
•~sun® 
~ microsystems 

Floating Point Programmer's Guide 

Part Number: 800-1552-10 
Revision A, of 19 September 1986 



Trademarks 
Sun Workstation® is a trademark of Sun Microsystems, Incorporated. 

UNIX is a trademark of AT&T Bell Laboratories. 

Multibus® is a registered trademark of Intel Corporation. 

Copyright© 1987, 1988 by Sun Microsystems, Inc. 

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be 
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, 
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per
mission from Sun Microsystems. 0 



Contents 

Chapter 1 Sun Floating-Point Options ...................................................................... 3 

1.1. Hardware Floating-Point Options .......................................................................... 3 

Sun-2 Systems ................................................................................................................ 3 

Sun-3 Systems ................................................................................................................ 3 

1.2. Compiler Code Generation Options ..................................................................... 3 

Full Optimization ( -0) .............................................................................................. 4 

Partial Optimization (-P) ......................................................................................... 4 

Optimization Side Effects ................................................................................ , ...... . 

Inline Expansion ........................................................................................................... . 

4 

4 

Floating-Point Code Generation Options ........................................................ 5 

Default Floating-Point Code Generation......................................................... 5 

Mixing Floating-Point Code Generation Styles.......................................... 5 

Libraries and Executable File Sizes ................................................................... 6 

Summary: Which Option When? ........................................................................ 7 

1.3. Expression Evaluation Options ............................................................................... 7 

FORTRAN Style ........................................................................................................... 7 

Greatest Available Precision Style 7 

-fstore 

-fsingle and 

Constant Expressions 

Chapter 2 Floating-Point Numerics ··································''·,•+>-''··+,·· 
2.1. Rounding Errors and Different Numerical Results 

Rounding Errors 

-iii-

13 

13 



Contents - Continued 

Different Numerical Results .................................................................................. . 
~ 

13 (_j 
Detecting ill Condition and Instability ............................................................ . 14 

2.2. An Example- SPICE tdo ................................................................................... . 14 

2.3. Floating-Point Programs ............................................................................................. . 15 

Assembly Language ............................................................................................... ,.. .. 15 

2.4. Precision in Decimal Digits ...................................................................................... . 17 

Single Precision ............................................................................................................ . 17 

Double Precision .......................................................................................................... . 17 

Extended Precision ..................................................................................................... . 17 

2.5. FCVS Tests .................................................... : ................................................................... . 17 

2.6. Floating-Point and Signal Handlers ..................................................................... . 19 

setjmp/longjmp ................................................................................................ . 20 

Floating-Point Signals ............................................................................................... . 20 

Signal #7 (SIGEMT) ··································································································· 20 

Signal #8 (SIGFPE) .................................................................................................. . 20 

Why Not Signal by Default? ................................................................................. . 21 

2.7. Debuggers and Floating Point ................................................................................. . 

Signals ................................................................................................................................ . 

21 
(\ 

21 \ / \...~ 

Disassembly .................................................................................................................... . 22 

Printing all MC68881 Registers .......................................................................... . 23 

Printing all FP A Registers ...................................................................................... . 23 

Printing in Single-Precision ................................................................................... . 23 

Printing in Double-Precision ................................................................................. . 23 

Printing in Extended-Precision ............................................................................ . 23 

Modifying Floating-Point Registers or Memory Locations ................ . 23 

2.8. FPA Recomputation ...................................................................................................... . 24 

Rounding Modes .......................................................................................................... . 25 

Exceptions ........................................................................................................................ . 25 

Inexact Exceptions ...................................................................................................... . 25 

Traps .................................................................................................................................... . 26 

Performance .................................................................................................................... . 26 

Chapter 3 IEEE-Standard Conformance ............................................................... .. 31 

0 
-iv-



Contents - Continued 

3~ 1. Supported IEEE Standard Features ....................................................................... 31 

Numeric Formats .......................................................................................................... 31 

ASCII-to-Binary Conversion ................................................................................. 31 

Rounding Direction Modes, Exceptions, and Traps ................................. 31 

Numerical Results ........................................................................................................ 31 

MC68881 Rounding Precision Mode ................................................................ 32 

Ordered Comparisons ................................................................................................. 32 

3.2. How to Use Special Features of the IEEE Standard.................................... 32 

Rounding Modes and Trap Enabling................................................................. 33 

Trap Enabling ................................................................................................................. 33 

Using Special Features From FORTRAN...................................................... 33 

Exceptions, Condition Code, and Quotient Status ..................................... 34 

Signalling NaNs ............................................................................................................. 34 

Using _fpmode_ and _fpstatus_ from C....................................... 34 

3.3. Special Library Entry Points ..................................................................................... 37 

Chapter 4 Benchmarks .......................................................................................................... 43 

4.1. IEEE Test Vectors........................................................................................................... 43 

Software Test Vector Results ................................................................................. 44 

Sky Test Vector Results ............................................................................................ 44 

MC68881 Test Vector Results .............................................................................. 44 

A79J MC68881 Test VectorResu1ts ....................................... ,......................... 45 

SunFPA Test Vector Results ................................................................................ 45 

SunFPA Test Vector Results, fpamode (3) ........................................... 45 

4.2. Paranoia Test Program ........................................................................................ 45 

- f fpa Comments ..................................................................................................... 46 

-£68881 Comments............................................................................................... 46 

-fsky Comments ..................................................................................................... 47 

Summaries ........................................................................................................................ 47 

4.3. Elementary Function Accuracy Benchmarks .................................................. 47 

Elefunt Test Programs ....................................................................................... 47 

Test Programs of Liu .................................................................................................. 49 

Monotonicity ................................................................................................................... 50 

-v-



Contents - Continued 

4.4. Performance Benchmarks ......................................................................................... .. 51 

(,.--.,\ 
\ ) 
,_'"'/ 

Linpack ...................................................................................................................... .. 51 

SPICE ............................................................................................................................. .. 53 

4.5. Benchmarking Hazards .............................................................................................. .. 54 

MC68020 Cache .......................................................................................................... .. 54 

Whetstone ............................................................................................................... .. 55 

Assembly Language Inline Expansion ............................................................ . 56 

Source Level Inline Expansion ........................................................................... .. 57 

Global Interprocedural Analysis ........................................................................ .. 58 

Performance, Source Coding, and Optimization ...................................... .. 58 

Appendix A adb Changes ................................................................................................ .. 63 
A.l. Changes in Release 3.1 .............................................................................................. . 63 

A.2. Examples ofFPA Disassembly ............................................................................ .. 64 

A.3. Examples ofFPA Register Use ............................................................................ .. 65 

Appendix B dbx and dbxtool Changes .......................................................... . 69 
B.1. Changes in Release 3.1 .............................................................................................. .. 69 f""'\. 

\._j 
B.2. Example ofFPA Disassembly .............................................................................. .. 70 

B.3. Examples ofFPA Register Use ............................................................................ .. 72 

Appendix C FP A Assembler Syntax ........................................................................ .. 75 

C.1. Instruction Syntax ........................................................................................................ .. 75 

C.2. Register Syntax ............................................................................................................... . 76 

C.3. Operand Types ............................................................................................................... .. 76 

C.4. Two-Operand Instructions ....................................................................................... .. 76 

C.5. Three-Operand Instructions .................................................................................... .. 77 

C.6. Four-Operand Instructions ....................................................................................... .. 78 

C.7. Other Instructions ......................................................................................................... .. 82 

C.8. Restrictions and Errors ............................................................................................... . 83 

C.9. Instruction Set Summary .......................................................................................... .. 83 

Appendix D IEEE Appendix Functions .................................................................. . 89 

0) 
\_.,_j 

-vi-



c 

Contents -Continued 

Appendix E SPICE Input Files..................................................................................... 95 

E.1. tdo ....................................................................................................................................... 95 

E.2. mosamp2 .......................................................................................................................... 96 

Appendix F MC68881 Mask Differences ............................................................... 99 

:tmove [ sd] fpm, <ea> ................................................................................... 99 

fmove:x: fpm, <ea> ............................................................................................. 99 

flognt, flog2t, floglOt ................................................................... 100 

fsqrt:x: fpm, fpn (m<>n) ......................................................................... 100 

fsqrtp <ea>, fpn .............................................................................................. 100 

Binary-to-Decimal Conversion............................................................................. 100 

Decimal-to-Binary Conversion............................................................................. 101 

Appendix G Assembly-Level In-line Expansion .............................................. 105 

G.1. Introduction ....................................................................................................................... 105 

Language-Specific Constructs ............................................................................... 105 

Access to Special Instructions ............................................................................... 105 

Special Instructions, Access to.............................................................................. 105 

Register Allocation...................................................................................................... 105 

G.2. User Interface .................................................................................................................... 106 

Implementation ............................................................................................................... 106 

G.3. In-line Expansion Pass ................................................................................................ 108 

G.4. Peephole Optimizations .............................................................................................. 110 

G.5. Using Sun's Predefined . il Files ..................................................................... 112 

Faster Execution............................................................................................................ 112 

Smaller Executable Files .......................................................................................... 112 

Appendix H System V Interface Compliance ..................................................... 117 

H.1. SVID History ·····················································'······························································ 117 
H.2. IEEE History..................................................................................................................... 118 

H.3. SVID Future Directions .............................................................................................. 118 

H.4. Sun Implementation ........................................................ :............................................. 118 

SIGNAL Notes ............................................................................................................... 119 

-vii-



Contents - Continued 

libm. a Notes ............................................................................................................. 

Index ....................................................................................................................................................... 

-viii-

119 

121 

0 



Tables 

Table C-1 Other Instructions .................................................................................................... 82 

Table C-2 Floating-Point Instructions ................................................................................ 83 

-ix-





Manual Scope 

Audience 

What is in This Manual 

Preface 

Sun Microsystems provides a variety of software and hardware floating-point 
options. Some options provide fast performance; most conform substantially, 
and all conform at least partially, to the requirements of the ANSI/IEEE Std 
754-1985, the IEEE Standard for Binary Floating-Point Arithmetic. 

This manual describes features of Sun Microsystem's various available floating
point implementations, including details of their use, performance, and confor
mance to the IEEE floating-point arithmetic standard. 

Note: 
All specific claims for conformance, accuracy, and speed are based on tests 
and measurements made using a preliminary version of Sun Software 
Release 3.2. Results obtained with the final Release 3.2 or with other 
releases may vary. 

This manual is limited to information not easily obtainable elsewhere; you 
should be familiar with the ANSI/IEEE Standard 754-1985, with the MC68881 
floating-point processor (if you have a Sun-3), and the Weitek WTL 1164/1165 
chip set (if you have a Floating-Point Accelerator or FP A). 

If you want or need more information than is contained in this manual, see one or 
more of the sources listed in the bibliography later in this preface. 

The description of floating-point options on Sun Microsystems computers is 
divided into four chapters and eight appendices: 

Chapter 1 describes the hardware and software options that can aftect.(loating
point numeric operations on Sun Microsystems computers iJ:lcl'gflihg lia.trl'Nare, 
compiler code generation, and expression evaluation. · ·· · · · · ·· ·· · · ·· ·· · · ·· · ··· 

Chapter 2 describes floating-point numerics as applieqt6$1lt1~~~~ys;¢&~ }> 

~~::::e:da:~~~~ede:~:~~l~~e~i~::~ts~:::Jt~3J~~~g;~~~g~~f~r- (w 
floating-point operations from compiled and assembly Ihl}gliag~j:irqgfimis; @d 
operational details of Sun Microsystems' floating-point impt~Yih¢P.iaiippS;} 

Chapter 3 describes aspects of the ANSI/IEEE Standard 754~i§s~.~d Sun 
Microsystems floating-point conformance to the standard. 

-xi-



Preface - Continued 

References for Further 
Information 

Chapter 4 describes benchmarks that have been and can be used to test the per
formance and conformance of floating-point numerics on Sun Microsystems 
computers. 

Appendix A describes changes made to a db to support the FP A, examples of 
FPA disassembly, and FPA register use. 

Appendix B describes changes made to dbx and dbxtool to support the 
FPA, examples ofFPA disassembly, and FPA register use. 

Appendix C describes the FPA assembly-language syntax supported by as in 
Release 3.1 and later. 

Appendix D describes a number of IEEE floating-point functions that are not 
usually available in higher-levellanguages. 

Appendix E describes the input files used by the SPICE benchmark program. 

Appendix F describes the differences in function between the two different mask 
versions of the MC68881 coprocessor used by Sun's floating-point processors. 

Appendix G describes assembly-level inline code expansions that let you 
integrate assembly-language routines into C, FORTRAN, and Pascal programs. 

Appendix H describes aspects of the floating-point implementation affected by 
compliance with the UNIX System V interface. 

The following provide more information about Sun's language processors: 

FORTRAN Programmer's Guide, 800-1371-02, Sun Microsystems, 1986. 

Pascal Programmer's Guide, 800-1376-01, Sun Microsystems, 1986. 

Assembly Language Reference Manual, 800-1372-02, Sun Microsystems, 
1986. 

The following provide more information about Sun's floating-point hardware: 

Sun Floating-Point Accelerator User's Manual, 800-1378-02, 1986. 

Preliminary Data, WTL 116411165 Low-Latency 64-bit IEEE Floating Point 
Multiplier!ALU, 231669-001, Weitek Corp., Sunnyvale, CA, 1986. 

MC68881 Floating-Point Coprocessor User's Manual, MC68881UM/AD, 
Prentice-Hall, 1985. 

MC68020 32-Bit Microprocessor User's Manual, second edition,, 
MC68020UM/AD REV 1, Motorola Inc., 1985. 

Fast Floating-Point Processor Integration Manual, Sky Computers, Lowell, 
MA, October 1984. 

The following provide more infmmation about the IEEE Standard: 

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-
1985, IEEE, New York, 1985. 

Apple Numerics Manual, Addison-Wesley, 1986. 

-xii-

0 

0 



Test Program Information 

Preface- Continued 

Coonen, Contributions to a Proposed Standard for Binary Floating-Point 
Arithmetic, Ph. D. thesi~. University of California, Berkeley, 1984. 

Cody et al., "A Proposed Radix- and Word-length-independent Standard for 
Aoating-Point Arithmetic," IEEE Computer, August 1984. 

Stevenson et al., Cody, Hough, Coonen, various papers proposing and 
analyzing a draft standard for binary floating-point arithmetic, IEEE Com
puter, March 1981. 

Coonen, "An Implementation Guide to a Proposed Standard for Boating
Point Arithmetic," IEEE Computer, January 1980. 

The Proposed IEEE Floating-Point Standard, special issue of the ACM SIG
NUM Newsletter, October 1979. 

The following defines the UNIXt System V Interface: 

System V Interface Definition, Issue 2, AT&T, Indianapolis, IN, 1986. 

The following provide more information about testing and error analysis: 

Dongarra, Performance of Various Computers Using Standard Linear Equa
tions Software in a FORTRAN Environment, Argonne National Laboratory, 
Argonne,IL, 1986. 

Karpinski, "Paranoia: a Aoating-Point Benchmark," Byte, February 1985. 

Spafford, Aaspohler, A Report on the Accuracy of some Floating Point Math 
Functions on Selected Computers, Technical Report GIT-CS 85/06, Georgia 
Institute ofTechnology, Atlanta, 1985. 

"Appendix: Accuracy of Numerical Calculations," in HP-15C Advanced 
Functions Handbook, 00015-90011, Hewlett-Packard, 1982. 

Cody and Waite, Software Manual for the Elementary Functions, Prentice
Hall, 1980. 

Bunch, Dongarra, Moler, Stewart, Linpack Users' Guide, SIAM, Philadel
phia, 1979. 

Curnow, Wichmann, "A Synthetic Benchmark," The Computer Journal, 
British Computer Society, London, February 1976. 

Sterbenz, Floating-Point Computation, Prentice-Hall, 1974. 

For information on machine-readable source of the IEEE Test Vectors or the 
SPICE program, contact Cindy Manley, EECS/ERL Industrial Support Office, 
461 Cory Hall, University of California, Berkeley, CA 94720. 

For information on machine-readable source for the Paranoia test program, 
contact Richard Karpinski at ucbvax!ucsjcgl!cca.ucsj!dick. 

For information on Alex Liu's test programs, contact him at 
zliu@weyl.berkeley.edu. 

t UNIX is a registered trademalk of AT&T. 

- xiii-



Preface - Continued 

Netlib provides a numerical source code distribution service from which many 
popular benchmark programs can be obtained, including paranoia, 
elefunt, linpack, and whetstone, as well as the current version of 
Dongarra's Argonne Technical Memorandum containing Linpack benchmark 
results. For netlib instructions, send a message "send netlib-paper from mise" to: 
research!netlib or netlib@anl-mcs.arpa. 

For information on the FCVS tests, write to Federal Software Testing Center, 
Suite 1100, 5203 Leesburg Pike, Falls Church, VA 22041. 

-xiv-



--~-·-----------------------·--~----

1 
Sun Floating-Point Options 

Sun Floating-Point Options .................................................................................................. 3 

1.1. Hardware Floating-Point Options .......................................................................... 3 

Sun-2 Systems ................................................................................................................ 3 

Sun-3 Systems ............................... :................................................................................ 3 

1.2. Compiler Code Generation Options ..................................................................... 3 

Full Optimization ( -0) ········'····················································································· 4 

Partial Optimization (-P) ············'············································································ 4 

Optimization Side Effects ........................................................................................ 4 

Inline Expansion ............................................................................................................ 4 

Floating-Point Code Generation Options........................................................ 5 

Default Floating-Point Code Generation ......................................................... 5 

Mixing Floating-Point Code Generation Styles.......................................... 5 

Libraries and Executable File Sizes ................................................................... 6 

Summary: Which Option When? ........................................................................ 7 

1.3. Expression Evaluation Options ............................................................................... 7 

FOR1RAN Style .......................................................................... ,................................ 7 

Greatest Available Precision Style ..................................................................... 7 

-fstore ........................................................................................................................ 7 

-fsingle and -fsingle2 .......................................................................... 9 

Constant Expressions .................................................................................................. 9 



' -

0 



1.1. Hardware Floating
Point Options 

Sun-2 Systems 

Sun-3 Systems 

1.2. Compiler Code 
Generation Options 

1 
Sun Floating-Point Options 

This manual describes floating-point support for Sun Microsystems' Sun-2 and 
Sun-3 systems. Sun's earlier models are not discussed here: The phrase "runs on 

- any Sun" means that programs compiled for a Sun-2 run on any Sun-2 or Sun-3, 
while programs compiled for a Sun-3 run on any Sun-3. Throughout this 
manual, mention of"all" Sun systems refers to Sun-2's and Sun-3's. 

The floating-point hardware options usable with a Sun Microsystems computer 
depend on the model Sun being used, either a Sun-2 or Sun-3. 

Sun-2 systems use a 10 MHz MC68010 as their CPU and use either a Multibus 
or VME system bus. The Sky Fast Floating-Point Processor (FFP) board exists 
in both Multibus and VME versions for the Sun-2. Programs compiled for Sun-
2's will usually run on Sun-3's as long as they do not exploit any specific 
features unique to Sun-2's, such as the Sky FFP. 

Sun-3 systems use either a 15 or 16.7 MHz MC68020 as their CPU and use a 
VME system bus. An MC68881 floating-point coprocessor is standard on some 
models and optional on others. Sun-3's use MC68881 's of either the mask set 
A79J, running at 12.5 MHz, or of the mask set A93N, running at 16.7 MHz .. 
Also available on some Sun-3 models is the Sun Floating-Point Accelerator 
(FPA), which is an optional board based upon the Weitek 1164/1165 chip set. 
The FP A requires the presence of an MC68881. 

Programs compiled for Sun-3's will not run on Sun-2's. 

Sun's compilers for FORTRAN (£77), C (cc), and Pascal (pc) use the options 
described below in the same way. With each ofthese compilers, if you compile 
and link programs in separate steps, you should usually specify the same set of 
options at each step. For example, for FORTRAN: 

f77 -pg -0 -ffpa -c partl.f 
f77 -pg -0 -ffpa -c part2.f 
f77 -pg -0 -ffpa partl.o part2.o -o executable.out 

Note: 
None of Sun's compilers attempt extensive code optimization unless 
requested. 

3 Revision A of 19 September 1986 



4 Floating-Point Programmer's Guide 

Full Optimization ( -0) 

Partial Optimization (-P) 

Optimization Side Effects 

Inline Expansion 

The -0 option is the usual way to request maximum code optimization. In 
Release 3.2 £77, -0 invokes /usr I lib/ iropt to perform the following 
global optimizations on the program: 

o Invariant code removal from loops 

o Induction variable strength reduction 

o Common subexpression elimination 

o Copy propagation 

o Register allocation 

o Dead code elimination 

Note that iropt 's global optimizations sometimes cause conformance prob
lems with the IEEE floating-point standard. 

