEEP(3V) SYSTEM V LIBRARY SLEEP(3V) 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 
unsigned sleep(seconds) 
unsigned seconds; 

DESCRIPTION 
sleep() suspends the current process from execution for the number of seconds specified by the argument 
The actual suspension time may be less than that requested for two reasons: (1) because scheduled wake
ups occur at fixed I-second intervals and (2) because any caught signal will terminate the sleep() following 
execution of that signal's catching routine. Also, the suspension time may be an arbitrary amount longer 
than requested because of other activity in the system. The value returned by sleep() will be the ''unslept'' 
amount (the requested time minus the time actually slept) in case the caller had an alarm set to go off ear
lier than the end of the requested sleep() time, or premature arousal due to another caught signal. 

sleep() is implemented by setting an interval timer and pausing until it expires. The previous state of this 
timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous value of the 
timer, the process sleeps only until the timer would have expired, and the signal which occurs with the 
expiration of the timer is sent one second later. 

SEE ALSO 
setitimer(2), sigpause(2), usleep(3) 

1182 Last change: 6 October 1987 Sun Release 4.0 



STDI0(3V) SYSTEM V LIBRARY STDI0(3V) 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include <stdio.h> 

FILE •stdio; 
FILE •stdout; 
FILE *Stderr; 

DESCRIPTION 
The functions described in sections 3V and 3S constitute a user-level 1/0 buffering scheme. The in-line 
macros getc(3V) and putc(3S) handle characters quickly. The macros getchar and putchar, and the 
higher level routines fgetc, getw, gets, fgets, scaof, fscaof, fread, fputc, putw, puts, fputs, priotf, 
fprintf, fwrite all use or act as if they use getc( ) and putc() ; they can be freely intermixed. 

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type FILE. 
fopeo(3V) creates certain descriptive data for a stream and returns a pointer to designate the stream in all 
further transactions. Normally, there are three open streams with constant pointers declared in the 
<stdio.h> include file and associated with the standard open files: 

stdio standard input file 
stdout standard output file 
stderr standard error file 

A constant NULL (0) designates a nonexistent pointer. 

An integer constant EOF (-1) is returned upon end-of-file or error by most integer functions that deal with 
streams (see the individual descriptions for details). 

Any module that uses this package must include the header file of pertinent macro definitions, as follows: 

#include <stdio.h> 

The functions and constants mentioned in sections labeled 3V and 3S of this manual are declared in that 
header file and need no further declaration. The constants and the following 'functions' are implemented 
as macros; redeclaration of these names is perilous: getc, getcbar, putc, putchar, feof, ferror, fileoo, and 
clearerr. 

Output streams, with the exception of the standard error stream std err, are by default buffered if the output 
refers to a file and line-buffered if the output refers to a terminal. The standard error output stream stderr 
is by default unbuffered, but use of fopeo(3V) will cause it to become buffered or line-buffered. When an 
output stream is unbuffered, information is written to the destination file or terminal as soon as it is output 
to the stream; when it is buffered, many characters are saved up and written as a block. When it is line
buffered, each line of output is written to the destination file or terminal as soon as the line is completed 
(that is, as soon as a NEWLINE character is output or as soon as input is read from a line-buffered stream). 
setbuf(3V), setbuffer, setlioebuf, or setvbuf can be used to change the stream's buffering strategy. 

SEE ALSO 
opeo(2V), close(2), lseek(2), pipe(2), read(2V), vfork(2), write(2V), ctermid(3S), cuserid(3S), 
fclose(3S), ferror(3V), fopeo(3V), fread(3S), fseek(3S), getc(3V), gets(3S), popeo(3S), priotf(3V), 
putc(3S), puts(3S), scaof(3V), setbuf(3V), system(3), tmpfile(3S), tmpoam(3S), uogetc(3S) 

DIAGNOSTICS 

BUGS 

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with fopeo, 
input ( output) has been attempted on an output (input) stream, or a FILE pointer designates corrupt or oth
erwise unintelligible FILE data. 

The standard buffered functions do not interact well with certain other library and system functions, espe
cially vfork(2). 

Sun Release 4.0 Last change: 30 January 1988 1183 



STDI0(3V) SYSTEM V LIBRARY STDI0(3V) 

NOTES 

1184 

The line buffering of output to terminals is almost always transparent, but may cause confusion or malfunc
tioning of programs which use standard I/0 routines but use read(2V) to read from the standard input, as 
calls to read() do not cause output to line-buffered streams to be flushed. 

Output saved up on al/ line-buffered streams is written when input is read from any line-buffered stream. 
Input read from a stream that is not line-buffered does not flush output on line-buffered streams. 

In cases where a large amount of computation is done after printing part of a line on an output terminal, it 
is necessary to call fflusb (see fclose(3S)) on the standard output before performing the computation so that 
the output will appear. 

Last change: 30 January 1988 Sun Release 4.0 



TIMES(3V) SYSTEM V LIBRARY TIMES (3V) 

NAME 
times - get process and child process times 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/times.h> 

long times(bufTer) 
struct tms •buffer; 

DESCRIPTION 
times() returns time-accounting information for the current process and for the terminated child processes 
of the current process. All times are in 1/HZ seconds, where HZ is 60. 

This is the structure returned by times: 
struct tms { 

}; 

time t tms_utime; 
time t tms_stime; 
time t tms _ cutime; 
time t tms _ cstime; 

/• user time •I 
/• system time •I 
/• user time, children•/ 
I• system time, children•/ 

This information comes from the calling process and each of its terminated child processes for which it has 
executed a wait. 

tms _ utime is the CPU time used while executing instructions in the user space of the calling process. 

tms _ stime is the CPU time used by the system on behalf of the calling process. 

tms _ cutime is the sum of the tms _ utimes and tms _ cutimes of the child processes. 

tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes. 

RETURN VALUE 
Upon successful completion, times() returns the elapsed real time, in 60ths of a second, since an arbitrary 
point in the past. This point does not change from one invocation of times() to another within the same 
process. If times() fails, a -1 is returned and errno is set to indicate the error. 

SEE ALSO 
time(l V), getrusage(2), wait(2), time(3C) 

Sun Release 4.0 Last change: 22 November 1987 1185 



TIYSLOT ( 3V) SYSTEM V LIBRARY TIYSLOT ( 3V) 

NAME 
ttyslot - find the slot in the utmp file of the current process 

SYNOPSIS 
ttyslot() 

DESCRIPTION 

FILES 

ttyslot() returns the index of the current user's entry in the /etc/utmp file. This is accomplished by actu
ally scanning the file /etc/ttys for the name of the terminal associated with the standard input, the standard 
output, or the error output (0, 1 or 2). 

/etc/ttys 
/etc/utmp 

DIAGNOSTICS 

1186 

A value of -1 is returned if an error was encountered while searching for the terminal name or if none of 
the above file descriptors is associated with a terminal device. 

Last change: 6 October 1987 Sun Release 4.0 



VPRINTF ( 3V) SYSTEM V LIBRARY 

NAME 
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list 

SYNOPSIS 
#include <Stdio.h> 
#include <varargs.h> 

int vprintf(f ormat, ap) 
char *format; 
va_list ap; 

int vfprintf(stream, format, ap) 
FILE *stream; 
char *format; 
va_list ap; 

int vsprintf(s, format, ap) 
char *s, *format; 
va_list ap; 

DESCRIPTION 

VPRINTF ( 3V) 

vprintf, vfprintf, and vsprintf() are the same as printf(3V), fprintf, and sprintf respectively, except that 
instead of being called with a variable number of arguments, they are called with an argument list as 
defined by varargs(3). 

EXAMPLE 
The following demonstrates how vfprintf() could be used to write an error routine. 

#include <Stdio.h> 

SEE ALSO 

#include <varargs.h> 

I* error should be called like: 
* error(function _ name, format, argl, arg2 •.. ); 
* Note that function name and format cannot be declared 
* separately because of the definition of varargs. 

*' f *V ARARGSO*/ 
void 
error ( va _ alist) 

va_dcl; 
{ 

} 

va_list args; 
char *fmt; 

va _ start( args); 
I* print name of function causing error *I 

(void) fprintf(stderr, "ERROR in %s: ", va_arg(args, char*)); 
fmt = va_arg(args, char*); 

f * print out remainder of message *I 
(void) vfprintf(stderr, fmt, args); 
va_end(args); 
(void) abort(); 

printf(3V), varargs(3) 

Sun Release 4.0 Last change: 24 November 1987 1187 





IN1R0(4) DEVICES AND NETWORK INTERFACES INTR0(4) 

NAME 
intro - introduction to device drivers, protocols, and network interfaces 

DESCRIPTION 
This section describes device drivers, high-speed network interfaces, and protocols available under SunOS. 
The system provides drivers for a variety of hardware devices, such as disks, magnetic tapes, serial com
munication lines, mice and frame buffers, as well as virtual devices such as pseudo-terminals and windows. 
SunOS provides hardware support and a network interface for the 10-Megabit Ethernet, along with inter
faces for the IP protocol family and a STREAMS-based Network Interface Tap (NIT) facility. 

In addition to describing device drivers that are supported by the 4.3BSD operating system, this section 
contains subsections that describe: 

• SunOS-specific device drivers, under '4S'. 

• Protocol families, under '4F'. 

• Protocols and raw interfaces, under '4P'. 

• STREAMS modules, under '4M'. 

• Network interfaces, under '4N'. 

Configuration 
The SunOS kernel can be configured to include or omit many of the device drivers described in this section. 
The CONFIG section of the manual page gives the line(s) to include in the kernel configuration file for each 
machine architecture on which a device is supported. If no specific architectures are indicated, the 
configuration syntax applies to all Sun systems. 

The GENERIC kernel is the default configuration for SunOS. It contains all of the optional drivers for a 
given machine architecture. See config(8), for details on configuring a new SunOS kernel. 

The manual page for a device driver may also include a DIAGNOSTICS section, listing error messages that 
the driver might produce. Normally, these messages are logged to the appropriate system log using the 
kernel's standard message-buffering mechanism (see syslogd(8)); they may also appear on the system con
sole. 

Ioctls 
Various special functions, such as querying or altering the operating characteristics of a device, are per
formed by supplying appropriate parameters to the ioctl(2) system call. These parameters are often 
referred to as "ioctls." loctls for a specific device are presented in the manual page for that device. Ioctls 
that pertain to a class of devices are listed in a manual page with a name that suggests the class of device, 
and ending in 'io', such as mtio(4) for magnetic tape devices, or dkio(4S) for disk controllers. In addition, 
some ioctls operate directly on higher-level objects such as files, terminals, sockets, and streams: 

• Ioctls that operate directly on files, file descriptors, and sockets are described in filio(4). Note: the 
fcntl(2) system call is the primary method for operating on file descriptors as such, rather than on the 
underlying files. Also note that the setsockopt system call (see getsockopt(2)) is the primary method 
for operating on sockets as such, rather than on the underlying protocol or network interface. Ioctls for 
a specific network interface are documented in the manual page for that interface. 

• loctls for terminals, including pseudo-terminals, are described in termio(4). This manual page includes 
information about both the BSD termios structure, as well as the System V termio structure. 

• Ioctls for STREAMS are described in streamio(4). 

Devices Always Present 
Device drivers present in every kernel include: 

• The paging device; see drum(4). 

• Drivers for accessing physical, virtual, and I/0 space in memory; see mem(4S). 

• The data sink; see null(4). 

Sun Release 4.0 Last change: 9 October 1987 1189 



INTR0(4) DEVICES AND NETWORK INTERFACES INTR0(4) 

Terminals and Serial Communications Devices 
Serial communication lines are normally supported by the terminal driver; see tty(4). This driver manages 
serial lines provided by communications drivers, such as those described in mti(4S) and zs(4S). The termi
nal driver also handles serial lines provided by virtual terminals, such as the Sun console monitor described 
in console(4S), and true pseudo-terminals, described in pty(4). 

Disk Devices 
Drivers for the following disk controllers provide standard block and raw interfaces under SunOS; 

• SCSI controllers, in sd( 4S), 

• Xylogics 450 and 451 SMD controllers, in xy(4S), 

• Xylogics 7053 SMD controllers, in xd(4S). 

Ioctls to query or set a disk's geometry and partitioning are described in dkio(4S). 

Magnetic Tape Devices 
Magnetic tape devices supported by SunOS include those described in ar(4S), tm(4S), st(4S), and xt(4S). 
Ioctls for all tape-device drivers are described in mtio(4S). 

Frame Buffers 
Frame buffer devices include color frame buffers described in the cg*(4S) manual pages, monochrome 
frame buffers described in the bw*( 4S) manual pages, graphics processor interfaces described in the 
gp*(4S) manual pages, and an indirect device for the console frame buffer described in tb(4S). Ioctls for 
all frame-buffer devices are described in fbio(4S). 

Miscellaneous Devices 
Miscellaneous devices include the console keyboard described in kbd( 4S), the console mouse described in 
mouse(4S), window devices described in win(4S), and the DES encryption-chip interface described in 
des(4S). 

Network-Interface Devices 
SunOS supports the 10-Megabit Ethernet as its primary network interface; see ec(4S), ie(4S), and le(4S) for 
details. However, a software loopback interface, lo(4) is also supported. General properties of these net
work interfaces are described in if(4N), along with the ioctls that operate on them. 

Support for network routing is described in routing(4N). 

Protocols and Protocol Families 

1190 

SunOS supports both socket-based and STREAMS-based network communications. The Internet protocol 
family, described in inet(4F), is the primary protocol family primary supported by SunOS, although the 
system can support a number of others. The raw interface provides low-level services, such as packet frag
mentation and reassembly, routing, addressing, and basic transport for socket-based implementations. 
Facilities for communicating using an Internet-family protocol are generally accessed by specifying the 
AF_ INET address family when binding a socket; see socket(2) for details. 

Major protocols in the Internet family include: 

• The Internet Protocol (IP) itself, which supports the universal datagram format, as described in ip{4P). 
This is the default protocol for SOCK_ RAW type sockets within the AF_ INET domain. 

• The Transmission Control Protocol (TCP); see tcp(4P). This is the default protocol for SOCK_STREAM 
type sockets. 

• The User Datagram Protocol (UDP); see udp(4P). This is the default protocol for SOCK_DGRAM type 
sockets. 

• The Address Resolution Protocol (ARP); see arp(4P). 

• The Internet Control Message Protocol (ICMP); see icmp(4P). 

Last change: 9 October 1987 Sun Release 4.0 



INTRO( 4) DEVICES AND NETWORK INTERFACES INTR0(4) 

The Network Interface Tap (NIT) protocol, described in nit(4P), is a STREAMS-based facility for accessing 
the network at the link level. 

SEE ALSO 
fcntl(2), getsockopt(2), ioctl(2), socket(2), ar(4S), arp(4P), dkio(4S), drum(4), ec(4S), fb(4S), tbio(4S), 
filio(4), icmp(4P), if(4N), inet(4F), ip(4P), kbd(4S), le(4), lo(4), mbio(4S), mem(4S), mti(4), mtio(4), 
nit(4P), null(4), pty(4), routing(4N), sd(4S), st(4S) streamio(4), tcp(4P), termio(4), tm(4S), tty(4), 
udp(4P), win(4S), xd(4S), xy(4S), zs(4S) 

LIST OF DEVICES, INTERFACES AND PROTOCOLS 
Name 

aim 
ar 
arp 
bk 
bwone 
bwtwo 
cgfour 
cgone 
cgthree 
cgtwo 
clone 
console 
des 
dkio 
drum 
ec 
fb 
fbio 
fd 
filio 
fpa 
gpone 
icmp 
ie 
if 
inet 
ip 
kb 
kbd 
kmem 
ldterm 
le 
lo 
lofs 
mbio 
mbmem 
mcp 
mem 
mouse 
ms3 
ms 
mti 
mtio 

Appears on Page 

mcp(4S) 
ar(4S) 
arp(4P) 
bk(4) 
bwone(4S) 
bwtwo(4S) 
cgfour(4S) 
cgone(4S) 
cgthree(4S) 
cgtwo(4S) 
clone(4) 
console(4S) 
des(4S) 
dkio(4S) 
drum(4) 
ec(4S) 
fb(4S) 
fbio(4S) 
fd(4S) 
filio(4) 
fpa(4S) 
gpone(4S) 
icmp(4P) 
ie(4S) 
if(4N) 
inet(4F) 
ip(4P) 
kb(4M) 
kbd(4S) 
mem(4S) 
ldterm(4M) 
le(4S) 
lo(4) 
lofs(4S) 
mem(4S) 
mem(4S) 
mcp(4S) 
mem(4S) 
mouse(4S) 
mouse(4S) 
ms(4M) 
mti(4S) 
mtio(4) 

Description 

Asynchronous Line Multiplexer 
Archive 1/4 inch Streaming Tape Drive 
Address Resolution Protocol 
line discipline for machine-machine communication 
Sun-1 black and white frame buffer 
Sun-3/Sun-2 black and white frame buffer 
Sun-3 color memory frame buffer 
Sun-1 color graphics interface 
Sun386i color memory frame buffer 
Sun-3/Sun-2 color graphics interface 
open any minor device on a STREAMS driver 
console driver and terminal emulator for the Sun workstation 
DES encryption chip interface 
generic disk control operations 
paging device 
3Com 10 Mb/s Ethernet interface 
driver for Sun console frame buffer 
general properties of frame buffers 
Disk driver for Floppy Disk Controllers 
ioctls that operate directly on files, file descriptors, and sockets 
Sun-3 floating point accelerator 
Sun-3/Sun-2 graphics processor 
Internet Control Message Protocol 
Intel 10 Mb/s Ethernet interface 
general properties of network interfaces 
Internet protocol family 
Internet Protocol 
Sun keyboard STREAMS module 
Sun keyboard 
main memory and bus 1/0 space 
standard terminal STREAMS module 
Sun-3/50, Sun-3/60 10MB Ethernet interface 
software loopback network interface 
loopback virtual file system 
main memory and bus 1/0 space 
main memory and bus 1/0 space 
MCP Multiprotocol Communications Processor 
main memory and bus 1/0 space 
Sun mouse 
Sun mouse 
Sun mouse STREAMS module 
Systech MTI-800/1600 multi-terminal interface 
UNIX system magnetic tape interface 



INTRO( 4) DEVICES AND NETWORK INTERFACES INTR0(4) 

NFS nfs(4P) network file system 
nif_pf nit_pf(4M) streams NIT packet filtering module 
nit nit(4P) Network Intelface Tap facility 
nit_buf nit_buf(4M) streams NIT buffering module 
nit if nit_if(4M) streams NIT device intelface module 
null null(4) data sink 
pp pp(4) Centronics-compatible parallel printer port 
pty pty(4) pseudo terminal driver 
root root(4S) pseudo-driver for Sun root disk 
routing routing(4N) system supporting for local network packet routing 
sd sd(4S) Disk driver for SCSI Disk Controllers 
st st(4S) Sysgen SC 4000 and Emulex MT-02 Tape Controller 
streamio streamio(4) STREAMS ioctl commands 
tcp tcp(4P) Transmission Control Protocol 
termio termio(4) general terminal intelface 
tm tm(4S) tapemaster 1/2 inch tape drive 
ttcompat ttcompat(4M) V7/4BSD compatibility STREAMS module 
tty tty(4) controlling terminal interface 
udp udp(4P) User Datagram Protocol 
vme16d16 mem(4S) main memory and bus 1/0 space 
vme16d32 mem(4S) main memory and bus 1/0 space 
vme24d16 mem(4S) main memory and bus 1/0 space 
vme24d32 mem(4S) main memory and bus 1/0 space 
vme32dl6 mem(4S) main memory and bus 1/0 space 
vme32d32 mem(4S) main memory and bus 1/0 space 
vp vp(4S) Ikon 10071-5 Versatec parallel printer interface 
vpc vpc(4S) Systech VPC-2200 Versatec plotter and Centronics printer 
win win(4S) Sun window system 
xd xd(4S) Disk driver for Xylogics 7053 SMD Disk Controller 
xt xt(4S) Xylogics 472 1/2 inch tape controller 
xy xy(4S) Disk driver for Xylogics SMD Disk Controllers 
zero zero(4S) source of zeroes 
ZS zs(4S) Zilog 8530 SCC serial comunications driver 

1192 Last change: 9 October 1987 Sun Release 4.0 



AR(4S) DEVICES AND NETWORK INTERFACES 

NAME 
ar - Archive 1/4 inch Streaming Tape Drive 

CONFIG - SUN-2 SYSTEM 
device arO at mbio ? csr Ox200 priority 3 
device arl at mbio? csr Ox208 priority 3 

AVAILABILITY 
Sun-2, Sun-3, and Sun-4 systems only. 

DESCRIPTION 

AR(4S) 

The Archive tape controller is a Sun 'QIC-II' interface to an Archive streaming tape drive. It provides a 
standard tape interface to the device, see mtio(4), with some deficiencies listed under BUGS below. 

The maximum blocksize for the raw device is limited only by available memory. 

FILES 
/dev/rar• 
/dev/nrar• non-rewinding 

SEE ALSO 
mtio(4) 

DIAGNOSTICS 

BUGS 

ar•: would not initialize 

ar•: already open 
The tape can be open by only one process at a time 

ar•: no such drive 

ar*: no cartridge in drive 

ar•: cartridge is write protected 

ar: interrupt from unitialized controller %x 

ar•: many retries, consider retiring this 

ar•: %b error at block# 

ar•: %b error at block# 

ar: giving up on Rdy, try 

The tape cannot reverse drrection so the BSF and BSR ioctls are not supported. 

The FSR ioctl is not supported. 

The system will hang if the tape is removed while running. 

When using the raw device, the number of bytes in any given transfer must be a multiple of 512 bytes. If it 
is not, the device driver returns an error. 

The driver will only write an EOF mark on close if the last operation was a write, without regard for the 
mode used when opening the file. This delete empty files on a raw tape copy operation. 

Sun Release 4.0 Last change: 18 February 1988 1193 



ARP(4P) PROTOCOLS ARP(4P) 

NAME 
arp - Address Resolution Protocol 

CONFIG 
pseudo-device ether 

SYNOPSIS 
#include <sys/socket.h> 
#include <net/if_ arp.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_DGRAM, 0); 

DESCRIPTION 

USAGE 

ARP is a protocol used to dynamically map between DARPA Internet Protocol (IP) and IOMb/s Ethernet 
addresses. It is used by all the lOMb/s Ethernet interface drivers. It is not specific to the Internet Protocol 
or to the IOMb/s Ethernet, but this implementation currently supports only that combination. 

ARP caches IP-to-Ethernet address mappings. When an interface requests a mapping for an address not in 
the cache, ARP queues the message which requires the mapping and broadcasts a message on the associ
ated network requesting the address mapping. If a response is provided, the new mapping is cached and 
any pending message is transmitted. ARP will queue at most one packet while waiting for a mapping 
request to be responded to; only the most recently ''transmitted'' packet is kept 

To facilitate communications with systems which do not use ARP, ioctls are provided to enter and delete 
entries in the IP-to-Ethernet tables. 

#include <sys/sockio.h> 
#include <sys/socket.h> 
#include <net/if.h> 
#include <net/if_ arp.h> 
struct arpreq arpreq; 
ioctl(s, SIOCSARP, (caddr_t)&arpreq); 
ioctl(s, SIOCGARP, (caddr_t)&arpreq); 
ioctl(s, SIOCDARP, (caddr_t)&arpreq); 

Each ioctl takes the same structure as an argument. SIOCSARP sets an ARP entry, SIOCGARP gets an ARP 
entry, and SIOCDARP deletes an ARP entry. These ioctls may be applied to any socket descriptors, but 
only by the super-user. The arpreq structure contains: 

I• 
* ARP ioctl request 
•I 

struct arpreq { 

}; 

struct sockaddr arp _pa; 
struct sockaddr arp _ ha; 
int arp _ flags; 

/• arp _ flags field values •/ 

I• protocol address•/ 
/• hardware address•/ 
/•flags•/ 

#define ATF _COM Ox2 /• completed entry (arp_ha valid)•/ 
#define ATF_PERM Ox4 /• permanent entry •I 
#define ATF _ PUBL Ox8 I• publish (respond for other host) •/ 
#define ATF _ USETRAILERS OxlO /• send trailer packets to host •I 

The address family for the arp _pa sockaddr must be AF_ INET; for the arp _ ha sockaddr it must be 
AF_UNSPEC. The only flag bits which may be written are ATF_PERM, ATF_PUBL and 
ATF - USETRAILERS. ATF _ PERM makes the entry permanent if the ioctl call succeeds. The peculiar 
nature of the ARP tables may cause the ioctl to fail if more than 6 (permanent) IP addresses hash to the 
same slot. ATF _ PUBL specifies that the ARP code should respond to ARP requests for the indicated host 



ARP(4P) PROTOCOLS ARP(4P) 

coming from other machines. This allows a host to act as an '' ARP server'' which may be useful in con
vincing an ARP-only machine to talk to a non-ARP machine. 

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alternate encapsulation used 
to allow efficient packet alignment for large packets despite variable-sized headers. Hosts which wish to 
receive trailer encapsulations so indicate by sending gratuitous ARP translation replies along with replies to 
IP requests; they are also sent in reply to IP translation replies. The negotiation is thus fully symmetrical, in 
that either or both hosts may request trailers. The ATF _ USETRAILERS flag is used to record the receipt of 
such a reply, and enables the transmission of trailer packets to that host. 

ARP watches passively for hosts impersonating the local host (that is, a host which responds to an ARP 
mapping request for the local host's address). 

SEE ALSO 
ec(4S), ie(4S), inet(4F), arp(8C), ifconfig(8C) 

Plummer, Dave, "An Ethernet Address Resolution Protocol -or- Converting Network Protocol Addresses 
to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware," RFC 826, Network Information 
Center, SRI International, Menlo Park, Calif., November 1982. (Sun 800-1059-10) 

Leffler, Sam, and Michael Karels, "Trailer Encapsulations," RFC 893, Network Information Center, SRI 
International, Menlo Park, Calif., April 1984. 

DIAGNOSTICS 

BUGS 

duplicate IP address!! sent from ethernet address: %x:%x:%x:%x:%x:%x. ARP has discovered 
another host on the local network which responds to mapping requests for its own Internet address. 

ARP packets on the Ethernet use only 42 bytes of data, however, the smallest legal Ethernet packet is 60 
bytes (not including CRC). Some systems may not enforce the minimum packet size, others will. 

Sun Release 4.0 Last change: 24 November 1987 1195 



BK(4) DEVICES AND NETWORK INTERFACES BK(4) 

NAME 
bk - line discipline for machine-machine communication 

SYNOPSIS 
pseudo-device bk 

DESCRIPTION 
This line discipline provides a replacement for the tty driver tty(4) when high speed output to and espe
cially input from another machine is to be transmitted over an asynchronous communications line. The dis
cipline was designed for use by a (now obsolete) store-and-forward local network running over serial lines. 
It may be suitable for uploading of data from microprocessors into the system. If you are going to send 
data over asynchronous communications lines at high speed into the system, you must use this discipline, 
as the system otherwise may detect high input data rates on terminal lines and disable the lines; in any case 
the processing of such data when normal terminal mechanisms are involved saturates the system. 

The line discipline is enabled by a sequence: 

#include <sgtty .h> 
int ldisc = NETLDISC, fildes; ... 
ioctl(fildes, TIOCSETD, &ldisc); 

A typical application program then reads a sequence of lines from the terminal port, checking header and 
sequencing information on each line and acknowledging receipt of each line to the sender, who then 
transmits another line of data. Typically several hundred bytes of data and a smaller amount of control 
information will be received on each handshake. 

The old standard teletype discipline can be restored by doing: 

ldisc = OTTYDISC; 
ioctl(fildes, TIOCSETD, &ldisc); 

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output data path is 
desired, it is necessary to prepare the output line by putting it into RAW mode using ioctl(2). This must be 
done before changing the discipline with TIOCSETD, as most ioct1(2) calls are disabled while in network 
line-discipline mode. 

When in network mode, input processing is very limited to reduce overhead. Currently the input path is 
only 7 bits wide, with newline the only character terminating an input record. Each input record must be 
read and acknowledged before the next input is read as the system refuses to accept any new data when 
there is a record in the buffer. The buffer is limited in length, but the system guarantees to always be wil
ling to accept input resulting in 512 data characters and then the terminating newline. 

User level programs should provide sequencing and checksums on the information to guarantee accurate 
data transfer. 

SEE ALSO 
ioctl(2), tty(4) 

1196 Last change: 9 October 1987 Sun Release 4 .0 



BWONE(4S) DEVICES AND NETWORK INTERFACES BWONE(4S) 

NAME 
bwone - Sun-1 black and white frame buffer 

CONFIG - SUN-2 SYSTEM 
device bwoneO at mbmem? csr OxcOOOO priority 3 

DESCRIPTION 

FILES 

The bwone interface provides access to Sun-1 system black and white graphics controller boards. It sup
ports the ioctls described in fbio(4S). 

/dev/bwone[0-9] 

SEE ALSO 

BUGS 

mmap(2), fb(4S), fbio(4S) 

Use of vertical-retrace interrupts is not supported. 

The video state returned by the FBIOGVIDEO ioctl may be incorrect. It is not possible for the driver to 

determine the state of the hardware video enable bit, so it reports the last state stored by the FBIOSVIDEO 
ioctl. User processes which map the frame buffer can directly enable or disable the video, unknown to the 
driver. 

Sun Release 4.0 Last change: 9 October 1987 1197 



BWTW0(4S) DEVICES AND NETWORK INTERFACES BWTW0(4S) 

NAME 
bwtwo- Sun-3/Sun-2 black and white frame buffer 

CONFIG - SUN-3 SYSTEM 
device bwtwoO at obmem 1 csr Oxff'OOOOOO priority 4 
device bwtwoO at obmem 2 csr OxlOOOOO priority 4 
device bwtwoO at obmem 3 csr Oxff'OOOOOO priority 4 
device bwtwoO at obmem 4 csr oxrroooooo 
device bwtwoO at obmem 7 csr oxrroooooo priority 4 

The first synopsis line given above should be used to generate a kernel for a Sun-3/75, Sun-3/140 or Sun-
3/160 system; the second, for a Sun-3/50 system; the third, for a Sun-3/260 system; the fourth, for a Sun-
3/110 system; and the fifth, for a Sun-3/60 system. 

CONFIG - SUN-2 SYSTEM 
device bwtwoO at obmem 1 csr Ox700000 priority 4 
device bwtwoO at obio 2 csr OxO priority 4 

The first synopsis line given above should be used to generate a kernel for a Sun-2/120 or Sun-2/170 sys
tem; the second, for a Sun-2/50 or Sun-2/160 system. 

CONFIG - Sun386i SYSTEM 
device bwtwoO at obmem ? csr OxA0200000 

DESCRIPTION 

FILES 

The bwtwo interface provides access to Sun monochrome memory frame buffers. It supports the ioctls 
described in fbio(4S). 

If flags Oxl is specified, frame buffer write operations are buffered through regular high-speed RAM. This 
"copy memory" mode of operation speeds frame buffer accesses, but consumes an extra 128K bytes of 
memory. Only Sun-2, Sun-3/75, and Sun-3/160 systems support copy memory; on other systems a warning 
message is printed and the flag is ignored. 

Reading or writing to the frame buffer is not allowed - you must use the mmap(2) system call to map the 
board into your address space. 

/dev/bwtwo[0-9] 

SEE ALSO 
mmap(2), cgfour(4S), fb(4S), fbio(4S) 

BUGS 
Use of vertical-retrace interrupts is not supported. 

1198 Last change: 18 February 1988 Sun Release 4.0 



CGFOUR(4S) DEVICES AND NETWORK INTERFACES CGFOUR(4S) 

NAME 
cgfour - Sun-3 color memory frame buffer 

CONFIG- SUN-3 SYSTEM 
device cgf ourO at obmem 4 csr OxffOOOOOO priority 4 
device cgf ourO at obmem 7 csr OxffOOOOOO priority 4 

The first synopsis line given should be used to generate a kernel for the Sun-3/110 system; the second, for a 
Sun-3/60 system. 

DESCRIPTION 

FILES 

The cgf our is a color memory frame buffer with a monochrome overlay plane and an overlay enable plane 
implemented on the Sun-3/110 system and some Sun-3/60 system models. It provides the standard frame 
buffer interface as defined in tbio(4S). 

In addition to the ioctls described under tbio(4S), the cgfour interface responds to two cgfour-specific 
colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP returns no information other than 
success/failure using the ioctl return value. FBIOGETCMAP returns its information in the arrays pointed to 
by the red, green, and blue members of its tbcmap structure argument; tbcmap is defined in oi;sun/tbio.h> 
as: 

struct fbcmap { 
int 

}; 

int 
unsigned char 
unsigned char 
unsigned char 

index; 
count; 
•red; 
•green; 
•blue; 

I• first element (0 origin)•/ 
I• number of elements •/ 
/• red color map elements •I 
I• green color map elements •I 
/• blue color map elements•/ 

The driver uses color board vertical-retrace interrupts to load the colormap. 

The Sun-3/60 system has an overlay plane colormap, which is accessed by encoding the plane group into 
the index value with the PIX_ GROUP macro (see <pixrect/pr _planegroups.h> ). 

/dev/cgf ourO 

SEE ALSO 
mmap(2), fbio(4S) 

Sun Release 4.0 Last change: 9 October 1987 1199 



CGONE(4S) DEVICES AND NETWORK INTERFACES CGONE(4S) 

NAME 
cgone - Sun-1 color graphics interface 

CONFIG - SUN-2 SYSTEM 
device cgoneO at mbmem ? csr OxecOOO priority 3 

DESCRIPTION 

FILES 

The cgone interface provides access to the Sun-1 system color graphics controller board, which is normally 
supplied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer interface as 
defined in fbio(4S). 

It supports the FBIOGPIXRECT ioctl which allows Sun View to be run on it; see tbio(4S) 

The hardware consumes 16 kilobytes of Multibus memory space. The board starts at standard addresses 
OxE8000 or OxECOOO. The board must be configured for interrupt level 3. 

/dev/cgone[0-9) 

SEE ALSO 
mmap(2), fbio(4S) 

BUGS 
Use of color board vertical-retrace interrupts is not supported. 

1200 Last change: 9 October 1987 Sun Release 4.0 



CGTHREE ( 4S) DEVICES AND NETWORK INTERFACES CGTHREE(4S) 

NAME 
cgthree - Sun386i color memory frame buffer 

CONFIG 
device cgthreeO at obmem ? csr OxA0400000 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

cgthree is a color memory frame buffer. It provides the standard frame buffer interface as defined in 
fbio(4S). 

In addition to the ioctls described under fbio( 4S), the cgthree interface responds to two cgthree-specific 
colormap ioctl(2) parameters, FBIOPUTCMAP and .SB FBIOGETCMAP. FBIOPUTCMAP returns no infor
mation other than success/failure via the ioctl return value. FBIOGETCMAP returns its information in the 
arrays pointed to by the red, green, and blue members of its fbcmap structure argument; fbcmap is defined 
in <sun/fbio. h> as: 

struct fbcmap { 
int 

}; 

/dev/cgthreeO 

int 
unsigned char 
unsigned char 
unsigned char 

index; 
count; 
•red; 
•green; 
•blue; 

I• first element (0 origin)•/ 
/• number of elements•/ 
I• red color map elements •/ 
/• green color map elements•/ 
/• blue color map elements•/ 

SEE ALSO 
mmap(2), fbio(4S) 

Sun Release 4.0 Last change: 19 February 1988 1201 



CGTW0(4S) DEVICES AND NETWORK INTERFACES CGTW0(4S) 

NAME 
cgtwo - Sun-3/Sun-2 color graphics interface 

CONFIG - SUN-3 SYSTEM 
cgtwoO at vme24d16 ? csr Ox400000 

CONFIG - SUN-2 SYSTEM 
cgtwoO at vme24? csr Ox400000 

DESCRIPTION 

FILES 

The cgtwo interface provides access to the Sun-3/Sun-2 system color graphics controller board, which is 
normally supplied with a 19" 66 Hz non-interlaced color monitor. It provides the standard frame buffer 
interface as defined in tbio(4S). 

The hardware consumes 4 megabytes of VME bus address space. The board starts at standard address 
Ox400000. The board must be configured for interrupt level 3. 

/dev/cgtwo[0-9] 

SEE ALSO 
mmap(2), fbio(4S) 

1202 Last change: 9 October 1987 Sun Release 4 .0 



CLONE(4) DEVICES AND NETWORK INTERFACES CLONE(4) 

NAME 
clone - open any minor device on a STREAMS driver 

DESCRIPTION 
clone is a STREAMS software driver that finds and opens an unused minor device on another STREAMS 
driver. The minor device passed to clone during the open operation is interpreted as the major device 
number of another STREAMS driver for which an unused minor device is to be obtained. Each such open 
results in a separate stream to a previously unused minor device. 

The clone driver supports only an open(2V) function. This open function performs all of the necessary 
work so that subsequent system calls (including close(2)) require no further involvement of the clone 
driver. 

ERRORS 
clone generates an ENXIO error, without opening the device, if the minor device number provided does not 
correspond to a valid major device, or if the driver indicated is not a STREAMS driver. 

CAVEATS 
Multiple opens of the same minor device are not supported through the clone interface. Executing stat(2) 
on the file system node for a cloned device yields a different result than does executing fstat using a file 
descriptor obtained from opening that node. 

SEE ALSO 
close(2), open(2V), stat(2) 

Sun Release 4.0 Last change: 24 November 1987 1203 



CONSOLE ( 4S) DEVICES AND NETWORK INTERFACES CONSOLE ( 4S) 

NAME 
console- console driver and terminal emulator for the Sun workstation 

CONFIG 
None; included in standard system. 

SYNOPSIS 
#include <f cntl.h> 
#include <sys/termios.h> 
open(" /dev/console' ', mode); 

DESCRIPTION 

IOCTLS 

console is an indirect driver for the Sun console terminal. On a Sun workstation, this driver refers to the 
workstation console driver, which implements a standard UNIX system terminal. On a Sun server without a 
keyboard or a frame buffer, this driver refers to the CPU serial port driver (7.S(4S)); a terminal is normally 
connected to this port 

The workstation console does not support any of the termio(4) device control functions specified by flags 
in the c_cflag word of the termios structure or by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the 
c _iflag word of the termios structure, as these functions apply only to asynchronous serial ports. All other 
termio(4) functions must be performed by STREAMS modules pushed atop the driver; when a slave device 
is opened, the ldterm(4M) and ttcompat(4M) STREAMS modules are automatically pushed on top of the 
stream, providing the standard termio(4) interface. 

The workstation console driver calls the PROM resident monitor to output data to the console frame buffer. 
Keystrokes from the CPU serial port to which the keyboard is connected are routed through the keyboard 
STREAMS module (kb(4M)) and treated as input. 

When the Sun window system win(4S) is active, console input is directed through the window system 
rather than being treated as input by the workstation console driver. 

An ioctl TIOCCONS can be applied to pseudo-terminals (pty(4)) to route output that would normally 
appear on the console to the pseudo-terminal instead. Thus, the window system does a TIOCCONS on a 
pseudo-terminal so that the system will route console output to the window to which that pseudo-terminal 
is connnected, rather than routing output through the PROM monitor to the screen, since routing output 
through the PROM monitor destroys the integrity of the screen. Note: when you use TIOCCONS in this 
way, the console input is routed from the pseudo-terminal as well. 

If a TIOCCONS is performed on /dev/console, or the pseudo-terminal to which console output is being 
routed is closed, output to the console will again be routed to the workstation console driver. 

ANSI ST AND ARD TERMINAL EMULATION 

1204 

The Sun Workstation's PROM monitor provides routines that emulates a standard ANSI X3.64 terminal. 

Note: the VTlOO also follows the ANSI X3.64 standard but both the Sun and the VTlOO have nonstandard 
extensions to the ANSI X3.64 standard. The Sun terminal emulator and the VTlOO are not compatible in 
any true sense. 

The Sun console displays 34 lines of 80 ASCil characters per line, with scrolling, (x, y) cursor addressabil
ity, and a number of other control functions. 

The Sun console displays a non-blinking block cursor which marks the current line and character position 
on the screen. ASCil characters between Ox20 (space) and Ox7E (tilde) inclusive are printing characters -
when one is written to the Sun console (and is not part of an escape sequence), it is displayed at the current 
cursor position and the cursor moves one position to the right on the current line. If the cursor is already at 
the right edge of the screen, it moves to the first character position on the next line. If the cursor is already 
at the right edge of the screen on the bottom line, the Line-feed function is performed (see control-J 
below), which scrolls the screen up by one or more lines or wraps around, before moving the cursor to the 
first character position on the next line. 

Last change: 20 November 1987 Sun Release 4.0 



CONSOLE ( 4S) DEVICES AND NETWORK INTERFACES CONSOLE ( 4S) 

Control Sequence Syntax 

The Sun console defines a number of control sequences which may occur in its input When such a 
sequence is written to the Sun console, it is not displayed on the screen, but effects some control function 
as described below, for example, moves the cursor or sets a display mode. 

Some of the control sequences consist of a single character. The notation 
control-X 

for some character X, represents a control character. 

Other ANSI control sequences are of the form 
ESC [ <params> <char> 

Spaces are included only for readability; these characters must occur in the given sequence without the 
intervening spaces. 

ESC represents the ASCII escape character (ESC, control-[, OxlB). 
[ The next character is a left square bracket '[' (Ox5B). 
<params> 

are a sequence of zero or more decimal numbers made up of digits between O and 9, separated by 
semicolons. 

<char> represents a function character, which is different for each control sequence. 

Some examples of syntactically valid escape sequences are (again, ESC represent the single ASCII character 
'Escape'): 

ESC[m 
ESC[7m 
ESC[33;54H 
ESC [ 123;456;0;;3;B 

select graphic rendition with default parameter 
select graphic rendition with reverse image 
set cursor position 
nwve cursor down 

Syntactically valid ANSI escape sequences which are not currently interpreted by the Sun console are 
ignored. Control characters which are not currently interpreted by the Sun console are also ignored. 

Each control function requires a specified number of parameters, as noted below. If fewer parameters are 
supplied, the remaining parameters default to 1, except as noted in the descriptions below. 

If more than the required number of parameters is supplied, only the last n are used, where n is the number 
required by that particular command character. Also, parameters which are omitted or set to zero are reset 
to the default value of 1 ( except as noted below). 

Consider, for example, the command character M which requires one parameter. ESC[;M and ESC [OM 
and ESC[M and ESC[23;15;32;1M are all equivalent to ESC[lM and provide a parameter value of 1. 
Note: ESC[;SM (interpreted as 'ESC[SM') is not equivalent to ESC[5;M (interpreted as 'ESC[5;1M') 
which is ultimately interpreted as 'ESC [ lM'). 

In the syntax descriptions below, parameters are represented as'#' or '#1;#2'. 

ANSI Control Functions 

The following paragraphs specify the ANSI control functions implemented by the Sun console. Each 
description gives: 

Sun Release 4.0 

• the control sequence syntax 

• the hex equivalent of control characters where applicable 

• the control function name and ANSI or Sun abbreviation (if any). 

• description of parameters required, if any 

• description of the control function 

• for functions which set a mode, the initial setting of the mode. The initial settings can be 
restored with the SUNRESET escape sequence. 

Last change: 20 November 1987 1205 



CONSOLE ( 4S) DEVICES AND NETWORK INTERFACES CONSOLE ( 4S) 

1206 

Control Character Functions 

control-G (Ox7) Bell (BEL) 
The Sun Workstation Model 100 and lOOU is not equipped with an audible bell. It 'rings the bell' 
by flashing the entire screen. The Sun-2 models have an audible bell which beeps. The window 
system flashes the window. 

control-H (Ox8) Backspace (BS) 
The cursor moves one position to the left on the current line. If it is already at the left edge of the 
screen, nothing happens. 

control-I (Ox9) Tab (TAB) 
The cursor moves right on the current line to the next tab stop. The tab stops are fixed at every 
multiple of 8 columns. If the cursor is already at the right edge of the screen, nothing happens; 
otherwise the cursor moves right a minimum of one and a maximum of eight character positions. 

control-J (OxA) Line-feed (LF) 
The cursor moves down one line, remaining at the same character position on the line. If the cur
sor is already at the bottom line, the screen either scrolls up or "wraps around" depending on the 
setting of an internal variable S (initially 1) which can be changed by the ESC [r control sequence. 
If Sis greater than zero, the entire screen (including the cursor) is scrolled up by S lines before 
executing the line-feed. The top S lines scroll off the screen and are lost S new blank lines scroll 
onto the bottom of the screen. After scrolling, the line-feed is executed by moving the cursor 
down one line. 

If Sis zero, 'wrap-around' mode is entered. 'ESC [ 1 r' exits back to scroll mode. If a line-feed 
occurs on the bottom line in wrap mode, the cursor goes to the same character position in the top 
line of the screen. When any line-feed occurs, the line that the cursor moves to is cleared. This 
means that no scrolling occurs. Wrap-around mode is not implemented in the window system. 

The screen scrolls as fast as possible depending on how much data is backed up waiting to be 
printed. Whenever a scroll must take place and the console is in normal scroll mode ('ESC [ 1 r'), 
it scans the rest of the data awaiting printing to see how many line-feeds occur in it. This scan 
stops when any control character from the set {VT, FF, so, SI, DLE, DCl, DC2, DC3, DC4, NAK, 
SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is found. At that point, the screen is scrolled by 
N lines (N ~ 1) and processing continues. The scanned text is still processed normally to fill in the 
newly created lines. This results in much faster scrolling with scrolling as long as no escape codes 
or other control characters are intermixed with the text. 

See also the discussion of the 'Set scrolling' (ESC[r) control function below. 

control-K (OxB) Reverse Line-feed 
The cursor moves up one line, remaining at the same character position on the line. If the cursor 
is already at the top line, nothing happens. 

control-L (OxC) Form-feed (FF) 
The cursor is positioned to the Home position (upper-left corner) and the entire screen is cleared. 

control-M (OxD) Return (CR) 
The cursor moves to the leftmost character position on the current line. 

Escape Sequence Functions 

control-[ (OxlB) Escape (ESC) 
This is the escape character. Escape initiates a multi-character control sequence. 

ESC [ #@ Insert Character {ICH) 
Takes one parameter,# (default 1). Inserts# spaces at the current cursor position. The tail of the 
current line starting at the current cursor position inclusive is shifted to the right by # character 
positions to make room for the spaces. The rightmost # character positions shift off the line and 
are lost. The position of the cursor is unchanged. 

Last change: 20 November 1987 Sun Release 4.0 



CONSOLE ( 4S) DEVICES AND NETWORK INTERFACES CONSOLE ( 4S) 

ESC[#A Cursor Up (CUU) 
Tak.es one parameter, # (default 1). Moves the cursor up# lines. If the cursor is fewer than# 
lines from the top of the screen, moves the cursor to the topmost line on the screen. The character 
position of the cursor on the line is unchanged. 

ESC[#B Cursor Down (CUD) 
Takes one parameter,# (default 1). Moves the cursor down# lines. If the cursor is fewer than# 
lines from the bottom of the screen, move the cursor to the last line on the screen. The character 
position of the cursor on the line is unchanged. 

ESC [ #C Cursor Forward (CUF) 
Takes one parameter,# (default 1). Moves the cursor to the right by# character positions on the 
current line. If the cursor is fewer than # positions from the right edge of the screen, moves the 
cursor to the rightmost position on the current line. 

ESC[#D Cursor Backward (CUB) 
Takes one parameter,# (default 1). Moves the cursor to the left by# character positions on the 
current line. If the cursor is fewer than # positions from the left edge of the screen, moves the cur
sor to the leftmost position on the current line. 

ESC[#E Cursor Next Line (CNL) 
Takes one parameter,# (default 1). Positions the cursor at the leftmost character position on the 
#-th line below the current line. If the current line is less than # lines from the bottom of the 
screen, positions the cursor at the leftmost character position on the bottom line. 

ESC [ # 1 ;#2f Horizontal And Vertical Position (HVP) 
or 

ESC[#l;#2H Cursor Position (CUP) 
Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the #2-th character position 
on the #1-th line. Character positions are numbered from 1 at the left edge of the screen; line 
positions are numbered from 1 at the top of the screen. Hence, if both parameters are omitted, the 
default action moves the cursor to the home position (upper left comer). If only one parameter is 
supplied, the cursor moves to column 1 of the specified line. 

ESC[J Erase in Display (ED) 
Takes no parameters. Erases from the current cursor position inclusive to the end of the screen. 
In other words, erases from the current cursor position inclusive to the end of the current line and 
all lines below the current line. The cursor position is unchanged. 

ESC[K Erase in Line (EL) 
Tak.es no parameters. Erases from the current cursor position inclusive to the end of the current 
line. The cursor position is unchanged. 

ESC [ #L Insert Line (IL) 
Tak.es one parameter, # (default 1). Makes room for# new lines starting at the current line by 
scrolling down by# lines the portion of the screen from the current line inclusive to the bottom. 
The # new lines at the cursor are filled with spaces; the bottom # lines shift off the bottom of the 
screen and are lost. The position of the cursor on the screen is unchanged. 

ESC[#M Delete Line (DL) 
Takes one parameter,# (default 1). Deletes# lines beginning with the current line. The portion 
of the screen from the current line inclusive to the bottom is scrolled upward by # lines. The # 
new lines scrolling onto the bottom of the screen are filled with spaces; the # old lines beginning at 
the cursor line are deleted. The position of the cursor on the screen is unchanged. 

ESC [ #P Delete Character (OCH) 
Takes one parameter,# (default 1). Deletes# characters starting with the current cursor position. 
Shifts to the left by # character positions the tail of the current line from the current cursor posi
tion inclusive to the end of the line. Blanks are shifted into the rightmost # character positions. 
The position of the cursor on the screen is unchanged. 

1 'lf\7 



CONSOLE ( 4S) DEVICES AND NETWORK INTERFACES CONSOLE ( 4S) 

ESC[#m Select Graphic Rendition (SGR) 
Talces one parameter,# (default 0). Note: unlike most escape sequences, the parameter defaults to 
zero if omitted. Invokes the graphic rendition specified by the parameter. All following printing 
characters in the data stream are rendered according to the parameter until the next occurrence of 
this escape sequence in the data stream. Currently only two graphic renditions are defined: 

0 Normal rendition. 

7 Negative (reverse) image. 

Negative image displays characters as white-on-black if the screen mode is currently black-on 
white, and vice-versa. Any non-zero value of# is currently equivalent to 7 and selects the nega
tive image rendition. 

ESC [p Black On White (SUNBOW) 
Talces no parameters. Sets the screen mode to black-on-white. If the screen mode is already 
black-on-white, has no effect. In this mode spaces display as solid white, other characters as 
black-on-white. The cursor is a solid black block. Characters displayed in negative image rendi
tion (see 'Select Graphic Rendition' above) is white-on-black in this mode. This is the initial set
ting of the screen mode on reset. 

ESC[q White On Black (SUNWOB) 
Talces no parameters. Sets the screen mode to white-on-black. If the screen mode is already 
white-on-black, has no effect. In this mode spaces display as solid black, other characters as 
white-on-black. The cursor is a solid white block. Characters displayed in negative image rendi
tion (see 'Select Graphic Rendition' above) is black-on-white in this mode. The initial setting of 
the screen mode on reset is·the alternative mode, black on white. 

ESC[#r Set scrolling (SUNSCRL) 
Talces one parameter, # (default 0). Sets to# an internal register which determines how many 
lines the screen scrolls up when a line-feed function is performed with the cursor on the bottom 
line. A parameter of 2 or 3 introduces a small amount of ''jump'' when a scroll occurs. A param
eter of 34 clears the screen rather than scrolling. The initial setting is 1 on reset. 

A parameter of zero initiates "wrap mode" instead of scrolling. In wrap mode, if a linefeed 
occurs on the bottom line, the cursor goes to the same character position in the top line of the 
screen. When any linefeed occurs, the line that the cursor moves to is cleared. This means that no 
scrolling ever occurs. 'ESC [ 1 r' exits back to scroll mode. 

For more information, see the description of the Line-feed (CTRL-J) control function above. 

ESC[s Reset terminal emulator (SUNRESET) 
Talces no parameters. Resets all modes to default, restores current font from PROM. Screen and 
cursor position are 

4014 TERMINAL EMULATION 

FILES 

The PROM monitor for Sun models lOOU and 150U provides the Sun Workstation with the capability to 
emulate a subset of the Tektronix 4014 terminal. This feature does not exist in other Sun PROMs and will 
be removed from models lOOU and 150U in future Sun releases. tektool(l) provides Tektronix 4014 ter
minal emulation and should be used instead of relying on the capabilities of the PROM monitor. 

/dev/console 

SEE ALSO 

1208 

tektool(l) kb(4M), pty(4), termio(4), ttcompat(4M), ldterm(4M), win(4S), zs(4S) 

ANSI Standard X3.64, "Additional Controls for Use with ASCII", Secretariat: CBEMA, 1828 L St., N.W., 
Washington, D.C. 20036. 

Last change: 20 November 1987 Sun Release 4.0 



CONSOLE ( 4S) DEVICES AND NETWORK INTERFACES CONSOLE ( 4S) 

BUGS 
TIOCCONS should be restricted to the owner of /dev/console. 

Sun Release 4.0 Last change: 20 November 1987 1209 



DES(4S) DEVICES AND NETWORK INTERFACES DES(4S) 

NAME 
des - DES encryption chip interface 

CONFIG - SUN-3 SYSTEM 
desO at obio ? csr OxlcOOOO 

#include <sys/des.h> 

CONFIG - SUN-2 SYSTEM 
desO at virtual ? csr Oxee1800 

#include <sys/des.h> 

DESCRIPTION 

IOCTLS 

FILES 

The des driver provides a high level interface to the AmZ8068 Data Ciphering Processor, a hardware 
implementation of the NBS Data Encryption Standard. 

The high level interface provided by this driver is hardware independent and could be shared by future 
drivers in other systems. 

The interface allows access to two modes of the DES algorithm: Electronic Code Book (ECB) and Cipher 
Block Chaining (CBC). All access to the DES driver is through ioctl(2) calls rather than through reads and 
writes; all encryption is done in-place in the user's buffers. 

The ioctls provided are: 

DESIOCBLOCK 
This call encrypts/decrypts an entire buffer of data, whose address and length are passed in the 
'struct desparams' addressed by the argument. The length must be a multiple of 8 bytes. 

DESIOCQUICK 

/dev/des 

This call encrypts/decrypts a small amount of data quickly. The data is limited to 
DES_QUICKLEN bytes, and must be a multiple of 8 bytes. Rather than being addresses, the data is 
passed directly in the 'struct desparams' argument. 

SEE ALSO 

1210 

des(l), des_crypt(3) 

Federal Information Processing Standards Publication 46 

AmZ.8068 DCP Product Description, Advanced Micro Devices 

Last change: 9 October 1987 Sun Release 4.0 



DK10(4S) DEVICES AND NETWORK INTERFACES DK10(4S) 

NAME 
dkio - generic disk control operations 

DESCRIPTION 
All Sun disk drivers support a set of ioctl's for disk formatting and labeling operations. Basic to these 
ioctl's are the definitions in <Sun/dkio.h>: 

* Structures and definitions for disk io control commands 
•I 
/• Disk identification•/ 
struct dk_info { 

}; 

int dki_ctlr; 
short dki _ unit; 
short dki _ ctype; 
short dki _ flags; 

/• controller types •I 
#define DKC _ UNKNOWN 
#define DKC _ SMD2180 
#define DKC _ DSD5215 
#define DKC XY450 
#define DKC_ACB4000 
#define DKC MD21 
#define DKC css 12 
#define DKC_NEC765 13 
/•flags•/ 

0 
1 
5 
6 
7 
8 

/• controller address•/ 
/• unit (slave) address•/ 
/• controller type •I 
/•flags•/ 

/• floppy on Sun386i •/ 

#define DKI_BAD144 OxOl /• use DEC std 144 bad sector fwding •/ 
#define DKI MAPTRK Ox02 /• controller does track mapping•/ 
#define DKI_FMTTRK Ox04 /• formats only full track at a time •I 
#define DKI FMTVOL Ox08 /• formats only full volume at a time •I 
/• Definition of a disk's geometry •I 
struct dk _geom { 

unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 

}; 

dkg_ncyl; 
dkg_acyl; 
dkg_bcyl; 
dkg_nhead; 
dkg_bbead; 
dkg_nsect; 
dkg_intrlv; 
dkg_gapl; 
dkg_gap2; 
dkg_apc; 
dkg_extra[9]; 

I* disk io control commands * / 

I•# of data cylinders•/ 
I•# of alternate cylinders•/ 
/• cyl offset (for fixed head area) •/ 
I• # of heads •/ 
/• head offset (for Larks, etc.) •I 
I•# of sectors per track•/ 
/• interleave factor •I 
/• gap 1 size •/ 
/• gap 2 size •/ 
/• alternates per cyl (SCSI only)•/ 
/• for compatible expansion •/ 

#define DKIOCGGEOM _IOR(d, 2, struct dk_geom) /• Get geometry•/ 
#define DKIOCSGEOM _IOW(d, 3, struct dk_geom) /• Set geometry•/ 
#define DKIOCGPART _IOR(d, 4, struct dk_map) /• Get partition info•/ 
#define DKIOCSPART _IOW(d, 5, struct dk_map) /• Set partition info•/ 
#define DKIOCINFO _IOR(d, 8, struct dk_info) /• Get info•/ 

The DKIOCINFO ioctl returns a dk _info structure which tells the type of the controller and attributes about 
how bad-block processing is done on the controller. The DKIOCGPART and DKIOCSPART get and set the 
controller's current notion of the partition table for the disk (without changing the partition table on the 

Sun Release 4.0 Last chamrc: 18 Fcbruarv 1988 1211 



DKI0(4S) DEVICES AND NETWORK INTERFACES DKI0(4S) 

disk itself), while the DKIOCGGEOM and DKIOCSGEOM ioctl's do similar things for the per-drive 
geometry information. 

SEE ALSO 
ip(4P), sd(4S), xy(4S) 

1212 Last change: 18 February 1988 Sun Release 4.0 



DRUM(4) DEVICES AND NETWORK INTERFACES DRUM(4) 

NAME 
drum - paging device 

CONFIG 
None; included with standard system. 

SYNOPSIS 
#include <f cntl.h> 

open(" /dev/drum", mode); 

DESCRIPTION 

FILES 

BUGS 

This file refers to the paging device in use by the system. This may actually be a subdevice of one of the 
disk drivers, but in a system with paging interleaved across multiple disk drives it provides an indirect 
driver for the multiple drives. 

/dev/drum 

Reads from the drum are not allowed across the interleaving boundaries. Since these only occur every 
.5Mbytes or so, and since the system never allocates blocks across the boundary, this is usually not a prob
lem. 

Sun Release 4.0 Last change: 24 November 1987 1213 



EC(4S) DEVICES AND NETWORK INTERFACES EC(4S) 

NAME 
ec - 3Com 10 Mb/s Ethernet interface 

CONFIG - SUN-2 SYSTEM 
device ecO at mbmem ? csr OxeOOOO priority 3 
device eel at mbmem ? csr Oxe2000 priority 3 

DESCRIPTION 
The ec interface provides access to a 10 Mb/s Ethernet network through a 3COM controller. For a general 
description of network interfaces see if(4N). 

The hardware consumes 8 kilobytes of Multibus memory space. This memory is used for internal buffer
ing by the board. The board starts at standard addresses OxEOOOO or OxE2000. The board must be 
configured for interrupt level 3. 

The interface software implements an exponential backoff algorithm when notified of a collision on the 
cable. 

The interface handles the Internet protocol family, with the interface address maintained in Internet format. 
The Address Resolution Protocol arp(4P) is used to map 32-bit Internet addresses used in inet(4F) to the 
48-bit addresses used on the Ethernet. 

DIAGNOSTICS 
ec%d: Ethernet jammed 

After 16 failed transmissions and backoffs using the exponential backoff algorithm, the packet 
was dropped. 

ec%d: can't handle af%d 
The interface was handed a message with addresses formatted in an unsuitable address family; 
the packet was dropped. 

SEE ALSO 
arp(4P), if(4N), inet(4F) 

BUGS 
The interface hardware is not capable of talking to itself, making diagnosis more difficult. 

1214 Last change: 9 October 1987 Sun Release 4.0 



FB(4S) DEVICES AND NETWORK INTERFACES FB(4S) 

NAME 
fb - driver for Sun console frame buffer 

CONFIG 
None; included in standard system. 

DESCRIPTION 

FILES 

The tb driver provides indirect access to a Sun graphics controller board. It is an indirect driver for the Sun 
workstation console's frame buffer. At boot time, the workstation's frame buffer device is determined 
from information from the PROM monitor and set to be the one that tb will indirect to. The device driver 
for the console's frame buffer must be configured into the kernel so that this indirect driver can access it. 

The idea behind this driver is that user programs can open a known device, query its characteristics and 
access it in a device dependent way, depending on the type. tb redirects open(2V), close(2), ioct1(2), and 
mmap(2) calls to the real frame buffer. All of the Sun frame buffers support the same general interface; 
see tbio(4S) 

/dev/fb 

SEE ALSO 
close(2), ioct1(2), mmap(2), open(2V), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), fbio(4S), 
gpone(4S) 

Sun Release 4.0 Last change: 9 October 1987 1215 



FBI0(4S) DEVICES AND NETWORK INTERFACES FBI0(4S) 

NAME 
fbio - general properties of frame buffers 

DESCRIPTION 

1216 

All of the Sun frame buffers support the same general interface. 
which returns information in a structure defined in <sun/fbio.h>: 

Each responds to a FBIOGTYPE ioctl 

struct fbtype { 
int lb _type; 
int fb _ height; 
int fb_width; 
int fb_depth; 
int fb _ cmsize; 
int fb _size; 

}; 

/• as defined below•/ 
/• in pixels •/ 
/• in pixels•/ 
/• bits per pixel •/ 
/• size of color map (entries)•/ 
/• total size in bytes •I 

#define FBTYPE SUNlBW 0 
#define FBTYPE SUNlCOLOR 1 
#define FBTYPE _ SUN2BW 2 
#define FBTYPE SUN2COLOR 3 
#define FBTYPE_ SUN2GP 4 
#define FBTYPE_SUNJCOLOR 6 
#define FBTYPE _ SUN4COLOR 8 

Each device has an FBTYPE which is used by higher-level software to determine how to perform raster-op 
and other functions. Each device is used by opening it, doing an FBIOGTYPE ioctl to see which frame 
buffer type is present, and thereby selecting the appropriate device-management routines. 

Full-fledged frame buffers (that is, those that run SunView) implement an FBIOGPIXRECT ioctl, which 
returns a pixrect. This call is made only from inside the kernel. The returned pixrect is used by win(4S) 
for cursor tracking and colormap loading. 

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctls for controlling possible video features of 
frame buffers. They are defined in <Sun/fbio.h>. These ioctls either set or return the value of a flags 
integer. At this point, only the FBVIDEO_ON option is available, controlled by FBIOSVIDEO.· FBIOGVI
DEO returns the current video state. 

The FBIOSATTR and FBIOGATTR ioctls allow access to special features of newer frame buffers. They 
use the following structures as defined in <sun/fbio.h>: 

#define FB_ATTR_NDEVSPECIFIC 8 I• no. of device specific values•/ 
#define FB_ATTR_NEMUTYPES 4 '*no.of emulation types*' 
struct fbsattr { 

int flags; /• misc flags •/ 
#define FB_ATTR_AUTOINIT 1 /• emulation auto init flag•/ 
#define FB_ATTR_DEVSPECIFIC2 '* dev. specific stuff valid flag*' 

int emu_type; /• emulation type (-1 if unused)•/ 
int dev_specific[FB_ATTR_NDEVSPECIFIC]; '*catchall*' 

}; 

struct fbgattr { 
int real_type; /• real device type•/ 
int owner; I• PIO of owner, 0 if myself •I 
struct fbtype fbtype; /• fbtype info for real device•/ 
struct fbsattr sattr; I• see above•/ 
int emu_types[FB_ATTR_NEMUTYPES]; I• possible emulations•/ 

/• (-1 if unused) •I 
}; 

Last change: 18 February 1988 Sun Release 4 .0 



FBI0(4S) DEVICES AND NETWORK INTERFACES FBI0(4S) 

SEE ALSO 
mmap(2), bwone(4S), bwtwo(4S), cgfour(4S), cgone(4S), cgtwo(4S), fb(4S), gpone(4S), win(4S) 

BUGS 
FBIOSATTR and FBIOGATTR are only supported by the cgfour(4S) frame buffer. 

The FBVIDEO _ ON flag my be incorrect for Sun-I system black and white frame buffers; see bwone(4S). 

Sun Release 4.0 Last change: 18 February 1988 1217 



FD(4S) DEVICES AND NETWORK INTERFACES FD(4S) 

NAME 
fd- Disk driver for Floppy Disk Controllers 

CONFIG 
controller fdcO at atmem ? csr OxlOOO dmachan 2 irq 6 priority 2 
disk f dO at f dcO drive O flags 0 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
The block-files access the disk using the system's normal buffering mechanism and may be read and writ
ten without regard to physical disk records. There is also a 'raw' interface that provides for direct 
transmission between the disk and the user's read or write buffer. A single read or write call usually results 
in one I/0 operation; therefore raw I/0 is considerably more efficient when many words are transmitted. 
The names of the raw files conventionally begin with an extra 'r.' 

Disk Support 
The fdO partition on a floppy disk is normally used for the file system. 

FILES 
1.44 MB Floppy Disk Drives: 

/dev/fdOa block file 
/dev/fdOc block file /dev/rfdOa raw file /dev/rfdOc raw file 

720 K Floppy Disk Drives: 

/dev/fdIOa block file 
/dev/fdIOc block file 
/dev/rfdIOa raw file 
/dev/rfdIOc raw file 

SEE ALSO 
dkio(4S) 

DIAGNOSTICS 

1218 

fd drv %d, trk %d: %s 
A command such as read or write encountered a format-related error condition. The value of %s 
is derived from the error number given by the controller, indicating the nature of the error. The 
track number is relative to the beginning of the partition involved. 

fd drv %d, blk %d: %s 
A command such as read or write encountered an error condition related to I/0. The value of %s 
is derived from the error number returned by the controller and indicates the nature of the error. 
The block number is relative to the start of the partition involved. 

fd controller: %s 
An error occurred in the controller. The value of %sis derived from the status returned by the 
controller and specifies the error encountered. 

fd(%d): %s please insert 
I/0 was attempted while the floppy drive door was not latched. The value of %s indicates which 
disk was expected to be in the drive. 

Last change: 19 February 1988 Sun Release 4.0 



FILI0(4) DEVICES AND NETWORK INTERFACES FILI0(4) 

NAME 
filio - ioctls that operate directly on files, file descriptors, and sockets 

SYNOPSIS 
#include <sys/filio.h> 

DESCRIPTION 
The IOCTL' s listed in this manual page apply directly to files, file descriptors, and sockets, independent of 
any underlying device or protocol. 

Note: the f cntl(2V) system call is the primary method for operating on file descriptors as such, rather than 
on the underlying files. 

IOCTLS for File Descriptors 
FIOCLEX The argument is ignored. Set the close-on-exec flag for the file descriptor passed 

to ioctl. This flag is also manipulated by the F _ SETFD command of fcntl(2V). 

FIONCLEX 

IOCTLs for Files 
FIONREAD 

FIONBIO 

FIOASYNC 

FIOSETOWN 

FIOGETOWN 

SEE ALSO 

The argument is ignored. Clear the close-on-exec flag for the file descriptor 
passed to ioctl. 

The argument is a pointer to a long. Set the value of that long to the number of 
immediately readable characters from whatever the descriptor passed to ioctl 
refers to. This works for files, pipes, sockets, and terminals. 

The argument is a pointer to an int. Set or clear non-blocking I/0. If the value of 
that int is a 1 (one) the descriptor is set for non-blocking I/0. If the value of that 
int is a O (zero) the descriptor is cleared for non-blocking I/0. 

The argument is a pointer to an int. Set or clear asynchronous I/0. If the value of 
that int is a 1 (one) the descriptor is set for asynchronous 1/0. If the value of that 
int is a O (zero) the descriptor is cleared for asynchronous 1/0. 

The argument is a pointer to an int. Set the process-group ID that will subse
quently receive SIGIO or SIGURG signals for the object referred to by the descrip
tor passed to ioctl to the value of that int. 

The argument is a pointer to an int. Set the value of that int to the process-group 
ID that is receiving SIGIO or SIGURG signals for the object referred to by the 
descriptor passed to ioctl. 

ioctl(2), fcntl(2V}, getsockopt(2), sockio(4) 

Sun Release 4.0 Last change: 23 November 1987 1219 



FPA(4S) DEVICES AND NETWORK INTERFACES FPA(4S) 

NAME 
fpa - Sun-3 floating-point accelerator 

CONFIG - SUN-3 SYSTEM 
fpaO at virtual ? csr OxeOOOOOOO 

DESCRIPTION 

FILES 

The fpa is a floating point accelerator available for Sun-3 systems. 

The fpa device driver manipulates the 32 contexts supported by the floating point accelerator hardware. 

The open(2V), close(2), and ioctl(2) system calls generally produce errors when applied to this device. 
However, since the 32 fpa contexts are allocated and deallocated automatically, and no user program needs 
to access fpa registers explicitly, such calls to the device are generally unnecessary. Access to the device 
is normally provided at compile time by a compiler option, such as the -ffpa option to cc(l V). 

/dev/fpa 

SEE ALSO 
cc(l V), close(2), ioctl(2), open(2V) 

1220 Last change: 9 October 1987 Sun Release 4.0 



GPONE(4S) DEVICES AND NETWORK INTERFACES GPONE(4S) 

NAME 
gpone - Sun-3/Sun-2 graphics processor 

CONFIG - SUN-3 SYSTEM 
device gponeO at vme24d 16 ? csr 

CONFIG - SUN-2 SYSTEM 
device gponeO at vme24 ? csr 

DESCRIPTION 

IOCTLS 

The gpone interface provides access to the optional Graphics Processor Board (GP). 

The hardware consumes 64 kilobytes of VME bus address space. The GP board starts at standard address 
Ox210000 and must be configured for interrupt level 3. 

The graphics processor responds to a number of ioctl calls as described here. 
gplfbinfo structure that looks like this: 

One of the calls uses a 

struct gplfbinfo { 
int 

}; 

int 
int 
int 
caddr t 
int 

The ioctl call looks like this: 
ioctl(file, request, argp) 
int file, request; 

fb _ vmeaddr; 
fb_hwwidth; 
fb _ hwheight; 
addrdelta; 
fb _ropaddr; 
fbunit; 

f* physical color board address *f 
f * fb board width *f 
f* fb board height *f 
f * phys addr difT between fb and gp *f 
f* cg2 va thru kernelmap *f 
f* fb unit to use for a,b,c,d *f 

argp is defined differently for each GP ioctl request and is specified in the descriptions below. 

The following ioctl commands provide for transferring data between the graphics processor and color 
boards and processes. 

GPlIO PUT INFO 
Passes information about the frame buffer into driver. argp points to a struct gplfbinfo which is 
passed to the driver. 

GPlIO _GET_ ST A TIC_ BLOCK 
Hands out a static block from the GP. argp points to an int which is returned from the driver. 

GPlIO FREE STA TIC BLOCK - - -
Frees a static block from the GP. argp points to an int which is passed to the driver. 

GPlIO GET GBUFFER STATE - - -
Checks to see if there is a buffer present on the GP. argp points to an int which is returned from 
the driver. 

GPlIO CHK GP 
Restarts the GP if necessary. argp points to an int which is passed to the driver. 

GPlIO GET RESTART COUNT - - -
Returns the number of restarts of a GP since power on. Needed to differentiate SIGXCPU calls in 
user processes. argp points to an int which is returned from the driver. 

GPlIO REDIRECT DEVFB - -
Configures /dev/fb to talk to a graphics processor device. argp points to an int which is passed to 
the driver. 

GPlIO_GET_REQDEV 
Returns the requested minor device. argp points to a dev _ t which is returned from the driver. 

Sun Release 4.0 Last change: 9 October 1987 1221 



GPONE(4S) DEVICES AND NETWORK INTERFACES GPONE(4S) 

GPlIO _GET_ TRUMINORDEV 
Returns the true minor device. argp points to a char which is returned from the driver. 

FILES 

The graphics processor driver also responds to the FBIOGTYPE, ioctl which a program can use to inquire 
as to the characteristics of the display device, the FBIOGINFO, ioctl for passing generic information, and 
the FBIOGPIXRECT ioctl so that Sun Windows can run on it See tbio(4S). 

/dev/gpone[0-3][abcd] 
/usr/include/sun/gpio.h 
/usr/include/pixrect/ {gp lcmds.h,gplreg.h,gp 1 var .h} 
/dev/fb 

SEE ALSO 
fbio(4S), mmap(2), gpconfig(8) 

SunCGI Reference Manual 

DIAGNOSTICS 
The Graphics Processor has been restarted. You may see display garbage as a result 

1222 Last change: 9 October 1987 Sun Release 4.0 



IC:MP(4P) PROTOCOLS IC:MP(4P) 

NAME 
icmp - Internet Control Message Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netinet/ip _icmp.h> 

s = socket(AF_INET, SOCK_RAW, proto); 

DESCRIPTION 
ICMP is the error and control message protocol used by the Internet protocol family. It is used by the ker
nel to handle and report errors in protocol processing. It may also be accessed through a ''raw socket'' for 
network monitoring and diagnostic functions. The protocol number for ICMP, used in the pro to parameter 
to the socket call, can be obtained from getprotobyname (see getprotoent(3N)). ICMP sockets are con
nectionless, and are normally used with the sendto and recvfrom calls, though the connect(2) call may also 
be used to fix the destination for future packets (in which case the read(2V) or recv(2) and write(2V) or 
send(2) system calls may be used). 

Outgoing packets automatically have an Internet Protocol (IP) header prepended to them. Incoming pack
ets are provided to the holder of a raw socket with the IP header and options intact 

ICMP is an unreliable datagram protocol layered above IP. It is used internally by the protcol code for vari
ous purposes including routing, fault isolation, and congestion control. Receipt of an ICMP "redirect" mes
sage will add a new entry in the routing table, or modify an existing one. ICMP messages are routinely sent 
by the protocol code. Received ICMP messages may be reflected back to users of higher-level protocols 
such as TCP or UDP as error returns from system calls. A copy of all ICMP message received by the system 
is provided using the ICMP raw socket. 

ERRORS 
A socket operation may fail with one of the following errors returned: 

EISCONN 

ENOTCONN 

ENOBUFS 

EADDRNOTAVAIL 

when trying to establish a connection on a socket which already has one, or when 
trying to send a datagram with the destination address specified and the socket is 
already connected; 

when trying to send a datagram, but no destination address is specified, and the 
socket hasn't been connected; 

when the system runs out of memory for an internal data structure; 

when an attempt is made to create a socket with a network address for which no 
network interface exists. 

SEE ALSO 

BUGS 

connect(2), read(2V), recv(2), send(2), write(2V), getprotoent(3N), inet(4F), ip(4P), routing(4N) 

Postel, Jon, Internet Control Message Protocol -DARPA Internet Program Protocol Specification, RFC 
792, Network Information Center, SRI International, Menlo Park, Calif., September 1981. (Sun 800-1064-
01) 

Replies to ICMP "echo" messages which are source routed are not sent back using inverted source routes, 
but rather go back through the normal routing mechanisms. 

Sun Release 4.0 Last change: 24 November 1987 1223 



IE( 4S) DEVICES AND NETWORK INTERFACES IE ( 4S) 

NAME 
ie - Intel 10 Mb/s Ethernet interface 

CONFIG- SUN-3 SYSTEM 
device ieO at obio ? csr OxcOOOO priority 3 
device iel at vme24dl6? csr Oxe88000 priority 3 vector ieintr Ox75 
device iel at vme24dl6? csr Ox3lff02 priority 3 vector ieintr Ox75 

CONFIG - SUN-2 SYSTEM 
device ieO at obio 2 csr Ox7f0800 priority 3 
device iel at vme24? csr Oxe88000 priority 3 vector ieintr Ox75 
device ieO at mbmem? csr Ox88000 priority 3 
device iel at mbmem ? csr Ox8c000 flags 2 priority 3 

CONFIG - Sun386i SYSTEM 
device ieO at obmem ? csr OxDOOOOOOO irq 21 priority 3 

DESCRIPTION 
The ie interface provides access to a 10 Mb/s Ethernet network through the Intel 82586 controller chip. 
For a general description of network interfaces see if(4N). 

In the Sun-3 lines above, the first line specifies the CPU-board-resident Intel Ethernet interface. The second 
line specifies a Multibus Intel Ethernet interface for use with a VME adapter. The third line specifies the 
Intel Ethernet interface present on a Sun-3 Eurocard board. 

In the Sun-2 lines above, the first line specifies the CPU-board-resident Intel Ethernet interface on a Sun-
2/50 or Sun-2/160 system. The second line specifies a Multibus Intel Ethernet controller for use with a 
VME adapter on these systems. The third line specifies the first Multibus Intel Ethernet controller for a 
Sun-2/120 or Sun-2/170 system. The fourth line specifies the second such controller for these systems. 

The Sun386i line above specifies the CPU-board-resident Intel Ethernet interface. 

SEE ALSO 
if(4N) 

DIAGNOSTICS 

1224 

There are too many driver messages to list them all individually here. Some of the more common mes
sages and their meanings follow. 

ie%d: Ethernet jammed 
Network activity has become so intense that sixteen successive transmission attempts failed, and 
the 82586 gave up on the current packet. Another possible cause of this message is a noise source 
somewhere in the network, such as a loose transceiver connection. 

ie%d: no carrier 
The 82586 has lost input to its carrier detect pin while trying to transmit a packet, causing the 
packet to be dropped. Possible causes include an open circuit somewhere in the network and 
noise on the carrier detect line from the transceiver. 

ie%d: lost interrupt: resetting 
The driver and 82586 chip have lost synchronization with each other. The driver recovers by 
resetting itself and the chip. 

ie%d: iebark reset 
The 82586 failed to complete a watchdog timeout command in the alloted time. The driver recov
ers by resetting itself and the chip. 

ie%d: WARNING: requeueing 
The driver has run out of resources while getting a packet ready to transmit. The packet is put 
back on the output queue for retransmission after more resources become available. 

Last change: 18 February 1988 Sun Relea<;e 4.0 



IE( 4S) DEVICES AND NETWORK INTERFACES IE ( 4S) 

ie%d: panic: sch overwritten 

Sun Release 4.0 

The driver has discovered that memory that should remain unchanged after initialization has 
become corrupted. This error usually is a symptom of a bad 82586 chip. 

Last change: 18 February 1988 1225 



IF(4N) DEVICES AND NETWORK INTERFACES IF(4N) 

NAME 
if - general properties of network interfaces 

DESCRIPTION 

1226 

Each network interface in a system corresponds to a path through which messages may be sent and 
received. A network interface usually has a hardware device associated with it, though certain interfaces 
such as the loopback interface, lo(4), do not 

At boot time, each interface with underlying hardware support makes itself known to the system during the 
autoconfiguration process. Once the interface has acquired its address, it is expected to install a routing 
table entry so that messages can be routed through it. Most interfaces require some part of their address 
specified with an SIOCSIFADDR IOCTL before they will allow traffic to flow through them. On interfaces 
where the network-link layer address mapping is static, only the network number is taken from the ioctl; 
the remainder is found in a hardware specific manner. On interfaces which provide dynamic network-link 
layer address mapping facilities (for example, lOMb/s Ethernets using arp(4P),), the entire address 
specified in the ioctl is used. 

The following ioctl calls may be used to manipulate network interfaces. Unless specified otherwise, the 
request takes an ifreq structure as its parameter. This structure has the form 

struct ifreq { 
char ifr _ name[16]; /• name of interface (e.g. "ecO") •I 
union { 

struct sockaddr ifru _ addr; 
struct sockaddr ifru _ dstaddr; 
short ifru _ flags; 

} ifr_ifru; 
#define ifr addr 
#define ifr _ dstaddr 
#define ifr _ flags 

ifr _ ifru.ifru _ addr /• address •/ 
ifr_ifru.ifru_dstaddr I• other end of p-to-p link•/ 
ifr_ifru.ifru_flags I• flags•/ 

}; 

SIOCSIFADDR 

SIOCGIFADDR 

SIOCSIFDSTADDR 

SIOCGIFDSTADDR 

SIOCSIFFLAGS 

SIOCGIFFLAGS 

SIOCGIFCONF 

Set interface address. Following the address assignment, the "initialization" rou
tine for the interface is called. 

Get interface address. 

Set point to point address for interface. 

Get point to point address for interface. 

Set interface flags field. If the interface is marked down, any processes currently 
routing packets through the interface are notified. 

Get interface flags. 

Get interface configuration list This request takes an ifconf structure (see below) 
as a value-result parameter. The ifc _len field should be initially set to the size of 
the buffer pointed to by if c _ buf. On return it will contain the length, in bytes, of 
the configuration list. 

Last change: 9 October 1987 Sun Release 4.0 



IF(4N) 

SIOCADDMULTI 

SIOCDELMULTI 

SIOCSPROMISC 

SEE ALSO 
arp(4P), ec(4S), lo(4) 

Sun Release 4.0 

DEVICES AND NETWORK INTERFACES 

I• 
* Structure used in SIOCGIFCONF request. 
* Used to retrieve interface configuration 
* for machine ( useful for programs which 
* must know all networks accessible). 
•I 
struct if conf { 

int ifc_len; I• size of associated buffer •/ 
union { 

caddr _ t if cu_ buf; 
struct ifreq •ifcu _req; 

} ifc_ifcu; 
#define ifc buf ifc if cu.if cu buf /• buffer address •/ - - -
#define ifc_req ifc_ifcu.ifcu_req I• array of structures returned •I 
}; 

IF( 4N) 

Enable a multicast address for the interface. A maximum of 64 multicast 
addresses may be enabled for any given interface. 

Disable a previously set multicast address. 

Toggle promiscuous mode. 

Last change: 9 October 1987 1227 



INET{4F) PROTOCOL FAMILIES INET{4F) 

NAME 
inet - Internet protocol family 

SYNOPSIS 
options INET 

#include <sys/types.h> 
#include <netinet/in.h> 

DESCRIPTION 
The Internet protocol family implements a collection of protocols which are centered around the Internet 
Protocol (IP) and which share a common address format. The Internet family provides protocol support for 
the SOCK_ STREAM, SOCK_ DGRAM, and SOCK_ RA w socket types. 

PROTOCOLS 
The Internet protocol family is comprised of the Internet Protocol {IP), the Address Resolution Protocol 
(ARP), the Internet Control Message Protocol {ICMP), the Transmission Control Protocol {TCP), and the 
User Datagram Protocol {UDP). 

TCP is used to support the SOCK_STREAM abstraction while UDP is used to support the SOCK_DGRAM 
abstraction; see tcp.(4P) and udp(4P). A raw interface to IP is available by creating an Internet socket of 
type SOCK_RAW; see ip(4P). ICMP is used by the kernel to handle and report errors in protocol process
ing. It is also accessible to user programs; see icmp(4P). ARP is used to translate 32-bit IP addresses into 
48-bit Ethernet addresses; see arp(4P). 

The 32-bit IP address is divided into network number and host number parts. It is frequency-encoded; the 
most-significant bit is zero in Class A addresses, in which the high-order 8 bits are the network number. 
Class B addresses have their high order two bits set to 10 and use the high-order 16 bits as the network 
number field. Class C addresses have a 24-bit network number part of which the high order three bits are 
110. Sites with a cluster of local networks may chose to use a single network number for the cluster; this is 
done by using subnet addressing. The local (host) portion of the address is further subdivided into subnet 
number and host number parts. Within a subnet, each subnet appears to be an individual network; exter
nally, the entire cluster appears to be a single, uniform network requiring only a single routing entry. Sub
net addressing is enabled and examined by the following ioct1(2) commands on a datagram socket in the 
Internet domain; they have the same form as the SIOCIFADDR command (see intro(4N)). 

SIOCSIFNETMASK Set interface network mask. The network mask defines the network part of the 
address; if it contains more of the address than the address type would indicate, 
then subnets are in use. 

SIOCGIFNETMASK Get interface network mask. 

ADDRESSING 

1228 

IP addresses are four byte quantities, stored in network byte order (on Sun386i systems these are word and 
byte reversed). 

Sockets in the Internet protocol family use the following addressing structure: 
struct sockaddr _in { 

short sin _family; 
u _ short sin _port; 
struct in_addr sin_addr; 
char sin_zero[8]; 

}; 

Library routines are provided to manipulate structures of this form; see intro(3N). 

The sin_ addr field of the sockaddr _in structure specifies a local or remote IP address. Each network inter
face has its own unique IP address. The special value INADDR_ANY may be used in this field to effect 
"wildcard" matching. Given in a bind(2) call, this value leaves the local IP address of the socket 
unspecified, so that the socket will receive connections or messages directed at any of the valid IP 
addresses of the system. This can prove useful when a process neither knows nor cares what the local IP 

Last change: 18 February 1988 Sun Release 4.0 



INET(4F) PROTOCOL FAMILIES INET(4F) 

address is or when a process wishes to receive requests using all of its network interfaces. The 
sockaddr_in structure given in the bind(2) call must specify an in_addr value of either IPADDR_ANY or 
one of the system's valid IP addresses. Requests to bind any other address will elicit the error EADDRNO
T AV AIL. When a connect(2) call is made for a socket that has a wildcard local address, the system sets the 
sin_ addr field of the socket to the IP address of the network interface that the packets for that connection 
are routed via. 

The sin_port field of the sockaddr_in structure specifies a port number used by TCP or UDP. The local 
port address specified in a bind(2) call is restricted to be greater than IPPORT_RESERVED (defined in 
<netinet/in.h>) unless the creating process is running as the super-user, providing a space of protected port 
numbers. In addition, the local port address must not be in use by any socket of same address family and 
type. Requests to bind sockets to port numbers being used by other sockets return the error EADDRINUSE. 
If the local port address is specified as 0, then the system picks a unique port address greater than 
IPPORT_RESERVED. A unique local port address is also picked when a socket which is not bound is used 
in a connect(2) or sendto (see send(2)) call. This allows programs which do not care which local port 
number is used to set up TCP connections by simply calling socket(2) and then connect(2), and to send 
UDP datagrams with a socket(2) call followed by a sendto(2) call. 

Although this implementation restricts sockets to unique local port numbers, TCP allows multiple simul
taneous connections involving the same local port number so long as the remote IP addresses or port 
numbers are different for each connection. Programs may explicitly override the socket restriction by set
ting the SO _REUSEADDR socket option with setsockopt (see getsockopt(2)). 

SEE ALSO 
bind(2), connect(2), getsockopt(2), ioctl(2), sendto(2), socket(2), byteorder(3N), gethostent(3N), 
getnetent(3N), getprotoent(3N), getservent(3N), inet(3N), intro(3N), arp(4P), icmp(4P), intro(4N), 
ip(4P) tcp(4P), udp(4P), 

Network Information Center, DDN Protocol Handbook (3 vols.), Network Information Center, SRI Interna
tional, Menlo Park, Calif., 1985. 
A 4.2BSD Interprocess Communication Primer 

CAVEAT 
The Internet protocol support is subject to change as the Internet protocols develop. Users should not 
depend on details of the current implementation, but rather the services exported. 

Sun Release 4.0 Last change: 18 February 1988 1229 



IP(4P) PROTOCOLS IP(4P) 

NAME 
ip - Internet Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_RAW, proto); 

DESCRIPTION 

1230 

IP is the internetwork datagram delivery protocol that is central to the Internet protocol family. Programs 
may use IP through higher-level protocols such as the Transmission Control Protocol (TCP) or the User 
Datagram Protocol (UDP), or may interface directly using a "raw socket." See tcp(4P) and udp(4P). The 
protocol options defined in the IP specification may be set in outgoing datagrams. 

Raw IP sockets are connectionless and are normally used with the sendto and recvfrom calls, (see send(2) 
and recv(2)) although the connect(2) call may also be used to fix the destination for future datagrams (in 
which case the read(2V) or recv(2) and write(2V) or send(2) calls may be used). If proto is zero, the 
default protocol, IPPROTO _RAW, is used. If proto is non-zero, that protocol number will be set in outgo
ing datagrams and will be used to filter incoming datagrams. An IP header will be generated and 
prepended to each outgoing datagram; Received datagrams are returned with the IP header and options 
intact. 

A single socket option, IP_ OPTIONS, is supported at the IP level. This socket option may be used to set IP 
options to be included in each outgoing datagram. IP options to be sent me set with setsockopt (see get
sockopt(2)). The getsockopt(2) call returns the IP options set in the last setsockopt call. IP options on 
received datagrams are visible to user programs only using raw IP sockets. The format of IP options given 
in setsockopt matches those defined in the IP specification with one exception: the list of addresses for the 
source routing options must include the first-hop gateway at the beginning of the list of gateways. The 
first-hop gateway address will be extracted from the option list and the size adjusted accordingly before 
use. IP options may be used with any socket type in the Internet family. 

At the socket level, the socket option SO_DONTROUTE may be applied. This option forces datagrams 
being sent to bypass the routing step in output. Normally, IP selects a network interface to send the 
datagram via, and possibly an intermediate gateway, based on an entry in the routing table. See 
routing(4N). When SO_DONTROUTE is set, the datagram will be sent via the interface whose network 
number or full IP address matches the destination address. If no interface matches, the error ENETUNRCH 
will be returned. 

Datagrams flow through the IP layer in two directions: from the network ip to user processes and from user 
processes down to the network. Using this orientation, IP is layered above the network interface drivers 
and below the transport protocols such as UDP and TCP. The Internet Control Message Protocol (ICMP) is 
logically a part ofIP. See icmp(4P). 

IP provides for a checksum of the header part, but not the data part of the datagram. The checksum value 
is computed and set in the process of sending datagrams and checked when receiving datagrams. IP header 
checksumming may be disabled for debugging purposes by patching the kernel variable ipcksum to have 
the value zero. · 

IP options in received datagrams are processed in the IP layer according to the protocol specification. 
Currently recognized IP options include: security, loose source and record route (LSRR), strict source and 
record route (SSRR), record route, stream identifier, and internet timestamp. 

The IP layer will normally forward received datagrams that are not addressed to it. Forwarding is under the 
control of the kernel variable ipf orwarding: if ipf orwarding is zero, IP datagrams will not be forwarded; if 
ipforwarding is one, IP datagrams will be forwarded. ipforwarding is usually set to one only in machines 
with more than one network interface (internetwork routers). This kernel variable can be patched to enable 
or disable forwarding. 

Last change: 9 October 1987 Sun Release 4 .0 



IP(4P) PROTOCOLS IP(4P) 

The IP layer will send an ICMP message back to the source host in many cases when it receives a datagram 
that can not be handled. A ''time exceeded'' ICMP message will be sent if the ''time to live'' field in the IP 
header drops to zero in the process of forwarding a datagram. A "destination unreachable" message will 
be sent if a datagram can not be forwarded because there is no route to the final destination, or if it can not 
be fragmented. If the datagram is addressed to the local host but is destined for a protocol that is not sup
ported or a port that is not in use, a destination unreachable message will also be sent. The IP layer may 
send an ICMP "source quench" message if it is receiving datagrams too quickly. ICMP messages are only 
sent for the first fragment of a fragmented datagram and are never returned in response to errors in other 
ICMP messages. 

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on output if the datagram 
is larger than the maximum transmission unit (MTU) of the network interface. Fragments of received 
datagrams are dropped from the reassembly queues if the complete datagram is not reconstructed within a 
short time period. 

Errors in sending discovered at the network interface driver layer are passed by IP back up to the user pro
cess. 

ERRORS 
A socket operation may fail with one of the following errors returned: 

EACCESS 

EISCONN 

EMSGSIZE 

ENETUNREACH 

ENOTCONN 

ENOBUFS 

EADDRNOTA VAIL 

when specifying an IP broadcast destination address if the caller is not the super
user; 

when trying to establish a connection on a socket which already has one, or when 
trying to send a datagram with the destination address specified and the socket is 
already connected; 

when sending datagram that is too large for an interface, but is not allowed be 
fragmented (such as broadcasts); 

when trying to establish a connection or send a datagram, if there is no matching 
entry in the routing table, or if an ICMP "destination unreachable" message is 
received. 

when trying to send a datagram, but no destination address is specified, and the 
socket hasn't been connected; 

when the system runs out of memory for fragmentation buffers or other internal 
data structure; 

when an attempt is made to create a socket with a local address that matches no 
network interface, or when specifying an IP broadcast destination address and the 
network interface does not support broadcast; 

The following errors may occur when setting or getting IP options: 

EINVAL 

EINVAL 

SEE ALSO 

An unknown socket option name was given. 

The IP option field was improperly formed; an option field was shorter than the 
minimum value or longer than the option buffer provided. 

connect(2), getsockopt(2), read(2V), recv(2), send(2), write(2V), icmp(4P), inet(4F) routing(4N), 
tcp(4P), udp(4P), 

Postel, Jon, "Internet Protocol - DARPA Internet Program Protocol Specification," RFC 791, Network 
Information Center, SRI International, Menlo Park, Calif., September 1981. (Sun 800-1063-01) 

Sun Release 4.0 Last change: 9 October 1987 1231 



IP{ 4P) 

BUGS 

1232 

PROTOCOLS IP(4P) 

Raw sockets should receive ICMP error packets relating to the protocol; currently such packets are simply 
discarded. 

Users of higher-level protocols such as TCP and UDP should be able to see received IP options. 

Last change: 9 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

NAME 
kb - Sun keyboard S1REAMS module 

CONFIG 
pseudo-device kbnumber 

SYNOPSIS 
#include <sys/stream.h> 
#include <sys/stropt.h> 
#include <sundev/vuid event.h> 
#include <sundev/kbio.h> 
#include <sundev/kbd.h> 

ioctl(fd, I_PUSH, "kb"); 

DESCRIPTION 
The kb STREAMS module processes byte streams generated by Sun keyboards attached to a CPU serial or 
parallel port. Definitions for altering keyboard translation, and reading events from the keyboard, are in 
<sundev/kbio.h> and <sundev/kbd.h>. number specifies the maximum number of keyboards supported 
by the system. 

kb recognizes which keys have been typed using a set of tables for each known type of keyboard. Each 
translation table is an array of 128 bytes (unsigned characters). If a character value is less than Ox80, it is 
treated as an ASCII character (perhaps with the MET A bit included). Higher values indicate special charac
ters that invoke more complicated actions. 

Keyboard Translation State 
The keyboard can be in one of the following translation modes: 

TR NONE Keyboard translation is turned off and up/down key codes are 
reported. 

TR ASCII 

TR EVENT 

TR UNTRANS EVENT - -

ASCII codes are reported. 

firm_events (see The SwiView System Programmer's Guide -
Appendix: Writing a Virtual User Input Device Driver) are 
reported. 

firm_ events containing unencoded keystation codes are reported 
for all input events within the window system. 

Keyboard Translation-Table Entries 
All instances of the kb module share five translation tables used to convert raw keystation codes to event 
values. The tables are: 

Unshifted 

Shifted 

Caps Lock 

Controlled 

KeyUp 

Used when a key is depressed and no shifts are in effect. 

Used when a key is depressed and a Shift key is being held down. 

Used when a key is depressed and Caps Lock is in effect. 

Used when a key is depressed and the Control key is being held down 
(regardless of whether a Shift key is being held down or Caps Lock is in 
effect). 

Used when a key is released. 

Each key on the keyboard has a "key station" code which is a number from Oto 127. This number is used 
as an index into the translation table that is currently in effect. If the corresponding entry in that translation 
table is a value from O to 127, this value is treated as an ASCII character, and that character is the result of 
the translation. 

Sun Release 4.0 Last change: 30 October 1987 1233 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

1234 

If the entry is a value from 128 to 255, it is a "special" entry. Special entry values are classified according 
to the value of the high-order bits. The high-order value for each class is defined as a constant, as shown in 
the list below. The value of the low-order bits, when added to this constant, distinguishes between keys 
within each class: 

SHIFTKEYS Ox.80 

BUCKYBITS Ox90 

FUNNY Ox.AO 

STRING OxBO 

A shift key. The value of the particular shift key is added to determine which shift 
mask to apply: 

CAPSLOCK O "Caps Lock" key. 

SHIFTLOCK 1 

LEFfSlllFf 2 

RIGHTSlllFf 3 

LEFfCTRL4 

RIGHTCTRL5 

"Shift Lock" key. 

Left-hand "Shift" key. 

Right-hand ''Shift'' key. 

Left-hand (or only) "Control" key. 

Right-hand "Control" key. 

Used to toggle mode-key-up/down status without altering the value of an accom
panying ASCII character. (The actual bit-position value, minus 7, is added.) 

METABIT O The "Meta" key was pressed along with the key. This is 
the only user-accessible bucky bit. 

SYSTEMBIT 1 The "System" key was pressed. This is a place holder 
to indicate which key is the system-abort key. 

Performs various functions depending on the value of the low 4 bits: 

NOP OxAO Does nothing. 

OOPS OxAl 

HOLEOxA2 

NOSCROLL OxA3 

CTRLS OxA4 

CTRLQOxA5 

RESEf 0xA6 

ERROR0xA7 

IDLEOxA8 

Exists, but is undefined. 

There is no key in this position on the keyboard, and the 
position-code should not be used. 

Alternately sends "S and "Q. 

Sends "S and toggles NOSCROLL key. 

Sends "Q and toggles NOSCROLL key. 

Keyboard reset. 

The keyboard driver detected an internal error. 

The keyboard is idle (no keys down). 

OxA9 - OxAF Reserved for nonparameterized functions. 

The low-order bits index a table of strings. When a key with a STRING entry is 
depressed, the characters in the null-terminated string for that key are sent, charac
ter by character. The maximum length is defined as: 

KTAB_STRLEN 10 

Individual string numbers are defined as: 

HOMEARROW OxOO 
UPARROW OxOl 
OOWNARROW Ox02 
LEFf ARROW Ox03 
RIGHT ARROW Ox04 

String numbers Ox05 - OxOF are available for custom entries. 

Last change: 30 October 1987 Sun Release 4 .0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

IOCTLS 

LEFTFUNC OxCO 
RIGHTFUNC OxDO 
TOPFUNC OxEO 
BOTTOMFUNC OxFO Function keys. The low 4 bits indicate the function key number within the group: 

LF(n) (LEFTFUNC+(n)-1) 
RF(n) (RIGHTFUNC+(n)-1) 
TF(n) (TOPFUNC+(n)-1) 
BF(n) (BOTTOMFUNC+(n )-1) 

There are 64 keys reserved for function keys. The actual positions may not be on 
left/right/top/bottom of the keyboard, although they usually are. 

In TR_ ASCII mode, when a function key is pressed, the following escape 
sequence is sent: 

<ESC>[0 .... 9z 
where <ESC> is a single escape character and "O ... 9,, indicates the decimal 
representation of the function-key value. For example, function key Rl sends the 
sequence: 

<ESC>[208z 
because the decimal value of RF(l) is 208. In TR_EVENT mode, if there is a 
VUID event code for the function key in question, an event with that event code is 
generated; otherwise, individual events for the characters of the escape sequence 
are generated. 

Two ioctls set and retrieve the current translation mode of a keyboard: 

KIOCTRANS The argument is a pointer to an int. The translation mode is set to the value in the int 
pointed to by the argument. 

KIOCGTRANS The argument is a pointer to an int. The current translation mode is stored in the int 
pointed to by the argument. 

ioctls for changing and retrieving entries from the keyboard translation table use the kiockey structure: 

struct kiockey { 
int kio_tablemask; I* Translation table (one of: 0, CAPSMASK, 

#define KIOCABORTl -1 
SHIFfMASK, CTRLMASK, UPMASK) *I 

I* Special "mask": abortl keystation *I 
I* Special "mask": abort2 keystation *I #define KIOCABORT2 -2 

}; 

KIOCSETKEY 

u char kio _station; 
u char kio _ entry; 
char kio_string[lO]; 

/• Physical keyboard key station (0-127) •/ 
I* Translation table station's entry *' 
/• Value for STRING entries (null terminated) *I 

The argument is a pointer to a kiockey structure. The translation table entry referred to 
by the values in that structure is changed. 

kio _ tablemask specifies which of the five translation tables contains the entry to be 
modified: 

UPMASK Ox0080 ''Key Up,, translation table. 

CTRLMASK Ox0030 ''Controlled,, translation table. 

SlilFTMASK OxOOOE "Shifted,, translation table. 

CAPSMASK OxOOO 1 "Caps Lock,, translation table. 

(No shift keys pressed or locked) 
''Unshifted', translation table. 

Sun Release 4.0 Last change: 30 October 1987 1235 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

kio _ station specifies the keystation code for the entry to be modified. The value of 
kio_entry is stored in the entry in question. If kio_entry is between STRING and 
STRING+l5, the string contained in kio_string is copied to the appropriate string table 
entry. This call may return EINV AL if there are invalid arguments. 

There are a couple special values of kio _ tablemask that affect the two step ''break to 
the PROM monitor" sequence. The usual sequence is SETUP-a or Ll-a. If 
kio_tablemask is KIOCABORTl then the value of kio_station is set to be the first keys
tation in the sequence. If kio_tablemask is KIOCABORT2 then the value of 
kio _ station is set to be the second keystation in the sequence. 

KIOCGETKEY The argument is a pointer to a kiockey structure. The current value of the keyboard 
translation table entry specified by kio _ tablemask and kio _station is stored in the struc
ture pointed to by the argument. This call may return EINV AL if there are invalid argu
ments. 

KIOCTYPE 

KIOCCMD 

KIOCSDIRECT 

The argument is a pointer to an int. A code indicating the type of the keyboard is stored 
in the int pointed to by the argument: 

KB_ KLUNK Micro Switch 103SD32-2 
KB VTlOO Keytronics VTlOO compatible 
KB SUN2 Sun-2 keyboard 
KB_ SUN3 Type 3 keyboard 
KB SUN4 Type 4 keyboard 
KB ASCII ASCII terminal masquerading as keyboard 

-1 is stored in the int pointed to by the argument if the keyboard type is unknown. 

The argument is a pointer to an int. The command specifed by the value of the int 
pointed to by the argument is sent to the keyboard. The commands that can be sent are: 

Commands to the Sun-2, Type 3, and Type 4 keyboard: 
KBD _ CMD _ RESET Reset keyboard as if power-up. 
KBD _ CMD _ BELL Turn on the bell. 
KBD - CMD _NO BELL Turn off the bell 

Commands to the Type 3 and Type 4 keyboard: 
KBD _ CMD _ CLICK Turn on the click annunciator. 
KBD _ CMD _NOCLICK Tum off the click annunciator. 

Inappropriate commands for particular keyboard types are ignored. Since there is no 
reliable way to get the state of the bell or click (because we cannot query the keyboard, 
and also because a process could do writes to the appropriate serial driver - thus going 
around this ioctl) we do not provide an equivalent ioctl to query its state. 

KIOCGDIRECT These ioctls are supported for compatibility with the system keyboard device /dev/kbd. 
KIOCSDIRECT has no effect, and KIOCGDIRECT always returns 1. 

INDEX STRUCTURES 

1236 

There is a hierarchy of structures for accessing keyboard translation data. The array keytables contains 
pointers to the translation data for each of the known keyboard types: 

struct keyboard *keytables[] = { 
&keyindex _ ms, 
&keyindex _ vt, 
&keyindex _ s2, 
&keyindex _ s3, 

}; 
Each keyboard type is described by a struct keyboard that contains pointers to the five translation-tables 
("Unshifted", "Shifted", "Caps Locked" "Controlled", and "Key Up") associated with that type, plus 
bit-masks that indicate what state can persist with no keys pressed, and the key-pair used as the abort 

Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

sequence for the system. 
An array keystringtab contains the strings sent by various keys, and can be accessed by any translation: 

#define kstescinit(c) {'\033', '[', 'c', '\0'} 
char keystringtab[l6][KT AB_ STRLEN] = { 

kstescinit(H), /•home*/ 
kstescinit(A), /*up*/ 
kstescinit(B), /•down•/ 
kstescinit(D), /*left•/ 
kstescinit(C), /•right•/ 

} ; 
Index Structure for the Type 4 Keyboard 

/• Index to keymaps for Type 4 keyboard•/ 
static struct keyboard keyindex _ s4 = { 

&keytab _ s4 _le, 

}; 

&keytab _ s4 _ uc, 
&keytab _ s4 _ cl, 
&keytab _s4 _ ct, 
&keytab _ s4 _ up, 
OxOOOO, 
OxOOOO, 
1, 
CAPSMASK, 

/• Shift bits which stay on with idle keyboard•/ 
/• Bucky bits which stay on with idle keyboard•/ 
77, /• abort keys•/ 
/• Shift bits which toggle on down event •/ 

Index Structure for the Type 3 Keyboard 
static struct keyboard keyindex _ s3 = { 

&keytab _ s3 _ le, 
&keytab _ s3 _ uc, 
&keytab _ s3 _ cl, 
&keytab _ s3 _ ct, 
&keytab _s3 _ up, 
OxOOOO, 
OxOOOO, 
Ox01,0x4d, 
CAPSMASK, 

}; 
Index Structure for the Sun-2 Keyboard 

static struct keyboard keyindex _ s2 = { 
&keytab _ s2 _ le, 

}; 

&keytab _ s2 _ uc, 
&keytab _ s2 _ cl, 
&keytab _s2 _ ct, 
&keytab _ s2 _ up, 
CAPSMASK, 
OxOOOO, 
OxOl, Ox4d, 
OxOOOO, 

/• Shift bits that stay on with idle keyboard •/ 
/• Bucky bits that stay on with idle keyboard •/ 
/• Abort sequence Ll-A •/ 
I• Shift bits that toggle on down event•/ 

I• Shift bits that stay on with idle keyboard•/ 
I• Bucky bits that stay on with idle keyboard•/ 
/• Abort sequence Ll-A •/ 
/• Shift bits that toggle on down event •/ 

Sun Release 4.0 Last change: 30 October 1987 1237 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Index Structure for the Micro Switch 103SD32-2 Keyboard 
static struct keyboard keyindex _ ms = { 

&keytab _ ms _le, 

}; 

&keytab _ms_ uc, 
&keytab _ms_ cl, 
&keytab _ms_ ct, 
&keytab _ms_ up, 
CTLSMASK, 
OxOOOO, 
OxOl, Ox4d, 
OxOOOO, 

/• Shift bits that stay on with idle keyboard •/ 
/• Bucky bits that stay on with idle keyboard•/ 
/• Abort sequence Ll-A •/ 
/• Shift bits that toggle on down event•/ 

Index Structure for the VTlOO-Style Keyboard 
static struct keyboard keyindex _ vt = { 

&keytab _ vt _Ic, 

}; 

&keytab _ vt _ uc, 
&keytab _ vt _ cl, 
&keytab _ vt _ ct, 
&keytab _ vt_up, 
CAPSMASK+CTLSMASK, 
OxOOOO, 
Ox01,0x3b, 
OxOOOO, 

/• Shift keys that stay on with idle keyboard•/ 
I• Bucky bits that stay on with idle keyboard•/ 
/• Abort sequence SETUP-A•/ 
/• Shift bits that toggle on down event •I 

DEFAULT TRANSLATION TABLES 
Type 4 Keyboard 

Unshifted 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) 07 TF(lO) 
SYSTEMBIT 

08 TF(3) 09 TF(ll) OA TF(4) OB TF(12) OC TF(5) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) lA LF(4) lB HOLE lC HOLE 1D C ('[') lE 'l' lF '2' 
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9' 'J:l 'O' 

28 ·-· 29 '=' 2A ... 2B '\b' 2C HOLE 2D RF(4) 2E RF(S) 2F RF (6) 
30 BF(13) 31 LF(S) 32 BF(lO) 33 LF(6) 34 HOLE 35 '\t' 36 'q' 37 'w' 
38 'e' 39 'r' 3A 't' 3B 'y' 3C 'u' 30 'i' 3E 'o' 3F 'p' 
40 '[' 41 ']' 42 Ox7F 43 OOPS 44 RF(7) 45 STRING+ 46 RF(9) 47 BF (15) 

(temp) UPARROW 
48 LF(7) 49 LF(8) 4A HOLE 4B HOLE 4C SHIFI'KEYS+ 40 'a' 4E 's' 4F 'd' 

LEFTCTRL 
50 'f' 51 'g' 52 'h' 53 'j' 54 'k' 55 '1' 56 ';' 57 '\" 
58 '\\' 59 '\r' SA BF(ll) SB STRING+ SC RF(l 1) SD STRING+ SE BF(8) SF LF(9) 

LEFTARROW RIGIITARROW 
60 HOLE 61 LF(lO) 62 BF(16) 63 SHIFI'KEYS+ 64 'z' 65 'x' 66 'c' 67 'v' 

LEFTSIIlFT 
68 'b' 69 'n' 6A 'm' 6B ',' 6C '.' 60 '/' 6E SHIFI'KEYS+ 6F '\n' 

RIGIITSIIlFf 
70 RF(l3) 71 STRING+ 72 RF(l5) 73 HOLE 74 HOLE 75 HOLE 76 LF(16) 77 SHIFfKEYS+ 

DOWNARROW CAPSLOCK 
78 BUCKYBITS+ 79 ' ' 7A BUCKYBITS+ 7B HOLE 7C HOLE 70 BF(14) 7E ERROR 7F IDLE 

MEfABIT MEfABIT 

1238 Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Type 4 Keyboard 
Shifted 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) ITT TF (10) 
SYSTEMBIT 

08 TF(3) 09 TF(ll) OA TF(4) OB TF(12) OC TF(S) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) lA LF(4) lB HOLE lC HOLE 1D C ('[') 1E '!' lF '@' 
20 '#' 21 '$' 22 '%' 23 fAf 2.4 '&' 25 ••• 26 '(' 'J:l ')' 
28 ._. 29 '+' '1A ·-· 2B '\b' 2C HOLE 2D RF(4) 2E RF(S) 2F RF (6) 
30 BF(13) 31 LF(S) 32 BF(lO) 33 LF(6) 34 HOLE 35 '\t' 36 'Q' 37 'W' 
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'U' 30 'I' 3E 'O' 3F 'P' 
40 '{' 41 '}' 42 Ox7F 43 OOPS 44 RF(7) 45 STRING+ 46 RF(9) 47 BF (15) 

(temp) UPARROW 
48 LF(7) 49 LF(8) 4A HOLE 4B HOLE 4C SHIFTKEYS+ 40 'A' 4E 'S' 4F 'D' 

LEFTCTRL 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 ':' 57 '"' 
58 'I' 59 '\r' SA BF(ll) SB STRING+ SC RF(ll) SD STRING+ SE BF(8) SF LF(9) 

LEFTARROW RIGHTARROW 
60 HOLE 61 LF(lO) 62 BF(16) 63 SHIFTKEYS+ 64 'Z' 65 'X' 66 ·c· 67 ·v· 

LEFTSHIFT 
68 'B' 69 'N' 6A 'M' 6B '<' 6C '>' 60 '?' 6E SHIFTKEYS+ 6F '\n' 

RIGHTSHIFT 
70 RF(13) 71 STRING+ 72 RF(lS) 73 HOLE 74 HOLE 75 HOLE 76 LF(16) 77 SHIFTKEYS+ 

DOWNARROW CAPSLOCK 
78 BUCK.YBITS+ 79 ' ' 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D BF (14) 7E ERROR 7F IDLE 

MEfABIT MEfABIT 

Type 4 Keyboard 
Caps Locked 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) ITT TF (10) 
SYSTEMBIT 

08 TF(3) 09 TF(ll) OA TF(4) OB TF(12) OC TF(S) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF(3) 
18 HOLE 19 LF(3) lA LF(4) 1B HOLE lC HOLE 1D C ('[') lE 'l' lF '2' 
21 '3' 21 '4' 22 ·s· 23 '6' 2.4 '7' 25 '8' 26 '9' 'J:l 'O' 

28 ·-· 29 '=' '1A ... 2B '\b' 2C HOLE 2D RF(4) 2E RF(S) 2F RF(6) 
30 BF(23) 32 LF(S) 32 BF(20) 33 LF (6) 34 HOLE 35 '\t' 36 'Q' 37 ·w· 
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'U' 3D 'I' 3E 'O' 3F 'P' 
40 '[' 41 ')' 43 Ox7F 43 OOPS 44 RF(7) 45 STRING+ 46 RF(9) 47 BF(lS) 

(temp) UPARROW 
48 LF(7) 49 LF(8) 4A HOLE 4B HOLE 4C SHIFTKEYS+ 40 'A' 4E 'S' 4F 'D' 

LEFTCTRL 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 ';' 51 '\" 
58 '\\' 59 '\r' SA BF(ll) SB STRING+ SC RF(ll) SD STRING+ SE BF(8) SF LF(9) 

LEFfARROW RIGIITARRROW 
60 HOLE 61 LF(lO) 62 BF(16) 63 SHIFTKEYS+ 64 'Z' 65 'X' 66 'C' 67 'V' 

LEFTSHIFT 
68 'B' 69 'N' 6A 'M' 6B ',' 6C '.' 60 '/' 6E SHIFI'KEYS+ 6F '\n' 

RIGHTSHIFT 
70 RF(l3) 71 STRING+ 72 RF(lS) 73 HOLE 74 HOLE 15 HOLE 76 LF(l6) 77 SHIFTKEYS+ 

DOWNARROW CAPSLOCK 
78 BUCKYBITS+ 79 ' ' 7A BUCKYBITS+ 7B HOLE 7C HOLE 70 BF (14) 7E ERROR 7F IDLE 

MEfABIT MEfABIT 

Sun Release 4.0 Last change: 30 October 1987 1239 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Type 4 Keyboard 
Controlled 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) 00 TF (10) 
SYSTEMBIT 

08 TF(3) 09 TF(ll) OA TF(4) OB TF(12) OC TF(5) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) IA LF(4) 1B HOLE IC HOLE 1D c('[') IE 'l' IF C ('@') 
20 '3' 21 '4' 22 '5' 23 c ('A') 24 '7' 25 '8' 26 '9' v ·o· 
28 c('_') 29 '=' 2A c('A') 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF (6) 
30 BF(13} 31 LF(5) 32 BF(lO) 33 LF(6) 34 HOLE 35 '\t' 36 c('q') 37 C ('w') 
38 c('e') 39 c('r') 3A c('t') 3B c('y') 3C c('u') 3D c('i') 3E c('o') 3F c ('p') 
40 c('[') 41 c(']') 42 Ox7F 43 OOPS 44 RF(7) 45 STRING+ 46 RF(9) 47 BF (15) 

(temp) UPARROW 
48 I..F(7) 49 LF(8) 4A HOLE 4B HOLE 4C SHIFfKEYS+ 4D c('a') 4E c('s') 4F c ('d') 

LEFfCTRL 
50 c('f') 51 c('g') 52 c('h') 53 c('j') 54 c('k') 55 C ('1') 56 ';' 57 '\." 
58 c('\.\') 59 '\r' 5A BF(ll) SB STRING.+ SC RF(ll) SD STRING+ SE BF(8) SF LF(9) 

LEFfARROW RIGHTARROW 
60HOLE 61 LF(lO) 62 BF(16) 63 SHIFfKEYS+ 64 c('z') 65 c('x') 66 c('c') 67 C ('v') 

LEFI'SHIFT 
68 c('b') 69 c('n') 6A c('m') 6B ',' 6C •.• 6D c ('_') 6E SHIFfKEYS+ 6F "n' 

RIGHTSHIFT 
70 RF(l3) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 LF(16) 77 SHIFfKEYS+ 

DOWNARROW CAPSLOCK 
78 BUCKYBITS+ 79 c(' ') 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D BF(14) 7E ERROR 7F IDI.E 

METABIT METABIT 

Type 4 Keyboard 
Key Up 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 OOPS 04 HOLE 05 OOPS 06 OOPS (11 HOLE 
SYSTEMBIT 

08 OOPS 09 HOLE OA OOPS OB HOLE oc OOPS OD HOLE OE OOPS OF HOLE 
10 OOPS 11 OOPS 12 OOPS 13 OOPS 14 HOLE 15 OOPS 16 OOPS 17 NOP 
18 HOLE 19 OOPS lA OOPS lB HOLE lC HOLE 1D NOP 1E NOP lF NOP 
20 NOP 21 NOP 22 NOP 23 NOP 24 NOP 25 NOP 26 NOP Tl NOP 
28 NOP 29 NOP 2A NOP 2B NOP 2C HOLE 2D OOPS 2E OOPS 2F NOP 
30 HOLE 31 OOPS 32 HOLE 33 OOPS 34 HOLE 35 NOP 36 NOP 37 NOP 
38 NOP 39 NOP 3A NOP 3B NOP 3C NOP 3D NOP 3E NOP 3F NOP 
40 NOP 41 NOP 42 NOP 43 HOLE 44 OOPS 45 OOPS 46 NOP 47 HOLE 
48 OOPS 49 OOPS 4A HOLE 4B HOLE 4C SHIFfKEYS+ 4D NOP 4E NOP 4F NOP 

LEFfCTRL 
50 NOP 51 NOP 52 NOP 53 NOP 54 NOP 55 NOP 56 NOP 57 NOP 
58 NOP 59 NOP SA HOLE SB OOPS SC OOPS SD NOP SE HOLE SF OOPS 
60 OOPS 61 OOPS 62 HOLE 63 SHIFfKEYS+ 64 NOP 65 NOP 66 NOP 67 NOP 

LEFfSHIFT 
68 NOP 69 NOP 6A NOP 6B NOP 6C NOP 6D NOP 6E SHIFTKEYS+ 6F NOP 

RlGIITSHIFT 
70 OOPS 71 OOPS 72 NOP 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 NOP 
78 BUCKYBITS+ 79 NOP 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F RESET 

:METABIT METABIT 

1240 Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Type 3 Keyboard 
Unshifted 

KeyValiu Key Value Key Value Key Value Key Value Key Valiu Key Valiu Key Valiu 

00 HOLE 01 BUCK.YBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) 07 HOLE 
SYSTEMBIT 

08 TF(3) 09 HOLE OA TF(4) OB HOLE OC TF(5) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) lA LF(4) 1B HOLE lC HOLE 1D C ('[') lE '1' lF '2' 
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9' v ·o· 
28 ·-· 29 '=' 2A ... 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF (6) 
30 HOLE 31 LF(5) 32 HOLE 33 LF(6) 34 HOLE 35 '\t' 36 'q' 37 'w' 

38 'e' 39 'r' 3A 't' 3B 'y' 3C 'u' 30 'i' 3E 'o' 3F 'p' 

40 T 41 T 42 Ox7F 43 HOLE 45 RF(]) 45 STRING+ 46 RF (9) 47 HOLE 
UPARROW 

48 LF(7) 49 LF(8) 4A LF(40) 4B HOLE 4C SHIFTKEYS+ 40 'a' 4E 's' 4F 'd' 
LEFfCTRL 

50 'f' 51 'g' 52 'h' 53 'j' 54 'k' 55 'l' 56 ';' 57 '\" 
58 '\' 59 '\r' 5A HOLE 5B STRING+ 5C RF(ll) 50 STRING+ 5E HOLE 5F LF(9) 

LEFfARROW RIGHTARROW 
60 I.F(15) 61 LF(lO) 62 HOLE 63 SHIFTKEYS+ 64 'z' 65 'x' 66 'c' 67 'v' 

LEFfSIIlFT 
68 'b' 69 'n' 6A 'm' 6B ',' 6C ... 60 '/' 6E SHIFTKEYS+ 6F "\n' 

RIGHTSHIFf 
70 RF(13) 71 S1RING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 SJilFfKEYS+ 

DOWNARROW CAPSLOCK. 
78 BUCK.YBITS+ 79 ' ' 7A BUCK.YBITS+ 7B HOLE 7C HOLE 70 HOLE 7E ERROR 7F IDLE 

METABIT METABIT 

Shifted 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value KeyValiu 

00 HOLE 01 BUCK.YBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) 07 HOLE 
SYSTEMBIT 

08 TF(3) 09 HOLE OA TF(4) OB HOLE OC TF(5) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) lA LF(4) 1B HOLE lC HOLE 1D C ('[') lE 'I' lF '@' 
20 '#' 21 '$' 22 '%' 23 .A, 24 '&' 25 ••• 26 '(' '};/ ')' 
28 ._. 29 '+' 2A ,-, 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF(6) 
30 HOLE 31 LF(5) 32 HOLE 33 LF(6) 34 HOLE 35 '\t' 36 'Q' 37 'W' 
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'U' 30 T 3E '0' 3F 'P' 
40 '{' 41 T 42 Ox7F 43 HOLE 44 RF(]) 45 STRING+ 46 RF (9) 47 HOLE 

UPARROW 
48 I.F(7) 49 LF(8) 4A HOLE 4B HOLE 4C SHIFTKEYS+ 40 'A' 4E 'S' 4F 'D' 

LEFfCTRL 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 ':' 57 '"' 
58 ·1· 59 '\r' 5A HOLE SB STRING+ SC RF(ll) 50 STRING+ SE HOLE SF LF(9) 

LEFTARROW RIGHTARROW 
60 LF(15) 61 LF(lO) 62 HOLE 63 SIIlFfKEYS+ 64 'Z' 65 ·x· 66 ·c· 67 ·v· 

LEFfSIIlFT 
68 'B' 69 'N' 6A 'M' 6B '<' 6C '>' 60 '7' 6E SHIFTKEYS+ 6F "\n' 

RIGHTSHIFf 
70 RF(13) 71 S1RING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 SJilFfKEYS+ 

DOWNARROW CAPSLOCK. 
78 BUCKYBITS+ 79 ' ' 7A BUCK.YBITS+ 7B HOLE 7C HOLE 70 HOLE 7E ERROR 7F IDLE 

METABIT METABIT 

Sun Release 4.0 Last change: 30 October 1987 1241 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Type 3 Keyboard 
Caps Locked 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

OOHOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) er, HOLE 
SYSTEMBIT 

08 TF(3) 09 HOLE OA TF(4) OB HOLE OC TF(S) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) IA LF(4) 1B HOLE IC HOLE 1D C ('[') 1E '1' IF '2' 
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9' v ·o· 
28 ·-· 29 '=' 1A ... 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF (6) 
30 HOLE 31 LF(S) 32 HOLE 33 LF(6) 34 HOLE 35 \t' 36 'Q' 37 ·w· 
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'U' 30 'I' 3E 'O' 3F 'P' 
40 '[' 41 ']' 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF (9) 47 HOLE 

UPARROW 
48 LF(7) 49 LF(8) 4A HOLE 4B HOLE 4C SlllFI'KEYS+ 40 'A' 4E 'S' 4F 'D' 

LEFTCTRL 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 ';' 57 '\'' 
58 '\.' 59 '\r' SA HOLE SB STRING+ SC RF(ll) SD STRING+ SE HOLE SF LF(9) 

LEFTARROW RIGHTARROW 
00 LF(15) 61 LF(lO) 62 HOLE 63 SHIFfKEYS+ 64 'Z' 65 'X' 66 'C' 67 'V' 

LEFTSHIFT 
68 'B' 69 'N' 6A 'M' 6B ',' 6C '.' 60 '/' 6E SlllFI'KEYS+ 6F '\n' 

RIGHTSHIFT 
70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 SHIFTKEYS+ 

DOWNARROW CAPSLOCK 
78 BUCKYBITS+ 79 ' ' 7A BUCKYBITS+ 7B HOLE 7C HOLE 70 HOLE 7E ERROR 7F IDLE 

METABIT METABIT 

Controlled 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) er, HOLE 
SYSTEMBIT 

08 TF(3) 09 HOLE OA TF(4) OB HOLE OC TF(5) OD HOLE OE TF(6) OF HOLE 
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) lA LF(4) 1B HOLE lC HOLE 1D c('[') lE 'l' lF C ('@') 
20 '3' 21 '4' 22 '5' 23 c ('A') 24 '7' 25 '8' 26 '9' v ·o· 
28 c('_') 29 '=' 1A c('A') 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF (6) 
30 HOLE 31 LF(5) 32 HOLE 33 LF(6) 34 HOLE 35 \t' 36 c('q') 37 C ('w') 
38 c('e') 39 c('r') 3A c('t') 3B c('y') 3C c('u') 30 c('i') 3E c('o') 3F c ('p') 
40 c('[') 41 c(']') 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF (9) 47 HOLE 

UPARROW 
48 LF(7) 49 LF(8) 4A HOLE 4B HOLE 4C SlllFI'KEYS+ 40 c('a') 4E c('s') 4F c ('d') 

LEFfCTRL 
50 c('f') 51 c('g') 52 c('h') 53 c('j') 54 c('k') 55 C ('l') 56 ';' 57 '\" 
58 c('\') 59 '\r' SA HOLE SB STRING+ SC RF(ll) SD STRING+ SE HOLE SF LF(9) 

LEFTARROW RIGHTARROW 
00 LF(l5) 61 LF(lO) 62 HOLE 63 SlllFI'KEYS+ 64 c('z') 65 c('x') 66 c('c') 67 C ('v') 

LEFTSHIFT 
68 c('b') 69 c('n') 6A c('m') 6B ',' 6C '.' 60 C ('_') 6E SHIFfKEYS+ 6F '\n' 

RIGHTSHIFT 
70 RF(l3) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 SHIFTKEYS+ 

DOWNARROW CAPSLOCK 
78 BUCKYBITS+ 79 c (' ') 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE 

METABIT METABIT 

1242 Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Type 3 Keyboard 
Key Up 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 OOPS 04 HOLE 05 OOPS 06 OOPS ITT HOLE 

SYSTEMBIT 

08 OOPS 09 HOLE OA OOPS OB HOLE oc OOPS OD HOLE OE OOPS OF HOLE 

10 OOPS 11 OOPS 12 OOPS 13 OOPS 14 HOLE 15 OOPS 16 OOPS 17 NOP 

18 HOLE 19 OOPS lA OOPS lB HOLE lC HOLE 1D NOP 1E NOP lF NOP 

20 NOP 21 NOP 22 NOP 23 NOP 24 NOP 25 NOP 26 NOP Tl NOP 

28 NOP 29 NOP 2A NOP 2B NOP 2C HOLE 2D OOPS 2E OOPS 2F NOP 

30 HOLE 31 OOPS 32 HOLE 33 OOPS 34 HOLE 35 NOP 36 NOP 37 NOP 

38 NOP 39 NOP 3A NOP 3B NOP 3C NOP 3D NOP 3E NOP 3F NOP 

40 NOP 41 NOP 42 NOP 43 HOLE 44 OOPS 45 OOPS 46 NOP 47 HOLE 

48 OOPS 49 OOPS 4A HOLE 4B HOLE 4C SlllFfKEYS+ 4D NOP 4E NOP 4F NOP 

LEFfCTRL 

50 NOP 51 NOP 52 NOP 53 NOP 54 NOP 55 NOP 56 NOP 57 NOP 
58 NOP 59 NOP 5A HOLE 5B OOPS 5C OOPS 5D NOP 5E HOLE 5F OOPS 

60 OOPS 61 OOPS 62 HOLE 63 SlllFfKEYS+ 64 NOP 65 NOP 66 NOP 67 NOP 

LEFfSHIFf 

68 NOP 69 NOP 6A NOP 6B NOP 6C NOP 6D NOP 6E SHIFTKEYS+ 6F NOP 
RIGIITSHIFf 

70 OOPS 71 OOPS 72 NOP 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 NOP 
78 BUCKYBITS+ 79 NOP 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F RESET 

METABIT METABIT 

Sun-2 Keyboard 
Unshifted 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 LF(l 1) 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) 07 TF (11) 

SYSTEMBIT 
08 TF(3) 09 TF(12) OA TF(4) OB TF(l3) OC TF(5) OD TF(l4) OE TF(6) OF TF(l5) 

10 TF(7) 11 TF(8) 12 TF(9) 13 TF(lO) 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 

18 HOLE 19 LF(3) lA LF(4) 1B LF(12) lC HOLE 1D c('[') 1E '1' 1F '2' 
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9' 27 'O' 

28 ·-· 29 '=' 2A '" 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF(6) 
30 HOLE 31 LF(5) 32 LF(13) 33 LF (6) 34 HOLE 35 '\t' 36 'q' 37 'w' 

38 'e' 39 'r' 3A 't' 3B 'y' 3C 'u' 3D 'i' 3E 'o' 3F 'p' 
40 '[' 41 ']' 42 Ox7F 43 HOLE 44 RF(7) 45 S1RING+ 46 RF(9) 47 HOLE 

UPARROW 
48 LF(7) 49 LF(8) 4A LF (14) 4B HOLE 4C SlllFfKEYS+ 4D 'a' 4E 's' 4F 'd' 

LEFfCTRL 
50 'f' 51 'g' 52 'h' 53 'j' 54 'k' 55 'l' 56 '·' 57 \'' 
58 '\' 59 '\r' 5A HOLE 5B S1RING+ 5C RF(ll) 5D S1RING+ 5E HOLE 5F LF (9) 

LEFfARROW RIGIIT ARROW 
60 LF(15) 61 LF(lO) 62 HOLE 63 SlllFfKEYS+ 64 'z' 65 'x' 66 'c' 67 'v' 

LEFfSHIFf 
68 'b' 69 'n' 6A 'm' 6B 6C 6D ·r 6E SHIFfKEYS+ 6F '\n' 

RIGIITSHIFf 
70 RF(13) 71 S1RING+ 72 RF (15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 

DOWNARROW 
70 BUCKYBITS+ 71 72 BUCKYBITS+ 73 HOLE 74 HOLE 75 HOLE 76 ERROR 77 IDLE 

METABIT METABIT 

Sun Release 4.0 Last change: 30 October 1987 1243 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Sun-2 Keyboard 
Shifted 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 LF(ll) 03 I.F(2) 04 HOLE 05 TF(l) 06 TF(2) 07 TF (11) 
SYSTEMBIT 

08 TF(3) 00 TF(12) OA TF(4) OB TF(13) OC TF(5) OD TF(14) OE TF(6) OF TF(15) 
10 TF(7) 11 TF(8) 12 TF(9) 13 TF(lO) 14 HOLE 15 RF(l) 16 RF(2) 17 RF(3) 
18 HOLE 19 LF(3) lA LF(4) lB LF(12) lC HOLE 1D c('[') 1E '!' lF '@' 
20 '#' 21 '$' 22 '%' 23 24 '&' 25 ••• 26 '(' 27 ')' 
28 ._. 29 '+' 2A ••• 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF(6) 
30 HOLE 31 LF(5) 32 LF(13) 33 I.F(6) 34 HOLE 35 '\t' 36 'Q' 37 ·w· 
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'U' 3D 'I' 3E 'O' 3F 'P' 
40 '{' 41 . } ' 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF(9) 47 HOLE 

UPARROW 
48 LF(7) 49 LF(8) 4A LF (14) 4B HOLE 4C SHlFfKEYS+ 4D 'A' 4E 'S' 4F 'D' 

LEFfCTRL 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 '·' 57 
58 .,. 59 '\r' 5A HOLE 5B STRING+ 5C RF(ll) 5D STRING+ SE HOLE 5F IF (9) 

LEFfARROW RIGHfARROW 
60 LF(l5) 61 LF(lO) 62 HOLE 63 SHlFfKEYS+ 64 ·z· 65 'X' 66 'C' 67 ·v· 

LEFfSHIFf 
68 'B' 69 'N' 6A 'M' 6B '<' 6C '>' 6D '7' 6E SHlFfKEYS+ 6F '\n' 

RIGHfSIIlFT 
70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 

DOWNARROW 
78 BUCKYBITS+ 79 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE 

METABIT METABIT 

Caps Locked 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 LF(ll) 03 lF(2) 04 HOLE 05 TF(l) 06 TF(2) 07 TF (11) 
SYSTEMBIT 

08 TF (3) 09 TF(12) OA TF(4) OB TF(13) OC TF(5) OD TF(l4) OE TF(6) OF TF(lS) 
10 TF(7) 11 TF(8) 12 TF(9) 13 TF(lO) 14 HOLE 15 RF(l) 16 RF(2) 17 RF (3) 
18 HOLE 19 LF(3) lA LF(4) lB lF(12) lC HOLE 1D c('[') lE 'l' 1F '2' 
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9' 21 ·o· 
28 ·-· 29 '=' 2A ... 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF(6) 
30 HOLE 31 LF(5) 32 LF(13) 33 I.F(6) 34 HOLE 35 '\t' 36 'Q' 37 ·w· 
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'U' 3D 'I' 3E 'O' 3F 'P' 
40 '[' 41 T 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF(9) 47 HOLE 

UPARROW 
48 LF(7) 49 LF(8) 4A LF(14) 4B HOLE 4C SHlFfKEYS+ 4D 'A' 4E 'S' 4F 'D' 

LEFfCTRL 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 '·' 57 '\" 
58 '\' 59 '\r' SA HOLE 5B STRING+ SC RF(ll) 5D STRING+ SE HOLE 5F IF (9) 

LEFfARROW RIGHfARROW 
60 LF(15) 61 LF(lO) 62 HOLE 63 SHlFfKEYS+ 64 ·z· 65 'X' 66 ·c· 67 ·v· 

LEFfSHIFf 
68 'B' 69 'N' 6A 'M' 6B 6C 6D ·r 6E SHIFfKEYS+ 6F '\n' 

RIGHfSIIlFT 
70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 

DOWNARROW 
78 BUCKYBITS+ 79 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE 

METABIT METABIT 

1244 Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Sun-2 Keyboard 
Controlled 

KeyValU£ KeyValU£ KeyValiu KeyValue Key Value KeyValU£ Key Value KeyValue 

OOHOLE 01 BUCKYBITS+ 02 LF(ll) 03 LF(2) 04 HOLE 05 TF(l) 06 TF(2) 07 TF (11) 
08 TF(3) 09 TF(12) OA TF(4) OB TF(l3) oc TF(5) 0DTF(l4) OE TF(6) OFTF(15) 

10TF(7) 11 TF(8) 12 TF(9) 13 TF(lO) 14 HOLE 15 RF(l) 16 RF(Z) 17 RF (3) 

18 HOLE 19 LF(3) lA LF(4) 1B LF(12) lC HOLE 1D c('[') 1E '1' lFc('@') 

20 '3' 21 '4' 22 '5' 23 cC') 24 '7' 25 '8' 26 '9' 27 'O' 
28 c('_') 29 '=' 2A c('A') 2B '\b' 2C HOLE 2DRF(4) 2E RF(5) 2FRF(6) 

30HOLE 31 LF(5) 32 LF(13) 33 LF(6) 34 HOLE 35 '\t' 36 c('q') 37 c('w') 

38 c('e') 39 c('r') 3A c('t') 3B c('y') 3C c('u') 3Dc('i') 3E c('o') 3F c ('p') 

40 c('[') 41 c(']') 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF(9) 47 HOLE 
UPARROW 

48 LF(7) 49 LF(8) 4ALF(14) 4BHOLE 4C SIIlFfKEYS+4D c('a') 4E c('s') 4Fc('d') 

LEFI'CTRL 
50 c('f') 51 c('g') 52 c('h') 53 c('j') 54 c('k') 55 C ('l') 56 '·' 57 '\'' 
58 c('\') 59 '\r' 5AHOLE 5B STRING+ SC RF(ll) 5DSTRING+ SE HOLE 5FLF(9) 

LEFI'ARROW RIGIITARROW 
60 LF(l5) 61 LF(lO) 62HOLE 63 SIIlFfKEYS+ 64 c('z') 65 c('x') 66 c('c') 67 c('v') 

LEFI'SIIlFf 
68 c('b') 69 c('n') 6A c('m') 6B ',' 6C 6Dc ('_') 6E SIIlFfKEYS+ 6F '\n' 

RIGIITSIIlFf 
70RF(13) 71 STRING+ 72 RF (15) 73HOLE 74 HOLE 75HOLE 76 HOLE 77 HOLE 

DOWNARROW 
78 BUCKYBITS+ 79 c (' ') 7A BUCKYBITS+ 7B HOLE 7C HOLE 7DHOLE 7E ERROR 7FIDLE 

METABIT METABIT 

Key Up 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 OOPS 03 OOPS 04 HOLE 05 OOPS 06 OOPS 07 OOPS 
SYSTEMBIT 

08 OOPS 09 OOPS OA OOPS OB OOPS oc OOPS OD OOPS OE OOPS OF OOPS 

10 OOPS 11 OOPS 12 OOPS 13 OOPS 14 HOLE 15 OOPS 16 OOPS 17 NOP 
18 HOLE 19 OOPS lA OOPS 1B OOPS lC HOLE 1D NOP 1E NOP lF NOP 
20 NOP 21 NOP 22 NOP 23 NOP 24 NOP 25 NOP 26 NOP 27 NOP 

28 NOP 29 NOP 2A NOP 2B NOP 2C HOLE 2D OOPS 2E OOPS 2F NOP 
30 HOLE 31 OOPS 32 OOPS 33 OOPS 34 HOLE 35 NOP 36 NOP 37 NOP 
38 NOP 39 NOP 3A NOP 3B NOP 3C NOP 3D NOP 3E NOP 3F NOP 
40 NOP 41 NOP 42 NOP 43 HOLE 44 OOPS 45 OOPS 46 NOP 47 HOLE 
48 OOPS 49 OOPS 4A OOPS 4B HOLE 4C SIIlFfKEYS+ 4D NOP 4e NOP 4F NOP 

LEFI'CTRL 
50 NOP 51 NOP 52 NOP 53 NOP 54 NOP 55 NOP 56 NOP 57 NOP 
58 NOP 59 NOP 5A HOLE SB OOPS SC OOPS SD NOP SE HOLE SF OOPS 
60 OOPS 61 OOPS 62 HOLE 63 SIIlFfKEYS+ 64 NOP 65 NOP 66 NOP 67 NOP 

LEFI'SIIlFf 
68 NOP 69 NOP 6A NOP 6B NOP 6C NOP 6D NOP 6E SIIlFfKEYS+ 6F NOP 

RIGIITSIIlFf 
70 OOPS 71 OOPS 72 NOP 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 
78 BUCKYBITS+ 79 NOP 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F RESET 

METABIT METABIT 

Sun Release 4.0 Last change: 30 October 1987 1245 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Micro Switch 103SD32-2 Keyboard 
Unshifted 

Key Va1"" Key Val,u Key Value Key Val,u Key Va1"" Key Va1"" Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 LF(2) 03 LF(3) 04 HOLE 05 TF(l) 06 TF(2) 07 TF(3) 
SYSTEMBIT 

08 TF(4) 09 TF(S) OA TF(6) OB TF(7) oc TF(8) OD TF(9) OE TF(lO) OF TF (11) 
10 TF(12) 11 TF(13) 12 TF(14) 13 c('[') 14 HOLE 15 RF(l) 16 '+' 17 -
18 HOLE 19 LF(4) lA '\f' 1B LF(6) lC HOLE 1D SHIFTKEYS+ 1E 'l' lF '2' 

CAPSLOCK 

20 '3' 21 '4' 22 ·s· 23 '6' 24 '7' 25 '8' 26 '9' 27 ·o· 
28 - 29 2A 2B '\b' 2C HOLE 2D '7' 2E '8' 2F '9' 

30 HOLE 31 LF(7) 32 STRING+ 33 LF(9) 34 HOLE 35 '\t' 36 'q' 37 'w' 

UPARROW 

38 'e' 39 'r' 3A 't' 3B 'y' 3C 'u' 3D 'i' 3E 'o' 3F 'p' 
40 . {. 41 '}' 42 43 HOLE 44 '4' 45 '5' 46 '6' 47 HOLE 
48 STRING+ 49 STRING+ 4A STRING+ 4B HOLE 4C SHIFTKEYS+ 4D 'a' 4E 's' 4F 'd' 

LEFfARROW HOMEARROW RIGHfARROW SHIFTI..OCK 

50 'f' 51 'g' 52 'h' 53 'j' 54 'k' 55 'I' 56 '·' 57 '·' 
58 'I' 59 '\r' SA HOLE 5B '1' SC '2' SD '3' 5E HOLE 5F NOSCROLL 

60 STRING+ 61 LF (15) 62 HOLE 63 HOLE 64 SHIFTKEYS+ 65 'z' 66 'x' 67 'c' 
DOWNARROW LEFfSIIlFf 

68 'v' 69 'b' 6A 'n' 6B 'm' (iC 6D 6E ·r 6F SHIFTKEYS+ 
RIGHfSHIFf 

70 NOP 71 Ox7F 72 ·o· 73 NOP 74 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A SHIFTKEYS+ 7B 7C SHIFTKEYS+ 7D HOLE 7E HOLE 7F IDLE 

LEFfCTRL RIGHfCTRL 

Shifted 
Key Va1"" Key VallUl Key Va1"" Key Val,u Key Va1"" Key Value Key Value Key Val,u 

00 HOLE 01 BUCKYBITS 02 LF(2) 03 LF(3) 04 HOLE 05 TF(l) 06 TF(2) 07 TF(3) 

SYSTEMBIT 
08 TF(4) 09 TF(5) OA TF(6) OB TF(7) oc TF(8) OD TF(9) OE TF(lO) OF TF (11) 

10 TF(12) 11 TF(13) 12 TF(14) 13 c('[') 14 HOLE 15 RF(l) 16 '+' 17 -
18 HOLE 19 LF(4) lA '\f' lB LF(6) lC HOLE 1D SHIFTKEYS+ 1E '!' lF 

CAPSLOCK 
20 '#' 21 '$' 22 '%' 23 '&' 24 '\'' 25 . (' 26 ')' 27 ·o· 
28 '=' 29 2A '@' 2B '\b' 2C HOLE 2D '7' 2E '8' 2F '9' 

30 HOLE 31 LF(7) 32 STRING+ 33 LF (9) 34 HOLE 35 '\t' 36 'Q' 37 ·w· 
UPARROW 

38 'E' 39 'R' 3A 'T' 3B •y• 3C ·u· 3D 'I' 3E ·o· 3F •p• 

40 '[' 41 T 42 43 HOLE 44 '4' 45 '5' 46 '6' 47 HOLE 
48 STRING+ 49 STRING+ 4A STRING+ 4B HOLE 4C SHIFTKEYS+ 4D 'A' 4E ·s· 4F 'D' 

LEFfARROW HOMEARROW RIGHfARROW SIIlFILOCK 
50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 '+' 57 .•. 
58 '\' 59 '\r' SA HOLE 5B 'l' SC '2' SD '3' 5E HOLE 5F NOSCROLL 
60 STRING+ 61 LF(lS) 62 HOLE 63 HOLE 64 SHIFTKEYS+ 65 ·z· 66 ·x· 67 ·c· 

DOWNARROW LEFfSIIlFf 
68 ·v· 69 'B' 6A 'N' 6B 'M' (iC '<' 6D '>' 6E '7' 6F SHIFI'KEYS+ 

RIGHfSHIFf 
70 NOP 71 Ox7F 72 ·o· 73 NOP 74 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A SHIFTKEYS+ 7B 7C SHIFTKEYS+ 7D HOLE 7E HOLE 7F IDLE 

RIGHfSIIlFf LEFfCTRL 

1246 Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Micro Switch 103SD32-2 Keyboard 
Caps Locked 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 LF(2) 03 LF(3) 04 HOLE 05 TF(l) 06 TF(2) 07 TF(3) 

SYSTEMBIT 

08 TF(4) 09 TF(S) OA TF(6) OB TF(7) oc TF(8) OD TF(9) OE TF(lO) OF TF(ll) 

10 TF(12) 11 TF(13) 12 TF(14) 13 c('[') 14 HOLE 15 RF(l) 16 '+' 17 -
18 HOLE 19 LF(4) lA '\f' 1B LF(6) lC HOLE 1D SHIFTKEYS+ 1E '1' lF '2' 

CAPSLOCK 

20 '3' 21 '4' 22 ·s· 23 '6' 24 '7' 25 '8' 26 '9' 27 ·o· 
28 - 29 2A 2B '\b' 2C HOLE 2D '7' 2E '8' 2F '9' 

30 HOLE 31 LF(7) 32 STRING+ 33 LF(9) 34 HOLE 35 ~· 36 'Q' 37 ·w· 
UPARROW 

38 'E' 39 'R' 3A 'T' 3B •y• 3C ·u· 30 'I' 3E ·o· 3F •p• 

40 . {' 41 '}' 42 43 HOLE 44 '4' 45 ·s· 46 '6' 47 HOLE 
48 STRING+ 49 STRING+ 4A STRING+ 4B HOLE 4C SHIFTKEYS+ 40 'A' 4E ·s· 4F 'D' 

LEFI'ARROW HOMEARROW RIGHfARROW SHlFILOCK 
50 'F' 51 'G' 52 'H' 53 'I' 54 'K' 55 'L' 56 ... 57 ... . 
58 'I' 59 '\r' SA HOLE 5B '1' SC '2' SD '3' SE HOLE SF NOSCROLL 
60 STRING+ 61 LF (15) 62 HOLE 63 HOLE 64 SHIFTKEYS+ 65 ·z· 66 ·x· 67 ·c· 

OOWNARROW LEFl'SHIFT 

68 ·v· 69 'B' 6A 'N' 6B 'M' 6C 60 6E ·r 6F SHIFTKEYS+ 
RIGHfSHIFI' 

70 NOP 71 Ox7F 72 ·o· 73 NOP 74 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A SHIFTKEYS+ 7B 7C SHIFTKEYS 7D HOLE 7E HOLE 7F IDLE 

LEFfCTRL RIGHfCTRL 

Controlled 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCK.YBITS+ 02 LF(2) 03 LF(3) 04 HOLE 05 TF(l) 06 TF(2) 07 TF(3) 

SYSTEMBIT 
08 TF(4) 09 TF(5) OA TF(6) OB TF(l) oc TF(8) OD TF(9) OE TF(lO) OF TF(ll) 

10 TF(02) 11 TF(03) 12 TF(04) 13 c('[') 14 HOLE 15 RF(O) 16 OOPS 17 OOPS 
18 HOLE 19 LF(4) lA '\f' 1B LF(6) lC HOLE 1D SHIFTKEYS+ lE OOPS lF OOPS 

CAPSLOCK 
20 OOPS 21 OOPS 22 OOPS 23 OOPS 24 OOPS 25 OOPS 26 OOPS 27 OOPS 
28 OOPS 29 c('A') 2A c('@') 2B '\b' 2C HOLE ID OOPS 2E OOPS 2F OOPS 
30 HOLE 31 LF(l) 32 STRING+ 33 F(9) 34 HOLE 35 ~· 36 CTRLQ 37 c('W') 

UPARROW 
38 c('E') 39 c('R') 3A c('T') 3B c('Y') 3C c('U') 30 c('I') 3E c('O') 3F C ('P') 
40 c('[') 41 c(']') 42 C ('_') 43 HOLE 44 OOPS 45 OOPS 46 OOPS 47 HOLE 
48 STRING+ 49 STRING+ 4A STRING+ 4B HOLE 4C SHIFTKEYS+ 4D c('A') 4E CTRLS 4F c('D') 

LEFI'ARROW HOMEARROW RIGHfARROW SHIFTLOCK 
50 c('F') 51 c('G') 52 c('H') 53 c('J') 54 c('K') 55 C ('L') 56 OOPS 57 OOPS 
58 C (\') 59 '\r' SA HOLE SB OOPS SC OOPS 5D OOPS SE HOLE SF NOSCROLL 
60 STRING+ 61 LF(15) 62 HOLE 63 HOLE 64 SHIFTKEYS+ 65 c('Z') 66 c('X') 67 c('C') 

DOWNARROW LEFfSIIlFf 
68 c('V') 69 c('B') 6A c('N') 6B C ('M') 6C OOPS 6D OOPS 6E OOPS 6F SHIFTKEYS+ 

RIGIITSHIFT 
70 NOP 71 Ox7F 72 OOPS 73 NOP 74 OOPS 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A SHIFTKEYS+ 7B '\O' 7C SHIFTKEYS+ 7D HOLE 7E HOLE 7F IDLE 

LEFfCfRL RIGIITCTRL 

Sun Release 4.0 Last change: 30 October 1987 1247 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

Micro Switch 103SD32-2 Keyboard 
Key Up 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 OOPS 03 OOPS 04 HOLE 05 OOPS 06 OOPS 07 OOPS 
SYSTEMBIT 

08 OOPS ()() OOPS OA OOPS OB OOPS oc OOPS OD OOPS OE OOPS OF OOPS 
10 OOPS 11 OOPS 12 OOPS 13 NOP 14 HOLE 15 OOPS 16 NOP 17 NOP 
18 HOLE 19 OOPS lA NOP 1B OOPS lC HOLE lD SIIlFIXEYS+ 1E NOP lF NOP 

CAPSLOCK 

20 NOP 21 NOP 22 NOP 23 NOP 24 NOP 25 NOP 26 NOP 27 NOP 

28 NOP 29 NOP 2A NOP 2B NOP 2C HOLE 2D NOP 2E NOP 2F NOP 

30 HOLE 31 OOPS 32 NOP 33 OOPS 34 HOLE 35 NOP 36 NOP 37 NOP 

38 NOP 39 NOP 3A NOP 3B NOP 3C NOP 30 NOP 3E NOP 3F NOP 

40 NOP 41 NOP 42 NOP 43 HOLE 44 NOP 45 NOP 46 NOP 47 HOLE 

48 NOP 49 NOP 4A NOP 4B HOLE 4C SIIlFTKEYS+ 40 NOP 4E NOP 4F NOP 
SHIFTLOCK 

50 NOP 51 NOP 52 NOP 53 NOP 54 NOP 55 NOP 56 NOP 57 NOP 

58 NOP 59 NOP SA HOLE 5B NOP 5C NOP SD NOP 5E HOLE 5F NOP 

60 NOP 61 OOPS 62 HOLE 63 HOLE 64 SHIFTKEYS+ 65 NOP 66 NOP 67 NOP 
LEFfSIIlFT 

68 NOP 69 NOP 6A NOP 6B NOP 6C NOP 60 NOP 6E NOP 6F SIIlFTKEYS+ 

RIGIITSHIFf 
70 NOP 71 NOP 72 NOP 73 NOP 74 NOP 75 HOLE 76 HOLE 77 HOLE 

78 HOLE 79 HOLE 7A SHIFTKEYS+ 7B NOP 7C SIIlFTKEYS+ 70 HOLE 7E HOLE 7F RESEf 
LEFTCTRL RIGIITCfRL 

VTIOO-Style Keyboard 
Unshifted 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 HOLE 04 HOLE 05 HOLE 06 HOLE 07 HOLE 
SYSTEMBIT 

08 H0LE ()() HOLE OA STRING+ OB STRING+ oc STRING+ OD STRING+ OE HOLE OF TF(l) 

UPARROW DOWNARROW LEFfARROW RIGIITARROW 

10 TF(2) 11 TF(3) 12 TF(4) 13 C ('[') 14 'l' 15 '2' 16 '3' 17 '4' 

18 '5' 19 '6' lA '7' lB '8' lC '9' 1D 'O' 1E '' lF '=' 
20 21 C ('H') 22 BUCKYBITS+ 23 '7' 24 '8' 25 '9' 26 '' Tl '\t' 

METABIT 

28 'q' 29 'w' 2A 'e' 2B 'r' 2C 't' 2D 'y' 2E 'u' 2F 'i' 
30 'o' 31 'p' 32 '[' 33 ']' 34 Ox7F 35 '4' 36 '5' 37 '6' 

38 39 SIIlFIXEYS+ 3A SHIFI'KEYS+ 3B 'a' 3C 's' 30 'd' 3E ·r 3F 'g' 
LEFfCTRL CAPSLOCK 

40 'h' 41 'j' 42 'k' 43 'I' 44 ';' 45 '\'' 46 '\r' 47 '\' 

48 '1' 49 '2' 4A '3' 4B NOP 4C NOSCROlL 40 SHIFI'KEYS+ 4E 'z' 4F 'x' 
LEFfSIIlFT 

50 'c' 51 'v' 52 'b' 53 'n' 54 'm' 55 56 57 '/' 
58 SIIlFIXEYS+ 59 '\n' SA 'O' SB HOLE SC 5D '\r' 5E HOLE SF HOLE 

RIGIITSIIlFT 
60 HOLE 61 HOLE 62 63 HOLE 64 HOLE 65 HOLE 66 HOLE 67 HOLE 
68 HOLE 69 HOLE 6A HOl.E 6B HOLE 6C HOLE 6D HOLE 6E HOl.E 6F HOLE 

70 HOLE 71 HOLE 72 HOLE 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A HOl.E 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F IDLE 

1248 Last change: 30 October 1987 Sun Release 4.0 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

VTlOO-Style Keyboard 
Shifted 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 HOLE 04 HOLE 05 HOLE 06 HOLE crJ HOLE 
SYSTEMBIT 

08 HOLE ()I) HOLE OA STRING+ OB STRING+ oc STRING+ OD STRING+ OE HOLE OF TF(l) 
UPARROW DOWNARROW LEFfARROW RIGIITARROW 

10 TF(2) 11 1F(3) 12 TF(4) 13 C ('(') 14 .,. 15 '@' 16 '#' 17 '$' 
18 '%' 19 lA '&' 1B .•. lC '(' 1D ')' 1E lF '+' 

20 21 C ('H') 22 BUCKYBITS+ 23 '7' 24 '8' 25 '9' 26 .. Tl '\t' 
METABIT 

28 'Q' 29 'W' 2A 'E' 2B 'R' 2C 'T' 2D •y• 2E ·u· 2F 'I' 
30 'O' 31 'P' 32 '{' 33 '}' 34 Ox7F 35 '4' 36 '5' 37 '6' 

38 39 SHIFfKEYS+ 3A SHIFfKEYS+ 3B 'A' 3C ·s· 30 'D' 3E 'F' 3F 'G' 
LEFfCTRL CAPSLOCK 

40 'H' 41 'J' 42 'K' 43 'L' 44 ,., 
45 46 '\r' 47 .,. 

48 'l' 49 '2' 4A '3' 4B NOP 4C NOSCROIL 40 SHIFfKEYS+ 4E 'Z' 4F ·x· 
LEFfSIIlFf 

50 'C' 51 ·v· 52 'B' 53 'N' 54 'M' 55 '<' 56 '>' 57 '?' 
58 SHIFfKEYS+ 59 '\n' 5A ·o· 5B HOLE SC 5D '\r' 5E HOLE SF HOLE 

RIGIITSIIlFf 
60 HOLE 61 HOLE 62 63 HOLE 64 HOLE 65 HOLE 66 HOLE 67 HOLE 
68 HOLE 69 HOLE 6A HOLE 6B HOLE 6C HOLE 6D HOLE 6E HOLE 6F HOLE 

70 HOLE 71 HOLE 72 HOLE 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A HOLE 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F IDLE 

Caps Locked 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 HOLE 04 HOLE 05 HOLE 06 HOLE crJ HOLE 
SYSTEMBIT 

08 HOLE ()I) HOLE OA STRING+ OB STRING+ oc STRING+ OD STRING+ OE HOLE OF TF(l) 
UPARROW DOWNARROW LEFfARROW RIGIITARROW 

10 TF(2) 11 1F(3) 12 TF(4) 13 C ('(') 14 '1' 15 ·2· 16 '3' 17 '4' 
18 ·s· 19 '6' lA '7' lB '8' lC '9' 1D 'O' 1E - lF '=' 
20 21 C ('H') 22 BUCKYBITS+ 23 •7• 24 '8' 25 '9' 26 - Tl '\t' 

METABIT 

28 'Q' 29 ·w· 2A 'E' 2B 'R' 2C 'T' 2D 'Y' 2E ·u· 2F 'I' 
30 ·o· 31 'P' 32 '[' 33 ']' 34 Ox7F 35 '4' 36 '5' 37 '6' 
38 39 SHIFfKEYS+ 3A SIIlFfKEYS+ 3B 'A' 3C 'S' 30 'D' 3E 'F' 3F 'G' 

LEFfCTRL CAPSLOCK 
40 'H' 41 'J' 42 'K' 43 'L' 44 '·' 45 '\'' 46 '\r' 47 '\' 
48 '1' 49 '2' 4A '3' 4B NOP 4C NOSCROIL 40 SHIFfKEYS+ 4E 'Z' 4F 'X' 

LEFfSIIlFf 
50 'C' 51 'V' 52 'B' 53 'N' 54 'M' 55 56 57 ·r 
58 SlilFI'KEYS+ 59 '\n' 5A 'O' 5B HOLE SC 5D '\r' 5E HOLE SF HOLE 

RIGIITSIIlFf 
60 HOLE 61 HOLE 62 63 HOLE 64 HOLE 65 HOLE 66 HOLE 67 HOLE 
68 HOLE 69 HOLE 6A HOLE 6B HOLE 6C HOLE 6D HOLE 6E HOLE 6F HOLE 
70 HOLE 71 HOLE 72 HOLE 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A HOLE 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F IDLE 

Sun Release 4.0 Last change: 30 October 1987 1249 



KB(4M) DEVICES AND NETWORK INTERFACES KB(4M) 

VTlOO-Style Keyboard 
Controlled 

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 HOLE 04 HOLE 05 HOLE 06 HOLE 07 HOLE 
SYSTEMBIT 

08 HOLE ()I) HOLE OA STRING+ OB STRING+ oc STRING+ OD STRING+ OE H9LE OF TF(l) 

UPARROW DOWNARROW LEFfARROW RIGIITARROW 
10 TF(2) 11 TF(3) 12 TF(4) 13 c('[') 14 'l' 15 C ('@') 16 '3' 17 '4' 

18 '5' 19 c('A') lA 7' lB '8' lC '9' 1D 'O' 1E C ('_') lF -
20 c(>A') 21 C ('H') 22 BUCKYBITS+ 23 '7' 24 '8' 25 '9' 26 - Z'I '\t' 

METABIT 

28 CTRLQ 29 c('W') 2A c('E') 2B c('R') 2C c('T') 2D c('Y') 2E c('U') 2F C ('J') 

30 c('O') 31 c('P') 32 c('[') 33 C (')') 34 Ox7F 35 '4' 36 '5' 37 '6' 

38 39 SHIFTKEYS+ 3A SHIFTKEYS+ 3B c('A') 3C CTRLS 30 c('D') 3E c('F') 3F C ('G') 

LEFfCTRL CAPSLOCK 
40 c('H') 41 c('J') 42 c('K') 43 c('L') 44 '·' 45 46 '\r' 47 C ('\') 

48 '1' 49 '2' 4A '3' 4B NOP 4C NOSCROLL 40 SHIFTKEYS+ 4E c('Z') 4F c('X') 

LEFfSHIFf 

50 c('C') 51 c('V') 52 c('B') 53 c('N') 54 c('M') 55 56 57 C ('_') 

58 SHIFTKEYS+ 59 '\n' SA ·o· SB HOLE SC SD HOLE SE HOLE SF HOLE 

RIGIITSHIFf 

60 HOLE 61 HOLE 62 C (' ') 63 HOLE 64 HOLE 65 HOLE 66 HOLE 67 HOLE 
68 HOLE 69 HOLE 6A HOLE 6B HOLE 6C HOLE 60 HOLE 6E HOLE 6F HOLE 
70 HOLE 71 HOLE 72 HOLE 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A HOLE 7B HOLE 7C HOLE 70 HOLE 7E HOLE 7F IDLE 

KeyUp 
Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value 

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 HOLE 04 HOLE 05 HOLE 06 HOLE 07 HOLE 
SYSTEMBIT 

08 HOLE ()I) HOLE OA NOP OB NOP oc NOP OD NOP OE HOLE OF OOPS 
10 OOPS 11 OOPS 12 OOPS 13 NOP 14 NOP 15 NOP 16 NOP 17 NOP 
18 NOP 19 NOP lA NOP lB NOP lC NOP 1D NOP 1E NOP lF NOP 

20 NOP 21 NOP 22 BUCKYBITS+ 23 NOP 24 NOP 25 NOP 26 NOP 27 NOP 

METABIT 
28 NOP 29 NOP 2A NOP 2B NOP 2C NOP 2D NOP 2E NOP 2F NOP 
30 NOP 31 NOP 32 NOP 33 NOP 34 NOP 35 NOP 36 NOP 37 NOP 
38 NOP 39 SHIFTKEYS+ 3A SHIFTKEYS+ 3B NOP 3C NOP 30 NOP 3E NOP 3F NOP 

LEFfCTRL CAPSLOCK 
40 NOP 41 NOP 42 NOP 43 NOP 44 NOP 45 NOP 46 NOP 47 NOP 

48 NOP 49 NOP 4A NOP 4B NOP 4C NOP 40 SHIFfKEYS+ 4E NOP 4F NOP 

LEFfSHIFf 
so NOP 51 NOP 52 NOP 53 NOP 54 NOP 55 NOP 56 NOP 57 NOP 
58 SHIFfKEYS+ 59 NOP 5A NOP SB HOLE SC NOP 5D NOP SE HOLE SF HOLE 

RIGIITSHIFf 
60 HOLE 61 HOLE 62 NOP 63 HOLE 64 HOLE 65 HOLE 66 HOLE 67 HOLE 
68 HOLE 69 HOLE 6A HOLE 6B HOLE 6C HOLE 6D HOLE 6E HOLE 6F HOLE 
70 HOLE 71 HOLE 72 HOLE 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE 
78 HOLE 79 HOLE 7A HOLE 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F RESET 

SEE ALSO 
click(l), oldsetkeys(l), kbd(4S), termio(4), win(4S) 
The Sun View System Programmer's Guide- Appendix: Writing a Virtual User Input Device Driver 
(describes firm_ event format) 

1250 Last change: 30 October 1987 Sun Release 4.0 



KBD(4S) DEVICES AND NETWORK INTERFACES KBD(4S) 

NAME 
kbd - Sun keyboard 

CONFIG 
None; included in standard system. 

DESCRIPTION 

IOCTLS 

FILES 

The kbd device provides access to the Sun Workstation keyboard. When opened, it provides access to the 
standard keyboard device for the workstation (attached either to a CPU serial or parallel port). It is a multi
plexing driver; a stream referring to the standard keyboard device, with the kb(4M) and ttcompat(4M) 
STREAMS modules pushed on top of that device, is linked below it Normally, this device passes input to 
the ''workstation console'' driver, which is linked above a special minor device of kbd, so that keystrokes 
appear as input on /dev/console; the KIOCSDIRECT ioctl must be used to direct input towards or away 
from the /dev/kbd device. 

KIOCSDIRECT The argument is a pointer to an int. If the value in the int pointed to by the argument is 
1, subsequent keystrokes typed on the system keyboard will sent to /dev/kbd; if it is 0, 
subsequent keystrokes will be sent to the "workstation console" device. When the last 
process that has /dev/kbd open closes it, if keystrokes had been sent to /dev/kbd they 
are redirected back to the ''workstation console'' device. 

KIOCGDIRECT The argument is a pointer to an int. If keystrokes are currently being sent to /dev/kbd, 1 
is stored in the int pointed to by the argument; if keystrokes are currently being sent to 
the ''workstation console'' device, 0 is stored there. 

/dev/kbd 

SEE ALSO 
console{4S), kb(4M), ttcompat(4M), win(4S), zs(4S) 

Sun Release 4.0 Last change: 24 November 1987 1251 



LDTERM(4M) DEVICES AND NETWORK INTERFACES LDTERM(4M) 

NAME 
ldterm - standard terminal STREAMS module 

CONFIG 
None; included by default. 

SYNOPSIS 
#include <sys/stream.h> 
#include <sys/stropt.h> 

ioctl(fd, I_PUSH, "Idterm"); 

DESCRIPTION 
Id term is a STREAMS module that provides most of the termio ( 4) terminal interface. This module does 
not perform the low-level device control functions specified by flags in the c _ cflag word of the termios 
structure or by the IGNBRK, IGNPAR, P ARMRK, or INPCK flags in the c _iflag word of the termios struc
ture; those functions must be performed by the driver or by modules pushed below the ldterm module. All 
other termio functions are performed by ldterm; some of them, however, require the cooperation of the 
driver or modules pushed below ldterm, and may not be performed in some cases. These include the 
IXOFF flag in the c_iflag word and the delays specified in the c_oftag word. 

Read-side Behavior 

1252 

Various types of STREAMS messages are processed as follows: 

M BREAK When this message is received, either an interrupt signal is generated, or the message is 
treated as if it were an M_DATA message containing a single ASCII NUL character, depend
ing on the state of the BRKINT flag. 

M DAT A These messages are normally processed using the standard termio input processing. If the 
ICANON flag is set, a single input record ("line") is accumulated in an internal buffer, and 
sent upstream when a line-terminating character is received. If the ICANON flag is not set, 
other input processing is performed and the processed data is passed upstream. 

If output is to be stopped or started as a result of the arrival of characters, M _ STOP and 
M_START messages are sent downstream, respectively. If the IXOFF flag is set, and input 
is to be stopped or started as a result of flow-control considerations, M _ STOPI and 
M_STARTI messages are sent downstream, respectively. 

M_DATA messages are sent downstream, as necessary, to perform echoing. 

If a signal is to be generated, a M_FLUSH message with a flag byte of FLUSHR is placed on 
the read queue, and if the signal is also to flush output a M_FLUSH message with a flag byte 
of FLUSHW is sent downstream. 

M CTL If the first byte of the message is MC_NOCANON, the input processing normally performed 
on M _DATA messages is disabled, and those messages are passed upstream unmodified; this 
is for the use of modules or drivers that perform their own input processing, such as a 
pseudo-terminal in TIOCREMOTE mode connected to a program that performs this process
ing. If the first byte of the message is MC_DOCANON, the input processing is enabled. 
Otherwise, the message is ignored; in any case, the message is passed upstream. 

M FLUSH The read queue of the module is flushed of all its data messages, and all data in the record 
being accumulated is also flushed. The message is passed upstream. 

M HANGUP Data is flushed as it is for a M_FLUSH message, and M_FLUSH messages with a flag byte of 
FLUSHRW are sent upstream and downstream. Then an M_PCSIG message is sent 
upstream with a signal of SIGCONT, followed by the M _ HANGUP message. 

M IOCACK The data contained within the message, which is to be returned to the process, is augmented 
if necessary, and the message is passed upstream. 

Last change: 20 November 1987 Sun Release 4.0 



LDTERM(4M) DEVICES AND NETWORK INTERFACES LDTERM(4M) 

All other messages are passed upstream unchanged. 

Write-side behavior 

IOCTLS 

Various types of STREAMS messages are processed as follows: 

M FLUSH The write queue of the module is flushed of all its data messages, and the message is passed 
downstream. 

M IOCTL The function to be performed for this ioctl by the ldterm module is performed, and the mes
sage is passed downstream in most cases. The TCFLSH and TCXONC ioctls can be per
formed entirely in this module, so the reply is sent upstream and the message is not passed 
downstream. 

M DATA If the OPOST flag is set, or both the XCASE and ICANON flags are set, output processing is 
performed and the processed message is passed downstream, along with any M _DELAY 
messages generated. Otherwise, the message is passed downstream without change. 

All other messages are passed downstream unchanged. 

The following ioctls are processed by the ldterm module. All others are passed downstream. 

TCGETS 
TCGETA 

TCSETS 
TCSETSW 
TCSETSF 
TCSETA 
TCSETAW 
TCSETAF 

TCFLSH 

TCXONC 

The message is passed downstream; if an acknowledgment is seen, the data provided by 
the driver and modules downstream is augmented and the acknowledgement is passed 
upstream. 

The parameters that control the behavior of the ldterm module are changed. If a mode 
change requires options at the stream head to be changed, a M_SETOPT message is sent 
upstream. If the ICANON flag is turned on or off, the read mode at the stream head is 
changed to message-nondiscard or byte-stream mode, respectively. If it is turned on, the 
vmin and vtime values at the stream head are set to 1 and 0, respectively; if it is turned 
on, they are set to the values specified by the ioctl. The vmin and vtime values are also 
set if ICANON is off and the values are changed by the ioctl. If the TOSTOP flag is 
turned on or off, the tostop mode at the stream head is turned on or off, respectively. 

If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is sent down
stream and placed on the read queue. If the argument is 1, the write queue is flushed of 
all its data messages and a M _FLUSH message with a flag byte of FLUSHW is sent 
upstream and downstream, If the argument is 2, the write queue is flushed of all its data 
messages and a M_FLUSH message with a flag byte of FLUSHRW is sent downstream 
and placed on the read queue. 

If the argument is 0, and output is not already stopped, an M _ STOP message is sent 
downstream. If the argument is 1, and output is stopped, an M_START message is sent 
downstream. If the argument is 2, and input is not already stopped, an M _ STOPI mes
sage is sent downstream. If the argument is 3, and input is stopped, an M_STARTI mes
sage is sent downstream. 

SEE ALSO 
console(4S), mcp(4S), mti(4S), pty(4), termio(4), ttcompat(4M), zs(4S) 

Sun Release 4.0 Last change: 20 November 1987 1253 



LE(4S) DEVICES AND NETWORK INTERFACES LE(4S) 

NAME 
le - Sun-3/50, Sun-3/60 10MB Ethernet interface 

CONFIG 
device leO at obio ? csr 

DESCRIPTION 
The le interface provides access to a 10 Mb/s Ethernet network through a Sun-3 controller using the AMD 
LANCE (Local Area Network Controller for Ethernet) Am7990 chip. For a general description of network 
interfaces see if( 4N). 

The synopsis line above specifies the first and only Ethernet controller on a Sun-3/50 system. 

SEE ALSO 
if(4N), kb(4S), tty_compact(4) 

DIAGNOSTICS 

1254 

le%d: transmitter frozen - resetting 
A bug in the LANCE chip has stopped the chip's transmitter section. The driver has detected 
this condition and reinitialized the chip. 

le%d: out of mbufs: output packet dropped 
The driver has run out of memory to use to buffer packets on output. The packet being 
transmitted at the time of occurrence is lost This error is usually symptomatic of trouble else
where in the kernel. 

le% d: stray transmitter interrupt 
The LANCE chip has signalled that it completed transmitting a packet but the driver has sent no 
such packet 

le%d: LANCE Rev C/D Extra Byte(s) bug; Packet dropped 
The LANCE chip's internal silo pointers have become misaligned. This error arises from a 
chip bug. 

le%d: trailer error 
An incoming packet claimed to have a trailing header but did not. 

Ie%d: runt packet 
An incoming packet's size was below the Ethernet minimum transmission size. 

Ie%d: Receive buffer error - BUFF bit set in rmd 
This error "should never happen," as it occurs only in conjunction with a LANCE feature that 
the driver does not use. 

Ie%d: Received packet with STP bit in rmd cleared 
The driver has received a packet that straddles multiple receive buffers and therefore con
sumes more than one of the LANCE chip's receive descriptors. Provided that all stations on the 
Ethernet are operating according to the Ethernet specification, this error "should never hap
pen,'' since the driver allocates its receive buffers to be large enough to hold packets of the 
largest permitted size. Most likely, some other station on the net is transmitting packets whose 
lengths exceed the maximum permitted for Ethernet. 

le%d: Received packet with ENP bit in rmd cleared 
The driver has received a packet that straddles multiple receive buffers and therefore con
sumes more than one of the LANCE chip's receive descriptors. Provided that all stations on the 
Ethernet are operating according to the Ethernet specification, this error "should never hap
pen,'' since the driver allocates its receive buffers to be large enough to hold packets of the 
largest permitted size. The most likely cause of the message is that some other station on the 
net is transmitting packets whose lengths exceed the maximum permitted for Ethernet. 

Last change: 9 October 1987 Sun Release 4.0 



LE(4S) DEVICES AND NETWORK INTERFACES LE(4S) 

le%d: Transmit buffer error - BUFF bit set in tmd 
Excessive bus contention has prevented the LANCE chip from gathering packet contents 
quickly enough to sustain the packet's transmission over the Ethernet. The affected packet is 
lost. 

le%d: Transmit late collision - Net problem? 
A packet collision has occurred after the channel's slot time has elapsed. This error usually 
indicates faulty hardware elsewhere on the net. 

le%d: No carrier - transceiver cable problem? 
The LANCE chip has lost input to its carrier detect pin while trying to transmit a packet. 

le%d: Transmit retried more than 16 times - net jammed 
Network activity has become so intense that sixteen successive transmission attempts failed, 
the LANCE chip gave up on the current packet. 

le% d: missed packet 
The driver has dropped an incoming packet because it had no buffer space for it. 

le%d: Babble error - sent a packet longer than the maximum length 
While transmitting a packet, the LANCE chip has noticed that the packet's length exceeds the 
maximum allowed for Ethernet. This error indicates a kernel bug. 

le%d: Memory Error! Ethernet chip memory access timed out 
The LANCE chip timed out while trying to acquire the bus for a DVMA transfer. 

le% d: Reception stopped 
Because of some other error, the receive section of the LANCE chip shut down and had to be 
restarted. 

le%d: Transmission stopped 
Because of some other error, the transmit section of the LANCE chip shut down and had to be 
restarted. 

Sun Release 4.0 Last change: 9 October 1987 1255 



L0(4N) DEVICES AND NETWORK INTERFACES L0(4N) 

NAME 
lo - software loopback network interface 

SYNOPSIS 
pseudo-device loop 

DESCRIPTION 
The loop device is a software loopback network interface; see if(4N) for a general description of network 
interfaces. 

The loop interface is used for performance analysis and software testing, and to provide guaranteed access 
to Internet protocols on machines with no local network interfaces. A typical application is the 
comsat(8C) server which accepts notification of mail delivery through a particular port on the loopback 
interface. 

By default, the loopback interface is accessible at Internet address 127.0.0.1 (non-standard); this address 
may be changed with the SIOCSIF ADDR ioctl. 

SEE ALSO 
if(4N), inet(4F), comsat(8C) 

DIAGNOSTICS 

BUGS 

1256 

lo%d: can't handle af%d 
The interface was handed a message with addresses formatted in an unsuitable address family; 
the packet was dropped. 

It should handle all address and protocol families. An approved network address should be reserved for 
this interface. 

Last change: 9 October 1987 Sun Release 4.0 



LOFS(4S) DEVICES AND NETWORK INTERFACES LOFS(4S) 

NAME 
lofs - loopback virtual file system 

CONFIG 
options LOFS 

SYNOPSIS 
#include <sys/mount.h> 
mount(MOUNT_LOFS, virtual, flags, dir); 

virtual is the mount point for the virtual file system. dir is the pathname of the existing file system. flags is 
either O or M_RDONLY. The M_RDONLY flag forces all accesses in the new name space to be read-only; 
without it, accesses are the same as for the underlying file system. All other mount(2) flags are preserved 
from the underlying file systems. 

DESCRIPTION 
The loopback filesystem device allows new, virtual, file systems to be created, which provide access to 
existing files using alternate pathnames. Once the virtual file system is created, other file systems can be 
mounted within it without affecting the original file system. File systems that are subsequently mounted 
onto the original filesystem, however, are visible to the virtual file system, unless or until the corresponding 
mount point in the virtual file system is covered by a file system mounted there. 

For instance, a loopback mount of / onto /tmp/newroot allows the entire filesystem hierarchy to appear as 
if it were duplicated under /tmp/newroot, including any file systems mounted from remote NFS servers. 
All files would then be accessible either from a pathname relative to/, or from a pathname relative to 
/tmp/newroot until such time as a file system is mounted in /tmp/newroot, or any of its subdirectories. 

Loopback mounts of/ can be performed in conjunction with the chroot(2) system call, to provide a com
plete virtual filesystem to a process or family of processes. 

Recursive traversal of loopback mount points is not allowed; after the loopback mount of /tmp/newroot, 
the file /tmp/newroot/tmp/newroot does not contain yet another filesystem hierarchy; rather, it appears 
just as /tmp/newroot did before the loopback mount was performed (say, as an empty directory). 

SEE ALSO 

BUGS 

chroot(2), mount(2) 

Because only directories can be mounted or mounted on, the structure of a virtual file system can only be 
modified at directories. 

Loopback mounts must be used with care; the potential for confusing users and applications is enormous. 

Sun Release 4.0 Last change: 9 October 1987 1257 



MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S) 

NAME 
mcp, alm - Sun MCP Multiprotocol Communications Processor/ ALM-2 Asynchronous Line Multiplexer 

CONFIG - SUN-3 SYSTEM 
MCP 

device mcpO at vme32d32 ? csr Ox:1000000 flags Oxlfffl' priority 4 vector mcpintr Ox8b 
device mcpl at vme32d32 ? csr OxlOlOOOO flags Oxlfffl' priority 4 vector mcpintr Ox8a 
device mcp2 at vme32d32 ? csr Oxl020000 flags Oxlfffl' priority 4 vector mcpintr Ox89 
device mcp3 at vme32d32 ? csr Oxl030000 flags Oxlffff priority 4 vector mcpintr Ox88 

ALM-2 
pseudo-device mcpa64 

SYNOPSIS 
#include <f cntl.h> 
#include <sys/termios.h> 
open("/dev/ttyxy", mode); 
open("/dev/ttydn", mode); 
open("/dev/cuan", mode); 

DESCRIPTION (MCP) 
The Sun MCP (Multiprotocol Communications Processor) supports up to four synchronous serial lines in 
conjunction with SunLink™ Multiple Communication Protocol products. 

DESCRIPTION (ALM-2) 

1258 

The Sun ALM-2 Asynchronous Line Multiplexer provides 16 asynchronous serial communication lines 
with modem control and one Centronics-compatible parallel printer port. 

Each port supports those termio( 4) device control functions specified by flags in the c _ cflag word of the 
termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c _iflag word of the ter
mios structure are performed by the mcp driver. All other termio(4) functions must be performed by 
STREAMS modules pushed atop the driver; when a device is opened, the ldterm(4M) and ttcompat(4M) 
STREAMS modules are automatically pushed on top of the stream, providing the standard termio(4) inter
face. 

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be 
treated as hard-wired with carrier always present. Thus specifying flags Ox0004 in the specification of 
mcpO would treat line /dev/ttyh2 in this way. 

Minor device numbers in the range O - 63 correspond directly to the normal tty lines and are named 
/dev/ttyXY, where X represents the physical board as one of the characters h, i, j, or k, and Y is the line 
number on the board as a single hexadecimal digit. (Thus the first line on the first board is /dev/ttyhO, and 
the sixteenth line on the third board is /dev/ttyjf.) 

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a 
special feature, controlled by the minor device number, has been added. Minor device numbers in the 
range 128 - 191 correspond to the same physical lines as those above (that is, the same line as the minor 
device number minus 128). 

A dial-in line has a minor device in the range O - 63 and is conventionally renamed /dev/ttydn, where n is 
a number indicating which dial-in line it is (so that /dev/ttydO is the first dial-in line), and the dial-out line 
corresponding to that dial-in line has a minor device number 128 greater than the minor device number of 
the dial-in line and is conventionally named /dev/cuan, where n is the number of the dial-in line. 

The /dev/cuan lines are special in that they can be opened even when there is no carrier on the line. Once 
a /dev/cuan line is opened, the corresponding tty line cannot be opened until the /dev/cuan line is closed; a 
blocking open will wait until the /dev/cuan line is closed (which will drop Data Terminal Ready, after 
which Carrier Detect will usually drop as well) and carrier is detected again, and a non-blocking open will 
return an error. Also, if the /dev/ttydn line has been opened successfully (usually only when carrier is 
recognized on the modem) the corresponding /dev/cuan line cannot be opened. This allows a modem to be 

Last change: 26 February 1988 Sun Release 4.0 



MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S) 

attached to e.g. /dev/ttydO (renamed from /dev/ttyhO) and used for dialin (by enabling the line for login in 
/etc/ttytab) and also used for dialout (by tip(lC) or uucp(lC)) as /dev/cuaO when no one is logged in on 
the line. Note: the bit in the flags word in the configuration file (see above) must be zero for this line, 
which enables hardware carrier detection. 

IOCTLS 
The standard set of termio ioctl() calls are supported by the ALM-2. 

If the CRTSCTS flag in the c_cflag is set, output will be generated only if CTS is high; if CTS is low, output 
will be frozen. If the CRTSCTS flag is clear, the state of CTS has no effect Breaks can be generated by 
the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls. The modem control lines TIOCM _ CAR, 
TIOCM _ CTS, TIOCM _ RTS, and TIOCM _ DTR are provided. 

The input and output line speeds may be set to any of the speeds supported by termio. The speeds cannot 
be set independently; when the output speed is set, the input speed is set to the same speed 

ERRORS 
An open() on a /dev/tty* or a /dev/cu* device will fail if: 

ENXIO The unit being opened does not exist. 

EBUSY The dial-out device is being opened and the dial-in device is already open, or the dial-in 
device is being opened with a no-delay open and the dial-out device is already open. 

EBUSY The unit has been marked as exclusive-use by another process with a TIOCEXCL ioctl() 
call. 

EINTR The open was interrupted by the delivery of a signal. 

DESCRIPTION (PRINTER PORT) 
The printer port is Centronics-compatible and is suitable for most common parallel printers. Devices 
attached to this interface are normally handled by the line printer spooling system, and should not be 
accessed directly by the user. 

Minor device numbers in the range 64 - 67 access the printer port, and the recommended naming is 
/dev/mcpp[0-3]. 

IOCTLS 
Various control flags and status bits may be fetched and set on an MCP printer port. The following flags 
and status bits are supported; they are defined in <sundev/mcpcmd.h>: 

MCPRIGNSLCT Ox02 set if interface ignoring SLCT- on open 
MCPRDIAG Ox04 set if printer is in self-test mode 
MCPRVMEINT Ox08 set if VME bus interrupts enabled 
MCPRINTPE Ox 10 print message when out of paper 
MCPRINTSLCT Ox20 print message when printer offline 
MCPRPE Ox40 set if device ready, cleared if device out of paper 
MCPRSLCT Ox80 set if device online (Centronics SLCT asserted) 

The flags MCPRINTSLCT, MCPRINTPE, and MCPRDIAG may be changed; the other bits are status bits 
and may not be changed. 

The ioctl() calls supported by MCP printer ports are listed below. 

MCPIOGPR The argument is a pointer to an unsigned char. The printer flags and status bits are 
stored in the unsigned char pointed to by the argument. 

MCPIOSPR The argument is a pointer to an unsigned char. The printer flags are set from the 
unsigned char pointed to by the argument. 

ERRORS 

Normally, the interface only reports the status of the device when attempting an open(2V) call. An open() 
on a /dev/mcpp* device will fail if: 

Sun Release 4.0 Last change: 26 February 1988 1259 



MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S) 

FILES 

ENXIO The unit being opened does not exist. 

EIO The device is offline or out of paper. 

Bit 17 of the configuration flags may be specified to say that the interface should ignore Centronics SLCT
and ROY/PE- when attempting to open the device, but this is normally useful only for configuration and 
troubleshooting: if the SLCT- and ROY lines are not asserted during an actual data transfer (as with a 
write(2V) call), no data is transferred. 

/dev/mcpp[0-3] 
/dev/tty[h-k][0-9a-f] 
/dev/ttyd[0-9a-f] 
/dev/cua[0-9a-f] 

parallel printer port 
hardwired tty lines 
dialin tty lines 
dialout tty lines 

SEE ALSO 
tip(lC), uucp(lC), mti(4S), termio(4), ldterm(4M), ttcompat(4M), zs(4S) 

DIAGNOSTICS 

1260 

Most of these diagnostics "should never happen;" their occurrence usually indicates problems elsewhere 
in the system as well. 

mcpan: silo overflow. 
More than n characters (n very large) have been received by the mcp hardware without being read 
by the software. 

***port n supports RS449 interface*** 
Probably an incorrect jumper configuration. Consult the hardware manual. 

mcp port n receive buffer error 
The mcp encountered an error concerning the synchronous receive buffer. 

Printer on mcppn is out of paper 
Printer on mcppn paper ok 
Printer on mcppn is offline 
Printer on mcppn online 

Assorted printer diagnostics, if enabled as discussed above. 

Last change: 26 February 1988 Sun Release 4.0 



:MEM( 4S) DEVICES AND NETWORK INTERFACES :MEM(4S) 

NAME 
mem, kmem, vme16d16, vme24d16, vme32d16, vme16d32, vme24d32, vme32d32, mbmem, mbio, atbus, 
zero, eeprom - main memory and bus I/0 space 

CONFIG 
None; included with standard system. 

DESCRIPTION 
These devices are special files that map memory and bus I/0 space. They may be read, written, seeked and 
(except for kmem) memory-mapped. See read(2V), write(2V), mmap(2), and directory(3), 

mem is a special file that is an image of the physical memory of the computer. It may be used, for exam
ple, to examine (and even to patch) the system. 

kmem is a special file that is an image of the kernel virtual memory of the system. 

kmem is a special file which is a source of private zero pages. 

Sun-2 and Sun-3 System 
vme16dl6 (also known as vme16) is a special file that is an image of VMEbus 16-bit addresses with 16-bit 
data. vme16 address space extends from O to 64 K. 

vme24dl6 (also known as vme24) is a special file that is an image of VMEbus 24-bit addresses with 16-bit 
data. vme24 address space extends from Oto 16 Megabytes. The VME 16-bit address space overlaps the 
top 64K of the 24-bit address space. 

Sun-3 VMEbus 
vme32dl6 is a special file that is an image of VMEbus 32-bit addresses with 16-bit data. 

vme16d32 is a special file that is an image ofVMEbus 16-bit addresses with 32-bit data. 

vme24d32 is a special file that is an image of VMEbus 24-bit addresses with 32-bit data. 

vme32d32 (also known as vme32) is a special file that is an image of VMEbus 32-bit addresses with 32-bit 
data. vme32 address space extends from O to 4 Giggabytes. The VME 24-bit address space overlaps the 
top 16 Megabytes of the 32-bit address space. 

vme• type special files can only be accessed in VME based systems. 

Sun-2 Multibus 

Sun386i 

FILES 

mbmem is a special file that is an image of the Multibus memory of the system. Multibus memory is in the 
range from O to 16 Megabytes. mbmem can only be accessed in Multibus based systems. 

mbio is a special file that is an image of the Multibus I/0 space. Multibus I/0 space extends from O to 
64K. mbio can only be accessed in Multibus based systems. 

When reading and writing mbmem and mbio odd counts or offsets cause byte accesses and even counts 
and offsets cause word accesses. 

atbus is a special file that is an image of the AT bus space. It extends from Oto 16 Megabytes. 

eeprom is a special file that is an image of the NVRAM. It extends from O to 2Kb. 

/dev/mem 
/dev/kmem 
/dev/mbmem 
/dev/mbio 
/dev/vmel6dl6 
/dev/vmel6 
/dev/vme24d16 
/dev/vme24 
/dev/vme32dl6 

Sun Release 4.0 Last change: 18 February 1988 1261 



MEM(4S) 

/dev/vme16d32 
/dev/vme24d32 
/dev/vme32d32 
/dev/vme32 
/dev/atbus 
/dev/zero 
/dev/eeprom 

SEE ALSO 

DEVICES AND NETWORK INTERFACES 

mmap(2), read(2V), write(2V), directory(3) 

1262 Last change: 18 February 1988 

MEM(4S) 

Sun Release 4.0 



MOUSE(4S) DEVICES AND NETWORK INTERFACES MOUSE(4S) 

NAME 
mouse - Sun mouse 

CONFIG 
None; included in standard system. 

DESCRIPTION 
The mouse indirect device provides access to the Sun Workstation mouse. When opened, it redirects 
operations to the standard mouse device for the workstation (attached either to a CPU serial or parallel 
port), and pushes the ms(4M) and ttcompat(4M) STREAMS modules on top of that device. 

FILES 
/dev/mouse 

SEE ALSO 
ms(4M), ttcompat(4M), win(4S), zs(4S) 

Sun Release 4.0 Last change: 20 November 1987 1263 



MS(4M) DEVICES AND NETWORK INTERFACES MS(4M) 

NAME 
ms - Sun mouse SlREAMS module 

CONFIG 
pseudo-devicemsn 

SYNOPSIS 
#include <sys/stream.h> 
#include <sys/stropt.h> 
#include <Sundev/vuid _ event.h> 
#include <sundev/msio.h> 
ioctl(fd, I_PUSH, "ms"); 

DESCRIPTION 
The ms STREAMS module processes byte streams generated by mice attached to a CPU serial or parallel 
port. When this module is pushed onto a stream, it sends a TCSETSF ioctl downstream, setting the baud 
rate to 1200 baud and the character size to 8 bits, and enabling the receiver. All other flag words are 
cleared. It assumes only that the termios(4) functions provided by the ~(4S) driver are supported; no 
other functions need be supported. 

The mouse is expected to generate a stream of bytes encoding mouse motions and changes in the state of 
the buttons. 

Each mouse sample in the byte stream consists of three bytes: the first byte gives the button state with 
value Ox87rbut, where but is the low three bits giving the mouse buttons, where a O (zero) bit means that a 
button is pressed, and a 1 (one) bit means a button is not pressed. Thus if the left button is down the value 
of this sample is Ox83, while if the right button is down the byte is Ox86. 

The next two bytes of each sample give the x and y deltas of this sample as signed bytes. The mouse uses a 
lower-left coordinate system, so moves to the right on the screen yield positive x values and moves down 
the screen yield negative y values. 

The beginning of a sample is identifiable because the delta's are constrained to not have values in the range 
Ox80-0x87. 

A stream with ms pushed onto it can be used as a device that emits firm_ events as specified by the protocol 
of a Virtual User Input Device. It understands VUIDSFORMAT, VUIDGFORMAT, VUIDSADDR and 
VUIDGADDR ioctls (see reference below). 

IOCTLS 

1264 

ms responds to the following ioctl s, as defined in <Sundev/msio.h> and <sundev/vuid _ event.h>. All 
other ioctl s are passed downstream. As ms sets the parameters of the serial port when it is opened, no ter
mios( 4) ioctl s should be performed on a stream with ms on it, as ms expects the device parameters to 
remain as it set them. 

The MSIOGETPARMS and MSIOSETPARMS calls use a structure of type Ms _parms, which is a structure 
defined in <sundev/msio.h>: 

typedef struct { 
int jitter _thresh; 
int speed_ law; 
int speed_limit; 
} Ms_parms; 

jitter _thresh is the ''jitter threshold'' of the mouse. Motions of fewer than jitter _thresh units along both 
axes that occur in less than 1/12 second are treated as ''jitter'' and ignored. Thus, if the mouse moves 
fewer than jitter _thresh units and then moves back to its original position in less than 1/12 of a second, the 
motion is considered to be "noise" and ignored. If it moves fewer than jitter _thresh units and continues to 
move so that it has not returned to its original position after 1/12 of a second, the motion is considered to be 
real and is reported. 

Last change: 24 November 1987 Sun Release 4.0 



MS(4M) DEVICES AND NETWORK INTERFACES MS(4M) 

speed_law indicates whether extremely large motions are to be ignored. If it is 1, a "speed limit" is 
applied to mouse motions; motions along either axis of more than speed _limit units are discarded. 

Note: these parameters are global; if they are set for any mouse on a workstation, they apply to any other 
mice attached to that workstation as well. 

VUIDSFORMAT 
VUIDGFORMAT 
VUIDSADDR 
VUIDGADDR 

MSIOGETPARMS 

MSIOSETPARMS 

SEE ALSO 

These are standard Virtual User Input Device ioctls. See SunView 1 System 
Programmer's Guide for a description of their operation. 

The argument is a pointer to a Ms _parms. The current mouse parameters are 
stored in that structure. 

The argument is a pointer to a ms _parms. The current mouse parameters are set 
from the values in that structure. 

mouse(4S), termios(4), win(4S), zs(4S) 

Sun View 1 System Programmer's Guide 

Sun Release 4.0 Last change: 24 November 1987 1265 



MTI{4S) DEVICES AND NETWORK INTERFACES MTl(4S) 

NAME 
mti- Systech MTI-800/1600 multi-terminal interface 

CONFIG- SUN-3 SYSTEM 
device mtiO at vmel6dl6 ? csr Ox620 flags OxmT priority 4 vector mtiintr Ox88 
device mtil at vmel6dl6 ? csr Ox640 flags OxmT priority 4 vector mtiintr Ox89 
device mti2 at vmel6dl6 ? csr Ox660 flags OxmT priority 4 vector mtiintr Ox8a 
device mti3 at vmel6dl6 ? csr Ox680 flags OxmT priority 4 vector mtiintr Ox8b 

CONFIG - SUN-2 SYSTEM 
device mtiO at mbio ? csr Ox620 flags Oxffl'f priority 4 
device mtil at mbio ? csr Ox640 flags Oxffl'f priority 4 
device mti2 at mbio ? csr Ox660 flags Oxffl'f priority 4 
device mti3 at mbio ? csr Ox680 flags Oxffl'f priority 4 
device mtiO at vmel6 ? csr Ox620 flags Oxffl'f priority 4 vector mtiintr Ox88 
device mtil at vmel6 ? csr Ox640 flags Oxffl'f priority 4 vector mtiintr Ox89 
device mti2 at vmel6 ? csr Ox660 flags Oxffl'f priority 4 vector mtiintr Ox8a 
device mti3 at vmel6 ? csr Ox680 flags Oxffl'f priority 4 vector mtiintr Ox8b 

SYNOPSIS 
#include <fcntl.h> 
#include <sys/termios.h> 
open("/dev/tty.xy", mode); 
open("/dev/ttydn", mode); 
open("/dev/cuan", mode); 

DESCRIPTION 

1266 

The Systech MTI card provides 8 {MTI-800) or 16 (MTI-1600) serial communication lines with modem 
control. Each port supports those termio( 4) device control functions specified by flags in the c _ cflag word 
of the termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of 
the termios structure are performed by the mti driver. All other termio(4) functions must be performed by 
STREAMS modules pushed atop the driver; when a device is opened, the ldterm(4M) and ttcompat(4M) 
STREAMS modules are automatically pushed on top of the stream, providing the standard termio(4) inter
face. 

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be 
treated as hard-wired with carrier always present. Thus specifying flags Ox0004 in the specification of 
mtiO would treat line /dev/tty02 in this way. 

Minor device numbers in the range O - 63 correspond directly to the normal tty lines and are named 
/dev/ttyXY, where X is the physical board number (0 - 3), and Y is the line number on the board as a single 
hexadecimal digit. {Thus the first line on the first board is /dev/ttyOO, and the sixteenth line on the third 
board is /dev/tty2f.) 

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a 
special feature, controlled by the minor device number, has been added. Minor device numbers in the 
range 128 - 191 correspond to the same physical lines as those above (that is, the same line as the minor 
device number minus 128). 

A dial-in line has a minor device in the range O - 63 and is conventionally renamed /dev/ttydn, where n is 
a number indicating which dial-in line it is (so that /dev/ttydO is the first dial-in line), and the dial-out line 
corresponding to that dial-in line has a minor device number 128 greater than the minor device number of 
the dial-in line and is conventionally named /dev/cuan, where n is the number of the dial-in line. 

The /dev/cuan lines are special in that they can be opened even when there is no carrier on the line. Once 
a /dev/cuan line is opened, the corresponding tty line can not be opened until the /dev/cuan line is closed; a 
blocking open will wait until the /dev/cuan line is closed (which will drop Data Terminal Ready, after 
which Carrier Detect will usually drop as well) and carrier is detected again, and a non-blocking open will 
return an error. Also, if the /dev/ttydn line has been opened successfully (usually only when carrier is 

Last change: 26 February 1988 Sun Release 4.0 



MTI( 4S) DEVICES AND NETWORK INTERFACES MTI( 4S) 

recognized on the modem) the corresponding /dev/cuan line can not be opened. This allows a modem to 
be attached to e.g. /dev/ttydO (renamed from /dev/ttyOO) and used for dialin (by enabling the line for login 
in /etc/ttytab) and also used for dialout (by tip(lC) or uucp(lC)) as /dev/cuaO when no one is logged in on 
the line. Note: the bit in the flags word in the configuration file (see above) must be zero for this line, 
which enables hardware carrier detection. 

WIRING 

IOCTLS 

The Systech requires the CTS modem control signal to operate. If the device does not supply CTS then RTS 
should be jumpered to CTS at the distribution panel (short pins 4 to 5). Also, the CD (carrier detect) line 
does not work properly. When connecting a modem, the modem's CD line should be wired to DSR, which 
the software will treat as carrier detect. 

The standard set of termio ioctl() calls are supported by mti. 

The state of the CRTSCTS flag in the c _ cflag word has no effect; no output will be generated unless CTS is 
high. Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls. The modem 
control lines TIOCM_CAR, TIOCM_CTS, TIOCM_RTS, and TIOCM_DTR are provided; however, as 
described above, the DSR line is treated as CD and the CD line is ignored. 

The input and output line speeds may be set to any of the speeds supported by termio. The speeds cannot 
be set independently; when the output speed is set, the input speed is set to the same speed. The baud rates 
B200 and B38400 are not supported by the hardware; B200 selects 2000 baud, and B38400 selects 7200 
baud. 

ERRORS 

FILES 

An open() will fail if: 

ENXIO The unit being opened does not exist. 

EBUSY The dial-out device is being opened and the dial-in device is already open, or the dial-in 
device is being opened with a no-delay open and the dial-out device is already open. 

EBUSY The unit has been marked as exclusive-use by another process with a TIOCEXCL ioctl() 
call. 

EINTR The open was interrupted by the delivery of a signal. 

/dev/tty[0-3][0-9a-f] 
/dev/ttyd[0-9a-fJ 
/dev/cua[0-9a-f] 

hardwired tty lines 
dialin tty lines 
dialout tty lines 

SEE ALSO 
tip(lC), uucp(lC), mcp(4S), termio(4), Idterm(4M), ttcompat(4M), zs(4S) 

DIAGNOSTICS 
Most of these diagnostics "should never happen" and their occurrence usually indicates problems else
where in the system. 

mtin, n: silo overflow. 
More than 512 characters have been received by the mti hardware without being read by the 
software. Extremely unlikely to occur. 

mtin: read error code <n>. Probable hardware fault 
The mti returned the indicated error code. See the MTI manual. 

mtin: DMA output error. 
The mti encountered an error while trying to do OMA output. 

mtin: impossible response n. 
The mti returned an error it could not understand. 

Sun Release 4.0 Last change: 26 February 1988 1267 



MTI0(4) DEVICES AND NETWORK INTERFACES MTI0(4) 

NAME 
mtio - general magnetic tape interface 

SYNOPSIS 
#include <sys/ioctl.h> 
#include <sys/mtio.h> 

DESCRIPTION 

1268 

Both 1/2" and 1/4" magnetic tape drives share the same general interface, no matter what hardware is 
involved. The remainder of this section discusses the common features of this interface. 

The "cooked" magnetic tape device files read and write magnetic tape in 2048 byte blocks (the 2048 is 
actually BLKDEV _IOSIZE in <Sys/param.h>). The name of such a device file might be /dev/mtO. The 
final component of the name is composed of a name that represents the type of device the file refers to, and 
the unit number of that device. 

These files are rewound when closed; the ''no-rewind'' versions of these files are not. The name of ''no
rewind'' device files include the letter n at the beginning of the final component of the name; the ''no
rewind'' version of /dev/mtO would be /dev/nmtO. When a 1/2'' tape file, open for writing or just written, 
is closed, two tape marks are written; if the tape is not to be rewound it is positioned with the head between 
the two tapemarks. When a 1/4'' tape file, (due to a bug, only it) just written, is closed, only one end of file 
mark is written because of the inability to overwrite data on a 1/4" tape; see below. 

The files discussed above are useful when you want to access the tape in a way compatible with ordinary 
files. This interface requires that all blocks be 2048 bytes long, and does not permit special operations 
(such as spacing the tape forward or backward) to be performed. When using foreign tapes, and especially 
when reading or writing long records, the ''raw'' interface is appropriate. The name of ''raw'' device files 
include the letter r before the device type; the ''raw'' version of /dev/mtO would be /dev/rmtO, and the 
''raw'' version of /dev/nmtO would be /dev/nrmtO. Each read(2V) or write(2V) call reads or writes the 
next record on the tape. In the write case the record has the same length as the buffer given. During a 
read, the record size is passed back as the number of bytes read, provided it is no greater than the buffer 
size. In ''raw'' tape l/0, seeks are ignored. A zero byte count is returned when a tape mark is read, but 
another read will fetch the first record of the new tape file. 

1/4" tapes are not able to back up and always write fixed sized blocks. Since they cannot back up, they 
cannot support backward space file and backward space record. Since they always write fixed sized 
blocks, the size of transfers using the "raw" interface must be a multiple of the underlying blocksize, usu
ally 512 bytes. 

1/4'' tapes also have an unusual tape format. They have parallel tracks, but only record information on one 
track at a time, switching to another track near the physical end of the medium. They erase all the tracks at 
once while writing the first track. Therefore, they cannot, in general, overwrite previously written data. If 
the old data were not on the first track, it would not be erased before being overwritten, and the result 
would be unreadable. 

A number of additional ioctl operations are available on "raw'' devices. The following definitions are 
from <sys/mtio.h>: 

'* * Structures and definitions for mag tape 1/0 control commands 

*' 
f * structure for MTIOCTOP - mag tape op command *I 
struct mtop { 

}; 

short mt_op; 
daddr _ t mt_ count; 

f* operations defined below *I 
I* how many of them *I 

Last change: 24 November 1987 Sun Release 4.0 



MTI0(4) DEVICES AND NETWORK INTERFACES 

/• operations •I 
#define MTWEOF 0 I• write an end-of-file record •I 
#define MTFSF 1 /• forward space file•/ 
#define MTBSF 2 /• backward space file •I 
#define MTFSR 3 /• forward space record •I 
#define MTBSR 4 /• backward space record•/ 
#define MTREW 5 /• rewind •I 
#define MTOFFL 6 I• rewind and put the drive offline •I 
#define MTNOP 7 /• no operation, sets status only •/ 
#define MTRETEN 8 I• retension the tape *I 
#define MTERASE 9 I• erase the entire tape •I 
#define MTEOM 10 /• position to end of media (SCSI only) •/ 

I• structure for MTIOCGET • mag tape get status command •I 

struct mtget { 
short mt_type; I• type of magtape device •/ 

/• the following two registers are grossly device dependent *I 
short mt dsreg; I• "drive status" register *I 
short mt-erreg; I• "error" register •I 

/• end device-dependent registers •I 
short mt_resid; I• residual count•/ 

I• the following two are not yet implemented *I 
daddr tmt fileno; /• file number of current position *I 
daddr =t mt)lkno; /• block number of current position •/ 

/• end not yet implemented •I 
}; 

* Constants for mt_type byte 
•I 

#define MT_ ISTS 
#define MT_ ISHT 
#define MT ISTM 
#define MT_ ISMT 
#define MT ISUT 
#define MT ISCPC 
#define MT_ ISAR 
#define MT ISSC 
#define MT _ISXY 
#define MT_ISSYSGEN 
#define MT_ ISMT02 
#define MT_ !SCCS 

OxOl 
Ox02 
Ox03 
Ox04 
OxOS 
Ox06 
Ox07 
Ox08 
Ox09 
OxOa 
OxOb 
OxOc 

/• mag tape io control commands •/ 

I• vax: unibus ts-11 *I 
/• vax: massbus tu77, etc •I 
/• vax: unibus tm-11 *I 
f * vax: massbus tu78 •I 
/• vax: unibus gcr •/ 
I• sun: Multibus tapemaster *I 
I• sun: Multibus archive •/ 
I• sun: SCSI archive *I 
I• sun: Xylogics 472 •I 
I• sun: SCSI Sysgen •/ 
I• sun: SCSI Emulex MT02 •/ 
I• sun: SCSI generic (unknown) CCS *I 

#define MTIOCTOP _IOW(m, 1, struct mtop) I* do a mag tape op•/ 
#define MTIOCGET _IOR(m, 2, struct mtget) I* get tape status•/ 
#ifndef KERNEL 
#define DEFT APE 
#endif 

Sun Release 4.0 

"/dev/rmt12" 

Last change: 24 November 1987 

MTI0(4) 

1269 



MTl0(4) DEVICES AND NETWORK INTERFACES MTI0(4) 

SEE ALSO 
mt(l), tar(l), read(2V), write(2V), ar(4S), tm(4S), st(4S), xt(4S) 

1270 Last change: 24 November 1987 Sun Release 4.0 



NFS(4P) PROTOCOLS NFS(4P) 

NAME 
nfs, NFS - network file system 

CONFIG 

options NFS 

DESCRIPTION 
The Network File System, or NFS, allows a client workstation to perform transparent file access over the 
network. Using it, a client workstation can operate on files that reside on a variety of servers, server archi
tectures and across a variety of operating systems. Client file access calls are converted to NFS protocol 
requests, and are sent to the server system over the network. The server receives the request, performs the 
actual file system operation, and sends a response back to the client. 

The Network File System operates in a stateless fashion using remote procedure (RPC) calls built on top of 
external data representation (XDR) protocol. These protocols are documented in Network Programming 
The RPC protocol provides for version and authentication parameters to be exchanged for security over the 
network. 

A server can grant access to a specific filesystem to certain clients by adding an entry for that filesystem to 
the server's /etc/exports file. 

A client gains access to that filesystem with the mount(2) system call, which requests a file handle for the 
filesystem itself. Once the filesystem is mounted by the client, the server issues a file handle to the client 
for each file ( or directory) the client accesses. If the file is somehow removed on the server side, the file 
handle becomes stale (dissociated with a known file). 

A server may also be a client with respect to filesystems it has mounted over the network, but its clients 
cannot gain access to those filesystems. Instead, the client must mount a filesystem directly from the server 
on which it resides. 

The user ID and group ID mappings must be the same between client and server. However, the server maps 
uid O (the super-user) to uid -2 before performing access checks for a client. This inhibits super-user 
privileges on remote filesystems. 

NFS-related routines and structure definitions are described in Network Programming. 

ERRORS 

FILES 

Generally physical disk 1/0 errors detected at the server are returned to the client for action. If the server is 
down or inaccessible, the client will see the console message: 

NFS: file server not responding: still trying. 

The client continues (forever) to resend the request until it receives an acknowledgement from the server. 
This means the server can crash or power down, and come back up, without any special action required by 
the client. It also means the client process requesting the 1/0 will block and remain insensitive to signals, 
sleeping inside the kernel at PRIBIO. 

/etc/exports 

SEE ALSO 
mount(2), exports(S), fstab(S), fstab(S), mount(8), nfsd(8) 

Network Programming 

Sun Release 4.0 Last change: 24 November 1987 1271 



NIT(4P) PROTOCOLS NIT(4P) 

NAME 
nit - Network Interface Tap 

CONFIG 
pseudo-device clone 
pseudo-device snit 
pseudo-device pf 
pseudo-device nbuf 

SYNOPSIS 
#include <sys/file.h> 
#include <sys/ioctl.h> 
#include <net/nit_pf.h> 
#include <net/nit buf.h> 

fd = open("/dev/nit", mode); 
ioctl(fd, I_PUSH, "pr'); 
ioctl(fd, I_PUSH, "nbur'); 

DESCRIPTION 
NIT (the Network Interface Tap) is a facility composed of several STREAMS modules and drivers. These 
components collectively provide facilities for constructing applications that require link-level network 
access. Examples of such applications include rarpd(8C), which is a user-level implementation of the 
Reverse ARP protocol, and etherfind(8C), which is a network monitoring and trouble-shooting program. 

NIT consists of several components that are summarized below. See their Reference Manual entries for 
detailed information about their specification and operation. 

nit_if(4M) This component is a STREAMS device driver that interacts directly with the system's Ether
net drivers. After opening an instance of this device it must be bound to a specific Ethernet 
interface before becoming usable. Subsequently, nit_if transcribes packets arriving on the 
interface to the read side of its associated stream and delivers messages reaching it on the 
write side of its stream to the raw packet output code for transmission over the interface . . 

nit_pf(4M) This module provides packet-filtering services, allowing uninteresting incoming packets to 
be discarded with minimal loss of efficiency. It passes through unaltered all outgoing mes
sages (those on the stream's write side). 

nit_buf(4M) This module buffers incoming messages into larger aggregates, thereby reducing the over-
head incurred by repeated read(2V) system calls. 

NIT clients mix and match these components, based on their particular requirements. For example, the 
reverse ARP daemon concerns itself only with packets of a specific type and deals with low traffic volumes. 
Thus, it uses nit_if for access to the network and nit_pf to filter out all incoming packets except reverse 
ARP packets, but omits the nit_buf buffering module since traffic isn't high enough to justify the additional 
complexity of unpacking buffered packets. On the other hand, the etherd(8C) program, which collects 
Ethernet statistics for traffic(lC) to display, must examine every packet on the network. Therefore, it 
omits the nit_ if module, since there's nothing it wishes to screen out, and includes the nit_ bur module, 
since most networks have very heavy aggregate packet traffic. 

EXAMPLES 

1272 

The following code fragments outline how to program against parts of the NIT interface. For the sake of 
brevity, all error-handling code has been elided. 

initdevice comes from etherfind and sets up its input stream configuration. 

initdevice(if _ftags, snaplen, chunksize) 
u _long if_ flags, 

snaplen, 
chunksize; 

struct strioctl si; 

Last change: 29 December 1987 Sun Release 4.0 



NIT(4P) 

struct ifreq 
struct timeval 

ifr; 
timeout; 

if_fd = open(NIT_DEV, O_RDONLY); 

PROTOCOLS 

I• Arrange to get discrete messages from the stream. •I 
loctl(if_fd, I_SRDOPT, (char •)RMSGD); 

si.lc_timout = INFfIM; 

/• Push and configure the buffering module. •I 
loctl(if_fd, I_PUSH, "nbuf''); 

timeout.tv _ sec = 1; 
tlmeout.tv _ usec = O; 
si.lc_cmd = NIOCSfIME; 
si.lc _len = sizeof timeout; 
si.ic_dp = (char •)&timeout; 
ioctl(lf_fd, I_SfR, (char •)&si); 

sl.lc_ cmd = NIOCSCHUNK; 
si.ic _len = sizeof chunksize; 
si.ic_dp = (char •)&chunksize; 
ioctl(if_fd, I_SfR, (char •)&si); 

I• Configure the nit device, binding It to the proper 
underlying interface, setting the snapshot length, 
and setting nit_if-level flags. •/ 

strncpy(ifr.ifr _ name, device, sizeof lfr .lfr _ name); 
ifr.lfr_name[sizeofifr.lfr_name -1) =' '; 
sl.ic_cmd = NIOCBIND; 
sl.ic_len = sizeof lfr; 
sl.lc _ dp = ( char • )&ifr; 
ioctl(lf_fd, I_SfR, (char •)&si); 

If (snaplen > 0) { 
si.lc_cmd = NIOCSSNAP; 
si.ic _len = sizeof snaplen; 
si.ic_dp = (char •)&snaplen; 
ioctl(if _fd, I_SfR, (char •)&si); 

if (if _flags != 0) { 
si.ic_cmd = NIOCSFLAGS; 
si.lc _len = sizeof if_ flags; 
si.ic _ dp = ( char •)&If_ flags; 
ioctl(if _fd, I_SfR, (char •)&sl); 

/• Flush the read queue, to get rid of anything that accumulated 
before the device reached its final configuration. •/ 

ioctl(if_fd, I_FLUSH, (char •)FLUSHR); 

NIT(4P) 

Here is the skeleton of the packet reading loop from etherfind. It illustrates how to cope with dismantling 
the headers the various NIT components glue on. 

Sun Release 4.0 

while ((cc= read(lf _fd, buf, chunksize)) >= 0) { 
register u_char •bp = buf, 

•bufstop = buf + cc; 

/• Loop through each message in the chunk. •/ 
while (bp < bufstop) { 

register u_char •cp = hp; 
struct nit_butbdr •hdrp; 

Last change: 29 December 1987 1273 



NIT(4P) 

FILES 

PROTOCOLS 

struct timeval 
u_long 
u_long 

•tvp= NULL; 
drops= O; 
pktlen; 

/• Extract information from the successive objects 
embedded in the current message. Which ones we 
have depends on how we set up the stream (and 
therefore on what command line flags were set). 

If snaplen is positive then the packet was truncated 
before the buffering module saw it, so we must 
obtain its length from the nit_if-level nit_iflen 
header. Otherwise the value in •hdrp suffices.•/ 

hdrp = (struct nit_ bufhdr •)cp; 
cp += sizeof •hdrp; 
if (tflag) { 

struct nit_iftime •ntp; 

ntp = (struct nit_iftime •)cp; 
cp += sizeof •ntp; 

tvp = &ntp->nh _ timestamp; 
} 

if (dflag) { 

} 

struct nit_ifdrops •ndp; 

ndp = (struct nit_ifdrops •)cp; 
cp += sizeof •ndp; 

drops = ndp·>nh _ drops; 

if (snaplen > 0) { 

else 

struct nit_lflen •nip; 

nip= (struct nit_lflen •)cp; 
cp += sizeof •nip; 

pktlen = nlp·>nh_pktlen; 

pktlen = hdrp->nhb _ msglen; 

sp = (struct sample •)cp; 
bp += hdrp->nhb _totlen; 

I• Process the packet.•/ 

/dev/nit clone device instance referring to nit_if 

SEE ALSO 

NIT{4P) 

traffic(lC), read{2V), nit_if(4M), nit_pf(4M), nit_buf(4M), etherd(8C), etherfind(8C), rarpd(8C) 

1274 Last change: 29 December 1987 Sun Release 4.0 



NIT_BUF ( 4M) DEVICES AND NETWORK INTERFACES NIT_BUF(4M) 

NAME 
nit_buf - STREAMS NIT buffering module 

CONFIG 
pseudo-device nbuf 

SYNOPSIS 
#include <sys/ioctl.h> 
#include <net/nit buf.h> 
ioctl(fd, I_PUSH, "nbur'); 

DESCRIPTION 
nit_buf is a STREAMS module that buffers incoming messages, thereby reducing the number of system 
calls and associated overhead required to read and process them. Although designed to be used in conjunc
tion with the other components of NIT (see nit(4P)), nit_buf is a general-purpose module and can be used 
anywhere STREAMS input buffering is required. 

Read-side Behavior 
nit_buf collects incoming M_DATA and M_PROTO messages into chunks, passing each chunk upward 
when either the chunk becomes full or the current read timeout expires. When a message arrives, it is pro
cessed in two steps. First, the message is prepared for inclusion in a chunk, and then it is added to the 
current chunk. The following paragraphs discuss each step in turn. 

Upon receiving a message from below, nit_buf immediately converts all leading M_PROTO blocks in the 
message to M_DATA blocks, altering only the message type field and leaving the contents alone. It then 
prepends a header to the converted message. This header is defined as follows. 

struct nit_ bufbdr { 

}; 

u_int nhb_msglen; 
u int nhb _totlen; 

The first field of this header gives the length in bytes of the converted message, The second field gives the 
distance in bytes from the start of the message in the current chunk (described below) to the start of the 
next message in the chunk; the value reflects any padding necessary to insure correct data alignment for the 
host machine and includes the length of the header itself. 

After preparing a message, nit_buf attempts to add it to the end of the current chunk, using the chunk size 
and timeout values to govern the addition. (The chunk size and timeout values are set and inspected using 
the ioctl calls described below.) If adding the new message would make the current chunk grow larger 
than the chunk size, nit_ buf closes off the current chunk, passing it up to the next module in line, and starts 
a new chunk, seeding it with a zero-length message. If adding the message would still make the current 
chunk overflow, the module passes it upward in an over-size chunk of its own. Otherwise, the module con
catenates the message to the end of the current chunk. 

To ensure that messages do not languish forever in an accumulating chunk, nit_buf maintains a read 
timeout. Whenever this timeout expires, the module closes off the current chunk, regardless of its length, 
and passes it upward; if no incoming messages have arrived, the chunk passed upward will have zero 
length. Whenever the module passes a chunk upward, it restarts the timeout period. These two rules insure 
that nit_buf minimizes the number of chunks it produces during periods of intense message activity and 
that it periodically disposes of all messages during slack intervals. 

nit_buf handles other message types as follows. Upon receiving an M_FLUSH message specifying that the 
read queue be flushed, the module does so, clearing the currently accumulating chunk as well, and passes 
the message on to the module or driver above. It passes all other messages through unaltered to its upper 
neighbor. 

Write-side Behavior 

nit_ buf intercepts M _IOCTL messages for the ioctl s described below. Upon receiving an M _ FLUSH mes
sage specifying that the write queue be flushed, the module does so and passes the message on to the 
module or driver below. The module passes all other messages through unaltered to its lower neighbor. 

Sun Release 4.0 Last change: 29 December 1987 1275 



NIT_BUF(4M) DEVICES AND NETWORK INTERFACES NIT_BUF(4M) 

IOCTLS 
nit_buf responds to the following ioctls. 

NIOCSTIME Set the read timeout value to the value referred to by the struct timeval pointer given as 
argument. Setting the timeout value to zero has the side-effect of forcing the chunk size to 
zero as well, so that the module will pass all incoming messages upward immediately 
upon arrival. 

NIOCGTIME Return the read timeout in the struct timeval pointed to by the argument. If the timeout 
has been cleared with the NIOCCTIME ioctl, return with an ERANGE error. 

NIOCCTIME Clear the read timeout, effectively setting its value to infinity. 

NIOCSCHUNK Set the chunk size to the value referred to by the u _int pointer given as argument. 

NIOCGCHUNK Return the chunk size in the u _int pointed to by the argument. 

CAVEAT 
The module name "nbuf" used in the system configuration file and as argument to the I_PUSH ioctl is pro
visional and subject to change. 

SEE ALSO 
nit(4P), nit_if(4M), nit_pf(4M) 

1276 Last change: 29 December 1987 Sun Release 4.0 



NIT_IF(4M) DEVICES AND NETWORK INTERFACES NIT_IF(4M) 

NAME 
nit_if - STREAMS NIT device interface module 

CONFIG 
pseudo-device snit 

SYNOPSIS 
#include <sys/file.h> 
open("/ dev/nit", mode); 

DESCRIPTION 
nit_ if is a STREAMS pseudo-device driver that provides STREAMS access to network interfaces. It is 
designed to be used in conjunction with the other components of NIT (see nit(4P)), but can be used by itself 
as a raw STREAMS network interface. 

nit_if is an exclusive-open device that is intended to be opened indirectly through the clone device; 
/dev/nit is a suitable instance of the clone device. Before the stream resulting from opening an instance of 
nit_ if may be used to read or write packets, it must first be bound to a specific network interface, using the 
NIOCSBIND ioctl described below. 

Read-side Behavior 
nit_ if copies leading prefixes of selected packets from its associated network interface and passes them up 
the stream. If the NI_PROMISC flag is set, it passes along all packets; otherwise it passes along only pack
ets addressed to the underlying interface. 

The amount of data copied from a given packet depends on the current snapshot length, which is set with 
the NIOCSSNAP ioctl described below. 

Before passing each packet prefix upward, nit_if optionally prepends one or more headers, as controlled by 
the state of the flag bits set with the NIOCSFLAGS ioctl. The driver collects headers into M _ PROTO mes
sage blocks, with the headers guaranteed to be completely contained in a single message block, whereas 
the packet itself goes into one or more M _DATA message blocks. 

Write-side Behavior 

IOCTLS 

nit_ if accepts packets from the module above it in the stream and relays them to the associated network 
interface for transmission. Packets must be formatted with the destination address in a leading M_PROTO 
message block, followed by the packet itself, complete with link-level header, in a sequence of M_DATA 
message blocks. The destination address must be expressed as a 'struct sockaddr' whose saJamily field 
is AF_ UNSPEC and whose sa _ data field is a copy of the link-level header. (See <Sys/socket.h> for the 
definition of this structure.) 

nit_if processes M_IOCTL messages as described below. Upon receiving an M_FLUSH message specify
ing that the write queue be flushed, nit_ if does so and transfers the message to the read side of the stream. 
It discards all other messages. 

nit_if responds to the following ioctls, as defined in <net/nit_if.h>. It generates an M_IOCNAK message 
for all others, returning this message to the invoker along the read side of the stream. 

SIOCGIFADDR 

NIOCBIND 

NIOCSSNAP 

nit_if passes this ioctl on to the underlying interface's driver and returns its 
response in a 'struct ifreq' instance, as defined in <net/if.h>. (See the descrip
tion of this ioctl in if(4N) for more details.) 

This ioctl attaches the stream represented by its first argument to the network 
interface designated by its third argument, which should be a pointer to an ifreq 
structure whose ifr _name field names the desired interface. See <net/if.h> for the 
definition of this structure. 

Set the current snapshot length to the value given in the u _long pointed to by the 
ioctl's final argument. nit_if interprets a snapshot length value of zero as meaning 
infinity, so that it will copy all selected packets in their entirety. It constrains 

Sun Release 4.0 Last change: 29 December 1987 1277 



NIT_IF(4M) 

FILES 

NIOCGSNAP 

NIOCSFLAGS 

NIOCGFLAGS 

/dev/nit 
<net/nit if.h> 

SEE ALSO 

DEVICES AND NETWORK INTERFACES NIT_IF{4M) 

positive snapshot lengths to be at least the length of an Ethernet header, so that it 
will pass at least the link-level header of all selected packets to its upstream neigh
bor. 

Returns the current snapshot length for this device instance in the u _long pointed 
to by the ioctl 's final argument. 

nit_if recognizes the following flag bits, which must be given in the u_long 
pointed to by the ioctl' s final argument. This set may be augmented in future 
releases. All but the NI_PROMISC bit control the addition of headers that precede 
the packet body. These headers appear in the order given below, with the last
mentioned enabled header adjacent to the packet body. 

NI PROMISC 

NI TIMESTAMP 

NI DROPS 

Requests that the underlying interface be set into promis
cuous mode and that all packets that the interface 
receives be passed up through the stream. nit_if only 
honors this bit for the super-user. 

Prepend to each selected packet a header containing the 
packet arrival time expressed as a 'struct timeval'. 

Prepend to each selected packet a header containing the 
cumulative number of packets that this instance of nit_if 
has dropped because of flow control requirements or 
resource exhaustion. The header value is expressed as a 
u _long. Note: it accounts only for events occurring 
within nit_ if, and does not count packets dropped at the 
network interface level or by upstream modules. 

NI LEN Prepend to each selected packet a header containing the 
packet's original length (including link-level header), as 
it was before being trimmed to the snapshot length. The 
header value is expressed as a u _long. 

Returns the current state of the flag bits for this device instance in the u _long 
pointed to by the ioctl' s final argument 

clone device instance referring to nit _if device 
header file containing definitions for the ioctl s and packet headers described 
above. 

clone(4), nit(4P), nit_buf(4M), nit_pf(4M) 

1278 Last change: 29 December 1987 Sun Release 4.0 



NIT_PF(4M) DEVICES AND NETWORK INTERFACES NIT_PF(4M) 

NAME 
nif _pf - STREAMS NIT packet filtering module 

CONFIG 
pseudo-device pf 

SYNOPSIS 
#include <sys/ioctl.h> 
#include <net/nit _pf.h> 

ioctl(fd, I_PUSH, "pr'); 

DESCRIPTION 
nit_pf is a STREAMS module that subjects messages arriving on its read queue to a packet filter and passes 
only those messages that the filter accepts on to its upstream neighbor. Such filtering can be very useful for 
user-level protocol implementations and for networking monitoring programs that wish to view only 
specific types of events. 

Read-side Behavior 
nit_pf applies the current packet filter to all M_DATA and M_PROTO messages arriving on its read queue. 
The module prepares these messages for examination by first skipping over all leading M_PROTO message 
blocks to arrive at the beginning of the message's data portion. If there is no data portion, nit_pf accepts 
the message and passes it along to its upstream neighbor. Otherwise, the module ensures that the part of 
the message's data that the packet filter might examine lies in contiguous memory, calling the pullupmsg 
utility routine if necessary to force contiguity. (Note: this action destroys any sharing relationships that the 
subject message might have had with other messages.) Finally, it applies the packet filter to the message's 
data, passing the entire message upstream to the next module if the filter accepts, and discarding the mes
sage otherwise. See PACKET FILTERS below for details on how the filter works. 

If there is no packet filter yet in effect, the module acts as if the filter exists but does nothing, implying that 
all incoming messages are accepted. IOCTLS below describes how to associate a packet filter with an 
instance of nit_pf. 

nit_pf handles other message types as follows. Upon receiving an M_FLUSH message specifying that the 
read queue be flushed, the module does so, and passes the message on to its upstream neighbor. It passes 
all other messages through unaltered to its upper neighbor. 

Write-side Behavior 

IOCTLS 

nit_pf intercepts M_IOCTL messages for the ioctl described below. Upon receiving an M_FLUSH mes
sage specifying that the write queue be flushed, the module does so and passes the message on to the 
module or driver below. The module passes all other messages through unaltered to its lower neighbor. 

nit _pf responds to the following ioctl. 

NIOCSETF This ioctl directs the module to replace its current packet filter, if any, with the filter 
specified by the 'struct packetfilt' pointer named by its final argument. This structure is 
defined in <net/packetfilt.h> as 

struct packetfilt { 

}; 

u_char Pf _Priority; I* priority of filter *I 
u char Pf Filter Len; I*# of cmils in list *f 
u short Pf_Filter[ENMAXFILTERS]; 

I* filter command list *I 

Sun Release 4.0 Last change: 29 December 1987 1279 



NIT_PF(4M) DEVICES AND NETWORK INTERFACES NIT_PF(4M) 

The Pf_Priority field is included only for compatibility with other packet filter implementa
tions and is otherwise ignored. The packet filter itself is specified in the Pf_Filter array as a 
sequence of two-byte commands, with the Pf_FilterLen field giving the number of com
mands in the sequence. This implementation restricts the maximum number of commands 
in a filter (ENMAXFILTERS) to 40. The next section describes the available commands and 
their semantics. 

PACKET FILTERS 
A packet filter consists of the filter command list length (in units of u _shorts), and the filter command list 
itself. (The priority field mentioned above is ignored in this implementation.) Each filter command list 
specifies a sequence of actions that operate on an internal stack of u _shorts ("shortwords"). Each short
word of the command list specifies one of the actions ENF _PUSHLIT, ENF _PUSHZERO, or 
ENF _PUSHWORD+n, which respectively push the next shortword of the command list, zero, or shortword n 
of the subject message on the stack, and a binary operator from the set { ENF_EQ, ENF_NEQ, ENF_LT, 
ENF_LE, ENF_GT, ENF_GE, ENF_AND, ENF_OR, ENF_XOR} which then operates on the top two elements 
of the stack and replaces them with its result. When both an action and operator are specified in the same 
shortword, the action is performed followed by the operation. 

The binary operator can also be from the set { ENF_COR, ENF_CAND, ENF_CNOR, ENF_CNAND }. These 
are ''short-circuit'' operators, in that they terminate the execution of the filter immediately if the condition 
they are checking for is found, and continue otherwise. All pop two elements from the stack and compare 
them for equality; ENF _ CAND returns false if the result is false; ENF _ COR returns true if the result is true; 
ENF _ CNAND returns true if the result is false; ENF _ CNOR returns false if the result is true. Unlike the 
other binary operators, these four do not leave a result on the stack, even if they continue. 

The short-circuit operators should be used when possible, to reduce the amount of time spent evaluating 
filters. When they are used, you should also arrange the order of the tests so that the filter will succeed or 
fail as soon as possible; for example, checking the IP destination field of a UDP packet is more likely to 
indicate failure than the packet type field. 

The special action ENF _NOPUSH and the special operator ENF _ NOP can be used to only perform the binary 
operation or to only push a value on the stack. Since both are (conveniently) defined to be zero, indicating 
only an action actually specifies the action followed by ENF _NOP, and indicating only an operation actually 
specifies ENF _ NO PUSH followed by the operation. 

After executing the filter command list, a non-zero value (true) left on top of the stack (or an empty stack) 
causes the incoming packet to be accepted and a zero value (false) causes the packet to be rejected. (If the 
filter exits as the result of a short-circuit operator, the top-of-stack value is ignored.) Specifying an 
undefined operation or action in the command list or performing an illegal operation or action (such as 
pushing a shortword offset past the end of the packet or executing a binary operator with fewer than two 
shortwords on the stack) causes a filter to reject the packet. 

EXAMPLES 

1280 

The reverse ARP daemon program (rarpd(8C)) uses code similar to the following fragment to construct a 
filter that rejects all but RARP packets. That is, is accepts only packets whose Ethernet type field has the 
value ETHERTYPE _ REV ARP. 

struct ether_ header eh; f* used only for offset values *f 
struct packetfilt pf; 
register u_short *fwp = pf.Pf_Filter; 
u _ short offset; 

I* 
* Set up filter. Offset is the displacement of the Ethernet 
* type field from the beginning of the packet in units of 
* u shorts. 

*I 

Last change: 29 December 1987 Sun Release 4.0 



NIT_PF(4M) DEVICES AND NETWORK INTERFACES 

offset= ((u_int) &eh.ether_type - (u_int) &eh.ether_dhost) / 
sizeof (u_short); 

•fwp++ = ENF _PUSHWORD + offset; 
•fwp++ = ENF _PUSHLIT; 
•fwp++ = htons(ETHERTYPE_REVARP); 
•fwp++ = ENF_EQ; 
pf.Pf _FilterLen = fwp - &pf.Pf _Filter[O]; 

NIT_PF(4M) 

This filter can be abbreviated by taking advantage of the ability to combine actions and operations: 

WARNINGS 

*fwp++ = ENF _PUSHWORD + offset; 
•fwp++ = ENF_PUSHLIT I ENF_EQ; 
*fwp++ = htons(ETHERTYPE_REVARP); 

The module name 'pf' used in the system configuration file and as argument to the I_PUSH ioctl is provi
sional and subject to change. 

The Pf_Priority field of the packetfilt structure is likely to be removed. 

SEE ALSO 
inet(4F), nit(4P), nit_buf(4M), nit_if(4M) 

Sun Release 4.0 Last change: 29 December 1987 1281 



NULL(4) DEVICES AND NETWORK INTERFACES 

NAME 
null - data sink 

CONFIG 
None; included with standard system. 

SYNOPSIS 
#include <f cntl.h> 

open("/dev/null", mode); 

DESCRIPTION 
Data written on the null special file is discarded. 

Reads from the null special file always return an end-of-file indication. 

FILES 
/dev/null 

1282 Last change: 24 November 1987 

NULL(4) 

Sun Release 4.0 



PP(4) DEVICES AND NETWORK INTERFACES PP(4) 

NAME 
pp - Centronics-compatible parallel printer port 

CONFIG 
device ppO at obio ? csr 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
This device driver provides an interface to the Sun386i system's on-board Centronics-compatible parallel 
printer port. It supports most standard PC printers with Centronics interfaces. 

FILES 
/dev/ppO 

DIAGNOSTICS 
PP*: printer not online 
pp*: printer out of paper 

Sun Release 4.0 Last change: 19 February 1988 1283 



PTY( 4) DEVICES AND NETWORK INTERFACES PTY(4) 

NAME 
pty- pseudo-terminal driver 

CONFIG 
pseudo-device ptyn 

SYNOPSIS 
#include <f cntl.h> 
#include <sys/termios.h> 
open("/dev/ttypn", mode); 
open("/dev/ptypn", mode); 

DESCRIPTION 

IOCTLS 

1284 

The pty driver provides support for a pair of devices collectively known as a pseudo-terminal. The two 
devices comprising a pseudo-terminal are known as a controller and a slave. The slave device distin
guishes between the BO baud rate and other baud rates specified in the c _ cflag word of the termios struc
ture, and the CLOCAL flag in that word. It does not support any of the other termio(4) device control 
functions specified by flags in the c _ cflag word of the termios structure and by the IGNBRK, IGNPAR, 
PARMRK, or INPCK flags in the c_iflag word of the termios structure, as these functions apply only to 
asynchronous serial ports. All other termio(4) functions must be performed by STREAMS modules pushed 
atop the driver; when a slave device is opened, the ldterm(4M) and ttcompat(4M) STREAMS modules are 
automatically pushed on top of the stream, providing the standard termio(4) interface. 

Instead of having a hardware interface and associated hardware that supports the terminal functions, the 
functions are implemented by another process manipulating the controller device of the pseudo-terminal. 

The controller and the slave devices of the pseudo-terminal are tightly connected. Any data written on the 
controller device is given to the slave device as input, as though it had been received from a hardware 
interface. Any data written on the slave terminal can be read from the controller device (rather than being 
transmitted from a UART). 

In configuring, if no optional "count" is given in the specification, 16 pseudo-terminal pairs are 
configured. 

The standard set of termio ioctls are supported by the slave device. None of the bits in the c_cftag word 
have any effect on the pseudo-terminal, except that if the baud rate is set to BO, it will appear to the process 
on the controller device as if the last process on the slave device had closed the line; thus, setting the baud 
rate to BO has the effect of "hanging up" the pseudo-terminal, just as it has the effect of "hanging up" a 
real terminal. 

There is no notion of "parity" on a pseudo-terminal, so none of the flags in the c_iftag word that control 
the processing of parity errors have any effect. Similarly, there is no notion of a ''break'', so none of the 
flags that control the processing of breaks, and none of the ioctls that generate breaks, have any effect. 

Input flow control is automatically performed; a process that attempts to write to the controller device will 
be blocked if too much unconsumed data is buffered on the slave device. The input flow control provided 
by the IXOFF flag in the c _iflag word is not supported. 

The delays specified in the c _ oflag word are not supported. 

As there are no modems involved in a pseudo-terminal, the ioctls that return or alter the state of modem 
control lines are silently ignored. 

On Sun systems, an additional ioctl is provided: 

TIOCCONS 
The argument is ignored. All output that would normally be sent to the console (either from pro
grams writing to /dev/console or from kernel printouts) is redirected so that it is written to the 
pseudo-terminal instead. 

Last change: 26 February 1988 Sun Release 4.0 



PTY(4) DEVICES AND NETWORK INTERFACES PTY(4) 

A few special ioctls are provided on the controller devices of pseudo-terminals to provide the functionality 
needed by applications programs to emulate real hardware interfaces: 

TIOCSTOP 
The argument is ignored. Output to the pseudo-terminal is suspended, as if a STOP character had 
been typed. 

TIOCSTART 
The argument is ignored. Output to the pseudo-terminal is restarted, as if a ST ART character had 
been typed. 

TIOCPKT 
The argument is a pointer to an int. If the value of the int is non-zero, packet mode is enabled; if 
the value of the int is zero, packet mode is disabled. When a pseudo-terminal is in packet mode, 
each subsequent read(2V) from the controller device will return data written on the slave device 
preceded by a zero byte (symbolically defined as TIOCPKT_DATA), or a single byte reflecting 
control status information. In the latter case, the byte is an inclusive-or of zero or more of the bits: 

TIOCPKT FLUSHREAD 
whenever the read queue for the terminal is flushed. 

TIOCPKT FLUSHWRITE 
whenever the write queue for the terminal is flushed. 

TIOCPKT STOP whenever output to the terminal is stopped using "S. 

TIOCPKT ST ART whenever output to the terminal is restarted. 

TIOCPKT DOSTOP whenever XON/XOFF flow control is enabled after being disabled; it is 
considered "enabled" when the IXON flag in the c _iflag word is set, the 
VSTOP member of the c_cc array is "Sand the VSTART member of the 
c_cc array is "Q. 

TIOCPKT NOSTOP whenever XON!XOFF flow control is disabled after being enabled. 

This mode is used by rlogin(lC) and rlogind(8C) to implement a remote-echoed, locally "S/"Q 
flow-controlled remote login with proper back-flushing of output when interrupts occur; it can be 
used by other similar programs. 

TIOCREMOTE 
The argument is a pointer to an int. If the value of the int is non-zero, remote mode is enabled; if 
the value of the int is zero, remote mode is disabled. This mode, can be enabled or disabled 
independently of packet mode. When a pseudo-terminal is in remote mode, input to the slave dev
ice of the pseudo-terminal is flow controlled and not input edited (regardless of the mode the slave 
side of the pseudo-terminal). Each write to the controller device produces a record boundary for 
the process reading the slave device. In normal usage, a write of data is like the data typed as a 
line on the terminal; a write of O bytes is like typing an EOF character. Note: this means that a 
process writing to a pseudo-terminal controller in remote mode must keep track of line boun
daries, and write only one line at a time to the controller. If, for example, it were to buffer up 
several NEWLINE characters and write them to the controller with one write(), it would appear to 
a process reading from the slave as if a single line containing several NEWLINE characters had 
been typed (as if, for example, a user had typed the LNEXT character before typing all but the last 
of those NEWLINE characters). Remote mode can be used when doing remote line editing in a 
window manager, or whenever flow controlled input is required. 

The ioctls TIOCGWINSZ, TIOCSWINSZ, and, on Sun systems, TIOCCONS, can be performed on the con
troller device of a pseudo-terminal; they have the same effect as when performed on the slave device. 

Sun Release 4.0 Last change: 26 February 1988 1285 



PTY(4) 

FILES 
/dev/pty[p-s][0-9a-f] 
/dev/tty[p-s][0-9a-f] 
/dev/console 

DEVICES AND NETWORK INTERFACES 

pseudo-terminal controller devices 
pseudo-terminal slave devices 

SEE ALSO 
rlogin(lC), termio(4), ldterm(4M), ttcompat(4M), rlogind(8C) 

BUGS 
It is apparently not possible to send an EOT by writing zero bytes in TIOCREMOTE mode. 

1286 Last change: 26 February 1988 

PTY(4) 

Sun Release 4.0 



ROOT(4S) DEVICES AND NETWORK INTERFACES ROOT(4S) 

NAME 
root - pseudo-driver for Sun386i root disk 

CONFIG 
pseudo-device rootdev 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

The root pseudo-driver provides indirect, device-independent access to the root disk on a diskful Sun 
workstation. The root disk is the disk where the mounted root partition resides - typically the disk from 
which the system was booted. 

The intent of the root device is to allow uniform access to the partitions on the root disk, regardless of the 
disk's controller type or unit number. For example, the following version of /etc/fstab will work for any 
disk (assuming the disk has the standard partitions and filesystems): 

/dev/roota / 4.2 rw 11 
/dev/rootg /usr 4.2 ro 12 
/dev/rooth /export 4.2 rw 13 

When the root device is opened, the open and all subsequent operations on that device (read(2V), 
write(2V), ioct1(2), close(2)) are redirected to the real disk. Therefore, all device-dependent operations on 
a particular disk are still accessible via the root device (see dkio(4S)). 

/dev/root[a-h] 
/dev/rroot[a-h] 

block partitions 
raw partitions 

SEE ALSO 
fstab(5), sd(4S), open(2V), dkio(4S), 

Sun Release 4.0 Last change: 19 February 1988 1287 



ROUTING ( 4N) DEVICES AND NETWORK INTERFACES ROUTING ( 4N) 

NAME 
routing - system supporting for local network packet routing 

DESCRIPTION 

FILES 

The network facilities provided general packet routing, leaving routing table maintenance to applications 
processes. 

A simple set of data structures comprise a ''routing table'' used in selecting the appropriate network inter
face when transmitting packets. This table contains a single entry for each route to a specific network or 
host. A user process, the routing daemon, maintains this data base with the aid of two socket specific 
ioctl(2) commands, SIOCADDRT and SIOCDELRT. The commands allow the addition and deletion of a 
single routing table entry, respectively. Routing table manipt4ations may only be carried out by super-user. 

A routing table entry has the following form, as defined in <net/route.h>: 
struct rtentry { 

u_Iong 
struct 
struct 
short 
short 

rt_hash; 
sockaddr rt_ dst; 
sockaddr rt _gateway; 
rt_flags; 
rt_refcnt; 

u_Iong rt_use; 
struct ifnet •rt_ifp; 

}; 
with rt _flags defined from: 

#define RTF_UP Oxl 
#define RTF GATEWAY Ox2 
#define RTF_HOST Ox4 

/• route usable•/ 
/•destination~ a gateway•/ 
I• host entry (net otherwise) •/ 

Routing table entries come in three flavors: for a specific host, for all hosts on a specific network, for any 
destination not matched by entries of the first two types (a wildcard route). When the system is booted, 
each network interface autoconfigured installs a routing table entry when it wishes to have packets sent 
through it. Normally the interface specifies the route through it is a ''direct'' connection to the destination 
host or network. If the route is direct, the transport layer of a protocof family usually requests the packet 
be sent to the same host specified in the packet. Otherwise, the interface may be requested to address the 
packet to an entity different from the eventual recipient (that is, the packet is forwarded). 

Routing table entries installed by a user process may not specify the hash, reference count, use, or interface 
fields; these are filled in by the routing routines. If a route is in use when it is deleted (rt _ref cnt is non
zero), the resources associated with it will not be reclaimed until all references to it are removed. 

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if requested to delete a 
non-existent entry, or ENOBUFS if insufficient resources were available to install a new route. 

User processes read the routing tables through the /dev/kmem device. 

The rt_ use field contains the number of packets sent along the route. This value is used to select among 
multiple routes to the same destination. When multiple routes to the same destination exist, the least used 
route is selected. 

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are used only 
when the system fails to find a route to the destination host and network. The combination of wildcard 
routes and routing redirects can provide an economical mechanism for routing traffic. 

/dev/kmem 

SEE ALSO 
ioctl(2), route(8C), routed(8C) 

1288 Last change: 9 October 1987 Sun Release 4.0 



SD(4S) DEVICES AND NETWORK INTERFACES SD(4S) 

NAME 
sci - Disk driver for SCSI Disk Controllers 

CONFIG - SUN-3 SYSTEM 
controller scO at vme24d16? csr Ox200000 priority 2 vector scintr Ox40 
controller siO at vme24d16 ? csr Ox200000 priority 2 vector siintr Ox40 
controller siO at obio? csr Oxl40000 priority 2 
disk sdO at scO drive O flags 0 
disk sdl at scO drive 1 flags 0 
disk sdO at siO drive O flags 0 
disk sdl at siO drive 1 flags 0 
disk sd2 at scO drive 8 flags 0 
disk sd2 at siO drive 8 flags 0 

The first two controller lines above specify the first SCSI host adapter on a Sun-3/160 system. The third 
controller line above specifies the first and only SCSI host adapter on a Sun-3/50 system. The first four 
disk lines specify the first and second disk drives on the first SCSI controller in a system. The last two disk 
lines specify the first disk drive on the second SCSI controller in a system. 

The drive value is calculated using the formula: 
8 * target + unit 

where target is the SCSI target (controller number on host adapter), and unit is the SCSI logical unit 

CONFIG - SUN-2 SYSTEM 
controller scO at mbmem ? csr Ox80000 priority 2 
controller scl at mbmem ? csr Ox84000 priority 2 
controller scO at vme24 ? csr Ox200000 priority 2 vector scintr Ox40 
disk sdO at scO drive O flags 0 
disk sdl at scO drive 1 flags 0 
disk sd2 at scl drive O flags 0 
disk sd3 at scl drive 1 flags 0 

The first two controller lines above specify the first and second SCSI host adapters on a Sun-2/120 or Sun-
2/170 system. The third controller line above specifies the first host adapter on a Sun-2/160 system. The 
four disk lines specify the first and second disk drives on the first and second SCSI controllers in a system 
(where each SCSI controller is on a different host adapter). 

CONFIG - Sun386i 
controller wdsO at obmem ? csr OxFBOOOOOO dmachan 7 irq 16 priority 2 
disk sdO at wdsO drive O flags 0 
disk sdl at wdsO drive 8 flags 0 
disk sd2 at wdsO drive 16 flags 0 

The drive value is calculated as described above. 

DESCRIPTION 
Files with minor device numbers O through 7 refer to various portions of drive 0. The standard device 
names begin with "sd" followed by the drive number and then a letter a-h for partitions 0-7 respectively. 
The character? stands here for a drive number in the range 0-7. 

The block-files access the disk using the system's normal buffering mechanism and may be read and writ
ten without regard to physical disk records. There is also a "raw" interface that provides for direct 
transmission between the disk and the user's read or write buffer. A single read or write call usually results 
in one 1/0 operation; therefore raw 1/0 is considerably more efficient when many words are transmitted. 
The names of the raw files conventionally begin with an extra 'r.' 

In raw 1/0, requests to the SCSI disk must have an offset on a 512 byte boundary, and their length must be a 
multiple of 512 bytes or the driver will return an error (EINV AL). Likewise seek calls should specify a 
multiple of 512 bytes. 

Sun Release 4.0 Last change: 18 February 1988 1289 



SD(4S) DEVICES AND NETWORK INTERFACES SD(4S) 

Disk Support 

FILES 

On Sun-2, Sun-3, Sun-4 systems, this driver handles all ST-506 and ESDI drives (assuming the correct con
troller is installed), by reading a label from sector O of the drive which describes the disk geometry and par
titioning. 

On Sun386i systems, this driver supports the CDC Wren III half-height, and Wren IV full-height drives, 
which have embedded, CCS-compatible SCSI controllers. 

The sd?a partition is normally used for the root file system on a disk, the sd?b partition as a paging area, 
and the sd?c 
partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is normally the 
sd?g partition. 

/dev/sd[O-7][a-h] 
/dev/rsd[O-7][a-h] 

block files 
raw files 

SEE ALSO 
dkio(4S) 

Adaptec ACB 4000 and 5000 Series Disk Controllers OEM Manual (Sun-2, Sun-3, Sun-4 systems only) 
Emulex MD21 SCSI Disk Controller Programmer Reference Manual (Sun-2, Sun-3, Sun-4 systems only) 
Product Specification for Wren III SCSI Model 94211 (Sun386i systems only) 
Product Specification for Wren IV SCSI Model 94171 (Sun386i systems only) 

DIAGNOSTICS 

1290 

sd%d%c: cmd how (msg) starting blk %d, blk %d (abs blk %d). 
A command such as read or write encountered a error condition (how): either it/ailed, the unit 
was restored, or an operation was retry'ed. The msg is derived from the error number given by 
the controller, indicating a condition such as "drive not ready" or "sector not found". The start
ing blk is the first sector of the erroneous command, relative to the beginning of the partition 
involved. The blk is the sector in error, again relative to the beginning of the partition involved. 
The abs blk is the absolute block number of the sector in error. 

Last change: 18 February 1988 Sun Release 4.0 



SOCKI0(4) DEVICES AND NETWORK INTERFACES SOCKI0(4) 

NAME 
sockio - ioctls that operate directly on sockets 

SYNOPSIS 
#include <sys/sockio.h> 

DESCRIPTION 
The IOCTL's listed in this manual page apply directly to sockets, independent of any underlying protocol. 
Note: the setsockopt system call (see getsockopt(2)) is the primary method for operating on sockets as 
such, rather than on the underlying protocol or network interface. ioctls for a specific network interface or 
protocol are documented in the manual page for that interface or protocol. 

SIOCSPGRP The argument is a pointer to an int. Set the process-group ID that will subse
quently receive SIGIO or SIGURG signals for the socket referred to by the 
descriptor passed to ioctl to the value of that int. 

SIOCGPGRP 

SIOCCATMARK 

SEE ALSO 

The argument is a pointer to an int. Set the value of that int to the process-group 
ID that is receiving SIGIO or SIGURG signals for the socket referred to by the 
descriptor passed to ioctl. 

The argument is a pointer to an int. Set the value of that int to 1 if the read 
pointer for the socket referred to by the descriptor passed to ioctl points to a mark 
in the data stream for an out-of-band message, and to O if it does not point to a 
mark. 

ioctl(2), getsockopt(2), filio(4) 

Sun Release 4.0 Last change: 23 November 1987 1291 



ST(4S) DEVICES AND NETWORK INTERFACES ST( 4S) 

NAME 
st- Driver for Sysgen SC 4000 (Archive) and the Emulex MT-02 Tape Controller 

CONFIG - SUN-3 SYSTEM 
controller scO at vme24dl6? csr Ox200000 priority 2 vector scintr Ox40 
controller siO at vme24d16 ? csr Ox200000 priority 2 vector siintr Ox40 
controller siO at obio ? csr Ox140000 priority 2 
tape stO at scO drive 32 flags 1 
tape stO at siO drive 32 flags 1 
tape stl at scO drive 40 flags 1 
tape stl at siO drive 40 flags 1 

The first two controller lines above specify the first SCSI controller on a Sun-3/160 system. The third con
troller line above specifies the first and only SCSI controller on a Sun-3/50 system. The four tape lines 
specify the first and second tape drives on the first SCSI controller in a system. 

The drive value is calculated using the formula: 
8 * target + unit 

where target is the SCSI target, and unit is the SCSI logical unit. 

CONFIG - SUN-2 SYSTEM 
controller scO at mbmem ? csr Ox80000 priority 2 
controller scO at vme24? csr Ox200000 priority 2 vector scintr Ox40 
controller scl at mbmem ? csr Ox84000 priority 2 
tape stO at scO drive 32 flags 1 
tape stO at scl drive 32 flags 1 
tape stl at scO drive 40 flags 1 
tape stl at scl drive 40 flags 1 

The first two controller lines above specify the first and second SCSI controllers on a Sun-2/120 or Sun-
2/170 system. The third controller line specifies the first controller on a Sun-2/160 system. The four tape 
lines specify the first and second tape drives on the first and second SCSI controllers in a system. 

The drive value is calculated as described above. 

CONFIG - Sun386i 
controller wdsO at obmem ? csr OxFBOOOOOO dmacban 7 irq 16 priority 2 
tape stO at wdsO drive 32 Hags 1 

The drive value is calculated as described above. 

DESCRIPTION 
The Sysgen tape controller is a SCSI bus interface to an Archive streaming tape drive. It provides a stan
dard tape interface to the device, see mtio(4), with some deficiencies listed under BUGS below. To utilize 
the QIC 24 format, access the logical device that is eight more than the default physical (QIC 11) device 
(that is, rstO = QIC 11, rst8 = QIC 24). QIC 24 is the preferred format on Sun386i systems. 

FILES 
/dev/rst[0-3] 
/dev/rst[S-11] 
/dev/nrst[0-3] 
/dev/nrst[S-11] 

SEE ALSO 
mtio(4) 

QIC 11 Format 
QIC 24 Format 
non-rewinding QIC 11 Format 
non-rewinding QIC 24 Format 

Sysgen SC4000 Intelligent Tape Controller Product Specification 

DIAGNOSTICS 
st•: tape not online. 
st•: no cartridge loaded. 

1292 Last change: 18 February 1988 Sun Release 4.0 



ST(4S) 

BUGS 

DEVICES AND NETWORK INTERFACES 

st*: cartridge is write protected. 
st*: format change failed. 
st*: device not supported. 

The tape cannot reverse direction so the BSF and BSR ioctls are not supported. 

The FSR ioctl is not supported. 

ST(4S) 

Most disk 1/0 over the SCSI bus is prevented when the tape is in use. This is because the controller does 
not free the bus while the tape is in motion (even during rewind). 

When using the raw device, the number of bytes in any given transfer must be a multiple of 512. If it is 
not, the device driver returns an error. 

The driver will only write an end of file mark on close if the last operation was a write, without regard for 
the mode used when opening the file. Empty files will be deleted on a raw tape copy operation. 

Some older systems may not support the QIC 24 device, and may complain ( or exhibit erratic behavior) 
when the user attempts a QIC 24 device access. 

Sun Release 4.0 Last change: 18 February 1988 1293 



STREAMIO ( 4) DEVICES AND NETWORK INTERFACES S1REAMI0(4) 

NAME 
streamio - STREAMS ioctl commands 

SYNOPSIS 
#include <Stropts.h> 
int ioctl (fildes, command, arg) 
int fildes, command; 

DESCRIPTION 
STREAMS (see intro(2)) ioctl commands are a subset of ioctl(2) commands that perform a variety of con
trol functions on STREAMS. The arguments command and arg are passed to·the file designated by fildes 
and are interpreted by the streamhead. Certain combinations of these arguments may be passed to a 
module or driver in the stream. 

fildes is an open file descriptor that refers to a stream. command determines the control function to be per
formed as described below. arg represents additional information that is needed by this command. The 
type of arg depends upon the command, but it is generally an integer or a pointer to a command-specific 
data structure. 

Since these STREAMS commands are a subset of ioctl, they are subject to the errors described there. In 
addition to those errors, the call will fail with errno set to EINV AL, without processing a control function, if 
the stream referenced by fildes is linked below a multiplexor, or if command is not a valid value for a 
stream. 

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In this case, the module or 
driver sends an error message to the stream head containing an error value. Subsequent system calls will 
fail with errno set to this value. 

IOCTLS 

1294 

The following ioctl commands, with error values indicated, are applicable to all STREAMS files: 

I PUSH 

I POP 

I LOOK 

Pushes the module whose name is pointed to by arg onto the top of the current 
stream, just below the streamhead. It then calls the open routine of the newly
pushed module. 

I_ PUSH will fail if one of the following occurs: 

EINV AL The module name is invalid. 

EFAULT 

ENXIO 

arg points outside the allocated address space. 

The open routine of the new module failed. 

ENXIO A hangup is received on the stream referred to by fildes. 

Removes the module just below the stream head of the stream pointed to by fildes. 
arg should be O in an I_POP request. 

I_POP will fail if one of the following occurs: 

No module is present on stream. EINVAL 

ENXIO A hangup is received on the stream referred to by fildes. 

Retrieves the name of the module just below the stream head of the stream 
pointed to by fildes, and places it in a NULL terminated character string pointed at 
by arg. The buffer pointed to by arg should be at least FMNAMESZ+ 1 bytes 
long. An '#include <sys/conf.h>' declaration is required. 

I_ LOOK will fail if one of the following occurs: 

EFAULT arg points outside the allocated address space of the pro
cess. 

EINVAL No module is present on stream. 

Last change: 24 November 1987 Sun Release 4.0 



STREAMIO ( 4) 

I FLUSH 

I SETSIG 

I GETSIG 

Sun Release 4.0 

DEVICES AND NETWORK INTERFACES STREAMIO ( 4) 

This request flushes all input and/or output queues, depending on the value of arg. 
Legal arg values are: 

FLUSHR 

FLUSHW 

Flush read queues. 

Flush write queues. 

FLUSHRW Flush read and write queues. 

I_FLUSH will fail if one of the following occurs: 

EAGAIN No buffers could be allocated for the flush message. 

EINVAL 

ENXIO 

The value of arg is invalid. 

A hangup is received on the stream referred to by fl.Ides. 

Informs the stream head that the user wishes the kernel to issue the SIGPOLL sig
nal (see sigvec(2)) when a particular event has occurred on the stream associated 
with fl.Ides. I_ SETSIG supports an asynchronous processing capability in 
STREAMS. The value of arg is a bitmask that specifies the events for which the 
user should be signaled. It is the bitwise-OR of any combination of the following 
constants: 

S INPUT 

S HIPRI 

S OUTPUT 

S MSG 

A non-priority message has. arrived on a stream head 
read queue, and no other messages existed on that queue 
before this message was placed there. This is set even if 
the message is of zero length. 

A priority message is present on the stream head read 
queue. This is set even if the message is of zero length. 

The write queue just below the stream head is no longer 
full. This notifies the user that there is room on the queue 
for sending (or writing) data downstream. 

A STREAMS signal message that contains the SIGPOLL 
signal has reached the front of the stream head read 
queue. 

A user process may choose to be signaled only of priority messages by setting the 
arg bitmask to the value s _ mPRI. 

Processes that wish to receive SIGPOLL signals must explicitly register to receive 
them using I_SETSIG. If several processes register to receive this signal for the 
same event on the same stream, each process will be signaled when the event 
occurs. 

If the value of arg is zero, the calling process will be unregistered and will not 
receive further SIG POLL signals. 

I_ SETSIG will fail if one of the following occurs: 

EINV AL The value of arg is invalid or arg is zero and the process 
is not registered to receive the SIGPOLL signal. 

EAGAIN A data structure could not be allocated to store the signal 
request. 

Returns the events for which the calling process is currently registered to be sent a 
SIG POLL signal. The events are returned as a bitmask pointed to by arg, where 
the events are those specified in the description of I_ SETSIG above. 

Last change: 24 November 1987 1295 



STREAMIO ( 4) 

I FIND 

I PEEK 

I SRDOPT 

I GRDOPT 

1296 

DEVICES AND NETWORK INTERFACES STREAMIO ( 4) 

I_ GETSIG will fail if one of the following occurs: 

EINV AL The process is not registered to receive the SIGPOLL sig
nal. 

EFAULT arg points outside the allocated address space of the pro-
cess. 

This request compares the names of all modules currently present in the stream to 
the name pointed to by arg, and returns 1 if the named module is present in the 
stream. It returns O if the named module is not present. 

I_ FIND will fail if one of the following occurs: 

EFAULT arg points outside the allocated address space of the pro
cess. 

EINVAL arg does not point to a valid module name. 

This request allows a user to retrieve the information in the first message on the 
stream head read queue without taking the message off the queue. arg points to a 
strpeek structure which contains the following members: 

struct strbuf ctlbuf; 
struct strbuf databuf; 
long flags; 

The maxlen field in the ctlbuf and databuf strbuf structures (see getmsg(2)) must 
be set to the number of bytes of control information and/or data information, 
respectively, to retrieve. If the user sets flags to RS_IDPRI, I_PEEK will only 
look for a priority message on the stream head read queue. 

I_ PEEK returns 1 if a message was retrieved, and returns O if no message was 
found on the stream head read queue, or if the RS_ IDPRI flag was set in flags and 
a priority message was not present on the stream head read queue. It does not 
wait for a message to arrive. On return, ctlbuf specifies information in the control 
buffer, databuf specifies information in the data buffer, and flags contains the 
value O or RS_ IDPRI. 

I_ PEEK will fail if one of the following occurs: 

EFAULT arg points, or the buffer area specified in ctlbuf or data
buf is, outside the allocated address space of the process. 

Sets the read mode using the value of the argument arg. Legal arg values are: 

RNORM Byte-stream mode, the default. 

RMSGD Message-discard mode. 

RMSGN Message-nondiscard mode. 

Read modes are described in read(2V). 

I_SRDOPT will fail if one of the following occurs: 

EINV AL arg is not one of the above legal values. 

Returns the current read mode setting in an int pointed to by the argument arg. 
Read modes are described in read(2V). 

I_ GRDO PT will fail if one of the following occurs: 

EFAULT arg points outside the allocated address space of the pro
cess. 

Last change: 24 November 1987 Sun Release 4.0 



STREAMIO ( 4) 

I NREAD 

I FDINSERT 

Sun Release 4.0 

DEVICES AND NETWORK INTERFACES STREAMI0(4) 

Counts the number of data bytes in data blocks in the first message on the stream 
head read queue, and places this value in the location pointed to by arg. The 
return value for the command is the number of messages on the stream head read 
queue. For example, if zero is returned in arg, but the ioctl return value is greater 
than zero, this indicates that a zero-length message is next on the queue. 

I_ NREAD will fail if one of the following occurs: 

EFAULT arg points outside the allocated address space of the pro-
cess. 

creates a message from user specified buffer(s), adds information about another 
stream and sends the message downstream. The message contains a control part 
and an optional data part. The data and control parts to be sent are distinguished 
by placement in separate buffers, as described below. 

arg points to a strf dinsert structure which contains the following members: 

struct strbuf 
struct strbuf 
long 
int 
int 

ctlbuf; 
databuf; 
flags; 
fd; 
offset; 

The len field in the ctlbuf strbuf structure (see putmsg(2)) must be set to the size 
of a pointer plus the number of bytes of control information to be sent with the 
message. f d specifies the file descriptor of the other stream and offset, which must 
be word-aligned, specifies the number of bytes beyond the beginning of the con
trol buffer where I_ FD INSERT will store a pointer to the fd stream's driver read 
queue structure. The len field in the databuf strbuf structure must be set to the 
number of bytes of data information to be sent with the message or zero if no data 
part is to be sent. 

flags specifies the type of message to be created. A non-priority message is 
created if flags is set to 0, and a priority message is created if flags is set to 
RS_HIPRI. For non-priority messages, I_FDINSERT will block if the stream write 
queue is full due to internal flow control conditions. For priority messages, 
I_FDINSERT does not block on this condition. For non-priority messages, 
I_ FD INSERT does not block when the write queue is full and O _ ND ELA Y is set. 
Instead, it fails and sets errno to EAGAIN. 

I_FDINSERT also blocks, unless prevented by lack of internal resources, waiting 
for the availability of message blocks in the stream, regardless of priority or 
whether o _ND ELA Y has been specified. No partial message is sent. 

I_FDINSERT will fail if one of the following occurs: 

EAGAIN A non-priority message was specified, the O _ND ELA Y 
flag is set, and the stream write queue is full due to inter
nal flow control conditions. 

EAGAIN 

EFAULT 

EINVAL 

Buffers could not be allocated for the message that was 
to be created. 

arg points, or the buffer area specified in ctlbuf or data
buf is, outside the allocated address space of the process. 

f d in the strf dinsert structure is not a valid, open stream 
file descriptor; the size of a pointer plus offset is greater 
than the len field for the buffer specified through ctlptr; 

Last change: 24 November 1987 1297 



STREAMIO ( 4) 

I STR 

1298 

DEVICES AND NETWORK INTERFACES STREAMIO ( 4) 

offset does not specify a properly-aligned location in the 
data buffer, an undefined value is pointed to by flags. 

ENXIO A hangup is received on the stream referred to by fildes. 

ERANGE The len field for the buffer specified through databuf 
does not fall within the range specified by the maximum 
and minimum packet sizes of the topmost stream module, 
or the len field for the buffer specified through databuf is 
larger than the maximum configured size of the data part 
of a message, or the len field for the buffer specified 
through ctlbuf is larger than the maximum configured 
size of the control part of a message. 

Constructs an internal STREAMS ioctl message from the data pointed to by arg, 
and sends that message downstream. 

This mechanism is provided to permit a process to specify timeouts and variable
sized amounts of data when sending an ioctl request to downstream modules and 
drivers. It allows information to be sent with the ioctl, and will return to the user 
any information sent upstream by the downstream recipient I_ STR blocks until 
the system responds with either a positive or negative acknowledgement message, 
or until the request "times out" after some period of time. If the request times 
out, it fails with errno set to ETIME. 

At most, one I_STR can be active on a stream. Further I_STR calls will block until 
the active I_STR completes at the stream head. The default timeout interval for 
these requests is 15 seconds. The O _NDELAY (see open(2V)) flag has no effect 
on this call. 

To send requests downstream, arg must point to a strioctl structure which contains 
the following members: 

int ic_cmd; I• downstream command•/ 
int ic_timout; I• ACK/NAK timeout•/ 
int ic_len; /• length of data arg •/ 
char •ic_dp; /• ptr to data arg •/ 

ic cmd is the internal ioctl command intended for a downstream module or driver 
and ic_timout is the number of seconds (-1 = infinite, 0 = use default, >0 = as 
specified) an I_ STR request will wait for acknowledgement before timing out. 
ic _len is the number of bytes in the data argument and ic _ dp is a pointer to the 
data argument The ic _len field has two uses: on input, it contains the length of 
the data argument passed in, and on return from the command, it contains the 
number of bytes being returned to the user (the buffer pointed to by ic _ dp should 
be large enough to contain the maximum amount of data that any module or the 
driver in the stream can return). 

The stream head will convert the information pointed to by the strioctl structure to 
an internal ioctl command message and send it downstream. 

I_ STR will fail if one of the following occurs: 

EAGAIN Buffers could not be allocated for the ioctl message. 

EFAULT arg points, or the buffer area specified by ic _dp and 
ic _len (separately for data sent and data returned) is, out
side the allocated address space of the process. 

EINVAL ic _len is less than O or ic _len is larger than the maximum 

Last change: 24 November 1987 Sun Release 4.0 



STREAMIO ( 4) 

I SENDFD 

I RECVFD 

Sun Release 4.0 

DEVICES AND NETWORK INTERFACES STREAMIO ( 4) 

ENXIO 

ETIME 

configured size of the data part of a message or ic _ timout 
is less than -1. 

A hangup is received on the stream referred to by fildes. 

A downstream ioctl timed out before acknowledgement 
was received. 

An I_ STR can also fail while waiting for an acknowledgement if a message indi
cating an error or a hangup is received at the streamhead. In addition, an error 
code can be returned in the positive or negative acknowledgement message, in the 
event the ioctl command sent downstream fails. For these cases, I_ STR will fail 
with errno set to the value in the message. 

Requests the stream associated with fildes to send a message, containing a file 
pointer, to the stream head at the other end of a stream pipe. The file pointer 
corresponds to arg, which must be an integer file descriptor. 

I_SENDFD converts arg into the corresponding system file pointer. It allocates a 
message block and inserts the file pointer in the block. The user id and group id 
associated with the sending process are also inserted. This message is placed 
directly on the read queue (see intro(2)) of the stream head at the other end of the 
stream pipe to which it is connected. 

I_SENDFD will fail if one of the following occurs: 

EAGAIN The sending stream is unable to allocate a message block 
to contain the file pointer. 

EAGAIN 

EBADF 

EINVAL 

ENXIO 

The read queue of the receiving stream head is full and 
cannot accept the message sent by I_ SEND FD. 

arg is not a valid, open file descriptor. 

fildes is not connected to a stream pipe. 

A hangup is received on the stream referred to by fildes. 

Retrieves the file descriptor associated with the message sent by an I_ SEND FD 
ioctl over a stream pipe. arg is a pointer to a data buff er large enough to hold an 
strrecvf d data structure containing the following members: 

int fd; 
unsigned short uid; 
unsigned short gid; 
char 611[8]; 

f d is an integer file descriptor. uid and gid are the user ID and group ID, respec
tively, of the sending stream. 

If O_NDELAY is not set (see open(2V)), I_RECVFD will block until a message is 
present at the stream head. If O _ND ELA Y is set, I_ RECVFD will fail with errno 
set to EAGAIN if no message is present at the stream head. 

If the message at the stream head is a message sent by an I_ SENDFD, a new user 
file descriptor is allocated for the file pointer contained in the message. The new 
file descriptor is placed in the/ d field of the strrecvf d structure. The structure is 
copied into the user data buff er pointed to by arg. 

I_ RECVFD will fail if one of the following occurs: 

EAGAIN A message was not present at the stream head read 
queue, and the O _ND ELA Y flag is set. 

Last change: 24 November 1987 1299 



STREAMIO ( 4) DEVICES AND NETWORK INTERFACES STREAMIO ( 4) 

1300 

EBADMSG 

EFAULT 

EMFILE 

ENXIO 

The message at the stream head read queue was not a 
message containing a passed file descriptor. 

arg points outside the allocated address space of the pro
cess. 

Too many descriptors are active. 

A hangup is received on the stream referred to by fildes. 

The following four commands are used for connecting and disconnecting multiplexed STREAMS 
configurations. 

I LINK 

I UNLINK 

Connects two streams, where fildes is the file descriptor of the stream connected to 
the multiplexing driver, and arg is the file descriptor of the stream connected to 
another driver. The stream designated by arg gets connected below the multiplex
ing driver. I_LINK causes the multiplexing driver to send an acknowledgement 
message to the stream head regarding the linking operation. This call returns a 
multiplexor ID number (an identifier used to disconnect the multiplexor, see 
I_ UNLINK) on success, and a -1 on failure. 

I_ LINK will fail if one of the following occurs: 

ENXIO A hangup is received on the stream referred to by fildes. 

ETIME 

EAGAIN 

EBADF 

EINVAL 

EINVAL 

EINVAL 

The ioctl timed out before an acknowledgement was 
received. 

Storage could not be allocated to perform the I_ LINK. 

arg is not a valid, open file descriptor. 

The stream referred to by fildes does not support multi
plexing. 

arg is not a stream, or is already linked under a multi
plexor. 

The specified link operation would cause a "cycle" in the 
resulting configuration; that is, if a given stream head is 
linked into a multiplexing configuration in more than one 
place. 

An I_ LINK can also fail while waiting for the multiplexing driver to acknowledge 
the link request, if a message indicating an error or a hangup is received at the 
stream head of fildes. In addition, an error code can be returned in the positive or 
negative acknowledgement message. For these cases, I_LINK will fail with errno 
set to the value in the message. 

Disconnects the two streams specified by fildes and arg. fildes is the file descrip
tor of the stream connected to the multiplexing driver. arg is the multiplexor ID 
number that was returned by the ioctl I_ LINK command when a stream was linked 
below the multiplexing driver. If arg is -1, then all streams which were linked to 
fildes are disconnected. As in I_ LINK, this command requires the multiplexing 
driver to acknowledge the unlink. 

I_ UNLINK will fail if one of the following occurs: 

ENXIO A hangup is received on the stream referred to by fildes. 

ETIME 

EAGAIN 

The ioctl timed out before an acknowledgement was 
received. 

Buffers could not be allocated for the acknowledgement 
message. 

Last change: 24 November 1987 Sun Release 4.0 



STREAMIO ( 4) 

SEE ALSO 

DEVICES AND NETWORK INTERFACES STREAMIO ( 4) 

EINVAL The multiplexor ID number was invalid. 

An I_UNLINK can also fail while waiting for the multiplexing driver to ack
nowledge the link request, if a message indicating an error or a hangup is received 
at the stream head of fildes. In addition, an error code can be returned in the posi
tive or negative acknowledgement message. For these cases, I_ UNLINK will fail 
with errno set to the value in the message. 

close(2), fcnt1(2V), getmsg(2), intro(2), ioctl{2), open(2V), poll(2), putmsg(2), read(2V), sigvec(2), 
write(2V) 

STREAMS Programmer's Guide 
STREAMS Primer 

Sun Release 4.0 Last change: 24 November 1987 1301 



TAAC(4S) DEVICES AND NETWORK INTERFACES TAAC(4S) 

NAME 
taac - Sun applications accelerator 

CONFIG 
taacO at vme32d32 ? csr Ox:28000000 

DESCRIPTION 

FILES 

The taac interface supports the optional TAAC-1 Applications Accelerator. This add-on device is com
posed of a very-long-instruction-word computation engine, coupled with an 8MB memory array. This 
memory area can be used either as a frame buffer, or as storage for large data sets. 

Programs can be downloaded for execution on the TAAC-1 directly, they can be executed by the host pro
cessor, or the host processor and the TAAC-1 engine can be used in combination. See the TAAC-1 User's 
Guide for detailed information on accessing the TAAC-1 from the host. This manual also describes the C 
compiler, the programming tools, and the support libraries for the TAAC-1. 

Programs on the host processor gain access to the T AAC-1 registers and memory by using mmap{2). 

/dev/taacO 
/usr/include/taacl 
/usr/lib/taacl 

SEE ALSO 
mmap(2) 

TAAC-1 Application Accelerator: User Guide 

1302 Last change: 24 November 1987 Sun Release 4.0 



TCP(4P) PROTOCOLS TCP(4P) 

NAME 
tcp - Internet Transmission Control Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_STREAM, 0); 

DESCRIPTION 
TCP is the virtual circuit protocol of the Internet protocol family. It provides reliable, flow-controlled, in 
order, two-way transmission of data. It is a byte-stream protocol used to support the SOCK_STREAM 
abstraction. TCP is layered above the Internet Protocol (IP), the Internet protocol family's unreliable inter
network datagram delivery protocol. 

TCP uses IP's host-level addressing and adds its own per-host collection of "port addresses". The end
points of a TCP connection are identified by the combination of an IP address and a TCP port number. 
Although other protocols, such as the User Datagram Protocol (UDP), may use the same host and port 
address format, the port space of these protocols is distinct. See inet(4F) for details on the common aspects 
of addressing in the Internet protocol family. 

Sockets utilizing TCP are either "active" or "passive". Active sockets initiate connections to passive 
sockets. Both types of sockets must have their local IP address and TCP port number bound with the 
bind(2) system call after the socket is created. By default, TCP sockets are active. A passive socket is 
created by calling the listen(2) system call after binding the socket with bind. This establishes a queueing 
parameter for the passive socket. After this, connections to the passive socket can be received with the 
accept(2) system call. Active sockets use the connect(2) call after binding to initiate connections. 

By using the special value INADDR_ANY, the local IP address can be left unspecified in the bind call by 
either active or passive TCP sockets. This feature is usually used if the local address is either unknown or 
irrelevant. If left unspecified, the local IP address will be bound at connection time to the address of the 
network interface used to service the connection. 

Once a connection has been established, data can be exchanged using the read(2V) and write(2V) system 
calls. 

TCP supports one socket option which is set with setsockopt and tested with getsockopt(2). Under most 
circumstances, TCP sends data when it is presented. When outstanding data has not yet been ack
nowledged, it gathers small amounts of output to be sent in a single packet once an acknowledgement is 
received. For a small number of clients, such as window systems that send a stream of mouse events which 
receive no replies, this packetization may cause significant delays. Therefore, TCP provides a boolean 
option, TCP _NODELAY (defined in <netinet/tcp.h>), to defeat this algorithm. The option level for the set
sockopt call is the protocol number for TCP, available from getprotobyname (see getprotoent(3N)). 

Options at the IP level may be used with TCP; see ip(4P). 

TCP provides an urgent data mechanism, which may be invoked using the out-of-band provisions of 
send(2). The caller may mark one byte as "urgent" with the MSG_ OOB flag to send(2). This causes an 
"urgent pointer" pointing to this byte to be set in the TCP stream. The receiver on the other side of the 
stream is notified of the urgent data by a SIGURG signal. The SIOCATMARK ioctl returns a value indicat
ing whether the stream is at the urgent mark. Because the system never returns data across the urgent mark 
in a single read(2V) call, it is possible to advance to the urgent data in a simple loop which reads data, test
ing the socket with the SIOCATMARK ioctl, until it reaches the mark. 

Incoming connection requests that include an IP source route option are noted, and the reverse source route 
is used in responding. 

Sun Release 4.0 Last change: 24 November 1987 1303 



TCP(4P) PROTOCOLS TCP(4P) 

TCP assumes the datagram service it is layered above is unreliable. A checksum over all data helps TCP 
implement reliability. Using a window-based flow control mechanism that makes use of positive ack
nowledgements, sequence numbers, and a retransmission strategy, TCP can usually recover when 
datagrams are damaged, delayed, duplicated or delivered out of order by the underlying communication 
medium. 

If the local TCP receives no acknowledgements from its peer for a period of time, as would be the case if 
the remote machine crashed, the connection is closed and an error is returned to the user. If the remote 
machine reboots or otherwise loses state information about a TCP connection, the connection is aborted and 
an error is returned to the user. 

ERRORS 
A socket operation may fail if: 

EISCONN 

ETIMEDOUT 

ECONNRESET 

ECONNREFUSED 

EADDRINUSE 

EADDRNOTA VAIL 

EACCES 

ENOBUFS 

A connect operation was attempted on a socket on which a connect operation had 
already been performed. 

A connection was dropped due to excessive retransmissions. 

The remote peer forced the connection to be closed (usually because the remote 
machine has lost state information about the connection due to a crash). 

The remote peer actively refused connection establishment (usually because no 
process is listening to the port). 

A bind operation was attempted on a socket with a network address/port pair that 
has already been bound to another socket. 

A bind operation was attempted on a socket with a network address for which no 
network interface exists. 

A bind operation was attempted with a "reserved" port number and the effective 
user ID of the process was not super-user. 

The system ran out of memory for internal data structures. 

SEE ALSO 

BUGS 

1304 

accept(2), bind(2), connect(2), getsockopt(2), listen(2), read(2V), send(2), write(2V), getprotoent(3N), 
inet(4F), ip(4P) 

Postel, Jon, Transmission Control Protocol - DARPA Internet Program Protocol Specification, RFC 793, 
Network Information Center, SRI International, Menlo Park, Calif., September 1981. 

SIOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket queue, and so 
that it can be changed from 2048 bytes to be larger or smaller, have been defined (in <sys/ioctl.h>) but not 
implemented. 

Last change: 24 November 1987 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

NAME 
termio - general terminal interface 

SYNOPSIS 
#include <sys/termios.h> 

DESCRIPTION 
Asynchronous communications ports, pseudo-terminals, and the special interface accessed by /dev/tty all 
use the same general interface, no matter what hardware (if any) is involved. The remainder of this section 
discusses the common features of this interface. 

Opening a Terminal Device File 
When a terminal file is opened, the process normally waits until a connection is established. (In practice, 
users' programs seldom open these files; they are opened by getty(8) and become a user's standard input, 
output, and error files.) If the O_NDELAY flag was set in the second argument to open(2V), the open() 
will complete immediately without waiting for a connection to be established. 

Process Groups 
A terminal may have a distinguished process group associated with it. This distinguished process group 
plays a special role in handling signal-generating input characters, as discussed below in the Special Char
acters section below. 

A command interpreter, such as csh(l), that supports "job control" can allocate the terminal to different 
jobs, or process groups, by placing related processes in a single process group and associating this process 
group with the terminal. A terminal's associated process group may be set or examined by a process with 
sufficient privileges. The terminal interface aids in this allocation by restricting access to the terminal by 
processes that are not in the current process group; see Job Acee~ Control below. 

The Controlling Terminal 
A terminal may belong to a process as its controlling terminal. If a process that is a "session process group 
leader", and that does not have a controlling terminal, opens a terminal file not already associated with a 
process group, the terminal associated with that terminal file becomes the controlling terminal for that pro
cess, and the terminal's distinguished process group is set to the process group of that process. (Currently, 
this also happens if a process that does not have a controlling terminal and is not a member of a process 
group opens a terminal. In this case, if the terminal is not associated with a process group, a new process 
group is created with a process group ID equal to the process ID of the process in question, and the terminal 
is assigned to that process group. The process is made a member of the terminal's process group.) 

The controlling terminal is inherited by a child process during a fork(2). A process relinquishes its control 
terminal when it changes its process group using setpgrp(2V) or when it issues a TIOCNOTTY ioctl(2) 
call on a file descriptor created by opening the file /dev/tty. 

When a session process group leader that has a controlling terminal terminates, the distinguished process 
group of the controlling terminal is set to zero (indicating no distinguished process group). This allows the 
terminal to be acquired as a controlling terminal by a new session process group leader. 

Closing a Terminal Device File 
When a terminal device file is closed, the process closing the file waits until all output is drained; all pend
ing input is then flushed, and finally a disconnect is performed. If HUPCL is set, the existing connection is 
severed (by hanging up the phone line, if appropriate). 

Job Access Control 

If a process is in the (non-zero) distinguished process group of its controlling terminal, or if the terminal's 
distinguished process group is zero (if either of these are true, the process is said to be a foreground pro
cess), then read(2V) operations are allowed as described below in Input Processing and Reading Char
acters. If a process is not in the (non-zero) distinguished process group of its controlling terminal (if this is 
true, the process is said to be a background process), then any attempts to read from that terminal will send 
that process' process group a SIGTTIN signal, unless the process is ignoring SIGTTIN, has SIGTTIN 
blocked, or is in the middle of process creation using vf ork(2); in that case, the read will return -1 and set 
errno to EIO, and the SIGTTIN signal will not be sent. The SIGTTIN signal will normally stop the 

Sun Release 4.0 Last change: 26 February 1988 1305 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

members of that process group. 

When the TOSTOP bit is set in the c_lflag field, attempts by a background process to write to its controlling 
terminal will send that process' process group a SIGTTOU signal, unless the process is ignoring SIGTTOU, 
has SIGTTOU blocked, or is in the middle of process creation using vfork( ); in that case, the process will 
be allowed to write to the terminal and the SIGTTOU signal will not be sent. The SIGTTOU signal will nor
mally stop the members of that process group. Certain ioctlO calls that set terminal parameters are treated 
in this same fashion, except that TOSTOP is not checked; the effect is identical to that of terminal writes 
when TOSTOP is set. See IOCTLS. 

· Input Processing and Reading Characters 
A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be 
typed at any time, even while output is occurring, and are only lost when the system's character input 
buffers become completely full, which is rare, or when the user has accumulated the maximum allowed 
number of input characters that have not yet been read by some program. Currently, this limit is 256 char
acters. If the IMAXBEL mode has not been selected, all the saved characters are thrown away without 
notice when the input limit is reached; if the IMAXBEL mode has been selected, the driver refuses to 
accept any further input, and echoes a bell (ASCII BEL). 

Two general kinds of input processing are available, determined by whether the terminal device file is in 
canonical mode or non-canonical mode (see ICANON in the Local Modes section). 

The style of input processing can also be very different when the terminal is put in non-blocking I/0 mode; 
see read(2V). In this case, reads from the terminal will never block. 

It is possible to simulate terminal input using the TIOCSTI ioctl() call, which takes, as its third argument, 
the address of a character. The system pretends that this character was typed on the argument terminal, 
which must be the process' controlling terminal unless the process' effective user ID is super-user. 

Canonical Mode Input Processing 
In canonical mode input processing, terminal input is processed in units of lines. A line is delimited by a 
NEWLINE (ASCII LF) character, an EOF (by default, an ASCII EOT) character, or one of two user-specified 
end-of-line characters, EOL and EOL2. This means that a read() will not complete until an entire line has 
been typed or a signal has been received. Also, no matter how many characters are requested in the read 
call, at most one line will be returned. It is not, however, necessary to read a whole line at once; any 
number of characters may be requested in a read, even one, without losing information. 

Erase and kill processing occurs during input The ERASE character (by default, the character DEL) erases 
the last character typed in the current input line. The WERASE character (by default, the character CTRL
W) erases the last "word" typed in the current input line (but not any preceding SPACE or TAB characters). 
A "word" is defined as a sequence of non-blank characters, with TAB characters counted as blanks. Nei
ther ERASE nor WERASE will erase beyond the beginning of the line. The KILL character (by default, the 
character CTRL-U) kills (deletes) the entire current input line, and optionally outputs a NEWLINE character. 
All these characters operate on a key-stroke basis, independently of any backspacing or tabbing that may 
have been done. 

The REPRINT character (the character CTRL-R) prints a NEWLINE followed by all characters that have not 
been read. Reprinting also occurs automatically if characters that would normally be erased from the 
screen are fouled by program output. The characters are reprinted as if they were being echoed; as a 
consequence, if ECHO is not set, they are not printed. 

The ERASE and KILL characters may be entered literally by preceding them with the escape character (\). 
In this case the escape character is not read. The ERASE and KILL characters may be changed. 

Non-Canonical Mode Input Processing 

1306 

In non-canonical mode input processing, input characters are not assembled into lines, and erase and kill 
processing does not occur. The MIN and TIME values are used to determine how to process the characters 
received. 

Last change: 26 February 1988 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

MIN represents the minimum number of characters that should be received when the read is satisfied (when 
the characters are returned to the user). TIME is a timer of 0.10 second granularity that is used to timeout 
bursty and short term data transmissions. The four possible values for MIN and TIME and their interac
tions are described below. 

Case A: MIN> O, TIME> 0 
In this case TIME serves as an intercharacter timer and is activated after the first character is received. 
Since it is an intercharacter timer, it is reset after a character is received. The interaction between MIN and 
TIME is as follows: as soon as one character is received, the intercharacter timer is started. If MIN charac
ters are received before the intercharacter timer expires (remember that the timer is reset upon receipt of 
each character), the read is satisfied. If the timer expires before MIN characters are received, the characters 
received to that point are returned to the user. Note: if MIN expires at least one character will be returned 
because the timer would not have been enabled unless a character was received. In this case (MIN > 0, 
TIME> 0) the read will sleep until the MIN and TTh1E mechanisms are activated by the receipt of the first 
character. 

Case B: MIN> O, TIME = 0 
In this case, since the value of TIME is zero, the timer plays no role and only MIN is significant. A pending 
read is not satisfied until MIN characters are received (the pending read will sleep until MIN characters are 
received). A program that uses this case to read record-based terminal 1/0 may block indefinitely in the 
read operation. 

Case C: MIN = 0, TIME > 0 
In this case, since MIN = 0, TIME no longer represents an intercharacter timer. It now serves as a read 
timer that is activated as soon as a read() is done. A read is satisfied as soon as a single character is 
received or the read timer expires. Note: in this case if the timer expires, no character will be returned. If 
the timer does not expire, the only way the read can be satisfied is if a character is received. In this case 
the read will not block indefinitely waiting for a character - if no character is received within TIME* .10 
seconds after the read is initiated, the read will return with zero characters. 

Case D: MIN = O, TIME = 0 
In this case return is immediate. The minimum of either the number of characters requested or the number 
of characters currently available will be returned without waiting for more characters to be input. 

Comparison of the Different Cases of MIN, TIME Interaction 
Some points to note about MIN and TTh1E: 

1. In the following explanations one may notice that the interactions of MIN and TIME are not sym
metric. For example, when MIN > 0 and TIME = 0, TIME has no effect However, in the oppo
site case where MIN = 0 and TIME > 0, both MIN and TIME play a role in that MIN is satisfied 
with the receipt of a single character. 

2. Also note that in case A (MIN> 0, TIME> 0), TTh1E represents an intercharacter timer while in 
case C (TIME = 0, TIME > 0) TIME represents a read timer. 

These two points highlight the dual purpose of the MINffIME feature. Cases A and B, where MIN> O, 
exist to handle burst mode activity (for example, file transfer programs) where a program would like to 
process at least MIN characters at a time. In case A, the intercharacter timer is activated by a user as a 
safety measure; while in case B, it is turned off. 

Cases C and D exist to handle single character timed transfers. These cases are readily adaptable to 
screen-based applications that need to know if a character is present in the input queue before refreshing 
the screen. In case C the read is timed; while in case D, it is not. 

Another important note is that MIN is always just a minimum. It does not denote a record length. That is, if 
a program does a read of 20 bytes, MIN is 10, and 25 characters are present, 20 characters will be returned 
to the user. 

Sun Release 4.0 Last change: 26 February 1988 1307 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

Writing Characters 
When one or more characters are written, they are transmitted to the terminal as soon as previously-written 
characters have finished typing. Input characters are echoed as they are typed if echoing has been enabled. 
If a process produces characters more rapidly than they can be typed, it will be suspended when its output 
queue exceeds some limit. When the queue has drained down to some threshold, the program is resumed. 

Special Characters 

1308 

Certain characters have special functions on input and/or output. These functions and their default charac
ter values are summarized as follows: 

INTR 

QUIT 

ERASE 

WERASE 

KILL 

REPRINT 

EOF 

NL 

EOL 
EOL2 

SUSP 

STOP 

START 

DISCARD 

LNEXT 

(CTRL-C or ASCII ETX) generates a SIGINT signal, which is sent to all processes in the 
distinguished process group associated with the terminal. Normally, each such process is 
forced to terminate, but arrangements may be made either to ignore the signal or to 
receive a trap to an agreed-upon location; see sigvec(2). 

(CTRL~ or ASCII FS) generates a SIGQUIT signal, which is sent to all processes in the 
distinguished process group associated with the terminal. Its treatment is identical to the 
interrupt signal except that, unless a receiving process has made other arrangements, it 
will not only be terminated but a core image file (called core) will be created in the 
current working directory. 

(Rubout or ASCII DEL) erases the preceding character. It will not erase beyond the start 
of a line, as delimited by a NL, EOF, EOL, or EOL2 character. 

(CTRL-W or ASCII ETB) erases the preceding "word". It will not erase beyond the start of 
a line, as delimited by a NL, EOF, EOL, or EOL2 character. 

(CTRL-U or ASCII NAK) deletes the entire line, as delimited by a NL, EOF, EOL, or EOL2 
character. 

(CTRL-R or ASCII DC2) reprints all characters that have not been read, preceded by a 
NEWLINE. 

(CTRL-D or ASCII EOT) may be used to generate an end-of-file from a terminal. When 
received, all the characters waiting to be read are immediately passed to the program, 
without waiting for a NEWLINE, and the EOF is discarded. Thus, if there are no charac
ters waiting, which is to say the EOF occurred at the beginning of a line, zero characters 
will be passed back, which is the standard end-of-file indication. 

(ASCII LF) is the normal line delimiter. It can not be changed; it can, however, be 
escaped by the LNEXT character. 

(ASCII NUL) are additional line delimiters, like NL. They are not normally used. 

(CTRL-Z or ASCII EM) is used by the job control facility to change the current job to 
return to the controlling job. It generates a SIGTSTP signal, which stops all processes in 
the terminal's process group. 

(CTRL-S or ASCII DC3) can be used to temporarily suspend output. It is useful with CRT 
terminals to prevent output from disappearing before it can be read. While output is 
suspended, STOP characters are ignored and not read. 

(CTRL-Q or ASCII DC1) is used to resume output that has been suspended by a STOP 
character. While output is not suspended, START characters are ignored and not read. 

(CTRL-0 or ASCII SI) causes subsequent output to be discarded until another DISCARD 
character is typed, more input arrives, or the condition is cleared by a program. 

(CTRL-V or ASCII SYN) causes the special meaning of the next character to be ignored; 
this works for all the special characters mentioned above. This allows characters to be 
input that would otherwise get interpreted by the system (for example, KILL, QUIT.) 

Last change: 26 February 1988 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

The character values for INTR, QUIT, ERASE, WERASE, KILL, REPRINT, EOF, EOL, EOL2, SUSP, 
STOP, START, DISCARD, and LNEXT may be changed to suit individual tastes. If the value of a special 
control character is 0, the function of that special control character will be disabled. The ERASE, KILL, 
and EOF characters may be escaped by a preceding\ character, in which case no special function is done. 
Any of the special characters may be preceded by the LNEXT character, in which case no special function 
is done. 

Modem Disconnect 
If a modem disconnect is detected, and the CLOCAL flag is not set in the c_cflag field, a SIGHUP signal is 
sent to all processes in the distinguished process group associated with this terminal. Unless other arrange
ments have been made, this signal terminates the processes. If SIGHUP is ignored or caught, any subse
quent read() returns with an end-of-file indication until the terminal is closed. Thus, programs that read a 
terminal and test for end-of-file can terminate appropriately after a disconnect. Any subsequent write() 
will return -1 and set errno to EIO until the terminal is closed. 

Terminal Parameters 
The parameters that control the behavior of devices and modules providing the termios interface are 
specified by the termios structure, defined by <sys/termios.h>. Several ioctl() system calls that fetch or 
change these parameters use this structure: 

#define NCCS 17 
struct 

}; 

termios { 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

long 
long 
long 
long 
char 
char 

c _iflag; I* input modes *I 
c _ oflag; I* output modes *I 
c_cflag; I* control modes •I 
c_lflag; I* local modes *I 
c_line; I* line discipline *I 
c_cc[NCCS]; I* control chars *I 

The special control characters are defined by the array c _ cc. The relative positions and initial values for 
each function are as follows: 

0 VINTR ETX 
1 VQUIT PS 
2 VERASE DEL 
3 VKILL NAK 
4 VEOF EOT 
5 VEOL NUL 
6 VEOL2 NUL 
7 VSWTCH NUL 
8 VSTART DC1 
9 VSTOP DC3 
10 VSUSP EM 
12 VREPRINT DC2 
13 VDISCARD SI 
14 VWERASE ETB 
15 VLNEXT SYN 

The MIN value is stored in the VMIN element of the c cc array, and the TIME value is stored in the VTIME 
element of the c_cc array. The VMIN element is the-same element as the VEOF element, and the VTIME 
element is the same element as the VEOL element. 

Input Modes 

The c _ iflag field describes the basic terminal input control: 

IGNBRK 0000001 Ignore break condition. 
BRKINT 0000002 Signal interrupt on break. 
IGNPAR 0000004 Ignore characters with parity errors. 

Sun Release 4.0 Last change: 26 February 1988 1309 



TERM10(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

PARMRK 
INPCK 
ISTRIP 
INLCR 
IGNCR 
ICRNL 
IUCLC 
IXON 
IXANY 
IXOFF 
IMAXBEL 

0000010 Mark parity errors. 
0000020 Enable input parity check. 
0000040 Strip character. 
0000100 Map NL to CR on input. 
0000200 Ignore CR. 
0000400 Map CR to NL on input. 
0001000 Map upper-case to lower-case on input. 
0002000 Enable start/stop output control. 
0004000 Enable any character to restart output. 
0010000 Enable start/stop input control. 
0020000 Echo BEL on input line too long. 

If IGNBRK is set, a break condition (a character framing error with data all zeros) detected on input is 
ignored, that is, not put on the input queue and therefore not read by any process. Otherwise, if BRKINT is 
set, a break condition will generate a SIGINT and flush both the input and output queues. If neither 
IGNBRK nor BRKINT is set, a break condition is read as a single ASCII NUL character ('~)'). 

If IGNP AR is set, characters with framing or parity errors ( other than break) are ignored. Otherwise, if 
PARMRK is set, a character with a framing or parity error that is not ignored is read as the three-character 
sequence: '\377', ~)'. X, where Xis the data of the character received in error. To avoid ambiguity in this 
case, if ISTRIP is not set, a valid character of '\377' is read as '\377', '\377'. If neither IGNPAR nor 
P ARMRK is set, a framing or parity error ( other than break) is read as a single ASCII NUL character ("-0 '). 

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is disabled. 
This allows output parity generation without input parity errors. 

If ISTRIP is set, valid input characters are first stripped to 7 bits, otherwise all 8 bits are processed. 

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a received CR 
character is ignored (not read). Otherwise if ICRNL is set, a received CR character is translated into a NL 
character. 

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding lower-case 
character. 

If IXON is set, start/stop output control is enabled. A received STOP character will suspend output and a 
received START character will restart output. The STOP and START characters will not be read, but will 
merely perform flow control functions. If IXANY is set, any input character will restart output that has 
been suspended. 

If IXOFF is set, the system will transmit a STOP character when the input queue is nearly full, and a 
ST ART character when enough input has been read that the input queue is nearly empty again. 

If IMAXBEL is set, the ASCII BEL character is echoed if the input stream overflows. Further input will not 
be stored, but any input already present in the input stream will not be disturbed. If IMAXBEL is not set, 
no BEL character is echoed, and all input present in the input queue is discarded if the input stream 
overflows. 

The initial input control value is BRKINT, ICRNL, IXON, ISTRIP. 

Output modes 
The c _ oflag field specifies the system treatment of output: 

OPOST 0000001 Postprocess output 
OLCUC 0000002 Map lower case to upper on output. 
ONLCR 0000004 Map NL to CR-NL on output. 
OCRNL 0000010 Map CR to NL on output. 
ONOCR 0000020 No CR output at column 0. 
ONLRET 0000040 NL performs CR function. 
OFILL 0000100 Use fill characters for delay. 
OFDEL 0000200 Fill is DEL, else NUL. 

1310 Last change: 26 February 1988 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

NLDLY 0000400 Select new-line delays: 
NLO 0 
NLl 0000400 

CRDLY 0003000 Select carriage-return delays: 
CRO 0 
CRl 0001000 
CR2 0002000 
CR3 0003000 

TABDLY 0014000 Select horizontal-tab delays: 
TABO 0 or tab expansion: 
TAB1 0004000 
TAB2 0010000 
XTABS 0014000 Expand tabs to space~. 

BSDLY 0020000 Select backspace delays: 
BSO 0 
BSl 0020000 

VTDLY 0040000 Select vertical-tab delays: 
VTO 0 
VTl 0040000 

FFDLY 0100000 Select form-feed delays: 
FFO 0 
FFl 0100000 

If OPOST is set, output characters are post-processed as indicated by the remaining flags, otherwise charac
ters are transmitted without change. 

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case charac
ter. This function is often used in conjunction with IUCLC. 

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set, the CR char
acter is transmitted as the NL character. If ONOCR is set, no CR character is transmitted when at column 0 
(first position). If ONLRET is set, the NL character is assumed to do the carriage-return function; the 
column pointer will be set to O and the delays specified for CR will be used. Otherwise the NL character is 
assumed to do just the line-feed function; the column pointer will remain unchanged. The column pointer 
is also set to O if the CR character is actually transmitted. 

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer
tain characters are sent to the terminal. In all cases a value of O indicates no delay. If OFILL is set, fill 
characters will be transmitted for delay instead of a timed delay. This is useful for high baud rate terminals 
that need only a minimal delay. If OFDEL is set, the fill character is DEL, otherwise NUL. 

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds. 

New-line delay lasts about 0.10 seconds. If ONLRET is set, the RETURN delays are used instead of the 
NEWLINE delays. If OFILL is set, two fill characters will be transmitted. 

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10 seconds, and 
type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill characters, and type 2, four fill 
characters. 

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10 seconds. 
Type 3, specified by T AB3 or XT ABS, specifies that TAB characters are to be expanded into SP ACE charac
ters. If OFILL is set, two fill characters will be transmitted for any delay. 

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted. 

The actual delays depend on line speed and system load. 

Sun Release 4.0 Last change: 26 February 1988 1311 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

1312 

The initial output control value is OPOST' ONLCR, XTABS. 

The c _ cflag field describes the hardware control of the terminal: 

CBAUD 0000017 Baud rate: 
BO O Hangup 
BSO 0000001 50 baud 
B75 0000002 75 baud 
BllO 0000003 110 baud 
Bl34 0000004 134.5 baud 
BlSO 0000005 150 baud 
B200 0000006 200 baud 
B300 0000007 300 baud 
B600 0000010 600 baud 
B1200 0000011 1200 baud 
B1800 0000012 1800baud 
B2400 0000013 2400 baud 
B4800 0000014 4800 baud 
B9600 0000015 9600 baud 
Bl9200 0000016 19200 baud 
B38400 0000017 38400 baud 

CSIZE 0000060 Character size: 
css O 5 bits 
CS6 0000020 6 bits 
CS7 0000040 7 bits 
CS8 0000060 8 bits 

CSTOPB 0000100 Send two stop bits, else one. 
CREAD 0000200 Enable receiver. 
PARENB 0000400 Parity enable. 
PARODD 0001000 Odd parity, else even. 
HUPCL 0002000 Hang up on last close. 
CLOCAL 0004000 Local line, else dial-up. 
CRTSCTS 0010000 Enable RTS/CTS flow control. 
CIBAUD 03600000 Input baud rate, if different from output rate. 

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connection. If BO is 
specified, the modem control lines will cease to be asserted. Normally, this will disconnect the line. If the 
CIBAUD bits are not zero, they specify the input baud rate, with the CBAUD bits specifying the output baud 
rate; otherwise, the output and input baud rates are both specified by the CBAUD bits. The values for the 
CIBAUD bits are the same as the values for the CBAUD bits, shifted left IBSIDFf bits. For any particular 
hardware, impossible speed changes are ignored. 

The CSIZE bits specify the character size in bits for both transmission and reception. This size does not 
include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one stop bit. For example, 
at 110 baud, two stop bits are required. 

If P AREND is set, parity generation and detection is enabled and a parity bit is added to each character. If 
parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity is used. 

If CREAD is set, the receiver is enabled. Otherwise no characters will be received. 

If HUPCL is set, the modem control lines for the port will be disconnected when the last process with the 
line open closes it or terminates. 

If CLOCAL is set, a connection does not depend on the state of the modem status lines. Otherwise modem 
control is assumed. 

Last change: 26 February 1988 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

If CRTSCTS is set, and the terminal has modem control lines associated with it, the Request To Send (RTS) 
modem control line will be raised, and output will occur only if the Clear To Send (CTS) modem status line 
is raised. If the CTS modem status line is lowered, output is suspended until CTS is raised. Some hardware 
may not support this function, and other hardware may not permit it to be disabled; in either of these cases, 
the state of the CRTSCTS flag is ignored. 

The initial hardware control value after open is B9600, CS7, CREAD, PARENB. 

Local Modes 
The c _lffag field of the argument structure is used by the line discipline to control terminal function$. The 
basic line discipline provides the following: 

ISIG 0000001 Enable signals. 
ICANON 0000002 Canonical input (erase and kill processing). 
XCASE 0000004 Canonical upper/lower presentation. 
ECHO 0000010 Enable echo. 
ECHOE 0000020 Echo erase character as BS-SP-BS. 
ECHOK 0000040 Echo NL after kill character. 
ECHONL 0000100 Echo NL. 
NOFLSH 0000200 Disable flush after interrupt or quit. 
TOSTOP 0000400 Send SIGTTOU for background output. 
ECHOCTL 0001000 Echo control characters as "char, delete as"?. 
ECHOPRT 0002000 Echo erase character as character erased. 
ECHOKE 0004000 BS-SP-BS erase entire line on line kill. 
FLUSHO 0040000 Output is being flushed. 
PENDIN 0100000 Retype pending input at next read or input character. 

If ISIG is set, each input character is checked against the special control characters INTR, QUIT, and SUSP. 
If an input character matches one of these control characters, the function associated with that character is 
performed. If ISIG is not set, no checking is done. Thus these special input functions are possible only if 
ISIG is set. 

If ICANON is set, canonical processing is enabled. This enables the erase, word erase, kill, and reprint edit 
functions, and the assembly of input characters into lines delimited by NL, EOF, EOL, and EOL2. If 
ICANON is not set, read requests are satisfied directly from the input queue. A read will not be satisfied 
until at least MIN characters have been received or the timeout value TIME has expired between charac
ters. This allows fast bursts of input to be read efficiently while still allowing single character input. The 
time value represents tenths of seconds. See the Non-canonical Mode Input Processing section for more 
details. 

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with a\ 
character, and is output preceded by a\ character. In this mode, the following escape sequences are gen
erated on output and accepted on input: 

for: use: , ... 
\! 
\" 

{ \( 
} \) 
\ \\ 

For example, A is input as \a, \n as \\n, and \N as \\ \n. 

If ECHO is set, characters are echoed as received. If ECHO is not set, input characters are not echoed. 

If ECHOCTL is not set, all control characters (characters with codes between O and 37 octal) are echoed as 
themselves. If ECHOCTL is set, all control characters other than ASCII TAB, ASCII NL, the START charac
ter, and the STOP character, are echoed as "X, where Xis the character given by adding 100 octal to the 
control character's code (so that the character with octal code 1 is echoed as '"A'), and the ASCII DEL 

Sun Release 4.0 Last change: 26 February 1988 1313 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

character, with code 177 octal, is echoed as 'T. 

When ICANON is set, the following echo functions are possible: 

1. If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and WERASE characters are 
echoed as one or more ASCIT BS SP BS, which will clear the last character(s) from a CRT screen. 

2. If ECHO and ECHOPRT are set, the first ERASE and WERASE character in a sequence echoes as 
a backslash(\) followed by the characters being erased. Subsequent ERASE and WERASE char
acters echo the characters being erased, in reverse order. The next non-erase character types a 
slash (/) before it is echoed. 

3. If ECHOKE is set, the kill character is echoed by erasing each character on the line from the 
screen (using the mechanism selected by ECHOE and ECHOPRT). 

4. If ECHOK is set, and ECHOKE is not set, the NL character will be echoed after the kill character 
to emphasize that the line will be deleted. Note: an escape character (\) or an LNEXT character 
preceding the erase or kill character removes any special function. 

5. If ECHO NL is set, the NL character will be echoed even if ECHO is not set. This is useful for ter
minals set to local echo (so-called half duplex). 

6. If ECHOCTL is not set, the EOF character is not echoed, unless it is escaped. Because EQT is the 
default EOF character, this prevents terminals that respond to EQT from hanging up. If 
ECHOCTL is set, the EOF character is echoed; if it is not escaped, after it is echoed, one back
space character is output if it is echoed as itself, and two backspace characters are echoed if it is 
echoed as "X. 

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR, QUIT, and 
SUSP characters will not be done. 

If TOSTOP is set, the signal SIGTTOU is sent to a process that tries to write to its controlling terminal if it 
is not in the distinguished process group for that terminal. This signal normally stops the process. Other
wise, the output generated by that process is output to the current output stream. Processes that are block
ing or ignoring SIGTTOU signals are excepted and allowed to produce output. 

If FLUSHO is set, data written to the terminal will be discarded. This bit is set when the FLUSH character 
is typed. A program can cancel the effect of typing the FLUSH character by clearing FLUSHO. 

If PENDIN is set, any input that has not yet been read will be reprinted when the next character arrives as 
input. 

The initial line-discipline control value is ISIG, ICANON, ECHO. 

Minimum and Timeout 
The MIN and TIME values are described above under Non-canonical Mode Input Processing. The initial 
value of MIN is 1, and the initial value of TIME is 0. 

Termio Structure 
The System V termio structure is used by other ioctl() calls; it is defined by <sys/termio.h> as: 

#define NCC 8 
struct termio { 

unsigned short c_iflag; I* input modes *I 
unsigned short c_offag; I* output modes *I 
unsigned short c_cffag; I* control modes *I 
unsigned short c_lffag; I* local modes *I 
char c_line; I* line discipline *I 
unsigned char c_cc[NCC]; I* control chars *I 

}; 

1314 Last change: 26 February 1988 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES 1ERMI0(4) 

The special control characters are defined by the array c_cc. The relative positions for each function are as 
follows: 

0 VINTR 
1 VQUIT 
2 VERASE 
3 VKILL 
4 VEOF 
5 VEOL 
6 VEOL2 
7 reserved 

The calls that use the termio structure only affect the flags and control characters that can be stored in the 
termio structure; all other flags and control characters are unaffected. 

Terminal Size 
The number of lines and columns on the terminal's display (or page, in the case of printing terminals) is 
specified in the winsize structure, defined by <sys/termios.h>. Several ioctl() system calls that fetch or 
change these parameters use this structure: 

struct winsize { 

}; 

unsigned short 
unsigned short 
unsigned short 
unsigned short 

ws_row; 
ws_col; 
ws_xpixel; 
WSJpixel; 

I• rows, in characters•/ 
I• columns, in characters •/ 
/• horizontal size, pixels - not used •/ 
/• vertical size, pixels - not used •/ 

Modem Lines 

IOCTLS 

On special files representing serial ports, the modem control lines supported by the hardware can be read 
and the modem status lines supported by the hardware can be changed. The following modem control and 
status lines may be supported by a device; they are defined by <sys/termios.h>: 

TIOCM LE 0001 line enable 
TIOCM DTR 0002 data terminal ready 
TIOCM RTS 0004 request to send 
TIOCM ST 0010 secondary transmit 
TIOCM SR 0020 secondary receive 
TIOCM CTS 0040 clear to send 
TIOCM CAR 0100 carrier detect 
TIOCM RNG 0200 ring 
TIOCM_DSR 0400 data set ready 

TIOCM_ CD is a synonym for TIOCM_ CAR, and TIOCM_RI is a synonym for TIOCM_RNG. 

Not all of these will necessarily be supported by any particular device; check the manual page for the dev
ice in question. 

The ioctl() calls supported by devices and STREAMS modules providing the termios interface are listed 
below. Some calls may not be supported by all devices or modules. 

Unless otherwise noted for a specific ioctl() call, these functions are restricted from use by background 
processes. Attempts to perform these calls will cause the process group of the process performing the call 
to be sent a SIGTTOU signal. If the process is ignoring SIGTTOU, has SIGTTOU blocked, or is in the mid
dle of process creation using vfork( ), the process will be allowed to perform the call and the SIGTTOU 
signal will not be sent. 

TCGETS The argument is a pointer to a termios structure. The current terminal parameters are 
fetched and stored into that structure. This call is allowed from a background process; 
however, the information may subsequently be changed by a foreground process. 

Sun Release 4.0 Last change: 26 February 1988 1315 



TERMI0(4) 

1316 

TCSETS 

TCSETSW 

TCSETSF 

TCGETA 

TCSETA 

TCSETAW 

TCSETAF 

TCSBRK 

TCXONC 

TCFLSH 

TIOCEXCL 

TIOCNXCL 

TIOCGPGRP 

TIOCSPGRP 

TIOCOUTQ 

DEVICES AND NETWORK INTERFACES TERMI0(4) 

The argument is a pointer to a termios structure. The current terminal parameters are 
set from the values stored in that structure. The change is immediate. 

The argument is a pointer to a termios structure. The current terminal parameters are 
set from the values stored in that structure. The change occurs after all characters 
queued for output have been transmitted. This form should be used when changing 
parameters that will affect output. 

The argument is a pointer to a termios structure. The current terminal parameters are 
set from the values stored in that structure. The change occurs after all characters 
queued for output have been transmitted; all characters queued for input are discarded 
and then the change occurs. 

The argument is a pointer to a termio structure. The current terminal parameters are 
fetched, and those parameters that can be stored in a termio structure are stored into that 
structure. This call is allowed from a background process; however, the information 
may subsequently be changed by a foreground process. 

The argument is a pointer to a termio structure. Those terminal parameters that can be 
stored in a termio structure are set from the values stored in that structure. The change 
is immediate. 

The argument is a pointer to a termio structure. Those terminal parameters that can be 
stored in a termio structure are set from the values stored in that structure. The change 
occurs after all characters queued for output have been transmitted. This form should be 
used when changing parameters that will affect output. 

The argument is a pointer to a termio structure. Those terminal parameters that can be 
stored in a termio structure are set from the values stored in that structure. The change 
occurs after all characters queued for output have been transmitted; all characters 
queued for input are discarded and then the change occurs. 

The argument is an int value. Wait for the output to drain. If the argument is 0, then 
send a break (zero-valued bits for 0.25 seconds). 

Start/stop control. The argument is an int value. If the argument is 0, suspend output; if 
1, restart suspended output; if 2, suspend input; if 3, restart suspended input. 

The argument is an int value. If the argument is 0, flush the input queue; if 1, flush the 
output queue; if 2, flush both the input and output queues. 

The argument is ignored. Exclusive-use mode is turned on; no further opens are permit
ted until the file has been closed, or a TIOCNXCL is issued. The default on open of a 
terminal file is that exclusive use mode is off. 

The argument is ignored. Exclusive-use mode is turned off. 

The argument is a pointer to an int. Set the value of that int to the process group ID of 
the distinguished process group associated with the terminal. This call is allowed from a 
background process; however, the information may subsequently be changed by a fore
ground process. 

The argument is a pointer to an int. Associate the process group whose process group 
ID is specified by the value of that int with the terminal. The new process group value 
must be in the range of valid process group ID values, or it must be zero ("no process 
group"). Otherwise, the error EINV AL is returned. If any processes exist with a process 
ID or process group ID that is the same as the new process group value, then those 
processes must have the same real or saved user ID as the real or effective user ID of the 
calling process or be descendants of the calling process, or the effective user ID of the 
current process must be super-user. Otherwise, the error EPERM is returned. 

Tne argument is a pointer to an int. Set the value of that int to the number of characters 

Last change: 26 February 1988 Sun Release 4.0 



TERMI0(4) DEVICES AND NETWORK INTERFACES TERMI0(4) 

in the output stream that have not yet been sent to the terminal. This call is allowed 
from a background process. 

TIOCSTI The argument is a pointer to a char. Pretend that that character had been received as 
input. 

TIOCGWINSZ The argument is a pointer to a winsize structure. The terminal driver's notion of the ter
minal size is stored into that structure. This call is allowed from a background process. 

TIOCSWINSZ The argument is a pointer to a winsize structure. The terminal driver's notion of the ter
minal size is set from the values specified in that structure. If the new sizes are different 
from the old sizes, a SIGWINCH signal is sent to the process group of the terminal. 

TIOCMGET The argument is a pointer to an int. The current state of the modem status lines is 
fetched and stored in the int pointed to by the argument. This call is allowed from a 
background process. 

TIOCMBIS The argument is a pointer to an int whose value is a mask containing modem control 
lines to be turned on. The control lines whose bits are set in the argument are turned on; 
no other control lines are affected. 

TIOCMBIC The argument is a pointer to an int whose value is a mask containing modem control 
lines to be turned off. The control lines whose bits are set in the argument are turned 
off; no other control lines are affected. 

TIOCMSET The argument is a pointer to an int containing a new set of modem control lines. The 
modem control lines are turned on or off, depending on whether the bit for that mode is 
set or clear. 

SEE ALSO 
csh(l), stty(lV), fork(2), ioctl(2), open(2V), read(2V), setpgrp(2V), sigvec(2), vfork(2), tty(4), getty(8) 

Sun Release 4.0 Last change: 26 February 1988 1317 



TM{4S) DEVICES AND NETWORK INTERFACES TM(4S) 

NAME 
tm - tapemaster 1/2 inch tape drive 

CONFIG - SUN-3 SYSTEM 
controller tmO at vme16dl6 ? csr OxaO priority 3 vector tmintr Ox60 
controller tml at vme16d16 ? csr Oxa2 priority 3 vector tmintr Ox61 
tape mtO at tmO drive O ftags 1 
tape mtO at tml drive O ftags 1 

CONFIG - SUN-2 SYSTEM 
controller tmO at mbio ? csr OxaO priority 3 
controller tmO at vmel6 ? csr OxaO priority 3 vector tmintr Ox60 
controller tml at mbio ? csr Oxa2 priority 3 
controller tml at vme16? csr Oxa2 priority 3 vector tmintr Ox61 
tape mtO at tmO drive O ftags 1 
tape mtO at tml drive O ftags 1 

DESCRIPTION 
The Tapemaster tape controller controls Pertee-interface 1/2" tape drives such as the CDC Keystone, pro
viding a standard tape interface to the device, see mtio(4). 

SEE ALSO 
mt{l), tar{l), ar(4S), mtio(4) 

DIAGNOSTICS 

BUGS 

1318 

tmn : no response from ctlr. 
tmn : error n during config. 
mtn : not online. 
mtn : no write ring. 
tmgo: gate wasn't open. Controller lost synch. 
tmintr: can't clear interrupts. 
tmn : stray interrupts. 
mtn: hard error bn=n er=%x. 
mtn : lost interrupt. 

The Tapemaster controller does not provide for byte-swapping and the resultant system overhead prevents 
streaming transports from streaming. 

If a non-data error is encountered on non-raw tape, it refuses to do anything more until closed. 

The system should remember which controlling terminal has the tape drive open and write error messages 
to that terminal rather than on the console. 

Last change: 9 October 1987 Sun Release 4.0 



TTCOMPAT(4M) DEVICES AND NETWORK INTERFACES TTCOMPAT(4M) 

NAME 
ttcompat- V7 and 4BSD STREAMS compatibility module 

CONFIG 
None; included by default. 

SYNOPSIS 
#include <sys/stream.h> 
#include <sys/stropt.h> 

ioctl(fd, I _PUSH, "ttcom pat"); 

DESCRIPTION 
ttcompat is a STREAMS module that translates the ioctl calls supported by the older Version 7 and 4BSD 
terminal drivers into the ioctl calls supported by the termio(4) interface. All other messages pass through 
this module unchanged; the behavior of read and write calls is unchanged, as is the behavior of ioctl calls 
other than the ones supported by ttcompat. 

Normally, this module is automatically pushed onto a stream when a terminal device is opened; it does not 
have to be explicitly pushed onto a stream. This module requires that the termio interface be supported by 
the modules and driver downstream. The TCGETS, TCSETS, and TCSETSF ioctl calls must be supported; 
if any information set or fetched by those ioctl calls is not supported by the modules and driver down
stream, some of the V7/4BSD functions may not be supported. For example, if the CBAUD bits in the 
c_cflag field are not supported, the functions provided by the sg_ispeed and sg_ospeed fields of the sgttyb 
structure (see below) will not be supported. If the TCFLSH ioctl is not supported, the function provided by 
the TIOCFLUSH ioctl will not be supported. If the TCXONC ioctl is not supported, the functions provided 
by the TIOCSTOP and TIO CST ART ioctl calls will not be supported. If the TIOCMBIS and TIOCMBIC 
ioctl calls are not supported, the functions provided by the TIOCSDTR and TIOCCDTR ioctl calls will not 
be supported. 

The basic ioctl calls use the sgttyb structure defined by <sys/ioctl.h>: 
struct sgttyb { 

char sg_ispeed; 
char sg_ospeed; 
char sg_ erase; 
char sg_ kill; 
short sg_ flags; 

}; 

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device, and reflect the 
values in the c _ cflag field of the termio structure. The sg_ erase and sg_ kill fields of the argument struc
ture specify the erase and kill characters respectively, and reflect the values in the VERASE and VKILL 
members of the c _ cc field of the termio structure. 

The sg_flags field of the argument structure contains several flags that determine the system's treatment of 
the terminal. They are mapped into flags in fields of the terminal state, represented by the termio structure. 

Delay type O is always mapped into the equivalent delay type O in the c_oflag field of the termio structure. 
Other delay mappings are performed as follows: 

sg_flags c_oflag 

BSl BSl 
FFl VTl 
CRl CR2 
CR2 CR3 
CR3 not supported 
TAB1 TAB1 
TAB2 TAB2 
XTABS TAB3 

Sun Release 4.0 Last change: 16 February 1988 1319 



TTCOMPAT(4M) DEVICES AND NETWORK INTERFACES TTCOMPAT(4M) 

1320 

NLl ONLRETICRl 
NL2 NLl 

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LITOUT or PASS8 mode, and if RAW 
mode is not selected, the ISTRIP flag is set in the c_iffag field of the termio structure, and the EVENP and 
ODDP flags control the parity of characters sent to the terminal and accepted from the terminal: 

0 

EVENP 

ODDP 

Parity is not to be generated on output or checked on input; the character size is set to CS8 
and the PARENB flag is cleared in the c _ cflag field of the termio structure. 

Even parity characters are to be generated on output and accepted on input; the INPCK flag 
is set in the c_iflag field of the termio structure, the character size is set to CS7 and the 
P ARENB flag is set in the c _ cflag field of the termio structure. 

Odd parity characters are to be generated on output and accepted on input; the INPCK flag is 
set in the c_iflag field, the character size is set to CS7 and the PARENB and PARODD flags 
are set in the c _ cflag field of the termio structure. 

EVENPIODDP 
Even parity characters are to be generated on output and characters of either parity are to be 
accepted on input; the INPCK flag is cleared in the c_iffag field, the character size is set to 
CS7 and the P ARENB flag is set in the c _ cflag field of the termio structure. 

The RAW flag disables all output processing (the OPOST flag in the c_oflag field, and the XCASE flag in 
the c_lflag field, are cleared in the termio structure) and input processing (all flags in the c_iflag field other 
than the IXOFF and IXANY flags are cleared in the termio structure). 8 bits of data, with no parity bit, are 
accepted on input and generated on output; the character size is set to CS8 and the PARENB and PARODD 
flags are cleared in the c_cflag field of the termio structure. The signal-generating and line-editing control 
characters are disabled by clearing the ISIG and !CANON flags in the c_lflag field of the termio structure. 

The CRMOD flag tum input RETURN characters into NEWLINE characters, and output and echoed NEW
LINE characters to be output as a RETURN followed by a LINEFEED. The ICRNL flag in the c _iflag field, 
and the OPOST and ONLCR flags in the c _ oflag field, are set in the termio structure. 

The LCASE flag maps upper-case letters in the ASCII character set to their lower-case equivalents on input 
(the IUCLC flag is set in the c _iflag field), and maps lower-case letters in the ASCII character set to their 
upper-case equivalents on output (the OLCUC flag is set in the c_oflag field). Escape sequences are 
accepted on input, and generated on output, to handle certain ASCII characters not supported by older ter
minals (the XCASE flag is set in the c_lflag field). 

Other flags are directly mapped to flags in the termio structure: 

sg_ flags flags in termio structure 

CBREAK complement ofICANON in c_lflag field 
ECHO ECHO in c_lflag field 
TANDEM IXOFF in c_iflag field 

Another structure associated with each terminal specifies characters that are special in both the old Version 
7 and the newer 4BSD terminal interfaces. The following structure is defined by <sys/ioctl.h>: 

struct tchars { 
char t_intrc; I• interrupt •I 
char t_quitc; I• quit•/ 
char t_startc; I• start output •I 
char t_stopc; I• stop output •I 
char t_eofc; I• end-of-file •I 
char t_brkc; I• input delimiter (like nl) •/ 

}; 

Last change: 16 February 1988 Sun Release 4.0 



TTCOMPAT( 4M) DEVICES AND NETWORK INTERFACES TTCOMPAT(4M) 

IOCTLS 

The characters are mapped to members of the c _ cc field of the termio structure as follows: 

tchars c cc index 

t intrc VINTR 
t_quitc VQUIT 
t startc VSTART 
t_stopc VSTOP 
t eofc VEOF 
t brkc VEOL 

Also associated with each terminal is a local flag word, specifying flags supported by the new 4BSD termi
nal interface. Most of these flags are directly mapped to flags in the termio structure: 

local flags flags in termio structure 

LCRTBS not supported 
LPRTERA ECHOPRT in the c_lflag field 
LCRTERA ECHOE in the c _lflag field 
LTILDE not supported 
LTOSTOP TOSTOP in the c_Iflag field 
LFLUSHO FLUSHO in the C _Iflag field 
LNOHANG CLOCAL in the c _ cflag field 
LCRTKIL ECHOKE in the c_lflag field 
LCTLECH CTLECH in the C _ lflag field 
LPENDIN PENDIN in the c_lflag field 
LDECCTQ complement ofIXANY in the c_iflag field 
LNOFLSH NOFLSH in the c_lflag field 

Another structure associated with each terminal is the ltchars structure which defines control characters for 
the new 4BSD terminal interface. Its structure is: 

struct ltchars { 
char t_suspc; 
char t_dsuspc; 
char t_rprntc; 
char t_flushc; 
char t_werasc; 
char t_lnextc; 

}; 

I• stop process signal•/ 
I• delayed stop process signal •/ 
/• reprint line •/ 
/• flush output (toggles) •/ 
I• word erase •/ 
/• literal next character •/ 

The characters are mapped to members of the c _ cc field of the termio structure as follows: 

ltchars c cc index 

t_suspc VSUSP 
t_dsuspc VDSUSP 
t_rprntc VREPRINT 
t flushc VDISCARD 
t_werasc VWERASE 
t lnextc VLNEXT 

ttcompat responds to the following ioctl calls. All others are passed to the module below. 

TIOCGETP The argument is a pointer to an sgttyb structure. The current terminal state is fetched; the 
appropriate characters in the terminal state are stored in that structure, as are the input and 
output speeds. The values of the flags in the sg_ flags field are derived from the flags in the 
terminal state and stored in the structure. 

Sun Release 4.0 Last change: 16 February 1988 1321 



TTCOMPAT(4M) DEVICES AND NETWORK INTERFACES ITCOMPAT(4M) 

TIOCSETP The argument is a pointer to an sgttyb structure. The appropriate characters and input and 
output speeds in the terminal state are set from the values in that structure, and the flags in 
the terminal state are set to match the values of the flags in the sg_ flags field of that struc
ture. The state is changed with a TCSETSF ioctl, so that the interface delays until output is 
quiescent, then throws away any unread characters, before changing the modes. 

TIOCSETN The argument is a pointer to an sgttyb structure. The terminal state is changed as 
TIOCSETP would change it, but a TCSETS ioctl is used, so that the interface neither delays 
nor discards input. 

TIOCHPCL The argument is ignored. The HUPCL flag is set in the c _ cflag word of the terminal state. 

TIOCFLUSH The argument is a pointer to an int variable. If its value is zero, all characters waiting in 
input or output queues are flushed. Otherwise, the value of the int is treated as the logical 
OR of the FREAD and FWRITE flags defined by <Sys/file.h>; if the FREAD bit is set, all 
characters waiting in input queues are flushed, and if the FWRITE bit is set, all characters 
waiting in output queues are flushed. 

TIOCSBRK The argument is ignored. The break bit is set for the device. 

TIOCCBRK The argument is ignored. The break bit is cleared for the device. 

TIOCSDTR The argument is ignored. The Data Terminal Ready bit is set for the device. 

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is cleared for the device. 

TIOCSTOP The argument is ignored. Output is stopped as if the STOP character had been typed. 

TIOCSTART The argument is ignored. Output is restarted as if the ST ART character had been typed. 

TIOCGETC The argument is a pointer to an tchars structure. The current terminal state is fetched, and 
the appropriate characters in the terminal state are stored in that structure. 

TIOCSETC The argument is a pointer to an tchars structure. The values of the appropriate characters in 
the terminal state are set from the characters in that structure. 

TIOCLGET The argument is a pointer to an int. The current terminal state is fetched, and the values of 
the local flags are derived from the flags in the terminal state and stored in the int pointed to 
by the argument. 

TIOCLBIS The argument is a pointer to an int whose value is a mask containing flags to be set in the 
local flags word. The current terminal state is fetched, and the values of the local flags are 
derived from the flags in the terminal state; the specified flags are set, and the flags in the 
terminal state are set to match the new value of the local flags word. 

TIOCLBIC The argument is a pointer to an int whose value is a mask containing flags to be cleared in 
the local flags word. The current terminal state is fetched, and the values of the local flags 
are derived from the flags in the terminal state; the specified flags are cleared, and the flags 
in the terminal state are set to match the new value of the local flags word. 

TIOCLSET The argument is a pointer to an int containing a new set of local flags. The flags in the ter
minal state are set to match the new value of the local flags word. 

TIOCGLTC The argument is a pointer to an ltchars structure. The values of the appropriate characters 
in the terminal state are stored in that structure. 

TIOCSLTC The argument is a pointer to an ltchars structure. The values of the appropriate characters 
in the terminal state are set from the characters in that structure. 

SEE ALSO 
ioctl(2), termio( 4) 

1322 Last change: 16 February 1988 Sun Release 4.0 



TTY(4) DEVICES AND NETWORK INTERFACES TTY(4) 

NAME 
tty - controlling terminal interface 

DESCRIPTION 

IOCTLS 

FILES 

The file /dev/tty is, in each process, a synonym for the controlling terminal of that process, if any. It is use
ful for programs or shell sequences that wish to be sure of writing messages on the terminal no matter how 
output has been redirected. It can also be used for programs that demand the name of a file for output, 
when typed output is desired and it is tiresome to find out what terminal is currently in use. 

In addition to the ioctls supported by the device that tty refers to, the following ioctl is supported: 

TIOCNOTTY Detach the current process from its controlling terminal, and remove it from its current pro
cess group, without attaching it to a new process group (that is, set its process group ID to 
zero). This ioctl call only works on file descriptors connected to /dev/tty; this is used by 
daemon processes when they are invoked by a user at a terminal. The process attempts to 
open /dev/tty; if the open succeeds, it detaches itself from the terminal by using 
TIOCNOTTY, while if the open fails, it is obviously not attached to a terminal and does not 
need to detach itself. 

/dev/tty 

SEE ALSO 
termio(4) 

Sun Release 4.0 Last change: 16 February 1988 1323 



UDP( 4P) PROTOCOLS UDP(4P) 

NAME 
udp - Internet User Datagram Protocol 

SYNOPSIS 
#include <Sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_DGRAM, 0); 

DESCRIPTION 
UDP is a simple, unreliable datagram protocol which is used to support the SOCK_DGRAM abstraction for 
the Internet protocol family. It is layered directly above the Internet Protocol (IP). UDP sockets are con
nectionless, and are normally used with the sendto, sendmsg, recvfrom, and recvmsg system calls (see 
send(2) and recv(2)). If the connect(2) system call is used to fix the destination for future packets, then 
the recv(2) or read(2V) and send(2) or write(2V) system calls may be used. 

UDP address formats are identical to those used by the Transmission Control Protocol (TCP). Like TCP, 
UDP uses a port number along with an IP address to identify the endpoint of communication. Note: the 
UDP port number space is separate from the TCP port number space (that is, a UDP port may not be "con
nected'' to a TCP port). The bind(2) system call can be used to set the local address and port number of a 
UDP socket. The local IP address may be left unspecified in the bind call by using the special value 
INADDR_ANY. If the bind call is not done, a local IP address and port number will be assigned to each 
packet as it is sent. Broadcast packets may be sent (assuming the underlying network supports this) by 
using a reserved "broadcast address"; this address is network interface dependent. Broadcasts may only 
be sent by the super-user. 

Options at the IP level may be used with UDP; see ip(4P). 

There are a variety of ways that a UDP packet can be lost or discarded, including a failure of the underlying 
communication mechanism. UDP implements a checksum over the data portion of the packet. If the 
checksum of a received packet is in error, the packet will be dropped with no indication given to the user. 
A queue of received packets is provided for each UDP socket. This queue has a limited capacity. Arriving 
datagrams which will not fit within its high-water capacity are silently discarded. 

UDP processes Internet Control Message Protocol (ICMP) error messages received in response to UDP 
packets it has sent. See icmp(4P). ICMP "source quench" messages are ignored. ICMP "destination 
unreachable," "time exceeded" and "parameter problem" messages disconnect the socket from its peer so 
that subsequent attempts to send packets using that socket will return an error. UDP will not guarantee that 
packets are delivered in the order they were sent. As well, duplicate packets may be generated in the com
munication process. 

ERRORS 

1324 

A socket operation may fail if: 

EISCONN 

EISCONN 

ENOTCONN 

EADDRINUSE 

EADDRNOT AV AIL 

A connect operation was attempted on a socket on which a connect operation had 
already been performed, and the socket could not be successfully disconnected 
before making the new connection. 

A sendto or sendmsg operation specifying an address to which the message 
should be sent was attempted on a socket on which a connect operation had 
already been performed. 

A send or write operation, or a sendto or sendmsg operation not specifying an 
address to which the message should be sent, was attempted on a socket on which 
a connect operation had not already been performed. 

A bind operation was attempted on a socket with a network address/port pair that 
has already been bound to another socket. 

A bind operation was attempted on a socket with a network address for which no 
network interface exists. 

Last change: 24 November 1987 Sun Release 4.0 



UDP( 4P) PROTOCOLS UDP(4P) 

EINVAL 

EACCES 

ENOBUFS 

A sendmsg operation with a non-NULL msg_accrights was attempted. 

A bind operation was attempted with a "reserved" port number and the effective 
user ID of the process was not super-user. 

The system ran out of memory for internal data structures. 

SEE ALSO 

BUGS 

bind(2), connect(2), read(2V), recv(2), send(2), write(2V), icmp(4P), inet(4F), ip(4P), tcp(4P) 

Postel, Jon, User Datagram Protocol, RFC 768, Network Information Center, SRI International, Menlo 
Park, Calif., August 1980. (Sun 800-1054-01) 

SIOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket queue, and so 
that it can be changed from 2048 bytes to be larger or smaller, have been defined (in <sys/ioctl.h>) but not 
implemented. 

Something sensible should be done with ICMP source quench error messages if the socket is bound to a 
peer socket. 

Sun Release 4.0 Last change: 24 November 1987 1325 



VP(4S) DEVICES AND NETWORK INTERFACES VP(4S) 

NAME 
vp- Ikon 10071-5 Versatec parallel printer interface 

CONFIG - SUN-2 SYSTEM 
device vpO at m bio ? csr 

DESCRIPTION 

FILES 

This Sun interface to the Versatec printer/plotter is supported by the Ikon parallel interface board, a word 
OMA device, which is output only. 

The Versatec is normally handled by the line printer spooling system and should not be accessed by the 
user directly. 

Opening the device /dev/vpO may yield one of two errors: ENXIO indicates that the device is already in 
use; EIO indicates that the device is offline. 

The printer operates in either print or plot mode. To set the printer into plot mode you should include 
<vcmd.h> and use the ioct1(2) call 

ioctl(f, VSETST ATE, plotmd); 

where plotmd is defined to be 

int plotmd[ ] = { VPLOT, 0, 0 } ; 

When going back into print mode from plot mode you normally eject paper by sending it an EOT after put
ting into print mode: 

/dev/vpO 

int prtmd[] = { VPRINT, 0, 0 }; 

mush (vp); 
f = fileno (vp); 
ioctl(f, VSETSTATE, prtmd); 
write(f, "\04", 1); 

SEE ALSO 
ioctl(2) 

BUGS 

1326 

If you use the standard I/0 library on the Versatec, be sure to explicitly set a buffer using setbuf, since the 
library will not use buffered output by default, and will run very slowly. 

Writes must start on even byte boundaries and be an even number of bytes in length. 

Last change: 9 October 1987 Sun Release 4.0 



VPC(4S) DEVICES AND NETWORK INTERFACES VPC(4S) 

NAME 
vpc - Systech VPC-2200 Versatec printer/plotter and Centronics printer interface 

CONFIG - SUN-2 SYSTEM 
device vpcO at mbio ? csr Ox480 priority 2 
device vpcl at mbio? csr Ox500 priority 2 

DESCRIPTION 

FILES 

This Sun interface to the Versatec printer/plotter and to Centronics printers is supported by the Systech 
parallel interface board, an output-only byte-wide DMA device. The device has one channel for Versatec 
devices and one channel for Centronics devices, with an optional long lines interface for Versatec devices. 

Devices attached to this interface are normally handled by the line printer spooling system and should not 
be accessed by the user directly. 

Opening the device /dev/vpcO or /dev/lpO may yield one of two errors: ENXIO indicates that the device is 
already in use; EIO indicates that the device is offline. 

The Versatec printer/plotter operates in either print or plot mode. To set the printer into plot mode you 
should include <vcmd.h> and use the ioctl(2) call: 

ioctl(f, VSETST ATE, plotmd); 

where plotmd is defined to be 

int plotmd[] = { VPLOT, 0, 0 }; 

When going back into print mode from plot mode you normally eject paper by sending it an EOT after put
ting into print mode: 

int prtmd[] = { VPRINT, 0, 0 }; 

fftush (vpc); 
f = fileno(vpc); 
ioctl(f, VSETST ATE, prtmd); 
write(f, "\04", 1); 

/dev/vpcO 
/dev/lpO 

SEE ALSO 
ioct1(2) 

BUGS 

If you use the standard 1/0 library on the Versatec, be sure to explicitly set a buffer using setbuf, since the 
library will not use buffered output by default, and will run very slowly. 

Sun Release 4.0 Last change: 9 October 1987 1327 



WIN(4S) DEVICES AND NETWORK INTERFACES WIN(4S) 

NAME 
win - Sun window system 

CONFIG 

pseudo-device winnumber 
pseudo-device dtopnumber 

DESCRIPTION 

FILES 

The win pseudo-device accesses the system drivers supporting the Sun window system. number, in the 
device description line above, indicates the maximum number of windows supported by the system. 
number is set to 128 in the GENERIC system configuration file used to generate the kernel used in Sun sys
tems as they are shipped. The dtop pseudo-device line indicates the number of separate "desktops" 
(frame buffers) that can be actively running the Sun window system at once. In the GENERIC file, this 
number is set to 4. 

Each window in the system is represented by a /dev/win• device. The windows are organized as a tree 
with windows being subwindows of their parents, and covering/covered by their siblings. Each window 
has a position in the tree, a position on a display screen, an input queue, and information telling what parts 
of it are exposed. 

The window driver multiplexes keyboard and mouse input among the several windows, tracks the mouse 
with a cursor on the screen, provides each window access to information about what parts of it are exposed, 
and notifies the manager process for a window when the exposed area of the window changes so that the 
window may repair its display. 

Full information on the window system functions is given in the Sun View 1 System Programmer's Guide. 

/dev/win[0-9] 
/dev/win[0-9][0-9] 

SEE ALSO 
Sun View 1 System Programmer's Guide 

1328 Last change: 9 October 1987 Sun Release 4.0 



XD(4S) DEVICES AND NETWORK INTERFACES XD(4S) 

NAME 
xd - Disk driver for Xylogics 7053 SMD Disk Controller 

CONFIG - SUN-3 SYSTEM 
controller xdcO at vmel6d32 ? csr Oxee80 priority 2 vector xdintr Ox44 
controller xdcl at vme16d32 ? csr Oxee90 priority 2 vector xdintr Ox45 
controller xdc2 at vme16d32 ? csr OxeeaO priority 2 vector xdintr Ox46 
controller xdc3 at vmel6d32 ? csr OxeebO priority 2 vector xdintr Ox47 
disk xdO at xdcO drive 0 
disk xdl at xdcO drive 1 
disk xd2 at xdcO drive 2 
disk xd3 at xdcO drive 3 
disk xd4 at xdcl drive 0 
disk xdS at xdcl drive 1 
disk xd6 at xdcl drive 2 
disk xd7 at xdcl drive 3 
disk xd8 at xdc2 drive 0 
disk xd9 at xdc2 drive 1 
disk xdlO at xdc2 drive 2 
disk xdll at xdc2 drive 3 
disk xd12 at xdc3 drive 0 
disk xd13 at xdc3 drive 1 
disk xd14 at xdc3 drive 2 
disk xdlS at xdc3 drive 3 

The four controller lines given in the synopsis section above specify the first, second, third, and fourth 
Xylogics 7053 SMD disk controller in a Sun system. 