Floating-point variable register allocation is discussed below under the 
-fstore option. 

In Release 3.2 cc and pc, -0 invokes a more limited set of global optimiza
tions. In all three compilers, -0 also invokes I lib/ c2 to perform local 
optimizations on the compiled code before assembly. 

Partial optimization (-P) generates smaller data structures but often produces 
code almost as good as -o. 

0 

Partial optimization is called for in cases where -0 results in inordinately long 0 
compilation times: some modules generate huge internal data structures in the ·· ) 
global optimizer iropt that can lead to enormous compilation times with -0. 
If you think that is happening you can investigate this by printing out the 
compiler's phases with the -v option; if compilation seems to hang up in 
iropt, use -P instead of -0. 

Don't use -Pas a general substitute for -0 since -0 usually produces more 
efficient code. 

iropt 's global optimizations sometimes cause problems with conformance to 
the IEEE floating-point standard. Floating-point variable allocation to registers 
is discussed with the -fstore option. Dead code elimination, common subex
pression elimination, and copy propagation may cause source code statements to 
not be executed when expected, and consequently IEEE exceptions may not be 
raised or may be raised a different number of times or in different places than the 
source code suggests. 

For examples, see the subroutine nextd in the section "How to Use Special 
Features of the IEEE Standard" in Chapter 3, and the results of the Paranoia 
benchmark for the MC68881 in Chapter 4. 

Inline expansion of external calls is an optional third phase ·of optimization. You 
can select it independently of other optimization choices by specifying one or 
more . il files along with the source files in a compilation. 

The inline subroutine expansion program /usr I lib/ inline replaces sub
procedure calls with equivalent code inline in the calling procedure, using 

sun 
microsystems 

Revision A of 19 September 1986 



Floating-Point Code 
Generation Options 

Default Floating-Point Code 
Generation 

Mixing Floating-Point Code 
Generation Styles 

Chapter 1 -Sun Floating-Point Options 5 

templates contained in the . il files. User-defined . il files may be used in 
addition to or in place of Sun-provided standard ·. il files. See Appendix G for 
a discussion on using inline subroutine expansion. 

Sun supports two approaches to floating-point code generation: switched and in
line. Switched code determines at runtime what the fastest available floating
point hardware is and selects from among available library routines to exploit 
that hardware. Thus switched code runs on any Sun, with any or no floating
point hardware, and takes advantage of whatever hardware is present. The 
results of floating-point computations may vary depending on the hardware that 
was used. Select switched floating-point code generation at compile time with 
the compiler option -£switch. 

Select software floating-point code generation with the compiler option 
-£soft. Code so compiled runs on any Sun and always produces the same 
numerical result. Code compiled with -£soft contains calls to floating-point 
libraries and is about as fast as switched floating point on machines without float
ing point hardware. 

In-line code generation puts floating-point instructions in line with CPU instruc
tions; such code generated in-line for specific hardware, by avoiding the over
head of library calls, always runs faster than switched code running on the same 
hardware. Remember that in-line code only runs on machines with the specific 
hardware installed for which the code was compiled. 

The available floating-point code generation hardware options are: 

o -fsky Requires Sky FFP on Sun-2. 

o -£68881 Requires MC68881 on Sun-3. 

o - f fpa Requires MC68881 and Sun FP A on Sun-3. 

-f soft is the default floating-Point code generation mode, in the absence of 
other specifications. This was chosen so that programs that use floating point in 
a casual way will obtain the same numerical results on all Suns. 

You may change your default by defining the environment variable 
FLOAT__:OPTION with a . cshrc or .login command like 

(~ ___ s_e_t_e_n_v __ F_L_o_A_T __ o_P_T_r_o_N __ £_6_s_ss_l __________________________ ~] 
Other legal choices are £switch, fsoft, fsky, or ffpa. 

Bear in mind when converting make files and shell scripts, that Sun releases 
before 3.0 made switched floating-Point the default, with -fsky the only 
option. 

An executable program composed of several independently compiled modules 
can contain only one kind of in-line hardware floating-point. If this restriction is 
violated, one of the following error messages 

.sun 
~ microsystems 

Revision A of 19 September 1986 



6 Floating-Point Programmer's Guide 

Libraries and Executable File 
Sizes 

Undefined: fsky_used 
Undefined: f68881 used 
Undefined: ffpa_used 

will be issued by the compiler when it tries to link the modules together. 

Although the practice is not recommended, you can link together modules com
piled with -fsoft, -fswitch, and any one type of in-line hardware floating 
point. 

The compilers defeat attempts to specify -fsky on a Sun-3 or -ffpa on a 
Sun-2. 

For small and moderate sized programs, inline code generation creates the smal
lest executable files because the fewest library subroutines are required. -
fsoft requires library subroutines for all operations, while switched floating
point ( -f switch) requires library subroutines for software floating-point and 
all the inline options and so is the largest of all. There are, however, some code 
generation technicalities that affect these generalizations: 

Each compiler searches certain libraries by default: 

Libraries Searched 

Compiler Normal 

cc 
f77 
pc 

c 
F77 I77 U77 m c 
pc m c 

Profiling (-p or -pg) 

c_p 
F77_p I77_p U77_p m_p c_p 
pc_p m_p c_p 

In this table m, for instance, is shorthand for option -1m or the equivalent file 
name /usr I lib/ libm. a, except for c, which corresponds to -lc or 
/usr I lib/ libc. a. These libraries contain subroutines which are in turn 
called by code generated by the compilers. The compilers may generate code to 
call different subroutines, depending on the - f . . . option in effect at compiler 
time. 

In general, libm. a and libc. a contain different subroutines corresponding 
to each -f ... option. libpc. a, libF77. a, libi77. a, and 
libU77. a do not; the subroutines in these libraries are therefore created with 
- f switch, and so if they are called, then much of switched floating point is 
linked into the final executable file. 

This means that the executable file may be larger than expected. In some cases 
the switched floating point may be bypassed by using the inline subroutine 
expansion files described in Appendix G. 

FORTRAN source-language constructs that generate calls to subroutines in 
libF77. a include, for real or double precision, x**y, mod, atan2, cabs, 
and nint; for complex or doublecomplex, almost all operators and functions. 
With the Sun-provided inline subroutine expansion files, switched floating-point 
subroutines are not linked in except for for complex and doublecomplex xI y, 

Revision A of 19 September 1986 

0 



Summary: Which Option 
When? 

1.3. Expression Evaluation 
Options 

FORTRAN Style 

Greatest Available Precision 
Style 

-£store 

Chapter 1 -Sun Floating-Point Options 7 

x**y, sqrt, exp, log, sin, and cos. 

Compile programs with - f soft that use floating point in a casual way or not at 
all; this is the usual default anyway. Compile programs on a Sun-2 with 
-£switch that use floating point intensively but that are intended to be run on 
all possible Sun-2 and Sun-3 hardware configurations. Compile programs that 
are intended to use particular floating-point hardware intensively with in-line 
code for that hardware. 

Remember that the Sun FPA can only support 32 simultaneous processes. Con
sequently, on systems with a Sun FPA, -ffpa and -£switch should not be 
used for programs that use floating point casually, reserving floating-point con
texts for intensive floating-point programs. 

Programs that exploit certain details of the IEEE Standard may require 
-£soft, -£68881, or -ffpa; see Chapter 3. 

Some languages prescribe precise evaluation rules for expressions like these: 

[~ __ ~ __ :_b_<d __ +_e_> ________________________________ ~] 
Others do not. Different kinds of floating-point hardware also lend themselves to 
different methods. 

The traditional method of expression evaluation in FOR1RAN is that operations 
are performed 'in the precision of the most precise operand. Thus, a + b is 
evaluated in single precision if a and b are both single-precision, and in double 
precision if either a or b is double-precision. 

Since floating-point expressions usually suffer rounding errors when evaluated, 
these errors may be minimized if expressions are evaluated in the highest avail
able precision. Thus many C compilers evaluate a + b in double precision 
even if a and bare both single-precision. 

Sun's FOR1RAN and Pascal compilers generally perform FOR1RAN style expres
sion evaluation. An exception is when the - f 6 8 8 81 option is specified; then 
expressions are evaluated in the extended-precision registers of the MC68881. 
Sun's C compiler generally performs double-precision expression evaluation; if 
-£68881 is specified, evaluation is in extended precision. The -£store, 
-£single, and -fsingle2 options, described below, provide alternate 
methods. 

When the -£68881 option is used in conjunction with -0 or -P, the com
pilers allocate floating-point variables to the MC68881 's internal extended
precision registers, which are more precise than the single- or double-precision 
variables declared in FORTRAN, C, or Pascal. This means that, for instance, 

[ 

X = expression ] 
if (X .eq. 1.0) 

._____~----

Revision A of 19 September 1986 



8 Floating-Point Programmer's Guide 

may execute differently depending on whether X is allocated to an extended
precision register. If not, then the value of "expression" is rounded to the 
declared precision of X prior to the comparison, possibly changing its value; if X 
were so allocated, the rounding would not occur, affecting the subsequent com
parison. 

This optimization may adversely affect some programs that depend on the store 
to force rounding to storage precision. Those programs can be compiled without 
optimization, or with optimization and the additional option -f store, which 
insures that rounding to storage precision occurs when specified by a source 
language assignment. 

-f store is implemented in Release 3.2 by not allocating floating-point vari
ables to extended-precision registers. -fstore only has effect when 
-£68881 and -0 or -Pare specified. 

The combination -f store -0 is safer than -0 in that a few programs either 
won't work or work poorly with just -0. -0 is usually slightly more accurate; 
the difference in speed varies considerably among programs. 

The -fstore option is not intended to affect anonymous temporary'expres
sions. Thus the statement 

( 
x = (x + y) - y J 

........__ _____ _____,. 

0 

may still be evaluated in extended precision until the final store to x, even if 0 
-f store is specified. This may cause problems with some artful programs, 
such as some in the Elefunt test suite of Cody and Waite. The Elefunt 
programs test elementary functions by computing various identities involving 
those functions; inaccuracies in the elementary function implementations are 
reflected by the extent to which the identities fail to be satisfied. To be meaning-
ful, the arguments of the functions must be correctly related. That is, if x and 
x+ k are both arguments to functions in the identity, then x must be such that 
x+ k is computed exactly. Any error in x+k prior to evaluating the function 
under test will likely contaminate the results to such an extent that they are 
meaningless for measuring the errors in the function under test. x is purified by 
perturbing it slightly until x+ k can be computed exactly. 

A specific example in the Elefunt test of a log is an identity wherein x and 
y= ( 1 7 I 16 ) * x are both required. To compute y exactly on binary, decimal, 
and hexadecimal machines, over the limited range. sqrt ( 1 I 2) <= x <= 
15 I 16, it suffices that x's least significant four bits be zero; this is accom
plished by the following code: 

eight = 8.0 
x = (x + eight) - eight 
y = X + X I 16.0 

This code works correctly unless the expression (x + eight) - eight is 
evaluated in higher precision than the storage precision of x. If the latter occurs, 
then the rounding of ( x + eight ) will not occur where intended and x will 

~~sun ~ microsystems 
Revision A of 19 September 1986 



c 

-fsingle and -fsingle2 

Constant Expressions 

Chapter 1 - Sun Floating-Point Options 9 

not be purified. Since it is the intennediate expression (x + eight) that is 
of interest, -fstore will not affect the result. You must change the source 
code to 

eight 8. 0 
X = X + eight 
X = X - eight 
y X + X I 16.0 

Then -f store will force rounding to storage precision after ( x + eight), 
and y will be ultimately computed without any rounding error. 

Extended-precision expression evaluation is usually desirable because it minim
izes rounding error, and it is good practice to write out expressions with minimal 
stores of intennediate results. But programs which intend to force rounding 
errors to occur at certain times must sometimes be rewritten in this way when 
using extended precision. 

In C, floating-point expression evaluation and parameter passing are defined to 
occur in double precision, even if all operands are single-precision. cc 's 
-fsingle and -fsingle2 options pennit more FORTRAN -like floating
point expression evaluation. 

-fsingle causes floating-point operations to be perfonned in single precision 
when operands are single-precision. -f single2 causes single-precision pro
cedure parameters to be passed as single-precision rather than double-precision. 
Do not mix C modules compiled with -fsingle2 with modules compiled 
without it. 

In particular, the following will not work if compiled with -fsingle2: 

#include <math.h> 

float x,y; 
y = sqrt (x); 

Standard C libraries expect double-precision floating-point arguments. 

Constant expressions may be evaluated at compile time or at run time. From the 
point of view of the IEEE Standard, run-time evaluation of constant expressions 
is desirable in order to observe the rounding modes in effect at runtime and to 
preserve the IEEE exceptions. 

Sun's FORTRAN compiler (f7 7) doesn't evaluate floating-point constant expres
sions at runtime, while c c and pc both do, using the default round to nearest 
mode. All three compilers evaluate integer constant expressions at runtime. 

Revision A of 19 September 1986 





2 
Floating-Point Numerics 

Floating-Point Numerics......................................................................................................... 13 

2.1. Rounding Errors and Different Numerical Results ...................................... 13 

Rounding Errors ............................................................................................................ 13 

Different Numerical Results ................................................................................... 13 

Detecting ill Condition and Instability............................................................. 14 

2.2. AnExa.tnple- SPICE tdo .................................................................................... 14 

2.3. Floating-Point Progra.tns .............................................................................................. 15 

Assembly Language.................................................................................................... 15 

2.4. Precision in Decimal Digits ....................................................................................... 17 

Single Precision ................................................................................................ ,............ 17 

Double Precision ........................................................................................................... 17 

Extended Precision ...................................................................................................... 17 

2.5. FCVS Tests ......................................................................................................................... 17 

2.6. Floating-Point and Signal Handlers ...................................................................... 19 

setjmp/longjmp ................................................................................................. 20 

Floating-Point Signals................................................................................................ 20 

Signal #7 (SIGEMT) ................................................................................................... 20 

Signal #8 (SIGFPE) ··································································································· 20 
Why Not Signal by Default? .................................................................................. 21 

2.7. Debuggers and Floating Point.................................................................................. 21 

Signals................................................................................................................................. 21 

Disassembly..................................................................................................................... 22 

Printing all MC68881 Registers ........................................................................... 23 



Printing all FP A Registers ...................................................................................... . 23 

Printing in Single-Precision ................................................................................... . 

Printing in Double-Precision ................................................................................. . 

23 ~~ 

23 
\_) 

Printing in Extended-Precision ............................................................................ . 23 

Modifying Floating-Point Registers or Memory Locations ................ . 23 

2.8. FPA Recomputation ...................................................................................................... . 24 

Rounding Modes .......................................................................................................... . 25 

Exceptions ........................................................................................................................ . 25 

Inexact Exceptions ...................................................................................................... . 25 

Traps .................................................................................................................................... . 26 

Performance .................................................................................................................... . 26 

0 



2.1. Rounding Errors and 
Different Numerical 
Results 

Rounding Errors 

Different Numerical Results 

2 
Floating-Point Numerics 

Expression evaluation and precision are important because floating-point calcula
tions are usually inexact. The set of numbers representable in a particular finite
precision format is not closed under the usual arithmetic operations. When the 
computed result differs from the exact infinite-precision result, we say that 
roundoff or a rounding error has occurred. Correctly implemented floating point 
delivers the exact result if it is representable, or one of at most two nearest 
representable numbers otherwise. Computers vary as to the rule used for choos
ing between the two nearest neighbors; some computers with defective arithmetic 
do not guarantee to produce representable results correctly or to produce one of 
the nearest neighbors for unrepresentable results. 

Sun's computers generally follow the IEEE Standard for Binary Floating-Point 
Arithmetic, which specifies that, by default, inexact results return the closer of 
the two nearest neighbors, and if they are equally close, the one with the least 
significant bit 0. This rule is the default "round to nearest" rounding direction 
mode. Rounding errors caused by the correct application of the rounding rule to 
inexact results are inevitable consequences of finite-precision arithmetic, rather 
than defects in the machine. 

Different floating-point implementations produce different results. Even when all 
floating-point operations conform to the IEEE Standard, elementary transcenden
tal functions will usually vary depending on the hardware. Unlike the rational 
operations ( +, -, *, and I) and the algebraic function s qrt, it is not econom
ical to produce correctly rounded results for the elementary exponential, loga
rithmic, and trigonometric transcendental functions. Consequently different 
implementations make different trade-offs between speed and accuracy. 

Differences arise even if no transcendental functions are involved. The 
MC68881 and Sun FPA both conform to the IEEE Standard, yet they produce 
different results because the MC68881 uses extended-precision registers, which 
are not present on the FP A. The MC68881 's results are usually more accurate. 
The MC68881 's results can vary depending on which of the -0, -P, or 
- f store flags are used, since these affect how often results are rounded from 
extended precision to storage precision. Finally, results computed with the A79J 

13 Revision A of 1_9 September 1986 



14 Floating-Point Programmer's Guide 

Detecting Ill Condition and 
Instability 

2.2. An Example- SPICE 
tdo 

(1 
mask set MC68881 may differ from those computed with the later versions of the \--,_,.) 
MC68881. 

Sun's software floating-point conforms to the IEEE Standard's default modes 
and agrees with the Sun FP A on operations specified by the Standard in the 
default modes. 

Due to performance requirements and the fact that its microcode space is com
pletely full, the Sky. FFP does not always produce the results specified in the 
IEEE Standard, even for the rational operations +, -, * , and I. For these 
operations and sqrt, computed results sometimes differ by one bit from the 
standard results; at other times the signs of zero results vary from the Standard. 

If you specify cc's -fsingle or -fsingle2 options, results may be dif
ferent from what they would have been otherwise. 

When the answer to a problem is inordinately sensitive to changes in the input 
data, it is said to be ill-conditioned. ill condition is a property of a problem and 
input data and is not affected by changing the algorithm used to obtain the result. 

Even for well-conditioned problems, some numerical algorithms are much more 
sensitive to roundoff than others. The sensitive algorithms are said to be 
unstable. Instability can sometimes be cured by changing algorithms. 

The distinction between ill-condition and instability is often academic in large 
realistic applications too complicated to be analyzed. The symptoms are the 

s~the: ad~ffiomputation ~1reviously ~lieved to be correct o~thand~thffier machine:
1
or Q 

w1 a 1 erent comp1 er or operating system, or even w1 1 erent comp1 er 
options, now gives drastically different results with the same input data. Natur
ally, such results suggest that the new hardware, compiler, or operating system is 
defective. How can that possibility be separated from the effects of ill condition 
or instability? 

One way to investigate sensitive results is to introduce random small changes in 
the input data and observe the effect on the results. But the right random changes 
may be difficult to determine or awkward to insert. The four rounding direction 
modes specified in the IEEE Standard allow one to obtain similar effects. 

On Sun-3's with an MC68881 installed, you can vary the IEEE rounding modes 
with the assembly-language function, _ fpmode _,mentioned in "How to Use 
Special Features of the IEEE Standard" in Chapter 3. Run a program first in the 
default round-to-nearest mode, then in another mode such as round-toward-zero. 
Compare the results, and if numerical results vary enough to bother you, then you 
are either trying to solve an ill-conditioned problem or using an unstable algo
rithm. 

SPICE is an integrated circuit emulation program. One of the SPICE 2G.6 
input files listed in Appendix E, tdo, models a tunnel diode oscillator. In the 
transient analysis section ofthe program's output, a voltage vl is monitored as 
a function of time. The computed behavior is that the voltage is initially a con
stant 0.12 v, then either declines abruptly to about 0.02 v or else jumps equally 
abruptly to about 0.48 v. Which behavior is computed seems to depend on ran
dom factors of code generation causing slight variations in rounding errors. For 

(\ 
\ I ,_/ 

~~sun 
• microsystems 

Revision A of 19 September 1986 



2.3. Floating-Point 
Programs 

Assembly Language 

Chapter 2- Floating-Point Numerics 15 

instance, the abrupt decline is obtained with -fsoft -0 and -ffpa -0, 
while the abrupt rise is obtained with - f sky -0 and - f 6 8 8 81 -0, in all 
cases compiling with software Release 3.1 and default roundings. Experiments 
with - f 6 8 8 81 -0 show that changing the rounding direction mode from 
round to nearest to round toward zero, or changing the rounding precision mode 
from extended to double, is sufficient to change the computed behavior. Since 
oscillators usually exhibit positive-feedback physical characteristics, it seems 
likely that computing the transient behavior is an inherently ill-conditioned prob
lem. On the other hand, determining the steady-state oscillation frequency might 
be well-conditioned. 

Sun recommends that you write programs using floating-point in higher-level 
languages whenever possible. 