DESCRIPTION 
Files with minor device numbers O through 7 refer to various portions of drive O; minor devices 8 through 
15 refer to drive 1, and so on. The standard device names begin with xd followed by the drive number and 
then a letter a-h for partitions 0-7 respectively. The character ? stands here for a drive number in the range 
0-7. 

The block files access the disk using the system's normal buffering mechanism and may be read and writ
ten without regard to physical disk records. There is also a "raw" interface which provides for direct 
transmission between the disk and the user's read or write buffer. A single read or write call usually results 
in only one I/0 operation; therefore raw I/0 is considerably more efficient when many words are transmit
ted. The names of the raw files conventionally begin with an extra r. 

In raw I/0 counts should be a multiple of 512 bytes (a disk sector). Likewise directory(3) calls should 
specify a multiple of 512 bytes. 

If flags Oxl is specified, the overlapped seeks feature for that drive is turned off. Note: to be effective, the 
flag must be set on all drives for a specific controller. This action is necessary for controllers with older 
firmware, which have bugs preventing overlapped seeks from working properly. 

DISK SUPPORT 

FILES 

This driver handles all SMD drives by reading a label from sector O of the drive which describes the disk 
geometry and partitioning. 

The xd?a partition is normally used for the root file system on a disk, the xd?b partition as a paging area, 
and the xd?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor
mally the xd?g partition. 

/dev/xd[0-7][a-h] 
/dev/rxd[0-7][a-h] 

block files 
raw files 

Sun Release 4.0 Last change: 24 November 1987 1329 



XD(4S) DEVICES AND NETWORK INTERFACES XD(4S) 

SEE ALSO 
lseek(2), read(2V), write(2V), directory(3), dkio(4S) 

DIAGNOSTICS 

BUGS 

1330 

xdcn: self test error 
Self test error in controller, see the Maintenance and Reference Manual. 

xdn: unable to read bad sector 
The bad sector forwarding information for the disk could not be read. 

xdn: initialization failed 
The drive could not be successfully initialized. 

xdn: unable to read label 
The drive geometry/partition table information could not be read. 

xdn: Corrupt label 
The geometry/partition label checksum was incorrect. 

xdn: offline 
A drive ready status is no longer detected, so the unit has been logically removed from the system. 
If the drive ready status is restored, the unit will automatically come back online the next time it is 
accessed. 

xdnc: cmd how (msg ) blk #n abs blk #n 
A command such as read or write encountered an error condition (how): either it/ailed, the con
troller was reset, the unit was restored, or an operation was retry'ed. The msg is derived from the 
error number given by the controller, indicating a condition such as "drive not ready(rq, "sector 
not found" or "disk write protected". The blk # is the sector in error relative to the beginning of 
the partition involved. The abs blk # is the absolute block number of the sector in error. Some 
fields of the error message may be missing since the information is not always available. 

In raw 1/0 read(2V) and write(2V) truncate file offsets to 512-byte block boundaries, and write(2V) scrib
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2V), 
write(2V) and lseek(2) should always deal in 512-byte multiples. 

Older revisions of the firmware do not properly support overlapped seeks. This will only affect systems 
with multiple disks on a single controller. If a large number of "zero sector count" errors appear, you 
should use the flags field to disable overlapped seeks. 

Last change: 24 November 1987 Sun Release 4.0 



XT(4S) DEVICES AND NETWORK INTERFACES XT(4S) 

NAME 
xt- Xylogics 472 1/l inch tape controller 

CONFIG - SUN-3 SYSTEM 
controller xtcO at vme16dl6 ? csr Oxee60 priority 3 vector xtintr Ox64 
controller xtcl at vme16dl6 ? csr Oxee68 priority 3 vector xtintr Ox65 
tape xtO at xtcO drive O flags 1 
tape xtl at xtcl drive O flags 1 

CONFIG - SUN-2 SYSTEM 
controller xtcO at mbio ? csr Oxee60 priority 3 
controller xtcO at vmel6 ? csr Oxee60 priority 3 vector xtintr Ox64 
controller xtcl at mbio? csr Oxee68 priority 3 
controller xtcl at vme16 ? csr Oxee68 priority 3 vector xtintr Ox65 
tape xtO at xtcO drive O flags 1 
tape xtl at xtcl drive O flags 1 

DESCRIPTION 
The Xylogics 472 tape controller controls Pertee-interface 1/l" tape drives such as the CDC Keystone III, 
providing a standard tape interface to the device, see mtio(4). This controller is used to support high speed 
or high density drives, which are not supported effectively by the older TapeMaster controller (see 
tm(4S)). 

The flags field is used to control remote density select operation: a O specifies no remote density selection is 
to be attempted, a 1 specifies that the Pertee density-select line is used to toggle between high and low den
sity; a 2 specifies that the Pertee speed-select line is used to toggle between high and low density. The 
default is 1, which is appropriate for the CDC Keystone Ill (92185) and the Telex 9250. In no case will the 
controller select among more than 2 densities. 

SEE ALSO 
mt(l), tar(l), mtio(4), tm(4S) 

Sun Release 4.0 Last change: 9 October 1987 1331 



XY(4S) DEVICES AND NETWORK INTERFACES XY(4S) 

NAME 
xy- Disk driver for Xylogics 450 and 451 SMD Disk Controllers 

CONFIG - SUN-3 SYSTEM 
controller xycO at vme16dl6 ? csr Oxee40 priority 2 vector xyintr Ox48 
controller xycl at vmel6dl6 ? csr Oxee48 priority 2 vector xyintr Ox49 
disk xyO at xycO drive 0 
disk xyl at xycO drive 1 
disk xy2 at xycl drive 0 
disk xy3 at xycl drive 1 

The two controller lines given in the synopsis sections above specify the first and second Xylogics 450 or 
451 SMD disk controller in a Sun system. 

CONFIG - SUN-2 SYSTEM 
controller xycO at vmel6 ? csr Oxee40 priority 2 vector xyintr Ox48 
controller xycl at vme16 ? csr Oxee48 priority 2 vector xyintr Ox49 
controller xycO at mbio ? csr Oxee40 priority 2 
controller xycl at mbio ? csr Oxee48 priority 2 
disk xyO at xycO drive 0 
disk xyl at xycO drive 1 
disk xy2 at xycl drive 0 
disk xy3 at xycl drive 1 

The first two controller lines specify the first and second Xylogics 450 or 451 SMD disk controllers in a 
Sun-2/160 VMEbus based system. The third and fourth controller lines specify the first and second Xylo
gics 450 or 451 SMD disk controllers in a Sun-2/120 or a Sun-2/170 Multibus based system. 

DESCRIPTION 
Files with minor device numbers O through 7 refer to various portions of drive O; minor devices 8 through 
15 refer to drive 1, and so on. The standard device names begin with xy followed by the drive number and 
then a letter a-h for partitions 0-7 respectively. The character '?' stands here for a drive number in the 
range 0-7. 

The block files access the disk using the system's normal buffering mechanism and may be read and writ
ten without regard 10 physical disk records. There is also a "raw" interface which provides for direct 
transmission between the disk and the user's read or write buffer. A single read or write call usually results 
in only one I/0 operation; therefore raw I/0 is considerably more efficient when many words are transmit
ted. The names of the raw files conventionally begin with an extra r. 

In raw I/0 counts should be a multiple of 512 bytes (a disk sector). Likewise directory(3) calls should 
specify a multiple of 512 bytes. 

If flags Oxl is specified, the overlapped seeks feature for that drive is turned off. Note: to be effective, the 
flag must be set on all drives for a specific controller. This action is necessary for controllers with older 
firmware, which have bugs preventing overlapped seeks from working properly. 

DISK SUPPORT 

FILES 

1332 

This driver handles all SMD drives by reading a label from sector O of the drive which describes the disk 
geometry and partitioning. 

The xy?a partition is normally used for the root file system on a disk, the xy?b partition as a paging area, 
and the xy?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor
mally the xy?g partition. 

/dev/xy[O-7][a-h] 
/dev/rxy[0-7][a-h] 

block files 
raw files 

Last change: 24 November 1987 Sun Release 4 .0 



XY(4S) DEVICES AND NETWORK INTERFACES XY(4S) 

SEE ALSO 
lseek(2), read(2V), directory(3), write(2V), dkio(4S) 

DIAGNOSTICS 

BUGS 

xycn : self test error 
Self test error in controller, see the Maintenance and Reference Manual. 

xycn: WARNING: n bit addresses 
The controller is strapped incorrectly. Sun systems use 20-bit addresses for Multibus based sys
tems and 24-bit addresses for VMEbus based systems. 

xyn : unable to read bad sector info 
The bad sector forwarding information for the disk could not be read. 

xyn and xyn are of same type (n) with different geometries. 
The 450 and 451 do not support mixing the drive types found on these units on a single controller. 

xyn : initialization failed 
The drive could not be successfully initialized. 

xyn : unable to read label 
The drive geometry/partition table information could not be read. 

xyn : Corrupt label 
The geometry/partition label checksum was incorrect. 

xyn : offline 
A drive ready status is no longer detected, so the unit has been logically removed from the system. 
If the drive ready status is restored, the unit will automatically come back online the next time it is 
accessed. 

xync: cmd how (msg ) blk #n abs blk #n 
A command such as read or write encountered an error condition (how): either it/ailed, the con
troller was reset, the unit was restored, or an operation was retry' ed. The msg is derived from the 
error number given by the controller, indicating a condition such as "drive not ready", "sector not 
found" or "disk write protected". The blk # is the sector in error relative to the beginning of the 
partition involved. The abs blk # is the absolute block number of the sector in error. Some fields 
of the error message may be missing since the information is not always available. 

In raw 1/0 read(2V) and write(2V) truncate file offsets to 512-byte block boundaries, and write(2V) scrib
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2V), 
write(2V) and lseek(2) should always deal in 512-byte multiples. 

Older revisions of the firmware do not properly support overlapped seeks. This will only affect systems 
with multiple disks on a single controller. If a large number of "zero sector count" errors appear, you 
should use the flags field to disable overlapped seeks. 

Sun Release 4.0 Last change: 24 November 1987 1333 



ZER0(4S) DEVICES AND NETWORK INTERFACES ZER0(4S) 

NAME 
zero - source of zeroes 

SYNOPSIS 
None; included with standard system. 

DESCRIPTION 

FILES 

A zero special file is a source of zeroed unnamed memory. 

Reads from a zero special file always return a buffer full of zeroes. The file is of infinite length. 

Writes to a zero special file are always successful, but the data written is ignored. 

Mapping a zero special file creates a zero-initialized unnamed memory object of a length equal to the 
length of the mapping and rounded up to the nearest page size as returned by getpagesize(2). Multiple 
processes can share such a zero special file object provided a common ancestor mapped the object 
MAP SHARED. 

/dev/zero 

SEE ALSO 
fork(2), getpagesize(2), mmap(2) 

1334 Last change: 9 October 1987 Sun Release 4.0 



ZS(4S) DEVICES AND NETWORK INTERFACES ZS(4S) 

NAME 
zs - Zilog 8530 SCC serial communications driver 

CONFIG - SUN-3 SYSTEM 
device zsO at obio ? csr Ox20000 flags 3 priority 3 
device zsl at obio ? csr OxOOOOO flags Oxl03 priority 3 

CONFIG - SUN-2 SYSTEM 
device zsO at virtual ? csr Oxeec800 flags 3 priority 3 
device zsl at virtual ? csr OxeecOOO flags Oxl03 priority 3 
device zs2 at mbmem ? csr Ox80800 flags 3 priority 3 
device zs3 at mbmem ? csr Ox81000 flags 3 priority 3 
device zs4 at mbmem ? csr Ox84800 flags 3 priority 3 
device zs5 at mbmem ? csr Ox85000 flags 3 priority 3 

CONFIG - Sun386i SYSTEM 
device zsO at obmem ? csr OxFCOOOOOO flags 3 irq 9 priority 6 
device zsl at obmem ? csr OxA0000020 flags Oxl03 irq 9 priority 6 

SYNOPSIS 
#include <fcntl.h> 
#include <sys/termios.h> 
open("/dev/ttyn", mode); 
open("/dev/ttydn", mode); 
open("/dev/cuan", mode); 

DESCRIPTION 
The Zilog 8530 provides 2 serial communication ports with full modem control in asynchronous mode. 
Each port supports those termio(4) device control functions specified by flags in the c_cflag word of the 
termios structure and by the IGNBRK, I GNP AR, PARMRK, or INPCK flags in the c _iflag word of the ter
mios structure are performed by the zs driver. All other termio(4) functions must be performed by 
STREAMS modules pushed atop the driver; when a device is opened, the ldterm(4M) and ttcompat(4M) 
STREAMS modules are automatically pushed on top of the stream, providing the standard termio(4) inter
face. 

Of the synopsis lines above, the line for zsO specifies the serial 1/0 port(s) provided by the CPU board, the 
line for zsl specifies the Video Board ports (which are used for keyboard and mouse), the lines for zs2 and 
zs3 specify the first and second ports on the first SCSI board in a system, and those for zs4 and zs5 specify 
the first and second ports provided by the second SCSI board in a system, respectively. 

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be 
treated as hard-wired with carrier always present. Thus specifying flags Ox2 in the specification of zsO 
would treat line /dev/ttyb in this way. 

Minor device numbers in the range O - 11 correspond directly to the normal tty lines and are named 
/dev/ttya and /dev/ttyb for the two serial ports on the CPU board and /dev/ttysn for the ports on the SCSI 
boards; n is O or 1 for the ports on the first SCSI board, and 2 or 3 for the ports on the second SCSI board. 

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a 
special feature, controlled by the minor device number, has been added. Minor device numbers in the 
range 128 - 139 correspond to the same physical lines as those above (that is, the same line as the minor 
device number minus 128). 

A dial-in line has a minor device in the range O - 11 and is conventionally renamed /dev/ttydn, where n is 
a number indicating which dial-in line it is (so that /dev/ttydO is the first dial-in line), and the dial-out line 
corresponding to that dial-in line has a minor device number 128 greater than the minor device number of 
the dial-in line and is conventionally named /dev/cuan, where n is the number of the dial-in line. 

Sun Release 4.0 Last change: 26 February 1988 1335 



ZS(4S) 

IOCTLS 

DEVICES AND NETWORK INTERFACES ZS(4S) 

The /dev/cuan lines are special in that they can be opened even when there is no carrier on the line. Once 
a /dev/cuan line is opened, the corresponding tty line can not be opened until the /dev/cuan line is closed; a 
blocking open will wait until the /dev/cuan line is closed (which will drop Data Terminal Ready, after 
which Carrier Detect will usually drop as well) and carrier is detected again, and a non-blocking open will 
return an error. Also, if the /dev/ttydn line has been opened successfully (usually only when carrier is 
recognized on the modem) the corresponding /dev/cuan line can not be opened. This allows a modem to 
be attached to e.g. /dev/ttydO (renamed from /dev/ttya) and used for dialin (by enabling the line for login 
in /etc/ttytab) and also used for dialout (by tip(lC) or uucp(lC)) as /dev/cuaO when no one is logged in on 
the line. Note: the bit in the flags word in the configuration file (see above) must be zero for this line, 
which enables hardware carrier detection. 

The standard set of termio ioctl() calls are supported by 7.S. 

If the CRTSCTS flag in the c_cflag is set, output will be generated only if CTS is high; if CTS is low, output 
will be frozen. If the CRTSCTS flag is clear, the state of CTS has no effect. Breaks can be generated by 
the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls. The modem control lines TIOCM _ CAR, 
TIOCM_ CTS, TIOCM_RTS, and TIOCM_DTR are provided. 

The input and output line speeds may be set to any of the speeds supported by termio. The speeds cannot 
be set independently; when the output speed is set, the input speed is set to the same speed. 

ERRORS 

FILES 

An open() will fail if: 

ENXIO The unit being opened does not exist. 

EBUSY 

EBUSY 

EINTR 

The dial-out device is being opened and the dial-in device is already open, or the dial-in 
device is being opened with a no-delay open and the dial-out device is already open. 

The unit has been marked as exclusive-use by another process with a TIOCEXCL ioctl() 
call. 

The open was interrupted by the delivery of a signal. 

/dev/tty{a,b,s[0-3]} 
/dev/ttyd[0-9a-f] 
/dev/cua[0-9a-f] 

hardwired tty lines 
dialin tty lines 
dialout tty lines 

SEE ALSO 
tip(lC), uucp(lC), mcp(4S), mti(4S), termio(4), ldterm(4M), ttcompat(4M) 

DIAGNOSTICS 
zsn c : silo overflow. 

The 8530 character input silo overflowed before it could be serviced. 

zsn c: ring buff er overflow. 
The driver's character input ring buffer overflowed before it could be serviced. 

1336 Last change: 26 February 1988 Sun Release 4.0 



IN1R0(5) FILE FORMATS INTR0(5) 

NAME 
intro - file formats used or read by various programs 

DESCRIPTION 
This section describes formats of files used by various programs. 

LIST OF FILE FORMATS 
Name 

a.out 
acct 
addresses 
aliases 
ar 
audit.log 
audit control 
audit data 
auto.home 
auto.vol 
bar 
bootparams 
COFF 
core 
cpio 
crontab 
defaults 
dir 
dump 
dumpdates 
environ 
ethers 
exports 
fcntl 
forward 
fs 
fspec 
fstab 
ftpusers 
gettytab 
group .adjunct 
group 
help 
help_ viewer 
hosts.equiv 
hosts 
inetd.conf 
inode 
internat 
ipalloc.netrange 
lastlog 
magic 
mtab 
mtab 
netgroup 
netmasks 

Sun Release 4.0 

Appears on Page 

a.out(S) 
acct(S) 
aliases(S) 
aliases(S) 
ar(S) 
audit.log(S) 
audit_ control(S) 
audit_ data(S) 
auto.home(S) 
auto.vol(S) 
bar(S) 
bootparams(S) 
coff(S) 
core(S) 
cpio(S) 
crontab(S) 
defaults(S) 
dir(S) 
dump(S) 
dump(S) 
environ(SV) 
ethers(S) 
exports(S) 
fcntl(S) 
aliases(S) 
fs(S) 
fspec(S) 
fstab(S) 
ftpusers(S) 
gettytab(S) 
group(S) 
group(S) 
help(S) 
help_ viewer(S) 
hosts(S) 
hosts(S) 
inetd.conf(S) 
fs(5) 
internat(S) 
ipalloc.netrange( 5) 
utmp(S) 
magic(S) 
fstab(S) 
mtab(5) 
netgroup(S) 
netmasks(S) 

Description 

assembler and link editor output format 
execution accounting file 
addresses and aliases for sendmail(8) 
addresses and aliases for sendmail(8) 
archive (library) file format 
the security audit trail file 
control information for system audit daemon 
current information on audit daemon 
automount map for home directories 
automount map for volumes 
tape archive file format 
boot parameter data base 
common assembler and link editor output 
format of memory image file 
format of cpio archive 
table of times to run periodic jobs 
default specifications for Sun View 
format of directories 
incremental dump format 
incremental dump format 
user environment 
Ethernet address to hostname database or YP domain 
directories to export to NFS clients 
file control options 
addresses and aliases for sendmail(8) 
format of a 4.2 (ufs) file system volume 
format specification in text files 
static filesystem mounting table, mounted filesystems table 
list of users prohibited by ftp 
terminal configuration data base 
group security data file 
group file 
help file format 
help viewer file format 
list of trusted hosts -
host name data base 
Internet servers database 
format of a 4 .2 ( ufs) file system volume 
key mapping table for internationalization 
range of addresses to allocate 
login records 
file command's magic number file 
static filesystem mounting table, mounted filesystems table 
mounted file system table 
list of network groups 
network mask data base 

Last change: 19 October 1987 1337 



INTR0(5) FILE FORMATS INTR0(5) 

netrc netrc(5) file for ftp(l) remote login data 
networks networks(5) network name data base 
passwd.adjunct passwd(5) user security data file 
passwd passwd(5) password file 
phones phones(5) remote host phone number data base 
plot plot(5) graphics interface 
policies policies(5) network administration policies 
printcap printcap(5) printer capability data base 
protocols protocols(5) protocol name data base 
publickey publickey(5) publickey database 
queuedefs queuedefs(5) at/batch/cron queue description file 
rasterfile rasterfile( 5) Sun's file format for raster images 
remote remote(5) remote host description file 
rgb rgb(5) available colors (by name) for coloredit 
rootmenu rootmenu(5) root menu specification for Sun View 
rpc rpc(5) rpc program number data base 
sccsfile sccsfile(5) format of SCCS file 
services services(5) Internet services and aliases 
sm.bak sm(5) in.statd directory and file structures 
sm.bak statmon(5) statd directories and file structures 
sm.state sm(5) in.statd directory and file structures 
sm sm(5) in.statd directory and file structures 
sm statmon(5) statd directories and file structures 
state statmon(5) statd directories and file structures 
sunview sunview(5) initialization file for Sun View 
syslog.conf syslog.conf(5) configuration file for syslogd system log daemon 
tar tar(5) tape archive file format 
term term(5) terminal driving tables for nroff 
term term(5V) format of compiled term file 
termcap termcap(5) terminal capability data base 
terminfo terminfo(5V) terminal capability data base 
textswrc textswrc(5) initialization file for Sun View text windows 
toe toc(5) table of contents of optional clusters 
translate translate(5) input and output files for system message translation 
ttys ttys(5) terminal initialization data 
ttytab ttytab(5) terminal initialization data 
ttytype ttytype(5) data base of terminal types by port 
types types(5) primitive system data types 
tzfile tzfile(5) time zone information 
updaters updaters(5) configuration file for YP updating 
utmp utmp(5) login records 
uuencode uuencode(5) format of an encoded uuencode file 
vfont vfont(5) font formats 
vgrindefs vgrindefs(5) vgrind' s language definition data base 
wtmp utmp(5) login records 
xtab exports(5) directories to export to NFS clients 
ypfiles ypfiles(5) the Yellow Pages database and directory structure 

1338 Last change: 19 October 1987 Sun Release 4.0 



A.OUT(S) FILE FORMATS A.OUT(S) 

NAME 
a.out - assembler and link editor output format 

SYNOPSIS 
#include <a.out.h> 
#include <stab.h> 
#include <nlist.h> 

AVAILABILITY 
Sun-2, ~un-3, and Sun-4 systems only. For Sun386i systems refer to coff(S). 

DESCRIPTION 
a.out is the output format of the assembler as(l) and the link editor ld(l). The link editor makes a.out exe
cutable files. 

A file in a.out format consists of: a header, the program text, program data, text and data relocation infor
mation, a symbol table, and a string table (in that order). In the header, the sizes of each section are given 
in bytes. The last three sections may be absent if the program was loaded with the -s option of Id or if the 
symbols and relocation have been removed by strip(l ). 

The machine type in the header indicates the type of hardware on which the object code can be executed. 
Sun-2 code runs on Sun-3 systems, but not vice versa. Program files predating release 3.0 are recognized 
by a machine type of 'O'. Sun-4 code may not be run on Sun-2 or Sun-3, nor vice versa. 

Header 
The header consists of a exec structure. The exec structure has the form: 

struct exec { 

}; 

unsigned char 
unsigned char 
unsigned char 
unsigned short 
unsigned long 
unsigned long 
unsigned long 
unsigned long 
unsigned long 
unsigned long 
unsigned long 

a_dynamic:1; /* has a DYNAMIC *I 
a_ toolversion:7; / * version of toolset used to create this file * / 
a_machtype; I* machine type *I 
a_magic; I* magic number *I 
a_text; I* size of text segment *I 
a_data; I* size of initialized data *I 
a_ bss; I* size of uninitialized data *I 
a_syms; I* size of symbol table *I 
a_entry; I* entry point *I 
a_trsize; I* size of text relocation *I 
a_drsize; I* size of data relocation *I 

The members of the structure are: 

a_dynamic 

a toolversion 

a_machtype 

a_magic 

Sun Release 4.0 

1 if the a.out file is dynamically linked or is a shared object, 0 otherwise. 

The version number of the toolset (as, Id, etc.) used to create the file. 

One of the following: 

0 pre-3.0 executable image 

M 68010 executable image using only MC680IO instructions that can run on a 
Sun-2 or Sun-3 

M 68020 executable image using MC68020 instructions that can run only on a 
Sun-3 

M SPARC executable image using SPARC instructions that can run only on a Sun-4 

One of the following: 

OMAGIC An text executable image which is not to be write-protected, so the data 
segment is immediately contiguous with the text segment. 

Last change: 18 February 1988 1339 



A.OUT(5) FILE FORMATS A.OUT(5) 

a text 

a data 

a bss 

a_syms 

a_entry 

a trsize 

NMAGIC 

ZMAGIC 

A write-protected text executable image. The data segment begins at the 
first segment boundary following the text segment, and the text segment 
is not writable by the program. When the image is started with 
execve(2), the entire text and data segments will be read into memory. 

A page-aligned text executable image. the data segment begins at the 
first segment boundary following the text segment, and the text segment 
is not writable by the program. The text and data sizes are both multiples 
of the page size, and the pages of the file will be brought into the running 
image as needed, and not pre-loaded as with the other formats. This is the 
default format produced by ld(l). 

The macro N _ BADMAG takes an exec structure as an argument; it evaluates to 1 if the 
a_ magic field of that structure is invalid, and evaluates to O if it is valid. 

The size of the text segment, in bytes. 

The size of the initialized portion of the data segment, in bytes. 

The size of the "uninitialized" portion of the data segment, in bytes. This portion is 
actually initialized to zero. The zeroes are not stored in the a.out file; the data in this 
portion of the data segment is zeroed out when it is loaded. 

The size of the symbol table, in bytes. 

The virtual address of the entry point of the program; when the image is started with 
execve, the first instruction executed in the image is at this address. 

The size of the relocation information for the text segment. 

a drsize The size of the relocation information for the data segment. 

The macros N_TXTADDR, N_DATADDR, and N_BSSADDR give the memory addresses at which the text, 
data, and bss segments, respectively, will be loaded. 

In the ZMAGIC format, the size of the header is included in the size of the text section; in other formats, it 
is not. 

When an a.out file is executed, three logical segments are set up: the text segment, the data segment (with 
uninitialized data, which starts off as all 0, following initialized data), and a stack. For the ZMAGIC for
mat, the header is loaded with the text segment; for other formats it is not. 

Program execution begins at the address given by the value of the a_entry field. 

The stack starts at the highest possible location in the memory image, and grows downwards. The stack is 
automatically extended as required. The data segment is extended as requested by brk(2) or sbrk. 

Text and Data Segments 
The text segment begins at the start of the file for ZMAGIC format, or just after the header for the other for
mats. The N_TXTOFF macro returns this absolute file position when given an exec structure as argument. 
The data segment is contiguous with the text and immediately followed by the text relocation and then the 
data relocation information. The N_DATOFF macro returns the absolute file position of the beginning of 
the data segment when given an exec structure as argument. 

Relocation 
The relocation information appears after the text and data segments. The N _ TRELOFF macro returns the 
absolute file position of the relocation information for the text segment, when given an exec structure as 
argument. The N_DRELOFF macro returns the absolute file position of the relocation information for the 
data segment, when given an exec structure as argument. There is no relocation information if 
a trsize+a drsize==O. - -

Relocation (Sun-2 and Sun-3 Systems) 

1340 

If a byte in the text or data involves a reference to an undefined external symbol, as indicated by the reloca
tion information, then the value stored in the file is an offset from the associated external symbol. When 

Last change: 18 February 1988 Sun Release 4.0 



A.OUT(S) FILE FORMATS A.OUT(S) 

the file is processed by the link editor and the external symbol becomes defined, the value of the symbol is 
added to the bytes in the file. If a byte involves a reference to a relative location, or relocatable segment, 
then the value stored in the file is an off set from the associated segment. 

If relocation information is present, it amounts to eight bytes per relocatable datum as in the following 
structure: 

struct reloc_info_68k { 
long r _address; I* address which is relocated *I 

unsigned int r _symbolnum:24, I* local symbol ordinal *I 
r _pcrel: 1, I* was relocated pc relative already *I 
r _length:2, I* O=byte, l=word, 2=1ong *I 
r _ extern: 1, I* does not include value of sym referenced *I 
r _ baserel: 1, I* linkage table relative *I 
r jmptable: 1, I* pc-relative to jump table *I 
r _relative:!, I* relative relocation *I 
:1; 

}; 

If r_extern is 0, then r_symbolnum is actually an n_type for the relocation (for instance, N_TEXT mean
ing relative to segment text origin.) 

Relocation (Sun-4 System) 
If a byte in the text or data involves a reference to an undefined external symbol, as indicated by the reloca
tion information, then the value stored in the file is ignored. Unlike the Sun-2 and Sun-3 system, the offset 
from the associated symbol is kept with the relocation record. When the file is processed by the link editor 
and the external symbol becomes defined, the value of the symbol is added to this offset, and the sum is 
inserted into the bytes in the text or data segment. 

If relocation information is present, it amounts to twelve bytes per relocatable datum as in the following 
structure: 

enum reloc _ type 
{ 

RELOC_S, 
RELOC _ DISPS, 
RELOC _ WD1SP30, 
RELOC _ HI22, 
RELOC_l3, 

RELOC_l6, 
RELOC _ D1SP16, 
RELOC _ WD1SP22, 
RELOC_22, 
RELOC_LOlO, 
RELOC_SFA_OFF13, 
RELOC _ BASE13, 
RELOC _ PC22, 

RELOC_32, 
RELOC _ D1SP32, 

I* simplest relocs *I 
I* Disp's (pc-rel) *I 

I* SR word disp's *I 
I* SR 22-bit relocs *I 

RELOC _ SF A_ BASE, 
RELOC _ BASElO, 
RELOC_PClO, 
RELOC _JMP _ TBL, 
RELOC _ SEGOFF16, 
RELOC_GLOB_DAT, 

I* SR 13&10-bit relocs *I 
I* SR S.F.A. relocs *I 
RELOC _ BASE22, I* base_relative pie *I 
I* special pc-rel pie*/ 

I* jmp_tbl_rel in pie *I 
I* ShLib offset-in-seg *I 
RELOC_JMP_SLOT, RELOC _RELATIVE, I* rtld relocs *I 

}; 

struct reloc_info_sparc I* used when header.a_machtype == M_SPARC *I 
{ 

}; 

unsigned long int 
unsigned int 
unsigned int 
int 
enum reloc _ type 
long int 

Sun Release 4.0 

r_address; 
r index :24; 
r extern 1; 
: 2; 
r_type 
r_addend; 

5; 

I* relocation addr (offset in segment) *I 
I* segment index or symbol index *I 
I* if F, r _index==SEG#; if T, SYM idx *I 
I* <unused> *I 
I* type of relocation to perform *I 
I* addend for relocation value *I 

Last change: 18 February 1988 1341 



A.OUT(5) FILE FORMATS A.OUT(5) 

If r _ extern is 0, then r _ symbolnum is actually a n _ type for the relocation (for instance, N _ TEXT meaning 
relative to segment text origin.) 

Symbol Table 

FILES 

1342 

The N_SYMOFF macro returns the absolute file position of the symbol table when given an exec structure 
as argument Within this symbol table, distinct symbols point to disjoint areas in the string table (even 
when two symbols have the same name). The string table immediately follows the symbol table; the 
N_STROFF macro returns the absolute file position of the string table when given an exec structure as 
argument. The first 4 bytes of the string table are not used for string storage, but rather contain the size of 
the string table. This size includes the 4 bytes; thus, the minimum string table size is 4. Layout information 
as given in the include file for the Sun system is shown below. 

The layout of a symbol table entry and the principal flag values that distinguish symbol types are given in 
the include file as follows: 

struct nlist { 

}; 
#define 
I• 

union { 

} n_un; 

char 
long 

•n_name; 
n_strx; 

unsigned char n _ type; 
char n_other; 
short n_desc; 
unsigned n _value; 

n hash n desc 

* Simple values for n _ type. 
•I 
#define N UNDF OxO 
#define N_ABS Ox2 
#define N TEXT Ox4 
#define N DATA Ox6 
#define N BSS Ox8 
#define N COMM Oxl2 
#define N_FN Oxlf 
#define N_EXT 01 
#define N TYPE Oxle 

I• 

/• for use when in-memory •/ 
/• index into file string table •/ 

I• type flag, that is, N_TEXT etc; see below•/ 

I• see <Stab.h> •I 
/• value of this symbol (or adb offset) •I 

I• used internally by Id •/ 

I• undefined •I 
/• absolute •/ 
I• text •I 
/•data•/ 
/• bss •I 
I• common (internal to Id) •/ 
/•filename symbol•/ 
/• external bit, or'ed in •/ 
/• mask for all the type bits •/ 

* Other permanent symbol table entries have some of the N_STAB bits set. 
* These are given in <Stab.h> 
•I 
#define N_STAB OxeO /• if any of these bits set, don't discard•/ 

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx value ofO indi
cates that no name is associated with a particular symbol table entry. The field n_un.n_name can be used 
to refer to the symbol name only if the program sets this up using n_strx and appropriate data from the 
string table. Because of the union in the nlist declaration, it is impossible in C to statically initialize such a 
structure. If this must be done (as when using nlist(3)) the file <nlist.h> should be included, rather than 
<a.out.h>; this contains the declaration without the union. 

If a symbol's type is undefined external, and the value field is non-zero, the symbol is interpreted by the 
loader Id as the name of a common region whose size is indicated by the value of the symbol. 

/usr/include/a.out.h 
/usr/include/machine 

symbolic link to /usr/include/machine/a.out.h 
symbolic link to one of /usr/include/sun[234 ... ] 

Last change: 18 February 1988 Sun Release 4.0 



A.OUT(5) 

/usr/include/sun2/a.out.h 
/usr/include/sun3/a.out.h 
/usr/include/sun4/a.out.h 

SEE ALSO 

FILE FORMATS 

Sun-2 a.out header 
Sun-3 a.out header 
Sun-4 a.out header 

coff(5), adb(l), as(l), cc(lV), dbx(l), Id(l), nm(l), strip(l), brk(2), nlist(3) 

Sun Release 4.0 Last change: 18 February 1988 

A.OUT(5) 

1343 



ACCT(5) FILE FORMATS ACCT(5) 

NAME 
acct - execution accounting file 

SYNOPSIS 
#include <sys/acct.h> 

DESCRIPTION 
The acct(2) system call makes entries in an accounting file for each process that terminates. The account
ing file is a sequence of entries whose layout, as defined by the include file is: 

1344 

f* @(#)acct.h 2.7 87/03/12 SMI; from UCB 7.16/4/86*/ 

I* 
* Copyright (c) 1982, 1986 Regents of the University of California. 
* All rights reserved. The Berkeley software License Agreement 
* specifies the terms and conditions for redistribution. 
•I 

f* 
* Accounting structures; 
* these use a comp_ t type which is a 3 bits base 8 
* exponent, 13 bit fraction "floating point" number. 
* Units are 1/ AHZ seconds. 
•I 

typedef u _ short comp_ t; 

struct acct 
{ 

char ac_comm[lO]; f* Accounting command name *f 
comp_t ac_utime; 
comp_t ac_stime; 
comp_t ac_etime; 
time t ac_btime; 
uid t ac_uid; 
gid t ac_gid; 
short ac_mem; 
comp_t ac_io; 
dev t ac_tty; 
char ac_flag; 

}; 

#define AFORK 0001 
#define ASU 0002 
#define ACOMPAT 0004 
#define ACORE 0010 
#define AXSIG 0020 

'* 

f * Accounting user time •I 
/• Accounting system time •I 
/• Accounting elapsed time •/ 
/• Beginning time •/ 
f* Accounting user ID•/ 
I* Accounting group ID•/ 
I* average memory usage •/ 
/• number of disk IO blocks •/ 
/• control typewriter•/ 
I• Accounting flag •/ 

/• has executed fork, but no exec •/ 
I• used super-user privileges•/ 
I• used compatibility mode •/ 
f * dumped core •/ 
/• killed by a signal•/ 

* 1/ AHZ is the granularity of the data encoded in the various 
* comp_t fields. This is not necessarily equal to hz. 
•I 

#define AHZ 64 

#if def KERNEL 
#ifdef SYSACCT 

Last change: 19 October 1987 Sun Release 4.0 



ACCT(5) 

struct acct 
struct vnode 
#else 
#define acct() 
#endif 
#endif 

acctbuf; 
•acctp; 

FILE FORMATS ACCT(5) 

If the process does an execve(2), the first 10 characters of the filename appear in ac _comm. The account
ing flag contains bits indicating whether execve(2) was ever accomplished, and whether the process ever 
had super-user privileges. 

SEE ALSO 
acct(2), execve(2), sa(8) 

Sun Release 4.0 Last change: 19 October 1987 1345 



ALIASES(5) FILE FORMATS ALIASES(5) 

NAME 
aliases, addresses, forward- addresses and aliases for sendmail(8) 

SYNOPSIS 
/etc/passwd 
/etc/aliases 
/etc/aliases.dir 
/etc/aliases.pag 
-/.forward 

DESCRIPTION 
These files contain mail addresses or aliases, recognized by sendmail(8), for the local host: 

/etc/passwd Mail addresses (usemames) of local users. 
/etc/aliases Aliases for the local host, in ASCII format This file can be edited to add, update, 

or delete local mail aliases. 
/etc/aliases.{dir,pag} The aliasing information from /etc/aliases, in binary, dbm(3X) format for use by 

sendmail(8). The program newaliases(8), which is invoked automatically by 
sendmail(8), maintains these files. 

-/.forward Addresses to which a user's mail is forwarded (see Automatic Forwarding, 
below). 

In addition, the Yellow Pages aliases map mail.aliases contains addresses and aliases available for use 
across the network. 

ADDRESSES 

1346 

As distributed, sendmail(8) supports the following types of addresses: 

• Local usemames. These are listed in the local host's /etc/passwd file. 

• Local filenames. When mailed to an absolute pathname, a message can be appended to a file. 

• Commands. If the first character of the address is a vertical bar, ( I ), sendmail(8) pipes the message to 
the standard input of the command the bar precedes. 

• DARPA-standard mail addresses of the form: 

name@domain 

If domain does not contain any '.' (dots), then it is interpreted as the name of a host in the current 
domain. Otherwise, the message is passed to a mailhost that determines how to get to the specified 
domain. Domains are divided into subdomains separated by dots, with the top-level domain on the 
right Top-level domains include: 

.COM Commerical organizations . 

. EDU Educational organizations . 

. GOV Government organizations . 

. MIL Military organizations. 

For example, the full address of John Smith could be: 

js@jsmachine.Podunk-U.EDU 

if he uses the machine named "jsmachine" at Podunk University. 

• uucp(lC) addresses of the form: 

... [host!]host!username 

These are sometimes mistakenly referred to as "Usenet" addresses. uucp(lC) provides links to 
numerous sites throughout the world for the remote copying of files. 

Other site-specific forms of addressing can be added by customizing the sendmail configuration file. See 
the sendmail(8), and System and Network Administration for details. Standard addresses are recom
mended. 

Last change: 17 November 1987 Sun Release 4.0 



ALIASES(5) FILE FORMATS ALIASES(5) 

ALIASES 
Local Aliases 

/etc/aliases is formatted as a series of lines of the form 

name: address[, address] 

name is the name of the alias or alias group, and address is the address of a recipient in the group. Aliases 
can be nested. That is, an address can be the name of another alias group. Because of the way sendmail 
performs mapping from upper-case to lower-case, an address that is the name of another alias group must 
not contain any upper-case letters. 

Lines beginning with white space are treated as continuation lines for the preceding alias. Lines beginning 
with# are comments. 

Special Aliases 
An alias of the form: 

owner-alias name: address 

directs error-messages resulting from mail to alias-name to address, instead of back to the person who sent 
the message. 

An alias of the form: 

aliasname: :include:pathname 

with colons as shown, adds the recipients listed in the file pathname to the aliasname alias. This allows a 
private list to be maintained separately from the aliases file. 

YP Domain Aliases 
Normally, the aliases file on the master YP server is used for the mail.aliases YP map, which can be made 
available to every YP client. Thus, the /etdaliases• files on the various hosts in a network will one day be 
obsolete. Domain-wide aliases should ultimately be resolved into usemames on specific hosts. For exam
ple, if the following were in the domain-wide alias file: 

jsmith:js@jsmachine 

then any YP client could just mail to jsmith and not have to remember the machine and user name for John 
Smith. If a .SM YP alias does not resolve to an address with a specific host, then the name of the YP 
domain is used. There should be an alias of the domain name for a host in this case. For example, the 
alias: 

jsmith:root 

sends mail on a YP client to root@podunk-u if the name of the YP domain is podunk-u. 

Automatic Forwarding 
When an alias ( or address) is resolved to the name of a user on the local host, sendmail checks for a .for
ward file, owned by the intended recipient, in that user's home directory, and with universal read access. 
This file can contain one or more addresses or aliases as described above, each of which is sent a copy of 
the user's mail. 

Care must be taken to avoid creating addressing loops in the .forward file. When forwarding mail between 
machines, be sure that the destination machine does not return the mail to the sender through the operation 
of any YP aliases. Otherwise, copies of the message may "bounce." Usually, the solution is to change the 
YP alias to direct mail to the proper destination. 

Sun Release 4.0 Last change: 17 November 1987 1347 



ALIASES(5) FILE FORMATS ALIASES(5) 

FILES 

A backslash before a usemame inhibits further aliasing. For instance, to invoke the vacation(l) program, 
user js creates a .forward file that contains the line: 

\js, "1/usr/ucb/vacation js" 

so that one copy of the message is sent to the user, and another is piped into the vacation(l) program. 

I etc/passwd 
/ etc/aliases 
-/.forward 

SEE ALSO 

BUGS 

1348 

uucp(lC), vacation(l), dbm(3X), newaliases(8), sendmail(8), 

System and Network Administration 

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 characters. Nested 
aliases can be used to circumvent this limit. 

Last change: 17 November 1987 Sun Release 4.0 



AR(5) FILE FORMATS AR(5) 

NAME 
ar - archive (library) file format 

SYNOPSIS 
#include <ar .h> 

DESCRIPTION 
The archive command ar combines several files into one. Archives are used mainly as libraries to be 
searched by the link-editor ld(l). 

A file produced by ar has a magic string at the start, followed by the constituent files, each preceded by a 
file header. The magic number and header layout as described in the include file are: 

#define ARMAG "!<arch>\n" 
#define SARMAG 8 

#define ARFMAG "'\n" 

struct ar _hdr { 
char 
char 
char 
char 
char 
char 
char 

}; 

ar_name[l6]; 
ar _ date[12]; 
ar_uid[6]; 
ar_gid[6]; 
ar_mode[8]; 
ar _size[lO]; 
ar _fmag[2]; 

The name is a blank-padded string. The ar _fmag field contains ARFMAG to help verify the presence of a 
header. The other fields are left-adjusted, blank-padded numbers. They are decimal except for ar _ mode, 
which is octal. The date is the modification date of the file at the time of its insertion into the archive. 

Each file begins on a even (0 mod 2) boundary; a NEWLINE is inserted between files if necessary. 
Nevertheless the size given reflects the actual size of the file exclusive of padding. 

There is no provision for empty areas in an archive file. 

The encoding of the header is portable across machines. If an archive contains printable files, the archive 
itself is printable. 

Sun3861 DESCRIPTION 
The file produced by ar on Sun386i systems is identical to that described above with the following 
changes: 

Each archive containing COFF files [see coff(5)] includes an archive symbol table. This symbol table is 
used by the link editor Id to determine which archive members must be loaded during the link edit process. 
The archive symbol table (if it exists) is always the first file in the archive (but is never listed) and is 
automatically created and/or updated by ar. 

The ar _name field of the ar _ hdr structure described above is blank-padded and slash (/) terminated. Com
mon format archives can be moved from system to system as long as the portable archive command ar is 
used. Conversion tools such as convert exist to aid in the transportation of non-common format archives 
to this format 

Each archive file member begins on an even byte boundary; a NEWLINE is inserted between files if neces
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding. 

If the archive symbol table exists, the first file in the archive has a zero length name (i.e., ar _ name[O] == 
'I' ). The contents of this file are as follows: 

• The number of symbols. Length: 4 bytes. 

• The array of offsets into the archive file. Length: 4 bytes* "the number of symbols". 

Sun Release 4.0 Last change: 18 February 1988 1349 



AR(5) FILE FORMATS AR(5) 

• The name string table. Length: ar _size - (4 bytes* ("the number of symbols"+ 1)). 

The number of symbols and the array of offsets are managed with sgetl and sputl. The string table con
tains exactly as many null terminated strings as there are elements in the offsets array. Each offset from 
the array is associated with the corresponding name from the string table (in order). The names in the 
string table are all the defined global symbols found in the common object files in the archive. Each offset 
is the location of the archive header for the associated symbol. 

SEE ALSO 
ar(lV), ld(l), nm(l) 

Sun386i WARNINGS 

BUGS 

1350 

strip(l) will remove all archive symbol entries from the header. The archive symbol entries must be 
restored via the ts option of the ar(l V) command before the archive can be used with the link editor /d(l). 

Filenames lose trailing blanks. Most software dealing with archives takes even an included blank as a 
name terminator. 

Last change: 18 February 1988 Sun Release 4.0 



AUDIT .LOG ( 5 ) FILE FORMATS AUDIT.LOG ( 5) 

NAME 
audit.log - the security audit trail file 

SYNOPSIS 
#include <sys/label.h> 
#include <sys/audit.h> 
#include <Sys/user.h> 

DESCRIPTION 
The audit.log file begins with a header record consisting of an audit_header structure followed by the pre
vious audit file name. When the audit daemon is started (usually only at boot time), the previous audit file 
name is NULL. 

struct audit_ header { 

}; 

int ah_magic; 
time_t ah_time; 
short ah_ namelen; 

/• magic number •/ 
I• the time •I 
/• length of file name•/ 

typedef struct audit_ header audit_ header_ t; 

The file may end with a trailer record consisting of an audit_trailer structure followed by the name of the 
next audit file. 

struct audit_ trailer { 

}; 

short at_ record _size; 
short at_record_type; 
time t at_time; 
short at_ namelen; 

/• size of this •/ 
/• its type, a trailer •/ 
/• the time •I 
/• length of file name•/ 

typedef struct audit_trailer audit_trailer_t; 

The audit.log file contains audit records in their raw form. The records are of varying size depending on 
the record type. Each record has a header which is an audit _record structure. 

struct audit _record { 
short 

}; 

short 
time t 
short 
short 
short 
short 
short 
int 
int 
blabel t 
short 

au _record _size; 
au _record_ type; 
au_time; 
au_uid; 
au_auid; 
au_euid; 
au_gid; 
au_pid; 
au_errno; 
au_return; 
au_label; 
au _param _ count; 

typedef struct audit_record audit_record_t; 

/• size of this •/ 
I• its type •/ 
/• the time •I 
/• real uid •/ 
/• audit uid •/ 
/• effective •/ 
/• real group •/ 
I• effective •I 
/• error code •I 
/• a return value •/ 
/•also ... •/ 

I• # of parameters •/ 

Immediately following the header is a set of two byte integers, the number of which exist for a given 
record is contained in the au _param _ count field. These numbers are the lengths of the additional data 
items. The additional data items follow the list of lengths, the first length describing the first data item. 
Interpretation of this data is left to the program accessing it. 

Sun Release 4.0 Last change: 19 October 1987 1351 



AUDIT .LOG ( 5) FILE FORMATS AUDIT.LOG ( 5) 

SEE ALSO 
audit(2), getauditfile(2), getuseraudit(2), audit(8), 

Security Features Guide 

1352 Last change: 19 October 1987 Sun Release 4.0 



AUDIT_ CONTROL ( 5) FILE FORMATS AUDIT_ CONTROL ( 5) 

NAME 
audit_ control - control information for system audit daemon 

SYNOPSIS 
/etc/security/audit/audit_control 

DESCRIPTION 
The audit control file contains audit control information read by auditd(8). Each line consists of a title 
and a string, separated by a colon. There are no restrictions on the order of lines in the file, although some 
lines must appear only once. A line beginning with'#' is a comment. 

Directory definition lines list the directories to be used when creating audit files, in the order in which they 
are to be used. The format of a directory line is: 

dir: directory-name 
where directory-name is the name of a directory in which to create audit files, with the form: 

/etc/security/audit/server/machine 
where server is the name of an audit file system on the machine where this audit directory resides, and 
machine is the name of the local machine, since audit files belonging to different machines are, by conven
tion, stored in separate subdirectories of a single audit directory. The naming convention normally has 
server be the name of a server machine, and all clients mount /etc/security/audit/server at the same loca
tion in their local file systems. If the same server exports several different file systems for auditing, their 
server names will, of course, be different. 

The audit threshold line specifies the percentage of free space that must be present in the file system con
taining the current audit file. The format of the threshold line is: 

minfree: percentage 
where percentage is indicates the amount of free space required. If free space falls below this threshold, 
the audit daemon auditd(8) invokes the shell script /etc/security/audit/audit_ warn. If no threshold is 
specified, the default is 0%. 

The audit flags line specifies the default system audit value. This value is combined with the user audit 
value read from /etc/security/passwd.adjunct to form the process audit state. The user audit value over
rides the system audit value. The format of a flags line is: 

flags: audit-flags 
where audit-flags specifies which event classes are to be audited. The character string representation of 
audit-flags contains a series of flag names, each one identifying a single audit class, separated by commas. 
A name preceded by - means that the class should be audited for failure only; successful attempts are not 
audited. A name preceded by+ means that the class should be audited for success only; failing attempts 
are not audited. Without a prefix, the name indicates that the class is to be audited for both successes and 
failures. The special string all indicates that all events should be audited; -all indicates that all failed 
attempts are to be audited, and +all all successful attempts. The prefixes ", "-, and "+ tum off flags 
specified earlier in the string C- and "+ for failing and successful attempts, " for both). They are typically 
used to reset flags. 

The following table lists the audit classes: 

short name 

dr 
dw 
de 
da 
lo 
ad 
pO 
pl 

Sun Release 4.0 

long name 

data read 
data write 
data create 
data_ access_ change 
login_logout 
administrative 
minor _privilege 
major _privilege 

short description 

Read of data, open for reading, etc. 
Write or modification of data 
Creation or deletion of any object 
Change in object access (modes, owner) 
Login, logout, creation by at(l) 
Normal administrative operation 
Privileged operation 
Unusual privileged operation 

Last change: 19 October 1987 1353 



AUDIT_ CONTROL ( 5) FILE FORMATS AUDIT_ CONTROL ( 5) 

EXAMPLE 

FILES 

Here is a sample /etc/security/audit_ control file for the machine eggplant: 

dir: /etc/security/audit/jedgar/eggplant 
dir: /etc/security/audit/jedgar .aux/eggplant 
# 
# Last-ditch audit file system when jedgar fills up. 
# 
dir: /etc/security/audit/global/eggplant 
minfree: 20 
flags: lo,pO,p 1,ad,-all," -da 

This identifies server jedgar with two file systems normally used for audit data, another server global used 
only when jedgar fills up or breaks, and specifies that the warning script is run when the file systems are 
80% filled. It also specifies that all logins, privileged and administrative operations are to be audited 
(whether or not they succeed), and that failures of all types except failures to access data are to be audited. 

/etc/security/audit/audit_ control 
/etc/security/audit/audit_ warn 
/etc/security/audit/•/•/• 
/ etc/security/passwd _ adjunct 

SEE ALSO 
at(l), audit(2), getfaudflgs(3), audit.log(5), audit(8), auditd(8) 

1354 Last change: 19 October 1987 Sun Release 4.0 



AUDIT_DATA(5) FILE FORMATS AUDIT _DATA ( 5) 

NAME 
audit data - current information on audit daemon 

SYNOPSIS 
/etc/security/audit/audit_data 

DESCRIPTION 
The audit_ data file contains information about the audit daemon. The file contains the process ID of the 
audit daemon, and the pathname of the current audit log file. The format of the file is: 

<pid >:<pathname> 
Where pid is the process ID for the audit daemon, and pathname is the full pathname for the current audit 
log file. 

EXAMPLE 
64:/etdsecurity/audit/auditserv/auditclient/2df0504 

FILES 
/etc/security/audit/audit_ data 

SEE ALSO 
audit(2), audit.log(5), audit(8), auditd(8) 

Sun Release 4.0 Last change: 19 October 1987 1355 



AUTO.HOME ( 5) FILE FORMATS AUTO.HOME ( 5) 

NAME 
auto.home- automount map for home directories 

SYNOPSIS 
I etc/auto.home 

AV AILABILTITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

auto.home resides in the /etc directory, and contains automount(8) map entries for user's home direc
tories. On Sun386i systems, this file is used to build the auto.home Yellow Pages map used by automount 
at system startup and reads the auto.master Yellow Pages database, which contains an entry for 
auto.home and /home . The auto.home map contains entries for each usemame in the YP passwd map, 
and the hostname :/directory to NFS mount. 

References to /home/username are translated by the automount daemon using the auto.home map, and 
cause the directory specified in the map entry to be nfs mounted and that directory returned to the user's 
program. 

User accounts created using snap(l) or logintool(8) have passwd(5) entries where the initial (home) direc
tory name is, in the form /homelusername. snap and Iogintool also automatically create the auto.home 
entry for a user account. The format of the entry is described in automount(8). An example entry is: 

mtravis system2:/ export/home/users/mtravis 

Thus when the user mtravis logs into a Sun386i systems, the automounter automatically mounts his home 
directory from system2. This allows a user to log in to any RR workstation on the network and be 
automatically placed in his or her home directory. 

The convention for the format of home directory names used by snap and logintool is: 

/export/home/ groupname lusername 

Note that this is a different map and mechanism for home directories than the one that the automount dae
mon provides with the -homes switch. This is because the Sun386i convention for the format of home 
directory names differs and provides directories that can be used as mount points on a per user and per 
group basis. 

/ etc/auto.home 

SEE ALSO 
snap(l), passwd(5), automount(8), logintool(8) 

1356 Last change: 19 February 1988 Sun Release 4.0 



AUTO.VOL ( 5) FILE FORMATS AUTO.VOL(5) 

NAME 
auto.vol- automount map for volumes 

SYNOPSIS 
/etc/auto.vol 

AV AILABILTITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

auto.vol resides in the /etc directory, and contains automount(8) map entries for volumes. On Sun386i 
systems, this file is used to build the auto.vol Yellow Pages map used by automount(8) at system startup. 
automouunt reads the auto.master Yellow Pages map, which contains an entry for auto. vol and /vol. 

References to /vol/volume_name are translated by the automount daemon using the auto.vol map, and 
cause the directory specified in the map entry to be mounted. 

The concept of a volume is that it is a self contained directory hierarchy that can be NFS mounted. It is 
referenced using a known volume_ name. The use of an automount map is suggested so that the volume 
and its contents can be referenced through /vol. This is advantageous because location-transparency (i.e., 
which host the volume is on) and replication of read-only volumes can be provided using the automount 
mechanism. The format of the entry is described in automount An example entry is: 

archive system4:/export/archive 

In the above example, the archive volume is currently on line on system4. Users and programs can refer
ence it via /vol/archive. If for some reason the volume had to be moved to another system, system2 for 
example, the network or system administrator simply edits the map entry for the archive volume and 
changes the hostname to system2 and then rebuilds the Yellow Pages maps. 

archive system2:/ export/archive 

Users and programs can continue to refer to the archive volume using /vol/archive, unaware that the 
volume was moved to another system. 

/etc/auto. vol 

SEE ALSO 
automount(8) 

Sun Release 4.0 Last change: 19 February 1988 1357 



BAR(5) FILE FORMATS BAR(5) 

NAME 
bar - tape archive file format 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

1358 

bar(l), (the tape archive command) dumps several files into one, in a medium suitable for transportation. 
This format is not compatible with the format generated by tar(l). 

A ''bar tape'' or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is represented 
by a header block that describes the file, followed by zero or more blocks that give the contents of the file. 
At the end of the tape are two blocks filled with binary zeros, as an end-of-file indicator. 

The blocks are grouped for physical 1/0 operations. Each group of n blocks (where n is set by the b 
keyletter on the bar(l) command line - default is 20 blocks) is written with a single system call; on nine
track tapes, the result of this write is a single tape record. The last group is always written at the full size, 
so blocks after the two zero blocks contain random data. On reading, the specified or default group size is 
used for the first read, but if that read returns less than a full tape block, the reduced block size is used for 
further reads, unless the B keyletter is used. 

The header block looks like: 
#define TBLOCK 512 

union hblock { 

}; 

char dummy[TBLOCK]; 
struct header { 

char mode[8]; 
char uid[8]; 
char gid[8]; 
char size[l2]; 
char mtime[l2]; 
char chksum[8]; 
char rdev[8]; 
char linkflag; 
char bar_ magic[2]; 
char volume_num[4]; 
char compressed; 
char date[12]; 
char start_of _name; 

} dbuf; 

start_ of_ name is a null-terminated string. date is the date of the archive. bar_ magic is a special number 
indicating that this is a bar archive. rdev is the device type, for files that are devices. The other fields are 
zero-filled octal numbers in ASCII. Each field (of width w) contains w-2 digits, a space, and a null, except 
size, rdev, and mtime, which do not contain the trailing null. start_ of_ name is the name of the file, as 
specified on the bar command line. Files dumped because they were in a directory that was named in the 
command line have the directory name as prefix and !filename as suffix. mode is the file mode, with the top 
bit masked off. uid and gid are the user and group numbers that own the file. size is the size of the file in 
bytes. Links and symbolic links, and special files, are dumped with this field specified as zero. mtime is 
the modification time of the file at the time it was dumped. chksum is a decimal ASCII value that 
represents the sum of all the bytes in the header block. When calculating the checksum, the chksum field is 
treated as if it were all blanks. link.flag is ASCII O if the file is ''normal'' or a special file, 1 if it is an hard 
link, 2 if it is a symbolic link, and 3 if it is a special file (device or FIFO). The name linked-to, if any, is in a 
null-terminated string, following start _of_ name. Unused fields of the header are binary zeros (and are 
included in the checksum). 

Last change: 19 February 1988 Sun Release 4.0 



BAR(5) FILE FORMATS BAR(S) 

The first time a given i-node number is dumped, it is dumped as a regular file. The second and subsequent 
times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but not the file it was linked 
to, an error message is printed and the tape must be manually re-scanned to retrieve the linked-to file. 

When the H modifier is used with bar, an additional header block (one that does not pertain to a particular 
file) is written to the first block of each volume of the archive. The header ID, as specified on the com
mand line, is copied to start_ of_ name. The size reflects the number of bytes to skip to the start of the first 
full file (always zero on the first volume). 

The encoding of the header is designed to be portable across machines. 

SEE ALSO 
bar(l) 

Sun Release 4.0 Last change: 19 February 1988 1359 



BOOTP ARAMS ( 5) FILE FORMATS BOOTP ARAMS ( 5) 

NAME 
bootparams - boot parameter data base 

SYNOPSIS 
/etc/bootparams 

DESCRIPTION 
The bootparams file contains the list of client entries that disldess clients use for booting. For each disk
less client the entry should contain the following information: 

name of client 
a list of keys, names of servers, and pathnames. 

The first item of each entry is the name of the diskless client The subsequent item is a list of keys, names 
of servers, and pathnames. 

Items are separated by TAB characters. 

EXAMPLE 

FILES 

Here is an example of the /etc/bootparams taken from a SunOS system. 

myclient root=myserver:/nfsroot/myclient \ 
swap=myserver:/nfsswap/myclient \ 
dump=myserver:/nfsdump/myclient 

/etc/bootparams 

SEE ALSO 
bootparamd(8) 

1360 Last change: 16 February 1988 Sun Release 4.0 



COFF( 5) FILE FORMATS COFF(S) 

NAME 
COFF - common assembler and link editor output 

SYNOPSIS 
#include <filehdr.h> 
#include <aouthdr .h> 
#include <scnhdr .h> 
#include <reloc.h> 
#include <linenum.h> 
#include <storclass.h> 
#include <syms.h> 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
The output from the link editor and the assembler (named a.out by default) is in COFF format (Common 
Object File Format) on the Sun386i system. 

A common object file consists of a file header, a system header (if the file is link editor output), a table of 
section headers, relocation information, (optional) line numbers, a symbol table, and a string table. The 
order is given below. 

File header. 
UNIX system header. 
Section 1 header. 

Section n header. 
Section 1 data. 

Section n data. 
Section 1 relocation. 

Section n relocation. 
Section 1 line numbers. 

Section n line numbers. 
Symbol table. 
String table. 

The last three parts of an object file (line numbers, symbol table and string table) may be missing if the pro
gram was linked with the -s option of ld(l) or if they were removed by strip(l). Also note that the reloca
tion information will be absent after linking unless the -r option of ld(l) was used. The string table exists 
only if the symbol table contains symbols with names longer than eight characters. 

The sizes of each section (contained in the header, discussed below) are in bytes. 

When an a.out file is loaded into memory for execution, three logical segments are set up: the text seg
ment, the data segment (initialized data followed by uninitialized, the latter actually being initialized to all 
O's), and a stack. The text segment starts at location OxlOOO by default. 

The a.out file produced by ld(l) has the magic number 0413 in the first field of the system header. The 
headers (file header, system header, and section headers) are loaded at the beginning of the text segment 
and the text immediately follows the headers in the user address space. The first text address will equal 
OxlOOO plus the size of the headers, and will vary depending upon the number of section headers in the 
a.out file. In an a.out file with three sections (.text, .data, .bss, and .comment), the first text address is at 
Ox000010DO. The text segment is not writable by the program; if other processes are executing the same 
a.out file, the processes will share a single text segment. 

Sun Release 4.0 Last change: 19 February 1988 1361 



COFF(5) FILE FORMATS COFF(5) 

The data segment starts at the next 4K boundary past the last text address. The first data address is deter
mined by the following: If an a.out file were split into 4K chunks, one of the chunks would contain both 
the end of text and the beginning of data. When the a.out file is loaded into memory for execution, that 
chunk will appear twice; once at the end of text and once at the beginning of data (with some unused space 
in between). The duplicated chunk of text that appears at the beginning of data is never executed; it is 
duplicated so that the operating system may bring in pieces of the file in multiples of the page size without 
having to realign the beginning of the data section to a page boundary. Therefore the first data address is 
the sum of the next segment boundary past the end of text plus the remainder of the last text address 
divided by 4K. If the last text address is a multiple of 4K no duplication is necessary. 

Oh the Sun386i computer the stack begins at location OxFBFFFFFF and grows toward lower addresses. The 
stack is automatically extended as required. The data segment is extended only as requested by the brk(2) 
system call. 

For relocatable files the value of a word in the text or data portions that is not a reference to an undefined 
external symbol is exactly the value that will appear in memory when the file is executed. If a word in the 
text involves a reference to an undefined external symbol, there will be a relocation entry for the word, the 
storage class of the symbol-table entry for the symbol will be marked as an "external symbol", and the 
value and section number of the symbol-table entry will be undefined. When the file is processed by the 
link editor and the external symbol becomes defined, the value of the symbol will be added to the word in 
the file. 

File Header 
The format of the file header is: 

struct filehdr 
{ 

}; 

unsigned shortf_magic; /• magic number•/ 
unsigned shortf _ nscns; I• number of sections •I 
long f timdat; I• time and date stamp •I 
long f-symptr; /• file ptr to symtab •I 
long ( nsyms; I• # symtab entries •/ 
unsigned shortf _opthdr; I• sizeof(opt hdr) •/ 
unsigned shortf _ flags; /• flags •/ 

Sun0S System Header 

1362 

The format of the system header is: 

typedef struct aouthdr 
{ 

short 
short 
long 
long 
long 
long 
long 
long 

} AOUTHDR; 

magic; 
vstamp; 
tsize; 
dsize; 
bsize; 
entry; 
text_start; 
data_start; 

/• magic number •/ 
I• version stamp •I 
I• text size in bytes, padded •I 
/• initialized data (.data) •/ 
I• uninitialized data (.bss) •I 
I• entry point •/ 
/• base of text used for this file •/ 
/• base of data used for this file •/ 

Last change: 19 February 1988 Sun Release 4.0 



COFF(5) FILE FORMATS 

Section Header 
The format of the section header is: 

Relocation 

struct scnhdr 
{ 

}; 

char s name[SYMNMLEN];/• section name•/ 
long SJ>addr; I• physical address•/ 
long s vaddr; /• virtual address•/ 
long s =size; I• section size •/ 
long s_scnptr; I• file ptr to raw data•/ 
long s relptr; /• file ptr to relocation•/ 
long s-lnnoptr;/• file ptr to line numbers•/ 
unsigned shorts_nreloc; I•# reloc entries •I 
unsigned shorts_nlnno; /•#line number entries•/ 
long s _ flags; /• flags •/ 

COFF(5) 

Object files have one relocation entry for each relocatable reference in the text or data. If relocation infor
mation is present, it will be in the following format: 

struct reloc 
{ 

}; 

long 
long 
ushort 

r vaddr; /• (virtual) address of reference •/ 
r-symndx; I• index into symbol table •I 
r_type; I• relocation type•/ 

The start of the relocation information is s _relptr from the section header. If there is no relocation infor
mation, s _relptr is 0. 

Line Number 
The cc(lV) command generates an entry in the object file for each C source line on which a breakpoint is 
possible (when invoked with the -g option. Users can refer to line numbers when using the appropriate 
debugger, such as dbx(l)). The structure of these line number entries appears below. 

struct lineno 
{ 

union 
{ 

long l_symndx; 
long l_paddr; 

} l_addr; 
unsigned shortl_ lnno ; 

} ; 

Numbering starts with one at the top of the source file and increments independent of transition between 
functions. The initial line number entry for a function has l _lnno equal to zero, and the symbol table index 
of the function's entry is in l_symndx. Otherwise, l_lnno is non-zero, and l_yaddr is the physical address 
of the code for the referenced line. Thus the overall structure is the following: 

l addr l lnno 

function symtab index 0 
physical address line 
physical address line 

Sun Release 4.0 Last change: 19 February 1988 1363 



COFF(5) FILE FORMATS COFF(5) 

1364 

function symtab index 0 
physical address line 
physical address line 

Symbol Table 
The format of each symbol in the symbol table is described by the syment structure,, shown below. This 
structure is compatible with System V COFF, but has an added _ n _ dbx structure which is needed by dbx 
(1). 

#define SYMNMLEN 8 
#define FILNMLEN 14 
#define DThtNUM 4 

struct syment 
{ 

}; 

union 
{ 

char 
struct 
{ 

long 
long 

} _n_n; 
char 
struct 
{ 

char 
char 
short 
long 

} _n_dbx; 
} _n; 
long 
short 
unsigned short 
char 
char 

#define n name 
#define n zeroes 
#define n offset 
#define n _ nptr 

I* all ways to get a symbol name *I 

_n_name[SYMNMLEN]; I* name of symbol *I 

_n_zeroes; 
_n_offset; 

I* == OL if in string table *I 
I* location in string table *I 

* _ n _ nptr[2]; I* allows overlaying *I 

_n_leading_zerb; null char *I 
_n_dbx_type; I* stab type *I 
_n_dbx_desc; I* value of desc field *I 
_n_stab_ptr; I* table ptr *I 

n_value; 
n_scnum; 
n_type; 
n_sclass; 
n_numaux; 

_n._n_name 

I* value of symbol *I 
I* section number *I 
I* type and derived type *I 
I* storage class *I 
I* number of aux entries *I 

n. n n. n zeroes - - - - -
n. n n. n offset - - - - -

_n._n_nptr[l] 

The storage class member (n _sclass) is set to one of the constants defined in <Storclass.h>. Some symbols 
require more information than a single entry; they are followed by auxiliary entries that are the same size 
as a symbol entry. The format follows. 

Last change: 19 February 1988 Sun Release 4.0 



COFF(5) FILE FORMATS 

union auxent { 
struct { 

}; 

long x_tagndx; 
union { 

struct { 
unsigned short x_lnno; 
unsigned short x_size; 

} x_lnsz; 
long x _fsize; 

} x_misc; 
union { 

struct { 
long x_lnnoptr; 
long x_endndx; 

} x_fcn; 
struct { 

unsigned short x _ dimen[DIMNUM]; 
} x_ary; 

} x_fcnary; 
unsigned short x_tvndx; 

} x_sym; 

struct { 
char x _fname[FILNMLEN]; 

} x_file; 

struct { 
long x _ scnlen; 
unsigned short x _ nreloc; 
unsigned short x _ nlinno; 

} x_scn; 

struct { 
long x _tvfill; 
unsigned short x _ tvlen; 
unsigned short x_tvran[2]; 

} x_tv; 

COFF(5) 

Indexes of symbol table entries begin at zero. The start of the symbol table is !_ symptr (from the file 
header) bytes from the beginning of the file. If the symbol table is stripped,/_ symptr is 0. The string table 
(if one exists) begins atf_symptr + (f_ nsyms * SYMESZ) bytes from the beginning of the file. 

SEE ALSO 
as(l), cc(l V), ld(l), brk(2), ldfcn(3) 

Sun Release 4.0 Last change: 19 February 1988 1365 



CORE(5) FILE FORMATS CORE(5) 

NAME 
core - format of memory image file 

SYNOPSIS 
#include <sys/core.h> 

DESCRIPTION 

1366 

The operating system writes out a memory image of a terminated process when any of various errors occur. 
See sigvec(2) for the list of reasons; the most common are memory violations, illegal instructions, bus 
errors, and user-generated quit signals. The memory image is called core and is written in the process's 
working directory (provided it can be; normal access controls apply). Set-user-ID and set-group-ID pro
grams do not produce core files when they terminate as this would cause a security loophole. 

The maximum size of a core file is limited by setrlimit (see getrlimit(2)). Files which would be larger 
than the limit are not created. 

The core file consists of a core structure, as defined in the <sys/core.h> file, followed by the data pages 
and then the stack pages of the process image. The core structure includes the program's header, the size 
of the text, data, and stack segments, the name of the program and the number of the signal that terminated 
the process. The program's header is described by the exec structure defined in the <sys/exec.h> file, 
except on Sun386i systems. 

struct core { 

}; 

int 
int 
struct 
struct 
int 
int 
int 
int 
char 
struct 
int 

c_magic; I* Corefile magic number *I 
c_Ien; I* Sizeof (struct core) *I 
regs c_regs; I* General purpose registers *I 
exec c_aouthdr; I* A.out header•/ 
c _signo; I• Killing signal, if any •/ 
c_tsize; I• Text size (bytes)•/ 
c_dsize; /• Data size (bytes) *I 
c_ssize; I• Stack size (bytes)•/ 
c_cmdname[CORE_NAMELEN + 1]; /• Command name •I 
fpu c_fpu; /• external FPU state•/ 
c_ucode; I• Exception no. from u_code •I 

The members of the structure are: 

c_magic 

c Jen 

c_regs 

c aouthdr 

c_signo 

c tsize 

c dsize 

c ssize 

c cmdname 

The magic number CORE_MAGIC, as defined in <sys/core.h>. 

The length of the core structure in the core file. This need not be equal to the current 
size of a core structure as defined in <sys/core.h>, as the core file may have been pro
duced on a different release of the SunOS operating system. 

The general purpose registers at the time the core file was produced This structure is 
machine-dependent. 

The executable image header of the program. 

The number of the signal that terminated the process; see sigvec(2). 

The size of the text segment of the process at the time the core file was produced. 

The size of the data segment of the process at the time the core file was produced. This 
gives the amount of data space image in the core file. 

The size of the stack segment of the process at the time the core file was produced. This 
gives the amount of stack space image in the core file. 

The first CORE_NAMELEN characters of the last component of the path name of the 
program. 

Last change: 18 February 1988 Sun Release 4.0 



CORE(5) 

c_fpu 

c ucode 

SEE ALSO 

FILE FORMATS CORE(5) 

The status of the floating point hardware at the time the core file was produced. This 
member is not present on Sun-2s. 

The signal code of the signal that terminated the process, if any. See sigvec(2). 

adb(l), dbx(l), getrlimit(2), sigvec(2) 

Sun Release 4.0 Last change: 18 February 1988 1367 



CPI0(5) FILE FORMATS CPI0(5) 

NAME 
cpio - format of cpio archive 

DESCRIPTION 
The old format header structure, when the -c option of cpio is not used, is: 

struct { 
short 

ushort 

short 

char 
} Hdr; 

h_magic, 
h_dev; 
h_ino, 
h_mode, 
h_uid, 
h_gid; 
h_nlink, 
h_rdev, 
h _ mtime[2], 
h _ namesize, 
h _ filesize[ 2]; 
h_name[h_namesize rounded to a word]; 

The byte order here is that of the machine on which the tape was written. If the tape is being read on a 
machine with a different byte order, you have to use swab(3) after reading the header. You can determine 
what byte order the tape was written with by examining the h _ magic field; if it is equal to 0143561 (octal), 
which is the standard magic number 070707 (octal) with the bytes swapped, the tape was written in a byte 
order opposite to that of the machine on which it is being read. If you are producing a tape to be read on a 
machine with the opposite byte order to that of the machine on which it is being produced, you can use 
swap before writing the header. 

When the -c option is used, the header information is described by the statement below: 

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% lllo%s", 
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode, 
&Hdr .h _ uid, &Hdr .h _gid, &Hdr .h _ nlink, &Hdr .h _rdev, 
&Hdr.h_mtime, &Hdr.h_namesize, &Hdr.h_filesize, &Hdr.h_name); 

Longtime and Longfile are equivalent to Hdr.h_ mtime and Hdr.h _filesize, respectively. The contents of 
each file is recorded in an element of the array of varying length structures, archive, together with other 
items describing the file. Every instance of h _ magic contains the constant 070707 (octal). The items 
h _ dev through h _ mtime have meanings explained in stat(2). The length of the NULL-terminated path name 
h _name, including the NULL byte, is given by h _ namesize. 

The last record of the archive always contains the name TRAILER!!!. Special files, directories, and the 
trailer, are recorded with h _file size equal to zero. Symbolic links are recorded similarly to regular files, 
with the "contents" of the file being the name of the file the symbolic link points to. 

SEE ALSO 
cpio(l), find(l), stat(2), swab(3) 

1368 Last change: 19 October 1987 Sun Release 4.0 



CRONTAB(5) FILE FORMATS CRONTAB(5) 

NAME 
crontab - table of times to run periodic jobs 

SYNOPSIS 
/var/spool/cron/crontabsl* 

DESCRIPTION 
The cron utility is a permanent process, started by /etc/re.local. cron consults the files in the directory 
/var/spool/cron/crontabs to find out what tasks are to be done, and at what time. 

Each line in a crontab file consists of six fields, separated by spaces or tabs, as follows: 

1. Minutes field, which can have values in the range O through 59. 
2. Hours field, which can have values in the range O through 23. 
3. Day of the month, in the range 1 through 31. 
4. Month of the year, in the range 1 through 12. 
5. Day of the week, in the range O through 6. Sunday is day O in this scheme of things. For backward 

compatibility with older systems, Sunday may also be specified as day 7. 
6. (The remainder of the line) is the command to be run. A percent character in this field (unless escaped 

by\) is translated to a NEWLINE character. Only the first line (up to a% or end of line) of the com
mand field is executed by the Shell. The other lines are made available to the command as standard 
input. 

Any of fields 1 through 5 can be a list of values separated by commas. A value can either be a number, or 
a pair of numbers separated by a hyphen, indicating that the job is to be done for all the times in the 
specified range. If a field is an asterisk character(*) it means that the job is done for all possible values of 
the field. 

Note: the specification of days may be made by two fields (day of the month and day of the week). If both 
are specified as a list of elements, both are adhered to. For example, 

0 0 1,15 * 1 

would run a command on the first and fifteenth of each month, as well as on every Monday. To specify 
days by only one field, the other field should be set to * (for example, 

00**1 

would run a command only on Mondays). 

The command is run from your home directory with an argO of sh. Users who desire to have their .profile 
executed must explicitly do so in the command. cron supplies a default environment for every shell, 
defining HOME, LOGNAME, USER, SHELL(=/bin/sh), and PATH(=:/usr/ucb:/bin:/usr/bin). 

NOTE: Users should remember to redirect the standard output and standard error of their commands! If 
this is not done, any generated output or errors will be mailed to the user. 

EXAMPLE 

0 0 * * * calendar -
15 0 * * * /usr/etdsa -s >ldev/null 
15 4 * * * find /etc/preserve -mtime + 7 -a -exec rm -f {} ; 
40 4 * * * find / -name '#*' -a time +3 -exec rm -f {} ; 
0 0 1-5 * * /usr/local/weekdays 
0 0 0,6 * * /usr/local/weekends 

The calendar command runs at minute O of hour O (midnight) of every day. The /usr/etc/sa command 
runs at 15 minutes after midnight every day. The two find commands run at 15 minutes past four and at 40 
minutes past four, respectively, every day of the year. The /usr/local/weekdays command is run at mid
night on weekdays. Finally, the /usr/local/weekends command is run at midnight on weekends. 

Sun Release 4.0 Last change: 19 October 1987 1369 



CRONTAB(5) FILE FORMATS 

FILES 
/var/spool/cron/crontabs/• 

tables of times to run periodic jobs 
I etc/re.local 
.profile 

SEE ALSO 
cron(8), rc(8) 

1370 Last change: 19 October 1987 

CRONTAB(5) 

Sun Release 4.0 



D1R(5) FILE FORMATS D1R(5) 

NAME 
dir - format of directories 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/dir.h> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, save that no user may write into a directory and direc
tories must be read using the getdirentries(2) system call or the directory(3) library routines. The fact 
that a file is a directory is indicated by a bit in the flag word of its inode entry; see fs(5). 

A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLKSIZ is chosen such that 
it can be transferred to disk in a single atomic operation (512 bytes on most machines): 

#if def KERNEL 
#define DIRBLKSIZ DEV_ BSIZE 
#else 
#define DIRBLKSIZ 512 
#endif 

#define MAXNAMLEN 255 

Each DIRBLKSIZ byte block contains some number of directory entry structures, which are of variable 
length. Each directory entry has a struct direct at the front of it, containing its inode number, the length of 
the entry, and the length of the name contained in the entry. These are followed by the name padded to a 
4-byte boundary with NULL bytes. All names are guaranteed NULL-terminated. The maximum length of a 
name in a directory is MAXNAMLEN. 

The macro DIRSIZ(dp) gives the amount of space required to represent a directory entry. Free space in a 
directory is represented by entries that have: 

dp->d_reclen > DIRSIZ(dp) 

All DIRBLKSIZ bytes in a directory block are claimed by the directory entries. This usually results in the 
last entry in a directory having a large dp->d_reclen. When entries are deleted from a directory, the space 
is returned to the previous entry in the same directory block by increasing its dp->d _reclen. If the first 
entry of a directory block is free, then its dp->d _ino is set to 0. Entries other than the first in a directory do 
not normally have dp->d_ino set to 0. 

The DIRSIZ macro gives the minimum record length which will hold the directory entry. This requires the 
amount of space instruct direct without the d_name field, plus enough space for the name with a terminat
ing NULL byte (dp->d_namlen+l), rounded up to a 4-byte boundary. 

#undef DIRSIZ 
#define DIRSIZ(dp) ((sizeof (struct direct)· (MAXNAMLEN+l)) + (((dp)->d_namlen+l + 3) &- 3)) 
struct direct { 

}; 

u_long d_ino; 
short d _reclen; 
short d_namlen; 
char d_name[MAXNAMLEN + 1]; 
I* typically shorter *I 

By convention, the first two entries in each directory are for '.' and' •• '. The first is an entry for the direc
tory itself. The second is for the parent directory. The meaning of ' •• ' is modified for the root directory of 
the master file system("/"), for which ' .. ' has the same meaning as '.'. 

Sun Release 4.0 Last change: 19 October 1987 1371 



DIR(5) FILE FORMATS DIR(S) 

SEE ALSO 
getdirentries(2), directory(3), fs(S) 

1372 Last change: 19 October 1987 Sun Release 4.0 



DUMP(5) FILE FORMATS DUMP(5) 

NAME 
dump, dumpdates - incremental dump format 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/inode.h> 
#include <dumprestor .h> 

DESCRIPTION 
Tapes used by dump and restore(8) contain: 

a header record 
two groups of bit map records 
a group of records describing directories 
a group of records describing files 

The format of the header record and of the first record of each description as given in the include file 
<dumprestor.h> is: 

#define NTREC 10 
#define MLEN 
#define MSIZ 
#define TS TAPE 
#define TS INODE 
#define TS_ BITS 3 
#define TS ADDR 
#define TS END 5 
#define TS CLRI 6 

16 
4096 
1 
2 

4 

#define MAGIC (int) 60011 
#define CHECKSUM (int) 84446 
struct spcl { 

int 
time t 
time t 
int 
daddr t 
ino t 
int 
int 
struct 
int 
char 

} spcl; 
struct idates { 

char 
char 
time t 

}; 
#define DUMPOUTFMT 

c_type; 
c_date; 
c_ddate; 
c_volume; 
c_tapea; 
c_inumber; 
c_magic; 
c _ checksum; 
dinode c_dinode; 
c_count; 
c_addr[BSIZE]; 

id_name[16]; 
id_incno; 
id_ddate; 

"%-16s %c %s" I* for printf •/ 
I* name, incno, ctime(date) *I 

#define DUMPINFMT "%16s %c %["\n]\n" I* inverse for scanf *I 

NTREC is the default number of 1024 byte records in a physical tape block, changeable by the b option to 
dump. MLEN is the number of bits in a bit map word. MSIZ is the number of bit map words. 

The TS_ entries are used in the c _ type field to indicate what sort of header this is. The types and their 
meanings are as follows: 

Sun Release 4.0 Last change: 19 October 1987 1373 



DUMP(5) FILE FORMATS DUMP(5) 

FILES 

TS TAPE 
TS INODE 

TS BITS 
TS ADDR 
TS END 
TS CLRI 

MAGIC 
CHECKSUM 

Tape volume label 
A file or directory follows. The c _ dinode field is a copy of the disk inode and 
contains bits telling what sort of file this is. 
A bit map follows. This bit map has a one bit for each inode that was dumped. 
A subrecord of a file description. See c _ addr below. 
End of tape record. 
A bit map follows. This bit map contains a zero bit for all inodes that were empty 
on the file system when dumped. 
All header records have this number in c _magic. 
Header records checksum to this value. 

The fields of the header structure are as follows: 

c_type 
c date 
c ddate 
c volume 
c_tapea 
c inumber 
c_magic 
c checksum 
c dinode 
c count 
c addr 

The type of the header. 
The date the dump was taken. 
The date the file system was dumped from. 
The current volume number of the dump. 
The current number of this (1024-byte) record. 
The number of the inode being dumped if this is of type TS_ IN ODE. 
This contains the value MAGIC above, truncated as needed. 
This contains whatever value is needed to make the record sum to CHECKSUM. 
This is a copy of the inode as it appears on the file system; see fs(5). 
The count of characters in c addr. 
An array of characters describing the blocks of the dumped file. A character is 
zero if the block associated with that character was not present on the file system, 
otherwise the character is non-zero. If the block was not present on the file sys
tem, no block was dumped; the block will be restored as a hole in the file. If there 
is not sufficient space in this record to describe all of the blocks in a file, 
TS_ADDR records will be scattered through the file, each one picking up where 
the last left off. 

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends with a 
TS_ END record and then the tapemark. 

The structure idates describes an entry in the file /etc/dumpdates where dump history is kept. The fields of 
the structure are: 

id name 
id incno 
id ddate 

/etc/dumpdates 
/dev/id nam 

The dumped filesystem is /dev/id _ nam. 
The level number of the dump tape; see dump(8). 
The date of the incremental dump in system format see types(5). 

SEE ALSO 
fs(5), types(5), dump(8), restore(8) 

BUGS 
Should more explicitly describe format of dumpdates file. 

1374 Last change: 19 October 1987 Sun Release 4.0 



ENVIRON ( 5V) FILE FORMATS ENVIRON ( 5V) 

NAME 
environ - user environment 

SYNOPSIS 
extern char *•environ; 

DESCRIPTION 
An array of strings called the 'environment' is made available by execve(2) when a process begins. By 
convention these strings have the form 'name=value '. The following names are used by various com
mands: 

PATH 

HOME 

TERM 

SHELL 

TERMCAP 

EXINIT 

USER 
LOGNAME 

TZ 

The sequence of directory prefixes that sh(l), time(lV), nice(l), etc., apply in 
searching for a file known by an incomplete path name. The prefixes are 
separated by':'. The login(l) process sets PATH=:/usr/ucb:/bin:/usr/bin. 

The name of the user's login directory, set by login(l) from the password file 
/etc/passwd (see passwd(S)). 

The type of terminal on which the user is logged in. This information is used by 
commands, such as nroff(l) or plot(lG), which may exploit special terminal 
capabilities. See /etc/termcap (termcap(5)) for a list of terminal types. 

The path name of the user's login shell. 

The string describing the terminal in TERM, or the name of the termcap file, see 
termcap(3X), termcap(5). 

A startup list of commands read by ex(l), edit, and vi(l). 

The user's login name. 

The name of the time zone that the user is located in. If TZ is not present in the 
environment, the system's default time zone, normally the time zone that the com-
puter is located in, is used. 

Further names may be placed in the environment by the export command and 'name=value' arguments in 
sh( 1 ), or by the setenv command if you use csb( 1 ). Arguments may also be placed in the environment at 
the point of an execve(2). It is unwise to conflict with certain sh(l) variables that are frequently exported 
by .profile files: MAIL, PSl, PS2, IFS. 

SYSTEM V DESCRIPTION 

FILES 

The description of the variable TERMCAP does not apply to programs built in the System V environment. 

/ etc/passwd 
etc/termcap 

SEE ALSO 
csh(l), ex(l), login(l), nice(l), nroff(l), plot(lG), sh(l), time(l V), vi(l), execve(2), getenv(3), sys
tem(3), termcap(3X), passwd(5), termcap(5) 

Sun Release 4.0 Last change: 19 October 1987 1375 



E1HERS(5) FILE FORMATS E1HERS(5) 

NAME 
ethers - Ethernet address to hostname database or YP domain 

DESCRIPTION 

FILES 

The ethers file contains information regarding the known ( 48 bit) Ethernet addresses of hosts on the Inter
net. For each host on an Ethernet, a single line should be present with the following information: 

Ethernet address 
official host name 

Items are separated by any number of blanks and/or TAB characters. A '#' indicates the beginning of a 
comment extending to the end of line. 

The standard form for Ethernet addresses is ''x:x:x:x:x:x'' where xis a hexadecimal number between O and 
ff, representing one byte. The address bytes are always in network order. Host names may contain any 
printable character other than a SPACE, TAB, NEWLINE, or comment character. It is intended that host 
names in the ethers file correspond to the host names in the hosts(5) file. 

The ether _line() routine from the Ethernet address manipulation library, ethers(3N) may be used to scan 
lines of the ethers file. 

/etc/ethers 

SEE ALSO 
ethers(3N), hosts(5) 

1376 Last change: 19 October 1987 Sun Release 4.0 



EXPORTS(5) FILE FORMATS EXPORTS(5) 

NAME 
exports, xtab - directories to export to NFS clients 

SYNOPSIS 
/etc/exports 

/etc/xtab 

DESCRIPTION 
The /etc/exports file contains entries for directories that can be exported to NFS clients. This file is read 
automatically by the exportfs(8) command. If you change this file, you must run exportfs(8) for the 
changes to affect the daemon's operation. 

Only when this file is present at boot time does the re.local script execute exportfs(8) and start the NFS 

file-system daemon, nfsd(8). 

The /etc/xtab file contains entries for directories that are currently exported. This file should only be 
accessed by programs using getexportent (see exportent(3)). (Use the -u option of exportfs to remove 
entries from this file). 

An entry for a directory consists of a line of the following form: 

directory -option[, option ] ... 

directory is the pathname of a directory ( or file). 

option is one of 

ro Export the directory read-only. If not specified, the directory is exported 
read-write. 

rw=hostnames[:hostname] ••• 
Export the directory read-mostly. Read-mostly means read-only to most 
machines, but read-write to those specified. If not specified, the directory 
is exported read-write to all. 

anon=uid 
If a request comes from an unknown user, use uid as the effective user 
ID. Note: root users (uid 0) are always considered "unknown" by the NFS 

server, unless they are included in the "root" option below. The default 
value for this option is -2. Setting "anon" to -1 disables anonymous 
access. Note: by default secure NFS will accept insecure requests as 
anonymous, and those wishing for extra security can disable this feature 
by setting "anon" to -1. 

root=hostnames[:hostname] ••• 
Give root access only to the root users from a specified hostname. The 
default is for no hosts to be granted root access. 

access=client[:client] ..• 
Give mount access to each client listed. A client can either be a host
name, or a netgroup (see netgroup(5)). Each client in the list is first 
checked for in the netgroup database, and then the hosts database. The 
default value allows any machine to mount the given directory. 

secure Require clients to use a more secure protocol when accessing the direc
tory. 

A'#' (pound-sign) anywhere in the file indicates a comment that extends to the end of the line. 

Sun Release 4.0 Last change: 19 October 1987 1377 



EXPORTS(S) 

EXAMPLE 

FILES 

/usr 
/usr/local 
/usr2 
/usr/sun 
/usr/new 
/usr/bin 
/usr/stuff 

/etc/exports 
/etc/xtab 
/etc/hosts 
/etc/netgroup 
re.local 

SEE ALSO 

FILE FORMATS 

-access=clients 
# export to the world 
-access=hermes:zip:tutorial 
-root=hermes:zip 
-anon=O 
-ro 
-access=zip,anon=-3,ro 

# export to my clients 

# export to only these machines 
# give root access only to these 
# give all machines root access 
# export read-only to everyone 
# several options on one line 

exportent(3), hosts(5), netgroup(5), exportfs(8), nfsd(8) 

WARNINGS 

EXPORTS(S) 

You cannot export either a parent directory or a subdirectory of an exported directory that is within the 
same filesystem. It would be illegal, for instance, to export both /usr and /usr/local if both directories 
resided on the same disk partition. 

1378 Last change: 19 October 1987 Sun Release 4.0 



FCNTL(5) FILE FORMATS FCNTL(5) 

NAME 
fcntl - file control options 

SYNOPSIS 
#include <fcntl.h> 

DESCRIPTION 
The fcntl(2V) function provides for control over open files. This include file describes requests and argu
ments to fcntl and open(2V) as shown below: 

I• @ (#)fcntl.h 1.2 83/12/08 SMI; from UCB 4.2 83/09/25•/ 
I• 
* Flag values accessible to open(2V) and fcntl(2) 
* (The first three can only be set by open) 
•I 
#define 
#define 
#define 

0 RDONLY 
O_WRONLY 
0 RDWR 

0 
1 
2 

#define O NDELAY FNDELAY 
#define O _ APPEND FAPPEND 
#ifndef F _ DUPFD 
I• fcntl(2) requests •/ 
#define F_DUPFD 0 
#define F GETFD 1 
#define F SETFD 2 
#define F GETFL 3 
#define F SETFL 4 
#define F GETOWN 5 
#define F_SETOWN 6 
/• flags for F _ GETFL, F _ SETFL- copied from <sys/file.h> •I 
#define FNDELAY 
#define FAPPEND 
#define FASYNC 
#endif 

SEE ALSO 
fcntl(2V), open(2V) 

Sun Release 4.0 Last change: 19 October 1987 

/• Non-blocking 1/0 •/ 
/• append (writes guaranteed at the end) •I 

I• Duplicate fildes •I 
I• Get fildes flags •/ 
I• Set fildes flags •/ 
I• Get file flags •/ 
I• Set file flags •/ 
I• Get owner •I 
I• Set owner•/ 

00004/• non-blocking reads •/ 
00010/• append on each write •/ 
00100/• signal pgrp when data ready •/ 

1379 



FS(5) FILE FORMATS FS(5) 

NAME 
fs, inode - format of a 4.2 (ufs) file system volume 

SYNOPSIS 
#include <sys/types.h> 
#include <ufs/fs.h> 
#include <ufs/inode.h> 

DESCRIPTION 

1380 

Standard 4.2 (ufs) file system storage volumes have a common format for certain vital information. Every 
such volume is divided into a certain number of blocks. The block size is a parameter of the file system. 
Sectors Oto 15 contain primary and secondary bootstrapping programs. 

The actual file system begins at sector 16 with the super-block. The layout of the super block is defined by 
the include file <ufs/fs.h> 

Each disk drive contains some number of file systems. A file system consists of a number of cylinder 
groups. Each cylinder group contains inodes and data. 

A file system is described by its super-block, which in tum describes the cylinder groups. The super-block 
is critical data and is replicated in each cylinder group to protect against catastrophic loss. This is done at 
file system creation time and the critical super-block data does not change, so the copies need not be refer
enced further unless disaster strikes. 

Addresses stored in inodes are capable of addressing fragments of "blocks." File system blocks of at most 
size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is addressable; these pieces 
may be DEV_ BSIZE, or some multiple of a DEV_ BSIZE unit 

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last data block 
of a small file is allocated as only as many fragments of a large block as are necessary. The file system for
mat retains only a single pointer to such a fragment, which is a piece of a single large block that has been 
divided. The size of such a fragment is determinable from information in the inode, using the 'blksize(fs, 
ip, Ibo)' macro. 

The file system records space availability at the fragment level; to determine block availability, aligned 
fragments are examined. 

The root inode is the root of the file system. Inode O cannot be used for normal purposes and historically 
bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer used for this purpose, how
ever numerous dump tapes make this assumption, so we are stuck with it). The lost +found directory is 
given the next available inode when it is initially created by mkfs(8). 

fs _ minfree gives the minimum acceptable percentage of file system blocks which may be free. If the freel
ist drops below this level only the super-user may continue to allocate blocks. This may be set to O if no 
reserve of free blocks is deemed necessary, however severe performance degradations will be observed if 
the file system is run at greater than 90% full; thus the default value offs_ minfree is 10%. 

Empirically the best trade-off between block fragmentation and overall disk utilization at a loading of 90% 
comes with a fragmentation of 4, thus the default fragment size is a fourth of the block size. 

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different rotational 
positions, so that sequential blocks can be laid out with minimum rotational latency. NRPOS is the number 
of rotational positions which are distinguished. With NRPOS 8 the resolution of the summary information 
is 2ms for a typical 3600 rpm drive. 

fs _rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the same 
cylinder. It is used in determining the rotationally optimal layout for disk blocks within a file; the default 
value for fs _rotdelay is 2ms. 

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI bytes of 
disk space. The inode allocation strategy is extremely conservative. 

Last change: 19 October 1987 Sun Release 4.0 



FS(5) FILE FORMATS FS(5) 

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the structure simpler 
by having the only a single variable size element (the free bit map). 

Note: MAXIPG must be a multiple ofINOPB(fs). 

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create files of 
size 2"32 with only two levels of indirection. MINBSIZE must be big enough to hold a cylinder group 
block, thus changes to (struct cg) must keep its size within INBSIZE. MAXCPG is limited only to dimen
sion an array in (struct cg); it can be made larger as long as that structure's size remains within the bounds 
dictated by MINBSIZE. Note: super blocks are never more than size SBSIZE. 

The path name on which the file system is mounted is maintained in fs_fsmnt. MAXMNTLEN defines the 
amount of space allocated in the super block for this name. The limit on the amount of summary informa
tion per file system is defined by MAXCSBUFS. It is currently parameterized for a maximum of two mil
lion cylinders. 

Per cylinder group information is summarized in blocks allocated from the first cylinder group's data 
blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition to the super block. 

Note: sizeof (struct csum) must be a power of two in order for the fs_cs macro to work. 

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is limited by the 
fact that the super block is of size SBSIZE. The size of these tables is inversely proportional to the block 
size of the file system. The size of the tables is increased when sector sizes are not powers of two, as this 
increases the number of cylinders included before the rotational pattern repeats (fs_cpc). The size of the 
rotational layout tables is derived from the number of bytes remaining in (struct fs). 

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact that cylinder 
groups are at most one block. The size of the free block table is derived from the size of blocks and the 
number of remaining bytes in the cylinder group structure (struct cg). 

inode: The inode is the focus of all file activity in the file system. There is a unique inode allocated for 
each active file, each current directory, each mounted-on file, text file, and the root An inode is ''named'' 
by its device/i-number pair. For further information, see the include file <ufs/inode.h>. 

SEE ALSO 
mkfs(8) 

Sun Release 4.0 Last change: 19 October 1987 1381 



FSPEC(5) FILE FORMATS FSPEC(5) 

NAME 
fspec - format specification in text files 

DESCRIPTION 

1382 

It is sometimes convenient to maintain text files on the operating system with non-standard tab stop set
tings, (that is, tab stops that are not set at every eighth column). Such files must generally be converted to a 
standard format, frequently by replacing all TAB characters with the appropriate number of SPACE charac
ters, before they can be processed by operating system commands. A format specification occurring in the 
first line of a text file specifies how TAB characters are to be expanded in the remainder of the file. 

A format specification consists of a sequence of parameters separated by blanks and surrounded by the 
brackets <: and :>. Each parameter consists of a keyletter, possibly followed immediately by a value. The 
following parameters are recognized: 

t tabs The t parameter specifies the tab stop settings for the file. The value of tabs must be one 
of the following: 

1. A list of column numbers separated by commas, indicating tab stops set at the 
specified columns; 

2. A '-' followed immediately by an integer n, indicating tab stops set at intervals 
of n columns, that is, at l+n, 1+2*n, and so on; 

3. A'-' followed by the name of a "canned" tab stop specification. 

Up to 40 numbers are allowed in a comma-separated list of tab stop settings. If any number 
(except the first one) is preceded by a plus sign, it is taken as an increment to be added to the pre
vious value. Thus, the formats tl, 10, 20, 30 and tl, 10, + 10, + 10 are considered identical. 

Standard tab stops are specified by t-8, or equivalently, tl, 9, 17, 25, etc. This is the tab stop set
ting that most operating system utilities assume, and is the most likely setting to be found at a ter
minal. The specification t-0 specifies no tab stops at all. 

The canned tab stops specifications that are recognized are as follows: 

a 1, 10, 16,36,72 
Assembler, IBM S/370, first format 

a2 1, 10, 16, 40, 72 
Assembler, IBM S/370, second format 

C 1,8, 12, 16,20,55 
COBOL, normal format 

c2 1,6, 10, 14,49 
COBOL compact format (columns 1-6 omitted). Using this code, the first typed 
character corresponds to card column 7, one space gets you to column 8, and a 
TAB reaches column 12. Files using this tab stop setup should include a format 
specification as follows: 

<:t-c2 m6 s66 d:> 

c3 1,6,10, 14,18,22,26,30,34,38,42,46,50,54,58,62,67 
COBOL compact format (columns 1-6 omitted), with more tab stops than c2. 
This is the recommended format for COBOL. The appropriate format 
specification is: 

<:t-c3 m6 s66 d:> 

f 1,7, 11, 15, 19,23 
FORTRAN 

p 1,5,9, 13, 17,21,25,29,33,37,41,45,49,53,57,61 
PUI 

s 1, 10, 55 

Last change: 7 January 1988 Sun Release 4.0 



FSPEC(5) 

SEE ALSO 

FILE FORMATS FSPEC(5) 

SNOBOL 

u 1, 12,20,44 
UNIVAC 1100 Assembler 

s size The s parameter specifies a maximum line size. The value of size must be an 
integer. Size checking is performed after TAB characters have been expanded, 
but before the margin is prepended. 

mmargin 
Them parameter specifies a number of SPACE characters to be prepended to 
each line. The value of margin must be an integer. 

d The d parameter takes no value. Its presence indicates that the line containing 
the format specification is to be deleted from the converted file. 

e The e parameter takes no value. Its presence indicates that the current format is 
to prevail only until another format specification is encountered in the file. 

Default values, which are assumed for parameters not supplied, are t-8 and mO. If the s parame
ter is not specified, no size checking is performed. If the first line of a file does not contain a for
mat specification, the above defaults are assumed for the entire file. The following is an example 
of a line containing a format specification: 

* <:tS,10,15 s72:> * 
If a format specification can be disguised as a comment, it is not necessary to code the d parame
ter. 

ed(l), tabs(l) 

Sun Release 4.0 Last change: 7 January 1988 1383 



FSTAB(5) FILE FORMATS FSTAB(5) 

NAME 
fstab, mtab - static filesystem mounting table, mounted filesystems table 

SYNOPSIS 
/etc/fstab 

/etc/mtab 

DESCRIPTION 

1384 

The /etdfstab file contains entries for filesystems and disk partitions to mount using the mount(8) com
mand, which is normally invoked by the re.boot script at boot time. This file is used by various utilities 
that mount, unmount, check the consistency of, dump, and restore file systems. It is also used by the sys
tem itself when locating the swap partition. 

The /etc/mtab file contains entries for filesystems currently mounted, and is read by programs using the 
routines described in getmntent(3). umount (see mount(8)) removes entries from this file. 

Each entry consists of a line of the form: 

filesystem directory type options freq pass 

filesystem is the pathname of a block-special device, or the name of a remote filesystem in 
host:pathname form. 

directory is the pathname of the directory on which to mount the filesystem. 

type 

options 

is the filesystem type, which can be one of: 
4.2 to mount a block-special device 
nfs to mount an exported NFS filesystem 
swap to indicate a swap partition 
ignore to have the mount command ignore the current entry (good for noting disk 

partitions that are not being used) 

contains a comma-separated list (no spaces) of mounting options, some of which can be 
applied to all types of filesystems, and others which only apply to specific types. 

4.2 options: 

quota I noquota 
disk quotas are enforced or not enforced 

nfs options: 
bglfg 

retry=n 
rsize=n 
wsize=n 
timeo=n 
retrans=n 
port=n 
soft I hard 

intr 
secure 
acregmin=n 
acregmax=n 

acdirmin=n 
acdirmax=n 

actimeo=n 

If the first attempt fails, retry in the background, or, in the fore
ground 
The number of times to retry the mount operation. 
Set the read buffer size ton bytes. 
Set the write buffer size to n bytes. 
Set the NFS timeout to n tenths of a second. 
The number of NFS retransmissions. 
The server IP port number. 
Return an error if the server does not respond, or continue the retry 
request until the server responds. 
Allow keyboard interrupts on hard mounts. 
Use a more secure protocol for NFS transactions. 
Hold cached attributes for at least n seconds after file modification. 
Hold cached attributes for no more than n seconds after file 
modification. 
Hold cached attributes for at least n seconds after directory update. 
Hold cached attributes for no more than n seconds after directory 
update. 
Set min and max times for regular files and directories ton seconds. 

Last change: 25 February 1988 Sun Release 4.0 



FSTAB(5) FILE FORMATS FSTAB(5) 

Common options: 

ro I rw mount either read-only or read-write 
suid I nosuid 

setuid execution allowed or disallowed 
grpid Create files with BSD semantics for propagation of the group ID. With this 

option, files inherit the group ID of the directory in which they are created, 
regardless of the directory's setgid bit. 

noauto Do not mount this file system automatically (using mount -a). 

freq is the interval (in days) between dumps. 

pass is the fsck(8) pass in which to check the partition. Filesystems with the same pass number are 
checked simultaneously. Filesystems with pass equal to Oare not checked. 

A pound-sign (#) as the first non-white character indicates a comment line which is ignored by routines that 
read this file. The order of records in /etc/fstab is important because fsck, mount, and umount process the 
file sequentially; an entry for a file system must appear after the entry for any file system it is to be 
mounted on top of. 

EXAMPLES 

FILES 

In this example, the /home/user directory is hard mounted read-write over the NFS, along with additional 
swap space in the form of a mounted swap file (see System and Network Administration for details on 
adding swap space): 

/dev/xyOa / 4.2 rw,noquota 11 
/dev/xyOb /usr 4.2 rw,noquota 11 
example:/home/user /home/user nfs rw,hard,fg O 0 
/export/swap/myswap swap swap rw O 0 

/etc/fstab 
/etc/mtab 

SEE ALSO 
getmntent(3), fsck(8), mount(8), quotacheck(8), quotaon(8), 

Sun Release 4.0 Last change: 25 February 1988 1385 



FfPUSERS(5) FILE FORMATS FfPUSERS(5) 

NAME 
ftpusers - list of users prohibited by ftp 

SYNOPSIS 
/usr/etc/ftpusers 

DESCRIPTION 
ftpusers contains a list of users who cannot access this system using the ftp(lC) program. ftpusers con
tains one user name per line. 

SEE ALSO 
ftp( 1 C), ftpd(8C) 

1386 Last change: 19 October 1987 Sun Release 4.0 



GETIYTAB(5) FILE FORMATS GETIYTAB(5) 

NAME 
gettytab - terminal configuration data base 

SYNOPSIS 
/etc/gettytab 

DESCRIPTION 
gettytab is a simplified version of the termcap(5) data base used to describe terminal lines. The initial ter
minal login process getty(8) accesses the gettytab file each time it starts, allowing simpler reconfiguration 
of terminal characteristics. Each entry in the data base is used to describe one class of terminals. 

There is a default terminal class, default, that is used to set global defaults for all other classes. (That is, 
the default entry is read, then the entry for the class required is used to override particular settings.) 

CAPABILITIES 
Refer to termcap(5) for a description of the file layout. The Default column below lists defaults obtained 
if there is no entry in the table obtained, nor one in the special default table. 

Name Type Default Description 

ab bool false read a \r first and guess the baud rate from it 
ap bool false terminal uses 7 bits, any parity 
bd num 0 backspace delay 
bk str 0377 alternate end of line character (input break) 
ch bool false use crt backspace mode 
cd num 0 carriage-return delay 
ce bool false use crt erase algorithm 
ck bool false use crt kill algorithm 
cl str NULL screen clear sequence 
co bool false console - add after login prompt 
dx bool false setDECCTLQ 
ds str "Y delayed suspend character 
ec bool false leave echo OFF 
ep bool false terminal uses 7 bits, even parity 
er str "? erase character 
et str "D end of text (EOF) character 
ev str NULL initial environment 
fO num unused tty mode flags to write messages 
n num unused tty mode flags to read login name 
f2 num unused tty mode flags to leave terminal as 
fd num 0 form-feed (vertical motion) delay 
fl str "O output flush character 

he bool false do NOT hangup line on last close 
he str NULL hostname editing string 
hn str hostname hostname 
ht bool false terminal has real tabs 
ig bool false ignore garbage characters in login name 
im str NULL initial (banner) message 
in str "C interrupt character 
is num unused input speed 
kl str "U kill character 
le bool false terminal has lower case 
Im str login: login prompt 
In str "V "literal next" character 
lo str /usr/bin/login program to exec when name obtained 
nd num 0 newline (line-feed) delay 
nl bool false terminal has (or might have) a newline character 

Sun Release 4.0 Last change: 19 October 1987 1387 



GETIYTAB(5) FILE FORMATS GETIYTAB ( 5) 

1388 

DX str default next table (for auto speed selection) 
op bool false terminal uses 7 bits, odd parity 
OS num unused output speed 
p8 bool false terminal uses 8 bits, no parity 
pc str pad character 
pe bool false use printer (hard copy) erase algorithm 
pf num 0 delay between first prompt and following flush (seconds) 
ps bool false line connected to a MICOM port selector 
qu str quit character 
rp str "R line retype character 
rw bool false do NOT use RAW for input, use CBREAK 

SP, num 0 line speed (input and output) 
SU· str "Z suspend character 
tc str none table continuation 
td num 0 tab delay 
to num 0 timeout (seconds) 
tt str NULL terminal type (for enviroment) 
ub bool false do unbuffered output ( of prompts etc) 
UC bool false terminal is known upper case only 
we str "W word erase character 
XC bool false do NOT echo control chars as "X 
xf str "S XOFF (stop output) character 
xn str "Q XON (start output) character 

If no line speed is specified, speed will not be altered from that which prevails when getty is entered. 
Specifying an input or output speed overrides line speed for stated direction only. If ab is specified, getty 
will initially read a character from the tty, assumed to be a carriage return, and will attempt to figure out the 
baud rate based on what the character appears as. It will then look for a table entry for that baud rate; if the 
line appears to be a 300 baud line, it will look for an entry 300-baud, if it appears to be a 1200 baud line, it 
will look for an entry 1200-baud, etc .. 

Terminal modes to be used for the output of the message, for input of the login name, and to leave the ter
minal set as upon completion, are derived from the Boolean flags specified. If the derivation should prove 
inadequate, any (or all) of these three may be overridden with one of the ro, fl, or f2 numeric 
specifications, which can be used to specify (usually in octal, with a leading 'O') the exact values of the 
flags. Local (new tty) flags are set in the top 16 bits of this (32 bit) value. 

Should getty receive a NULL character (presumed to indicate a line break) it will restart using the table 
indicated by the DX entry. If there is none, it will re-use its original table. 

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be used. 
Should greater certainty be desired, delays with values 0, l, 2, and 3 are interpreted as choosing that partic
ular delay algorithm from the driver. 

The cl screen clear string may be preceded by a (decimal) number of milliseconds of delay required (as 
with termcap(5)). This delay is simulated by repeated use of the pad character pc. 

The initial message, and login message, im and Im may include the character sequence %h or %t to obtain 
the hostname or tty name respectively. (%% obtains a single '%' character.) The hostname is normally 
obtained from the system, but may be set by the hn table entry. In either case it may be edited with he. 
The he string is a sequence of characters, each character that is neither'@' nor'#' is copied into the final 
hostname. A'@' in the he string, copies one character from the real hostname to the final hostname. A'#' 
in the he string, skips the next character of the real hostname. Surplus '@' and '#' characters are ignored. 

When getty execs the login process, given in the lo string (usually /usr/bin/Iogin), it will have set the 
enviroment to include the terminal type, as indicated by the tt string (if it exists). The ev string, can be 
used to enter additional data into the environment. It is a list of comma separated strings, each of which 
will presumably be of the form name=value. 

Last change: 19 October 1987 Sun Release 4.0 



GETIYTAB(5) FILE FORMATS GETIYTAB ( 5) 

FILES 

If a non-zero timeout is specified, with to, then getty will exit within the indicated number of seconds, 
either having received a login name and passed control to login, or having received an alarm signal, and 
exited. This may be useful to hangup dial in lines. 

Output from getty is even parity unless op or p8 is specified. op may be specified with ap to allow any 
parity on input, but generate odd parity output. Note: this only applies while getty is being run, terminal 
driver limitations prevent a more complete implementation. getty does not check parity of input characters 
in RAW mode. 

/etc/gettytab 

SEE ALSO 
termcap(5), getty(8) 

Sun Release 4.0 Last change: 19 October 1987 1389 



GROUP(5) FILE FORMATS GROUP(5) 

NAME 
group - group file 

SYNOPSIS 
/etc/group 

DESCRIPTION 
The group file contains a one-line entry for each group recognized by the system, of the form: 

groupname:password:gid:user-list 

where: 

groupname is the name of the group. 

gid is the group's numerical ID within the system; it must be unique. 

user-list is a comma-separated list of users allowed in the group. 

If the password field is empty, no password is demanded. The group file is an ASCII file. Because of the 
encrypted passwords, the group file can and does have general read permission, and can be used as a map
ping of numerical group IDs to user names. 

A group entry beginning with a '+' (plus sign), means to incorporate an entry or entries from the Yellow 
Pages. A '+' on a line by itself means to insert the entire contents of the Yellow Pages group file at that 
point in the file. An entry of the form: '+groupname' means to insert the entry (if any) for groupname. If 
a '+' entry has a non-empty password or user-list field, the contents of that field override the corresponding 
field from the Yellow Pages. The gid field cannot be overridden in this way. 

An entry of the form: -groupname indicates that the group is disallowed. All subsequent entries for the 
indicated groupname, whether originating from the Yellow Pages, or the local group file, are ignored. 

Malformed entries cause routines that read this file to halt, in which case group assignments specified 
further along are never made. To prevent this from happening, use grpck(8) to check the /etc/group data
base from time to time. 

The Sun386i system uses the following group IDs as program privileges: 

operator - 5 ~ Privilege to do backup as root. 

accounts - 11 Privilege to update user accounts. 

networks -12 Privilege to change network configuration. 

devices - 13 Privilege to modify printer, terminal, or modem configurations. 

On all Sun systems, SunOS uses group ID Oas privilege to run su(l). 

EXAMPLE 

1390 

Here is a sample group file when the group.adjunct file does not exist 

primary:q.mJzTnuSicF.:10:fred,mary 
+myproject:::bill,steve 
+: 

Here is a sample group file when the group.adjunct file does exist: 

primary:#$primary: 10:fred,mary 
+ myproject::: bill,steve 
+: 

If these entries appear at the end of a group file, then the group prima.ry will have members fred and mary, 
and a group ID of 10. The group myproject will have members bill and steve, and the password and group 
ID of the Yellow Pages entry for the group myproject. All groups listed in the Yellow Pages are pulled in 
and placed after the entry for myproject. 

Last change: 14 December 1987 Sun Release 4.0 



GROUP(5) FILE FORMATS GROUP(5) 

FILES 
/etc/group 

SEE ALSO 
passwd(l), su(l), getgroups(2), initgroups(3), crypt(3), group.adjunct(S), passwd(S), grpck(8) 

BUGS 
The passwd(l) command will not change group passwords. 

Sun Release 4.0 Last change: 14 December 1987 1391 



GROUP.ADJUNCT ( 5) FILE FORMATS GROUP.ADJUNCT ( 5) 

NAME 
group.adjunct - group security data file 

SYNOPSIS 
I etc/security/ group.adjunct 

DESCRIPTION 

FILES 

The group.adjunct file contains the following information for each group: 

groupname 

password 

This is the group's name in the system; it must be unique. 

The encrypted password, formerly field two of the /etc/group file. 

The group.adjunct file is in ASCII. Fields are separated by a colon, and each group is separated from the 
next by a NEWLINE. 

A group.adjunct file can have a line beginning with a '+' (plus sign), which means to incorporate entries 
from the Yellow Pages. There are two styles of '+' entries: all by itself, '+' means to insert the entire con
tents of the group.adjunct Yellow Pages file at that point; +name means to insert the entry (if any) for 
name from the Yellow Pages at that point. If a '+' entry has a non-NULL password, the contents of that 
field will override what is contained in the Yellow Pages. 

/etc/group 

SEE ALSO 
crypt(3), getgraent(3), getgrent(3), group(5) 

1392 Last change: 14 December 1987 Sun Release 4.0 



HELP(5) FILE FORMATS HELP(5) 

NAME 
help - help file format 

SYNOPSIS 
/usr/lib/help/• 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
Each Sun View application using the help feature has a simple ASCII file in /usr/Iib/help with the name 
application-name .info. 

This file contains the text of help messages for each Sun View object within that program. Each help mes
sage is separated in the file by a line beginning with a colon and identified by a keyword which matches the 
HELP_ DATA attribute of the Sun View object. 

The first character of each line in the file may be: 

# 

any other 

comment line 
keyword line 
1-32 help text lines 

If the line is a keyword line, it has the following structure

:keyword[s ]:datastring [pagenumber]<cr> 

keyword 

datastring 

page number 

is a 1-65 character keyword 
--any displayable characters may be used 
--several keywords may be present 
--keywords are separated by 1-or-more blanks 

is 1-256 ASCII bytes, and describes the path of the data files for 
help_ viewer, relative to /usr/lib/help. 

is an optional page number within the help_ viewer data file. 

The help text which follows the :keyword line will be displayed in an Alert Box when help is requested for 
one of the keywords by pressing the help key. 

The datastring will be sent (by RPC) to the help_ viewer procedure when the user selects the More Help 
box in the Alert Box window. 

EXAMPLE 
Here is part of a typical help file, called mailtool.info. 

:abort 
Abort button 

o Quits the Mail application (click 
left on button). Tentative message 
deletions do not become permanent. 

o Provides a menu of Abort options 
(click right on button). 

:cancel:mailtool/Writing_ and_ Sending_ Mail 1 

Sun Release 4.0 Last change: 19 February 1988 1393 



HELP(5) FILE FORMATS HELP(5) 

FILES 

Cancel button 

o Closes the message composition 
window without sending message 
( click left on button). 

o Provides a menu of Cancel options 
( click right on button). 

Pressing the help key while in the cancel or abort buttons triggers the display of the corresponding text. 
The words cancel and abort in this file are the keywords. In the case of abort, there is no More Help avail
able. For cancel, More Help is available and it is stored in the first page of the Writing_and _ Sending_ Mail 
file in the mail tool directory. 

/usr/Iib/help/* files for the pop-up help facility 

SEE ALSO 
help_ viewer(l), help_ viewer(5) 

Sun386i Developer's Guide 

1394 Last change: 19 February 1988 Sun Release 4.0 



HELP_ VIEWER ( 5) FILE FORMATS HELP_ VIEWER ( 5) 

NAME 
help_ viewer - help viewer file format 

SYNOPSIS 
/usr/Iib/help/•/• 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

The help_ viewer reads files of various types. The Top Level list of applications documented is 
/usr/Iib/help/Top _ Level. The Master Index shown at the top level is /usr/lib/help/Master _ Index. These 
files are FrameMaker files. To add or remove a heading from this list, use FrameMaker (1.1 or later). 

Each directory within /usr/Iib/help that corresponds to a Sun View application name contains detailed 
information about that application. These are also FrameMaker files. The •.rf files are rasterfiles, of stan
dard image format created by FrameMaker. These are the pictures that are interleaved into the text 

The Frame/ subdirectory of /usr/Iib/help contains topic, contents, and index templates which can be used 
to create new Help Viewer handbooks. The Interleaf/ subdirectory contains Interleaf templates, fonts, and 
initialization files. 

/usr/Iib/help/•/• 

SEE ALSO 
help( 5), help_ viewer( 1) 

Sun Release 4.0 Last change: 19 February 1988 1395 



H0STS(5) FILE FORMATS H0STS(5) 

NAME 
hosts - host name data base 

SYNOPSIS 
/etc/hosts 

DESCRIPTION 
The hosts file contains information regarding the known hosts on the DARPA Internet. For each host a sin
gle line should be present with the following information: 

Internet address 
official host name 
aliases 

Items are separated by any number of blanks and/or TAB characters. A '#' indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. This file 
is normally created from the official host data base maintained at the Network Information Control Center 
(NIC), though local changes may be required to bring it up to date regarding unofficial aliases and/or unk
nown hosts. 

Network addresses are specified in the conventional '.' notation using the inet_addr () routine from the 
Internet address manipulation library, inet(3N). Host names may contain any printable character other 
than a field delimiter, NEWLINE, or comment character. 

EXAMPLE 
Here is a typical line from the /etc/hosts file: 

192.9.1.20 gaia # John Smith 

FILES 
/etc/hosts 

SEE ALSO 
gethostent(3N), inet(3N) 

1396 Last change: 19 October 1987 Sun Release 4.0 



HOSTS.EQUIV ( 5 ) FILE FORMATS HOSTS.EQUIV ( 5) 

NAME 
hosts.equiv, rhosts - trusted hosts by system and by user 

DESCRIPTION 
The /etc/hosts.equiv file contains a list of trusted hosts. When an rlogin(lC) or rsh(lC) request is 
received from a host listed in this file, and when the user making the request is listed in the /etc/passwd 
file, then the remote login is allowed with no further checking. In this case, rlogin does not prompt for a 
password, and commands submitted through rsh are executed. Thus, a remote user with a local user ID is 
said to have ''equivalent'' access from a remote host named in this file. 

The format of the hosts.equiv file consists of a one-line entry for each host, of the form: 

hostname [ username] 

The hostname field normally contains the name of a trusted host from which a remote login can be made. 
However, an entry consisting of a single '+' indicates that all known hosts are to be trusted. A hostname 
must be the "official" name as listed in the hosts(5) database. This is the first name given in the hosts 
database entry; hostname aliases are not recognized. Remote login access can also be given or denied for 
all hosts within a specific network group. An entry of the form: 

+@group 

means that all hosts in the named network group are trusted. An entry of the form: 

-@group 

means that all hosts in the group are not trusted; remote login access is denied to hosts in that group, except 
when an entry for a specific host appears ahead of the ''minus'' group entry. 

The username field can be used to specify a user who is allowed to log in under any valid user ID. Careful 
thought about security should be given before providing this privilege to a user. You can also specify a 
network group in the username field with an entry of the form: 

+@group] +@group2 

in which case any user in group2 logging in from a host in group] may log in as anyone. Again, security is 
an important consideration here. 

The User's .rhosts File 
Whenever a remote login is attempted, the remote login daemon checks for a .rhosts file in the home direc
tory of the user attempting to log in. A user's .rhosts file has the same format as the hosts.equiv file, and is 
used to give or deny access only for the specific user attempting to log in from a given host. While an 
entry in the hosts.equiv file allows remote login access to any user from the indicated host, an entry in a 
user's .rhosts file only allows access from a named host to the user in whose home directory the .rhosts 
file appears. (When this file is used, permissions in the user's home directory should allow read and search 
access by anyone, so it may be located and read.) When a user attempts a remote login, his .rhosts file is, 
in effect, prepended to the hosts.equiv file for permission checking. Thus, if a host is specified in the 
user's .rhos ts file, login access is allowed, even if it would otherwise be excluded by a minus group entry 
in /etc/hosts.equiv. 

The Root .rhosts File 
When the user attempting a remote login is root, only the /.rhosts file is checked, not /etc/hosts.equiv. 

FILES 
/ etc/hosts.equiv 
I etc/passwd 
-1.rhosts 
/etc 

SEE ALSO 
rlogin(lC), rsh(lC), hosts(5), netgroup(5), passwd(5) 

Sun Release 4.0 Last change: 19 October 1987 1397 



INDENT.PRO ( 5) FILE FORMATS INDENT.PRO ( 5) 

NAME 
indent.pro - default options for indent 

DESCRIPTION 

FILES 

The .indent.pro file in either the current or home directory contains default command line options for the 
indent(l) program. It is a text file that contains space-seperated command line options. For a description 
of these options, see indent(l). 

Explicit command line options override options taken from .indent.pro. 

Here is a sample .indent.pro file: 

-hap -nbad -nbbb -be -hr -edb -nee 
-f cl -ip -Ip -opes -psi -sc -nsob -eliO 
-di12 -179 -i4 -dO -e33 

).indent.pro 
-/.indent.pro 

SEE ALSO 
indent(l) 

1398 Last change: 16 February 1988 Sun Release 4.0 



INETD.CONF ( 5) FILE FORMATS INETD.CONF ( 5) 

NAME 
inetd.conf - Internet servers database 

DESCRIPTION 

FILES 

The inetd.conf file contains the list of servers that inetd(8C) invokes when it receives an Internet request 
over a socket. Each server entry is composed of a single line of the form: 

service-name socket-type protocol wait-status uid server-program server-arguments 

Fields can be separated by either spaces or TAB characters. A '#' (pound-sign) indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines that search this file. 

service-name 

socket-type 

protocol 

wait-status 

uid 

server-pro gram 

server-arguments 

I etc/inetd.conf 
/ etc/services 
/ etc/protocols 

is the name of a valid service listed in the file /etc/services. For RPC services, the 
value of the service-name field consists of the RPC service name, followed by a 
slash and either a version number or a range of version numbers (for example, 
mountd/1). 

can be one of: 
stream for a stream socket, 
dgram for a datagram socket, 
raw for a raw socket, 
rdm for a "reliably delivered message" socket, or 
seqpacket for a sequenced packet socket. 

must be a recognized protocol listed in the file /etc/protocols. For RPC services, 
the field consists of the string "rpc" followed by a slash and the name of the proto
col (for example, rpc/udp for an RPC service using the UDP protocol as a tran
sport mechanism). 

is nowait for all but "single-threaded" datagram servers - servers which do not 
release the socket until a timeout occurs (such as comsat(8C) and talkd(8C)). 
These must have the status wait. Although tftpd(8C) establishes separate 
"pseudo-connections", its forking behavior can lead to a race condition unless it is 
also given the status wait. 

is the user ID under which the server should run. This allows servers to run with 
access privileges other than those for root. 

is either the pathname of a server program to be invoked by inetd to perform the 
requested service, or the value internal if inetd itself provides the service. 

If a server must be invoked with command-line arguments, the entire command 
line (including argument 0) must appear in this field (which consists of all remain
ing words in the entry). If the server expects inetd to pass it the address of its 
peer (for compatibility with 4.2BSD executable daemons), then the first argument 
to the command should be specified as '%A'. 

SEE ALSO 

services(5), comsat(8C), inetd(8C), talkd(8C), tftpd(8C) 

Sun Release 4.0 Last change: 19 October 1987 1399 



INTERN AT ( 5) FILE FORMATS INTERNAT(5) 

NAME 
internat - key mapping table for internationalization 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
This file format is used for the file specified by the -f flag of oldsetkeys(l). 

The file has three columns. First column is keytable identifier, one of: BASE, CTRL, SHIFT, CAPS, UP, 
BASE _ISO, SHIFT _ISO or ALTG. The second column is a decimal keystation number. The third column is 
hexadecimal keytable entry value. The file must end with line of "END, 0, O". As usual, comment lines 
start with #. 

EXAMPLES 

1400 

This is the file for mapping keys to Canadian standards: 

# /usr/lib/.setkeys: Key remapping, used by "setkeys remap" 
# 
# First column is keytable identifier: 
# BASE, CTRL, SHIFT, CAPS, UP, BASE _ISO, SHIFT _ISO or ALTG 
# Second column is decimal keystation number 
# Third column is hexadecimal keytable entry value 
# File must end with line of "END, 0, O" 
# Comment lines must start with # 
# 
# 
# --- Keymaps for Canadian keyboard ---
# > Define Alt Graph key (SHIFTKEYS+AL TGRAPH=86) 
BASE 119 86 
CTRL 119 86 
SHIFf 119 86 
CAPS 119 86 
UP 119 86 
# > Define Caps key (SHIFI'KEYS+CAPSLOCK=80) 
BASE 13 80 
CTRL 13 80 
SHIFT 13 80 
CAPS 13 80 
# > Define Floating Accent keys 
# 
# 
# 
# 
# 
# 
BASE64AA 
SHIFT64A9 
CAPS 64A9 
BASE65 AC 
SHIFf 65 AB 
CAPS65AB 
BASE87 AE 
SHIFT87 AD 
CAPS87 AD 

FA UMLAUT=A9 
FA CFLEX=AA 
FA TILDE= AB 
FA CEDILLA= AC 
FA ACUTE=AD 
FA GRAVE=AE 

# > Define ASCII values 
BASE88 5B 

Last change: 19 February 1988 Sun Release 4.0 



INTERN AT ( 5) 

SEE ALSO 
oldsetkeys( 1) 

SHIFT 88 7B 
CAPS 88 7B 
BASE 15 5D 
SHIFT 15 7D 
CAPS157D 
SHIFT 3122 
SHIFT322F 
SHIFT35 3F 
SHIFT 107 27 
CAPS 107 27 
SHIFT 108 60 
CAPS 108 60 
BASE 124 3C 
SHIFT 124 3E 
CAPS 124 3E 
# > Define ISO values 
BASE ISO 109 E9 
SHIFT ISO 109 C9 

FILE FORMATS 

# > Define Alternate Graph ISO values 
ALTG 88 AB 
ALTG 15 BB 
ALTG30Bl 
ALTG 31 B2 
ALTG32B3 
ALTG 33 A2 
ALTG 34 A4 
ALTG 35 5E 
ALTG 3640 
ALTG 37 A3 
ALTG 38 5C 
ALTG40AC 
ALTG4123 
ALTG 63 B6 
ALTG 64 BC 
ALTG 65 BD 
ALTG42BE 
ALTG 106B5 
ALTG 105 BA 
# > End of file 
ENDOO 

The Sun386i Developer's Guide for keystation number diagrams. 

Sun Release 4.0 Last change: 19 February 1988 

INTERNAT(5) 

1401 



IP ALLOC.NETRANGE ( 5) FILE FORMATS IP ALLOC.NETRANGE ( 5) 

NAME 
ipalloc.netrange - range of addresses to allocate 

SYNOPSIS 
/ etc/ipalloc.netrange 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
This file, if it exists on the YP master of the hosts.byaddr YP map, specifies the ranges of IP addresses that 
can be allocated by the ipallocd(8C) daemon. This allows multiple address assignment authorities, prob
ably in multiple administrative domains, to coexist on the same IP network by preallocating ranges of 
addresses. If the file does not exist, the daemon assumes that all addresses not listed in the hosts map may 
be freely allocated. 

This file can contain blank lines. Comments begin with a # character and extend to the end of the current 
line. Ranges of free addresses are specified on one line per network or subnetwork. 

The first token on the line is the IP address, in four part "dot" notation as also used in the hosts file, of the 
network or subnetwork described. It is separated from the second token by white space. The second token 
is a comma-separated list of local host number ranges on that network. These ranges take two forms: a 
single number specifies just that local host number, and two numbers separated by a dash specify all local 
host numbers starting at the first number and ending at the second. (In the case of a subnet, host numbers 
not in that subnet are excluded.) 

For example, the following file would specify that a subset of the addresses on the class C network 
192.9.200.0 may be allocated, and only some of the addresses on two particular subnets of the class B net
work 128.255.0.0 may be allocated. In any case, only non-broadcast addresses not listed in the hosts map 
are subject to allocation: 

# We have three network cables administered using automatic # IP address allocation. 

192.9.200.0 
128.255.211.0 

50-100,200-254 
1-254 

128.255.210.0 3,5,7,9,100-110 

SEE ALSO 
hosts(5), netmasks(5), ipallocd(8C) 

BUGS 
There is a silent limit of twenty ranges per network. 

1402 Last change: 19 February 1988 Sun Release 4.0 



LINK(5) FILE FORMATS LINK(5) 

NAME 
link - link editor interfaces 

SYNOPSIS 

#include <link.h> 

DESCRIPTION 

Dynamically linked executables created by Id( 1) contain a number of data structures that are used by the 
dynamic link editor to finish link-editing the program during program execution. These data structures are 
described with a link_ dynamic structure, as defined in the <link.h> file. Id always identifies the location of 
this structure in the executable file with the symbol __ DYNAMIC. This symbol is Id-defined and if refer
enced in an executable that does not require dynamic linking will have the value zero. 

The program stub linked with "main" programs by compiler drivers such as cc(l) (called crtO) tests the 
definition of __ DYNAMIC to determine whether or not the dynamic link editor should be invoked. Pro
grams supplying a substitute for crtO must either duplicate this functionality or else require that the pro
grams with which they are linked be linked statically. Otherwise, such replacement crtO 's must open and 
map in the executable /usr/lib/Id.so using mmap(2). Care should be taken to ensure that the expected 
mapping relationship between the "text" and "data" segments of the executable is maintained in the same 
manner that the execve(2) system call does. The first location following the a.out header of this executable 
is the entry point to a function that begins the dynamic link-editing process. This function must be called 
and supplied with two arguments. The first argument is an integer representing the revision level of the 
argument list, and should have the value '' 1' '. The second should be a pointer to an argument list structure 
of the form: 

struct { 
int crt_ba; 
int crt_dzfd; 
int crt_ldfd; 
struct link_dynamic •crt_dp; 
char **crt_ep; 
caddr_t crt_bp; 

} 

/• base address of Id.so •I 
/• open fd to /dev/zero •I 
/• open fd to Id.so •I 
/• pointer to program's DYNAMIC •I 
/• environment strings .7-
/• debugger hook •/ 

The members of the structure are: 

crt ba 

crt dzfd 

crt ldfd 

crt_dp 

crt_ep 

crt_bp 

The address at which /usr/lib/ld.so has been mapped. 

An open file descriptor for /dev/zero. Id.so will close this file descriptor before return
ing. 

The file descriptor used to map /usr/lib/Id.so. Id.so will close this file descriptor before 
returning. 

A pointer to the label __ DYNAMIC in the executable which is calling Id.so. 

A pointer to the environment strings provided to the program. 

A location in the executable which contains an instruction that will be executed after the 
call to Id.so returns. This location is used as a breakpoint in programs that are being 
executed under the control of a debugger such as adb(l). 

SEE ALSO 
Id( 1 ), mmap(2), a.out(5) 

BUGS 

These interfaces are under development and are subject to rapid change. 

Sun Release 4.0 Last change: 17 February 1988 1403 



MAGIC(5) FILE FORMATS MAGIC(5) 

NAME 
magic - file command's magic number file 

DESCRIPTION 

FILES 

The file(l) command identifies the type of a file using, among other tests, a test for whether the file begins 
with a certain magic number. The file /etc/magic specifies what magic numbers are to be tested for, what 
message to print if a particular magic number is found, and additional information to extract from the file. 

Each line of the file specifies a test to be performed. A test compares the data starting at a particular offset 
in the file with a 1-byte, 2-byte, or 4-byte numeric value or a string. If the test succeeds, a message is 
printed. The line consists of the following fields: 

offset A number specifying the offset, in bytes, into the file of the data which is to be tested. 

type 

byte 

short 

long 

string 

The type of the data to be tested. The possible values are: 

A one-byte value. 

A two-byte value. 

A four-byte value. 

A string of bytes. 

The types byte, short, and long may optionally be followed by a mask specifier of the form 
&number. If a mask specifier is given, the value is AND'ed with the number before any com
parisons are done. The number is specified in C form; for instance, 13 is decimal, 013 is octal, 
and Ox13 is hexadecimal. 

test The value to be compared with the value from the file. If the type is numeric, this value is 
specified in C form; if it is a string, it is specified as a C string with the usual escapes permitted 
(for instance, \n for NEWLINE).· 

Numeric values may be preceded by a character indicating the operation to be performed. It 
may be '=', to specify that the value from the file must equal the specified value, '<', to specify 
that the value from the file must be less than the specified value, '>', to specify that the value 
from the file must be greater than the specified value, '&', to specify that all the bits in the 
specified value must be set in the value from the file, '"', to specify that at least one of the bits 
in the specified value must not be set in the value from the file, or x to specify that any value 
will match. If the character is omitted, it is assumed to be '='. 

For string values, the byte string from the file must match the specified byte string; the byte 
string from the file which is matched is the same length as the specified byte string. 

message The message to be printed if the comparison succeeds. If the string contains a printf(3S) for
mat specification, the value from the file (with any specified masking performed) is printed 
using the message as the format string. 

Some file formats contain additional information which is to be printed along with the file type. A line 
which begins with the character'>' indicates additional tests and messages to be printed. If the test on the 
line preceding the first line with a '>' succeeds, the tests specified in all the subsequent lines beginning 
with '>' are performed, and the messages printed if the tests succeed. The next line which does not begin 
with a'>' terminates this. 

/etc/magic 

SEE ALSO 
file( 1 ), printf(3S) 

1404 Last change: 19 October 1987 Sun Release 4.0 



MAGIC(5) FILE FORMATS MAGIC(5) 

BUGS 
There should be more than one level of subtests, with the level indicated by the number of'>' at the begin
ning of the line. 

Sun Release 4.0 Last change: 19 October 1987 1405 



MTAB(5) FILE FORMATS MTAB(5) 

NAME 
mtab - mounted file system table 

SYNOPSIS 
/etc/mtab 

#include <mntent.h> 

DESCRIPTION 

FILES 

mtab resides in the /etc directory, and contains a table of filesystems currently mounted by the mount(8) 
command. umount removes entries from this file. 

The file contains a line of information for each mounted filesystem, structurally identical to the contents of 
/etc/fstab, described in fstab(5). There are a number of lines of the form: 

f sname dir type opts freq pass no 

for example: 

/dev/xyOa / 4.2 rw,noquota 1 2 

The file is accessed by programs using getmntent(3), and by the system administrator using a text editor. 

/etc/mtab 
/etc/fstab 

SEE ALSO 
getmntent(3), fstab(5), mount(8) 

1406 Last change: 19 October 1987 Sun Release 4.0 



NETGROUP(5) FILE FORMATS NETGROUP ( 5) 

NAME 
netgroup - list of network groups 

DESCRIPTION 

FILES 

netgroup defines network wide groups, used for permission checking when doing remote mounts, remote 
logins, and remote shells. For remote mounts, the information in netgroup is used to classify machines; 
for remote logins and remote shells, it is used to classify users. Each line of the netgroup file defines a 
group and has the format 

groupname member 1 member2 .... 

where memberi is either another group name, or a triple: 

(hostname, username, domainname) 

Any of these three fields can be empty, in which case it signifies a wild card. Thus 

universal (, , ) 

defines a group to which everyone belongs. 

A gateway machine should be listed under all possible hostnames by which it may be recognized: 

wan (gateway,,) (gateway-ebb,,) 

Field names that begin with something other than a letter, digit or underscore (such as '-') work in pre
cisely the opposite fashion. For example, consider the following entries: 

justmachines (analytica,-,sun) 
justpeople (-,bab bage,sun) 

The machine analytica belongs to the group justmachines in the domain sun, but no users belong to it. 
Similarly, the user babbage belongs to the group justpeople in the domain sun, but no machines belong to 
it. 

The domainname field refers to the domain n which the triple is valid, not the name containing the trusted 
host. 

/ etc/netgroup 

SEE ALSO 
getnetgrent(3N), exports(5), makedbm(8), ypserv(8) 

Sun Release 4.0 Last change: 22 December 1987 1407 



NETMASKS(5) FILE FORMATS NETMASKS(5) 

NAME 
netmasks - network mask data base 

DESCRIPTION 

FILES 

The netmasks file contains network masks used to implement IP standard subnetting. For each network 
that is subnetted, a single line should exist in this file with the network number, any number of SPACE or 
TAB characters, and the network mask to use on that network. Network numbers and masks may be 
specified in the conventional IP '.' notation (like IP host addresses, but with zeroes for the host part). For 
example, 

128.32.0.0 255.255.255.0 

can be used to specify the the Class B network 128.32.0.0 should have eight bits of subnet field and eight 
bits of host field, in addition to the standard sixteen bits in the network field. When running Yellow Pages, 
this file on the master is used for the netmasks.byaddr map. 

/ etc/netmasks 

SEE ALSO 

1408 

if config(8C) 

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950, Network Information 
Center, SRI International, Menlo Park, Calif., August 1985. 

Last change: 19 October 1987 Sun Release 4.0 



NETRC(5) FILE FORMATS NETRC(5) 

NAME 
netrc - file for ftp( 1 C) remote login data 

DESCRIPTION 
The .netrc file contains data for logging in to a remote host over the network for file transfers by ftp(lC). 
This file resides in the user's home directory on the machine initiating the file transfer. Its permissions 
should be set to disallow read access by group and others (see chmod(lV)). 

The following tokens are recognized; they may be separated by SPACE, TAB, or NEWLINE characters: 

machinename 
Identify a remote machine name. The auto-login process searches the .netrc file for a machine 
token that matches the remote machine specified on the ftp command line or as an open command 
argument. Once a match is made, the subsequent .netrc tokens are processed, stopping when the 
EOF is reached or another machine token is encountered. 

loginname 
Identify a user on the remote machine. If this token is present, the auto-login process will initiate 
a login using the specified name. 

passwordstring 
Supply a password. If this token is present, the auto-login process will supply the specified string 
if the remote server requires a password as part of the login process. Note: if this token is present 
in the .netrc file, ftp will abort the auto-login process if the .netrc is readable by anyone besides 
the user. 

accountstring 
Supply an additional account password. If this token is present, the auto-login process will supply 
the specified string if the remote server requires an additional account password, or the auto-login 
process will initiate an ACCT command if it does not. 

macdefname 
Define a macro. This token functions as the ftp macdef command functions. A macro is defined 
with the specified name; its contents begin with the next .netrc line and continue until a NULL line 
(consecutive NEWLINE characters) is encountered. If a macro named init is defined, it is automat
ically executed as the last step in the auto-login process. 

EXAMPLE 
The command: 

machine ray login demo password mypassword 

allows an autologin to the machine ray using the login name demo with password mypassword. 

FILES 
-1.netrc 

SEE ALSO 
chmod(l V), ftp(lC), ftpd(8C) 

Sun Release 4.0 Last change: 19 October 1987 1409 



NETWORKS ( 5) FILE FORMATS NETWORKS ( 5) 

NAME 
networks - network name data base 

DESCRIPTION 

FILES 

The networks file contains information regarding the known networks which comprise the DARPA Inter
net. For each network a single line should be present with the following information: 

official network name 
network number 
aliases 

Items are separated by any number of blanks and/or TAB characters. A '#' indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. This file 
is normally created from the official network data base maintained at the Network Information Control 
Center (NIC), though local changes may be required to bring it up to date regarding unofficial aliases and/or 
unknown networks. 

Network number may be specified in the conventional'.' notation using the inet_network () routine from 
the Internet address manipulation library, inet(3N). Network names may contain any printable character 
other than a field delimiter, NEWLINE, or comment character. 

/etc/networks 

SEE ALSO 

BUGS 

1410 

getnetent(3N), inet(3N) 

A name server should be used instead of a static file. A binary indexed file format should be available for 
fast access. 

Last change: 19 October 1987 Sun Release 4.0 



PASSWD(5) FILE FORMATS PASSWD(5) 

NAME 
passwd - password file 

SYNOPSIS 
/ etc/passwd 

DESCRIPTION 
The passwd file contains basic information about each user's account. This file contains a one-line entry 
for each authorized user, of the form: 

username :password: uid :gid :gcos-field: home-dir :lo gin-shell 

where 

username 

password 

uid 

gid 

gcos-field 

home-dir 

login-shell 

is the user's login name. This field contains no uppercase characters, and 
must not be more than eight characters in length. 

is the user's encrypted password, or a string of the form: ##name if the 
encrypted password is in the /etdsecurity/passwd.adjunct file (see 
passwd.adjunct(5)). If this field is empty, login(l) does not request a 
password before logging the user in. 

is the user's numerical ID for the system, which must be unique. uid is 
generally a value between O and 327 67. 

is the numerical ID of the group that the user belongs to. gid is generally 
a value between O an 32767. 

is the user's real name, along with information to pass along in a mail
message heading. It is called the gcos-field for historical reasons. A & 
in this field stands for the login name (in cases where the login name ap
pears in a user's real name). 

is the pathname to the directory in which the user is initially positioned 
upon logging in. 

is the user's initial shell program. If this field is empty, the default shell 
is /usr/bin/sh. 

The passwd file can also have lines beginning with a '+' (plus sign) which means to incorporate entries 
from the Yellow Pages. There are three styles of+ entries in this file: by itself, + means to insert the entire 
contents of the Yellow Pages password file at that point; +name means to insert the entry (if any) for name 
from the Yellow Pages at that point; +@netgroup means to insert the entries for all members of the net
work group netgroup at that point. If a +name entry has a non-NULL password, gcos, home-dir, or login
shell field, the value of that field overrides what is contained in the Yellow Pages. The uid and gid fields 
cannot be overridden. 

The passwd file can also have lines beginning with a '-' (minus sign) which means to disallow entries 
from the Yellow Pages. There are two styles of'-' entries in this file: -name means to disallow any subse
quent entries (if any) for name (in this file or in the Yellow Pages); -@netgroup means to disallow any 
subsequent entries for all members of the network group net group. 

The password file is an ASCII file that resides in the /etc directory. Because the encrypted passwords on a 
secure system are kept in the passwd.adjunct file, /etdpasswd has general read permission on all systems, 
and can be used by routines that map numerical user IDs to names. 

Appropriate precautions must be taken to lock the /etc/passwd file against simultaneous changes if it is to 
be edited with a text editor; vipw(8) does the necessary locking. 

Sun Release 4.0 Last change: 14 December 1987 1411 



PASSWD(5) FILE FORMATS PASSWD(5) 

EXAMPLE 

FILES 

Here is a sample passwd file when passwd.adjunct does not exist: 

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh 
fred:6k/7K CFRPNVXg:508: 10: % Fredericks:/usr2/fred:/bin/csh 
+john: 
+@documentation:no-Iogin: 
+::::Guest 

Here is a sample passwd file when passwd.adjunct does exist 

root:##root:0: 10: God:/ :/bin/ csh 
fred:##fred:508:10:& Fredericks:/usr2/fred:/bin/csh 
+john: 
+@documentation:no-Iogin: 
+::::Guest 

In this example, there are specific entries for users root and fred, to assure that they can log in even when 
the system is running standalone. The user john will have his password entry in the Yellow Pages incor
porated without change; anyone in the netgroup documentation will have their password field disabled, 
and anyone else will be able to log in with their usual password, shell, and home directory, but with a 
gcos-field of Guest. 

I etc/passwd 
/etc/security/passwd.adjunct 

SEE ALSO 

BUGS 

1412 

Iogin(l), mail(l), passwd(l), crypt(3), getpwent(3), group(5), passwd.adjunct(5), adduser(8), 
sendmail(8), vipw(8) 

mail(l) and sendmail(8) use the gcos-field to compose the From: line for addressing mail messages, but 
these programs get confused by nested parentheses when composing replies. This problem can be avoided 
by using different types of brackets within the gcos-field; for example: 

(& Fredricks [Podunk U <EE/CIS>] {818}-555-5555) 

Last change: 14 December 1987 Sun Release 4.0 



PASSWD.ADJUNCT ( 5) FILE FORMATS PASSWD.ADJUNCT ( 5) 

NAME 
passwd.adjunct- user security data file 

SYNOPSIS 
/etc/security/passwd.adjunct 

DESCRIPTION 
The passwd.adjunct file contains the following information for each user: 

name 

password 

minimum label 

maximum label 

default label 

always audit flags 

never audit flags 

This is the user's login name in the system and it must be unique. 

The encrypted password. 

The lowest security level at which this user is allowed to login (not used at C2 lev
el). 

The highest security level at which this user is allowed to login (not used at C2 
level). 

The security level at which this user will run unless a label is specified at login. 

Flags specifying events always to be audited for this user's processes; see 
audit_ control(5). 

Flags specifying events never to be audited for this user's processes; see 
audit_control(5). 

Field are separated by a colon, and each user from the next by a NEWLINE. 

The passwd.adjunct file can also have line beginning with a '+' (plus sign), which means to incorporate 
entries from the Yellow Pages. There are three styles of'+' entries: all by itself,'+' means to insert the en
tire contents of the Yellow Pages passwd.adjunct file at that point; +name means to insert the entry (if 
any) for name from the Yellow Pages at that point; +@name means to insert the entries for all members of 
the network group name at that point. If a'+' entry has a non-NULL password, it will override what is con
tained in the Yellow Pages. 

EXAMPLE 

FILES 

Here is a sample /etc/security/passwd.adjunct file: 

root:q .mJzTnu8icF .: : : : : : : : 
ignatz:7KsI8CFRPNVXg:: b,ap,bp,gp,dp,ic,r ,d,I: :+dc,+da:-dr: 
rex:7HU8UUGRPNVXg: b,ap: b,ap,bp: b,bp:: +ad: 
+fred:9x.FFUw6xcJBa:::::::: 
+: 

The user root is the super-user, who has no special label constraints nor audit interest. The user ignatz 
may have any label from the lowest to the level b and any of a large number of categories. ignatz will run 
at system low unless he specifies otherwise. He is being audited on the system default event classes as well 
as data creations and access changes, but never for failed data reads. The user rex can function only at the 
level b and only in the categories ap or ap and bp. By default, he will run at 'b,bp'. He is audited with the 
system defaults, except that successful administrative operations are not audited. The user fred will have 
the labels and audit flags that are specified in the Yellow Pages passwd.adjunct file. Any other users 
specified in the Yellow Pages will be able to log in on this system. 

The user security data file resides in the /etc/security directory. Because it contains encrypted passwords, 
it does not have general read permission. 

/etc/security/passwd.adjunct 
I etc/security 

SEE ALSO 
login(l), passwd(l), crypt(3), getpwaent(3), getpwent(3), audit_control(5), passwd(5), adduser(8) 

Sun Release 4.0 Last change: 14 December 1987 1413 



PHONES(5) FILE FORMATS PHONES(5) 

NAME 
phones - remote host phone number data base 

SYNOPSIS 
/etc/phones 

DESCRIPTION 

FILES 

The file /etdphones contains the system-wide private phone numbers for the tip(lC) program. 
/etc/phones is normally unreadable, and so may contain privileged information. The format of /etc/phones 
is a series of lines of the form: 

<system-name>[ \t]*<phone-number>. 

The system name is one of those defined in the remote(5) file and the phone number is constructed from 
[0123456789-=* % ]. The '=' and'*' characters are indicators to the auto call units to pause and wait for a 
second dial tone (when going through an exchange). The'=' is required by the DF02-AC and the'*' is re
quired by the BIZCOMP 1030. 

Comment lines are lines containing a'#' sign in the first column of the line. 

Only one phone number per line is permitted. However, if more than one line in the file contains the same 
system name tip(lC) will attempt to dial each one in tum, until it establishes a connection. 

/etc/phones 

SEE ALSO 
tip(lC), remote(5) 

1414 Last change: 19 October 1987 Sun Release 4.0 



PLOT(5) FILE FORMATS PLOT(5) 

NAME 
plot - graphics interface 

DESCRIPTION 
Files of this format are produced by routines described in plot(3X), and are interpreted for various devices 
by commands described in plot(lG). A graphics file is a stream of plotting instructions. Each instruction 
consists of an ASCII letter usually followed by bytes of binary information. The instructions are executed 
in order. A point is designated by four bytes representing the x and y values; each value is a signed integer. 
The last designated point in an l, m, n, or p instruction becomes the "current point" for the next instruc
tion. 

Each of the following descriptions begins with the name of the corresponding routine in plot(3X). 

m Move: the next four bytes give a new current point. 

n Cont: draw a line from the current point to the point given by the next four bytes. See plot(lG). 

p Point: plot the point given by the next four bytes. 

I Line: draw a line from the point given by the next four bytes to the point given by the following four 
bytes. 

t Label: place the following ASCII string so that its first character falls on the current point The string is 
terminated by a NEWLINE. 

a Arc: the first four bytes give the center, the next four give the starting point, and the last four give the 
end point of a circular arc. The least significant coordinate of the end point is used only to determine 
the quadrant. The arc is drawn counter-clockwise. 

c Circle: the first four bytes give the center of the circle, the next two the radius. 

e Erase: start another frame of output. 

f Linemod: take the following string, up to a NEWLINE, as the style for drawing further lines. The styles 
are "dotted," "solid," "longdashed," "shortdashed," and "dotdashed." Effective only in plot 4014 
and plot ver. 

s Space: the next four bytes give the lower left comer of the plotting area; the following four give the 
upper right comer. The plot will be magnified or reduced to fit the device as closely as possible. 

SEE ALSO 

Space settings that exactly fill the plotting area with unity scaling appear below for devices supported 
by the filters of plot(lG). The upper limit is just outside the plotting area. In every case the plotting 
area is taken to be square; points outside may be displayable on devices whose face is not square. 

4014 space(O, 0, 3120, 3120); 

ver space(O, 0, 2048, 2048); 

300, 300s space(O, 0, 4096, 4096); 

450 space(O, 0, 4096, 4096); 

graph(lG), plot(lG), plot(3X) 

Sun Release 4.0 Last change: 19 October 1987 1415 



POLICIES ( 5 ) FILE FORMATS POLICIES ( 5) 

NAME 
policies - network administration policies 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
The policies file contains information relevant to domain-wide administration policies. Each line contains 
two tokens, separated by white space; the first token is the name of an administrative policy, and the second 
is the value of that policy. 

FILES 
I etc/policies 
/var/yp/ domainnamelpolicies.{ dir ,pag} 

SEE ALSO 
pnpd(8C), rarpd(8C), logintool(8) 

1416 Last change: 19 February 1988 Sun Release 4.0 



PRINTCAP ( 5) FILE FORMATS PRINTCAP ( 5) 

NAME 
printcap - printer capability data base 

SYNOPSIS 
/etc/printcap 

DESCRIPTION 
printcap is a simplified version of the termcap(5) data base for describing printers. The spooling system 
accesses the printcap file every time it is used, allowing dynamic addition and deletion of printers. Each 
entry in the data base describes one printer. This data base may not be substituted for, as is possible for 
termcap, because it may allow accounting to be bypassed. 

The default printer is normally Ip, though the environment variable PRINTER may be used to override this. 
Each spooling utility supports a -Pprinter option to explicitly name a destination printer. 

Refer to System and Network Administration for a discussion of how to set up the database for a given 
printer. On Sun386i systems, refer to snap(l) for information on setting up printers with the system and 
network administration program. 

Each entry in the printcap file describes a printer, and is a line consisting of a number of fields separated 
by':' characters. The first entry for each printer gives the names which are known for the printer, separat
ed by 'I' characters. The first name is conventionally a number. The second name given is the most com
mon abbreviation for the printer, and the last name given should be a long name fully identifying the 
printer. The second name should contain no blanks; the last name may well contain blanks for readability. 
Entries may continue onto multiple lines by giving a '\' as the last character of a line, and empty fields may 
be included for readability. 

Capabilities in printcap are all introduced by two-character codes, and are of three types: 

Boolean Capabilities that indicate that the printer has some particular feature. Boolean capabilities are 
simply written between the ':' characters, and are indicated by the word 'bool' in the type 
column of the capabilities table below. 

Numeric Capabilities that supply information such as baud-rates, number of lines per page, and so on. 

String 

Numeric capabilities are indicated by the word num in the type column of the capabilities 
table below. Numeric capabilities are given by the two-character capability code followed by 
the'#' character, followed by the numeric value. For example: 

:br#1200: 

is a numeric entry stating that this printer should run at 1200 baud. 

Capabilities that give a sequence which can be used to perform particular printer operations 
such as cursor motion. String valued capabilities are indicated by the word str in the type 
column of the capabilities table below. String valued capabilities are given by the two
character capability ccxle followed by an'=' sign and then a string ending at the next following 
': '. For example, 

:rp=spinwriter: 

is a sample entry stating that the remote printer is named spinwriter. 

Sun386i DESCRIPTION 

On Sun386i systems, lpr(l) and related printing commands use the Yellow Pages name service to obtain 
the printcap entry for a named printer if the entry does not exist in the local /etc/printcap file. For exam
ple, when a user issues the command 

lpr -Pnewprinter foo 

lpr searches /etdprintcap on the local system for an entry for newprinter. If no local entry for new
printer exists, then lpr searches the YP map called printcap. The search is invisible to the user. 

Sun Release 4.0 Last change: 24 February 1988 1417 



PRINTCAP ( 5) FILE FORMATS PRINTCAP ( 5) 

lpr creates the spooling directory for the printer automatically if no spooling directory exists. 

System administrators can make a printer available to the entire YP domain by placing an entry for that 
printer in the YP printcap map, typically using snap. Otherwise, the system administrator must edit the 
/etc/printcap file on the YP master and then rebuild the YP map. 

CAPABILITIES 
Name Type Default Description 

ar str NULL name of accounting file 
br num none if Ip is a tty, set the baud rate (ioctl call) 
cf str NULL cifplot data filter 
df str NULL TeX data filter (DVI format) 
du str 0 User ID of user 'daemon'. 
re num 0 if Ip is a tty, clear flag bits 
ft' str ''\f' string to send for a form feed 
fo bool false print a form feed when device is opened 
rs num 0 like 'fc' but set bits 
gf str NULL graph data filter (plot(3X) format) 
hi bool false print the burst header page last 
ic bool false driver supports (non standard) ioctl to indent printout 
if str NULL name of text filter which does accounting 
If str "/dev/console'' error logging file name 
lo str "lock" name of lock file 
Ip str "/dev/lp" device name to open for output 
me num 0 maximum number of copies 
ms str NULL list of terminal modes to set or clear 
mx num 1000 maximum file size (in BUFSIZ blocks), zero= unlimited 
nd str NULL next directory for list of queues (unimplemented) 
of str NULL ditroff data filter ( device independent troff) 
of str NULL name of output filtering program 
pc num 200 price per foot or page in hundredths of cents 
pl num 66 page length (in lines) 
pw num 132 page width (in characters) 
px num 0 page width in pixels (horizontal) 
PY num 0 page length in pixels (vertical) 
rf str NULL filter for printing FORTRAN style text files 
rg str NULL restricted group. Only members of group allowed access 
rm str NULL machine name for remote printer 
rp str "Ip" remote printer name argument 
rs bool false restrict remote users to those with local accounts 
rw bool false open printer device read/write instead of read-only 
sb bool false short banner (one line only) 
SC bool false suppress multiple copies 
sd str '' /var/spool/I pd'' spool directory 
sf bool false suppress form feeds 
sh bool false suppress printing of burst page header 
st str "status" status file name 
tc str NULL name of similar printer; must be last 
tr str NULL troff data filter (C/ A/T phototypesetter) 
tr str NULL trailer string to print when queue empties 
vf str NULL raster image filter 
XC num 0 if Ip is a tty, clear local mode bits 
XS num 0 like 'xc' but set bits 

1418 Last change: 24 February 1988 Sun Release 4.0 



PRINTCAP ( 5) FILE FORMATS PRINTCAP ( 5) 

FILES 

If the local line printer driver supports indentation, the daemon must understand how to invoke it. 

Note: the fs, fc, xs, and xc fields are flag masks rather than flag values. Certain default device flags are set 
when the device is opened by the line printer daemon if the device is connected to a terminal port. The 
flags indicated in the fc field are then cleared; the flags in the fs field are then set (or vice-versa, depending 
on the order of fc#nnnn and fs#nnnn in the /etc/printcap file). The bits cleared by the fc field and set by 
the fs field are those in the sg_ flags field of the sgtty structure, as set by the TIOCSETP ioctl call, and the 
bits cleared by the xc field and set by the xs field are those in the "local flags" word, as set by the 
TIOCLSET ioctl call. See ttcompat(4M) for a description of these flags. For example, to set exactly the 
flags 06300 in the fs field, which specifies that the EVENP, ODDP, and XTABS modes are to be set, and all 
other flags are to be cleared, do: 

:fc#0177777:fs#06300: 

The same process applies to the xc and xs fields. Alternatively, the ms field can be used to specify modes 
to be set and cleared. These modes are specified as stty(l V) modes; any mode supported by stty may be 
specified, except for the baud rate which must be specified with the br field. This permits modes not sup
ported by the older terminal interface described in ttcompat(4M) to be set or cleared. Thus, to set the ter
minal port to which the printer is attached to even parity, tab expansion, no newline to carriage
return/line-feed translation, and RTS/CTS flow control enabled, do: 

: ms=even p,-tabs,nl,crtscts: 

On Sun386i systems, the tc field, as in the termcap(5) file, must appear last in the list of capabilities. It is 
recommended that each type of printer have a general entry describing common capabilities; then an indi
vidual printer can be defined with its particular capabilities plus a tc field that points to the general entry for 
that type of printer. 

/etc/printcap 

SEE ALSO 
lpq(l), lpr(l), lprm(l), snap(l), stty(l V), plot(3X), ttcompat(4M), termcap(5), lpc(8), lpd(8), pac(8) 

System and Network Administration 

Sun Release 4.0 Last change: 24 February 1988 1419 



PROTOCOLS ( 5) FILE FORMATS PROTOCOLS ( 5) 

NAME 
protocols - protocol name data base 

SYNOPSIS 
I etc/protocols 

DESCRIPTION 
The protocols file contains information regarding the known protocols used in the DARPA Internet. For 
each protocol a single line should be present with the following information: 

official protocol name 
protocol number 
aliases 

Items are separated by any number of blanks and/or TAB characters. A '#' indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. 

Protocol names may contain any printable character other than a field delimiter, NEWLINE, or comment 
character. 

EXAMPLE 

FILES 

The following example is taken from SunOS. 

# 
# Internet (IP) protocols 
# 
ip 
icmp 
ggp 
tcp 
pup 
udp 

/etc/protocols 

0 
1 
3 
6 
12 
17 

IP 
ICMP 
GGP 
TCP 
PUP 
UDP 

# internet protocol, pseudo protocol number 
# internet control message protocol 
# gateway-gateway protocol 
# transmission control protocol 
# PARC universal packet protocol 
# user datagram protocol 

SEE ALSO 
getprotoent(3N) 

BUGS 

1420 

A name server should be used instead of a static file. A binary indexed file format should be available for 
fast access. 

Last change: 19 October 1987 Sun Release 4.0 



PUBLICKEY ( 5) FILE FORMATS PUBLICKEY ( 5) 

NAME 
publickey - public key database 

SYNOPSIS 
/etc/publickey 

DESCRIPTION 
/etc/publickey is the public key database used for secure networking. Each entry in the database consists of 
a network user name (which may either refer to a user or a hostname), followed by the user's public key (in 
hex notation), a colon, and then the user's secret key encrypted with its login password (also in hex nota
tion). 

This file is altered either by the user through the chkey(l) command or by the system administrator through 
the newkey(8) command. The file /etc/publickey should only contain data on the Yellow Pages master 
machine, where it is converted into the YP database publickey .byname. 

SEE ALSO 
chkey(l), publickey(3R), newkey(8), ypupdated(8C) 

Sun Release 4.0 Last change: 19 October 1987 1421 



QUEUEDEFS ( 5) FILE FORMATS QUEUEDEFS ( 5) 

NAME 
queuedefs - queue description file for at, batch, and cron 

SYNOPSIS 
/var/spool/cron/queuedefs 

DESCRIPTION 
The queuedefs file describes the characteristics of the queues managed by cron(8). Each non-comment 
line in this file describes one queue. The format of the lines are as follows: 

q.[njobj][nicen][nwaitw] 

The fields in this line are: 

q The name of the queue. a is the default queue for jobs started by at(l); bis the default 
queue for jobs started by batch (see at(l)); c is the default queue for jobs run from a 
crontab(5) file. 

njob The maximum number of jobs that can be run simultaneously in that queue; if more than 
njob jobs are ready to run, only the first njob jobs will be run, and the others will be run 
as jobs that are currently running terminate. The default value is 100. 

nice The nice(l) value to give to all jobs in that queue that are not run with a user ID of 
super-user. The default value is 2. 

nwait The number of seconds to wait before rescheduling a job that was deferred because more 
than njob jobs were running in that job's queue, or because more than 25 jobs were run
ning in all the queues. The default value is 60. 

Lines beginning with # are comments, and are ignored. 

EXAMPLE 

FILES 

# 
#@(#)queuedefs 1.187/02/18 SMI; from S5R3 
# 
a.4jln 
b.2j2n90w 

This file specifies that the a queue, for at jobs, can have up to 4 jobs running simultaneously; those jobs 
will be run with a nice value of 1. As no nwait value was given, if a job cannot be run because too many 
other jobs are running cron will wait 60 seconds before trying again to run it. The b queue, for batch jobs, 
can have up to 2 jobs running simultaneously; those jobs will be run with a nice value of 2. If a job cannot 
be run because too many other jobs are running, cron will wait 90 seconds before trying again to run it. 
All other queues can have up to 100 jobs running simultaneously; they will be run with a nice value of 2, 
and if a job cannot be run because too many other jobs are running cron will wait 60 seconds before trying 
again to run it. 

/var/spool/cron/queuedefs 

SEE ALSO 
at(l), nice(l), crontab(5), cron(8) 

1422 Last change: 22 January 1988 Sun Release 4.0 



RASTERFILE ( 5) FILE FORMATS RASTERFILE ( 5) 

NAME 
rasterfile - Sun's file format for raster images 

SYNOPSIS 
#include <rasterfile.h> 

DESCRIPTION 

FILES 

A rasterfile is composed of three parts: first, a header containing 8 integers; second, a (possibly empty) set 
of colormap values; and third, the pixel image, stored a line at a time, in increasing y order. The image is 
layed out in the file as in a memory pixrect. Each line of the image is rounded up to the nearest 16 bits. 

The header is defined by the following structure: 

struct rasterfile { 
int ras _ magic; 
int ras_width; 
int ras _height; 
int ras_depth; 
int ras_Iength; 
int ras_type; 
int ras_maptype; 
int ras _ map length; 

}; 

The ras _ magic field always contains the following constant: 

#define RAS_MAGIC Ox59a66a95 

The ras_width, ras_height, and ras_depth fields contain the image's width and height in pixels, and its 
depth in bits per pixel, respectively. The depth is either 1 or 8, corresponding to standard frame buffer 
depths. The ras _length field contains the length in bytes of the image data. For an unencoded image, this 
number is computable from the ras _ width, ras _height, and ras _depth fields, but for an encoded image it 
must be explicitly stored in order to be available without decoding the image itself. Note: the length of the 
header and of the {possibly empty) colormap values are not included in the value of the ras _length field; it 
is only the image data length. For historical reasons, files of type RT_ OLD. will usually have a O in the 
ras _length field, and software expecting to encounter such files should be prepared to compute the actual 
image data length if needed. The ras _ maptype and ras _ maplength fields contain the type and length in 
bytes of the colormap values, respectively. If ras _ maptype is not RMT _ NONE and the ras _ maplength is not 
0, then the colormap values are the ras _ maplength bytes immediately after the header. These values are ei
ther uninterpreted bytes (usually with the ras _ maptype set to RMT _RAW) or the equal length red, green and 
blue vectors, in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter case, the 
ras _ maplength must be three times the size in bytes of any one of the vectors. 

/usr/include/rasterfile.h 

SEE ALSO 
SunView 1 Programmer's Guide 

Sun Release 4.0 Last change: 19 October 1987 1423 



REMOTE(5) FILE FORMATS REMOTE(5) 

NAME 
remote - remote host description file 

SYNOPSIS 
/etdremote 

DESCRIPTION 
The systems known by tip(lC) and their attributes are stored in an ASCII file which is structured somewhat 
like the termcap(5) file. Each line in the file provides a description for a single system. Fields are separat
ed by a colon ':'. Lines ending in a'\' character with an immediately following NEWLINE are continued 
on the next line. 

The first entry is the name(s) of the host system. If there is more than one name for a system, the names 
are separated by vertical bars. After the name of the system comes the fields of the description. A field 
name followed by an '=' sign indicates a string value follows. A field name followed by a '#' sign indi
cates a following numeric value. 

Entries named tip• and cu• are used as default entries by tip, and the cu interface to tip, as follows. When 
tip is invoked with only a phone number, it looks for an entry of the form tip300, where 300 is the baud 
rate with which the connection is to be made. When the cu interface is used, entries of the form cu300 are 
used. 

CAPABILITIES 

1424 

Capabilities are either strings (str), numbers (num), or boolean flags (bool). A string capability is specified 
by capability=value; for example, 'dv=/dev/harris'. A numeric capability is specified by 
capability#value; for example, 'xa#99'. A boolean capability is specified by simply listing the capability. 

at (str) Auto call unit type. 

br (num) The baud rate used in establishing a connection to the remote host. This is a decimal 
number. The default baud rate is 300 baud. 

cm (str) An initial connection message to be sent to the remote host. For example, if a host is reached 
through port selector, this might be set to the appropriate sequence required to switch to the host. 

cu (str) Call unit if making a phone call. Default is the same as the dv field. 

di (str) Disconnect message sent to the host when a disconnect is requested by the user. 

du (bool) This host is on a dial-up line. 

dv (str) device(s)toopentoestablish If this file refers to a terminal line, tip(lC) attempts to perform an 
exclusive open on the device to insure only one user at a time has access to the port. 

el (str) Characters marking an end-of-line. The default is NULL. tip only recognizes ,-, escapes after 
one of the characters in el, or after a carriage-return. 

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ. 

hd (bool) The host uses half-duplex communication, local echo should be performed. 

ie (str) Input EOF marks. The default is NULL. 

oe (str) Output EOF string. The default is NULL. When tip is transferring a file, this string is sent at 
EOF. 

pa (str) The type of parity to use when sending data to the host. This may be one of ''even'', 
"odd", "none", "zero" (always set bit 8 to zero), "one" (always set bit 8 to 1). The default is 
''none''. 

po (str) Telephone number(s) for this host. If the telephone number field contains an '@' sign, tip 
searches the /etc/phones file for a list of telephone numbers - see phones(5). A '%' sign in the 
telephone number indicates a 5-second delay for the Ventel Modem. 

tc (str) Indicates that the list of capabilities is continued in the named description. This is used pri
marily to share common capability information. 

Last change: 19 October 1987 Sun Release 4.0 



REMOTE(5) FILE FORMATS 

FILES 

Here is a short example showing the use of the capability continuation feature: 

UNIX-1200:\ 
:dv=/dev/cua0:el="D"U"C"S"Q"O@:du:at=ventel:ie=#$%:oe="D:br#1200: 

arpavaxlax: \ 
:pn=7654321 %:tc=UNIX-1200 

/etc/remote 
/etc/phones 

SEE ALSO 
tip(lC), phones(5), termcap(5) 

Sun Release 4.0 Last change: 19 October 1987 

REMOTE(5) 

1425 



RESOL VE.CONF ( 5) FILE FORMATS RESOL VE.CONF ( 5) 

NAME 
resolve.conf - configuration file for name server routines 

DESCRIPTION 

FILES 

The resolver configuration file contains information that is read by the resolver routines the first time they 
are invoked in a process. The file is designed to be human readable and contains a list of name-value pairs 
that provide various types of resolver information. 

The different configuration options are: 

nameserver address The Internet address (in clot notation) of a name server that the resolver should 
query. At least one name server should be listed. Up to MAXNS (currently 3) 
name servers may be listed, in that case the resolver library queries tries them in 
the order listed. (The algorithm used is to try a name server, and if the query 
times out, try the next, until out of name servers, then repeat trying all the name 
servers until a maximum number of retries are made). 

domain name The default domain to append to names that do not have a dot in them. This de
faults to the domain set by the domainname(l) command. 

address address An Internet address (in dot notation) of any preferred networks. The list of ad
dresses returned by the resolver will be sorted to put any addresses on this net
work before any others. 

The name value pair must appear on a single line, and the keyword (for instance, nameserver) must start 
the line. The value follows the keyword, separated by white space. 

/etc/resolve.conf 

SEE ALSO 
domainname(l), gethostent(3N), resolver(3), named(8C) 

1426 Last change: 19 October 1987 Sun Release 4.0 



RGB(5) FILE FORMATS 

NAME 
rgb - available colors (by name) for colored.it 

SYNOPSIS 
.rgb 

$HOME/.rgb 

/usr/lib/.rgb 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

RGB(5) 

.rgb is an ASCII file containing consecutive lines terminated by newlines. Each line starts with three in
tegers, each in the range 0-255. These integers are the RGB equivilent for the color named on the same line. 
At least one tab character delimits the last integer from the name field. The coloreditor searches for this 
file, first in the current directory; next, in the users home directory; and finally, in /usr/lib. The user can 
add to or delete from the .rgb file that he or she has access to, thus changing the available color table for 
subsequent invocations of coloredit. 

EXAMPLE 
000 
00 255 
95 159 159 
66 66111 
107 35 142 

SEE ALSO 
coloredit( 1) 

Sun Release 4.0 

Black 
Blue 
Cadet Blue 
Cornflower Blue 
Dark Slate Blue 

Last change: 19 February 1988 1427 



RPC(5) FILE FORMATS RPC(5) 

NAME 
rpc - rpc program number data base 

SYNOPSIS 
/etc/rpc 

DESCRIPTION 

FILES 

The rpc file contains user readable names that can be used in place of rpc program numbers. Each line has 
the following information: 

name of server for the rpc program 
rpc program number 
aliases 

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. 

Here is an example of the /etc/rpc file from the SunOS System. 

# 
# rpc 1.10 87/04/10 
# 
portmapper 100000 portmap sunrpc 
rstatd 100001 rstat rup perfmeter 
rusersd 100002 rusers 
nfs 100003 nfsprog 
ypserv 100004 ypprog 
mountd 100005 mount showmount 
ypbind 100007 
walld 100008 rwall shutdown 
yppasswdd 100009 yppasswd 
etherstatd 100010 etherstat 
rquotad 100011 rquotaprog quota rquota 
sprayd 100012 spray 
3270 _ mapper 100013 
rje_mapper 100014 
selection svc 100015 selnsvc 
database svc . 100016 
rexd 100017 rex 
alls 100018 
sched 100019 
llockmgr 100020 
nlockmgr 100021 
x25.inr 100022 
statmon 100023 
status 100024 
bootparam 100026 
ypupdated 100028 ypupdate 
keyserv 100029 keyserver 

/etc/rpc 

SEE ALSO 
getrpcent(3N) 

1428 Last change: 26 September 1985 Sun Release 4.0 



SCCSFILE ( 5) FILE FORMATS SCCSFILE ( 5 ) 

NAME 
sccsfile - format of SCCS file 

DESCRIPTION 
An secs file is an ASCII file. It consists of six logical parts: the checksum, the delta table (contains infor
mation about each delta), user names (contains login names and/or numerical group IDs of users who may 
add deltas), flags (contains definitions of internal keywords), comments (contains arbitrary descriptive in
formation about the file), and the body (contains the actual text lines intermixed with control lines). 

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading) character ( octal 
001). This character is hereafter referred to as the control character and will be represented graphically as 
'@'. Any line described below which is not depicted as beginning with the control character is prevented 
from beginning with the control character. 

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999). 

Each logical part of an secs file is described in detail below. 

Checksum 
The checksum is the first line of an SCCS file. The form of the line is: 

@hDDDDD 

The value of the checksum is the sum of all characters, except those of the first line. The @h pro
vides a magic number of (octal) 064001. 

Delta table 
The delta table consists of a variable number of entries of the form: 

@s DDDDD/DDDDD/DDDDD 
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD 
@i DDDDD .. . 
@xDDDDD .. . 
@gDDDDD .. . 
@m <MR number> 

@c <comments> ••• 

@e 

The first line (@s) contains the number of lines inserted/deleted/unchanged respectively. The second line 
(@d) contains the type of the delta (currently, normal: D< and removed: R), the secs ID of the delta, the 
date and time of creation of the delta, the login name corresponding to the real user ID at the time the delta 
was created, and the serial numbers of the delta and its predecessor, respectively. 

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and ignored, respective
ly. These lines are optional. 

The @m lines (optional) each contain one MR number associated with the delta; the @c lines contain com
ments associated with the delta. 

The @e line ends the delta table entry. 

User names 

Sun Release 4.0 

The list of login names and/or numerical group IDs of users who may add deltas to the file, 
separated by NEWLINE characters. The lines containing these login names and/or numerical 
group IDs are surrounded by the bracketing lines @u and @U. An empty list allows anyone to 

Last change: 6 January 1988 1429 



SCCSFILE ( 5) 

Flags 

FILE FORMATS SCCSFILE ( 5) 

make a delta. 

Keywords used internally (see admin(l) for more information on their use). Each flag line takes 
the form: 

@f <flag> <optional text> 

The following flags are defined: 

@ft <type of program> 
@fv <program name> 
@fi 
@fb 
@fm 
@ff 
@fc 
@fd 
@fn 
@fj 
@fl 
@fq 
@fe 

<module name> 
<floor> 
<ceiling> 
<default-sid> 

<lock-releases> 
<user defined> 
<011> 

The t flag defines the replacement for the identification keyword. The v flag controls prompting 
for MR numbers in addition to comments; if the optional text is present it defines an MR number 
validity checking program. The i flag controls the warning/error aspect of the 'No id keywords' 
message. When the i flag is not present, this message is only a warning; when the i flag is present, 
this message will cause a "fatal" error (the file will not be gotten, or the delta will not be made). 
When the b flag is present the -b keyletter may be used on the get command to cause a branch in 
the delta tree. The m flag defines the first choice for the replacement text of the sccsfile.5 
identification keyword. The f flag defines the "floor" release; the release below which no deltas 
may be added. The c flag defines the "ceiling" release; the release above which no deltas may be 
added. The d flag defines the default SID to be used when none is specified on a get command. 
The n flag causes delta to insert a "null" delta (a delta that applies no changes) in those releases 
that are skipped when a delta is made in a new release (for example, when delta 5.1 is made after 
delta 2.7, releases 3 and 4 are skipped). The absence of then flag causes skipped releases to be 
completely empty. The j flag causes get to allow concurrent edits of the same base SID. The I 
flag defines a list of releases that are locked against editing (get(l) with the -e keyletter). The q 
flag defines the replacement for the identification keyword. The e flag indicates whether a file is 
encoded or not. A 1 indicates that the file is encoded. Files need to be encoded when they contain 
control characters, or when they do not end with a NEWLINE. The e flag allows for any type of file 
to be checked in. 

Comments 

Body 

1430 

Arbitrary text surrounded by the bracketing lines @t and @T. The comments section typically 
will contain a description of the file's purpose. 

The body consists of text lines and control lines. Text lines do not begin with the control charac
ter, control lines do. There are three kinds of control lines: insert, delete, and end, represented 
by: 

@IDDDDD 
@DDDDDD 
@EDDDDD 

respectively. The digit string is the serial number corresponding to the delta for the control line. 

Last change: 6 January 1988 Sun Release 4.0 



SCCSFILE ( 5) FILE FORMATS SCCSFILE ( 5) 

SEE ALSO 
admin(l), delta(l), get(l), prs(l) 

Sun Release 4.0 Last change: 6 January 1988 1431 



SERVICES ( 5 ) FILE FORMATS SERVICES ( 5) 

NAME 
services - Internet services and aliases 

DESCRIPTION 

FILES 

The services file contains an entry for each service available through the DARPA Internet. Each entry con
sists of a line of the form: 

service-name port I protocol aliases 

service-name This is the official Internet service name. 

port /protocol This field is composed of the port number and protocol through which the service 
is provided (for instance, 512/tcp ). 

aliases This is a list of alternate names by which the service might be requested. 

Fields can be separated by any number of spaces or TAB's. A'#' (pound-sign) indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. 

Service names may contain any printable character other than a field delimiter, NEWLINE, or comment 
character. 

/ etc/services 

SEE ALSO 
getservent(3N), inetd.conf(5) 

BUGS 
A name server should be used instead of a static file. 

1432 Last change: 19 October 1987 Sun Release 4.0 



SM(5) FILE FORMATS SM(5) 

NAME 
sm, sm.bak, sm.state - in.statd directory and file structures 

SYNOPSIS 
/etc/sm, /etc/sm.bak, /etc/sm.state 

DESCRIPTION 

FILES 

/etc/sm and /etc/sm.bak are directories generated by in.statd. Each entry in /etc/sm represents the name 
of the machine to be monitored by the in.statd daemon. Each entry in /etc/sm.bak represents the name of 
the machine to be notified by the in.statd daemon upon its recovery. 

/etc/sm.state is a file generated by rpc.statd to record the its version number. This version number is in
cremented each time a crash or recovery takes place. 

/etc/sm 
/etc/sm.bak 
I etc/sm.state 

SEE ALSO 
lockd(8C), statd(8C) 

Sun Release 4.0 Last change: 19 October 1987 1433 



STATMON(5) FILE FORMATS STATMON(5) 

NAME 
sm, sm.bak, state - statd directories and file structures 

SYNOPSIS 
/etc/sm /etdsm.bak /etdstate 

DESCRIPTION 

FILES 

/etc/sm and /etdsm.bak are directories generated by statd. Each entry in /etc/sm represents the name of 
the machine to be monitored by the statd daemon. Each entry in /etc/sm.bak represents the name of the 
machine to be notified by the statd daemon upon its recovery. 

/etc/state is a file generated by statd to record its version number. This version number is incremented 
each time a crash or recovery takes place. 

/etc/sm 
/etc/sm.bak 
/etc/state 

SEE ALSO 
lockd(8C), statd(8C) 

1434 Last change: 19 October 1987 Sun Release 4.0 



SYSLOG.CONF ( 5) FILE FORMATS SYSLOG.CONF ( 5) 

NAME 
syslog.conf - configuration file for syslogd system log daemon 

SYNOPSIS 
/ etc/syslog.conf 

DESCRIPTION 
The file /etc/syslog.conf contains information used by the system log daemon, syslogd(8), to forward a sys
tem message to appropriate log files and/or users. syslog preprocesses this file through m4(1 V) to obtain 
the correct information for certain log files. 

A configuration entry is composed of two TAB-separated fields: 

selector action 

The selector field contains a semicolon-separated list of priority specifications of the form: 

facility .level[;facility .level] 

where facility is a system facility, or comma-separated list of facilities, and level is an indication of the 
severity of the condition being logged. Recognized values for facility include: 

user Messages generated by user processes. This is the default priority for messages from 
programs or facilities not listed in this file. 

kern Messages generated by the kernel. 

mail The mail system. 

daemon System daemons, such as ftpd(8C), routed(8C), etc. 

auth The authorization system: login(l), su(l), getty(8), etc. 

lpr The line printer spooling system: lpr(l), lpc(8), lpd(8), etc. 

news Reserved for the USENET network news system. 

uucp Reserved for the UUCP system; it does not currently use the syslog mechanism. 

cron The cron/at facility; crontab(l), at(l), cron(8), etc. 

localO-7 Reserved for local use. 

mark For timestamp messages produced internally by syslogd. 

* An asterisk indicates all facilities except for the mark facility. 

Recognized values for level are (in descending order of severity): 

Sun Release 4.0 

emerg For panic conditions that would normally be broadcast to all users. 

alert For conditions that should be corrected immediately, such as a corrupted system data-
base. 

crit For warnings about critical conditions, such as hard device errors. 

err For other errors. 

warning For warning messages. 

notice For conditions that are not error conditions, but may require special handling. 

info Informational messages. 

debug For messages that are normally used only when debugging a program. 

none Do not send messages from the indicated facility to the selected file. For example, a 
selector of 

* .debug;mail.none 

will send all messages except mail messages to the selected file. 

Last change: 18 February 1988 1435 



SYSLOG.CONF ( 5) FILE FORMATS SYSLOG.CONF ( 5) 

The action field indicates where to forward the message. Values for this field can have one of four forms: 

• A filename, beginning with a leading slash, which indicates that messages specified by the 
selector are to be written to the specified file. The file will be opened in append mode. 

• The name of a remote host, prefixed with an @, as with: @server, which indicates that mes
sages specified by the selector are to be forwarded to the syslogd on the named host. 

• A comma-separated list of usemames, which indicates that messages specified by the selector 
are to be written to the named users if they are logged in. 

• An asterisk, which indicates that messages messages specified by the selector are to be written 
to all logged-in users. 

Blank lines are ignored. Lines for which the first nonwhite character is a '#' are treated as com
ments. 

Sun3861 DESCRIPTION 
The file is as described above, except that there is an additional valid entry type, for translation. A line 
containing the keyword "translate," if present, specifies how system error messages are translated, 
suppressed, or forwarded to appropriate log files and/or users. 

A translation entry in the file is composed of five TAB-separated fields: 

translate source facility input output 

The translate field consists of the word translate and is used to indicate that this is a translation entry. 

The source field contains a comma separated list of source names. Recognized sources are: 

klog Messages placed in /dev/klog by the kernel. 

log 

syslog 

* 

Messages placed in /dev/log file by local programs. 

Messages placed in the internet socket by programs on other systems. 

An asterisk indicates all three sources (klog, log and syslog). 

The/ acility field contains a comma-separated list of facilities. 

The input field is the name of the file used to map error messages (in printf format strings) to numbers. 
This number is used to locate a new string in the file specified in the output field. The format of both files 
is described in translate(5). 

The output file specified by the output field translates the numbers from the input file into the desired error 
messages, and also specifies the format to be used to output each message. 

EXAMPLE 

1436 

With the following configuration file: 
* .notice;mail.info 
•.crit 
kern,mark.debug 
kern.err 

/var/log/notice 
/var/log/ critical 
I dev/ console 
@server 

•~mug * 
• .alert root,operator 
* .alert;auth. warning /var/log/au th 

syslogd will log all mail system messages except debug messages and all notice ( or higher) messages into 
a file named /var/log/notice. It logs all critical messages into /var/log/critical, and all kernel messages and 
20-minute marks onto the system console. 

Last change: 18 February 1988 Sun Release 4.0 



SYSLOG.CONF ( 5) FILE FORMATS SYSLOG.CONF ( 5) 

FILES 

Kernel messages of err (error) severity or higher are forwarded to the machine named server. Emergency 
messages are forwarded to all users. The users "root" and "operator" are informed of any alert messages. 
All messages from the authorization system of warning level or higher are logged in the file /var/log/auth. 

/ etc/syslog.conf 
/var/log/notice 
/var/log/critical 
/var/Iog/auth 

SEE ALSO 
at(l), crontab(l), logger(l), login(l), lpr(l), m4(1V), su(l), syslog(3), translate(5), cron(8), ftpd(8C), 
getty(8), lpc(8), lpd(8), routed(8C), syslogd(8) 

Sun Release 4.0 Last change: 18 February 1988 1437 



TAR(5) FILE FORMATS TAR(5) 

NAME 
tar - tape archive file format 

DESCRIPTION 
tar, (the tape archive command) dumps several files into one, in a medium suitable for transportation. 

A ''tar tape'' or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is represented 
by a header block which describes the file, followed by zero or more blocks which give the contents of the 
file. At the end of the tape are two blocks filled with binary zeros, as an EOF indicator. 

The blocks are grouped for physical I/0 operations. Each group of n blocks (where n is set by the b 
keyletter on the tar(l) command line - default is 20 blocks) is written with a single system call; on nine
track tapes, the result of this write is a single tape record. The last group is always written at the full size, 
so blocks after the two zero blocks contain random data. On reading, the specified or default group size is 
used for the first read, but if that read returns less than a full tape block, the reduced block size is used for 
further reads, unless the B keyletter is used. 

The header block looks like: 

#define TBLOCK512 
#define NAMSIZ 100 
union hblock { 

}; 

char dummy[TBLOCK]; 
struct header { 

char name[NAMSIZ]; 
char mode[8]; 
char uid[S]; 
char gid[8]; 
char size[12]; 
char mtime[12]; 
char chksum[8]; 
char linkflag; 
char linkname[NAMSIZ]; 

} dbuf; 

name is a NULL-terminated string. The other fields are zero-filled octal numbers in ASCII. Each field (of 
width w) contains w-2 digits, a SPACE, and a NULL, except size and mtime, which do not contain the trail
ing NULL. name is the name of the file, as specified on the tar command line. Files dumped because they 
were in a directory which was named in the command line have the directory name as prefix and /filename 
as suffix. mode is the file mode, with the top bit masked off. uid and gid are the. user and group numbers 
which own the file. size is the size of the file in bytes. Links and symbolic links are dumped with this field 
specified as zero. mtime is the modification time of the file at the time it was dumped. chksum is a decimal 
ASCII value which represents the sum of all the bytes in the header block. When calculating the checksum, 
the chksum field is treated as if it were all blanks. linkfiag is ASCII 'O' if the file is ''normal'' or a special 
file, ASCII '1' if it is an hard link, and ASCII '2' if it is a symbolic link. The name linked-to, if any, is in 
linkname, with a trailing NULL. Unused fields of the header are binary zeros (and are included in the 
checksum). 

The first time a given inode number is dumped, it is dumped as a regular file. The second and subsequent 
times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but not the file it was linked 
to, an error message is printed and the tape must be manually re-scanned to retrieve the linked-to file. 

The encoding of the header is designed to be portable across machines. 

SEE ALSO 
tar(l) 

1438 Last change: 19 October 1987 Sun Release 4.0 



TAR(5) FILE FORMATS TAR(5) 

BUGS 
Names or linknames longer than NAMSIZ produce error reports and cannot be dumped. 

Sun Release 4.0 Last change: 19 October 1987 1439 



TERM(5) FILE FORMATS TERM(5) 

NAME 
term - terminal driving tables for nroff 

SYNOPSIS 
/usr/Iib/term/tabname 

DESCRIPTION 

1440 

nroff(l) uses driving tables to customize its output for various types of output devices, such as terminals, 
line printers, daisy-wheel printers, or special output filter programs. These driving tables are written as C 
programs, compiled, and installed in the directory /usr/lib/term. The name of the output device is 
specified with the -T option of nroff. The structure of the terminal table is as follows: 

#define INCH 240 

struct { 

}t; 

int bset; 
int breset; 
int Hor; 
int Vert; 
int Newline; 
int Char; 
int Em; 
int Halfline; 
int Adj; 
char •twinit; 
char •twrest; 
char •twnl; 
char •hlr; 
char •hlf; 
char •flr; 
char •bdon; 
char •bdoff; 
char *ploton; 
char •plotoff; 
char •up; 
char •down; 
char •right; 
char •left; 
char •codetab[256-32]; 
char •zzz; 

The meanings of the various fields are as follows: 

bset Bits to set in the sg_ftags field of the sgtty structure before output; see ttcompat(4M). 

breset Bits to reset in the sg_ftags field of the sgtty structure after output; see ttcompat(4M). 

Hor Horizontal resolution in fractions of an inch. 

Vert Vertical resolution in fractions of an inch. 

Newline Space moved by a NEWLINE (LINEFEED) character in fractions of an inch. 

Char Quantum of character sizes, in fractions of an inch. (that is, a character is a multiple of Char 
units wide) 

Em Size of an em in fractions of an inch. 

Halfline Space moved by a half-LINEFEED (or half-reverse-LINEFEED) character in fractions of an 
inch. 

Last change: 16 February 1988 Sun Release 4.0 



TERM(5) FILE FORMATS TERM(5) 

Adj Quantum of white space, in fractions of an inch. (that is, white spaces are a multiple of Adj 
units wide) 

twinit 

twrest 

twnl 

hlr 

hlf 

fir 

bdon 

bdoff 

ploton 

plotoff 

up 

down 

right 

left 

codetab 

Note: if this is less than the size of the SPACE character (in units of Char; see below for how 
the sizes of characters are defined), nroff will output fractional SPACE characters using plot 
mode. Also, if the -e switch to nroff is used, Adj is set equal to Hor by nroff. 

Set of characters used to initialize the terminal in a mode suitable for nroff. 

Set of characters used to restore the terminal to normal mode. 

Set of characters used to move down one line. 

Set of characters used to move up one-half line. 

Set of characters used to move down one-half line. 

Set of characters used to move up one line. 

Set of characters used to tum on hardware boldface mode, if any. 

Set of characters used to tum off hardware boldface mode, if any. 

Set of characters used to tum on hardware plot mode (for Diablo type mechanisms), if any. 

Set of characters used to tum off hardware plot mode (for Diablo type mechanisms), if any. 

Set of characters used to move up one resolution unit (Vert) in plot mode, if any. 

Set of characters used to move down one resolution unit (Vert) in plot mode, if any. 

Set of characters used to move right one resolution unit (Hor) in plot mode, if any. 

Set of characters used to move left one resolution unit (Hor) in plot mode, if any. 

Definition of characters needed to print an nroff character on the terminal. The first byte is the 
number of character units (Char) needed to hold the character; that is, \001 is one unit wide, 
\002 is two units wide, etc. The high-order bit (0200) is on if the character is to be underlined 
in underline mode (.ul). The rest of the bytes are the characters used to produce the character 
in question. If the character has the sign (0200) bit on, it is a code to move the terminal in plot 
mode. It is encoded as: 

0100 bit on vertical motion. 

0100 bit off horizontal motion. 

040 bit on negative (up or left) motion. 

040 bit off positive (down or right) motion. 

037 bits number of such motions to make. 

zzz A zero terminator at the end. 

All quantities which are in units of fractions of an inch should be expressed as 'INCH*num/denom', where 
num and denom are respectively the numerator and denominator of the fraction; that is, 1/48 of an inch 
would be written as 'INCH/48'. 

If any sequence of characters does not pertain to the output device, that sequence should be given as a null 
string. 

The following is a sample codetab encoding. 

Sun Release 4.0 

"\001 ", 
"\001!", 
"\001\"", 
"\001#", 
"\001$", 

/*space*/ 
f*!*I 
'*"*! 
f*#*I 
1*$*1 

Last change: 16 February 1988 1441 



TERM(5) FILE FORMATS TERM(5) 

"\001 %", I*%*! 
"\001&", f*&*f 
"\001"', '*'*' 
"\001(", f*(*f 
"\001)", f*)*f 
"\001 *", '***' 
"\001+", f*+*f 
"\001,", f*,*' 
"\001-", !•-•! 
"\001.", !•.•! 
"\001/", !•!•! 
"\2010", f*O*f 
"\2011", /•1•/ 
"\2012", /•2•/ 
"\2013", /•3•/ 
"\2014", !•4*1 
"\2015", l•S•I 
"\2016", !•6•! 
"\2017", /•7•/ 
"\2018", !•8•! 
"\2019", f*9*f 
"\001:", !•:•! 
"\001;", !•;•! 
"\001<", l•<•I 
"\001=", l•=•I 
"\001>", l•>•I 
"\001?", !•?*I 
"\001@", !•@•! 
"\201A", f*A•I 
"\201B", /•B•/ 
"\201C", l•C•I 
"\201D", f*D•I 
"\201E", l•E•I 
"\201F", f*F*f 
"\201G", l•G•I 
"\201H", l•H•I 
"\2011", /•I*/ 
"\201J", l•J•I 
"\201K", l•K•I 
"\201L", /•L•/ 
"\201M", l•M*f 
"\201N", l•N•I 
"\2010", l•O•I 
"\201P", l•P*f 
"\201Q", l•Q•I 
"\201R", /•R•/ 
"\201S", l•S•I 
"\201T", l•T•I 
"\201U", /•U•/ 
"\201V", f*V*f 
"\201W", l•W•I 
"\201X", l•X•I 
"\201Y", l•Y•I 

1442 Last change: 16 February 1988 Sun Release 4.0 



TERM(S) FILE FORMATS TERM(S) 

"\201Z", f*Z*f 
"\001[", f*[*f 
"\001\\", '*'*' "\001]", f*]*f 
"\OOr", '*A*' 
"\001_", '* *' "\001"', f*'*f 
"\201a", f*a*f 
"\201b", f*h*f 
"\201c", f*c*f 
"\20ld", f*d*f 
"\201e", f*e*f 
"\201r•, f*f*f 
"\201g", f*g*f 
"\201h", f*h*f 
"\201i"' f*i*f 
"\201j", f*j*I 
"\20lk", f*k*f 
"\2011", f*l*f 
"\201m", f*m*f 
"\2010"' f*D*f 
"\2010"' f*o*f 
"\201p", f*p*f 
"\201q", f*q*f 
"\201r", f*r*f 
"\201s"' f*s*f 
"\201t"' f*t*f 
"\201u", f*u*f 
"\201v", f*v*f 
"\201w", f*w*f 
"\201x", f*x*f 
"\201y", f*y*f 
"\201z", f*z*f 
"\001{", f*{*f 
"\0011", f*l*f 
"\001}", f*}*f 
"\OOr", '*-*' "\000\0", /*narrow sp*/ 
"\001-", /*hyphen*/ 
"\001\016Z\017", /*bullet*/ 
"\002[]", /*square*/ 
"\002--", f *314 em dash*/ 
"\001 " - ' /*rule*/ 
"\0031/4", f*lf4*f 
"\0031/2", 1*112*1 
"\0033/4", 1*314*1 
"\001-", /*minus*/ 
"\2026", f*fi*f 
"\202fl", f*fl*f 
"\202fr', '*"*' "\203ffi", f*ffi*f 
"\203ffl", f*ffl*f 
"\001\016p\017", /*degree*/ 

Sun Release 4.0 Last change: 16 February 1988 1443 



TERM(5) 

1444 

"\OOll\b\342-\302", 
"\001\301s\343s\302", 
"\001"', 
"\001\033Z", 
"\001"', 
"\001_", 
"\001/", 
"\000\0", 
"\001 ", 
"\001\016A\017", 
"\001\016B\017", 
"\001\016C\017", 
"\001\016D\017", 
"\001\016E\017", 
"\001\016F\017", 
"\001\016G\017", 
"\001\016H\017", 
"\001\0161\017", 
"\001\016J\017", 
"\001\016K\017", 
"\001\016L\017", 
"\001\016M\017", 
"\001\016N\017", 
"\001\0160\017", 
"\001\016P\017", 
"\001\016Q\017", 
"\001\016R\017", 
"\001\016S\017", 
"\001\016T\017", 
"\001\016U\017", 
"\001\016V\017", 
"\001\016W\017", 
"\001\016X\017", 
"\001\016#\017", 
"\001\016$\017", 
"\001\016(\017", 
"\001\016+\017", 
"\001\016.\017", 
"\001\0160\017", 
"\001\0169\017", 
"\000", 
"\001\0164\017", 
"\001\0165\017", 
"\001\0167\017", 
"\001\0168\017", 
"\001\016(\017", 
"\001\016Y\017", 
"\001\016k\017", 
"\001>\b_", 
"\001<\b _", 
"\001:\b _", 
"\001-", 
"\001\0160\017", 

FILE FORMATS 

/•dagger•/ 
/•section•/ 
/•foot mark•/ 
/•acute accent•/ 
/•grave accent•/ 
/•underrule•/ 
/•long slash•/ 
/•half narrow space•/ 
/•unpaddable space•/ 
/•alpha•/ 
/•beta•/ 
/•gamma•/ 
/•delta•/ 
/•epsilon•/ 
/•zeta•/ 
/•eta•/ 
/•theta•/ 
/•iota•/ 
/•kappa•/ 
/•lambda•/ 
!•mu•! 
/•nu•/ 
/•xi•/ 
/•omicron•/ 
/•pi•/ 
/•rho•/ 
/•sigma•/ 
/•tau•/ 
/•upsilon•/ 
/•phi•/ 
/•chi•/ 
/•psi•/ 
/•omega•/ 
/•Gamma•/ 
/•Delta•/ 
/•Theta•/ 
/•Lambda•/ 
/•Xi•/ 
/•Pi•/ 
/•Sigma•/ 
f**f 
I• Upsilon•/ 
/•Phi•/ 
/•Psi•/ 
/•Omega•/ 
/•square root•/ 
/•\(ts yields script-I•/ 
/•root en•/ 
l*>=*I 
f*<=*f 
/•identically equal•/ 
/•equation minus•/ 
/•approx =•I 

Last change: 16 February 1988 

TERM(5) 

Sun Release 4.0 



TERM(5) FILE FORMATS TERM(5) 

FILES 

"\001\016n\017", 
"\001=\b/", 
"\002-\242-\202>", 
"\002<\b\202-\242\200-", 
"\0011\b"", 
"\00ll\b\302v\342", 
"\001=", 
"\001\0161\017", 
"\001\016}\017", 
"\001\016j\017", 
"\001\2431\203 _ \2031\243", 
"\001\2431\203\351_ \311\2031\243", 
"\001\243(\203\302-\345-\303", 
"\001\302-\345-\303\203)\243", 
"\001 \b\243(\203\302-\345-\303", 
"\00(\b\302-\345-\303\203)\243", 
"\001\016-\017", 
"\001\2000\201\301 '\241\341 '\241\341 '\201\301", 
"\001\016:\017", 
"\001\200-\202\341,\301\242", 
"\001\016?\017", 
"\002o\242c\202", 
"\0010\b/", 
"\001<\b\341-\302", 
"\001+", 
"\003(R)", 
"\003(C)", 
"\0011"' 
"\001\033Y", 
"\0011\b\342=\302", 
"\002=>", 
"\002<=", 
"\001 *", 
"\001\0162\017", 
"\0011", 
"\0010", 
"\0011", 
"\0011", 
"\0011", 
"\0011", 
"\001\016]\017", 
"\001\016\\\017", 
"\0011", 
"\0011", 
"\0011", 
"\0011", 
"\0011" 

driving tables 

/*approximates*/ 
/*not equal*/ 
/*right arrow*/ 
/*left arrow*/ 
/*up arrow*/ 
/*down arrow*/ 
/*equation equal*/ 
/*multiply*/ 
/*divide*/ 
/*plus-minus*/ 
/*cup (union)*/ 
/*cap (intersection)*/ 
/*subset of*/ 
/*superset of*/ 
/*improper subset*/ 
/*improper superset*/ 
/*infinity*/ 
/*partial derivative*/ 
/*gradient*/ 
/*not*/ 
/*integral sign*/ 
/*proportional to*/ 
/*empty set*/ 
/*member of*/ 
/*equation plus*/ 
/*registered*/ 
/*copyright*/ 
/*box rule *I 
/*cent sign*/ 
/*double dagger*/ 
/*right hand*/ 
/*left hand*/ 
/*math * *I 
l*\(bs yields small sigma*/ 
/*or (was star)*/ 
/*circle*/ 
/*left top of big brace*/ 
/*left bot of big brace*/ 
/*right top of big brace*/ 
/*right bot of big brace*/ 
/*left center of big brace*/ 
/*right center of big brace*/ 
/*bold vertical*/ 
l*Jeft floor (lb of big bracket)*/ 
/*right floor (rb of big bracket)*/ 
/*left ceiling Ot of big bracket)*/ 
/*right ceiling (rt of big bracket)*/ 

/usr/Iib/term/tabname 
/usr/Iib/term/README list of terminals supported by nroff( 1) 

SEE ALSO 
nroff(l), ttcompat(4M) 

Sun Release 4.0 Last change: 16 February 1988 1445 



TERM(5V) FILE FORMATS TERM(5V) 

NAME 
term - format of compiled term file 

SYNOPSIS 
term 

DESCRIPTION 

1446 

Compiled terminfo descriptions are placed under the directory /usr/share/Iib/terminfo. In order to avoid 
a linear search of a huge system directory, a two-level scheme is used: /usr/share/Iib/terminfo/c/name 
where name is the name of the terminal, and c is the first character of name. Thus, act4 can be found in the 
file /usr/share/lib/terminfo/a/act4. Synonyms for the same terminal are implemented by multiple links to 
the same compiled file. 

The format has been chosen so that it will be the same on all hardware. An 8 or more bit byte is assumed, 
but no assumptions about byte ordering or sign extension are made. 

The compiled file is created with the tic(8V) program, and read by the routine setupterm (see curses(3V)). 
Both of these pieces of software are part of curses(3V). The file is divided into six parts: 

the header, 
terminal names, 
boolean flags, 
numbers, 
strings, 
and 
string table. 

The header section begins the file. This section contains six short integers in the format described below. 
These integers are: 

(1) the magic number (octal 0432); 
(2) the size, in bytes, of the names section; 
(3) the number of bytes in the boolean section; 
( 4) the number of short integers in the numbers section; 
(5) the number of offsets (short integers) in the strings section; 
( 6) the size, in bytes, of the string table. 

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of the value, 
and the second byte contains the most significant 8 bits. (Thus, the value represented is 256*second+first.) 
The value -1 is represented by 0377, 0377, other negative value are illegal. The -1 generally means that a 
capability is missing from this terminal. Note: this format corresponds to the hardware of the VAX and 
PDP-11. Machines where this does not correspond to the hardware read the integers as two bytes and com
pute the result. 

The terminal names section comes next. It contains the first line of the terminfo description, listing the 
various names for the terminal, separated by the 'I' character. The section is terminated with an ASCII NUL 
character. 

The boolean flags have one byte for each flag. This byte is either O or 1 as the flag is present or absent. 
The capabilities are in the same order as the file <term.h>. 

Between the boolean section and the number section, a NULL byte will be inserted, if necessary, to ensure 
that the number section begins on an even byte. All short integers are aligned on a short word boundary. 

The numbers section is similar to the flags section. Each capability takes up two bytes, and is stored as a 
short integer. If the value represented is -1, the capability is taken to be missing. 

The strings section is also similar. Each capability is stored as a short integer, in the format above. A 
value of -1 means the capability is missing. Otherwise, the value is taken as an offset from the beginning 
of the string table. Special characters in "X or \c notation are stored in their interpreted form, not the print
ing representation. Padding information $<nn> and parameter information %x are stored intact in uninter
preted form. 

Last change: 19 October 1987 Sun Release 4.0 



TERM(5V) FILE FORMATS TERM(5V) 

FILES 

The final section is the string table. It contains all the values of string capabilities referenced in the string 
section. Each string is NULL terminated. 

Note: it is possible for setupterm to expect a different set of capabilities than are actually present in the 
file. Either the database may have been updated since setupterm has been recompiled (resulting in extra 
unrecognized entries in the file) or the program may have been recompiled more recently than the database 
was updated (resulting in missing entries). The routine setupterm must be prepared for both possibilities 
- this is why the numbers and sizes are included. Also, new capabilities must always be added at the end 
of the lists of boolean, number, and string capabilities. 

As an example, an octal dump of the description for the Microterm ACT 4 is included: 

microtermlact41microterm act iv, 
cr="M, cudl="J, ind="J, bel="G, am, cubl="H, 
ed="_, el="", clear="L, cup="1o/c:plo/<Co/c:p2o/ce, 
cols#80, lines#24, cufl="X, cuul="Z, hc:xne="], 

000 032 001 \0 025 \0 \b \0 212 \0 " \0 m 

020 0 e r m I a C 4 m C 

040 t e r m a C t V \0 \0 001 
060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 

C r 

r 0 

\0 \0 
\0 \0 

100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377 377 377 
120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0 
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0 
160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377 
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 

* 
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377 
540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0 
560 024 % p % C % p 2 % C \0 \n \0 035 \0 
600 \b \0 030 \0 032 \0 \n \0 

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 128 
bytes. 

/usr /share/Iib/terminf o/ * / * 
compiled terminal capability data base 

SEE ALSO 
curses(3V), terminfo(5V), tic(8V) 

Sun Release 4.0 Last change: 19 October 1987 1447 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

NAME 
termcap - terminal capability data base 

DESCRIPTION 
termcap is a data base describing the capabilities of terminals. Terminals are described in termcap source 
descriptions by giving a set of capabilities which they have, by describing how operations are performed, 
by describing padding requirements, and by specifying initialization sequences. This database is used by 
applications programs such as vi(l), and libraries such as curses(3X), so they can work with a variety of 
terminals without changes to the programs. 

Each termcap entry consist of a number of colon-separated(:) fields. The first field for each terminal lists 
the various names by which it is known, separated by bar ( I ) characters. The first name is always two 
characters long, and is used by older (version 6) systems (which store the terminal type in a 16-bit word in 
a system-wide database). The second name given is the most common abbreviation for the terminal (this is 
the one to which the environment variable TERM would normally be set). The last name should fully iden
tify the terminal's make and model. All other names are taken as synonyms for the initial terminal name. 
All names but the first and last should be in lower case and contain no blanks; the last name may well con
tain upper case and blanks for added readability. 

Terminal names (except for the last, verbose entry) should be chosen using the following conventions: 

• The particular piece of hardware making up the terminal should have a root name chosen; for example, 
for the Hewlett-Packard 2621, bp2621. This name should not contain hyphens. 

• Modes that the hardware can be in or user preferences should be indicated by appending a hyphen and 
an indicator of the mode. Thus, a vtlOO in 132-column mode would be given as: vtlOO-w. The fol
lowing suffixes should be used where possible: 

Suffix Meaning Example 

-w wide mode (more than 80 columns) vtlOO-w 
-am with automatic margins (usually default) vtlOO-am 
-nam without automatic margins vtlOO-nam 
-n number of lines on the screen aaa-60 
-na no arrow keys (leave them in local) conceptlOO-na 
-np number of pages of memory concept100-4p 
-rv reverse video conceptlOO-rv 

Terminal entries may continue onto multiple lines by giving a\ as the last character of a line, and empty 
fields may be included for readability (here between the last field on a line and the first field on the next). 
Comments may be included on lines beginning with#. 

Types of Capabilities 

144R 

Terminal capabilities each have a two-letter code, and are of three types: 

boolean 

numeric 

string 

These indicate particular features of the terminal. For instance, an entry for a terminal that 
has automatic margins ( an automatic RETURN and LINEFEED when the end of a line is 
reached) would contain a field with the boolean capability am. 

These give the size of the display of some other attribute. Numeric capabilities are followed 
by the character'#', and a number. An entry for a teminal with an SO-column display would 
have a field containing co#SO. 

These indicate the character sequences used to perform particular terminal operations. 
String-valued capabilities, such as ce (clear-to-end-of-line sequence) are given by the two
letter code, followed by the character '=', and a string (which ends at the following : field 
delimiter). 

A delay factor, in milliseconds may appear after the'='. Padding characters are supplied by tputs after the 
remainder of the string is sent. The delay can be either a number, or a number followed by the character 
'*', which indicates that the proportional padding is required, in which case the number given is the 

Last change: 16 February 1988 Sun Release 4.0 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

amount of padding for each line affected by an operation using that capability. (In the case of an insert
character operation, the factor is still the number of lines affected; this is always 1 unless the terminal has 
in and the software uses it.) 

When a* is specified, it is sometimes useful to give a delay of the form 3.5 to specify a delay per line to 
tenths of milliseconds. (Only one decimal place is allowed.) 

Comments 
To comment-out a capability field, insert a'.' (period) as the first character in that field (following the:). 

Escape Sequence Codes 
A number of escape sequences are provided in the string-valued capabilities for easy encoding of charac
ters there: 

\E maps to ESC 
"X maps to CTRL-X for any appropriate character X 
\n maps to LINEFEED 
\r maps to RETURN 
\t maps to TAB 
\b maps to BACKSPACE 
\f maps to FORMFEED 

Finally, characters may be given as three octal digits after a backslash (for example, \123), and the charac
ters" (caret) and\ (backslash) may be given as\" and\\ respectively. 

If it is necessary to place a: in a capability it must be escaped in octal as \072. 

If it is necessary to place a NUL character in a string capability it must be encoded as \200. (The routines 
that deal with termcap use C strings and strip the high bits of the output very late, so that a \200 comes out 
as a \000 would.) 

Parameterized Strings 
Cursor addressing and other strings requiring parameters are described by a parameterized string capabili
ty, with printf(3S)-like escapes (%x) in it; other characters are passed through unchanged. For example, 
to address the cursor, the cm capability is given, using two parameters: the row and column to move to. 
(Rows and columns are numbered from zero and refer to the physical screen visible to the user, not to any 
unseen memory. If the terminal has memory-relative cursor addressing, that can be indicated by an analo
gous CM capability.) 

The % escapes have the following meanings: 

% % produce the character % 
%d output value as in printf %d 
%2 output value as in printf %2d 
%3 output value as in printf %3d 
%. output value as in printf %c 
%+x addx to value, then do'%.' 
%>.xy if value> x then add y, no output 
% r reverse order of two parameters, no output 
% i increment by one, no output 
%n exclusive-or all parameters with 0140 (Datamedia 2500) 
%B BCD (16•(value/10)) + (value%10), no output 
%0 Reverse coding (value - 2•(value%16)), no output (Delta Data) 

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y 
padded for 6 milliseconds. Note: the order of the row and column coordinates is reversed here and that the 
row and column are sent as two-digit integers. Thus its cm capability is ':cm=6\E&%r%2c%2Y:'. Ter
minals that use '%.' need to be able to backspace the cursor (le) and to move the cursor up one line on the 
screen (up). This is necessary because it is not always safe to transmit \n, "D, and \r, as the system may 
change or discard them. (Programs using termcap must set terminal modes so that TAB characters are not 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

expanded, making \t safe to send. This turns out to be essential for the Ann Arbor 4080.) 

A final example is the Lear Siegler ADM-3a, which offsets row and column by a blank character, thus it re
quires ':cm=\E=%+ %+:'. 

Row or column absolute cursor addressing can be given as single-parameter capabilities ch (horizontal po
sition absolute) and cv (vertical position absolute). Sometimes these are shorter than the more general 
two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in preference to cm. If there 
are parameterized local motions (for example, move n positions to the right) these can be given as DO, LE, 
RI, and UP with a single parameter indicating how many positions to move. These are primarily useful if 
the terminal does not have cm, such as the Tektronix 4025. 

Delays 
Certain capabilities control padding in the terminal driver. These are primarily needed by hardcopy termi
nals and are used by the tset (1) program to set terminal driver modes appropriately. Delays embedded in 
the capabilities er, sf, le, ff, and ta will set the appropriate delay bits in the terminal driver. If pb (padding 
baud rate) is given, these values can be ignored at baud rates below the value of pb. For 4.2BSD tset, the 
delays are given as numeric capabilities dC, dN, dB, dF, and dT instead. 

Similar Terminals 
If there are two very similar terminals, one can be defined as being just like the other with certain excep
tions. The string capability tc can be given with the name of the similar terminal. This capability must be 
last, and the combined length of the entries must not exceed 1024. The capabilities given before tc over
ride those in the terminal type invoked by tc. A capability can be canceled by placing xx@ to the left of 
the tc invocation, where xx is the capability. For example, the entry 

hn I 2621-nl:ks@:ke@:tc=2621: 

defines a 2621-nl that does not have the ks or ke capabilities, hence does not turn on the function key la
bels when in visual mode. This is useful for different modes for a terminal, or for different user prefer
ences. 

CAPABILITIES 

1450 

The characters in the Notes field in the next table have the following meanings (more than one may apply 
to a capability): 

N indicates numeric parameter(s) 
P indicates that padding may be specified 
* indicates that padding may be based on the number of lines affected 
o indicates capability is obsolete 

Obsolete capabilities have no terminf o equivalents, since they were considered useless, or are subsumed 
by other capabilities. New software should not rely on them. 

Name Type Notes Description 

!l str sent by shifted save key 
!2 str sent by shifted suspend key 
!3 str sent by shifted undo key 
#1 str sent by shifted help key 
#2 str sent by shifted home key 
#3 str sent by shifted input key 
#4 str sent by shifted left-arrow key 
%0 str sent by redo key 
%1 str sent by help key 
%2 str sent by mark key 
%3 str sent by message key 
%4 str sent by move key 
%5 str sent by next-object key 
%6 str sent by open key 
%7 str sent by options key 

Last change: 16 February 1988 Sun Release 4.0 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

%8 str sent by previous-object key 
%9 str sent by print or copy key 
%a str sent by shifted message key 
%b str sent by shifted move key 
%c str sent by shifted next-object key 
%d str sent by shifted options key 
%e str sent by shifted previous-object key 
%f str sent by shifted print or copy key 
%g str sent by shifted redo key 
%h str sent by shifted replace key 
%1 str sent by shifted right-arrow key 
%j str sent by shifted resume key 
&O str sent by shifted cancel key 
&l str sent by ref(erence) key 
&2 str sent by refresh key 
&3 str sent by replace key 
&4 str sent by restart key 
&S str sent by resume key 
&6 str sent by save key 
&7 str sent by suspend key 
&8 str sent by undo key 
&9 str sent by shifted beg(inning) key 
*O str sent by shifted find key 
*l str sent by shifted cmd ( command) key 
*2 str sent by shifted copy key 
*3 str sent by shifted create key 
•4 str sent by shifted delete-char key 
*S str sent by shifted delete-line key 
*6 str sent by select key 
•7 str sent by shifted end key 
*8 str sent by shifted clear-line key 
*9 str sent by shifted exit key 
Si bool printer will not echo on screen 
@O str sent by find key 
@1 str sent by beg(inning) key 
@2 str sent by cancel key 
@3 str sent by close key 
@4 str sent by cmd ( command) key 
@S str sent by copy key 
@6 str sent by create key 
@7 str sent by end key 
@8 str sent by enter/send key (unreliable) 
@9 str sent by exit key 
AL str (NP*) add n new blank lines 
cc str terminal settable command character in prototype 
CM str (NP) memory-relative cursor motion to row m, column n 
DC str (NP*) delete n characters 
DL str (NP*) delete n lines 
DO str (NP*) move cursor down n lines 
EP bool (o) even parity 
Fl-F9 str sent by function keys 11-19 
FA-FZ str sent by function keys 20-45 
Fa-Fr str sent by function keys 46-63 
HC bool cursor is hard to see 
HD bool (o) half-duplex 
IC str (NP*) insert n blank characters 
Kl str sent by keypad upper left 
K2 str sent by keypad center 

Sun Release 4.0 Last change: 16 February 1988 1451 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

KJ str sent by keypad upper right 
K4 str sent by keypad lower left 
KS str sent by keypad lower right 
LC bool (o) lower-case only 
LE str (NP) move cursor left n positions 
LF str (P) tum off soft labels 
LO str (P) tum on soft labels 
MC str (P) clear left and right soft margins 
ML str (P) set soft left margin 
MR str (P) set soft right margin 
NL bool (o) \n is NEWLINE, not LINEFEED 
NP bool pad character does not exist 
NR bool ti does not reverse te 
NI num number of labels on screen (start at 1) 
OP bool (o) odd parity 
RA str (P) tum off automatic margins 
RF str send next input character (for ptys) 
RI str (NP) move cursor right n positions 
RX str (P) tum off xoff/xon handshaking 
SA str (P) tum on automatic margins 
SF str (NP*) scroll forward n lines 
SR str (NP*) scroll backward n lines 
sx str (P) tum on xoff/xon handshaking 
UC bool (o) upper-case only 
UP str (NP*) move cursor up n lines 
XF str x-off character (default OC3) 

XN str x-on character (default oc1) 
ac str graphic character set pairs aAbBcC - def= VTlOO 
ae str (P) end alternate character set 
al str {P*) add new blank line 
am bool terminal has automatic margins 
as str (P) start alternate character set 
be str (o) backspace if not "H 
bl str (P) audible signal (bell) 
bs bool (o) terminal can backspace with "H 
ht str (P) back-tab 
bw bool le (backspace) wraps from column O to last column 
cb str (P) clear to beginning of line, inclusive 
cd str {P*) clear to end of display 
ce str (P) clear to end of line 
ch str (NP) set cursor column (horizontal position) 
cl str (P*) clear screen and home cursor 
cm str (NP) screen-relative cursor motion to row m, column n 
co num number of columns in a line 
er str {P*) RETURN 
cs str (NP) change scrolling region to lines m through n (VTl 00) 
ct str (P) clear all tab stops 
CV str (NP) set cursor row (vertical position) 
dB num (o) milliseconds of bs delay needed ( default 0) 
dC num (o) milliseconds of er delay needed ( default 0) 
dF num (o) milliseconds of ff delay needed ( default 0) 
dN num (o) milliseconds of nl delay needed ( default 0) 
dT num (o) milliseconds of horizontal tab delay needed ( default 0) 
dV num (o) milliseconds of vertical tab delay needed (default 0) 
da bool display may be retained above the screen 
db bool display may be retained below the screen 
de str {P*) delete character 
di str {P*) delete line 

1452 Last change: 16 February 1988 Sun Release 4.0 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

dm str enter delete mode 
do str down one line 
ds str disable status line 
eA str (P) enable graphic character set 
ec str (NP) erase n characters 
ed str end delete mode 
ei str end insert mode 
eo bool can erase overstrikes with a blank 
es bool escape can be used on the status line 
ff str {P*) hardcopy terminal page eject 
fs str return from status line 
gn bool generic line type (for example dialup, switch) 
he bool hardcopy terminal 
hd str half-line down (forward 1/2 linefeed) 
ho str (P) home cursor 
hs bool has extra "status line" 
hu str half-line up (reverse 1/2 linefeed) 
hz bool cannot print-s (Hazeltine) 
i1 str terminal initialization string (terminfo only) 
i3 str terminal initialization string (terminfo only) 
IP str pathname of program for initialization (terminfo only) 
ic str (P*) insert character 
if str name of file containing initialization string 
im str enter insert mode 
in bool insert mode distinguishes nulls 
Ip str {P*) insert pad after character inserted 
is str terminal initialization string 
it num tab stops initially every n positions 
k0-k9 str sent by function keys 0-9 
k; str sent by function key 10 
kA str sent by insert-line key 
kB str sent by back-tab key 
kC str sent by clear-screen or erase key 
kD str sent by delete-character key 
kE str sent by clear-to-end-of-line key 
kF str sent by scroll-forward/down key 
kH str sent by home-down key 
kl str sent by insert-character or enter-insert-mode key 
kL str sent by delete-line key 
kM str sent by insert key while in insert mode 
kN str sent by next-page key 
kP str sent by previous-page key 
kR str sent by scroll-backward/up key 
kS str sent by clear-to-end-of-screen key 
kT str sent by set-tab key 
ka str sent by clear-all-tabs key 
kb str sent by backspace key 
kd str sent by down-arrow key 
ke str out of "keypad transmit'' mode 
kb str sent by home key 
kl str sent by left-arrow key 
km bool has a "meta" key (shift, sets parity bit) 
kn num (o) number of function (k0-k9) keys ( default 0) 
ko str (o) termcap entries for other non-function keys 
kr str sent by right-arrow key 
ks str put terminal in "keypad transmit'' mode 
kt str sent by clear-tab key 
ku str sent by up-arrow key 

Sun Release 4.0 Last change: 16 February 1988 1453 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

10-19 str labels on function keys 0-9 if not f0-f9 
la str label on function key 10 if not fl 0 
le str (P) move cursor left one position 
lh num number of rows in each label 
Ii num number of lines on screen or page 
II str last line, first column 
Im num lines of memory if> Ii (0 means varies) 
Iw num number of columns in each label 
ma str (o) arrow key map (used by vi version 2 only) 
mb str tum on blinking attribute 
md str tum on bold (extra bright) attribute 
me str tum off all attributes 
mh str tum on half-bright attribute 
mi bool safe to move while in insert mode 
mk str tum on blank attribute (characters invisible) 
ml str (o) memory lock on above cursor 
mm str tum on "meta mode" (8th bit) 
mo str tum off "meta mode" 
mp str tum on protected attribute 
mr str tum on reverse-video attribute 
ms bool safe to move in standout modes 
mu str (o) memory unlock (tum off memory lock) 
nc bool (o) no correctly-working er (Datamedia 2500, Hazeltine 2000) 
nd str non-destructive space (cursor right) 
nl str (o) NEWLINE character if not 
ns bool (o) terminal is a CRT but does not scroll 
nw str (P) NEWLINE (behaves like er followed by do) 
nx bool padding will not work, xofflxon required 
OS bool terminal overstrikes 
pO str (N) tum on the printer for n bytes 
pb num lowest baud where delays are required 
pc str pad character (default NUL) 
pf str tum off the printer 
pk str program function key n to type string s (terminf o only) 
pl str program function key n to execute string s (terminf o only) 
pn str (NP) program label n to show string s (terminfo only) 
po str tum on the printer 
ps str print contents of the screen 
pt bool (o) has hardware tab stops (may need to be set with is) 
px str program function key n to transmit string s (terminfo only) 
rl str reset terminal completely to sane modes (terminfo only) 
r2 str reset terminal completely to sane modes (terminfo only) 
r3 str reset terminal completely to sane modes (terminfo only) 
rP str (P) like ip but when in replace mode 
re str (P) restore cursor to position of last sc 
rf str name of file containing reset string 
ri ? unkown at present 
rp str (NP*) repeat character c n times 
rs str reset terminal completely to sane modes 
sa str (NP) define the video attributes (9 parameters) 
SC str (P) save cursor position 
se str end standout mode 
sf str (P) scroll text up 
sg num number of garbage chars left by so or se ( default 0) 
so str begin standout mode 
sr str (P) scroll text down 
st str set a tab stop in all rows, current column 
ta str (P) move cursor to next 8-position hardware tab stop 

1454 Last change: 16 February 1988 Sun Release 4.0 



TERMCAP(5) FILE FORMATS TERMCAP(5) 

tc str 
te str 
ti str 
ts str 
UC str 
ue str 
ug num 
ul bool 
up str 
us str 
vb str 
ve str 
vi str 
vs str 
vt num 
wt str 
ws num 
xb bool 
xn bool 
XO bool 
xr bool 
XS bool 
xt bool 
xx bool 

entry of similar terminal - must be last 
string to end programs that use termcap 
string to begin programs that use termcap 

(N) go to status line, column n 
underscore one character and move past it 
end underscore mode 
number of garbage chars left by us or ue (default 0) 
underline character overstrikes 
upline (cursor up) 
start underscore mode 
visible bell (must not move cursor) 
make cursor appear normal (undo vs/vi) 
make cursor invisible 
make cursor very visible 
virtual terminal number (not supported on all systems) 

(N) set current window to lines i throughj, columns m through n 
number of columns in status line 
Beehive (fl=ESC, f2="C) 
NEWLINE ignored after 80 cols (Concept) 
terminal uses xoff/xon handshaking 

( o) RETURN acts like ce er nl (Delta Data) 
standout not erased by overwriting (Hewlett-Packard) 
TAB characters destructive, magic so char (Teleray 1061) 

( o) Tektronix 4025 insert-line 

ENVIRONMENT 

FILES 

If the environment variable TERMCAP contains an absolute pathname, programs look to that file for termi
nal descriptions, rather than /usr/share/lib/termcap. If the value of this varible is in the form of a 
termcap entry, programs use that value for the terminal description. 

/usr/share/Iib/termcap file containing terminal descriptions 

SEE ALSO 
ex(l), more(l), tset(l), ul(l), vi(l), curses(3X), printf(3S), termcap(3X), term(5V), terminfo(5V) 

System and Network Administration 

CAVEATS AND BUGS 
UNIX System V uses terminfo(5V) rather than termcap. SunOS supports either termcap or terminfo(5V) 
terminal databases, depending on whether you link with the termcap(3X) or curses(3V) libraries. Transi
tions between the two should be relatively painless if capabilities flagged as "obsolete" are avoided. 

vi allows only 256 characters for string capabilities, and the routines in termcap(3X) do not check for 
overflow of this buffer. The total length of a single entry (excluding only escaped NEWLINE characters) 
may not exceed 1024. 

Not all programs support all entries. 

Sun Release 4.0 Last change: 16 February 1988 1455 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

NAME 
terminfo - terminal capability data base 

SYNOPSIS 
/usr /share/Iib/terminf o/? / * 

AVAILABILITY 
This database is available with the System V software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
terminfo is a compiled database (see tic(8V)) describing the capabilities of terminals. Terminals are 
described in term info source descriptions by giving a set of capabilities which they have, by describing 
how operations are performed, by describing padding requirements, and by specifying initialization se
quences. This database is used by applications programs, and by libraries such as curses(3V), so they can 
work with a variety of terminals without changes to the programs. To obtain the source description for a 
terminal, use the -I option of infocmp(8V). 

Entries in terminfo source files consist of a number of comma-separated fields. White space after each 
comma is ignored. The first line of each terminal description in the terminfo database gives the name by 
which terminfo knows the terminal, separated by pipe (I) characters. The first name given is the most 
common abbreviation for the terminal (this is the one to which the environment variable TERM would nor
mally be set), the last name given should be a long name fully identifying the terminal, and all others are 
understood as synonyms for the terminal name. All names but the last should contain no blanks; the last 
name may contain blanks for readability. 

Terminal names (except for the last, verbose entry) should be chosen using the following conventions: 

• The particular piece of hardware making up the terminal should have a root name chosen; for example, 
for the Hewlett-Packard 2621, hp2621. This name should not contain hyphens. 

• Modes that the hardware can be in or user preferences should be indicated by appending a hyphen and 
an indicator of the mode. Thus, a vtlOO in 132-column mode would be given as: vtlOO-w. The fol
lowing suffixes should be used where possible: 

Suffix Meaning Example 

-w wide mode (more than 80 columns) vtlOO-w 
-am with automatic margins (usually default) vtlOO-am 
-nam without automatic margins vtlOO-nam 
-n number of lines on the screen aaa-60 
-na no arrow keys (leave them in local) conceptlOO-na 
-np number of pages of memory concept100-4p 
-rv reverse video conceptlOO-rv 

CAPABILITIES 

1456 

In the table below, the Variable is the name by which the C programmer (at the terminfo level) accesses 
the capability. The capname is the short name for this variable used in the text of the database. It is used 
by a person updating the database and by the tput( 1 V) command when asking what the value of the capa
bility is for a particular terminal. The Termcap Code is a two-letter code that corresponds to the old 
termcap capability name. 

Capability names have no hard length limit, but an informal limit of 5 characters has been adopted to keep 
them short. Whenever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979 
standard. Semantics are also intended to match those of the specification. 

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

All string capabilities listed below may have padding specified, with the exception of those used for input. 
Input capabilities, listed under the Strings section in the table below, have names beginning with 'key_'. 
The following indicators may appear at the end of the Description for a variable. 

(G) indicates that the string is passed through tparm() with parameters (parms) as given(#/ 
( *) indicates that \Wdding may be based on the number of lines affected. 
(# .) indicates the i parameter. 

l 

Variable 

Boolean 

auto _left_ margin 
auto_ right_ margin 
no esc ctlc 
ceol _ standout _glitch 
eat_ newline _glitch 
erase overstrike 
generic_ type 
hard_copy 
hard cursor 
has_meta_key 
has status line - -
insert_ null_glitch 
memory_ above 
memory_ below 
move Insert mode - -
move standout mode - -
needs xon xoff 
non _rev _rmcup 
no_pad_char 
over strike 
prtr silent 
status line esc ok - - -
dest _tabs_ magic_ smso 
tilde _glitch 
transparent_ underline 
xon xoff 

Number 

columns 
init tabs 
label_ height 
label width 
lines 
lines_ of_ memory 
magic_ cookie _glitch 
num labels 
padding_ baud _rate 
virtual terminal 
width status line - -
String 

acs chars 
back tab 
bell 
carriage_ return 
change_ scroll_ region 

Capna.me 

bw 
am 
xsb 
xhp 
xenl 
eo 
gn 
he 

chts 
km 
hs 
in 
da 
db 
mlr 

msgr 
nxon 

nrrmc 
npc 
OS 

mcSI 
eslok 

xt 
hz 
ul 

xon 

cols 
It 
lh 
lw 

lines 
Im 

xmc 
nlab 
pb 
vt 

wsl 

acsc 
cbt 
bel 
er 
csr 

Termcap 

bw 
am 
xb 
XS 

xn 
eo 
gn 
he 

HC 
km 
hs 
In 
da 
db 
mi 
ms 
nx 
NR 
NP 
OS 

Si 
es 
xt 
hz 
ul 
XO 

co 
it 
lb 
lw 
Ii 

Im 
sg 
NI 
pb 
vt 
ws 

ac 
ht 
bl 
er 
cs 

Description 

cub 1 wraps from column O to last column 
Terminal has automatic margins 
Beehive (fl =ESC, f2= "C) 
Standout not erased by overwriting (Hewlett-Packard) 
NEWLINE ignored after 80 cols (Concept) 
Can erase overstrikes with a blank 
Generic line type (for example, dialup, switch). 
Hardcopy terminal 
Cursor is hard to see. 
Has a meta key (shift, sets parity bit) 
Has extra "status line" 
Insert mode distinguishes nulls 
Display may be retained above the screen 
Display may be retained below the screen 
Safe to move while in insert mode 
Safe to move in standout modes 
Padding will not work, xon/xoff required 
smcup does not reverse rmcup 
Pad character does not exist 
Terminal overstrikes on hard-copy terminal 
Printer will not echo on screen. 
Escape can be used on the status line 
Destructive TAB characters, magic smso char (Teleray 1061) 
Hazeltine; cannot print tildes() 
Underline character overstrikes 
Terminal uses xon/xoff handshaking 

Number of columns in a line 
tab stops initially every # spaces. 
Number of rows in each label 
Number of cols in each label 
Number of lines on screen or page 
Lines of memory if > lines; 0 means varies 
Number blank chars left by smso or rmso 
Number of labels on screen (start at 1) 
Lowest baud rate where padding needed 
Virtual terminal number (not supported on all systems) 
Number of columns in status line 

Graphic charset pairs aAbBcC - def= VTl 00 
Back tab 
Audible signal (bell) 
RETURN(*) 
Change to lines #1 through #2 (VTlOO) (G) 

Sun Release 4.0 Last change: 26 February 1988 1457 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

char _padding rmp rP Like ip but when in replace mode 
clear all tabs tbc ct Clear all tab stops 
clear_ margins mgc MC Clear left and right soft margins 
clear screen clear cl Clear screen and home cursor ( *) 
cir bol ell cb Clear to beginning of line, inclusive 
cir eol el ce Clear to end of line 
cir eos ed cd Clear to end of display(*) 
column address hpa ch Horizontal position absolute (G) 
command character cmdch cc Terminal settable command char in prototype 
cursor address cup cm Cursor motion to row #1 col #2 (G) 
cursor down cudl do Down one line 
cursor home home ho Home cursor (if no cup) 
cursor invisible civis vi Make cursor invisible 
cursor left cubl le Move cursor left one SPACE. 
cursor mem address mrcup CM Memory relative cursor addressing (G) 
cursor normal cnorm ve Make cursor appear normal (undo cvvis/civis) 
cursor _right cufl nd Non-destructive space (cursor right) 
cursor to II II II Last line, first column (if no cup) 
cursor_up cuul up Upline ( cursor up) 
cursor visible cvvis vs Make cursor very visible 
delete character dchl de Delete character ( *) 
delete line dll di Delete line ( *) 
dis status line dsl ds Disable status line - -
down half line hd hd Half-line down (forward 1/2 LINEFEED) 
ena acs enacs eA Enable alternate char set 
enter alt charset mode smacs as Start alternate character set - - -
enter am mode smam SA Tum on automatic margins 
enter blink mode blink mb Tum on blinking 
enter bold mode bold md Tum on bold (extra bright) mode 
enter_ ca_ mode smcup ti String to begin programs that use cup 
enter delete mode smdc dm Delete mode ( enter) - -
enter dim mode dim mh Tum on half-bright mode 
enter insert mode smir Im Insert mode (enter); - -
enter _protected_ mode prot mp Tum on protected mode 
enter reverse mode rev mr Tum on reverse video mode - -
enter secure mode invis mk Tum on blank mode (chars invisible) - -
enter standout mode smso so Begin standout mode - -
enter underline mode smul us Start underscore mode - -
enter xon mode smxon sx Tum on xon/xoff handshaking 
erase chars ech ec Erase #1 characters (G) 
exit alt charset mode rmacs ae End alternate character set - - -
exit am mode rmam RA Tum off automatic margins 
exit attribute mode sgrO me Tum off all attributes - -
exit ca mode rmcup te String to end programs that use cup 
exit delete mode rmdc ed End delete mode - -
exit insert mode rmir - - ei End insert mode; 
exit standout mode rmso se End standout mode - -
exit underline mode rmul ue End underscore mode - -
exit_ xon _ mode rmxon RX Tum off xon/xoff handshaking 
flash screen flash vb Visible bell (must not move cursor) 
form feed ff ff Hardcopy terminal page eject(*) 
from status line fsl fs Return from status line - -
init_ lstring isl it Terminal initialization string 
init_ 2string is2 is Terminal initialization string 
init _ 3string is3 13 Terminal initialization string 
init file if if Name of initialization file containing is 
init_prog iprog iP Path name of program for init. 
insert character ichl ic Insert character 

1458 Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

insert line ill al Add new blank line(*) 
insert _padding ip ip Insert pad after character inserted ( *) 
key_al kal Kl KEY_ Al, 0534, Upper left of keypad 
key_a3 ka3 K3 KEY_ A3, 0535, Upper right of keypad 
key_b2 kb2 K2 KEY_B2,0536,Centerofkeypad 
key_ backspace kbs kb KEY_BACKSPACE, 0407, Sent by BACKSPACE key 
key_beg kbeg @l KEY_ BEG, 0542, Sent by beg(inning) key 
key_btab kcbt kB KEY_BTAB, 0541, Sent by back-tab key 
key_cl kcl K4 KEY_Cl, 0537, Lower left of keypad 
key_c3 kc3 KS KEY_ C3, 0540, Lower right of keypad 
key_cancel kcan @2 KEY_ CANCEL, 0543, Sent by cancel key 
key_catab ktbc ka KEY_CATAB, 0526, Sent by clear-all-tabs key 
key_clear kclr kC KEY_CLEAR, 0515, Sent by clear-screen or erase key 
key_close kclo @3 KEY_ CLOSE, 0544, Sent by close key 
key_ command kcmd @4 KEY_ COMMAND, 0545, Sent by cmd ( command) key 
key_copy kcpy @5 KEY_ COPY, 0546, Sent by copy key 
key_create kcrt @6 KEY_ CREA TE, 054 7, Sent by create key 
key_ctab kctab kt KEY_CTAB, 0525, Sent by clear-tab key 
key_dc kdchl kD KEY_DC, 0512, Sent by delete-character key 
key_dl kdll kL KEY_ DL, 0510, Sent by delete-line key 
key_down kcudl kd KEY_ DOWN, 0402, Sent by terminal down-arrow key 
key_eic krmir kM KEY_EIC, 0514, Sent by rmir or smir in insert mode 
key_end kend @7 KEY_ END, 0550, Sent by end key 
key_enter kent @8 KEY_ENTER, 0527, Sent by enter/send key 
key_eol kel kE KEY_EOL, 0517, Sent by clear-to-end-of-line key 
key_eos ked kS KEY_EOS, 0516, Sent by clear-to-end-of-screen key 
key_exit kext @9 KEY_ EXIT, 0551, Sent by exit key 
key_fO kfO kO KEY_F(O), 0410, Sent by function key fO 
key_fl kn kl KEY_F(l), 0411, Sent by function key fl 
key_f2 kf2 k2 KEY_F(2), 0412, Sent by function key f2 
key_f3 kt3 k3 KEY_F(3), 0413, Sent by function key f3 
key_f4 kf4 k4 KEY_F(4), 0414, Sent by function key f4 
key_fS kfS kS KEY_F(5), 0415, Sent by function key f5 
key_f6 kf6 k6 KEY_F(6), 0416, Sent by function key f6 
key_n kn k7 KEY_F(7), 0417, Sent by function key n 
key_f8 kf8 k8 KEY _F(8), 0420, Sent by function key f8 
key_f9 kf9 k9 KEY_F(9), 0421, Sent by function key f9 
key_flO kflO k· 

' 
KEY_F(lO), 0422, Sent by function key no 

key_fll kfll Fl KEY_F(ll), 0423, Sent by function key fll 
key_f12 kfl2 F2 KEY _F(12), 0424, Sent by function key f12 
key_fl3 kfl3 F3 KEY_F(l3), 0425, Sent by function key f13 
key_f14 kfl4 F4 KEY _F(14), 0426, Sent by function key f14 
key_flS kflS FS KEY _F(l5), 0427, Sent by function key f15 
key_f16 kfl6 F6 KEY_ F(l6), 0430, Sent by function key f16 
key_fl7 kfl7 F7 KEY_F(17), 0431, Sent by function key f17 
key_f18 kfl8 FS KEY_F(18), 0432, Sent by function key f18 
key_fl9 kf19 F9 KEY _F(l9), 0433, Sent by function key f19 
key_f20 kf20 FA KEY_ F(20), 0434, Sent by function key f20 
key_f21 kf21 FB KEY _F(21), 0435, Sent by function key f21 
key_f22 kf22 FC KEY _F(22), 0436, Sent by function key f22 
key_f23 kf23 FD KEY _F(23), 0437, Sent by function key f23 
key_f24 kf24 FE KEY_F(24), 0440, Sent by function key f24 
key_f25 kf25 FF KEY_F(25), 0441, Sent by function key f25 
key_f26 kf26 FG KEY _F(26), 0442, Sent by function key f26 
key_f27 kf27 FH KEY _F(27), 0443, Sent by function key f27 
key_f28 kf28 FI KEY _F(28), 0444, Sent by function key f28 
key_f29 kf29 FJ KEY _F(29), 0445, Sent by function key f29 
key_f30 kf30 FK KEY _F(30), 0446, Sent by function key f30 

Sun Release 4.0 Last change: 26 February 1988 1459 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

key_f31 ktH FL KEY_F(31), 0447, Sent by function key f31 
key_f32 kf32 FM KEY _F(32), 0450, Sent by function key f32 
key_f33 kf33 FN KEY_F(13), 0451, Sent by function key f13 
key_f34 kf34 FO KEY _F(34), 0452, Sent by function key f34 
key_f35 kf35 FP KEY _F(35), 0453, Sent by function key f35 
key_f36 kf36 FQ KEY_F(36), 0454, Sent by function key f36 
key_f37 kf37 FR KEY_ F(37), 0455, Sent by function key f37 
key_f38 kf38 FS KEY_F(38), 0456, Sent by function key f38 
key_f39 kf39 FT KEY_F(39), 0457, Sent by function key f39 
key_f40 kf40 FU KEY_F(40), 0460, Sent by function key f40 
key_f41 kf41 FV KEY_F(41), 0461, Sent by function key f41 
key_f42 kf42 FW KEY_F(42), 0462, Sent by function key f42 
key_f43 kf43 FX KEY_F(43), 0463, Sent by function key f43 
key_f44 kf44 FY KEY _F(44), 0464, Sent by function key f44 
key_f45 kf45 FZ KEY_F(45), 0465, Sent by function key f45 
key_f46 kf46 Fa KEY_F(46), 0466, Sent by function key f46 
key_f47 kf47 Fb KEY _F(47), 0467, Sent by function key f47 
key_f48 kf48 Fe KEY_F(48), 0470, Sent by function key f48 
key_f49 kf49 Fd KEY_F(49), 0471, Sent by function key f49 
key_f50 kf50 Fe KEY_F(50), 0472, Sent by function key f50 
key_f51 kf51 Ff KEY_F(51), 0473, Sent by function key f51 
key_f52 kf52 Fg KEY_F(52), 0474, Sent by function key f52 
key_f53 kf53 Fh KEY _F(53), 0475, Sent by function key f53 
key_f54 kf54 Fi KEY _F(54), 0476, Sent by function key f54 
key_f55 kf55 Fj KEY_F(55), 0477, Sent by function key f55 
key_f56 kf56 Fk KEY_F(56), 0500, Sent by function key f56 
key_f57 kf57 Fl KEY _F(57), 0501, Sent by function key f57 
key_f58 kf58 Fm KEY_F(58), 0502, Sent by function key f58 
key_f59 kf59 Fn KEY_F(59), 0503, Sent by function key f59 
key_f60 kf60 Fo KEY_F(60), 0504, Sent by function key f60 
key_f61 kf61 Fp KEY_F(61), 0505, Sent by function key f61 
key_f62 kf62 Fq KEY_F(62), 0506, Sent by function key f62 
key_f63 kf63 Fr KEY _F(63), 0507, Sent by function key f63 
key_find kfnd @O KEY_ FIND, 0552, Sent by find key 
key_help khlp %1 KEY_ HELP, 0553, Sent by help key 
key_home khome kb KEY _HOME, 0406, Sent by home key 
key_ic kichl kl KEY_IC, 0513, Sent by ins-char/enter ins-mode key 
key_il kill kA KEY_IL, 0511, Sent by insert-line key 
key_left kcubl kl KEY_ LEFf, 0404, Sent by terminal left-arrow key 
key_ll kll kH KEY_ LL, 0533, Sent by home-down key 
key_mark kmrk %2 KEY_ MARK, 0554, Sent by mark key 
key_ message kmsg %3 KEY_ MESSAGE, 0555, Sent by message key 
key_move kmov %4 KEY_ MOVE, 0556, Sent by move key 
key_next knxt %5 KEY_ NEXT, 0557, Sent by next-object key 
key_npage knp kN KEY_NPAGE, 0522, Sent by next-page key 
key_open kopn %6 KEY_ OPEN, 0560, Sent by open key 
key_ options kopt %7 KEY_OPTIONS, 0561, Sent by options key 
key_ppage kpp kP KEY_PPAGE, 0523, Sent by previous-page key 
key _previous kprv %8 KEY _PREVIOUS, 0562, Sent by previous-object key 
key_print kprt %9 KEY_ PRINT, 0532, Sent by print or copy key 
key_redo krdo %0 KEY_ REDO, 0563, Sent by redo key 
key_ ref ere nee kref &l KEY_REFERENCE, 0564, Sent by ref(erence) key 
key _refresh krfr &2 KEY_ REFRESH, 0565, Sent by refresh key 
key_replace krpl &3 KEY_ REPLACE, 0566, Sent by replace key 
key_restart krst &4 KEY_ REST ART, 0567, Sent by restart key 
key_resume kres &5 KEY_ RESUME, 0570, Sent by resume key 
key_right kcufl kr KEY _RIGHT, 0405, Sent by terminal right-arrow key 
key_save ksav &6 KEY_SAVE, 0571, Sent by save key 

1460 Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

key_sbeg kBEG &9 KEY_ SBEG, 0572, Sent by shifted beginning key 
key_ scan eel kCAN &O KEY_ SCANCEL, 0573, Sent by shifted cancel key 
key_scommand kCMD •1 KEY_ SCOMMAND, 0574, Sent by shifted command key 
key_scopy kCPY •2 KEY_ SCOPY, 0575, Sent by shifted copy key 
key_screate kCRT •3 KEY_SCREATE, 0576, Sent by shifted create key 
key_sdc kDC •4 KEY_ SOC, 0577, Sent by shifted delete-char key 

key_sdl kDL •S KEY_ SOL, 0600, Sent by shifted delete-line key 
key_select kslt •6 KEY_ SELECT, 0601, Sent by select key 
key_send kEND •7 KEY_ SEND, 0602, Sent by shifted end key 
key_seol kEOL •8 KEY_ SEOL, 0603, Sent by shifted clear-line key 
key_sexit kEXT •9 KEY_ SEXIT, 0604, Sent by shifted exit key 
key_sf kind kF KEY_ SF, 0520, Sent by scroll-forward/down key 
key_sfind kFND •O KEY_ SPINO, 0605, Sent by shifted find key 
key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted help key 
key_shome kHOM #2 KEY_ SHOME, 0607, Sent by shifted home key 
key_sic klC #3 KEY_ SIC, 0610, Sent by shifted input key 
key_sleft kLFf #4 KEY_ SLEPT, 0611, Sent by shifted left-arrow key 
key_ smessage kMSG %a KEY_ SMESSAGE, 0612, Sent by shifted message key 
key_smove kMOV %b KEY_SMOVE, 0613, Sent by shifted move key 
key_snext kNXT %c KEY_ SNEXT, 0614, Sent by shifted next key 
key_ soptions kOPf %d KEY_SOPTIONS, 0615, Sent by shifted options key 
key_ sprevious kPRV %e KEY_SPREVIOUS, 0616, Sent by shifted prev key 
key_sprint kPRT %f KEY_SPRINT, 0617, Sent by shifted print key 
key_sr kri kR KEY_SR, 0521, Sent by scroll-backward/up key 
key_sredo kRDO %g KEY_ SREDO, 0620, Sent by shifted redo key 
key_ sreplace kRPL %h KEY_ SREPLACE, 0621, Sent by shifted replace key 
key_sright kRIT %1 KEY_ SRIGHT, 0622, Sent by shifted right-arrow key 
key_srsume kRES %j KEY_ SRSUME, 0623, Sent by shifted resume key 
key_ssave kSAV !1 KEY_ SSA VE, 0624, Sent by shifted save key 
key_ ssuspend kSPD !2 KEY_ SSUSPEND, 0625, Sent by shifted suspend key 
key_stab khts kT KEY_ ST AB, 0524, Sent by set-tab key 
key_sundo kUND !3 KEY_ SUNDO, 0626, Sent by shifted undo key 
key_ suspend kspd &7 KEY_SUSPEND, 0627, Sent by suspend key 
key_undo kund &8 KEY_ UNDO, 0630, Sent by undo key 
key_up kcuul ku KEY_ UP, 0403, Sent by terminal up-arrow key 
keypad _local rmkx ke Out of "keypad-transmit" mode 
keypad_ xmit smkx ks Put terminal in "keypad-transmit'' mode 
lab ro lfO 10 Labels on function key fO if not fO 
lab_fl m 11 Labels on function key fl if not fl 
lab f2 lf2 12 Labels on function key t2 if not t2 
lab_f3 lf3 13 Labels on function key f3 if not f3 
lab f4 lf4 14 Labels on function key f4 if not f4 
lab fS lfS IS Labels on function key f5 if not f5 
lab f6 lf6 16 Labels on function key f6 if not f6 
lab f7 lf7 17 Labels on function key f7 if not f7 
lab f8 lf8 18 Labels on function key f8 if not f8 
lab f9 lf9 19 Labels on function key f9 if not f9 
lab no lflO la Labels on function key fl O if not fl 0 
label off rmln LF Tum off soft labels 
label on smln LO Tum on soft labels 
meta off rmm mo Tum off "meta mode" 
meta on smm mm Tum on "meta mode" (8th bit) 
newline nel nw NEWLINE (behaves like er followed by If) 
pad char pad pc Pad character (rather than null) 
parm deb deb DC Delete #1 chars (G*) 
parm _delete_ line di DL Delete #1 lines (G*) 
parm _down_ cursor cud DO Move cursor down #I lines. (G*) 
parm_ich ich IC Insert #1 blank chars (G*) 

Sun Release 4.0 Last change: 26 February 1988 1461 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

parm index indn SF Scroll forward #1 lines. (G) 
parm insert line ii AL Add #1 new blank lines (G*) - -
parm _left_ cursor cub LE Move cursor left #1 spaces (G) 
parm _right_ cursor cuf RI Move cursor right #1 spaces. (G*) 
parm _rindex rin SR Scroll backward #1 lines. (G) 
parm _up_ cursor cuu UP Move cursor up #1 lines. (G*) 
pkey_key pflcey pk Prog funct key #1 to type string #2 
pkey_local pfloc pl Prog funct key #1 to execute string #2 
pkey_xmit pfx px Prog funct key # 1 to xmit string #2 
plab_norm pin pn Prog label #1 to show string #2 
print screen mcO ps Print contents of the screen 
prtr non mcSp pO Tum on the printer for #1 bytes 
prtr_off mc4 pf Tum off the printer 
prtr on mes po Tum on the printer 
repeat_char rep rp Repeat char #1 #2 times (G*) 
req_for _ input rfi RF Send next input char (for ptys) 
reset_ lstring rsl rl Reset terminal completely to sane modes 
reset_ 2string rs2 r2 Reset terminal completely to sane modes 
reset_3string rs3 r3 Reset terminal completely to sane modes 
reset file rf rf Name of file containing reset string 
restore cursor re re Restore cursor to position of last sc 
row address vpa CV Vertical position absolute (G) 
save cursor SC SC Save cursor position. 
scroll forward ind sf Scroll text up 
scroll reverse ri sr Scroll text down 
set attributes sgr sa Define the video attributes #1-#9 (G) 
set_ left_ margin smgl ML Set soft left margin 
set _right_ margin smgr MR Set soft right margin 
set tab hts st Set a tab stop in all rows, current column. 
set window wind wi Current window is lines #1-#2 cols #3-#4 (G) 
tab ht ta Move the cursor to the next 8 space hardware tab stop. 
to status line tsl ts Go to status line, col #1 (G) - -
underline_ char UC UC Underscore one char and move past it 
up_half_line bu bu Half-line up (reverse 1/2 line-feed) 
xoff character xoffc XF X-off character 
xon character xonc XN X-on character 

SAMPLE ENTRY 

1462 

The following entry, which describes the Concept 100 terminal, is among the more complex entries in the 
term info file as of this writing. 

conceptlOOlclOOI conceptlc104lc100-4plconceptl00, 
am, db, eo, in, mir, ul, xenl, cols#80, lines#24, pb#9600, vt#S, 
bel="G, blank=\EH, blink=\EC, clear="'L$<2*>, cnorm=\Ew, cr="'M$<9>, 
cubl="'H, cudl="'J, cufl=\E=, cup:\Ea%pl %' '%+%c%p2%' '%+%c, cuul=\E;, 
cvvis=\EW, dchl=\E"'A$<16*>, dim=\EE, dll:\E"'B$<3*>, 
ed=\E"'C$<16*>, el=\E"'U$<16>, flash=\Ek$<20>\EK, ht:\t$<8>, 
ill=\E"'R$<3*>, ind="'J, .ind="'J$<9>, ip=$<16*>, 
is2:\EU\Et\E7\ES\E8\El\ENH\EK\E\O\Eo&\O\Eo\47\E, 
kbs="'h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;, kfl=\ES, 
kf2:\E6, kf3=\E7, khome:\E?, prot:\EI, 
rep=\Er%pl %c%p2%' '%+%c$<.2*>, rev=\ED, 
rmcup=\Ev\s\s\s\s$<6> \Ep\r\n, rmir=\E\O, rmkx=\Ex, 
rmso=\Ed\Ee, rmul:\Eg, rmul:\Eg, sgrO:\EN\O, 
smcup:\EU\Ev\s\s8p\Ep\r, smir=\E"'P, smkx:\EX, smso=\EE\ED, 
smul=\EG, 

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

Entries may continue onto multiple lines by placing white space at the beginning of each line except the 
first. Lines beginning with # are taken as comment lines. Capabilities in terminfo are of three types: 
boolean capabilities which indicate that the terminal has some particular feature, numeric capabilities giv
ing the size of the terminal or particular features, and string capabilities, which give a sequence which can 
be used to perform particular terminal operations. 

Types of Capabilities 
All capabilities have names. For instance, the fact that the Concept has automatic margins (that is, an au
tomatic RETURN and LINEFEED when the end of a line is reached) is indicated by the capability am. 
Hence the description of the Concept includes am. Numeric capabilities are followed by the character# 
and then the value. Thus cols, which indicates the number of columns the terminal has, gives the value 80 
for the Concept. The value may be specified in decimal, octal or hexadecimal using normal C conventions. 

Finally, string-valued capabilities, such as el (clear to end of line sequence) are given by the two- to five
character capname, an '=', and then a string ending at the next following comma. A delay in milliseconds 
may appear anywhere in such a capability, enclosed in$< .. > brackets, as in 'el=\EK$<3>', and padding 
characters are supplied by tputs() (see curses(3V)) to provide this delay. The delay can be either a 
number, for example, 20, or a number followed by an * (for example, 3* ), a/ (for example, 5/), or both (for 
example, 10*/ ). A* indicates that the padding required is proportional to the number of lines affected by 
the operation, and the amount given is the per-affected-unit padding required. (In the case of insert charac
ter, the factor is still the number of lines affected. This is always one unless the terminal has in and the 
software uses it.) When a* is specified, it is sometimes useful to give a delay of the form 3.5 to specify a 
delay per unit to tenths of milliseconds. (Only one decimal place is allowed.) A/ indicates that the pad
ding is mandatory. Otherwise, if the terminal has xon defined, the padding information is advisory and will 
only be used for cost estimates or when the terminal is in raw mode. Mandatory padding will be transmit
ted regardless of the setting of xon. 

A number of escape sequences are provided in the string-valued capabilities for easy encoding of charac
ters there: 

\E, \e map to ESC 

"X maps to CTRL-X for any appropriate character X 
\n maps to NEWLINE 
\I maps to LINEFEED 
\r maps to RETURN 
\t maps to TAB 
\b maps to BACKSPACE 
\f maps to FORMFEED 
\s maps to SPACE 
\0 maps to NUL 

(\0 will actually produce \200, which does not terminate a string but behaves as a null character on most 
terminals.) Finally, characters may be given as three octal digits after a backslash (for example, \123), and 
the characters" (caret),\ (backslash), : (colon), and, (comma) may be given as\",\\,\:, and\, respectively. 

Sometimes individual capabilities must be commented out. To do this, put a period before the capability 
name. For example, see the second ind in the example above. Note: capabilities are defined in a left-to
right order and, therefore, a prior definition will override a later definition. 

Preparing Descriptions 

The most effective way to prepare a terminal description is by imitating the description of a similar termi
nal in terminfo and to build up a description gradually, using partial descriptions with some curses-based 
application to check that they are correct. Be aware that a very unusual terminal may expose deficiencies 
in the ability of the term info file to describe it or bugs in the application. To test a new terminal descrip
tion, set the environment variable TERMINFO to a pathname of a directory containing the compiled 
description you are working on and programs will look there rather than in /usr/share/Iib/terminfo. To get 
the padding for insert-line correct (if the terminal manufacturer did not document it) a severe test is to in
sert 16 lines into the middle of a full screen at 9600 baud. If the display is corrupted, more padding is usu-

Sun Release 4.0 Last change: 26 February 1988 1463 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

ally needed. A similar test can be used for insert-character. 

Basic Capabilities 
The number of columns on each line for the terminal is given by the cols numeric capability. If the termi
nal has a screen, then the number of lines on the screen is given by the lines capability. If the terminal 
wraps around to the beginning of the next line when it reaches the right margin, then it should have the am 
capability. If the terminal can clear its screen, leaving the cursor in the home position, then this is given by 
the clear string capability. If the terminal overstrikes (rather than clearing a position when a character is 
struck over) then it should have the os capability. If the terminal is a printing terminal, with no soft copy 
unit, give it both he and os. ( os applies to storage scope terminals, such as Tektronix 4010 series, as well 
as hard-copy and APL terminals.) If there is a code to move the cursor to the left edge of the current row, 
give this as er. (Normally this will be RETURN, CTRL-M.) If there is a code to produce an audible signal 
(bell, beep, etc) give this as bel. If the terminal uses the xon-xoff flow-control protocol, like most termi
nals, specify xon. 

If there is a code to move the cursor one position to the left (such as backspace) that capability should be 
given as cubl. Similarly, codes to move to the right, up, and down should be given as cufl, cuul, and 
cudl. These local cursor motions should not alter the text they pass over; for example, you would not nor
mally use cufl=\s because the SPACE would erase the character moved over. 

A very important point here is that the local cursor motions encoded in terminf o are undefined at the left 
and top edges of a screen terminal. Programs should never attempt to backspace around the left edge, un
less bw is given, and should never attempt to go up locally off the top. In order to scroll text up, a program 
will go to the bottom left comer of the screen and send the ind (index) string. 

To scroll text down, a program goes to the top left comer of the screen and sends the ri (reverse index) 
string. The strings ind and ri are undefined when not on their respective comers of the screen. 

Parameterized versions of the scrolling sequences are indn and rin which have the same semantics as ind 
and ri except that they take one parameter, and scroll that many lines. They are also undefined except at 
the appropriate edge of the screen. 

The am capability tells whether the cursor sticks at the right edge of the screen when text is output, but this 
does not necessarily apply to a cufl from the last column. The only local motion which is defined from the 
left edge is if bw is given, then a cubl from the left edge will move to the right edge of the previous row. 
If bw is not given, the effect is undefined. This is useful for drawing a box around the edge of the screen, 
for example. If the terminal has switch selectable automatic margins, the terminfo file usually assumes 
that this is on; that is, am. If the terminal has a command which moves to the first column of the next line, 
that command can be given as nel (NEWLINE). It does not matter if the command clears the remainder of 
the current line, so if the terminal has no er and If it may still be possible to craft a working nel out of one 
or both of them. 

These capabilities suffice to describe hardcopy and screen terminals. Thus the model 33 teletype is 
described as 

33 I tty33 I tty I model 33 teletype, 
bel=AG, cols#72, cr=AM, cudl=AJ, he, ind=AJ, os, 

while the Lear Siegler ADM-3 is described as 

adm3 I lsi adm3, 
am, bel=AG, clear=AZ, cols#80, cr=AM, cubl=AH, cudl=AJ, 
ind=AJ, lines#24, 

Parameterized Strings 

1464 

Cursor addressing and other strings requiring parameters in the terminal are described by a parameterized 
string capability, with printf(3S)-like escapes (%x) in it. For example, to address the cursor, the cup capa
bility is given, using two parameters: the row and column to address to. (Rows and columns are numbered 
from zero and refer to the physical screen visible to the user, not to any unseen memory.) If the terminal 
has memory relative cursor addressing, that can be indicated by mrcup; 

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

The parameter mechanism uses a stack and special % codes to manipulate it in the manner of a Reverse 
Polish Notation (postfix) calculator. Typically a sequence will push one of the parameters onto the stack 
and then print it in some format. Often more complex operations are necessary. Binary operations are in 
postfix form with the operands in the usual order. That is, to get x-5 one would use '%gx%{5}%-'. 

The % encodings have the following meanings: 

%% outputs% 
%[[:]flags] [width[.precision]] [doxXs] 

as in printf(3S), flags are [-+#] and SP ACE 
%c print pip() gives %c 
%p[l-9] push it parm 
% P[a-z] set variable [a-z] to pop() 
%g[a-z] get variable [a-z] and push it 
% 'c' push char constant c 
% {nn} push decimal constant nn 
%1 push strlen(pop()) 
%+ %-%* %/ %m 

arithmetic (%mis mod): push{pop() op pop()) 
%& %1 %"' bit operations: push{pop() op pop()) 
%= %> %< logical operations: push(pop() op pop()) 
%A %0 logical operations: and, or 
%! %- unary operations: push(op pop()) 
%i (for ANSI terminals) 

add 1 to first parm, if one parm present, 
or first two parms, if more than one parm present 

% ? expr %tthenpart %eelsepart%; 
if-then-else, '%eelsepart' is optional; else-if's are possible in Algol 68: 

%?c
1 

%tb
1 

%ec
2 

%tb
2 

%ec
3 

%tb
3 

%ec
4 

%tb
4 

%eb
5

%; 
c. are conditions, b. are bodies. 

1 1 

If the '-' flag is used with' %[doxXs]', then a colon(:) must be placed between the'%' and the'-' to dif
ferentiate the flag from the binary'%-' operator, for example, '%:-16.16s'. 

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y 
padded for 6 milliseconds. Note: the order of the rows and columns is inverted here, and that the row and 
column are zero-padded as two digits. Thus its cup capability is: 

cup=\E&a%p2%2.2dc%p 1 %2.2dY$<6> 

The Micro-Term ACT-IV needs the current row and column sent preceded by a "'T, with the row and 
column simply encoded in binary, 'cup= "'T%pl %c%p2%c'. Terminals which use %c need to be able to 
backspace the cursor (cubl), and to move the cursor up one line on the screen (cuul). This is necessary 
because it is not always safe to transmit \n, "'D, and \r, as the system may change or discard them. (The li
brary routines dealing with terminfo set tty modes so that TAB characters are never expanded, so \t is safe 
to send. This turns out to be essential for the Ann Arbor 4080.) 

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus 
'cup=\E=%pl %'\s'%+%c%p2%'\s'%+%c'. After sending '\E=', this pushes the first parameter, pushes 
the ASCII value for a space (32), adds them (pushing the sum on the stack in place of the two previous 
values), and outputs that value as a character. Then the same is done for the second parameter. More com
plex arithmetic is possible using the stack. 

Cursor Motions 
If the terminal has a fast way to home the cursor (to very upper left comer of screen) then this can be given 
as home; similarly a fast way of getting to the lower left-hand comer can be given as II; this may involve 
going up with cuul from the home position, but a program should never do this itself (unless II does) be
cause it can make no assumption about the effect of moving up from the home position. Note: the home 

Sun Release 4.0 Last change: 26 February 1988 1465 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

position is the same as addressing to (0,0): to the top left comer of the screen, not of memory. (Thus, the 
\EH sequence on Hewlett-Packard terminals cannot be used for home without losing some of the other 
features on the terminal.) 

If the terminal has row or column absolute-cursor addressing, these can be given as single parameter capa
bilities hpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these are shorter 
than the more general two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in 
preference to cup. If there are parameterized local motions (for example, move n spaces to the right) these 
can be given as cud, cub, cuf, and cuu with a single parameter indicating how many spaces to move. 
These are primarily useful if the terminal does not have cup, such as the Tektronix 4025. 

Area Clears 
If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this 
should be given as el. If the terminal can clear from the beginning of the line to the current position in
clusive, leaving the cursor where it is, this should be given as ell. If the terminal can clear from the current 
position to the end of the display, then this should be given as ed. ed is only defined from the first column 
of a line. (Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not avail
able.) 

Insert/Delete Line 
If the terminal can open a new blank line before the line where the cursor is, this should be given as 'ill'; 
this is done only from the first position of a line. The cursor must then appear on the newly blank line. If 
the terminal can delete the line which the cursor is on, then this should be given as 'dll'; this is done only 
from the first position on the line to be deleted. Versions of ill and dll which take a single parameter and 
insert or delete that many lines can be given as ii and di. 

If the terminal has a settable destructive scrolling region (like the VflOO) the command to set this can be 
described with the csr capability, which takes two parameters: the top and bottom lines of the scrolling re
gion. The cursor position is, alas, undefined after using this command It is possible to get the effect of in
sert or delete line using this command - the sc and re (save and restore cursor) commands are also useful. 
Inserting lines at the top or bottom of the screen can also be done using ri or ind on many terminals 
without a true insert/delete line, and is often faster even on terminals with those features. 

To determine whether a terminal has destructive scrolling regions or non-destructive scrolling regions, 
create a scrolling region in the middle of the screen, place data on the bottom line of the scrolling region, 
move the cursor to the top line of the scrolling region, and do a reverse index (ri) followed by a delete line 
(dll) or index (ind). If the data that was originally on the bottom line of the scrolling region was restored 
into the scrolling region by the dll or ind, then the terminal has non-destructive scrolling regions. Other
wise, it has destructive scrolling regions. Do not specify csr if the terminal has non-destructive scrolling 
regions, unless ind, ri, indn, rin, di, and dll all simulate destructive scrolling. 

If the terminal has the ability to define a window as part of memory, which all commands affect, it should 
be given as the parameterized string wind. The four parameters are the starting and ending lines in 
memory and the starting and ending columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability should be given; if display memory 
can be retained below, then db should be given. These indicate that deleting a line or scrolling a full screen 
may bring non-blank lines up from below or that scrolling back with ri may bring down non-blank lines. 

Insert/Delete Character 

1466 

There are two basic kinds of intelligent terminals with respect to insert/delete character operations which 
can be described using terminfo. The most common insert/delete character operations affect only the 
characters on the current line and shift characters off the end of the line rigidly. Other terminals, such as 
the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the 
screen, shifting upon an insert or delete only to an untyped blank on the screen which is eitr~r eliminated, 
or expanded to two untyped blanks. You can determine the kind of terminal you have by clearing the 
screen and then typing text separated by cursor motions. Type 'abc def using local cursor motions (not 
SPACE characters) between the abc and the def. Then position the cursor before the abc and put the termi-

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

nal in insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off 
the end, then your terminal does not distinguish between blanks and untyped positions. If the abc shifts 
over to the def which then move together around the end of the current line and onto the next as you insert, 
you have the second type of terminal, and should give the capability in, which stands for "insert null". 
While these are two logically separate attributes (one line versus multiline insert mode, and special treat
ment of untyped blanks) we have seen no terminals whose insert mode cannot be described with the single 
attribute. 

terminfo can describe both terminals which have an insert mode and terminals which send a simple se
quence to open a blank position on the current line. Give as smir the sequence to get into insert mode. 
Give as rmir the sequence to leave insert mode. Now give as ichl any sequence needed to be sent just be
fore sending the character to be inserted. Most terminals with a true insert mode will not give ichl; termi
nals which send a sequence to open a screen position should give it here. (If your terminal has both, insert 
mode is usually preferable to ichl. Do not give both unless the terminal actually requires both to be used 
in combination.) If post-insert padding is needed, give this as a number of milliseconds padding in ip (a 
string option). Any other sequence which may need to be sent after an insert of a single character may also 
be given in ip. If your terminal needs both to be placed into an "insert mode" and a special code to precede 
each inserted character, then both smir/rmir and ichl can be given, and both will be used. The ich capa
bility, with one parameter, n, will repeat the effects of ichl n times. 

If padding is necessary between characters typed while not in insert mode, give this as a number of mil
liseconds padding in rmp. 

It is occasionally necessary to move around while in insert mode to delete characters on the same line (for 
example, if there is a TAB character after the insertion position). If your terminal allows motion while in 
insert mode you can give the capability mir to speed up inserting in this case. Omitting mir will affect 
only speed. Some terminals (notably Datamedia's) must not have mir because of the way their insert mode 
works. 

Finally, you can specify dchl to delete a single character, deb with one parameter, n, to delete n charac
ters, and delete mode by giving smdc and rmdc to enter and exit delete mode (any mode the terminal 
needs to be placed in for dchl to work). 

A command to erase n characters (equivalent to outputting n blanks without moving the cursor) can be 
given as ech with one parameter. 

Highlighting, Underlining, and Visible Bells 
If your terminal has one or more kinds of display attributes, these can be represented in a number of dif
ferent ways. You should choose one display form as standout mode (see curses(3V)), representing a good, 
high contrast, easy-on-the-eyes, format for highlighting error messages and other attention getters. (If you 
have a choice, reverse-video plus half-bright is good, or reverse-video alone; however, different users have 
different preferences on different terminals.) The sequences to enter and exit standout mode are given as 
smso and rmso, respectively. If the code to change into or out of standout mode leaves one or even two 
blanks on the screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to tell how many 
blanks are left. 

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If the termi
nal has a code to underline the current character and move the cursor one position to the right, such as the 
Micro-Term MIME, this can be given as uc. 

Other capabilities to enter various highlighting modes include blink (blinking), bold (bold or extra-bright), 
dim (dim or half-bright), invis (blanking or invisible text), prot (protected), rev (reverse-video), sgrO (turn 
off all attribute modes), smacs (enter alternate-character-set mode), and rmacs (exit alternate-character-set 
mode). Turning on any of these modes singly may or may not turn off other modes. If a command is 
necessary before alternate character set mode is entered, give the sequence in enacs ( enable alternate
character-set mode). 

Sun Release 4.0 Last change: 26 February 1988 1467 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

1468 

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set attributes), 
taldng nine parameters. Each parameter is either O or non-zero, as the corresponding attribute is on or off. 
The nine parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate 
character set. Not all modes need be supported by sgr, only those for which corresponding separate attri
bute commands exist. (See the example at the end of this section.) 

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they receive mode-setting 
sequences, which affect the display algorithm rather than having extra bits for each character. Some termi
nals, such as the Hewlett-Packard 2621, automatically leave standout mode when they move to a new line 
or the cursor is addressed. Programs using standout mode should exit standout mode before moving the 
cursor or sending a newline, unless the msgr capability, asserting that it is safe to move in standout mode, 
is present. 

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement), then this 
can be given as flash; it must not move the cursor. A good flash can be done by changing the screen into 
reverse video, pad for 200 ms, then return the screen to normal video. 

If the cursor needs to be made more visible than normal when it is not on the bottom line (to make, for ex
ample, a non-blinking underline into an easier to find block or blinking underline) give this sequence as 
cvvis. The boolean chts should also be given. If there is a way to make the cursor completely invisible, 
give that as civis. The capability cnorm should be given which undoes the effects of either of these modes. 

If the terminal needs to be in a special mode when running a program that uses these capabilities, the codes 
to enter and exit this mode can be given as smcup and rmcup. This arises, for example, from terminals 
like the Concept with more than one page of memory. If the terminal has only memory relative cursor ad
dressing and not screen relative cursor addressing, a one screen-sized window must be fixed into the termi
nal for cursor addressing to work properly. This is also used for the Tektronix 4025, where smcup sets the 
command character to be the one used by terminfo. If the smcup sequence will not restore the screen after 
an rmcup sequence is output (to the state prior to outputting rmcup ), specify nrrmc. 

If your terminal generates underlined characters by using the underline character (with no special codes 
needed) even though it does not otherwise overstrike characters, then you should give the capability ul. 
For terminals where a character overstriking another leaves both characters on the screen, give the capabil
ity os. If overstrikes are erasable with a blank, then this should be indicated by giving eo. 

Example of highlighting: assume that the terminal under question needs the following escape sequences to 
turn on various modes. 

tparm attribute escape sequence 
parameter 

none \E[Om 
pl standout \E[0;4;7m 
p2 underline \E[0;3m 
p3 reverse \E[0;4m 
p4 blink \E[0;5m 
p5 dim \E[0;7m 
p6 bold \E[0;3;4m 
p7 invis \E[0;8m 
p8 protect not available 
p9 altcharset "O (oft) "N(on) 

Note: each escape sequence requires a O to turn off other modes before turning on its own mode. Also note 
that, as suggested above, standout is set up to be the combination of reverse and dim. Also, since this ter
minal has no bold mode, bold is set up as the combination of reverse and underline. In addition, to allow 
combinations, such as underline+blink, the sequence to use would be '\E[0;3;5m'. The terminal does not 
have protect mode, either, but that cannot be simulated in any way, so p8 is ignored. The altcharset mode 
is different in that it is either "O or "N depending on whether it is off or on. If all modes were to be turned 
on, the sequence would be '\E[0;3;4;5;7;8m"N'. 

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

Now look at when different sequences are output For example, ';3' is output when either 'p2' or 'p6' is 
true, that is, if either underline or bold modes are turned on. Writing out the above sequences, along with 
their dependencies, gives the following: 

sequence when to output terminfo translation 

\E[O 
;3 
;4 
;5 
;7 
;8 
m 
"N or"O 

always 
ifp2 orp6 
ifpl orp3 orp6 
ifp4 
ifpl orp5 
ifp7 
always 
if p9 "N, else "O 

\E[O 
%?%p2%p6%1%t;3%; 
% ?%pl %p3%1%p6%1%t;4%; 
%?%p4%t;5%; 
% ?%pl %p5%1%t;7%; 
%?%p7%t;8%; 
m 
%?%p9%t"N%e"O%; 

Putting this all together into the sgr sequence gives: 

sgr=\E[O% ?%p2%p6%1%t;3%;% ?%pl %p3%1%p6%1%t;4%;% ?%p5%t;5%;% ?%pl %p5% 
1%t;7%;% ?%p7%t;8%;m% ?%p9%t"N%e"O%;, 

Keypad 
If the terminal has a keypad that transmits codes when the keys are pressed, this information can be given. 
Note: it is not possible to handle terminals where the keypad only works in local (this applies, for example, 
to the unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit, give 
these codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit. 

The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be given as 
kcubl, kcun, kcuul, kcudl, and khome respectively. If there are function keys such as fO, fl, ... , f63, 
the codes they send can be given as kfO, kfi, ... , kf63. If the first 11 keys have labels other than the de
fault fO through flO, the labels can be given as lfO, In, ... , lflO. The codes transmitted by certain other 
special keys can be given: kll (home down), kbs (BACKSPACE), ktbc (clear all tab stops), kctab (clear the 
tab stop in this column), kclr (clear screen or erase key), kdchl (delete character), kdll (delete line), 
krmir (exit insert mode), kel (clear to end of line), ked (clear to end of screen), kichl (insert character or 
enter insert mode), kill (insert line), knp (next page), kpp (previous page), kind (scroll forward/down), 
kri (scroll backward/up), khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array 
of keys including the four arrow keys, the other five keys can be given as kal, ka3, kb2, kcl, and kc3. 
These keys are useful when the effects of a 3 by 3 directional pad are needed. Further keys are defined 
above in the capabilities list. 

Strings to program function keys can be given as pfkey, pfloc, and pfx. A string to program their soft
screen labels can be given as pin. Each of these strings takes two parameters: the function key number to 
program (from O to 10) and the string to program it with. Function key numbers out of this range may pro
gram undefined keys in a terminal-dependent manner. The difference between the capabilities is that 
pfkey causes pressing the given key to be the same as the user typing the given string; pfloc executes the 
string by the terminal in local mode; and pfx transmits the string to the computer. The capabilities nlab, lw 
and lb define how many soft labels there are and their width and height. If there are commands to tum the 
labels on and off, give them in smln and rmln. smln is normally output after one or more pin sequences to 
make sure that the change becomes visible. 

Tabs and Initialization 
If the terminal has hardware tab stops, the command to advance to the next tab stop can be given as ht 
(usually CTRL-1). A "backtab" command which moves leftward to the next tab stop can be given as cbt. 
By convention, if the teletype modes indicate that TAB characters are being expanded by the computer 
rather than being sent to the terminal, programs should not use ht or cbt even if they are present, since the 
user may not have the tab stops properly set. If the terminal has hardware tab stops which are initially set 
every n spaces when the terminal is powered up, the numeric parameter it is given, showing the number of 
spaces the tab stops are set to. This is normally used by 'tput init' (see tput(l V)) to determine whether to 
set the mode for hardware TAB expansion and whether to set the tab stops. If the terminal has tab stops 

Sun Release 4.0 Last change: 26 February 1988 1469 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

that can be saved in nonvolatile memory, the terminfo description can assume that they are properly set. If 
there are commands to set and clear tab stops, they can be given as the (clear all tab stops) and hts (set a 
tab stop in the current column of every row). 

Other capabilities include: isl, is2, and is3, initialization strings for the terminal; iprog, the path name of a 
program to be run to initialize the terminal; and if, the name of a file containing long initialization strings. 
These strings are expected to set the terminal into modes consistent with the rest of the terminfo descrip
tion. They must be sent to the terminal each time the user logs in and be output in the following order: run 
the program iprog; output isl; output is2; set the margins using mge, smgl and smgr; set the tab stops us
ing the and hts; print the file if; and finally output is3. This is usually done using the init option of 
tput(lV). 

Most initialization is done with is2. Special terminal modes can be set up without duplicating strings by 
putting the common sequences in is2 and special cases in isl and is3. Sequences that do a harder reset 
from a totally unknown state can be given as rsl, rs2, rf, and rs3, analogous to isl, is2, is3, and if. (The 
method using files, if and rf, is used for a few terminals, from /usr/share/Iib/tabsetl*; however, the recom
mended method is to use the initialization and reset strings.) These strings are output by 'tput reset', 
which is used when the terminal gets into a wedged state. Commands are normally placed in rsl, rs2, rs3, 
and rf only if they produce annoying effects on the screen and are not necessary when logging in. For ex
ample, the command to set a terminal into 80-column mode would normally be part of is2, but on some ter
minals it causes an annoying glitch on the screen and is not normally needed since the terminal is usually 
already in 80-column mode. 

If a more complex sequence is needed to set the tab stops than can be described by using the and hts, the 
sequence can be placed in is2 or if. 

If there are commands to set and clear margins, they can be given as mge (clear all margins), smgl (set left 
margin), and smgr (set right margin). 

Delays 
Certain capabilities control padding in the terminal driver. These are primarily needed by hard-copy termi
nals, and are used by 'tput init' to set tty modes appropriately. Delays embedded in the capabilities er, 
ind, cub 1, ff, and tab can be used to set the appropriate delay bits to be set in the tty driver. If pb (padding 
baud rate) is given, these values can be ignored at baud rates below the value of pb. 

Status Lines 

1470 

If the terminal has an extra "status line" that is not normally used by software, this fact can be indicated. If 
the status line is viewed as an extra line below the bottom line, into which one can cursor address normally 
(such as the Heathkit H19's 25th line, or the 24th line of a VTlOO which is set to a 23-line scrolling region), 
the capability hs should be given. Special strings that go to a given column of the status line and return 
from the status line can be given as tsl and fsl. (fsl must leave the cursor position in the same place it was 
before tsl. If necessary, the sc and re strings can be included in tsl and fsl to get this effect.) The capabili
ty tsl takes one parameter, which is the column number of the status line the cursor is to be moved to. 

If escape sequences and other special commands, such as TAB, work while in the status line, the flag eslok 
can be given. A string which turns off the status line (or otherwise erases its contents) should be given as 
dsl. If the terminal has commands to save and restore the position of the cursor, give them as sc and re. 
The status line is normally assumed to be the same width as the rest of the screen, for example, cols. If the 
status line is a different width (possibly because the terminal does not allow an entire line to be loaded) the 
width, in columns, can be indicated with the numeric parameter wsl. 

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

Line Graphics 
If the terminal has a line drawing alternate character set, the mapping of glyph to character would be given 
in acsc. The definition of this string is based on the alternate character set used in the DEC VTlOO terminal, 
extended slightly with some characters from the AT&T 4410vl terminal. 

glyph name VTlOO+ 
character 

arrow pointing right + 
arrow pointing left 
arrow pointing down 
solid square block 0 
lantern symbol I 
arrow pointing up 
diamond 
checker board (stipple) a 
degree symbol f 
plus/minus g 
board of squares h 
lower right corner j 
upper right corner k 
upper left corner 1 
lower left corner m 
plus n 
scan line 1 o 
horizontal line q 
scan line 9 s 
left tee a-) t 
right tee < -D u 
bottom tee ( 1) v 
top tee (l) w 
vertical line x 
bullet 

The best way to describe a new terminal's line graphics set is to add a third column to the above table with 
the characters for the new terminal that produce the appropriate glyph when the terminal is in the alternate 
character set mode. For example, 

glyph name VTlOO+ new tty 

upper left corner 
lower left corner 
upper right corner 
lower right comer 
horizontal line 
vertical line 

char char 

m 
k 
j 
q 
X 

R 
F 
T 
G 

Now write down the characters left to right, as in 'acsc=lRmFkTjGq\,x.'. 

Miscellaneous 
If the terminal requires other than a null (zero) character as a pad, then this can be given as pad. Only the 
first character of the pad string is used. If the terminal does not have a pad character, specify npc. 

If the terminal can move up or down half a line, this can be indicated with bu (half-line up) and hd (half
line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a hardcopy 
terminal can eject to the next page (form feed), give this as ff (usually CTRL-L). 

Sun Release 4.0 Last change: 26 February 1988 1471 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

If there is a command to repeat a given character a given number of times (to save time transmitting a large 
number of identical characters) this can be indicated with the parameterized string rep. The first parameter 
is the character to be repeated and the second is the number of times to repeat it. Thus, 
'tparm(repeat_char, 'x', 10)' is the same as 'xxxxxxxxxx'. 

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with 
cmdch. A prototype command character is chosen which is used in all capabilities. This character is given 
in the cmdch capability to identify it. On some UNIX systems, when the environment variable CC is set to 
a single-character value, all occurrences of the prototype character are replaced with that character. 

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup, 
patch, and network, should include the gn (generic) capability so that programs can complain that they do 
not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions for 
which the escape sequences are known.) If the terminal is one of those supported by the UNIX system vir
tual terminal protocol, the terminal number can be given as vt. A line-tum-around sequence to be transmit
ted before doing reads should be specified in rfi. 

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding information should still be 
included so that routines can make better decisions about costs, but actual pad characters will not be 
transmitted. Sequences to turn on and off xon/xoff handshaking may be given in smxon and rmxon. If the 
characters used for handshaking are not "S and "Q (CTRL-S and CTRL-Q, respectively), they may be 
specified with xonc and xoffc. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted, 
this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it will 
usually be cleared. If strings exist to turn this "meta mode" on and off, they can be given as smm and 
rmm. 

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of memory 
can be indicated with Im. A value of lm#O indicates that the number of lines is not fixed, but that there is 
still more memory than fits on the screen. 

Media copy strings which control an auxiliary printer connected to the terminal can be given as mcO: print 
the contents of the screen, mc4: tum off the printer, and mc5: tum on the printer. When the printer is on, 
all text sent to the terminal will be sent to the printer. A variation, mc5p, takes one parameter, and leaves 
the printer on for as many characters as the value of the parameter, then turns the printer off. The parame
ter should not exceed 255. If the text is not displayed on the terminal screen when the printer is on, specify 
mc5i (silent printer). All text, including mc4, is transparently passed to the printer while an mc5p is in ef
fect. 

Special Cases 

1472 

The working model used by terminfo fits most terminals reasonably well. However, some terminals do not 
completely match that model, requiring special support by terminfo. These are not meant to be construed 
as deficiencies in the terminals; they are just differences between the working model and the actual 
hardware. They may be unusual devices or, for some reason, do not have all the features of the terminf o 
model implemented. 

Terminals which can not display tilde ( - ) characters, such as certain Hazeltine terminals, should indicate 
hz. 

Terminals which ignore a LINEFEED immediately after an am wrap, such as the Concept 100, should indi
cate xenl. Those terminals whose cursor remains on the right-most column until another character has 
been received, rather than wrapping immediately upon receiving the right-most character, such as the 
VTlOO, should also indicate xenl. 

If el is required to get rid of standout (instead of writing normal text on top of it), xhp should be given. 

Those Teleray terminals whose tabs tum all characters moved over to blanks, should indicate xt ( destruc
tive TAB characters). This capability is also taken to mean that it is not possible to position the cursor on 
top of a "magic cookie" therefore, to erase standout mode, it is instead necessary to use delete and insert 

Last change: 26 February 1988 Sun Release 4.0 



TERMINFO ( 5V) FILE FORMATS TERMINFO ( 5V) 

line. 

Those Beehive Superbee terminals which do not transmit the escape or CTRL-C characters, should specify 
xsb, indicating that the fl key is to be used for escape and the f2 key for CTRL-C. 

Similar Terminals 

FILES 

If there are two very similar terminals, one can be defined as being just like the other with certain excep
tions. The string capability use can be given with the name of the similar terminal. The capabilities given 
before use override those in the terminal type invoked by use. A capability can be canceled by placing 
xx@ to the left of the capability definition, where xx is the capability. For example, the entry 

att4424-21Teletype 4424 in display function group ii, 
rev@, sgr@, smul@, use=att4424, 

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capabilities, and hence cannot do 
highlighting. This is useful for different modes for a terminal, or for different user preferences. More than 
one use capability may be given. 

/usr /share/lib/terminf o/? I* 
compiled terminal description database 

/usr/share/lib/tabsetl* tab stop settings for some terminals, in a format appropriate to be output to the ter
minal (escape sequences that set margins and tab stops) 

SEE ALSO 
tput(l V), curses(3V), printf(3S), term(5V), captoinfo(8V), infocmp(8V), tic(8V) 

WARNING 
As described in the Tabs and Initialization section above, a terminal's initialization strings, isl, is2, and 
is3, if defined, must be output before a curses(3V) program is run. An available mechanism for outputting 
such strings is tput init (see tput(l V)). 

Tampering with entries in /usr/share/lib/terminfol?/* (for example, changing or removing an entry) can 
affect programs that expect the entry to be present and correct. In particular, removing the description for 
the "dumb" terminal will cause unexpected problems. 

Sun Release 4.0 Last change: 26 February 1988 1473 



TOC(5) FILE FORMATS TOC(5) 

NAME 
toe - table of contents of optional clusters in Application SunOS and Developer's Toolkit 

SYNOPSIS 
/usr/Iib/Ioad/toc 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
The toe file contains information specifying the organization of the optional clusters in Application Sun0S 
and Developer's Toolkit on the Sun386i distribution media. For each cluster, a single line should be 
present with the following information: 

cluster name 
set containing the cluster (Application Sun0S or Developer's Toolkit) 
size of the cluster (in kilobytes) 
diskette volume of the cluster in the set (for loading from 3.5" diskette) 
tape and file number of the cluster (for loading from 1/4" tape) 

Items are separated by a ': '. 

Cluster names can contain any printable character other than a ': ', space, tab, or newline character. The set 
containing the cluster is specified by an 'A' for Application SunOS or 'D' for Developer's Toolkit The 
diskette volume is the number of the diskette within the diskette set on which the cluster begins. The tape 
and file number specifies the tape and file position of the cluster on the tape. 

EXAMPLE 

1474 

The following is an example to the toe file. 

accounting:A:55:14:1@12 
advanced_admin:A:628:14:1@4 
audit:A: 144: 14:1@8 
comm:A:312: 13: 1@9 
disk_ quotas:A:56:14: 1@11 
doc _prep:A:790: 13:1@10 
extended_ commands:A:276: 13:1@5 
games:A:2351: 19: l@l 7 
mail_plus:A:135:14:1@7 
man _pages:A:5586: 16: 1@14 
name_server:A:339:14:1@13 
networking_plus:A:610:13:1@6 
old:A:131:14:1@16 
plot:A:227:14:1@14 
spellcheck:A:455: 13: 1@2 
sysV _commands:A:2505:14:1@3 
base_ devel:D:5389: 1:2@2 
plot_devel:D:247:5:2@3 
sccs:D:328:5:2@4 
sunview _ devel:D: 1768:5:2@5 
sysV _devel:D:4287:3:2@6 
proflibs:D:4755:4:2@7 
config:D:3065:6:2@8 

Last change: 19 February 1988 Sun Release 4.0 



TOC(5) FILE FORMATS TOC(5) 

FILES 

The fist line specifies that the accounting cluster is part of Application SunOS and requires 55 kilobytes of 
disk storage. In the diskette distribution, it begins on diskette 14 of Application SunOS optional clusters. In 
the tape distribution, it can be found on file 12 of tape 1. The last line specifies that the config cluster is 
part of Developer's Toolkit and requires 3065 kilobytes of disk storage. In the diskette distribution, it be
gin on diskette 6 of Developer's Toolkit. In the tape distribution, it can be found on file 8 of tape 2. 

/usr/lib/load/toc 

SEE ALSO 
cluster(l) load(l) unload(l) 

Sun Release 4.0 Last change: 19 February 1988 1475 



TRANSLATE(5) FILE FORMATS TRANSLATE ( 5) 

NAME 
translate - input and output files for system message translation 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
These files are used by syslogd(8) to translate systems messages. The input file is used to map system mes
sages (in printf(3S) format strings) to numbers. This number is then used to locate a new string in the out
put file. 

An initial part of each line in the input file may specify that the message should be suppressed. Recognized 
suppression specifications are: 

(NONE) Suppress the message always. 
(n) Allow only one message every n seconds. ((10) for 

example). 
() Do not suppress the message. This can be used in a 

message that begins with a '('. 

Note that the message suppression specification is optional. If not present, the message is not suppressed. 

Each line in the output file translates the numbers from the input file into the desired error messages, and 
also specifies the format to be used to output each message. The order of parameters passed from the input 
message can be changed, by replacing the % of a format phrase with a %num$ where num is a digit string. 
For example, if num is 2, the second parameter on the input file line will be used. The value of num can be 
from 1 to the number of parameters in the input message. 

If a string is translated to a number that is not found in the output file, the message is suppressed. 

EXAMPLES 
An example input file: 

$quote" 
1 "(NONE)(l) logopen test code: %s\n" 
2 "(10)(2) logopen test code: %s\n" 
3 "()(3) logopen test code: %s\n" 
4 "()(4) logopen test code: %s\n" 
5 "(10)(5) logopen testcode: %s * 100\n" 
6 "(10)(6) logopen testcode: %s * 100\n" 
7 "(10)(7) logopen testcode: %s * 100\n" 
8 "(10)%s: %s\n" 
9 "(10)\n%s: write failed, file system is full\n" 
10 "(lO)NFS server %snot responding still trying\n" 
11 "(lO)NFS %s failed for server %s: %s\n" 
12 "(lO)NFS server %s ok\n" 
13 "(NONE)\n%s: write failed, file system is full\n" 
14 "(lO)NFS server %snot responding still trying\n" 
15 "(lOO)NFS %s failed for server %s: %s\n" 

1476 Last change: 19 February 1988 Sun Release 4.0 



TRANSLATE(5) FILE FORMATS TRANSLATE ( 5) 

An example output file: 

$quote" 
1 "TRANSLATION:(1) logopen test code: %s\n" 
2 "TRANSLATION: (2) logopen test code: %s IS REALLY\n" 
3 "TRANSLATION: (3) logopen test code: %s\n" 
4 "TRANSLATION: (4) logopen test code: %s\n" 
5 "TRANSLATION: (5) logopen testcode: %s * 100\n" 
6 "TRANSLATION: (6) logopen testcode: %s * 100\n" 
7 "TRANSLATION: (7) logopen testcode: %s * 100\n" 
8 "TRANSLATION: %s: %s\n" 
9 "TRANSLATION: \n%s: write failed, file system is full\n" 
10 "TRANSLATION: NFS server %snot responding still trying\n" 
11 "TRANSLATION: NFS %s failed for server %s: %s\n" 
12 "TRANSLATION: NFS server %s ok\n" 
13 "Out of disk on file system %s\n" 
14 "Network file server %s not ok. Check your cable\n" 
15 "Network file server %2$s down (%1$s, %3$s)\n" 

SEE ALSO 
syslogd(8) 

Sun Release 4.0 Last change: 19 February 1988 1477 



TTYTAB(5) FILE FORMATS TTYTAB(5) 

NAME 
ttytab, ttys - terminal initialization data 

DESCRIPTION 
The /etc/ttytab file contains information that is used by various routines to initialize and control the use of 
terminal special files. This information is read with the getttyent(3) library routines. There is one line in 
/ etc/ttytab file per special file. 

The /etc/ttys file should not be edited; it is derived from /etc/ttytab by init(8) at boot time, and is only in
cluded for backward compatibility with programs that may still require it. 

Fields are separated by TAB and/or SPACE characters. Some fields may contain more than one word and 
should be enclosed in double quotes. Blank lines and comments can appear anywhere in the file; com
ments are delimited by '#' and NEWLINE. Unspecified fields default to NULL. The first field is the 
terminal's entry in the device directory, /dev. The second field of the file is the command to execute for the 
line, typically getty(8), which performs such tasks as baud-rate recognition, reading the login name, and 
calling login(l). It can be, however, any desired command, for example the start up for a window system 
terminal emulator or some other daemon process, and can contain multiple words if quoted. The third field 
is the type of terminal normally connected to that tty line, as found in the termcap(5) data base file. The 
remaining fields set flags in the ty _ status entry (see getttyent(3)) or specify a window system process that 
init(8) will maintain for the terminal line. 

As flag values, the strings on and off specify whether init should execute the command given in the second 
field, while secure in addition to on allows ''root'' to login on this line. If the console is not marked 
"secure," the system prompts for the root password before coming up in single-user mode. These flag 
fields should not be quoted. The string window= is followed by a quoted command string which init will 
execute before starting getty. If the line ends in a comment, the comment is included in the ty _ comment 
field of the ttyent structure. 

EXAMPLE 

FILES 

console "/usr/etdgetty std.1200" vtlOO on secure 
ttydO "/usr/etdgetty d1200" dialup on # 555-1234 
ttyhO "/usr/etdgetty std.9600" hp2621-nl on #254MC 
ttyhl "/usr/etdgetty std.9600" plug board on # J oho' s office 
ttypO none network 
ttypl none network off 
ttyvO "/usr/new/xterm -L :O" vslOO on window="/usr/new/XvslOO O" 

The first line permits ''root'' login on the console at 1200 baud, and indicates that the console is secure for 
single-user operation. The second example allows dialup at 1200 baud without ''root'' login, and the third 
and fourth examples allow login at 9600 baud with terminal types of hp2621-nl and plugboard, respec
tively. The fifth and sixth lines are examples of network pseudo-ttys, for which getty should not be en
abled. The last line shows a terminal emulator and window-system startup entry. 

/dev 
/ etc/ttytab 

SEE ALSO 
Iogin(l), getttyent(3), gettytab(5), termcap(5), getty(8), init(8) 

1478 Last change: 22 December 1987 Sun Release 4.0 



TIYTYPE(5) FILE FORMATS TIYTYPE(5) 

NAME 
ttytype - data base of terminal types by port 

SYNOPSIS 
/etc/ttytype 

DESCRIPTION 
ttytype is a database containing, for each tty port on the system, the kind of terminal that is attached to it. 
There is one line per port, containing the terminal kind (as a name listed in termcap(5)), a SPACE, and the 
name of the tty, minus /dev/. 

This information is read by tset(l) and by login(l) to initialize the TERM variable at login time. 

FILES 
/dev/ 

SEE ALSO 
login(l), tset(l), termcap(5) 

BUGS 
Some lines are merely known as '' dialup'' or ''plug board''. 

Sun Release 4.0 Last change: 19 October 1987 1479 



TYPES(5) FILE FORMATS TYPES(5) 

NAME 
types - primitive system data types 

SYNOPSIS 
#include <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in the system code; some data of these types are accessi
ble to user code: 

1480 

I• 
* Copyright (c) 1982, 1986 Regents of the University of California. 
• All rights reserved. The Berkeley software License Agreement 
• specifies the terms and conditions for redistribution. 
•I 

#ifndef TYPES - -
#define TYPES - -

I• 
• Basic system types. 
•I 

#include <sys/sysmacros.h> 

typedef unsigned char 
typedef unsigned short 
typedef unsigned int 
typedef unsigned long 
typedef unsigned short 
typedef unsigned int 

u_char; 
u_short; 
u_int; 
u_long; 
ushort;/• System V compatibility •/ 
uint;/• System V compatibility •/ 

#if def vax 
typedef struct 
typedef struct 

int 
} label_t; 
#endif 
#if def mc68000 
typedef struct 
typedef struct 

int 
} label_t; 
#endif 
#if def spare 

_physadr { int r[l]; } *physadr; 
label_t{ 
val[14]; 

_physadr { short r[l];} *physadr; 
label_t{ 
val[l3]; 

typedef struct _physadr { int r[l]; } *physadr; 
typedef struct label_t { 

int val[2]; 
} label_t; 
#endif 
#if def i386 
typedef struct 
typedef struct 

int 
} label_t; 

_physadr { short r[l];} *physadr; 
label_t { 
val[8]; 

Last change: 19 October 1987 Sun Release 4.0 



TYPES(S) FILE FORMATS 

#endif 
typedef struct 
typedef long 
typedef char* 
typedef u_long 
typedef long 
typedef int 
typedef long 
typedef short 
typedef long 
typedef u _short 
typedef u_short 
typedef long 

_quad { long vai[2];} quad; 
daddr_t; 
caddr_t; 
ino_t; 
swblk_t; 
size_t; 
time_t; 
dev_t; 
off _t; 
uid_t; 
gid t; 
key_t; 

#define NBBY 8 /• number of bits in a byte •I 
I• 
• Select uses bit masks of file descriptors in longs. 
• These macros manipulate such bit fields (the filesystem macros use chars). 
• FD _SETSIZE may be defined by the user, but the default here 
* should be >= NOFILE (param.h). 
•I 

#ifndef FD SETSIZE 
#define FD SETSIZE 256 
#endif 

typedef long fd_mask; 
#define NFDBITS (sizeof(fd_mask) * NBBY)/• bits per mask•/ 
#ifndef howmany 
#if def sun386 
#define howmany(x, y) ((((u_int)(x))+(((u_int)(y))-1))/((u_int)(y))) 
#else 
#define howmany(x, y) (((x)+((y)-1))/(y)) 
#endif 
#endif 

typedef struct f d _ set { 
fd _ mask fds_ bits[howmany(FD _ SETSIZE, NFDBITS)]; 

} fd_set; 

typedef char * addr _ t; 

#define FD _SET(n, p) ((p)->fds_ bits[(n)/NFDBITS] I= (1 « ((n) % NFDBITS))) 
#define FD_ CLR(n, p) ((p)->fds_ bits[(n)/NFDBITS] &= -(1 « ((n) % NFDBITS))) 
#define FD _ISSET(n, p) ((p)->fds_ bits[(n)/NFDBITS] & (1 « ((n) % NFDBITS))) 
#define FD _ZERO(p) bzero((char *)(p), sizeof(•(p))) 

#if def spare 
I• 
* routines that call setjmp have strange control flow graphs, 
* since a call to a routine that calls resume/longjmp will eventually 
* return at the setjmp site, not the original call site. This 
* utterly wrecks control flow analysis. 
•I 

Sun Release 4.0 Last change: 19 October 1987 

TYPES(S) 

1481 



TYPES(S) FILE FORMATS TYPES(5) 

extern int setjmp(); 
#pragma unknown_ control_ flow(setjmp) 
#endif spare 

#endif TYPES - -
The form daddr _tis used for disk addresses, see fs(5). Times are encoded in seconds since 00:00:00 GMT, 
January l, 1970. The major and minor parts of a device code specify kind and unit number of a device and 
are installation-dependent. Offsets are measured in bytes from the beginning of a file. The label _t vari
ables are used to save the processor state while another process is running. 

SEE ALSO 
adb(l), lseek(2), time(3C), fs(5) 

1482 Last change: 19 October 1987 Sun Release 4.0 



TZFILE(5) FILE FORMATS 1ZFILE(5) 

NAME 
tzfile - time zone information 

SYNOPSIS 
#include <tzfile.h> 

DESCRIPTION 
The time zone information files used by tzset(3V) begin with bytes reserved for future use, followed by 
three four-byte values of type long, written in a "standard" byte order (the high-order byte of the value is 
written first). These values are, in order: 

tzh timecnt 

tzh _ typecnt 

tzh charcnt 

The number of "transition times" for which data is stored in the file. 

The number of "local time types" for which data is stored in the file 
(must not be zero). 

The number of characters of "time zone abbreviation strings" stored in 
the file. 

The above header is followed by tzh _timecnt four-byte values of type long, sorted in ascending order. 
These values are written in "standard" byte order. Each is used as a transition time (as returned by get
timeofday(2)) at which the rules for computing local time change. Next come tzh _timecnt one-byte values 
of type unsigned char; each one tells which of the different types of "local time" types described in the file 
is associated with the same-indexed transition time. These values serve as indices into an array of ttinfo 
structures that appears next in the file; these structures are defined as follows: 

struct ttinfo { 
long tt _gmtoff; 
int tt_isdst; 
unsigned int tt_abbrind; 

}; 

Each structure is written as a four-byte value for tt _gmtoff of type long, in a standard byte order, followed 
by a one-byte value for tt_isdst and a one-byte value for tt_abbrind. In each structure, tt_gmtoff gives the 
number of seconds to be added to GMT, tt_isdst tells whether tm_isdst should be set by localtime (see 
ctime(3)) and tt _ abbrind serves as an index into the array of time zone abbreviation characters that follow 
the ttinfo structure(s) in the file. 

localtime uses the first standard-time ttinfo structure in the file (or simply the first ttinfo structure in the ab
sence of a standard-time structure) if either tzh _timecnt is zero or the time argument is less than the first 
transition time recorded in the file. 

SEE ALSO 
gettimeofday(2), ctime(3), localtime(3), tzset(3V) 

Sun Release 4.0 Last change: 1483 



UPDA TERS ( 5) FILE FORMATS UPDATERS(S) 

NAME 
updaters - configuration file for YP updating 

SYNOPSIS 
/var/yp/updaters 

DESCRIPTION 

FILES 

The file /var/yp/updaters is a makefile (see make(l)) which is used for updating YP databases. Databases 
can only be updated in a secure network, that is, one that has a publickey(S) database. Each entry in the file 
is a make target for a particular YP database. For example, if there is a YP database named passwd.byname 
that can be updated, there should be a make target named passwd.byname in the updaters file with the 
command to update the file. 

The information necessary to make the update is passed to the update command through standard input. 
The information passed is described below (all items are followed by a NEWLINE, except for 4 and 6) 

• Network name of client wishing to make the update (a string) 

• Kind of update (an integer) 

• Number of bytes in key (an integer) 

• Actual bytes of key 

• Number of bytes in data (an integer) 

• Actual bytes of data 

After getting this information through standard input, the command to update the particular database should 
decide whether the user is allowed to make the change. If not, it should exit with the status 
YPERR_ACCESS. If the user is allowed to make the change, the command should make the change and 
exit with a status of zero. If there are any errors that may prevent the updater from making the change, it 
should exit with the status that matches a valid YP error code described in <rpcsvc/ypclnt.h>. 

/var/yp/updaters 

SEE ALSO 
make(l), ypupdate(3N), publickey(S), ypupdated(8C) 

1484 Last change: 14 December 1987 Sun Release 4.0 



UTMP(5) FILE FORMATS UTMP(5) 

NAME 
utmp, wtmp, lastlog - login records 

SYNOPSIS 
#include <utmp.h> 
#include <lastlog.h> 

DESCRIPTION 
utmp file 

The utmp file records information about who is currently using the system. The file is a sequence of utmp 
structure entries. That structure is defined in <utmp.h>, and contains the following members: 

ut line 

ut name 

ut host 

ut time 

Character array containing the name of the terminal on which the user logged in. 

Character array containing the name of the user who logged in. 

Character array containing the name of the host from which the user remotely 
logged in, if they logged in from another host; otherwise, a null string. 

long containing the time at which the user logged in, in seconds since 00:00 GMT, 
January 1, 1970. 

Whenever a user logs in, login(!) fills in the entry in /etdutmp for the terminal on which the user logged 
in. When they log out, init(8) clears that entry by setting ut_name and ut_host to null strings and ut_time 
to the time at which the user logged out. 

Some window systems will make entries in utmp for terminal emulation windows running shells, so that li
brary routines such as getlogin will work correctly in that window. These entries do not directly represent 
logged-in users; they are associated with a user who has already logged into the system on another termi
nal. These entries generally have a ut_line field that refers to a pseudo-terminal, and a ut_host field that is 
a null string. The macro nonuser, defined in <utmp.h>, takes a pointer to a utmp structure as an argument 
and, if the entry has a ut_line field that refers to a pseudo-terminal, and a ut_host field that is a null string, 
will return 1; otherwise, it will return 0. This can be used by programs that print information about 
logged-in users if they should not list entries made for logged-in users' additional windows. 

wtmp file 
The wtmp file records all logins and logouts. It also consists of a sequence of utmp entries. 

Whenever a user logs in, login appends a record identical to the record it placed in utmp to the end of 
/var/adm/wtmp. Whenever a user logs out, init appends a record with ut_ line equal to the terminal that 
the user was logged in on, ut_name and ut_host null, and ut_time equal to the time at which the user 
logged out. 

When the system is shut down, init appends a record with a ut_line of-, a ut_name of shutdown, a null 
ut_host, and a ut_time equal to the time at which the shutdown occurred. When the system is rebooted, 
init appends a record with a ut_line of-, a ut_name of reboot, a null ut_host, and a ut_time equal to the 
time at which init wrote the record. 

When the date command is used to change the system-maintained time, date appends a record with a 
ut_line of I, ut_name and ut_host null, and ut_time equal to the system time before the change, and then 
appends a record with a ut_line of{, ut_name and ut_host null, and ut_time equal to the system time after 
the change. 

None of the programs that maintain wtmp create the file, so that if record-keeping is to be enabled, it must 
be created by hand as a zero-length file, and if it is removed, record-keeping is turned off. It is summarized 
by ac(8). 

As wtmp is appended to whenever a user logs in or out, it should be truncated periodically so that it does 
not consume all the disk space on its file system. 

lastlog file 

The lastlog file records the most recent login-date for every user logged in. The file is a sequence of last
log structure entries. That structure is defined in <lastlog.h>, and contains the following members: 

Sun Release 4.0 Last change: 17 November 1987 1485 



UTMP(5) FILE FORMATS UTMP(5) 

FILES 

ll_time 

II line 

long containing the time at which the user logged in, in seconds since 00:00 GMT, 
January 1, 1970. 

Character array containing the name of the terminal on which the user logged in. 

II host Character array containing the name of the host from which the user remotely 
logged in, if they logged in from another host; otherwise, a null string. 

When reporting (and updating) the most recent login date, login performs an lseek(2) to a byte-offset in 
/var/adm/lastlog corresponding to the userid. Because the count of userids may be high, whereas the 
number actual users may be small within a network environment, the bulk of this file may never be allocat
ed by the file system even though an offset may appear to be quite large. Although ls(lV) may show it to 
be large, chances are that this file need not truncated. du(lV) will report the correct (smaller) amount of 
space actually allocated to it. 

/etc/utmp 
/var/adm/wtmp 
/var/adm/lastlog 

SEE ALSO 
login(l), who(l), ac(8), init(8) 

1486 Last change: 17 November 1987 Sun Release 4.0 



UUENCODE ( 5) FILE FORMATS UUENCODE ( 5) 

NAME 
uuencode - format of an encoded uuencode file 

DESCRIPTION 
Files output by uuencode(lC) consist of a header line, followed by a number of body lines, and a trailer 
line. uudecode (see uuencode(lC)) will ignore any lines preceding the header or following the trailer. 
Lines preceding a header must not, of course, look like a header. 

The header line is distinguished by having the first 6 characters 'begin '. The word begin is followed by a 
mode (in octal), and a string which names the remote file. Spaces separate the three items in the header 
line. 

The body consists of a number of lines, each at most 62 characters long (including the trailing NEWLINE). 
These consist of a character count, followed by encoded characters, followed by a NEWLINE. The charac
ter count is a single printing character, and represents an integer, the number of bytes the rest of the line 
represents. Such integers are always in the range from O to 63 and can be determined by subtracting the 
character space (octal 40) from the character. 

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a SPACE to make the 
characters printing. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of 3, 
this fact can be determined by the value of the count on the last line. Extra garbage will be included to 
make the character count a multiple of 4. The body is terminated by a line with a count of zero. This line 
consists of one ASCII SP ACE. 

The trailer line consists of end on a line by itself. 

SEE ALSO 
mail(l), uuencode(lC), uucp(lC), uusend(lC) 

Sun Release 4.0 Last change: 19 October 1987 1487 



VFONT(5) FILE FORMATS VFONT(5) 

NAME 
vfont - font formats 

SYNOPSIS 
#include <vf ont.h> 

DESCRIPTION 

FILES 

The fonts used by the window system and printer/plotters have the following format. Each font is in a file, 
which contains a header, an array of character description structures, and an array of bytes containing the 
bit maps for the characters. The header has the following format: 

struct header { 
short magic; 
unsigned shortsize; 
short maxx; 
short maxy; 
short xtend; 

}; 
#define VFONT MAGIC 

/* Magic number VFONT_MAGIC *I 
I* Total# bytes of bitmaps *I 
I* Maximum horizontal glyph size *I 
I* Maximum vertical glyph size *I 
I* (unused) *I 

0436 

ma.xx and maxy are intended to be the maximum horizontal and vertical size of any glyph in the font, in ras
ter lines. (A glyph is just a printed representation of a character, in a particular size and font.) The size is 
the total size of the bit maps for the characters in bytes. The xtend field is not currently used. 

After the header is an array of NUM _ DISPATCH structures, one for each of the possible characters in the 
font Each element of the array has the form: 

struct dispatch { 
unsigned shortaddr; 
short nbytes; 
char up, down, left, right; 
short width; 

}; 
#define NUM DISPATCH 

I* &(glyph) - &(start of bitmaps) *I 
I* # bytes of glyphs (0 if no glyph) *I 
I* Widths from baseline point *I 
I* Logical width, used by troff *I 

256 

The nbytes field is nonzero for characters which actually exist. For such characters, the addr field is an 
offset into the bit maps to where the character's bit map begins. The up , down, left, and right fields are 
offsets from the base point of the glyph to the edges of the rectangle which the bit map represents. (The 
imaginary "base point" is a point which is vertically on the "base line" of the glyph (the bottom line of a 
glyph which does not have a descender) and horizontally near the left edge of the glyph; often 3 or so pix
els past the left edge.) The bit map contains up+down rows of data for the character, each of which has 
left+right columns (bits). Each row is rounded up to a number of bytes. The width field represents the log
ical width of the glyph in bits, and shows the horizontal displacement to the base point of the next glyph. 

/usr /Iib/vf ontl* 
/usr/lib/fonts/fixedwidthfonts/* 

SEE ALSO 

BUGS 

1488 

troff(l), vfontinfo(l), vswap(l) 

A machine-independent font format should be defined. The shorts in the above structures contain different 
bit patterns depending whether the font file is for use on a VAX or a Sun. The vswap program must be 
used to convert one to the other. 

Last change: 19 October 1987 Sun Release 4.0 



VGRINDEFS ( 5) FILE FORMATS VGRINDEFS ( 5) 

NAME 
vgrindefs - vgrind's language definition data base 

SYNOPSIS 
/usr/lib/vgrindefs 

DESCRIPTION 
vgrindefs contains all language definitions for vgrind. The data base is very similar to termcap(5). Capa
bilities in vgrindefs are of two types: Boolean capabilities which indicate that the language has some par
ticular feature and string capabilities which give a regular expression or keyword list Entries may con
tinue onto multiple lines by giving a\ as the last character of a line. Lines starting with # are comments. 

Capabilities 
The following table names and describes each capability. 

Name Type Description 
ab str Regular expression for the start of an alternate form comment 
ae str Regular expression for the end of an alternate form comment 
bb str Regular expression for the start of a block 
be str Regular expression for the end of a lexical block 
cb str Regular expression for the start of a comment 
ce str Regular expression for the end of a comment 
id str String giving characters other than letters and digits that may legally occur in identifiers 

(default'_') 
kw str A list of keywords separated by spaces 
lb str Regular expression for the start of a character constant 
le str Regular expression for the end of a character constant 
oc bool Present means upper and lower case are equivalent 
pb str Regular expression for start of a procedure 
pl bool Procedure definitions are constrained to the lexical level matched by the 'px' capability 
px str A match for this regular expression indicates that procedure definitions may occur at the next 

lexical level. Useful for lisp-like languages in which procedure definitions occur as subex
pressions of defuns. 

sh str Regular expression for the start of a string 
se str Regular expression for the end of a string 
tc str Use the named entry as a continuation of this one 
ti bool Present means procedures are only defined at the top lexical level 

Regular Expressions 
vgrindefs uses regular expressions similar to those of ex(l) and lex(l). The characters'"','$',':', and'\' 
are reserved characters and must be 'quoted' with a preceding\ if they are to be included as normal charac
ters. The metasymbols and their meanings are: 

$ The end of a line 
The beginning of a line 

\d A delimiter (space, tab, newline, start of line) 
\a Matches any string of symbols (like'.*' in lex) 

\p Matches any identifier. In a procedure definition (the 'pb' capability) the string that matches this 
symbol is used as the procedure name. 

() Grouping 

I Alternation 

? Last item is optional 

\e Prec~ding any string means that the string will not match an input string if the input string is pre
ceded by an escape character (\). This is typically used for languages (like C) that can include the 
string delimiter in a string by escaping it. 

Sun Release 4.0 Last change: 17 November 1987 1489 



VGRINDEFS ( 5) FILE FORMATS VGRINDEFS ( 5) 

Unlike other regular expressions. in the system, these match words and not characters. Hence something 
like '(tramplsteamer)flies?' would match 'tramp', 'steamer', 'trampflies', or 'steamerflies'. Contrary to 
some forms of regular expressions, vgrindef alternation binds very tightly. Grouping parentheses are 
likely to be necessary in expressions involving alternation. 

Keyword List 
The keyword list is just a list of keywords in the language separated by spaces. If the 'oc' boolean is 
specified, indicating that upper and lower case are equivalent, then all the keywords should be specified in 
lower case. 

EXAMPLE 

FILES 

The following entry, which describes the C language, is typical of a language entry. 

Clclthe C programming language:\ 
:pb="\d?*?\d?\p\d??):bb={:be=}:cb=l*:ce=*l:sb=":se=\e":\ 
:lb=':le=\e' :ti:\ 
:kw=asm auto break case char continue default do double else enum\ 
extern float for f'ortran goto if int long register return short\ 
sizeof static struct switch typedef union unsigned while #define\ 
#else #endif #if #if def #ifndef #include #undef # define else endit\ 
if' if def ifndef include undef: 

Note that the first field is just the language name (and any variants of it). Thus the C language could be 
specified to vgrind(l) as 'c' or 'C'. 

/usr/lib/vgrindefs file containing terminal descriptions 

SEE ALSO 
vgrind( 1 ), troff( 1) 

1490 Last change: 17 November 1987 Sun Release 4.0 



YPFILES(5) FILE FORMATS YPFILES(S) 

NAME 
ypfiles - the Yellow Pages database and directory structure 

DESCRIPTION 

FILES 

The Yellow Pages (YP) network lookup service uses a distributed, replicated database of dbm files con
tained in the /var/yp directory hierarchy on each YP server. A dbm database consists of two files, created 
by calls to the ndbm(3) library package. One has the filename extension .pag and the other has the 
filename extension .dir. For instance, the database named hosts.byname, is implemented by the pair of 
files hosts.byname.pag and hosts.byname.dir. 

A dbm database served by the YP is called a YP map. A YP domain is a subdirectory of /var/yp containing 
a set of YP maps. Any number of YP domains can exist. Each may contain any number of maps. 

No maps are required by the YP lookup service itself, although they may be required for the normal opera
tion of other parts of the system. There is no list of maps which YP serves - if the map exists in a given 
domain, and a client asks about it, the YP will serve it For a map to be accessible consistently, it must ex
ist on all YP servers that serve the domain. To provide data consistency between the replicated maps, an 
entry to run ypxfr periodically should be made in the super-user's crontab file on each server. More infor
mation on this topic is in ypxfr(8). 

YP maps should contain two distinguished key-value pairs. The first is the key YP_LAST_MODIFIED, 
having as a value a ten-character ASCII order number. The order number should be the system time in 
seconds when the map was built. The second key is YP _MASTER_NAME, with the name of the YP master 
server as a value. makedbm(8) generates both key-value pairs automatically. A map that does not contain 
both key-value pairs can be served by the YP, but the ypserv process will not be able to return values for 
"Get order number" or "Get master name" requests. See ypserv(8). In addition, values of these two 
keys are used by ypxfr when it transfers a map from a master YP server to a slave. If ypxfr cannot figure 
out where to get the map, or if it is unable to determine whether the local copy is more recent than the copy 
at the master, you must set extra command line switches when you run it. 

YP maps must be generated and modified only at the master server. They are copied to the slaves using 
ypxfr(8) to avoid potential byte-ordering problems among YP servers running on machines with different 
architectures, and to minimize the amount of disk space required for the dbm files. The YP database can be 
initially set up for both masters and slaves by using ypinit(8). 

After the server databases are set up, it is probable that the contents of some maps will change. In general, 
some ASCII source version of the database exists on the master, and it is changed with a standard text edi
tor. The update is incorporated into the YP map and is propagated from the master to the slaves by running 
/var/yp/Makefile. All Sun-supplied maps have entries in /var/yp/Makefile; if you add a YP map, edit this 
file to support the new map. The makefile uses makedbm(8) to generate the YP map on the master, and 
yppush(8) to propagate the changed map to the slaves. yppush is a client of the map ypservers, which 
lists all the YP servers. For more information on this topic, see yppush(8). 

/var/yp 
/var/yp/Makefile 

SEE ALSO 
dbm(3X), makedbm(8), rpcinfo(8C), ypinit(8), ypmake(8), yppoll(8), yppush(8), ypserv(8), ypxfr(8), 

Sun Release 4.0 Last change: 14 December 1987 1491 





INTR0(6) GAMES AND DEMOS INTR0(6) 

NAME 
intro - introduction to games and demos 

DESCRIPTION 
This section describes available games and demos. 

LIST OF GAMES AND DEMOS 
Name 

adventure 
arithmetic 
backgammon 
banner 
battlestar 
bed 
bj 
boggle 
boggle tool 
bouncedemo 
canfield 
canfieldtool 
canvas demo 
cfscores 
chase 
chess 
chesstool 
ching 
craps 
cribbage 
cursor demo 
factor 
fish 
fortune 
framedemo 
gammontool 
graphics_ demos 
hack 
hangman 
hunt 
jumpdemo 
life 
mille 
monop 
moo 
number 
ppt 
primes 
primes 
quiz 
rain 
random 
robots 
snake 
snscore 
spheresdemo 

Appears on Page 

adventure(6) 
arithmetic(6) 
backgammon(6) 
banner(6) 
battlestar( 6) 
bcd(6) 
bj(6) 
boggle(6) 
boggletool(6) 
graphics_ demos(6) 
canfield( 6) 
canfield(6) 
sunview _ demos(6) 
canfield(6) 
chase(6) 
chess(6) 
chesstool(6) 
ching(6) 
craps(6) 
cribbage(6) 
sunview _ demos(6) 
factor(6) 
fish(6) 
fortune(6) 
graphics_ demos( 6) 
gammontool( 6) 
graphics_ demos(6) 
hack(6) 
hangman(6) 
hunt(6) 
graphics_ demos(6) 
life(6) 
mille(6) 
monop(6) 
moo(6) 
number(6) 
bcd(6) 
factor(6) 
primes(6) 
quiz(6) 
rain(6) 
random(6) 
robots(6) 
snake(6) 
snake(6) 
graphics_demos(6) 

Description 

an exploration game 
provide drill in number facts 
the game of backgammon 
print large banner on printer 
a tropical adventure game 
convert to antique media 
the game of black jack 
play the game of boggle 
play a game of boggle 
graphics demonstration programs 
Canfield solitaire card game 
Canfield solitaire card game 
Window-System demonstration programs 
Canfield solitaire card game 
try to escape to killer robots 
the game of chess 
window-based front-end to chess program 
the book of changes and other cookies 
the game of craps 
the card game cribbage 
Window-System demonstration programs 
factor a number, generate large primes 
play "Go Fish" 
print a random, hopefully interesting, adage 
graphics demonstration programs 
play a game of backgammon 
graphics demonstration programs 
replacement for rogue 
computer version of the game hangman 
a multiplayer multiterminal game 
graphics demonstration programs 
John Conway's game of life 
play Mille Bomes 
Monopoly game 
guessing game 
convert Arabic numerals to English 
convert to antique media 
factor a number, generate large primes 
print all primes larger than some given number 
test your knowledge 
animated raindrops display 
select lines randomly from a file 
fight off villainous robots 
display chase game 
display chase game 
graphics demonstration programs 

Sun Release 4.0 Last change: 25 September 1987 1493 



IN1R0(6) 

1494 

sunview demos 
trek 
worm 
worms 
wump 

GAMES AND DEMOS IN1R0(6) 

sunview _ demos{6) 
trek{6) 
worm(6) 
worms(6) 
wump(6) 

Window-System demonstration programs 
trekkie game 
play the growing worm game 
animate wonns on a display terminal 
the game of hunt-the-wumpus 

Last change: 25 September 1987 Sun Release 4.0 



ADVENTURE(6) GAMES AND DEMOS ADVENTURE ( 6) 

NAME 
adventure - an exploration game 

SYNOPSIS 
/usr/games/adventure 

DESCRIPTION 
The object of the game is to locate and explore Colossal Cave, find the treasures hidden there, and bring 
them back to the building with you. The program is self-describing to a point, but part of the game is to 
discover its ruJes. 

To terminate a game, type quit; to save a game for later resumption, type suspend. 

BUGS 
Saving a game creates a large executable file instead of just the information needed to resume the game. 

Sun Release 4.0 Last change: I February 1983 1495 



ARITHMETIC ( 6) GAMES AND DEMOS ARITHMETIC ( 6) 

NAME 
arithmetic - provide drill in number facts 

SYNOPSIS 
/usr/games/arithmetic [ +-x/ ] [ range ] 

DESCRIPTION 

1496 

arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the answer is 
correct, it types back ''Right!'', and a new problem. If the answer is wrong, it replies ''What?'', and waits 
for another answer. Every twenty problems, it publishes statistics on correctness and the time required to 
answer. 

To quit the program, type an interrupt (DELETE character). 

The first optional argument determines the kind of problem to be generated; '+', '-', 'x', '/' respectively 
cause addition, subtraction, multiplication, and division problems to be generated. One or more characters 
can be given; if more than one is given, the different types of problems will be mixed in random order; 
default is +-. 

range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and quotients 
will be less than or equal to the value of range. Default range is 10. 

At the start, all numbers less than or equal to range are equally likely to appear. If the respondent makes a 
mistake, the numbers in the problem which was missed become more likely to reappear. 

As a matter of educational philosophy, the program will not give correct answers, since the learner should, 
in principle, be able to calculate them. Thus the program is intended to provide drill for someone just past 
the first learning stage, not to teach number facts de novo. For almost all users, the relevant statistic should 
be time per problem, not percent correct 

Last change: 16 February 1988 Sun Release 4.0 



BACKGAMMON ( 6) GAMES AND DEMOS BACKGAMMON ( 6) 

NAME 
backgammon - the game of backgammon 

SYNOPSIS 
backgammon [ - ] [ n r w b pr pw pb tterm sfilename ] 

DESCRIPTION 
backgammon lets you play backgammon against the computer or against a 'friend'. All commands only 
are one letter, so you don't need to type a carriage return, except at the end of a move. backgammon is 
mostly self documenting, so that a q? (question mark) will usually get some help. If you answer y when 
backgammon asks if you want the rules, you will get text explaining the rules of the game, some hints on 
strategy, instruction on how to use backgammon, and a tu~rial consisting of a practice game against the 
computer. A description of how to use backgammon can be obtained by answering y when it asks if you 
want instructions. The possible arguments for backgammon (most are unnecesary but some are very con
venient) consist of: 

n don't ask for rules or instructions 

r player is red (implies n) 

w player is white (implies n) 

b two players, red and white (implies n) 

pr print the board before red's turn 

pw print the board before white's turn 

pb print the board before both player's tum 

tterm terminal is type term, uses /etc/termcap, otherwise uses the TERM environment variable. 

sfile recover previously saved game from file. This can also be done by executing the saved 
file, that is, typing its name in as a command. 

Arguments may be optionally preceded by a - sign. Several arguments may be concatenated together, but 
not after s or t arguments, since they can be followed by an arbitrary string. Any unrecognized arguments 
are ignored. An argument of a lone - gets a description of possible arguments. 

If term has capabilities for direct cursor movement. backgammon 'fixes' the board after each move, so 
the board does not need to be reprinted, unless the screen suffers some horrendous malady. Also, any 'p' 
option will be ignored. 

QUICK REFERENCE 
When backgammon prompts by typing only your color, type a space or carriage return to roll, or 

d to double 

p to print the board 

q to quit 

s to save the game for later 

When backgammon prompts with 'Move:', type 

p to print the board 

q to quit 

s to save the game 

or a move, which is a sequence of 

s-f move from s to f 

sir move one man on s the roll r separated by commas or spaces and ending with a newline. 
Available abbreviations are 

Sun Release 4.0 Last change: 16 February 1988 1497 



BACKGAMMON ( 6) GAMES AND DEMOS 

FILES 

BUGS 

1498 

s-fi-f2 means s-fi,fi.f2 

s/rlr2 means s/rl,s/r2 

Use b for bar and h for home, or O or 25 as appropriate. 

/usr/games/teachgammon 
/etc/termcap 

rules and tutorial 
terminal capabilities 

backgammon's strategy needs much work. 

Last change: 16 February 1988 

BACKGAMMON ( 6) 

Sun Release 4 .0 



BANNER(6) GAMES AND DEMOS BANNER(6) 

NAME 
banner - print large banner on printer 

SYNOPSIS 
/usr/games/banner [ -wn ] message ... 

DESCRIPTION 

BUGS 

banner prints a large, high quality banner on the standard output. If the message is omitted, it prompts for 
and reads one line of its standard input. If-w is given, the output is reduced from a width of 132 ton, suit
able for a narrow terminal. If n is omitted, it defaults to 80. 

The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks between the 
pages. The volume is enough that you want a printer or a fast hardcopy terminal, but if you are patient, a 
decwriter or other 300 baud terminal will do. 

SeveralASCIIcharactersarenotdefined,notably '<', '>', '[', ']', '\', '"', '_', '(', '}', 'l',and ,-,. 
Also, the characters"","', and'&' are funny looking (but in a useful way.) 

The -w option is implemented by skipping some rows and columns. The smaller it gets, the grainier the 
output. Sometimes it runs letters together. 

Sun Release 4.0 Last change: 16 February 1988 1499 



BA TILEST AR ( 6) GAMES AND DEMOS BA TILEST AR ( 6) 

NAME 
battlestar - a tropical adventure game 

SYNOPSIS 
battlestar [ -r] 

DESCRIPTION 
battlestar is an adventure game in the classic style. However, it is slightly less of a puzzle and more a 
game of exploration. There are a few magical words in the game, but on the whole, simple English should 
suffice to make one's desires understandable to the parser. 

OPTIONS 
-r Recover a saved game. 

THE SETTING 

USAGE 

In the days before the darkness came, when battlestars ruled the heavens ... 
Three He made and gave them to His daughters, 
Beautiful nymphs, the goddesses of the waters. 
One to bring good luck and simple feats of wonder, 
Two to wash the lands and churn the waves asunder, 
Three to rule the world and purge the skies with thunder. 

In those times great wizards were known and their powers were beyond belief. They could take any object 
from thin air, and, uttering the word 'su', could disappear. 

In those times men were known for their lust of gold and desire to wear fine weapons. Swords and coats of 
mail were fashioned that could withstand a laser blast 

But when the darkness fell, the rightful reigns were toppled. Swords and helms and heads of state went 
rolling across the grass. The entire fleet of battlestars was reduced to a single ship. 

Sample Commands 
take take an object 
drop drop an object 
wear wear an object you are holding 
draw carry an object you are wearing 
puton take an object and wear it 
take off -'"- draw an object and drop it 
throw <object> <direction> 
! <shell esc> 

Implied Objects 

1500 

>-: take watermelon 
watermelon: 
Taken. 
>-: eat 
watermelon: 
Eaten. 
>-: take knife and sword and apple, drop all 
knife: 
Taken. 
broadsword: 
Taken. 
apple: 
Taken. 
knife: 
Dropped. 

Last change: Sun Release 4.0 



BA TTLESTAR ( 6) GAMES AND DEMOS BATILESTAR(6) 

broadsword: 
Dropped. 
apple: 
Dropped. 
>-: get 
knife: 
Taken. 

Notice that the "shadow" of the next word stays around if you want to take advantage of it That is, saying 
'take knife' and then 'drop' will drop the knife you just took. 

Score and Inven 
The two commands score and inven will print out your current status in the game. 

Saving a Game 
The command save will save your game in a file called Bstar. You can recover a saved game by using the 
-r option when you start up the game. 

Directions 

BUGS 

The compass directions N, S, E, and W can be used if you have a compass. If you do not have a compass, 
you will have to say R, L, A, or B, which stand for Right, Left, Ahead, and Back. Directions printed in 
room descriptions are always printed in R, L, A, & B relative directions. 

Countless. 

Sun Release 4.0 Last change: 1501 



BCD(6) GAMES AND DEMOS 

NAME 
bed, ppt - convert to antique media 

SYNOPSIS 
/usr/games/bcd text 

/usr/games/ppt 

DESCRIPTION 
bed converts the literal text into a form familiar to old-timers. 

ppt converts the standard input into yet another form. 

SEE ALSO 
dd(l) 

1502 Last change: 16 February 1988 

BCD(6) 

Sun Release 4 .0 



BJ(6) GAMES AND DEMOS BJ(6) 

NAME 
bj - the game of black jack 

SYNOPSIS 
/usr/games/bj 

DESCRIPTION 
bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as might be found 
in Reno. The following rules apply: 

The bet is $2 every hand. 

A player "natural" (black jack) pays $3. A dealer natural loses $2. Both dealer and player natur
als is a "push" (no money exchange). 

If the dealer has an ace up, the player is allowed to make an "insurance" bet against the chance of 
a dealer natural. If this bet is not taken, play resumes as normal. If the bet is taken, it is a side bet 
where the player wins $2 if the dealer has a natural and loses $1 if the dealer does not 

If the player is dealt two cards of the same value, he is allowed to ''double''. He is allowed to 
play two hands, each with one of these cards. (The bet is doubled also; $2 on each hand.) 

If a dealt hand has a total of ten or eleven, the player may ''double down''. He may double the 
bet ($2 to $4) and receive exactly one more card on that hand. 

Under normal play, the player may "hit" (draw a card) as long as his total is not over twenty-one. 
If the player "busts" (goes over twenty-one), the dealer wins the bet. 

When the player "stands" (decides not to hit), the dealer hits until he attains a total of seventeen 
or more. If the dealer busts, the player wins the bet. 

If both player and dealer stand, the one with the largest total wins. A tie is a push. 

The machine deals and keeps score. The following questions will be asked at appropriate times. Each 
question is answered by y followed by a new-line for "yes", or just new-line for "no". 

? (this means, "do you want a hit?") 
Insurance? 
Double down? 

Every time the deck is shuffled, the dealer so states and the "action" (total bet) and "standing" (total won 
or lost) is printed. To exit, hit the interrupt key {CTRL-C) and the action and standing will be printed. 

Sun Release 4.0 Last change: 16 February 1988 1503 



BOGGLE(6) GAMES AND DEMOS BOGGLE(6) 

NAME 
boggle - play the game of boggle 

SYNOPSIS 
/usr/games/boggle [ +] [ ++] 

AVAILABILITY 
This game is available with the Games software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 

1504 

This program is intended for people wishing to sharpen their skills at Boggle {TM Parker Bros.). If you 
invoke the program with 4 arguments of 4 letters each, (e.g. "boggle appl epie moth erhd") the program 
forms the obvious Boggle grid and lists all the words from /usr/dict/words found therein. If you invoke the 
program without arguments, it will generate a board for you, let you enter words for 3 minutes, and then 
tell you how well you did relative to /usr/dict/words. 

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4 grid of letters. 
Words may be formed from any sequence of 3 or more adjacent letters in the grid. The letters may join hor
izontally, vertically, or diagonally. However, no position in the grid may be used more than once within 
any one word. In competitive play amongst humans, each player is given credit for those of his words 
which no other player has found. 

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell will ring when there is 
2:00, 1:00, 0:10, 0:02, 0:01, and 0:00 time left. You may complete any word started before the expiration 
of time. You can surrender before time is up by hitting 'break'. While entering words, your erase character 
is only effective within the current word and your line kill character is ignored. 

Advanced players may wish to invoke the program with 1 or 2 +'s as the first argument. The first+ 
removes the restriction that positions can only be used once in each word. The second+ causes a position 
to be considered adjacent to itself as well as its (up to) 8 neighbors. 

Last change: 21 December 1987 Sun Release 4.0 



BOGGLETOOL ( 6) GAMES AND DEMOS BOGGLETOOL ( 6) 

NAME 
boggletool - play a game of boggle 

SYNOPSIS 
/usr/games/chesstool [number] [ +[ + ]] [ 16-character string] 

AVAILABILITY 
This game is available with the Games software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
boggletool allows you to play the game of Boggle (TM Parker Bros.) against the computer. The number 
argument specifies the time limit in minutes (the default is 3 minutes). If a 16 character long string is 
placed on the command line, it is interpreted as a Boggle board: the first four letters form the top row, the 
next four letters the second row, etc. If no letters are specified, a board is randomly rolled by the computer 
from a set of Boggle cubes. The + [ +] argument is explained below under Advanced Play . 

PLAYING THE GAME 
Rules of the Game 

The object of Boggle is to find as many words as possible in a 4 by 4 grid of letters within a certain time 
limit. Words may be formed from any sequence of 3 or more adjacent letters in the grid. The letters may 
join horizontally, vertically, or diagonally. Normally, no letter in the grid may be used more than once in a 
word (see Advanced Play for exceptions). 

Playing the Game 
When invoked, boggletool displays a grid of letters and an hourglass. To enter words, simply type in lower 
case letters to spell the word you want. Use any whitespace (SPACE, TAB, or NEWLINE) to finish a word. 
To correct mistakes you make, use BACKSPACE or DEL to delete the last character, or use CTRL-U to 
delete an entire word. boggletool verifies that words you enter are both in the grid and are valid English 
words. If you type in a character which would form a word which is not in the grid, the display will flash 
and the character you typed will not be echoed. When you type any whitespace to end the current word, 
boggletool will verify that the word is three or more letters long and that it appears in the dictionary. If the 
word you typed is illegal for either reason, the display will flash and you will have to either erase the word 
or change it. If you try to enter a valid word which you have already entered, the display will flash and the 
previous occurrence of the word will be highlighted. Again, you will have to erase the word before con
tinuing. As you enter words, the "sand" in the hourglass will fall. At the end of the time limit, the display 
will flash and you will no longer be allowed to enter words. After a moment, the computer will display two 
lists of words: the words you found, and other words which also appear in the grid. To play another game, 
just type any capital letter (or use the pop-up menu). 

Using the Menu 

The pop-up menu is invoked by pressing the RIGHT mouse button. There are four items in it, and they 
work as follows. 

Restart Game 
Create a new boggletool a new board, reset the timer, and allow you to start from scratch. 

Restart Timer 
Allows you to cheat by reseting the hourglass timer to zero. 

Give Up 
End the game and print the results immediately. 

Quit Allows you to quit running the boggletool program. A prompt appears asking you to confirm the 
quit; when it does, click the LEFf mouse button to quit or the RIGHT mouse button to abort the 
quit. 

Advanced Play 

There are two options for advanced players. If a single + appears on the command line, letters in the grid 
may be reused. If two + 's are on the command line, letters may also be considered adjacent to themselves 

Sun Release 4.0 Last change: 21 December 1987 1505 



BOGGLETOOL ( 6) GAMES AND DEMOS BOGGLETOOL ( 6) 

FILES 

1506 

as well as to their neighbors. Although it is far easier to find words with these two options, there are also 
many more possible words in the grid and it is therefore difficult to find them all. 