FORTRAN is the best-suited compiled language that Sun supports for those parts 
oflarge applications where floating-point usage is substantial, and data struc
tures, control structures, and input and output are simple. FORTRAN has more 
intrinsic types, operators, and functions designed to support floating-point com
putations and ease writing correct, compact, easily optimized numerical pro
cedures. 

Many other desirable language features are poorly designed in FORTRAN or 
lacking altogether, so Sun makes it relatively easy to call FORTRAN computa
tional modules from programs written in C or Pascal. 

In Pascal, you just declare such modules to be "external fortran". 

In C, remember that a FORTRAN declaration like 

[ 

xtype function x ( y ) ] 

..____yt-ype y ___ _____, 

usually corresponds to a C declaration like 

[ 

xtype x_ (y) ] 
ytype *y ; 

.._____ ___ _ 
For more about programming on Sun's computers in FORTRAN and Pascal, see 
the Sun FORTRAN Programmer's Guide and the Sun Pascal Programmer's 
Guide. 

The assembly language interfaces to -£switch, -fsoft, and -fsky float
ing point are not documented and vary in different software releases. If neces
sary, you can examine compiled code generated by the - s option to infer the 
interface conventions in effect for a particular release. 

For -£68881 and -ffpa, the interface is more permanent since specific 
features have been added to the Sun-3 assembler to accommodate these floating
point units. The following lines of code are comparable: 

Revision A of 19 September 1986 



16 Floating-Point Programmer's Guide 

Source: 

(~ ____ x_<_i_> ____ x_<_i_> __ + __ c __ *_Y __ <~_·> ______________________________ __J] 

MC68881 assembly code: 

fmoved 
fmuld 
faddd 
fmoved 

FPAcode: 

c,fpO 
ay@+,fpO 
ax@,fpO 
fpO,ax@+ 

fpmoved c,fpaO 
fpmuld ay@+,fpaO 
fpaddd ax@,fpaO 
fpmoved fpaO,ax@+ 

In both examples, ax and ay are pointers to x ( i) and y ( i), respectively. 

The syntax ofMC68881 instructions generally follows that of Motorola's 
MC68881 manual, with the following exceptions: 

o Instructions are lower case 

o No dot separates the opcode from the operand type 

o CPU address mode notations are different 

Furthermore, unlike examples in the MC68881 manual, dyadic operations 

~~---f_o_p_t _____ f_p_n_,_fp_n--------------------------------------~l 
may not be abbreviated to the single-operand form 

(~----f_o_p_t _____ f_p_n ________________________________________ --J] 
FP A instruction syntax is designed to parallel that of MC68881 instructions 
where it makes sense to do so. Op codes begin with "fp" rather than "f" and 
register names are fpaO .. fpa31 rather than fpO .. fp 7. Register-to
register operations have type s or d rather than x. 

Revision A of 19 September 1986 



2.4. Precision in Decimal 
Digits 

Single Precision 

Double Precision 

Extended Precision 

2.5. FCVS Tests 

Chapter 2- Floating-Point Numerics 17 

The relationship between binary floating point and decimal floating point is one 
of the most widely misunderstood aspects of floating-point arithmetic. No binary 
floating-point format has an exactly equivalent number of decimal digits, since 
the relative spacing of representable floating-point numbers varies in different 
places for different bases. The following describe the IEEE formats: 

IEEE single precision is always more precise than 6 decimal digits and always 
less precise than 9 decimal digits. Seven decimal digits are often less precise but 
sometimes more; eight decimal digits are often more precise but sometimes less. 

IEEE double precision is always more precise than 15 decimal digits and always 
less precise than 17 decimal digits. Sixteen decimal digits are sometimes less 
precise and sometimes more. 

MC68881 extended precision is always more precise than 18 decimal digits and 
always less precise than 21 decimal digits. Nineteen decimal digits are often less 
precise but sometimes more; 20 decimal digits are often more precise but some
times less. 

The following examples illustrate the confusion surrounding precision issues. 
The Federal Compiler Validation Service (FCVS) has a series of programs 
intended to measure conformance of implementations to the FORTRAN standard, 
ANSI X3.9-1978. While investigating why certain test programs failed on Suns 
in mysterious ways that depended on the setting of the -£ ... and -0 options, 
it became apparent that the programs were setting standards that could only be 
passed by luck. Here are two examples taken from the FCVS78 Version 2.0; 
official FCVS versions since 1983 have been modified to display the message 
"INFORMATIVE- UNDER REVIEW BY FSTC" for certain tests in programs 
371..374, 818, and 820. 

The following fragment is from test 10 of FCVS program 374, intended to test 
single-precision tangent: 

40100 

PIVS = 3.1415926535897932384626434 
AVS = TAN((3.0 * PIVS I 2.0) - 1.0 I 1024.0) 
IF (AVS - 1023.9) fail, pass, 40100 
IF (AVS - 1024.1) pass, pass, fail 

This fragment is intended to be a test of tan, to see if 

( AVS = TAN(1.5 * n - 2**-10) = 1ITAN(2**-10) l 
which is approximately 1024- .0003. So the passing criterion seems rather gen

erous: 

( 
if (abs(avs-1024) < 0.1) then pass. J 

..____ _____ ~ 
But whether this test passes or fails is a matter of random luck for single preci
sion. Suppose that the only error is the error in the value assigned to P rvs; it 
was intended to be n, but since n is not representable, the actual value contained 

Revision A of 19 September 1986 



18 Floating-Point Programmer's Guide 

in P IVS is not 1t but 1t+E. Conventional error analysis shows that the passing 
criterion is equivalent to: 

( abs (£) < (2/3) * (0 .1) * 2**-20 = 6. 4e-8. ) 
But binary floating-point arithmetic of p significant bits cannot in general 
approximate a number to better than half a unit in the last place, or2**(1-p) for 
numbers between 2 and 4; IEEE single precision has 24 significant bits, so arbi
trary numbers between 2 and 4 would not be expected to be approximated to 
better than E = 1.2e-7, and in particular, the IEEE single-precision number closest 
to 1t differs from 1t byE= 8.7e-8. Thus there is no hope of passing unless addi
tional rounding errors are made in the multiplication or tangent; these additional 
rounding errors must be aptly chosen to cause the final result to be acceptable! 

The following fragment is from test 12 of FCVS program 820, intended to test 
complex cosine: 

COMPLEX AVC, BVC 
REAL R2E (2) 
EQUIVALENCE (AVC, R2E) 

AVC = CCOS ( ( 3 .14i6, 0.0) * (-10000.0, 0. 0)) 
IF (R2E (1) - 0. 99725E+00) fail, 40122, 40121 

40121 IF (R2E (1) - 0.99736E+00) 40122, 40122, fail 
40122 IF (R2E(2) + O.SOOOOE-04) fail, pass, 40120 
40120 IF (R2E(2) - O.SOOOOE-04) pass, pass, fail 

This is intended to test whether 

(~---A-B_s_<_c_o_s_<_1_e_4 __ * __ 3_._1-41 __ 6>_-__ .9_9_7_3_o_s_> __ < __ s_._s_e_-_s ______________ ~) 
The correct result cos(31416.0) is .9973027. But once again, passing is a matter 
of random luck on binary computers. Suppose the only error is the conversion of 
3.1416 to a machine-representable value 3.1416+£. Error analysis shows that the 
passing criterion is equivalent to 

[ 
-8.0e-8 < e < 7.0e-8 J 

.....___ _____ _____, 

but as before, the best general bound for the approximation error is 1.2e-7, and in 
particular the closest IEEE single-precision number to 3.1416 differs from it by 
l.le-7. Machines with 24 significant bits or less can only pass the indicated cri
terion by lucky rounding in the multiplication and cosine. 

Oddly enough, this same test program considers acceptable a nonzero imaginary 
part of a complex cosine of a real argument. 

~\sun ~ microsystems 
Revision A of 19 September 1986 

0 



c 2.6. Floating-Point and 
Signal Handlers 

Chapter 2- Floating-Point Numerics 19 

UNIXt signals are asynchronous events, and when a signal handler uses the same 
floating-point device as the process it interrupted, confusion can ensue. Conse
quently part of Sun's signal handling protocol is designed to save and restore the 
state of the floating-point device currently in use, but it is good practice to design 
signal handling routines to be as short as possible and to avoid inessential 
floating-point computations. 

Signals, once generated, are passed by UNIX to the interrupted process through a 
routine named _sigtramp which calls a signal handler defined by the user 
with sigvec(2), signal(2),or signal(3f). 

Before calling the user handler, _sigtramp saves certain CPU and floating
point state on the stack; if the signal handler terminates normally by returning to 

sigtramp, the CPU and floating-point state are restored from the saved state. 
The CPU state includes the contents of the program counter (pc), stack pointer, 
status register, signal stack and mask information, and registers aO-al and 
dO -dl. The floating-point state depends on which signal occurred and what kind 
of floating-point hardware is in use. In the case of signal #8, SIGFPE, no 
floating-point state is saved or restored; for all other signals, the hardware state of 
the Sky FFP, MC68881, or Sun FPA is saved when the signal occurs and restored 
when the signal handler returns. 

Note that just as the signal handler is expected to follow the C compiler's con
ventions and restore CPU registers a2-a 7 and d2-d7 if it uses them, it is also 
expected to restore certain floating-point registers, as described below. 

In the case of the Sky FFP, the complete state is saved, consisting of the contents 
of the program counter of the Sky FFP and the contents of the four double
precision floating-point data registers. Before starting the signal handler, the Sky 
FFP is reset to accept new instructions. The contents of the data registers are 
unchanged. On return from the signal handler, the Sky FFP program counter and 
data registers are restored to their state prior to interruption. 

In the case of the MC68881, the registers saved and restored include fpO-fpl 
and fpcr I fpsr I fpiar. The signal handler is responsible for saving and res
toring fp2-fp7 if it uses them. 

In the case of the Sun FP A, the registers saved and restored include the 
MC68881 's fpO-fpl and fpcr lfpsrlfpiar and the FPA's instruction 
pipe, fpastatus, fpamode, imask, load_ptr, ierr, and fpa0-
fpa3. Before calling the signal handler, imask is set to 0, fpamode 
is set to 2 (the default), and fpsr and fpcr are set to 0. The signal handler is 
responsible for saving and restoring fpa4-fpa31 if used. Upon returning 
from the signal handler, all the control and data registers are restored to their 
values at the time of the signal. 

The exact format of the saved floating-point state is subject to change and should 
not be relied upon. Programs that use nonstandard returns from signal handlers 
may not work under new software releases. 

t UNIX is a registered trademark of AT&T. 

Revision A of 19 September 1986 



20 Floating-Point Programmer's Guide 

setjmp/longjmp 
The code implementing set jmp and longjmp does not save or restore any 
floating-point state. Use great care in creating programs that involve these func
tions and floating-point arithmetic. 

Floating-Point Signals Two floating-point signals, SIGEMT and SIGFPE, are used by software to test 
for the presence of an MC68881 and as signals for some error or exception con
ditions. 

Signal #7 (SIGEMT) 
Programs compiled with -fswitch, -£68881, and -ffpa test for the pres
ence of an MC68881 by performing an MC68881 instruction that initializes the 
fpcr and fpsr registers to their proper IEEE defaults. If an MC68881 is 
present, the instruction executes uneventfully. If no MC68881 is present, a 
s I GEMT signal is generated and handled by a signal handler installed for the 
duration of this test. The S I GEMT signal also affects use of the de buggers 
adb, dbx and dbxtool; see "Debuggers and Floating Point" below. 

Signal #8 (SIGFPE) 
SIGFPE signals certain conditions that might be errors, exceptions, or opportun
ities. Generally these conditions arise synchronously during arithmetic opera
tions in the underlying process, but they are infrequent enough that they are most 
efficiently treated as if they were asynchronous events. Since they usually tell 
something about the state of the floating-point computation, the floating-point 
status is not saved, reset, and restored as it is for all other signals. 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

Not all s IGFPE signals have to do with floating point. This is a complete list 
of defined SIGFPE codes: 

FPE INTDIV TRAP Oxl4 I* integer divide by zero *I - -
FPE CHKINST TRAP OxlB I* CHK [CHK2] instruction *I 
FPE TRAPV TRAP Oxlc I* TRAPV [cpTRAPcc TRAPcc] instr *I 
FPE FLTBSUN TRAP Ox cO I* [floating branch I set on unordered ] *I 
FPE FLTINEX TRAP Oxc4 I* [floating inexact result] *I - -
FPE FLTDIV TRAP OxcB I* [floating divide by zero] *I 
FPE FLTUND TRAP Oxcc I* [floating underflow] *I 
FPE FLTOPERR TRAP OxdO I* [floating operand error] *I 
FPE FLTOVF TRAP Oxd4 I* [floating overflow] *I 
FPE FLTNAN TRAP OxdB I* [floating Not-A-Number] *I 
FPE FPA ENABLE Ox400 I* [FPA enable reg not set] *I 
FPE FPA ERROR Ox404 I* [FPA bus error] *I 

Of these, INTDIV, CHKINST, and TRAPV are related to integer arithmetic or 
non-arithmetic instructions. FLTBSUN ... FLTNAN are generated by the 
MC68881 and can be indirectly generated by the FP A. FP A_ ENABLE and 
FP A_ ERROR can only be generated by the FP A. 

The FPE_FPA_ERROR code is used by the FPA to indicate that it cannot per
form a particular operation; this may be because the operation is not a valid FP A 
instruction or the data is outside the domain accepted by the Weitek chips or the 
FP A microcode. The latter exceptions are part of normal FP A operation. 

SIGFPE must be enabled and assigned to a signal handler that recognizes the 

(-"\ 
\_) 

FPE _ FP A_ ERROR code and handles it properly when an FP A is to be used. ~~ 
(This is done automatically by -ffpa). If SIGFPE is subsequently totally \_) 
disabled, an FPE _FPA _ERROR signal will cause an infinite loop because the 

Revision A of 19 September 1986 



c\ 

Why Not Signal by Default? 

2.7. Debuggers and 
Floating Point 

Signals 

Chapter 2-Floating-Point Numerics 21 

FP A is never reset and cannot progress past the troublesome instruction. 

Floating-point SIGFPE codes do not arise for programs compiled with 
-fsoft or -fsky. They do not arise for programs compiled with -£68881 
unless IEEE traps are enabled on the MC68881 by setting bits in the Exception 
Enabled byte of the fpcr register. The MC68881 exception enabled bits also 
affect FP A results during recomputation; see "FP A Recomputation" below. 

Users new to the IEEE Standard often wonder why seemingly catastrophic events 
such as division by zero or overflow do not cause immediate error termination of 
the program. They have been conditioned to expect the latter by various systems 
of arithmetic that were unable to provide any reasonable response for exceptional 
conditions. 

The IEEE Standard, however, provides default responses for floating-point 
operations that are meaningful and adequate for many purposes: Infinities and 
NaNs are the usual results of overflow and division by zero. Sun's floating point 
meets the standard by silently providing the correct default result. This is usually 
satisfactory when the result of an operation is a floating-point quantity; other 
cases, sometimes troublesome, include comparisons, conversion to integer for
mat, and conversion from binary to ASCII. Programmers who haven't con
sidered the possibility of floating-point operands that might be infinities or NaNs 
sometimes get surprising results in these cases. 

When an MC68881 is available, the SIGFPE signals FPE _FLTBSUN_TRAP 

through FPE _FLTNAN _TRAP can be enabled to occur when specified floating
point exceptions arise. For instance, to cause FPE_FLTOPERR_TRAP to be 
signalled whenever an invalid operation occurs such as converting a NaN, 
infinity, or too-large value to an integer, it is necessary to set the OPERR bit in 
the Exception Enable Byte in the MC68881 's fpcr register, described in 
Motorola's MC68881 User's Manual. This can be done either in assembly 
language, or by using the _ fpmode _subroutine described in the section "How 
to Use Special Features of the IEEE Standard" in Chapter 3. 

Floating-point hardware or software use will affect the way that you work with 
debuggers on Sun systems. Signal handling and disassembly operations are par
ticularly affected. For more information about debuggers and floating-point, see 
Appendices B and C in this manual. 

When using the debuggers adb, dbx, and dbxtool, be aware that certain 
signals occur in the normal course of floating-point operations. As mentioned 
above, a MC68881 instruction is attempted to determine if an MC68881 is 
present. If no MC68881 is present, s I GEMT is signalled and is caught by the 
debuggers, stopping the process being debugged. You can then either continue 
or, if you prefer, instruct the debugger in advance to ignore the signal by issuing 
the command 7: i in a db or ignore 7 in dbx. This command passes the 
signal directly to the debugged process, bypassing the debugger. 

When an FPA is installed, SIGFPE is signalled each time FPA recomputation is 
required, as discussed below. When these signals occur, you may either con
tinue, or issue 8 : i or ignore 8 to ignore them. Almost every process that 
uses the FP A requires recomputation for at least the first inexact result. 

Revision A of 19 September 1986 



--,-~---

22 Floating-Point Programmer's Guide 

Disassembly MC68881 instructions can always be disassembled using MC68881 assembly 
language mnemonics. FPA instructions, however, are simply movel instruc
tions to particular addresses, and consequently cannot be positively distinguished 
from other movel instructions. To allow control over this disassembly, a db 
and dbx provide ways to specify whether or not movel instructions should be 
considered as potential FP A instructions. 

Sun's compilers generate FPA instructions using movel 's with "long absolute" 
and "address register with displacement" effective address modes. For example: 

fpadds 
fpmoves@l 

<eadatal>,fpaO 
fpa0,<eadata2> 

generates exactly the same code as 

movel 
movel 

<eadatal>,Oxe0000380 
al@(Oxc00),<eadata2> 

The debuggers can recognize two patterns of move instructions as FP A instruc
tions. First, instructions that access the FP A using absolute addressing may be 
recognized simply by examining the address; second, instructions that access the 
FP A using base + 16-bit displacement addressing may be recognized if the base 
register used has been designated as a pointer to the FP A's virtual address. 

Note that you can make this designation at runtime, independent of the actual 
register contents. The default is to recognize absolute-mode FP A instructions 
only if an FPA is present. Base-mode FPA instructions are assumed to be moves 
by default, since no register is assumed to be an FP A base register. 

FPA disassembly is enabled in adb by the command l>F and disabled with 
O>F. l>B designates alas an FPA base register; while -l>B indicates that 
no register is being used as an FP A base register. The first example above would 
be disassembled as an FPA instruction if F were 1; the second if F were 1 and 
B were 1. Otherwise they would be disassembled as movel 's. 

In dbx, 

( dbxenv fpaasm on l 
enables FPA disassembly, while 

( dbxenv fpaasm off J 
disables it. An FP A base register may be specified using 

( dbxenv fpabase <register> l 
while 

sun 
microsystems 

Revision A of 19 September 1986 

~~ 
l ' 
\._./ 



Printing all MC68881 
Registers 

Printing all FPA Registers 

Printing in Single-Precision 

Printing in Double-Precision 

Printing in Extended
Precision 

Modifying Floating-Point 
Registers or Memory 
Locations 

Chapter 2- Floating-Point Numerics 23 

( dbxenv fpabase off J 

indicates that no register is assumed to be an FPA base register. 

In adb, $R displays MC68881 registers fp0-fp7 in hexadecimal (hex) and 
extended-precision decimal, and fpcr, fpsr, and fpiar in hex. 

In dbx, the command &$fpOinE displays n MC68881 registers starting with 
fpO, in hex and extended-precision decimal. 

In adb, $x displays FPA registers fpa0-fpa15 in hexadecimal, single
precision decimal, and double-precision decimal. It displays fpamode, 
fpastatus, state, imask, ldptr, ierr, and instruction pipe registers 
in hex. $X displays FPA registers fpa16-fpa31 in hex, single decimal, and 
double decimal, and fpamode, fpastatus, state, imask, ldptr, 
ierr, and instruction pipe registers in hex. 

In dbx, the command &$fpaOinF displays n FPA registers starting with 
fpaO, in hex and double-precision decimal. To display FPA registers in hex and 
single-precision decimal, use & $ fpaO s I nf. 

In a db, a 4-byte memory location, fpan, or a register dn can be displayed in 
single-precision decimal; use addr If or <fpan=f or <dn=f in a db. 

In dbx, use addr If to print a single location in hexadecimal and single
precision decimal, addr In£ to print n locations. The notation &$regname 
can be used as a handle for printing registers; note that registers do not actually 
have addresses. 

In a db, an 8-byte memory location, fpan, or a register pair dn: dn + 1 can be 
displayed in double-precision decimal; use addr IF or <fpan=F or <dn=F. 

In dbx, use addr /F to print a memory location or register in hexadecimal and 
double-precision decimal, addr I nF to print n registers or memory locations. 

A 12-byte memory location or fpn can be displayed in extended-precision 
decimal: In adb, use addrle or <fpn=e. 

In dbx, use addriE or &$fpniE. 

In a db you cannot load memory or registers with data in an ASCII floating
point representation. Hexadecimal data can be used to load one 32-bit word at a 
time. The words of a register can be designated separately, to make loading 
MC68881 and FP A registers easier. Thus the most significant, middle, and least 
significant words of fpl can be referred to as fpl, fql, and frl. The 
more significant and less significant words of the FPA register fpal can be 
referred to as fpal and fqal. 

In dbx you can set a register or memory location with a value expressed in 
floating-point decimal notation. 

dbx converts data into extended-precision format for an MC68881 register, and 
into double- or single-precision format for an FP A register, depending on 
whetheranamein $fpa0 .. $fpa0or $fpa0s .. $fpa31sisused. The 

Revision A of 19 September 1986 



24 Floating-Point Programmer's Guide 

data is converted according to the declared type of the variable for variables 
defined in a compiled language. dbx also provides the command 

( set81 <fpreg> = xyz 

to set an MC68881 register to an arbitrary 3-word bit pattern, formed by con
catenating the 32-bit values x, y and z. No such command exists for FP A regis
ters in Release 3.2. 

2.8. FPA Recomputation The Sun FPA relies on the Sun-3 CPU's MC68881 to perform many operations 
that would be difficult or inefficient to perform with the Weitek 1164/1165 chip 
set These operations include any in which IEEE arithmetic exceptions arise. 
When one of these exceptions is detected in the Weitek chips, the operation is 
terminated and a bus error notifies the CPU that recomputation on the MC68881 
is required. 

#include <signal.h> 

int 

The operating system intercepts the bus error, diagnoses it as coming from the 
FPA, and sends a SIGFPE to the process in question. That process is responsi
ble for having a correct s I GFP E signal handler installed that determines if the 
s I GFPE is due to an FP A request for recomputation and handles it accordingly. 
When -ffpa is requested, such a signal handler is installed by default; the fol
lowing is a simplified version of that default handler: 

sigfpe_handler(sig, code, scp) 
int sig, code; 
struct sigcontext *scp; 

if (code == FPE_FPA_ERROR) 
if (fpa_handler(scp)) 

return; 

else 
fprintf(stderr, "SIGFPE Handler pc %X code %X \n", scp->sc_pc, code); 
fflush(stderr); 

abort(); 

fpa _handler ().is the standard FP A recomputation routine contained in 
libc. It returns 1 if the FPA error was fixed by recomputation and 0 otherwise, 
as in the cases that the FP A error was caused by hardware failure or incorrect 
software. fpa _handler () is used to support the IEEE Standard arithmetic 

l 

features pertaining to rounding modes, exceptions, and traps. (""\ 
\.._~) 

Revision A of 19 September 1986 



Rounding Modes 

Exceptions 

Inexact Exceptions 

Chapter 2-Floating-Point Numerics 25 

fpa _handler () uses the MC68881 to recompute the desired result. The 
MC68881 's single and double rounding precision modes are used to obtain the 
results anticipated by the IEEE Standard for simple single- and double-precision 
operations. More complex instructions, such as elementary transcendental func
tions and combination instructions, such as add followed by multiply or multiply 
followed by add, are recomputed in extended rounding precision mode to obtain 
maximum accuracy. 

Rounding modes are supported directly by the Weitek 1164/1165 for simple 
instructions; the elementary transcendental functions, however, are microcoded. 
When an elementary transcendental function is called with a rounding mode 
other than the default (round to nearest) recomputation is invoked in order to 
compute the function on the MC68881. 

Exceptions are reported by the Weitek chips after each operation, but those chips 
do not accumulate exceptions or allow optional trapping on them. Consequently, 
whenever the Weitek chips report one of the exceptions other than inexact, the 
FP A hardware signals that recomputation is required. The CPU receives that sig
nal-when it attempts to perform a subsequent FPA instruction; the CPU's pro
gram counter points to the subsequent instruction rather than to the instruction 
which suffered the exception; the latter's address is lost. When an exception is 
signalled, the result delivered by the Weitek chips is not written to the destina
tion FP A register specified by the FP A instruction, since in many cases that 
would destroy input data required to recompute the correct result. 

The recomputation routines examine the FPA's instruction pipe, clear it, and 
recompute the first instruction in the pipe, which is the one that generated the 
exception. The recomputed result is placed in the FP A register that was the 
instruction's intended destination, and any IEEE exception flags raised during the 
course of the computation are OR'ed into the MC68881 's Accrued Exception 
byte in the fpsr register. 

After recomputation occurs, the contents of the FPA's fpastatus register and 
the MC68881 's Condition Code, Quotient, and Exception Status bytes are 
undefined, except that after recomputation of an FP A comparison instruction 
(which happens when one or both operands are NaNs), fpastatus is properly 
defined so it can be read and then written into the MC68020's status register. 

Inexact exceptions arise more often than not during floating-point operations. If 
inexact is the only exception that arose, the Weitek-computed numerical result is 
correct. Causing a recomputation on each such exception would unacceptably 
degrade performance. Consequently the FPA has a register called imask that 
allows software to control whether inexact exceptions invoke recomputation. 
Sun-supplied software uses imask in conjunction with the MC68881 's status 
and control registers to maintain an accurate record of inexact exception 
occurrences without recomputing for each one. Sun's software conventions for 
imask use may be defeated if users alter imask other than indirectly through 
the function _ fpmode _described below. 

When a -ffpa program begins execution, imask is set to 1 so that the FIRST 
inexact exception detected by the FP A causes a recomputation. After the recom
putation, the inexact Accrued Exception bit in the MC68881 's fpsr is turned 

~~sun ~ microsystems 
Revision A of 19 September 1986 



26 Floating-Point Programmer's Guide 

Traps 

Performance 

on and imask is cleared UNLESS the inexact operation Exception Enable bit is 
set in the MC68881 's fpcr. The latter bit, normally cleared, may be set by the 
user to indicate that EVERY inexact FP A operation should cause recomputation 
by the MC68881, with a trap occurring if the MC68881 recomputation is also 
inexact. 

If you use either the function _fpstatus_ to clear the MC68881 fpsr's 
inexact Exception Accrued bit, or _fpmode_ to set the £per's inexact opera
tion Exception Enabled bit, then the FPA's imask will be set so that the next 
inexact operation will cause recomputation. 

Traps on FPA instructions can be obtained by setting bits in the MC68881 's 
Exception Enable byte in the fpcr register. When an exception is detected by 
a Weitek chip the FP A calls for recomputation; if that recomputation causes a 
MC68881 exception corresponding to a set Exception Enable bit then a 
MC68881 trap occurs, manifested as a SIGFPE with a code equal to one of 

FPE_FLT{BSUN,INEX,DIV,UND,OPERR,OVF,NAN}_TRAP 

The MC68881 trap occurs after the FP A recomputation takes place; the pc in the 
SIGFPE handler parameter scp will point to an FPA instruction in the user's 
code, the same one pointed to by the orgignal recomputation request. The 
address of the last MC68881 instruction executed in fpa _handler () is in 
the MC68881 's fpiar register. 

Writing a SIGFPE trap handler for an MC68881 trap generated indirectly by 
the FP A requires considerable care. The same trap handler must handle both the 
FP A's request for recomputation and the MC68881 's trap signal. 

Sun does not support user-written replacements for fpa _handler () . If you 
choose to write one, be sure to meet all hardware error~handling requirements; in 
particular, clear the FP A's pipe before attempting any other FP A instructions. 
Otherwise an infinite loop of s IGFPE 's.is likely to result. 

Because the treatment of floating-point exceptions is so variable, most floating
point programs that run reliably on machines with different types of arithmetic 
do not cause any floating-point exceptions to occur other than inexact. Conse
quently Sun's FPA recomputation scheme was designed without consideration of 
efficiency other than in the inexact case. 

Programs that generate many exceptions may run more slowly than software 
floating point due to the inteiVention of the operating system to handle bus errors 
and signalling. The most likely cases where this might arise are computations 
which frequently underflow or which handle many NaNs. If recomputation per
formance is an issue, it may be partially ameliorated by using the Weitek chips in 
"fast" mode. "Fast" mode, although inconsistent with the IEEE Standard, causes 
no ill effects on programs that work correctly on a variety of non-IEEE 
machines, since those machines probably underflow abruptly to zero without 
creating subnormal (denormalized) numbers as IEEE machines do. In the Q 
Weitek chips' normal "IEEE" mode, recomputation is invoked if either operand ·'--

~~sun ~ microsystems 
ReYision A of 19 September 1986 



c\ 

c 

Chapter 2- Floating-Point Numerics 27 

or the result is a subnonnal number. In the Weitek chips' "fast" mode, recompu
tation is only invoked if the result would be a subnonnal number; subnonnal 
operands are treated as zero without generating any exception. 

The Weitek fpamode register is intended for use by Sun software. If you alter 
it directly using an assembly language instruction 

fpmove #Ox3,fpamode I Set "FAST" mode+standard rounding. 

or by an equivalent FOR1RAN call 

( call fpamode(3) ) 
be careful to preserve the values of mode bits that you do not intend to change. 
The default value of fpamode is 2, corresponding to rounding to nearest mode, 
treating subnonnal operands in "IEEE" mode, and converting floating to integer 
in round-toward-zero mode. 

The following program illustrates perfonnance aspects in the face of underflows 
-a few (c = 0.49) or a lot (c = 0.51). 

c call fpamode(3) 
X = 1 
c = 0.49 

c 
c or 0.51 for a lot 
c 

do 1 i= 1, 10 000 000 
1 X = C * X 

print * c, X ' 
end 

The execution time in seconds for various compilation options is as follows: 

c=0.49 c=0.51 Options 

112 491 -0 -fsoft 
100 162 -0 -f68881 -fstore 

20 70 -0 -f68881 
15 13800 -0 -ffpa 
15 15 -0 -ffpa (call fpamode (3) uncomrnented) 

Revision A of 19 September 1986 



() 



___ ........ ________________________ ..,, __ K~----""--"""""""""" 

3 
IEEE-Standard Conformance 

IEEE-Standard Conformance .............................................................................................. 31 

3.1. Supported IEEE Standard Features ....................................................................... 31 

Numeric Formats .......................................................................................................... 31 

ASCII-to-Binary Conversion ................................................................................. 31 

Rounding Direction Modes, Exceptions, and Traps ................................. 31 

Numerical Results ........................................................................................................ 31 

MC68881 Rounding Precision Mode ................................................................ 32 

Ordered Comparisons ................................................................................................. 32 

3.2. How to Use Special Features of the IEEE Standard.................................... 32 

Rounding Modes and Trap Enabling ................................................................. 33 

Trap Enabling ................................................................................................................. 33 

Using Special Features From FORTRAN...................................................... 33 

Exceptions, Condition Code, and Quotient Status ..................................... 34 

Signalling NaN s ............................................................................................................. 34 

Using _fpmode_ and _fpstatus_ from C....................................... 34 

3.3. Special Library Entry Points ..................................................................................... 37 





3.1. Supported IEEE 
Standard Features 

Numeric Formats 

ASCll-to-Binary Conversion 

Rounding Direction Modes, 
Exceptions, and Traps 

Numerical Results 

3 
IEEE-Standard Conformance 

The conformance of Sun software to the IEEE Standard varies depending on 
what compiler code generation options are chosen. The description in this 
chapter refers to the underlying arithmetic of Release 3.2 FORTRAN, Pascal, and 
C. Some of the features of the IEEE Standard that are unsupported in higher
levellanguages must be accessed through constructed subroutines, generally in 
assembly language; examples of these are listed later. 

All Sun floating-point options support single and double precision. Extended 
precision is supported only in assembly language for the MC68881, as are round
ing precision modes. Signalling NaNs are only recognized with -£68881 and 
-ffpa. 

Sun's current software does not support IEEE-standard conversion from ASCII 
strings representing decimal numbers to binary floating point or the reverse. Such 
conversion is always performed in the default rounding mode, signals no excep
tions, and errors may be slightly larger than prescribed by the Standard, particu
larly in double precision. Assembly language programmers can obtain standard 
conversion using an A93N MC68881, if one is present. 

Rounding mode, exception, and trap support are handled differently by the vari
ous floating-point options: 

o -fsoft and -fsky don't support rounding modes, exceptions, or traps 

o - f 6 8 8 81 supports rounding direction and precision modes, exceptions, and 
traps 

o -ffpa supports rounding.direction modes and exceptions but not the full 
trapping mechanism recommended by the IEEE Standard 

Correct single- and double-precision numerical results are obtained for all opera
tions (except conversion between ASCII and binary) in the following cases: 

o ,-fsoft in round-to-nearest mode 

o -ffpa, provided the MC68881 's version is A93N 

o - f 6 8 8 81, if the MC68881 is A93N and MC68881 rounding precision is set 
to double 

31 Revision A of 19 September 1986 



32 Floating-Point Programmer's Guide 

MC68881 Rounding Precision 
Mode 

Ordered Comparisons 

3.2. How to Use Special 
Features of the IEEE 
Standard 

o -£sky's nonzero results may vary from the Standard's prescription by one 
bit; zero results may have the incorrect sign. 

Correct results for - f fpa and - f 6 8 8 81 depend on the presence of an A93N 
mask version MC68881. 

Extended-precision format is optional in the IEEE Standard, but if provided 
rounding precision modes must also be supplied. These modes govern the round
ing of extended-precision results; mode settings make it possible to round 
extended-precision results to shorter precisions in order to simulate results 
obtainable on systems without extended precision. 

The default MC68881 rounding precision mode is extended. This means that 
extended-precision operations upon extended-precision operands produce 
extended-precision results and exceptions that conform completely to the Stan
dard. The design of the MC68881 makes this mode substantially more efficient 
than single or double rounding precision modes. - f 6 8 8 81 sets up the default 
MC68881 settings, including extended rounding precision mode. 

However, a double-precision operation that computes a double-precision result 
from double-precision operands will then be computed on the MC68881 with 
two roundings: 

fmoved x,fpO 
fmuld y,fpO 
fmoved fpO,z 

This operation is exact. 
Round extended-precision fpO here. 
Round double-precision z here. 

From the point of view of verifying double-precision conformance to the IEEE 
Standard, multiple roundings on a single arithmetic operation cause incorrect 
results to be generated occasionally, even though default extended-precision 
accumulation is generally faster and more accurate. The double rounding preci
sion mode can be used to insure that only one rounding occurs (in fmuld in the 
example above), mainly for the purpose of verifying conformance with the IEEE 
test vectors and the Paranoia program discussed later. 

Programs should not generally use double rounding precision mode unless they 
require, on an operation-by-operation basis, the same results as would be 
obtained without extended precision. 

The FORTRAN logical operators . eq. . 1 t . . le . . gt . . ge . and their 
analogs inC and Pascal return false if either operand is a NaN. With -f 68 8 81 
and -ffpa, all except . eq. and . ne. also cause an exception if either 
operand is a NaN. 

Certain features of the IEEE Standard are not readily available from higher-level 
languages. Standard language or library extensions will eventually be developed 
to allow machine-independent access to these features. Sun supports such stan
dardization efforts and, in the meantime, provides some provisional assembly 
language methods for accessing the special features. Since these provisional 
methods are nonstandard and probably transitory, limit their use to situations in 
which there is no other way to achieve the inumded effect. 

Revision A of 19 September 1986 

0 



Rounding Modes and Trap 
Enabling 

Trap Enabling 

Using Special Features From 
FORTRAN 

Chapter 3- IEEE-Standard Conformance 33 

Rounding modes and trap enabling are available with -£68881 and -ffpa. 
These fields are contained in the MC68881 's fpcr register; see the MC68881 
User's Manual. The following libc routine exchanges a new 32-bit mode con
trol word with the existing one: 

as: 

.globl _fpmode_ 
_fpmode_: 

I On entry, sp@(4) contains the address of the 
I new 32-bit value to be placed in fpcr. 
I On exit, dO contains the previous fpcr value. 

£77: 

cc: 

integer function fpmode( new ) 
integer new 

[ 

int fpmode_(new) ] 
int *new ; .....___ ___ _ 

pc: 

function fpmode( new 
external fortran 

integer ) integer 

Rounding direction modes are effective with - f 6 8 8 81 and - f fpa. Rounding 
precision modes are only effective with -£68881. 

Trap enabling with _fpmode_ will cause SIGFPE signals when the 
MC68881 detects an exception whose trap is enabled. The SIGFPE code indi
cates the specific exception; the MC68881 's fpiar register contains the 
address of the MC68881 instruction which caused the exception (the pc is usu
ally advanced beyond that point before the exception is recognized). 

c Set rounding direction mode to round toward zero: 

integer oldmode, fpmode 
oldmode = fpmode(16) 

c Set rounding precision mode to double precision: 

integer oldmode, fpmode 
oldmode = fpmode(128) 

Revision A of 19 September 1986 



34 Floating-Point Programmer's Guide 

c Enable signalling SIGFPE on overflow, division by zero, 
c or invalid operation: 

integer oldmode, fpmode 
oldmode = fpmode(62464) 

Exceptions, Condition Code, 
and Quotient Status 

- f 6 8 8 81 and - f f pa provide exceptions, condition code, and quotient status 
in the MC68881 's fpsr register; see the MC68881 User's Manual. The libc 
routine _ fpstatus_ exchanges a new 32-bit status word with the existing 
one, somewhat like _ fpmode _: 

c 
c 
c 

.globl _fpstatus_ 
_fpstatus_: 

I On entry, sp@(4) contains the address of the 
I new 32-bit value to be placed in fpsr. 
I On exit, dO contains the previous fpsr value. 

Only the Accrued Exception byte of fpsr is defined with -ffpa. Here is an 
example of testing the Accrued Exception byte from FOR1RAN: 

Test accrued exception bits to determine if overflow, 
division by zero, or invalid operation has occurred; 
also clear status bits: 

integer oldstatus, fpstatus 
oldstatus = fpstatus(O) 
if (and(oldstatus,l28) .ne. 0) print *,' invalid operation occurred' 
if (and(oldstatus,l6) .ne. 0) print *,' division by zero occurred' 
if (and(oldstatus,64) .ne. 0) print *,' overflow occurred' 

Signalling NaNs 
Signalling NaNs are detected by the MC68881 as NaNs containing a cleared 
leading fraction bit When detected, SIGFPE is signalled with the 

Using _ fpmode _ and 
_fpstatus_ from C 

enum fp_rounding_direction 
{ 

fp_rd_nearest 0, 
fp_rd_zero 
fp_rd_plus 
fp_rd_minus 
} ; 

1, 
2, 
3 

FPE _FLTNAN _TRAP code. The FPA always causes recomputation when a NaN 
is encountered; the MC68881 distinguishes quiet from signalling during recom
putation. -fsoft and -fsky treat all NaNs as quiet. 

The following program comprehensively demonstrates using the _ fpmode _ 
and _fpstatus_ functions from C to determine existing settings and install 
new ones. 