/usr/games/boggledict dictionary file for computer's words 

Last change: 21 December 1987 Sun Release 4.0 



CANFIELD ( 6) GAMES AND DEMOS CANFIELD ( 6) 

NAME 
canfield, canfieldtool, cf scores - Canfield solitaire card game 

SYNOPSIS 
/usr/games/canfield [ -ac] 

/usr/games/canfieldtool [ -ac] 

/usr/games/cfscores [ -ac] [ username] 

AVAILABILITY 
These games are available with the Games software installation option. Refer to Installing the Sun0S for 
information on how to install optional software. 

DESCRIPTION 
canfield can be played on any terminal. canfieldtool is the Sun View version with attractive graphics. 

If you have never played solitaire before, it is recommended that you consult a solitaire instruction book. In 
canfield, tableau cards may be built on each other downward in alternate colors. An entire pile must be 
moved as a unit in building. Top cards of the piles are available to be able to be played on foundations, but 
never into empty spaces. 

Spaces must be filled from the stock. The top card of the stock also is available to be played on foundations 
or built on tableau piles. After the stock is exhausted, tableau spaces may be filled from the talon and the 
player may keep them open until he wishes to use them. 

Cards are dealt from the hand to the talon by threes and this repeats until there are no more cards in the 
hand or the player quits. To have cards dealt onto the talon the player types ht for his move. Foundation 
base cards are also automatically moved to the foundation when they become available. 

Canfield tool 
Once you understand the rules, canfieldtool is self-explanatory. 

Canfield 
The rules for betting are somewhat less strict than those used in the official version of the game. The initial 
deal costs $13. You may quit at this point or inspect the game. Inspection costs $13 and allows you to 
make as many moves as is possible without moving any cards from your hand to the talon. (The initial deal 
places three cards on the talon; if all these cards are used, three more are made available.) Finally, if the 
game seems interesting, you must pay the final installment of $26. At this point you are credited at the rate 
of $5 for each card on the foundation; as the game progresses you are credited with $5 for each card that is 
moved to the foundation. Each run through the hand after the first costs $5. The card counting feature 
costs $1 for each unknown card that is identified. If the information is toggled on, you are only charged for 
cards that became visible since it was last turned on. Thus the maximum cost of information is $34. Play
ing time is charged at a rate of $1 per minute. If the -a flag is specified, it prints out the canfield accounts 
for all users that have played the game since the database was set up. 

OPTIONS 

FILES 

BUGS 

a Print out canfield accounts for all users that have played the game since the database was set up. 

c Maintain card counting statistics on the bottom of the screen. When properly used this can greatly 
increase the chances of winning. 

With no arguments, cf scores prints out the current status of your canfield account. If username is specified, 
it prints out the status of their account. 

/usr/games/canfield the game itself 
/usr/games/lib/cfscores the database of scores 

It is impossible to cheat. 

Sun Release 4.0 Last change: 21 December 1987 1507 



CHASE(6) GAMES AND DEMOS CHASE(6) 

NAME 
chase - try to escape to killer robots 

SYNOPSIS 
/usr/games/chase [ nrobots] [ nfences] 

DESCRIPTION 

1508 

The object of the game chase is to move around inside of the box on the screen without getting eaten by 
the robots chasing and without running into anything. 

If a robot runs into another robot while chasing you, they crash and leave a junk heap. If a robot runs into a 
fence, it is destroyed. 

If you can survive until all the robots are destroyed, you have won! 

If you do not specify either nrobots or nfences, chase will prompt you for them. 

Last change: 16 February 1988 Sun Release 4 .0 



CHESS(6) GAMES AND DEMOS CHESS (6) 

NAME 
chess - the game of chess 

SYNOPSIS 
/usr/games/chess 

AVAILABILITY 
This game is available for Sun-2, Sun-3 and Sun-4 systems with the Games software installation option. 
Refer to Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
chess is a computer program that plays class D chess. Moves may be given either in standard (descriptive) 
notation or in algebraic notation. The symbol'+' is used to specify check; 'o-o' and 'o-o-o' specify cas
tling. To play black, type 'first'; to print the board, type an empty line. 

Each move is echoed in the appropriate notation followed by the program's reply. 

DIAGNOSTICS 
The most cryptic diagnostic is 'eh?' which means that the input was syntactically incorrect. 

FILES 
/usr/games/lib/chess.book 

book of opening moves 

BUGS 
Pawns may be promoted only to queens. 

Sun Release 4.0 Last change: 18 February 1988 1509 



CHESSTOOL(6) GAMES AND DEMOS CHES STOOL ( 6) 

NAME 
chesstool - window-based front-end to chess program 

SYNOPSIS 
/usr/games/chesstool [ chess yrogram ] 

AVAILABILITY 
This game is available for Sun-2, Sun-3 and Sun-4 systems, with the Games software installation option. 
Refer to Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
chesstool is a window-based front-end to the chess(6) program. Used without options, chesstool uses 
/usr/games/chess; you can designate any alternate program which uses the same command syntax as 
chess(6) with the chessyrogram argument. 

When chesstool starts up, it displays a large window with three subwindows. The first subwindow displays 
messages 'Illegal move', for example. The second subwindow is an options subwindow; options are 
described below. The final subwindow is a chessboard display with white and black pieces and two 
(advisory only) timekeeping clocks. 

Make your moves with the mouse: select a piece by positioning the arrow cursor over the piece and press
ing the left mouse button down, then drag the piece to the destination square, and release the button. The 
cursor will then tum to an hourglass icon while the system plays. 

Items in the subwindow may be selected with either the left or middle mouse buttons. These options are: 

Last Play Show the last play made. 

Undo 

Flash 

Undo your last move and the machine's response. 

Once the game is over, it is not possible to restart it, so undo will update the board, but 
the game cannot be continued from that position. 

Flash when the machine has completed its move. 

When this command is selected, a check mark will appear next to the word Flash. In 
flash mode, if chesstool is open, the piece moved by the system on its play will flash 
until you make your move. If chesstool is iconic, the entire icon will flash when the 
machine has made its move. Thus you can "Close" chesstool and be alerted when it's 
your tum to move. To tum flash mode off, select flash again. 

Machine White Start a new game with the machine playing white. 

Human White Start a new game with the machine playing black. 

Quit Exit from chesstool. 

There are two moves which are special: castling and capturing a pawn en passant. To castle, move the 
king only. The position of the rook will automatically be updated. Since the king moves two squares when 
castling, the move is unambiguous. To capture enpassant, move the pawn to the square occupied by the 
opposing pawn which will be captured. 

SEE ALSO 
chess(6) 

1510 Last change: 18 February 1988 Sun Release 4.0 



CHING(6) GAMES AND DEMOS CHING(6) 

NAME 
ching - the book of changes and other cookies 

SYNOPSIS 
/usr/games/ching [hexagram] 

DESCRIPTION 
The/ Ching or Book of Changes is an ancient Chinese oracle that has been in use for centuries as a source 
of wisdom and advice. 

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each symbolized by a 
particular arrangement of six straight (-) and broken (- - ) lines. These lines have values ranging from 
six through nine, with the even values indicating the broken lines. 

Each hexagram consists of two major sections. The Judgement relates specifically to the matter at hand 
(For instance, ''It furthers one to have somewhere to go.'') while the Image describes the general attributes 
of the hexagram and how they apply to one's own life ("Thus the superior man makes himself strong and 
untiring.''). 

When any of the lines has the value six or nine, it is a moving line; for any such line there is an appended 
judgement which becomes significant. Furthermore, the moving lines are inherently unstable and change 
into their opposites; a second hexagram (and thus an additional judgement) is formed. 

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting a set of 
changes (lines) using yarrow-stalks or tossed coins. The resulting hexagram will be the answer to the 
question. 

Using an algorithm suggested by S. C. Johnson, this oracle simply reads a question from the standard input 
(up to an EOF) and hashes the individual characters in combination with the time of day, process ID and 
any other magic numbers which happen to be lying around the system. The resulting value is used as the 
seed of a random number generator which drives a simulated coin-toss divination. The answer is then 
piped through nroff for formatting and will appear on the standard output. 

For those who wish to remain steadfast in the old traditions, the oracle will also accept the results of a per
sonal divination using, for example, coins. To do this, cast the change and then type the resulting line 
values as an argument. 

The impatient modem may prefer to settle for Chinese cookies; try fortune(6). 

SEE ALSO 
It furthers one to see the great man. 

DIAG~OSTICS 

BUGS 

The great prince issues commands, 
Founds states, vests families with fiefs. 
Inferior people should not be employed. 

Waiting in the mud 
Brings about the arrival of the enemy. 

If one is not extremely careful, 
Somebody may come up from behind and strike him. 
Misfortune. 

Sun Release 4.0 Last change: 16 February 1988 1511 



CRAPS(6) GAMES AND DEMOS CRAPS(6) 

NAME 
craps - the game of craps 

SYNOPSIS 
/usr/games/craps 

DESCRIPTION 

1512 

craps is a form of the game of craps that is played in Las Vegas. The program simulates the roller, while 
the user (the player) places bets. The player may choose, at any time, to bet with the roller or with the 
House. A bet of a negative amount is taken as a bet with the House, any other bet is a bet with the roller. 

The player starts off with a ''bankroll'' of $2,000. 

The program prompts with: 

bet? 

The bet can be all or part of the player's bankroll. Any bet over the total bankroll is rejected and the pro
gram prompts with bet? until a proper bet is made. 

Once the bet is accepted, the roller throws the dice. The following rules apply (the player wins or loses 
depending on whether the bet is placed with the roller or with the House; the odds are even). The first roll 
is the roll immediately following a bet: 

1. On the first roll: 

7 or 11 
2, 3, or 12 
any other number 

2. On subsequent rolls: 

wins for the roller; 
wins for the House; 
is the point, roll again (Rule 2 applies). 

point roller wins; 
7 House wins; 
any other number roll again. 

If a player loses the entire bankroll, the House will offer to lend the player an additional $2,000. The pro
gram will prompt: 

marker? 

A yes (or y) consummates the loan. Any other reply terminates the game. 

If a player owes the House money, the House reminds the player, before a bet is placed, how many markers 
are outstanding. 

If, at any time, the bankroll of a player who has outstanding markers exceeds $2,000, the House asks: 

Repay marker? 

A reply of yes (or y) indicates the player's willingness to repay the loan. If only 1 marker is outstanding, it 
is immediately repaid. However, if more than 1 marker are outstanding, the House asks: 

How many? 

markers the player would like to repay. If an invalid number is entered (or just a carriage return), an 
appropriate message is printed and the program will prompt with How many? until a valid number is 
entered. 

If a player accumulates 10 markers (a total of $20,000 borrowed from the House), the program infonns the 
player of the situation and exits. 

Should the bankroll of a player who has outstanding markers exceed $50,000, the total amount of money 
borrowed will be automatically repaid to the House. 

Last change: 16 February 1988 Sun Release 4.0 



CRAPS(6) GAMES AND DEMOS CRAPS(6) 

Any player who accumulates $100,000 or more breaks the bank. The program then prompts: 

New game? 

to give the House a chance to win back its money. 

Any reply other than yes is considered to be a no (except in the case of bet? or How many?). To exit, 
send an interrupt (break), DELETE character or CTRL-D The program will indicate whether the player won, 
lost, or broke even. 

MISCELLANEOUS 
The random number generator for the die numbers uses the seconds from the time of day. Depending on 
system usage, these numbers, at times, may seem strange but occurrences of this type in a real dice situa
tion are not uncommon. 

Sun Release 4.0 Last change: 16 February 1988 1513 



CRIBBAGE ( 6) GAMES AND DEMOS CRIBBAGE ( 6) 

NAME 
cribbage - the card game cribbage 

SYNOPSIS 
/usr/games/cribbage [ -eqr] name ... 

DESCRIPTION 
cribbage plays the card game cribbage, with cribbage playing one hand and the user the other. cribbage 
initially asks the user if the rules of the game are needed - if so, cribbage displays the appropriate section 
from According to Hoyle with more(l). 

OPTIONS 
-e Provide an explanation of the correct score when the player makes mistakes scoring his hand or 

crib. This is especially useful for beginning players. 

-q Print a shorter form of all messages - this is only recommended for users who have played the 
game without specifying this option. 

-r Instead of asking the player to cut the deck, cribbage will randomly cut the deck. 

PLAYING CRIBBAGE 
cribbage first asks the player whether he wishes to play a short game ("once around", to 61) or a long 
game ("twice around", to 121). A response of 's' results in a short game, any other response plays a long 
game. 

At the start of the first game, cribbage asks the player to cut the deck to determine who gets the first crib. 
The user should respond with a number between O and 51, indicating how many cards down the deck is to 
be cut. The player who cuts the lower ranked card gets the first crib. If more than one game is played, the 
loser of the previous game gets the first crib in the current game. 

For each hand, cribbage first prints the player's hand, whose crib it is, and then asks the player to discard 
two cards into the crib. The cards are prompted for one per line, and are typed as explained below. 

After discarding, cribbage cuts the deck (if it is the player's crib) or asks the player to cut the deck (if it's 
its crib); in the latter case, the appropriate response is a number from Oto 39 indicating how far down the 
remaining 40 cards are to be cut. 

After cutting the deck, play starts with the non-dealer (the person who doesn't have the crib) leading the 
first card. Play continues, as per cribbage, until all cards are exhausted. cribbage keeps track of the scor
ing of all points and the total of the cards on the table. 

After play, the hands are scored. cribbage requests the player to score his hand (and the crib, if it is his) by 
printing out the appropriate cards (and the cut card enclosed in brackets). Play continues until one player 
reaches the game limit (61 or 121). 

A carriage return when a numeric input is expected is equivalent to typing the lowest legal value; when 
cutting the deck this is equivalent to choosing the top card. 

SPECIFYING CARDS 

FILES 

1514 

Cards are specified as rank followed by suit. The ranks may be specified as one of a, 2, 3, 4, 5, 6, 7, 8, 9, 
t, j, q, and k, or alternatively, one of ace, two, three, four, five, six, seven, eight, nine, ten, jack, queen, 
and king. Suits may be specified ass, h, d, and c, or alternatively as spades, hearts, diamonds, and clubs. 
A card may be specified as rank suit, or rank of suit. If the single letter rank and suit designations are 
used, the space separating the suit and rank may be left out. Also, if only one card of the desired rank is 
playable, typing the rank is sufficient. For example, if your hand was 2h, 4d, Sc, 6h, jc, kd and you 
wanted to discard the king of diamonds, you could type any of k, king, kd, k d, k of d, king d, king of d, k 
diamonds, k of diamonds, king diamonds, or king of diamonds, 

/usr/games/cribbage 

Last change: 16 February 1988 Sun Release 4.0 



CRIBBAGE ( 6) 

SEE ALSO 
more(l) 

Sun Release 4.0 

GAMES AND DEMOS CRIBBAGE ( 6) 

Last change: 16 February 1988 1515 



FACTOR(6) GAMES AND DEMOS FACTOR(6) 

NAME 
factor, primes - factor a number, generate large primes 

SYNOPSIS 
/usr/games/factor [ number ] 

/usr/games/primes [ number ] 

DESCRIPTION 
factor reads lines from its standard input. If it reads a positive number, factor will factor the number and 
print its prime factors, printing each one the proper number of times. factor exits when it reads zero, a 
negative number, or something other than a number. If a number is given, factor will factor the number, 
print its prime factors, and exit. 

primes reads a number from the standard input and prints all primes larger than the given number and 
smaller than 232 (about 4.3xIO\ If a number is given, primes will use that number rather than reading 
one from the standard input. 

DIAGNOSTICS 
Ouch. Input out of range or for garbage input. 

1516 Last change: 16 February 1988 Sun Release 4.0 



FISH(6) GAMES AND DEMOS FISH(6) 

NAME 
fish - play "Go Fish" 

SYNOPSIS 
/usr/games/fish 

DESCRIPTION 
fish plays the game of "Go Fish", a children's card game. The object is to accumulate "books" of 4 cards 
with the same face value. The players alternate turns; each tum begins with one player selecting a card 
from his hand, and asking the other player for all cards of that face value. If the other player has one or 
more cards of that face value in his hand, he gives them to the first player, and the first player makes 
another request. Eventually, the first player asks for a card which is not in the second player's hand: he 
replies 'GO FISH!' The first player then draws a card from the "pool" of undealt cards. If this is the card he 
had last requested, he draws again. When a book is made, either through drawing or requesting, the cards 
are laid down and no further action takes place with that face value. 

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, or k k when asked. 
Hitting a RETURN character gives you information about the size of my hand and the pool, and tells you 
about my books. Saying 'p' as a first guess puts you into "pro" level; the default is pretty dumb. 

Sun Release 4.0 Last change: 16 February 1988 1517 



FORTUNE(6) GAMES AND DEMOS FORTUNE(6) 

NAME 
fortune - print a random, hopefully interesting, adage 

SYNOPSIS 
/usr/games/fortune [ - ] [ -alsw] [filename ] 

DESCRIPTION 

FILES 

1518 

fortune with no arguments prints out a random adage. The flags mean: 

-a Choose from either list of adages. 

-I Long messages only. 

-s Short messages only. 

-w Waits before termination for an amount of time calculated from the number of characters in 
the message. This is useful if it is executed as part of the logout procedure to guarantee that 
the message can be read before the screen is cleared. 

/usr/games/lib/fortunes.dat 

Last change: 16 February 1988 Sun Release 4.0 



GAMMONTOOL ( 6) GAMES AND DEMOS GAMMONTOOL ( 6) 

NAME 
gammontool - play a game of backgammon 

SYNOPSIS 
/usr/games/gammontool [ path ] 

AVAILABILITY 
This game is available with the Games software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
gammontool paints a backgammon board on the screen, and then lets you play against the computer. It 
must be run in Sun Windows. The optional path argument specifies an alternate move-generating program, 
which must be specially designed to run with gammontool. 

The game has three subwindows: an option window on top, a message window in the middle, and a large 
board on the bottom. The buttons in the option window are used to restart, double, etc. The message win
dow has two lines: the first tells whose tum it is, and the second displays any errors that occur. 

The Initial Roll 
To start the game, roll the dice to determine who goes first. Move the mouse arrow onto the board and 
click the left button. One die appears on each side of the board: the die on the left is yours, and the die on 
the right is the computer's. If your roll is greater, then you move; if not, the computer makes a move. 

Making Your Move 
When it is your turn, 'Yourmove' appears in the message window. Place the mouse over any piece of your 
color, and click the left button. While holding down the button, move the mouse to drag the piece; the 
piece follows the mouse until you release the button. The tool checks each move and does not allow illegal 
moves. When you have made as many moves as you can, the computer takes its tum; after it finishes, you 
may either roll again, or double. 

Doubling 
To double, click the Double button in the option window and wait for the computer's response. If 
the computer doubles you, a message is displayed and you must answer with the Accept Double 
or Refuse Double buttons. The Forfeit button can also be used to refuse a double. If the game is 
doubled, a doubling cube with the proper value is displayed on the bar strip. If the number is fac
ing up, then you may double next. If the number is upside down, it is the computer's tum to dou
ble. 

Other Buttons 
If you want to change your move before you have finished it, use the Redo Move or 
Redo Entire Move buttons in the option window. Redo Entire Move replaces all of the pieces 
you have moved so that you can redo them all. Redo Move only replaces the last piece you 
moved, so it is useful when you roll doubles and want to redo only the last piece you moved. Note 
that once you have made all of the moves your roll permits, play passes immediately to the com
puter, so you cannot redo the very last move. The Show Last Move button allows you to see the 
last move again. 

Leaving the Game 
If you want to quit playing backgammon, use the Quit button. If you want to forfeit the game, use the For
feit button. The computer penalizes you by taking a certain number of points, but the program does not 
terminate. 

To play another game after winning, losing, or forfeiting, click the New Game button. To change the color 
of your pieces, click the mouse button while pointing at either the White or Black checkboxes. You may 
change colors at any time, even in the middle of a game. Changing colors in the middle of a game does not 
mean that you trade places with the computer; your pieces stay where they are, but they are repainted with 
the new color. Your pieces always move from the top right to the bottom right of the board, regardless of 
your color. As an additional cue as to your color, your dice are always displayed on the left half of the 
board. 

Sun Release 4.0 Last change: 21 December 1987 1519 



GAMMONTOOL ( 6) GAMES AND DEMOS GAMMONTOOL ( 6) 

Log File 

FILES 

BUGS 

1520 

If a there is a gammonlog file your home directory, gammontool keeps a log of the games played. Each 
move and double gets recorded, along with the winners and accumulated scores. 

-/gammonlog log of games played 
/usr/games/lib/gammonscores 

log of wins and losses 

The default strategy used by the computer is very poor. 

If a single move uses more than one die (for instance if you roll 5, 6 and move 11 spaces without touching 
down in the middle) it is unpredictable where the program will make the piece touch down. This may be 
important if there is a blot on one of these middle points. The program will always make the move if possi
ble, but if two midpoints would work and there is a blot on one of them, it is much better to explicitly hit 
the blot and then move the piece the rest of the way. 

Last change: 21 December 1987 Sun Release 4.0 



GRAPIDCS_DEMOS ( 6) GAMES AND DEMOS GRAPIDCS_DEMOS ( 6) 

NAME 
graphics_demos, bouncedemo, framedemo, jumpdemo, spheresdemo, - graphics demonstration programs 

SYNOPSIS 
/usr/demo/bouncedemo [ -d dev ] [ -DX ] [ -r ] [ -q ] /usr/demo/framedemo [ -d dev] [ -DX] [ -r ] [ 
-q] 

/usr/demo/jumpdemo [ -c] [ -d dev] [-DX] [ -r] [ -q] 

/usr/demo/spheresdemo [ -d dev ] [ -DX ] [ -r ] [ -q ] 

AVAILABILITY 
These demos are available with the Demos software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
bouncedemo 

bouncedemo displays a bouncing square. 

framedemo 
framedemo 

displays a series of frames, each of which contains a 256 by 256 image one-bit-deep pixels (that is, the 
image is a square monochrome bitmap, with 256 bits on a side). framedemo looks for the frames in the 
files frame.I through frame.n in the current working directory, and displays them in numerical order. A 
set of sample frames is available in the directory /usr/demo/globeframes/•. 

Interactive Commands 

If you move the cursor onto the image surface, you can type certain commands to affect the rate at which 
the frames are displayed. The initial rate is one frame per second: 

f Remove I/20th of a second from the interval. 

F Remove one second from the interval. Ff makes the interval as small as possible. 

s Add l/20th of a second. 

S Add one second. 

jumpdemo 

jumpdemo simulates the famous Star Wars jump to light-speed-sequence using vector drawing. Colored 
stars are drawn on color surfaces. 

spheresdemo 

spheresdemo computes a random collection of shaded spheres. Colored spheres are drawn on color sur
faces. 

OPTIONS 

-c Rotate the color map to produce a sparkling effect. 

-d surface 
Run the demo on a surface .other than the window or system console, for instance: 

bouncedemo -d /dev/cgoneO 

-DX Draw x items, or repeat a sequence x times. 

-r Retain the window. This allows the image to reappear when uncovered instead of restarting the 
demo. 

-q Quick exit. Useful for running several demos from within a shell script 

Sun Release 4.0 Last change: 21 December 1987 1521 



HACK(6) GAMES AND DEMOS HACK(6) 

NAME 
hack - replacement for rogue 

SYNOPSIS 
hack [ -d hackdir ] [ -s all I player . . . ] 

DESCRIPTION 

FILES 

1522 

hack is a display-oriented dungeons & dragons type game. Both display and command structure resemble 
rogue, although hack has twice as many monster types and requires three times as much memory. 

Normally hack looks in /usr/games/Iib/hackdir for the files listed below; this directory can be changed 
with the -d option. The -s option permits you to search the player record. Given the keyword all, hack 
lists all players; given the login name of a player, it lists all scores of that player. 

record 
news 
data 
help 
hh 
perm 
rumors 

top 100 list (start with an empty file) 
changes or bugs (start with no news file) 
information about objects and monsters 
introductory information (no doubt outdated) 
compacted version of help 
empty file used for locking 
texts for fortune cookies 

Last change: 16 February 1988 Sun Release 4.0 



HANGMAN(6) GAMES AND DEMOS HANGMAN(6) 

NAME 
hangman - computer version of the game hangman 

SYNOPSIS 
/usr/games/hangman 

DESCRIPTION 
In hangman, the computer picks a word from the on-line word list and you must try to guess it. The com
puter keeps track of which letters have been guessed and how many wrong guesses you have made on the 
screen in a graphic fashion. 

FILES 
/usr/dict/words on-line word list 

Sun Release 4.0 Last change: 16 February 1988 1523 



HUNT(6) GAMES AND DEMOS HUNT(6) 

NAME 
hunt - a multi player multiterminal game 

SYNOPSIS 
/usr/games/hunt[-m] [ hostname] [ -l name] 

DESCRIPTION 

1524 

The object of the game hunt is to kill off the other players. There are no rooms, no treasures, and no mon
sters. Instead, you wander around a maze, find grenades, trip mines, and shoot down walls and players. 

Your score is the ratio of number of kills to number of times you entered the game and is only kept for the 
duration of a single session of hunt. The more players you kill before you die, the better your score is. 

hunt normally looks for an active game on the local network; if none is found, it starts one up on the local 
host. One may specify the location of the game by giving the host name argument. 

hunt only works on crt (vdt) terminals with at least 24 lines, 80 columns, and cursor addressing. The 
screen is divided in to 3 areas. On the right hand side is the status area. It shows you how much damage 
you've sustained, how many charges you have left, who's in the game, who's scanning (the asterisk in 
front of the name), who's cloaked (the plus sign in front of the name), and other players' scores. Most of 
the rest of the screen is taken up by your map of the maze, except for the 24th line, which is used for longer 
messages that do not fit in the status area. 

hunt uses the same keys to move as vi does, for instance, h,j,k, and I for left, down, up, right respectively. 
To change which direction you're facing in the maze, use the upper case version of the movement key (for 
instance, HJKL). 

Other commands are: 

f Fire (in the direction you're facing) (Takes 1 charge) 
g Throw grenade (in the direction you're facing) (Takes 9 charges) 
F Throw satchel charge (Takes 25 charges) 
G Throw bomb (Takes 49 charges) 
o Throw small slime bomb (Takes 15 charges) 
0 Throw big slime bomb (Takes 30 charges) 
s Scan (where other players are) (Takes 1 charge) 
c Cloak (where you are) (Takes 1 charge) 
"L Redraw screen 
q Quit 

Knowing what the symbols on the screen often helps: 

-I+ Walls 

/\ Diagonal (deflecting) walls 

# Doors (dispersion walls) 

Small mine 

g Large mine 

Shot 

o Grenade 

0 Satchel charge 

@ Bomb 

s Small slime bomb 

$ Big slime bomb 

> <" v You facing right, left, up, or down 

Last change: 16 February 1988 Sun Release 4.0 



HUNT(6) GAMES AND DEMOS 

} { i ! Other players facing right, left, up, or down 

* Explosion 

w 
- * E- Grenade and large mine explosion 

ff\ 

HUNT(6) 

Satchel and bomb explosions are larger than grenades (5x5, 7x7, and 3x3 respectively). 

Other helpful hints: 

ENVIRONMENT 

You can only fire in the direction you are facing. 
You can only fire three shots in a row, then the gun must cool. 
A shot only affects the square it hits. 
Shots and grenades move 5 times faster than you do. 
To stab someone, 

you must face that player and move at them. 
Stabbing does 3 points worth of damage and shooting does 5 points. 
You start with 15 charges and get 5 more for every new player. 
A grenade affects the nine squares centered about the square it hits. 
A satchel affects the twenty-five squares centered about the square it hits. 
A bomb affects the forty-nine squares centered about the square it hits. 
One small mine and one large mine is placed in the maze for every new player. 
A mine has a 5% probability of tripping when you walk directly at it; 

50% when going sideways on to it; 95% when backing up on to it. 
Tripping a mine costs you 5 points or 10 points respectively. 
Defusing a mine is worth 1 charge or 9 charges respectively. 
You cannot see behind you. 
Scanning lasts for (20 times the number of players) turns. 

Scanning takes 1 ammo charge, so do not waste all your charges scanning. 
You get 2 more damage capacity points and 2 damage points taken away 

whenever you kill someone. 
Maximum typeahead is 5 characters. 
A shot destroys normal (for instance, non-diagomµ, non-door) walls. 
Diagonal walls deflect shots and change orientation. 
Doors disperse shots in random directions (up, down, left, right). 
Diagonal walls and doors cannot be destroyed by direct shots but may 

be destroyed by an adjacent grenade explosion. 
Walls regenerate, reappearing in the order they were destroyed. 

One percent of the regenerated walls will be diagonal walls or doors. When a wall is 
generated directly beneath a player, he is thrown in a random direction for a random 
period of time. When he lands, he sustains damage (up to 20 percent of the amount of 
damage he had before impact); that is, the less damage he had, the more nimble he is and 
therefore less likely to hurt himself on landing. 

The environment variable HUNT is checked to get the player name. If you do not have this variable set, 
hunt will ask you what name you want to play under. You may also set up a single character keyboard 
map, but then you have to enumerate the options. For example: 

setenv HUNT ''name=Sneaky ,mapkey=zoFfGglf2g3F4G'' 

sets the player name to Sneaky, and the maps z too, F to f, G tog, 1 to f, 2 tog, 3 to F, and 4 to G. 

The mapkey option must be last. 

It is a boring game if you are the only one playing. 

Sun Release 4.0 Last change: 16 February 1988 1525 



HUNT(6) GAMES AND DEMOS HUNT(6) 

OPTIONS 
-m You enter the game as a monitor (you can see the action but you cannot play). 

-I name Enter the game as player name. 

FILES 
/usr/games/lib/hunt.driver game coordinator 

LIMITATIONS 

BUGS 

1526 

hunt normally drives up the load average to be about (number_of_players + 0.5) greater than it would be 
without a hunt game executing. A limit of three players per host and nine players total is enforced by 
hunt. 

To keep up the pace, not everything is as realistic as possible. 

Last change: 16 February 1988 Sun Release 4.0 



LIFE(6) GAMES AND DEMOS LIFE(6) 

NAME 
life - John Conway's game of life 

SYNOPSIS 
/usr/games/life 

AVAILABILITY 
This game is available with the Games software installation option. Refer to Installing the Sun0S for 
information on how to install optional software. 

DE~CRIPTION 
life is a program that plays John Conway's game of life. It only runs under sunview(l). 

When invoked, life will display a window with a small control panel at the top, and a large drawing area at 
the bottom. You can create pieces in the drawing area with the left button, and erase them with the middle 
button. When you select Run in the control panel, the pieces will begin to evolve, and the drawing region 
will update itself at a speed controlled by the slider labeled with Fast and Slow. life keeps track of all the 
pieces even if they are not visible. The scroll bars surrounding the drawing region can be used to see 
pieces that have moved out of view. There are some standard patterns that can be drawn by popping up a 
menu in the drawing subwindow. 

The meaning of the items in the first row of the control panel (from left to right) are as follows. If you 
click on the picture which looks like a tic-tac-toe board, a grid will appear in the drawing region. If you 
click on Step, the mode will change from run mode (where the pieces update continuously) to step mode 
(where an update is only done when you click on Step). Following Gen is a number indicating the number 
of generations that have occured. The button marked Find will scroll so that at least one piece is in view. 
This is useful when all the pieces disappear from view. The button marked Clear will clear the drawing 
region, but leave the other controls unchanged. Reset will reset all the panel controls, but will not erase 
any of the pieces, and Quit Exits the tool. The second row contains two sliders. The first controls the 
update speed when in run mode, the second controls the size of the pieces. 

SEE ALSO 
sunview(l) 

Sun Release 4.0 Last change: 21 December 1987 1527 



MILLE(6) GAMES AND DEMOS MILLE(6) 

NAME 
mille - play Mille Bomes 

SYNOPSIS 
/usr/games/mille [file] 

DESCRIPTION 
mille plays a two-handed game reminiscent of the Parker Brother's game of Mille Bomes with you. The 
rules are described below. If a file name is given on the command line, the game saved in that file is 
started. 

When a game is started up, the bottom of the score window will contain a list of commands. They are: 

P Pick a card from the deck. This card is placed in the 'P' slot in your hand. 

D Discard a card from your hand. To indicate which card, type the number of the card in 
the hand (or "P" for the just-picked card) followed by a carriage-return or space. The 
carriage-return or space is required to allow recovery from typos which can be very 
expensive, like discarding safeties. 

U Use a card. The card is again indicated by its number, followed by a carriage-return or 
space. 

0 Toggle ordering the hand. By default off, if turned on it will sort the cards in your hand 
appropriately. This is not recommended for the impatient on slow terminals. 

Q Quit the game. This will ask for confirmation, just to be sure. Hitting DELEfE (or 
RUBOUT) is equivalent 

S Save the game in a file. If the game was started from a file, you will be given an oppor
tunity to save it on the same file. If you don't wish to, or you did not start from a file, you 
will be asked for the file name. If you type a RETURN character without a name, the 
save will be terminated and the game resumed. 

R Redraw the screen from scratch. The command "L (CTRL-L) will also work. 

W Toggle window type. This switches the score window between the startup window (with 
all the command names) and the end-of-game window. Using the end-of-game window 
saves time by eliminating the switch at the end of the game to show the final score. 
Recommended for hackers and other miscreants. 

If you make a mistake, an error message will be printed on the last line of the score window, and a bell will 
beep. 

At the end of each hand or game, you will be asked if you wish to play another. If not, it will ask you if 
you want to save the game. If you do, and the save is unsuccessful, play will be resumed as if you had said 
you wanted to play another hand/game. This allows you to use the ''S'' command to reattempt the save. 
(The game itself is a product of Parker Brothers, Inc.) 

SEE ALSO 
curses(3X) 

CARDS 

1528 

Here is some useful information. The number in brackets after the card name is the number of that card in 
the deck: 

Last change: 16 February 1988 Sun Release 4 .0 



MILLE(6) GAMES AND DEMOS MILLE(6) 

RULES 

Hazard 

Out of Gas [2] 
Flat Tire [2] 
Accident [2] 
Stop [4] 
Speed Limit [3] 

Repair 

Gasoline [ 6] 
Spare Tire [6] 
Repairs [6] 
Go [14] 
End of Limit [ 6] 

Safety 

Extra Tank [1] 
Puncture Proof [1] 
Driving Ace [1] 
Right of Way [l] 

25 - [10], 50- [10], 75 - [10], 100- [12], 200- [4] 

Object: The point of game is to get a total of 5000 points in several hands. Each hand is a race to put 
down exactly 700 miles before your opponent does. Beyond the points gained by putting down milestones, 
there are several other ways of making points. 

Overview: The game is played with a deck of 101 cards. Distance cards represent a number of miles trav
eled. They come in denominations of 25, 50, 75, 100, and 200. When one is· played, it adds that many 
miles to the player's trip so far this hand. Hazard cards are used to prevent your opponent from putting 
down Distance cards. With the exception of the speed limit card, they can only be played if your opponent 
has a Go card on top of the Battle pile. The cards are Out of Gas, Accident, Flat Tire, Speed Limit, and 
Stop. Remedy cards fix problems caused by Haz.ard cards played on you by your opponent. The cards are 
Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards prevent your opponent from putting 
specific Hazard cards on you in the first place. They are Extra Tank, Driving Ace, Puncture Proof, and 
Right of Way, and there are only one of each in the deck. 

Board Layout: The board is split into several areas. From top to bottom, they are: SAFETY AREA 
(unlabeled):Thisiswherethesafeties played. HAND: These are the cards in your hand. BATTLE: This is 
the Battle pile. All the Hazard and Remedy Cards are played here, except the Speed Limit and End of Limit 
cards. Only the top card is displayed, as it is the only effective one. SPEED: The Speed pile. The Speed 
Limit and End of Limit cards are played here to control the speed at which the player is allowed to put 
down miles. MILEAGE: Miles are placed here. The total of the numbers shown here is the distance trav
eled so far. 

Play: The first pick alternates between the two players. Each turn usually starts with a pick from the deck. 
The player then plays a card, or if this is not possible or desirable, discards one. Normally, a play or dis
card of a single card constitutes a tum. If the card played is a safety, however, the same player takes 
another turn immediately. 

This repeats until one of the players reaches 700 points or the deck runs out. If someone reaches 700, they 
have the option of going for an Extension, which means that the play continues until someone reaches 1000 
miles. 

Hazard and Remedy Cards: Hazard Cards are played on your opponent's Battle and Speed piles. 
Remedy Cards are used for undoing the effects of your opponent's nastiness. 

Go (Green Light) must be the top card on your Battle pile for you to play any mileage, unless you have 
played the Right of Way card (see below). 

Stop is played on your opponent's Go card to prevent them from playing mileage until they play a Go 
card. 

Speed Limit is played on your opponent's Speed pile. Until they play an End of Limit they can only 
play 25 or 50 mile cards, presuming their Go card allows them to do even that 

End or Limit is played on your Speed pile to nullify a Speed Limit played by your opponent. 
Out of Gas is played on your opponent's Go card. They must then play a Gasoline card, and then a Go 

card before they can play any more mileage. 
Flat Tire is played on your opponent's Go card. They must then play a Spare Tire card, and then a Go 

card before they can play any more mileage. 
Accident is played on your opponent's Go card. They must then play a Repairs card, and then a Go 

Sun Release 4.0 Last change: 16 February 1988 1529 



MILLE(6) GAMES AND DEMOS MILLE(6) 

1530 

card before they can play any more mileage. 

Safety Cards: Safety cards prevent your opponent from playing the corresponding Hazard cards on you for 
the rest of the hand. It cancels an attack in progress, and always entitles the player to an extra turn. 

Right of Way prevents your opponent from playing both Stop and Speed Limit cards on you. It also acts 
as a permanent Go card for the rest of the hand, so you can play mileage as long as there is not a Hazard 
card on top of your Battle pile. In this case only, your opponent can play Hazard cards directly on a 
Remedy card besides a Go card. 

Extra Tank When played, your opponent cannot play an Out of Gas on your Battle Pile. 
Puncture Proof When played, your opponent cannot play a Flat Tire on your Battle Pile. 
Driving Ace When played, your opponent cannot play an Accident on your Battle Pile. 

Distance Cards: Distance cards are played when you have a Go card on your Battle pile, or a Right of 
Way in your Safety area and are not stopped by a Hazard Card. They can be played in any combination 
that totals exactly 700 miles, except that you cannot play more than two 200 mile cards in one hand. A 
hand ends whenever one player gets exactly 700 miles or the deck runs out. In that case, play continues 
until neither someone reaches 700, or neither player can use any cards in their hand. If the trip is com
pleted after the deck runs out, this is called Delayed Action. 

Coup Foore: This is a French fencing term for a counter-thrust move as part of a parry to an opponents 
attack. In Mille Bomes, it is used as follows: If an opponent plays a Hazard card, and you have the 
corresponding Safety in your hand, you play it immediately, even before you draw. This immediately 
removes the Hazard card from your Battle pile, and protects you from that card for the rest of the game. 
This gives you more points (see "Scoring" below). 

Scoring: Scores are totaled at the end of each hand, whether or not anyone completed the trip. The terms 
used in the Score window have the following meanings: 

Milestones Played: Each player scores as many miles as they played before the trip ended. 
Each Safety: 100 points for each safety in the Safety area. 
All 4 Safeties: 300 points if all four safeties are played. 
Each Coup Foore: 300 points for each Coup Foure accomplished. 

The following bonus scores can apply only to the winning player. 
Trip Completed: 400 points bonus for completing the trip to 700 or 1000. 
Safe Trip: 300 points bonus for completing the trip without using any 200 mile cards. 
Delayed Action: 300 points bonus for finishing after the deck was exhausted. 
Extension: 200 points bonus for completing a 1000 mile trip. 
Shut-Out: 500 points bonus for completing the trip before your opponent played any mileage cards. 

Running totals are also kept for the current score for each player for the hand (Hand Total), the game 
(Overall Total), and number of games won (Games). 

Last change: 16 February 1988 Sun Release 4.0 



MONOP(6) GAMES AND DEMOS MONOP(6) 

NAME 
monop - Monopoly game 

SYNOPSIS 
/usr/games/monop [filename] 

DESCRIPTION 
monop is reminiscent of the Parker Brother's game Monopoly, and monitors a game between 1 to 9 users. 
It is assumed that the rules of Monopoly are known. The game follows the standard rules, with the excep
tion that, if a property would go up for auction and there are only two solvent players, no auction is held 
and the property remains unowned. 

The game, in effect, lends the player money, so it is possible to buy something which you cannot afford. 
However, as soon as a person goes into debt, he must "fix the problem", that is, make himself solvent, 
before play can continue. If this is not possible, the player's property reverts to his debtee, either a player 
or the bank. A player can resign at any time to any person or the bank, which puts the property back on the 
board, unowned. 

Any time that the response to a question is a string, for instance a name, place or person, you can type ? to 
get a list of valid answers. It is not possible to input a negative number, nor is it ever necessary. 

USAGE 
Commands 

quit: Quit game. This allows you to quit the game. It asks you if you are sure. 

print Print board. This prints out the current board. The columns have the following meanings (column 
headings are the same for the where, own holdings, and holdings commands): 

Name 

Own 

Price 

Mg 

# 

The first ten characters of the name of the square 

The number of the owner of the property. 

The cost of the property (if any) 

This field has a '*' in it if the property is mortgaged 

If the property is a Utility or Railroad, this is the number of such owned by the 
owner. If the property is land, this is the number of houses on it 

Rent Current rent on the property. If it is not owned, there is no rent. 

where: where players are: Tells you where all the players are. A'*' indicates the current player. 

own holdings : 
List your own holdings, that is, money, get-out-of-jail-free cards, and property. 

holdings: 
Holdings list. Look at anyone's holdings. It will ask you whose holdings you wish to look at. 
When you are finished, type done. 

shell: Shell escape. Escape to a shell. When the shell dies, the program continues where you left off. 

mortgage: 
Mortgage property. Sets up a list of mortgageable property, and asks which you wish to mort
gage. 

unmortgage: 
Unmortgage property. Unmortgage mortgaged property. 

buy: Buy houses. Sets up a list of monopolies on which you can buy houses. If there is more than one, 
it asks you which you want to buy for. It then asks you how many for each piece of property, giv
ing the current amount in parentheses after the property name. If you build in an unbalanced 
manner (a disparity of more than one house within the same monopoly), it asks you to re-input 
things. 

sell: Sell houses. Sets up a list of monopolies from which you can sell houses. it operates in an 

Sun Release 4.0 Last change: 16 February 1988 1531 



MONOP(6) GAMES AND DEMOS MONOP(6) 

FILES 

BUGS 

1532 

analogous manner to buy 

card: Card for jail. Use a get-out-of-jail-free card to get out of jail. If you are not in jail, or you do not 
have one, it tells you so. 

pay: Pay for jail. Pay $50 to get out of jail, from whence you are put on Just Visiting. Difficult to do if 
you are not there. 

trade: This allows you to trade with another player. It asks you whom you wish to trade with, and then 
asks you what each wishes to give up. You can get a summary at the end, and, in all cases, it asks 
for confirmation of the trade before doing it. 

resign: Resign to another player or the bank. If you resign to the bank, all property reverts to its virgin 
state, and get-out-of-jail free cards revert to the deck. 

save: Save game. Save the current game in a file for later play. You can continue play after saving, 
either by adding the file in which you saved the game after the monop command, or by using the 
restore command (see below). It will ask you which file you wish to save it in, and, if the file 
exists, confirm that you wish to overwrite it. 

restore: 
Restore game. Read in a previously saved game from a file. It leaves the file intact. 

roll: Roll the dice and move forward to your new location. If you simply hit the RETURN key instead 
of a command, it is the same as typing roll. 

/usr/games/Iib/ cards.pck chance and community chest cards 

No command can be given an argument instead of a response to a query. 

Last change: 16 February 1988 Sun Release 4.0 



M00(6) GAMES AND DEMOS M00(6) 

NAME 
moo - guessing game 

SYNOPSIS 
/usr/games/moo 

DESCRIPTION 
moo is a guessing game imported from England. The computer picks a number consisting of four distinct 
decimal digits. The player guesses four distinct digits being scored on each guess. A ''cow'' is a correct 
digit in an incorrect position. A "bull" is a correct digit in a correct position. The game continues until 
the player guesses the number (a score of four bulls). 

Sun Release 4.0 Last change: 1533 



NUMBER(6) GAMES AND DEMOS NUMBER(6) 

NAME 
number - convert Arabic numerals to English 

SYNOPSIS 
/usr/games/number 

DESCRIPTION 
number copies the standard input to the standard output, changing each decimal number to a fully spelled 
out version. 

1534 Last change: 16 February 1988 Sun Release 4.0 



PRIMES(6) GAMES AND DEMOS PRIMES(6) 

NAME 
primes -print all primes larger than some given number 

SYNOPSIS 
/usr/games/primes [ number ] 

DESCRIPTION 
primes reads a number from the standard input and prints all primes larger than the given number. If 
number is given as an argument, it uses that number rather than reading one from the standard input. 

BUGS 
It obviously cannot print all primes larger than some given number. It will not behave very sensibly when 
it overflows an int. 

Sun Release 4.0 Last change: 16 February 1988 1535 



QUIZ(6) GAMES AND DEMOS QUIZ(6) 

NAME 
quiz - test your knowledge 

SYNOPSIS 
/usr/games/quiz [ -ifilename ] [ -t ] [ category] category2 ] 

DESCRIPTION 

FILES 

BUGS 

1536 

quiz gives associative knowledge tests on various subjects. It asks items chosen from category] and 
expects answers from category2. If no categories are specified, quiz gives instructions and lists the avail
able categories. 

quiz tells a correct answer whenever you type a bare newline. At the end of input, upon interrupt, or when 
questions run out, quiz reports a score and terminates. 

The -t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is gradually 
introduced as you learn. 

The -i flag causes the named file to be substituted for the default index file. The lines of these files have 
the syntax: 

line = category newline I category ':' line 
category= alternate I category 'I' alternate 
alternate = empty I alternate primary 
primary = character I '['category']' I option 
option = ' ( ' category '} ' 

The first category on each line of an index file names an information file. The remaining categories specify 
the order and contents of the data in each line of the information file. Information files have the same syn
tax. Backslash '\' is used as with sh(l) to quote syntactically significant characters or to insert transparent 
newlines into a line. When either a question or its answer is empty, quiz will refrain from asking it. 

/usr/games/quiz.k/• 

The construct 'a lab' doesn't work in an information file. Use 'a(b}'. 

Last change: 16 February 1988 Sun Release 4.0 



RAIN(6) GAMES AND DEMOS RAIN(6) 

NAME 
rain - animated raindrops display 

SYNOPSIS 
/usr/games/rain 

DESCRIPTION 
rain's display is modeled after the V AXNMS program of the same name. The terminal has to be set for 
9600 baud to obtain the proper effect. 

FILES 

As with all programs that use termcap, the TERM environment variable must be set (and exported) to the 
type of the terminal being used. 

/etc/termcap 

Sun Release 4.0 Last change: 16 February 1988 1537 



RANDOM(6) GAMES AND DEMOS RANDOM(6) 

NAME 
random - select lines randomly from a file 

SYNOPSIS 
/usr/games/random [ -er ] [ divisor ] 

DESCRIPTION 
random acts as a text filter, randomly selecting lines from its standard input to write to the standard output. 
The probability that a given line is selected is normally 1/2; if a divisor is specified, it is treated as a 
floating-point number, and the probability is I/divisor instead 

OPTIONS 

1538 

-e Don't read the standard input or write to the standard output Instead, exit with a random exit 
status between O and 1, or between O and divisor- I if divisor is specified. 

-r Don't buffer the output. If -r is not used, output is buffered in blocks, or line-buffered if the stan
dard output is a terminal. 

Last change: 16 February 1988 Sun Release 4.0 



ROBOTS(6) GAMES AND DEMOS ROBOTS(6) 

NAME 
robots - fight off villainous robots 

SYNOPSIS 
/usr/games/robots [ -sjta ] [ scorefile ] 

DESCRIPTION 
robots pits you against evil robots, who are trying to kill you (which is why they are evil). Fortunately for 
you, even though they are evil, they are not very bright and have a habit of bumping into each other, thus 
destroying themselves. In order to survive, you must get them to kill each other off, since you have no 
offensive weaponry. 

Since you are stuck without offensive weaponry, you are endowed with one piece of defensive weaponry: a 
teleportation device. When two robots run into each other or a junk pile, they die. If a robot runs into you, 
you die. When a robot dies, you get 10 points, and when all the robots die, you start on the next field. This 
keeps up until they finally get you. 

Robots are represented on the screen by a '+', the junk heaps from their collisions by a '* ', and you ( the 
good guy) by a'@'. 

The commands are: 

h move one square left 

move one square right 

k move one square up 

j move one square down 

y move one square up and left 

u move one square up and right 

b move one square down and left 

D move one square down and right 

(also space) do nothing for one turn 

HJKLBNYU 
run as far as possible in the given direction 

> do nothing for as long as possible 

t teleport to a random location 

w wait until you die or they all do 

q quit 

"L redraw the screen 

All commands can be preceded by a count. 

If you use the 'w' command and survive to the next level, you will get a bonus of 10% for each robot 
which died after you decided to wait. If you die, however, you get nothing. For all other commands, the 
program will save you from typos by stopping short of being eaten. However, with 'w' you take the risk of 
dying by miscalculation. 

Only five scores are allowed per user on the score file. If you make it into the score file, you will be shown 
the list at the end of the game. If an alternate score file is specified, that will be used instead of the standard 
file for scores. 

OPTIONS 
-s Do not play, just show the score file. 

-j Jump, when you run, don't show any intermediate positions; only show things at the end. This is 
useful on slow terminals. 

Sun Release 4 .0 Last change: 16 February 1988 1539 



ROBOTS(6) GAMES AND DEMOS ROBOTS(6) 

FILES 

BUGS 

1540 

-t Teleport automatically when you have no other option. This is a little disconcerting until you get 
used to it, and then it is very nice. 

-a Advance into the higher levels directly, skipping the lower, easier levels. 

/usr/games/lib/robots _roll the score file 

Bugs? You crazy, man?!? 

Last change: 16 February 1988 Sun Release 4.0 



SNAKE(6) GAMES AND DEMOS SNAKE(6) 

NAME 
snake, snscore - display chase game 

SYNOPSIS 
/usr/games/snake [ -wn ] [ -In ] 
/usr/games/snscore 

DESCRIPTION 

FILES 

BUGS 

snake is a display-based game which must be played on a CRT terminal from among those supported by 
vi(l). The object of the game is to make as much money as possible without getting eaten by the snake. 
The -I and -w options allow you to specify the length and width of the field. By default the entire screen 
(except for the last column) is used. 

You are represented on the screen by an I. The snake is 6 squares long and is represented by S's. The 
money is$, and an exit is#. Your score is posted in the upper left hand corner. 

You can move around using the same conventions as vi(l), the h, j, k, and I keys work, as do the arrow 
keys. Other possibilities include: 

sere These keys are like hjkl but form a directed pad around the d key. 

HJKL These keys move you all the way in the indicated direction to the same row or column as 
the money. This does not let you jump away from the snake, but rather saves you from 
having to type a key repeated! y. The snake still gets all his turns. 

SEFC Likewise for the upper case versions on the left. 

ATPB These keys move you to the four edges of the screen. Their position on the keyboard is 
the mnemonic, for example, P is at the far right of the keyboard. 

x This lets you quit the game at any time. 

p Points in a direction you might want to go. 

w Space warp to get out of tight squeezes, at a price. 

Shell escape 

"Z Suspend the snake game, on systems which support it. Otherwise an interactive shell is 
started up. 

To earn money, move to the same square the money is on. A new $ will appear when you earn the current 
one. As you get richer, the snake gets hungrier. To leave the game, move to the exit(#). 

A record is kept of the personal best score of each player. Scores are only counted if you leave at the exit, 
getting eaten by the snake is worth nothing. 

As in pinball, matching the last digit of your score to the number which appears after the game is worth a 
bonus. 

To see who wastes time playing snake, run /usr/games/snscore . 

/usr/games/lib/snakerawscores 
/usr/games/lib/snake.log 

database of personal bests 
log of games played 

When playing on a small screen, it's hard to tell when you hit the edge of the screen. 

The scoring function takes into account the size of the screen. A perfect function to do this equitably has 
not been devised. 

Sun Release 4.0 Last change: 16 February 1988 1541 



SUNVIEW _DEMOS ( 6) GAMES AND DEMOS SUNVIEW _DEMOS ( 6) 

NAME 
sunview_demos, canvas_demo, cursor_demo- Window-System demonstration programs 

SYNOPSIS 
/usr/demo/canvas demo 

/usr/demo/cursor demo 

AVAILABILITY 
These demos are available with the Sun View 1 Demos software installation option. Refer to Installing the 
SunOS for information on how to install optional software. 

DESCRIPTION 
canvas Demo 

canvas_demo demonstrates the capabilities of the canvas subwindow package. It consists of two subwin
dows: a control panel and a canvas. By adjusting the items on the control panel, you can manipulate the 
attributes of the canvas, and see the results. 

cursor Demo 

1542 

cursor_ demo demonstrates what you can do with cursors. A single control panel is provide for adjusting 
the various cursor attributes. As you adjust the items on the control panel, the panel's cursor changes in 
appearance. 

Last change: 16 February 1988 Sun Release 4.0 



TREK( 6) GAMES AND DEMOS TREK(6) 

NAME 
trek- trekkie game 

SYNOPSIS 
/usr/games/trek [ [ -a ] filename ] 

DESCRIPTION 
trek is a game of space glory and war. Below is a summary of commands. For complete documentation, 
see Trek by Eric Allman. 

If a filename is given, a log of the game is written onto that file. If the -a flag is given before the filename, 
that file is appended to, not truncated. 

The game will ask you what length game you would like. Valid responses are "short", "medium", and 
"long". You may also type "restart", which restarts a previously saved game. You will then be prompted 
for the skill, to which you must respond "novice", "fair", "good", "expert", "commodore", or "impossible". 
You should normally start out with a novice and work up. 

In general, throughout the game, if you forget what is appropriate the game will tell you what it expects if 
you just type in a question mark. 

COMMAND SUMMARY 
abandon 
cloak up/down 
computer request; ... 
destruct 
help 
lrscan 
phasers automatic amount 
phasers mannual amtl course! spread! ... 
torpedo course [yes] angle/no 
ram course distance 
shell 
srscan [yes/no] 
status 
undock 
warp warp_ factor 

capture 

damages 
dock 
impulse course distance 
move course distance 

rest time 
shields up/down 

terminate yes/no 
visual course 

Sun Release 4.0 Last change: 24 October 1983 1543 



WORM(6) GAMES AND DEMOS WORM(6) 

NAME 
worm - play the growing worm game 

SYNOPSIS 
/usr/games/worm [ size ] 

DESCRIPTION 

BUGS 

1544 

In worm, you are a little worm, your body is the o 's on the screen and your head is the @ • You move 
with the hjkl keys (as in the game snake). If you don't press any keys, you continue in the direction you 
last moved. The upper case HJKL keys move you as if you had pressed several (9 for HL and 5 for JK) of 
the corresponding lower case key (unless you run into a digit, then it stops). 

On the screen you will see a digit; if your worm eats the digit it will grow longer, the actual amount longer 
depends on which digit it was that you ate. The object of the game is to see how long you can make the 
worm grow. 

The game ends when the worm runs into either the sides of the screen, or itself. The current score (how 
much the worm has grown) is kept in the upper left comer of the screen. 

The optional argument, if present, is the initial length of the worm. 

If the initial length of the worm is set to less than one or more than 75, various strange things happen. 

Last change: 16 February 1988 Sun Release 4.0 



WORMS(6) GAMES AND DEMOS WORMS(6) 

NAME 
worms - animate worms on a display terminal 

SYNOPSIS 
/usr/games/worms [ -field ] [ -length#] [ -number # ] [ -trail ] 

DESCRIPTION 
-field makes a "field" for the worm(s) to eat; -trail causes each worm to leave a trail behind it. You can 
figure out the rest by yourself. 

FILES 
/etc/termcap 

SEE ALSO 

BUGS 

Snails by Karl Heuer 

The lower-right-hand character position will not be updated properly on a terminal that wraps at the right 
margin. 

Terminal initialization is not performed. 

Sun Release 4.0 Last change: 16 February 1988 1545 



WUMP(6) GAMES AND DEMOS WUMP(6) 

NAME 
wump - the game of hunt-the-wumpus 

SYNOPSIS 
/usr/games/wump 

DESCRIPTION 

1546 

wump plays the game of 'Hunt the Wumpus.' A Wumpus is a creature that lives in a cave with several 
rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus with an arrow, 
meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits. There are also Super 
Bats which are likely to pick you up and drop you in some random room. 

The program asks various questions which you answer one per line; it will give a more detailed description 
if you want. 

This program is based on one described in People's Computer Company, 2, 2 (November 1973). 

Last change: 16 February 1988 Sun Release 4 .0 



INTRO(?) PUBLIC FILES, TABLES, AND TROFF MACROS INTRO(?) 

NAME 
miscellaneous - miscellaneous useful information pages 

DESCRIPTION 
This section contains miscellaneous documentation, mostly in the area of text processing macro packages 
for troff(l). 

LIST OF MISC.TABLES 
Name 

ascii 
eqncbar 
filesystem 
bier 
man 
me 
ms 

Sun Release 4.0 

Appears on Page 

ascii(7) 
eqncbar(7) 
filesystem (7) 
bier(?) 
man(?) 
me(?) 
ms(?) 

Description 

map of ASCII character set 
special character definitions for eqn 
filesystem organization 
file system hierarchy 
macros to format Reference Manual pages 
macros for formatting papers 
text formatting macros 

Last change: 4 September 1987 1547 



ASCII(7) PUBLIC FILES, TABLES, AND TROFF MACROS ASCII(7) 

NAME 
ascii - map of ASCII character set 

SYNOPSIS 
cat /usr/pub/ascii 

DESCRIPTION 
/usr/pub/ascii is a map of the ASCII character set, to be printed as needed. It contains octal and hexade-
cimal values for each character. While not included in that file, a chart of decimal values is also shown 
here. 
Octal - Character 

1000 NULIOOl SCHl002 STXl003 E1X1004 FDTl005 ENQl006 ACK1007 BELi 
1010 BS 1011 HT 1012 NL 1013 VT 1014 NP 1015 CR 1016 SO 1017 SI I 
1020 DLE1021 DC11022 DC21023 DC31024 DC41025 NAK.1026 SYNl027 ETBI 
1030 CANl031 EM 1032 SUBl033 ESCi034 FS 1035 GS 1036 RS 1037 US I 
1040 SP 1041 1042 II 1043 # 1044 $ 1045 % 1046 & 1047 

., 
I 

1050 ( 1051 ) 1052 * I 053 + 1054 1055 - 1056 1057 I I 
1060 0 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7 I 
1070 8 I 071 9 I 072 1073 1074 < 1075 1076 > I 077 ? I 
I 100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G I 
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 01 
1120 P 1121 Q 1122 R I 123 s I 124 T 1125 U 1126 V 1127 WI 
1130 X 1131 y I 132 z 1133 [ I 134 \ 1135 ] 1136 A I 137 I -
1140 ' 1141 a I 142 b I 143 C I 144 d I 145 e I 146 f 1147 g I 
1150 h 1151 1152 j 1153 k 1154 1155 m I 156 n 1157 o I 
1160 p 1161 q 1162 r 1163 s 1164 t 1165 u I 166 V 1167 wl 
1170 X 1171 y 1172 z 1173 { 1174 I 1175 } 1176 - 1177 DELI 

Hexadecimal-Character 

00 NULi 01 SCH! 02 STXI 03 E1XI 04 FDTI 05 ENQI 06 ACKI 07 BELi 
08 BS I 09 HT I OA NL I OB VT I OC NP I OD CR I OE SO I OF SI I 
10 DLEI 11 DCl I 12 DC21 13 DC31 14 DC41 15 NAKI 16 SYNI 17 ETBI 
18 CANI 19 EM I lA SUBI 1B ESCI lC FS I lD GS I lE RS I lF US I 
20 SP I 21 I 22 II I 23 # I 24 $ I 25 % I 26 &I 27 ., I 
28 ( I 29 ) I 2A * I 

2B + I 2C I 2D - I 2E I 2F I I 
30 o I 31 1 I 32 2 I 33 3 I 34 4 I 35 5 I 36 6 I 37 7 I 
38 8 I 39 9 I 3A I 3B I 3C < I 3D I 3E > I 3F ? I 
40 @I 41 Al 42 B I 43 C I 44 D I 45 E I 46 F I 47 G I 
48 HI 49 I I 4A J I 4B K I 4C L I 4D M I 4E N I 4F 01 
50 P I 51 QI 52 R I 53 s I 54 Tl 55 UI 56 VI 57 WI 
58 XI 59 YI SA z I SB [ I 5C \ I 5D ] I 5E A 

I SF I -
60 ' I 61 a I 62 b I 63 C I 64 d I 65 e I 66 f I 67 g I 
68 h I 69 I 6A j I 6B k I 6C 1 I 6D m I 6E n I 6F o I 
70 p I 71 q I 72 r I 73 s I 74 t I 75 u I 76 V I 77 wl 
78 X I 79 y I 7A z I 7B { I 7C I I 7D } I 7E - I 7F DELI 

1548 Last change: 16 February 1988 Sun Release 4.0 



ASCII(7) PUBLIC FILES, TABLES, AND TROFF MACROS ASCII(?) 

Decimal - Character 

0 NULi 1 srn 2 STX 3 ETX 4 IDT 5 FNQI 6 ACK 7 BEL 
8 BS I 9 HT 10 NL 11 VT 12 NP 13 CR I 14 so 15 SI 

16 DLEI 17 :OCl 18 :OC2 19 :OC3 20 :OC4 21 NAK 22 SYN 23 ETB 
24 CAN 25 EM: 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 us 
32 SP 33 34 35 # 36 $ 37 % 38 & 39 
40 ( 41 ) 42 * 43 + 44 45 - 46 47 I 
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7 
56 8 57 9 58 59 60 < 61 62 > 63 ? 
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G 
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 0 
80 p 81 Q 82 R 83 s 84 T 85 u 86 V 87 w 
88 X 89 y 90 z 91 [ 92 \ 93 ] 94 95 
96 97 a 98 b 99 C 100 d 101 e 102 f 103 g 

104 h 105 1106 j 107 k 108 1 109 m 110 n 111 0 

112 p 113 q 1114 r 115 s 116 t 117 u 118 V 119 w 
120 X 121 y 1122 z 123 { 124 I 125 } 126 127 DEL 

FILES 
/ usr/pub/ascii Online chart of octal and hexadecimal values for the ASCII character set. 

Sun Release 4.0 Last change: 16 February 1988 1549 



EQNCHAR(7) PUBLIC FILES, TABLES, AND TROFF MACROS EQNCHAR(7) 

NAME 
eqnchar - special character definitions for eqn 

SYNOPSIS 
eqn /usr/pub/eqnchar [filename] I troff [options] 

neqn /usr/pub/eqnchar [filename] I nroff [options] 

DESCRIPTION 
eqnchar contains troff(l) and nroff(l) character definitions for constructing characters that are not avail
able on the Graphic Systems typesetter. These definitions are primarily intended for use with eqn(l) and 
neqn(l). It contains definitions for the following characters 

ciplus (B II II square D 
citimes ® /angle I circle 0 \ 
wig rangle \ blot D I 
-wig :::::: hbar 1i bullet • 
>wig ? ppd .J_ prop oc 

<wig 5 <-> ~ empty 0 
=wig - <=> <;~ member E 

star * I< f. nomem fl 
bigstar * I> 'j cup u 
=dot - ang L cap n 
orsign y rang I- incl b: 
andsign A 3dot subset C 

=del ~ thf supset ::::::) = 
oppA .Jf quarter 1,4 !subset k 
oppE :3 3quarter % !supset :;! 

angstrom A degree 0 

FILES 
/usr/pub/eqnchar 

SEE ALSO 
eqn(l), neqn(l), nroff(l), troff(l) 

1550 Last change: 9 September 1987 Sun Release 4.0 



FILESYSTEM ( 7) PUBLIC FILES, TABLES, AND TROFF MACROS FILESYSTEM ( 7) 

NAME 
filesystem - file system organization 

SYNOPSIS 
I 
/usr 

DESCRIPTION 
The SunOS file system tree is organized for easy administration. Distinct areas within the file system tree 
are provided for files that are private to one machine, files that can be shared by multiple machines of a 
common architecture, files that can be shared by all machines, and home directories. This organization 
allows the sharable files to be stored on one machine, while being accessed by many machines using a 
remote file access mechanism such as Sun's Network File System (NFS). Grouping together similar files 
makes the file system tree easier to upgrade and manage. 

The file system tree consists of a root file system and a collection of mountable file systems. The mount(8) 
program attaches mountable file systems to the file system tree at mount points (directory entries) in the 
root file system, or other previously mounted file systems. Two file systems,/ (the root) and /usr, must be 
mounted in order to have a fully functional system. The root file system is mounted automatically by the 
kernel at boot time; the /usr file system is mounted by the /etc/re.boot script, which is run as part of the 
booting process. 

The root file system contains files that are unique to each machine; it can not be shared among machines. 
The root file system contains the following directories: 

/dev Character and block special files. Device files provide hooks into hardware devices or operat
ing system facilities. The MAKEDEV(8) command builds device files in the /dev directory. 
Typically, device files are built to match the kernel and hardware configuration of the machine. 

/etc 

/home 

/mot 

Various configuration files and system administration databases that are machine specific. You 
can think of /etc as the "home directory" of a machine, defining its "identity." Executable pro
grams are no longer kept in /etc. 

Mount points for home directories. This directory may be arranged so that shared user files are 
placed under the directory /home/machine-name on machines serving as file servers. 
Machines may then be locally configured with mount points under /home for all of the file 
servers of interest, with the name of the mount point being the name of the file server. 

A generic mount point. This is an empty directory available for temporarily mounting file sys
tems on. 

/shin Executable programs that are needed in the boot process before /usr is mounted. /shin con
tains only those programs that are needed in order to mount the /usr file system: hostname(l), 
ifconfig(8C), init(8), mount(8), and sh(l). After /usr is mounted, the full complement of utili
ties are available. 

/tmp Temporary files that are deleted at reboot time. 

/var Files, such as log files, that are unique to a machine but that can grow to an arbitrary ("vari
able") size. 

/var/adm System logging and accounting files. 

/var/preserve 
Backup files for vi(l) and ex(l). 

/var/spool Subdirectories for files used in printer spooling, mail delivery, cron(8), at(l), etc. 

/var/tmp Transitory files that are not deleted at reboot time. 

Because it is desirable to keep the root file system small, larger file systems are often mounted on /var and 
/tmp. 

Sun Release 4.0 Last change: 10 January 1988 1551 



FILESYSTEM ( 7) PUBLIC FILES, TABLES, AND TROFF MACROS FILESYSTEM ( 7) 

The file system mounted on /usr contains architecture-dependent and architecture-independent shareable 
files. The subtree rooted at /usr/share contains architecture-independent shareable files; the rest of the /usr 
tree contains architecture-dependent files. By mounting a common remote file system, a group of machines 
with a common architecture may share a single /usr file system. A single /usr/share file system can be 
shared by machines of any architecture. A machine acting as a file server may export many different /usr 
file systems to support several different architectures and operating system releases. Clients usually mount 
/usr read-only to prevent their accidentally modifying any shared files. The /usr file system contains the 
following subdirectories: 

/usr/Sbin 

/usr/Sinclude 

/usr/Slib 

/usr/bin 

/usr/dict 

/usr/etc 

/usr/games 

/usr/include 

/usr/lib 

/usr/pub 

/usr/ucb 

/usr/sbare 

/usr/sbare/man 

/usr/sbare/lib 

System V executables. 

System V include files. 

System V library files. 

Executable programs. The bulk of the system utilities are located here. 

Dictionary databases. 

Executable system administration programs. 

Executable game programs and data. 

Include files. 

Program libraries and various architecture-dependent databases. 

Various data files. 

Executable programs descended from the Berkeley Software Distribution. 

Subtree for architecture-independent shareable files. 

Subdirectories for the on-line reference manual pages. 

Architecture-independent databases. 

A machine with disks may export root file systems, swap files and /usr file systems to diskless or partially
disked machines, which mount these into the standard file system hierarchy. The standard directory tree 
for exporting these file systems is: 

/export The root of the exported file system tree. 

/export/exec/ architecture-name 
The exported /usr file system supporting architecture-name for the current 
release. 

/export/exec/ architecture-name .release-name 

/export/share 

I export/root/ hostname 

/ export/swap/ hostname 

/export/var/ hostname 

/exportldumplhostname 

I export/ crash/ hostname 

The exported /usr file system supporting architecture-name for SunOS 
release-name. 

The exported common /usr/sbare directory tree. 

The exported root file system for hostname. 

The exported swap file for hostname. 

The exported /var directory tree for hostname. 

The exported dump file for hostname. 

The exported crash dump directory for hostname. 

Changes from Previous Releases 

1552 

The file system layout described here is quite a bit different from the layout employed previous to release 
4.0 of SunOS. For compatibility with earlier releases of SunOS, and other versions of the UNIX system, 
symbolic links are provided for various files and directories linking their previous names to their current 
locations. The symbolic links provided include: 

Last change: 10 January 1988 Sun Release 4.0 



FILESYSTEM ( 7) PUBLIC FILES, TABLES, AND TROFF MACROS FILESYSTEM ( 7) 

/bin -> /usr/bin 

/lib -> /usr/lib 

/usr/adm -> /var/adm 

/usr/spool -> /var/spool 

/usr/tmp -> /var/tmp 

All programs previously located in /bin are now in /usr/bin. 

All files previously located in /lib are now in /usr/lib. 

The entire /usr/adm directory has been moved to /var/adm. 

The entire /usr/spool directory has been moved to /var/spool. 

The /usr/tmp directory has been moved to /var/tmp. 

/etc/termcap -> /usr/share/lib/termcap 

/usr/Slib/terminfo-> /usr/share/lib/terminfo 

/usr/lib/me -> /usr/share/lib/me 

/usr/lib/ms -> /usr/share/lib/ms 

/usr/lib/tmac -> /usr/share/lib/tmac 

/usr/man -> /usr/share/man 

The following program binaries have been moved from /etc to /usr/etc with symbolic links to them left in 
/etc: arp, clri, cron, chown, chroot, config, dkinfo, dmesg, dump, fastboot, fasthalt, fsck, halt, ifconfig, 
link, mkfs, mknod, mount, ncheck, newfs, pstat, rdump, reboot, renice, restore, rmt, rrestore, shut
down, umount, update, unlink, and vipw. 

In addition, some files and directories have been moved with no symbolic link left behind in the old loca-
tion: 

Old Name New Name 

/etc/biod /usr/ etc/biod 

/ etc/f sir and /usr/etc/fsirand 

/etc/getty /usr/etc/getty 

/ etc/in.r logind /usr/ etc/in.r logind 

/ etc/in.routed /usr/ etc/in.routed 

/etc/in.rshd /usr/ etc/in.rshd 

/etc/inetd /usr/ etc/inetd 

/etc/init /usr/ etc/init 

/etc/nfsd /usr/ etc/nfsd 

/etc/portmap /usr/etc/portmap 

/ etc/rpc.lockd /usr/ etc/rpc.lockd 

/ etc/rpc.statd /usr/ etc/rpc.statd 

/etc/ypbind /usr/etc/ypbind 

/usr /lib/ sendmail.cf /etc/sendmail.cf 

/usr/preserve /var/preserve 

/usr /lib/ aliases /etc/aliases 

/stand /usr/stand 

/etc/yp /var/yp 

Note: with this new file system organization, the approach to repairing a broken file system changes. One 
must mount /usr before doing an fsck(8), for example. If the mount point for /usr has been destroyed, /usr 
can be mounted temporarily on /mot or /tmp. If the root file system on a standalone system is so badly 
damaged that none of these mount points exist, or if /shin/mount has been corrupted, the only way to 
repair it may be to re-install the root file system. 

Sun Release 4.0 Last change: 10 January 1988 1553 



FILESYSTEM ( 7) PUBLIC FILES, TABLES, AND TROFF MACROS FILESYSTEM ( 7) 

SEE ALSO 
at(l), ex(l), hostname(l), sh(l), vi(l), intro(4), nfs(4P), hier(7), ifconfig(8C), init(8), MAKEDEV(8), 
mount(8), fsck(8), rc(8) 

1554 Last change: 10 January 1988 Sun Release 4.0 



IDER(?) PUBLIC FILES, TABLES, AND TROFF MACROS 

NAME 
hier - file system hierarchy 

DESCRIPTION 
The following outline gives a quick tour through a typical SunOS file system hierarchy: 

I root directory of the file system 
/dev/ devices (Section 4) 

MAKEDEV 
shell script to create special files 

MAKEDEV .local 
site specific part of MAKEDEV 

console main system console, console( 4S) 
drum paging device, drum(4) 
*mem memory special files, mem(4S) 
null null file or data sink, null(4) 
pty[p-z]* 

pseudo terminal controllers, pty( 4) 
tty[ab] CPU serial ports, zs(4S) 
tty[0123][0-f] 

MTI serial ports mti(4S) 
tty[hijk][O-f] 

ALM-2 serial ports mcp(4S) 
tty[p-z]* 

pseudo terminals, pty(4) 
vme* VME bus special files, mem(4S) 
win window system special files, win( 4S) 
xy• disks, xy(4S) 
rxy• raw disk interfaces, xy(4S) 

/etc/ system-specific maintenance and data files 
dumpdates 

Sun Release 4.0 

dump history, dump(8) 
exports table of file systems exportable with NFS, exports(5) 
fstab file system configuration table, fstab(5) 
group group file, group(5) 
hosts host name to network address mapping file, hosts(5) 
hosts.equiv 

list of trusted systems, hosts.equiv(5) 
motd message of the day, login(l) 
mtab mounted file table, mtab(5) 
networks 

network name to network number mapping file, networks(5) 
passwd password file, passwd(5) 
phones private phone numbers for remote hosts, as described in phones(5) 
printeap 

table of printers and capabilities, printeap(5) 
protocols 

protocol name to protocol number mapping file, protoeols(5) 
re shell program to bring the system up multiuser 
re.boot startup file run at boot time 
re.local site dependent portion of re 
remote names and description of remote hosts for tip(l C), remote(5) 
services 

network services definition file, services(5) 

Last change: IO January 1988 

IDER(7) 

1555 



HIER{7) PUBLIC FILES, TABLES, AND TROFF MACROS HIER(7) 

1556 

ttytab database of terminal information used by getty(8) 

/export/ 
directory of exported files and file systems for clients, including swap files, root, and /usr file 
systems 

/home/ directory of mount points for remote-mounted home directories and shared file systems 
user home (initial working) directory for user 

.profile set environment for sh{l), environ(5V) 

.project 

/lost+found 

what you are doing (used by (finger(!)) 
.cshrc startup file for csh{ 1) 
.exrc startup file for ex(l) 
.plan what your short-term plans are (used by finger(!)) 
.rhosts host equivalence file for rlogin(l C) 
.mailrc startup file for mail(l) 
calendar 

user's datebook for calendar(!) 

directory for connecting detached files for fsck(8) 
/mot/ mount point for file systems mounted temporarily 
/shin/ executable programs needed to mount /usr/ 

hostname 
ifconfig 
init 
mount 
sh 

/tmp/ temporary files, usually on a fast device, see also /var/tmp/ 
ctm * used by cc(l V) 
e• used by ed{l) 

/var/ directory of files that tend to grow or vary in size 
adm/ administrative log files 

lastlog record of recent logins, utmp(5) 
lpacct line printer accounting lpr(l) 
messages 

system messages 
tracct phototypesetter accounting, trofT(l) 
utmp table of currently logged in users, utmp(5) 
vaacct, vpacct 

varian and versatec accounting vtrofT(l), pac(8) 
wtmp login history, utmp(5) 

preserve/ 
editor temporaries preserved here after crashes/hangups 

spool/ delayed execution files 
cron/ used by cron(8) 
lpd/ used by lpr(l) 

lock present when line printer is active 
cf• copy of file to be printed, if necessary 
df• control file for print job 
tf• transient control file, while lpr is working 

mail/ mailboxes for mail{l) 

Last change: 10 January 1988 Sun Release 4.0 



HIER(7) PUBLIC FILES, TABLES, AND TROFF MACROS 

name mail file for user name 
name.lock 

lock file while name is receiving mail 
mqueue/ 

mail queue for sendmail(8) 
secretmail/ 

like maiV, but used by xsend(l) 
uucp/ work files and staging area for uucp(l C) 

LOGFILE 
summary log 

LOG.* log file for one transaction 

tmp/ temporary files, to keep /tmp/ small 
raster used by plot(lG) 
stm* used by sort(lV) 

yp/ Yellow Pages database files, ypfiles(5) 

HIER(7) 

/usr/ general-purpose directory, usually a mounted file system 

Sun Release 4.0 

bin/ utility programs 

demo/ 
diag/ 
diet/ 

etc/ 

games/ 

as assembler, as(l) 
cc C compiler executive, c.f. /usr/lib/ccom, /usr/lib/cpp, /usr/lib/c2 
csh the C-shell, csh(l) 
sh the Bourne shell, sh(l) 

demonstration programs 
system tests and diagnostics 
word lists, etc. 
spellhist 

history file for spell(l) 
words principal word list, used by look(l) 

system administration programs; c.f. section 8 
catman update preformatted man pages, catman(8) 
cron the clock daemon, cron(8) 
dump file system backup program dump(8) 
getty part of login(l), getty(8) 
in.comsat 

biff server (incoming mail daemon), comsat(8C) 
init the parent of all processes, init(8) 
mount mount(8) 
yp/ Yellow Pages programs 

ypinit build and install Yellow Pages database, ypinit(8) 
yppush force propagation of a changed Yellow Pages map, yppush(8) 
ypset point ypbind at a particular server, ypset(8) 

backgammon 
lib/ library directory for game scores, etc. 

quiz.kl what quiz(6) knows 
africa countries and capitals 
index category index 

Last change: 10 January 1988 1557 



HIER(7) 

1558 

PUBLIC FILES, TABLES, AND TROFF MACROS 

hosts/ symbolic links to rsh(lC) for commonly accessed remote hosts 
include/ 

standard #include files 
a.out.h object file layout, a.out(5) 
images/ icon images 
machine/ 

header files from /usr/share/sys/sys/machine; may be a symbolic link 
math.h intro(3M) 
net/ header files from /usr/share/sys/sys/net; may be a symbolic link 
nfs/ header files used in the Network File System (NFS) 
stdio.h standard I/0, intro(3S) 
sys/ kernel header files, c.f. /usr/share/sys/sys 

lib/ object libraries, compiler program binaries, and other data 
ccom C compiler proper 

local/ 
old/ 
pub/ 
secs/ 
srd 
stand/ 
share/ 

cpp C preprocessor 
c2 C code improver 
eign list of English words to be ignored by ptx( 1) 
font/ fonts for troff(l) 

Jibe.a 
libm.a 
lint/ 

ftR Times Roman 
ftB Times Bold 

system calls, standard I/0, etc. (2,3,3S) 
math library, intro(3M) 
utility files for lint 
lint[12] subprocesses for lint(l V) 
llib-lc dummy declarations for /usr/lib/libc.a, used by lint(l V) 
llib-lm dummy declarations for /usr/lib/libm.a 

units conversion tables for units(l) 
uucp/ programs and data for uucp(lC) 

L.sys remote system names and numbers 
uucico the real copy program 

locally maintained software 
obsolete and unsupported programs 
publicly readable data files 
binaries of programs that compose the source code control system (SCCS) 
system source code tree 
standalone programs (not run under the Sun Operating System) 
architecture independent files 
lib/ architecture independent data files 

termcap 
description of terminal capabilities, termcap(5) 

tmac/ macros for troff(l) 
tmac.an 

macros for man(7) 
tmac.s macros for ms(7) 

HIER(7) 

Last change: 10 January 1988 Sun Release 4.0 



HIER(7) 

/vmunix 

SEE ALSO 

PUBLIC FILES, TABLES, AND TROFF MACROS 

man/ on-line reference manual pages, man(l) 
man?/ source files (nrofT(l)) for sections 1 through 8 of the manual 

as.1 

cat? I preformatted pages for sections 1 through 8 of the manual 

sys/ SunOS kernel source and object modules 
ucb/ binaries of programs developed at the University of California, Berkeley 

ex line-oriented editor for experienced users, ex(l) 
vi screen-oriented editor, vi(l) 

the SunOS kernel binary 

HIER(7) 

filesystem(7), find(l), finger(l), grep(lV), ls(lV), rlogin(lC), whatis(l), whereis(l), which(l), 
ncheck(8) 

BUGS 
The locations of files are subject to change without notice; the organization of your file system may vary. 

This list is incomplete. 

Sun Release 4.0 Last change: 10 January 1988 1559 



MAN(7) PUBLIC FILES, TABLES, AND TROFF MACROS MAN(7) 

NAME 

man - macros to format Reference Manual pages 

SYNOPSIS 
nroff -man filename . . . 

troff -man filename . . . 

DESCRIPTION 
These macros are used to lay out the reference pages in this manual. 

Any text argument t may be zero to six words. Quotes may be used to include blanks in a "word". If text 
is empty, the special treatment is applied to the next input line with text to be printed. In this way .I may be 
used to italicize a whole line, or .SB may be used to make small bold letters. 

A prevailing indent distance is remembered between successive indented paragraphs, and is reset to default 
value upon reaching a non-indented paragraph. Default units for indents i are ens. 

Type font and size are reset to default values before each paragraph, and after processing font and size 
setting macros. 

These strings are predefined by -man: 

\*R '®', '(Reg)' in nroff. 

\*S Change to default type size. 

Requests 
Request Cause 

Break 
If no Explanation 

1560 

.B t no 

.BI t no 

. BR t no 
• DT no 
.HP i yes 
.It no 
lB t no 
.IP xi yes 
.IR t no 
. LP yes 
.PD d no 
. PP yes 
.RE yes 
• RB t no 
.RI t no 
. RS i yes 

.SB t no 
• SH t yes 
.SM t no 
.SS t yes 
.TH n s dfm yes 

. TP i yes 

Argument 

t=n.t.l.* 
t=n.t.l. 
t=n.t.l . 
.Si li ... 
i=p.i.* 
t=n.t.1. 
t=n.t.1. 
x='"' 
t=n.t.l . 

d=.4v 

t=n.t.l . 
t=n.t.1. 
i=p.i . 

t=n.t.l. 
t=n.t.l. 
t=n.t.1. 

Text is in bold font 
Join words, alternating bold and italic. 
Join words, alternating bold and roman. 
Restore default tabs . 
Begin paragraph with hanging indent. Set prevailing indent to i. 
Text is italic. 
Join words, alternating italic and bold. 
Same as .TP with tag x. 
Join words, alternating italic and roman. 
Begin left-aligned paragraph. Set prevailing indent to .Si . 
Set vertical distance between paragraphs. 
Sarne as .LP . 
End of relative indent. Restores prevailing indent. 
Join words, alternating roman and bold. 
Join words, alternating roman and italic. 
Start relative indent, increase indent by i. Sets prevailing indent to .Si 
for nested indents. 
Reduce size of text by 1 point, make text boldface . 
Section Heading . 
Reduce size of text by 1 point. 
Section Subheading. 
Begin reference page n, of of section s; d is the date of the most 
recent change. If present, f is the left page footer; m is the 
main page (center) header. Sets prevailing indent and tabs to .Si. 

i=p.i . Begin indented paragraph, with the tag given on the next text line. 
Set prevailing indent to i. 

* n.tl. = next text line; p.i. = prevailing indent 
. TXtp no Resolve the title abbreviation t; join to punctuation mark (or text) p . 

Last change: 24 November 1987 Sun Release 4.0 



MAN(7) PUBLIC FILES, TABLES, AND TROFF MACROS MAN(7) 

Conventions 
A typical manual page for a SunOS command or function is laid out as follows: 

.TH TITLE [1-8] 
The name of the command or function in upper-case, which serves as the title of the manual page. 
This is followed by the number of the section in which it appears . 

.SH NAME name (or comma-separated list of names) - one-line summary 
The name, or list of names, by which the command is called, followed by a dash and then a one-line 
summary of the action performed. All in roman font, this section contains no troff(l) commands or 
escapes, and no macro requests. It is used to generate the whatis(l) database . 

.SH SYNOPSIS 

Commands: 

The syntax of the command and its arguments, as typed on the command line. When in 
boldface, a word must be typed exactly as printed When in italics, a word can be 
replaced with an argument that you supply. References to bold or italicized items are not 
capitalized in other sections, even when they begin a sentence. 

Syntactic symbols appear in roman face: 

[ ] An argument, when surrounded by brackets is optional. 

I Arguments separated by a vertical bar are exclusive. You can supply only item 
from such a list. 

Functions: 

Arguments followed by an elipsis can be repeated. When an elipsis follows a 
bracketed set, the expression within the brackets can be repeated. 

If required, the data declaration, or #include directive, is shown first, followed by the 
function declaration. Otherwise, the function declaration is shown . 

.SH DESCRIPTION 
A narrative overview of the command or function's external behavior. This includes how it 
interacts with files or data, and how it handles the standard input, standard output and standard 
error. Internals and implementation details are normally omitted. This section attempts to provide 
a succinct overview in answer to the question, "what does it do?" 

Literal text from the synopsis appears in boldface, as do literal filenames and references to items 
that appear elsewhere in the SunOS Reference Manual. Arguments are italicized. 

If a command interprets either subcommands or an input grammar, its command interface or input 
grammar is normally described in a USAGE section, which follows the OPTIONS section. (The 
DESCRIPTION section only describes the behavior of the command itself, not that of 
subcommands.) 

.SH OPTIONS 
The list of options along with a description of how each affects the command's operation . 

.SH FILES 
A list of files associated with the command or function . 

.SH SEE ALSO 
A comma-separated list of related manual pages, followed by references to other published 
materials . 

.SH DIAGNOSTICS 
A list of diagnostic messages and an explanation of each. 

Sun Release 4.0 Last change: 24 November 1987 1561 



MAN(7) PUBLIC FILES, TABLES, AND TROFF MACROS MAN(7) 

FILES 

.SH BUGS 
A description of limitations, known defects, and possible problems associated with the command 
or function. 

/usr/sbare/lib/tmac/tmac.an 

SEE ALSO 
man(l), nroff(l), troff(l), wbatis(l) 

Formatting Documents. 

1562 Last change: 24 November 1987 Sun Release 4.0 



ME(7) PUBLIC FILES, TABLES, AND TROFF MACROS ME(7) 

NAME 
me - macros for formatting papers 

SYNOPSIS 
nroff -me [ options ] file ... 
troff -me [ options ] file ... 

DESCRIPTION 
This package of nroff and troff macro definitions provides a canned formatting facility for technical 
papers in various formats. When producing 2-column output on a terminal, filter the output through co/(1). 

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction with this 
package, however, these requests may be used with impunity after the first .pp: 

.bp begin new page 

.br break output line here 

.sp n insert n spacing lines 

.ls n (line spacing) n= 1 single, n=2 double space 

.na no alignment of right margin 

.ce n center next n lines 

.ul n underline next n lines 

.sz +n add n to point size 

Output of the eqn, meqn, mefer, and tbl(l) preprocessors for equations and tables is acceptable as input. 

REQUESTS 
In the following list, "initialization" refers to the first .pp, .Ip, .ip, .np, .sh, or .uh macro. This list is 
incomplete. 

Request Initial Cause Explanation 
Value Break 

.(c yes 

.(d no 

.(f no 

.(1 yes 

.(q yes 

.(xx no 

.(z no 

.)c yes 

.)d yes 

.)f yes 

.)1 yes 

.)q yes 

.)x yes 

.)z yes 

.++ m H no 

. +cT yes 

.le 1 yes 

.2c 1 yes 

.EN yes 

.EQxy yes 

. GE yes 

.GS yes 

Sun Release 4.0 

Begin centered block 
Begin delayed text 
Begin footnote 
Begin list 
Begin major quote 
Begin indexed item in index x 
Begin floating keep 
End centered block 
End delayed text 
End footnote 
End list 
End major quote 
End index item 
End floating keep 

Define paper section. m defines the part of the paper, and can be C (chapter), A 
(appendix), P (preliminary, for instance, abstract, table of contents, etc.), B (bibliography), 
RC (chapters renumbered from page one each chapter), or RA (appendix renumbered from 
page one) . 
Begin chapter (or appendix, etc., as set by.++). Tis the chapter title. 
One column format on a new page. 
Two column format. 
Space after equation produced by eqn or meqn. 
Precede equation; break out and add space. Equation number is y. The optional argument 
x may be/ to indent equation (default), L to left-adjust the equation, or C to center the 
equation . 
End gremlin picture. 
Begin gremlin picture. 

Last change: 9 September 1987 1563 



:ME(7) 

.PE 

. PS 

. TE 

. TH 

. TSx 

. acAN 

. bx 

.ba +n 

.be 

.bix 

.bu 

. bxx 

.ef 'x'y'z 

.eh 'x'y'z 

.fo 'x'y'z 

. hx 

.he 'x'y'z 

.hi 

no 
0 

no 
no 

no 

.ix no 

.ipxy no 

.Ip yes 

.lo 

. np 1 

.of 'x'y'z 

.oh x'y'z 

.pd 

. pp no 

. r yes 

. re 

.sc no 

. shnx 

. sk no 

. smx- no 

. sz +n lOp 

. th no 

. tp no 

. ux 

. uh 

. xpx 

FILES 

yes 
yes 
yes 
yes 
yes 

PUBLIC FILES, TABLES, AND TROFF MACROS 

End pie picture . 
Begin pie picture . 
End table . 
End heading section of table . 
Begin table; if x is H table has repeated heading . 

:ME(7) 

no Set up for ACM style output. A is the Author's name(s), N is the total number of pages . 

no 
yes 

yes 
no 
yes 
no 
no 
no 
no 
no 
no 
yes 

Must be given before the first initialization. 
Print x in boldface; if no argument switch to boldface . 
Augments the base indent by n. This indent is used to set the indent on regular text (like 
paragraphs). 
Begin new column 
Print x in bold italics (nofill only) 
Begin bulleted paragraph 
Print x in a box (nofill only) . 
Set even footer to x y z 
Set even header to x y z 
Set footer to x y z 
Suppress headers and footers on next page . 
Set header to x y z 
Draw a horizontal line 

no Italicize x; if x missing, italic text follows . 
yes Start indented paragraph, with hanging tag x. Indentation is yens (default 5) . 
yes Start left-blocked paragraph . 
no Read in a file of local macros of the form .•x. Must be given before initialization . 
yes Start numbered paragraph . 
no Set odd footer to x y z 
no Set odd header to x y z 
yes Print delayed text. 
yes Begin paragraph. First line indented . 
no Roman text follows . 
no Reset tabs to default values . 
no Read in a file of special characters and diacritical marks. Must be given before 

initialization. 
yes Section head follows, font automatically bold. n is level of section, x is title of section . 
no Leave the next page blank. Only one page is remembered ahead . 
Set x in a smaller pointsize . 
no Augment the point size by n points . 
no Produce the paper in thesis format. Must be given before initialization . 
yes Begin title page . 
no Underline argument (even in troff). (Nofill only) . 
yes Like .sh but unnumbered . 
no Print index x . 

/usr/share/lib/tmac/tmac.e 
/usr/share/lib/me/• 

SEE ALSO 
eqn(l), nrofT(l), trofT(l), refer(l), tbl(l) 

Formatting Documents 

1564 Last change: 9 September 1987 Sun Release 4.0 



MS(7) PUBLIC FILES, TABLES, AND TROFF MACROS MS(7) 

NAME 
ms - text formatting macros 

SYNOPSIS 
nroff -ms [ options ] filename .. . 

troff -ms [ options ] filename .. . 

DESCRIPTION 
This package of nroff(l) and troff(l) macro definitions provides a formatting facility for various styles of 
articles, theses, and books. When producing 2-column output on a terminal or lineprinter, or when reverse 
line motions are needed, filter the output through col(l V). All external -ms macros are defined below. 

Note: this -ms macro package is an extended version written at Berkeley and is a superset of the standard 
-ms macro packages as supplied by Bell Labs. Some of the Bell Labs macros have been removed; for 
instance, it is assumed that the user has little interest in producing headers stating that the memo was 
generated at Whippany Labs. 

Many nroff and troff requests are unsafe in conjunction with this package. However, the first four 
requests below may be used with impunity after initialization, and the last two may be used even before 
initialization: 

.bp begin new page 

.br break output line 

.sp n insert n spacing lines 

.ce n center next n lines 

.Is n line spacing: n =1 single, n =2 double space 

.na no alignment of right margin 

Font and point size changes with \f and \s are also allowed; for example, \fiword\tR will italicize word. 
Output of the tbl(l), eqn(l) and refer(l) preprocessors for equations, tables, and references is acceptable 
as input. 

REQUESTS 
Macro 
Name 

.ABX 

.AE 

.AI 

.AM 

.AU 

.Bx 

.Bl 

.B2 

.BT 

.BXx 

.CM 

.CT 

.DAx 

.DE 

.DSxy 
lDy 
.LD 
.CD 
.BD 
.EFx 
.EHx 
.EN 

Sun Release 4.0 

Initial 
Value 

date 

if t 

ifn 

I 
8n,.5i 

Break? 
Reset? 

y 
y 
y 
n 
y 
n 
y 
y 
n 
n 
n 
y,y 
n 
y 
y 
y 
y 
y 
y 
n 
n 
y 

Explanation 

begin abstract; if x=no do not label abstract 
end abstract 
author's institution 
better accent mark definitions 
author's name 
em holden x; if no x, switch to boldface 
begin text to be enclosed in a box 
end boxed text and print it 
bottom title, printed at foot of page 
print word x in a box 
cut mark between pages 
chapter title: page number moved to CF (TM only) 
force date x at bottom of page; today if no x 
end display (unfilled text) of any kind 
begin display with keep; x=I, L, C, B; y=indent 
indented display with no keep; y=indent 
left display with no keep 
centered display with no keep 
block display; center entire block 
even page footer x (3 part as for .ti) 
even page header x (3 part as for .ti) 
end displayed equation produced by eqn 

Last change: 16 February 1988 1565 



MS(7) PUBLIC FILES, TABLES, AND TROFF MACROS MS(7) 

.EQxy y break out equation; x=L,I,C; y=equation number 

.FE n end footnote to be placed at bottom of page 

.FP n numbered footnote paragraph; may be redefined 

.FSx n start footnote; x is optional footnote label 

.HD undef n optional page header below header margin 

.Ix n italicize x; if no x, switch to italics 
lPxy y,y indented paragraph, with hanging tag x; y=indent 
lXxy y index words x y and so on ( up to 5 levels) 
.KE n end keep of any kind 
.KF n begin floating keep; text fills remainder of page 
.KS y begin keep; unit kept together on a single page 
.LG n larger; increase point size by 2 
. LP y,y left (block) paragraph . 
.MCx y,y multiple columns; x=column width 
.NDx if t n no date in page footer; x is date on cover 
.NHxy y,y numbered header, x=level, x=O resets, x=S sets toy 
.NL lOp n set point size back to normal 
.OFx n odd page footer x (3 part as for .ti) 
.OHx n odd page header x (3 part as for .ti) 
.Pl ifTM n print header on first page 
.PP y,y paragraph with first line indented 
.PT n page title, printed at head of page 
.PXx y print index (table of contents); x=no suppresses title 
.QP y,y quote paragraph (indented and shorter) 
.R on n return to Roman font 
.RE Sn y,y retreat: end level of relative indentation 
.RPx n released paper format; x=no stops title on first page 
.RS Sn y,y right shift: start level of relative indentation 
.SH y,y section header, in boldface 
.SM n smaller, decrease point size by 2 
.TA 8n,5n n set TAB characters to 8n 16n ... (nroff) Sn 10n ... (troff) 
.Tex y print table of contents at end; x=no suppresses title 
.TE y end of table processed by tbl 
.TH y end multi-page header of table 
.TL y title in boldface and two points larger 
.TM off n UC Berkeley thesis mode 
.TSx y,y begin table; if x=H table has multi-page header 
.ULx n underline x, even in troff 
.UXx n UNIX; trademark message first time; x appended 
.XAxy y another index entry; x=page or no for none; y=indent 
.XE y end index entry (or series of JX entries) 
.XP y,y paragraph with first line exdented, others indented 
.XSxy y begin index entry; x=page or no for none; y=indent 
.lC on y,y one column format, on a new page 
.2C y,y begin two column format 
.]- n beginning of ref er reference 
.[ 0 n end of unclassifiable type of reference 
.[N n N= 1:joumal-article, 2:book, 3:book-article, 4:report 

REGISTERS 
Formatting distances can be controlled in -ms by means of built-in number registers. For example, this 
sets the line length to 6.5 inches: 

.or LL 6.Si 

1566 Last change: 16 February 1988 Sun Release 4.0 



MS(7) 

FILES 

PUBLIC FILES, TABLES, AND TROFF MACROS MS(7) 

Here is a table of number registers and their default values: 

Name Register Controls Takes Effect Default 

PS point size paragraph 10 
VS vertical spacing paragraph 12 
LL line length paragraph 6i 
LT title length next page same as LL 
FL footnote length next .FS S.Si 
PD paragraph distance paragraph 1 v (if n), .3v (if t) 
DD display distance displays 1 v (if n), .Sv (if t) 
PI paragraph indent paragraph Sn 
QI quote indent next .QP Sn 
FI footnote indent next .FS 2n 
PO page offset nextpage 0 (if n), - Ii (if t) 
HM header margin nextpage Ii 
FM footer margin next page Ii 
FF footnote format next .FS 0 (1, 2, 3 available) 

When resetting these values, make sure to specify the appropriate units. Setting the line length to 7, for 
example, will result in output with one character per line. Setting FF to 1 suppresses footnote 
superscripting; setting it to 2 also suppresses indentation of the first line; and setting it to 3 produces an 
.IP-like footnote paragraph. 

Here is a list of string registers available in -ms; they may be used anywhere in the text: 

Name String's Function 

\*Q 
\*U 
\*
\*(MO 
\*(DY 
\** 
\*' 
\*' 
\*A 
\*, 
\*: 
\*-

quote (" in nroff, " in troff ) 
unquote (" in nroff, '' in troff ) 
dash (-- in nroff, - in troff) 
month (month of the year) 
day (current date) 
automatically numbered footnote 
acute accent (before letter) 
grave accent (before letter) 
circumflex (before letter) 
cedilla (before letter) 
umlaut (before letter) 
tilde (before letter) 

When using the extended accent mark definitions available with .AM, these strings should come after, 
rather than before, the letter to be accented. 

/usr/share/lib/tmac/tmac.s 
/usr/share/lib/ms/ms. ??? 

SEE ALSO 

BUGS 

col(lV), eqn(l), nroff(l), refer(l), tbl(l), troff(l) 

Formatting Documents 

Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed together with 
predictable results. 

Sun Release 4.0 Last change: 16 February 1988 1567 





INTR0(8) MAINTENANCE COMMANDS INTR0(8) 

NAME 
intro - introduction to system maintenance and operation commands 

DESCRIPTION 
This section contains information related to system bootstrapping, operation and maintenance. It describes 
all the server processes and daemons that run on the system, as well as standalone (PROM monitor) pro
grams. 

Disk formatting and labeling is done by format(8S). Bootstrapping of the system is described in boot(8S) 
and init(8). The standard set of commands run by the system when it boots is described in rc(8). Related 
commands include those that check the consistency of file systems, fsck(8); those that mount and unmount 
file systems, mount(8); add swap devices, swapon(8); force completion of outstanding file system I/0, 
sync(2); shutdown or reboot a running system shutdown(8), halt(8), and reboot(8); and, set the time on a 
machine from the time on another machine rdate(8). 

Creation of file systems is discussed in mkfs(8) and newfs(8). File system performance parameters can be 
adjusted with tunefs(8). File system backups and restores are described in dump(8) and restore(8). 

Procedures for adding new users to a system are described in adduser(8), using vipw(8) to lock the pass
word file during editing. crash(8S) which describes what happens when the system crashes, savecore(8) 
and analyze(8), which can be used to analyze system crash dumps. Occasionally useful as adjuncts to the 
fsck(8) file system repair program are clri(8), dcheck(8), icheck(8), and ncheck(8). 

Configuring a new version of the kernel requires using the program config(8); major system bootstraps 
often require the use of mkproto(8). New devices are added to the /dev directory (once device drivers are 
configured into the system) using makedev(8) and mknod(8). The installboot(8S) command can be used 
to install freshly compiled programs. The catman(8) command preformats the on-line manual pages. 

Resource accounting is enabled by the accton command, and summarized by sa(8). Login time accounting 
is performed by ac(8). Disk quotas are managed using quot(8), quotacheck(8), quotaon(8), and 
repquota(8). 

A number of servers and daemon processes are described in this section. The update(8) daemon forces 
delayed file system I/0 to occur and cron(8) runs periodic events (such as removing temporary files from 
the disk periodically). The syslogd(8) daemon maintains the system error log. The init(8) process is the 
initial process created when the system boots. It manages the reboot process and creates the initial login 
prompts on the various system terminals, using getty(8). The Internet super-server inetd(8C) invokes all 
other internet servers as needed. These servers include the remote shell servers rshd(8C) and rexecd(8C), 
the remote login server rlogind(8C), the FTP and TELNET daemons ftpd(8C), and telnetd(8C), the TFTP 
daemon tftpd(8C), and the mail arrival notification daemon comsat(8C). Other network daemons include 
the 'load average/who is logged in' daemon rwhod(8C), the routing daemon routed(8C), and the mail dae
mon sendmail(8). 

If network protocols are being debugged, then the protocol debugging trace program trpt(8C) is often use
ful. Remote magnetic tape access is provided by rsh and rmt(8C). Remote line printer access is provided 
by lpd(8), and control over the various print queues is provided by lpc(8). Printer cost-accounting is done 
through pac(8). 

Network host tables may be gotten from the ARPA NIC using gettable(8C) and converted to UNIX-system
usable format using htable(8). 

RPC and NFS daemons 
RPC and NFS daemons include: 

Sun Release 4.0 

portmap 
ypbind 
biod 
nfsd 
ypserv 
rstatd 

used by RPC based services. 
used by the Yellow Pages to locate the Yellow Pages server. 
used by NFS clients to read ahead to, and write behind from, network file systems. 
the NFS server process that responds to NFS requests on NFS server machines. 
the Yellow Pages server, typically run on each NFS server. 
the server counterpart of the remote speedometer tools. 

Last change: 17 November 1987 1569 



INTR0(8) MAINTENANCE COMMANDS INTR0(8) 

mountd the mount server that runs on NFS server machines and responds to requests by other 
machines to mount file systems. 

rwalld used for broadcasting messages over the network. 

LIST OF MAINTENANCE COMMANDS 
Name Appears on Page Description 

ac ac(8) login accounting 
accton sa(8) system accounting 
adbgen adbgen(8) generate adb script 
adduser adduser(8) procedure for adding new users 
arp arp(8C) address resolution display and control 
audit audit(8) audit trail maintenance 
audit warn audit_ warn(8) audit space low warning script 
auditd auditd(8) audit daemon 
automount automount(8) automatically mount NFS file systems 
biod nfsd(8) NFS daemons 
boot boot(8S) start the system kernel or a standalone program 
bootparamd bootparamd(8) boot parameter server 
captoinfo captoinf o(8V) convert a termcap description into a terminfo description 
catman catman(8) create the cat files for the manual 
chown chown(8) change owner 
chroot chroot(8) change root directory for a command 
client client(8) add/remove diskless systems 
clri clri(8) clear i-node 
comsat comsat(8C) biff server 
config config(8) build system configuration files 
crash crash(8S) what happens when the system crashes 
cron cron(8) clock daemon 
dcheck dcheck(8) file system directory consistency check 
dkinfo dkinfo(8) report information about a disk's geometry and partitioning 
dmesg dmesg(8) collect system diagnostic messages to form error log 
dump dump{8) incremental file system dump 
dumpfs dumpfs(8) dump file system information 
edquota edquota(8) edit user quotas 
eeprom eeprom(8S) Sun-3 EEPROM display and load utility 
etberd etherd(8C) Ethernet statistics server 
etberfind etherfind(8C) find packets on Ethernet 
exportfs exportfs(8) export and unexport directories to NFS clients 
fastboot fastboot(8) reboot/halt the system without checking the disks 
fasthalt f astboot(8) reboot/halt the system without checking the disks 
fingerd fingerd(8C) remote user information server 
format format(8S) disk partitioning and maintenance utility 
fparel fparel(8) Sun FP A online reliability tests 
fpaversion fpaversion(8) print FPA version 
fsck fsck(8) file system consistency check and interactive repair 
fsirand fsirand(8) install random inode generation numbers 
ftpd ftpd{8C) DARPA Internet File Transfer Protocol server 
gettable gettable(8C) get DoD Internet format host table from a host 
getty getty(8) set terminal mode 
gpconfig gpconfig(8) initialize the Graphics Processor 
grpck grpck(8) check group database entries 
halt halt(8) stop the processor 
btable htable(8) convert DoD Internet format host table 

1570 Last change: 17 November 1987 Sun Release 4.0 



INTR0(8) 

icheck 
ifconfig 
inetd 
infocmp 
init 
install boot 
iostat 
ipallocd 
kadb 
keyenvoy 
keyserv 
kgmon 
ldconfig 
link 
lockd 
login tool 
lpc 
lpd 
mailstats 
MAKEDBM 
MAKEDEV 
makekey 
mc68881version 
mconnect 
mkfs 
mknod 
mkproto 
modload 
modstat 
mod unload 
monitor 
mount 
mountd 
named 
ncheck 
ndbootd 
netconfig 
netstat 
newaliases 
newfs 
newkey 
nfsd 
nfsstat 
pac 
ping 
pnp.s386 
pnpboot 
pnpd 
portmap 
praudit 
pstat 
pwck 
pwdauthd 

Sun Release 4.0 

MAINTENANCE COMMANDS INTR0(8) 

icheck(8) 
if config(8C) 
inetd(SC) 
infocmp(8V) 
init(8) 
boot(SS) 
iostat(8) 
ipallocd(SC) 
kadb(SS) 
keyenvoy(8C) 
keyserv(8C) 
kgmon(8) 
ldconfig(8) 
link(8) 
lockd(8C) 
logintool(8) 
lpc(8) 
lpd(8) 
mailstats(8) 
makedbm(8) 
makedev(8) 
makekey(8) 
mc68881 version(8) 
mconnect(8) 
mkfs(8) 
mknod(8) 
mkproto(8) 
modload(8) 
modstat(8) 
modunload(8) 
monitor(8S) 
mount(8) 
mountd(8C) 
named(8C) 
ncheck(8) 
ndbootd(8C) 
netconfig(8C) 
netstat(8C) 
newaliases(8) 
newfs(8) 
newkey(8) 
nfsd(8) 
nfsstat(8C) 
pac(8) 
ping(8C) 
pnpboot(8C) 
pnpboot(8C) 
pnpd(8C) 
portmap(8C) 
praudit(8) 
pstat(8) 
pwck(8) 
pwdauthd(8C) 

file system storage consistency check 
configure network interface parameters 
Internet services daemon 
compare or print out terminfo descriptions 
process control initialization 
start the system kernel or a standalone program 
report I/0 statistics 
Ethernet-to-IP address allocator 
adb-like kernel and standalone-program debugger 
talk to keyserver 
server for storing public and private keys 
generate a dump of the operating system's profile buffers 
configure cache for Id.so 
exercise link and unlink system calls 
network lock daemon 
graphic login interface 
line printer control program 
printer daemon 
print statistics collected by sendmail 
make a Yellow Pages dbm file 
make system special files 
generate encryption key 
print the MC68881 mask number and approximate clock rate 
connect to SMTP mail server socket 
construct a file system 
build special file 
construct a prototype file system 
load a loadable module 
display status of loadable modules 
unload a loadable module 
system ROM monitor 
mount and dismount filesystems 
NFS mount request server 
Internet domain name server 
generate names from i-numbers 
ND boot block server 
PNP boot service 
show network status 
rebuild the data base for the mail aliases file 
construct a new file system 
create a new key in the publickey database 
NFS daemons 
Network File System statistics 
printer/plotter accounting information 
send ICMP ECHO_ REQUEST packets to network hosts 
PNP diskless boot service 
PNP diskless boot service 
PNPdaemon 
DARPA port to RPC program number mapper 
print contents of an audit trail file 
print system facts 
check password database entries 
server for authenticating passwords 

Last change: 17 November 1987 1571 



INTR0(8) MAINTENANCE COMMANDS INTR0(8) 

quot quot(8) summarize file system ownership 
quotacheck quotacheck(8) file system quota consistency checker 
quotaoff quotaon(8) turn file system quotas on and off 
quotaon quotaon(8) turn file system quotas on and off 
rarpd rarpd(8C) DARPA Reverse Address Resolution Protocol service 
re.boot rc(8) command scripts for auto-reboot and daemons 
re.local rc(8) command scripts for auto-reboot and daemons 
re rc(8) command scripts for auto-reboot and daemons 
rdate rdate(8C) set system date from a remote host 
rdump dump(8) incremental file system dump 
reboot reboot(8) restart the operating system 
renice renice(8) alter priority of running processes 
repquota repquota(8) summarize quotas for a file system 
restore restore(8) incremental file system restore 
rexd rexd(8C) RPC-based remote execution server 
rexecd rexecd(8C) remote execution server 
rlogind rlogind(8C) remote login server 
rmail rmail(8C) handle remote mail received via uucp 
rmt rmt(8C) remote magtape protocol module 
route route(8C) manually manipulate the routing tables 
routed routed(8C) network routing daemon 
rpcinfo rpcinf o(8C) report RPC information 
rquotad rquotad(8C) remote quota server 
rrestore restore(8) incremental file system restore 
rshd rshd(8C) remote shell server 
rstatd rstatd(8C) kernel statistics server 
rusersd rusersd(8C) network username server 
rwalld rwalld(8C) network rwall server 
rwhod rwhod(8C) system status server 
sa sa(8) system accounting 
savecore savecore(8) save a core dump of the operating system 
sendmail sendmail(8) send mail over the internet 
setup_ client setup_ client(8) create or remove a nfs client on a 4.0 server. 
setup_exec setup_ exec(8) install architecture-dependent executable files 
showmount showmount(8) show all remote mounts 
shutdown shutdown(8) close down the system at a given time 
spray spray(8C) spray packets 
sprayd sprayd(8C) spray server 
statd statd(8C) network status monitor 
sticky sticky(8) persistent text and append-only directories 
suninstall suninstall(8) SunOS software installation program 
swapon swapon(8) specify additional device for paging and swapping 
sysdiag sysdiag(8) system diagnostics 
syslogd syslogd(8) log system messages 
talkd talkd(8C) server for talk program 
telnetd telnetd(8C) DARPA TELNET protocol server 
tftpd tftpd(8C) DARPA Trivial File Transfer Protocol server 
tic tic(8V) terminfo compiler 
timed timed(8C) DARPA Time server 
tnamed tnamed(8C) DARPA Trivial name server 
trpt trpt(8C) transliterate protocol trace 
tunefs tunefs(8) tune up an existing file system 
umount mount(8) mount and dismount filesystems 

1572 Last change: 17 November 1987 Sun Release 4.0 



INTR0(8) 

on configure 
unlink 
update 
unclean 
vipw 
vmstat 
ypbind 
ypinit 
ypmake 
yppasswdd 
yppoll 
yppusb 
ypserv 
ypset 
ypupdated 
ypwhicb 
ypxfr 
zdump 
zic 

Sun Release 4.0 

MAINTENANCE COMMANDS INTR0(8) 

unconfigure(8) 
link(8) 
update(8) 
uuclean(8C) 
vipw(8) 
vmstat(8) 
ypserv(8) 
ypinit(8) 
ypmake(8) 
yppasswdd(8C) 
yppoll(8) 
yppush(8) 
ypserv(8) 
ypset(8) 
ypupdated(8C) 
ypwhich(8) 
ypxfr(8) 
zdump(8) 
zic(8) 

reset the network configuration for a system 
exercise link and unlink system calls 
periodically update the super block 
uucp spool directory clean-up 
edit the password file 
report virtual memory statistics 
Yellow Pages server and binder processes 
build and install Yellow Pages database 
rebuild Yellow Pages database 
server for modifying Yellow Pages password file 
what version of a YP map is at a YP server host 
force propagation of a changed YP map 
Yellow Pages server and binder processes 
point ypbind at a particular server 
server for changing yp information 
what machine is the YP server? 
transfer YP map from a YP server to here 
time zone dumper 
time zone compiler 

Last change: 17 November 1987 1573 



AC(8) MAINTENANCE COMMANDS AC(8) 

NAME 
ac - login accounting 

SYNOPSIS 
/usr/etc/ac [ -w wtmp ] [ -p ] [ -d ] [ people ] ... 

DESCRIPTION 
ac produces a printout giving connect time for each user who has logged in during the life of the current 
wtmp file. A total is also produced. 

The accounting file /var/adm/wtmp is maintained by init(8) and login(l). Neither of these programs 
creates the file, so if it does not exist no connect-time accounting is done. To start accounting, it should be 
created with length 0. On the other hand if the file is left· undisturbed it will grow without bound, so 
periodically any information desired should be collected and the file truncated. 

OPTIONS 
-w Specify an alternate wtmp file. 

-p Print individual totals; without this option, only totals are printed. 

-d Printout for each midnight to midnight period. Any people will limit the printout to only the 
specified login names. If no wtmp file is given, /var/adm/wtmp is used. 

FILES 
/var/adm/wtmp 

SEE ALSO 
login(l), utmp(5), init(8), sa(8) 

1574 Last change: 9 September 1987 Sun Release 4.0 



ADBGEN(8) MAINTENANCE COMMANDS ADBGEN(8) 

NAME 
adbgen - generate adb script 

SYNOPSIS 
/usr/lib/adb/adbgenji/ename .adb ... 

DESCRIPTION 
adbgen makes it possible to write adb(l) scripts that do not contain hard-coded dependencies on structure 
member offsets. The input to adbgen is a file namedfilename.adb which contains adbgen header informa
tion, then a null line, then the name of a structure, and finally an adb script. adbgen only deals with one 
structure per file; all member names are assumed to be in this structure. The output of adbgen is an adb 
script in filename. adbgen operates by generating a C program which determines structure member offsets 
and sizes, which in tum generates the adb script. 

The header lines, up to the null line, are copied verbatim into the generated C program. Typically these 
include C #include statements to include the header files containing the relevant structure declarations. 

The adb script part may contain any valid adb commands (see adb(l)), and may also contain adbgen 
requests, each enclosed in {}s. Request types are: 

1 Print a structure member. The request form is {member/ormat}. member is a member name of 
the structure given earlier, and format is any valid adb format request. For example, to print the 
p _pid field of the proc structure as a decimal number, you would write {p _pid,d}. 

2 Reference a structure member. The request form is {*member,base}. member is the member 
name whose value is desired, and base is an adb register name which contains the base address of 
the structure. For example, to get the p _pid field of the proc structure, you would get the proc 
structure address in an adb register, say <f, and write {*p_pid,<f}. 

3 Tell adbgen that the offset is ok. The request form is {OFFSETOK}. This is useful after invoking 
another adb script which moves the adb dot. 

4 Get the size of the structure. The request form is {SIZEOF}. adbgen replaces this request with 
the size of the structure. This is useful in incrementing a pointer to step through an array of struc
tures. 

5 Get the offset to the end of the structure. The request form is {END}. This is useful at the end of 
the structure to get adb to align the dot for printing the next structure member. 

adbgen keeps track of the movement of the adb dot and emits adb code to move forward or backward as 
necessary before printing any structure member in a script. adbgen's model of the behavior of adb's dot 
is simple: it is assumed that the first line of the script is of the form struct _ address /adb text and that subse
quent lines are of the form +ladb text. This causes the adb dot to move in a sane fashion. adbgen does 
not check the script to ensure that these limitations are met. adbgen also checks the size of the structure 
member against the size of the adb format code and warns you if they are not equal. 

EXAMPLE 
If there were an include file x.h which contained: 

struct x { 
char *x_cp; 
char x_c; 
int x_i; 

}; 

Then an adbgen file (call it script.adb) to print it would be: 
#include "x.h" 
X 

./"x _ cp" 16t"x _ c"8t"x _ i"n{x _ cp,X}{x _c,C}{x _i,D} 

Sun Release 4.0 Last change: 25 September 1987 1575 



ADBGEN(8) MAINTENANCE COMMANDS 

After running adbgen the output file script would contain: 

16t"x_c"8t"x_i"nXC+D"" J"x_cp"16t"x_c"8t"x_i"nXC+D 

To invoke the script you would type: 

x$<Script 

FILES 
/usr/Iib/adb/• 

SEE ALSO 
adb(l), kadb(8S) 

Debugging Tools 

BUGS 

adb scripts for debugging the kernel 

adb syntax is ugly; there should be a higher level interface for generating scripts. 

ADBGEN(8) 

Structure members which are bit fields cannot be handled because C will not give the address of a bit field. 
The address is needed to determine the offset 

DIAGNOSTICS 

1576 

Warnings about structure member sizes not equal to adb format items and complaints about badly format
ted requests. The C compiler complains if you reference a structure member that does not exist. It also 
complains about & before array names; these complaints may be ignored. 

Last change: 25 September 1987 Sun Release 4.0 



ADDUSER(8) MAINTENANCE COMMANDS ADDUSER(8) 

NAME 
adduser - procedure for adding new users 

DESCRIPTION 
To add an account for a new user, the system administrator (or super-user): 

• Create an entry for the new user in the system password files. 

• Create a home directory for the user, and change ownership so the new user owns that directory. 

• Optionally set up skeletal dot files for the new user (.cshrc, .login, .profile ... ). 

• If the account is on a system running the YP name service, take additional measures. 

USAGE 
Making an Entry in the Password File 

To add an entry for the new login name on a local host, first edit the /etc/passwd file -inserting a line for 
the new user. This must be done with the password file locked, for instance, by using vipw(8), and the 
insertion must be made above the line containing the string: 

+::0:0::: 

This line is used to indicate that additional accounts can be found in the YP. 

To add an entry for the new login name on to the YP, add an identical line to the file /etc/passwd on the YP 
master server, and run make(l) in the directory /var/yp (see ypmake(8) for details) to propagate the 
change. 

The new user is assigned a group and user ID number. User ID numbers (or userids, or UIDs) should be 
unique for each user and consistent across the NFS domain, since they control access to files. Group ID 
numbers ( or groupids, or GIDs) need not be unique. Typically, users working on similar projects will 
assigned to the same group. The system staff is group 10 for historical reasons, and the super-user is in this 
group. 

An entry for a new user "francine" would look like this: 

francine:: 235: 20: & Featherstonehaugh:/usr/francine:/bin/ csh 

Fields in each password-file entry are delimited by colons, and have the following meanings: 

Sun Release 4.0 

• Login name ("francine"). The login name is limited to eight characters in length. 

• Encrypted password or the string ##name if encrypted passwords are stored in the password 
adjunct file. Typically, if passwords are to be stored in the main password file, this field is left 
empty, so no password is needed when the user first logs in. If security demands a password, 
it should be assigned by running passwd(l) immediately after exiting the editor. The number 
of significant characters in a password is eight. (See passwd(l).) 

• User ID. The UID is a number which identifies that user uniquely in the system. Files owned 
by the user have this number stored in their data blocks, and commands such as Is( 1 V) use it to 
look up the owner's login name. For this reason, you cannot randomly change this number. 
See passwd(5) for more information. 

• Group ID. The UID number identifies the group to which the user belongs by default (although 
the user may belong to additional groups as well). All files that the user creates have this 
number stored in their data blocks, and commands such as ls(lV) use it to look up the group 
name. Group names and assignments are listed in the file /etc/group (which is described in 
group(5)) or in the YP group map. 

• This field is called the GCOS field (from earlier implementation of the operating system) and is 
traditionally used to hold the user's full name. Some installations have other information 
encoded in this field. From this information we can tell that Francine's real name is 'Francine 
Featherstonehaugh'. The & in the entry is shorthand for the user's login name. 

Last change: 14 December 1987 1577 



ADDUSER(8) MAINTENANCE COMMANDS ADDUSER(8) 

• User's home directory. This is the directory in which that user is "positioned" when they log 
in. 

• Initial shell which this user will see on login. If this field is empty, sh( 1) is used as the initial 
shell. 

An entry for a new user "francine" would look like this: 

francine:::::Io:ad,+dw 

Fields in each password adjunct file entry are delimited by colons, and have the following meanings: 

• Login name ("francine"). This name must match the login name in the password file. 

• Encrypted password. Typically, this field is left empty when adding the line using the editor. 
passwd(l) should be run immediately after exiting the editor. 

• The next three fields are the minimum label, the maximum label, and the default label. These 
fields should be left empty, since they are reserved for future use. 

• The next two fields are for the always-audit flags and the never-audit flags. Always-audit flags 
specify which events guaranteed to be audited for that user. Never-audit flags specify which 
events are guaranteed not to be audited for that user. For a description of audit flags, see 
audit_data(5). 

Making a Home Directory 
As shown in the password file entry above, the name of Francine's home directory is to be /usr/francine. 
This directory must be created using mkdir( 1 ), and Francine must be given ownership of it using 
chown(8), in order for her profile files to be read and executed, and to have control over access to it by 
other users: 

example# mkdir /usr/francine 
example# /usr/etc/chown francine /usr/francine 

If running under NFS, the mkdir(l) and chown(8) commands must be performed on the NFS server. 

Setting Up Skeletal Profile Files 

FILES 

New users often need assistance in setting up their profile files to initialize the terminal properly, configure 
their search path, and perform other desired functions at startup. Providing them with skeletal profile fil_es 
saves time and interruptions for both the new user and the system administrator. 

Such files as .profile (if they use /usr/bin/sh as the shell), or .cshrc and .login (if they use /usr/bin/csh as 
the shell), can include commands that are performed automatically at each login, or whenever a shell is 
invoked, such as tset(l). The ownership of these files must be changed to belong to the new user, either by 
running su(l) before making copies, or by using chown(8). 

/etc/passwd 
/etc/group 
/etc/yp/src/passwd 
-1.cshrc 
-I.login 
-/.profile 

password file 
group file 

SEE ALSO 

1578 

csh(l), ls(l v), make(l), 
audit_data(5), group(5), 
ypmake(8) 

Network Programming 

mkdir(l), passwd(l), sh(l), su(l), tset(l), audit(2), audit_control(5), 
passwd(5), passwd.adjunct(5), audit(8), auditd(8), chown(8), vipw(8), 

Last change: 14 December 1987 Sun Release 4.0 



ARP(8C) MAINTENANCE COMMANDS ARP(8C) 

NAME 
arp - address resolution display and control 

SYNOPSIS 
arp hostname 

arp -a [ vmunix [ kmem ] ] 

arp -d hostname 

arp -s hostname ether_ address [ temp ] [ pub ] [ trail ] 

arp -f filename 

DESCRIPTION 
The arp program displays and modifies the Internet-to-Ethernet address translation tables used by the 
address resolution protocol (arp(4P)). 

With no flags, the program displays the current ARP entry for hostname. The host may be specified by 
name or by number, using Internet dot notation. 

OPTIONS 
-a Display all of the current ARP entries by reading the table from the file kmem (default /dev/kmem) 

based on the kernel file vmunix (default /vmunix). 

-d Delete an entry for the host called hostname. This option may only be used by the super-user. 

-s Create an ARP entry for the host called hostname with the Ethernet address ether_ address. The 
Ethernet address is given as six hex bytes separated by colons. The entry will be permanent 
unless the word temp is given in the command. If the word pub is given, the entry will be pub
lished, for instance, this system will respond to ARP requests for hostname even though the host
name is not its own. The word trail indicates that trailer encapsulations may be sent to this host. 

-f Read the file named filename and set multiple entries in the ARP tables. Entries in the file should 
be of the form 

SEE ALSO 

hostname ether_ address [ temp ] [ pub ] [ trail] 

with argument meanings as given above. 

arp(4P), ifconfig(8C) 

Sun Release 4.0 Last change: 17 November 1987 1579 



AUDIT(8) MAINTENANCE COMMANDS AUDIT(8) 

NAME 
audit - audit trail maintenance 

SYNOPSIS 
audit [ -nl-sH ] 
audit -d username 
audit -u username audit event state - -

AVAILABILITY 
This program is available with the Security software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
The audit command is the general administrator's interface to kernel auditing. The process audit state for 
a user can be temporarily or permanently altered. The audit daemon may be notified to read the contents of 
the audit_control file and re-initialize the current audit directory to the first directory listed in the 
audit_control file, or to open a new audit file in the current audit directory specified in the audit_control 
file as last read by the audit daemon. Auditing may also be terminated/disabled. 

OPTIONS 
-n Signal audit daemon to close the current audit file and open a new audit file in the current audit 

directory. 

-s Signal audit daemon to read audit control file. The audit daemon stores the information internally. 

-t Signal audit daemon to disable auditing and die. 

-d username 
Change the process audit state of all processes owned by username. This new process audit state 
is constructed from the system and user audit values as specified in the audit_control and 
passwd.adjunct files respectively. 

-u username audit event state - -
Set the process audit state from audit_event_state for all current processes owned by username. 
See audit_control(5) for the format of the system audit value. The process audit state is one 
argument. Enclose the audit event state in quotes, or do not use SPACE characters in the process 
audit state specification. A new login session reconstructs the process audit state from the audit 
flags in the audit_ control and passwd.adjunct files. 

SEE ALSO 
audit(2), setuseraudit(2), getauditflags(3 ), getfauditflags(3 ), audit_ control(5), passwd.adjunct(5) 

1580 Last change: 26 January 1988 Sun Release 4.0 



AUDIT_WARN(8) MAINTENANCE COMMANDS AUDIT_WARN(8) 

NAME 
audit_ warn - audit space low warning script 

SYNOPSIS 
/etc/security/audit/audit_ warn logfile 

DESCRIPTION 
The audit_ warn shell script is used to take appropriate action when audit filesystem space is running low. 
This script is run when the audit filesystem free disk space drops below the value mi.nfree as specified in 
the file audit_ control. The script is passed the name of the current audit log file. 

The audit_ warn script included with the installation tape issues the command "audit -n", which tells the 
audit daemon to switch to the next audit directory. 

SEE ALSO 
auditd(8), audit(8}, auditlog(S}, audit_ control(S) 

Sun Release 4 .0 Last change: 30 March 1987 1581 



AUDITD(8) MAINTENANCE COMMANDS AUDITD(8) 

NAME 
auditd - audit daemon 

SYNOPSIS 
/etc/auditd [ username] 

DESCRIPTION 
The auditd program is the daemon process that drives audit log generation. auditd runs as root unless the 
username parameter specifies another valid user ID. Use of this parameter is recommended to insure that 
auditd works over NFS and that the audit data is secure. 

After reading the audit_control file, auditd opens an audit log file in the first directory specified. If there 
is an error opening this file, the daemon tries successive directories until successful. Then the daemon 
invokes the auditsvc(2) system call to initiate audit record logging to the audit log file. The system call 
does not return until: 

• disk space is low on the audit filesystem 

• there is an error writing the audit log file or 

• the daemon receives a signal 

auditd simply ignores most signals and re-issues the auditsvc() system call. However, for SIGHUP, the 
daemon re-reads the audit_control file, closes the current audit log file, and opens a new audit log file 
based on the new directory list. 

If the auditsvc( ) system call returns because of low disk space, auditd invokes the shell script 
audit_ warn(8) with the name of the current audit log file, then returns to the auditsvc( ) system call to con
tinue auditing using the same audit file. 

When the auditsvc( ) system call returns because of an error, auditd recovers from the problem by closing 
the current audit log file and opening a new audit log file in the next directory in the list This recovers 
from most errors, such as lack of disk space, or file server crashes. 

Should the audit daemon run out of audit directories, it attempts to recover. It suspends itself for a few 
seconds, and then re-reads the audit_control file. It then tries again to open audit logs in the specified 
audit directory list 

SEE ALSO 
auditsvc(2), audit_ control(5), audit.log(5), audit(8), audit_ warn(8) 

1582 Last change: 9 September 1987 Sun Release 4.0 



AUTOMOUNT ( 8 ) MAINTENANCE COMMANDS AUTOMOUNT(8) 

NAME 
automount - automatically mount NFS file systems 

SYNOPSIS 
automount [ -mnT ] [ -ti duration ] [ -tm interval ] [ -tw interval ] 

[ directory mapname [ -,rwunt-options ] ] ... 

DESCRIPTION 
automount is a daemon that will automatically and transparently mount an NFS file system whenever a file 
or directory within in that system is opened. automount forks a daemon, which appears to be an NFS 
server to the kernel; lookups on the specified directory are intercepted by this daemon, which uses the map 
contained in mapname to determine a server, exported file system, and appropriate mount options for a 
given file system. The named map can either be a file on the local system, or a Yellow Pages map. direc
tory is a full pathname starting with a '/'. 

When supplied, -,rwunt-options consists of the leading - and a comma-separate list of mount(8) options; if 
mount options are specified in the map, however, those in the map take precedence. 

Once mounted, members of the directory are made available using a symbolic link to the real mount point 
within a temporary directory. 

If directory does not exist, the daemon creates it, and then removes it automatically when the daemon exits. 

Since the name-to-location binding is dynamic, updates to a Yellow Pages map are transparent to the user. 
This obviates the need to "pre-mount" shared file systems for applications that have "hard coded" refer
ences to files. It also obviates the need to maintain records of which hosts must be mounted for what appli
cations. 

Maps 
automount looks first for the indicated mapname in a file by that name. If there is no such file, it looks for 
a YP map by that name. 

An automount map is composed of a list of mappings, with one mapping per line. Each mapping is com
posed of the following fields: 

basename [-,rwunt-options] location [ ... ] 

where basename is the name of a subdirectory within the directory specified in the automount command 
line (not a relative pathname). The location field consists of an entry of the form: 

host :directory [:subdir] 

where host is the name of the host from which to mount the file system, directory is the pathname of the 
directory to mount, and subdir, when supplied, is the name of a subdirectory to which the symbolic link is 
made. This can be used to prevent duplicate mounts in cases where multiple directories in the same remote 
file system are accessed. 

The contents of a YP map can be included within a map by adding an entry of the form: 

+mapname 

A mapping can be continued across line breaks using a \ as the last character before the NEWLINE. Com
ments begin with a# and end at the subsequent NEWLINE. 

If more than one location is supplied, there is no guarantee as to which location will be used; the first loca
tion to respond to the mount request gets mounted. The ,rwunt-options field can be used to supply options 
to the mount(8) command for the mounted file system. 

Sun Release 4.0 Last change: 20 January 1988 1583 



AUTOMOUNT ( 8 ) MAINTENANCE COMMANDS AUTOMOUNT ( 8 ) 

Special Maps 
There are two special maps currently available. The -hosts map uses the Yellow Pages hosts.byname 
map to locate a remote host when the hostname is specified as a subdirectory of directory. This map 
specifies mounts of all exported file systems from any host. For instance, if the following automount com
mand is already in effect: 

automount /net -hosts 

then a reference to /net/hermes/usr would initiate an automatic mount of all file systems from hermes that 
automount can mount; references to a directory under /net/hermes will refer to the corresponding direc
tory on hermes. The -passwd map uses the passwd(5) database to attempt to locate the home directory of 
a user. For instance, if the following automount command is already in effect: 

automount /homes -passwd 

then if the home directory shown in the passwd entry for the user username has the form 
ldirlserverlusername, and server matches the host system on which that directory resides, references to 
files in /homeslusername result in the file system containing that directory being mounted if necessary, and 
all such references will refer to that user's home directory. 

Configuration 
automount normally consults the auto.master Yellow Pages configuration database for a list of initial 
directory to mapname pairs, and sets up automatic mounts for them in addition to those given on the com
mand line; if there are duplications, the command-line arguments take precedence. (Note that this database 
contains arguments to the automount command, rather than mappings, and that automount does not look 
for an auto.master file on the local host.) 

OPTIONS 
-m Suppress initialization of directory-mapname pairs listed in the auto.master Yellow Pages data

base. 

-n Disable dynamic mounts. With this option, references through the automount daemon only 
succeed when the target filesystem has been previously mounted. This can be used to prevent NFS 
servers from cross-mounting each other. 

-T Trace. Expand each NFS call and display it on the standard output. 

-tl duration 
Specify a duration, in seconds, that a looked up name remains cached when not in use. The 
default is 5 minutes. 

-tm interval 
Specify an interval, in seconds, between attempts to mount a filesystem. The default is 30 
seconds. 

-tw interval 
Specify an interval, in seconds, between attempts to dismount filesystems that have exceeded their 
cached times. The default is 1 minute. 

EXAMPLE 
tutorial# automount -m /net -hosts 

Provide automount access to the exported file systems of any host in the Yellow Pages hosts.byname 
database, by prefixing the pathname with /net/ hostname I : 

tutorial% Is /net/hermes/usr/src ... 

FILES 
/tmp_mnt 

SEE ALSO 
mount(8) 

1584 

directory under which filesystems are dynamically mounted 

Last change: 20 January 1988 Sun Release 4.0 



AUTOMOUNT ( 8 ) MAINTENANCE COMMANDS AUTOMOUNT ( 8 ) 

BUGS 
Shell filename expansion does not apply to objects not currently mounted or cached. For instance, in the 
above example, the command ls /net/* might not list hermes as a subdirectory of /net. 

Sun Release 4.0 Last change: 20 January 1988 1585 



BOOT(8S) MAINTENANCE COMMANDS BOOT(8S) 

NAME 
boot - start the system kernel, or a standalone program 

SYNOPSIS 
>h [ device [ (c, u, p) ] ] [filename ] [ -a ] boot-flags 
>h? 
>b! 

DESCRIPTION 

USAGE 

The boot program is started by the PROM monitor and loads the kernel, or another executable program, into 
memory. 

The form b? displays all boot devices and their device arguments. 

The form b! boots, but does not perform a RESET. 

Booting Standalone 

When booting standalone, the boot program (/boot) is brought in by the PROM from the file system. This 
program contains drivers for all devices. 

Booting a Sun-3 System Over the Network 
When booting over the network, the Sun-3 system PROM obtains a version of the boot program from a 
server using the Trivial File Transfer Protocol (TFTP). The client broadcasts a RARP request containing its 
Ethernet address. A server responds with the client's Internet address. The client then sends a TFTP 
request for its boot program to that server (or if that fails, it broadcasts the request). The filename 
requested (unqualified - not a pathname) is the hexadecimal, uppercase representation of the client's 
Internet address, for example: 

Using IP Address 192.9.1.17 = C0090111 

When the Sun server receives the request, it looks in the directory /tftpboot for filename. That file is typi
cally a symbolic link to the client's boot program, normally boot.sun3 in the same directory. The server 
invokes the TFTP server, tftpd(8C), to transfer the file to the client 

When the file is successfully read in by the client, the boot program jumps to the load-point and loads 
vmunix (or a standalone program). In order to do this, the boot program makes a broadcast RARP request 
to find the client's IP address, and then makes a second broadcast request to a bootparamd(8) bootparams 
daemon, for information necessary to boot the client. The bootparams daemon obtains this information 
either from a local /etc/bootparams database file, or from a Yellow Pages (YP) map. The boot program 
sends two requests to the bootparams daemon, the first, whoami, to obtain its hostname, and the second, 
getfile, to obtain the name of the client's server and the pathname of the client's root partition. 

The boot program then performs a mount(8) operation to mount the client's root partition, after which it 
can read in and execute any program within that partition by pathname (including a symbolic link to 
another file within that same partition). Typically, it reads in the file /vmunix. If the program is not read in 
successfully, boot responds with a short diagnostic message. 

Booting a Sun-2, Sun-4, or Sun386i System Over the Network 

1586 

Sun-2, Sun-4 and Sun386i systems boot over the network in a similar fashion. However, the filename 
requested from a server must have a suffix that reflects the system architecture of the machine being 
booted For these systems, the requested filename has the form: 

ip-address .arch 

where ip-address is the machine's Internet Protocol (IP) address in hex, and arch is a suffix representing its 
architecture. (Only Sun-3 systems may omit the arch suffix.) These filenames are restricted to 14 charac
ters for compatibility with System V and other operating systems. Therefore, the architecture suffix is lim
ited to 5 characters; it must be in upper case. At present, the following suffixes are recognized: SUN2 for 
Sun-2 system, SUN3 for Sun-3 system, SUN2 for Sun-4 system, S386 for Sun386i system, and PCNFS for 
PC-NFS. 

Last change: 18 February 1988 Sun Release 4.0 



BOOT(8S) MAINTENANCE COMMANDS BOOT(8S) 

Note: a Sun-2 system boots from its server using one extra step. It broadcasts an ND request which is inter
cepted by the user-level ndbootd(8) server. This server sends back a standalone program that carries out 
the same TFfP request sequence as is done for all the other systems. 

System Startup 
Once the system is loaded and running, the kernel performs some internal housekeeping, configures its 
device drivers, and allocates its internal tables and buffers. The kernel then starts process number 1 to run 
init(8), which performs file system housekeeping, starts system daemons, initializes the system console, 
and begins multiuser operation. Some of these activities are omitted when init is invoked with certain 
boot-flags. These are typically entered as arguments to the boot command, and passed along by the kernel 
to init. 

OPTIONS 

FILES 

device 

C 

u 

filename 

-a 

boot-flags 

One of: 

ie Intel Ethernet 
ec 3Com Ethernet 
le Lance Ethernet (Sun 3-50 system) 
sd SCSI disk 
st SCSI 1/4" tape 
mt Tape Master 9-track 1/2" tape 
xt Xylogics 1/2" tape 
xy Xylogics 440/450 disk 

Controller number, 0 if there is only one controller for the indicated type of device. 

Unit number, 0 if only there is only one driver. 

Name of a standalone program in the selected partition, such as stand/diag or vmunix. 
Note: filename is relative to the root of the selected device and partition. It never begins 
with '/' (backslash). If filename is not given, the boot program uses a default value (nor
mally vmunix). This is stored in the vmunix variable in the boot executable file supplied 
by Sun, but can be patched to indicate another standalone program loaded using adb(l). 

Prompt interactively for the device and name of the file to boot. For more information on 
how to boot from a specific device, refer to Installing the SunOS. 

The boot program passes all boot-flags to the kernel or standalone program. They are typi
cally arguments to that program or, as with those listed below, arguments to progams that it 
invokes. 

-b Pass the -b flag through the kernel to init(8) to skip execution of the /etc/re.local 
script. 

-b Halt after loading the system. 

-s Pass the -s flag through the kernel to init(8) for single-user operation. 

-i initname 
Pass the -i ·initname to the kernel to tell it to run initname as the first program 
rather than the default /single/init. 

/boot standalone boot program 
/tftpboot/???????? symbolic link to the boot program for a client 
/tftpboot/boot.sun3 programs to boot from the client's root partition 
/usr/etc/in.tftpd TFf P server 
/usr/mdec/installboot program to install boot blocks from a remote host 
/vmunix 
/usr/boot 
/ etc/bootparams 

Sun Release 4.0 Last change: 18 February 1988 1587 



BOOT(8S) MAINTENANCE COMMANDS BOOT(8S) 

SEE ALSO 

BUGS 

1588 

adb(l), tftp(l), bootparamd(8), init(8), mount(8), ndbootd(8C), rc(8), reboot(8), tftpd(8C), kadb(8S), 
monitor(8S) 

Installing the SunOS 
System and Network Administration 

On the Sun-2 system, the PROM passes in the default name vmunix, overriding the the boot program's 
patchable default. 

Last change: 18 February 1988 Sun Release 4.0 



BOOTP ARAMD ( 8) MAINTENANCE COMMANDS BOOTP ARAMD ( 8 ) 

NAME 
bootparamd - boot parameter server 

SYNOPSIS 
/usr/etc/rpc.bootparamd [ -d ] 

DESCRIPTION 
bootparamd is a server process that provides information to diskless clients necessary for booting. It con
sults either the bootparams database or the /etc/bootparams file if the Yellow Pages service is not run
ning. 

bootparamd can be invoked either by inetd(8C) or by the user. 

OPTIONS 
-d Display the debugging information. 

FILES 
/ etc/bootparams 

SEE ALSO 
inetd(8C) 

Sun Release 4.0 Last change: 14 December 1987 1589 



C2CONV(8) MAINTENANCE COMMANDS C2CONV(8) 

NAME 
C2conv, C2unconv - convert system to or from C2 security 

SYNOPSIS 
C2conv 

C2unconv 

AVAILABILITY 
This program is available with the Security software installation option. Refer to Installing the Sun0S for 
information on how to install optional software. 

DESCRIPTION 

FILES 

C2conv converts a standard SunOS system to operate with C2-level security. 

The program prompts for information regarding installation base, client systems (if the system is a SunDisk 
server), audit devices (if it is an audit file server), and names of file systems (if it is a remote audit server). 
The program also requests certain information for the audit_control(5) file; default values may be used for 
audit flags and for the "minfree" value. Finally, it requests the user ID of person (or list of persons) to 
notify (by mail(l)) when C2 administrative tasks are required. The default ID is root for the host being 
converted. 

Once it has this information, C2conv uses it to set up the necessary files for a C2 secure system, reporting 
on its progress as it proceeds. 

C2unconv backs out the changes made to /etc/passwd and /etc/group. It does not back out changes to 
other files. 

I etc/passwd 
/etc/group 
/etc/fstab 

SEE ALSO 
audit_ control(5) 

1590 Last change: 21 December 1987 Sun Release 4.0 



CAPTOINFO ( 8V) MAINTENANCE COMMANDS CAPTOINFO ( 8V) 

NAME 
captoinfo - convert a termcap description into a terminfo description 

SYNOPSIS 
captoinfo [ -v ... ] [-V] [-1] [-w width ]filename ... 

DESCRIPTION 
captoinfo converts the termcap(5) the terminal description entries given in fi?ename into terminfo(5V) 
source entries, and writes them to the standard output along with any comments found in that file. A 
description that is expressed as relative to another description (as specified in the termcap tc= capability) 
is reduced to the minimum superset before being written. 

If no filename is given, then the environment variable TERMCAP is used for the filename or entry. If 
TERMCAP is a full pathname to a file, only the terminal-name is specified in the environment variable 
TERM is extracted from that file. If that environment variable is not set, then the file /etc/termcap is read. 

OPTIONS 
-v Verbose. Print tracing information on the standard error as the program runs. Additional -v 

options increase the level of detail. 

-V Version. Display the version of the program on the standard error and exit 

-1 Print fields one-per-line. Otherwise, fields are printed several to a line, to a maximum width of 60 
characters. 

-wwidth 
Change the output to width characters. 

CAVEATS 

FILES 

Certain termcap defaults are assumed to be true. The bell character (terminfo bel) is assumed to be "G. 
The linefeed capability (termcap nl) is assumed to be the same for both cursor_down and scroll_forward 
(terminfo cudl and ind, respectively.) Padding information is assumed to belong at the end of the string. 

The algorithm used to expand parameterized information for termcap fields such as cursor _position 
(termcap cm, terminfo cup) can sometimes produce a string that may not be optimal. In particular, the 
rarely used termcap operation %n produces strings that are especially long. Most occurrences of these 
non-optimal strings will be flagged with a warning message and may need to be recoded by hand. 

The short two-letter name at the beginning of the list of names in a termcap entry, a hold-over from an ear
lier version of the system, has been removed. 

/usr/share/Iib/terminf o/? /• 
compiled terminal description database 

/etc/termcap 

SEE ALSO 
curses(3V), termcap(5), terminfo(5V), infocmp{8V), tic(8V) 

DIAGNOSTICS 
tgetent failed with return code n 

The termcap entry is not valid. In particular, check for an invalid 'tc=' entry. 

unknown type given for the termcap code cc. 
The termcap description had an entry for cc whose type was not boolean, numeric or string. 

wrong type given for the boolean (numeric, string) termcap code cc. 
The boolean termcap entry cc was entered as a numeric or string capability. 

the boolean (numeric, string) termcap code cc is not a valid name. 
An unknown termcap code was specified. 

tgetent failed on TERM=term. 
The terminal type specified could not be found in the termcap file. 

Sun Release 4.0 Last change: 17 November 1987 1591 



CAPTOINFO ( 8V) MAINTENANCE COMMANDS CAPTOINFO ( 8V) 

1592 

TERM=term: cap cc (info iz) is 
The termcap code was specified as a null string. The correct way to cancel an entry is with an 
'@', as in ':bs@:'. Giving a null string could cause incorrect assumptions to be made by the 
software which uses termcap or terminfo. 

a function key for cc was specified, but it already has the value 
vv. When parsing the ko capability, the key cc was specified as having the same value as the 
capability cc, but the key cc already had a value assigned to it. 

the unknown termcap name cc was specified in the ko termcap capability. 
A key was specified in the ko capability which could not be handled. 

the vi character v (info ii) has the value xx, but ma gives n. · 
The ma capability specified a function key with a value different from that specified in another 
setting of the same key. 

the unknown vi key v was specified in the ma termcap capability. 
A vi(l) key unknown to captoinfo was specified in the ma capability. 

Warning: termcap sg (nn) and termcap ug (nn) had different values. 
terminfo assumes that the sg (now xmc) and ug values were the same. 

Warning: the string produced for ii may be inefficient. 
The parameterized string being created should be rewritten by hand. 

Null termname given. 
The terminal type was null. This is given if the environment variable TERM is not set or is null. 

cannot openfilename for reading. 
The specified file could not be opened. 

Last change: 17 November 1987 Sun Release 4.0 



CA1MAN(8) MAINTENANCE COMMANDS CA1MAN(8) 

NAME 
catman - create the cat files for the manual 

SYNOPSIS 
/usr/etc/catman [ -nptw] [ -M directory ] [ -T tmac.an] [sections] 

DESCRIPTION 
catman creates the preformatted versions of the on-line manual from the nroff(l) input files. Each manual 
page is examined and those whose preformatted versions are missing or out of date are recreated. If any 
changes are made, catman recreates the whatis database. 

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to look in. For 
example 

catman 123 

only updates manual sections 1, 2, and 3. 

If an unformatted source file contains only a line of the form '.so manx/yyy .x', a symbolic link is made in 
the catx or fmtx directory to the appropriate preformatted manual page. This feature allows easy distribu
tion of the preformatted manual pages among a group of associated machines with rdist( 1 ), since it makes 
the directories of preformatted manual pages self-contained and independent of the unformatted entries. 

OPTIONS 
-n Do not (re)create the whatis database. 

-p Print what would be done instead of doing it 

-t Create troff ed entries in the appropriate fmt subdirectories instead of nroffing into the cat sub-
directories. 

-w Only create the whatis database. No manual reformatting is done. 

-M Update manual pages located in the specified directory (/usr/share/man by default). 

-T Use tmac.an in place of the standard manual page macros. 

ENVIRONMENT 

FILES 

TROFF The name of the formatter to use when the -t flag is given. If not set, 'troff' is used 

/usr/share/man default manual directory location 
/usr/share/man/man?/*.* 

raw (nroff input) manual sections 
/usr/share/man/cat?/•.* 

preformatted nroff ed manual pages 
/usr/share/man/fmt?/•.* 

preformatted troff ed manual pages 
/usr/share/man/whatis 

whatis database location 
/usr/lib/makewhatis command script to make whatis database 

SEE ALSO 
man(l), nroff(l), rdist(l), troff(l), whatis(l) 

DIAGNOSTICS 
man?/xxx.? (.so'ed from man?/yyy.?): No such file or directory 

The file outside the parentheses is missing, and is referred to by the file inside them. 

target of .so in man?/xxx.? must be relative to /usr/man 
catman only allows references to filenames that are relative to the directory /usr/share/man. 

Sun Release 4.0 Last change: 9 September 1987 1593 



CA1MAN(8) MAINTENANCE COMMANDS CA1MAN(8) 

1594 

opendir:man?: No such file or directory 
A harmless warning message indicating that one of the directories catman normally looks for is 
missing. 

•.•: No such file or directory 
A harmless warning message indicating catman came across an empty directory. 

Last change: 9 September 1987 Sun Release 4.0 



CHOWN(8) 

NAME 
chown - change owner 

SYNOPSIS 

MAINTENANCE COMMANDS 

/usr/etc/chown [ -fR ] owner [.group] filename ... 

DESCRIPTION 

CHOWN(8) 

chown changes the owner of the filenames to owner. The owner may be either a decimal user ID or a login 
name found in the password file. An optional group may also be specified. The group may be either a 
decimal group ID or a group name found in the GID file. 

Only the super-user can change owner, in order to simplify accounting procedures. 

OPTIONS 
-f 

-R 

FILES 

Do not report errors. 

Recursively descend into directories setting the ownership of all files in each directory encoun
tered. When symbolic links are encountered, their ownership is changed, but they are not 
traversed. 

/etc/passwd password file 

SEE ALSO 
chgrp(l), chown(2), group(5), passwd(5) 

Sun Release 4.0 Last change: 9 September 1987 1595 



CHROOT(8) MAINTENANCE COMMANDS CHROOT(8) 

NAME 
chroot - change root directory for a command 

SYNOPSIS 
/usr/etc/chroot newroot command 

DESCRIPTION 
The given command is executed relative to the new root The meaning of any initial'/' (slashes) in path 
names is changed for a command and any of its children to newroot. Furthermore, the initial working 
directory is newroot. 

Input and output redirections on the command line are made with respect to the original root: 

chroot newroot command >X 

creates the file x relative to the original root, not the new one. 

This command is restricted to the super-user. 

The new root path name is always relative to the current root: even if a chroot is already in effect; the 
newroot argument is relative to the current root of the running process. 

SEE ALSO 
chdir(2) 

BUGS 
One should exercise extreme caution when referring to special files in the new root file system. 

1596 Last change: 9 September 1987 Sun Release 4.0 



CLIENT(8) MAINTENANCE COMMANDS CLIENT(8) 

NAME 
client - add or remove diskless Sun386i systems 

SYNOPSIS 
client [ -a arch ] [ -h hostid] [ -o os ] [ -q ] [ -t minutes ] add bootserver client etheraddress ipaddress 

client remove client 

client modify client [ diskful I diskless I slave] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
client can be used to manually add and remove diskless clients of a PNP boot server. After successful 
completion of the command, the diskless client can boot Only users in the networks group (group 12) on 
the boot server are allowed to change configurations using this utility. client can be invoked from any sys
tem on the network. 

The boot server of a system is the only machine truly required for that system to boot to the point of allow
ing user logins; it must accordingly provide name, booting, and time services. Diskless clients can provide 
none of these services themselves. Diskful clients, however can provide most of their own boot services. 
Network clients only need name and time services from the network, and can use any boot server. 

To add a diskless client, use the add operation. To remove a diskless, diskful, or network client, use the 
remove operation. To change a system's network role, use the modify operation. 

A server can reject a configuration request if it is disallowed by the contents of the bootservers map (e.g., 
too many clients would be configured, or too little free space would be left on the server), or if no system 
software for the client is available. 

OPTIONS 
-a arch Specifies the architecture code of the client; it defaults to s386. (Note: architecture codes 

are different from architecture names. Architecture codes are used in diskless booting, and 
are at most five characters in length, while architecture names can be longer.) 

-b hostid Specifies the host ID of the client; if supplied, it is used as the root password for the system. 
It defaults to the null string. 

-o os Specifies the operating system; defaults to 'unix'. This is currently used only to construct 
the system's publickey data, where applicable; this is never done if the system has no hostid 
specified. 

-q Quiet. Displays only error messages. 

-t minutes Sets the RPC timeout to the number of minutes indicated; this defaults to 15 minutes. If the 
bootserver takes more time than this to complete, client will exit. Unless the server has 
already completed setup, but not yet sent status to client, this will cause the bootserver to 
back out of the setup, deallocating all assigned resources. 

SEE ALSO 

BUGS 

pnpd(8C), netconfig(8C), publickey(S) 

Unless the hostid is assigned, the root filesystem for the diskless client is not set up beyond copying the 
proto and boot files into it. This means that netconfig will often handle other parts of the setup. 

Sun Release 4.0 Last change: 3/2/88 1597 



CLRI(8) MAINTENANCE COMMANDS CLRl(8) 

NAME 
clri - clear inode 

SYNOPSIS 
/usrletc/clrifilesystem i-number ... 

DESCRIPTION 
Note: clri has been superceded for normal file system repair work by fsck(8). 

clri writes zeros on the inodes with the decimal i-numbers on the filesystem. After clri, any blocks in the 
affected file will show up as "missing" in an icheck(8) of thefilesystem. 

Read and write permission is required on the specified file system device. The inode becomes allocatable. 

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If it 
is used to zap an inode which does appear in a directory, care should be taken to track down the entry and 
remove it. Otherwise, when the inode is reallocated to some new file, the old entry will still point to that 
file. At that point removing the old entry will destroy the new file. The new entry will again point to an 
unallocated inode, so the whole cycle is likely to be repeated again and again. 

SEE ALSO 
icheck(8) fsck(8) 

BUGS 
If the file is open, clri is likely to be ineffective. 

1598 Last change: 9 September 1987 Sun Release 4.0 



COMSAT(8C) MAINTENANCE COMMANDS COMSAT(8C) 

NAME 
comsat - biff server 

SYNOPSIS 

/usr/etc/in.comsat 

DESCRIPTION 

FILES 

comsat is the server process which listens for reports of incoming mail and notifies users who have 
requested to be told when mail arrives. It is invoked as needed by inetd(8C), and times out if inactive for a 
few minutes. 

comsat listens on a datagram port associated with the biff(l) service specification (see services(5)) for one 
line messages of the form 

user@mailbox-offset 

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned 
on (by a 'bitT y'), the offset is used as a seek offset into the appropriate mailbox file and the first 7 lines or 
560 characters of the message are printed on the user's terminal. Lines which appear to be part of the mes
sage header other than the From, To, Date, or Subject lines are not printed when displaying the message. 

/etc/utmp to find out who's logged on and on what terminals 

SEE ALSO 
bitT(l), services(5), inetd(8C) 

BUGS 

The message header filtering is prone to error. 

The notification should appear in a separate window so it does not mess up the screen. 

Sun Release 4.0 Last change: 9 September 1987 1599 



CONFIG(8) MAINTENANCE COMMANDS CONFIG(8) 

NAME 
config - build system configuration files 

SYNOPSIS 

/etc/config [ -fgnp ] [ -o obj_ dir] config_file 

DESCRIPTION 
config does the preparation· necessary for building a new system kernel with make( 1 ). The config_file 
named on the command line describes the kernel to be made in terms of options you want in your system, 
size of tables, and device drivers to be included. When you run config, it uses several input files located in 
the current directory (typically the conf subdirectory of the system source including your config_file ). The 
format of this file is described below. 

If the directory named • J config_file does not exist, config will create one. One of config' s output files is a 
makefile which you use with make(l) to build your system. 

You use config as follows. Run config from the conf subdirectory of the system source (in a typical Sun 
environment, from /usr/include/sys/conf): 

example# /etc/config config_file 
Doing a "make depend" 
example# cd .. /config_file 
example# make 
... lots of output . .. 

While config is running watch for any errors. Never use a kernel which config has complained about; the 
results are unpredictable. If config completes successfully, you can change directory to the •• lconfig_file 
directory, where it has placed the new makefile, and use make to build a kernel. The output files placed in 
this directory include ioconf.c, which contains a description of 1/0 devices attached to the system; 
mbglue.s, which contains short assembly language routines used for vectored interrupts, a makefile, which 
is used by make to build the system; a set of header files (device_name.h) which contain the number of 
various devices that may be compiled into the system; and a set of swap configuration files which contain 
definitions for the disk areas to be used for the root file system, swapping, and system dumps. 

Now you can install your new kernel and try it out. 

OPTIONS 

USAGE 

-f 

-g 

-n 

-p 

Set up the makefile for fast builds. This is done by building a vmunix.o file which includes all the 
.o files which have no source. This reduces the number of files which have to be stated during a 
system build. This is done by prelinking all the files for which no source exists into another file 
which is then linked in place of all these files when the kernel is made. This makefile is faster 
because it does not stat the object files during the build. 

Get the current version of a missing source file from its SCCS history, if possible. 

Do not do the 'make depend'. Normally config will do the 'make depend' automatically. If this 
option is used config will print 'Don't forget to do a "make depend"' before completing as a 
reminder. 

Configure the system for profiling (see kgmon(8) and gprof(l)). 

-oobj dir 
- Use • Jobj_dir instead of • ./OBJ as the directory to find the object files when the corresponding 

source file is not present in order to generate the files necessary to compile and link your kernel. 

Input Grammar 

1600 

In the following descriptions, a number can be a decimal integer, a whole octal number or a whole hexade
cimal number. Hex and octal numbers are specified to config in the same way they are specified to the C 
compiler, a number starting with Ox is a hex number and a number starting with just a O is an octal number. 

Last change: 18 February 1988 Sun Release 4.0 



CONFIG(8) MAINTENANCE COMMANDS CONFIG(8) 

Comments are begin with a # character, and end at the next NEWLINE. Lines beginning with TAB charac
ters are considered continuations of the previous line. Lines of the configuration file can be one of two 
basic types. First, there are lines which describe general things about your system: 

machine "type" 
This is system is to run on the machine type specified Only one machine type can appear in the 
config file. The legal types for a Sun system are sun2, sun3, sun4, and sun386. Note: the double 
quotes around type are part of the syntax, and must be included. 

cpu "type" 
This system is to run on the cpu type specified. More than one cpu type can appear in the config 
file. Legal types for a sun2 machine are noted in the annotated config file in Installing the Sun0S. 

ident name 
Give the system identifier - a name for the machine or machines that run this kernel. Note that 
name must be enclosed in double quotes if it contains both letters and digits. Also, note that if 
name is GENERIC, you need not include the 'options GENERIC' clause in order to specify 'swap 
generic'. 

maxusers nwnber 
The maximum expected number of simultaneously active user on this system is number. This 
number is used to size several system data structures. 

options optlist 
Compile the listed options into the system. Options in this list are separated by commas. A line of 
the form: 

options FUNNY, HAHA 

yields 

-DFUNNY -DHAHA 

to the C compiler. An option may be given a value, by following its name with= (equal sign) 
then the value enclosed in (double) quotes. None of the standard options use such a value. 

In addition, options can be used to bring in additional files if the option is listed in the files files. 
All options should be listed in upper case. In this case, no corresponding option.h will be created 
as it would be using the corresponding pseudo-device method. 

config sysname config_ clauses . .. 

Sun Release 4.0 

Generate a system with name sysname and configuration as specified in config-clauses. The 
sysname is used to name the resultant binary image and per-system swap configuration files. The 
config_clauses indicate the location for the root file system, one or more disk partitions for swap
ping and paging, and a disk partition to which system dumps should be made. All but the root 
device specification may be omitted; config will assign default values as described below. 

root A root device specification is of the form 'root on x:yOd'. If a specific partition is omitted 
- for example, if only root on xyO is specified - the 'a' partition is assumed. When a 
generic system is being built, no root specification should be given; the root device will 
be defined at boot time by prompting the console. 

swap To specify a swap partition, use a clause of the form: 'swap on partition'. Swapping 
areas may be almost any size. Partitions used for swapping are sized at boot time by the 
system; to override dynamic sizing of a swap area the number of sectors in the swap area 
can be specified in the config file. For example, 'swap on xyOb size 99999' would 
configure a swap partition with 99999 sectors. If swap generic or no partition is 
specified with on, partition b on the root device is used. For dataless clients, use 'swap 
on type nfs'. 

Last chanQe: 18 Februarv 1988 1601 



CONFIG(8) MAINTENANCE COMMANDS CONFIG(8) 

1602 

dumps The location to which system dumps are sent may be specified with a clause of the form 
'dumps on xyl '. If no dump device is specified, the first swap partition specified is used. 
If a device is specified without a particular partition, the 'b' partition is assumed. If a 
generic configuration is to be built, no dump device should be specified; the dump device 
will be assigned to the swap device dynamically configured at boot time. Dumps are 
placed at the end of the partition specified. Their size and location is recorded in global 
kernel variables dumpsize and dumplo, respectively, for use by savecore(8). 

Device names specified in configuration clauses are mapped to block device major numbers with the file 
devices.machine, where machine is the machine type previously specified in the configuration file. If a 
device name to block device major number mapping must be overridden, a device specification may be 
given in the form 'major x minor y'. 

The second group of lines in the configuration file describe which devices your system has and what they 
are connected to (for example, a Xylogics 450 Disk Controller at address Oxee40 in the Multibus 1/0 
space). These lines have the following format: 

dev _ type dev _ name at con_ dev more _info 

dev _type is either controller, disk, tape, device, or pseudo-device. These types have the following mean
ings: 

controller A disk or tape controller. 

disk or tape Devices connected to a controller. 

device Something "attached" to the main system bus, like a cartridge tape interface. 

pseudo-device A software subsystem or driver treated like a device driver, but without any 
associated hardware. Current examples are the pseudo-tty driver and various 
network subsystems. For pseudo-devices, more_info may be specified as an 
integer, that gives the value of the symbol defined in the header file created for 
that device, and is generally used to indicate the number of instances of the 
pseudo-device to create. 

dev _ name is the standard device name and unit number (if the device is not a pseudo-device) of the device 
you are specifying. For example, xycO is the dev _name for the first Xylogics controller in a system; arO 
names the first quarter-inch tape controller. 

con_dev is what the device you are specifying is connected to. It is either nexus?, a bus type, or a con
troller. There are several bus types which are used by config and the kernel. 

The different possible bus types are: 

obmem 
obio 
mbmem 
mbio 
vme16d16 (vme16) 
vme24d16 (vme24) 
vme32d16 
vme16d32 
vme24d32 
vme32d32 (vme32) 

On board memory 
On board io 
Multibus memory (sun2 system only) 
Multibus io (sun2 system only) 
16 bit VMEbus/ 16 bit data 
24 bit VMEbus/ 16 bit data 
32 bit VMEbus/ 16 bit data (sun3 system only) 
16 bit VMEbus/ 32 bit data (sun3 system only) 
24 bit VMEbus/ 32 bit data (sun3 system only) 
32 bit VMEbus/ 32 bit data (sun3 system only) 

All of these bus types are declared to be connected to nexus. The devices are hung off these buses. If the 
bus is wildcarded, then the autoconfiguation code will determine if it is appropriate to probe for the device 
on the machine that it is running on. If the bus is numbered, then the autoconfiguation code will only look 
for that device on machine type N. In general, the Multibus and VMEbus bus types are always wildcarded. 

Last change: 18 February 1988 Sun Release 4.0 



CONFIG(8) MAINTENANCE COMMANDS CONFIG(8) 

FILES 

more _info is a sequence of the following: 

csr address Specify the address of the csr (command and status registers) for a device. 

drive number 

flags number 

priority level 

The csr addresses specified for the device are the addresses within the bus 
type specified. 

The csr address must be specified for all controllers, and for all devices 
connected to a main system bus. 

For a disk or tape, specify which drive this is. 

These flags are made available to the device driver, and are usually read at 
system initialization time. 

For devices which interrupt, specify the interrupt level at which the device 
operates. 

vector intr number [ intr number ... ] 
For devices which use vectored interrupts on VMEbus systems, intr specify 
the vectored interrupt routine and number the corresponding vector to be 
used (Ox40-0xFF). 

A ? may be substituted for a number in two places and the system will figure out what to fill in for the ? 
when it boots. You can put question marks on a con_dev (for example, at virtual'?'), or on a drive number 
(for example, drive '?'). This allows redundancy, as a single system can be built which will boot on dif
ferent hardware configurations. 

The easiest way to understand config files it to look at a working one and modify it to suit your system. 
Good examples are provided in Installing the SunOS. 

Files in /usr/include/sys/confwhich may be useful for developing the config_file used by config are: 

GENERIC These are generic configuration files for either a Sun-2 or Sun-3 system. 
They contain all possible device descriptions lines for the particular 
architecture. 

README File describing how to make a new kernel. 

As shipped from Sun, the files used by /etc/config as input are in the /usr/include/sys/conf directory: 

config_Jile System-specific configuration file 
makefile.sun[23] Generic prototype makefile for Sun-[23] systems 
files List of common files required to build a basic kernel 
files.sun[23] List of files for a Sun-[23] specific kernel 
devices.sun[23] Name to major device mapping file for Sun-[23] systems 

/etc/config places its output files in the •• lconfig_file directory: 

mbglue.s 
ioconf.c 
makefile 
device name .h 

Short assembly language routines used for vectored interrupts 
Describes I/0 devices attached to the system 
Used with make( 1) to build the system 
a set of header files ( various device_ name's) containing devices which 
can be compiled into the system 

SEE ALSO 

gprof(l), make(l), kgmon(8), savecore(8) 

The SYNOPSIS portion of each device entry in Section 4 of this manual. 

Installing the SunOS 
System and Network Administration 

Sun Release 4.0 Last change: 18 February 1988 1603 



CRASH(8S) MAINTENANCE COMMANDS CRASH(8S) 

NAME 
crash - what happens when the system crashes 

DESCRIPTION 

FILES 

This section explains what happens when the system crashes and how you can analyze crash dumps. 

When the system crashes voluntarily, it displays a message of the form 

panic: why i gave up the ghost 

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic reboot procedure 
as described in reboot(8). Unless some unexpected inconsistency is encountered in the state of the file sys
tems due to hardware or software failure, the system will then resume multiuser operations. 

The system has a large number of internal consistency checks; if one of these fails, it will panic with a very 
short message indicating which one failed. 

When the system crashes it writes (or at least attempts to write) an image of memory into the back end of 
the primary swap area. After the system is rebooted, you can run the program savecore(8) to preserve a 
copy of this core image and kernel namelist for later perusal. See savecore(8) for details. 

To analyze a dump you should begin by running adb(l) with the -k flag on the core dump, as described in 
Debugging Tools 

The most common cause of system failures is hardware failure, which can reflect itself in different ways. 

Here are some messages that you may encounter, with some hints as to causes. In each case there is a pos
sibility that a hardware or software error produced the message in some unexpected way. 

/vmunix the system kernel 
/ etc/re.local script run when the local system starts up 

SEE ALSO 
adb(l), analyze(8), reboot(8) sa(8), savecore(8) 

Debugging Tools 

DIAGNOSTICS 

1604 

IO err in push 
hard IO err in swap The system encountered an error trying to write to the paging device or an error in 

reading critical information from a disk drive. You should fix your disk if it is bro
ken or unreliable. 

timeout table overflow 
This really should not be a panic, but until the data structure is fixed, involved, run
ning out of entries causes a crash. If this happens, you should make the timeout 
table bigger by changing the value of ncallout in the param.c file, and then rebuild 
your system. 

trap type type, pid process-id, pc = program-counter, sr = status-register, context context-number 
A unexpected trap has occurred within the system; typical trap types are: 
• Bus error 
• Address error 
• Illegal instruction 
• Divide by zero 
• Chk instruction 
• Trapv instruction 
• Privilege violation 
• Trace 
• 1010 emulator trap 
• 1111 emulator trap 
• Stack format error 

Last change: 25 September 1987 Sun Release 4.0 



CRASH(8S) 

init died 

Sun Release 4.0 

MAINTENANCE COMMANDS CRASH(8S) 

• Uninitialized interrupt 
• Spurious interrupt 

The favorite trap types in system crashes are "Bus error" or "Address error", indi
cating a wild reference. The process-id is the ID of the process running at the time 
of the fault, program-counter is the hexadecimal value of the program counter, 
status-register is the hexadecimal value of the status register, and context-number is 
the context that the process was running in. These problems tend to be easy to track 
down if they are kernel bugs since the processor stops cold, but random flakiness 
seems to cause this sometimes. 

The system initialization process has exited. This is bad news, as no new users will 
then be able to log in. Rebooting is the only fix, so the system just does it right 
away. 