/* rounding direction type */ 

Revision A of 19 September 1986 

0 



Chapter 3 -IEEE-Standard Conformance 35 

enum fp_rounding_precision 
{ 

/* extended rounding precision type */ 

fp_rp extended 0, 
fp_rp_single 1, 
fp_rp_double 2, 
fp_rp_3 3 
} ; 

enum fp_accrued_type 
{ 

/* accrued exceptions according to fpsr bit number */ 

fp _inexact 3, 
fp_divide 4, 
fp_underflow 5, 
fp_overflow 6, 
fp_invalid 7 
} ; 

enum fp_exception_type 
{ 

/* exceptions according to fpcx/fpsr bit number */ 

fp_inex1 8, 
fp_ inex2 9, 
fp_dz 10, 
fp_unfl 11, 
fp_ovfl 12, 
fp_operr 13, 
fp_snan 14, 
fp_bsun 15 
} ; 

unsigned 
print_81_mode(newmode) /* Exchanges floating-point mode and 

prints out new mode settings. */ 
unsigned newmode; 

unsigned oldmode, fpmode_(); 

oldmode = fpmode_(&newmode); 
printf(" New floating-point mode: \n"); 
printf(" Rounding direction toward"); 
switch ( (newmode >> 4) & 3) 
case fp_rd_nearest: 

printf(" nearest"); 
break; 

case fp_rd_zero: 
printf(" zero"); 
break; 

case fp_rd_minus: 
printf(" minus infinity"); 
break; 

case fp_rd_plus: 
printf(" plus infinity"); 
break; 

sun 
microsystems 

Revision A of 19 September 1986 



36 Floating-Point Programmer's Guide 

printf("\n"); 
printf(" Extended rounding precls1on "); 
switch ( (newmode >> 6) & 3) 
case fp_rp_extended: 

printf (" extended "); 
break; 

case fp_rp_single: 
printf(" single"); 
break; 

case fp_rp_double: 
printf (" double ") ; 
break; 

printf("\n"); 
printf(" Enabled exceptions: ") ; 

if ( (newmode >> (unsigned) fp_inex1) 
printf(" inex1 ") ; 

if ( (newmode >> (unsigned) fp_inex2) 
printf(" inex2 ") ; 

if ( (newmode >> (unsigned) fp_dz) & 
printf(" dz ") ; 

if ( (newmode >> (unsigned) fp_unfl) 
printf(" unfl ") ; 

if ( (newmode >> (unsigned) fp_ovfl) 
printf(" ovfl ") ; 

if ( (newmode >> (unsigned) fp_operr) 
printf(" operr ") ; 

if ( (newmode >> (unsigned) fp_snan) 
printf(" snan ") ; 

if ( (newmode >> (unsigned) fp_bsun) 
printf(" bsun ") ; 

printf("\n"); 
return (oldmode); 

& 1) 

& 1) 

1) 

& 1) 

& 1) 

& 1) 

& 1) 

& 1) 

unsigned 
print_81_status(newstatus) /* Exchanges floating-point status and 

prints out old status settings. */ 
unsigned newstatus; 

unsigned oldstatus, fpstatus_(); 

printf(" Old floating-point status: \n"); 
oldstatus = fpstatus_(&newstatus); 
printf(" Current exceptions: "); 
if ((oldstatus >> (unsigned) fp_inex1) & 1) 

printf(" inex1 "); 
if ((oldstatus >> (unsigned) fp_inex2) & 1) 

printf(" inex2 "); 
if ((oldstatus >> (unsigned) fp_dz) & 1) 

printf(" dz "); 
if ((oldstatus >> (unsigned) fp_unfl) & 1) 

printf (" unfl "); 

Revision A of 19 September 1986 

0 



r---' ' 

\ 

Chapter 3 -IEEE-Standard Conformance 37 

if ( (oldstatus >> (unsigned) 
printf(" ovfl ") ; 

if ( (oldstatus >> (unsigned) 
printf(" operr ") ; 

if ( (oldstatus >> (unsigned) 
printf(" snan ") ; 

if ( (oldstatus >> (unsigned) 
printf(" bsun "); 

printf("\n"); 

fp_ovfl) 

fp_operr) 

fp_snan) 

fp_bsun) 

printf(" Accrued exceptions: "); 

& 1) 

& 1) 

& 1) 

& 1) 

if ((oldstatus >> (unsigned) fp_inexact) & 1) 
printf(" inexact"); I* inex1 + inex2 *I 

if ((oldstatus >> (unsigned) fp_divide) & 1) 
printf(" divide"); I* dz *I 

if ( (oldstatus >> (unsigned) fp_underflow) & 1) 
printf(" underflow"); I* unfl *I 

if ((oldstatus >> (unsigned) fp_overflow) & 1) 
printf(" overflow"); I* ovfl *I 

if ((oldstatus >> (unsigned) fp_invalid) & 1) 
printf(" invalid"); I* operr + snan + bsun *I 

printf("\n"); 
return (oldstatus); 

main() 
{ 

double 
double 

I* Demonstration program *I 
x; 
zero= 0.0, one= 1.0, three 

small = 1.0e-300; 

print_81_mode(0); I* Default modes. *I 
x = one I three; I* Inexact. *I 

3. 0, big. 

print_81_status(0); I* Inexact message; clear status. *I 
x = one I zero; I* Divide by zero. *I 

1.0e+300, 

print_81_status(0); I* Divide by zero message; clear status. *I 
print_81_mode(Ox50); I* Round toward zero, round extended to 

* single precision. *I 
x zero I zero; I* Invalid operation. *I 
x big * big; I* Overflow, inexact. *I 
x small * small; I* Underflow, inexact. *I 
print_81_status(0); I* Invalid operation, overflow, 

* underflow,inexact message, clear status. *I 

3.3. Special Library Entry 
Points 

Special library entry points are defined to supply certain IEEE operations. The 
names and calling sequences are definitely subject to change, but they are listed 
here to support the IEEE conformance claims below. The first letter indicates the 
type of arithmetic: 

D V ... -£switch 

Revision A of 19 September 1986 



38 Floating-Point Progranuner's Guide 

.globl 

.globl 

o F... -fsoft 

o S ... -fsky 

o M... -£68881 

o W ... -ffpa 

while the last letter indicates the precision: 

o ... s single 

o ... d double 

Calling conventions are shown in the table below. Not all entry points have two 
arguments. 

First Argument/Result Second Argument 

Single precision dO dl 

Double precision dO/dl aO@ 

The IEEE remainder, a function oftwo arguments, is available from these assem
bly language entry points: 

Vrems,Vremd,Frems,Fremd,Srems,Sremd,Mrems,Mremd,Wrems,Wremd 

Convert floating to integral value in integer fonnat with rounding toward zero, a 
one-argument function, is available from these assembly language entry points: 

Vints,Vintd,Fints,Fintd,Sints,Sintd,Mints,Mintd,Wints,Wintd 

This function is directly available in FORTRAN (INT), Pascal (trunc), and C 
(int). 

Convert floating to integral value in integer fonnat with rounding to nearest, a 
one-argument function, is available from these assembly language entry points: 

( 
.globl Frints,Frintd,Srints,Srintd J 

...____ _____ __... 

Convert floating to integral value in integer fonnat with rounding according to 
current IEEE rounding mode, a one-argument function, is available from these 
assembly language entry points: 

[ 
.globl Mrints,Mrintd,Wrints,Wrintd J 

...____ _____ __... 

Convert floating to integral value in floating-point fonnat with rounding toward 
zero, a one-argument function, is available from these assembly language entry 
points: 

Revision A of 19 September 1986 

0 

(~ 
\ ' 

\_j 



.globl 

Chapter 3 -IEEE-Standard Conformance 39 

Vaints,Vaintd,Faints,Faintd,Saints,Saintd,Maints,Maintd,Waints,Waintd 

This function is directly available in FORTRAN (AINT). 

Convert floating to integral value in floating-point format with rounding to 
nearest, a one-argument function, is available from these assembly language 
entry points: 

.globl Farints,Farintd,Sarints,Sarintd 

Convert floating to integral value in floating-point format with rounding accord
ing to current IEEE rounding mode, a one-argument function, is available from 
these assembly language entry points: 

.globl Marints,Marintd,Warints,Warintd 

Revision A of 19 September 1986 





-------------------·--------.~, ... _____ ""' ......... ,""'"""--"1..,._"""""'""""""""'1: 

4 
Benchmarks 

Benchmarks ...................................................................................................................................... 43 

4.1. IEEE Test Vectors........................................................................................................... 43 

Software Test Vector Results................................................................................. 44 

Sky Test Vector Results ............................................................................................ 44 

MC68881 Test Vector Results.............................................................................. 44 

A79J MC68881 Test Vector Results ................................................................. 45 

Sun FP A Test Vector Results ................................................................................ 45 

Sun FP A Test Vector Results, fpamode ( 3) ........................................... 45 

4.2. Paranoia Test Program ........................................................................................ 45 

-ffpa Comments ..................................................................................................... 46 

-£68881 Comments............................................................................................... 46 

-fsky Comments ..... ,............................................................................................... 47 

Summaries........................................................................................................................ 47 

4.3. Elementary Function Accuracy Benchmarks .................................................. 47 

Elefunt Test Programs....................................................................................... 47 

Test Programs of Liu .................................................................................................. 49 

Monotonicity ................................................................................................................... 50 

4.4. Performance Benchmarks........................................................................................... 51 

Linpack ........................................................................................................................ 51 

SPICE............................................................................................................................... 53 

4.5. Benchmarking Hazards................................................................................................ 54 

MC68020 Cache ............................................................................................................ 54 

Whetstone ................................................................................................................. 55 



"~~~----~-- --------

Assembly Language Inline Expansion ............................................................. 56 

Source Level Inline Expansion ............................................................................. 57 

Global Interprocedural Analysis .......................................................................... 58 

Performance, Source Coding, and Optimization........................................ 58 

0 



4.1. IEEE Test Vectors 

4 
Benchmarks 

Several benchmarks are described in this chapter to give you some idea of the 
performance and degree of conformance of the floating-point support provided 
for Sun's systems. 

The benchmarks described include conformance benchmarks, elementary func
tion accuracy benchmarks, and performance benchmarks. 

Note: All specific claims for conformance, accuracy, and speed are based on 
tests and measurements made using a preliminary version of Sun Software 
Release 3.2. Results obtained with the final Release 3.2 or with other 
releases may vary. 

The conformance benchmarks described in this chapter are: 

o IEEE test vectors. 

o Paranoia. 

Conformance to the IEEE Standard is primarily tested by running the IEEE test 
vectors, a collection of 15 sets of input data and output numerical results and 
exceptions, distributed by the University of California. A test program converts 
the input data from its distributed symbolic form to the corresponding binary 
representation, obtains the result delivered by Sun floating-point software or 
hardware, and compares the computed result and exceptions with those 
prescribed by the Standard. 

Sun's test program tests single-precision results computed from single-precision 
operands, and double-precision results computed from double-precision 
operands. The test program obtains access to Sun's floating-point software or 
hardware primarily through FORTRAN. The following double-precision add test 
function is typical: 

real*8 function addd ( x, y) 
real*8 x, y 
addd x + y 
end 

Test vectors for the following functions are tested with FORTRAN subprograms 
like addd: 

sun 
microsystems 

43 Revision A of 19 September 1986 



44 Floating-Point Programmer's Guide 

Software Test Vector Results 

Sky Test Vector Results 

MC68881 Test Vector Results 

0 absolute value 

0 add 

0 compare 

0 divide 

0 multiply 

0 negate 

0 subtract 

0 square root 

Some functions are coded in assembly language as described in Appendix D. 
Test vectors for the following functions are tested with such assembly language 
subroutines: 

0 copy sign 

0 fraction part 

0 1ogb 

0 next after 

0 remainder 

0 round to integer 

0 scalb 

The te-st vectors as distributed contain 21002 test cases when all rounding modes 
are tested and 5280 test cases when only the default round-to-nearest mode is 
tested. 

With -£soft, IEEE test vectors find no numerical errors in the default round
ing direction mode. Software floating point does not support other rounding 
direction modes or IEEE exceptions. 

With -fsky, IEEE test vectors find 59 numerical errors in the default rounding 
direction mode, 20 in addition, 20 in subtraction, 8 in multiplication, 2 in divi
sion, and 9 in square root. All are errors of one unit in the last place or errors in 
the sign of zero results. The errors arise because of limitations in the microcode 
for the Sky FFP. Sky floating point does not support other rounding direction 
modes or IEEE exceptions. 

With A93N - f 6 8 8 81, and with double rounding precision mode, IEEE test 
vectors find no numerical or exception errors in any rounding direction mode. 

With A93N - f 6 8 8 81, and with extended rounding precision mode, IEEE test 
vectors find 22 numerical errors and 50 exception errors in addition (2, 0), sub
traction (2, 0), multiplication (2, 27), division (11, 23), and square root (5, 0), 
testing all rounding direction modes. All numerical errors are one unit in the last 

(\ 
~, .. ) 

0 

place. The errors arise because extended rounding precision occasionally causes ("'\ 
different results from double rounding precision as discussed above. \_j 

Revision A of 19 September 1986 



A79J MC68881 Test Vector 
Results 

Chapter 4-Benchmarks 45 

With A 79J - f 6 8 8 81, and with double rounding precision mode, IEEE test 
vectors find 27 numerical errors and no exception errors, in multiplication (16), 
division (5), and scalb (6), testing all rounding direction modes. All numerical 
errors relate to erroneous zero results being computed when correctly rounded 
results would be the smallest normalized number. 

Sun FP A Test Vector Results 
With -ffpa and an A93N MC68881 installed, IEEE test vectors find no 
numerical or exception errors in any rounding direction mode. 

Sun FP A Test Vector Results, 
fpamode(3) 

With -ffpa and "fast" fpamode enabled, IEEEtest vectors find 1616 numerical 
errors and 1032 exception errors in addition, subtraction, multiplication, division, 
comparison, round to integral value, and nextafter. This mode is not intended to 
conform to the IEEE standard. 

4.2. Paranoia Test 
Program 

Compiler Options 

-0 -ffpa 
-0 -f68881 
-0 -£68881 -fstore 
-0 -fsky 
-0 -fsoft 

Compiler Options 

-0 -ffpa 
-0 -£68881 
-0 -£68881 -fstore 
-0 -fsky 
-0 -fsoft 

The Paranoia test program was developed by W. Kahan at the University of 
California to test implementations of floating-point arithmetic by ostensibly 
machine-independent means. Shortcomings in numerics are detected and 
classified as DISASTERS, FAILURES, SEVERE DEFECTS, DEFECTS, 
FLAWS, and WARNINGS. At the end of the program, the number of shortcom
ings in each class is displayed, and if the arithmetic appears to conform to the 
IEEE Standard, the program so states. Sun tests Fortran, C, and Pascal versions 
of Paranoia that evolved from Kahan's original1983 version in Basic. 

In the following tables, DEFECTS, FLAWS, and WARNINGS encountered are 
enumerated Di, Fj, and Wk, and described afterward. 754 indicates the arith
metic appeared to conform to the IEEE Standard. 

Single-Precision Paranoia Results 

Fortran c Pascal 

754 W1 754 W1 754 W1 
754 W1 754 W1 

754 W1 
D1 D2 D3 F1 F2 W1 D4 F1 F2 W1 D1 F1 F2 W1 
754 W1 754 W1 754 W1 

Double-Precision Paranoia Results 

Fortran c Pascal 

754 W1 754 W1 754 Wl 
F1 W1 F1 W1 

F1 W1 
F1 W1 F1 W1 F1 W1 
754 W1 754 W1 754 W1 

Key to Shortcomings: 

D1: DEFECT: sqrt ( 0. 2401000e+04) - 0. 4900000.e+02 0. 3814697e-05 
instead of correct value 0 . 

D2: DEFECT: computed 0.20000000e+01)**(11) 0.20480002e+04 

~~ S ll fl Revision A of 19 September 1986 
-,.. microsystems 



46 Floating-Point Programmer's Guide 

compares unequal to correct 0 .2.0480000e+04 
they differ by 0.24414063e-03. 
Error like this may invalidate financial 
calculations involving interest rates. 

D3: DEFECT: computed ( 0.20000000e+01)**(120) 0.13292334e+37 
compares unequal to correct 0.13292280e+37 
they differ by 0.5387515le+31 . 

D4: DEFECT: Comparison alleges that what prints as Z = 1.40129846432481710e-45 
is too far from sqrt(Z) ** 2 = O.OOOOOOOOOOOOOOOOOe+OO . 

Fl: FLAW: lack(s) of guard digits or failure(s) to correctly round or chop 
F2: FLAW: underflow can stick at an allegedly positive value zO 

that prints out as 0.14012985e-44 
Wl: WARNING: computed O.OOOOOOOOe+OO)**( 0) =NaN 

compares unequal to correct O.lOOOOOOOe+Ol 

That peculiar results for x**y count only as WARNINGS when x=O and 
y<=O reflects a division of opinion among analysts. The original BASIC version 
of Paranoia reflects Kahan's view that x**O should be 1, even if x be zero, 
infinity, or NaN. Subsequent translators felt strongly differently, and so changed 
the code accordingly to note these cases as WARNINGS without otherwise 
counting them in determining the quality of implementations. 

-ffpa Comments 
In "fast" mode, selected by 

( call fpamode (3) ) 0 
~---------------------------------------------------------J 

Paranoia discovers an inconsistency of underflow treatment: underflow itself 
leads to recomputation of a subnormal result, but in subsequent use that result is 
sometimes treated as zero. Thus in single precision, Paranoia output 
includes the following: 

SERIOUS DEFECT: X = 1.61630e-38 is Unequal to Z 
yet x-z yields 4.40810e-39. 

1.17549e-38, 

-£68881 Comments 

"Fast" mode is not intended to conform to the IEEE Standard. 

The FORTRAN version of Paranoia must be compiled with -fstore to 
force rounding to storage precision on assignment. If -fstore is omitted, 
Paranoia encounters numerous FAILURES and SERIOUS DEFECTS. 

Double precision does not conform to the IEEE standard even with -fstore 
because of multiple roundings. However, by selecting double rounding precision 
mode with 

( call fpmode(l28) ) 
the result becomes 754 Fl. 

Revision A of 19 September 1986 



-fsky Comments 

Summaries 

754 Wl: 

Chapter 4-Benchmarks 4 7 

Shortcomings, particularly in single precision, are due to limited microcode 
space on the Sky FFP. C, FORTRAN, and Pascal defects differ because sqrt 
and pow are implemented in double precision inC, while pow is implemented 
in double precision in Pascal. 

Each program prints an overall summary of the tested arithmetic. The sum
maries corresponding to the tables above are as follows: 

No failures, defects nor flaws have been discovered. 
Rounding appears to confonn to IEEE standard p754. 
The arithmetic diagnosed appears to be excellent! 

Fl Wl: 
The arithmetic diagnosed seems satisfactory though flawed. 

Dl D2 D3 Fl F2 Wl: 
D4 Fl F2 Wl: 
Dl Fl F2 Wl: 

The arithmetic diagnosed may be acceptable despite inconvenient defects. 

4.3. Elementary Function 
Accuracy Benchmarks 

Elefunt Test Programs 

The accuracy of elementary transcendental functions is tested using the 
Elefunt FORTRAN test suite of Cody and Waite, and a preliminary C test suite 
of Alex Liu, of the University of Cali:(mnia. More information on these pro
grams may be obtained from sources listed in the Preface to this manual. 

All programs are compiled with -0; MC68881 's are used only in the default 
extended rounding precision mode. For these tests, A 79J and A93N masks pro
duce the same results. 

In Cody and Waite's program, each function is tested by checking several 
independent identities at many random points; reported errors measure the degree 
to which the computed function values fail to satisfy certain identities, rather 
than the errors in the computed function values themselves. In addition to testing 
identities at random points, as shown below, Cody and Waite's programs also 
test error responses at isolated points. 

Cody and Waite advise that it may be necessary to modify their test programs 
when extended-precision expression evaluation is performed, as in the case of 
Sun's -f 68 8 81 option. Sun's version of Elefunt accordingly contains 
changes to the codes that purify test arguments; these changes are listed below 
under the commented-out source lines they replace: 

sun 
microsystems 

Revision A of 19 September 1986 



48 Floating-Point Programmer's Guide 

;,.-"\ 
I I 
\..._./ 

c X (x + eight) - eight alog0870 
X = x + eight 
X x - eight 

c X (x + eight) - eight alog0940 
X x + eight 
X X - eight 

c X (x + w) - w powr0940 
X = X + W 

X = X - w 
c y (x + y) - X sin00760 

y y + X 

y y - X 

Below are worst-case differences detected in identities tested, expressed as the 
number of bits of precision lost. 

Greatest number of bits lost - single~precision elefunt 

compiler option-> -fsoft -fsky -f68881 -f68881 -ffpa 
-fstore 

function: 
sqrt 0 1.0 0 0 0 
exp 1.0 2.0 0 1.0 1.0 0 log 1.0 2.6 0 1.0 1.0 
log10 2.4 3.0 3.0 2.1 2.1 
x**y 1.0 7.3 3.2 1.0 1.0 
sinh/cosh 2.0 2.0 0 1.0 1.6 
tanh 2.1 2.0 0 1.0 1.5 
sin/cos 1.5 3.1 0 0.6 1.5 
tan 1.8 2.6 0 1.3 1.8 
asin/acos 1.9 2.0 0 1.0 1.0 
a tan 1.0 1.9 0 1.0 1.0 

Revision A of 19 September 1986 



Greatest number of 

compiler option-> 

function: 
sqrt 
exp 
log 
log10 
x**y 
sinh/cosh 
tanh 
sin/cos 
tan 
asin/acos 
a tan 

Test Programs of Lin 

Greatest errors in 

compiler option-> 

function: 
sin 
cos 
a tan 
log 
log (1+x) 
e**x - 1 

Chapter 4-Benclunarks 49 

bits lost - double-precision elefunt 

-fsoft -fsky -f68881 -f68881 -ffpa 
-fstore 

0 0 0 0 0 
1.0 1.0 0 1.0 1.0 
1.0 1.0 0 1.0 1.0 
2.4 2.6 3.1 2.1 2.1 
2.3 2.4 6.2 2.2 2.2 
2.1 2.1 0 1.0 1.6 
2.1 2.1 0 1.0 1.5 
1.5 1.5 0 0.7 1.5 
2.0 2.1 0 1.2 2.0 
1.2 1.2 0 1.0 1.0 
1.0 1.4 0 1.0 1.7 

In Liu's test'program, 64 random points are tested in 64 regions for each func
tion; reported errors are the errors in the computed function values themselves, 
tested against more accurate values generated internally by Liu's program. Tests 
of e**x-1 and log (l+x) used assembly language entry points 
[FSMW] { expl,logl} [sd]. 

Below are worst-case errors in ulps, units in the last place, detected for each 
function tested. A difference of one ulp corresponds to a difference in the least 
significant bit. 

ulps - single-precision Liu tests 

-fsoft -fsky -f68881 -ffpa 

0.88 5.79 0.54 0.88 
0.90 5.95 0.53 0.90 
0.86 2.08 0.52 0.86 
0.92 3.48 0.53 0.92 
0.88 0.90 0.53 1.06 
0.94 0.94 0.53 0.95 

Revision A of 19 September 1986 



50 Floating-Point Programmer's Guide 

Greatest errors in ulps - double-precision Liu tests 

compiler option-> -fsoft -fsky -f68881 -ffpa 

function: 
sin 
cos 
a tan 
log 
log (1+x) 
e**x - 1 

Monotonicity 

1.01 0.99 0.57 1.01 
1.01 0.90 0.55 1. 01 
1. 06 0.98 0.56 1.02 
0.92 0.96 0.59 0.92 
0.83 0.83 0.59 0.83 
1.13 1.00 0.57 1.18 

Operations specified in the IEEE Standard are required to be monotonic; elemen
tary transcendental functions are often expected to be monotonic in their primary 
domains. Although expectations about monotonicity are seldom explicit in pro
grams, monotonicity failures can befuddle debugging. 

Liu 's program tests monotonicity at selected points; failures were detected only 
with -fsky and only in single precision as follows: 

log: 
atan: 

4 monotonicity failures including 
449 monotonicity failures including 

3.2768000000000000e+04 
5.2225278125000000e+05 

IEEE function and domain 

x*x 0. , 
abs 0. , 
aint -Inf 
arint -Inf , 
ceil -Inf , 
floor -Inf 
dble -Inf 
int -0.21474836e+10, 
rint -0.21474836e+10, 
sqrt 0. , 

Although exhaustive testing of monotonicity is infeasible for double precision, it 
is in principle possible for single precision. At present, the following single pre
cision IEEE Standard and Fortran functions have been tested over the indicated 
primary domains by evaluation at each single-precision representable number in 
the domain. If monotonic, execution times are shown in hours; "no" means not 
monotonic: 

-ffpa 

Inf 
Inf 3 
Inf 15 
Inf 20 
Inf 22 
Inf 21 
Inf 14 
2.14748352e+9 
2.14748352e+9 
Inf 10 

-f68881 -fsky 
A93N 

-fsoft 

8 30 25 
5 17 7 
14 20 
34 
46 
46 
10 72 37 
18 
24 
9 71 49 

Revision A of 19 September 1986 

0 

0 



Chapter 4-Benchmarks 51 

FORTRAN function and domain -ffpa -f68881 -fsky -fsoft 

a cos [ -1.0000000 ' anint [ -Inf 
a sin [ -1.0000000 
a tan [ -Inf 

' 
cos [ -3.1415925 ' cosh [ 0. 
exp [ -Inf 
exp-1 [ -Inf 
2**x [ -Inf 

' 
10**x I -Inf 
log [ 0. ' log1+x [ -1. 

' 
log2 [ 0. 
log10 [ 0. ' 
nint [ -0.21474836e+10, 
sin [ -1.5707963 
sinh [ -Inf 
tan [ -1.5707963 
tanh [ -Inf 

4.4. Performance 
Benchmarks 

Linpack 

' 
' 
' 

A93N 

1.0000000 ] 29 no no 
Inf ] 28 43 
1.0000000 ] 21 19 no 
Inf ] 16 26 , no 
0. ] 4 9 72 38 
Inf ] 22 
Inf ] 41 no 
Inf ] 62 
Inf ] 36 
Inf ] 44 
Inf ] 19 31 no 
Inf ] 22 46 no 
Inf ] 38 
Inf ] 27 
2.14748352e+9] 27 27 
1.5707963 ] 4 11 no 45 
Inf ] 44 
1. 5707963 ] 16 14 90 58 
Inf ] 49 

The - f 6 8 8 81 a cos mono tonicity failure is in extended precision and is not 
detected if -fstore is in effect. 

All tests were compiled with -0 and without -fstore, and were made on 
Sun-3's except -fsky, made on a Sun-2. Timings are the entire execution time 
for the test program and consequently give only a rough comparison of function 
speed. As the execution times imply, these tests constitute an ongoing project. 

The performance benchmarlcs described in this section, Linpack and SPICE, 
are commonly used to compare the relative performance of different 
manufacturer's computers. 

The most realistic of the frequently cited benchmarks of peak floating-point 
speed is the Linpack benchmark, a FORTRAN program that determines the 
time required to solve a lOOxlOO system of linear equations using the Lin pack 
linear algebra subroutine library. 

Sun's version of the Linpack benchmark program reports performance in 
thousands of floating-point operations per second (KFLOPS). Performance 
reported below is based upon measuring total user and system CPU time used. 
All results are based on compiling FORTRAN source code; -fsoft, -fsky, 
and -fswitch were compiled on Sun-2's; -£68881 and -ffpa were com
piled on Sun-3's. 

All floating-point hardware runs at 16.7 MHz except as noted. 

Revision A of 19 September 1986 



52 Floating-Point Programmer's Guide 

FPU 
MHz 

12.5 

12.5 
16.7 

16.7 
16.7 
16.7 

16.7 

Sun-2 results (10 MHz MC68010 CPU): 

Single Double 
Compiler Precision Precision 
Options KFLOPS KFLOPS Comments 

-0 -fsoft 13 6 
-0 -fswitch 32 18 using Sky FFP 
-0 -fsky 49 27 

Sun-3 results (15 MHz MC68020 CPU): 

Single Double 
FPU Compiler Precision Precision 
MHz Options KFLOPS KFLOPS Comments 

-0 
12.5 -0 
12.5 -0 

-0 
16.7 -0 

Compiler 
Options 

-0 -fsoft 
-0 -fswitch 
-0 -fswitch 
-0 -f68881 
-0 -f68881 
-0 -fswitch 
-0 -ffpa 

-0 -f68881 
-f68881 
-0 -f68881 
-fstore 
-0 -f68881 
-ffpa 
-P -ffpa 
-0 -ffpa 

-fsoft 28 12 
-fswitch 47 34 using MC68881 
-f68881 78 73 
-fswitch 55 38 using MC68881 
-f68881 93 87 

Sun-3 results (16.7 MHz MC68020 CPU): 

Single 
Precision 
KFLOPS 

34 
50 
65 
85 

108 
185 
500 

87 
95 

99 
109 
280 
420 
615 

Double 
Precision 
KFLOPS 

15 
37 
45 
80 

100 
105 
315 

82 
87 

90 
101 
160 
285 
405 

Comments 

using MC68881 
using MC68881 

using FPA 

double rounding 

rolled 

rolled 

The comment "double rounding" means that the double rounding precision mode 
of the MC68881 was selected. The comment "rolled" means that the inner loops 1~ 
of the Basic Linear Algebra Subroutines were rewritten slightly. The distributed \..,_"j 
form of the Linpack benchmark program has the key inner loop written in the 

sun 
microsysterns 

Revision A of 19 September 1986 



SPICE 

c 

Chapter 4-Benclunarks 53 

"unrolled" form 

1 

do 1 i 
x(i 
X (i+1) 
x(i+2) 
x(i+3) 

1, n, 4 
x(i + c * y(i 
x(i+1) + c * y(i+1) 
x(i+2) + c * y(i+2) 
x(i+3) + c * y(i+3) 

because that form was faster on certain mainframes common in the mid-1970's. 
However, the unrolling defeats many current vectorizing compilers, so super
computer manufacturers usually measure the rolled speed by rewriting the loop 
in the form: 

do 1 i 
x(i 

1, n 

x(i ) + c * y(i l 
Dongarra's Linpack benchmark performance compilation, listed in the Pre
face, annotates such results as "Rolled, BLAS." Further complicating the issue is 
that compilers on some systems do not generate optimum code for the inner loop 
whether rolled or unrolled, so hand-coded assembly language is faster yet; these 
results are annotated as "Coded BLAS." For the rolled form of the Linpack 
benchmark, the Sun,.3 code generated with -0 and either -£fpa or -f68881 
is truly optimal and cannot be improved by hand coding in assembly language. 

The SPICE program simulates integrated circuits and is an example of a com
plete application that is floating-point intensive but does not continually attain 
peak performance rates as does the Lin pack benchmark. It is therefore more 
representative of relative performance on realistic computations that do not 
closely fit the model of a Linear Algebra computation. 

For benchmarking purposes Sun uses a FORTRAN implementation of SPICE 
version2G.6, and a C implementation of SPICE version 3A.7, both with an 
input data file called MOSAMP2, listed in Appendix E. The reported time is the 
total elapsed real time in seconds for the complete program, invoked with a com
mand like 

time spice.out < mosamp2.input >! mosamp2.output 

In each case the program was run at least twice and the fastest result reported. 
Note that the global optimizer iropt is available in Sun's f77, but not in 
Sun's cc. -fswitch and -fsoft versions were compiled on Sun-2's and 
run on Sun-2s and Sun-3s. -fsky versions were compiled and run on Sun-2s. 
-f68881 and -ffpa versions were compiled and run on Sun-3s. All 
floating-point hardware runs at 16.7 MHz except as noted. 

sun Revision A of 19 September 1986 
microsystems 



54 Floating-Point Programmer's Guide 

Results are: 

FPU Compiler Real Time to Execute 
MHz Options (Seconds) 

Sun-2 results (10 MHz MC68010 CPU) : 2G. 6 3A. 7 
Time Time 

-0 -fsoft 1372 1979 
-0 -fswitch+Sky 483 674 
-0 -fsky 441 605 

Sun-3 results (15 MHz MC68020 CPU) : 

-0 -fsoft 595 858 
12.5 -0 -fswitch+A79J 184 262 
12.5 -0 -f68881+A79J 102 128 
16.7 -0 -fswitch+A93N 166 237 
16.7 -0 -f6888l+A93N 88 109 

Sun-3 results (16.7 MHz MC68020 CPU) : 

-0 -fsoft 
12.5 -0 -fswitch+A79J 
12.5 -0 -f68881+A79J 
16.7 -0 -fswitch+A93N 
16.7 -0 -f68881+A93N 

-0 -fswitch+fpa 
-0 -ffpa 

4.5. Benchmarking 
Hazards 

MC68020 Cache 

482 696 
165 233 

92 117 
139 198 

78 96 
76 105 
45 60 

It is not easy to construct meaningful benchmark programs that are short and 
easy to understand and provide a sound basis for projecting results for realistic 
applications. The following examples illustrate how seemingly minor variations 
in hardware or in coding techniques can have surprising results. 

The MC68020 has a 256-byte direct-mapped instruction cache. "Direct-mapped" 
means that memory address X is mapped to cache address X mod 2 56, so 
memory locations X and X+ 2 56* n cannot be in the cache at the same time. 
This can be a problem for short loops or subroutines that call other short subrou
tines. If the difference in memory addresses of the caller and callee happens to be 
close to a multiple of 256, almost every instruction fetch misses the cache and 
performance is degraded overall. Note that this is a problem particularly of 
direct-mapped caches, and is more likely to be encountered when such caches are 
small, and is most noticeable when the caller and callee are very short, so that the 
instruction fetches from main memory add up to a significant fraction of the 
overall time required. 

Programs coded in higher-level languages or even in separate assembly-language 

0 

0 

modules are usually written without thought to where they might be placed in ~ 
{ ) 

memory, since that is often an accident of code generation or linking order which \.....-/ 
may not be visible to or controllable by the programmer. 

sun 
microsystems 

Revision A of 19 September 1986 



Whetstone 

Chapter 4-Benchmarks 55 

The Whetstone benchmark was originally an Algol60 program that dupli
cated the typical instruction stream processed by the Whetstone Algol interpreter 
during the 1960's. Perfonnance is reported as thousands of Whetstone inter
preter instructions per second. 

Various FORTRAN translations of this program have been used to benchmark 
floating-point perfonnance, but interpretation of the results has become increas
ingly difficult as new computer architectures and optimization techniques 
develop. The Linpack and SPICE benchmarks discussed above give better 
infonnation about relative perfonnance of computers and compilers. However, 
the Whetstone program is ideal for illustrating MC68020 cache effects. 

The Whet stone program consists of several timing loops, but the most impor~ 
tant, that consumes about half the overall time, is a loop that calls a subroutine 
P 3. The loop is 

DO 90 I=l,N8 
CALL P3(X,Y,Z) 

90 CONTINUE 

and the subroutine is 

SUBROUTINE P3(X,Y,Z) 
COMMON T,T2 
Xl X 
Yl Y 
Xl T * (Xl + Yl) 
Yl T * (Xl + Yl) 
z = (Xl + Yl) I T2 
RETURN 
END 

This code is intended to model an important class of numerical codes that solve 
nonlinear problems: optimization and finding zeros of functions. These codes 
repeatedly call user-supplied subroutines to evaluate the nonlinear functions in 
questions. Usually, the calling routine is rather more complicated thari a DO 
loop and the parameters vary; in those respects P 3 is a deficient abstraction. 

When compiled in single precision with -0 and -ffpa, the results obtained 
for this program vary markedly depending on the cache contention between P 3 
and its calling loop. Single precision and - f fpa were chosen for illustration 
since cache contention is most noticeable when the timings of the caller and cal
lee are as similar as possible. Worst-case perfonnance is 2100 thousand Whet
stone instructions per second (KWIPS), best case is 2400. Which result is 
obtained depends on the relative compiled addresses of the do loop and P 3, 
which vary among compiler releases. 

The perfonnance with the MC68020's cache disabled is about 1750 KWIPS, so 
even the worst cache case is much better. A more complicated cache architecture 
on the MC68020 might show less variation but might be slower overall. 

Revision A of 19 September 1986 



56 Floating-Point Programmer's Guide 

Assembly Language Inline 
Expansion 

One way to avoid cache contention between callers and callees is to expand pro- Q 
cedures inline in the calling code. There is a facility in Sun's compilers to facili-
tate such expansion at the assembly-language level; see the appendix 
"Assembly-Level Inline Expansion". This facility is intended to allow short, 
simple assembly-language library routines to be expanded inline to bypass the 
procedure-call overhead of saving and restoring registers and pushing arguments. 
To demonstrate the facility, we apply it to P 3 by first compiling P 3 separately 
with -o -ffpa -s to obtain this assembly language: 

.data 

.comm BLNK ,40 

.text 

.globl _p3_ 
_p3_: 

link a6,#-16 
fpmoved fpa4,a6@(-16) 
fpmoved fpa5,a6@(-8) 
movl a6@(8),a0 
fpmoves a0@,fpa4 
movl a6@(12),a0 
fpmoves a0@,fpa5 
fpams fpa5,fpa4, __ BLNK __ ,fpa4 
fpams fpa5,fpa4, __ BLNK __ ,fpa5 
fpadd3s fpa5,fpa4,fpa2 
fpdivs __ BLNK __ +8,fpa2 

··. movl a6@ (16), aO 
fpmoves fpa2,a0@ 
fpmoved a6@(-8),fpa5 
fpmoved a6@(-16),fpa4 
unlk a6 
rts 

which was converted manually according to the inline expansion rules to 

.data 

.comm 

.text 

.inline 
movl 
fpmoves 
movl 
fpmoves 
fpams 
fpams 
fpadd3s 
fpdivs 

BLNK , 40 

_p3_,12 
sp@+,aO 
aO@,fpaO 
sp@+,aO 
aO@,fpal 
fpal,fpaO, __ BLNK __ ,fpaO 
fpal,fpaO, __ BLNK __ ,fpal 
fpal,fpaO,fpa2 

BLNK __ +8, fpa2 
movl sp@+,aO 
fpmoves fpa2,a0@ 
.end 

Revision A of 19 September 1986 

c 



Source Level Inline Expansion 

Chapter 4-Benchmarks 57 

When the FORTRAN Whetstone source, with P3 removed, was compiled 
with a . il inline expansion file containing the above, the resulting performance 
was 3300 KWIPS. The inner loop was: 

L77069: 
movl 
movl 
movl 
movl 
fpmoves 
movl 
fpmoves 
fpams 
fpams 
fpadd3s 
fpdivs 
movl 
fpmoves 
movl 
movl 
movl 
dbra 

4!VAR_SEG1+4,a0 
d6,_BLNK_+36 
d7, BLNK +32 
d3, BLNK +28 
aO@,fpaO 
#VAR_SEG1+8, aO 
aO@,fpal 
fpal,fpaO,_BLNK_,fpaO 
fpal,fpaO,_BLNK_,fpal 
fpal,fpaO,fpa2 
_BLNK_+8,fpa2 
fVAR_SEG1+12,a0 
fpa2,a0@ 

BLNK_+32 .. d7 
BLNK_+36,d6 
BLNK_+28,d3 

d5,L77069 

Of course, someone optimizing by hand would normally expand FORTRAN 
source inline into the FORTRAN source of the caller! If the following source 
code is compiled: 

DO 90 I=l,N8 
Xl X 
Yl y 

Xl T * (Xl + Yl) 
Yl T * (Xl + Yl) 
z = (Xl + Yl) I T2 

90 CONTINUE 

then resulting performance is 4100 KWIPS. Examination of the generated code 
shows the same number of floating-point instructions executed: 

L77069: 

sun 
microsystems 

fpams@S 
fpams@S 
fpadd3s@5 
fpdivs@S 
dbra 

fpa5,fpa7,_BLNK_,fpa6 
fpa5,fpa6,_BLNK_,fpa4 

fpa4,fpa6,fpa8 
BLNK_+8,fpa8 

dS, L77069 

Revision A of 19 September 1986 



58 Floating-Point Programmer's Guide 

Global lnterprocedural 
Analysis 

Performance, Source Coding, 
and Optimization 

Interestingly enough, executing the P 3 loop only once would be logically 
sufficient. Inspection shows that the inputs X, Y, T, and T 2 are the same on 
each invocation, so the call could be moved outside the loop entirely. An optim
izing compiler that did interprocedural global analysis might detect this. To 
measure the effect such analysis would have if performed by a hypothetical com
piler, we change the source code to: 

CALL P3(X,Y,Z) 
DO 90 I=1,N8 

90 CONTINUE 

Resulting performance is 4800 KWIPS; the floating point instructions are only 
executed once. 

There is no compiler that can optimize code as well as a person who understands 
what is required to be done and how to do it! The Whetstone benchmark exam
ple illustrates this point extremely well, simultaneously rendering suspect its own 
value as a general-purpose floating-point benchmark. 

A benchmark program by Myron Ginsberg was adapted to further illustrate how 
source coding techniques and compiler optimization techniques interact to affect 
the throughput on floating-point intensive calculations. This adaptation measures 
the time to evaluate a specific fifth-degree polynomial A at 500 points X (I) 

using several different methods. The "explicit': method is written out in extenso 
specifically for fifth-degree polynomials: () 

DO 10 I=1,500 
10 Y(I) = A(1) + X(I) * (A(2) + X(I) * (A(3) + X(I) * 

(A(4) + X(I) * (A(5) + X(I) * A(6))))) 

The "external" method relies on a conventional external subroutine for evaluating 
polynomials of arbitrary degree: 

DO 10 I=1,500 
Y(I) = PEVAL( A, M, X(I)) 

10 CONTINUE 

REAL FUNCTION PEVAL( A, M, X ) 
REAL A(*),X 
INTEGER M,K 
REAL P 
P = A(M+1) 
DO 15 K = M,1,-1 
P = P * X + A(K) 

15 CONTINUE 
PEVAL = P 
END 

The "inline" method effectively expands the "external" code inline at the source n 
~cl: ~~ 

Revision A of 19 September 1986 



P = A(NCOEF) 
DO 10 I=1,500 
DO 20 J=M,1,-1 

20 P = A(NCOEF-J) + X(I) * P 
10 Y(I) = P 

Chapter 4-Benchmarks 59 

The "vectored" method is intended to be optimized into appropriate vector opera
tions on supercomputers: 

DO 10 L=1,500 
10 BR(L,NCOEF) = A(NCOEF) 

DO 20 J=1,M 
DO 20 I=1,500 

20 BR(I,NCOEF-J) = A(NCOEF-J) + X(I) * BR(I,NCOEF-J+1) 
DO 30 LL=1,500 

30 Y(LL) = BR(LL,1) 

The results are reported in KFLOPS. Each polynomial evaluation requires ten 
floating-point operations. The number of floating-point operations executed is 
the same in every case: 

Single-Precision KFLOPS 

Options explicit in line external vectored 

-0 -fsky 62 49 43 23 
-0 -f68881 210 130 125 73 
-0 -ffpa 1500 710 295-335 175 

Double-Precision KFLOPS 

Options explicit in line external vectored 

-0 -fsky 33 26 24 13 
-0 -f68881 200 120 115 67 
-0 -ffpa 1060 480 265-290 130 

Note that the MC68020's internal cache causes the variable external case perfor
mance with -ffpa. The variation is insignificant with -£68881. 