Last change: 25 September 1987 1605 



CRON(8) MAINTENANCE COMMANDS CRON(8) 

NAME 
cron - clock daemon 

SYNOPSIS 
/usr/etc/cron 

DESCRIPTION 

FILES 

cron executes commands at specified dates and times. Regularly scheduled commands can be specified 
according to instructions found in crontab files in the directory /var/spool/cron/crontabs. Users can sub
mit their own crontab files using the crontab(l) command. Commands that are to be executed only once 
may be submitted using the at(l) command. 

cron only examines crontab files and at command files during process initialization and when a file 
changes using crontab or at. This reduces the overhead of checking for new or changed files at regularly 
scheduled intervals. 

Since cron never exits, it should only be executed once. This is normally done by running cron from the 
initialization process through the file /etc/re; see init(8). /var/spool/cron/FIFO is a FIFO file that crontab 
and at use to communicate with cron; it is also used as a lock file to prevent the execution of more than 
one cron. 

/var/spool/cron main cron directory 
/var/spool/cron/FIFO FIFO for sending messages to cron 
/var/spool/cron/crontabs 

directory containing crontab files 

SEE ALSO 
at(l), crontab(l), sh(l), init(8), syslogd(8) 

DIAGNOSTICS 
cron logs various errors to the system log daemon, syslogd(8), with a facility code of cron. The messages 
are listed here, grouped by severity level. 

Err Severity 

1606 

Can't create /var/spool/cron/FIFO: reason 
cron was unable to start up because it could not create /var/spool/cron/FIFO. 

Can't access /var/spool/cron/FIFO: reason 
cron was unable to start up because it could not access /var/spool/cron/FIFO. 

Can't open /var/spool/cron/FIFO: reason 
cron was unable to start up because it could not open /var/spool/cron/FIFO. 

Can't start cron - another cron may be running (/var/spool/cron/FIFO exists) 
cron found that /var/spool/cron/FIFO already existed when it was started; this normally means 
that cron had already been started, but it may mean that an earlier cron terminated abnormally 
without removing /var/spool/cron/FIFO. 

Can't stat /var/spool/cron/FIFO: reason 
cron could not get the status of /var/spool/cron/FIFO. 

Can't change directory to directory :reason 
cron could not change to the directory directory. 

Can't read directory:reason 
cron could not read the directory directory. 

error reading message: reason 
An error occurred when cron tried to read a control message from /var/spool/cron/FIFO. 

Last change: 9 September 1987 Sun Release 4.0 



CRON(8) MAINTENANCE COMMANDS CRON(8) 

message received - bad format 
A message was successfully read by cron from /var/spooVcron/FIFO, but the message was not of 
a form recognized by cron. 

SIGTERM 
received cron was told to terminate by having a SIGTERM signal sent to it 

cron could not unlink /var/spooVcron/FIFO: reason 
cron was told to terminate, but it was unable to unlink /var/spooVcron/FIFO before it terminated. 

******* CRON ABORTED******** 
cron terminated, either due to an error or because it was told to. 

Can't open queuedefs filefile:reason 
cron could not open a queuedefs file. 

1/0 error reading queuedefs file file :reason 
An l/0 error occurred while cron was reading a queuedefs file. 

Using default queue definitions 
An error occurred while trying to read a queuedefs file; the default queue definitions will be used. 

Can't allocate number bytes of space 
An internal error occurred in cron while trying to allocate memory. 

Info Severity 
queue queue max run limit reached 

There were more jobs running or to be run in the queue queue than the maximum number 
specified. cron will wait until one of the currently-running jobs completes before starting to run a 
new one. 

MAXRUN (25) procs reached 
There were more than 25 jobs running or to be run by cron. cron will wait until one of the 
currently-running jobs completes before starting to run a new one. 

* * * cron started * * * 
cron started running. 

> CMD: command 
A cron job was started. Command is the command to be run. 

> user pid queue time 
A cron job was started for user user, in queue queue, with process ID pid, at the date and time 
time. 

< user pid queue time status 
A cron job completed for user user, in queue queue, with process ID pid, at the date and time 
time. If the command terminated with a non-zero exit status or a signal, status indicates the exit 
status or signal. 

Notice Severity 
Can't fork 

An attempt to fork (2) to run a new job failed; cron will attempt again after a 30-second delay. 

Warning Severity 
Can't stat queuedefs file file :reason 

Sun Release 4.0 

cron could not get the status of a queuedefs file in order to determine whether it has changed. 
cron will assume it has changed and will reread it. 

Last change: 9 September 1987 1607 



DCHECK(8) MAINTENANCE COMMANDS DCHECK(8) 

NAME 
dcheck - file system directory COl!~istency check 

SYNOPSIS 
/usr/etc/dcheck [ -i numbers J [filesystem] 

DESCRIPTION 
Note: dcheck has been superceded for normal consistency checking by fsck(8). 

dcheck reads the directories in a file system and compares the link-count in each inode with the number of 
directory entries by which it is referenced. If the file system is not specified, dcheck checks a set of default 
file systems. 

dcheck is fastest if the raw version of the special file is used, since the i-list is read in large chunks. 

OPTIONS 

FILES 

-i numbers 
numbers is a list of i-numbers; when one of those i-numbers turns up in a directory, the number, 
the i-number of the directory, and the name of the entry are reported. 

Default file systems vary with installation. 

SEE ALSO 
fs(5), fsck(8), clri(8), icheck(8), ncheck(8) 

DIAGNOSTICS 

BUGS 

1608 

When a file turns up for which the link-count and the number of directory entries disagree, the relevant 
facts are reported. Allocated files which have O link-count and no entries are also listed. The only 
dangerous situation occurs when there are more entries than links; if entries are removed, so the link-count 
drops to 0, the remaining entries point to thin air. They should be removed. When there are more links 
than entries, or there is an allocated file with neither links nor entries, some disk space may be lost but the 
situation will not degenerate. 

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active 
file systems. 

Inode numbers less than 2 are invalid. 

Last change: 9 September 1987 Sun Release 4.0 



DEVNM(8) MAINTENANCE COMMANDS DEVNM(8) 

NAME 
devnm - device name 

SYNOPSIS 
/etc/devnm [name] ... 

DESCRIPTION 
devnm identifies the special file associated with the mounted file system where each name argument 
resides. This command can be used to construct a mount table entry for the root file system. 

EXAMPLE 
If /usr is mounted on /dev/dsk/cld0s2, then the command: 

/etc/devnm /usr 

FILES 

produces: 
/dev/dsk/cld0s2 usr 

/dev/dsk/• 
/etc/mtab 

SEE ALSO 
mount(8), fstab(5) 

Sun Release 4.0 Last change: 29 September 1987 1609 



DKINF0(8) MAINTENANCE COMMANDS DKINF0(8) 

NAME 
dkinfo- report information about a disk's geometry and partitioning 

SYNOPSIS 
/usr/etc/dkinfo disk [ partition ] 

DESCRIPTION 
dkinfo gives the total number of cylinders, heads, and sectors or tracks on the specified disk, and gives this 
information along with the starting cylinder for the specified partition. If no partition is specified on the 
command line, dkinfo reports on all partitions. 

The disk specification here is a disk name of the form xxn, where xx is the controller device abbreviation 
(ip, xy, etc.) and n is the disk number. The partition specification is simply the letter used to identify that 
partition in the standard UNIX system nomenclature. For example, '/usr/etddkinfo xyO' reports on the 
first disk in a system controlled by a Xylogics controller; '/usr/etddkinfo xyOg' reports on the seventh par
tition of such a disk. 

EXAMPLE 

FILES 

A request for information on my local disk, an 84 MByte disk controlled by a Xylogics 450 controller, 
might look like this: 

#/usr/etc/dkinfo xyO 
xyO: Xylogics 450 controller at addr ee40, unit# 0 
586 cylinders 7 heads 32 sectors/track 
a: 15884 sectors (70 cyls, 6 tracks, 12 sectors) 
starting cylinder 0 
b: 33440 sectors (149 cyls, 2 tracks) 
starting cylinder 71 
c: 131264 sectors (586 cyls) 
starting cylinder 0 
d: No such device or address 
e: No such device or address 
f: No such device or address 
g: 81760 sectors (365 cyls) 
starting cylinder 221 
h: No such device or address 
# 

ldev/rxxnp 

SEE ALSO 
dkio( 4S), f ormat(8) 

1610 Last change: 20 October 1987 Sun Release 4.0 



DMESG(8) MAINTENANCE COMMANDS DMESG(8) 

NAME 
dmesg - collect system diagnostic messages to form error log 

SYNOPSIS 
/usr/etc/dmesg [ - ] 

DESCRIPTION 
Note: dmesg is obsoleted by syslogd(8) for maintenance of the system error log. 

dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the standard 
output. The messages are those printed or logged by the system when errors occur. If the'-' flag is given, 
then dmesg computes (incrementally) the new messages since the last time it was run and places these on 
the standard output 

FILES 
/var/adm/msgbuf 

SEE ALSO 
syslogd(8) 

Sun Release 4.0 

scratch file for memory of'-' option 

Last change: 9 September 1987 1611 



DUMP(8) MAINTENANCE COMMANDS DUMP(8) 

NAME 
dump, rdump - incremental file system dump 

SYNOPSIS 
/usr/etc/dump [ options [ argwnents] ]filesystem 

DESCRIPTION 
dump backs up all files in filesystem, or files changed after a certain date, to magnetic tape; on Sun386i 
systems, dump works on both magnetic tape and diskettes. options is a string that specifies dump options, 
as shown below. Any arguments supplied for specific options are given as subsequent words on the com
mand line, in the same order as that of the options listed. 

If no options are given, the default is 9u. 

OPTIONS 
0-9 The "dump level." All files in the filesystem that have been modified since the last dump at a 

lower dump level are copied to the volume. For instance, if you did a "level 2" dump on Monday, 
followed by a "level 4" dump on Tuesday, a subsequent "level 3" dump on Wednesday would 
contain all files modified or added since the "level 2" (Monday) backup. A "level O" dump copies 
the entire filesystem to the dump volume. 

b / actor Blocking factor. Specify the blocking factor for tape writes. The default is 20 blocks per write. 

C 

Note: the blocking factor is specified in terms of 512 bytes blocks, for compatibility with tar(l). 
The default blocking factor for tapes of density 6250BPI and greater is 64. The default blocking 
factor for cartridge tapes (c option specified) is 126. The highest blocking factor available with 
most tape drives is 126. 

Cartridge. Use a cartridge instead of the standard half-inch reel. This sets the density to lOOOBPI 
and the blocking factor to 126. The length is set to 425 feet. (This option is incompatible with the 
d option, unless you specify a density of lOOOBPI with that option). 

d bpi Tape density. The density of the tape, expressed in BPI, is taken from bpi. This is used to keep a 
running tab on the amount of tape used per reel. The default density is 1600 except for cartridge 
tape. Unless a higher density is specified explicitly, dump uses its default density - even if the 
tape drive is capable of higher-density operation (for instance, 6250BPI). Note: the density 
specified should correspond to the density of the tape device being used, or dump will not be able 
to handle end-of-tape properly. The d option is not compatible with the D option. 

D Diskette. Specify diskette as the dump media. 

f dump-file 
Dump file. Use dump-file as the file to dump to, instead of /dev/rmt8. If dump-file is specified as 
'-', dump to the standard output. If the filename argument is of the form machine:device, dump 
to a remote machine. Since dump is normally run by root, the name of the local machine must 
appear in the .rhosts file of the remote machine. If the filename argument is of the form 
user@machine:device, dump will attempt to execute as the specified user on the remote machine. 
The specified user must have a .rhosts file on the remote machine that allows root from the local 
machine. If dump is called as rdump, the dump device defaults to dumphost:/dev/rmt8. To 
direct the output to a desired remote machine, set up an alias for dumphost in the file /etc/hosts. 

n Notify. When this option is specified, if dump requires attention, it sends a terminal message 
(similar to wall(l)) to all operators in the "operator" group. 

s size Specify the size of the volume being dumped to. When the specified size is reached, dump waits 
for you to change the volume. dump interprets the specified size as the length in feet for tapes, 
and cartridges and as the number of 1024 byte blocks for diskettes. The following are defaults: 

tape 2300 feet 
cartridge 425 feet 
diskette 1422 blocks (Corresponds to a 1.44 Mb diskette, with one cylinder 

reserved for bad block information.) 

T ,ast c.hanPe'. C} Senternher 19R7 Sun Release 4_0 



DUMP(8) MAINTENANCE COMMANDS DUMP(8) 

FILES 

t tracks Specify the number of tracks for a cartridge tape. On all Sun-2 systems the default is 4 tracks, 
although some Sun-2 systems have 9 track drives. On all other machines the default is 9 tracks. 
The t option is not compatible with the D option. 

u Update the dump record. Add an entry to the file /etc/dumpdates, for each ~lesystem success
fully dumped that includes the filesystem name, date, and dump level. This file can be edited by 
the super-user. 

w List the filesystems that need backing up. This information is gleaned from the files 
/etc/dumpdates and /etc/fstab. When thew option is used, all other options are ignored. After 
reporting, dump exits immediately. 

W Like w, but includes all filesystems that appear in /etc/dumpdates, along with information about 
their most recent dump dates and levels. Filesystems that need backing up are highlighted. 

/dev/rmt8 
dumphost:/dev/rmt8 
/etc/dumpdates 
/etc/fstab 
/etc/group 
/etc/hosts 

default unit to dump to 
default remote unit to dump to if called as rdump 
dump date record 
dump table: file systems and frequency 
to find group operator 

SEE ALSO 
tar(l), wall(l), dump(S), fstab(S), restore(8), shutdown(8) 

DIAGNOSTICS 
While running, dump emits many verbose messages. 

Exit Codes 

BUGS 

NOTES 

0 
1 
3 

Normal exit. 
Startup errors encountered. 
Abort - no checkpoint attempted. 

Fewer than 32 read errors on the filesystem are ignored. 

Each reel requires a new process, so parent processes for reels already written just hang around until the 
entire tape is written. 

It is recommended that incremental dumps also be performed with the system running in single-user mode. 

dump does not support multi-file multi-volume tapes. 

Operator Intervention 
dump requires operator intervention on these conditions: end of volume, end of dump, volume write error, 
volume open error or disk read error (if there are more than a threshold of 32). In addition to alerting all 
operators implied by then option, dump interacts with the operator on dump's control terminal at times 
when dump can no longer proceed, or if something is grossly wrong. All questions dump poses must be 
answered by typing yes or no, as appropriate. 

Since backing up a disk can involve a lot of time and effort, dump checkpoints at the start of each volume. 
If writing that volume fails for some reason, dump will, with operator permission, restart itself from the 
checkpoint after a defective volume has been replaced. 

dump reports periodically, and in verbose fashion. Each report includes estimates of the percentage of the 
dump completed and how long it will take to complete the dump. 

Suggested Dump Schedule 
It is vital to perform full, "level O", dumps at regular intervals. When performing a full dump, bring the 
machine down to single-user mode using shutdown(8). While preparing for a full dump, it is a good idea 
to clean the tape drive and heads. 

Sun Release 4.0 Last cham!e: 9 Seotember 1987 1613 



DUMP(8) MAINTENANCE COMMANDS DUMP(8) 

Incremental dumps allow for convenient backup and recovery on a more frequent basis of active files, with 
a minimum of media and time. However there are some tradeoffs. First, the interval between backups 
should be kept to a minimum (once a day at least). To guard against data loss as a result of a media failure 
(a rare, but possible occurrence), it is a good idea to capture active files on (at least) two sets of dump 
volumes. Another consideration is the desire to keep unnecessary duplication of files to a minimum to save 
both operator time and media storage. A third consideration is the ease with which a particular backed-up 
version of a file can be located and restored. The following four-week schedule offers a reasonable trade
off between these goals. 

Sun 
Week 1: Full 
Week 2: 
Week 3: 
Week 4: 

Mon 
5 
5 
5 
5 

Tue 
5 
5 
5 
5 

Wed 
5 
5 
5 
5 

Thu 
5 
5 
5 
5 

Fri 
3 
3 
3 
3 

Although the Tuesday - Friday incrementals contain "extra copies" of files from Monday, this scheme 
assures that any file modified during the week can be recovered from the previous day's incremental dump. 

Proce~ Priority of dump 

1614 

dump uses multiple processes to allow it to read from the disk and write to the media concurrently. Due to 
the way it synchronizes between these processes, any attempt to run dump with a nice (process priority) of 
'-5' or better will likely make dump run slower instead of faster. 

Last change: 9 September 1987 Sun Release 4.0 



DUMPFS(8) MAINTENANCE COMMANDS DUMPFS(8) 

NAME 
dumpfs - dump file system information 

SYNOPSIS 
/usr/etc/dumpfs device 

DESCRIPTION 
dumpfs prints out the super block and cylinder group information for the file system or special device 
specified. The listing is very long and detailed. This command is useful mostly for finding out certain file 
system information such as the file system block size and minimum free space percentage. 

SEE ALSO 
fs(5), fsck(8), newfs(8), tunefs(8) 

Sun Release 4.0 Last change: 9 September 1987 1615 



EDQUOTA(8) MAINTENANCE COMMANDS EDQUOTA(8) 

NAME 
edquota - edit user quotas 

SYNOPSIS 
/usr/etc/edquota [ -p proto-user] usernames ... 

/usr/etc/edquota -t 

DESCRIPTION 
edquota is a quota editor. One or more users may be specified on the command line. For each user a tem
porary file is created with an ASCII representation of the current disk quotas for that user and an editor is 
then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the edi
tor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made. 

The editor invoked is vi(l) unless the EDITOR environment variable specifies otherwise. 

Only the super-user may edit quotas. (In order for quotas to be established on a file system, the root direc
tory of the file system must contain a file, owned by root, called quotas. See quotaon(8) for details.) 

OPTIONS 

FILES 

-p 

-t 

Duplicate the quotas of the prototypical user specified for each user specified. This is the normal 
mechanism used to initialize quotas for groups of users. 

Edit the soft time limits for each file system. If the time limits are zero, the default time limits in 
<ufs/quota.h> are used. Time units of sec(onds), min(utes), hour(s), day(s), week(s), and 
month(s) are understood. Time limits are printed in the greatest possible time unit such that the 
value is greater than or equal to one. 

quotas 
/etc/mtab 

quota file at the file system root 
mounted file systems 

SEE ALSO 
quota(l), vi(l), quotactl(2), quotacheck(8}, quotaon(8}, repquota(8) 

BUGS 
The format of the temporary file is inscrutable. 

1616 Last change: 9 September 1987 Sun Release 4.0 



EEPROM(8S) MAINTENANCE COMMANDS EEPROM(8S) 

NAME 
eeprom - EEPROM display and load utility 

SYNOPSIS 
eeprom [ -i] [ - ] [ -f filename ] [field [ =value ] ] ... 

eeprom [ -i] [ -c] [ -f filename ] 

AVAILABILITY 
Not available for Sun-2 systems. 

DESCRIPTION 
eeprom displays or changes the values of fields in the EEPROM. It processes fields in the order given. 
When processing afield accompanied by a value, eeprom makes the indicated alteration to the EEPROM; 
otherwise it displays the field's value. When given no field specifiers, eeprom displays the values of all 
EEPROM fields. A'-' flag specifies that fields and values are to be read from stdin (onefield orfield=value 
per line). 

eeprom verifies the EEPROM checksums and complains if they are incorrect; if the -i flag is specified, 
erroneous checksums are ignored. If the -c flag is specified, all incorrect checksums are recomputed and 
corrected in the EEPROM. 

OPTIONS 

FILES 

-i Ignore bad checksums. 

-(filename 
Use filename as the EEPROM device. 

-c Correct bad checksums. 

Read field names and values from stdin. 

The field names and their possible values are: 
hwupdate a valid date (including "today" and "now") 
memsize 8 bit integer (megabytes of memory on machine) 
memtest 8 bit integer (megabytes of memory to test) 
scrsize "1024x1024", "1152x900", "1600x1280", or "1440x1440" 
watchdog_ reboot ''true'' or ''false'' 
default boot ''true'' or ''false'' 
bootdev 
kbdtype 
keyclick 
console 
custom _logo 
banner 
diagdev 
diagpath 
ttya _no_ rtsdtr 
ttyb_no_rtsdtr 
columns 
rows 

/dev/eeprom 

%c%c (%x, %x, %x) 
8 bit integer (0 for all Sun keyboards) 
"true" or "false" 
"b&w" or "ttya" or "ttyb" or "color" 
"true" or "false" 
banner string 
%c%c (%x,%x,%x) - diagnostic boot device 
diagnostic boot path 
''true'' or ''false'' 
''true'' or ''false'' 
number of columns on screen (8-bit integer) 
number of rows on screen (8-bit integer) 

SEE ALSO 
<mon/eeprom.h> 

Sun Release 4.0 Last change: 22 December 1987 1617 



ETHERD(8C) MAINTENANCE COMMANDS ETHERD(8C) 

NAME 
etherd - Ethernet statistics server 

SYNOPSIS 
/usr/etc/rpc.etherd interface 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
etherd is a server which puts inter/ ace into promiscuous mode, and keeps summary statistics of all the 
packets received on that interface. It responds to RPC requests for the summary. You must be root to run 
etherd. 

interface is a networking interface such as ieO, iel, ecO, eel and leO. 

traffic(lC) displays the information obtained from etherd in graphical form. 

SEE ALSO 
traffic(lC) 

1618 Last change: 17 December 1987 Sun Release 4.0 



ETHERFIND ( 8C) MAINTENANCE COMMANDS ETHERFIND ( 8C) 

NAME 
etherfind - find packets on Ethernet 

SYNOPSIS 
etherfind [ -nprtuvx ] [ -c count ] [ -i interface ] expression 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
etherfind prints out the headers of packets on the ethernet that match the boolean expression. When an 
internet packet is fragmented into more than one ethernet packet, all fragments except the first are marked 
with an asterisk. You must be root to invoke etherfind. 

OPTIONS 
-n Do not convert host addresses and port numbers to names. 

-p Normally, the selected interface is put into promiscuous mode, so that etherfind has access to all 
packets on the ethernet. However, when the -p flag is used, the interface will not go promiscuous. 

-r RPC mode: treat each packet as an RPC message, printing the program and procedure numbers. 

-t Timestamps: precede each packet listing with a time value in seconds and hundredths of seconds 
since the first packet. 

-u Make the output line buffered. 

-v Verbose mode: print out some of the fields of TCP and UDP packets. 

-x Dump the header in hex, in addition to the line printed for each packet by default 

-c count 
Exit after receiving count packets. This is sometimes useful for dumping a sample of ethemet 
traffic to a file for later analysis. 

-i inter/ ace 
etherfind listens on interface. The program netstat(8C) when invoked with the -i flag lists all the 
interfaces that a machine has. 

expression 

Sun Release 4.0 

The syntax of of expression is similar to that used by find(l). Here are the allowable primaries. 

-dst destination 
True if the destination field of the packet is destination, which may be either an address 
or a name. 

-src source 
True if the source field of the packet is source, which may be either an address or a 
name. 

-between host] host2 
True if either the source of the packet is host] and the destination host2, or the source is 
host2 and the destination host]. 

-dstnet destination 
True if the destination field of the packet has a network part of destination, which may be 
either an address or a name. 

-srcnet source 
True if the source field of the packet has a network part of source, which may be either 
an address or a name. 

Last change: 17 December 1987 1619 



ETHERFIND ( 8C) MAINTENANCE COMMANDS ETHERFIND ( 8C) 

-srcport port 
True if the packet has a source port value of port. It must be either upd or tcp (see 
tcp(4P)), udp(4P)). The port can be a number or a name used in /etdservices. 

-dstport port 
True if the packet has a destination port value of port. The port can be a number or a 
name. 

-less length 
True if the packet has a length less than or equal to length. 

-greater length 
True if the packet has a length greater than or equal to length. 

-proto protocol 
True if the packet is an ip packet (see ip(4P)) of protocol type protocol. Protocol can be 
a number or one of the names icmp, udp, nd, or tcp. 

-byte byte op value 
True if byte number byte of the packet is in relation op to value. Legal values for op are 
+, <, >, &, and I. Thus 4=6 is true if the fourth byte of the packet has the value 6, and 
20&0xf is true if byte twenty has one of its four low order bits nonzero. 

-broadcast 
True if the packet is a broadcast packet. 

-arp True if the packet is a arp packet (see arp(4P)). 

-rarp True if the packet is a rarp packet. 

-ip True if the packet is an ip packet. 

The primaries may be combined using the following operators (in order of decreasing precedence): 

A parenthesized group of primaries and operators (parentheses are special to the Shell and must be 
escaped). 

The negation of a primary('!' is the unary not operator). 

Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries). 

Alternation of primaries ('-o' is the or operator). 

EXAMPLE 
To find all packets arriving at or departing from sundown 

example% etherfind -src sundown -o -dst sundown 
example% 

SEE ALSO 
find(l), traffic(lC), arp(4P), ip(4P), nit(4P) tcp(4P), udp(4P), netstat(8C) 

BUGS 
The syntax is painful. 

1620 Last change: 17 December 1987 Sun Release 4.0 



EXPOR TFS ( 8 ) MAINTENANCE COMMANDS EXPORTFS(8) 

NAME 
exportfs - export and unexport directories to NFS clients 

SYNOPSIS 
/usr/etc/exportfs [ -avu ] [ -o options] [ directory ] 

DESCRIPTION 
exportfs makes a local directory (or file) available for mounting over the network by NFS clients. It is nor
mally invoked at boot time by the /etc/re.local script, and uses information contained in the /etc/exports 
file to export a directory (which must be specified as a full pathname). The super-user can run exportfs at 
any time to alter the list or characteristics of exported directories. Directories that are currently exported 
are listed in the file /etc/xtab. 

With no options or arguments, exportfs prints out the list of directories currently exported. 

OPTIONS 

FILES 

-a All. Export all directories listed in /etc/exports, or if -u is specified, unexport all of the currently 
exported directories. 

-v Verbose. Print each directory as it is exported or unexported. 

-u Unexport the indicated directories. 

-i Ignore the options in /etc/exports. Normally, exportfs will consult /etc/exports for the options 
associated with the exported directory. 

-o options 
Specify a comma-separated list of optional characteristics for the directory being exported. 
options can be selected from among: 

ro Export the directory read-only. If not specified, the directory is exported read-write. 

rw=hostname[:hostname] ... 
Export the directory read-mostly. Read-mostly means exported read-only to most 
machines, but read-write to those specified. If not specified, the directory is exported 
read-write to all. 

anon=uid 
If a request comes from an unknown user, use uid as the effective user ID. Note: root 
users (uid 0) are always considered "unknown" by the NFS server, unless they are 
included in the "root" option below. The default value for this option is -2. Setting the 
value of "anon" to -1 disables anonymous access. Note that by default secure NFS 
accepts insecure requests as anonymous, and those wishing for extra security can disable 
this feature by setting "anon" to -1. 

root=hostname[:hostname] ... 
Give root access only to the root users from a specified hostname. The default is for no 
hosts to be granted root access. 

access=client[:client] ... 
Give mount access to each client listed. A client can either be a hostname, or a netgroup 
(see netgroup(5)). Each client in the list is first checked for in the /etc/netgroup data
base, and then the /etc/hosts database. The default value allows any machine to mount 
the given directory. 

secure Require clients to use a more secure protocol when accessing the directory. 

I etc/exports 
/etc/xtab 
I etc/netgroup 

static export information 
current state of exported directories 

Sun Release 4.0 Last change: 9 September 1987 1621 



EXPORTFS ( 8) MAINTENANCE COMMANDS EXPORTFS ( 8) 

SEE ALSO 
exports(5), netgroup(5) 

WARNINGS 
You cannot export a directory that is either a parent- or a sub-directory of one that is currently exported 
and within the same filesystem. It would be illegal, for example, to export both /usr and /usr/Iocal if both 
directories resided in the same disk partition. 

1622 Last change: 9 September 1987 Sun Release 4.0 



EXTRACT_UNBUNDLED(8) MAINTENANCE COMMANDS EXTRACT_ UNBUNDLED ( 8) 

NAME 
extract_ unbundled - extract and execute unbundled-product installation scripts 

SYNOPSIS 
extract_unbundled [ -ddevice [ -rremote-host]] [-DEFAULT] 

DESCRIPTION 
extract_unbundled extracts and executes the installation scripts from release tapes for Sun unbundled 
software products. If no options are specifed, it prompts for input as to the tape device, or remote host
name from which to the software is to be installed. For information about installing a specific product, 
refer to the installation manual that accompanies that product. 

OPTIONS 
-ddevice 

Install from the indicated tape drive, such as stO, mtO or arO. 

-rremote host 
Install from the device given in the-d option on the indicated remote host. 

-DEFAULT 
Execute the installation script using all default values. Otherwise the installation script prompts 
for any optional values. 

Sun Release 4.0 Last change: 18 September 1987 1623 



FASTBOOT ( 8) MAINTENANCE COMMANDS FASTBOOT ( 8) 

NAME 
fastboot, fasthalt - reboot/halt the system without checking the disks 

SYNOPSIS 
/usr/etc/fastboot [ boot-options ] 

/usr/etc/fasthalt [ halt-options ] 

DESCRIPTION 
fastboot and fasthalt are shell scripts that reboot and halt the system without checking the file systems. 
This is done by creating a file /fastboot, then invoking the reboot(8) program. The system startup script, 
/etc/re, looks for this file and, if present, skips the normal invocation of fsck(8). 

FILES 
/usr/etc/fastboot 
/etc/re 

SEE ALSO 
fsck(8), halt(8), init(8), rc(8), reboot(8) 

1624 Last change: 9 September 1987 Sun Release 4.0 



FINGERD ( 8C) MAINTENANCE COMMANDS FINGERD ( 8C) 

NAME 
fingerd - remote user information server 

SYNOPSIS 
/usr/etc/in.fingerd 

DESCRIPTION 
fingerd implements the server side of the Name/Finger protocol, specified in RFC 742. The Name/Finger 
protocol provides a remote interface to programs which display information on system status and indivi
dual users. The protocol imposes little structure on the format of the exchange between client and server. 
The client provides a single "command line" to the finger server which returns a printable reply. 

fingerd waits for connections on TCP port 79. Once connected it reads a single command line terminated 
by a <RETURN-LINE-FEED> which is passed to finger(l). fingerd closes its connections as soon as the 
output is finished. 

If the line is null (only a RETURN-LINEFEED is sent) then finger returns a "default" report that lists all peo
ple logged into the system at that moment 

If a user name is specified (for instance, eric<RETURN-LINE-FEED>) then the response lists more extended 
information for only that particular user, whether logged in or not Allowable "names" in the command 
line include both "login names" and "user names". If a name is ambiguous, all possible derivations are 
returned. 

SEE ALSO 
finger(l) 

BUGS 

Harrenstien, Ken, NAME/FINGER, RFC 742, Network Information Center, SRI International, Menlo Park, 
Calif., December 1977. 

Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program 
can result in meaningless attempts at option negotiation being sent to the server, which will foul up the 
command line interpretation. fingerd should be taught to filter out IAC's and perhaps even respond nega
tively (IAC will not) to all option commands received. 

Sun Release 4.0 Last change: 9 September 1987 1625 



FORMAT(8S) MAINTENANCE COMMANDS FORMAT(8S) 

NAME 
format - disk partitioning and maintenance utility 

SYNOPSIS 
format [ -f comma.nd-file ] [ -I log-file ] [ -x data-file ] [ -d disk-name ] [ -t disk_ type ] 

[ -p partition-name ] [ -s ] diskname . .. 

DESCRIPTION 
format enables you to format, label, repair and analyze disks on your Sun computer. Unlike previous disk 
maintenance programs, format runs under SunOS. Because there are limitations to what can be done to the 
system disk while the system is running, format is also supported within the memory-resident system 
environment. For most applications, however, running format under Sun OS is the more convenient 
approach. 

If no disk-list is present, format uses the disk list defined in the data file specified with the -x option. If 
that option is omitted, the data file defaults to format.dat in the current directory, or else /etc/format.dat. 

OPTIONS 

FILES 

1626 

-f comma.nd-file 
Take command input from comma.nd-file rather than the standard input. The file must contain 
commands that appear just as they would if they had been entered from the keyboard. With this 
option, format does not issue continue? prompts. 

-I log-file 
Log a transcript of the format session to the indicated log-file, including the standard input, the 
standard output and the standard error. 

-x data-file 
Use the disk list contained in data-file. 

-ddisk name 
Specify which disk should be made current upon entry into the program. The disk is specified by 
its logical name (for instance, - xyO). This can also be accomplished by specifying a single disk in 
the disk list. 

-t disk-type 
Specify the type of disk which is current upon entry into the program, A disk's type is specified by 
name in the data file. This option can only be used if a disk is being made current as described 
above. 

-p partition-name 
Specify the partition table for the disk which is current upon entry into the program. The table is 
specified by its name as defined in the data file. This option can only be used if a disk is being 
made current, and its type is either specified or available from the disk label. 

-s Silent. Suppress all of the standard output. Error messages are still displayed. This is generally 
used in conjunction with the -f option. 

I etclf ormat.dat default data file 

Last change: 20 January 1988 Sun Release 4.0 



FPAREL(8) MAINTENANCE COMMANDS FPAREL(8) 

NAME 
fparel - Sun FP A online reliability tests 

SYNOPSIS 
fparel [ -pn ] [ -v ] 

DESCRIPTION 
fparel is a command to execute the Sun FP A online confidence and reliability test program. fparel tests 
about 90% of the functions of the FP A board, and tests all FP A contexts not in use by other processes. 
fparel runs without disturbing other processes that may be using the FPA. fparel can only be run by the 
super-user. 

After a successful pass, fparel writes 

time, date: Sun FPA Passed. The contexts tested are: 0, 1, ... 31 

to the file /var/adm/diaglog. 

If a pass fails, fparel writes 

time, date: Sun FP A failed 

along with the test name and context number that failed, to the file /var/adm/diaglog. fparel then broad
casts the message 

time, date: Sun FPA failed, disabled, service required 

to all users of the system. Next, fparel causes the kernel to disable the FPA. Once the kernel disables the 
FPA, the system must be rebooted to make it accessible. 

The file /etc/re.local should contain an entry to cause fparel to be invoked upon reboot to be sure that the 
FPA remains unaccessible in cases where rebooting doesn't correct the problem. See rc(8). 

The crontab(S) file for root should contain an entry indicating that cron(8) is to run fparel daily, such as: 

7 2 * * * /usr/etc/fpa/fparel 

which causes fparel to run at seven minutes past two, every day. See cron(8) and crontab(5) for details. 

OPTIONS 

-pn Perform n passes. Default is n=l. -pO means perform 2147483647 passes. 

-v Run in verbose mode with detailed test results to the standard output. 

FILES 
/var/adm/diaglog Log of fparel diagnostics. 
I etc/re.local 
/var/spool/cron/crontabs/root 
/usr/etc/fpal* directory containing FPA microcode, data files, and loader 

SEE ALSO 
fpaversion(8), crontab(5), cron(8), rc(8) 

Sun Release 4.0 Last change: 29 September 1987 1627 



FP A VERSION ( 8) MAINTENANCE COMMANDS 

NAME 
fpaversion, fpa _ download - print FP A version, load microcode 

SYNOPSIS 
fpaversion [ -hlqv] [ -t [ cdhimprstvxCIMS ] ] 

DESCRIPTION 

FP A VERSION ( 8) 

fpaversion performs various tests on the FP A (floating point accelerator). With no arguments, it prints the 
version number of the microcode and constants that are currently installed on /dev/fpa, and performs a 
quick test to ensure proper operation. 

OPTIONS 

FILES 

-h 

-I 

-q 

-v 

-t 

Help. Print command-line summary. 

Loop through tests infinitely. 

Quiet output. Print out only error messages. 

Verbose output. 

Specify certain tests: 

C 

d 

h 

m 

p 

r 

s 

t 

V 

X 

C 

M 

s 

Command register format instructions. 

Double precision format instructions. 

Help. Print summary of test specifiers. 

!mask register. 

Mode register. 

Simple pipe sequencing. 

User registers for all contexts. 

Single precision format instructions. 

Status generation. 

Print version number and date of microcode and constants. 

Extended format instructions. 

Check checksum for microcode, mapping RAM, and constant RAM. 

Command register format matrix instructions. 

Shadow registers. 

/dev/fpa physical FPA device 
/usr/etc/fpa/fpamicro* microcode binaries for specific versions 
/usr/etc/fpa/fpa _ constants 

microcode data file 
/usr/etc/fpa/fpa _ download 

microcode loader 

SEE ALSO 
fparel(8), sysdiag(8) 

1628 Last change: 28 September 1987 Sun Release 4.0 



FSCK( 8) MAINTENANCE COMMANDS FSCK(8) 

NAME 
fsck - file system consistency check and interactive repair 

SYNOPSIS 
/usr/etc/fsck -p [filesystem ... ] 

/usr/etc/fsck [ -b block# ] [ -w] [ -y ] [ -n ] [filesystem] ... 

DESCRIPTION 
The first form of fsck preens a standard set of file systems or the specified file systems. It is normally used 
in the /etc/re script during automatic reboot. In this case, fsck reads the table /etc/fstab to determine the 
file systems to check. It inspects disks in parallel, taking maximum advantage of I/0 overlap to check the 
file systems as quickly as possible. 

Normally, the root file system is checked in pass 1; other root-partition file systems are checked in pass 2. 
Small file systems on separate partitions are checked in pass 3, while larger ones are checked in passes 4 
ands. 
Only partitions marked in /etc/fstab with a file system type of "4.2" and a non-zero pass number are 
checked. 

fsck corrects innocuous inconsistencies such as: unreferenced inodes, too-large link counts in inodes, miss
ing blocks in the free list, blocks appearing in the free list and also in files, or incorrect counts in the super 
block, automatically. It displays a message for each inconsistency corrected that identifies the nature of, 
and file system on which, the correction is to take place. After successfully correcting a file system, fsck 
prints the number of files on that file system, the number of used and free blocks, and the percentage of 
fragmentation. 

If fsck encounters other inconsistencies that it cannot fix automatically, it exits with an abnormal return 
status (and the reboot fails). 

If sent a QUIT signal, fsck will finish the file system checks, then exit with an abnormal return status that 
causes the automatic reboot to fail. This is useful when you wish to finish the file system checks, but do 
not want the machine to come up multiuser. 

Without the -p option, fsck audits and interactively repairs inconsistent conditions on file systems. In this 
case, it asks for confirmation before attempting any corrections. Inconsistencies other than those men
tioned above can often result in some loss of data. The amount and severity of data lost can be determined 
from the diagnostic output. 

The default action for each correction is to wait for the operator to respond either yes or no. If the operator 
does not have write permission on the file system,/sck will default to a-n (no corrections) action. 

If no file systems are given tofsck then a default list of file systems is read from the file /etc/fstab. 

Inconsistencies checked are as follows: 

1. Blocks claimed by more than one inode or the free list. 
2. Blocks claimed by an inode or the free list outside the range of the file system. 
3. Incorrect link counts. 
4. Incorrect directory sizes. 
5. Bad inode format. 
6. Blocks not accounted for anywhere. 
7. Directory checks, file pointing to unallocated inode, inode number out of range. 
8. Super Block checks: more blocks for inodes than there are in the file system. 
9. Bad free block list format. 
10. Total free block and/or free inode count incorrect. 

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, recon
nected by placing them in the Iost+found directory. The name assigned is the inode number. If the 
lost+found directory does not exist, it is created. If there is insufficient space its size is increased. 

Sun Release 4.0 Last change: 24 September 1987 1629 



FSCK( 8) MAINTENANCE COMMANDS FSCK(8) 

A file system may be specified by giving the name of the cooked or raw device on which it resides, or by 
giving the name of its mount point If the latter is given,/sck finds the name of the device on which the file 
system resides by looking in /etc/fstab. 

Checking the raw device is almost always faster. 

OPTIONS 
-b 

-w 

-y 

-n 

FILES 

Use the block specified immediately after the flag as the super block for the file system. Block 32 
is always an alternate super block. 

Check writable file systems only. 

Assume a yes response to all questions asked by fsck; this should be used with extreme caution, as 
it is a free license to continue, even after severe problems are encountered 

Assume a no response to all questions asked by fsck; do not open the file system for writing. 

/etc/fstab 

DIAGNOSTICS 

contains default list of file systems to check 

The diagnostics produced by fsck are fully enumerated and explained in System and Network Administra-
tion. 

EXIT STATUS 
0 Either no errors detected or all errors were corrected. 

4 Root file system errors were corrected. The system must be rebooted. 

8 Some uncorrected errors exist on one or more of the file systems checked, there was a syntax 
error, or some other operational error occurred. 

12 A signal was caught during processing. 

SEE ALSO 
fstab(5), fs(5), newfs(8), mkfs(8), crash(8S), reboot(8) 

System and Network Administration 

BUGS 
There should be some way to start a fsck -p at pass n. 

1630 Last change: 24 September 1987 Sun Release 4.0 



FSIRAND(8) MAINTENANCE COMMANDS 

NAME 
fsirand - install random inode generation numbers 

SYNOPSIS 
fsirand [ -p ] special 

DESCRIPTION 

FSIRAND(8) 

fsirand installs random inode generation numbers on all the inodes on device special, and also installs a 
filesystem ID in the superblock. This helps increase the security of filesystems exported by NFS. 

fsirand must be used only on an unmounted filesystem that has been checked with fsck(8). The only 
exception is that it can be used on the root filesystem in single-user mode, if the system is immediately re
booted afterwords. 

OPTIONS 
-p 

SEE ALSO 
fsck(8) 

Print out the generation numbers for all the inodes, but do not change the generation numbers. 

1 /;;'l 1 



FfPD(8C) MAINTENANCE COMMANDS FfPD(8C) 

NAME 
ftpd - DARPA Internet File Transfer Protocol server 

SYNOPSIS 
/usr/etc/in.ftpd [ -di ] [ -ttimeout] host .socket 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 

1632 

ftpd is the DARPA Internet File Transfer Protocol (FfP) server process. The server is invoked by the Inter
net daemon inetd(8C) each time a connection to the FfP service (see services(S)) is made, with the con
nection available as descriptor O and the host and socket the connection originated from (in hex and 
decimal respectively) as argument. 

Inactive connections are timed out after 60 seconds. 

If the -d option is specified, debugging information is logged to the system log daemon, syslogd(8). 

If the -I option is specified, each Ff P session is logged to syslogd. 

The FfP server will timeout an inactive session after 15 minutes. If the -t option is specified, the inactivity 
timeout period will be set to timeout. 

The FfP server currently supports the following FfP requests; case is not distinguished. 

Request Description 

ABOR abort previous command 

ACCT specify account (ignored) 

ALLO 

APPE 

CDUP 

CWD 

DELE 

HELP 

LIST 

MKD 

MODE 

NLST 

NOOP 

PASS 

PASV 

PORT 

PWD 

QUIT 

RETR 

RMD 

RNFR 

RNTO 

allocate storage (vacuously) 

append to a file 

change to parent of current working directory 

change working directory 

delete a file 

give help information 

give list files in a directory ("ls -lg") 

make a directory 

specify data transfer mode 

give name list of files in directory ("ls") 

do nothing 

specify password 

prepare for server-to-server transfer 

specify data connection port 

print the current working directory 

terminate session 

retrieve a file 

remove a directory 

specify rename-from file name 

specify rename-to file name 

Last chan2e: 17 December 1987 Sun Release 4.0 



FfPD(8C) 

STOR 

STOU 

STRU 

TYPE 

USER 

XCUP 

XCWD 

XMKD 

XPWD 

MAINTENANCE COMMANDS 

store a file 

store a file with a unique name 

specify data transfer structure 

specify data transfer type 

specify user name 

change to parent of current working directory 

change working directory 

make a directory 

print the current working directory 

XRMD remove a directory 

The remaining FTP requests specified in RFC 959 are recognized, but not implemented. 

FfPD(8C) 

The FTP server will abort an active file transfer only when the ABOR command is preceded by a Telnet 
"Interrupt Process" (IP) signal and a Telnet "Synch" signal in the command Telnet stream, as described in 
RFC 959. 

ftpd interprets file names according to the "globbing" conventions used by csh(l). This allows users to 
utilize the metacharacters '* ? [] {}-'. 

ftpd authenticates users according to three rules. 

1) The user name must be in the password data base, /etc/passwd, and not have a null password. In 
this case a password must be provided by the client before any file operations may be performed. 

2) The user must have a standard shell returned by getusershell(3 ). 

3) If the user name is "anonymous" or "ftp", an anonymous FTP account must be present in the pass
word file (user "ftp"). In this case the user is allowed to log in by specifying any password (by 
convention this is given as the client host's name). 

In the last case, ftpd takes special measures to restrict the client's access privileges. The server performs a 
chroot(2) command to the home directory of the "ftp" user. In order that system security is not breached, 
it is recommended that the "ftp" subtree be constructed with care; the following rules are recommended 

-.B ftp Make the home directory owned by "ftp" and unwritable by anyone. 

-rtp/bin Make this directory owned by the super-user and unwrit.able by anyone. The program ls(l V) 
must be present to support the list commands. This program should have mode 111. 

-rtp/etc Make this directory owned by the super-user and unwritable by anyone. The files passwd(5) and 
group(5) must be present for the ls command to work properly. These files should be mode 444. 

-rtp/pub Make this directory mode 777 and owned by "ftp'\ Users should then place files which are to be 
accessible via the anonymous account in this directory. 

DIAGNOSTICS 
ftpd logs various errors to the system log daemon, syslogd , with a facility code of daemon. The messages 
are listed here, grouped by severity level. 

Err Severity 
getpeername failed: reason 

A getpeername(2) call failed. 

getsockname failed: reason 
A getsockname(2) call failed. 

signal failed: reason 
A signal(3) call failed. 

Sun Release 4.0 Last change: 17 December 1987 1633 



FfPD(8C) MAINTENANCE COMMANDS FfPD(8C) 

setsockopt failed: reason 
A setsockopt call (see getsockopt(2)) failed. 

ioctl failed: reason 
A ioctl(2) call failed. 

directory:reason 
ftpd did not have write permission on the directory directory in which a file was to be created by 
the STOU command. 

Info Severity 
These messages are logged only if the -I flag is specified. 

FfPD: connection from host at time 
A connection was made to ftpd from the host host at the date and time time. 

FfPD: User user timed out after timeout seconds at time 
The user user was logged out because they hadn't entered any commands after timeout seconds; 
the logout occurred at the date and time time. 

Debug Severity 
These messages are logged only if the -d flag is specified. 

FfPD: command: command 
A command line containing command was read from the Ff P client. 

lost connection 
The FTP client dropped the connection. 

<- replycode 
<- replycode-

A reply was sent to the Ff P client with the reply code replycode. The next message logged will 
include the message associated with the reply. If a- follows the reply code, the reply is continued 
on later lines. 

SEE ALSO 

BUGS 

1634 

ftp(lC), getsockopt(2), getusershell(3), syslogd(8) 

Postel, Jon, and Joyce Reynolds, File Transfer Protocol (FIP), RFC 959, Network Information Center, SRI 
International, Menlo Park, Calif., October 1985. 

The anonymous account is inherently dangerous and should be avoided when possible. 

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effec
tive user id of the logged in user, reverting to the super-user only when binding addresses to sockets. The 
possible security holes have been extensively scrutinized, but are possibly incomplete. 

Last change: 17 December 1987 Sun Release 4.0 



GETI ABLE (SC) MAINTENANCE COMMANDS GETI ABLE (SC) 

NAME 
gettable - get DoD Internet format host table from a host 

SYNOPSIS 

/usr/etc/gettable host 

DESCRIPTION 
gettable is a simple program used to obtain the DoD Internet host table from a "hostname" server. The 
indicated host is queried for the table. The table, if retrieved, is placed in the file hosts.txt. 

gettable operates by opening a TCP connection to the port indicated in the service specification for "host
name' '. A request is then made for ''ALL'' names and the resultant information is placed in the output file. 

gettable is best used in conjunction with the htable(8) program which converts the DoD Internet host table 
format to that used by the network library lookup routines. 

SEE ALSO 

BUGS 

intro(3N), htable(8) 

Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler, HOSTNAME Server, RFC 953, Network Information 
Center, SRI International, Menlo Park, Calif., October 1985. 

Should allow requests for only part of the database. 

Sun Release 4.0 Last change: 9 September 1987 1635 



GETIY(8) MAINTENANCE COMMANDS GETTY(8) 

NAME 
getty - set terminal mode 

SYNOPSIS 
/usr/etc/getty [ type [ tty] ] 

Sun386i SYSTEM SYNOPSIS 
/usr/etc/getty [ -n ] [ type [ tty ] ] 

DESCRIPTION 
getty, which is invoked by init(8), opens and initializes a tty line, reads a login name, and invokes logiD(l). 

The tty argument is the name of the character-special file in /dev that corresponds to the terminal. If there 
is no tty argument, or the argument is '-', the tty line is assumed to be opened as file descriptor 0. 

The type argument, if supplied, is used as an index into the gettytab(5) database-to determine the charac
teristics of the line. If this argument is absent, or if there is no such entry, the default entry is used. If there 
is no /etc/gettytab file, a set of system-supplied defaults is used. 

When the indicated entry is located, getty clears the terminal screen, prints a banner heading, and prompts 
for a login name. Usually, either the banner or the login prompt includes the system's hostname. 

Next, getty prompts for a login and reads the login name, one character at a time. When it receives a 
NULL character (which is assumed to be the result pressing the BREAK, or "interrupt'' key), getty switches 
to the entry gettytab entry named in the DX field. It reinitializes the line to the new characteristics, and 
then prompts for a login once again. This mechanism typically is used to cycle through a set of line speeds 
(baud rates) for each terminal line. For instance, a rotary dialup might have entries for the speeds: 300, 
1200, 150, and 110 baud, with each DX field pointing to the next one in succession. 

The user terminates login input line with a NEWLINE or RETURN character. The latter is preferable; it sets 
up the proper treatment of RETURN characters (see tty(4)). getty checks to see if the terminal has only 
upper-case alphabetical characters. If all alphabetical characters in the login name are in upper case, the 
system maps them along with all subsequent upper-case input characters to lower-case internally; they are 
displayed in upper case for the benefit of the terminal. To force recognition of an upper-case character, the 
shell allows them to be quoted (typically by preceding each with a backslash, '\'). 

Finally, getty calls logiD(l) with the login name as an argument. 

getty can be set to time out after a certain interval; this hangs up dial-up lines if the login name is not 
entered in time. 

Sun386i SYSTEM DESCRIPTION 
For Sun386i system, the value of type is the constant Sun, for the console frame buffer. 

Sun386i SYSTEM OPTIONS 

FILES 

-n invoke the full screen login program logintool(8), and optionally the "New User Accounts" 
feature. May only be used on a frame buffer. Unless removed from the console entry in 
letclttytab, this option is in effect by default. 

/etc/gettytab 

SEE ALSO 
Iogin(l), ioctl(2), tty(4), gettytab(5), ttytab(5), init(8), logintool(8) 

DIAGNOSTICS 

1636 

ttyxx: No such device or address. 

ttyxx: No such file or directory. 
A terminal which is turned on in the ttys file cannot be opened, likely because the requisite lines 
are either not configured into the system, the associated device was not attached during boot-time 
system configuration, or the special file in /dev does not exist. 

Last change: 18 February 1988 Sun Release 4.0 



GPCONFIG ( 8 ) MAINTENANCE COMMANDS GPCONFIG ( 8 ) 

NAME 
gpconfig - initialize the Graphics Processor 

SYOPNSIS 
/usr/etc/gpconfig gpunit [ [ -b] [ -f ]fbunit ... ] 

DESCRIPTION 
gpconfig binds cgtwo frame buffers to the GP, (Graphics Processor) and loads and starts the appropriate 
microcode in the GP. For example, the command line: 

/usr/etc/gpconfig gponeO cgtwoO cgtwol 

will bind the frame buffer boards cgtwoO and cgtwol to the Graphics Processor gponeO. The devices 
/dev/gponeOa and /dev/gponeOb will then refer to the combination of gpone and cgtwoO or cgtwol 
respectively. 

The same cgtwo frame buffer cannot be bound to more than one GP. 

All cgtwo frame buffer boards bound to a GP must be configured to the same width and height. 

The standard version of the file /etc/re.local contains the following gpconfig command line: 

/usr/etc/gpconfig gponeO -f -b cgtwoO 

This binds gponeO and cgtwoO as gponeOa, causes gponeOa to use the Graphics Buffer Board if it is 
present, and redirects /dev/fb to be /dev/gponeOa. If another configuration is desired, edit the command 
line in /etc/re.local to do the appropriate thing. 

It is inadvisable to run the gpconfig command while the GP is being used. Unpredictable results may 
occur. If it is necessary to change the frame buffer bindings to the GP (or to stop using the GP altogether), 
bring the system down gently, boot single user, edit the gpconfig line in the /etc/re.local file, and bring the 
system back up multiuser. 

OPTIONS 

FILES 

-b 

-f 

Configure the GP to use the Graphics Buffer as well. Currently only one GP-to-frame-buffer bind
ing is allowed to use the graphics buffer at a time. Only the last -b option in the command line 
takes effect 

Redirect /dev/fb to the device formed by binding gpunit with fbunit. Only the last -f option in 
the command line takes effect. 

/dev/cgtwo[0-9] 
/dev/fb 
/dev/gpone[0-3][abcd] 
/usr/lib/gplcg2.1024.ucode 
/usr/lib/ gp lcg2.1152.ucode 
/ etc/re.local 

SEE ALSO 
cgtwo(4S), gpone(4S) 

Sun Release 4.0 Last change: 9 September 1987 1637 



GRPCK(8) MAINTENANCE COMMANDS GRPCK(8) 

NAME 
grpck - check group database entries 

SYNOPSIS 
/usr/etc/grpck [filename] 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the Sun0S for information on how to 

install this command. 

grpck checks that a file in group(5) does not contain any errors; it checks the /etc/group file by default 

FILES 
/etc/group 

DIAGNOSTICS 
Too many/few fields 

An entry in the group file does not have the proper number of fields. 

No group name 
The group name field of an entry is empty. 

Bad character(s) in group name 
The group name in an entry contains characters other than lower-case letters and digits. 

Invalid GID 
The group ID field in an entry is not numeric or is greater than 65535. 

Null login name 
A login name in the list of login names in an entry is null. 

Login name not found in password file 
A login name in the list of login names in an entry is not in the password file. 

SEE ALSO 
groups(l), group(5), passwd(5) 

1638 Last change: 17 November 1987 Sun Release 4.0 



HALT(8) MAINTENANCE COMMANDS HALT(8) 

NAME 
halt - stop the processor 

SYNOPSIS 
/usr/etc/halt [ -nqy ] 

DESCRIPTION 
halt writes out any information pending to the disks and then stops the processor. 

halt normally logs the system shutdown to the system log daemon, syslogd(8), and places a shutdown 
record in the login accounting file /var/adm/wtmp. These actions are inhibited if the-nor -q options are 
present. 

OPTIONS 
-n Prevent the sync before stopping. 

-q Do a quick halt. No graceful shutdown is attempted. 

-y Halt the system, even from a dialup terminal. 

FILES 
/var/adm/wtmp login accounting file 

SEE ALSO 
reboot(8), shutdown(8), syslogd(8) 

Sun Release 4.0 Last change: 9 September 1987 1639 



HTABLE(8) MAINTENANCE COMMANDS HTABLE(8) 

NAME 
htable - convert DoD Internet format host table 

SYNOPSIS 
/usr/etc/htable filename 

DESCRIPTION 

FILES 

htable converts a host table in the format specified by RFC 952 to the format used by the network library 
routines. Three files are created as a result of running htable: hosts, networks, and gateways. The hosts 
file is used by the gethostent(3N) routines in mapping host names to addresses. The networks file is used 
by the getnetent(3N) routines in mapping network names to numbers. The gateways file is used by the 
routing daemon in identifying "passive" Internet gateways; see routed(8C) for an explanation. 

If any of the files Iocalhosts, localnetworks, or localgateways are present in the current directory, the 
file's contents is prepended to the output file without interpretation. This . allows sites to maintain local 
aliases and entries which are not normally present in the master database. 

htable is best used in conjunction with the gettable(8C) program which retrieves the DoD Internet host 
table from a host. 

localhosts 
localnetworks 
localgateways 

SEE ALSO 

BUGS 

1640 

intro(3N), gethostent(3N), getnetent(3N), gettable(8C), routed(8C) 

Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler, DoD Internet Host Table Specification, RFC 952, Net
work Information Center, SRI International, Menlo Park, Calif., October 1985. 

Does not properly calculate the gateways file. 

Last change: 9 September 1987 Sun Release 4.0 



ICHECK(8) MAINTENANCE COMMANDS ICHECK(8) 

NAME 
icheck - file system storage consistency check 

SYNOPSIS 
/usr/etc/icbeck [ -s] -b numbers] [filesystem] 

DESCRIPTION 

FILES 

Note: icheck has been superceded for normal consistency checking by fsck(8). 

icheck examines a file system, builds a bit map of used blocks, and compares this bit map against the free 
list maintained on the file system. If the file system is not specified, a set of default file systems is checked. 
The normal output of icheck includes a report of 

The total number of files and the numbers of regular, directory, block special and character special 
files. 

The total number of blocks in use and the numbers of single-, double-, and triple-indirect blocks 
and directory blocks. 

The number of free blocks. 

The number of blocks missing; that is, not in any file nor in the free list. 

With the -s option icheck ignores the actual free list and reconstructs a new one by rewriting the super
block of the file system. The file system should be dismounted while this is done; if this is not possible (for 
example if the root file system has to be salvaged) care should be taken that the system is quiescent and that 
it is rebooted immediately afterwards so that the old, bad in-core copy of the superblock will not continue 
to be used. Notice also that the words in the superblock which indicate the size of the free list and of the i
list are believed. If the superblock has been curdled these words will have to be patched. The -s option 
suppresses the normal output reports. 

Following the -b option is a list of block numbers; whenever any of the named blocks turns up in a file, a 
diagnostic is produced. 

icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks at a time. 

Default file systems vary with installation. 

SEE ALSO 
fs(5), clri(8), dcheck(8), fsck(8), ncheck(8) 

DIAGNOSTICS 

BUGS 

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty, the 
i-number, and the kind of block involved. If a read error is encountered, the block number of the bad block 
is printed and icheck considers it to contain 0. 

Bad freeblock 
means that a block number outside the available space was encountered in the free list. 

n dups in free 
means that n blocks were found in the free list which duplicate blocks either in some file or in the 
earlier part of the free list. 

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active 
file systems. 

It believes even preposterous superblocks and consequently can get core images. 

The system should be fixed so that the reboot after fixing the root file system is not necessary. 

Sun Release 4.0 Last change: 9 September 1987 1641 



IFCONFIG ( 8C) MAINTENANCE COMMANDS IFCONFIG ( 8C) 

NAME 
ifconfig - configure network interface parameters 

SYOPNSIS 
/etc/ifconfig interface [ address Jamily] [ address [ dest _address] ] [parameters] [ netmask mask] 

[ broadcast address ] ] [ metric n ] 

/etc/ifconfig interface [ protocol Jamily] 

DESCRIPTION 
ifconfig is used to assign an address to a network interface and/or to configure network interface parame
ters. ifconfig must be used at boot time to define the network address of each interface present on a 
machine; it may also be used at a later time to redefine an interface's address or other operating parameters. 
Used without options, ifconfig displays the current configuration for a network interface. If a protocol fam
ily is specified, ifconfig will report only the details specific to that protocol family. Only the super-user 
may modify the configuration of a network interface. 

The interface parameter is a string of the form "name unit", for example ieO. 

Since an interface may receive transmissions in differing protocols, each of which may require separate 
naming schemes, the parameters and addresses are interpreted according to the rules of some address fam
ily, specified by the address Jamily parameter. The address family currently supported is inet. If no 
address family is specified, inet is assumed. 

For the DARPA Internet family (inet}, the address is either a host name present in the host name data base 
(see hosts(S)) or in the Yellow Pages map hosts, or a DARPA Internet address expressed in the Internet 
standard "dot notation". Typically, an Internet address specified in dot notation will onsist of your 
system's network number and the machine's unique host number. A typical Internet address is 
192.9.200.44, where 192.9.200 is the network number and 44 is the machine's host number. 

If the dest _ address parameter is supplied in addition to the address parameter, it specifies the address of the 
correspondent on the other end of a point to point link. 

OPTIONS 

1642 

The following parameters may be set with ifconfig: 

up 

down 

trailers 

-trailers 

arp 

-arp 

Mark an interface "up". This may be used to enable an interface after an "ifconfig 
down." It happens automatically when setting the first address on an interface. If the 
interface was reset when previously marked down, the hardware will be re-initialized. 

Mark an interface "down". When an interface is marked "down", the system will not 
attempt to transmit messages through that interface. If possible, the interface will be 
reset to disable reception as well. This action does not automatically disable routes 
using the interface. 

(inet only) Enable the use of a "trailer" link level encapsulation when sending (default 
- really?). If a network interface supports trailer encapsulation, the system will, when 
possible, encapsulate outgoing messages in a manner which minimizes the number of 
memory to memory copy operations performed by the receiver. This feature is 
machine-dependent, and therefore not recommended. On networks that support the 
Address Resolution Protocol (see arp(4P); currently, only 10 Mb/s Ethernet), this flag 
indicates that the system should request that other systems use trailer encapsulation 
when sending to this host. Similarly, trailer encapsulations will be used when sending to 
other hosts that have made such requests. 

Disable the use of a "trailer" link level encapsulation. 

Enable the use of the Address Resolution Protocol in mapping between network level 
addresses and link level addresses (default). This is currently implemented for mapping 
between DARPA Internet addresses and lOMb/s Ethernet addresses. 

Disable the use of the Address Resolution Protocol. 

Last change: 9 September 1987 Sun Release 4.0 



IFCONFIG (SC) MAINTENANCE COMMANDS IFCONFIG (SC) 

metric n Set the routing metric of the interface ton, default 0. The routing metric is used by the 
routing protocol (routed(8c)). Higher metrics have the effect of making a route less 
favorable; metrics are counted as addition hops to the destination network or host. 

netmask mask (inet only) Specify how much of the address to reserve for subdividing networks into 
sub-networks. The mask includes the network part of the local address and the subnet 
part, which is taken from the host field of the address. The mask can be specified as a 
single hexadecimal number with a leading Ox, with a dot-notation Internet address, or 
with a pseudo-network name listed in the network table networks(5). The mask con
tains l's for the bit positions in the 32-bit address which are to be used for the network 
and subnet parts, and O's for the host part. The mask should contain at least the standard 
network portion, and the subnet field should be contiguous with the network portion. If 
a+ (plus sign) is given for the netmask value, then the network number is looked up in 
the netmasks.byaddr map of the Yellow Pages (or in the /etc/netmasks) file if not run
ning Yellow Pages. 

broadcast address 
(inet only) Specify the address to use to represent broadcasts to the network. The 
default broadcast address is the address with a host part of all O's. 

EXAMPLE 
If your workstation is not attached to an Ethernet, the ieO interface should be marked "down" as follows: 

if config ieO down 

FILES 
/etc/netmasks 

SEE ALSO 
intro(3N), netmasks(5), netstat(SC), rc(8) 

DIAGNOSTICS 
Messages indicating the specified interface does not exist, the requested address is unknown, or the user is 
not privileged and tried to alter an interface's configuration. 

Sun Release 4.0 Last change: 9 September 1987 1643 



INETD(8C) MAINTENANCE COMMANDS INETD(8C) 

NAME 
inetd - Internet services daemon 

SYNOPSIS 
/usr/etc/inetd [ -d ] [ configuration-file ] 

DESCRIPTION 
inetd, the Internet services daemon, is normally run at boot time by the /etdrc.local script. When started 
inetd reads its configuration information from configuration-file, the default being /etdinetd.conf. See 
inetd.conf(5) for more information on the format of this file. It listens for connections on the Internet 
addresses of the services that its configuration file specifies. When a connection is found, it invokes the 
server daemon specified by that configuration file for the service requested. Once a server is finished, inetd 
continues to listen on the socket (except in some cases which will be described below). 

Rather than having several daemon processes with sparsely distributed requests each running concurrently, 
inetd, reduces the load on the system by invoking Internet servers only as they are needed. 

inetd itself provides a number of simple TCP-based services. These include echo, discard, chargen (char
acter generator), daytime (human readable time), and time (machine readable time, in the form of the 
number of seconds since midnight, January 1, 1900). For details of these services, consult the appropriate 
RFC, as listed below, from the Network Information Center. 

inetd rereads its configuration file whenever it receives a hangup signal, SIGHUP. New services can be 
actived, and existing services deleted or modified in between whenever the file is reread. 

SEE ALSO 

1644 

inetd.conf(5), comsat(8C), ftpd(8C), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C), tftpd(8C) 

Postel, Jon, "Echo Protocol," RFC 862, Network Information Center, SRI International, Menlo Park, 
Calif., May 1983. 

Postel, Jon, "Discard Protocol," RFC 863, Network Information Center, SRI International, Menlo Park, 
Calif., May 1983. 

Postel, Jon, "Character Generater Protocol," RFC 864, Network Information Center, SRI International, 
Menlo Park, Calif., May 1983. 

Postel, Jon, "Daytime Protocol," RFC 867, Network Information Center, SRI International, Menlo Park, 
Calif., May 1983. 

Postel, Jon, and Ken Harrenstien, "Time Protocol," RFC 868, Network Information Center, SRI Interna
tional, Menlo Park, Calif., May 1983. 

Last change: 17 November 1987 Sun Release 4.0 



INFOCMP ( 8V) MAINTENANCE COMMANDS INFOCMP ( 8V) 

NAME 
inf ocmp - compare or print out terminfo descriptions 

SYNOPSIS 
infocmp [ -cdnlLCruvVl] [ -sd] [ -si] [ -sl] [ -sc] [ -w width] [-A directory] [-B directory] 

[ termname ... ] 

DESCRIPTION 
infocmp compares a binary terminfo(SV) entry with other terminfo entries, rewrites a terminfo descrip
tion to take advantage of the use= field, or prints out a term info description from the corresponding binary 
file in a variety of formats. It displays boolean fields first, then numeric fields, then string fields. 

It can also convert a terminfo entry to a termcap(5) entry; the -C flag causes infocmp to perform this 
conversion. Some termcap variables are not supported by terminfo, but those that can be derived from 
terminfo variables are displayed. Not all terminfo capabilities are translated either; only those that are 
allowed in a termcap entry are normally displayed. Specifying the -r option eliminates this restriction, 
allowing all capabilities to be displayed in termcap form. 

Because padding is collected at the beginning of a capability, not all capabilities are displayed. Since man
datory padding is not supported by terminfo and termcap strings are not as flexible, it is not always possi
ble to convert a terminfo string capability into an equivalent working termcap capability. Also, a subse
quent conversion of the termcap file back into terminfo format will not necessarily reproduce the original 
source; infocmp attempts to convert parameterized strings, and comments out those that it can not. 

Some common terminfo parameter sequences, their termcap equivalents, and some terminal types which 
commonly have such sequences, are: 

Terminfo 
%p1%c 
%p1%d 
%p1%'x'%+%c 
%i 
%pl %?%'x'%>%t%pl %'y'%+%; 
%p2 is printed before %pl 

Termcap 
%. 
%d 
%+x 
%i 
%>xy 
%r 

Representative Terminals 
adm 
hp, ANSI standard, vtlOO 
concept 
ANSI standard, vtlOO 
concept 
hp 

If no termname arguments are given, the environment variable TERM is used for all expected termname argu
ments. 

OPTIONS 
Default Options 

If no options are specified and either zero or one termname is specified, the -I option is assumed to be in 
effect. If more than one termname is specified, the -cl option is assumed. 

Comparison Options 
infocmp compares the description of the first terminal termname with each of the descriptions for terminals 
listed in subsequent termname arguments. If a capability is defined for only one of the terminals, the value 
returned will depend on the type of the capability: F for boolean variables, -1 for integer variables, and 
NULL for string variables. 

-c Produce a list of capabilities common to both entries. Capabilities that are not set are ignored. 
This option can be used as a quick check to see if the -u option is worth using. 

-d Produce a list of capabilities that differ between descriptions. 

-n Produce a list of capabilities in neither entry. 

Source Listing Options 

The -1, -L, and -C options produce a source listing for each terminal named. 

-I Use the terminfo names. 

-L Use the long C variable name listed in <term.h>. 

Sun Release 4.0 Last change: 26 February 1988 1645 



INFOCMP ( 8V) MAINTENANCE COMMANDS INFOCMP( 8V) 

-C Display only those capabilities that have termcap equivalents, using the termcap names and 
displaying them in termcap form whenever possible. 

The source produced by the -C option may be used directly as a termcap entry, but not all of the 
parameterized strings may be changed to the termcap format. All padding information for strings 
is collected together and placed at the beginning of the string where termcap expects it. Manda
tory padding (padding information with a trailing '/') will become optional. 

-r When using -C, display all capabilities, not just those capabilities that have termcap equivalents. 

-u Produce a term info source description for the first named terminal which is relative to the 
descriptions given by the entries for all terminals named subsequently on the command line, by 
analyzing the differences between them, and producing a description with use= fields for the other 
terminals. In this manner, it is possible to retrofit generic terminfo entries into a terminal's 
description. Or, if two similar terminals exist, but were coded at different times or by different 
people so that each description is a full description, using inf ocmp will show what can be done to 
change one description to be relative to the other. 

A capability is displayed with an at-sign (@) if it no longer exists in the first terminal, but one of 
the other terminal entries contains a value for it. A capability's value gets printed if the value in 
the first temzname is not found in any of the other termname entries, or if the first of the other 
termname entries has a different value for that capability. 

The order of the other termname entries is significant. Since the terminfo compiler tic(8V) does a 
left-to-right scan of the capabilities, specifying two use= entries that contain differing entries for 
the same capabilities will produce different results, depending on the order in which they are 
given. infocmp flags any such inconsistencies between the other termname entries as they are 
found. 

Alternatively, specifying a capability after a use= entry that contains it, will cause the second 
specification to be ignored. Using infocmp to recreate a description can be a useful check to 
make sure that everything was specified correctly in the original. 

Specifying superfluous use= slows down the comparison, but is not fatal; infocmp flags 
superfluous use= fields. 

Sorting Options 
-sd Sort fields in the order that they are stored in the terminfo database. 

-si Sort fields by term info name. 

-sl Sort fields by the long C variable name. 

-sc Sort fields by the termcap name. 

If no sorting option is given, fields are sorted alphabetically by the terminfo name within each 
type, except in the case of the -C or the -L options, which cause the sorting to be done by the 
termcap name or the long C variable name, respectively. 

Changing Databases 

1646 

The location of the compiled terminfo database is taken from the environment variable TERMINFO. If the 
variable is not defined, or if the terminal is not found in that location, the system terminfo database, usu
ally in /usr/share/Iib/terminfo, is used The options -A and -B may be used to override this location. 
With these options, it is possible to compare descriptions for a terminal with the same name located in two 
different databases. This is useful for comparing descriptions for the same terminal created by different 
people. 

-A Set TERMINFO for the first termname argument. 

-B Set TERMINFO for the remaining termname arguments. 

Last change: 26 February 1988 Sun Release 4.0 



INFOCMP ( 8V) MAINTENANCE COMMANDS INFOCMP ( 8V) 

Other Options 
-v Print out tracing information on the standard error. 

-V Print out the version of the program in use on the standard error and exit 

-1 Print fields out one to a line. Otherwise, fields are printed several to a line to a maximum width of 

FILES 

60 characters. 

-wwidth 
Change the output to width characters. 

/usr/share/lib/terminf o/? I• 
compiled terminal description database 

/usr/5include/term.h 

SEE ALSO 
curses(3V), termcap(5), terminfo(SV), tic(8V) 

DIAGNOSTICS 
malloc is out of space! 

There was not enough memory available to process all the terminal descriptions requested. Run 
infocmp in several smaller stages (with fewer termname arguments). 

use= order dependency found: 
A value specified in one relative terminal specification was different from that in another relative 
terminal specification. 

'use=term' did not add anything to the description. 
A relative terminal name did not contribute anything to the final description. 

must have at least two terminal names for a comparison to be done. 
The -u, -d and-c options require at least two terminal names. 

Sun Release 4.0 Last change: 26 February 1988 1647 



INIT(8) MAINTENANCE COMMANDS INIT(8) 

NAME 
init - process control initialization 

SYNOPSIS 
/usr/etc/init [ -bs] 

DESCRIPTION 

1648 

init is invoked inside the operating system as the last step in the boot procedure. It normally runs the 
sequence of commands in the script /etc/re.boot (see rc(8)) to check the file system. If passed the -b flag 
from the boot program, init skips this step. If the file system check succeeds or is skipped, init runs the 
commands in /etc/re and /etc/re.local to begin multiuser operation; otherwise it commences single-user 
operation by giving the super-user a shell on the console. It is possible to pass the -s parameter from the 
boot program to init so that single-user operation is commenced immediately. 

Whenever a single-user shell is created, and the system is running as a secure system, the init program 
demands the super-user password. This is to prevent an ordinary user from invoking a single-user shell and 
thereby circumventing the system's security. Logging out (for instance, by entering an EOT) causes init to 
proceed with a multi-user boot. The super-user password is demanded whenever the system is running 
secure as determined by issecure(3), or the terminal is labeled "secure" in /etc/ttytab. 

Whenever single-user operation is terminated (for instance by killing the single-user shell) init runs the 
scripts mentioned above. 

In multi-user operation, init's role is to create a process for each terminal port on which a user may log in. 
To begin such operations, it reads the file /etc/ttytab and executes a command for each terminal specified 
in the file. This command will usually be /usr/etc/getty. getty(8) opens and initializes the terminal line, 
reads the user's name and invokes login( 1) to log in the user and execute the shell. 

Ultimately the shell will terminate because it received EOF, either explicitly, as a result of hanging up, or 
from the user logging out The main path of init, which has been waiting for such an event, wakes up and 
removes the appropriate entry from the file /etc/utmp, which records current users. init then makes an 
entry in /var/adm/wtmp, which maintains a history of logins and logouts. The /var/adm/wtmp entry is 
made only if a user logged in successfully on the line. Then the appropriate terminal is reopened and the 
command for that terminal is reinvoked 

init catches the hangup signal (SIGHUP) and interprets it to mean that the file /etc/ttytab should be read 
again. The shell process on each line which used to be active in /etc/ttytab but is no longer there is ter
minated; a new process is created for each added line; lines unchanged in the file are undisturbed. Thus it 
is possible to drop or add terminal lines without rebooting the system by changing /etc/ttytab and sending 
a hangup signal to the init process: use 'kill-HUP 1'. 

init terminates multi-user operations and resumes single-user mode if sent a terminate (SIGTERM) signal: 
use 'kill-TERM l'. If there are processes outstanding which are deadlocked (due to hardware or software 
failure), init does not wait for them all to die (which might take forever), but times out after 30 seconds and 
prints a warning message. 

init ceases to create new processes, and allows the system to slowly die away, when sent a terminal stop 
(SIGTSTP) signal: use 'kill-TSTP l'. A later hangup will resume full multi-user operations, or a terminate 
will initiate a single-user shell. This hook is used by reboot(8) and halt(8). 

Whenever it reads /etc/ttytab, init will normally write out an old-style /etc/ttys file reflecting the contents 
of /etc/ttytab. This is required in order that programs built on earlier versions of SunOS that read the 
/etc/ttys file (for example, programs using the ttyslot(3) routine, such as shelltool (1)) may continue to run. 
If it is not required that such programs run, /etc/ttys may be made a link (hard or symbolic) to /etc/ttytab 
and init will not write to /etc/ttys. 

init's role is so critical that if it dies, the system will reboot itself automatically. If, at bootstrap time, the 
init program cannot be located, the system will print an error message and panic. 

Last change: 26 January 1988 Sun Release 4.0 



INIT(8) MAINTENANCE COMMANDS IN1T(8) 

DIAGNOSTICS 

FILES 

command failing, sleeping. 
A process being started to service a line is exiting quickly each time it is started. This is often 
caused by a ringing or noisy terminal line. init will sleep for 30 seconds, then continue trying to 

start the process. 

WARNING: Something is bung (won't die); ps axl advised. 
A process is hung and could n,ot be killed when the system was shutting down. This is usually 
caused by a process which is stuck in a device driver due to a persistent device error condition. 

/dev/console 
/dev/tty• 
/etc/utmp 
/var/adm/wtmp 
I etc/ttytab 
/etc/re 
/ etc/re.local 
/etc/re.boot 
/usr/etc/getty 

SEE ALSO 
kill(l), login(l), sb(l), shelltool(l), issecure(3), ttyslot(3), ttytab(5), getty(8), halt(8), rc(8), reboot(8), 
sbutdown(8) 

Sun Release 4.0 Last change: 26 January 1988 1649 



INST ALLBOOT ( 8S) MAINTENANCE COMMANDS INST ALLBOOT ( 8S) 

NAME 
installboot - install bootblocks in a disk partition 

SYNOPSIS 
/usr/mdec/installboot [ -vlt ] bootfile protobootblk bootdevice 

DESCRIPTION 
The boot(8S) program is loaded from disk by bootblock code which resides in the bootblock area of a disk 
partition. In order for the bootblock code to read the boot program (usually /boot) it is necessary for it to 
know the block numbers occupied by the boot program. Previous versions of the bootblock code could 
find /boot by interpreting the file system on the partition from which it was being booted, but this is no 
longer so. 

installboot plugs the block numbers of the boot program into a table in the bootblock code, and writes the 
modified bootblock code onto the disk. Note carefully that installboot must be run every time the boot 
program is reinstalled, since in general, the block list of the boot program will change each time it is writ
ten. 

bootfile is the name of the boot program, usually /boot. protobootblk is the name of the bootblock code 
into which the block numbers of the boot program are to be inserted. The file read in must have an 
a.out(5) header, but it will be written out to the device with the header removed. bootdevice is the name of 
the disk device onto which the bootblock code is to be installed. 

You can see how installboot works by making the destination a regular file instead of a device, and exa
mining the result with od(l V). 

OPTIONS 
-v Verbose. Display detailed information about the size of the boot program, etc. 

-I Print out the list of block numbers of the boot program. 

-t Test. Display various internal test messages. 

EXAMPLE 
To install the bootblocks onto the root partition on a Xylogics disk: 

example% cd /usr/mdec 
example% installboot-vlt /boot bootxy /dev/xyOa 

For an SD disk, you would use bootsd and /dev/sdOa, respectively, in place of bootxy and /dev/xyOa. 

SEE ALSO 
od(lV), init(8), boot(8S), bootparamd(8), kadb(8S), ndbootd(8C), monitor(8S), rc(8), reboot(8) 

System and Network Administration 

Installing the SunOS 

1650 Last change: 10 January 1988 Sun Release 4.0 



I0STAT(8) MAINTENANCE COMMANDS I0STAT(8) 

NAME 
iostat - report 1/0 statistics 

SYNOPSIS 
iostat [ interval [ count ] ] 

DESCRIPTION 

FILES 

iostat iteratively reports the number of characters read and written to terminals, and, for each disk, the 
number of kilobytes transferred per second, and the milliseconds per average seek. It also gives the per
centage of time the system has spent in user mode, in user mode running low priority (niced) processes, in 
system mode, and idling. 

To compute this information, for each disk, seeks and data transfer completions and number of words 
transferred are counted; for terminals collectively, the number of input and output characters are counted. 
Also, each fiftieth of a second, the state of each disk is examined and a tally is made if the disk is active. 
From these numbers and given the transfer rates of the devices approximate average seek times are calcu
lated for each device. 

The optional interval argument causes iostat to report once each interval seconds. The first report is for 
all time since a reboot and each subsequent report is for the last interval only. 

The optional count argument restricts the number of reports. 

/dev/kmem 
/vmunix 

SEE ALSO 
vmstat(8) 

Sun Release 4.0 Last change: 9 September 1987 1651 



IP ALLOCD ( 8C) MAINTENANCE COMMANDS IP ALLOCD ( 8C) 

NAME 
ipallocd- Ethernet-to-IP address allocator 

SYNOPSIS 
/usr/etc/rpc.ipallocd 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

ipallocd is a daemon that determines or temporarily allocates IP addresses within a network segment. It has 
complete knowledge of the hosts listed in the yellow pages, and, if the system is running the name server, 
of any hosts listed in internet domain tables automatically accessed on that host through the standard 
library gethostbyaddr() call. 

This protocol uses DES authentication (the Sun Secure RPC protocol) to restrict access to this function. The 
only clients privileged to allocate addresses are those whose net IDs are in the networks group. For machine 
IDs, the machine must be a YP server. 

The daemon uses permanent entries in the !etc/ethers and !etc/hosts files when they exist and are usable. In 
other cases, such as when a system is new to the network, ipallocd will enter a temporary mapping in a 
local cache. Entries in the cache are removed when there have been no references to a given entry in a 24-
hour period. This cache survives system crashes so that IP addresses will remain consistent. 

The daemon also provides corresponding IP address to name mapping. 

ipallocd refuses to allocate addresses on networks not listed in the netrange file, or for which no free 
address is available. 

I etc/ ez/ipalloc.cache 
I etc/ ez/ipalloc.netrange 

SEE ALSO 
pnp(3R), ipalloc(3R), ipallocd(8C), pnpboot(8C), netconfig(8C) 

1652 Last change: 4 December 1987 Sun Release 4.0 



KADB (8S) MAINTENANCE COMMANDS KADB (8S) 

NAME 
kadb - adb-like kernel and standalone-program debugger 

SYNOPSIS 
> b kadb [ -d ] [ boot-flags ] 

DESCRIPTION 
kadb is an interactive debugger that is similar in operation to adb(l), and runs as a standalone program 
under the PROM monitor. You can use kadb to debug the kernel, or to debug any standalone program. 

Unlike adb, kadb runs in the same supervisor virtual address space as the program being debugged -
although it maintains a separate context. The debugger runs as a coprocess that cannot be killed (no ':k') 
or rerun (no ':r'). There is no signal control (no ':i', ':t', or '$i'), although the keyboard facilities 
(CTRL-C, CTRL-S, and CTRL-Q) are simulated. 

While the kernel is running under kadb, the abort sequence (Ll-A or BREAK) drops the system into kadb 
for debugging - as will a system panic. When running other standalone programs under kadb, the abort 
sequence will pass control to the PROM monitor. kadb is then invoked from the monitor by jumping to the 
starting address for kadb found in /usr/include/debug/debug.h (currently this can be done for both Sun-2 
and Sun-3 system machines with the monitor command 'g fdOOOOO', and with the monitor command 'g 
fe005000' for Sun386i systems). kadb's user interface is similar to adb. Note: kadb prompts with 

kadb> 

Most adb commands function in kadb as expected. Typing an abort sequence in response to the prompt 
returns you to the PROM monitor, from which you can examine control spaces that are not accessible 
within adb or kadb. The PROM monitor command c will return control to kadb. As with "adb -k", $p 
works when debugging kernels (by actually mapping in new user pages). The verbs ? and/ are equivalent 
in kadb , since there is only one address space in use. 

OPTIONS 

USAGE 

kadb is booted from the PROM monitor as a standalone program. If you omit the -d flag, kadb automati
cally loads and runs vmunix from the filesystem kadb was loaded from. The kadb vmunix variable can 
be patched to change the default program to be loaded. 

-d Interactive startup. Prompts with 
kadb: 

for a file to be loaded. From here, you can enter a boot sequence line to load a standalone pro
gram. Boot flags entered in response to this prompt are included with those already set and passed 
to the program. If you type a RETURN only, kadb loads vmunix from the filesystem that kadb 
was loaded from. 

boot-flags 
You can specify boot flags as arguments when invoking kadb. Note: kadb always sets the -d 
( debug) boot flag, and passes it to the program being debugged. 

Refer to adb in Debugging Tools. 

Kernel Macros 
As with adb, kernel macros are supported. With kadb, however, the macros are compiled into the 
debugger itself, rather than being read in from the filesystem. The kadb command $M lists macros known 
to kadb. 

Setting Breakpoints 
Self-relocating programs such as the Sun0S kernel need to be relocated before breakpoints can be used. 
To set the first breakpoint for such a program, start it with ':s'; kadb is then entered after the program is 
relocated (when the system initializes its interrupt vectors). Thereafter, ':s' single-steps as with adb. Oth
erwise, use ':c' to start up the program. 

Sun Release 4.0 Last change: 24 February 1988 1653 



KADB(8S) MAINTENANCE COMMANDS KADB(8S) 

Sun386i System Commands 
The Sun386i system version of kadb has the following additional commands. Note, for the general syntax 
of adb commands, see adb(l). 

:i 

:o 

:p 

$S 
[ 

] 

Read a byte (with the INB instruction) in from the port at address. 

Send a byte (with the -OUTB instruction) containing count out through the port at 
address. 

Like :b in adb(l), but sets a breakpoint using the hardware debug register instead 
of the breakpoint instruction. The advantage of using :p is that when setting break
points with the debug register it is not necessary to have write access to the break
point location. Four (4) breakpoints can be set with the hardware debug registers. 

Switch I/0 from the console to the serial port or vice versa. 

Like :e in adb(l), but requires only one keystroke and no RETURN character. 

Like :sin adb(l), but requires only one keystroke and no RETURN character. 

Automatic Rebooting with kadb 

FILES 

You can set up your workstation to automatically reboot kadb by patching the vmunix variable in /boot 
with the string kadb. (Refer to adb in Debugging Tools for details on how to patch executables.) 

/vmunix 
/boot 
/kadb 
/usr/include/debug/ debug.h 

SEE ALSO 

BUGS 

1654 

adb(l), boot(8S) 

Debugging Tools 
Writing Device Drivers 

There is no floating-point support, except on Sun386i systems. 

kadb cannot reliably single-step over instructions that change the status register. 

When sharing the keyboard with the operating system the monitor's input routines can leave the keyboard 
in a confused state. If this should happen, disconnect the keyboard momentarily and then reconnect it. 
This forces the keyboard to reset as well as initiating an abort sequence. 

Most of the bugs listed in adb(l) also apply to kadb. 

Last change: 24 February 1988 Sun Release 4.0 



KEYENVOY ( 8C) MAINTENANCE COMMANDS KEYENVOY(8C) 

NAME 
keyenvoy - talk to keyserver 

SYNOPSIS 
keyenvoy 

DESCRIPTION 
keyenvoy is used by some RPC programs to talk to the key server, keyserv(8C). The key server will not 
talk to anything but a root process, and keyenvoy is a set-uid root process that acts as an intermediary 
between a user process that wishes to talk to the key server and the key server itself. 

This program cannot be run interactively. 

SEE ALSO 
keyserv(8C) 

Sun Release 4.0 Last change: 9 September 1987 1655 



KEYSERV ( 8C) MAINTENANCE COMMANDS KEYSERV ( 8C) 

NAME 
keyserv - server for storing public and private keys 

SYNOPSIS 
keyserv [ -n ] 

DESCRIPTION 
keyserv is a daemon that is used for storing the private encryption keys of each user logged into the sys
tem. These encryption keys are using for accessing secure network services such as secure NFS. When a 
user logs in to the system, the login(l) program uses the login password to decrypt the user's encryption 
key stored in the Yellow Pages, and then gives the decrypted key to the keyserv daemon to store away. 

Normally, root's key is read from the file /etc/.rootkey when the daemon starts up. This is useful during 
power-fail reboots when no one is around to type a password, yet you still want the secure network services 
to operate normally. 

OPTIONS 

FILES 

-n Do not read root's key from /etc/.rootkey. Instead, prompt the user for the password to decrypt 
root 's key stored in the Yellow Pages and then store the decrypted key in /etc/.rootkey for future 
use. This option is useful if the /etc/.rootkey file ever gets out of date or corrupted. 

I etc/ .rootkey 

SEE ALSO 
Iogin(l), publickey(5) 

1656 Last change: 9 September 1987 Sun Release 4.0 



KGMON(8) MAINTENANCE COMMANDS KGMON(8) 

NAME 
kgmon- generate a dump of the operating system's profile buffers 

SYNOPSIS 
/usr/etc/kgmon [ -bhpr ] [filesystem ] [ memory ] 

DESCRIPTION 
kgmon is a tool used when profiling the operating system. When no arguments are supplied, kgmon indi
cates the state of operating system profiling as running, off, or not configured (see config(8)). If the -p flag 
is specified, kgmon extracts profile data from the operating system and produces a gmon.out file suitable 
for later analysis by gprof(l). 

OPTIONS 

FILES 

-b 

-h 

-p 

-r 

Resume the collection of profile data. 

Stop the collection of profile data. 

Dump the contents of the profile buffers into a gmon.out file. 

Reset all the profile buffers. If the -p flag is also specified, the gmon.out file is generated before 
the buffers are reset 

If neither -b nor -h is specified, the state of profiling collection remains unchanged. For example, if the 
-p flag is specified and profile data is being collected, profiling is momentarily suspended, the operating 
system profile buffers are dumped, and profiling is immediately resumed. 

/vmunix 
/dev/kmem 
gmon.out 

the default system 
the default memory 

SEE ALSO 
gprof( 1 ), config(8) 

DIAGNOSTICS 
Users with only read permission on /dev/kmem cannot change the state of profiling collection. They can 
get a gmon.out file with the warning that the data may be inconsistent if profiling is in progress. 

Sun Release 4.0 Last change: 9 September 1987 1657 



LDCONFIG ( 8) MAINTENANCE COMMANDS LDCONFIG ( 8) 

NAME 
ldconfig- link-editor configuration 

SYNOPSIS 
/usr/etc/ldconfig [ directory ... ] 

DESCRIPTION 

FILES 

ldconfig is used to configure a performance-enhancing cache for the run-time link-editor, Id.so. It is run 
from /etc/re.local and periodically via cron to avoid linking with stale libraries. It should be also be run 
manually when a new shared object (e.g., a shared library) is installed on the system. 

When invoked with no arguments, a default set of directories are built into the cache - these are the direc
tories searched by default by the link editors. Additional directories may be specified on the command 
line. 

I etc/Id.so.cache 

SEE ALSO 

holds the cached data. 

ld(l) 

1658 Last change: 28 November 1987 Sun Release 4.0 



LINK(8) MAINTENANCE COMMANDS 

NAME 
link, unlink- exercise link and unlink system calls 

SYNOPSIS 
/usr/etcllinkfilenamel filename2 

/usr/etc/unlinkfi/ename 

DESCRIPTION 

LINK(8) 

link and unlink perform their respective system calls on their arguments, abandoning all error checking. 

SEE ALSO 
rm(l), link(2), unlink(2) 

WARNINGS 
Only the super-user can unlink a directory, in which case the files it contains are lost. The files can, how
ever, be recovered from the file system's lost+found directory after performing an fsck. 

If you have write permission on the directory in which filename resides, unlink removes that file without 
warning, regardless of its ownership. 

Sun Release 4.0 Last change: 20 January 1988 1659 



LOCKD(8C) MAINTENANCE COMMANDS LOCKD(8C) 

NAME 
lockd - network lock daemon 

SYNOPSIS 
/etc/rpc.lockd [ -t timeout] [ -g graceperiod] 

DESCRIPTION 
Iockd processes lock requests that are either sent locally by the kernel or remotely by another lock daemon. 
lockd forwards lock requests for remote data to the server site's lock daemon through the RPC/XDR(3N) 
package. lockd then requests the status monitor daemon, statd(8C), for monitor service. The reply to the 
lock request will not be sent to the kernel until the status daemon and the server site's lock daemon have 
replied. 

If either the status monitor or server site's lock daemon is unavailable, the reply to a lock request for 
remote data is delayed until all daemons become available. 

When a server recovers, it waits for a grace period for all client site lockds to submit reclaim requests. 
Client site lockds, on the other hand, are notified by the statd of the server recovery and promptly resubmit 
previously granted lock requests. If a lockd fails to secure a previously granted lock at the server site, the 
lockd sends SIGLOST to a process. 

OPTIONS 
-t timeout 

Use timeout (seconds) as the interval instead of the default value (15 seconds) to retransmit lock 
request to the remote server. 

-g graceperiod 
Use graceperiod (seconds) as the grace period duration instead of the default value (45 seconds). 

SEE ALSO 
fcntl(2V), lockf(3), signal(3), statd(8C) 

1660 Last change: 9 September 1987 Sun Release 4.0 



LOGINTOOL ( 8) MAINTENANCE COMMANDS LOGINTOOL ( 8) 

NAME 
logintool - graphic login interface 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

logintool is invoked by getty(8) to display a full screen window for logging in. It cannot be run from the 
shell. It is more attractive than the traditional 'login:' prompt, and also provides help for the person 
without a username and information about the workstation. 

logintool is noramlly invoked on the console by getty(8), and works only on a frame buffer. 

If the "newlogin" policy in the "policies" YP map is set to "unrestricted," then logintool may create new 
user accounts in the Yellow Pages. The account resides on the local system if it is diskful, or on the 
system's boot server if the local system is diskless. 

lusr!share!lib!ez!login 

SEE ALSO 
getty(8) 

Sun Release 4.0 Last change: 19 February 1988 1661 



LPC(8) MAINTENANCE COMMANDS LPC(8) 

NAME 
lpc - line printer control program 

SYNOPSIS 
/usr/etc/Ipc [ command [parameter. . . ] ] 

DESCRIPTION 

USAGE 

lpc controls the operation of the printer, or of multiple printers, as described in the /etc/printcap database. 
Ipc commands can be used to start or stop a printer, disable or enable a printer's spooling queue, rearrange 
the order of jobs in a queue, or display the status of each printer-along with its spooling queue and printer 
daemon. 

With no arguments, Ipc runs interactively, prompting with Ipc>. If arguments are supplied, lpc interprets 
the first as a command to execute; each subsequent argument is taken as a parameter for that command 
The standard input can be redirected so that lpc reads commands from a file. 

Commands 

1662 

Commands may be abbreviated to an unambiguous substring. Note: the printer parameter is specified just 
by the name of the printer (as lw), not as you would specify it to Ipr(l) or lpq(l) (not as -Plw). 
? [command] ... 
help [command] ... 

Display a short description of each command specified in the argument list, or, if no arguments are 
given, a list of the recognized commands. 

abort [ all I [printer ... ]] 
Terminate an active spooling daemon on the local host immediately and then disable printing 
(preventing new daemons from being started by lpr(l)) for the specified printers. The abort com
mand can only be used by the super-user. 

clean [ all I [printer ... ]] 
Remove all files with names beginning with cf, tf, or df from the specified printer queue(s) on the 
local machine. The clean command can only be used by the super-user. 

disable [ all I [printer ... ] ] 
Tum the specified printer queues off. This prevents new printer jobs from being entered into the 
queue by lpr(l). The disable command can only be used by the super-user. 

down [ all I [printer ... ] ] [message] 
Tum the specified printer queue off, disable printing and put message in the printer status file. The 
message doesn't need to be quoted, the remaining arguments are treated like echo(l V). This is 
normally used to take a printer down and let others know why (lpq(l) indicates that the printer is 
down, as does the status command). 

enable [ all I [printer ... ] ] 

exit 

Enable spooling on the local queue for the listed printers, so that lpr(l) can put new jobs in the 
spool queue. The enable command can only be used by the super-user. 

quit Exit from lpc. 

restart [ all I [printer ... ]] 
Attempt to start a new printer daemon. This is useful when some abnormal condition causes the 
daemon to die unexpectedly leaving jobs in the queue. lpq(l) reports that there is no daemon 
present when this condition occurs. This command can be run by any user. 

start [ all I [printer ... ]] 
Enable printing and start a spooling daemon for the listed printers. The start command can only 
be used by the super-user. 

Last change: 9 September 1987 Sun Release 4.0 



LPC(8) 

FILES 

MAINTENANCE COMMANDS LPC(8) 

status [ all I [printer ... ]] 
Display the status of Gaemons and queues on the local machine. This command can be run by any 
user. 

stop [ all I [printer ... ] ] 
Stop a spooling daemon after the current job completes and disable printing. The stop command 
can only be used by the super-user. 

topq printer [job# ... ] [ user ... ] 
Move the print job(s) specified by job# or those job(s) belonging to user to the top (head) of the 
printer queue. The topq command can only be used by the super-user. 

up [ all I [printer ... ] ] Enable everything and start a new printer daemon. Undoes the effects of down. 

/etc/printcap 
/var/spool/• 
/var/spool/•/Iock 

printer description file 
spool directories 
lock file for queue control 

SEE ALSO 
lpq(l), lpr(l), lprm(l), printcap(5), lpd(8) 

DIAGNOSTICS 
? Ambiguous command 

The abbreviation you typed matches more than one command. 

?Invalid command 
You typed a command or abbreviation that was not recognized. 

?Privileged command 
You used a command can be executed only by the super-user. 

Sun Release 4.0 Last change: 9 September 1987 1663 



LPD(8) MAINTENANCE COMMANDS LPD(8) 

NAME 
lpd - printer daemon 

SYNOPSIS 
/usr/Iib/lpd [-I] [ -L logfile] [port#] 

DESCRIPTION 
lpd is the line printer daemon (spool area handler). It is normally invoked at boot time from the rc(8) 
script, making a single pass through the printcap{5) file to find out about the existing printers and printing 
any files left after a crash. It then accepts requests to print files in a queue, transfer files to a spooling area, 
display a queue's status, or remove jobs from a queue. In each case, it forks a child process for each 
request, and continues to listen for subsequent requests. 

The Internet port number used to communicate with other processes is normally obtained with 
getservent(3N), but can be specified with the port# argument. 

OPTIONS 
-I Log valid requests received from the network. This can be useful for debugging purposes. 

-L logfile 
Change the file used for writing error conditions to logfile. The default is to report a message using 
the syslog(3) facility. 

OPERATION 
Access Control 

Access control is provided by two means. First, all requests must come from one of the machines listed in 
either the file /etc/hosts.equiv or /etc/hosts.lpd. Second, if the rs capability is specified in the printcap 
entry, lpr(l) requests are only be honored for users with accounts on the printer host 

Lock File 
The lock file in each spool directory is used to prev.ent multiple daemons from becoming active, and to 
store information about the daemon process for lpr(l), lpq(l), and lprm(l). 

lpd uses 8ock(2) to provide exclusive access to the lock file and to prevent multiple daemons from becom
ing active simultaneously. If the daemon should be killed or die unexpectedly, the lock file need not be 
removed. The lock file is kept in a readable ASCII form and contains two lines. The first is the process id 
of the gaemon and the second is the control file name of the current job being printed. The second line is 
updated to reflect the current status of lpd for the programs lpq(l) and lprm(l). 

Control Files 

1664 

After the daemon has successfully set the lock, it scans the directory for files beginning with er. Lines in 
each cf file specify files to be printed or non-printing actions to be performed. Each such line begins with a 
key character that indicates what to do with the remainder of the line. 

J Job name to print on the burst page. 
C Classification line on the burst page. 
L Literal. This line contains identification information from the password file, and causes a 

burst page to be printed. 
T Title string for page headings printed by pr(l V). 
H Hostname of the machine where lpr( 1) was invoked. 
P Person. Login name of the person who invoked lpr(l). This is used to verify ownership 

by lprm(l). 
M Send mail to the specified user when the current print job completes. 
f Formatted File, the name of a file to print that is already formatted. 
I Like f, but passes control characters along, and does not make page breaks. 
p Name of a file to print using pr(l V) as a filter. 
t Troff File. The file contains trofT(l) output (cat phototypesetter commands). 
n Ditroff File. The file contains device independent troff output. 
d DVI File. The file contains TEX output (DVI format from Stanford). 
g Graph File. The file contains data produced by plot(3X). 

Last change: 9 September 1987 Sun Release 4.0 



LPD(8) MAINTENANCE COMMANDS LPD(8) 

c Cifplot File. The file contains data produced by cifplot. 
v The file contains a raster image. 
r The file contains text data with FORTRAN carriage control characters. 
1 Troff Font R. The name of a font file to use instead of the default. 
2 Troff Font I. The name of the font file to use instead of the default. 
3 Troff Font B. The name of the font file to use instead of the default 
4 Troff Font S. The name of the font file to use instead of the default. 
W Width. Changes the page width (in characters) used by pr(lV) and the text filters. 
I Indent. Specify the number of characters by which to indent the output. 
U Unlink. The name of file to remove upon completion of printing. 
N Filename. The name of the file being printed, or a blank for the standard input (when 

lpr(l) is invoked in a pipeline). 

Data Files 
If a file can not be opened, an error message is logged using the LOG_LPR facility of syslog(3). lpd will 
try up to 20 times to reopen a file it expects to be there, after which it proceeds to the next file or job. 

Minfree File 

FILES 

The file minfree in each spool directory contains the number of disk blocks to leave free so that the line 
printer queue won't completely fill the disk. The minfree file can be edited with your favorite text editor. 

/etc/printcap 
/var/spool/• 
/var/spool/•/minfree 
/dev/lp* 
/dev/printer 
/ etc/hosts.equiv 
I etc/hosts.Ip r 

printer description file 
spool directories 
minimum free space to leave 
line printer devices 
socket for local requests 
hosts allowed equivalent host access 
hosts allowed printer access only 

SEE ALSO 
lpr(l), lpq(l), lprm(l), printcap(S), lpc(8), pac(8) 

Sun Release 4.0 Last change: 9 September 1987 1665 



MAILSTATS(8) MAINTENANCE COMMANDS MAILSTATS(8) 

NAME 
mailstats - print statistics collected by send.mail 

SYNOPSIS 
/usr/etc/mailstats [filename ] 

DESCRIPTION 

FILES 

mailstats prints out the statistics collected by the sendmail program on mailer usage. These statistics are 
collected if the file indicated by the S configuration option of sendmail exists. The mailstats program first 
prints the time that the statistics file was created and the last time it was modified. It will then print a table 
with one row for each mailer specified in the configuration file. The first column is the mailer number, fol
lowed by the symbolic name of the mailer. The next two columns refer to the number of messages 
received by sendmail, and the last two columns refer to messages sent by sendmail. The number of mes
sages and their total size (in 1024 byte units) is given. No numbers are printed if no messages were sent (or 
received) for any mailer. 

You might want to add an entry to /var/spool/cron/crontab/root to reinitialize the statistics file once a 
night. Copy /dev/null into the statistics file or otherwise truncate it to reset the counters. 

/etc/sendmail.st default statistics file 
/etc/sendmail.cf sendmail configuration file 
/var/spool/cron/crontab/root 
/dev/null 

SEE ALSO 
sendmail(8) 

BUGS 

1666 

Mailstats should read the configuration file instead of having a hard-wired table mapping mailer numbers to 
names. 

Last change: 9 September 1987 Sun Release 4.0 



MAKEDBM(8) MAINTENANCE COMMANDS MAKEDBM(8) 

NAME 
makedbm - make a Yellow Pages dbm file 

SYNOPSIS 
makedbm [ -b ] [ -i yp _input _file ] [ -o yp _output_ name ] [ -d yp _domain_ name ] 

[ -m yp _master_ name ] infile outfile 

makedbm [ -u dbmfilename ] 

DESCRIPTION 
makedbm talces infile and converts it to a pair of files in ndbm(3) format, namely outfile .pag and 
outfile .dir. Each line of the input file is converted to a single dbm record. All characters up to the first 
TAB or SPACE form the key, and the rest of the line is the data. If a line ends with'\', then the data for that 
record is continued on to the next line. It is left for the clients of the Yellow Pages to interpret #; mak
edbm does not itself treat it as a comment character. infile can be '-', in which case the standard input is 
read. 

makedbm is meant to be used in generating dbm files for the Yellow Pages, and it generates a special 
entry with the key yp _last_ modified, which is the date of infile (or the current time, if infile is'-'). 

OPTIONS 
-b 

-i 

Interdomain. Propagate a map to all servers using the interdomain name server named(8C). 

Create a special entry with the key yp _input _file. 

-o Create a special entry with the key yp _output_ name. 

-d Create a special entry with the key yp _domain_ name. 

-m Create a special entry with the key yp _master_ name. If no master host name is specified, 
yp _master_ name will be set to the local host name. 

-u Undo a dbm file. That is, print out a dbm file one entry per line, with a single space separating 
keys from values. 

EXAMPLE 
It is easy to write shell scripts to convert standard files such as /etc/passwd to the key value form used by 
makedbm. For example, 

#!/bin/awk -f 
BEGIN { FS = ":"; OFS = "\t";} 
{ print $1, $0 } 

takes the /etc/passwd file and converts it to a form that can be read by makedbm to make the Yellow 
Pages file passwd.byname. That is, the key is a username, and the value is the remaining line in the 
I etc/passwd file. 

SEE ALSO 
yppasswd(l), ndbm(3), named(8C) 

Sun Release 4.0 Last change: 9 September 1987 1667 



MAKEDEV(8) MAINTENANCE COMMANDS MAKEDEV(8) 

NAME 
makedev, MAKEDEV - make system special files 

SYNOPSIS 
/dev/MAKEDEV device-name .. . 

DESCRIPTION 
MAKEDEV is a shell script normally used to install special files. It resides in the /dev directory, as this is 
the normal location of special files. Arguments to MAKEDEV are usually of the form device-name? 
where device-name is one of the supported devices listed in section 4 of the manual and '?' is a logical unit 
number (0-9). A few special arguments create assorted collections of devices and are listed below. 

std Create the standard devices for the system; for example, /dev/console, /dev/tty. 

local Create those devices specific to the local site. This request runs the shell file 
/dev/MAKEDEV.local. Site specific commands, such as those used to setup dialup lines as 
''ttyd?'' should be included in this file. 

Since all devices are created using mknod(8), this shell script is useful only to the super-user. 

DIAGNOSTICS 
Either self-explanatory, or generated by one of the programs called from the script. Use sh -x MAKEDEV 
in case of trouble. 

SEE ALSO 
intro(4), config(8), mknod(8) 

1668 Last change: 9 September 1987 Sun Release 4.0 



MAKEKEY(8) MAINTENANCE COMMANDS MAKEKEY(8) 

NAME 
makekey - generate encryption key 

SYNOPSIS 
/usr/Iib/makekey 

DESCRIPTION 
makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of 
time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes on its 
standard output. The output depends on the input in a way intended to be difficult to compute (that is, to 
require a substantial fraction of a second). 

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are best 
chosen from the set of digits, upper- and lower-case letters, and '.' and 'l'. The salt characters are 
repeated as the first two characters of the output. The remaining 11 output characters are chosen from the 
same set as the salt and constitute the output key. 

The transformation performed is essentially the following: the salt is used to select one of 4096 crypto
graphic machines all based on the National Bureau of Standards DES algorithm, but modified in 4096 dif
ferent ways. Using the input key as key, a constant string is fed into the machine and recirculated a 
number of times. The 64 bits that come out are distributed into the 66 useful key bits in the result. 

makekey is intended for programs that perform encryption (for instance, ed(l) and crypt(l)). Usually 
makekey' s input and output will be pipes. 

SEE ALSO 
crypt(l), ed(l) 

Sun Release 4.0 Last change: 9 September 1987 1669 



MC68881 VERSION ( 8 ) MAINTENANCE COMMANDS MC68881 VERSION ( 8) 

NAME 
mc68881 version - print the MC68881 mask number and approximate clock rate 

SYNOPSIS 
/usr/etc/mc68881 version 

AVAILABILITY 
Sun-2, Sun-3, and Sun-4 systems only. 

DESCRIPTION 
mc68881 version determines whether an MC68881 or MC68882 floating-point coprocessor is available, and 
if so, determines its apparent mask number and approximate clock rate and prints them on the standard out
put. The clock rate is derived by timing floating-point operations with getrusage(2) and is thus somewhat 
variable. 

SEE ALSO 
getrusage(2) 

1670 Last change: 18 February 1988 Sun Release 4.0 



MCONNECT ( 8) MAINTENANCE COMMANDS MCONNECT ( 8 ) 

NAME 
mconnect - connect to SMTP mail server socket 

SYNOPSIS 
/usr/etc/mconnect [ -p port ] [ -r ] [ hostname ] 

DESCRIPTION 
mconnect opens a connection to the mail server on a given host, so that it can be tested independently of 
all other mail software. If no host is given, the connection is made to the local host. Servers expect to 
speak the Simple Mail Transfer Protocol (SMTP) on this connection. Exit by typing the quit command. 
Typing EOF will send an end of file to the server. An interrupt closes the connection immediately and 
exits. 

OPTIONS 
-p port Specify the port number instead of the default SMTP port (number 25) as the next argument. 

-r ''Raw'' mode: disable the default line buffering and input handling. This gives you a similar 
effect as telnet to port number 25, not very useful. 

FILES 
/usr/Iib/sendmail.hf help file for SMTP commands 

SEE ALSO 
sendmail(8) 

Postel, Jonathan B Simple Mail Transfer Protocol, RFC821 August 1982, SRI Network Information Center 

Sun Release 4.0 Last change: 9 September 1987 1671 



MKFILE(8) MAINTENANCE COMMANDS MKFILE(8) 

NAME 
mkfile - create a file 

SYNOPSIS 
mkfile [ -nv] size[klblm]filename ... 

DESCRIPTION 
mkfile creates one or more files that are suitable for use as NFS-mounted swap areas. The sticky bit is set, 
and the file is padded with zeroes by default. The default size is in bytes, but it can be flagged as kilobytes, 
blocks, or megabytes, with the k, b, or m suffixes, respectively. 

OPTIONS 

1672 

-n Create an empty filename. The size is noted, but disk blocks aren't allocated until data is written 
to them. 

-v Verbose. Report the names and sizes of created files. 

Last change: 1 March 1988 Sun Release 4.0 



MKFS(8) MAINTENANCE COMMANDS MKFS(8) 

NAME 
mkfs - construct a file system 

SYNOPSIS 
/usr/etc/mkfs [ -N] special size [ nseet] [ ntraek] [ blksize ] [fragsize ] [ nepg ] [ minfree ] 

[ rps ] [ nbpi ] [ opt ] [ ape ] [ rot ] 

DESCRIPTION 
Note: file systems are normally created with the newfs(8) command. 

mkfs constructs a file system by writing on the special file special unless the -N flag has been specified. 
The numeric size specifies the number of sectors in the file system. mkfs builds a file system with a root 
directory and a lost+found directory (see fsck(8)). The number of inodes is calculated as a function of the 
file system size. No boot program is initialized by mkfs (see newfs(8)). 

OPTIONS 
The optional arguments allow fine tune control over the parameters of the file system. 

nseet The number of sectors per track on the disk. The default is 32. 

ntraek The number of tracks per cylinder on the disk. The default is 16. 

blksize The primary block size for files on the file system. It must be a power of two, currently selected 
from 4096 or 8192 (the default). 

fragsize The fragment size for files on the file system. The fragsize represents the smallest amount of disk 
space that will be allocated to a file. It must be a power of two currently selected from the range 
512 to 8192. The default is 1024. 

nepg The number of disk cylinders per cylinder group. This number must be in the range 1 to 32. The 
default is 16. 

minfree The minimum percentage of free disk space allowed. Once the file system capacity reaches this 
threshold, only the super-user is allowed to allocate disk blocks. The default value is 10%. 

rps The rotational speed of the disk, in revolutions per second. The default is 60. 

nbpi The number of bytes for which one inode block is allocated. This parameter is currently set at one 
inode block for every 2048 bytes. 

opt Space or time optimization preference; s specifies optimization for space, t specifies optimization 
for time. The default is t. 

ape The number of alternates per cylinder (SCSI devices only). The default is 0. 

rot The expected time (in milliseconds) to service a transfer completion interrupt and initiate a new 
transfer on the same disk. It is used to decide how much rotational spacing to place between suc
cessive blocks in a file. 

Users with special demands for their file systems are referred to the paper cited below for a discussion of 
the tradeoffs in using different configurations. 

SEE ALSO 
dir(5), fs(5}, fsck(8}, newfs(8}, tunefs(8) 

System and Network Administration 
McKusick, Joy, Leffler; A Fast File System/or UNIX, 

NOTES 

newfs(8) is much to be preferred for most routine uses. 

Sun Release 4.0 Last change: 24 November 1987 1673 



MKN0D(8) MAINTENANCE COMMANDS MKN0D(8) 

NAME 
mknod - build special file 

SYNOPSIS 
/usr/etc/mknod filename [ c ] [ b ] major minor 

/usr/etc/mknod filename p 

DESCRIPTION 
mknod makes a special file. The first argument is the filename of the entry. In the first form, the second 
argument is b if the special file is block-type (disks, tape) or c if it is character-type (other devices). The 
last two arguments are numbers specifying the major device type and the minor device (for example, unit, 
drive, or line number). Only the super-user is permitted to invoke this form of the mknod command. 

In the second form, mknod makes a named pipe (FIFO). 

The first form of mknod is only for use by system configuration people. Normally you should use 
/dev/MAKEDEV instead when making special files. 

SEE ALSO 
mknod(2), makedev(8) 

1674 Last change: 9 September 1987 Sun Release 4.0 



MKPROT0(8) MAINTENANCE COMMANDS MKPROT0(8) 

NAME 
mkproto - construct a prototype file system 

SYNOPSIS 
/usr/etc/mkproto special proto 

DESCRIPTION 
mkproto is used to bootstrap a new file system. First a new file system is created using newfs(8). 
mkproto is then used to copy files from the old file system into the new file system according to the direc
tions found in the prototype file proto. The prototype file contains tokens separated by SP ACE or NEW
LINE characters. The first tokens comprise the specification for the root directory. File specifications con
sist of tokens giving the mode, the user ID, the group ID, and the initial contents of the file. The syntax of 
the contents field depends on the mode. 

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The 
characters -bed specify regular, block special, character special and directory files respectively.) The 
second character of the type is either u or'-' to specify set-user-id mode or not. The third is g or'-' for 
the set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and 
other read, write, execute permissions, see chmod(lV). 

Two decimal number tokens come after the mode; they specify the user and group ID's of the owner of the 
file. 

If the file is a regular file, the next token is a pathname whence the contents and size are copied. 

If the file is a block or character special file, two decimal number tokens follow which give the major and 
minor device numbers. 

If the file is a directory, mkproto makes the entries '.' and' .. ' and then reads a list of names and (recur
sively) file specifications for the entries in the directory. The scan is terminated with the token$. 

A sample prototype specification follows: 
d-77731 
usr d-777 31 

sh -755 31 /usr/bin/sb 
ken d-75561 

$ 
bO b-644 3 1 0 0 
cO c-644 3 1 0 0 
$ 

$ 

SEE ALSO 

BUGS 

chmod(l V), fs(5), dir(5), fsck(8), newfs(8) 

There should be some way to specify links. 

There should be some way to specify bad blocks. 

mkproto can only be run on virgin file systems. It should be possible to copy files into existent file sys
tems. 

Sun Release 4.0 Last change: 9 September 1987 1675 



M0DLOAD(8) MAINTENANCE COMMANDS M0DL0AD(8) 

NAME 
modload - load a Sun386i module 

SYNOPSIS 
modload.filename [ -conf config_fzle ] [ -entry entry _yoint] [ -exec exec _file ] [ -o output _file ] 

[ -nolink] [ -A vmunix _file ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
modload loads a loadable module into a running system. The input file.filename is an object file (.o file). 

OPTIONS 
-conf config_fzle 

Use this configuration file to configure the loadable driver being loaded. The commands in this 
file are the same as those that the config(8) program recognizes. There are two additional com
mands, blockmajor and charmajor, shown in the configuration file example below. 

-entry entry _yoint 
This is the module entry point This is passed by modload to ld(l) when the module is linked. 
The default module entry point name is 'xu init'. 

-exec exec _file 
This is the name of a shell script or executable image file that will be executed if the module is 
successfully loaded. It is always passed the module id and module type as the first two arguments. 
For loadable drivers, the third and fourth arguments are the block major and character major 
numbers respectively. For a loadable system call, the third argument is the system call number. 

-o output _file 
This is the name of the output file that is produced by the linker. If this option is omitted, then the 
output file name is.filename> without the' .o'. 

-nolink This option can be used if modload has already been issued once and the output file already 
exists. One must take care that neither the kernel nor the module have changed. 

-A vmunix _file 
This is the file that is passed to the linker to resolve module references to kernel symbols. The 
default is /vmunix. The symbol file must be for the currently running kernel or the module is 
likely to crash the system. 

EXAMPLE 

SEE ALSO 

controller 
controller 
disk 
disk 
disk 
device 
disk 
blockmajor 51 
charmajor 52 

fdcO at atmem csr OxOOlOOO irq 6 priority 3 
fdc2 at atmem csr Ox002000 irq 5 priority 2 
fdO at fdcO drive 0 
fdO at fdcO drive 1 
fdO at fdcO drive 2 
fdO at fdc2 drive O csr Ox003000 irq 4 priority 2 
fdO at fdc2 drive 1 

Id( 1 ), modunload(8), modstat(8) 

1676 Last change: 19 February 1988 Sun Release 4.0 



MODSTAT(8) MAINTENANCE COMMANDS MODSTAT(8) 

NAME 
modstat - display status of Sun386i modules 

SYNOPSIS 
modstat [ -id module _id ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
modstat displays the status of the loaded modules. 

OPTIONS 
-id module id 

Display status of only this module. 

SEE ALSO 
modload(8), modunload(8) 

Sun Release 4.0 Last change: 19 February 1988 1677 



MODUNLOAD ( 8) MAINTENANCE COMMANDS MODUNLOAD ( 8 ) 

NAME 
modunload - unload a Sun386i module 

SYNOPSIS 
modunload -id module _id [ -exec exec _file ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
modunload unloads a loadable module from a running system. The module _id is the ID of the module as 
shown by modstat(8). 

OPTIONS 
-exec exec _file 

This is the name of a shell script or executable image file that will be executed before the module 
is unloaded. It is always passed the module id and module type as the first two arguments. For 
loadable drivers, the third and fourth arguments are the block major and character major numbers 
respectively. For a loadable system call, the third argument is the system call number. 

SEE ALSO 
modload(8), modstat(8) 

1678 Last change: 19 February 1988 Sun Release 4.0 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

NAME 
monitor - system ROM monitor 

SYNOPSIS 
Ll-A 

BREAK 

DESCRIPTION 
The CPU board of the Sun workstation contains an EPROM (or set of EPROMs), called the monitor, that 
controls the system during startup. The monitor tests the system before attempting to boot the operating 
system. If you interrupt the boot procedure by holding down L1 while typing a or A on the workstation 
keyboard (or BREAK if the console is a dumb terminal) the monitor issues the prompt: 

> 

and accepts commands interactively. 

USAGE 
Commands 

+I- Increment or decrement the current address and display the contents of the new location. 

Ac source destination n 
{CTRL-C) Copy, byte-by-byte a block of length n from the source address to the destination 
address. 

AI program (CTRL-1) Display the compilation date and location of program. 

AT virtual address 
{CTRL-T) Display the physical address to which virtual_ address is mapped. 

a [n] [action]... (Sun-2 and Sun-3 systems only) 
Open A-register (cpu address register) n, and perform indicated actions. The number n can 
be any value from Oto 7, inclusive. The default value is 0. A hexadecimal action argument 
assigns the value you supply to the register n. A non-hex action terminates command input. 

b [!] [device [ (c ,u,p) ] ] [pathname ] [arguments _list] 
b[?] Reset appropriate parts of the system and bootstrap a program. A '!' (preceding the device 

argument) prevents the system reset from occurring. Programs can be loaded from various 
devices (such as a disk, tape or Ethernet). 'b' with no arguments will cause a default boot, 
either from a disk, or from an Ethernet controller. 'b?' displays all boot devices and their 
device arguments, where device is one of: 

C 

u 

p 

pathname 

arguments _list 

Sun Release 4.0 

ie Intel Ethernet 
le Lance Ethernet (Sun-2, Sun-3, Sun-4 systems only) 
sd SCSI disk 
st SCSI 1/4" tape 
mt Tape Master 9-track 1/2" tape (Sun-2, Sun-3, Sun-4 systems only) 
xd Xylogics 7053 disk (Sun-2, Sun-3, Sun-4 systems only) 
xt Xylogics 1/2" tape (Sun-2, Sun-3, Sun-4 systems only) 
xy Xylogics 440/450 disk (Sun-2, Sun-3, Sun-4 systems only) 
fd Diskette (Sun386i system only) 

A controller number (0 if only one controller), 

A unit number (0 if only one driver), and 

A partition. 

A pathname for a program such as /stand/diag. /vmunix is the default. 

A list of up to seven arguments to pass to the program being booted. 

Last change: 25 February 1988 1679 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

1680 

c [virtual_ address] 
Resume execution of a program. When given, virtual _address is the address at which exe
cution will resume. The default is the current PC (EIP on Sun386i systems). Registers are 
restored to the values shown by the a, d, and r commands (for Sun-2 and Sun-3 systems), or 
by the d and r commands (for Sun-4 systems), or by the d command (for Sun386i systems). 

d [window _number] {Sun-4 systems only) 
Display (dump) the state of the processor. The processor state is observable only after: 

• An unexpected trap was encountered. 
• A user program dropped into the monitor (by calling abortent). 
• The user manually entered the monitor by typing Ll-A or BREAK. 

The display consists of the following: 

• The special registers: PSR, PC, nPC, TBR, WIM and Y 
• Eight global registers, and 
• 24 window registers (8 in, 8 local, and 8 out), corresponding to one of the 7 

available windows. If a Floating-Point Unit is on board, its status register 
along with its 32 floating-point registers are also shown. 

window number 
Display the indicated window _number, which can be any value between O and 6, 
inclusive. If no window is specified and the PSR's current window pointer contains 
a valid window number, registers from the window that was active just prior to 
entry into the monitor are displayed. Otherwise, registers from window O are 
displayed. 

d (Sun386i systems only) 
Display (dump) the state of the processor. This display consists of the registers, listed 
below: 

Processor Registers: 

Segment Registers: 
Memory Management Registers: 
Control Registers: 
Debug Registers: 
Test Registers: 

EAX, ECX, EDX, ESI, EDI, ESP, EBP, EFLAGS, 
EIP 
ES,CS,SS,DS,FS,GS 
GDTR, LDTR, IDTR, TR 
CRO, CR2, CR3 
DRO, DRl , DR2, DR3, DR6, DR7 
TR6, TR7 

The processor's state is observable only after an unexpected trap, a user program has 
"dropped" into the monitor (by calling monitor function abortentor) or the user has manually 
"broken" into the monitor (by typing Ll-A on the Workstation console, or BREAK on the 
dumb terminal's keyboard. 

d [n] [action]. . . (Sun-2 and Sun-3 systems only) 
Open D-register (cpu data register) n, and perform indicated actions. The number n can be 
any value from Oto 7, inclusive. The default is 0. See the a command for a description of 
action. 

e [virtual_address] [action] ... 
Open the 16 bit word at virtual_address (default zero). On Sun-2, Sun-3, and Sun-4 sys
tems, the address is interpreted in the address space defined by the s command. See the a 
command for a description of action. 

Last change: 25 February 1988 Sun Release 4.0 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

f virtual address] virtual address2 pattern [size ] (Sun-3 and Sun-4 systems only) 
- Fill the bytes, words or long words from virtual _address] (lower) to virtual _address2 

(higher) with the constant, pattern. The size argument can take one of the following values 

b byte format (the default) 
w word format 
I long word format 

For example, the following command fills the address block from OxlOOO to Ox2000 with 
the word pattern, OxABCD: 

f 1000 2000 ABCD W 

g [ vector ] [argument ] 
g [virtual_ address] [argument ] 

Goto (jump to) a predetermined or default routine (first form), or to a user-specified routine 
(second form). The value of argument is passed to the routine. If the vector or 
virtual_ address argument is omitted, the value in the PC is used as the address to jump to. 

To set up a predetermined routine to jump to, a user program must, prior to executing the 
monitor's g command, set the variable •romp->v_vector_cmd to be equal to the virtual 
address of the desired routine. Predetermined routines need not necessarily return control to 
the monitor. 

The default routine, defined by the monitor, prints the user-supplied vector according to the 
format supplied in argument. This format can be one of: 

%x hexadecimal 
%d decimal 

gO (Sun-2, Sun-3, and Sun-4 only) 

g4 

When the monitor is running as a result of the system being interrupted, force a panic and 
produce a crash dump. 

When the monitor is running as a result of the system being interrupted, force a kernel stack 
trace. 

h (Sun-3 and Sun-4 and Sun386i systems) 
Display the help menu for monitor commands and their descriptions. To return to the 
monitor's basic command level, press ESCAPE or q before pressing RETURN. 

i [cache_data_offset] [action]... (Sun-3/200 series and Sun-4 systems only) 
Modify cache data RAM command. Display and/or modify one or more of the 
Modify cache data RAM command. Display and/or modify one or more of the cache data 
addresses. See the a command for a description of action. 

j [cache _tag_offset] [action]... (Sun-3/200 series and Sun-4 systems only) 
Modify cache tag RAM command. Display and/or modify the contents of one or more of the 
cache tag addresses. See the a command for a description of action. 

k [reset_level] 

kb 

Sun Release 4.0 

Reset the system. If reset _level is: 

0 CPU reset only (Sun-2 and Sun-3 systems). Reset VMEbus, interrupt registers, 
video monitor (Sun-4 systems). This is the default. Reset video (Sun386i sys
tems). 

1 Software reset. 
2 Power-on reset. Resets and clears the memory. Runs the EPROM-based diag

nostic self test, which can take several minutes, depending upon how much 
memory is being tested. 

Display the system banner. 

Last change: 25 February 1988 1681 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

1682 

I [virtual _address] [action] ... 
Open the long word (32 bit) at memory address virtual_address (default zero). On Sun-2, 
Sun-3 and Sun-4 systems, the address is interpreted in the address space defined by the s 
command (below). See the a command for a description of action. 

m [virtual_address] [action] ... 
Open the segment map entry that maps virtual_address (default zero). On Sun-2, Sun-3 and 
Sun-4 systems, the address is interpreted in the address space defined by the s command. 
Not supported on Sun386i. See the a command for a description of action. 

nd (Sun386i systems only) 
ne 
ni Disable, enable, or invalidate the cache, respectively 

o [virtual_address] [action] ... 
Open the byte location specified by 
virtual_address (default zero). On Sun-2, Sun-3 and Sun-4 systems, the address is inter
preted in the address space defined by the s command See the a command for a description 
of action. 

p [virtual_address] [action] ... 
Open the page map entry that maps virtual _address (default. zero) in the address space 
defined by the s command. See the a command for a description of action. 

p [port_address] [[nonhex_char [hex_value] I hex_value] ... ] (Sun386i systems only) 
Display or modify the contents of one or more port 1/0 addresses in byte mode. Each port 
address is treated as a 8-bit unit. The optional port_ address, argument, which is a 16-bit 
quantity, specifies the initial port 1/0 address. See the e command for argument descrip
tions. 

q [eeprom _offset] [action ]. . . (Sun-3 and Sun-4 systems only) 
Open the EEPROM eeprom _offset (default zero) in the EEPROM address space. All addresses 
are referenced from the beginning or base of the EEPROM in physical address space, and a 
limit check is performed to insure that no address beyond the EEPROM physical space is 
accessed. On Sun386i systems, open the NVRAM nvram offset (default zero). This com
mand is used to display or modify configuration parameters, such as: the amount of memory 
to test during self test, whether to display a standard or custom banner, if a serial port (A or 
B) is to be the system console, etc. See the a command for a description of action. 

r [reg_name] [[nonhex_char [hex_value] I hex_value] ... ] (Sun386i systems only) 
Display or modify one or more of the processor registers. If reg_name is specified (2 or 3 
characters from the above list), that register is displayed first. The default is EAX. See note 
on register availability under the command d (for Sun386i systems). See thee command for 
argument descriptions. 

s [step count] (Sun386i systems only) 
- Single step the execution of the interrupted program. The step_ count argument specifies the 

number of single steps to execute before displaying the monitor prompt. The default is 1. 

r [register_ number] [action] . . . (Sun-2 and Sun-3 systems only) 
Display and/or modify the register indicated. register _number can be one of: 

CA 68020 Cache Address Register 
cc 68020 Cache Control Register 
ex 68020 System and User Context 
DF Destination Function code 
IS 68020 Interrupt Stack Pointer 
MS 68020 Master Stack Pointer 
PC Program Counter 
SC 68010 System Context 

Last change: 25 February 1988 Sun Release 4.0 



MONITOR ( 8S) MAINTENANCE COMMANDS 

SF Source Function code 
SR Status Register 
SS 68010 Supervisor Stack Pointer 
UC 68010 User Context 
US User Stack Pointer 
VB Vector Base 

MONITOR ( 8S) 

Alterations to these registers (except SC and UC) do not take effect until the next c com
mand is executed. See the a command for a description of action. 

r [register _number] (Sun-4 systems only) 
r [register_ type] 
r [w window_ number] 

Display and/or modify one or more of the IU or FPU registers. 

A hexadecimal register_ number can be one of: 

OxOO---OxOf window(O,i0)-window(O,i7), window(O,i0)-window(O,i7) 
Ox16-0xlf window( 1,iO)-window( l,i7), window( l ,iO)-window( 1,i7) 
Ox20---0x2f window{2,i0)-window(2,i7), window(2,i0)-window(2,i7) 
Ox30---0x3f window{3,i0)-window(3,i7), window{3,i0)-window{3,i7) 
Ox40---0x4f window( 4,iO)-window( 4,i7), window( 4,iO)-window( 4,i7) 
Ox50---0x5f window(5,i0)-window(5,i7), window{5,i0)-window{5,i7) 
Ox60---0x6f window( 6,iO)-window( 6,i7), window( 6,iO)-window( 6,i7) 
Ox70---0x77 g0,gl,g2,g3,g4,g5,g6,g7 
0x78--0x7d PSR, PC, nPC, WIM, TBR, Y 
Ox7e-Ox9e FSR, fil-f31 

Register numbers can only be displayed after an unexpected trap, a user program 
has entered the monitor using the abortent function, or the user has entered the 
monitor by manually typing Ll-A or BREAK. 

If a register_ type is given, the first register of the indicated type is displayed. register_ type 
can be one of: 

f floating-point 
g global 
s special 

If w and a window _number (0-6) are given, the first in-register within the indicated win
dow is displayed. If window_ number is omitted, the window that was active just prior to 
entering the monitor is used. If the PSR' s current window pointer is invalid, window O is 
used. 

s [code] (Sun-2 and Sun-3 systems only) 

Sun Release 4.0 

Set or query the address space to be used by subsequent memory access commands. code is 
one of: 

0 undefined 
1 user data space 
2 user program space 
3 user control space 
4 undefined 
5 supervisor data space 
6 supervisor program space 
7 supervisor control space 

If code is omitted, s displays the current address space. 

Last change: 25 February 1988 1683 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

1684 

s [asi] (Sun-4 systems only) 
Set or display the Address Space Identifier. With no argument, s displays the current 
Address Space Identifier. The asi value can be one of: 

Ox2 control space 
Ox3 segment table 
Ox4 Page table 
Ox8 user instruction 
Ox9 supervisor instruction 
Oxa user data 
Oxb supervisor data 
Oxc flush segment 
Oxd flush page 
Oxe flush context 
Oxf cache data 

t [program] (Sun-3 systems only) 

u [echo] 

Trace the indicated standalone program. Works only with programs that do not affect inter
rupt vectors. 

u [ port ] [ options ] [ 
u [u] [virtual_address] 

With no arguments, display the current I/0 device characteristics including: current input 
device, current output device, BAUD rates for serial ports A and B, an input-to-output echo 
indicator, and virtual addresses of mapped UART devices. With arguments, set or configure 
the current I/0 device. With the u argument (uu . .. ), set the I/0 device to be the 
virtual_ address of a UART device currently mapped. 

echo Can be either e to enable input to be echoed to the output device, or 
ne, to indicate that input is not echoed. 

port Assign the indicated port to be the current I/0 device. port can be 
one of: 

baud rate 

a serial port A 
b serial port B (except on Sun386i systems) 
k the workstation keyboard 
s the workstation screen 

Any legal BAUD rate. 

options can be any combination of: 

input 
o output 
u UART 
e echo input to output 
ne do not echo input 
r reset indicated serial port (a and b ports only) 

If either a or b is supplied, and no options are given, the serial port 
is assigned for both input and output. If k is supplied with no 
options, it is assigned for input only. If s is supplied with no 
options, it is assigned for output only. 

Last change: 25 February 1988 Sun Release 4.0 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

v virtual_addressl virtual_address2 [size] (Sun-3 and Sun-4 systems only) 
Display the contents of virtual_ address] (lower) virtual_ address2 (higher) in the format 
specified by size: 

b byte format (the default) 
w word format 
I long word format 

Enter return to pause for viewing; enter another return character to resume the display. To 
terminate the display at any time, press the space bar. 

For example, the following command displays the contents of virtual address space from 
address OxlOOO to Ox2000 in word format: 

v 1000 2000W 

w [virtual_ address] [argument ] (Sun-3 and Sun-4 systems only) 
Set the execution vector to a predetermined or default routine. Pass virtual address and 
argument to that routine. 

To set up a predetermined routine to jump to, a user program must, prior to executing the 
monitor's w command, set the variable •romp->v_vector_cmd to be equal to the virtual 
address of the desired routine. Predetermined routines need not necessarily return control to 
the monitor. 

The default routine, defined by the monitor, prints the user-supplied vector according to the 
format supplied in argument. This format can be one of: 

%x hexadecimal 
%d decimal 

x (Sun-3 and Sun-4 systems only) 
Display a menu of extended tests. These diagnostics permit additional testing of such things 
as the 1/0 port connectors, video memory, workstation memory and keyboard, and boot dev
ice paths. 

ye context_number (Sun-4 systems only) 
y pis context_ number virtual_ address 

Flush the indicated context, context page, or context segment 
c flush context context number 
p flushe the page beginning at virtual _address within context context_ number 
s flush the segment beginning at virtual_address within context context_number 

z [number] (breakpoint_virtual_address [type] [Zen]] (Sun386i systems only) 

Sun Release 4.0 

Set or reset breakpoints for debugging. With no arguments, this command displays the 
existing breakpoints. The number argument is a values from O to 3, corresponding to the 
processor debug registers, DRO to DR3, respectively. Up to 4 distinct breakpoints can be 
specified. If number is not specified then the monitor chooses a breakpoint number. The 
breakpoint _virtual _address argument specifies the breakpoint address. The type argument 
can be one of: 

x Instruction Execution breakpoint (the default) 
m for Data Write only breakpoint 
r Data Reads and Writes only breakpoint. 

Thelen argument can be one of: 'b', 'w', or 'I', corresponding to the breakpoint field length 
of byte, word, or long-word, respectively. The default is 'b'. Since the breakpoints are set 
in the on-chip registers, an instruction breakpoint can be placed in ROM code or in code 
shared by several tasks. If the number argument is specified but not 
breakpoint _virtual _address, the corresponding breakpoint is reset 

Last change: 25 February 1988 1685 



MONITOR ( 8S) MAINTENANCE COMMANDS MONITOR ( 8S) 

z [virtual_address] (Sun-3 systems only) 
Set a breakpoint at virtual address in the address space selected by the s command. 

FILES 
/vmunix 

1686 Last change: 25 February 1988 Sun Release 4.0 



MOUNT(8) MAINTENANCE COMMANDS MOUNT(8) 

NAME 
mount, umount - mount and dismount filesystems 

SYNOPSIS 
/usr/etc/mount [ -p] 
/usr/etc/mount -a[fnv] [ -t type ] 
/usr/etc/mount [ -fnrv ] [ -t type ] [ -o options] filesystem directory 
/usr/etc/mount [ -vfn ] [ -o options ] filesystem I directory 

/usr/etc/umount [ -t type] [ -h host] 
/usr/etc/umount-a[v] 
/usr/etc/umount [ -v ] filesystem I directory 

DESCRIPTION 
mount attaches a named filesystem to the filesystem hierarchy at the pathname location directory, which 
must already exist. If directory has any contents prior to the mount operation, these remain hidden until 
the filesystem is once again unmounted. If filesystem is of the form host :pathname, it is assumed to be an 
NFS filesystem (type nfs). 

umount unmounts a currently mounted filesystem, which can be specified either as a directory or afilesys
tem. 

mount and umount maintain a table of mounted filesystems in /etdmtab, described in fstab(5). If 
invoked without an argument, mount displays the contents of this table. If invoked with either afilesystem 
or directory only, mount searches the file /etdfstab for a matching entry, and mounts the filesystem indi
cated in that entry on the indicated directory. 

MOUNT OPTIONS 
-p Print the list of mounted filesystems in a format suitable for use in /etdfstab. 

-a All. Attempt to mount all the filesystems described in /etc/fstab. If a type argument is specified 
with -t, mount all filesystems of that type. Filesystems are not necessarily mounted in the order 
shown in /etdfstab. 

-f Fake an /etdmtab entry, but do not actually mount any filesystems. 

-n Mount the filesystem without making an entry in /etdmtab. 

-v Verbose. Display a message indicating each filesystem being mounted. 

-t type Specify a filesystem type. The accepted types are 4.2, and nfs; see fstab(5) for a description of 
these types. 

-r Mount the specified filesystem read-only. This is a shorthand for: 

mount -o ro filesystem directory 

Physically write-protected and magnetic-tape filesystems must be mounted read-only. Otherwise 
errors occur when the system attempts to update access times, even if no write operation is 
attempted. 

-o options 

Sun Release 4.0 

Specify filesystem options -list of comma-separated words from the list below. Some options 
are valid for all filesystem types, while others apply to a specific type only. 

options valid on all filesystems: 

rw I ro Read/write or read-only. 
suid I nosuid Setuid execution allowed or disallowed. 
grpid Create files with BSD semantics for the propagation of the group ID. 

Under this option, files inherit the GID of the directory in which they are 
created, regardless of the directory's set-GID bit. 

Last change: 13 October 1987 1687 



MOUNT(8) MAINTENANCE COMMANDS MOUNT(8) 

noauto Do not mount this filesystem that is currently mounted read-only. If the 
filesystem is not currently mounted, an error results. 

The default is 'rw, suid'. 

options specific to 4.2 filesystems: 

quota I noquota Usage limits are enforced, or are not enforced. The default is 
noquota. 

options specific to nfs (NFS)filesystems: 

bg I f g If the first attempt fails, retry in the background, or, in the foreground. 
retry=n The number of times to retry the mount operation. 
rsize=n Set the read buffer size to n bytes. 
wsize=n Set the write buffer size to n bytes. 
timeo=n Set the NFS timeout to n tenths of a second 
retrans=n 
port=n 
soft I hard 

intr 
secure 
acregmin=n 

The number of NFS retransmissions. 
The server IP port number. 
Return an error if the server does not respond, or continue the retry 
request until the server responds. 
Allow keyboard interrupts on hard mounts. 
Use a more secure protocol for NFS transactions. 
Hold cached attributes for at least n seconds after file modification. 

acregmax=n Hold cached attributes for no more than n seconds after file 

acdirmin=n 
acdirmax=n 

modification. 
Hold cached attributes for at least n seconds after directory update. 
Hold cached attributes for no more than n seconds after directory 
update. 

actimeo=n Set min and max times for regular files and directories ton seconds. 

Regular defaults are: 
fg,retry=l0000,timeo=7 ,retrans=3,port=NFS _ PORT ,hard,\ 
acregmin=3,acregmax=60,acdirmin=30,acdirmax=60 

Defaults for rsize and wsize are set internally by the system kernel. 

UMOUNT OPTIONS 
-h host Unmount all filesystems listed in /etc/mtab that are remote-mounted from host. 

-t type Unmount all filesystems listed in /etc/mtab that are of a given type. 

-a Unmount all filesystems currently mounted (as listed in /etc/mtab). 

-v Verbose. Display a message indicating each filesystem being unmounted. 

NFS FILESYSTEMS 
Background vs. Foreground 

Filesystems mounted with the bg option indicate that mount is to retry in the background if the server's 
mount daemon (mountd(8c)) does not respond. mount retries the request up to the count specified in the 
retry=n option. Once the filesystem is mounted, each NFS request made in the kernel waits timeo=n tenths 
of a second for a response. If no response arrives, the time-out is multiplied by 2 and the request is 
retransmitted. When the number of retransmissions has reached the number specified in the retrans=n 
option, a filesystem mounted with the soft option returns an error on the request; one mounted with the 
hard option prints a warning message and continues to retry the request. 

Read-Write vs. Read-Only 
Filesystems that are mounted rw (read-write) should use the hard option. 

Interrupting Processes With Pending NFS Requests 

1688 

The intr option allows keyboard interrupts to kill a process that is hung while waiting for a response on a 
hard-mounted filesystem. 

Last change: 13 October 1987 Sun Release 4.0 



MOUNT(8) MAINTENANCE COMMANDS MOUNT(8) 

Secure Filesystems 
The secure option must be given if the server requires secure mounting for the filesystem. 

File Attributes 
The attribute cache retains file attributes on the client. Attributes for a file are assigned a time to be 
flushed If the file is modified before the flush time, then the flush time is extended by the time since the 
last modification (under the assumption that files that changed recently are likely to change soon). There is 
a minimum and maximum flush time extension for regular files and for directories. Setting actimeo=n 
extends flush time by n seconds for both regular files and directories. 

SYSTEM V COMPATIBILITY 
System V File-Creation Semantics 

Ordinarily, when a file is created its GID is set to the effective GID of the calling process. This behavior 
may be overridden on a per-directory basis, by setting the set-GID bit of the parent directory; in this case, 
the GID is set to the GID of the parent directory (see open(2V) and mkdir(2)). Files created on filesystems 
that are mounted with the grpid option will obey BSD semantics; that is, the GID is unconditionally inher
ited from that of the parent directory. 

EXAMPLES 

FILES 

To mount a local disk: 
To fake an entry for nd root: 
To mount all 4.2 filesystems: 
To mount a remote filesystem: 
To mount a remote filesystem: 
To hard mount a remote filesystem: 
To save current mount state: 

mount /dev/xyOg /usr 
mount-ft 4.2 /dev/ndO I 
mount -at 4.2 
mount -t nfs serv:/usr/src /usr/src 
mount serv:/usr/src /usr/src 
mount -o hard serv:/usr/src /usr/src 
mount -p > /etc/fstab 

/etc/mtab 
/etc/fstab 

table of mounted filesystems 
table of filesystems mounted at boot 

SEE ALSO 

BUGS 

mkdir(2), mount(2), unmount(2), open(2V), fstab(5), mtab(5), mountd(8C), nfsd(8) 

Mounting filesystems full of garbage crashes the system. 

If the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on the 
directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself. 

Sun Release 4.0 Last change: 13 October 1987 1689 



MOUNTD(8C) MAINTENANCE COMMANDS MOUNTD(8C) 

NAME 
mountd - NFS mount request server 

SYNOPSIS 
/usr/etc/rpc.mountd [ -n] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
mountd is an RPC server that answers file system mount requests. It reads the file /etc/xtab, described in 
exports(S), to determine which file systems are available for mounting by which machines. It also pro
vides information as to what file systems are mounted by which clients. This information can be printed 
using the showmount(8) command. 

The mountd daemon is normally invoked by rc(8). 

OPTIONS 

FILES 

-n Do not check that the clients are root users. Though this option makes things slightly less secure, it 
does allow older versions (pre-3.0) of client NFS to work. 

/etc/xtab 

SEE ALSO 
exports(S), rc(8), showmount(8) 

1690 Last change: 17 December 1987 Sun Release 4.0 



NAMED(8C) MAINTENANCE COMMANDS NAMED(8C) 

NAME 
named - Internet domain name server 

SYNOPSIS 
/usr/etc/in.named [ -d level ] [ -p port ] [ [ -b ] boot.file ] 

DESCRIPTION 
filenamed is the Internet domain name server. It is used by hosts on the DARPA Internet to provide access 
to the Internet distributed naming database. See RFC 1034 and RFC 1035 for more details. With no argu
mentsfilenamed reads /etdnamed.boot for any initial data, and listens for queries on a privileged port. 

OPTIONS 
-d level Print debugging information. level is a number indicating the level of messages printed. 

-p port Use a different port number. 

-b boot.file 

EXAMPLE 

Use boot.file rather than /etdnamed.boot. 

boot file for name server 

; type 

' domain 
primary 
secondary 
cache 

domain source file or host 

berkeley.edu 
berkeley.edu named.db 
cc.berkeley.edu 10.2.0.78 128.32.0.10 

named.ca 

The domain line specifies that berkeley .edu is the domain of the given server. 

The primary line states that the file named.db contains authoritative data for berkeley.edu. The file 
named.db contains data in the master file format, described in RFC 1035, except that all domain names are 
relative to the origin; in this case, berkeley.edu (see below for a more detailed description). 

The secondary line specifies that all authoritative data under cc.berkeley.edu is to be transferred from the 
name server at 10.2.0.78. If the transfer fails it will try 128.32.0.10, and continue for up to 10 tries at that 
address. The secondary copy is also authoritative for the domain. 

The cache line specifies that data in named.ca is to be placed in the cache (typically such data as the loca
tions of root domain servers). The file named.ca is in the same format as named.db. 

The master file consists of entries of the form: 
$INCLUDE <.filename> 
$ORIGIN <domain> 
<domain> <Opt _ttl> <opt _class> <type> <resource _record _data> 

where domain is '.' for the root, '@' for the current origin, or a standard domain name. If domain is a 
standard domain name that does not end with '.', the current origin is appended to the domain. Domain 
names ending with '.' are unmodified. 

The opt _ttl field is an optional integer number for the time-to-live field. It defaults to zero. 

The opt _class field is currently one token, 'IN' for the Internet. 

The type field is one of the following tokens; the data expected in the resource _record_ data field is in 
parentheses. 

A A host address (dotted quad). 

NS An authoritative name server (domain). 

MX A mail exchanger (domain). 

Sun Release 4.0 Last change: 9 September 1987 1691 



NAMED(8C) MAINTENANCE COMMANDS NAMED(8C) 

FILES 

CNAME 
The canonical name for an alias (domain). 

SOA Marks the start of a zone of authority (5 numbers). (see RFC 1035)). 

MB A mailbox domain name (domain). 

MG A mail group member (domain). 

MR A mail rename domain name (domain). 

NULL A null resource record (no format or data). 

WKS A well know service description (not implemented yet). 

PTR A domain name pointer (domain). 

HINFO Host information (cpu_type OS_type). 

MINFO Mailbox or mail list information (request_ domain error_ domain). 

/etc/named.boot name server configuration boot file 
/etc/named.pid the process ID 
/var/tmp/named.run debug output 
/var/tmp/named _ dump.db 

dump of the name servers database 

SEE ALSO 

NOTES 

1692 

kill(l), signal(3), resolver(3), resolve.conf(5) 

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network Information Center, SRI 
International, Menlo Park, Calif., November 1987. 

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network Information 
Center, SRI International, Menlo Park, Calif., November 1987. 

Mockapetris, Paul, Domain System Changes and Observations, RFC 973, Network Information Center, SRI 
International, Menlo Park, Calif., January 1986. 

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information Center, SRI Inter
national, Menlo Park, Calif., January 1986. 

The following signals have the specified effect when sent to the server process using the kill(l) command. 

SIGHUP Causes server to read named.boot and reload database. 

SIGQillT 
Dumps current data base and cache to /var/tmp/named_dump.db. 

SIGEMT Tums on debugging; each subsequent SIGEMT increments debug level. 

SIGFPE Tums off debugging completely. 

Last change: 9 September 1987 Sun Release 4.0 



NCHECK(8) MAINTENANCE COMMANDS NCHECK(8) 

NAME 
ncheck- generate names from i-numbers 

SYNOPSIS 
/usr/etc/ncheck [ -i numbers] [ -as ] [filesystem] 

DESCRIPTION 
Note: For most normal file system maintenance, the function of ncheck is subsumed by fsck(8). 

ncheck with no argument generates a pathname versus i-number list of all files on a set of default file sys
tems. Names of directory files are followed by '.' 

A file system may be specified by the optionalfilesystem argument. 

The report is in no useful order, and probably should be sorted. 

OPTIONS 
-i numbers 

Report only those files whose i-numbers follow. 

-a Print the names'.' and' •• ', which are ordinarily suppressed. 

-s Report only special files and files with set-user-ID mode. This is intended to discover concealed 
violations of security policy. 

SEE ALSO 
sort(l V), dcheck(8), fsck(8), icheck(8) 

DIAGNOSTICS 

When the filesystem structure is improper, '??' denotes the ''parent'' of a parentless file and a pathname 
beginning with ' ••• ' denotes a loop. 

Sun Release 4.0 Last change: 9 September 1988 1693 



NDBOOTD ( 8C) MAINTENANCE COMMANDS NDBOOTD ( 8C) 

NAME 
ndbootd - ND boot block server 

SYNOPSIS 
ndbootd [ -dv ] 

DESCRIPTION 
ndbootd sends boot blocks to diskless Sun-2 system clients that request them using the (now obsolete) ND 
protocol. This server uses the boot block contained in the file /tftpboot/sun2.bb. A client must appear in 
the ethers(5) and hosts(5) databases, in order for the request to be served. In determining whether to serve 
the client, ndbootd checks the /tftpboot directory for a file whose name is the client's IP address in hexa
decimal notation. For example, if the file /tftpboot/C00901AD exists, the machine at IP address 
192.9.1.173 can be served. This file normally contains the boot program that is sent to the client by 
tftpd(8C). 

Only root can invoke ndbootd. 

OPTIONS 

FILES 

-d Debug. Display information about ignored packets, retransmissions, and address translation. 

-v Verbose. Show a detailed listing of packets sent and received, etc. 

If either option is used, all output is sent to the invoking terminal. Otherwise, error output (if any) appears 
on the console. 

/tftpboot 
/tftpboot/sun2.bb 
/tftpboot/???????? 

bootfiles directory 
boot blocks 
boot programs for clients 

SEE ALSO 
ethers(5), hosts(5), boot(8S), tftpd(8C) 

1694 Last change: 10 September 1986 Sun Release 4.0 



NETCONFIG ( 8C) MAINTENANCE COMMANDS NETCONFIG ( 8C) 

NAME 
netconfig - PNP boot service 

SYNOPSIS 
/single/netconfig [ -e ] [ -n ] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
netconfig is used both for automatic installation of new diskful systems, and during routine booting of all 
systems. The sequence of actions taken by netconfig depends on which of these situations is in effect, but 
it always sets the hostname, domainname, time, timezone, and interface IP address. If the system is newly 
installed on the network, it does more, perhaps interrogating the user about system configuration. 

netconfig is invoked with the -e option from the !etc/re.boot script. 

Invoked without options, netconfig may perform PNP set up, including set up of files, passwords, and 
secure RPCs. Unless -n is specified, it writes /etc/net.conf, which is read later by re.boot. This includes 
the VERBOSE flag, derived from NVRAM data, which controls the verbosity of the commands in re.boot. 

Routine Booting 
Boot servers use information stored locally in YP maps rather than acquiring it over the network, except 
that they get the time from the timehost system if it is up. The following describes the steps taken by boot 
clients: diskful clients, diskless clients, and network clients. 

Boot clients first invoke rarp to acquire an IP address. This is followed by a ICMP Netmask request to 
obtain the IP subnetwork mask, and then a PNP _ WHOAMI RPC to determine the system's name, YP 
domain, and time zone. Then the systems clock is set using the RFC 868 time service. If PNP _ WHO AMI 
fails, a PNP _SETUP sequence is followed by set up of /etc/passwd and other files. 

OPTIONS 

FILES 

-e Check shell environment variables. This option is specified during routine boot. HOSTNAME and 
DOMAINNAME are used to determine if the system is a YP server using local YP maps. Other
wise, if NETWORKED is YES, netconfig probes the network for network configuration. 
MUST_SETUP requires writing /etc/passwd and other files for setup in restricted network 
environments. 

-n Used in conjunction with '-e', this does not probe the network for anything but just sets the host
name and domainname of the system from the environment variables HOSTNAME and DOMAIN
NAME respectively. Does not write the /etc/net.conf file. 

/var/yp/ domainnamelnetmasks 
/var/yp/ domainname/bosts 

SEE ALSO 
pnpboot(8C), pnpd(8C), rarpd(8C) pnp(3R) 

Sun Release 4.0 Last change: 19 February 1988 1695 



NETSTAT(8C) MAINTENANCE COMMANDS NETSTAT(8C) 

NAME 
netstat - show network status 

SYNOPSIS 
netstat [ -aAn ] [ -f address Jami.Ly ] [ system ] [ core ] 

netstat [ -n ] [ -s ] [ -m I -i I -h I -r ] [ -f address Jamily ] [ system ] [ core ] 

netstat [ -n ] [ -I interface ] interval [ system ] [ core ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
netstat displays the contents of various network-related data structures in various formats, depending on 
the options you select 

The first form of the command displays a list of active sockets for each protocol. The second form selects 
one from among various other network data structures. The third form displays running statistics of packet 
traffic on configured network interfaces; the interval argument indicates the number of seconds in which to 
gather statistics between displays. 

The default value for the system argument is /vmunix; for core, the default is /dev/kmem. 

OPTIONS 
-a Show the state of all sockets; normally sockets used by server processes are not shown. 

-A Show the address of any protocol control blocks associated with sockets; used for debugging. 

-f address Jamily 
Limit statistics or address control block reports to those of the specified address Jamily, which 
can be one of: 

inet For the AF _INET address family, or 
unix For the AF_ UNIX family. 

-h Show the state of the IMP host table. (This does not work in an environment where the IMP host 
tables do not exist) 

-i Show the state of interfaces that have been auto-configured. Interfaces that are statically 
configured into a system, but not located at boot time, are not shown. 

-I interface 
Highlight information about the indicated interface in a separate column; the default (for the third 
form of the command) is the interface with the most traffic since the system was last rebooted. 
interface can be any valid interface listed in the system configuration file, such as ieO or leO. 

-m Show the statistics recorded by management routines for the network's private buffer pool. 

-n Show network addresses as numbers. netstat normally displays addresses as symbols. This 
option may be used with any of the display formats. 

-r Show the routing tables. (When-sis also present, show routing statistics instead.) 

-s Show per-protocol statistics. When used with the -r option, show routing statistics. 

-t Replace queue length information with timer information. 

DISPLAYS 
Active Sockets (First Form) 

1696 

The display for each active socket shows the local and remote address, the send and receive queue sizes (in 
bytes), the protocol, and the internal state of the protocol. 

Last change: 17 December 1987 Sun Release 4.0 



NETSTAT(8C) MAINTENANCE COMMANDS NETSTAT(8C) 

The symbolic format normally used to display socket addresses is either: 

hostname. port 

when the name of the host is specified, or: 

network. port 

if a socket address specifies a network but no specific host. Each hostname and network is shown accord
ing to its entry in the /etc/hosts or the /etc/networks file, as appropriate. 

If the network or hostname for an address is not known (or if the -n option is specified), the numerical net
work address is shown. Unspecified, or "wildcard", addresses and ports appear as"*". (For more infor
mation regarding the Internet naming conventions, refer to inet(3N) ). 

TCP Sockets 
The possible state values for TCP sockets are as follows: 

CLOSED 
LISTEN 
SYN SENT 
SYN RECEIVED 
ESTABLISHED 
CLOSE WAIT 
FIN_WAIT_l 
CLOSING 
LAST_ACK 
FIN_WAIT_2 
TIME WAIT 

Closed: the socket is not being used. 
Listening for incoming connections. 
Actively trying to establish connection. 
Initial synchronization of the connection under way. 
Connection has been established. 
Remote shut down: waiting for the socket to close. 
Socket closed, shutting down connection. 
Closed, then remote shutdown: awaiting acknowledgement 
Remote shut down, then closed: awaiting acknowledgement. 
Socket closed, waiting for shutdown from remote. 
Wait after close for remote shutdown retransmission. 

Network Data Structures (Second Form) 
The form of the display depends upon which of the -m, -i, -b or -r, options you select. (If you specify 
more than one of these options, netstat selects one in the order listed here.) 

Routing Table Display 

The routing table display lists the available routes and the status of each. Each route consists of a destina
tion host or network, and a gateway to use in forwarding packets. The flags column shows the status of the 
route (U if "up"), whether the route is to a gateway (G), and whether the route was created dynamically 
by a redirect (D). 

Direct routes are created for each interface attached to the local host; the gateway field for such entries 
shows the address of the outgoing interface. 

The refcnt column gives the current number of active uses per route. (Connection-oriented protocols nor
mally hold on to a single route for the duration of a connection, whereas connectionless protocols obtain a 
route while sending to the same destination.) 

The use column displays the number of packets sent per route. 

The interface entry indicates the network interface utilized for the route. 

Cumulative Traffic Statistics (Third Form) 
When the interval argument is given, netstat displays a table of cumulative statistics regarding packets 
transferred, errors and collisions, the network addresses for the interface, and the maximum transmission 
unit ("mtu"). The first line of data displayed, and every 24th line thereafter, contains cumulative statistics 
from the time the system was last rebooted. Each subsequent line shows incremental statistics for the inter
val (specified on the command line) since the previous display. 

SEE ALSO 

hosts(5), networks(5), protocols(5), services(5), iostat(8), trpt(8C), vmstat(8) 

Sun Release 4.0 Last change: 17 December 1987 1697 



NETSTAT(8C) MAINTENANCE COMMANDS NETSTAT(8C) 

BUGS 
The notion of errors is ill-defined. Collisions mean something else for the IMP. 

The kernel's tables can change while netstat is examining them, creating incorrect or partial displays. 

1698 Last change: 17 December 1987 Sun Release 4.0 



NEW ALIASES ( 8) MAINTENANCE COMMANDS NEW ALIASES ( 8) 

NAME 
newaliases - rebuild the data base for the mail aliases file 

SYNOPSIS 
newaliases 

DESCRIPTION 
newaliases rebuilds the random access data base for the mail aliases file /etc/aliases. It is run automati
cally by sendmail(8) (in the default configuration) whenever a message is sent. 

FILES 
I etc/aliases 

SEE ALSO 
aliases(5), sendmail(8) 

Sun Release 4.0 Last change: 9 September 1987 1699 



NEWFS(8) MAINTENANCE COMMANDS NEWFS(8) 

NAME 
newfs - construct a new file system 

SYNOPSIS 
/usr/etc/newfs [ -nNv ] [ mkfs-options ] block-special-file 

DESCRIPTION 

newfs is a "friendly" front-end to the mkfs(8) program. On Sun systems, the disk type is determined by 
reading the disk label for the specified block-special-file. 

block-special-file is the name of a block special device residing in /dev. If you want to make a file system 
on sdO, you can specify sdO rsdO or /dev/rsdO; if you only specify sdO, newfs will find the proper device. 

newfs then calculates the appropriate parameters to use in calling mkfs, builds the file system by forking 
mkfs and, if the file system is a root partition, installs the necessary bootstrap programs in its initial 16 sec
tors. 

OPTIONS 

1700 

-n Do not install the bootstrap programs. 

-N Print out the file system parameters without actually creating the file system. 

-v Verbose. newfs prints out its actions, including the parameters passed to mkfs. 

mkfs-options 
Options that override the default parameters passed to mkfs(8) are: 

-b block-size 
The block size of the file system in bytes. 

-c #cylinders/group 
The number of cylinders per cylinder group in a file system. The default value used is 
16. 

-d rotdelay 
This specifies the expected time (in milliseconds) to service a transfer completion inter
rupt and initiate a new transfer on the same disk. It is used to decide how much rota
tional spacing to place between successive blocks in a file. 

-f frag-size 
The fragment size of the file system in bytes. 

-i byteslinode 
This specifies the density of inodes in the file system. The default is to create an inode 
for each 2048 bytes of data space. If fewer inodes are desired, a larger number should be 
used; to create more inodes a smaller number should be given. 

-mfree-space% 
The percentage of space reserved from normal users; the minimum free space threshold. 
The default value used is 10%. 

-o optimization 
(space or time). The file system can either be instructed to try to minimize the time spent 
allocating blocks, or to try to minimize the space fragmentation on the disk. If the 
minimum free space threshold (as specified by the -m option) is less than 10%, the 
default is to optimize for space; if the minimum free space threshold is greater than or 
equal to 10%, the default is to optimize for time. 

-r revolutions/minute 
The speed of the disk in revolutions per minute (normally 3600). 

-s size The size of the file system in sectors. 

Last change: 24 November 1987 Sun Release 4.0 



NEWFS(8) MAINTENANCE COMMANDS 

-t #tracks/ cylinder 

FILES 
/usr/etc/mkfs 
/usr/mdec 

SEE ALSO 

The number of tracks per cylinders on the disk. 

to actually build the file system 
for boot strapping programs /dev 

fs(5), fsck(8), mkfs(8), tunefs(8) 

System and Network Administration 

Sun Release 4.0 Last change: 24 November 1987 

NEWFS(8) 

1701 



NEWKEY(8) MAINTENANCE COMMANDS NEWKEY(8) 

NAME 
newkey - create a new key in the publickey database 

SYNOPSIS 
newkey [ -h hostname ] [ -u username ] 

DESCRIPTION 
newkey is normally run by the network administrator on the YP master machine in order to establish public 
keys for users and super-users on the network. These keys are needed for using secure RPC or secure NFS. 

newkey will prompt for the login password of the given username and then create a new public/secret key 
pair in /etc/publickey encrypted with the login password of the given user. 

Use of this program is not required: users may create their own keys using chkey (1). 

OPTIONS 
-u username Create a new public key for the given username. Prompts for the Yellow Pages pass

word of the given username. 

-h hostname Create a new public key for the super-user at the given hostname. Prompts for the root 
password of the given hostname. 

SEE ALSO 
keylogin(l), chkey(l), publickey(S), keyserv(8) 

1702 Last change: 12 October 1987 Sun Release 4.0 



NFSD(8) MAINTENANCE COMMANDS NFSD(8) 

NAME 
nfsd, biod - NFS daemons 

SYNOPSIS 
/usr/etc/nfsd [nservers] 

/usr/etc/biod [nservers] 

DESCRIPTION 

FILES 

nfsd starts the daemons that handle client filesystem requests. nservers is the number of file system request 
daemons to start. This number should be based on the load expected on this server. Four seems to be a 
good number. 

biod starts nservers asynchronous block 1/0 daemons. This command is used on a NFS client to buffer 
cache handle read-ahead and write-behind. The magic number for nservers in here is also four. 

When a file that is opened by a client is unlinked (by the server), a file with a name of the form .nfsXXX 
(where XXX is a number) is created by the client. When the open file is closed, the .nfsXXX file is removed. 
If the client crashes before the file can be closed, the .nfsXXX file is not removed. 

.nfsXXX client machine pointer to an open-but-unlinked file 

SEE ALSO 
exports(5), mountd(8C) 

Sun Release 4.0 Last change: 9 September 1987 1703 



NFSSTAT (SC) MAINTENANCE COMMANDS NFSSTAT(8C) 

NAME 
nfsstat- Network File System statistics 

SYNOPSIS 
nfsstat [ -csnrz ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
nfsstat displays statistical information about the NFS (Network File System) and RPC (Remote Procedure 
Call), interfaces to the kernel. It can also be used to reinitialize this information. If no options are given 
the default is 

nfsstat -csnr 

That is, display everything, but reinitialize nothing. 

OPTIONS 
-c Display client information. Only the client side NFS and RPC information will be printed. Can be 

combined with the -n and -r options to print client NFS or client RPC information only. 

-s Display server information. 

-n Display NFS information. NFS information for both the client and server side will be printed. Can 
be combined with the -c and-s options to print client or server NFS information only. 

-r Display RPC information. 

-z Zero (reinitialize) statistics. This option is for use by the super-user only, and can be combined 
with any of the above options to zero particular sets of statistics after printing them. 

DISPLAYS 

FILES 

1704 

The server RPC display includes the fields: 

calls total number of RPC calls received 

badcalls total number of calls rejected 

nullrecv number of times no RPC packet was available when trying to receive 

badlen number of packets that were too short 

xdrcall number of packets that had a malformed header 

The server NFS display shows the number of NFS calls received (calls) and rejected (badcalls), and the 
counts and percentages for the various calls that were made. 

The client RPC display includes the following fields: 

calls total number of RPC calls sent 
badcalls total of calls rejected by a server 
retrans number of times a call had to be retransmitted 
badxid number of times a reply did not match the call 
timeout number of times a call timed out 
wait number of times a call had to wait on a busy CLIENT handle 
newcred number of times authentication information had to be refreshed 

The client NFS display shows the number of calls sent and rejected, as well as the number of times a 
CLIENT handle was received (nclget), the number of times a call had to sleep while awaiting a handle 
(nclsleep), as well as a count of the various calls and their respective percentages. 

/vmunix 
/dev/kmem 

system namelist 
kernel memory 

Last change: 21 January 1988 Sun Release 4.0 



NSLOOKUP (SC) MAINTENANCE COMMANDS NSLOOKUP (SC) 

NAME 
nslookup - query name servers interactively 

SYNOPSIS 
nslookup [ -I ] [ address ] 

DESCRIPTION 
nslookup is an interactive program to query ARPA Internet domain name servers. The user can contact 
servers to request information about a specific host or print a list of hosts in the domain. 

OPTIONS 
-I Use the local host's name server instead of the servers in /etc/resolve.conf. (If 

/etc/resolve.conf does not exist or does not contain server information, the -1 option does not 
have any effect). 

address 

USAGE 
Overview 

Use the name server on the host machine with the given Internet address. 

The Internet domain name-space is tree-structured, with four top-level domains at present: 

COM commercial establishments 
EDU educational institutions 
GOV government agencies 
MIL MILNET hosts 

If you are looking for a specific host, you need to know something about the host's organization in order to 
determine the top-level domain it belongs to. For instance, if you want to find the Internet address of a 
machine at UCLA, do the following: 

1. Connect with the root server using the root command. The root server of the name space has 
knowledge of the top-level domains. 

2. Since UCLA is a university, its domain name is ucla.edu. Connect with a server for the ucla.edu 
domain with the command serverucla.edu. The.response will print the names of hosts that act as 
servers for that domain. Note: the root server does not have information about ucla.edu, but 
knows the names and addresses of hosts that do. Once located by the root server, all future 
queries will be sent to the UCLA name server. 

3. To request information about a particular host in the domain (for instance, locus), just type the 
host name. To request a listing of hosts in the UCLA domain, use the Is command. The Is com
mand requires a domain name (in this case, ucla.edu) as an argument. 

Note: if you are connected with a name server that handles more than one domain, all lookups for host 
names must be fully specified with its domain. For instance, the domain harvard.edu is served by 
seismo.css.gov, which also services the css.gov and cornell.edu domains. A lookup request for the host 
aiken in the harvard.edu domain must be specified as aiken.harvard.edu. However, the 

set domain= name 

and 

set defname 

commands can be used to automatically append a domain name to each request. 

After a successful lookup of a host, use the finger command to see who is on the system, or to finger a 
specific person. To get other information about the host, use the 

set querytype = value 

command to change the type of information desired and request another lookup. (finger requires the type 
to be A.) 

Sun Release 4.0 Last change: 18 September 1987 1705 



NSLOOKUP ( 8C) MAINTENANCE COMMANDS NSLOOKUP ( 8C) 

Commands 

1706 

Commands may be interrupted at any time by typing "C. To exit, type "D (EOF). The command line 
length must be less than 80 characters. Note: an unrecognized command will be interpreted as a host 
name. 

host [server] 
Look up information for host using the current default server or using server if it is specified. 

server doma.in 
lserver domain 

Change the default server to domain. lserver uses the initial server to look up information about 
domain while server uses the current default server. If an authoritative answer can't be found, the 
names of servers that might have the answer are returned. 

root Changes the default server to the server for the root of the domain name space. Currently, the host 
sri-nic.arpa is used; this command is a synonym for 'lserver sri-nic.arpa' .) The name of the 
root server can be changed with the set root command. 

finger [ name] 
Connect with the finger server on the current host, which is defined by a previous successful 
lookup for a host's address information (see the set query type= A command). As with the shell, 
output can be redirected to a named file using> and>>. 

"ls [-ah] 
List the information available for domain. The default output contains host names and their Inter
net addresses. The -a option lists aliases of hosts in the domain. The -h option lists CPU and 
operating system information for the domain. As with the shell, output can be redirected to a 
named file using> and>>. When output is directed to a file, hash marks are printed for every 50 
records received from the server. 

viewfilename 
Sort and list the output of the ls command with more(l). 

help 

? Print a brief summary of commands. 

setkeyword[ =value] 
This command is used to change state information that affects the lookups. Valid keywords are: 

all Prints the current values of the various options to set. Information about the current 
default server and host is also printed. 

[no]deb[ug] 
Tum debugging mode on. A lot more information is printed about the packet sent to the 
server and the resulting answer. The default is nodebug. 

[no]def[name] 
Append the default domain name to every lookup. The default is nodefname. 

do[main]=filename 
Change the default domain name to name. The default domain name is appended to all 
lookup requests if defname option has been set. The default is the value in 
/etc/resolve.conf. 

q[ querytype ]=value 
Change the type of information returned from a query to one of: 

A The host's Internet address (the default). 
CNAME 

The canonical name for an alias. 
IDNFO The host CPU and operating system type. 
MD The mail destination. 

Last change: 18 September 1987 Sun Release 4.0 



NSLOOKUP ( 8C) MAINTENANCE COMMANDS NSLOOKUP ( 8C) 

MX The mail exchanger. 
MB The mailbox domain name. 
MG The mail group member. 
MINFO The mailbox or mail list information. 

(Other types specified in the RFC883 document are valid, but are not very useful.) 

[no]recurse 
Tell the name server to query other servers if it does not have the information. The 
default is recurse. 

ret[ry]=count 
Set the number of times to retry a request before giving up to count. When a reply to a 
request is not received within a certain amount of time (changed with set timeout}, the 
request is resent. The default is count is 2. 

ro[ot]=host 
Change the name of the root server to host. This affects the root command. The default 
root server is sri-nic.arpa. 

t[timeout] =interval 
Change the time-out for a reply to interval seconds. The default interval is 10 seconds. 

[no]v[c] 
Always use a virtual circuit when sending requests to the server. The default is novc. 

DIAGNOSTICS 

FILES 

If the lookup request was not successful, an error message is printed. Possible errors are: 

Time-out 
The server did not respond to a request after a certain amount of time (changed with set 
timeout= value) and a certain number of retries (changed with set retry= value). 

No information 
Depending on the query type set with the set querytype command, no information about the host 
was available, though the host name is valid. 

Non-existent domain 
The host or domain name does not exist. 

Connection refused 
Network is unreachable 

The connection to the name or finger server could not be made at the current time. This error 
commonly occurs with finger requests. 

Server failure 

Refused 

The name server found an internal inconsistency in its database and could not return a valid 
answer. 

The name server refused to service the request. 

The following error should not occur and it indicates a bug in the program. 

Format error 
The name server found that the request packet was not in the proper format. 

/ etc/resolve.conf 

SEE ALSO 

initial domain name and name server addresses. 

resolver(3}, resolve.conf(5}, named(8C), RFC 882, RFC 883 

Sun Release 4.0 Last change: 18 September 1987 1707 



PAC(8) MAINTENANCE COMMANDS PAC(8) 

NAME 
pac - printer/plotter accounting information 

SYNOPSIS 
/usr/etc/pac [ -cps ] [ -Pprinter ] [ -pprice ] [filename. . . ] 

DESCRIPTION 
pac reads the printer/plotter accounting files, accumulating the number of pages (the usual case) or feet (for 
raster devices) of paper consumed by e. ch user, and printing out how much each user consumed in pages 
or feet and dollars. If any filenames are specified, then statistics are only printed for those users; usually, 
statistics are printed for every user who has used any paper. 

OPTIONS 

FILES 

BUGS 

1708 

-c Sorted the output by cost; usually the output is sorted alphabetically by name. 

-pprice Use the value price for the cost in dollars instead of the default value of 0.02. 

-r Reverse the sorting order. 

-s Summarize the accounting information on the summary accounting file; this summary is necessary 
since on a busy system, the accounting file can grow by several lines per day. 

-Pprinter 
Do accounting for the named printer. Normally, accounting is done for the default printer (site 
dependent) or the value of the PRINTER environment variable is used. 

/var/adm/?acct 
/var/adm/? _sum 

raw accounting files 
summary accounting files 

The relationship between the computed price and reality is as yet unknown. 

Last change: 9 September 1987 Sun Release 4.0 



PING(8C) MAINTENANCE COMMANDS PING(8C) 

NAME 
ping - send ICMP ECHO_ REQUEST packets to network hosts 

SYNOPSIS 
/usr/etc/ping host [ timeout ] 

/usr/etc/ping [ -s ] [ -rv ] host [ packetsize ] [ count ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
ping utilizes the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an ICMP 
ECHO_ RESPONSE from the specified host , or network gateway. ECHO_ REQUEST datagrams, or ''pings,'' 
have an IP and ICMP header, followed by a structtimeval, and then an arbitrary number of bytes to pad out 
the packet. If host responds, ping will print host is alive on the standard output and exit. Otherwise after 
timeout seconds, it will write no answer from host. The default value of timeout is 20 seconds. 

When the -s flag is specified, ping sends one datagram per second, and prints one line of output for every 
ECHO_ RESPONSE that it receives. No output is produced if there is no response. In this second form, ping 
computes round trip times and packet loss statistics; it displays a summary of this information upon termi
nation or timeout. The default datagram packet size is 64 bytes, or you can specify a size with the packet
size command-line argument. If an optional count is given, ping sends only that number of requests. 

When using ping for fault isolation, first 'ping' the local host to verify that the local network interface is 
running. 

OPTIONS 
-r Bypass the normal routing tables and send directly to a host on an attached network. If the host is 

not on a directly-attached network, an error is returned. This option can be used to ping a local 
host through an interface that has been dropped by the router daemon, see routed(8C). 

-v Verbose output. List any ICMP packets, other than ECHO_ RESPONSE, that are received. 

SEE ALSO 
icmp(4P), ifconfig(8C), netstat(8C), rpcinfo(8C), spray(8C) 

Sun Release 4.0 Last change: 17 December 1987 1709 



PNPBOOT ( 8C) MAINTENANCE COMMANDS PNPBOOT (SC) 

NAME 
pnpboot, pnp.s386 - pnp diskless boot service 

SYNOPSIS - Sun386i 
/tftpboot/pnp.s386 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

FILES 

pnp.s386 is a level 2 boot program that requests actions necessary to set up a diskless workstation on the 
network. 

The PNP cliskless boot service is used by diskless workstations at installation time to locate a server that 
will configure the cliskless client. 

The last steps of the level 1 boot (from the PROM) are to load the level 2 program through rarpd(8C) and 
tftpd(8C). The first step in the boot sequence is RARP to acquire an IP address. This is followed by TFfP 
service calls to acquire the pop.sun• program file needed for the client's architecture. A PNP _ACQUIRE 
RPC is then broadcast to locate a server willing to configure the diskless client. 

A PNP _ SETUP is issued to the server which returns one of three statuses: success, failure, or in _progress. 
As long as the server responds with a status of in _progress the client will periodically issue a PNP _ POLL 
until the status changes to either success or failure. 

The last step is to reboot the client. This goes through a RARP, TFrP, BOOT sequence, with the boot using 
the normal boot.sun* file and bootparamd(8) service. 

The system will have been set up using the IP address returned in the first step and a system name will have 
been assigned. 

/tftpboot/pnp.sun* 

SEE ALSO 

1710 

bootparam(3R), bootparams(5), boot(8S), bootparamd(8), netconfig(8C), pnpd(8C), ipallocd(8C), 
rarpd(8C), tftpd(8C) 

Last change: 5 December 1987 Sun Release 4.0 



PNPD(8C) 

NAME 
pnpd - PNP daemon 

SYNOPSIS 
/usr/etc/rpc.pnpd 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 

MAINTENANCE COMMANDS PNPD(8C) 

pnpd is used during routine booting of systems to determine their network configuration, and by new sys
tems to configure themselves on a network. pnpd adds and removes diskless clients of the boot server on 
which it is running. The pnpd daemon is normally invoked in re.local. The RPCs are used by 
netconfig(8C), pnp.s386 (see pnpboot(8C)), and client(8). 

FILES 

The bootservers YP map specifies limits on server capacity and default swap size. 

/export/exec/arch 
symbolic link to /export/exec/arch.release 

/export/exec/arch.release 
symbolic link to /usr for the architecture 

/export/exec/arch.release/boot 
root binaries 

SEE ALSO 
pnp(3R), client(8), ipallocd(8C), netconfig(8C), pnpboot(8C) 

Sun Release 4.0 Last change: 25 February 1988 1711 



PORTMAP(8C) MAINTENANCE COMMANDS PORTMAP(8C) 

NAME 
portmap - DARPA port to RPC program number mapper 

SYNOPSIS 
/usr/etc/rpc.portmap 

DESCRIPTION 
portmap is a server that converts RPC program numbers into DARPA protocol port numbers. It must be 
running in order to make RPC calls. 

When an RPC server is started, it will tell portmap what port number it is listening to, and what RPC pro
gram numbers it is prepared to serve. When a client wishes to make an RPC call to a given program 
number, it will first contact portmap on the server machine to determine the port number where RPC pack
ets should be sent 

Normally, standard RPC servers are started by inetd(8C}, so portmap must be started before inetd is 
invoked. 

SEE ALSO 
inetd.conf(5}, rpcinfo(8}, inetd(8) 

BUGS 
If portmap crashes, all servers must be restarted 

1712 Last change: 9 September 1987 Sun Release 4.0 



PRAUDIT(8) MAINTENANCE COMMANDS PRAUDIT(8) 

NAME 
praudit - print contents of an audit trail file 

SYNOPSIS 
praudit [ -lrs] [ -ddel] [filename ... ] 

AVAILABILITY 
This program is available with the Security software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
praudit reads the listed filenames (or standard input, if no files are specified) and interprets the data as 
audit trail records as defined in audit_control(5). By default, times, security labels, user and group IDs are 
converted to their ASCII representation. Record type and event fields are converted to long ASCII represen
tation. 

OPTIONS 
-I Print records one line per record. The record type and event fields are always converted to their 

short ASCII representation. 

-r 

-s 

-ddel 

FILES 

Print records in their raw form. Times, security labels, user IDs, group IDs, record types, and 
events are displayed as integers. Currently, in SunOS 4.0, labels are not used and are displayed as 
zero in this mode. This option and the -s option are exclusive. If both are used, a format usage 
error message is output. 

Print records in their short form. All numeric fields are converted to ASCII and displayed The 
short ASCII representations for the record type and event fields are used. Security labels are 
displayed in their short representation. Again, labels are not currently used. This option and the 
-r option are exclusive. If both are used, a format usage error message is output. 

Use del as the field delimiter instead of the default delimiter, which is the comma. If del has spe
cial meaning for the shell, it must be quoted. The maximum size of a delimiter is four characters. 

I etc/passwd 

SEE ALSO 
audit(2), setuseraudit(2), getauditflags(3 ), audit_ control(5) 

Sun Release 4.0 Last change: 26 January 1988 1713 



PSTAT(8) MAINTENANCE COMMANDS PSTAT(8) 

NAME 
pstat - print system facts 

SYNOPSIS 
/usr/etc/pstat [ -afipSsT ] [ -u pid] [ system [ corefile ] ] 

DESCRIPTION 

pstat interprets the contents of certain system tables. If corefile is given, the tables are sought there, other
wise in /dev/kmem. The required namelist is taken from /vmunix unless system is specified. 

OPTIONS 
-a Under -p, describe all process slots rather than just active ones. 

-f Print the open file table with these headings: 

LOC The memory address of this table entry. 
TYPE The type of object the file table entry points to. 
FLG Miscellaneous state variables encoded thus: 

R open for reading 
W open for writing 
A open for appending 
S shared lock present 
X exclusive lock present 
I signal pgrp when data ready 

CNT Number of processes that know this open file. 
MSG Number of references from message queue. 
DAT A The location of the vnode table entry or socket for this file. 
OFFSET The file offset (see lseek(2)). 

-i Print the inode table including the associated vnode entries with these headings: 

ILOC The memory address of this table entry. 
IFLAG Miscellaneous inode state variables encoded thus: 

A inode access time must be corrected 
C inode change time must be corrected 
L inodeislocked 
R inode is being referenced 
U update time (fs(S)) must be corrected 
W wanted by another process (L flag is on) 

IDEVICE Major and minor device number of file system in which this inode resides. 
INO I-number within the device. 
MODE Mode bits in octal, see cbmod(2). 
NLK Number of links to this inode. 
UID 
SIZE/DEV 

VFLAG 

CNT 
SHC 
EXC 

TYPE 

User ID of owner. 
Number of bytes in an ordinary file, or major and minor device of special 
file. 
Miscellaneous vnode state variables encoded thus: 

R root of its file system 
S shared lock applied 
E exclusive lock applied 
Z process is waiting for a shared or exclusive lock 

Number of open file table entries for this vnode. 
Reference count of shared locks on the vnode. 
Reference count of exclusive locks on the vnode (this may be'> 1' if, for 
example, a file descriptor is inherited across a fork). 
Vnode file type, either VNON (no type), VREG (regular), VDIR (directory), 
VBLK (block device), VCHR (character device), VLNK (symbolic link), 
VSOCK (socket), VFIFO (named pipe), or VBAD (bad). 

T "~t rh 'lnn»• ">7 T ~nn ~rv 1 QRR Sun Release 4.0 



PSTAT(8) MAINTENANCE COMMANDS PSTAT(8) 

-p Print process table for active processes with these headings: 

Sun Release 4.0 

LOC 
s 

F 

PRI 
SIG 
UID 
SLP 
TIM 
CPU 
NI 
PGRP 
PID 
PPID 
RSS 

SRSS 

The memory address of this table entry. 
Run state encoded thus: 

0 no process 
1 awaiting an event 
2 (abandoned state) 
3 runnable 
4 being created 
5 being terminated 
6 stopped (by signal or under trace) 

Miscellaneous state variables, ORed together (hexadecimal): 
0000001 loaded 
0000002 a system process (scheduler or page-out daemon) 
0000004 locked for swap out 
0000008 swapped out during process creation 
0000010 process is being traced 
0000020 tracing parent has been told that process is stopped 
0000040 user settable lock in memory 
0000080 in page-wait 
0000100 prevented from swapping during fork(2) 
0000200 will restore old mask after taldng signal 
0000400 exiting 
0000800 doing physical 1/0 
0001000 process resulted from a vfork(2) which is not yet 

complete 
another flag for vf ork(2) 0002000 

0004000 process has no virtual memory, as it is a parent in 
the context of vf ork(2) 

0008000 process is demand paging pages from its execut
able image vnode 

0010000 process has advised of sequential VM behavior 
with vadvise(2) 

0020000 process has advised of random VM behavior with 
vadvise(2) 

0080000 process is a session process group leader 
0100000 process is tracing another process 
0200000 process needs a profiling tick 
0400000 process is scanning descriptors during select 
4000000 process has done record locks 
8000000 process is having its system calls traced 

Scheduling priority, see getpriority(2). 
Signals received (signals 1-32 coded in bits 0-31), 
Real user ID. 
Amount of time process has been blocked. 
Time resident in seconds; times over 127 coded as 127. 
Weighted integral of CPU time, for scheduler. 
Nice level, see getpriority(2). 
Process number of root of process group. 
The process ID number. 
The process ID of parent process. 
Resident set size - the number of physical page frames allocated to this 
process. 
RSS at last swap (0 if never swapped). 

Last change: 27 January 1988 1715 



PSTAT(8) MAINTENANCE COMMANDS PSTAT(8) 

SIZE The size of the process image. That is, the sum of the data and stack seg
ment sizes, not including the sizes of any shared libraries. 

WCHAN Wait channel number of a waiting process. 
LINK Link pointer in list of runnable processes. 

-S Print the streams table with these headings: 

1716 

LOC The memory address of this table entry. 
WRQ The address of this stream's write queue. 
VNODE The address of this stream's vnode. 
DEVICE 
PGRP 
FLG 

Major and minor device number of device to which this stream refers. 
This stream's process group number. 
Miscellaneous stream state variables encoded thus: 

I waiting for ioctl( ) to finish 
R read/recvmsg is blocked 
W write/putmsg is blocked 
P priority message is at stream head 
H device has been "hung up" (M_HANGUP) 
0 waiting for open to finish 
M stream is linked under multiplexor 
D stream is in message-discard mode 
N stream is in message-nondiscard mode 
E fatal error has occurred (M_ERROR) 
T waiting for queue to drain when closing 
2 waiting for previous ioctl( ) to finish before starting new one 
3 waiting for acknowledgment for ioctl() 
B stream is in non-blocking mode 
A stream is in asynchronous mode 
o stream uses old-style no-delay mode 
S stream has had TOSTOP set 
C VTIME clock running 
V VTIME timer expired 
r collision on select( ) for reading 
w collision on select( ) for writing 
e collision on select( ) for exceptional condition 

The queues on the write and read sides of the stream are listed for each stream. Each queue is 
printed with these headings: 

NAME The name of the module or driver for this queue. 
COUNT The approximate number of bytes on this queue. 
FLG Miscellaneous state variables encoded thus: 

MINPS 
MAXPS 
HIWAT 
LOWAT 

E queue is enabled to run 
R someone wants to get from this queue when it becomes 

non-empty 
W someone wants to put on this queue when it drains 
F queue is full 
N queue should not be enabled automatically by a putq 

The minimum packet size for this queue. 
The maximum packet size for this queue, or INF if there is no maximum. 
The high-water mark for this queue. 
The low-water mark for this queue. 

Last change: 27 January 1988 Sun Release 4.0 



PSTAT(8) MAINTENANCE COMMANDS PSTAT(8) 

FILES 

-s Print information about swap space usage: 

allocated: The amount of swap space (in bytes) allocated to private pages. 

reserved: The number of swap space bytes not currently allocated, but claimed by 
memory mappings that have not yet created private pages. 

used: The total amount of swap space, in bytes, that is either allocated or 
reserved. 

available: The total swap space, in bytes, that is currently available for future reser
vation and allocation. 

-T Print the number of used and free slots in the several system tables. This is useful for checking to 
see how full system tables have become if the system is under heavy load. Shows both used and 
cached inodes. 

-u pid Print information about the process with ID pid. 

/vmunix 
/dev/kmem 

namelist 
default source of tables 

SEE ALSO 

BUGS 

ps(l}, chmod(2}, fork(2}, lseek(2}, getpriority(2}, stat(2}, vadvise(2}, vfork(2}, fs(5}, iostat(8}, 
vmstat(8) 

It would be very useful if the system recorded "maximum occupancy" on the tables reported by -T; · even 
more useful if these tables were dynamically allocated. 

Sun Release 4.0 Last change: 27 January 1988 1717 



PWCK(8) MAINTENANCE COMMANDS PWCK(8) 

NAME 
pwck - check password database entries 

SYNOPSIS 
/usr/etc/pwck [file ] 

DESCRIPTION 

FILES 

Note: Optional Software (System V Option). Refer to Installing the Sun0S for information on how to 
install this command. 

pwck checks that a file in passwd(5) does not contain any errors; it checks the /etc/passwd file by default. 

I etc/passwd 

DIAGNOSTICS 
Too many/few fields 

An entry in the password file does not have the proper number of fields. 

No login name 
The login name field of an entry is empty. 

Bad character(s) in login name 
The login name in an entry contains characters other than lower-case letters and digits. 

First char in login name not lower case alpha 
The login name in an entry does not begin with a lower-case letter. 

Login name too long 
The login name in an entry has more than 8 characters. 

Invalid UID 
The user ID field in an entry is not numeric or is greater than 65535. 

Invalid GID 
The group ID field in an entry is not numeric or is greater than 65535. 

No login directory 
The login directory field in an entry is empty. 

Login directory not found 
The login directory field in an entry refers to a directory that does not exist. 

Optional shell file not found. 
The login shell field in an entry refers to a program or shell script that does not exist. 

No netgroup name 
The entry is a Yellow Pages entry referring to a netgroup, but no netgroup is present. 

Bad character(s) in netgroup name 
The netgroup name in a Yellow Pages entry contains characters other than lower-case letters and 
digits. 

First char in netgroup name not lower case alpha 
The netgroup name in a Yellow pages entry does not begin with a lower-case letter. 

SEE ALSO 
group(5), passwd(5) 

1718 Last change: 17 November 1987 Sun Release 4.0 



PWDAUTHD ( 8C) MAINTENANCE COMMANDS PWDAUTHD ( 8C) 

NAME 
pwdauthd - server for authenticating passwords 

SYNOPSIS 
/usr/etc/rpc.pwdauthd 

AVAILABILITY 
This program is available with the Security software installation option. Refer to Installing the SunOS for 
information on how to install optional software. 

DESCRIPTION 
pwdauthd is a server that determines authentication for users and groups. It handles authentication 
requests from pwdauth(3) and grpauth. Communication to and from pwdauthd is by means ofRPC calls. 
The server is passed a filename and a password. It returns an integer value that specifies whether the pass
word is valid. The possible return values are PW A_ VALID if the name is valid, PW A_ INVALID if the 
name is invalid, and PWA_UNKNOWN if validity cannot be determined because no adjunct files are 
present. 

If pwdauthd is serving pwdauth, it determines whether the passwd.adjunct file exists. If not, it returns 
PWA_UNKNOWN. In this case, pwdauth knows to check the /etc/passwd file. Otherwise, the server calls 
getpwanam (see getpwaent(3)) to get the entry for filename in either the local or the Yellow Pages file for 
passwd.adjunct. If the encrypted password guess matches the encrypted password from the file, 
pwdauthd returns PWA _VALID. If the passwords do not match, it returns PWA_INVALID. 

If pwdauthd is serving grpauth, it determines whether the group.adjunct file exists. If not, it returns 
PWA_UNKNOWN. In this case, grpauth knows to check the /etc/group file. Otherwise, the server calls get
granam (see getgraent(3)) to get the entry for filename in either the local or the Yellow Pages file for 
group.adjunct. If the encrypted password guess matches the encrypted password from the file, pwdauthd 
returns PW A_ VALID. If the passwords do not match, it returns PW A _INVALID. 

SEE ALSO 
getpwaent(3), getgraent(3), pwdauth(3) 

Sun Release 4.0 Last change: 21 December 1987 1719 



QUOT(8) MAINTENANCE COMMANDS QUOT(8) 

NAME 
quot - summarize file system ownership 

SYNOPSIS 
/usr/etc/quot [ -acfbnv] [filesystem ] 

DESCRIPTION 
quot displays the number of blocks (1024 bytes) in the namedfilesystem currently owned by each user. 

OPTIONS 

FILES 

-a Generate are report for all mounted file systems. 

-c Display three columns giving file size in blocks, number of files of that size, and cumulative total 
of blocks in that size or smaller file. 

-f Display count of number of files as well as space owned by each user. 

-h Estimate the number of blocks in the file - this doesn't account for files with holes in them. 

-n Run the pipeline ncheck filesystem I sort +On I quot -n filesystem to produce a list of all files 
and their owners. 

-v Display three columns containing the number of blocks not accessed in the last 30, 60, and 90 
days. 

/etc/mtab 
/ etc/passwd 

mounted file systems 
to get user names 

SEE ALSO 
du(l V), ls(l V) 

1720 Last change: 9 September 1987 Sun Release 4.0 



QUOT ACHECK ( 8 ) MAINTENANCE COMMANDS QUOTACHECK ( 8) 

NAME 
quotacheck - file system quota consistency checker 

SYNOPSIS 
/usr/etc/quotacheck [ -v] [ -p ]filesystem ... 

/usr/etc/quotacheck [ -apv ] 

DESCRIPTION 
quotacheck examines each file system, builds a table of current disk usage, and compares this table against 
that stored in the disk quota file for the file system. If any inconsistencies are detected, both the quota file 
and the current system copy of the incorrect quotas are updated (the latter only occurs if an active file sys
tem is checked). 

quotacheck expects each file system to be checked to have a quota file named quotas in the root directory. 
If none is present, quotacheck will ignore the file system. 

quotacheck is normally run at boot time from the /etc/re.local file, see rc(8), before enabling disk quotas 
with quotaon(8). 

quotacheck accesses the raw device in calculating the actual disk usage for each user. Thus, the file sys
tems checked should be quiescent while quotacheck is running. 

OPTIONS 

FILES 

-v Indicate the calculated disk quotas for each user on a particular file system. quotacheck Normally 
reports only those quotas modified. 

-a Check all the file systems indicated in /etc/fstab to be read-write with disk quotas. 

-p Run parallel passes on the required file systems, using the pass numbers in /etc/fstab in an identi-
cal fashion to fsck(8). 

quotas 
/etc/mtab 
/etc/fstab 

quota file at the file system root 
mounted file systems 
default file systems 

SEE ALSO 
quotactl(2), quotaon(8), rc(8) 

Sun Release 4.0 Last change: 9 September 1987 1721 



QUOTAON(8) MAINTENANCE COMMANDS QUOTAON(8) 

NAME 
quotaon, quotaoff - turn file system quotas on and off 

SYNOPSIS 
/usr/etc/quotaon [ -v ]filesystem ... 

/usr/etc/quotaon [-av] 

/usr/etc/quotaoff [ -v ]filesystem ... 

/usr/etc/quotaoff [-av] 

DESCRIPTION OF QUOT AON 
quotaon announces to the system that disk quotas should be enabled on one or more file systems. The file 
systems specified must be mounted at the time. The file system quota files must be present in the root 
directory of the specified file system and be named quotas. 

DESCRIPTION OF QUOT AOFF 
quotaoff announces to the system that file systems specified should have any disk quotas turned off. 

OPTIONS TO QUOT AON 
-a All file systems in /etc/fstab marked read-write with quotas will have their quotas turned on. This 

is normally used at boot time to enable quotas. 

-v Display a message for each file system where quotas are turned on. 

OPTIONS TO QUOTAOFF 

FILES 

-a Force all file systems in /etc/fstab to have their quotas disabled. 

-v Display a message for each file system affected. 

These commands update the status field of devices located in /etc/mtab to indicate when quotas are on or 
off for each file system. 

quotas 
/etc/mtab 
/etc/fstab 

quota file at the file system root 
mounted file systems 
default file systems 

SEE ALSO 
quotactl(2), fstab(5), mtab(5) 

1722 Last change: 9 September 1987 Sun Release 4.0 



RARPD(8C) MAINTENANCE COMMANDS RARPD(8C) 

NAME 
rarpd - DARPA Reverse Address Resolution Protocol service 

SYNOPSIS 
/usr/etc/rarpd if hostname 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

rarpd starts a daemon that responds to Reverse Address Resolution Protocol (Reverse ARP) requests. The 
daemon forks a copy of itself, and requires root privileges. 

The Reverse ARP protocol is used by machines at boot time to discover their (32 bit) IP address given their 
(48 bit) Ethernet add.t:ess. In order for the request to be answered, a machine's name-to-IP-address entry 
must exist in the /etc/hosts file and its name-to-Ethernet-address entry must exist in the /etc/ethers file. 
Furthermore, the server that runs the rarpd daemon must have entries in both files. Note that if the server 
machine is using the Yellow Pages service, the server's files are ignored, and the appropriate Yellow Pages 
maps queried 

The first argument, if, is one of the interface parameter strings (listed in boot(8S)), in the form of ''name 
unit", for example ieO. The second argument, hostname, is the interface's corresponding host name. The 
if, host name pair should be the same as the arguments passed to the if config (8) command. As with 
if config, rarpd must be invoked for each interface that the server wishes to support. Therefore a gateway 
machine may invoke the rarpd multiple times, for example: 

/usr/etc/rarpd ieO host 
/usr/etc/rarpd iel host-backbone 

/etc/ethers 
/etc/hosts 

SEE ALSO 
boot(8S), ifconfig(8C) ipallocd(8C), netconfig(8C), ethers(5), hosts(5), policies(5), netconfig(8C), 
ipallocd(8C) 

Finlayson, Ross, Timothy Mann, Jeffrey Mogul, and Marvin Theimer, A Reverse Address Resolution Pro
tocol, RFC 903, Network Information Center, SRI International, Menlo Park, Calif., June 1984. 

Sun Release 4.0 Last change: 13 February 1988 1723 



RC(8) MAINTENANCE COMMANDS RC(8) 

NAME 
re, re.boot, re.local - command scripts for auto-reboot and daemons 

SYNOPSIS 
/etc/re 

/etc/re.boot 

/ etc/re.local 

DESCRIPTION 
re and re.boot are command scripts that are invoked by init(8) to perform file system housekeeping and to 
start system daemons. re.local is a script for commands that are pertinent only to a specific site or client 
machine. 

re.boot sets the machine name, and then, if coming up multi-user, runs fsck(8) with the -p option. This 
"preens" the disks of minor inconsistencies resulting from the last system shutdown and checks for serious 
inconsistencies caused by hardware or software failure. If fsck(8) detects a serious disk problem, it returns 
an error and init(8) brings the system up in single-user mode. When coming up single-user, when init(8) is 
invoked by fastboot(8), or when it is passed the -b flag from boot(8S), functions performed in the re.local 
file, including this disk check, are skipped. 

Next, re runs. If the system came up single-user, re runs when the single-user shell terminates (see 
init(8)). It mounts 4.2 filesystems and spawns a shell for /etc/re.local, which mounts NFS filesystems, and 
starts local daemons. After re.local returns, re starts standard daemons, preserves editor files, clears /tmp, 
starts system accounting (if applicable), starts the network (where applicable), and if enabled, runs 
savecore(8) to preserve the core image after a crash. 

Sun386i SYSTEM DESCRIPTION 

FILES 

1724 

These files operate as described above with the following variations: 

fsck(8) is invoked with the -y option to prevent users being put in single-user mode by happenstance. 

re.boot invokes netconfig(8C) to configure the system for the network before booting. neteonfig is 
invoked before the /usr filesystem is mounted, because /usr might be mounted from a server. netconfig 
writes /etc/net.conf unless the -n option is specified, controlling system booting. 

The file /etc/net.conf stores these environment variables: The VERBOSE environment variable controls the 
verbosity of the messages from the re script; its value is taken from NVRAM . The NETWORKED environ
ment variable controls whether services useful only on a networked system are started in /etc/re.local. The 
PNP environment variable, set up during initial system installation, controls whether local network 
configuration information is used or whether that information comes from the network. (Using automatic 
system installation causes all systems except boot servers to get this information from the network, facili
tating network reconfiguration.) The HOSTNAME and DOMAINNAME environment variables, used 
together, help determine if this system is a boot server or, with PNP set to no, control the host name and 
domain name. 

re.boot dynamically loads device drivers. 

re invokes any programs found in /var/recover to clean up any operations partially completed when the 
system crashed or was shut down. 

re.local starts the automounter. 

/etc/re 
/etc/re.boot 
/ etc/re.local 
I etc/net.conf 
/var/recover/* 
/var/yp/* 
/tmp 

Last change: 24 February 1988 Sun Release 4.0 



RC(8) MAINTENANCE COMMANDS RC(8) 

SEE ALSO 
automount(8), boot(8S), fastboot(8), init(8), reboot(8), savecore(8), netconfig(8C) 

Sun Release 4.0 Last change: 24 February 1988 1725 



RDATE(8C) MAINTENANCE COMMANDS RDATE(8C) 

NAME 
rdate - set system date from a remote host 

SYNOPSIS 
/usr/ucb/rdate hostname 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 

FILES 

rdate sets the local date and time from the hostname given as argument You must be super-user on the 
local system. Typically rdate can be inserted as part of your /etc/re.local startup script. 

/ etc/re.local 

SEE ALSO 
timed(8C) 

BUGS 

1726 

Could be modified to accept a list of hostnames and try each until a valid date returned. Better yet would 
be to write a real date server that accepted broadcast requests. 

Last change: 17 December 1987 Sun Release 4.0 



REBOOT(8) MAINTENANCE COMMANDS REBOOT(8) 

NAME 
reboot - restart the operating system 

SYNOPSIS 
/usr/etdreboot [ -dnq ] [ boot arguments ] 

DESCRIPTION 
reboot executes the reboot(2) system call to restart the kernel. The kernel is loaded into memory by the 
PROM monitor, which transfers control to it. See boot(8S) for details. 

Although reboot can be run by the super-user at any time, shutdown(8) is normally used first to warn all 
users logged in of the impending loss of service. See shutdown(8) for details. 

reboot performs a sync(l) operation on the disks, and then a multiuser reboot is initiated. See init(8) for 
details. 

reboot normally logs the reboot to the system log daemon, syslogd(8), and places a shutdown record in the 
login accounting file /var/adm/wtmp. These actions are inhibited if the -n or-q options are present. 

Power Fail and Crash Recovery 
Normally, the system will reboot itself at power-up or after crashes. 

OPTIONS 
-d Dump system core before rebooting. 

-n Avoid the sync(l). It can be used if a disk or the processor is on fire. 

-q Quick. Reboots quickly and ungracefully, without first shutting down running processes. 

Boot Arguments 

FILES 

If a boot argument string is given, it is passed to the boot command in the PROM monitor. The string must 
be quoted if it contains spaces or other characters that could be interpreted by the shell. If the first charac
ter of the boot argument string is a minus sign '-' the string must be preceded by an option terminator 
string'--' For example: 'reboot-- -s' to reboot and come up single user, 'reboot vmunix.test' to reboot 
to a new kernel. See boot(8S) for details. 

/var/adm/wtmp login accounting file 

SEE ALSO 
sync(l), reboot(2), fsck(8), halt(8), init(8), shutdown(8), syslogd(8), boot(8S), crash(8S) 

Sun Release 4.0 Last change: 23 September 1987 1727 



RENICE(8) MAINTENANCE COMMANDS RENICE(8) 

NAME 
renice - alter priority of running processes 

SYNOPSIS 
/usr/etc/renice priority pid ... 

/usr/etc/renice priority [ -p pid. . . ] [ -g pgrp. . . ] [ -u username. . . ] 

DESCRIPTION 
renice alters the scheduling priority of one or more running processes. 

OPTIONS 

FILES 

By default, the processes to be affected are specified by their process IDs. priority is the new priority value. 

-ppid ... 
Specify a list of process IDs. 

-gpgrp ... 
Specify a list of process group IDs. The processes in the specified process groups have their 
scheduling priority altered. 

-u user ... 
Specify a list of user IDs or usernames. All processes owned by each user have their scheduling 
altered. 

Users other than the super-user may only alter the priority of processes they own, and can only monotoni
cally increase their "nice value" within the range Oto 20. (This prevents overriding administrative fiats.) 
The super-user may alter the priority of any process and set the priority to any value in the range -20 -
20. Useful priorities are: 19 (the affected processes will run only when nothing else in the system wants 
to), 0 (the "base" scheduling priority) and any negative value (to make things go very fast). 

If no who parameter is specified, the current process (alternatively, process group or user) is used. 

/etc/passwd 

SEE ALSO 

to map user names to user ID's 

BUGS 

1728 

pstat(8) 

If you make the priority very negative, then the process cannot be interrupted. 

To regain control you must make the priority greater than zero. 

Users other than the super-user cannot increase scheduling priorities of their own processes, even if they 
were the ones that decreased the priorities in the first place. 

Last change: 9 September 1987 Sun Release 4.0 



REPQUOTA ( 8) MAINTENANCE COMMANDS REPQUOTA ( 8) 

NAME 
repquota- summarize quotas for a file system 

SYNOPSIS 
/usr/etc/repquota [ -v ] filesystem . .. 

/usr/etc/repquota [-av] 

DESCRIPTION 
repquota prints a summary of the disc usage and quotas for the specified file systems. For each user the 
current number of files and amount of space (in kilobytes) is printed, along with any quotas created with 
edquota(8). 

OPTIONS 

FILES 

-a Report on all file systems indicated in /etc/fstab to be read-write with quotas. 

-v Report all quotas, even if there is no usage. 

Only the super-user may view quotas which are not their own. 

quotas 
/etc/fstab 

quota file at the file system root 
default file systems 

SEE ALSO 
edquota(8), quota(l), quotacheck(8), quotactl(2), quotaon(8) 

Sun Release 4.0 Last change: 9 September 1987 1729 



RESTORE(8) MAINTENANCE COMMANDS RESTORE(8) 

NAME 
restore, rrestore - incremental file system restore 

SYNOPSIS 
/usr/etc/restore options [filename ... ] 

DESCRIPTION 
restore restores files from backup tapes created with the dump(8) command. options is a string of at least 
one of the options listed below, along with any modifiers and arguments you supply. Remaining arguments 
to restore are the names of files (or directories whose files) are to be restored to disk. Unless the h 
modifier is in effect, a directory name refers to the files it contains, and (recursively) its subdirectories and 
the files they contain. 

OPTIONS 
i Interactive. After reading in the directory information from the tape, restore invokes an interactive 

interface that allows you to browse through the dump tape's directory hierarchy, and select indivi
dual files to be extracted. See Interactive Commands, below, for a description of available com
mands. 

r Restore the entire tape. Load the tape's full contents into the current directory. This option should 
only be used to restore a complete dump tape onto a clear filesystem, or to restore an incremental 
dump tape after a full "level O" restore. For example: 

example# /usr/etc/newfs /dev/rxyOg 
example# /usr/etc/mount /dev/xyOg /mnt 
example# cd /mnt 
example# restorer 

is a typical sequence to restore a "level O" dump. Another restore can be done to get an incremental 
dump in on top of this. 

R Resume restoring. restore requests a particular tape of a multivolume set from which to resume a 
full restore (see the r option above). This allows restore to start from a checkpoint when it is inter
rupted in the middle of a full restore. 

t Table of contents. List each filename that appears on the tape. If no filename argument is given, the 
root directory is listed. This results in a list of all files on the tape, unless the h modifier is in effect. 
(The t option replaces the function of the old dumpdir program). 

x Extract the named files from the tape. If a named file matches a directory whose contents were writ-
. ten onto the tape, and the h modifier is not in effect, the directory is recursively extracted. The 
owner, modification time, and mode are restored (if possible). If no filename argument is given, the 
root directory is extracted. This results in the entire tape being extracted unless the h modifier is in 
effect. 

Modifiers 

1 '"7'l() 

Some of the following modifiers take arguments that are given as separate words on the command line. 
When more than one such modifier appears within options, the arguments must appear in the same order as 
the modifiers that they apply to. 

c Convert the contents of the dump tape to the new filesystem format. 

d Debug. Tum on debugging output. 

h Extract the actual directory, rather than the files that it references. This prevents hierarchical restora
tion of complete subtrees from the tape. 

m Extract by inode numbers rather than by filename to avoid regenerating complete pathnames. This is 
useful if only a few files are being extracted. 

v Verbose. restore displays the name of each file it restores, preceded by its file type. 

y Do not ask whether to abort the restore in the event of tape errors. restore tries to skip over the bad 
tape block(s) and continue as best it can. 

T .~~t rh~noP.· Q SP.ntemher 1987 Sun Release 4.0 



RESTORE(8) MAINTENANCE COMMANDS RESTORE(8) 

USAGE 

bfactor 
Blocking factor. Specify the blocking factor for tape reads. By default, restore will attempt to 
figure out the block size of the tape. Note: a tape block is 512 bytes. 

f dump-file 
Use dump-file instead of /dev/rmt? as the file to restore from. If dump-file is specified as '-', 
restore reads from the standard input. This allows, dump(8) and restore to be used in a pipeline to 
dump and restore a file system: 

example# dump Of - /dev/rxyOg I 
If the name of the file is of the form machine :device the restore is done from the specified machine 
over the network using rmt(8C). Since restore is normally run by root, the name of the local 
machine must appear in the .rhosts file of the remote machine. If the file is specified as 
user@machine:device, restore will attempt to execute as the specified user on the remote machine. 
The specified user must have a .rhosts file on the remote machine that allows root from the local 
machine. If restore is called as rrestore, the tape defaults to dumphost:/dev/rmt8. To direct the 
input from a desired remote machine, set up an alias for dumphost in the file /etc/hosts. 

s n Skip to the n 'th file when there are multiple dump files on the same tape. For example, the com
mand: 

example# restore xfs /dev/nrarO S 

would position you at the fifth file on the tape. 

Interactive Commands 
restore enters interactive mode when invoked with the i option. Interactive commands are reminiscent of 
the shell. For those commands that accept an argument, the default is the current directory. 

ls [directoryl-,ist files in directory or the current directory, represented by a '.' (period). Directories are 
appended with a '/' (backslash). Entries marked for extraction are prefixed with a '*' (aster
isk). If the verbose option is in effect, inode numbers are also listed. 

cd directory 
Change to directory directory (within the dump-tape). 

pwd Print the full pathname of the current working directory. 

add rJilename] 
Add the current directory, or the named file or directory directory to the list of files to extract. 
If a directory is specified, add that directory and its files (recursively) to the extraction list 
(unless the h modifier is in effect). 

delete rJilename] 
Delete the current directory, or the named file or directory from the list of files to extract. If a 
directory is specified, delete that directory and all its descendents from the extraction list 
(unless the h modifier is in effect). The most expedient way to extract a majority of files from 
a directory is to add that directory to the extraction list, and then delete specific files to omit. 

extract Extract all files on the extraction list from the dump tape. restore asks which volume the user 
wishes to mount. The fastest way to extract a small number of files is to start with the last tape 
volume and work toward the first. 

verbose Toggle the status of the v modifier. While v is in effect, the Is command lists the inode 
numbers of all entries, and restore displays information about each file as it is extracted. 

help Display a summary of the available commands. 

quit restore exits immediately, even if the extraction list is not empty. 

Sun Release 4.0 Last change: 9 September 1987 1731 



RESTORE(8) MAINTENANCE COMMANDS RESTORE(8) 

FILES 
/dev/rmt8 
dumphost:/dev/rmt8 
/tmp/rstdir• 
/tmp/rstmode• 
Jrestoresymtable 

the default tape drive 
the default tape drive if called as rrestore 
file containing directories on the tape 
owner, mode, and timestamps for directories 
information passed between incremental restores 

SEE ALSO 

BUGS 

dump(8), mkfs(8), mount(8), newfs(8), rmt(8C) 

restore can get confused when doing incremental restores from dump tapes that were made on active file 
systems. 

A "level O" dump must be done after a full restore. Because restore runs in user mode, it has no control 
over inode allocation; this means that restore repositions the files, although it does not change their con
tents. Thus, a full dump must be done to get a new set of directories reflecting the new file positions, so that 
later incremental dumps will be correct. 

DIAGNOSTICS 

1732 

restore complains about bad option characters. 

Read errors result in complaints. If y has been specified, or the user responds y, restore will attempt to 
continue. 

If the dump extends over more than one tape, restore asks the user to change tapes. If the x or i option has 
been specified, restore also asks which volume the user wishes to mount. 

There are numerous consistency checks that can be listed by restore. Most checks are self-explanatory or 
can "never happen". Common errors are given below. 

Converting to new file system for mat. 
A dump tape created from the old file system has been loaded. It is automatically converted to the 
new file system format. 

filename: not found on tape 
The specified file name was listed in the tape directory, but was not found on the tape. This is 
caused by tape read errors while looking for the file, and from using a dump tape created on an 
active file system. 

expected next file inumber, got inumber 
A file that was not listed in the directory showed up. This can occur when using a dump tape 
created on an active file system. 

Incremental tape too low 
When doing an incremental restore, a tape that was written before the previous incremental tape, 
or that has too low an incremental level has been loaded. 

Incremental tape too high 
When doing incremental restore, a tape that does not begin its coverage where the previous incre
mental tape left off, or one that has too high an incremental level has been loaded. 

Last change: 9 September 1987 Sun Release 4.0 



RESTORE(8) MAINTENANCE COMMANDS RESTORE(8) 

Tape read error while restoringji/ename 
Tape read error while skipping over inode inumber 
Tape read error while trying to resynchronize 
A tape read error has occurred. 

If a file name is specified, then its contents are probably partially wrong. If an inode is being 
skipped or the tape is trying to resynchronize, then no extracted files have been corrupted, though 
files may not be found on the tape. 

resync restore, skipped num blocks 

Sun Release 4.0 

After a tape read error, restore may have to resynchronize itself. This message lists the number 
of blocks that were skipped over. 

Last change: 9 September 1987 1733 



REXD(8C) MAINTENANCE COMMANDS REXD(8C) 

NAME 
rexd - RPC-based remote execution server 

SYNOPSIS 
/usr/etc/rpc.rexd 

DESCRIPTION 
rexd is the Sun RPC server for remote program execution. This daemon is started by inetd(8) whenever a 
remote execution request is made, 

FILES 

For noninteractive programs, the standard file descriptors are connected directly to TCP connections. 
Interactive programs involve pseudo-terminals, in a fashion that is similar to the login sessions provided by 
rlogin(l). This daemon may use the NFS to mount file systems specified in the remote execution request. 

/dev/ttypn 
I etc/passwd 
/tmp/ dbrexd?????? 

pseudo-terminals used for interactive mode 
authorized users 
temporary mount points for remote file systems. 

SEE ALSO 
on(l), rex(3), exports(5), inetd(8), inetd.conf(5) 

DIAGNOSTICS 
Diagnostic messages are normally printed on the console, and returned to the requestor. 

BUGS 
Should be better access control. 

RESTRICTIONS 
Root cannot execute commands using rexd client programs such as on( 1 ). 

1734 Last change: 9 September 1987 Sun Release 4.0 



REXECD(8C) MAINTENANCE COMMANDS REXECD(8C) 

NAME 
rexecd - remote execution server 

SYNOPSIS 
/usr/etc/in.rexecd host .port 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rexecd is the server for the rexec(3N) routine. The server provides remote execution facilities with 
authentication based on user names and encrypted passwords. It is invoked automatically as needed by 
inetd(8C), and then executes the following protocol: 

1) The server reads characters from the socket up to a null (\0) byte. The resultant string is inter
preted as an ASCII number, base 10. 

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary 
stream to be used for the stderr. A second connection is then created to the specified port on the 
client's machine. 

3) A null terminated user name of at most 16 characters is retrieved on the initial socket. 

4) A null terminated, encrypted, password of at most 16 characters is retrieved on the initial socket. 

5) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of 
the command is limited by the upper bound on the size of the system's argument list. 

6) rexecd then validates the user as is done at login time and, if the authentication was successful, 
changes to the user's home directory, and establishes the user and group protections of the user. If 
any of these steps fail the connection is aborted with a diagnostic message returned. 

7) A null byte is returned on the connection associated with the stderr and the command line is 
passed to the normal login shell of the user. The shell inherits the network connections esta
blished by rexecd. 

SEE ALSO 
inetd(8C) 

DIAGNOSTICS 
All diagnostic messages are returned on the connection associated with the stderr, after which any network 
connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in step 7 
above upon successful completion of all the steps prior to the command execution). 

username too long 
The name is longer than 16 characters. 

password too long 
The password is longer than 16 characters. 

command too long 
The command line passed exceeds the size of the argument list (as configured into the system). 

Login incorrect. 
No password file entry for the user name existed. 

Password incorrect. 
The wrong password was supplied. 

No remote directory. 
The chdir command to the home directory failed. 

Try again. 
A fork by the server failed. 

Sun Release 4.0 Last change: 17 December 1987 1735 



REXECD(8C) MAIN1ENANCE COMMANDS REXECD(8C) 

BUGS 

1736 

/usr/bin/sh: ... 
The user's login shell could not be started. 

Indicating 'Login incorrect' as opposed to 'Password incorrect' is a security breach which allows people 
to probe a system for users with null passwords. 

A facility to allow all data exchanges to be encrypted should be present 

Last change: 17 December 1987 Sun Release 4.0 



RLOGIND ( 8C) MAINTENANCE COMMANDS RLOGIND ( 8C) 

NAME 
rlogind - remote login server 

SYNOPSIS 
/usr/etc/in.rlogind host .port 

DESCRIPTION 
rlogind is the server for the rlogin(lC) program. The server provides a remote login facility with authenti
cation based on privileged port numbers. 

rlogind is invoked by inetd(8C) when a remote login connection is established, and executes the following 
protocol: 

1) The server checks the client's source port. If the port is not in the range 0-1023, the server aborts 
the connection. The client's address and port number are passed as arguments to rlogind by inetd 
in the form host .port with host in hex and port in decimal. 

2) The server checks the client's source address. If the address is associated with a host for which no 
corresponding entry exists in the host name data base (see hosts(5)), the server aborts the connec
tion. 

Once the source port and address have been checked, rlogind allocates a pseudo-terminal (see pty(4)), and 
manipulates file descriptors so that the slave half of the pseudo-terminal becomes the stdin, stdout, and 
stderr for a login process. The login process is an instance of the login(l) program, invoked with the -r 
option. The login process then proceeds with the authentication process as described in rshd(8C), but if 
automatic authentication fails, it reprompts the user to login as one finds on a standard terminal line. 

The parent of the login process manipulates the master side of the pseudo-terminal, operating as an 
intermediary between the login process and the client instance of the rlogin program. In normal operation, 
the packet protocol described in pty(4) is invoked to provide "S/"Q type facilities and propagate interrupt 
signals to the remote programs. The login process propagates the client terminal's baud rate and terminal 
type, as found in the environment variable, TERM; see environ(SV). 

SEE ALSO 
inetd(8C) 

DIAGNOSTICS 

BUGS 

All diagnostic messages are returned on the connection associated with the stderr, after which any network 
connections are closed An error is indicated by a leading byte with a value of 1. 

Hostname for your address unknown. 
No entry in the host name database existed for the client's machine. 

Try again. 
Afork by the server failed. 

/usr/bin/sh: ... 
The user's login shell could not be started. 

The authentication procedure used here assumes the integrity of each client machine and the connecting 
medium. This is insecure, but is useful in an "open" environment. 

A facility to allow all data exchanges to be encrypted should be present. 

Sun Release 4.0 Last change: 9 September 1987 1737 



RMAIL(8C) MAINTENANCE COMMANDS RMAIL(8C) 

NAME 
_ rmail - handle remote mail received via uucp 

SYNOPSIS 
rmail recipient . .. 

DESCRIPTION 
rmail interprets incoming mail received through uucp(lC), collapsing ''From'' lines in the form generated 
by binmail(l) into a single line of the form return-path!sender, and passing the processed mail on to send
mail(8). 

rmail is explicitly designed for use with uucp(lC) and sendmail(8). 

SEE ALSO 
binmail(l), uucp(lC), sendmail(8) 

1738 Last change: 9 September 1987 Sun Release 4.0 



RMT(8C) MAINTENANCE COMMANDS RMT(8C) 

NAME 
rmt - remote magtape protocol module 

SYNOPSIS 
/usr/etc/rmt 

DESCRIPTION 
rmt is a program used by the remote dump and restore programs in manipulating a magnetic tape drive 
through an interprocess communication connection. rmt is normally started up with an rexec(3N) or 
rcmd(3N) call. 

The rmt program accepts requests specific to the manipulation of magnetic tapes, performs the commands, 
then responds with a status indication. All responses are in ASCII and in one of two forms. Successful 
commands have responses of 

Anumber\n 

where number is an ASCII representation of a decimal number. Unsuccessful commands are responded to 
with 

Eerror-number \nerror-message \n 

where error-number is one of the possible error numbers described in intro(2) and error-message is the 
corresponding error string as printed from a call to perror(3). The protocol is comprised of the following 
commands (a space is present between each token): · 

S Return the status of the open device, as obtained with a MTIOCGET ioctl call. 

C device 

!operation count 

If the operation was successful, an "ack" is sent with the size of the status 
buffer, then the status buffer is sent (in binary). 

Close the currently open device. The device specified is ignored. 

Perform a MTIOCOP ioctl(2) command using the specified parameters. The 
parameters are interpreted as the ASCII representations of the decimal values to 
place in the mt_ op and mt _count fields of the structure used in the ioctl call. 
The return value is the count parameter when the operation is successful. 

L whence offset Perform an lseek(2) operation using the specified parameters. The response 
value is that returned from the lseek call. 

0 device mode Open the specified device using the indicated mode. device is a full pathname 
and mode is an ASCII representation of a decimal number suitable for passing to 
open(2V). If a device had already been opened, it is closed before a new open 
is performed. 

Rcount Read count bytes of data from the open device. rmt performs the requested 
read(2V) and responds with Acount-re~n if the read was successful; other
wise an error in the standard format is returned. If the read was successful, the 
data read is then sent. 

W count Write data onto the open device. rmt reads count bytes from the connection, 
aborting if a premature EOF is encountered. The response value is that returned 
from the write(2V) call. 

Any other command causes rmt to exit. 

DIAGNOSTICS 

All responses are of the form described above. 

SEE ALSO 

intro(2), ioctl(2), lseek(2), open(2V), read(2V), write(2V), perror(3), rcmd(3N), rexec(3N), mtio(4), 
dump(8), restore(8) 

Sun Release 4.0 Last change: 9 September 1987 1739 



RMT(8C) MAINTENANCE COMMANDS RMT(8C) 

BUGS 
People tempted to use this for a remote file access protocol are discouraged. 

1740 Last change: 9 September 1987 Sun Release 4.0 



ROUTE(8C) MAINTENANCE COMMANDS ROUTE(8C) 

NAME 
route - manually manipulate the routing tables 

SYNOPSIS 
/usr/etc/route [-nm] add I delete destination [ gateway [metric] ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
route manually manipulate the network routing tables normally maintained by the system routing daemon, 
routed(8C). route allows the super-user to operate directly on the routing table for the specific host or net
work indicated by destination. The gateway argument, if present, indicates the network gateway to which 
packets should be addressed. The metric argument indicates the number of "hops" to the destination. 
The default value for metric is 0. 

The add command instructs route to add a route to destination. delete deletes a route. 

Routes to a particular host are distinguished from those to a network by interpreting the Internet address 
associated with the destination parameter. If the destination has a "local address part" of INADDR_ANY, 
then the route is assumed to be to a network; otherwise, it is presumed to be a route to a host If the route is to a desti
nation connected by a gateway, the metric parameter should be greater than 0. All symbolic names specified 
for a destination or gateway are looked up in the hosts database, /etc/hosts. If this lookup fails, then the 
name is looked up in the networks database, /etc/networks. 

OPTIONS 

FILES 

-f 

-h 

-n 

Flush the routing tables of all gateway entries. If this is used in conjunction with one of the sub
commands described below, route flushes the gateways before preforming the subcommand. 

Treat the destination as a host. 

Treat the destination as a network. 

/etc/hosts 
/etc/networks 

SEE ALSO 
ioctl(2), routing( 4N), routed(8C) 

BUGS 
The change operation is not implemented, one should add the new route, then delete the old one. 

DIAGNOSTICS 
add destination address:gateway addresss flags value 

The specified route is being added to the tables. The values printed are from the routing table 
entry supplied in the ioctl(2) call. 

delete destination address:gateway addresss flags value 
The specified route is being deleted. 

destination address done 
When the -f flag is specified, each routing table entry deleted is indicated with a message of this 
form. 

Network is unreachable 
An attempt to add a route failed because the gateway listed was not on a directly-connected net
work. Give the next-hop gateway instead. 

not in table 
A delete operation was attempted for an entry that is not in the table. 

Sun Release 4.0 Last change: 17 December 1987 1741 



ROUTE(8C) MAINTENANCE COMMANDS ROUTE(8C) 

routing table overflow 

1742 

An add operation was attempted, but the system was unable to allocate memory to create the new 
entry. 

Last change: 17 December 1987 Sun Release 4.0 



ROUTED(8C) MAINTENANCE COMMANDS ROUTED(8C) 

NAME 
routed - network routing daemon 

SYNOPSIS 
/etc/in.routed [ -qstv] [ logfile] 

DESCRIPTION 
routed is invoked at boot time to manage the network routing tables. The routing daemon uses a variant of 
the Xerox NS Routing Information Protocol in maintaining up to date kernel routing table entries. 

In normal operation routed listens on udp(4P) socket 520 (decimal) for routing information packets. If the 
host is an internetwork router, it periodically supplies copies of its routing tables to any directly connected 
hosts and networks. 

When routed is started, it uses the SIOCGIFCONF ioctl(2) to find those directly connected intetfaces 
configured into the system and marked "up" (the software loopback intetface is ignored). If multiple inter
faces are present, it is assumed the host will forward packets between networks. routed then transmits a 
request packet on each interface (using a broadcast packet if the interface supports it) and enters a loop, 
listening for request and response packets from other hosts. 

When a request packet is received, routed formulates a reply based on the information maintained in its 
internal tables. The response packet generated contains a list of known routes, each marked with a "hop 
count" metric (a count of 16, or greater, is considered "infinite"). The metric associated with each route 
returned provides a metric relative to the sender. 

request packets received by routed are used to update the routing tables if one of the following conditions 
is satisfied: 

(1) No routing table entry exists for the destination network or host, and the metric indicates the desti
nation is "reachable" (that is, the hop count is not infinite). 

(2) The source host of the packet is the same as the router in the existing routing table entry. That is, 
updated information is being received from the very internetwork router through which packets 
for the destination are being routed. 

(3) The existing entry in the routing table has not been updated for some time (defined to be 90 
seconds) and the route is at least as cost effective as the current route. 

(4) The new route describes a shorter route to the destination than the one currently stored in the rout
ing tables; the metric of the new route is compared against the one stored in the table to decide 
this. 

When an update is applied, routed records the change in its internal tables and generates a response packet 
to all directly connected hosts and networks. routed waits a short period of time (no more than 30 
seconds) before modifying the kernel's routing tables to allow possible unstable situations to settle. 

In addition to processing incoming packets, routed also periodically checks the routing table entries. If an 
entry has not been updated for 3 minutes, the entry's metric is set to infinity and marked for deletion. Dele
tions are delayed an additional 60 seconds to insure the invalidation is propagated throughout the internet. 

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly 
connected hosts and networks. 

Supplying the -s option forces routed to supply routing information whether it is acting as an internetwork 
router or not. The -q option is the opposite of the -s option. If the -t option is specified, all packets sent 
or received are printed on the standard output. In addition, routed will not divorce itself from the control
ling terminal so that interrupts from the keyboard will kill the process. Any other argument supplied is 
interpreted as the name of file in which routed' s actions should be logged. This log contains information 
about any changes to the routing tables and a history of recent messages sent and received which are 
related to the changed route. The -v option allows a logfile to be created showing the changes made to the 
routing tables with a timestamp. 

Sun Release 4.0 Last change: 9 September 1987 1743 



ROUTED(8C) MAINTENANCE COMMANDS ROUTED(8C) 

FILES 

In addition to the facilities described above, routed supports the notion of "distant" passive and active 
gateways. When routed is started up, it reads the file /etc/gateways to find gateways which may not be 
identified using the SIOGIFCONF ioctl. Gateways specified in this manner should be marked passive if 
they are not expected to exchange routing information, while gateways marked active should be willing to 
exchange routing information (that is, they should have a routed process running on the machine). Passive 
gateways are maintained in the routing tables forever and information regarding their existence is included 
in any routing information transmitted. Active gateways are treated equally to network interfaces. Routing 
information is distributed to the gateway and if no routing information is received for a period of the time, 
the associated route is deleted. 

The /etdgateways is comprised of a series of lines, each in the following format: 

< net I host > filename] gateway filename2 metric value < passive I active > 

The net or host keyword indicates if the route is to a network or specific host. 

filename] is the name of the destination network or host. This may be a symbolic name located in 
/etc/networks or /etdhosts, or an Internet address specified in "dot" notation; see inet(3N). 

filename2 is the name or address of the gateway to which messages should be forwarded. 

Value is a metric indicating the hop count to the destination host or network. 

The keyword passive or active indicates if the gateway should be treated as passive or active (as described 
above). 

/etc/gateways 
I etc/networks 
/etc/hosts 

for distant gateways 

SEE ALSO 

BUGS 

1744 

ioctl(2), inet(3N), udp( 4P) 

The kernel's routing tables may not correspond to those of routed for short periods of time while processes 
utilizing existing routes exit; the only remedy for this is to place the routing process in the kernel. 

routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as ICMP, to gather 
more information. 

Last change: 9 September 1987 Sun Release 4.0 



RPCINFO ( 8C) MAINTENANCE COMMANDS RPCINFO ( 8C) 

NAME 
rpcinfo - report RPC information 

SYNOPSIS 
rpcinf o -p [ host ] 

rpcinfo [ -n portnum] -u host program [ version ] 

rpcinfo [ -n portnum] -t host program [ version] 

rpcinf o -b pro gram version 

rpcinfo-dprogram version 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
rpcinf o makes an RPC call to an RPC server and reports what it finds. 

OPTIONS 
-p Probe the portmapper on host, and print a list of all registered RPC programs. If host is not 

specified, it defaults to the value returned by bostname(l). 

-u Make an RPC call to procedure O of program on the specified host using UDP, and report whether 
a response was received. 

-t Make an RPC call to procedure O of program on the specified host using TCP, and report whether a 
response was received. 

-n Use portnum as the port number for the -t and -u options instead of the port number given by the 
portmapper. 

-b Make an RPC broadcast to procedure O of the specified program and version using UDP and report 
all hosts that respond. 

-d Delete registration for the RPC service of the specified program and version. This option can be 
exercised only by the super-user. 

The program argument can be either a name or a number. 

If a version is specified, rpcinfo attempts to call that version of the specified program. Otherwise, rpcinfo 
attempts to find all the registered version numbers for the specified program by calling version O (which is 
presumed not to exist; if it does exist, rpcinfo attempts to obtain this information by calling an extremely 
high version number instead) and attempts to call each registered version. Note: the version number is 
required for-b and-d options. 

EXAMPLES 
To show all of the RPC services registered on the local machine use: 

example% rpcinfo ·P 

To show all of the RPC services registered on the machine named klaxon use: 

example% rpcinfo -p klaxon 

To show all machines on the local net that are running the Yellow Pages service use: 

example% rpcinfo -b ypserv 'version' I uniq 

where 'version' is the current Yellow Pages version obtained from the results of the-p switch above. 

To delete the registration for version 1 of the walld service use: 

example% rpcinfo -d walld 1 

Sun Release 4.0 Last change: 17 December 1987 1745 



RPCINFO (SC) MAINTENANCE COMMANDS 

SEE ALSO 
rpc(5), portmap(SC) 

RPC Programming Gui.de in Network Programming 

BUGS 

RPCINFO (SC) 

In releases prior to Sunos 3.0, the Network File System (NFS) did not register itself with the portmapper; 
rpcinf o cannot be used to make RPC calls to the NFS server on hosts running such releases. 

1746 Last change: 17 December 1987 Sun Release 4.0 



RQUOT AD ( 8C) MAINTENANCE COMMANDS RQUOT AD ( 8C) 

NAME 
rquotad- remote quota server 

SYNOPSIS 
/usr/etc/rpc.rquotad 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rquotad is an rpc(4) server which returns quotas for a user of a local file system which is mounted by a 
remote machine over the NFS. The results are used by quota(l) to display user quotas for remote file sys
tems. The rquotad daemon is normally invoked by inetd(8C). 

FILES 
quotas 

SEE ALSO 

quota file at the file system root 

quota(l), nfs(4), rpc(4), services(5), inetd(8C) 

Sun Release 4.0 Last change: 17 December 1987 1747 



RSHD(8C) MAINTENANCE COMMANDS RSHD(8C) 

NAME 
rshd - remote shell server 

SYNOPSIS 
/usr/etc/in.rshd host .port 

DESCRIPTION 

FILES 

rshd is the server for the rcmd(3N) routine and, consequently, for the rsh(lC) program. The server pro
vides remote execution facilities with authentication based on privileged port numbers. 

rshd is invoked by inetd(8C) each time a shell service is requested, and executes the following protocol: 

1) The server checks the client's source port. If the port is not in the range 0-1023, the server aborts 
the connection. The clients host address (in hex) and port number (in decimal) are the argument 
passed to rshd. 

2) The server reads characters from the socket up to a null (\0) byte. The resultant string is inter
preted as an ASCII number, base 10. 

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary 
stream to be used for the stderr. A second connection is then created to the specified port on the 
client's machine. The source port of this second connection is also in the range 0-1023. 

4) The server checks the client's source address. If the address is associated with a host for which no 
corresponding entry exists in the host name data base (see hosts(5)), the server aborts the connec
tion. 

5) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user 
name is interpreted as a user identity to use on the server's machine. 

6) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user 
name is interpreted as the user identity on the client's machine. 

7) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of 
the command is limited by the upper bound on the size of the system's argument list. 

8) rshd then validates the user according to the following steps. The remote user name is looked up 
in the password file and a chdir is performed to the user's home directory. If the lookup or fails, 
the connection is terminated. If the chdir fails, it does a chdir to/ (root). If the user is not the 
super-user, (user ID 0). the file /etc/hosts.equiv is consulted for a list of hosts considered 
"equivalent". If the client's host name is present in this file, the authentication is considered suc
cessful. If the lookup fails, or the user is the super-user, then the file .rhosts in the home directory 
of the remote user is checked for the machine name and identity of the user on the client's 
machine. If this lookup fails, the connection is terminated. 

9) A null byte is returned on the connection associated with the stderr and the command line is 
passed to the normal login shell of the user. The shell inherits the network connections esta
blished by rshd. 

I etc/hosts.equiv 

SEE ALSO 

BUGS 

1748 

rsh( 1 C), rcmd(3N), syslogd(8) 

The authentication procedure used here assumes the integrity of each client machine and the connecting 
medium. This is insecure, but is useful in an "open" environment. 

A facility to allow all data exchanges to be encrypted should be present. 

Last change: 9 September 1987 Sun Release 4.0 



RSHD(8C) MAINTENANCE COMMANDS RSHD(8C) 

DIAGNOSTICS 
The following diagnostic messages are returned on the connection associated with the stderr, after which 
any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned 
in step 9 above upon successful completion of all the steps prior to the command execution). 

locuser too long 
The name of the user on the client's machine is longer than 16 characters. 

remuser too long 
The name of the user on the remote machine is longer than 16 characters. 

command too long 
The command line passed exceeds the size of the argument list (as configured into the system). 

Hostname for your address unknown. 
No entry in the host name database existed for the client's machine. 

Login incorrect. 
No password file entry for the user name existed. 

Permission denied. 
The authentication procedure described above failed. 

Can't make pipe. 
The pipe needed for the stderr, was not created. 

Try again. 
Afork by the server failed. 

/usr/bin/sh: . .. 
The user's login shell could not be started. 

In addition, daemon's status messages and internal diagnostics are logged to the appropriate system log 
using the syslogd(8) facility. 

Sun Release 4.0 Last change: 9 September 1987 1749 



RSTATD(SC) MAINTENANCE COMMANDS RSTATD(SC) 

NAME 
rstatd - kernel statistics server 

SYNOPSIS 
/usr/etc/rpc.rstatd 

DESCRIPTION 
rstatd is a server which returns performance statistics obtained from the kernel. These statistics are graph
ically displayed by perfmeter(l). The rstatd daemon is normally invoked by inetd(SC). 

Systems with disk drivers to be monitored by this daemon must be configured so as to report disk 
(_ dk _ xfer) statistics. 

SEE ALSO 
perfmeter(l), services(5), inetd(SC) 

1750 Last change: 22 December 1987 Sun Release 4.0 



RUSERSD ( 8C) MAINTENANCE COMMANDS RUSERSD ( 8C) 

NAME 
rusersd - network username server 

SYNOPSIS 
/usr/etc/rpc.rusersd 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rusersd is a server that returns a list of users on the network. The rusersd daemon is normally invoked by 
inetd(8C). 

SEE ALSO 
perfmeter(l), rusers(lC), services(5), inetd(8C) 

Sun Release 4.0 Last change: 17 December 1987 1751 



RWALLD(8C) MAINTENANCE COMMANDS RWALLD(8C) 

NAME 
rwalld - network rwall server 

SYNOPSIS 
/usr/etc/rpc.rwalld 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rwalld is a server that handles rwall(lC) and shutdown(2) requests. It is implemented by calling wall(l) 
to all the appropriate network machines. The rwalld daemon is normally invoked by inetd(8C). 

SEE ALSO 
rwall(lC), wall(l), shutdown(2) services(5), inetd(8C), 

1752 Last change: 17 December 1987 Sun Release 4.0 



RWHOD(8C) MAINTENANCE COMMANDS RWH0D(8C) 

NAME 
rwhod - system status server 

SYNOPSIS 
/usr/etc/rwhod 

AVAILABILITY 
Due to its potential impact on network performance, this service is commented out of the /etc/re.local sys
tem initialization script It is provided only for 4.3 BSD compatibility. 

This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rwhod is the server which maintains the database used by the rwho(lC) and ruptime(lC) programs. Its 
operation is predicated on the ability to broadcast messages on a network. 

rwhod operates as both a producer and consumer of status information. As a producer of information it 
periodically queries the state of the system and constructs status messages which are broadcast on a net
work. As a consumer of information, it listens for other rwhod servers' status messages, validating them, 
then recording them in a collection of files located in the directory /var/spool/rwho. 

The rwho server transmits and receives messages at the port indicated in the ''rwho'' service specification, 
see services(5). The messages sent and received, are of the form: 

struct outmp { 
char out_ line[8]; I• tty name •/ 
char out_name[8]; I• user id•/ 
long out_time; /• time on•/ 

}; 

struct whod { 
char wd _ vers; 
char wd_type; 
char wd_fil1[2]; 
int wd_sendtime; 
int wd _recvtime; 
char wd_hostname[32]; 
int wd_loadav[3]; 
int wd_boottime; 

struct whoent { 
struct outmp we_utmp; 
int we _idle; 

} wd_we[1024 / sizeof (struct whoent)]; 
}; 

All fields are converted to network byte order prior to transmission. The load averages are as calculated by 
the w( 1) program, and represent load averages over the 5, 10, and 15 minute intervals prior to a server's 
transmission. The host name included is that returned by the gethostname(2) system call. The array at the 
end of the message contains information about the users logged in to the sending machine. This informa
tion includes the contents of the utmp{5) entry for each non-idle terminal line and a value indicating the 
time since a character was last received on the terminal line. 

Messages received by the rwho server are discarded unless they originated at a rwho server's port. In 
addition, if the host's name, as specified in the message, contains any unprintable ASCII characters, the 
message is discarded. Valid messages received by rwhod are placed in files named whod.hostname in the 
directory /var/spool/rwho. These files contain only the most recent message, in the format described 
above. 

Sun Release 4.0 Last change: 17 December 1987 1753 



RWHOD(8C) MAINTENANCE COMMANDS RWHOD(8C) 

FILES 

Status messages are generated approximately once every 60 seconds. rwhod performs an nlist(3) on 
/vmunix every 10 minutes to guard against the possibility that this file is not the system image currently 
operating. 

/var/spool/rwho 

DIAGNOSTICS 
Status and diagnostic messages are logged to the appropriate system log using the syslogd(8) facility. 

SEE ALSO 

BUGS 

1754 

rwho(lC), ruptime(lC), w(l), gethostname(2), nlist(3), utmp(5), syslogd(8) 

This service takes up progressively more network bandwidth as the number of hosts on the local net 
increases. For large networks, the cost becomes prohibitive. RPC-based services such as rup(lC) and 
rusers(lC) provide a similar function with greater efficiency. 

rwhod should relay status information between networks. People often interpret the server dying as a 
machine going down. 

Last change: 17 December 1987 Sun Release 4.0 



SA(8) MAINTENANCE COMMANDS SA(8) 

NAME 
sa, accton - system accounting 

SYNOPSIS 
/usr/etc/sa [ -abcdDfijkKlmnrstu ] [ -v[n] ] [ -S savacctfile ] [ -U usracctfile ] [filename ] 

/usr/etc/accton [filename ] 

DESCRIPTION 
With an argument naming an existing filename, accton causes system accounting information for every 
process executed to be placed at the end of the file. If no argument is given, accounting is turned off. 

sa reports on, cleans up, and generally maintains accounting files. 

sa is able to condense the information in /var/adm/acct into a summary file /var/adm/savacct which con
tains a count of the number of times each command was called and the time resources consumed. This 
condensation is desirable because on a large system /var/adm/acct can grow by 500K bytes per day. The 
summary file is normally read before the accounting file, so the reports include all available information. 

If a file name is given as the last argument, that file will be treated as the accounting file; /var/adm/acct is 
the default. 

Output fields are labeled: cpu for the sum of user+system time (in minutes), re for real time (also in 
minutes), k for CPU-time averaged core usage (in lk units), avio for average number of 1/0 operations per 
execution. With options fields labeled tio for total 1/0 operations, k*sec for CPU storage integral (kilo-core 
seconds), u ands for user and system CPU time alone (both in minutes) will sometimes appear. 

sa also breaks out accounting statistics by user. This information is kept in the file /var/adm/usracct. 

OPTIONS 
-a Print all command names, even those containing unprintable characters and those used onf y once. 

By default, those are placed under the name '***other.' 

-b Sort output by sum of user and system time divided by number of calls. Default sort is by sum of 
user and system times. 

-c Besides total user, system, and real time for each command print percentage of total time over all 
commands. 

-d Sort by average number of disk I/0 operations. 

-D Print and sort by total number of disk 1/0 operations. 

-f Force no interactive threshold compression with -v flag. 

-i Do not read in summary file. 

-j Instead of total minutes time for each category, give seconds per call. 

-k Sort by CPU-time average memory usage. 

-K Print and sort by CPU-storage integral. 

-I Separate system and user time; normally they are combined. 

-m Print number of processes and number of CPU minutes for each user. 

-n Sort by number of calls. 

-r Reverse order of sort. 

-s Merge accounting file into summary file /var/adm/savacct when done. 

-t For each command report ratio of real time to the sum of user and system times. 

-u Superseding all other flags, print for each record in the accounting file the user ID and command 
name. 

Sun Release 4.0 Last change: 8 January 1988 1755 



SA(8) 

FILES 

MAINTENANCE COMMANDS SA(8) 

-v Followed by a number n, types the name of each command used n times or fewer. If n is not 
specified, it defaults to 1. Await a reply from the terminal; if it begins with y, add the command to 
the category '**junk**·' This is used to strip out garbage. 

-S The following filename is used as the command summary file instead of /var/adm/savacct. 

-U The following filename is used instead of /var/adm/usracct to accumulate the per-user statistics 
printed by the -m option. 

/var/adm/acct 
/var/adm/savacct 
/var/adm/usracct 

raw accounting 
summary by command 
summary by user ID 

SEE ALSO 
acct(2), acct(5), ac(8) 

BUGS 
sa' s execution time increases linearly with the magnitude of the largest positive user ID in /etdpasswd. 

1756 Last change: 8 January 1988 Sun Release 4.0 



SA VECORE ( 8) MAINTENANCE COMMANDS SA VECORE ( 8) 

NAME 
savecore - save a core dump of the operating system 

SYNOPSIS 
/usr/etc/savecore dirname [ system-name ] 

DESCRIPTION 

FILES 

savecore saves a core dump of the kernel (assuming that one was made) and writes a reboot message in the 
shutdown log. It is meant to be called near the end of the /etc/re.local file after the system boots. How
ever, it is not normally run by default. You must edit that file to enable it 

savecore checks the core dump to be certain it corresponds with the version of the operating system 
currently running. If it does, savecore saves the core image in the file dirnamelvmcore.n and the kernel's 
namelist, in dirname/vmunix.n The trailing .n in the pathnames is replaced by a number which grows 
every time savecore is run in that directory. 

Before savecore writes out a core image, it reads a number from the file dirname/minfree. If there is less 
free space on the filesystem containing dirname than the number obtained from the minfree file, the core 
dump is not saved. If the minfree file does not exist, savecore always writes out the core file (assuming 
that a core dump was taken). 

savecore also logs a reboot message using facility LOG_AUTH (see syslog(3)) If the system crashed as a 
result of a panic, savecore logs the panic string too. 

If the core dump was from a system other than /vmunix, the name of that system must be supplied as 
system-name. 

/vmunix the kernel 
/ etc/re.local 

SEE ALSO 

BUGS 

syslog(3 ), sa(8), crash(8S) 

Can be fooled into thinking a core dump is the wrong size. 

You must run savecore very soon after booting - before the swap space containing the crash dump is 
overwritten by programs currently running. 

Sun Release 4.0 Last change: 23 September 1987 1757 



SENDMAIL ( 8) MAINTENANCE COMMANDS SENDMAIL ( 8) 

NAME 
sendmail - send mail over the internet 

SYNOPSIS 
/etc/sendmail [ -ba ] [ -bd ] [ -bi ] [ -bm ] [ -bp ] [ -bs ] [ -bt] [ -bv] [ -bz ] 

[ -Cfile ] [ -dX] [ -Ffullname ] [ -fname ] [ -bN ] [ -n ] [ -ox value ] [ -q[ time ] ] 
[ -rname ] [ -t ] [ -v ] [ address ... ] 

DESCRIPTION 
sendmail sends a message to one or more people, routing the message over whatever networks are neces
sary. sendmail does internetwork forwarding as necessary to deliver the message to the correct place. 

sendmail is not intended as a user interface routine; other programs provide user-friendly front ends; send
mail is used only to deliver pre-formatted messages. 

With no flags, sendmail reads its standard input up to an EOF, or a line with a single dot and sends a copy 
of the letter found there to all of the addresses listed. It determines the network to use based on the syntax 
and contents of the addresses. 

Local addresses are looked up in the local aliases(5) file, or by using the Yellow Pages name service, and 
aliased appropriately. In addition, if there is a .forward file in a recipient's home directory, sendmail for
wards a copy of each message to the list of recipients that file contains. Aliasing can be prevented by 
preceding the address with a backslash. Normally the sender is not included in alias expansions, for exam
ple, if 'john' sends to 'group', and 'group' includes 'john' in the expansion, then the letter will not be 
delivered to 'john'. 

sendmail will also route mail directly to other known hosts in a local network. The list of hosts to which 
mail is directly sent is maintained in the file /usr/lib/mailhosts. 

OPTIONS 

1758 

-ba Go into ARPANET mode. All input lines must end with a CR-LP, and all messages will be gen
erated with a CR-LP at the end. Also, the "From:" and "Sender:" fields are examined for the 
name of the sender. 

-bd Run as a daemon, waiting for incoming SMTP connections. 

-bi Initialize the alias database. 

-bm Deliver mail in the usual way (default). 

-hp Print a summary of the mail queue. 

-bs Use the SMTP protocol as described in RFC 821. This flag implies all the operations of the -ba 
flag that are compatible with SMTP. 

-bt Run in address test mode. This mode reads addresses and shows the steps in parsing; it is used for 
debugging configuration tables. 

-bv Verify names only - do not try to collect or deliver a message. Verify mode is normally used for 
validating users or mailing lists. 

-bz Create the configuration freeze file. 

-Cfile Use alternate configuration file. 

-dX Set debugging value to X. 

-Ffullname 
Set the full name of the sender. 

-fname Sets the name of the "from" person (that is, the sender of the mail). -f can only be used by 
"trusted" users (who are listed in the config file). 

-hN Set the hop count to N. The hop count is incremented every time the mail is processed. When it 
reaches a limit, the mail is returned with an error message, the victim of an aliasing loop. 

Last change: 25 September 1987 Sun Release 4.0 



SENDMAIL ( 8) MAINTENANCE COMMANDS SENDMAIL ( 8) 

-Mid Attempt to deliver the queued message with message-id id. 

-n Don't do aliasing. 

-oxvalue 
Set option x to the specified value. Options are described below. 

-q[time] 
Processed saved messages in the queue at given intervals. If time is omitted, process the queue 
once. Time is given as a tagged number, withs being seconds, m being minutes, h being hours, d 
being days, and w being weeks. For example, -qlh30m or-q90m would both set the timeout to 
one hour thirty minutes. 

-rname An alternate and obsolete form of the -f flag. 

-Rstring 
Go through the queue of pending mail and attempt to deliver any message with a recipient con
taining the specified string. This is useful for clearing out mail directed to a machine which has 
been down for awhile. 

-t Read message for recipients. "To:", "Cc:", and "Bee:" lines will be scanned for people to send 
to. The "Bee:" line will be deleted before transmission. Any addresses in the argument list will 
be suppressed. 

-v Go into verbose mode. Alias expansions will be announced, etc. 

PROCESSING OPTIONS 
There are also a number of processing options that may be set. Normally these will only be used by a sys
tem administrator. Options may be set either on the command line using the -o flag or in the configuration 
file. These are described in detail in the Installation and Operation Guide. The options are: 

Afile Use alternate alias file. 

c On mailers that are considered "expensive" to connect to, do not initiate immediate connection. 
This requires queueing. 

dx Set the delivery mode to x. Delivery modes are i for interactive (synchronous) delivery, b for 
background (asynchronous) delivery, and q for queue only - that is, actual delivery is done the 
next time the queue is run. 

D Run newaliases(8) to automatically rebuild the alias database, if necessary. 

ex Set error processing to mode x. Valid modes are m to mail back the error message, w to ''write'' 
back the error message (or mail it back if the sender is not logged in), p to print the errors on the 
terminal (default), 'q' to throw away error messages (only exit status is returned), and 'e' to do 
special processing for the BerkNet. If the text of the message is not mailed back by modes m or w 
and if the sender is local to this machine, a copy of the message is appended to the file dead.letter 
in the sender's home directory. 

Fmode The mode to use when creating temporary files. 

f Save UNIX-system-style "From" lines at the front of messages. 

gN The default group ID to use when calling mailers. 

Hfile The SMTP help file. 

i Do not take dots on a line by themselves as a message terminator. 

Ln The log level. 

m Send to "me'' (the sender) also if I am in an alias expansion. 

o If set, this message may have old style headers. If not set, this message is guaranteed to have new 
style headers (that is, commas instead of spaces between addresses). If set, an adaptive algorithm 
is used that will correctly determine the header format in most cases. 

Sun Release 4.0 Last change: 25 September 1987 1759 



SEND MAIL ( 8) MAINTENANCE COMMANDS SENDMAIL ( 8) 

FILES 

Qqueuedir 
Select the directory in which to queue messages. 

rtimeout 
The timeout on reads; if none is set, sendmail will wait forever for a mailer. 

Sfile Save statistics in the named file. 

s Always instantiate the queue file, even under circumstances where it is not strictly necessary. 

Ttime Set the timeout on messages in the queue to the specified time. After sitting in the queue for this 
amount of time, they will be returned to the sender. The default is three days. 

tstz ,dtz Set the name of the time zone. 

uN Set the default user id for mailers. 

If the first character of the user name is a vertical bar, the rest of the user name is used as the name of a 
program to pipe the mail to. It may be necessary to quote the name of the user to keep sendmail from 
suppressing the blanks from between arguments. 

sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h> 
EX_ OK Successful completion on all addresses. 
EX NOUSER User name not recognized. 
EX UNAVAILABLE Catchall meaning necessary resources were not available. 
EX SYNTAX Syntax error in address. 
EX SOFfW ARE Internal software error, including bad arguments. 
EX OSERR Temporary operating system error, such as ''cannot fork''. 
EX NOHOST Host name not recognized. 
EX TEMPFAIL Message could not be sent immediately, but was queued. 

If invoked as newaliases, sendmail rebuilds the alias database. If invoked as mailq, sendmail prints the 
contents of the mail queue. 

Except for /etc/sendmail.cf, these pathnames are all specified in /etc/sendmail.cf. 
only approximations. 
I etc/aliases 
/etc/aliases.pag 
/ etc/aliases.dir 
/usr/lib/mailhosts 
/etc/sendmail.cf 
/ etc/sendmail.fc 
/ etc/sendmail.hf 
I etc/sendmail.st 
/usr/bin/uux 
/usr/bin/mail 
/var/spool/mqueue/• 
~/.forward 

raw data for alias names 
data base of alias names 

list of hosts to which mail can be sent directly 
configuration file 
frozen configuration 
help file 
collected statistics 
to deliver uucp mail 
to deliver local mail 
temp files and queued mail 
list of recipients for forwarding messages 

Thus, these values are 

SEE ALSO 

1760 

biff(l), binmail(l), mail(l), aliases(5) 

System and Network Administration 
Su, Zaw-Sing, and Jon Postel, The Domain Naming Convention/or Internet User Applications, RFC 819, 
Network Information Center, SRI International, Menlo Park, Calif., August 1982. 
Postel, Jon, Simple Mail Transfer Protocol, RFC 821, Network Information Center, SRI International, 
Menlo Park, Calif., August 1982. 
Crocker, Dave, Standard/or the Format of ARPA-Internet Text Messages, RFC 822, Network Information 
Center, SRI International, Menlo Park, Calif., August 1982. 

Last change: 25 September 1987 Sun Release 4.0 



SETUP_ CLIENT ( 8 ) MAINTENANCE COMMANDS SETUP_ CLIENT ( 8 ) 

NAME 
setup_ client - create or remove an NFS client 

SYNOPSIS 
/usr/etc/install/script/setup _ client op clientname yp _ type swapsize rootpath swappath 

dumppath homepath execpath arch 

DESCRIPTION 

USAGE 

setup_client adds an NFS client to a server, or to removes one. It can only be run by the super-user. It is 
also used by suninstall(8). 

The op argument indicates which operation to perform; it can be either add or remove, to indicate whether 
to add or remove a client. clientname is the hostname of the client. yp _ type indicates the type of Yellow 
Pages server or service to provide to the client, if any; it can be one of master, slave, client or none. 
swapsize is the number of bytes reserved for client's swap file. rootpath is the pathname of parent direc
tory in which various client root directories reside; rootpathlclientname is the pathname of the client's root 
directory. swappath is the pathname of parent directory in which various client swap files reside; 
swappathlclientname is the pathname of the client's swap file. dumppath is the parent pathname in which 
various client dump files reside; dumppathlclientname is the pathname of the client's dump file. homepath 
is the pathname of the (parent) directory in which the various home directories are to reside; it is the path
name of the directory that the client is to mount as /home. execpath is the full pathname of the directory in 
which the executables for the architecture specified by the arch argument. This is the directory that the 
client mounts as /usr. arch specifies the client's architecture (for instance, sun4, sun3 .. . ). setup_client 
with no arguments displays a usage message that includes the proper arch argument for each supported 
architecture. 

Before you add or remove a client, you must first make sure that the Internet and Ethernet addresses for 
clientname are listed in the YP hosts database (if the server is running the YP), or in the server's /etc/hosts 
and /etc/ethers databases, respectively (otherwise). Then, run setup_client with the add or remove opera
tion. When adding a client, you must then bootstrap that client machine. 

You cannot add a client to a server that does not support the specified architecture. The executable direc
tory for that client's architecture must be present on the server. If this file is absent, an error results. 

setup_ client updates the /etc/bootparams file. If the server is a YP master, it updates local YP database. It 
does not propagate the local update to other YP servers. To propagate the updates, use the following com
mands: 

example# cd /var/yp 
example# make 

If the server is running YP but is not a YP master, setup_ client issues a warning to indicate that the data
base is out of date. 

When arch is given as sun2, suninstall issues a reminder to run the /usr/etc/ndbootd daemon for booting 
Sun-2 systems. 

setup_client creates swappathlclientname with the size, (number of bytes) you specify. You can append 
one of Kor k to indicate .kilobytes, Mor m to indicate megabytes, or B orb to indicate 512-byte blocks, to 
size. Otherwise, size is taken to indicate an exact byte count. 

suninstall updates the /etc/exports file to allow root access to each client's root file system. It exports the 
client's swap and dump partitions only to the client. Note: the system administrator should verify that the 
/etc/exports file contains correct information, and that file systems are exported to the correct users and 
groups. Refer to exportfs(8) for details on exporting file systems. 

Sun Release 4.0 Last change: 14 December 1987 1761 



SETUP_ CLIENT ( 8) MAINTENANCE COMMANDS SETUP_ CLIENT ( 8 ) 

EXAMPLES 

FILES 

This example shows how to add a Sun-4 system NFS client to a server. 

example# setup_client add frodo client 16M /exports/roots /exports/swaps /exports/dumps /home\ 
/exports/execs/sun4/4.0 sun4 

To remove this client, you would merely substitute remove for add in the above example. 

/etc/hosts 
/etc/ethers 
/usr/etc/ndbootd 
/etc/bootparams 
/etc/exports 

SEE ALSO 
exportfs(8), setup_ exec(8) suninstall(8) 

Installing the SunOS 

DIAGNOSTICS 

1762 

incorrect number of arguments 
Check number and order of the arguments. 

must be run as root (super-user). 
You must be root to use setup_ client. 

invalid operation type "xx". 
Valid operations are add and remove. 

ATTENTION: rnxx.n:x-> boot.sun? not created. 
(Sun-3 systems only.) A symbolic link can not be created because the boot file does not exist. 

ATTENTION: rnxx.n:x.SUN? ·> boot.sun? not created. 
(Other than Sun-3 systems.) A symbolic link can not be created because the boot file does not 
exist. 

ATTENTION: /usr/etc/ndbootd needs to be running on server before bringing up "client". 
The Sun-2 system boot daemon must be running in order to bootstrap a Sun-2 system. 

Last change: 14 December 1987 Sun Release 4.0 



SETUP_ EXEC ( 8) MAINTENANCE COMMANDS SETUP_ EXEC ( 8 ) 

NAME 
setup_ exec - install architecture-dependent executables on a heterogeneous file server 

SYNOPSIS 
/usr/etc/instaIJ/setup _ exec arch exec path 

DESCRIPTION 
setup_ exec installs architecture-dependent executables from either from a local tape drive or a remote host. 
It is used to convert a standalone system or homogeneous file server to a heterogeneous file server. 
setup_exec is a forms-based utility that can be invoked directly, but it is also used by suninstall(8). It can 
only be invoked by the super-user. 

The arch argument specifies the machine archictecture to install (for instance, sun4, sun3 . .. ). When run 
with no arguments, setup_ exec displays a usage line that includes the proper format of the arch argument 
for each supported architecture. execpath is the full pathname of the directory in which to install the exe
cutables. When setup_ exec is done, the exec path directory is ready to mount as /usr by the heterogeneous 
server's NFS clients of the indicated arch. 

setup_exec also updates the /etc/exports file (see exportfs(8)) to export the executable directories it has 
installed. The system administrator should verify this file to make sure that the directory has been exported 
to the correct groups. 

EXAMPLE 

FILES 

This example shows how to install a directory of executables for Sun-4 system clients running 4.0. 

example# setup_exec sun4 /exports/execs/sun4/4.0 

/etc/hosts 
/etc/ethers 
I etc/ exports 
/usr /etc/install/files/ extractlist.arch 

hosts database 
database of hostnames and Ethernet addresses 
database of exported file systems 
record of extracted categories for the indicated architecture 

SEE ALSO 
exportfs(8), setup_ client(8), suninstall(8) 

Installing the SunOS 

DIAGNOSTICS 
incorrect number of arguments 

Check the number and the order of arguments. 

invalid architecture type "arch". 
You supplied a value for arch that is not supported. 

invalid tape drive type ''drive''. 
Valid tape drive types are local and remote. 

invalid tape type "tape". 
Valid tape types are ar, st, mt, and xt. 

can't reach tapehost "tapehost". 
The IP address of tape host is not in the hosts database, that is, the hosts YP database if the Yellow 
Pages are running, or the /etc/hosts file otherwise. 

Load release tape n 
Mount the release tape specified on the screen and type RETURN to continue. 

Sun Release 4.0 Last change: 25 September 1987 1763 



SHOWMOUNT ( 8) MAINTENANCE COMMANDS SHOWMOUNT ( 8 ) 

NAME 
showmount - show all remote mounts 

SYNOPSIS 
/usr/etc/showmount [ -ade ] [ host] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
showmount lists all the clients that have remotely mounted a filesystem from host. This information is 
maintained by the mountd(8C) server on host, and is saved across crashes in the file /etdrmtab. The 
default value for host is the value returned by hostname(l). 

OPTIONS 

FILES 

-a Print all remote mounts in the format 

hostname :directory 

where hostname is the name of the client, and directory is the root of the file system that has been 
mounted. 

-d List directories that have been remotely mounted by clients. 

-e Print the list of exported file systems. 

/etc/rmtab 

SEE ALSO 
hostname(l), exports(5), exports(5), mountd(8C) 

BUGS 
If a client crashes, its entry will not be removed from the list until it reboots and executes 'umount-a'. 

1764 Last change: 17 December 1987 Sun Release 4.0 



SHUTDOWN ( 8) MAINTENANCE COMMANDS SHUTDOWN ( 8) 

NAME 
shutdown - close down the system at a given time 

SYNOPSIS 
/usr/etc/shutdown [ -fhknr ] [ time [ warning-message . . . ] 

DESCRIPTION 
shutdown provides an automated procedure to notify users when the system is to be shut down. time 
specifies when shutdown will bring the system down; it may be the word now (indicating an immediate 
shutdown), or it may specify a future time in one of two formats: +number and hour:min. The first form 
brings the system down in number minutes, and the second brings the system down at the time of day indi
cated in 24-hour notation. 

At intervals that get closer as the apocalypse approaches, warning messages are displayed at terminals of 
all logged-in users, and of users who have remote mounts on that machine. Five minutes before shutdown, 
or immediately if shutdown is in less than 5 minutes, logins are disabled by creating /etc/nologin and writ
ing a message there. If this file exists when a user attempts to log in, login(l) prints its contents and exits. 
The file is removed just before shutdown exits. 

At shutdown time a message is written to the system log daemon, syslogd(8), containing the time of shut
down, the instigator of the shutdown, and the reason. Then a terminate signal is sent to init, which brings 
the system down to single-user mode. 

The time of the shutdown and the warning message are placed in /etc/nologin, which should be used to 
inform the users as to when the system will be back up, and why it is going down (or anything else). 

OPTIONS 

FILES 

As an alternative to the above procedure, these options can be specified: 

-f Arrange, in the manner of f astboot(8), that when the system is rebooted, the file systems will not 
be checked. 

-h Execute halt(8). 

-k Simulate shutdown of the system. Do not actually shut down the system. 

-n Prevent the normal sync(2) before stopping. 

-r Execute reboot(8). 

/ etc/nologin 
/etc/xtab 

tells login not to let anyone log in 
list of remote hosts that have mounted this host 

SEE ALSO 

BUGS 

Iogin(l), sync(2), fastboot(8), halt(8), reboot(8), syslogd(8) 

Only allows you to bring the system down between "now" and 23:59 if you use the absolute time for shut
down. 

Sun Release 4.0 Last change: 9 September 1987 1765 



SPRAY(8C) MAINTENANCE COMMANDS SPRAY(8C) 

NAME 
spray - spray packets 

SYNOPSIS 
/usr/etc/spray host [ -c count ] [ -d delay ] [ -i delay ] [ -I length ] host 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
spray sends a one-way stream of packets to host using RPC, and reports how many were received, as well 
as the the transfer rate. The host argument can be either a name or an internet address. 

OPTIONS 
-c count 

-d delay 

Specify how many packets to send. The default value of count is the numbers of packets required 
to make the total stream size 100000 bytes. 

Specify how may microseconds to pause between sending each packet. The default is 0. 

-i delay Use ICMP echo packets rather than RPC. Since ICMP automatically echos, this creates a two way 
stream. 

-I length 
The length parameter is the numbers of bytes in the ethernet packet that holds the RPC call mes
sage. Since the data is encoded using XDR, and XDR only deals with 32 bit quantities, not all 
values of length are possible, and spray rounds up to the nearest possible value. When length is 
greater than 1514, then the RPC call can no longer be encapsulated in one Ethernet packet, so the 
length field no longer has a simple correspondence to Ethernet packet size. The default value of 
length is 86 bytes (the size of the RPC and UDP headers) 

SEE ALSO 
icmp(4P), ping(8C), sprayd(8C) 

1766 Last change: 17 December 1987 Sun Release 4.0 



SPRAYD(8C) 

NAME 
sprayd - spray server 

SYNOPSIS 
/usr/etc/rpc.sprayd 

AVAILABILITY 

MAINTENANCE COMMANDS SPRAYD(8C) 

This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
rpc.sprayd is a server which records the packets sent by spray(8C). The rpc.sprayd daemon is normally 
invoked by inetd(8C). 

SEE ALSO 
inetd(8C), spray(8C) 

Sun Release 4.0 Last change: 17 December 1987 1767 



STATD(8C) MAINTENANCE COMMANDS STATD(8C) 

NAME 
statd - network status monitor 

SYNOPSIS 
/etc/rpc.statd 

DESCRIPTION 
statd is an intermediate version of the status monitor. It interacts with lockd(8C) to provide the crash and 
recovery functions for the locking services on NFS. 

FILES 
/etc/sm 
/etc/sm.bak 
/etc/state 

SEE ALSO 
statmon(5), lockd(8C) 

BUGS 
The crash of a site is only detected upon its recovery. 

1768 Last change: 9 September 1987 Sun Release 4.0 



STICKY(8) MAINTENANCE COMMANDS STICKY(8) 

NAME 
sticky - persistent text and append-only directories 

DESCRIPTION 
The sticky bit (file mode bit 01000, see chmod(2)) is used to indicate special treatment for certain execut
able files and directories. 

Sticky Text Executable Flies 
While the sticky bit is set on a sharable executable file, the text of that file will not be removed from the 
system swap area. Thus the file does not have to be fetched from the file system upon each execution. As 
long as a copy remains in the swap area, the original text cannot be overwritten in the file system, nor can 
the file be deleted. Directory entries can be removed so long as one link remains. 

Sharable executable files are made by the-n and-z options of ld(l). 

To replace a sticky file that has been used: 

1. Clear the sticky bit with chmod(l V). 

2. Execute the old program to flush the swapped copy. This can be done safely even if others are 
using it. 

3. Overwrite the sticky file. If the file is being executed by any process, writing will be prevented; it 
suffices to simply remove the file and then rewrite it, being careful to reset the owner and mode 
with chmod and chown(2). 

4. Set the sticky bit once again, if still needed 

Only the super-user can set the sticky bit on a sharable executable file. 

Sticky Directories 

BUGS 

A directory for which the sticky bit is set restricts deletion of files it contains. A file in a sticky directory 
may only be removed or renamed by a user who has write permission on the directory, and either owns the 
file, owns the directory, or is the super-user. This is useful for directories such as /tmp, which must be 
publicly writable, but should deny users permission to arbitrarily delete or rename the files of others. 

Any user may create a sticky directory. See chmod for details about modifying file modes. 

Since the text areas of sticky text executables are stashed in the swap area, abuse of the feature can cause a 
system to run out of swap. 

Neither open(2V) nor mkdir(2) will create a file with the sticky bit set 

FILES 
/tmp 

SEE ALSO 
chmod(l V), ld(l), chmod(2), chown(2), mkdir(2), open(2V) 

Sun Release 4.0 Last change: 9 September 1987 1769 



SUNINSTALL(8) MAINTENANCE COMMANDS SUNINST ALL ( 8) 

NAME 
suninstall - install and upgrade the Sun Operating System 

SYNOPSIS 
/usr/etc/install/suninstall 

DESCRIPTION 

USAGE 

FILES 

suninstall is a forms-based subsystem for installing and upgrading the Sun Operating System on Sun-2, 
Sun-3 and Sun-4 systems. Unlike previous installation subsystems, suninstall does not require you to 
recapitulate an interrupted procedure; it allows you to pick up from where you left off. A new invocation 
of suninstall displays the saved information, and gives you an opportunity to make any needed alterations, 
before it proceeds. 

To abort the installation procedure, use the interrupt character {typically CTRL-C). 

suninstall allows you to install the operating system onto any system configuration, be it standalone, data
less, a homogeneous file server, or a heterogeneous server. It allows you to install from any distribution 
tape format, to install the various versions of the operating system needed by clients on a heterogeneous file 
server; you can install as many different system versions as your disk space may allow. 

You can use suninstall to convert a 4.0 standalone system into a 4.0 server, without taking down or 
rebuilding the system. After the initial installation, you can use setup_client(8), to add or remove a disk
less client while the server is running in multiuser mode. You can use setup_ exec(8), to convert a 4.0 stan
dalone system or server into a heterogeneous file server while it is running multiuser. 

Refer to Installing the Sun0S for more information on the various menus and selections. 

/usr/etc/install 
/usr/etc/install/files 
/usr/etc/install/get_ * _info 
/usr/etc/install/installation 
/usr/etc/install/makedir 
/usr/etc/install/script 
/usr / etc/install/xdrtoc 

directory containing installation programs, scripts and files 
directory containing default data files for clients and hosts 
terminal data-entry forms 
subsystem utility program 
subsystem utility program 
subsystem utility scripts 
subsystem utility program 

SEE ALSO 
extract_ unbundled(8), setup_ client(8), setup_ exec(8) 

Installing the SunOS 

1770 Last change: 18 February 1988 Sun Release 4.0 



SWAPON(8) MAINTENANCE COMMANDS SWAPON(8) 

NAME 
swapon - specify additional device for paging and swapping 

SYNOPSIS 
/usr/etc/swapon -a 

/usr/etc/swapon name . .. 

DESCRIPTION 
swapon specifies additional devices on which paging and swapping are to take place. The system begins 
by swapping and paging on only a single device so that only one disk is required at bootstrap time. Calls to 
swapon normally occur in the system multi-user initialization file /etc/re making all swap devices avail
able, so that the paging and swapping activity is interleaved across several devices. 

The second form gives individual block devices as given in the system swap configuration table. The call 
makes only this space available to the system for swap allocation. 

OPTIONS 

FILES 

-a Make available all devices of type swap in /etc/fstab. Using swapon with the -a option is the 
normal usage. 

/dev/[ru][pk]?b 
/etc/fstab 
/etc/re 

normal paging devices 

SEE ALSO 

BUGS 

swapon(2), init(8) 

There is no way to stop paging and swapping on a device. It is therefore not possible to make use of dev
ices which may be dismounted during system operation. 

Sun Release 4.0 Last change: 9 September 1987 1771 



SYSDIAG(8) MAINTENANCE COMMANDS SYSDIAG(8) 

NAME 
sysdiag - system diagnostics 

SYNOPSIS 
/usr/diag/sysdiag/sysdiag 

AVAILABILITY 
This program is available with the User Diagnostics software installation option. Refer to Installing the 
Sun0S for information on how to install optional software. 

DESCRIPTION 

FILES 

sysdiag is a general-purpose system diagnostic facility that tests the system and reports its findings. It con
centrates on three areas of system functionality; memory, peripherals and disk. 

To use sysdiag, log on as sysdiag, then enter the command sysdiag. 

sysdiag creates a sun view( 1) environment with one window each for memory, peripherals, and disk error 
messages, plus a window for the console. It also creates date/time and performance monitor graphs. It 
places abbreviated error messages from the memory, disk, and peripherals in the appropriate windows, and 
sends console messages to the console window. 

When called from a terminal sysdiag interleaves all its messages on the screen. 

With or without the windows, it places long error messages in files named log.xx.nn where: 

xx is the name of diagnostic 

nn is the pass number (increments each pass) 

After it completes its test, sysdiag displays the error log files by executing the command 'more log*'. 
These files remain after sysdiag exits. 

sysdiag consists of a user account with a home directory, a collection of scripts, and executable files con
taining the actual test code. 

To configure or change sysdiag, either change the shell commands in /usr/diag/sysdiag/sysdiag, or change 
the sysdiag user configuration files .login, .sun view, and .cshrc. 

.login 

.sunview 

.cshrc 

SEE ALSO 
sunview(l) See the appropriate diagnostic manual for your Sun system. 

1772 Last change: 21 December 1987 Sun Release 4.0 



SYSLOGD(8) MAINTENANCE COMMANDS SYSLOGD(8) 

NAME 
syslogd - log system messages 

SYNOPSIS 
/usr/etc/syslogd [ -d] [ -f configfile ] [ -m interval] 

DESCRIPTION 
syslogd reads and forwards system messages to the appropriate log files and/or users, depending upon the 
priority of a message and the system facility from which it originates. The configuration file 
/etc/syslog.conf (see syslog.conf(5)) controls where messages are forwarded. syslogd logs a mark 
(timestamp) message every interval minutes (default 20) at priority LOG_INFO to the facility whose name 
is given as mark in the syslog.conf file. 

A system message consists of a single line of text, which may be prefixed with a priority code number en
closed in angle-brackets ( < > ); priorities are defined in <sys/syslog.h>. 

syslogd reads from the AF_ UNIX address family socket /dev/Iog, from an Internet address family socket 
specified in /etc/services, and from the special device /dev/klog (for kernel messages). 

syslogd reads the configuration file when it starts up, and again whenever it receives a HUP signal, at which 
time it also closes all files it has open, re-reads its configuration file, and then opens only the log files that 
are listed in that file. syslogd exits when it receives a TERM signal. 

As it starts up, syslogd creates the file /etc/syslog.pid, if possible, containing its process ID. 

Sun386i DESCRIPflON 
syslogd translates messages using the databases specified on an optional line in the syslog.conf as indicated 
with a translate entry. 

The format of these databases is described in translate(5). 

OPTIONS 

FILES 

-d 

-fconfigfile 

-m interval 

/ etc/syslog.conf 
/etc/syslog.pid 
/dev/log 
/dev/klog 
/ etc/services 

SEE ALSO 

Tum on debugging. 

Specify an alternate configuration file. 

Specify an interval, in minutes, between mark messages. 

configuration file 
process ID 
AF_ UNIX address family datagram log socket 
kernel log device 
network services database 

logger(l), syslog(3), syslog.conf(5) 

Sun Release 4.0 Last change: 18 February 1988 1773 



TALKD(8C) MAINTENANCE COMMANDS TALKD(8C) 

NAME 
tallcd - server for talk program 

SYNOPSIS 
/usr/etc/in.talkd 

DESCRIPTION 
talkd is a server used by the talk(l) program. It listens at the udp port indicated in the "tallc" service 
description; see services(5). The actual conversation takes place on a tcp connection that is established by 
negotiation between the two machines involved 

SEE ALSO 

BUGS 

1774 

talk(l), services(5), inetd(8C) 

The protocol is architecture dependent, and can not be relied upon to work between Sun systems and other 
machines. 

Last change: 9 September 1987 Sun Release 4.0 



TELNEID ( 8C) MAINTENANCE COMMANDS TELNEID ( 8C) 

NAME 
telnetd - DARPA TELNET protocol server 

SYNOPSIS 
/usr / etc/in.telnetd 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol. telnetd is in
voked by the internet server (see inetd(8C)), normally for requests to connect to the TELNET port as indi
cated by the /etc/services file (see services(5)). 

telnetd operates by allocating a pseudo-terminal device (see pty(4)) for a client, then creating a login pro
cess which has the slave side of the pseudo-terminal as its standard input, output, and error. telnetd mani
pulates the master side of the pseudo-terminal, implementing the TELNET protocol and passing characters 
between the remote client and the login process. 

When a TELNET session is started up, telnetd sends TELNET options to the client side indicating a wil
lingness to do remote echo of characters, to suppress go ahead, and to receive terminal type information 
from the remote client. If the remote client is willing, the remote terminal type is propagated in the en
vironment of the created login process. The pseudo-terminal allocated to the client is configured to operate 
in "cooked" mode, and with XTABS, ICRNL, and ONLCR enabled (see termio(4)). 

telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. telnetd is willing to have the 
remote client do: binary, terminal type, and suppress go ahead. 

SEE ALSO 
telnet(lC) 

BUGS 

Postel, Jon, and Joyce Reynolds, "Telnet Protocol Specification," RFC 854, Network Information Center, 
SRI International, Menlo Park, Calif., May 1983. 

Some TELNET commands are only partially implemented. 

The TELNET protocol allows for the exchange of the number of lines and columns on the user's terminal, 
but telnetd doesn't make use of them. 

Because of bugs in the original 4.2 BSD telnet(lC), telnetd performs some dubious protocol exchanges to 
try to discover if the remote client is, in fact, a 4.2 BSD telnet(lC). 

Binary mode has no common interpretation except between similar operating systems 

The terminal type name received from the remote client is converted to lower case. 

The packet interface to the pseudo-terminal (see pty(4)) should be used for more intelligent flushing of in
put and output queues. 

telnetd never sends TELNET go ahead commands. 

telnetd can only support 64 pseudo-terminals. 

Sun Release 4.0 Last change: 17 December 1987 1775 



TFTPD(8C) MAINTENANCE COMMANDS TFfPD(8C) 

NAME 
tftpd - DARPA Trivial File Transfer Protocol server 

SYNOPSIS 
/usr/etc/in.tftpd [-s] [ homedir] 

Sun386i SYNOPSIS 
/usr/etc/in.tftpd [-s] [-p] [ homedir ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
tftpd is a server that supports the DARPA Trivial File Transfer Protocol (TFfP). This server is normally 
started by inetd(8C) and operates at the port indicated in the tftp Internet service description in the 
/etc/inetd.conf file; see inetd.conf(5) for details. 

Before responding to a request, the server attempts to change its current directory to homedir; the default 
value is /tftpboot. 

Sun386i DESCRIPTION 
The tftpd daemon acts as described above, except that it will perform certain filename mapping operations 
unless instructed otherwise by the -p command line argument or when operating in a secure environment. 
This mapping affects only TFTP boot requests and will not affect requests for existing files. 

The semantics of the changes are as follows. Only filenames of the format ip-address or ip-address .arch, 
where ip-address is the IP address in hex, and arch is the hosts's architecture (as returned by the arch(l) 
command), that do not correspond to files in /tftpboot, are mapped. If the address is known through a YP 
lookup, any file of the form /tftpboot/ip-address* (with or without a suffix) is returned. If there are multi
ple such files, any one may be returned. If the ip-address is unknown (that is if the ipalloc (8C) service 
says the name service does not know the address), the filename is mapped as follows: Names without the 
arch suffix are mapped into the name pnp.SUNJ, and names with the suffix are mapped into pop.Arch. 
That file is returned if it exists. 

OPTIONS 
-s Secure. When specified, the directory change must succeed; and the daemon also changes its root 

directory to homedir. 

The use of tftp does not require an account or password on the remote system. Due to the lack of 
authentication information, tftpd will allow only publicly readable files to be accessed. Files may 
be written only if they already exist and are publicly writable. Note that this extends the concept 
of "public" to include all users on all hosts that can be reached through the network; this may not 
be appropriate on all systems, and its implications should be considered before enabling this ser
vice. 

tftpd runs with the user ID and group ID set to -2, under the assumption that no files exist with that owner 
or group. However, nothing checks this assumption or enforces this restriction. 

Sun386i OPTIONS 
-p Disable pnp entirely. Do not map filenames. 

Sun386i FILES 
/tftpboot/* filenames are IP addresses 

SEE ALSO 

1776 

ipallocd(8C), netconfig(8C), inetd(8C), tftp(lC) 

Sollins, K.R., The TFTP Protocol (Revision 2), RFC 783, Network Information Center, SRI International, 
Menlo Park, Calif., June 1981. 

Last change: 18 February 1988 Sun Release 4.0 



TFfPD(8C) MAINTENANCE COMMANDS TFTPD(8C) 

Sun386i WARNINGS 
A request for an ip-address from a Sun-4 can be satisfied by a file named ip-address .386 for compatibility 
with some early Sun-4 PROM monitors. 

Sun Release 4.0 Last change: 18 February 1988 1777 



TIC(8V) MAINTENANCE COMMANDS TIC(8V) 

NAME 
tic - terminfo compiler 

SYNOPSIS 
tic [ -v[n]] [-c]filename 

DESCRIPTION 
Note: Optional Software (System V Option). Refer to Installing the SunOS for information on how to in
stall this command 

tic compiles a terminfo(5V) source file into the compiled format. The results are placed in the directory 
/usr/share/Iib/terminfo. The compiled format is used by the curses(3V) library. 

Each entry in the file describes the capabilities of a particular terminal. When a use=entry field is given in 
a terminal entry, tic reads in the binary (compiled) description of the indicated entry from 
/usr/share/Iib/terminfo to duplicate the contents of that entry within the one being compiled. However, if 
an entry by that name is specified in filename, the entry in that source file is used first. Also, if a capability 
is defined in both entries, the definition in the current entry's source file is used. 

If the environment variable TERMINFO is set, that directory is searched and written to instead of 
/usr/share/lib/terminf o. 

OPTIONS 

FILES 

-v[n] 
Verbose. Display trace information on the standard error. The optional integer argument is a 
number from 1 to 10, inclusive, indicating the desired level of detail. If n is omitted, the default is 
1. 

-c Only check.filename for errors. Errors in use= links are not detected. 

/usr/share/lib/terminf o/? I• 
compiled terminal description data base 

SEE ALSO 

BUGS 

fork(2), curses(3V), curses(3X), malloc(3), term(5), terminfo(5V) 

Total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 1024 bytes. 

When the -c option is used, duplicate terminal names will not be diagnosed; however, when -c is not used, 
they will be. 

For backward compatibility, cancelled capabilities will not be marked as such within the terminfo binary 
unless the entry name has a '+' within it. Such terminal names are only used for inclusion with a use= 
field, and typically aren't used for actual terminal names. 

DIAGNOSTICS 

1778 

Most diagnostic messages produced by tic are preceded with the approximate line number and the name of 
the entry being processed. 

mkdir name returned bad status 
The named directory could not be created. 

File does not start with terminal names in column one 
The first thing seen in the file, after comments, must be the list of terminal names. 

Token after a seek(2) not NAMES 
Somehow the file being compiled changed during the compilation. 

Not enough memory for use_ list element 
Out of memory 

Not enough free memory was available (malloc(3) failed). 

Last change: 17 November 1987 Sun Release 4.0 



TIC(8V) MAINTENANCE COMMANDS 

Can't openfilename 
The named file could not be opened or created. 

Error in writingfilename 
The named file could not be written to. 

Can't/ink filename to filename 
A link failed. 

Error in re-reading compiledfilename 
The compiled file could not be read back in. 

Premature EOF 
The current entry ended prematurely. 

Backspaced off beginning of line 
This error indicates something wrong happened within tic. 

Unknown Capability - filename 
The named invalid capability was found within the file. 

Wrong type used for capability ... 
For example, a string capability was given a numeric value. 

Unknown token type 

TIC(8V) 

Tokens must be followed by'@' to cancel,',' for booleans,'#' for numbers, or'=' for strings. 
name: bad term name 
Line n: Illegal terminal name - name 
Terminal names must start with a letter or digit 

The given name was invalid. Names must not contain white space or slashes, and must begin with 
a letter or digit. 

name: terminal name too long. 
An extremely long terminal name was found. 

name: terminal name too short. 
A one-letter name was found. 

name defined in more than one entry. Entry being used is name . 
An entry was found more than once. 

Terminal name name synonym for itself 
A name was listed twice in the list of synonyms. 

At least one synonym should begin 
At least one of the names of the terminal should begin with a letter. 

Illegal character - c 
The given invalid character was found in the input file. 

Newline in middle of terminal name 
The trailing comma was probably left off of the list of names. 

Missing comma 
A comma was missing. 

Missing numeric value 
The number was missing after a numeric capability. 

NULL string value 
The proper way to say that a string capability does not exist is to cancel it. 

Very long string found. Missing comma? 
Self-explanatory. 

Sun Release 4.0 Last change: 17 November 1987 1779 



TIC(8V) MAINTENANCE COMMANDS TIC(8V) 

1780 

Unknown option. Usage is: 
An invalid option was entered 

Too many file names. Usage is: 
Self-explanatory. 

name non-existent or permission denied 
The given directory could not be written into. 

name is not a directory 
Self-explanatory. 

name: Permission denied 
Access denied. 

name: Not a directory 
tic wanted to use the given name as a directory, but it already exists as a file 

SYSTEM ERROR!! Fork failed!!! 
A f ork(2) failed. 

Error in following up use-links. 
Either there is a loop in the links or they reference non-existent terminals. The following is a list 
of the entries involved: 
A terminfo(5V) entry with a use=name capability either referenced a non-existent terminal called 
filename or filename somehow referred back to the given entry. 

Last change: 17 November 1987 Sun Release 4.0 



TIMED(8C) MAINTENANCE COMMANDS TIMED(8C) 

NAME 
timed - DARPA Time server 

SYNOPSIS 
/usr/etc/in.timed 

DESCRIPTION 
timed is a server which supports the DARPA Time Server Protocol. The time server operates at the port in
dicated in the ''time'' service description; see services(5), and is invoked by inetd(8C) each time there is a 
connection to the time server. 

SEE ALSO 
services(5), rdate(8), inetd(8C) 

BUGS 
A more sophisticated facility that can accept broadcasts and synchronize clocks over an internet is needed. 

Sun Release 4.0 Last change: 9 September 1987 1781 



TNAMED(8C) MAINTENANCE COMMANDS TNAMED(8C) 

NAME 
tnamed - DARPA Trivial name server 

SYNOPSIS 
/usr/etc/in.tnamed [ -v ] 

DESCRIPTION 
tnamed is a server that supports the DARPA Name Server Protocol. The name server operates at the port 
indicated in the "name" service description (see services(5)), and is invoked by inetd(8C) when a request 
is made to the name server. 

Two known clients of this service are the MIT PC/IP software the Bridge boxes. 

OPTIONS 
-v Invoke the daemon in verbose mode. 

SEE ALSO 

BUGS 

1782 

uucp(lC), services(5), inetd(8C) 

Postel, Jon, Internet Name Server, IEN 116, SRI International, Menlo Park, California, August 1979. 

The protocol implemented by this program is obsolete. Its use should be phased out in favor of the Internet 
Domain protocol. See named(8C). 

Last change: 9 September 1987 Sun Release 4.0 



TRPT(8C) MAINTENANCE COMMANDS TRPT(8C) 

NAME 
trpt - transliterate protocol trace 

SYNOPSIS 
/usr/etc/trpt [ -afjst ] [ -phex-address] [ system [ core ] ] 

DESCRIPTION 
trpt interrogates the buffer of TCP trace records created when a socket is marked for "debugging" (see 
getsockopt(2)), and prints a readable description of these records. When no options are supplied, trpt 
prints all the trace records found in the system grouped according to TCP connection protocol control block 
(PCB). The following options may be used to alter this behavior. 

OPTIONS 

FILES 

-a In addition to the normal output, print the values of the source and destination addresses for each 
packet recorded. 

-f Follow the trace as it occurs, waiting a short time for additional records each time the end of the 
log is reached. 

-j Just give a list of the protocol control block addresses for which there are trace records. 

-s In addition to the normal output, print a detailed description of the packet sequencing information. 

-t In addition to the normal output, print the values for all timers at each point in the trace. 

-p hex-address 
Show only trace records associated with the protocol control block, the address of which follows. 

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the socket(s) in
volved in the connection. Find the address qf the protocol control blocks associated with the sockets using 
the -A option to netstat(8C). Then run trpt with the -p option, supplying the associated protocol control 
block addresses. The -f option can be used to follow the trace log once the trace is located. If there are 
many sockets using the debugging option, the -j option may be useful in checking to see if any trace 
records are present for the socket in question. 

If debugging is being performed on a system or core file other than the default, the last two arguments may 
be used to supplant the defaults. 

/vmunix 
/dev/kmem 

SEE ALSO 
getsockopt(2), netstat(8C) 

DIAGNOSTICS 

BUGS 

no namelist 
When the system image does not contain the proper symbols to find the trace buffer; others which 
should be self explanatory. 

Should also print the data for each input or output, but this is not saved in the trace record. 

The output format is inscrutable and should be described here. 

Sun Release 4.0 Last change: 9 September 1987 1783 



TUNEFS(8) MAINTENANCE COMMANDS TUNEFS(8) 

NAME 
tunefs - tune up an existing file system 

SYNOPSIS 
/usr/etc/tunefs [ -a maxcontig] [ -d rotdelay] [ -e maxbpg] [ -m minfree] special lfilesystem 

DESCRIPTION 
tuners is designed to change the dynamic parameters of a file system which affect the layout policies. The 
parameters which are to be changed are indicated by the OPTIONS given below: 

OPTIONS 
-a maxcontig 

This specifies the maximum number of contiguous blocks that will be laid out before forcing a ro
tational delay (see -d below). The default value is one, since most device drivers require an inter
rupt per disk transfer. Device drivers that can chain several buffers together in a single transfer 
should set this to the maximum chain length. 

-d rotdelay 
This specifies the expected time (in milliseconds) to service a transfer completion interrupt and in
itiate a new transfer on the same disk. It is used to decide how much rotational spacing to place 
between successive blocks in a file. 

-emaxbpg 
This indicates the maximum number of blocks any single file can allocate out of a cylinder group 
before it is forced to begin allocating blocks from another cylinder group. Typically this value is 
set to about one quarter of the total blocks in a cylinder group. The intent is to prevent any single 
file from using up all the blocks in a single cylinder group, thus degrading access times for all files 
subsequently allocated in that cylinder group. The effect of this limit is to cause big files to do_ 
long seeks more frequently than if they were allowed to allocate all the blocks in a cylinder group 
before seeking elsewhere. For file systems with exclusively large files, this parameter should be 
set higher. 

-m minfree 
This value specifies the percentage of space held back from normal users; the minimum free space 
threshold. The default value used is 10%. This value can be set to zero, however up to a factor of 
three in throughput will be lost over the performance obtained at a 10% threshold. Note: if the 
value is raised above the current usage level, users will be unable to allocate files until enough 
files have been deleted to get under the higher threshold. 

SEE ALSO 

BUGS 

1784 

fs(5), dumpfs(8), mkfs(8), newfs(8) 

System and Network Administration 

This program should work on mounted and active file systems. Because the super-block is not kept in the 
buffer cache, the program will only take effect if it is run on dismounted file systems; if run on the root file 
system, the system must be rebooted. 

Last change: 25 September 1987 Sun Release 4.0 



TZSETUP(8) MAINTENANCE COMMANDS TZSETUP(8) 

NAME 
tzsetup - set up old-style time zone information in the kernel 

SYNOPSIS 
/usr/etc/tzsetup 

DESCRIPTION 
t7.Setup attempts to find the offset from GMT and old-style Daylight Savings Time correction type (see 
gettimeofday(2)) that most closely matches the default time zone for the machine, and to pass this infor
mation to the kernel with a settimeofday () call (see gettimeofday(2)). This is necessary if programs built 
under releases of SunOS prior to 4.0 are to be run; those programs get time zone information from the ker
nel using gettimeof day. 

If it cannot find the offset from GMT, the offset is set to O; if it cannot find the Daylight Savings Time 
correction type, it is set to DST_NONE, indicating that no Daylight Savings Time correction is to be per
formed 

DIAGNOSTICS 
t7.Setup: Can't open /usr/sbare/lib/zoneinfo/localtime: reason 

The time zone file for the current time zone could not be opened. 

t7.Setup: Error reading /usr/lib/zoneinfo/localtime: reason 
The time zone file for the current time zone could not be read 

t7.Setup: Two or more time zone types are equally valid - no DST selected 
There were two or more Daylight Savings Time correction types that generated results that were 
equally close to the correct results. None of them was selected. Programs built under versions of 
SunOS prior to 4.0 may not convert dates correctly. 

t7.Setup: No old-style time zone type is valid - no DST selected 
None of the Daylight Savings Time correction types generated results that were in any way 
correct; none of them was selected. Programs built under versions of SunOS prior to 4.0 may not 
convert dates correctly. 

t7.Setup: Warning: No old-style time zone type is completely valid 
None of the Daylight Savings Time correction types generated results that were completely 
correct; the best of them was selected. Programs built under versions of SunOS prior to 4.0 may 
not convert dates correctly. 

t7.Setup: Can't set time zone 

SEE ALSO 

t7.Setup was run by a user other than the super-user; only the super-user may change the kernel's 
notion of the current time zone. 

gettimeofday(2), tzfile(5), zic(8) 

Sun Release 4.0 Last change: 17 November 1987 1785 



UNCONFIGURE ( 8) MAINTENANCE COMMANDS UNCONFIGURE ( 8) 

NAME 
unconfigure - reset the network configuration for a Sun386i system 

SYNOPSIS 
/usr/etc/unconfigure [ -y] 

AVAILABILITY 
Sun386i systems only. 

DESCRIPTION 
unconfigure restores most of the system configuration and status files to the state they were in when 
delivered by Sun Microsystems, Inc. It also deletes all user accounts (including home directories), Yellow 
Pages information, and any diskless client configurations that were set up. 

After running unconfigure, a system halts. Rebooting it to multi-user mode at this point will start automat
ic system installation. 

unconfigure is intended for use in the following situations: 

• As one of the final steps in Software Manufacturing. 

• In systems being set up with temporary configurations, holding no user accounts or diskless clients. 
These will occur during demonstrations and evaluation trials. 

• To allow systems that had been used as standalones to be upgraded to join a network in a role other 
than as a master server. (See instructions later.) 

unconfigure is potentially a dangerous utility; it does not work unless invoked by the super-user. As a 
warning, unless the -y option is passed, it will require confirmation that all user files and system software 
configuration information is to be deleted. 

This utility is not recommended for routine use of any sort. 

Resetting Temporary Configurations 
If users need to set up and tear down configurations, unconfigure can be used to restore the system to an 
essentially as-manufactured state. The main concern here is that user accounts will be deleted, so this 
should not be done casually. 

To reset a temporary configuration, just become the super-user and invoke unconfigure. 

Upgrading Standalones to Network Clients 
Systems that are going to be networked should be networked from the very first, if at all possible. This el
iminates whole classes of compatibility problems, such as pathnames and (in particular) user account 
clashes. 

Automatic system installation directly supports upgrading a single standalone system to a YP master, and 
joining any number of unused systems (or systems upon which unconfigure has been run) into a network. 

However, in the situation where standalone systems that have been used extensively are to be joined to a 
network, unconfigure can be used in conjunction with automatic system installation by a knowledgeable 
super-user to change a system's configuration from standalone to network client This procedure is not 
recommended for use by inexperienced administrators. 

The following procedure is not needed unless user accounts or other data need to be preserved; it is intend
ed to ensure that every UID and GID is changed so as not to clash with those in use on the network. It must 
be applied to each system that is being upgraded from a standalone to a network client. 

The procedure is as follows: 

1. Identify all accounts and files that you'll want to save. If there are none, just run unconfigure and in
stall the system on the network. Do not follow the remaining steps. 

2. Copy /etc/passwd to /etc/passwd.bak. 

3. Rename all the files (including home directories) so that they aren't deleted. (See FILES below.) 
These will probably be only in /export/home. 

T ,a4-t c.han~e: 24 Fehruarv 1988 Sun Release 4.0 



UNCONFIGURE ( 8) MAINTENANCE COMMANDS UN CONFIGURE ( 8) 

FILES 

4. Run unconfigure and install the system on the network. 

5. For each account listed in /etc/passwd.bak that you want to save, follow this procedure: 

a. Create a new account on the network; if the UID and GID are the same as in /etc/passwd.bak on 
the standalone, then skip the next step. However, be sure that you do not make two different ac
counts with the same UID. 

b. Use the 'chown -R' command to change the ownership of the home directories. 

c. You may need to rename the files you just chowned above, for example to ensure that they are 
the user's home directory. This may involve updating the auto.home(5) and auto.home(5) YP 
maps, as well. 

6. Delete /etc/passwd.bak. 

unconfigure deletes the following files, if they are present, replacin~ some of them with the distribution 
version if one is supposed to exist: 

/ etc/ .rootkey 
/etc/auto.home 
/etc/auto.vol 
/ etc/bootparams 
/ etc/bootservers 
/var/sysex/• 

/etc/ethers 
/etc/exports 
/etc/fstab 
/etc/group 
/etc/hosts 

/etc/Iocaltime 
/ etc/net.conf 
/etc/netmasks 
/etc/networks 
/etc/passwd 

/etc/publickey 
I etc/ sendmail.cf 
I etc/ syslog.conf 
/etc/systems 
/single/ifconfig 

and all files in /var/yp except those distributed with the operating system. 

unconfigure truncates all files in /var/adm. All user home directories in /export/home are deleted, except 
those for the default user account users, which is shipped with the operating system. All diskless client 
configuration information stored in /export/roots, /export/swaps, and /export/dumps is deleted. 

SEE ALSO 

BUGS 

find(l), passwd(S), group(5), adduser(8), chgrp(l), chown(8) 

More of the system configuration files should be reset 

This does not yet support taking a workstation off the network temporarily, for example, to take it home 
over the weekend for use as a standalone, or to move it to another network while travelling. This should be 
the default behavior. 

The procedure for upgrading standalones to network clients should be automated; currently, only upgrading 
a standalone to a master server is automated. 

Sun Release 4.0 Last change: 24 February 1988 1787 



UPDATE(8) MAINTENANCE COMMANDS UPDATE(8) 

NAME 
update - periodically update the super block 

SYNOPSIS 
/usr/etc/update 

DESCRIPTION 
update is a program that executes the sync(2) primitive every 30 seconds. This insures that the file system 
is fairly up to date in case of a crash. This command should not be executed directly, but should be execut
ed out of the initialization shell command file. 

SEE ALSO 
sync(2), init(8), sync(8) 

1788 Last change: 9 September 1987 Sun Release 4.0 



UUCLEAN ( 8C) MAINTENANCE COMMANDS UUCLEAN ( 8C) 

NAME 
uuclean - uucp spool directory clean-up 

SYNOPSIS 
/usr/lib/uucp/uuclean [ -m ] [ -ntime ] [ -ppre ] 

DESCRIPTION 
uuclean scans the spool directory for files with the specified prefix and deletes all those which are older 
than the specified number of hours. 

OPTIONS 
-m Send mail to the owner of the file when it is deleted. 

-ntime Files whose age is more than time hours are deleted if the prefix test is satisfied ( default time is 72 
hours). 

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A-p without 
any pre following deletes all files older than the specified time. 

uuclean will typically be started by cron(8). 

FILES 
/usr/lib/uucp 
/usr/lib/uucp/spool 

SEE ALSO 

directory with commands used by uuclean internally 
spool directory 

uucp(lC), uux(lC), cron(8) 

Sun Release 4.0 Last change: 9 September 1987 1789 



VIPW(8) MAINTENANCE COMMANDS VIPW(8) 

NAME 
vipw - edit the password file 

SYNOPSIS 
/usr/etc/vipw 

DESCRIPTION 

FILES 

vipw edits the password file while setting the appropriate locks, and does any necessary processing after 
the password file is unlocked. If the password file is already being edited, then you will be told to try again 
later. The vi(l) editor will be used unless the environment variable VISUAL or EDITOR indicates an alter
nate editor. 

vipw performs a number of consistency checks on the password entry for root, and will not allow a pass
word file with a "mangled" root entry to be installed. It also checks the /etdshells file to verify the login 
shell for root. 

/etc/ptmp 
/etc/shells 

SEE ALSO 
passwd(l), vi(l), passwd(5), adduser(8) 

1790 Last change: 9 September 1987 Sun Release 4.0 



VMSTAT(8) MAINTENANCE COMMANDS VMSTAT(8) 

NAME 
vmstat - report virtual memory statistics 

SYNOPSIS 
vmstat [ -fisS ] [ interval [ count ] ] 

DESCRIPTION 
vmstat delves into the system and normally reports certain statistics kept about process, virtual memory, 
disk, trap and CPU activity. 

Without options, vmstat displays a one-line summary of the virtual memory activity since the system has 
been booted. If interval is specified, vmstat summarizes activity over the last interval seconds. If a count 
is given, the statistics are repeated count times. 

For example, the following command displays a summary of what the system is doing every five seconds. 
This is a good choice of printing interval since this is how often some of the statistics are sampled in the 
system. 

example% vmstat 5 

procs memory page faults 
r b w avm fre re at pi po fr de sr xO xl x2 x3 in sy cs us sy id 
2 0 0 918 286 0 0 0 0 0 0 0 1 0 0 0 4 12 5 3 5 91 
1 0 0 846 254 0 0 0 0 0 0 0 6 0 1 0 42 153 31 7 40 54 
1 0 0 840 268 0 0 0 0 0 0 0 5 0 0 0 27 103 25 8 26 66 
10 0 620 312 0 0 0 0 0 0 0 6 0 0 0 26 76 25 6 27 67 

"C 
example% 

The fields of vmstat' s display are: 

procs Report the number of processes in each of the three following states: 
r in run queue 
b blocked for resources (i/o, paging, etc.) 
w runnable or short sleeper(< 20 secs) but swapped 

memory Report on usage of virtual and real memory. Virtual memory is considered active if it belongs to 
processes which are running or have run in the last 20 seconds. 
avm number of active virtual Kbytes 
fre size of the free list in Kbytes 

page Report information about page faults and paging activity. The information on each of the follow
ing activities is averaged each five seconds, and given in units per second. 
re page reclaims - but see the -S option for how this field is modified. 
at number of attaches - but see the -S option for how this field is modified. 
pi kilobytes per second paged in 
po kilobytes per second paged out 
fr kilobytes freed per second 
de anticipated short term memory shortfall in Kbytes 
sr pages scanned by clock algorithm, per-second 

disk Report number of disk operations per second (this field is system dependent). For Sun systems, 
four slots are available for up to four drives: "xO" (or "sO" for SCSI disks), "xl ", "x2", and 
"x3". 

faults Report trap/interrupt rate averages per second over last 5 seconds. 
in (non clock) device interrupts per second 
sy system calls per second 
cs CPU context switch rate (switches/sec) 

Sun Release 4.0 Last change: 23 November 1987 1791 



VMSTAT(8) MAINTENANCE COMMANDS VMSTAT(8) 

cpu Give a breakdown of percentage usage of CPU time. 
us user time for normal and low priority processes 
sy system time 
id CPU idle 

OPTIONS 
-f Report on the number of forks and vforks since system startup and the number of pages of virtual 

memory involved in each kind of fork. 

FILES 

BUGS 

1792 

-i 

-s 

-S 

Report the number of interrupts per device. Autovectored interrupts (including the clock) are list
ed first. 

Display the contents of the sum structure, giving the total number of several kinds of paging
related events which have occurred since boot. 

Report on swapping rather than paging activity. This option will change two fields in vmstafs 
"paging,, display: rather than the "re" and "at" fields, vmstat will report "si'' (swap-ins), and 
"so" (swap-outs). 

/dev/kmem 
/vmunix 

If more than one autovectored device has the same name, interrupts are counted for all like-named devices 
regardless of unit number. Such devices are listed with a unit number of,?,. 

Last change: 23 November 1987 Sun Release 4.0 



YPIN1T(8) MAINTENANCE COMMANDS YPIN1T(8) 

NAME 
ypinit - build and install Yellow Pages database 

SYNOPSIS 
/usr/etdyp/ypinit -m 

/usr/etc/yp/ypinit -s master_ name 

DESCRIPTION 
ypinit sets up a Yellow Pages database on a YP server. It can be used to set up a master or a slave server. 
You must be the super-user to run it. It asks a few, self-explanatory questions, and reports success or 
failure to the terminal. 

It sets up a master server using the simple model in which that server is master to all maps in the data base. 
This is the way to bootstrap the YP system; later if you want you can change the association of maps to 
masters. All databases are built from scratch, either from information available to the program at runtime, 
or from the ASCII data base files in /etc. These files are listed below under FILES. All such files should be 
in their "traditional" form, rather than the abbreviated form used on client machines. 

A YP database on a slave server is set up by copying an existing database from a running server. The 
master_ name argument should be the hostname of YP server ( either the master server for all the maps, or a 
server on which the data base is up-to-date and stable). 

Read ypfiles(5) and ypserv(8) for an overview of the Yellow Pages. 

OPTIONS 
-m Indicate that the local host is to be the YP master. 

FILES 

-s Set up a slave database. 

I etc/passwd 
/etc/group 
/etc/hosts 
/etc/networks 
/ etc/services 
I etc/protocols 
/etc/ethers 

SEE ALSO 
makedbm(8), ypfiles(5), ypmake(8), yppush(8), ypserv(8), ypxfr(8) 

Sun Release 4.0 Last change: 14 December 1987 1793 



YPMAKE(8) MAINTENANCE COMMANDS YPMAKE(8) 

NAME 
ypmake - rebuild Yellow Pages database 

SYNOPSIS 
cd /var/yp ; make [ map ] 

DESCRIPTION 

FILES 

The file called Makefile in /var/yp is used by make to build the Yellow Pages database. With no argu
ments, make creates dbm databases for any YP maps that are out-of-date, and then executes yppush(8) to 
notify slave databases that there has been a change. 

If you supply a map on the command line, make will update that map only. Typing make passwd will 
create and yppush the password database (assuming it is out of date). Likewise, make hosts and make 
networks will create and yppush the host and network files, /etc/hosts and /etc/networks. 

There are three special variables used by make: DIR, which gives the directory of the source files; NO
PUSH, which when non-null inhibits doing a yppush of the new database files; and DOM, used to construct 
a domain other than the master's default domain. The default for DIR is /etc, and the default for NOPUSH 

is the null string. 

Refer to ypfiles(5) and ypserv(8) for an overview of the YP. 

/var/yp 
/etc/hosts 
/etc/networks 

SEE ALSO 
make(l), ypfiles(5), makedbm(8), yppush(8), ypserv(8) 

1794 Last change: 14 December 1987 Sun Release 4.0 



YPPASSWDD ( 8C) MAINTENANCE COMMANDS YPPASSWDD ( 8C) 

NAME 
yppasswdd - server for modifying Yellow Pages password file 

SYNOPSIS 
/usr/etc/rpc.yppasswddfilename [ adjunct _file ] [ -m argument] argument2 ... ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the Sun0S for information on how to install optional software. 

DESCRIPTION 
yppasswdd is a server that handles password change requests from yppasswd(l). Unless an adjunct_file is 
specified, it changes a password entry in filename, which is assumed to be in the format of passwd(5). If 
an adjunct _file is specified or /etc/security/passwd.adjunct exists, this file will be changed instead of the 
filename. An entry in filename or adjunct _file will only be changed if the password presented by yp-
passwd( 1) matches the encrypted password of that entry. 

If the -m option is given, then after filename or adjunct_file is modified, a make(l) will be performed in 
!varlyp. Any arguments following the flag will be passed to make. 

This server is not run by default, nor can it be started up from inetd(8C). If it is desired to enable remote 
password updating for the Yellow Pages, then an entry for yppasswdd should be put in the /etc/re file of 
the host serving as the master for the Yellow Pages passwd file. 

EXAMPLE 

FILES 

If the Yellow Pages password file is stored as /var/yp/src/passwd, then to have password changes pro
pagated immediately, the server should be invoked as 

/usr/etc/rpc.yppasswdd /var/yp/src/passwd -m passwd DIR::/var/yp/src 

In this case, src is the YP domain name. 

/var/yp/Makefile 
/etc/security/passwd.adjunct 
/etc/re 

SEE ALSO 

make(l), yppasswd(l), passwd(5), passwd.adjunct(5), ypfiles(5), inetd(8C), ypmake(8) 

Sun Release 4.0 Last change: 17 December 1987 1795 



YPPOLL(8) MAINTENANCE COMMANDS YPPOLL(8) 

NAME 
yppoll - what version of a YP map is at a YP server host 

SYNOPSIS 
/usr/etc/yp/yppoll [ -h host ] [ -d domain ] mapname 

DESCRIPTION 
yppoll asks a ypserv(8) process what the order number is, and which host is the master YP server for the 
named map. If the server is a v.1 YP protocol server, yppoll uses the older protocol to communicate with 
it In this case, it also uses the older diagnostic messages in case of failure. 

OPTIONS 
-h host Ask the ypserv process at host about the map parameters. If host is not specified, the YP server 

for the local host is used. That is, the default host is the one returned by ypwhich(8). 

-d domain 
Use domain instead of the default domain. 

SEE ALSO 
ypfiles(S), ypserv(8), ypwhich(8) 

1796 Last change: 14 December 1987 Sun Release 4.0 



YPPUSH(8) MAINTENANCE COMMANDS YPPUSH(8) 

NAME 
yppush - force propagation of a changed YP map 

SYNOPSIS 
/usr/etc/yp/yppush [ -v ] [ -d domain ] mapname 

DESCRIPTION 
yppush copies a new version of a Yellow Pages (YP) map from the master YP server to the slave YP 
servers. It is normally run only on the master YP server by the Makefile in /var/yp after the master data
bases are changed. It first constructs a list of YP server hosts by reading the YP map ypservers within the 
domain. Keys within the map ypservers are the ASCII names of the machines on which the YP servers 
run. 

A ''transfer map'' request is sent to the YP server at each host, along with the information needed by the 
transfer agent (the program which actually moves the map) to call back the yppush. When the attempt has 
completed (successfully or not), and the transfer agent has sent yppush a status message, the results may 
be printed to stdout Messages are also printed when a transfer is not possible; for instance when the re
quest message is undeliverable, or when the timeout period on responses has expired. 

Refer to ypfiles(5) and ypserv(8) for an overview of the Yellow Pages. 

OPTIONS 

FILES 

-d Specify a domain. 

-v Verbose. This causes messages to be printed when each server is called, and for each response. If 
this flag is omitted, only error messages are printed. 

/var/yp/domain/ypservers.{dir,pagJ 
/var/yp 

SEE ALSO 

BUGS 

ypfiles(5), ypserv(8), ypxfr(8), YP protocol specification 

In the current implementation (version 2 YP protocol), the transfer agent is ypxfr(8), which is started by the 
ypserv program. If yppush detects that it is speaking to a version 1 YP protocol server, it uses the older 
protocol, sending a version 1 YPPROC_GET request and issues a message to that effect. Unfortunately, 
there is no way of knowing if or when the map transfer is performed for version 1 servers. yppush prints a 
message saying that an "old-style" message has been sent. The system administrator should later check to 
see that the transfer has actually taken place. 

Sun Release 4.0 Last change: 14 December 1987 1797 



YPSERV(8) MAINTENANCE COMMANDS YPSERV(8) 

NAME 
ypserv, ypbind - Yellow Pages server and binder processes 

SYNOPSIS 
/usr/etc/ypserv 

/usr/etc/yp bind 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 

1798 

The Yellow Pages (YP) provides a simple network lookup service consisting of databases and processes. 
The databases are dbm(3X) files in a directory tree rooted at /var/yp. These files are described in 
ypfiles(5). The processes are /usr/etc/ypserv, the YP database lookup server, and /usr/etc/ypbind, the YP 
binder. The programmatic interface to YP is described in ypclnt(3N). Administrative tools are described 
in yppush(8), ypxfr(8), yppoll(8), ypwhich(8), and ypset(8). Tools to see the contents of YP maps are 
described in ypcat(l), and ypmatch(l). Database generation and maintenance tools are described in ypin
it(8), ypmake(8), and makedbm(8). 

Both ypserv and ypbind are daemon processes typically activated at system startup time from 
/etc/re.local. ypserv runs only on YP server machines with a complete YP database. ypbind runs on all 
machines using YP services, both YP servers and clients. 

The ypserv daemon's primary function is to look up information in its local database of YP maps. The 
operations performed by ypserv are defined for the implementor by the YP Protocol Specification, and for 
the programmer by the header file <rpcsvc/yp _prot.h>. Communication to and from ypserv is by means 
of RPC calls. Lookup functions are described in ypclnt(3N), and are supplied as C-callable functions in the 
C library. There are four lookup functions, all of which are performed on a specified map within some YP 
domain: Match, Get_first, Get_next, and Get_all. The Match operation takes a key, and returns the associ
ated value. The Get _first operation returns the first key-value pair from the map, and Get_ next can be used 
to enumerate the remainder. Get_ all ships the entire map to the requester as the response to a single RPC 
request. 

Two other functions supply information about the map, rather than map entries: Get_ order_ number, and 
Get_ master_ name. In fact, both order number and master name exist in the map as key-value pairs, but the 
server will not return either through the normal lookup functions. (If you examine the map with mak
edbm(8), however, they will be visible.) Other functions are used within the YP subsystem itself, and are 
not of general interest to YP clients. They include Do you _serve _this_ domain?, Transfer_ map, and 
Reinitialize internal state. - -
The function of ypbind is to remember information that lets client processes on a single node communicate 
with some ypserv process. ypbind must run on every machine which has YP client processes; ypserv may 
or may not be running on the same node, but must be running somewhere on the network. 

The information ypbind remembers is called a binding - the association of a domain name with the inter
net address of the YP server, and the port on that host at which the ypserv process is listening for service 
requests. This information is cached in the directory /var/yp/binding using a filename of 
domainname. version. 

The process of binding is driven by client requests. As a request for an unbound domain comes in, the YP· 
bind process broadcasts on the net trying to find a ypserv process that serves maps within that domain. 
Since the binding is established by broadcasting, there must be at least one ypserv process on every net. If 
the client is running in C2 secure mode, then ypbind will only accept bindings to servers where the ypserv 
process is running as root. Once a domain is bound by a particular ypbind, that same binding is given to 
every client process on the node. The ypbind process on the local node or a remote node may be queried 
for the binding of a particular domain by using the ypwhich( 1) command. 

Last change: 17 December 1987 Sun Release 4.0 



YPSERV(8) MAINTENANCE COMMANDS YPSERV(8) 

FILES 

Bindings and rebindings are handled transparently by the C library routines. If ypbind is unable to speak to 
the ypserv process it's bound to, it marks the domain as unbound, tells the client process that the domain is 
unbound, and tries to bind the domain once again. Requests received for an unbound domain will wait un
til the domain requested is bound. In general, a bound domain is marked as unbound when the node run
ning ypserv crashes or gets overloaded. In such a case, ypbind will to bind any YP server (typically one 
that is less-heavily loaded) available on the net. 

ypbind also accepts requests to set its binding for a particular domain. The request is usually generated by 
the YP subsystem itself. ypset(8) is a command to access the Set_domain facility. It is for unsnarling 
messes. Note that the Set Domain procedure only accepts requests from processes running as root 

If the file /var/yp/ypserv .log exists when ypserv starts up, log information will be written to this file when 
error conditions arise. 

The file(s) /var/yp/binding/domainname.version will be created to speed up the binding process. These 
files cache the last successful binding created for the given domain, when a binding is requested these files 
are checked for validity and then used. 
/var/yp 
/usr/etc/ypbind 

SEE ALSO 

NOTES 

domainname(l), ypcat(l), ypmatch(l), dbm(3X), ypclnt(3N), ypfiles(5), makedbm(8), ypmake(8), 
ypinit(8), yppoll(8), yppush(8), ypset(8), ypwhich(8), ypxfr(8) 

YP Protocol Specification in Network Programming 

Both ypbind and ypserv support multiple domains. The ypserv process determines the domains it serves 
by looking for directories of the same name in the directory /var/yp. It will reply to all broadcasts request
ing yp service for that domain. Additionally, the ypbind process can maintain bindings to several domains 
and their servers, the default domain is however the one specified by the domainname(l) command at 
startup time. 

Sun Release 4.0 Last change: 17 December 1987 1799 



YPSET(8) MAINIBNANCE COMMANDS YPSET(8) 

NAME 
ypset - point ypbind at a particular server 

SYNOPSIS 
/usr/etc/yp/ypset [ -Vl I-V2 ] [ -d domain ] [ -h host ] server 

DESCRIPTION 
ypset tells ypbind to get YP services for the specified domain from the ypserv process running on server. 
If server is down, or isn't running ypserv, this is not discovered until a YP client process tries to get a bind
ing for the domain. At this point, the binding set by ypset will be tested by ypbind. If the binding is in
valid, ypbind will attempt to rebind for the same domain. 

ypset is useful for binding a client node which is not on a broadcast net, or is on a broadcast net which isn't 
running a YP server host. It also is useful for debugging YP client applications, for instance where a YP 
map only exists at a single YP server host. 

In cases where several hosts on the local net are supplying YP services, it is possible for ypbind to rebind 
to another host even while you attempt to find out if the ypset operation succeeded. For example, you can 
type: 

example% ypset hostl 
example% ypwhich 
host2 

which can be confusing. This is a function of the YP subsystem's attempt to load-balance among the avail
able YP servers, and occurs when host] does not respond to ypbind because it is not running ypserv (or is 
overloaded), and host2, running ypserv, gets the binding. 

server indicates the YP server to bind to, and can be specified as a name or an IP address. If specified as a 
name, ypset will attempt to use YP services to resolve the name to an IP address. This will work only if the 
node has a current valid binding for the domain in question. In most cases, server should be specified as an 
IP address. 

Refer to ypfiles(5) and ypserv(8) for an overview of the Yellow Pages. 

OPTIONS 
-Vl Bind server for the (old) v.1 YP protocol. 

-V2 Bind server for the (current) v.2 YP protocol. 

If no version is supplied, ypset, first attempts to set the domain for the (current) v.2 protocol. If 
this attempt fails, ypset, then attempts to set the domain for the ( old) v .1 protocol. 

-hhost Set ypbind's binding on host, instead of locally. host can be specified as a name or as an IP ad
dress. 

-ddomain 
Use domain , instead of the default domain. 

SEE ALSO 
ypwhich(l), ypfiles(5), ypserv(8) 

1800 Last change: 14 December 1987 Sun Release 4.0 



YPUPDATED ( 8C) MAINTENANCE COMMANDS YPUPDA TED ( 8C) 

NAME 
ypupdated - server for changing YP information 

SYNOPSIS 
. rpc.ypupdated [ -is ] 

DESCRIPTION 
ypupdated is a daemon that updates information in the Yellow Pages, normally started up by inetd(8C). 
ypupdated consults the file updaters(5) in the directory /var/yp to determine which YP maps should be 
updated and how to change them. 

By default, the daemon requires the most secure method of authentication available to it, either DES 
(secure) or UNIX (insecure). 

OPTIONS 

FILES 

-s accept only calls authenticated using the secure RPC mechanism (AUTH _ DES authentication). 
This disables programmatic updating of YP maps unless the network supports these calls. 

-i also accept RPC calls with the insecure AUTH _ UNIX credentials. This allows programmatic up
dating of YP maps in all networks. 

/var/yp/updaters 

SEE ALSO 
updaters(5), inetd(8C), keyserv(8C) 

System and Network Administration 

Network Programming 

Sun Release 4.0 Last change: 23 February 1988 1801 



YPWHICH(8) MAINTENANCE COMMANDS YPWHICH(8) 

NAME 
ypwhich - what machine is the YP server? 

SYNOPSIS 
ypwbicb [ -d domainname ] [ hostname ] 

ypwbicb [ -d domainname ] [ -t ] -m [ mname ] 

AVAILABILITY 
This program is available with the Networking Tools and Programs software installation option. Refer to 
Installing the SunOS for information on how to install optional software. 

DESCRIPTION 
ypwhich tells which YP server supplies Yellow Pages to a YP client, and which YP server is the master for 
a map. If invoked without arguments, it gives the YP server for the local machine. If hostname is 
specified, that machine is queried to find out which YP m~r it is using. 

If the -m switch is used without mname, a list of every map in the domain and the master of each will be 
printed. If mna~ is specified, only the master YP server for that map is printed. mname may be a map
name, or a nickname for a mapname. Mapnames and nicknames are described in ypcat(l). 

OPTIONS 
-d 

-m 

-t 

SEE ALSO 

Domainname specifies the name of a YP domain. The default is the default domain for the local 
machine. 

Find the master YP server for a map, or for all maps in a domain. No hostname may be specified 
with-m. 

Inhibit nickname translation; useful if there is a mapname identical to a nickname. This is not true 
of any Sun-supplied map. 

ypcat(l), ypfiles(5), rpcinfo(8C), yppush(8), ypserv(8) 

1802 Last change: 17 December 1987 Sun Release 4.0 



YPXFR(8) MAINTENANCE COMMANDS YPXFR(8) 

NAME 
ypxfr - transfer YP map from a YP server to here 

SYNOPSIS 
/usr/etc/yp/ypxfr [ -f] [ -c] [ -d domain] [ -h host] [ -s domain] [ -C tid prog ipadd port] mapname 

DESCRIPTION 
ypxfr moves a YP map in the default domain for the local host to the local host by making use of normal 
YP services. It creates a temporary map in the directory /var/ypldomain (this directory must already exist; 
domain is the default domain for the local host), fills it by enumerating the map's entries, fetches the map 
parameters (master and order number), and loads them. It then deletes any old versions of the map and 
moves the temporary map to the real mapname. 

If run interactively, ypxfr it writes its output to the terminal. However, if it is invoked without a control
ling terminal, and if the log file /var/yp/ypxfr .log exists, it will append all its output to that file. Since 
ypxfr is most often run from the super-user's crontab file, or by ypserv, you can use the log file to retain a 
record of what was attempted, and what the results were. 

If issecure(3) is TRUE, ypxfr requires that ypserv on the host be running as root. If the map being 
transferred is a secure map, ypxfr sets the permissions on the map to 0600. 

For consistency between servers, ypxfr should be run periodically for every map in the YP data base. Dif
ferent maps change at different rates: the services .byname map may not change for months at a time, for 
instance, and may therefore be checked only once a day (in the wee hours). You may know that 
mail .aliases or hosts .byname changes several times per day. In such a case, you may want to check hourly 
for updates. A crontab(S) entry can be used to perform periodic updates automatically. Rather than hav
ing a separate crontab entry for each map, you can group comands to update several maps in a shell script. 
Examples (mnemonically named) are in /usr/etc/yp: ypxfr_lperday, ypxfr_2perday, and 
ypxfr _ lperhour. They can serve as reasonable first cuts. 

Refer to ypfiles(S) and ypserv(8) for an overview of the Yellow Pages. 

OPTIONS 

FILES 

-f Force the transfer to occur even if the version at the master is not more recent than the local ver-
sion. 

-c Do not send a "Clear current map" request to the local ypserv process. Use this flag if ypserv is 
not running locally at the time you are running ypxfr. Otherwise, ypxfr will complain that it can't 
talk to the local ypserv, and the transfer will fail. 

-ddomain 
Specify a domain other than the default domain. 

-hhost Get the map from host, regardless of what the map says the master is. If host is not specified, 
ypxfr will ask the YP service for the name of the master, and try to get the map from there. host 
may be a name or an internet address in the form a.b.c.d. 

-sdomain 
Specify a source domain from which to transfer a map that should be the same across domains 
(such as the services .byname map). 

-Ctid prog ipadd port 
This option is only for use by ypserv. When ypserv invokes ypxfr, it specifies that ypxfr should 
call back a yppush process at the host with IP address ipaddr, registered as program number pro g, 
listening on port port, and waiting for a response to transaction tid. 

/var/yp/ypxfr.log log file 
/usr/etc/yp/ypxfr _ lperday 

script to run one transfer per day, for use with cron(8) 

Sun Release 4.0 Last change: 21 December 1987 1803 



YPXFR(8) MAINTENANCE COMMANDS 

/usr/etc/yp/ypxfr _ 2perday 
script to run two transfers per day 

/usr/etc/yp/ypxfr _ lperhour 
script for hourly transfers of volatile maps 

lvarlyp/domain YP domain 
/var/spool/cron/crontabs/root 

Super-user's crontab file 

SEE ALSO 
issecure(3), crontab(5), ypfiles(5), cron(8), ypserv(8), yppush(8), 

YP Protocol Specification, in Network Programming 

1804 Last change: 21 December 1987 

YPXFR(8) 

Sun Release 4.0 



ZDUMP(8) MAINTENANCE COMMANDS ZDUMP(8) 

NAME 
zdump - time zone dumper 

SYNOPSIS 
zdump [ -v ] [ -c cutoffyear ] [ zonename ... ] 

DESCRIPTION 
zdump prints the current time in each zonename named on the command line. 

OPTIONS 
-v For each zonename on the command line, print the current time, the time at the lowest possible 

time value, the time one day after the lowest possible time value, the times both one second before 
and exactly at each time at which the rules for computing local time change, the time at the 
highest possible time value, and the time at one day less than the highest possible time value. 
Each line ends with isdst=l if the given time is Daylight Saving Time or isdst=O otherwise. 

-c cutoffyear 
Cut off the verbose output near the start of the year cutoffyear. 

FILES 
/usr/sbare/lib/zoneinfo standard zone information directory 

SEE ALSO 
ctime(3), tzfile(S), zic(8) 

Sun Release 4.0 Last change: 9 September 1987 1805 



ZIC ( 8) MAINTENANCE COMMANDS ZIC(8) 

NAME 
zic - time zone compiler 

SYNOPSIS 
zic [ -v ] [ -d directory ] [ -1 localtime ] [filename ... ] 

DESCRIPTION 

1806 

zic reads text from the file(s) named on the command line and creates the time conversion information files 
specified in this input. If afilename is '-', the standard input is read 

Input lines are made up of fields. Fields are separated from one another by any number of white space 
characters. Leading and trailing white space on input lines is ignored. An '#' (unquoted sharp character) 
in the input introduces a comment which extends to the end of the line the sharp character appears on. 
White space characters and sharp characters may be enclosed in ' "' (double quotes) if they're to be used 
as part of a field. Any line that is blank (after comment stripping) is ignored. Non-blank lines are expected 
to be of one of three types: rule lines, zone lines, and link lines. 

A rule line has the form 

Rule NAME FROM TO TYPE IN ON AT SA VE LETTER/S 

For example: 

Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D 

The fields that make up a rule line are: 

NAME Gives the (arbitrary) name of the set of rules this rule is part of. 

FROM 

TO 

TYPE 

IN 

ON 

Gives the first year in which the rule applies. The word minimum (or an abbreviation) means 
the minimum year with a representable time value. The word maximum (or an abbreviation) 
means the maximum year with a representable time value. 

Gives the final year in which the rule applies. In addition to minimum and maximum (as 
above), the word only (or an abbreviation) may be used to repeat the value of the FROM field. 

Gives the type of year in which the rule applies. If TYPE is'-' then the rule applies in all years 
between FROM and TO inclusive; if TYPE is uspres, the rule applies in U.S. Presidential elec
tion years; if TYPE is nonpres, the rule applies in years other than U.S. Presidential election 
years. If TYPE is something else, then zic executes the command 

yearistype year type 

to check the type of a year: an exit status of zero is taken to mean that the year is of the given 
type; an exit status of one is taken to mean that the year is not of the given type. 

Names the month in which the rule takes effect. Month names may be abbreviated. 

Gives the day on which the rule takes effect. Recognized forms include: 

5 

lastSun 

lastMon 

the fifth of the month 

the last Sunday in the month 

the last Monday in the month 

Sun>=8 first Sunday on or after the eighth 

Sun<=25 
last Sunday on or before the 25th 

Last change: 17 November 1987 Sun Release 4.0 



ZIC(8) MAINTENANCE COMMANDS ZIC(8) 

Names of days of the week may be abbreviated or spelled out in full. Note: there must be no 
spaces within the ON field. 

AT Gives the time of day at which the rule takes effect. Recognized forms include: 

2 time in hours 

2:00 time in hours and minutes 

15:00 
24-hour format time (for times after noon) 

1:28:14 
time in hours, minutes, and seconds 

Any of these forms may be followed by the letter w if the given time is local ''wall clock'' time or s if the 
given time is local ''standard'' time; in the absence of w ors, wall clock time is assumed. 

SA VE Gives the amount of time to be added to local standard time when the rule is in effect This field 
has the same format as the AT field (although, of course, thew ands suffixes are not used). 

LETTER/S 
Gives the "variable part" (for example, the "S" or "D" in "ESf" or "EDT") of time zone ab
breviations to be used when this rule is in effect. If this field is '-', the variable part is null. 

A zone line has the form 

Zone NAME GMTOFF RULES/SAVE FORMAT [UNTIL] 

For example: 

Zone Australia/South-west 9:30 Aus CST 1987 Mar 15 2:00 

The fields that make up a zone line are: 

NAME The name of the time zone. This is the name used in creating the time conversion information 
file for the zone. 

GMTOFF 
The amount of time to add to GMT to get standard time in this zone. This field has the same for
mat as the AT and SAVE fields of rule lines; begin the field with a minus sign if time must be sub
tracted from GMT. 

RULES/SAVE 

FORMAT 

The name of the rule(s) that apply in the time zone or, alternately, an amount of time to add to lo
cal standard time. If this field is '-' then standard time always applies in the time zone. 

The format for time zone abbreviations in this time zone. The pair of characters %sis used to 
show where the ''variable part'' of the time zone abbreviation goes. UNTIL The time at which 
the GMT offset or the rule(s) change for a location. It is specified as a year, a month, a day, and a 
time of day. If this is specified, the time zone information is generated from the given GMT 
offset and rule change until the time specified. 

The next line must be a "continuation" line; this has the same form as a zone line except that the 
string ''Zone'' and the name are omitted, as the continuation line will place information starting 
at the time specified as the UNTIL field in the previous line in the file used by the previous line. 
Continuation lines may contain an UNTIL field, just as zone lines do, indicating that the next line 
is a further continuation. 

Sun Release 4.0 Last change: 17 November 1987 1807 



ZIC( 8) MAINTENANCE COMMANDS ZIC(8) 

A link line has the form 

Link LINK-FROM LINK-TO 

For example: 

Link US/Eastern ESTSEDT 

The LINK-FROM field should appear as the NAME field in some zone line; the LINK-TO field is used as an 
alternate name for that zone. 

Except for continuation lines, lines may appear in any order in the input 

OPTIONS 

FILES 

-v Complain if a year that appears in a data file is outside the range of years representable by system 
time values (0:00:00 AM GMT, January l, 1970, to 3:14:07 AM GMT, January 19, 2038). 

-d directory 
Create time conversion information files in the directory directory rather than in the standard 
directory /usr/share/Iib/zoneinfo. 

-I timezone 
Use the time zone timezone as local time. zic will act as if the file contained a link line of the form 

Link timezone localtime 

/usr/share/Iib/zoneinfo standard directory used for created files 

SEE ALSO 

NOTE 

1808 

time(l V), ctime(3), tzfile(5), zdump(8) 

For areas with more than two types of local time, you may need to use local standard time in the AT field of 
the earliest transition time's rule to ensure that the earliest transition time recorded in the compiled file is 
correct. 