As the results indicate, the Sun FP A attains almost one third of the maximum 
theoretical throughput of the 1164/1165 chips- 4800 KFLOPS single, 3300 
KFLOPS double. But this remarkably high efficiency is seldom achievable on 
realistic problems because performance is primarily limited by bus and memory 
bandwidth. The explicitly coded polynomial evaluation creates expressions so 
simple that Sun's FOR1RAN compiler can allocate all the constants to FPA regis
ters to minimize bus traffic. The vectorization-oriented evaluation, in contrast, is 
more difficult to optimize effectively for the FP A, since its complicated 

.sun 
microsystems 

Revision A of 19 September 1986 



60 Floating-Point Programmer's Guide 

expressions involve double subscripts and heavy bus traffic. These differences 
are most pronounced for high-performance floating-point hardware. 

Revision A of 19 September 1986 



A 
adb Changes 

adb Changes................................................................................................................................... 63 

A.l. Changes in Release 3.1 ............................................................................................... 63 

A.2. Examples ofFPA Disassembly.............................................................................. 64 

A.3. Examples ofFPA Register Use.............................................................................. 65 



I I ., 
i 



A.l. Changes in Release 3.1 

A 
adb Changes 

Release of the Floating-Point Accelerator (FPA) required some changes to adb, 
in order to support assembly language debugging of programs that use the FP A. 
Here are the changes made to adb in Release 3.1: 

1. The new debugger variables A through z are reserved for special use by 
a db. They should not be used in adb scripts. 

2. The FPA register names fpaO through fpa31 are recognized and can be 
used or modified in debugger commands. (This extension only applies to 
machines with FP A's.) 

3. The debugger variable F governs FP A disassembly. A value of 0 indicates 
that all FP A instructions are to be treated as move instructions. A nonzero 
value indicates that FP A instruction sequences are to be disassembled and 
single-stepped using FP A assembly language mnemonics. The default value 
is 1 on machines with FP A's; on other machines, the default value is 0. 

4. The debugger variable B is used to designate an FPA base register. IfFPA 
disassembly is disabled (the F flag = 0) its value is ignored. Otherwise, its 
value is intetpreted as follows: 

Othrough 7: 
Based-mode FPA instructions that use the corresponding address regis
ter in [a 0 .. a 7 ] to address the FP A are also disassembled using FP A 
assembler mnemonics. Note that this is independent of the actual run
time value of the register. 

otherwise: 
All based-mode FPA instructions are disassembled and single-stepped 
as move instructions. 

The default value of the FP A base register number is -1, which designates 
no FP A base register. 

5. The command $x has been added to display the values ofFPA registers 
fpaO through fpal5, along with FPA control registers and the current con
tents of the FPA instruction pipeline. All registers are displayed in the for
mat: 

~· <low word> <high word> <double precision> <single precision> 

63 Revision A of 19 September 1986 



64 Floating-Point Programmer's Guide 

A.2. Examples of FP A 
Disassembly 

(-I 
This verbose display is used because FP A registers are typeless; in particular, \_,j 
they may contain either single- or double-precision floating-point values. If a 
single-precision value is stored, it is always stored in the high-order word. 
Machines without an FP A display the message ''no FP A''. 

6. The command $X is similar to $ x, but displays the FP A registers fpa16 
through fpa31 instead of fpaO through fpalS. This is done as a separate 
command because ad.b cannot display the contents ofall FPA registers in a 
single standard-size window. 

7. The command $ R displays the contents of the data and control registers of 
the standard MC68881 floating-point coprocessor; 

As an example, consider the following assembly source fragment: 

% cat foo.s 
foo: 
fpadds dO,fpaO 
fpadds@O dO,fpaO 
fpadds@S dO,fpaO 
% 

On machines without an FP A, the default mode is to disassemble all FP A 
instructions as moves. For the example program, the following output is pro
duced (except the parenthesized comments added here for explanation): 

% as foo.s -o foo.o 
% adb foo.o 
<F=d 

(default value of 'F' on a machine without FPA) 0 
foo?ia 
foo: movl dO,Oxe0000380 (normal disassembly) 

FP A disassembly can be enabled by setting the debugger variable F to 1. For 
example: 

% ad.b foo.o 
l>F 
<F=d 

1 
foo?ia 
foo: 

(new value of 'F') 

fpadds dO,fpaO (FPA disassembly) 

On machines with an FP A, FP A disassembly is on by default, so the above out
put is produced without having to set the value of F. 

FP A instructions may address the FP A using a base register in [a 0 .. a 7 ] . In 
practice, only [ aO .. aS] are used by the compilers. 

adb does not know which register (if any) is being used to address the FPA in a 
given sequence of machine code. However, another debugger variable (B) may 

Revision A of 19 September 1986 



f' 
\ 
"-··· . 

c 

A.3. Examples of FP A 
Register Use 

Appendix A- a db Changes 65 

be set by the user to designate a register as an FP A base register. By default, this 
variable has the value -1, which means that no register should be assumed to 
point to the FPA, so only instructions that access the FPA using absolute address
ing are recognized as FP A instructions. 

For the example program, a machine with an FP A produces the following output: 

% adb foo.o 
<F=d 

1 
<B=d 

-1 

foo,3?ia 
foo: 
Ox6: 
Oxa: 
Oxe: 

(default value of 'F' on a machine with FPA) 

(default value of 'B') 

fpadds dO,fpaO 
movl dO,a0@(0x380) 
movl dO,a5@(0x380) 

(FPA disassembly) 
(normal disassembly) 
(normal disassembly) 

Note that the second and third instructions are still disassembled as moves, since 
a db cannot assume that they access the FP A. Continuing this example, if the 
FP A base register number is set to 5, the following output is produced: 

% adb foo.o 
S>B 
<B=d 

5 
foo,3?ia 
foo: 
Ox6: 
Oxa: 
Oxe: 

fpadds dO,fpaO 
movl d0,a0@(0x380) 
fpadds@S dO,fpaO 

(FPA disassembly) 
(normal disassembly) 
(FPA disassembly) 

Note that the second instruction is still disassembled as a move, since a5, the 
register designated as the FP A base, is not used in it. 

FP A data registers can be displayed using a syntax similar to that used for the 
MC68881 coprocessor registers. Note that unlike the MC68881 registers, FP A 
registers may contain either single-precision (32-bit) or double-precision (64-bit) 
values; MC68881 registers always contain extended-precision (96-bit) values. 

For example, if fpaO contains the value 2.718282, we may display it as follows: 

[<fpaO~f 
fpaO Ox402df855 +2.718282e+OO 

Note that the value is displayed in hexadecimal as well as in floating-point nota
tion. Unfortunately, an FP A register can only be set to a hexadecimal value. To 
set fpaO to 1.0, for example, you must know that this is represented as 
Ox3f800000 in IEEE single-precision format: 

] 

sun 
microsystems 

Revision A of 19 September 1986 



66 Floating-Point Programmer's Guide 

Ox3f800000>fpa0 
<fpaO=X 

3f800000 
<fpaO=f 

+l.OOOOOOOe+OO 

sun 
microsystems 

Revision A of 19 September 1986 



B 
dbx and dbxtool Changes 

dbx and dbxtool Changes ............................................................................................ 69 

B.l. Changes in Release 3.1 ................................................................................................ 69 

B.2. Example of FP A Disassembly ................................................................................ 70 

B.3. Examples ofFPA Register Use .............................................................................. 72 





B.l. Changes in Release 3.1 

B 
dbx and dbxtool Changes 

Release oftheAoating-Point Accelerator (FPA) required some changes to dbx 
and dbxtoo 1, in order to· support debugging of programs using the FP A. Here 
are the changes made to dbx in Release 3.1: 

1. There is a new fpaasm debugger variable to control disassembly ofFPA 
instructions. This variable may be set or displayed using the dbxenv com
mand, for which the syntax is: 

(~---db __ x_e_n_v __ f_p_a_a_s_m __ [_o_n_l_o_f_f_l ______________________________ ~) 
All FP A instructions are disassembled as moves if the value of fpaa sm is 
off. FPA instructions are disassembled with FPA assembly language. 
mnemonics if the value is on. Defaults: on a machine with an FPA, 
fpaasm is initially set to on; on machines without anFPA, it is initially set 
to off. 

2. The f·pabase debugger variable has been added. It designates an 
MC68020 address register for FP Ainstructions.that use base+short displace
ment addressing to address the FPA. The syntax is: 

(~---db __ x_e_n_v __ f_p_a_b_a_s_e __ [_a_[_o_-_7_]_1_o_f_f_l __________________________ ~) 
IfFPA disassembly is. disabled (if fpaasm is off) its. value is ignored. 
Otherwise, its value is interpreted as follows: 

value in aO •• a 7: 
Long move instructions that use the designated address register in 
base+short displacement mode address the FP A, and are disassembled 
using FP A assembler mnemonics. Note that this is independent of the 
actual run-time value of the register. 

value= off: 
All based-mode FP A instructions are disassembled and single-stepped 
as move instructions. 

The default value of fpabase is off, which designates no FPA base regis
ter. 

69 Revision A of 19 September.l986 



70 Floating-Point Programmer's Guide 

B.2. Example of FPA 
Disassembly 

3. The FPA registers $fpa0 .. $fpa31 are recognized and can be used in 
arithmetic expressions or modified in set commands. This extension only 
applies to machines with FP A's. Note that if an FP A register is used in an 
expression or assignment, its type is assumed to be double precision. 

4. FPA registers can be displayed in single precision using the If display for
mat. Double-precision values are displayed using the /F display format. 

Consider the following FOR1RAN program: 

program example 
print *,f(l.O,l.O) 
end 

function f(x,y) 
f = atan(x/y) 
return 
end 

Assume that this program has been compiled with the -g option into the file 
example. On a machine with an FPA, we could disassemble the function f as 
shown below. Note that the FOR1RAN intrinsic ATAN is directly supported by 
the FP A instruction set and compiler. 

% dbx a.out 
(dbx) stop in f 
(1) stop in f 
(dbx) run 
Running: a.out 
stopped in f at line 5 in file "example.f" 

5 f = atan(x/y) 
(dbx) &$pc/8i 
f+Ox12: 
f+Oxl6: 
f+Oxlc: 
f+Ox20: 
f+Ox26: 
f+Ox2e: 
f+Ox36: 
f+Ox40: 

movl 
fpmoves 
movl 
fprdivs 
fpmoves 
fpmoves 
fpatans 
fpmoves 

a6@(0xc),a0 
aO@,fpaO 
a6@(0x8),a0 
aO@,fpaO 
fpaO,a6@(-0xc) 
a6@(-0xc),fpal 
fpal,fpal 
fpal,a6@(-0x8) 

FPA disassembly can be disabled by setting the debugger variable fpaasm to 
off. This causes dbx to disassemble FPA instructions as long moves to 
addresses on the FP A page: 

Revision A of 19 September 1986 

0 



Appendix B- dbx and dbxtool Changes 71 

(dbx) dbxenv fpaasm off 
(dbx) &f+Ox12/10i 
f+Ox12: movl a6@(0xc),a0 

aO@,OxeOOOOcOO:l 
a6@(0x8),a0 
a0@,0xe0000600:1 
Oxe0000eOO:l,a6@(-0xc) 
a6@(-0xc),Oxe0000c08:1 
*Ox4l,Oxe0000818:1 
Oxe0000e08:l,a6@(-0x8) 

f+Ox16: movl 
f+Oxlc: 
f+Ox20: 
f+Ox26: 
f+Ox2e: 
f+Ox36: 
f+Ox40: 

movl 
movl 
movl 
movl 
movl 
movl 

When tracing a more complex program, one may occasionally want to step into a 
routine that has been compiled with optimization on. In such routines, the com
piled code often addresses the FP A page by using base+short offset addressing. 
Such code can be difficult to recognize unless it is known ahead of time that a 
particular address register is being used to address the FP A. This situation can be · 
identified by the presence of an instruction that loads the address of the FP A page 
(OxeOOOOOOO) into an address register before doing any floating-point arithmetic. 

For example, here is a disassembly of the beginning of an optimized FORTRAN 
routine compiled with the -0 and -ffpa options: 

(dbx) &ddot_/7i 
ddot : link 
ddot +Ox4: moveml 
ddot +Ox8: lea 
ddot +Oxe: movl 
ddot +Oxl4: movl 
ddot +Oxla: movl 
ddot +Ox20: movl 

a6,*-0x2a0 
*<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp@ 
eOOOOOOO:l,a2 
a2@(0xe20),a6@(-0x278) 
a2@(0xe24),a6@(-0x274) 
a2@(0xe28),a6@(-0x270) 
a2@(0xe2c),a6@(-0x26c) 

dbx does not know which registet: (if any) is being used to address the FPA in a 
given sequence of machine code. However, you may set the dbxenv variable 
fpabase to designate an MC68020 address register as the FPA base register. 
In this example, we note that the compiler has loaded the address ofthe FP A 
page into register a 2, and we then designate a 2 as the FP A base register to 
obtain the following: 

(dbx) dbxenv fpabase a2 
(dbx) &ddot_/7i 
ddot : 
ddot +Ox4: 
ddot +Ox8: 
ddot +Oxe: 
ddot +Oxla: 
ddot +Ox26: 
ddot +Ox36: 

link a6,*-0x2a0 
moveml *<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp@ 
lea e0000000:l,a2 
fpmoved@2 fpa4,a6@(-0x278) 
fpmoved@2 fpa5,a6@(-0x270) 
fpmoved@2 204ce:l,fpa5 
fpmoved@2 204ce:l,fpa4 

Revision A of 19 September 1986 



72 Floating-Point Programmer's Guide 

B.3. Examples of FPA 
Register Use 

FP A data registers can be displayed using a syntax similar to that used for the 
MC68881 coprocessor registers. Note that unlike the MC68881 registers, FP A 
registers may contain either single-precision (32-bit) or double-precision (64-bit) 
values; MC68881 registers always contain extended-precision (96-bit) values. 

For example, if fpaO contains the single-precision value 2.718282, we may 
display it as follows: 

(dbx) &$fpa0/f 
fpa3 Ox402df855 +2.718282e+OO 

Note that the value is displayed in hexadecimal as well as in floating-point nota
tion. 

A double-precision value may be displayed using the /F format. For example, if 
fpaO contains the double-precision value 2.718281828, we may display it as 
follows: 

(dbx) &$fpa0/F 
fpaO Ox4005bf0a Ox8b04919b +2.71828182800000e+OO 

Note that it is important to use the correct display format; attempting to display a 
double-precision value in single precision will usually produce meaningless 
results. , 

FPA registers can also be used in set commands and in arithmetic expressions. 
Since dbx cannot tell whether the value in an FP A register is single- or double
precision, dbx provides two sets of names to refer to FP A .registers. The names 
$ fpa 0 .. $ fpa31 always cause the contents of the registerto be interpreted as 
a double-precision value; the names $fpa0s .. $fpa31s cause interpretation 
as a single-precision value. Thus, the commands 

[ (dbx) set $fpa0s ~ 1.0 

(dbx) set $fpa0 = 1.0 

store different values in fpaO. 

l 

sun 
microsystems 

Revision A of 19 September 1986 

0 

f"\ 
I I \...,j 



--------------------~--------------------·-·-------M-~-~l~~~~=~ 

c 
FPA Assembler Syntax 

FPA Assembler Syntax ............................................................................................................ 75 

C.l. Instruction Syntax .......................................................................................................... 75 

C.2. Register Syntax ................................................................................................................ 76 

C.3. Operand Types ................................................................................................................. 76 

C.4. Two-Operand Instructions ......................................................................................... 76 

C.5. Three-Operand Instructions ...................................................................................... 77 

C.6. Four-Operand Instructions ......................................................................................... 78 

C. 7. Other Instructions ........................................................................................................... 82 

C.8. Restrictions and Errors ................................................................................................ 83 

C.9. Instruction Set Summary ............................................................................................ 83 



(~ 
\........,.) 



C.l. Instruction Syntax 

c 
FP A Assembler Syntax 

This appendix describes the Floating-Point Accelerator (FPA) support extensions 
to as included in Sun software release 3.1. 

The extensions to as are described in general, with discussions of two-, three-, 
and four-operand instruction examples. Some instructions covered separately 
don't follow the formats described at the beginning of the appendix. The appen
dix includes restrictions and potential errors, followed by a summary of sup
ported floating.,.point instructions. 

The general format for floating-point instructions is 

(~----f-p_o_p_t_@_A ______ o_p_e_r_a_n_d_s ____ ~---------------------------JJ 
where 

fp indicates an FP A instruction. 

op is the opcode name. 

tis the operand type, either single (s) or double (d). 

The @A part of the instruction is optional. When present, A specifies the address 
register which contains the base address for the FPA and can be in the range 0 .. 7. 
If this form is used, (,!. previous instruction must load the FP A address 
(OxeOOOOOOO) into the specified address register. 

If @A is not present, then absolute long addressing is used to refer to the FP A. 
This form is more efficient for short routines. 

Depending on the instruction, there may be from zero to four operands specified. 
The operands can be any of the following forms: 

o Any MC68020 effective address, with the exception that absolute short 
addresses are not allowed for double-precision values. 

o If either of the data register or the address register is used to hold a double
precision value, then the value will be in a register pair and both registers, 
separated by a colon, must be specified in the instruction. For example: 

[ fpaddd dO:dl, fpaO ) 

sun 
microsystems 

75 Revision A of 19 September 1986 



76 Floating-Point Programmer's Guide 

C.2. Register Syntax 

C.3. Operand Types 

C.4. Two-Operand 
Instructions 

(\ 
The only exception to this rule is the fpl tod instruction (convert integer \_.) 
to double-precision value). 

o In some instructions (command register type) it is possible to specify that the 
register is in constant RAM. The syntax used for this case is %n, where n 
is a register number in the range 0 to 511. 

The 32 floating-point data registers are designated fpaO, fpal, ... , 
fpa31. The supported control registers are: 

Hardware Software 

MODE3 0 - fpamode 

WSTATUS fpastatus 

as supports three floating-point operand types: 

o s for single-precision operands. 

o d for double-precision operands. 

o 1 for 32-bit integer operands, used for integer to floating-point conversions. 

Opcodes such as add, subtract, multiply, divide, negate, absolute value, square 
root, conversion from integer to floating-point, conversion from single to double 
(and vice versa) are all represented as: 

(~f_p_o_p_t __ x_, __ f_p_a_n __________________________________________ --J] 
where t= s or d, and X is any valid MC68020 effective address for an operand 
or is an FP A data register. 

If X is an FP A register which is in the constant RAM, then it can be in the range 
0 to 511. If it is not in constant RAM, then it is one of the 32 FP A data registers. 
When X is an FPA register, then fpan is one of the 32 floating-point data regis
ters. If X is an effective address, then fpan is one of the FPA registers in the 
range 0 to 15. The following are examples of such instructions: 

fpnegs 
fpsqrd 
fpsubs 
fprsubs 
fpdivs 
fprdivs 

Instruction 

<effective address>, fpal 
<effective address>, fpa2 
fpal, fpa2 
fpal, fpa2 
dO, fpa2 
dO, fpa2 

Computes 

fpa2 ~ fpa2 - fpal 
fpa'l ~ fpal - fpa2 
fpa2 ~ fpa2/ dO 
fpa2 ~ dO I fpa2 

In the above examples fprsubs and fprdivs are the reverse subtract and 
reverse divide operators, respectively. 

Revision A of 19 September 1986 

0 



c 

C.S. Three-Operand 
Instructions 

Appendix C- FP A Assembler Syntax 77 

The opcodes for sine, cosine, atan, e~x, e~x -1, ln (x), 
ln (l+x) and sincos (x) are all supported as command register type instruc
tions: 

[~~~.~ J 
'------------
where t= s or d. 

fpax is either a floating-point register or a register in the constant RAM (which 
is specified as %number). For the sincos instruction, the destination operand 
is actually a register pair: 

( 
~psincost fpax, fpac: fpas ] 

'------------
where fpac is the cosine's destination and fpas is the sine's destination. 

The opcodes +, -, *,I are supported in extended and command register fonns as 

(~f-p_o_p_3_t ____ x __ , __ fp--am __ , __ f_p_a~n------------------------------------~J 
where t = s or d and X is an <effective address> for an extended instruction or a 
floating-point register for a command register type of instruction. 

In the command register form, X and fpam can indicate a register number in the 
constant RAM. That is, they can either be in the range 0 to 511 or in the range 0 
to 31. In the extended instruction form, £pam and fpan must be in the range 
0 to 15. In the above fonnat the position of X and fpam can be exchanged for 
the commutative operators add and multiply (the result of the operation remains 
the same). 