Last change: 17 November 1987 Sun Release 4.0 



Index 

Special Characters 

history substitution- csh, 98 
logical negation operator - c sh, 101 

! mail command, 296 
! = - not equal to operator - csh, 101 
! - globbing pattern mismatch operator - c sh, 101 
# mail command, 296 
# ! invoke shell to process script, 103 
$ - variable substitution, 100 
$# -word count for variable, 100 
$ $ - process number of shell, 101 
$< -read value from terminal- csh, 101 
$? -variable set inquiry- csh, 101 
% 

& 

job control, reference to currentjob- csh, 103 
job to foreground/background - c sh, 108 
modular division operator- csh, 101 

bitwise AND operator - c sh, 101 
run command in background, 97 

&& 
execute on success- csh, 97 
logical AND operator- csh, 101 

' quote character, 97 
( ) 

* 

command grouping - csh, 97 
group operators - csh, 101 

filename wild card, zero or more of any characters, 101 
integer multiplication operator- csh, 101 

+ -integer addition operator- csh, 101 
- -integer subtraction operator- csh, 101 
-d C shell file inquiry-directory, 102 
-e C shell file inquiry- file exists, 102 
-f C shell file inquiry-plain file, 102 
-o C shell file inquiry- ownership, 102 
-r C shell file inquiry - read accessible, 102 
-w C shell file inquiry - write accessible, 102 
-x C shell file inquiry - execute accessible, 102 
-z C shell file inquiry- zero length, 102 
• (dot) command, 457 
I - integer division operator- csh, 101 
: command, 104, 457 
: modifiers - history substitution- csh, 98 
; - command separation, 97 

- 1809-

< 

<< 

less than operator - c sh, 101 
redirect standard input, 99 

bitwise shift left- csh, 101 
parse and pass input to command, 99 

<= - less than or equal to operator- csh, 101 
= mail command, 296 

> 

-is equal to operator- csh, 101 
-globbing pattern match operator- csh, 101 

greater than operator - c sh, 101 
redirect standard output, 99 

>& -redirect standard output and standard error- csh, 99 
>= - greater than or equal to operator- csh, 101 
>> 

append standard output, 99 
bitwise shift right- c sh, 101 

> >& -- append standard output and standard error - c sh, 99 
? -file.name wild card, any single characters, 101 
? mail command, 296 
@ -arithmetic on variables- csh, 109 
[ J - filename substitution, any character in list or range, 101 
" quote character, 97 
\ escape character, 97 
\ ! * - alias substitution, include command-line arguments -

csh, 99 

bitwise XOR operator- csh, 101 
quick substitution - csh, 99 

_ toupper - convert character to uo1oer-case::Sv'sl:ern 
' - command substitution, 101 

} - filename substitution, suc:ce:s$i1f(f!~tl'ing~Un<¢p((;Jc1s~ci 
101,102 

bitwise OR operator -
pipe standard output, 97 

I mail command, 298 
I & -pipe standard output and sta1r1datdJ~ttt.ir:i4i~sli;JJ 

II 
execute on failure - csh, 97 
logical OR operator - csh, 101 

filename substitution, home directory, 101 
one's complement operator- csh, 101 

- ! - mail tilde escape, 294 



Index - Continued 

- mail tilde escape, 294 
-· - mail tilde escape, 294 
-< - mail tilde escape, 295 
-? - mail tilde escape, 294 

- mail tilde escape, 294 
-I - mail tilde escape, 295 
-A - mail tilde escape, 294 
-b - mail tilde escape, 295 
-c - mail tilde escape, 295 
-d - mail tilde escape, 295 
-e - mail tilde escape, 295 
-f - mail tilde escape, 295 
-h - mail tilde escape, 295 
-i - mail tilde escape, 295 
-m - mail tilde escape, 295 
-p - mail tilde escape, 295 
-q - mail tilde escape, 295 
-r - mail tilde escape, 295 
-s - mail tilde escape, 295 
-t - mail tilde escape, 295 
-v - mail tilde escape, 295 
-w - mail tilde escape, 295 
-x - mail tilde escape, 295 

1 
1/2-inch tape drive 

tm-tapemaster, 1318 
xt -Xylogics 472, 1331 

1/4-inch tape drive 
ar -Archive 1/4-inch Streaming Tape Drive, 1193 
st - Sysgen SC 4000 (Archive) Tape Drive, 1292 thru 1293 

10 Mb/s 3Com Ethernet interface - ec, 1214 
10 Mb/s Sun Ethernet interface- ie, 1224 thru 1225 
10 Mb/s Sun-3/50 Ethernet interface- le, 1254 thru 1255 

3 
3Com 10 Mb/s Ethernet interface- ec, 1214 

4 
450 SMD Disk driver- xy, 1332 thru 1333 
451 SMD Disk driver- xy, 1332 thru 1333 
472 1/2-inch tape drive- xt, 1331 

7 
7053 SMD Disk driver - xd, 1329 thru 1330 

8 
8530 sec serial communications driver- zs, 1335 thru 1336 

A 
a. out - assembler and link editor output, 1339 
a 6 41 - convert long integer to base-64 Asen, 809 
abort -generate fault, 810 
abort printer- lpc, 1662 
abs - integer absolute value, 811 
absolute value- abs, 811 
ac - login accounting, 1574 
accept - connection on socket, 628 

- 1810-

access, 629 
access times of file, change- utime, 1030 
access times of file, change - utimes, 787 
accounting, display login record- ac, 1574 

process accounting, display record - sa, 1755 
process accounting, on or off - accton, 1755 
process accounting, tum on or off - acct, 630 

accounting file - acct, 1365 
acct 

acct - execution accounting file, 1365 
acct -process accounting on or off, 630 

accton - processing accounting on or off, 1755 
acos -trigonometric arccosine, 1106 
acosh -inverse hyperbolic function, 1088 
Adaptec ST-506 disk driver- sd, 1289 thru 1290 
adb - debugger, 13 
adb scripts - adbgen, 1575 
adbgen - generate adb script, 1575 
add password file entry- putpwent, 951 
add route ioctl - SIOCADDRT, 1288 
addbib- create bibliography, 18 
addexportent () function, 845 
additional paging/swapping devices, specify- swapon, 1771 
addmntent - get filesystem descriptor file entry, 872 
address resolution display and control- arp, 1579 
adduser-add new user account, 1577 
adjacentscreens,20 
adjtime -adjust time, 631 
admin - administer SCCS, 21 
adventure - exploration game, 1495 
advise paging system- vadvise, 788 
agt _create() function, 1056 
agt_enumerate () function, 1056 
agt_trap () function, 1056 
a int - aint of, 1102 
alarm- schedule signal, 812 
alias command, 104 
alias mail command, 296 
alias substitution - in C shell, 99 
aliases - sendmail aliases file, 1367 
align_equals - textedit selection filter, 529 
allnet mail variable, 301 
alloca - allocate on stack, 926 
allocate aligned memory- memalign, 925 
allocate aligned memory- valloc, 926 
allocate memory- calloc, 925 
allocate memory- malloc, 925 
allocate on stack- alloca, 926 
allow messages - mesg, 327 
alpha sort - sort directory, 983 
alter process priority- renice, 1728 
alternates mail command, 296 
alwaysignore mail variable, 301 
anint - anint of, 1102 
ANSI standard terminal emulation, 1204 thru 1208 
ANSI terminal emulation - console, 1204 thru 1209 
append mail variable, 301 
a r - library maintenance, 24 



ar-Archive 1/4-inch Streaming Tape Drive, 1193 
ar - archive file format, 1370 
arc -plot arc, 941 
arch - display Sun architecture, 26 
archive 

a r - library maintenance, 24 
cpio - copy archive, 87 

archive file format- ar, 1370 
archive tapes 

tar, 37,509 
argument list processing - in C shell, 96 
argument lists, varying length- varargs, 1032 
argv variable, 109 
arithmetic -drill in number facts, 1496 
arp - address resolution display and control, 1579 
arp ioctl 

SIOCDARP -delete arp entry, 1194 
SIOCGARP - get arp entry, 1194 
SIOCSARP-set arp entry, 1194 

arp -Address Resolution Protocol, 1194 thru 1195 
as - assembler, 27 
ASCII 

string to long integer- strtol, 1008 
to integer- atoi, 1008 
to long- atol, 1008 

ASCII dump file - od, 348 
ascii -ASCII character set, 1548 
ASCII string to double- strtod, 1007 
ASCII to Ethernet address- ether_aton, 841 
ASCII to float - atof, 1007 
asctime-date and time conversion, 824 
asctime-date and time conversion, System V, 1132 
as in - trigonometric arcsine, 1106 
asinh- inverse hyperbolic function, 1088 
askcc mail variable, 301 
asksub mail variable, 301 
assembler output - a. out, 1339 
assert -program verification, 813 
assert -program verification, System V, 1131 
assign buffering to stream 

setbuf - assign buffering, 987 
setbuf - assign buffering, System V, 1175 
setbuffer- assign buffering, 987 
setbuffer-assign buffering, System V, 1175 
setlinebuf - assign buffering, 987 
setlinebuf- assign buffering, System V, 1175 
set vbuf - assign buffering, 987 
set vbuf - assign buffering, System V, 1175 

assign to memory characters - memset, 928 
async_daemon,718 
at - do job at specified time, 29 
atan - trigonometric arctangent, 1106 
atan2 - trigonometric arctangent, 1106 
atanh - inverse hyperbolic function, 1088 
atof - ASCII to float, 1007 
atoi - ASCII to integer, 1008 
atol -ASCII to long, 1008 
atq -display delayed execution queue, 31 
atrm- remove delayed execution jobs, 32 
attributes of file f stat, 774 

- 1811-

attributes of file lstat, 774 
attributes of file stat, 774 
audit - maintain audit trail, 1580 
audit - audit trail file, 1372, 1374, 1376 
audit() function, 632 
audit_args () function, 814 
audit_text () function, 814 
audit_warn command, 1581 
auditddaemon, 1582 
auditon () function, 633 
auditsvc () function, 634 
auto.home, 1344 
auto.vol, 1345 

Index - Conlinued 

autoboot procedures- boot, 1586, 1650, 1727 
automatic network install, 1115 
automount command, 1583 
autoprint mail variable, 301 
awk- scan and process patterns, 33 

B 
backgammon - backgammon game, 1497 
backquote substitution, 101 
backspace magnetic tape files - mt, 333 
backspace magnetic tape records - mt, 333 
backup dumps - dump, 1612 
bang mail variable, 301 
banner - make posters, 36 
banner-large banner, 1499 
bar command, 37 
bar - tape archive file format, 1346 
basename - deliver portions of path names, 42 
bat tlestar game, 1500 
be - calculator language, 43 
bed - convert to antique media, 1502 
bcmp- compare byte strings, 819 
bcopy-copy byte strings, 819 
Bessel functions 

jO, 1084 
jl, 1084 
jn, 1084 
yO, 1084 
yl, 1084 
yn, 1084 

bg command, 104 
bibliography 

addbib-create or extend, 18 
indxbib - make inverted index, 235 
lookbib-find bibliographic references, 276 
refer -insert literature references, 415 
roffbib-print literature references, 422 
sortbib - sort bibliographic database, 473 

biff- mail notifier, 45 
binary file transmission 

uudecode - decode binary file, 570 
uuencode - encode binary file, 570 

binary 1/0, buffered 
fread-read from stream, 855 
frwite-write to stream, 855 

binary search of sorted table- bsearch, 816 



Index - Continued 

binary tree routines, 1021 
bind, 636 
bindresvport () function, 815 
binmail -version 7 mail, 46 
biod daemon, 1703 
bit string functions - ff s, 819 
bj game, 1503 
bk - machine-machine communication line discipline, 1196 
bk ioctl's 

TIOCGETD-get line discipline, 1196 
TI OCSETD - set line discipline, 1196 

block signals, 763 
block size for tape - 512 bytes, 1612 
blocked signals, release - sigpause, 764 
blocks, count, in file - sum, 486 
boggle- boggle game, 1504 
boggletool -SunView game of boggle, 1505 
boot - system startup procedures, 1586, 1650 
boot parameter database- bootparams, 1377 
bootparam protocol- bootparam, 1108 
bootparamd daemon, 1589 
boot pa rams - boot parameter database, 1377 
bootstrap procedures- boot, 1586, 1650, 1727 
bootstrap PROM monitor program, 1679 
both real and effective group ID, set- setgid, 991 
both real and effective group ID, set, System V - setg id, 1179 
both real and effective user ID, set- setuid, 991 
both real and effective user ID, set, System V - setuid, 1179 
bouncedemo - bouncing square graphics demo, 1521 
Bourne shell, sh, 452 thru 460 
Bourne shell commands, 457 

. command, 457 
: command, 457 
break command, 457 
case command, 453 
cd command, 458 
continue command, 458 
do command, 453 
done commmand, 453 
echo command, 458 
elif command, 453 
else command, 453 
esac command, 453 
eval command, 458 
exec command, 458 
exit command, 458 
export command, 458 
f i command, 453 
for command, 453 
hash command, 458 
if command, 453 
login command, 458 
newgrp command, 458 
pwd command, 458 
read command, 458 
readonly command, 459 
return command, 459 
set command, 459 
shift command, 459 
test command, 459 
then command, 453 

-1812-

Bourne shell commands, continued 
times command, 459 
trap command, 459 
type command, 459 
umask command, 459 
unset command, 459 
until command, 453 
wait command, 459 
while command, 453 

Bourne shell functions, 453 
Bourne shell variables, 454 thru 455 

CDPATH variable, 454 
HOME variable, 454 
IFS variable, 455 
MAIL variable, 454 
MAILCHECK variable, 454 
MAILPATH variable, 454 
PATH variable, 454 
PS1 variable, 454 
PS2 variable, 454 
SHELL variable, 455 

branch, C shell control flow, 102 
break command, 104,457 
breaksw command, 104 
brk - set data segment break, 638 
broadcast messages to all users on network - rw all, 431 
bsearch - binary search of a sorted table, 816 
buffered binary 1/0 

f read - read from stream, 855 
frwite-write to stream, 855 

buffered 1/0 library functions, introduction to, 999, 1183 
buffering 

assign to stream- setbuf, 987 
assign to stream, System V - setbuf, 1175 
assign to stream- setbuffer, 987 
assign to stream, System V- setbuffer, 1175 
assign to stream- setlinebuf, 987 
assign to stream, System V - setlinebuf, 1175 
assign to stream- setvbuf, 987 
assign to stream, System V - setvbuf, 1175 

build 
programs - make, 355 
random library- ranlib, 406 
system configuration files - config, 1600 
Yellow Pages database- ypinit, 1793 

build programs - make, 311 thru 324 
bwone - Sun-1 black and white frame buffer, 1197 
bwtwo -Sun-3/Sun-2 black and white frame buffer, 1198 
byte order, functions to convert between host and network, 820 
byte string functions 

bcmp, 819 
bcopy, 819 
bzero, 819 

bzero - zero byte strings, 819 

C 
C compiler, 52 
C library functions, introduction to, 797 
C programming language 

cf low - code flow graph, 60 
cpp-C preprocessor, 89 



C programming language, continued 
eta gs - create tags file, 115 
cxref-cross reference C program, 123 
indent -format C source, 231 
lint -C program verifier, 261 
mks tr - create C error messages, 329 
tcov-code coverage tool, 516 
vgrind- make formatted listings, 580 
xstr-extract strings from C code, 605 

C shell 
alias substitution, 99 
and Bourne shell scripts, 103 
argument list processing, 96 
arguments list - argv variable, 109 
branch, 102 
command execution, 103 
command inquiry, 102 
command substitution, 101 
commands, 104 thru 109 
conditional execution- & &, 97 
conditional execution - I I , 97 
. cshrc file, 96 
escape character, quotes and comments, 97 
expressions, 101 
file inquries, 102 
filename completion, 97 
filename substitution, 101 
history substitution, 98 
1/0 redirection, 99 
job control, 103 
lexical structure, 97 
. login file, 96. 
. logout file, 96 
loop, 102 
operators, 101 
parentheses - command grouping, 97 
pipeline, 97 
quick substitution, 99 
signal handling, 103 
variable substitution, 100 

C shell commands 
% -job to foreground/background, 108 
: -null command, 104 
@ - arithmetic on variables, 109 
a 1 i as - shell macros, 104 
bg - job to background, 104 
break-exitloop, 104 
breaksw - exit switch, 104 
case - selector in switch, 104 
cd- change directory, 104 
chdir - change directory, 104 
continue -cycle loop, 104 
default -catchall in switch, 104 
dirs -print directory stack, 104 
echo - echo arguments, 104 
else - alternative commands, 105 
end - end loop, 105 
endif-end conditional, 105 
endsw - end switch, 108 
eval - re-evaluate shell data, 104 
exec - execute command, 104 
exit - exit shell, 105 
f g - job to foreground, 105 
foreach- loop on list of names, 105 

-1813-

C shell commands, continued 
glob - filename expand wordlist, 105 
goto - command transfer, 105 

Index - C onJ inued 

hashstat -display hashing statistics, 105 
history-display history list, 105 
if - conditional statement, 105 
jobs - display job list, 105 
kill -kill jobs and processes, 106 
limit - alter resource limitations, 106 
login -login new user, 106 
logout -end session, 106 
nice - run low priority process, 106 
nohup- run command immune to hangups, 106 
notify - request immediate notification, 106 
onintr- handle interrupts in scripts, 106 
popd - pop shell directory stack, 107 
pushd-push shell directory stack, 107 
rehash - recompute command hash table, 107 
repeat - execute command repeatedly, 107 
set - change value of shell variable, 107 
s_etenv - set or display variables in environment, 107 
shift - shift argument list, 107 
source -read commands from file, 107 
stop - halt job or process, 107 
suspend-suspend shell, 107 
switch - multi-way branch, 108 
time - time command, 108 
umask - change/display file creation mask, 108 
unalias -remove aliases, 108 
unhash - discard hash table, 108 
unl imi t - remove resource limitations, 108 
unset -discard shell vari~bles, 108 
unsetenv - remove environment variables, 108 
wait - wait for background process, 108 

C shell metacharacters, 97 
C shell variables, 109 thru 111 

argv, 109 
cdpath, 109 
cwd, 109 
echo, 109 
f ignore, 109 
filec, 109 
hardpaths, 109 
histchars, 109 
history, 109 
home, 109 
ignoreeof, 109 
mail, 109 
nobeep, 109 
noclobber, 109 
noglob, 110 
nonomatch, 110 
notify, 110 
path, 110 
prompt, 110 
savehist, 110 
shell, 110 
status, 110 
time, 110 
verbose, 110 

C2conv - convert to C2 security, 1590 
cal - display calendar, 48 
calculator, 137 



Index - Continued 

calendar-reminder service, 49 
call-graph, display profile data- gprof, 214 
calloc-allocate memory, 925 
canf ield - solitaire card game, 1507 
canvas_ demo - canvas subwindow demo, 1542 
capitalize - textedi t selection filter, 529 
captoinfo command, 1591 
case command, 104,453 
cat - concatenate files, 50 
Cl Arr interpreter - pt i, 363 
ca tman - create cat files for manual pages, 1593 
cb-format filter for C source files, 51 
cbrt -cube root function, 1105 
cc - C compiler, 52 
ccat -extract files compressed with compact, 350 
cd - change directory, 57 
cd command, 104, 458 
cd mail command, 296 
cdc - change delta commentary, 58 
cdpath variable, 109,454 
ceil -ceiling of, 1102 
cf low - generate C flow graph, 60 
cf ree - free memory, 925 
cgf our - Sun-3 color memory frame buffer, 1199 
cgone-Sun-1 color graphics interface, 1200 
cgthree - Sun386i color memory frame buffer, 1201 
cgtwo - Sun-3/Sun-2 color graphics interface, 1202 
change 

audit characteristics, 1580 
current working directory, 639 
data segment size- sbrk, 638 
delta commentary, 58 
directory, 57 
file access times - utime, 1030 
file access times - utimes, 787 
file mode - chmod, 640 
file name - rename, 741 
group ID of user - newgrp, 335 
group ownership of file - chgrp, 63 
login password - pas swd, 379 
login password in Yellow Pages- yppasswd, 611 
mode of file, 65 
name of file or directory - mv, 334 
owner and group of file - chown, 642 
owner of file - chown, 1595 
permissions of file, 65 
priority of command - nice, 336 
process priority- renice, 1728 
root directory - chroot, 644 
working directory, 57 

change mapping protections - mprotect, 709 
change translation table entry ioctl - KIOCSETKEY, 1235 
character 

get from stdio- getchar, 861 
get from stdio, System V - get char, 1162 
get from stream- fgetc, 861 
get from stream, System V - fgetc, 1162 
get from stream - getc, 861 
get from stream, System V - get c, 1162 
push back to stream- ungetc, 1028 
put to stdio- putchar, 949 

-1814-

character, continued 
put to stream- fputc, 949 
put to stream - putc, 949 

character classification 
isalnum, 826 
isalpha, 826 
isascii, 826 
iscntrl, 826 
i sdig it, 826 
isgraph, 826 
islower, 826 
i sprint, 826 
i spun ct, 826 
isspace, 826 
i supper, 826 
isxdigit, 826 

character classification, System V 
isalnum, 1134 
isalpha, 1134 
isascii, 1134 
iscntrl, 1134 
isdigit, 1134 
isgraph, 1134 
islower, 1134 
isprint, 1134 
ispunct, 1134 
isspace, 1134 
isupper, 1134 
isxdigit, 1134 

character conversion 
toascii, 826 
tolower, 826 
toupper, 826 

character conversion, System V 
tolower, 1134 = toupper, 1134 

toascii, 1134 
tolower, 1134 
toupper, 1134 

character translation- tr, 544 
characters for equations - eqnchar, 1550 
characters in file, count- we, 591 
chase - escape killer robots, 1508 
chdir, 639 
chdir command, 104 
chdir mail command, 296 
check buffer state ioctl- GPlIO_GET_GBUFFER_STATE, 

1221 
check directory- dcheck, 1608 
check file system- fsck, 1629 
CHECK () function, 1068 
check heap- malloc_verify, 926 
check quota consistency- quota check, 1721 
check spelling - spell, 474 
checkeq - check eqn constructs, 173 
checknr - check nroff/troff files, 62 
chess - chess game, 1509 
chesstool-SunView chess game, 1510 
chgrp - change group ID of file, 63 
ching - book of changes, 1511 
chkey command, 64 



chmod- change mode, 65, 640 
chown, 642 
chown - change owner of file, 1595 
ch root - change root directory, 644, 1596 
circle -plot circle, 941 
clean print queue - lpc, 1662 
clean UUCP spool area - uuclean, 1789 
clear-clear screen, 67 
clear inode- clri, 1598 
clear_ colormap- make console text visible, 68 
clear_ functions - reset Sun View selection service, 69 
clearerr - clear error on stream, 849 
clearerr -clear error on stream, System V, 1159 
click-control keyboard click, 70 
client command, 1597 
clock-display time in window, 71,821 
clone, STREAMS device driver, 1203 
close, 646 
close database- close, 830 
close directory stream- closedir, 834 
close-close database, 830 
close stream- fclose, 847 
closedir - close directory stream, 834 
closelog - close system log file, 1011 
closepl-close plot device, 941 
clri -clear inode, 1598 
cluster command, 72 
cmd mail variable, 301 
cmdtool- shell or program with Sun View text facility, 73 
crop-compare files, 76 
code coverage tool- tcov, 516 
code flow graph - cf low, 60 
code formatter 

cb - C source format filter, 51 
vgrind- troff preprocessor for listings, 580 
indent -format C source, 231 

COFF, Sun386i executable file format, 1348 
co 1 - filter reverse paper motions, 77 
colcrt - document previewer, 78 
color graphics interface 

cgfour-Sun-3 color memory frame buffer, 1199 
cgone -Sun-1 color graphics interface, 1200 
cgthree-Sun386i color memory frame buffer, 1201 
cgtwo -Sun-3/Sun-2 color graphics interface, 1202 

coloredi t - edit icons, 79 
col rm- remove columns from file, 80 
columns 

print in multiple- pr, 388 
remove from file, 80, 121 

comb-combine deltas, 81 
combine SCCS deltas, 81 
comm - display common lines, 82 
command 

change priority of - nice, 336 
describe- whatis, 593 
execution in C shell, 103 
grouping in the C shell - ) , 97 
inquiry, in C shell, 102 
locate - wherei s, 594 

-1815-

Index - Conlinued 

command, continued 
process options in scripts - getopt, 209 
return stream to remote - rcmd, 958 
return stream to remote - rexec, 967 
run immune to hangup - nohup, 342 
substitution, 101 

commands 
Bourne shell, 453, 457, 460 
comm - display common lines, 82 
help viewer-get help viewer, 225 
logi~tool -graphic login interface, 1661 
organizer, 374 

commands, introduction, 3 
communications 

cu - connect to remote system, 533 
enroll-enroll for secret mail, 604 
mai 1 - send and receive mail, 293 thru 304 
mesg - permit or deny messages, 327 
talk - talk to another user, 508 
telnet - TELNET interface, 518 
tip - connect to remote system, 533 
uuclean -clean UUCP spool area, 1789 
uucp- system to system copy, 568 
uudecode-decode binary file, 570 
uuencode-encode binary file, 570 
uulog - UUCP log, 568 
uuname - UUCP list of names, 568 
uusend- send file to remote host, 571 
uux - system to system command execution, 574 
write -write to another user, 600 
xget - receive secret mail, 604 
xsend - send secret mail, 604 

compact - compress files, 350 
compare 

byte strings- bcmp, 819 
files, 76 
files differentially, 150 
files side-by-side, 445 
memory characters - memcmp, 928 
strings - strcmp, 1001 
strings- strncmp, 1001 
three-way differential- diff3, 152 
versions of SCCS file - sccsdiff, 438 

compile regular expression - re_ comp, 961 
compiler generator, 351 
compiler generators 

lex -lexical analyzer generator, 258 
yacc -parser generator, 607 

compiler preprocessors 
cpp - C preprocessor, 89 

compilers 
cc - C compiler, 52 
rpcgen - generate RPC protocols, C header files, 424 

compress - compress files, 83 
comsat - biff server, 1599 
concatenate files - cat, 50 
concatenate strings 

strcat, 1001 
strncat, 1001 

config- build system configuration files, 1600 
configuration file, system log daemon- syslogd, 1439 
configuration files, build- config, 1600 



Index - Continued 

configure network interface parameters - ifconfig, 1642 
connect, 647 
connect to remote system 

cu, 533 
tip, 533 

connected peer, get name of, 679 
connection 

accept on socket - accept, 628 
listen for on socket - list en, 697 

console - console driver/terminal emulator, 1204 thru 1209 
console 1/0 ioctl, TIOCCONS, 1204 
cont - continue line, 941 
continue command, 104,458 
control devices - ioctl, 692 
control flow - in C shell, 102 
control line printer- lpc, 1662 thru 1663 
control magnetic tape - mt, 333 
control resource consumption- vlimit, 1034 
control system log 

close system log- closelog, 1011 
set log priority mask- setlogmask, 1011 
start system log- openlog, 1011 
write to system log- syslog, 1011 

control terminal, hangup - vhangup, 790 
conv mail variable, 301 
convert 

functions to between host and network byte order, 820 
host to network long- htonl, 820 
host to network short- htons, 820 
network to host long - ntohl, 820 
network to host short- ntohs, 820 
spaces to tabs unexpand, 179 
tabs to spaces expand, 179 

convert 8-bitrasterfile to 1-bitrasterfile- rasfilter8tol, 
407 

convert and copy files, 139 
convert base-64 ASCII to long integer- 164a, 809 
convert character 

to ASCII - toascii, 826 
to ASCII, System V - toascii, 1134 
to lower-case - tolower, 826 
to lower-case, System V - tolower, 1134 
to lower-case, System V - tolower, 1134 
to upper-case - toupper, 826 
to upper-case, System V - _ toupper, 1134 
to upper-case, System V - toupper, 1134 

convert foreign font files - vswap, 585 
convert long integer to base-64 ASCII - 16 4 a, 809 
convert numbers to strings 

econvert, 838 
f convert, 838 
fprintf, 944 
gconvert, 838 
print£, 944 
seconvert, 838 
sf convert, 838 
sgconvert, 838 
sprint£, 944 

convert numbers to strings, System V 
sprint£, 1168 

convert strings to numbers 

-1816-

convert strings to numbers, conlinued 
atof, 1007 
atoi, 1008 
atol, 1008 
sscanf, 984 
strtod, 1007 
strtol, 1008 

convert strings to numbers, System V 
sscanf, 1172 

convert time and date 
asctime, 824 
ctime, 824 
dysize, 824 
gmtime, 824 
local time, 824 
timegm, 824 
timelocal, 824 
tzset, 824 
tzsetwall, 825 

convert time and date, System V 
asctime, 1132 
ctime, 1132 
gmtime, 1132 
local time, 1132 
timegm, 1132 
timelocal, 1132 
tzset, 1132 
tzsetwall, 1133 

convert units- units, 562 
copy 

archives, 87 
byte strings- bcopy, 819 
files, 85 
files from remote machine - rep, 409 
memory character fields - memcpy, 928 
memory character strings- memccpy, 928 
standard output to many files - tee, 517 
strings - strcpy, 1001 
strings - strncpy, 1001 

copy mail command, 296 
Copy mail command, 297 
copysign () function, 1093 
core - memory image file format, 1378 
core image, get of process - gcore, 202 
cos - trigonometric cosine, 1106 
cosh - hyperbolic cosine, 1088 
count blocks in file - sum, 486 
count lines, words, characters in file- we, 591 
cp - copy files, 85 
cpio - copy archives, 87 
cpio-cpio archive format, 1380 
cpp - C preprocessor, 89 
CPU PROM monitor program, 1679 
craps game, 1512 
crash -crash information, 1604 
creat, 649 
create 

bibliography- addbib, 18 
cat files for manual pages - catman, 1593 
delta - de! ta, 144 
directory - mkdir, 328 



create, continued 
error log- dmesg, 1611 
fifo - mknod, 1674 
file- open, 719 
file system- mkfs, 1673 
font width table - vwidth, 587 
hash table- hcreate, 891 
interprocess communication channel- pipe, 722 
interprocess communication endpoint- socket, 771 
mail aliases database - newaliases, 1699 
name for temporary file - tmpnam, 1020 
named pipe- mknod, 1674 
new file system - newf s, 1700 
pair of connected sockets - socket pair, 773 
permuted index - ptx, 403 
prototype file system - mkproto, 1675 
random library - ran lib, 406 
SCCS data bases, 21 
secs delta- delta, 144 
script of terminal session- script, 444 
special file, 702 
special file- mknod, 1674 
symbolic link - symlink, 779 
system configuration files - conf ig, 1600 
system log entry- logger, 271 
system log entry- sys log, 368 
tags file, 115 
unique file name - mktemp, 929 
Yellow Pages database - ypini t, 1793 
Yellow Pages dbm file - makedbm, 1667 

create directory, 700 
create new process, 661 
er ibbage - cribbage card game, 1514 
cron - clock daemon, 1606 
crontab command, 94 
crontab-periodic jobs table, 1381 
cross reference C program - ex ref, 123 
crt mail variable, 301 
crypt - encrypt, 95 
crypt - encryption, 822 
c sh, C shell, 96 
. cshrc file, 96 
csplit - split file into sections, 113 
ctags - create tags file, 115 
ctermid-generate filename for terminal, 823 
ct ime - date and time conversion, 824 
ctime -date and time conversion, System V, 1132 
ct race - display program trace, 117 
cu - connect to remote system, 533 
current directory 

change,639 
get pathname - get wd, 890 

current domain, set or display name - domainname, 157 
current host, get identifier of- gethostid, 672 
current working directory- getcwd, 862 
curses functions, System V, 1140 
curses library routines, 827 
cursor_demo-cursor attributes demo, 1542 
curve fitting, spline, 476 
cu se rid - get user name, 829 
cut -remove columns from file, 121 

- 1817 -

cv broadcast () function, 1058 
cv-create() function, 1058 
cv-destroy () function, 1058 
cv - enumerate () function, 1058 
cv-notify() function, 1058 
cv - send () function, 1058 
cv-wait() function, 1058 
cv=:waiters () function, 1058 
cwd variable, 109 
cxref - cross reference C program, 123 

D 
daemons 

biod daemon, 1703 
network file system, 718 
nf sd daemon, 1703 
rquotad - remote quota server, 1747 
sprayd- spray server, 1767 

DARPA 
Internet directory service - whoi s, 599 

Index - Continued 

Internet file transfer protocol server- ftpd, 1632 
DARPA Time server- timed, 1781 
to RPC mapper- portmap, 1712 

DARPA Trivial name server- tnamed, 1782 
Data Encryption Standard- des, 147 
data segment size, change- sbrk, 638 
data types - types, 1480 
database functions - dbm 

close, 830 
dbminit, 830 
delete, 830 
fetch, 830 
firstkey, 830 
nextkey, 830 
store, 830 

database functions - ndbm 
dbm clearerr, 934 
dbm-close, 934 
dbm-delete, 934 
dbm - err, 934 
dbm - error, 934 
dbm - fetch, 934 
dbmfirstkey, 934 
dbm - next key, 934 
dbm - open, 934 
dbm=store, 934 

database library 
-ldbm option to cc, 830 
ndbm, 934 

database operator- join, 245 
datafile 

help - get help, 1353, 1355 
date and time 

get- time, 1016 
get- gettimeofday,689 
get- £time, 1016 
set- settimeofday, 689 

date and time conversion 
asctime, 824 
ctime, 824 
dysize, 824 



Index - Continued 

date and time conversion, continued 
gmtime, 824 
local time, 824 
timegm, 824 
timelocal, 824 
tzset, 824 
tzsetwall, 825 

date and time conversion, System V 
asctime, 1132 
ctime, 1132 
gmtime, 1132 
local time, 1132 
t imegm, 1132 
timelocal, 1132 
tzset, 1132 
tzsetwall, 1133 

date and time display- fdate, 848 
date - date and time, 124 
dbm_ clearerr- clear ndbm database error condition, 934 
dbm _ close - close ndbm routine, 934 
dbm _ delete - remove data from ndbm database, 934 
dbm _err - ndbm database routine, 934 
dbm _ error - return ndbm database error condition, 934 
dbm _fetch - fetch ndbm database data, 934 
dbm_firstkey- access ndbmdatabase, 934 
dbm _ next key - access ndbm database, 934 
dbm _ open - open ndbm database, 934 
dbm_ store - add data to ndbm database, 934 
dbmini t - open database, 830 
dbx - source debugger, 126 
dbxtool - debugger, 135 
de - desk calculator, 137 
dcheck - directory consistency check, 1608 
dd- convert and copy, 139 
DEAD mail variable, 301 
debug mail variable, 301 
debug network - ping, 1709 
debug tools 

adb-debugger, 13 
adbgen - generate adb script, 1575 
ctr ace - display program trace, 117 
dbx - source debugger, 126 
dbxtool - debugger, 135 
kadb - kernel debugger, 1653 

debugging memory management 
malloc debug- set debug level, 926 
malloc = verify-verify heap, 926 

debugging support- assert, 813 
debugging support, System V - assert, 1131 
decimal dump file - od, 348 
decimal record from double-precision floating -

double_to_decimal,850 
decimal record from single-precision floating -

single_to_decimal,850 
decimal record to double-precision floating -

decimal_to_double,832 
decimal record to extended-precision floating

decimal_ to_extended, 832 
decimal record to extended-precision floating

extended _to_ decimal, 850 

- 1818 -

decimal record to single-precision floating -
decimal_to_single,832 

decimal_to_double -decimal record to double-precision 
floating,832 

decimal to extended- decimal record to extended
precision floating, 832 

decimal_to_single -decimal record to single-precision 
floating,832 

decode binary file - uudecode, 570 
decode files 

crypt, 95 
des -Data Encryption Standard, 147 

crypt - decrypt, 95 
default command, 104 
defaults, update kernel from - input_ from_ defaults, 239 
defaults_from_input-update defaults from kernel, 239 
defaultsedit-changing Sun View default settings, 141 
delayed execution 

add job to queue - at, 29 
display queue- atq, 31 
remove jobs from queue - atrm, 32 

delete 
columns from file, 80, 121 
directory - rmdir, 420, 743 
directory entry - unlink, 785 
file - rm, 420 
filename affixes - basename, 42 
m/c address ioctl- SIOCDELMULTI, 1227 
nroff, troff, tbl and eqn constructs- deroff, 

146 
print jobs - lprm, 283 
repeated lines - uniq, 561 

delete arp entry ioctl - SIOCDARP, 1194 
delete datum and key - delete, 830 
delete delayed execution jobs- atrm, 32 
delete descriptor, 646 
delete - delete datum and key, 830 
delete mail command, 297 
delete route ioctl - SIOCDELRT, 1288 
delta 

change commentary, 58 
combine, 81 
make SCCS delta - delta, 144 
remove - rmdel, 421 

demos 
bouncedemo - bouncing square graphics demo, 1521 
canvas demo -canvas subwindow demo, 1542 
cursor - demo - cursor attributes demo, 1542 
f ramedemo - graphics demo, 1521 
graphics demos, 1521 
introduction, 1493 
jumpdemo - graphics demo, 1521 
spheres demo - graphics demo, 1521 
Sun View demos, 1542 

demount file system - umount, 1687 
demount file system - unmount, 786 
deny messages- mesg, 327 
deroff-remove troff constructs, 146 
des -data encryption, 147 
des - DES encryption chip interface, 1210 
DES encryption 



DES encryption, continued 
cbc crypt, 833 
des=setparity, 833 

describe command - what is, 593 
descriptors 

close, 646 
delete, 646 
dup, 651 
dup2, 651 
fcntl, 656 
flock, 660 
getdtablesize, 669 
lock£, 921 
select, 744 

DESIOCBLOCK -process block, 1210 
DESIOCQUICK - process quickly, 1210 
desk calculator, 137 
destroy hash table- hdestroy, 891 
device controls - ioctl, 692 
devices 

paging, specify- swapon, 1771 
swapping, specify- swapon, 1771 

devices, introduction to, 1189 
devnm command, 1609 
df - display free space, 149 
diagnostics 

1/0 error mapping page, 4 79 
diagnostics - sysdiag, 1772 
diff -differential compare, 150 
diff3-three-way differential compare, 152 
diffmk -add change marks to documents, 154 
dir-directory format, 1383 
di rcmp - compare directories, 155 
directory 

change current, 639 
change name of - mv, 334 
change root - chroot, 644 
change working, 57 
check consistency- dcheck, 1608 
delete- rmdir, 420 
delete- rmdir, 743 
differential compare, 150 
display name of working - pwd, 404 
erase - rmdir, 743 
getentries,664,666 
list contents of - 1 s, 285 
make - mkdir, 328, 329, 700 
make link to - ln, 265 
move - mv, 334 
remove - rmdi r, 420 
remove- rmdir, 743 
rename- mv, 334 
scan, 983 

directory operations 
closedir, 834 
opendir, 834 
readdir, 834 
rewinddir, 834 
seekdir, 834 
telldir, 834 

dirs command, 104 
dis command, 156 

- 1819 -

disable print queue- !pc, 1662 
discard mail command, 297 
disk 

control operations - dkio, 1211 
diagnostics- sysdiag, 1772 
dkinfo - geometry information, 1610 

disk driver 
sd-Adaptec ST-506, 1289 thru 1290 
fd-Sun floppy, 1218 
si -Sun SCSI, 1289 thru 1290 

Index - C onJ inued 

xd -Xylogics, 1329 thru 1330, 1332 thru 1333 
disk quotas 

edquota - edit user quotas, 1616 
quota check - check quota consistency, 1721 
quota off - tum file system quotas off, 1722 
quotaon - tum file system quotas on, 1722 
repquota - summarize quotas, 1729 
rquotad- remote quota server, 1747 

disk quotas- quotactl, 732 
display 

architecture of current Sun host, 26 
call-graph profile data- gprof, 214 
current domain name - domainname, 157 
current host identifier, 226 
current host name, 227 
date, 124 
date and time, 124 
delayed execution queue- atq, 31 
disk usage, 162 
disk usage and limits - quota, 405 
dynamic dependencies- ldd, 256 
effective user name - whoami, 598 
file by screenfuls- more, 330 
file names - ls, 285 
file system quotas - repquota, 1729 
first lines of file, 223 
free space in file system, 149 
group membership, 222 
identifier of current host, 226 
last commands - last comm, 249 
last part offile - tail, 507 
login name - logname, 274 
name list of object file or library - nm, 339 
name of current host, 227 
page size - pagesize, 378 
printer queue - lpq, 278 
process status - ps, 399 
processor of current Sun host, 291 
program profile - prof, 392 
program trace - ct race, 117 
secs file editing status - sact, 433 
selected lines from file - s ed, 446 
status of network hosts - rup, 428 
system up time - uptime, 566 
time and date, 124 
time in window, 71 
user and group IDs - id, 230 
users on system- users, 567 
waiting mail - prmail, 362 
working directory name - pwd, 404 

display editor- vi, 582 
display status of local hosts - ruptime, 429 
dkinfo -disk geometry information, 1610 



Index - Continued 

dkio -disk control operations, 1211 
DKIOCGGEOM - get disk geometry, 1211 
DKIOCGPART - get disk partition info, 1211 
DKIOCINFO- get disk info, 1211 
DKIOCSGEOM- set disk geometry, 1211 
DKIOCSPART- set disk partition info, 1211 
dmesg-create error log, 1611 
dn _ comp - Internet name server routines, 965 
dn _expand-Internet name server routines, 965 
do command, 453 
document production 

addbib- create bibliography, 18 
checknr- check nroff/troff files, 62 
col - filter reverse paper motions, 77 
colcrt command, 78 
deroff -delete troff, tbl and eqn constructs, 146 
diffmk-add change marks, 154 
eqn - set mathematical equations, 173 
eqnchar - special characters for equations, 1550 
fmt -simple formatter, 188 
indxbib - make inverted index, 235 
lookbib- find bibliographic references, 276 
-man-macros to format manual pages, 1560 
-me - macro package, 1563 
-ms - macro package, 1565 
nroff - document formatter, 344 
pti -(old) troff interpreter, 363 
ptx - generate permuted index, 403 
refer-insert literature references, 415 
rof fbib-print bibliographic database, 422 
soelim- eliminate .so's from nroff input, 469 
sortbib- sort bibliographic database, 473 
spell - check spelling, 474 
tbl - table formatter, 513 
troff- typeset documents, 548 
vfontinfo -examine font files, 579 
vtroff - format document for raster printer, 586 
vwidth - make font width table, 587 

DoD Internet host table, get from host - get table, 1635 
domain 

get name of current - getdomainname, 668 
set name of current - setdomainname, 668 

domainname - seUdisplay domain name, 157 
done command, 453 
dos - window for IBM PC/ AT applications, 158 
dos2unix -convert text file from DOS format to SunOS for

mat, 161 
dot mail variable, 301 
double_ to_ decimal - decimal record from double-precision 

floating, 850 
down, take printer - 1 pc, 1662 
dp mail command, 297 
drand4 8 - generate uniformly distributed random numbers, 836 
draw graph, 216 
drum-paging device, 1213 
dt mail command, 297 
du -display disk usage, 162 
dump-dump file system, 1612 
dump - incremental dump format, 1385 
dump frame buffer image - screen dump, 440 
dumpfs -dump file system information, 1615 

- 1820-

dup, 651 
dup2, 651 
duplicate descriptor, 651 
dysize -date and time conversion, 824 

E 
E2BIG error number, 613 
EACCES error number, 614 
EADDRINUSE error number, 616 
EADDRNOTAVAIL error number, 616 
EAFNOSUPPORT error number, 616 
EAGAIN error number, 614 
EALREADY error number, 615 
EBADF error number, 613 
EBADMSG error number, 617 
EBUSY error number, 614 
ec - 3Com 10 Mb/s Ethernet interface, 1214 
ECHILD error number, 614 
echo_command, 104,163,458 
echo mail command, 297 
echo variable, 109 
ECONNABORTED error number, 616 
ECONNREFUSED error number, 616 
ECONNRESET error number, 616 
econvert - convert number to ASCII, 838 
ed-line editor, 164 
eda ta - end of program data, 840 
EDESTADDRREQ error number, 615 
edit 

fonts- fontedit, 190 
icons - coloredi t, 79 
icons- iconedit, 228 
password file- vipw, 1790 
Sun View defaults- defaultsedi t, 141 
user quotas - edquota, 1616 

edit - line editor, 177 
edit mail command, 297 
editing text 

ed-line editor, 164 
edit - line editor, 177 
ex - line editor, 177 
s ed - stream editor, 446 

EDITOR mail variable, 302 
EDOM error number, 615 
EDQUOT error number, 617 
edquota - edit user quotas, 1616 
EEPROM display and load program- eeprom, 1617 
EEXIST error number, 614 
EFAULT error number, 614 
EFBIG error number, 615 
effective group ID 

get, 670 
set, 754 

effective group ID, set- setegid, 991 
effective user ID 

get, 691 
set- setreuid, 755 

effective user ID, set- seteuid, 991 
egrep-pattem scanner, 218 



EHOSTDOWN error number, 617 
EHOSTUNREACH error number, 617 
EIDRM error number, 617 
EINPROGRESS error number, 615 
EINTR error number, 613 
EINVAL error number, 614 
EI O error number, 613 
EISCONN error number, 616 
EISDIR error number, 614 
elif command, 453 
eliminate #ifdef's from C input- unifdef, 560 
eliminate .so's from nroff input- soelim, 469 
ELOOP error number, 617 
else command, 105,453 
else mail command, 298 
EMFILE error number, 614 
EMLINK error number, 615 
EMSGSIZE error number, 615 
emulate Tektronix 4014- tektool, 369 
enable print queue - lpc, 1662 
ENAMETOOLONG error number, 617 
encode binary file - uuencode, 570 
encode files 

crypt, 95 
des - Data Encryption Standard, 147 

encrypt - encryption, 822 
encrypted mail 

enroll for- enroll, 604 
receive - enroll, 604 
send- xsend, 604 

encryption 
cbc crypt, 833 
crypt, 822 
des setparity, 833 
encrypt, 822 
setkey, 822 

encryption chip - des, 1210 
encryption key, change, chkey commmand, 64 
encryption key, generate- makekey, 1669 
end command, 105 
end - end of program, 840 
end locations in program, 840 
endac () function, 859 
endexportent () function, 845 
endf sent - get file system descriptor file entry, 865 
endgraent () function, 866 
endgrent - get group file entry, 867 
endhostent - get network host entry, 869 
endif command, 105 
endif mail command, 298 
endmntent - get filesystem descriptor file entry, 872 
endnetent - get network entry, 874 
endnetgrent - get network group entry, 875 
endprotoent - get protocol entry, 879 
endpwaent () function, 881 
endpwent - get password file entry, 882 
endpwent - get password file entry, System V, 1164 
endrpcent - get RPC entry, 884 
endservent - get service entry, 886 

- 1821 -

endsw command, 108 
endt t yent ( ) function, 887 
endusershell () function, 889 
ENETDOWN error number, 616 
ENETRESET error number, 616 
ENETUNREACH error number, 616 
ENFILE errornumber, 614 
ENOBUFS error number, 616 
ENODEVerrornumber, 614 
ENOENT error number, 613 
ENOEXEC error number, 613 
ENOMEM error number, 614 
ENOMSG error number, 617 
ENOPROTOOPT error number, 615 
ENOSPC error number, 615 
ENOSR error number, 617 
ENOSTR error number, 617 
ENOTBLK error number, 614 
ENOTCONN error number, 616 
ENOTDIR error number, 614 
ENOTEMPTYerror number, 617 
ENOTSOCK error number, 615 
ENOTTY error number, 614 
enquire stream status 

Index - ConJinued 

clearerr - clear error on stream, 849 
clearerr - clear error on stream, System V, 1159 
feof-enquire EOF on stream, 849 
f eo f - enquire EOF on stream, System V, 1159 
ferror- inquire error on stream, 849 
£error-inquire error on stream, System V, 1159 
f ileno - get stream descriptor number, 849 
f ileno - get stream descriptor number, System V, 1159 

enroll-enroll for secret mail, 604 
env - obtain or alter environment variables, 172 
environ - user environment, 1387 
environ -execute file, 842 
environment 

display variables - printenv, 391 
get value - getenv, 863 
set value - putenv, 950 
tset - set terminal characteristics for, 551 

environment variables - in C shell, 109 
environment variables in mail, see also mail environment vari-

ables 
ENXIO error number, 613 
EOPNOTSUPP error number, 616 
EPERM error number, 613 
EPFNOSUPPORT error number, 616 
EPIPE error number, 615 
EPROTONOSUPPORT error number, 615 
EPROTOTYPE error number, 615 
eqn - remove constructs - derof f, 146 
eqn - mathematical typesetting, 173 
eqnchar - special characters for equations, 1550 
erand4 8 - generate uniformly distributed random numbers, 836 
ERANGE error number, 615 
erase 

directory- rmdir, 420, 743 
directory entry - unlink, 785 



Index - Continued 

erase, continued 
file - rm, 420 

erase- start new plot frame, 941 
erase magnetic tape - mt, 333 
EREMOTE error number, 617 
erf - error functions, 1085 
erfc -error functions, 1085 
EROFS error number, 615 
errno - system error messages, 940 
error - analyze error messages, 175 
error messages, 940 
esac command, 453 
escape character, quotes and comments, C shell, 97 
escape mail variable, 302 
ESHUTDOWN error number, 616 
ESOCKTNOSUPPORT error number, 616 
ESP I PE error number, 615 
ESRCH error number, 613 
ES TALE error number, 617 
et ext - end of program text, 840 
etherd- Ethernet statistics server daemon, 1618 
etherfind-find packets on the Ethernet, 1619 
Ethernet 

find packets- etherfind, 1619 
statistics server daemon - etherd, 1618 

Ethernet address mapping, 841 
Ethernet address to ASCII- ether_ntoa, 841 
Ethernet address to hostname- ether_ntohost, 841 
Ethernet controller 

ec - 10 Mb/s 3Com Ethernet interface, 1214 
ie-Sun Ethernet interface, 1224 thru 1225 
le-10 Mb/s LANCE Ethernet interface, 1254 thru 1255 

ethers file - Ethernet addresses, 1388 
ETIME error number, 617 
ETIMEDOUT error number, 616 
Euclidean distance functions 

hypot, 1089 
eval command, 104, 458 
evaluate expressions, 180 
EWOULDBLOCK error number, 615 
ex - line editor, 177 
exc _ bound ( ) function, 1061 
exc_handle ( ) function, 1061 
exc_notify ( ) function, 1061 
exc _on_ exit ( ) function, 1061 
exc _raise ( ) function, 1061 
exc _ unhandle ( ) function, 1061 
EXDEV error number, 614 
exec command, 104, 458 
execl - execute file, 842 
exec le - execute file, 842 
execlp - execute file, 842 
execute commands at specified times - cron, 1606 
execute file, 652, 842 

environ, 842 
execl, 842 
execle, 842 
execlp, 842 
execv, 842 

- 1822-

execute file, continued 
execvp, 842 

execute regular expression - re_ exec, 961 
executing commands in C shell, 103 
execution 

suspend for interval, 997, 1182 
suspend for interval in microseconds, 1029 

execution accounting file - acct, 1365 
execution profile, prepare- monitor, 930 
execv - execute file, 842 
execve, 652 
execvp- execute file, 842 
exit, 655 
exit command, 105, 458 
exit - terminate process, 844 
exit mail command, 297 
exp - exponential function, 1086 
explO -exponential function, 1086 
exp2 - exponential function, 1086 
expand assembly-language calls in-line, inline, 236 
expand - expand tabs, 179 
exp ml - exponential function, 1086 
exponent and significand, split into - f rexp, 1087 
exponential function - exp, 1086 
export command, 458 
exportable file system table- exports, 1389 
exported file system table- xtab, 1389 
exportent () function, 845 
exportf s command, 1621 
exports -exported file system table, 1389 
expr- evaluate expressions, 180 
expression evaluation, 180 
expressions -in C shell, 101 
extend bibliography - addbib, 18 
extended to decimal - decimal record from extended-

precision floating, 850 
extract strings from C code- xstr, 605 
extract_unbundled command, 1623 
eyacc -compiler generator, 351 

F 
fabs () function, 1093 
factor game, 1516 
fastboot -reboot system, 1624 
fasthalt -halt system, 1624 
fb - Sun console frame buffer driver, 1215 
fbio - frame buffers general properties, 1216 thru 1217 
fchmod, 640 
fchown, 642 
f close - close stream, 847 
f cntl - file control system call, 656 
f cntl - file control options, 1391 
f convert - convert number to ASCII, 838 
fdate-return date and time in ASCII format, 848 
f do pen - associate descriptor, 854 
fdopen - associate descriptor, System V, 1160 
feof-enquire EOF on stream, 849 
feof-enquire EOF on stream, System V, 1159 



f error - inquire error on stream, 849 
f error - inquire error on stream, System V, 1159 
fetch - retrieve datum under key, 830 
ff lush-flush stream, 847 
ff s - find first one bit, 819 
f g command, 105 
fgetc - get character from stream, 861 
fgetc - get character from stream, System V, 1162 
f getgraent () function, 866 
f getgrent - get group file entry, 867 
fgetpwaent () function, 881 
fgetpwent -get password file entry, 882 
setpwfile-get password file entry, System V, 1164 
fgets -get string from stream, 885 
f grep - pattern scanner, 218 
f i command, 453 
fifo, make - mknod, 1674 
fignore variable, 109 
file 

ftw -traverse file tree, 858 
browse through text- more, 330 
browse through text- page, 330 
browse through text- pg, 383 
change name of - mv, 334 
change ownership - chown, 1595 
copy from remote machine - rep, 409 
count lines, words, characters in - we, 591 
create new, 649 
create temporary name - tmpnam, 1020 
delete - rm, 420 
determine accessibility of, 629 
display last part of - tail, 507 
dump - od, 348 
execute, 652 
find lines in sorted- look, 275 
identify version - what, 592 
make hard link to, 696 
make link to - ln, 265 
move - mv, 334 
print- lpr, 280 
remove - rm, 420 
rename - mv, 334 
reverse lines in - rev, 417 
send to remote host- uusend, 571 
split into pieces - split, 477 
sum - sum and count blocks in file, 486 
synchronize state- fsync, 662 
update last modified date of- touch, 541 

file attributes 
fstat, 774 
lstat, 774 
stat, 774 

file - get file type, 182 
file control 

options header file- f cntl, 1391 
system call - fcnt 1, 656 

file formats, 1337 
file inquries-in C shell, 102 
file mail command, 297 
file position, move - 1 seek, 698 
file system 

- 1823-

file system, continued 
4.2 format- fs, 1392 
access, 629 
cd - change directory, 57 
chdir, 639 
check and repair - f s ck, 1629 
check consistency- icheck, 1641 
check directory- dcheck, 1608 
chmod, 640 
chown, 642 
create file - open, 719 
create new- newfs, 1700 
delete directory entry- unlink, 785 
delete directory- rmdir, 743 

Index - Continued 

unmount - demount file system, 786, 1687 
display disk usage and limits - quota, 405 
display free space, 149 
dump information- dumpfs, 1615 
edquota - edit user quotas, 1616 
erase directory entry- unlink, 785 
erase directory- rmdir, 743 
exported table - xtab, 1389 
exports table- exports, 1389 
fchmod, 640 
fchown, 642 
free space display, 149 
f stab- static information, 1396 
ftruncate, 782 
get file descriptor entry, 865 
getdents, 664 
getdirentries,666 
link, 696 
lseek, 698 
make - mkfs, 1673 
make prototype- mkproto, 1675 
mkdir, 700 
mknod, 702 
mount, 706, 1687 
mounted table- mtab, 1396, 1412 
open, 719 
quota check - check quota consistency, 1721 
quotactl-disk quotas, 732 
quota off - turn file system quotas off, 1722 
quota on - turn file system quotas on, 1722 
readlink, 737 
remove directory entry - unlink, 785 
remove directory - rmdi r, 743 
rename file - rename, 741 
repquota - summarize quotas, 1729 
rquotad - remote quota server, 1747 
statistics - fstatf s, 776 
statistics - statf s, 776 
summarize ownership - quot, 1720 
symlink, 779 
tell, 698 
truncate, 782 
tune- tunefs, 1784 
umask, 783 
unmount -demount file system, 786, 1687 
utime - set file times, 1030 
utimes - set file times, 787 
where am I - pwd, 404 

file system dump- dump, 1612 
file system restore - restore, 1730 



Index - Continued 

file transfer protocol 
ftp command, 195 
server- ftpd, 1632 
trivial, t ftp command, 530 

file_to_decimal-decimal record from character stream, 
1004 

filec variable, 109 
filemerge command, 352 
filename completion, C shell, 97 
filename substitution, 101 
filename, change- rename, 741 
f i leno - get stream descriptor number, 849 
fileno -get stream descriptor number, System V, 1159 
files 

csplit - split file into sections, 113 
basename-strip affixes, 42 
cat -concatenate, 50 
ccat - extract files compressed with compact, 350 
chmod - change mode, 65 
cmp - compare files, 76 
col rm - remove columns from, 80 
compact - compress files, 350 
compare, 76 
compare, three-way differential- diff3, 152 
compress - compress files, 83 
convert and copy, 139 
copy,85 
copy standard output to many- tee, 517 
cp - copy files, 85 
cpio-copy archives, 87 
crypt -encrypUdecrypt, 95 
. cshrc and the C shell, 96 
cut - remove columns from, 121 
des -encrypUdecrypt, data encryption standard, 147 
determine type of, 182 
differential compare, 150 
display first lines of, 223 
display names- ls, 285 
find, 183 
find differences, 150 
. login and the C shell, 96 
. logout and the C shell, 96 
pack - pack files, 376 
paste-horizontal merge, 380 
peat -pack files, 376 
prepare files for printing- pr, 388 
search for patterns in- grep, 218 
side-by-side compare, 445 
sort - sort and collate lines, 470 
transfer, 195, 530 
uncompact - uncompress files, 350 
uncompress - uncompress files, 83 
unpack - unpack files, 376 
zcat - extract compress files, 83 

file system organization, 1551 
filesystem descriptor, get file entry, 872 
filter reverse paper motions - col, 77 
find 

first key in dbm database - firstkey, 830 
first one bit- ff s, 819 
find lines in sorted file - look, 275 
find literature references - refer, 415 

find, continued 
name of terminal- ttyname, 1024 
next key in dbm database - nextkey, 830 
find object file size- size, 465 
find ordering for object library- lorder, 277 
patterns in file- grep, 218 
find printable strings in binary file- strings, 478 
program- whereis, 594 

find-find files, 183 
finger-info on users, 186 
f ingerd daemon, 1625 
finite () function, 1093 
FIOASYNC- seUclear async 1/0, 1219 
FIOCLEX - set close-on-exec flag for fd, 1219 
FIOGETOWN- get file owner, 1219 
FIONBIO- seUclear non-blocking 1/0, 1219 
FIONCLEX- remove close-on-exec flag, 1219 
FIONREAD - get# bytes to read, 1219 
FIOSETOWN - set file owner, 1219 
f irstkey-find first key, 830 
fish-Go Fish game, 1517 
floating-point, 193 

reliability tests - f pa rel, 1627 
version and tests- fpaversion, 1628 

floating-point accellerator, f pa, 1220 
floatingpoint 

IEEE floating point definitions, 852 
flock, 660 

-1824-

floor-floor of, 1102 
flush disk activity- sync, 502 
flush stream- fflush, 847 
fmod () function, 1093 
fmt - simple formatter, 188 
fold-fold long lines, 189 
folder mail command, 297 
folder mail variable, 302 
folders mail command, 297 
followup mail command, 297 
Followup mail command, 297 
font 

files, convert foreign- vswap, 585 
vwidth-make font width table, 587 

f ontedi t - font editor, 190 
f open - open stream, 854 
fopen-open stream, System V, 1160 
f option -determine available floating-point code generation 

options, 193 
for command, 453 
foreach command, 105 
fork a new process - fork, 661 
format C programs - indent, 231 
format command, 1626 
format document for raster printer- vtrof f, 586 
format of memory image file - core, 1378 
format tables - tbl, 513 
formatted input conversion 

f scanf - convert from stream, 984 
f scanf - convert from stream, System V, 1172 
scanf -convert from stdin, 984 



formatted input conversion, continued 
s canf - convert from stdin, System V, 1172 
sscanf-convert from string, 984 
sscanf-convert from string, System V, 1172 

FORTRAN 
tags file - ctags, 115 

fortune - get fortune, 1518 
. forward file, 300 
. forward-mail forwarding file, 1367 
forwarding mail, 300 
fp_class () function, 1093 
fpa, :floating-point accellerator, 1220 
fparel - :floating-point reliability tests, 1627 
fpaversion - :floating-point version and tests, 1628 
fprintf -formatted output conversion, 944 
fprintf - format to stream, System V, 1168 
f put c - put character on stream, 949 
fput s - put string to stream, 952 
frame buff er 

bwone - Sun-1 black and white frame buffer, 1197 
bwt wo - Sun-3/Sun-2 black and white frame buffer, 1198 

f ramedemo - graphics demo, 1521 
f read- read from stream, 855 
free - free memory, 925 
free memory- cfree, 925 
free memory - free, 925 
free static block ioctl - GPlIO_FREE_STATIC_BLOCK, 

1221 
f reopen - reopen stream, 854 
f reopen - reopen stream, System V, 1160 
frexp- split into significand and exponent, 1087 
from - who is mail from, 194 
from mail command, 297 
f s - 4.2 file system format, 1392 
fscanf -convert from stream, 984 
fscanf -convert from stream, System V, 1172 
f s ck - check and repair file system, 1629 
fseek- seek on stream, 856 
f s irand- install random inode generation numbers, 1631 
f spec text file tabstop specifications, 1394 
fstab-file mountable information, 1396 
£stat - obtain file attributes, 774 
f statf s - obtain file system statistics, 776 
f sync - synchronize disk file with core image, 662 
ft ell - get stream position, 856 
ftime - get date and time, 1016 
ftok - interprocess communication routine, 857 
ftp-file transfer, 195 
ftp - remote login data - . netrc file, 1415 
.netrc- ftp remote login data file, 1415 
ft pd-file transfer protocol server, 1632 
ftpusers -ftp prohibited users list, 1398 
ft runcate, 782 
ft w - traverse file tree, 858 
full-duplex connection, shut down - shutdown, 762 
file_ to_ decimal -decimal record from character function, 

1004 
kvm _ open (} function, 901, 910, 1070 
functions, Bourne shell, 453 

-1825 -

Index-Continued 

fwrite -write to stream, 855 

G 
games 

boggletool-SunView game of boggle, 1505 
canfield- solitaire card game, 1507 
chess -chess game, 1509 
chesstool -SunView chess game, 1510 
gammontool -SunView backgammon game, 1519 
introduction, 1493 
1 if e - Sun View game of life, 1527 

gamma - log gamma, 1098 
gammontool -SunView backgammon game, 1519 
getauid (} function, 663 
gather write- writev, 794 
gcd - multiple precision GCD, 932 
gconvert - convert number to ASCII, 838 
gcore - core image of process, 202 
general magnetic tape interface - mtio, 1268 
generate 

adb script - adbgen, 1575 
encryption key- makekey, 1669 
fault- abort, 810 
lexical analyzer- lex, 258 
permuted index - ptx, 403 

generate random numbers 
ini tstate, 956 
rand, 955 
random, 956 
set state, 956 
srand, 955 
srandom, 956 
drand48, 836 
erand48, 836 
j rand4 8, 836 
lcong48, 836 
lrand48, 836 
mrand4 8, 836 
nrand4 8, 836 
seed48, 836 
srand48, 836 

generate random numbers, System V 
rand, 1171 
srand, 1171 

generic disk control operations - dkio, 1211 
generic operations 

get 

gather write- writev, 794 
ioctl, 692 
read, 734 
scatter read - readv, 734 
write, 794 

arp entry ioctl - SIOCGARP, 1194 
character from stream- fgetc, 861 
character from stream - getc, 861 
console 1/0 ioctl - TIOCCONS, 1204 
countofbytestoread ioctl- FIONREAD, 1219 
current working directory pathname- getwd, 890 
date and time- £time, 1016 
date and time- time, 1016 
disk geometry ioctl - DKIOCGGEOM, 1211 
disk info ioctl - DKIOCINFO, 1211 



Index - Continued 

get, continued 
disk partition info ioctl - OKI OCGP ART, 1211 
entries from kernel symbol table- kvm nlist, 900 
entries from symbol table- nlist, 937, 1167 
environment value - getenv, 863 
file owner ioctl - FIOGETOWN, 1219 
file system descriptor file entry, 865 
high water mark ioctl - SIOCGHIWAT, 1304 
ifnet address ioctl - SIOCGIFADDR, 1226 
ifnet flags ioctl - SIOCGIFFLAGS, 1226 
ifnet list ioctl - SIOCGIFCONF, 1226 
info on resource usage- vtimes, 1037 
line discipline ioctl- TIOCGETD, 1196 
login name- getlogin, 871 
low water mark ioctl - SIOCGLOWAT, 1304 
magnetic tape unit status - mt, 333 
network entry- getnetent, 874 
network group entry - getnetgrent, 875 
network host entry - gethostent, 869 
network service entry- getservent, 886 
options on sockets- getsockopt, 687 
p-p address ioctl - SIOCGIFDSTADDR, 1226 
parent process identification- getppid, 680 
pathname of current working directory - getcwd, 862 
position of stream - ftell, 856 
process domain name - getdomainname, 668 
process identification - get pid, 680 
process times- times, 1017 
protocol entry- getprotoent, 879 
requested minor device ioctl - GPlIO GET REQDEV 

1221 - - ' 
restart count ioctl - GPlIO GET RESTART COUNT 

1221 - - - ' 
RPC program entry - get rpcent, 884 
scheduling priority- getpriority, 681 
signal stack context- s ig stack, 766 
static block ioctl - GPl IO GET STATIC BLOCK 

1221 - - - ' 
string from stdin - gets, 885 
string from stream- fgets, 885 
tape status ioctl - MTIOCGET, 1269 
terminal name - tty, 556 
terminal state- gtty, 1009 
true minor device ioctl -

GPlIO GET TRUMINORDEV,1222 
user limits - ulimi t-:-1027 
word from stream- getw, 861 

get character from stream, System V - f getc, 1162 
get character from stream, System V - getc, 1162 
get - get SCCS file, 203 
get date and time, 689 
get filesystem descriptor file entry 

addmntent, 872 
endmntent, 872 
getmntent, 872 
hasmntopt, 872 
setmntent, 872 

get group file entry 
endgrent, 867 
fgetgrent, 867 
getgrent, 867 
getgrgid, 867 
getgrnam, 867 

- 1826-

get group file entry, continued 
setgrent, 867 

get high water mark ioctl - SIOCGHIWAT, 1325 
get keyboard "direct input" state ioctl - KIOCGDIRECT, 

1236 
get keyboard translation ioctl - KIOCGTRANS, 1235 
get keyboard type ioctl- KIOCTYPE, 1236 
get low water mark ioctl - SIOCGLOWAT, 1325 
get password file entry 

endpwent, 882 
fgetpwent, 882 
getpwent, 882 
get pwnam, 882 
getpwuid, 882 
setpwent, 882 
fgetpwent, 882 

get password file entry, System V 
endpwent, 1164 
fgetpwent, 1164 
getpwent, 1164 
get pwnam, 1164 
getpwuid, 1164 
setpwent, 1164 
fgetpwent, 1164 

get process times, System V - times, 1185 
get time zone name 

timezone, 1018 
get translation table entry ioctl - KIOCGETKEY, 1236 
get user name- cuserid, 829 
get word from stream, System V- getw, 1162 
get_selection-copy a SunView selection to standard out-

put, 208 
getacdir () function, 859 
getacflg () function, 859 
getacinf o () function, 859 
getacmin () function, 859 
getauditflags () function, 864 
getauditflagsbin () function, 860 
getauditflagschar () function, 860 
getc - get character from stream, 861 
getc - get character from stream, System V, 1162 
getchar-get character from stdio, 861 
get char - get character from stdin, System V, 1162 
getcwd- get pathname of current directory, 862 
get dents, 664 
getdirentries,666 
getdomainname - get process domain, 668 
getdtablesize,669 
getegid-get effective group ID, 670 
getenv - get value from environment, 863 
geteuid - get effective user ID, 691 
getexportent () function, 845 
getexportopt () function, 845 
getf sent - get file system descriptor file entry, 865 
getf sf ile - get file system descriptor file entry, 865 
getf sspec - get file system descriptor file entry, 865 
getfstype - get file system descriptor file entry, 865 
getgid-get group ID, 670 
getgraent () function, 866 
getgranam () function, 866 



getgrent - get group file entry, 867 
getgrgid-get group file entry, 867 
getgrnam - get group file entry, 867 
getgroups, 671 
gethostbyaddr - get network host entry, 869 
gethostbyname - get network host entry, 869 
gethostent - get network host entry, 869 
gethostid, 672 
gethostname, 673 
geti timer, 674 
getlogin -get login name, 871 
getmntent - get filesystem descriptor file entry, 872 
getmsg () function, 676 
getnetbyaddr - get network entry, 874 
getnetbyname - get network entry, 874 
getnetent - get network entry, 874 
getnetgrent -get network group entry, 875 
get opt - process options in scripts, 209 
getopt () function, 876 
getopts command, 211 
getpagesize, 678 
getpass -read password, 878 
get pass - read password, System V, 1163 
getpeername, 679 
getpgrp, 753 
getpid, 680 
getppid, 680 
getpriority, 681 
getprotobynumber-get protocol entry, 879 
getprotoent -get protocol entry, 879 
getpublickey () function, 1116 
getpw - get name from uid, 880 
getpwaent () function, 881 
getpwanam () function, 881 
getpwent -get password file entry, 882 
get pwent - get password file entry, System V, 1164 
get pwnam - get password file entry, 882 
getpwnam- get password file entry, System V, 1164 
getpwuid-get password file entry, 882 
getpwuid - get password file entry, System V, 1164 
getrlimit, 682 
getrpcbyname - get RPC entry, 884 
getrpcbynumber - get RPC entry, 884 
getrpcent - get RPC entry, 884 
getrpcport - get RPC port number, 1110 
getrusage, 684 
gets - get string from stdin, 885 
getsecretkey () function, 1116 
getservbyname -get service entry, 886 
getservbyport -get service entry, 886 
getservent - get service entry, 886 
getsockname, 686 
getsockopt, 687 
gettable -get DoD Internet host table, 1635 
gettimeofday,689 
getttyent ( ) function, 887 
getttynam ( ) function, 887 
getty- set terminal mode, 1636 

- 1827 -

Index - C onl inued 

get t ytab - terminal configuration data base, 1399 
getuid-get user ID, 691 
get user shell () function, 889 
getw- get word from stream, 861 
getw-get word from stream, System V, 1162 
get wd - get current working directory pathname, 890 
gfxtool -SunWindows graphics tool, 213 
glob command, 105 
gmt ime - date and time conversion, 824 
gmt ime - date and time conversion, System V, 1132 
goto command, 105 
GP, initialize graphics processor - gpconfig, 1637 
GPl IO_ CHK _GP-restart GP, 1221 
GPlIO_FREE_STATIC_BLOCK-free static block, 1221 
GPl IO_ GET_ GBUFFER _ STATE - check buffer state, 1221 
GPl IO_ GET_ REQDEV - get requested minor device, 1221 
GPl IO_ GET_RESTART_ COUNT- get restart count, 1221 
GPlIO_GET_STATIC_BLOCK-getstatic block, 1221 
GP 1 IO_ GET_ TRUMINORDEV - get true minor device, 1222 
GP1IO_PUT_INFO-pass framebuffer info, 1221 
GP1IO_REDIRECT_DEVFB-reconfigure fb, 1221 
gpconfig- bind cgtwo frame buffers to GP, 1637 
gpone - graphics processor interface, 1221 thru 1222 
gprof - call-graph profile, 214 
graph - draw graph, 216 
graphics 

spline-interpolate smooth curve, 476 
vplot - plot on Versatec, 584 

graphics filters - plot, 386 
graphics interface 

arc, 941 
circle, 941 
closepl, 941 
cont, 941 
erase, 941 
label, 941 
line, 941 
linemod, 941 
move, 941 
openpl, 941 
point, 941 
space, 941 

graphics interface files - plot, 1421 
graphics processor interface - gpone, 1221 thru 1222 
graphics tool - gfxtool, 213 
grep-pattern scanner, 218 
group access list 

initialize- initgroups, 895 
group entry, network - getnetgrent, 875 
group-group file format, 1402 
group file entry - getgrent, 867 
group ID 

chgrp-change group ID of file, 63 
id - display user and group IDs, 230 
newgrp - change group ID of user, 335 
get, 670 
get effective, 670 
set real and effective, 754 

group mail command, 296 
group. adjunct -password file, 1404 



Index - Continued 

grouping commands in the C shell, 97 
groups access list, get- getgroups, 671 
groups access list, set- setgroups, 671 
groups - display group membership, 222 
grpauth () function, 953 
grpck - check group database entries, 1638 
gt t y - get terminal state, 1009 

H 
hack game, 1522 
ha 1 t - stop processor, 1639 
halt processor, 738 
halt system- fasthalt, 1624 
hangman - hangman game, 1523 
hangup, control terminal- vhangup, 790 
hard link to file - 1 ink, 696 
hard link, make - ln, 265 
hardpaths variable, 109 
hardware support, introduction to, 1189 
hash command, 458 
hash table search routine- hsearch, 891 
hashstat command, 105 
hasmntopt - get filesystem descriptor file entry, 872 
havedisk-disk inquiry of remote kernel, 1120 
hcreate - create hash table, 891 
hdestroy -destroy hash table, 891 
head - display head of file, 223 
header mail variable, 302 
headers mail command, 297 
help-get SCCS help, 224 
help-get help, 1353, 1355 
help mail command, 297 
help_viewer-get help_ viewer, 225 
hexadecimal dump file - od, 348 
hier, file system hierarchy, 1555 
histchars variable, 109 
history command, 105 
history substitution - in C shell, 98 
history substitution modifiers, 98 
history variable, 109 
hold mail command, 298 
hold mail variable, 302 
HOME mail environment variable, 300 
home variable, 109,454 
host 

functions to convert to network byte order, 820 
get identifier of, 672 
get network entry- gethostent, 869 
geUset name - gethostname, 673 
phone numbers file - phones, 1420 

hostid-display host ID, 226 
hostname -display host name, 227 
hostname to Ethernet address- ether_hostton, 841 
hosts -host name data base, 1405 
hosts.equiv - trusted hosts list, 1406 
hsearch- hash table search routine, 891 
htable -convert DoD Internet format host table, 1640 
htonl -convert network to host long, 820 

- 1828-

h~ons -convert host to network short, 820 
HUGE() function, 1097 
HUGE_ VAL() function, 1097 
hunt game, 1524 
hyperbolic functions 

cosh, 1088 
sinh, 1088 
tanh, 1088 

hypot - Euclidean distance, 1089 

l/0 
I 

socket, see sockio(4), 1291 
STREAMS, see streamio(4), 1294 
terminals, see termio(4), 1305 
tty, see termio(4), 1305 

l/0 redirection in the C shell, 99 
l/0 statistics report- iostat, 1651 
l/0, buffered binary 

fread- read from stream, 855 
frwite-write to stream, 85~ 

i 3 8 6 - machine type indication, 292 
iAPX2 8 6 - machine type indication, 292 
icheck-file system consistency check, 1641 
i cmp - Internet Control Message Protocol, 1223 
i cone di t - edit icons, 228 
id - display user and group IDs, 230 
identifier of current host, get- gethostid, 672 
identify file version - what, 592 
ie - Sun 10 Mb/s Ethernet interface, 1224 thru 1225 
ieee_flags () function, 1090 
ieee_handler () function, 1094 
ieeefp 

IEEE floating point definitions, 852 
if command, 105, 453 
if -network interface general properties, 1226 thru 1227 
if mail command, 298 
ifconfig-configure network interface parameters, 1642 
IFS variable - sh, 455 
ignore mail command, 297 
ignore mail variable, 302 
ignoreeof mail variable, 302 
ignoreeof variable, 109 
Ikon 10071-5 printer interface- vp, 1326 
ilogb () function, 1093 
inc mail command, 298 
incremental dump format - dump, 1385 
incremental file system dump- dump, 1612 
incremental file system restore - restore, 1730 
indent -formate source, 231, 1407 
indent prefix mail variable, 302 
index -find character in string, 1001 
index memory characters - memchr, 928 
index strings- index, 1001 
index strings- rindex, 1001 
indexing, generate permuted index - ptx, 403 
indirect system call, 781 
indxbib - make inverted index, 235 
inet - Internet protocol family, 1228 thru 1229 



inet _ addr - Internet address manipulation, 893 
inet _ lnaof - Internet address manipulation, 893 
inet _ makeaddr - Internet address manipulation, 893 
inet _ net of - Internet address manipulation, 893 
inet_network-lnternet address manipulation, 893 
inet _ ntoa - Internet address manipulation, 893 
inetd- Internet server daemon, 1644 
inetd. conf - Internet server database, 1408, 1436 
infinity() function, 1097 
inf ocmp command, 1645 
information 

miscellaneous, 1547 
non-, miscellaneous, 1547 

inhibit messages - mesg, 327 
ini t - process control initialization, 1648 
initgroups -initialize group access list, 895 
initialize group access list- ini tgroups, 895 
initiate 

connection on socket- connect, 647 
1/0 to or from process - popen, 943 

initstate-random number routines, 956 
inline command, 236 
innetgr - get network group entry, 875 
inode, clear- clri, 1598 
input conversion 

fscanf-convert from stream, 984 
fscanf-convert from stream, System V, 1172 
scanf-convert from st.din, 984 
s canf - convert from st.din, System V, 1172 
sscanf-convert from string, 984 
sscanf -convert from string, System V, 1172 

input stream, push character back to - ungetc, 1028 
input_ from_ defaults - update kernel from defaults data

base, 239 
inquire stream status 

clearerr - clear error on stream, 849 
clearerr - clear error on stream, System V, 1159 
feof-enquire EOF on stream, 849 
f eof - enquire EOF on stream, System V, 1159 
ferror-inquire error on stream, 849 
ferror- inquire error on stream, System V, 1159 
f ileno - get stream descriptor number, 849 
f ileno - get stream descriptor number, System V, 1159 

insert element in queue - insque, 896 
insert literature references - ref er, 415 
insert_brackets- textedit selection filter, 529 
insque -insert element in queue, 896 
install -install files, 240 
install Yellow Pages database - ypini t, 1793 
installboot procedures - boot, 1650 
integer absolute value - abs, 811 
internat -key mapping table for internationalization, 1356 
Internet 

control message protocol - i cmp, 1223 
directory service - whois, 599 
file transfer protocol server- ftpd, 1632 
protocol family - inet, 1228 thru 1229 
Protocol - ip, 1230 thru 1232 
to Ethernet address resolution- arp, 1194 thru 1195 
Transmission Control Protocol - tcp, 1303, 1304 

- 1829-

Index-Continued 

Internet, continued 
User Datagram Protocol- udp, 1324, 1325 

Internet address manipulation functions, 893 
Internet name server routines, 965 
Internet servers database - servers, 1408, 1436 
interpolate smooth curve - spline, 476 
interpret (old) troff output- pti, 363 
interprocess communication 

accept connection - accept, 628 
bind, 636 
connect, 647 
ftok, 857 
get sockname, 686 
getsockopt, 687 
ipcrm, 241 
ipcs, 242 
listen, 697 
pipe, 722 
recv, 739 
recvfrom, 739 
recvmsg, 739 
send, 751 
sendmsg, 751 
sendto, 751 
setsockopt, 687 
shutdown, 762 
socket, 771 
socketpair, 773 

interrupts, release blocked signals - sigpause, 764 
interval timers 

clock, 821 
get, 674 
set, 674 
timerclear- macro, 674 
timercmp- macro, 674 
timerisset - macro, 674 

introduction 
C library functions, 797 
commands, 3 
devices, 1189 
file formats, 1337 
games and demos, 1493 
hardware support, 1189 
mathematical library functions, 1081 
miscellaneous information, 1547 
miscellaneous noninformation, 1547 
network interface, 1189 
protocols, 1189 
RPC library functions, 1107 
standard 1/0 library functions, 999, 1183 
system calls, 613 thru 624 
system error numbers, 613 thru 617 
system maintenance and operation, 1569 
System V library functions, 1127 

ioctl, 692 
ioctl 's for des chip 

DESIOCBLOCK-process block, 1210 
DESIOCQUICK-process quickly, 1210 

ioctls for disks 
DKIOCGGEOM- get disk geometry, 1211 
DKIOCGPART-get disk partition info, 1211 
DK! OCINFO - get disk info, 1211 
DKIOCSGEOM- set disk geometry, 1211 



Index - Continued 

ioctls for disks, continued 
DKIOCSPART- set disk partition info, 1211 

ioctl's for files 
FIOASYNC- seUclear async I/0, 1219 
FIOCLEX- set close-on-exec for fd, 1219 
FIOGETOWN get owner, 1219 
FIONBIO- seUclear non-blocking I/0, 1219 
FIONCLEX-remove close-on-exec flag, 1219 
FIONREAD-get # bytes to read, 1219 
FIOSETOWN- set owner, 1219 

ioctl 's for graphics processor 
GPlIO CHK GP - restart GP, 1221 
GPlIO-FREE STATIC BLOCK-free static block, 1221 
GPlIO-GET GBUFFER-STATE-check buffer state, 1221 
GPl IO - GET-REQDEV-= get requested minor device, 1221 
GPlIO=GET=RESTART_COUNT-getrestartcount, 1221 
GPlIO GET STATIC BLOCK-get static block, 1221 
GP 1 IO - GET - TRUMINORDEV - get true minor device, 

- 1222 
GPlIO PUT INFO-pass framebuffer info, 1221 
GPlIO=REDIRECT_DEVFB-reconfigure fb, 1221 

ioctl 's for keyboards 
KIOCCMD- send a keyboard command, 1236 
KIOCGDIRECT- get keyboard "direct input" state, 1236 
KIOCGETKEY-get translation table entry, 1236 
KIOCGTRANS - get keyboard translation, 1235 
KIOCSDIRECT - set keyboard "direct input" state, 1236 
KIOCSETKEY-change translation table entry, 1235 
KIOCTRANS - set keyboard translation, 1235 
KIOCTYPE-get keyboard type, 1236 

ioctl 's for sockets 
SIOCADDMULTI-set m/c address, 1227 
SIOCADDRT- add route, 1288 
SIOCDARP -delete arp entry, 1194 
SIOCDELMULTI -delete m/c address, 1227 
s I OCDELRT - delete route, 1288 
s I OCGARP - get arp entry, 1194 
SIOCGHIWAT- get high water mark, 1304, 1325 
SIOCGIFADDR-get ifnet address, 1226 
SIOCGIFCONF-get ifnet list, 1226 
SIOCGIFDSTADDR- get p-p address, 1226 
SIOCGIFFLAGS - get ifnet flags, 1226 
SIOCGLOWAT- get low water mark, 1304, 1325 
SIOCSARP -set arp entry, 1194 
SIOCSHIWAT- set high water mark, 1304, 1325 
SIOCSIFADDR- set ifnet address, 1226 
SIOCSIFDSTADDR- set p-p address, 1226 
s I ocs IFFLAGS - set ifnet flags, 1226 
SIOCSLOWAT- set low water mark, 1304, 1325 
SIOCSPROMISC- toggle promiscuous mode, 1227 

ioctl's for tapes 
MTIOCGET-get tape status, 1269 
MTI OCTOP - tape operation, 1268 

ioctl's for terminals 
TIOCCONS-get console I/0, 1204 
TI OCGETD - get line discipline, 1196 
TIOCPKT- seUclear packet mode (pty), 1285 
TIOCREMOTE - remote input editing, 1285 
TIOCSETD - set line discipline, 1196 
TIOCSTART- start output (like control-Q), 1285 
TIOCSTOP - stop output (like control-S), 1285 

iostat - report I/0 statistics, 1651 
IP address allocation, 1113 

- 1830-

IP address mapping, 1113 
ip - Internet Protocol, 1230 thru 1232 
ipalloc - IP address mapper, 1113 
ipalloc. net range file, 1358 
ipallocd- Ethernet-to-IP address mapper, 1652 
i pc rm - remove interprocess communication identifiers, 241 
iipcs -display interprocess communication status, 242 
irint -irint of, 1102 
isalnum-is character alphanumeric, 826 
i salnum - is character alphanumeric, System V, 1134 
isalpha -is character letter, 826 
isalpha -is character letter, System V, 1134 
isascii -is character ASCII, 826 
isascii -is character ASCII, System V, 1134 
i sat t y - test if device is terminal, 1024 
iscntrl -is character control, 826 
iscntrl-is character control, System V, 1134 
i sdig it - is character digit, 826 
isdigit -is character digit, System V, 1134 
isgraph-is character graphic, 826 
i sg ra ph - is character graphic, System V, 1134 
isinf () function, 1093 
islower -is character lower-case, 826 
islower -is character lower-case, System V, 1134 
i snan () function, 1093 
isnormal () function, 1093 
i sprint -is character printable, 826 
i sprint -is character printable, System V, 1134 
ispunct -is character punctuation, 826 
i spun ct - is character punctuation, System V, 1134 
issecure () function, 897 
is space - is character whitespace, 826 
is space - is character whitespace, System V, 1134 
issubnormal () function, 1093 
issue shell command - system, 1013 
i supper - is character upper-case, 826 
isupper -is character upper-case, System V, 1134 
isxdigi t -is character hex digit, 826 
isxdigit-is character hex digit, System V, 1134 
iszero () function, 1093 
i tom - integer to multiple precision, 932 

J 
j O - Bessel function, 1084 
j 1 - Bessel function, 1084 
jn -Bessel function, 1084 
job control \m csh, 103 
jobs command, 105 
join - relational database operator, 245 
j rand4 8 - generate uniformly distributed random numbers, 836 
jumpdemo-graphics demo, 1521 

K 
kadb - kernel debugger, 1653 
kb - Sun keyboard 
kb - Sun keyboard STREAMS module, 1233 
keep mail variable, 302 
keepsave mail variable, 302 



kernel and local lock manager protocol, 1111 
kernel symbol table, get entries from- kvm_nlist, 900 
keyboard click, control with- click, 70 
kbd- Sun keyboard, 1251 
keyenvoy command, 1655 
keyenvoy server, 1656 
keylogin command, 246 
kgmon -dump profile buffers, 1657 
ki 11 - send signal to process, 693 
kill command, 106,247 
killpg- send signal to process group, 695 
KIOCCMD - send a keyboard command, 1236 
KIOCGDIRECT- get keyboard "direct input" state, 1236 
KI OCGETKEY - get translation table entry, 1236 
KIOCGTRANS-getkeyboard translation, 1235 
KIOCSD IRE CT - set keyboard "direct input', state, 1236 
KIOCSETKEY-change translation table entry, 1235 
KIOCTRANS- set keyboard translation, 1235 
KIOCTYPE - get keyboard type, 1236 
kmem-kernel memory space, 1261 thru 1262 
kvm _ close () function, 901 
kvm_getcmd () function, 898 
kvm_getproc () function, 899 
kvm _getu () function, 898 
kvm _ next proc () function, 899 
nlist -get entries from kernel symbol table, 900 
kvm _ read () function, 903 
kvm_setproc () function, 899 
kvm_write () function, 903 

L 
164a - convert base-64 ASCII to long integer, 809 
label -plot label, 941 
LANCE 10 Mb/s Ethernet interface- le, 1254 thru 1255 
languages 

cb- format filter for C sources, 51 
cc - C compiler, 52 
tcf low-code flow graph, 60 
cpp - C preprocessor, 89 
cxref - cross reference C program, 123 
indent - format C source, 231 
lex -generate lexical analyzer, 258 
lint -C program verifier, 261 
mkstr-create C error messages, 329 
tcov-code coverage tool, 516 
xstr - extract strings from C code, 605 

la st - list last logins, 248 
last locations in program, 840 
la st comm - display last commands, 249 
lastlog-login records, 1485 
lcong4 8 - generate uniformly distributed random numbers, 836 
ld - link editor, 250 
ldaclose () function, 905 
ldaopen () function, 913 
ldclose () function, 905 
ldconfig-configure link-editor, 1658 
ldd - list dynamic dependencies, 256 
ldfcn () function, 906 
ldfhread () function, 908 

-1831-

ldgetname () function, 909 
ldlitem () function, 910 
ldlread () function, 910 
ldlseek () function, 911 
ldnlseek () function, 911 
ldnrseek () function, 915 
ldnshread () function, 916 
ldnsseek () function, 917 
ldohseek () function, 912 
ldopen () function, 913 
ldrseek () function, 915 
ldshread () function, 916 
ldsseek () function, 917 
ldtbindex () function, 918 
ldtbread () function, 919 
ldtbseek () function, 920 
ldterm, terminal STREAMS module, 1252 

lndex-Conlinued 

le -Sun-3/50 10 Mb/s Ethernet interface, 1254 thru 1255 
leave - remind you of leaving time, 257 
lex - generate lexical analyzer, 258 
LEX language tags file - ctags, 115 
lexical analysis, C shell, 97 
1 find - linear search routine, 923 
library 

find ordering for object - !order, 277 
make random - ranl ib, 406 

library file format- ar, 1370 
library functions 

introduction to C, 797 
introduction to mathematical, 1081 
introduction to RPC, 1107 
introduction to standard 1/0, 999, 1183 
introduction to System V, 1127 

library management 
a r - library maintenance, 24 

1 if e - Sun View game of life, 1527 
lightweight processes library, 1051 
1 imi t command, 106 
limits 

disk space - quota, 405 
get for user - ul imi t, 1027 
set for user- ulimit, 1027 

1 ine - read one line, 260 
line discipline- bk, 1196 
line discipline ioctl 's 

TI OCGETD - get line discipline, 1196 
TIOCSETD - set line discipline, 1196 

line -plot line, 941 
line numbering - nl, 337 
line printer control- lpc, 1662 thru 1663 
line printer daemon - 1 pd, 1664 
line to Ethernet address- ether_line, 841 
linear search and update routine- !search, 923 
linear search routine - lf ind, 923 
linemod-set line style, 941 
lines 

count- we, 591 
find, in sorted file- look, 275 

link, 696, 1659 



Index - Continued 

link, continued 
make symbolic, 779 
read value of symbolic, 737 

link editor- ld, 250, 1409 
link editor output- a. out, 1339 
lint - C program verifier, 261 
list mail command, 298 
listen, 697 
LI STER mail variable, 302 
literature references, find and insert- refer, 415 
lo - software loopback network interface, 1256 
load command, 267 
load frame buffer image - screenload, 442 
load mail command, 298 
loadc command, 267 
local time-date and time conversion, 824 
local time-date and time conversion, System V, 1132 
locate program- whereis, 594 
lock 

file - flock, 660 
record- fcntl, 656,921 

lockd- network lock daemon, 1660 
lockf, 921 
lock screen - save window context, 269 
log files and system log daemon - sys 1 ogd, 1773 
log - natural logarithm, 1086 
log gamma function - gamma, 1098 
logl O - logarithm, base 10, 1086 
loglp- natural logarithm, 1086 
log2 - logarithm, base 2, 1086 
logarithm, base 10- loglO, 1086 
logarithm, base 2 - log2, 1086 
logarithm, natural- log, 1086 
logb () function, 1096 
logger - make system log entry, 271 
login 

change password- passwd, 379 
display effective user name - whoami, 598 
display login name- logname, 274 
display user and group IDs - id, 230 
info on users- finger, 186 
list last- last, 248 
make script of session - script, 444 
rusers -who is on local network, 430 
rwho - who is on local network, 432 
save window context- lockscreen, 269 
to local machine- login, 272 
to remote machine - rlogin, 418 
what are users doing- w, 588 
who - who is logged in, 597 

login accounting, display login record - ac, 1574 
login command, 106,458 
login environment 

display variables - printenv, 391 
tset - set terminal characteristics, 551 
tty - get terminal name, 556 

login environment- environ, 1387 
. login file, 96 
login name, get- getlogin, 871 
login password 

- 1832-

login password, continued 
change password- passwd, 379 
change in Yellow Pages - yppa s swd, 611 

login records 
lastlog file, 1485 
utmp file, 1485 
wtmp file, 1485 

logintool - graphic login interface, 1661 
logname -display login name, 274 
logout command, 106 
. logout file, 96 
longjmp-non-localgoto, 989, 1177 
look- find lines in a sorted file, 275 
look for pattern in file - grep, 218 
lookbib-find bibliographic references, 276 
loop, C shell control flow, 102 
loopback filesystem, 1257 
!order-find ordering for object library, 277 
1 pc - line printer control, 1662 
lpd - line printer daemon, 1664 
lpq - display printer queue, 278 
lpr -print files, 280 
1 prm - remove print jobs, 283 
lptest command, 284 
1rand48 - generate uniformly distributed random numbers, 836 
ls -list files, 285 
1 search - linear search and update routine, 923 
1 seek - move file position, 698 
1 stat - obtain file attributes, 774 
lwp_checkstkset () function, 1068 
lwp_create () function, 1064 
lwp_ctxinit () function, 1066 
lwp_ctxmemget () function, 1066 
lwp_ctxmemset () function, 1066 
lwp_ctxremove () function, 1066 
lwp_ctxset () function, 1066 
lwp_datastk () function, 1068 
lwp_destroy () function, 1064 
lwp_enumerate () function, 1071 
lwp_errstr () function, 1070 
lwp_fpset () function, 1066 
lwp_getregs () function, 1071 
lwp_getstate () function, 1071 
lwp_join () function, 1072 
lwp_libcset () function, 1066 
lwp_newstk () function, 1068 
lwp_perror () function, 1070 
lwp_ping () function, 1071 
lwp_resched () function, 1072 
lwp_resume () function, 1072 
1 wp _self ( ) function, 1071 
lwp_setpri () function, 1072 
lwp_setregs () function, 1071 
lwp_setstkcache () function, 1068 
lwp_sleep () function, 1072 
lwp_stkcswset () function, 1068 
lwp_suspend () function, 1072 
lwp_yield () function, 1072 



M 
m4 - macro processor, 288 
m68k - machine type truth value, 292 
roach-display Sun processor, 291 
machine-dependent values- values, 1031 
machine-machine communication line discipline - bk, 1196 
macro processor - m4, 288 
madd-multiple precision add, 932 
magic file - file command's magic numbers table, 1410 
magnetic tape 

backspace files - mt, 333 
backspace records - mt, 333 
copy - tcopy, 515 
erase - mt, 333 
forward space files- mt, 333 
forward space records - mt, 333 
get unit status - mt, 333 
interface- mtio, 1268 
manipulate - mt, 333 
place unit off-line - mt, 333 
retension - mt, 333 
rewind - mt, 333 
scan - tcopy, 515 
skip backward files- mt, 333 
skip backward records - mt, 333 
skip forward files - mt, 333 
skip forward records - mt, 333 
write EOF mark on - mt, 333 

magnetic tape ioctl's 
MTIOCGET-get tape status, 1269 
MTI OCTOP - tape operation, 1268 

magnify raster image - rastrepl, 408 
mail 

enroll for secret- enroll, 604 
print waiting- prmail, 362 
receive secret mail - enroll, 604 
send secret mail - xsend, 604 

mail - send and receive mail, 293 thru 304 
mail commands, 296 thru 300 

!, 296 
f,296 
=,296 
?,296 
I, 298 
alias, 296 
alternates, 296 
cd, 296 
chdir, 296 
copy, 296 
Copy, 297 
delete, 297 
dis ca rd, 297 
dp, 297 
dt,297 
echo,297 
~dit, 297 
else, 298 
endif, 298 
exit, 297 
file, 297 
folder, 297 
folders, 297 

- 1833-

mail commands, continued 
followup, 297 
Followup, 297 
from, 297 
group, 296 
headers, 297 
help, 297 
hold, 298 
if, 298 
ignore, 297 
inc, 298 
list, 298 
load, 298 
mail, 298 
mbox, 298 
new, 298 
next, 298 
pipe, 298 
preserve, 298 
print, 298 
Print, 299 
quit, 299 
reply, 299 
Reply, 299 
Replyall, 299 
replysender, 299 
respond, 299 
Respond, 299 
save, 299 
Save, 299 
set, 299 
shell, 299 
size, 299 
source, 299 
top, 299 
touch, 300 
type, 298 
Type, 299 
undelete, 300 
unread, 298 
unset, 300 
version, 300 
visual, 300 
write, 300 
xit,297 
z,300 

mail delivery server- sendmail, 1758 
mail environment variables 

HOME, 300 
MAIL, 300 
MAILRC, 300 

mai 1, forwarding messages, 300 
mail mail command, 298 
MAIL mail environment variable, 300 
mail services 

biff - mail notifier, 45 
binmail -version 7 mail, 46 
who is mail from- from, 194 

mai 1 tilde escapes, 294 thru 295 
-! , 294 

, 294 
-· ,294 
-< , 295 

lndex-Conlinued 



Index - Continued 

mail tilde escapes, continued 
-? , 294 

, 294 
-I ,295 
-A , 294 
-b , 295 
-c , 295 
-d , 295 
-e , 295 
-f , 295 
-h , 295 
-i , 295 
-m , 295 
-p , 295 
-q , 295 
-r , 295 
-s , 295 
-t , 295 
-v , 295 
-w , 295 
-x , 295 

mail utilities 
comsa t - biff server, 1599 
create aliases database - newaliases, 1699 
statistics- mailstats, 1666 

mail variable, 109, 454 
mail variables, 300 thru 303 

allnet, 301 
alwaysignore, 301 
append, 301 
askcc, 301 
asksub, 301 
autoprint, 301 
bang, 301 
cmd, 301 
conv, 301 
crt, 301 
DEAD, 301 
debug, 301 
dot, 301 
EDITOR, 302 
escape, 302 
folder, 302 
header, 302 
hold, 302 
ignore, 302 
ignoreeof, 302 
indentprefix,302 
keep, 302 
keepsave, 302 
LISTER, 302 
MBOX,302 
metoo, 302 
no, 302 
onehop, 302 
outfolder, 302 
page, 302 
PAGER, 302 
prompt, 302 
quiet, 303 
record, 303 
replyall, 303 
save, 303 
sendmail, 303 

-1834-

mail variables, continued 
sendwai t, 303 
SHELL, 303 
showto, 303 
sign, 303 
toplines, 303 
verbose, 303 
VISUAL, 303 

MAILCHECK variable - sh, 454 
MAILPATH variable - sh, 454 
MAILRC mail environment variable, 300 
mailstats - mail delivery statistics, 1666 
mailtool-SunView mail interface, 305 
maintain programs - make, 311 thru 324, 355 thru 361 
maintenance and operation, 1569 
make 

delta, SCCS - delta, 144 
directory - mkdir, 328 
fifo - mknod, 1674 
file system- mkfs, 1673 
hard link to file - ln, 265 
implicit rules, list of - /usr/include/make/default.mk, 319 
named pipe- mknod, 1674 
new file system- newfs, 1700 
SCCS delta- delta, 144 
special file, 702 
special file- mknod, 1674 
symbolic link to file - ln, 265 
system log entry - logger, 271 
system log entry- syslog, 368 
system special files- makedev, 1668 

make - build programs, 311 thru 324, 355 thru 361 
make directory, 700 
make hard link to file, 696 
makedbm - make Yellow Pages dbm file, 1667 
makedev - make system special files, 1668 
makekey - generate encryption key, 1669 
malloc - allocate memory, 925 
mal loc _ debug - set debug level, 926 
malloc _verify-verify heap, 926 
man - online display of reference pages, 325 
-man - macros to format manual pages, 1560 
manipulate Internet addresses, 893 
manipulate magnetic tape - mt, 333 
manual pages 

create cat files for- catman, 1593 
describe command- what is, 593 

map memory pages - mmap, 704 
mask, set current signal - sigsetmask, 765 
mathematical functions 

acos, 1106 
a int - convert to integral floating, 1102 
anint - convert to integral floating, 1102 
asin, 1106 
atan, 1106 
atan2, 1106 
ceil - convert to integral floating, 1102 
cos, 1106 
cosh, 1088 
exp - exponential, 1086 
floor -convert to integral floating, 1102 



mathematical functions, continued 
gamma, 1098 
hypot, 1089 
irint -convert to integer, 1102 
jO, 1084 
jl, 1084 
jn, 1084 
1 og - natural logarithm, 1086 
1 og 1 O - logarithm, base I 0, I 086 
log2 -logarithm, base 2, 1086 
nint - convert to integer, 1102 
pow - raise to power, 1086 
rint - convert to integral floating, 1102 
sin, 1106 
sinh, 1088 
tan, 1106 
tanh, 1088 
yO, 1084 
yl, 1084 
yn, 1084 

mathematical library functions, introduction to, 1081 
matherr - math library exception-handline function, 1099 
max_normal () function, 1097 
max_ subnormal (} function, 1097 
mbio - Multibus 1/0 space, 1261 thru 1262 
mbmem- Multibus memory space, 1261 thru 1262 
mbox mail command, 298 
MBOX mail variable, 302 
mc68881version-display MC68881 version, 1670 
mconnect - open connection to remote mail server, 1671 
mcp - Sun MCP Multiprotocol Communications Processor, 1258 
mdi v - multiple precision divide, 932 
-me - macro package, 1563 
mem-main memory space, 1261 thru 1262 
memalign - allocate aligned memory, 925 
memccpy- copy memory character strings, 928 
memchr - index memory characters, 928 
memcmp compare memory characters, 928 
memcpy copy memory character fields, 928 
memory allocation debugging 
memory diagnostics - sysdiag, 1772 
memory image file format - core, 1378 
memory images 

kmem-kemel memory space, 1261 thru 1262 
mbio - Multibus 1/0 space, 1261 thru 1262 
mbmem- Multibus memory space, 1261 thru 1262 
mem - main memory space, 1261 thru 1262 
virtual -virtual address space, 1261 thru 1262 
vme16- VMEbus 16-bit space, 1261 thru 1262 
vme16dl6-VMEbus address space, 1261 thru 1262 
vme16d32 - VMEbus address space, 1261 thru 1262 
vme24 - VMEbus 24-bit space, 1261 thru 1262 
vme24dl 6- VMEbus address space, 1261 thru 1262 
vme24d32 - VMEbus address space, 1261 thru 1262 
vme32dl 6 - VMEbus address space, 1261 thru 1262 
vme32d32 - VMEbus address space, 1261 thru 1262 

memory management, 925 thru 926 
alloca - allocate on stack, 926 
brk - set data segment break, 638 
callee - allocate memory, 925 
cf ree - free memory, 925 

- 1835 -

memory management, continued 
free -free memory, 925 
getpagesize, 678 
malloc- allocate memory, 925 

Index - C onl inued 

malloc debug - set debug level, 926 
malloc - verify- verify heap, 926 
memalign-allocate aligned memory, 925 
mmap, 704 
mprotect, 709 
munmap, 717 
realloc - reallocate memory, 925 
sbrk-change data segment size, 638 
valloc - allocate aligned memory, 926 

memory management debugging 
memory operations, 928 
memset assign to memory characters, 928 
sort and collate lines - sort, 470 
merge files - paste, 380 
mesg - permit or deny messages, 327 
message 

receive from socket- recv, 739 
send from socket- send, 751 

message control operations 
msgctl, 710 
msgget, 712 
msgsnd, 713 

messages 
permit or deny - mesg, 327 
system error, 940 
system signal, 948 

metacharacters in C shell, 97 
metoo mail variable, 302 
mfree - release multiple precision storage, 932 
mille-Mille Bomes game, 1528 
min - multiple precision decimal input, 932 
min_normal (} function, 1097 
min_subnormal () function, 1097 
min core (} function, 699 
MINSTACKSZ (} function, 1068 
miscellaneous information, 1547 
miscellaneous noninformation, 1547 
mkdir, 700 
mkdir - make directory, 328 
mkfile command, 1672 
mkf s - make file system, 1673 
mknod, 702 
mknod - make special file, 1674 
mkproto - make prototype file system, 1675 
mkstr -create C error messages, 329 
mktemp - make unique file name, 929 
mmap, 704 
modes, change permission - chmod, 65 
modf - split into integer part and fraction part, 1087 
modload command, 1676 
modstat command, 1677 
modunload command, 1678 
mon _ break (} function, 1074 
mon_cond_enter (} function, 1074 
mon _ create (} function, 1074 
mon_destroy () function, 1074 



Index - Continued 

mon_enter () function, 1074 
mon _ enumerate () function, 1074 
mon _exit () function, 1074 
mon_waiters () function, 1074 
moncontrol - make execution profile, 930 
monitor - make execution profile, 930, 1074 
monitor program, 1679 
monitor traffic on the Ethernet, 1109 
monochrome frame buffer - bwone, 1197 
monochrome frame buffer - bwt wo, 1198 
monop- Monopoly game, 1531 
monstart up - make execution profile, 930 
moo game, 1533 
more - browse text file, 330 
mount, 706 
mount - mount filesystem, 1687 
mount file system- mount, 1687 
mount () function, 1112 
mountd - NFS mount server, 1690 
mounted file system table- mtab, 1396, 1412 
mouse - Sun mouse, 1263 
mouse - Sun mouse, 1264 
mout - multiple precision decimal output, 932 
move directory - mv, 334 
move file - mv, 334 
move file position - 1 seek, 698 
move - move current point, 941 
move print jobs - lpc, 1663 
mprotect, 709 
mrand4 8 - generate uniformly distributed random numbers, 836 
-ms - macro package, 1565 
msg_ enumrecv () function, 1077 
msg_ enumsend () function, 1077 
msg_recv () function, 1077 
MSG_ RECVALL ( ) function, 1077 
msg_ reply () function, 1077 
msg_ send () function, 1077 
msgctl, 710 
msgget,712 
msgsnd, 713 
msqrt - multiple precision exponential, 932 
msub - multiple precision subtract, 932 
msync function, 716 
mt - manipulate magnetic tape, 333 
mtab-mounted file system table, 1396, 1412 
mti -Systech MTI-800/1600 multi-terminal interface, 1266 thru 

1267 
mtio - general magnetic tape interface, 1268 
MT I OCGET - get tape status, 1269 
MTIOCTOP -tape operation, 1268 
mtox - multiple precision to hexadecimal string, 932 
mul t - multiple precision multiply, 932 
multiple columns, print in - pr, 388 
multiple precision integer arithmetic 

gcd, 932 
itom, 932 
madd, 932 
mdiv, 932 

- 1836-

multiple precision integer arithmetic, continued 
mfree, 932 
min,932 
mout, 932 
msqrt, 932 
msub, 932 
mtox, 932 
mult, 932 
pow, 932 
rpow, 932 
sdiv, 932 
xtom, 932 

munmap, 717 
mv - move or rename files or directory, 334 

N 
name of terminal, find - t t yname, 1024 
name server routines, Internet, 965 
name termination handler - on_ exit, 938 
named - internet domain name server daemon, 1691 
named pipe, make - mknod, 1674 
natural logarithm- log, 1086 
ncheck - convert i-numbers to filenames, 1693 
ndbootd daemon, 1694 
neqn - mathematical typesetting, 173 
netconf ig-pnp diskful boot service, 1695 
netgroup- network groups list, 1413 
netmasks -netmask data base, 1414 
net stat -display network status, 1696 
network 

copy files across - rep, 409 
rusers -who is logged in on local network, 430 
rwall -write to all users, 431 
rwho - who is logged in on local network, 432 

network byte order 
function to convert to host, 820 

network debugging- ping, 1709 
network entry, get- getnetent, 874 
network file system 

biod daemon, 1703 
nfsddaemon, 1703 

network file system daemons, 718 
network group entry 

get, 875 
network host entry, get- gethostent, 869 
network interface ioctl 's 

SIOCADDMULTI-setm/c address, 1227 
SIOCDELMULTI -delete m/c address, 1227 
SIOCGIFADDR- get ifnet address, 1226 
SIOCGIFCONF - get ifnet list, 1226 
s I OCG IFDSTADDR- get p-p address, 1226 
SIOCGIFFLAGS-get ifnet flags, 1226 
s I ocs IFADDR - set if net address, 1226 
SIOCSIFDSTADDR- set p-p address, 1226 
SIOCSIFFLAGS - set ifnet flags, 1226 
SIOCSPROMISC toggle promiscuous mode, 1227 

network interface parameters, configure- if conf ig, 1642 
network interface, introduction to, 1189 
network lock manager protocol, 1114 
network loopback interface- lo, 1256 
network packet routing device- routing, 1288 



network routing daemon - routed, 1743 
network rwall server- rwalld, 1752 
network service entry, get- getservent, 886 
network services status monitor files, 1438 
network status, display- net stat, 1696 
networks -network name data base, 1416 
new mail command, 298 
newaliases - make mail aliases database, 1699 
newf s - make new file system, 1700 
newgrp - change group ID of user, 335, 458 
newkey command, 1702 
next mail command, 298 
nextafter (} function, 1093 
next key - find next key, 830 
NFS directories to export- exports, 1389 
NFS exported directories- xtab, 1389 
NFS mount server - mountd, 1690 
NFS statistics, display- nfsstat, 1704 
NFS, network file system protocol, 1271 
nf sd daemon, 1703 
nf sstat -display network statistics, 1704 
nfssvc, 718 
nice command, 106,336 
nice - change priority of a process, 936 
nice - change priority of a process, System V, 1166 
nint -nint of, 1102 
NIT, Network Interface Tap, 1272 
nit buf, NIT buffering module, 1275 
nit - if, NIT device interface, 1277 
nit - pf, NIT packet filtering module, 1279 
nl-= number lines, 337 
nlist - get entries from symbol table, 937, 1167 
nm - display name list, 339 
no mail variable, 302 
nobeep variable, 109 
noclobber variable, 109 
noglob variable, 110 
nohup command, 106,342 
non-local goto 

non-local goto- longjmp, 989, 1177 
non-local goto - set j mp, 989, 1177 

noninformation miscellaneous, 1547 
information miscellaneous, 1547 
nonomatch variable, 110 
notify command, 106 
notify variable, 110 
nrand4 8 - generate uniformly distributed random numbers, 836 
nroff - document formatter, 344 
nroff utilities 

checknr - check nroff/troff files, 62 
col -filter reverse paper motions, 77 
colcrt -filter nroff output for CRT, 78 
nroff utilities, 146 
soelim-eliminate . so's, incorporate sourced-in files, 

469 
nslookup command, 1705 
ntohl - convert network to host long, 820 
ntohs -convert host to network short, 820 
null - null device, 1282 

- 1837 -

null-terminated strings 
compare- strcmp, 1001 
compare- strncmp, 1001 
concatenate - strcat, 1001 
concatenate- strncat, 1001 
copy- strcpy, 1001 
copy- strncpy, 1001 
index - index, 1001 
index- rindex, 1001 

Index - Continued 

reverse index- rindex, 1001 
number-convert Arabic numerals to English, 1534 
numbers 

convert to strings, 838 

0 
obj dump command, 346 
object code management 

a r - library maintenance, 24 
ran lib - make random library, 406 

object file 
find printable strings in- strings, 478 
size -find object file size, 465 
strip- strip symbols and relocation bits, 479 

object library 
find ordering for - !order, 277 

octal dump file - od, 348 
od - dump file, 348 
on - remote command execution, 373 
on exit - name termination handler, 938 
onehop mail variable, 302 
onintr command, 106 
online reference - man, 325 
open, 719 
open database- dbminit, 830 
open directory stream- opendir, 834 
open stream- fopen, 854 
open stream, System V - fopen, 1160 
opendir - open directory stream, 834 
openlog -initialize system log file, 1011 
openpl - open plot device, 941 
optarg () function, 876 
opt ind () function, 876 
options on sockets 

get, 687 
set, 687 

organizer - get organizer, 374 
out folder mail variable, 302 
output conversion 

fprintf -convert to stream, 944 
fprintf - convert to stream, System V, 1168 
printf-convert to stdout, 944 
printf-convert to stdout, System V, 1168 
sprintf -convert to string, 944 
sprintf -convert to string, System V, 1168 

overview- take over screen w/ graphics, 375 
owner of file, change - chown, 1595 



Index - Continued 

p 
pac -printer/plotter accounting, 1708 
pack - pack files, 376 
packet routing device - routing, 1288 
packet routing ioctl 's 

SIOCADDRT-add route, 1288 
SIOCDELRT-delete route, 1288 

page - browse text file, 330 
page mail variable, 302 
page size, display- pagesize, 378 
page size, get- getpagesize, 678 
PAGER mail variable, 302 
pagesize-displaypage size, 378 
paging device - swapon, 778, 1213 
paging devices, specify - swapon, 1771 
paging system, advise- vadvise, 788 
parent process identification, get- getppid, 680 
parentheses, C shell command grouping, 97 
parser generator- yacc, 607 
Pascal language 

tags file - ctags, 115 
pass framebufferinfo ioctl - GPlIO_PUT_INFO, 1221 
passwd-change login password, 379 
pass wd - password file, 1417 
passwd. adjunct -password file, 1419 
passwd2des () function, 1124 
password 

change in Yellow Pages - yppasswd, 611 
change login- passwd, 379 
read- getpass, 878 
read, System V - get pass, 1163 

password file 
add entry- putpwent, 951 
edit- vipw, 1790 
get entry - endpwent, 882 
get entry, System V - endpwent, 1164 
get entry- fgetpwent, 882 
get entry, System V - f getpwent, 1164 
get entry - getpwent, 882 
get entry, System V - getpwent, 1164 
get entry- getpwnam, 882 
get entry, System V - getpwnam, 1164 
get entry- getpwuid, 882 
get entry, System V - getpwuid, 1164 
get entry - setpwent, 882 
get entry, System V- setpwent, 1164 
get entry- f setpwfile, 882 
get entry, System V - fgetpwent, 1164 

paste-horizontal merge, 380 
path variable, 110,454 
patterns, search in file for - grep, 218 
pause - stop until signal, 939 
peat - pack files, 376 
pclose -close stream to process, 943 
pdpl 1 - machine type truth value, 292 
peer name, get- getpeername, 679 
perfmeter-display performance statistics, 381 
performance monitoring - perfmeter, 381 

display call-graph profile data- gprof, 214 
prof -display program profile, 392 

-1838 -

performance monitoring- perfmeter, continued 
time - time command, 532 

periodic jobs table - crontab, 1381 
peripheral diagnostics - sy sdiag, 1772 
permissions, change mode - chmod, 65 
permit messages - mesg, 327 
permuted index, generate - ptx, 403 
perror- system error messages, 940 
pg - browse text file, 383 
phones - remote host phone numbers, 1420 
ping - debug network, 1709 
pipe, 722 
pipe mail command, 298 
pipeline, C shell, 97 
place magnetic tape unit off-line - mt, 333 
plot - graphics filters, 386 
plot - graphics interface files, 1421 
plot on Versatec - vplot, 584 
pnp - automatic network installation, 1115 
PNP 

pnpd - PNP daemon, 1711 
pnpboot - pnp diskless boot service, 1710 
pnpboot -pnp diskless boot service, 1710 
pnpboot -pnp diskless boot service, 1710 
pnpd- PNP daemon, 1711 
pod_ exit () function, 1064 
pod_getexit () function, 1064 
pod _getmaxpri () function, 1079 
pod _getmaxsize () function, 1079 
pod_setexit () function, 1064 
pod_ setmaxpri () function, 1079 
point -plot point, 941 
policies file, 1359 
poll function, 723 
popd command, 107 
popen - open stream to process, 943 
portmap - DARPA to RPC mapper, 1712 
position of directory stream- telldir, 834 
pow - multiple precision exponential, 932, 1086 
power function - pow, 1086 
pp, Sun386i parallel printer port, 1283 
bed-convert to antique media, 1502 
pr - prepare files for printing, 388 
praudit -display audit trail, 1713 
predefined variables, in C shell, 109 
prepare execution profile 

moncontrol- make execution profile, 930 
monitor - make execution profile, 930 
monstartup- make execution profile, 930 

prepare files for printing- pr, 388 
preserve mail command, 298 
pretty printer 

indent -formate source, 231 
vgrind- make formatted listings, 580 

colcrt command, 78 
primes game, 1535 
primitive system data types - types, 1480 
print 

print waiting mail- prmail, 362 



print, continued 
values from YP database - ypcat, 609 
working directory name - pwd, 404 

print bibliographic database- roffbib, 422 
print files 

lpr -print files, 280 
print mail command, 298 
Print mail command, 299 
printcap-printer capability data base, 1422 
printenv-display environment, 391 
printer 

abort- lpc, 1662 
clean queue - lpc, 1662 
control- lpc,1662 
daemon - 1 pd, 1664 
disable queue - lpc, 1662 
lpq - display queue, 278 
enable queue- lpc, 1662 
move jobs - lpc, 1663 
remove jobs from queue - lprm, 283 
restart - 1 pc, 1662 
start- lpc, 1662 
status of- lpc, 1663 
stop - lpc, 1663 
take printer down- lpc, 1662 

printer interface 
vp - Ikon 10071-5 Versatec parallel printer interface, 1326 
vpc -Systech VPC-2200 Versatec/Centronics interface, 

1327 
printer/plotter accounting, 1708 
printf -formatted output conversion, 944 
printf -format to stdout, System V, 1168 
priority 

get, 681 
set, 681 

priority of process- nice, 936 
priority of process, System V - nice, 1166 
prrnail - print waiting mail, 362 
procedure calls, assembler, expand in-line, inline, 236 
process 

and child process times, System V - times, 1185 
change priority- renice, 1728 
create, 661 
display status - ps, 399 
get core image of, 202 
get identification - getpid, 680 
get times- times, 1017 
initiate 1/0 to or from, 943 
priority- nice, 936 
priority, System V - nice, 1166 
send signal to - ki 11, 693 
software signals - sigvec, 767 thru 110 
terminate- kill, 247,655 
terminate and cleanup- exit, 844 
tracing - ptrace, 726 
wait - wait process completion, 589 

process block ioctl - DESIOCBLOCK, 1210 
process group 

get- getpgrp, 753 
send signal to - kill pg, 695 
set- setpgrp, 753 

process quickly ioctl - DESIOCQUICK, 1210 

-1839-

processes and protection 
execve, 652 
exit, 655 
fork, 661 
getdornainname, 668 
getegid, 670 
geteuid, 691 
getgid, 670 
getgroups, 671 
gethostid, 672 
gethostname, 673 
getpgrp, 753 
getpid, 680 
getppid, 680 
getuid, 691 
ptrace, 726 
setdornainname, 668 
setgroups, 671 
sethostname, 673 
setpgrp, 753 
setregid, 754 
setreuid, 755 
vfork, 789 
vhangup, 790 
wait, 791 
wait3, 791 
wait4, 791 

prof -profile within a function, 947 
prof - display program profile, 392 
profil, 725 
profile 

display call-graph - gprof, 214 
profile, execution- monitor, 930 
profiling 

prof - display program profile, 392 
prof, 947 
program verification- assert, 813 

Index - Continued 

program verification, System V - assert, 1131 
programming languages 

analyze and disperse compiler error messages, 175 
assembler, 27 
cc - C compiler, 52 
cpp - C preprocessor, 89 
cxref - cross reference C program, 123 
lex - generate lexical analyzer, 258 
lint -C program verifier, 261 
vgrind-make formatted listings, 580 
xstr - extract strings from C code, 605 

programming tools 
adb-debug tool, 13 
be - calculator language, 43 
cflow - code flow graph, 60 
compiler generator, 351 
eta gs - create tags file, 115 
ctrace -display program trace, 117 
dbx - source debugger, 126 
dbxtool - debugger, 135 
display call-graph profile data- gprof, 214 
indent - format C source, 231 
install - install files, 240 
ld-link editor, 250 
lex - generate lexical analyzer, 258 
lint -C program verifier, 261 



Index - Continued 

programming tools, conJinued 
lorder- find ordering for object library, 277 
m4 - macro processor, 288 
maintain object libraries, 24 
make- build programs, 311 thru 324,355 thru 361 
mkstr-create C error messages, 329 
nm - display name list, 339 
prof - display program profile, 392 
ranlib - make random library, 406 
sccs - source code control system, 434 
size -find object file size, 465 
strings -find printable strings in binary file, 478 
strip- strip symbols and relocation bits, 479 
tcov- code coverage tool, 516 
time - time command, 532 
touch- update last modified date of file, 541 
unifdef - eliminate # if de f's from C input, 560 
yacc - parser generator, 607 

programs, introduction, 3 
PROM monitor program, 1679 
PROM monitor program, display and load program - eeprom, 

1617 
prompt mail variable, 302 
prompt variable, 110 
protocol entry 

get, 879 
protocol specifications, 1107 
protocols-protocol name data base, 1425 
protocols, introduction to, 1189 
provide truth values- true, 550 
prs -display SCCS history, 394 
prt - display SCCS history, 397 
ps - display process status, 399 
PS 1 variable - sh, 454 
PS2 variable- sh, 454 
psignal - system signal messages, 948 
ps tat - display system statistics, 1714 
pti -(old) troff interpreter, 363 
ptrace, 726 
ptx - generate permuted index, 403 
pt y -pseudo-terminal driver, 1284 thru 1286 
publickey file, 1426 
push character back to input stream - ungetc, 1028 
pu shd command, 107 
put character to stdout- putchar, 949 
put character to stream - fput c, 949 
put character to stream- putc, 949 
put string to stdout- puts, 952 
put string to stream - f puts, 952 
put word to stream- putw, 949 
putc - put character on stream, 949 
putchar -put character on stdout, 949 
putenv - set environment value, 950 
putmsg () function, 730 
putpwent - add password file entry, 951 
puts -put string to stdout, 952 
putw - put word on stream, 949 
pwck - check password database entries, 1718 
pwd - print working directory name, 404, 458 
pwdauth () function, 953 

-1840-

pwdauthd daemon, 1719 

Q 
qsort -quicker sort, 954 
queue 

a tq - display delayed execution, 31 
lpq- display printer, 278 
insert element in - in sque, 896 
remove element from - remque, 896 
remove jobs from delayed execution - atrm, 32 
remove jobs from printer - lprm, 283 

queue def s file, 1427 
quick substitution - in C shell, 99 
quicker sort- qsort, 954 
quiet mail variable, 303 
quiet_nan () function, 1097 
quit mail command, 299 
quiz - test knowledge, 1536 
quot - summarize file system ownership, 1720 
quota - display disk usage and limits, 405 
quota check - check quota consistency, 1721 
quotactl -disk quotas, 732 
quota off - tum file system quotas off, 1722 
quota on - tum file system quotas on, 1722 
quotas 

edquota - edit user quotas, 1616 
quota check - check quota consistency, 1721 
quota off - tum file system quotas off, 1722 
quota on - tum file system quotas on, 1722 
repquota - summarize quotas, 1729 
rquotad - remote quota server, 1747 

R 
rain - display raindrops, 1537 
rand- generate random numbers, 955 
rand- generate random numbers, System V, 1171 
random-generate random number, 956 
randomgame, 1538 
random number generator 

drand4 8, 836 
erand48, 836 
initstate, 956 
j rand4 8, 836 
lcong48, 836 
lrand4 8, 836 
mrand4 8, 836 
nrand48, 836 
rand, 955 
random, 956 
seed48, 836 
set state, 956 
srand, 955 
srand48, 836 
srandom, 956 

random number generator, System V 
rand, 1171 
srand, 1171 

ranlib-make random library, 406 
rarpd - reverse Address Resolution Protocol daemon, 1723 
rasfilter8tol - convert 8-bit rasterfile to 1-bit rasterfile, 

407 



rasterfile, 1428 
ra st repl - magnify raster image, 408 
re - startup commands, 1724 
rcmd - execute command remotely, 958 
rep - remote file copy, 409 
rda t e - remote date, 1726 
rdist -remote file distribution, 411 
re_ comp - compile regular expression, 961 
re_ exec - execute regular expression, 961 
read, 734 
read command, 458 
read directory stream- readdir, 834 
read formatted 

f scanf - convert from stream, 984 
f scanf - convert from stream, System V, 1172 
scanf-convert from stdin, 984 
s canf - convert from stdin, System V, 1172 
s scanf - convert from string, 984 
sscanf-convert from string, System V, 1172 

read from stream - f read, 855 
read mail - mail, 293 thru 304 
read password- getpass, 878 
read password, System V - get pass, 1163 
read scattered- readv, 734 
read/write pointer, move - 1 seek, 698 
readdir - read directory stream, 834 
readlink, 737 
readonly command, 459 
real group ID 

set, 754 
real group ID, set- setrgid, 991 
real user ID 

get- getuid, 691 
set- setreuid, 755 

real user ID, set- setruid, 991 
realloc-reallocate memory, 925 
reallocate memory - realloc, 925 
realpath () function, 960 
reboot - halt processor, 738 
reboot - system startup procedures, 1727 
reboot system- fastboot, 1624 
rebuild Yellow Pages database - ypmake, 1794 
receive message from socket, 739 
receive secret mail - enroll, 604 
reconfigure fb ioctl - GPlIO REDIRECT DEVFB 1221 
record mail variable, 303 - - ' 
recv - receive message from socket, 739 
recvf rom, 739 
recvmsg, 739 
ref er - insert literature references, 415 
regenerate programs - make, 311 thru 324, 355 thru 361 
regexp - regular expression compile and match routines, 962 
regular expressions 

compile -re_ comp, 961 
execute - re_ exec, 961 

rehash command, 107 
relational database operator - join, 245 
release blocked signals- sigpause, 764 
remainder () function, 1093 

-1841-

Index ConJ.inued 

remexportent () function, 845 
reminder services 

biff-mail notifier, 45 
calendar-reminder service, 49 
leave - remind you of leaving time, 257 

remote command execution - on, 373 
remote command, return stream to - rcmd, 958 
remote command, return stream to - rexec, 967 
remote execution protocol - rex, 1117 
remote execution server - rexecd, 1735 
remote - remote host descriptions, 1429 
remote file copy - rep, 409 
remote host 

number of users - rusers, 1118 
phone numbers - phones, 1420 
send file to - uusend, 571 

remote input editing ioctl - TIOCREMOTE, 1285 
remote kernel performance, 1120 
remote login 

rlogin, 418 
server- rlogind, 1737 

remote magtape protocol server - rmt, 1739 
remote procedure call services 

rquotad-remote quota server, 1747 
sprayd- spray server, 1767 

remote procedure calls, 968, 1044 
remote shell- rsh, 426 
remote shell server- rshd, 1748 
remote system 

connect to - cu, 533 
connect to - tip, 533 

remote users, number of- rnusers, 1118 
remove 

close-on-exec flag ioctl- FIONCLEX, 1219 
columns from file, 80, 121 
delayed execution jobs- atrm, 32 
remove delta from SCCS file - rmdel, 421 
directory- rmdir, 420, 743 
directory entry - unlink, 785 
element from queue - remque, 896 
file - rm, 420 
file system - unmount, 786 
filename affixes - basename, 42 
nroff, troff, tbl and eqn constructs - deroff, 

146 
printjobs- lprm, 283 
repeated lines- uniq, 561 

remque - remove element from queue, 896 
rename directory - mv, 334 
rename file - mv, 334, 741 
ren ice - change process priority, 1728 
reopen stream - f reopen, 854 
reopen stream, System V - f reopen, 1160 
repeat command, 107 
reply mail command, 299 
Reply mail command, 299 
replyall mail variable, 303 
Replyall mail command, 299 
reply sender mail command, 299 
report file system quotas - repquota, 1729 



Index - Continued 

reposition stream 
fseek, 856 
ftell, 856 
rewind, 856 

repquota - summarize quotas, 1729 
res ini t - Internet name server routines, 965 
res - mkquery- Internet name servers, 965 
res - send - Internet name server routines, 965 
res;t - reset terminal bits, 551 
reset terminal bits - reset, 551 
resolve. conf file-name server initialization info, 1431 
resource consumption, control- vlimi t, 1034 
resource control 

getrlimit, 682 
getrusage, 684 
setrlimit, 682 

resource controls 
getpriority, 681 
setpriority, 681 

resource usage, get information about- vtimes, 1037 
resource utilization, get information about- getrusage, 684 
respond mail command, 299 
Respond mail command, 299 
restart GP ioctl- GPlIO_CHK GP, 1221 
restart printer- lpc, 1662 
restore-restore file system, 1730 
restore file system - restore, 1730 
restore frame buffer image - screenload, 442 
retension magnetic tape - mt, 333 
retrieve datum under key- fetch, 830 
return command, 459 
return stream to remote command - rcmd, 958 
return stream to remote command - rexec, 967 
return to saved environment- longjmp, 989, 1177 
rev-reverse lines in file, 417 
reverse index strings- rindex, 1001 
reverse lines in file - rev, 417 
rewind directory stream - rewinddir, 834 
rewind - rewind stream, 856 
rewind magnetic tape - mt, 333 
rewind stream - rewind, 856 
rewinddir - rewind directory stream, 834 
rexd - remote execution daemon, 1734 
rexec - return stream to remote command, 967 
rexecd - remote execution server, 1735 
. rgb file, 1360 
rindex -find character in string, 1001 
rint -rintof, 1102 
rlogin-remote login, 418 
rlogind-remote login server, 1737 
rm-remove file or directory, 420 
rmai 1 - process remote mail, 1738 
rmdel - remove delta from SCCS file, 421 
rmdir-remove directory, 743 
rmdir - remove directory, 420 
rmt - remote magtape protocol server, 1739 
robots game, 1539 
rof fbib-print bibliographic database, 422 
root directory, change - chroot, 644 

- 1842-

root directory, change for a command - chroot, 1596 
root, Sun386i root disk device, 1287 
route -manipulate routing tables, 1741 
routed - network routing daemon, 1743 
routing - local network packet routing, 1288 
routing ioctl 's 

SIOCADDRT-add route, 1288 
SIOCDELRT-delete route, 1288 

RPC routines, 968, 1044 
RPC 

generate protocols - rpcgen, 424 
report RPC information - rpcinf o, 1745 

RPC library functions, introduction to, 1107 
RPC program entry, get- get rpcent, 884 
rpc - rpc name data base, 1432 
RPC protocol specifications, 1107 
rpcgen - generate RPC protocol, C header files, and server 

skeleton, 424 
rpcinfo-reportRPC information, 1745 
rpow - multiple precision exponential, 932 
rquota () function, 1119 
rquotad- remote quota server, 1747 
rresvport -get privileged socket, 958 
r sh - remote shell, 426 
rshd-remote shell server, 1748 
rstat -performance data from remote kernel, 1120 
rstatd-kernel statistics server, 1750, 1751 
rtime () function, 982 
rup - display status of network hosts, 428 
ruptime -display status of local hosts, 429 
ruserok - authenticate user, 958 
rusers -who is logged in on local network, 430 
rwall -write to specified remote machines, 1121 
rwalld- network rwall server, 1752 
rwho - who is logged in on local network, 432 
rwhod - system status server, 1753 

s 
sa -process accounting summary, 1755 
SAMECV () function, 1058 
SAMEMON () function, 1074 
SAME THREAD () function, 1064 
save mail command, 299 
save mail variable, 303 
save stack environment- setjmp, 989, 1177 
savecore - save OS core dump, 1757 
savehist variable, 110 
sbrk-change data segment size, 638 
s ca lb () function, 1096 
scalbn () function, 1093 
scan directory- alphasort, 983 
scan directory- scandir, 983 
scandir -scan directory, 983 
scanf -convert from stdin, 984 
scanf - convert from stdin, System V, 1172 
scatter read - readv, 734 
s cc s - source code control system, 434 
SCCS commands 



SCCS commands, continued 
ad.min- administer SCCS, 21 
cdc - change delta commentary, 58 
comb- combine deltas, 81 
get - get SCCS file, 203 
help - get secs help, 224 
cdc - display SCCS history, 394 
prt -display SCCS history, 397 
rmdel - remove delta, 421 
sact -display SCCS file editing status, 433 
sccsdif f - compare versions of SCCS file, 438 
unget - unget SCCS file, 559 
val - validate SCCS file, 578 

SCCS delta 
change commentary, 58 
combine, 81 
create- delta, 144 
remove - rmdel, 421 

sccsdiff -compare versions of SCCS file, 438 
sccsfile -SCCS file format, 1433 
schedule signal- alarm, 812, 1026 
scheduling priority 

get, 681 
set, 681 

screen fonts, edit- fontedit, 190 
screen-oriented editor - vi, 582 
screenblank - tum of idle screen, 439 
screendump- dump frame buffer image, 440 
s creenload- load frame buffer image, 442 
script - make script of terminal session, 444 
sd-Adaptec ST-506 Disk driver, 1289 thru 1290 
sdiff- side-by-side compare, 445 
sdi v - multiple precision divide, 932 
search for files, 183 
search for pattern in file- grep, 218 
search functions 

bsearch binary search, 816 
hsearch - hash table search, 891 
1 search - linear search and update, 923 

seconvert - convert number to ASCII, 838 
secret mail 

enroll for- enroll, 604 
receive - enroll, 604 
send - xsend, 604 

sed - stream editor, 446 
seed4 8 - generate uniformly distributed random numbers, 836 
seek in directory stream- seekdir, 834 
seek on stream - f seek, 856 
seekdir- seek in directory stream, 834 
select, 744 
selection, copy to standard output- get_selection, 208 
selection_svc, 451 
semaphore 

control- semctl,746 
get set of - semget, 748 
operations - semop, 749 

semctl - semaphore controls, 746 
semget - get semaphore set, 748 
semop - semaphore operations, 749 
send 

- 1843-

send, continued 
file to remote host - uu send, 571 
message from socket- send, 751 
secret mail- xsend, 604 
signal to process- kill, 247,693 
signal to process group - kill pg, 695 

lndex-Con1inued 

send a keyboard command ioctl- KIOCCMD, 1236 
send and receive mail- mail, 293 thru 304 
sendmail aliases file- aliases, 1367 
send.mail - mail delivery system, 1758 
sendmail aliases file- . forward, 1367 
send.mail mail variable, 303 
send.mag - send message over socket, 751 
sendto - send message to socket, 751 
sendwai t mail variable, 303 
serial communications driver- zs, 1335 thru 1336 
servers 

comsa t - biff server, 1599 
ftpd- Internet File Transfer Protocol, 1632 
inetd - Internet server daemon, 1644 
lockd - network lock daemon, 1660 
mountd- mount request server, 1690 
named - internet domain name server daemon, 1691 
pnpd- PNP daemon, 1711 
rexecd - remote execution server, 1735 
r log ind - remote login server, 1737 
r shd - remote shell server, 1748 
rstatd-kemel statistics server, 1750, 1751 
rwalld- network rwall server, 1752 
rwhod - system status server, 1753 
statd- network status monitor, 1768 
talkd - talk program server, 1774 
timed-DARPA Time server, 1781 
tnamed - DARPA Trivial name server, 1782 
yppasswdd- Yellow Pages password server, 1795 

service entry, get- getservent, 886 
set 

arp entry ioctl - SIOCSARP, 1194 
close-on-exec for fd ioctl- FIOCLEX, 1219 
current domain name - domainname, 157 
current host name, 227 
current signal mask- sigsetmask, 765 
date and time - gettimeofday, 689 
disk geometry ioctl - OKI OCSGEOM, 1211 
disk partition info ioctl - DKIOCSPART, 1211 
environment value- putenv, 950 
file creation mode mask- umask, 783 
file owner ioctl - FIOSETOWN, 1219 
high water mark ioctl- SIOCSHIWAT, 1304 
ifnet address ioctl- SIOCSIFADDR, 1226 
ifnet flags ioctl- SIOCSIFFLAGS, 1226 
line discipline ioctl - TI OCSETD, 1196 
low water mark ioctl - SIOCSLOWAT, 1304 
m/c address ioctl- SIOCADDMULTI, 1227 
memory management debug level - malloc _ debug, 926 
name of current host, 227 
network group entry- setnetgrent, 875 
network service entry- getservent, 886 
p-p address ioctl- SIOCSIFDSTADDR, 1226 
process domain name - setdomainname, 668 
RPC program entry- setrpcent, 884 
scheduling priority- set priority, 681 



Index - Continued 

set, continued 
signal stack context- sigstack, 766 
terminal characteristics - stty, 480 
terminal characteristics - t set, 551 
terminal state - stty, 1009 
user limits- ulimit, 1027 
user mask- umask, 783 

set command, 107, 459 
set high water mark ioctl - SIOCSHIWAT, 1325 
set keyboard "direct input" state ioctl - KIOCSDIRECT, 

1236 
set keyboard translation ioctl - KIOCTRANS, 1235 
set low water mark ioctl- SIOCSLOWAT, 1325 
set mail command, 299 
set options sockets, 687 
seUclear 

async 1/0 ioctl - FIOASYNC, 1219 
non-blocking 1/0 ioctl - FIONBIO, 1219 
packet mode (pty) ioctl- TIOCPKT, 1285 

setac () function, 859 
setuseraudit () function, 756 
setbuf - assign buffering, 987 
setbuf - assign buffering, System V, 1175 
setbuffer- assign buffering, 987 
setbuf fer- assign buffering, System V, 1175 
setdomainname - set process domain, 668 
setegid- set effective group ID, 991 
setenv command, 107 
seteuid- set effective user ID, 991 
setexportent () function, 845 
setf sent - get file system descriptor file entry, 865 
setgid - set group ID, 991 
setg id - set group ID, System V, 1179 
setgraent () function, 866 
setgrent - get group file entry, 867 
setgroups, 671 
sethostent - get network host entry, 869 
sethostname, 673 
seti timer, 674 
set jmp - save stack environment, 989, 1177 
setjmp-non-local goto, 989, 1177 
setkey - encryption, 822 
setkeys - change keyboard layout, 364 
setlinebuf - assign buffering, 987 
setlinebuf - assign buffering, System V, 1175 
closelog-setlog priority mask, 1011 
setmntent - get filesystem descriptor file entry, 872 
setnetent - get network entry, 874 
setnetgrent - get network group entry, 875 
setpgrp, 753 
setpriority, 681 
setprotoent -get protocol entry, 879 
setpwaent () function, 881 
setpwent -get password file entry, 882 
set pwent - get password file entry, System V, 1164 
fgetpwent -get password file entry, 882 
setregid, 754 
setreuid, 755 
setrgid- set real group ID, 991 

-1844-

setrlimit, 682 
setrpcent - get RPC entry, 884 
setruid-setreal user ID, 991 
setservent - get service entry, 886 
set sock opt, 687 
set state - random number routines, 956 
settimeofday, 689 
setttyent ( ) function, 887 
setuid- set user ID, 991 
setuid- set user ID, System V, 1179 
setup_client command, 1761 
setup_exec command, 1763 
setuseraudit () function, 756 
setusershell () function, 889 
setvbuf-assign buffering, 987 
set vbuf - assign buffering, System V, 1175 
sf convert - convert number to ASCII, 838 
sgconvert - convert number to ASCII, 838 
sh command, Bourne shell, 452 thru 460 
shared libraries 

display users of- ldd, 256 
shared memory 

control-shmctl,757 

shell 

get segment -shmget, 758 
operation -shmop, 760 

remote - rsh, 426 
shell command, issuing- system, 1013 
shell functions, Bourne, 453 
shell mail command, 299 
SHELL mail variable, 303 
shell variable, 110,455 
shell variables, in Bourne shell, 454 thru 455 
shell window 

cmdtool, 73 
shell tool, 461 

shell tool- shell terminal window, 461 
shift command, 107,459 
shift_lines - textedit selection filter, 529 
shmct 1 - shared memory control, 757 
shmget - get shared memory segment, 758 
shmop - get shared memory operations, 760 
showmount - display remote mounts, 1764 
showto mail variable, 303 
shutdown, 762 
shutdown - shut down multiuser operation, 1765 
si -Sun SCSI Disk driver, 1289 thru 1290 
sigblock, 763 
sigfpe function 

sigfpe () function, 992 
siginterrupt -interrupt system calls with software signal, 

994 
sign mail variable, 303 
login - sign on, 272 

to remote machine- rlogin, 418 
sign-on last- last, 248 
signal 

schedule - alarm, 812, 1026 
stop until- pause, 939 



signal - software signals, 995, 998 
signal - software signals, System V, 1180 
signal handling, in C shell, 103 
signal messages 

psignal, 948 
sys_siglist, 948 

signaling_nan () function, 1097 
signals 

kill, 693 
killpg- send to process group, 695 
sigblock, 763 
sigpause, 764 
sigsetmask, 765 
sigstack-signal stack context, 766 

signbi t () function, 1093 
significand and exponent, split into - f rexp, 1087 
significand () function, 1096 
sigpause, 764 
sigsetmask, 765 
sigstack - signal stack context, 766 
sigvec -software signals, 767 thru 770 
sin -trigonometric sine, 1106 
single-precision versions of math functions, 1104 
sing le_ to_ decimal - decimal record from single-precision 

floating, 850 
sinh-hyperbolic sine, 1088 
SIOCADDMULTI - set m/c address, 1227 
SIOCADDRT- add route, 1288 
SIOCDARP-delete arp entry, 1194 
SIOCDELMULTI -delete m/c address, 1227 
SIOCDELRT-delete route, 1288 
SIOCGARP-get arp entry, 1194 
SIOCGHIWAT - get high water mark, 1304, 1325 
SIOCGIFADDR- get ifnet address, 1226 
SIOCGIFCONF-get ifnet list, 1226 
SI OCGIFDSTADDR - get p-p address, 1226 
SIOCGIFFLAGS- get ifnet flags, 1226 
SIOCGLOWAT - get low water mark, 1304, 1325 
SIOCSARP -set arp entry, 1194 
SIOCSHIWAT- set high water mark, 1304, 1325 
SIOCSIFADDR-set ifnet address, 1226 
SIOCSIFDSTADDR- set p-p address, 1226 
SIOCSIFFLAGS- set ifnet flags, 1226 
SIOCSLOWAT- set low water mark, 1304, 1325 
SI OCSPROMI SC - toggle promiscuous mode, 1227 
size - find object file size, 465 
size mail command, 299 
skip backward magnetic tape files - mt, 333 
skip backward magnetic tape records - mt, 333 
skip forward magnetic tape files - mt, 333 
skip forward magnetic tape records - mt, 333 
sleep- suspend execution, 466 
sleep- suspend execution, 997, 1182 
sm, file, 1437 
SMD disk controller 

xy - Xylogics 450, 1332 thru 1333 
xy - Xylogics 451, 1332 thru 1333 
xd- Xylogics 7053, 1329 thru 1330 

smoothing, interpolate curve- spline, 476 

-1845-

snake - display chase game, 1541 
snap command, 467 
socket, 771 
socket 1/0, see sockio(4), 1291 
socket operations 

async daemon, 718 
bind, 636 
connect, 647 
get peername, 679 
get sockname, 686 
get sock opt, 687 
listen, 697 
nfssvc, 718 
recv, 739 
recvf rom, 739 
recvmsg, 739 
send, 751 
sendmsg, 751 
sendto, 751 
set sock opt, 687 
shutdown, 762 
socket, 771 
socketpair, 773 

socketoperations,acceptconnection 
accept, 628 

socket options 
get, 687 
set, 687 

Index - C onJ inued 

socket pair create connected socket pair, 773 
soelim-eliminate .so's from nroff input, 469 
interrupt system calls with software signal- siginterrupt, 

994,995,998 
software signal- signal, System V, 1180 
sort bibliographic database- sortbib, 473 
sort - sort and collate lines, 470 
sort and collate lines - sort, 470 
sort quicker - qsort, 954 
sort topologically - t sort, 555 
sortbib - sort bibliographic database, 473 
sorted file 

find lines in - look, 275 
remove repeated lines- uniq, 561 

source code control system- secs, 434 
source command, 107 
source mail command, 299 
space - specify plot space, 941 
spaces, to tabs - unexpand, 179 
spare -machine type truth value, 292 
spawn process, 789 
special characters for equations - eqnchar, 1550 
special file 

make, 702 
make - mknod, 1674 

special files - makedev, 1668 
specify paging/swapping device - swapon, 778 
spell -check spelling, 474 
spellin - check spelling, 474 
spellout -check spelling, 474 
spheres demo - graphics demo, 1521 
spline-interpolate smooth curve, 476 



Index - Continued 

split - split file into pieces, 477 
split into significand and exponent- frexp, 1087 
spray- spray packets, 1766 
spray() function, 1123 
sprayd- spray server, 1767 
sprintf-formatted output conversion, 944 
sprintf -format to string, System V, 1168 
sqrt -square root function, 1105 
srand- generate random numbers, 955 
srand- generate random numbers, System V, 1171 
srandom- generate random number, 956 
s s canf - convert from string, 984 
s s canf - convert from string, System V, 1172 
st - Sysgen SC 4000 (Archive) Tape Driver, 1292 thru 1293 
stand-alone utilities 

kadb- kernel debugger, 1653 
standard 1/0 library functions, introduction to, 999, 1183 
standard output 

copy to many files - tee, 517 
start output (like control-Q) ioctl - TIOCSTART, 1285 
start printer- lpc, 1662 
startup procedures- boot, 1586, 1650, 1727 
stat - obtain file attributes, 774 
statd- network status monitor, 1768 
state of terminal 

get- gtty, 1009 
set- stty, 1009 

statfs - obtain file system statistics, 776 
static file system information - fstab, 1396 
statistics 

1/0- iostat, 1651 
of file system- fstatfs, 776 
of file system- statfs, 776 
profil, 725 
rstatd- kernel statistics server, 1750, 1751 

statisticsofNFS,display- nfsstat, 1704 
status monitor files for network services, 1438 
status monitor protocol, 1122 
status of network 

display- netstat, 1696 
status of printer - lpc, 1663 
status variable, 110 
stdin 

get character- getchar, 861 
get character, System V - getchar, 1162 
get string from - gets, 885 
input conversion - s canf, 984 
input conversion, System V - scanf, 1172 

stdout 
output conversion, System V - printf, 1168 
put character to - put char, 949 

sticky bit - chmod, 640 
sticky directory, 1769 
STKTOP () function, 1068 
stop command, 107 
stop output (like control-S) ioct 1 - TI OCSTOP, 1285 
stop printer - 1 pc, 1663 
stop processor, 738 
stop processor- halt, 1639 
stop until signal - pause, 939 

-1846-

storage allocation, 925 thru 926 
alloca - allocate on stack, 926 
calloc-allocate memory, 925 
cf ree - free memory, 925 
free-free memory, 925 
malloc-allocate memory, 925 
malloc debug-set debug level, 926 
malloc-verify-verify heap, 926 
memalign- allocate aligned memory, 925 
realloc - reallocate memory, 925 
valloc-allocate aligned memory, 926 

storage management, 925 thru 926 
storage management debugging 
store datum under key - store, 830 
store - store datum under key, 830 
strcat -concatenate strings, 1001 
index -find character in string, 1001 
strcmp-compare strings, 1001 
strcpy- copy strings, 1001 
strcat -duplicate string, 1001 
stream 

f open - open stream, System V, 1160 
assign buffering- setbuf, 987 
assign buffering, System V - setbuf, 1175 
assign buffering - setbuff er, 987 
assign buffering, System V - setbuf fer, 1175 
assign buffering- setlinebuf, 987 
assign buffering, System V - setlinebuf, 1175 
assign buffering - set vbuf, 987 
assign buffering, System V - set vbuf, 1175 
associate descriptor- f do pen, 854 
associate descriptor, System V - fdopen, 1160 
close - f close, 847 
flush- fflush, 847 
fprintf -format to stream, System V, 1168 
get character- fgetc, 861 
get character, System V - fgetc, 1162 
get character- getc, 861 
get character, System V - getc, 1162 
get character- getchar, 861 
get character, System V - get char, 1162 
get position of- ftell, 856 
get string from - f gets, 885 
get word - getw, 861 
get word, System V - getw, 1162 
input conversion - scanf, 984 
input conversion, System V - scanf, 1172 
open - f open, 854 
output conversion, System V - print£, 1168 
printf-format to stdout, System V, 1168 
push character back to - unget c, 1028 
put character to - f putc, 949 
put character to- putc, 949 
put string to - puts, 952 
put string to - f puts, 952 
put word to - putw, 949 
read from stream- fread, 855 
reopen - f reopen, 854 
reopen, System V- freopen, 1160 
reposition - rewind, 856 
return to remote command - rcmd, 958 
return to remote command - rexec, 967 
rewind - rewind, 856 



stream, continued 
write to stream- fwrite, 855 
seek- fseek, 856 
sprintf -format to string, System V, 1168 

stream editor - s ed, 446 
stream status enquiries 

clearerr - clear error on stream, 849 
clearerr - clear error on stream, System V, 1159 
f eof - enquire EOF on stream, 849 
feof-enquire EOF on stream, System V, 1159 
f error- inquire error on stream, 849 
f error - inquire error on stream, System V, 1159 
f ileno - get stream descriptor number, 849 
f ileno - get stream descriptor number, System V, 1159 

stream, formatted output 
fprintf -format to stream, System V, 1168 
printf - format to stdout, System V, 1168 
sprintf-format to string, System V, 1168 

streaming 1/4-inch tape drive - ar, 1193 
STREAMS 

clone device driver, 1203 
1/0, see streamio(4), 1294 
ldterm terminal module, 1252 
NIT, Network Interface Tap, 1272 
nit buf, NIT buffering module, 1275 
nit -if, NIT device interface, 1277 
nityf, NIT packet filtering module, 1279 
ttcompat, V7, BSD compatibility module, 1319 

string 
number conversion - printf, 944, 984 
number conversion, System V- printf, 1168, 1172 

string operations 
compare - strcmp, 1001 
compare- strncmp, 1001 
concatenate- strcat, 1001 
concatenate- strncat, 1001 
copy- strcpy, 1001 
copy- strncpy, 1001 
get from stdin- gets, 885 
get from stream- fgets, 885 
index - nndex, 1001 
put to stdout- puts, 952 
put to stream- £puts, 952 
reverse index- rindex, 1001 
reverse index- rindex, 1001 

string_to_decimal -decimal record from character string, 
1004 

strings 
convert from numbers, 838 

strings -find printable strings in binary file, 478 
strip- strip symbols and relocation bits, 479 
strip filename affixes - ba sename, 42 
strlen - get length of string, 1001 
strncat - concatenate strings, 1001 
strncmp - compare strings, 1001 
strncpy-copy strings, 1001 
rindex -find character in string, 1001 
strtod-ASCII string to double, 1007 
strtol -ASCII string to long integer, 1008 
st t y command, 480 
stty- set terminal state, 1009 
st t y _from_ defaults - set terminal from Sun View defaults, 

-1847-

484 
su - substitute user id, 485 
substitute user id - su, 485 

lndex-Conlinued 

sum- sum and count blocks in file, 486 
summarize file system quotas - repquota, 1729 
sun - machine type truth value, 292 
Sun 10 Mb/s Ethernet interface - ie, 1224 thru 1225 
Sun floppy disk driver- fd, 1218 
Sun keyboard device - kbd, 1251 
Sun mouse device - mouse, 1263 
Sun mouse streams module - mouse, 1264 
Sun SCSI disk driver- si, 1289 thru 1290 
Sun-3/50 10 Mb/s Ethernet interface - le, 1254 thru 1255 
sun3cvt - convert large Sun-2 executables to Sun-3, 367 
suninstall command, 1770 
SunView 

coloredit, 79 
i cone di t, 228 
start up environment, 487 

sun view - Suntools window environment, 487 
Sun View environment, changing default settings -

defaultsedit, 141 
Sun Windows, graphics tool- gfxtool, 213 
super block, update- sync, 780 
super-user command - su, 485 
suspend command, 107 
suspend execution- sleep, 466 
suspend execution- sleep, 997, 1182 
suspend execution for interval in microseconds - usleep, 1029 
swab- swap bytes, 1010 
swap bytes- swab, 1010 
swapon - specify paging device, 778 
swapon - specify paging device, 1771 
swapping device - swapon, 778 
swapping devices, specify- swapon, 1771 
swin- set window input behavior, 496 
switch command, 108 
switcher, 499 
symbol table, get entries from - nl i st, 937, 1167 
symbolic link 

create, 779 
read value of, 737 

symbolic link, make - ln, 265 
symlink, 779 
symorder - update symbol table ordering, 501 
sync-update super block, 780 
sync - update super block, 502 
synchronize file state - f sync, 662 
synchronous 1/0 multiplexing, 744 
sys_ err 1 i st - system error messages, 940 
sys_ ner r - system error messages, 940 
sys_siglist - system signal messages, 948 
syscall, 781 
sysdiag - system diagnostics, 1772 
sysex command, 503 
Sysgen SC 4000 (Archive) Tape Driver- st, 1292 thru 1293 
sys log- make system log entry, 368 
sys log-write message to system log, 1011 
syslogd. conf-system log daemon configuration file, 1439 



Index - Continued 

syslogd- system log message daemon, 1773 
Systech VPC-2200 interface - vpc, 1327 
system administration 

adduser - add new user account, 1577 
~at man - create cat files for manual pages, 1593 
install - install files, 240 

system calls, introduction to, 613 thru 624 
system configuration files, build - conf ig, 1600 
system data types- types, 1480 
system EEPROM display and load program, 1617 
system error messages 

errno- system error messages, 940 
perror - system error messages, 940 
sys_errlist - system error messages, 940 
sys_ nerr - system error messages, 940 

system error numbers, introduction to, 613 thru 617 
system-issue shell command, 1013 
system log configuration file - syslogd. conf, 1439 
system log daemon- syslog, 1773 
system log, control- syslog, 1011 
system maintenance and operation, 1569 
system operation support 

mount, 706 
process accounting- acct, 630 
reboot, 738 
swapon- specify paging device, 778 
sync, 780 
vadvise, 788 

system page size, get- getpagesize, 678 
system PROM monitor program, 1679 
system resource consumption 

control- vlimit, 1034 
system signal messages 

psignal, 948 
sys_siglist, 948 

system special files- makedev, 1668 
system status server - rwhod, 1753 
system to system command execution - uux, 574 
system to system copy - uucp, 568 
System V commands 

banner, 36 
cat, 50 
cc,52 
chmod, 65 
col, 77 
date, 124 
diff3, 152 
dircmp, 155 
du, 162 
echo, 163 
expr, 180 
grep, 218 
grpck, 1638 
lint, 261 
ls, 285 
m4, 288 
nohup, 342 
od, 348 
pg, 383 
pr, 388 
pwck, 1718 

-1848-

System V commands, continued 
sed,446 
sort, 470 
sum, 486 
test, 522 
time, 532 
touch, 541 
tr, 544 
uname, 558 

System V library functions, introduction to, 1127 
System V library, system call versions 

getpgrp, 753 
open, 719 
setpgrp, 753 
uname, 784 
write, 794 

syswait -execute a command, 505 

T 
taac device, 1302 
tabs command, 505 
tabs, expand to spaces - expand, 179 
tabstop specifications in text files - fspec, 1394 
tail - display last part of file, 507 
talk-talk to another user, 508 
talkd - talk server, 1774 
tan -trigonometric tangent, 1106 
tanh - hyperbolic tangent, 1088 
tape 

backspace files - mt, 333 
backspace records - mt, 333 
copy, blocking preserved - tcopy, 515 
erase - mt, 333 
forward space files - mt, 333 
forward space records - mt, 333 
get unit status - mt, 333 
manipulate magnetic - mt, 333 
place unit off-line - mt, 333 
retension - mt, 333 
rewind - mt, 333 
scan- tcopy, 515 
skip backward files - mt, 333 
skip backward records - mt, 333 
skip forward files - mt, 333 
skip forward records - mt, 333 
write EOF mark on - mt, 333 

tape archives - tar, 509 
bar command, 37 

tape block size - 512 bytes, 1612 
tape drive, 1/2-inch 

tm-tapemaster, 1318 
xt -Xylogics 472, 1331 

tape drive, 1/4-inch 
ar -Archive 1/4-inch Streaming Tape Drive, 1193 
Sysgen SC 4000 (Archive) Tape Driver- st, 1292 thru 

1293 
tape interface- mtio, 1268 
tape operation ioctl - MTIOCTOP, 1268 
tapemaster 1/2-inch tape drive- tm, 1318 
tar - tape archiver, 509 
tar - tape archive file format, 1442 



tbl -remove constructs- deroff, 146 
table formatter, 513 

tcov - code coverage tool, 516 
TCP ioctl's 

SIOCGHIWAT-gethigh watermark, 1304 
SIOCGLOWAT- get low water mark, 1304 
SIOCSHIWAT- set high water mark, 1304 
SIOCSLOWAT- set low water mark, 1304 

tcp-lntemet Transmission Control Protocol, 1303 thru 1304 
tdelete-delete binary tree node, 1021 
tee - copy standard output to many files, 517 
tektool - emulate Tektronix 4014, 369 
Tektronix 4014, emulate - tektool 369 
tell, 698 ' 
telldir-position of directory stream, 834 
telnet - TELNET interface, 518 
telnetd daemon, 1775 
temporary file 

create name for - tmpnam, 1020 
term- terminal driving tables, 1444, 1450 
termcap- terminal capability data base, 1452 
terminal 

configuration data base - get t ytab, 1399 
find name of- ttyname, 1024 
get name of- tty, 556 
1/0, see termio(4), 1305 
make script of session- script, 444 
reset bits - reset, 551 
set characteristics - st ty, 480, 551 

terminal emulation, ANSI, 1204 thru 1208 
terminal emulator- console, 1204 thru 1209 
terminal independent operations 

tgetent, 1014 
tgetflag, 1014 
tgetnum, 1014 
tgetstr, 1014 
tgoto, 1014 
tputs, 1014 

alm - Sun ALM-2 Asynchronous Line Multiplexer, 1258 
_alm -Sun ALM-2 Asynchronous Line Multiplexer, 1259 

tenmnal state 
get- gtty, 1009 
set- stty, 1009 

terminal types- ttytype, 1479 
terminate process, 655, 844 
terminate program- abort, 810 
termination handler, name- on exit 938 
terminfo - System V terminal-capability data base, 1460 
test command, 459,522 
text editing 

ed- line editor, 164 
edit -line editor, 177 
ex - line editor, 177 
sed - stream editor, 446 
vi - visual editor, 582 

text file 
browse through - pg, 383 

text file, browse through 
more, 330 
page, 330 

text processing utilities 

- 1849-

text processing utilities, continued 
a wk - scan and process patterns, 33 
cat - concatenate files, 50 
reverse lines in file - rev, 417 
search for patterns - grep, 218 
sort - sort and collate lines, 470 
spe 11 - check spelling, 474 
split - split file into pieces, 477 
tail - display last part of file, 507 
tr - translate characters, 544 
tsort - topological sort, 555 
u 1 - underline text, 557 
uniq- remove repeated lines, 561 

textedi t - Sun View text editor, 524 
tfind- search binary tree, 1021 
t ftp command, 530 
tftpd daemon, 1776 
tgetent - get entry for terminal, 1014 
tgetflag- get Boolean cabability, 1014 
tgetnum- get numeric cabability, 1014 
tgetstr - get string cabability, 1014 
tgoto - go to position, 1014 
then command, 453 
tic command, 1778 
tilde escapes in mail, 294 thru 295 
time 

adjust- adjtime, 631 
display date and, 124 
display in window, 71 

time and date 
get- time, 1016 
get- gettimeof day,689 
get- ftime, 1016 
set- set timeof day, 689 

time and date conversion 
asctime, 824 
ctime, 824 
dysize, 824 
gmtime, 824 
local time, 824 
timegm, 824 
timelocal, 824 
tzset, 824 
tzsetwall, 825 

time and date conversion, System V 
asctime, 1132 
ctime, 1132 
gmtime, 1132 
local time, 1132 
timegm, 1132 
timelocal, 1132 
tzset, 1132 
tzsetwall, 1133 

time command, 108, 532 
time - get date and time, 1016 
time variable, 110 
timed-time server, 1781 
timed event jobs table- crontab, 1381 
timed event services 

at -do job at specified time, 29 
calendar - reminder service, 49 

Index ConJinued 



Index - Continued 

timed event services, continued 
leave - remind you of leaving time, 257 

timed events - cron, 1606 
timegm - date and time conversion, 824 
timegm- date and time conversion, System V, 1132 
timelocal -date and time conversion, 824 
timelocal - date and time conversion, System V, 1132 
timerclear - macro, 674 
timercmp - macro, 674 
timerisset - macro, 674 
times command, 459 
times-get process times, 1017 
times -get process and child process times, System V, 1185 
timezone -get time zone name, 1018 
timing and statistics 

clock, 821 
getitimer, 674 
gettimeofday, 689 
profil, 725 
setitimer, 674 
settimeofday, 689 
timerclear-macro, 674 
t imercmp - macro, 674 
timerisset - macro, 674 

TIOCCONS -get console l/0, 1204 
TI OCGETD - get line discipline, 1196 
TIOCPKT - seUclear packet mode (pty), 1285 
TI OCREMOTE - remote input editing, 1285 
TIOCSETD -set line discipline, 1196 
TI OCSTART - start output (like control-Q), 1285 
TIOCSTOP - stop output (like control-S), 1285 
tip - connect to remote system, 533 
tm - tapemaster 1/2-inch tape drive, 1318 
tmpf ile -create temporary file, 1019 
tmpnam - make temporary file name, 1020 
tnamed - name server, 1782 
toascii -convert character to ASCII, System V, 1134 
toascii - convert character to ASCII, 826 
toe file, 1361 
toggle promiscuous mode ioctl- SIOCSPROMISC, 1227 
to lower - convert character to lower-case, System V, 1134 
to lower - convert character to lower-case, 826 
_ tolower - convert character to lower-case, System V, 1134 
toolplaces -show current window info, 539 
tools 

mailtool, 305 
textedit, 524 

top mail command, 299 
toplines mail variable, 303 
topological sort- tsort, 555 
touch- update last modified date of file, 541 
touch mail command, 300 
toupper - convert character to upper-case, System V, 1134 
toupper- convert character to upper-case, 826 
tput command, 542 
tputs -decode padding information, 1014 
tr - translate characters, 544 
trace command, 545 
trace process - pt race, 726 

traffic - show Ethernet traffic, 547 
translate - input and output files for system message transla-

tion, 1363 
translate characters- tr, 544 
transliterate protocol trace - t rpt, 1783 
trap command, 459 
trek - Star Trek game, 1543 
trigonometric functions, 1106 

-1850-

acos, 1106 
asin, 1106 
atan, 1106 
atan2, 1106 
cos, 1106 
sin, 1106 
tan, 1106 

troff - typeset documents, 548 
troff utilities 

checknr - check nroff/troff files, 62 
col -filter reverse paper motions, 77 
troff utilities, 146 
soelim- eliminate . so's, incorporate sourced-in files, 

469 
t rpt - transliterate protocol trace, 1783 
true - provide truth values, 550 
truncate, 782 
trusted hosts list- hosts .equiv, 1406, 1413 
tsearch-build and search binary tree, 1021 
t set - set terminal characteristics, 551 
tsort -topological sort, 555 
ttcompat STREAMS module, 1319 
tty 

l/0, see termio(4), 1305 
tty - get terminal name, 556 
tty terminal interface, 1323 
tty, set characteristics - stty, 480 
tty, set characteristics - tset, 551 
ttyname-find terminal name, 1024 
ttyslot -get utmp slot number, 1025 
ttyslot -get utmp slot number, System V, 1186 
ttytab file, 1478 
ttytype -connected terminal types, 1479 
tunefs -tune file system, 1784 
twalk - traverse binary tree, 1021 
type command, 459 
type mail command, 298 
Type mail command, 299 
types -primitive system data types, 1480 
typeset documents- troff, 548 
tzf ile file, 1483 
t z set - date and time conversion, 824 
t z set - date and time conversion, System V, 1132 
tzsetup command, 1785 
tzsetwall -date and time conversion, 825 
tzsetwall -date and time conversion, System V, 1133 

u 
u3b-machine type truth value, 292 
u3b15 - machine type truth value, 292 
u3b2 - machine type truth value, 292 



u3b5 - machine type truth value, 292 
ualarm- schedule signal in microsecond precision, 1026 
UDP ioctl's 

SIOCGHIWAT- get high water mark, 1325 
SIOCGLOWAT- get low water mark, 1325 
SIOCSHIWAT - set high water mark, 1325 
SIOCSLOWAT- set low water mark, 1325 

udp-lntemet User Datagram Protocol, 1324 thru 1325 
ul - underline text, 557 
ul imi t - get and set user limits, 1027 
umask, 783 
uma s k command, 108, 459 
umount - unmount file system, 1687 
unalias command, 108 
uname - print hostname, 558 
uname - get system name, 784 
uncompact -uncompress files, 350 
uncompress -uncompress files, 83 
unconfigure command, 1786 
undelete mail command, 300 
underline text - ul, 557 
unexpand - spaces to tabs, 179 
unget - unget SCCS file, 559 
ungetc - push character back to stream, 1028 
unha sh command, 108 
unifdef-eliminate #ifdef's from C input, 560 
uniq- remove repeated lines, 561 
unique file name 

create - mktemp, 929 
units -convert units, 562 
unix2dos - convert text file from DOS format to SunOS for-

mat, 563 
unlimit command, 108 
unlink - remove directory entry, 785, 1659 
unload command, 564 
unmap memory pages - rrunap, 717 
unmount - demount file system, 786 
zero - source of zeroed unnamed memory, 1334 
unpack- unpack files, 376 
unread mail command, 298 
unset command, 108,459 
unset mail command, 300 
un setenv command, 108 
until command, 453 
update - update super block, 1788 
update last modified date of file - touch, 541 
update programs- make, 311 thru 324,355 thru 361 
update super block - sync, 502 
update super block - sync, 780 
updaters file, 1484 
uptime - display system up time, 566 
user 

display effective name - logname, 274, 598 
talk to another - talk, 508 
write to another- write, 600 

user ID 
chown - change user ID of file, 1595 
id- display user and group IDs, 230 
get, 691 

- 1851-

user ID, continued 
set real and effective - set reui d, 755 
substitute - su, 485 

user limits 
get- ulimit,1027 
set- ulimit, 1027 

user mask, set - uma sk, 783 
user name, get- cuserid, 829 
user quotas 

edquota -edit user quotas, 1616 

Index - C onJ. inued 

quota check - check quota consistency, 1721 
quota off - tum file system quotas off, 1722 
quota on - tum file system quotas on, 1722 
repquota - summarize quotas, 1729 
rquotad-remote quota server, 1747 

users 
info on users- finger, 186 
list last logins - last, 248 
what are they doing - w, 588 
who - who is logged in, 597 
write to all - wall, 590 

users -display users on system, 567 
usleep- suspend execution for interval in microseconds, 1029 
utilities, introduction, 3 
utime - set file times, 1030 
utimes - set file times, 787 
utmp-login records, 1485 
uuclean-clean UUCP spool area, 1789 
uucp - system to system copy, 568 
UUCP log - uulog, 568 
uudecode - decode binary file, 570 
uuencode - encode binary file, 570 
uuencode - UUCP encoded file format, 1487 
uulog - UUCP log, 568 
uuname - UUCP list of names, 568 
uusend- send file to remote host, 571 
uustat command, 572 
uux - system to system command execution, 574 

V 
va _ arg - next argument in variable list, 1032 
va _ dcl - variable argument declarations, 1032 
va _end-finish variable argument list, 1032 
va_list -variable argument declarations, 1032 
va_start -initialize varargs, 1032 
vacation-automatic mail replies, 576 
vadvise -advise paging system, 788 
val -validate SCCS file, 578 
validate SCCS file - val, 578 
valloc - allocate aligned memory, 926 
values -machine-dependent values, 1031 
varargs - variable argument list, 1032 
variable argument list,- varargs, 1032 
variable substitution, in C shell, 100 
variables 

in Bourne shell, 454, 455 
in C shell, 109 

environment variables in mail 
v ax - machine type truth value, 292 
vc command, 371 



Index - Continued 

verbose mail variable, 303 
verbose variable, 110 
verifier, C programs- lint, 261 
verify heap - malloc _ verify, 926 
plot graphics on - vplot, 584 
version mail command, 300 
version of file- what, 592 
vfont -font formats, 1488 
vf ontinf o - examine font files, 579 
vfork, 789 
vfprintf -format and print variable argument list, 1035 
vf printf -format and print variable argument list, System V, 

1187 
vgrind- make formatted listings, 580 
vgrindef s -vgrind language definitions, 1489 
vhangup, 790 
vi - visual editor, 582 
vipw - edit password file, 1790 
virtual -virtual address space, 1261 thru 1262 
visual editor - vi, 582 
visual mail command, 300 
VISUAL mail variable, 303 
vlimit -control consumption, 1034 
vmel 6 - VMEbus 16-bit space, 1261 thru 1262 
vmel 6dl 6 - VMEbus address space, 1261 thru 1262 
vmel 6d32 - VMEbus address space, 1261 thru 1262 
vme24 - VMEbus 24-bit space, 1261 thru 1262 
vme24d16 - VMEbus address space, 1261 thru 1262 
vme2 4d32 - VMEbus address space, 1261 thru 1262 
vme32d16 -VMEbus address space, 1261 thru 1262 
vme32d32 - VMEbus address space, 1261 thru 1262 
vmstat -display virtual memory statistics, 1791 
vp -Ikon 10071-5 Versatec parallel printer interface, 1326 
vpc -Systech VPC-2200 Versatec/Centronics interface, 1327 
vplot - plot on Versatec, 584 
vprintf - format and print variable argument list, 1035 
vprintf -format and print variable argument list, System V, 

1187 
vsprintf -format and print variable argument list, 1035 
vsprintf -format and print variable argument list, System V, 

1187 
vswap- convert foreign font files, 585 
vprintf-log message with variable argument list, 1036 
vt ime s - resource use information, 103 7 
vt ro ff - format document for raster printer, 586 
vw idth - make font width table, 587 

w 
w - what are users doing, 588 
wait, 791 
wait command, 108,459,589 
wait3, 791 
wait4, 791 
wall - write to all users, 590 
we -count lines, words, characters in file, 591 
what are users doing_,_ w, 588 
what -identify file version, 592 
whatis -describe command, 593 

-1852-

whereis -find program, 594 
which - find program file, 596 
while command, 108, 453 
while -repeat commands- csh, 108 
who - who is logged in, 597 
who is logged in on local network- rusers, 430,432 
whoami - display effective user name, 598 
whois -Internet directory service, 599 
win - Sun window system, 1328 
window environment- sunview, 487 
window management 

adjacentscreens command, 20 
switcher utility, 499 

window, save context- lock screen, 269 
word 

get from stream- getw, 861 
get from stream, System V - getw, 1162 
put to stream - putw, 949 

words in file, count- we, 591 
working directory 

cd - change directory, 57 
change,639 
display name of - pwd, 404 
get pathname - getwd, 890 

worm- growing worm game, 1544 
worms - animate worms on display, 1545 
write, 794 
write -write to another user, 600 
write EOF mark on magnetic tape - mt, 333 
write formatted 

fprintf -convert to stream, System V, 1168 
printf - convert to stdout, System V, 1168 
sprintf -convert to string, System V, 1168 

write gathered - wri tev, 794 
write mail command, 300 
write to all users - wall, 590 
write to all users on network- rwall, 431 
write to stream - fwri te, 855 
wtmp - login records, 1485 
wump - hunt the Wumpus game, 1546 

X 
xargs - construct and use initial arguments lists, 602 
xcrypt () function, 1124 
xd-Xylogics SMD Disk driver, 1329 thru 1330 
xdecrypt () function, 1124 
xdr networking functions, 1038 
xget - receive secret mail, 604 
xit mail command, 297 
xsend - send secret mail, 604 
xstr - extract strings from C code, 605 
xt - Xylogics 472 1/2-inch tape drive, 1331 
xtab - exported file system table, 1389 
xtom - hexadecimal string to multiple precision, 932 
xy - Xylogics SMD Disk driver, 1332 thru 1333 
Xylogics 472 1/2-inch tape drive - xt, 1331 
Xylogics SMD Disk driver- xd, 1329 thru 1330, 1332 thru 1333 



y 
yo - Bessel function, 1084 
y 1 - Bessel function, 1084 
yacc -parser generator, 607 
YACC language tags file - ctags, 115 
Yellow Pages 

change login password in- yppasswd, 611 
make database - ypini t, 1793 
make dbm file - makedbm, 1667 
print values from database- ypcat, 609 
rebuild database - ypmake, 1794 

Yell ow Pages client interface, 1044 
yes - be repetitively affirmative, 608 
yn - Bessel function, 1084 
yp (} function, 1125 
yp _all - Yellow Pages client interface, 1044 
yp _bind-Yellow Pages client interface, 1044 
yp_first - Yellow Pages client interface, 1044 
yp_get_default_domain - Yellow Pages client interface, 

1044 
yp _master-Yellow Pages client interface, 1044 
yp _mat ch - Yellow Pages client interface, 1044 
yp _ next - Yellow Pages client interface, 1044 
yp _ order - Yellow Pages client interface, 1044 
yp _unbind- Yellow Pages client interface, 1044 
yp_update () function, 1049 
ypcat -print values from YP database, 609 
yperr_string- Yellow Pages client interface, 1044 
ypfiles - Yellow Pages database and directory, 1491 
yp in it - make Yell ow Pages database, 1793 
ypmake -rebuild Yellow Pages database, 1794 
ypmatch-match YPkeys, 610 
yppasswd - update YP password entry, 1126 
yppasswd - change login password in Yellow 

Pages, 611 
yppoll - Yellow Pages version inquiry, 1796 
ypprot _ err - Yellow Pages client interface, 1044 
yppu sh - force propagation of changed Yellow Pages map, 

1797 
ypserv - Yellow Pages server process, 1798 
ypset -direct ypbind to a server, 1800 
ypupdated daemon, 1801 
ypwhich-who is Yellow Pages server, 612, 1802 
ypxf r - move remote Yellow Pages map to local host, 1803 
yppa s swdd- Yellow Pages password server, 1795 

z 
z mail command, 300 
zcat - extract compressed files, 83 
zdump command, 1805 
zero byte strings - bzero, 819 
z i c command, 1806 
zs - zilog 8530 SCC serial communications driver, 1335 thru 

1336 

Index - Cant inued 

-1853-



Notes 