For example, 

(
fpa2 ~ <effective address> + fpal ] 

'-----" ------
can be represented by either of the following fonns: 

fpadd3s 
fpadd3s 

<effective address>, fpal, fpa2 
fpal, <effective address>, fpa2 

The same rule applies to subtract and divide operations. However, they are not 
commutative, so different answers result from each order. For example, 

( 
f.pa2 ~ fpal - <effective address> ] 

'--" -------,-----' 
must be coded as: 

fpsub3s <effective address>, fpal, fpa2 

Revision A of 19 September 1986 



78 Floating-Point Programmer's Guide 

C.6. Four-Operand 
Instructions 

whereas 

[ fpa2 ~ <effective address> - fpal J 
must be coded as: 

fpsub3s fpal, <effective address>, fpa2 

Following the same fonnat, 

[ fpa3 ~ fpa2 - fpal 
J 

must be coded as: 

(~----f-p_s_u_b_3_s ___ f_p_a_l_, __ fp_a_2 __ ,_f_p_a_3----------------------------~J 
In the extended and command register fonnats there are pivot instructions of the 
fonn: 

(~f-p_o_p_t __ x_, __ f_p_ax __ , __ f_p_ay_, __ f_p_a_n ________________________________ _,) 

where fpan is the destination floating-point data register and t = s or d, and X 
is an effective address or a floating-point register. 

In the extended fonn, the positions of X and fpay can be exchanged for both 
single- and double-precision types of instructions. In single-precision extended 
fonn, it is possible for two of the four operands to be effective addresses. This is 
in general either the first and third or the second and third operands. 

In the command register fonn, fpax and fpay can be replaced by %x and %y 
indicating register numbers x andy in the constant RAM. 

For four-operand instructions, fpax, fpay and fpan can each be in the range 
0 to 15, when X is an effective address. If X is an FP A register, then X and 
fpan must be in the range 0 to 31 and fpax and fpay can either be in the 
range 0 to 511 (designating a location in constant RAM) or else in the range 0 to 
31. 

These pivot instructions are rather complicated and will be dealt with com
pletely. The following shows the fonns of each operation, the assembly code 
equivalent to each fonn, a generalization of the assembly instruction and the 
sequence of operations equivalent to the pivot instruction. 

Revision A of 19 September 1986 

0 

0 



fpma{s,d} 
fpma{s,d} 
fpma{s,d} 
fpmas 

fpms{s,d} 
fpms{s,d} 
fpms{s,d} 
fpmss 

Appendix C- FP A Assembler Syntax 79 

Instruction 

<effective address>, reg2, reg3, regl 
reg2, reg3, <effective address>, regl 
reg4, reg2, reg3, regl 
<eal>, reg2, <ea2>, regl 

Meaning 

regl ~ reg3 + (reg2 *operand) 
regl ~operand+ (reg3 * reg2) 
regl ~ reg3 + (reg2 * reg4) · 
regl ~ operand2 + (reg2 *operandi) 

The fpma instruction, where m stands for multiply, and a stands for add, can 
be generalized as 

[ fpmat X, fpa.x, fpay, fpan l 
where tis s or d, and X is an <effective address>or one of the floating-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. Also, for single precision either the first and third operands or 
the second and third operands can be effective addresses. Note that, for example, 

[ fpmas dO, fpal, fpa2, fpa3 

is equivalent to the following sequence of instructions 

fpmul3s 
fpadd3s 
fpmoves 

dO, fpal, temp 
temp, fpa2, temp 
temp, fpa3 

where temp is a temporary register. 

Instruction .Meaning 

<effective address>, reg2, reg3, regl 
reg2, reg3, <effective address>, regl 
reg4, reg2, reg3, regl 

regl ~ reg3- (reg2 *operand) 
reg 1 ~ operand - (reg3 * reg2) 
regl ~ reg3 - (reg2 * reg4) 

<eal>, reg2, <ea2>, regl regl ~ operand2- (reg2 *operandi) 

The fpms instruction, where m stands for multiply, and s stands for subtract, 
can be generalized as 

( fpmst X, fpa.x,fpay,fpan 

where tis s or d, and X is an <effective address> or one of the floating-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. Also, in single-precision two:..memory instructions, either the 
first and third operands or the second and third operands can be effective 
addresses. Note that, for example, 

[ fpmss fpal, fpa2, dO, fpa3 

l 

l 

] 
sun 
microsystems 

Revision A of 19 September 1986 



80 Floating-Point Programmer's Guide 

fpmr{s,d} 
fpmr{s,d} 
fpmr{s,d} 
fpmrs 

is equivalent to the following sequence of instructions 

fpmul3s 
fpsub3s 
fpmoves 

fpal, fpa2, temp 
temp, dO, temp 
temp, fpa3 

The fpmr instruction, where m stands for multiply, and r stands for reverse 
subtract, can be generalized as: 

( fpmrt X, fpax,fpay,fpan 

where tis s or d, and X is an <effective addresS> or one of the floating-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. 

Instruction 

<effective address>, reg2, reg3, regl 
reg2, reg3, <effective address>, regl 
reg4, reg2, reg3, regl 
<eal>, reg2, <ea2>, regl 

Meaning 

regl ~ (-reg3) + (reg2 *operand) 
regl ~ (-operand) + (reg3 * reg2) 
regl ~ (-reg3) + (reg2 * reg4) 
regl ~ (-operand2) + (reg2 *operandi) 

l 

In single-precision extended form either the first and third operands or the second -~ 
and third operands can be effective addresses. Note that, for example, ~·~) 

( fpmrs dO, fpal, fpa2, fpa3 

is equivalent to the following sequence of instructions: 

fpmul3s 
fpsub3s 
fpmoves 

dO, fpal, temp 
fpa2, temp, temp 
temp, fpa3 

The fpam instruction, where a stands for add, and m stands for multiply, can 
be generalized as 

( fpamt X, fpax,fpay,fpan 

where tis s or d, and X is an <effective addresS> or one of the floating.,-point 
data registers. In the extended type of instruction, the positions of X and fpay 
can be exchanged. 

) 

) 

sun 
microsystems 

Revision A of 19 September 1986 

() 



c 

fpam{ s, d} 
fpam{s, d} 
fpam{s, d} 
fpams 

fpsm{s,d} 
fpsm{s,d} 
fpsm{s,d} 
fpsm{s,d} 
fpsm{s,d} 
fpsms 
fpsms 

Appendix C- FP A Assembler Syntax 81 

Instruction 

<effective address>, reg2, reg3, regl 
reg2, reg3, <effective address>, regl 
reg4, reg2, reg3, regl 
<eal>, reg2, <ea2>, regl 

Meaning 

reg I~ reg3 * (reg2 +operand) 
reg I~ operand* (reg3 + reg2) 
reg I~ reg3 * (reg2 + reg4) 
regi ~ operand2 * (reg2 +operandi) 

In single-precision two-memory instructions, either the first and third operands or 
the second and third operands can be effective addresses. Note that, for example, 

[ fpams fpal, fpa2, fpa3, fpa4 

is equivalent to the following sequence of instructions: 

fpadd3s 
fpmul3s 
fpmoves 

fpal, fpa2, temp 
temp, fpa3, temp 
temp, fpa4 

The fpsm instruction, where s stands for subtract, and m stands for multiply, 
can be generalized as 

) 

(~f-p--smt ______ x_,_f_p_ax __ ,_f_p_a_y_,_f_p_a_n ____________________________________ ~) 
where t is s or d, and X is an effective address or one of the floating-point data 
registers. In the extended type of instruction, the positions of X and fpay can 
be exchanged. The special cases for single-precision instructions are that either 
the first and third operands or the second and third operands can be effective 
addresses. 

Instruction 

<effective address>, reg2, reg3, regl 
reg2, reg3, <effective address>, regl 
reg4, reg2, reg3, regl 
reg2, <effective address>, reg3, regl 
reg2, reg4, reg3, regl 
<eal>, reg2, <ea2>, regl 
reg2, <eal>, <ea2>, regl 

Note that, for example, 

Meaning 

reg I ~ reg3 * (reg2 - operand) 
reg I ~ operand * (reg3 - reg2) 
reg I~ reg3 * (reg2- reg4) 
reg I ~ reg3 * (-reg2 +operand) 
reg I ~ reg3 * (-reg2 + reg4) 
reg I ~ operand2 * (reg2- operandi) 
regi ~ operand2 * (-reg2 +operandi) 

[ fpsms dO, fpal, fpa2, fpa3 

is equivalent to the following sequence of instructions: 

) 

Revision A of 19 September 1986 



82 Floating-Point Programmer's Guide 

C.7. Other Instructions 

fpsub3s 
fpmul3s 
fpmoves 

dO, fpal, temp 
temp, fpa2, temp 
temp, fpa3 

Other special instructions are listed below. In each of them the last operand is 
also the destination, except for tst, cmp and mcmp where fpastatus is 
the implied destination. X is either an effective address or an FP A data register 
and tis either s or d for all instructions except fpmovet, where t can be s, 
d, or l. 

Table C-1 Other Instructions 

Mnemonic Syntax Operation Name 

fpnop nop 

fptstt X operand compare with zero 

fpcmpt X, fpam register m compare with operand 

fpmcmpt X, fpam register m compare magnitude with operand 

fpmovet fpam, fpan move floating-point registers 

fpmove2t fpam, fpan 2x2 matrix move 

fpmove3t fpam, fpan 3x3 matrix move 

fpmove4t fpam, fpan 4x4 matrix move 

fpdot2t fpax, fpay, fpan fpan ~ fpax*fpay + 

(fpax+J) * (fpay+J) 

fpdot3t fpax, fpay, fpan fpan ~ fpax*fpay + 

(fpax+J) * (fpay+J) + 

(fpax+2) * (fpay+2) 

fpdot4t fpax,fpay,fpan fpan ~ fpax*fpay + 

(fpax+l)*(fpay+J) + (fpax+2)*(fpay+2) + 

( fpax+3)*(fpay+3) 

fptran2t fpam, fpan transpose 2x2 matrix 

fptran3t fpam, fpan transpose 3x3 matrix 

fptran4t fpam, fpan transpose 4x4 matrix 

fpmove fpamode, <ea> read mode register 

fpmove <ea>, fpamode write to mode register 

fpmove fpastatus, <ea> read status register 

fpmove <ea>, fpastatus write to status register 

fpmovet fpam, <ea> read a floating-point data register 

fpmovet <ea>, fpan write to a floating-point data register 

Revision A of 19 September 1986 

~~ 
\ I 

,._,../ 

(\ 
\._ .. ). 



C.8. Restrictions and 
Errors 

C.9. Instruction Set 
Summary 

Table C-2 

Instruction Syntax 
fpnegs X, fpan 

fpnegd X, fpan 

fpabss X, fpan 

fpabsd X, fpan 

fpltos X, fpan 

fpltod X, fpan 

fpstol X, fpan 

fpdtol X, fpan 

fpstod X, fpan 

fpdtos X, fpan· 

fpsqrs X, fpan 

fpsqrd X, fpan 

fpadds X, fpan 

fpadd3s X, fpam, fpan 

fpaddd X, fpan 

fpadd3d X, fpam, fpan 

fpsubs X, fpan 

fpsub3s X, fpam, fpan 

fprsubs <ea>, fpan 

fpsubd X, fpan 

fpsub3d X, fpam, fpan 

fprsubd <ea>, fpan 

Appendix C - FP A Assembler Syntax 83 

as reports an invalid operand error in double-precision instructions when abso
lute short addressing or a single data or address register is used. 

as reports a register out of range error for the dot product and matrix move and 
transpose instructions when the register specified does not fall within the 
specified range. 

For most instructions where one operand is an effective address, the register 
range is 0 to 15. If all operands are FPA registers, then the register range is 0 to 
31. For constant RAM registers, the range is 0 to 511. as reports an invalid 
operand error when any of these registers are not within the permitted range. 

In the following table, X is any valid FPA register or MC68020 effective address 
(the form (xxx) : w is not allowed for double). In some three- or four-address 
instructions the position of the X and one of the FP A registers can be exchanged 
as shown in the fourth column of the following table. 

Floating-Point Instructions 

Operation Alternative 
negate single 

negate double 

absolute value single 

absolute value double 

convert integer to single 

convert integer to double 

convert single to integer 

convert double to integer 

convert single to double 
~ 

convert double to single 

square single 

square double 

add single 

add single fpam, X, fpan 

add double 

add double fpam, X, fpan 

subtract single 

subtract single fpam, X, fpan 
reverse subtract single 

subtract double 

subtract double fpam, X, fpan 
reverse subtract double 

sun 
microsystems 

Revision A of 19 September 1986 



84 Floating-Point Programmer's Guide 

Table C-2 Floating-Point Instructions- Continued 

Instruction Syntax Operation Alternative 

fpmuls X, fpan multiply single 

fpmul3s X, fpam, fpan multiply single fpam, X, fpan 

fpmuld X, £pan multiply double 

fpmul3d X, £pam, £pan multiply double fpam, X, fpan 

fpdivs X, £pan divide single 

fpdiv3s X, £pam, £pan divide single fpam, X, £pan 

fprdivs <ea>, fpan reverse divide single 

fpdivd X, £pan divide double 

fpdiv3d X, fpam, £pan divide double £pam, X, £pan 

fprdivd <ea>, £pan reverse divide double 

fpnop nop 

fptsts X single compare with 0 
-

fptstd X double compare with 0 

fpcmps X, £pam single compare 

fpcmpd X, fpam double compare 

fpmcmps X, fpam single magnitude compare 

fpmcmpd X, £pam double magnitude compare 

fpsins fpax, £pan sine single 0 
fpsind fpax, £pan sine double 

fpcoss fpax, £pan cosine single 

fpcosd fpax, £pan cosine double 

fpatans fpax, £pan a tan single 

fpatand fpax, £pan a tan double 

fpetoxs fpax, £pan eAx single 

fpetoxd fpax, £pan eAx double 

fpetoxm1s fpax, £pan eAx-1 single 

fpetoxm1d fpax, £pan eAx-1 double 

fplogns fpax, fpan ln(x) single 

fplognd fpax, fpan ln(x) double 

fplognp1s fpax, £pan ln (l+x) single 

fplognp1d fpax, £pan ln (l+x) double 

fpsincoss fpax, fpac:fpas fpac r cosine(x), fpas r sine (x) 

fpsincosd fpax, fpac:fpas fpac r cosine (x), fpas r sine (x) 

fpmas X, fpax, fpay, £pan £pan r (fpax * X) + fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, £pan 

X, fpax, X, £pan 

fpax, X, X, fpan 

fpmad X, fpax, fpay, £pan fpan r (fpax * X) + fpay ! 
fpax, X, fpay, £pan 

Revision A of 19 September 1986 



Appendix C - FP A Assembler Syntax 85 

Table C-2 Floating-Point Instructions- Continued 

Instruction Syntax Operation Alternative 
fpay, fpax, X, fpan 

fpmss X, fpax, fpay, fpan fpan t- fpay - (fpax * X) 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpmsd X, fpax, fpay, fpan fpan t- fpay - (fpax * X) 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpmrs X, fpax, fpay, fpan fpan t- (fpax * X) - fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpmrd X, fpax, fpay, fpan fpan t- (fpax * X) - fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpams X, fpax, fpay, fpan fpan t- (fpax + X) * fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpamd X, fpax, fpay, fpan fpan t- (fpax + X) * fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpsms X, fpax, fpay, fpan fpan t- (fpax - X) * fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

X, fpax, X, fpan 

fpax, X, X, fpan 

fpsmd X, fpax, fpay, fpan fpan t- (fpax - X) * fpay 

fpax, X, fpay, fpan 

fpay, fpax, X, fpan 

fpmoves <ea>, fpan write to a register, single 

fpmoved <ea>, fpan write to a register, double 

fpmovel <ea>, fpan write to a register, integer 

fpmoves fpam, <ea> read a register, single 

fpmoved fpam., <ea> read a register, double 

fpmove2s fpam, fpan 2x2 matrix move, single 

fpmove2d fpam, fpan 2x2 matrix move, double 
fpmove3s fpam, fpan 3x3 matrix move, single 

fpmove3d fpam, fpan 3x3 matrix move, double 

fpmove4s fpam, fpan 4x4 matrix move, single 

fpmove4d fpam, fpan 4x4 matrix move, double 

Revision A of 19 September 1986 



86 Floating-Point Programmer's Guide 

Table C-2 Floating-Point Instructions- Continued 

Instruction Syntax Operation Alternative 

fpdot2s fpax, fpay, fpan fpan ~ fpax*fpay + (fpax+l} * (fpay+l} 

fpdot2d fpax, fpay, fpan fpan ~ fpax*fpay + (fpax+l} * (fpay+l} 

fpdot3s fpax, fpay, fpan fpan ~ fpax*fpay + (fpax+l} * (fpay+l} + 

(fpax+2} * (fpay+2} 

fpdot3d fpax, fpay, fpan fpan ~ fpax*fpay + (fpax+l} * (fpay+l} + 

(fpax+2} * (fpay+2} 

fpdot4s fpax, fpay, fpan £pan ~ fpax*fpay + (fpax+l}*(fpay+l} + 

(fpax+2}*(fpay+2} + (fpax+3} * (fpay+3} 

fpdot4d fpax, fpay, fpan fpan ~ fpax* fpay + (fpax+l}*(fpay+l} + 

(fpax+2}*(fpay+2} + (fpax+3} * (fpay+3} 

fptran2s fpam, fpan transpose 2x2 matrix, single 

fptran2d fpam,fpan transpose 2x2 matrix, double 

fptran3s fpam, fpan transpose 3x3 matrix, single 

fptran3d fpam,fpan transpose 3x3 matrix, double 

fptran4s fpam, fpan transpose 4x4 matrix, single 

fptran4d fpam,fpan transpose 4x4 matrix, double 

fpmove fpamode, <ea> read the mode register 

fpmove <ea>, fpamode write on mode register 

fpmove fpastatus, <ea> read the status register 

fpmove <ea>, fpastatus write to status register 0 

Revision A of 19 September 1986 



D 
IEEE Appendix Functions 

IEEE Appendix Functions ..................................................................................................... · 89 



(~ 
' \ 
\.. j 



.globl 
_copyd_: 

movel 
moveml 
movel 
tstb 
bmis 
bclr 
bras 

1: 
bset 

2: 
rts 

.globl 
_ logbd_ 

movel 
movel 
jsr 
cmpw 
beqs 
cmpw 
beqs 

_copyd_ 

sp@(4),a0 
aO@,dO/dl 
sp@(8),a0 
aO@ 
1f 
Bl,dO 
2f 

#31,d0 

_logbd _ 

sp@(4),a0 
aO@,dO 
Fexpod 
*-Ox3ff,d0 
3f 
#Ox400,d0 
2f 

() 

D 
IEEE Appendix Functions 

The IEEE Standard for Binary Floating-Point Arithmetic includes an appendix of 
useful functions which are not usually available in higher-levellanguages. The 
IEEE test vectors measure compliance with the specification of some of those 
functions. The following paragraphs give examples of double-precision FOR-
1RAN and assembly language routines that implement those functions in a way 
that passes the IEEE test vectors under conditions described under "Conformance 
Benchmarks" in Chapter 4. The assembly language examples are coded to use 
switched floating-point. These functions, especially the assembly language ones 
that call V ... and F ... entry points in libc, may not work in future software 
releases. Efficiency was not a coding consideration. 

Copy sign: 

Logb: 

sun 
microsystems 

I Works with any kind of floating point! 

dO := x. 
Address of y. 

89 Revision A of 19 September 1986 



90 Floating-Point Programmer's Guide 

(\ 
1: \_j 

jsr Vfltd 
rts 

2: 
moveml a0@,d0/d1 
bclr #31,d0 
lea dzero,aO 
jsr Vaddd I Add zero to catch signalling NaN. 
rts 

3: 
moveml a0@,d0/d1 
bclr #31,d0 
tstl dO 
bnes Sf 
tstl d1 
beqs 4f 

5: 
movel #-Ox3ff,d0 
bras 1b 

4: 
moveml dmone,d0/d1 
lea dzero,aO 
jsr Vdivd I Set up -1/0 to generate divide by zero signal. 
rts 

dzero: .double OrO 0 dmone: .double Or-1 

Scalb: 

real*8 function scalbd ( x, y) 
real*8 x, y, scalid 
scalbd = scalid( x, int (y)) 
end 

.globl scalid 
scalid 

movel sp@(4),a0 
moveml a0@,d0/d1 X. 

movel sp@(8),a0 Address of y. 
jsr Vscaleid 
rts 

sun 
microsystems 

Revision A of 19 September 1986 



1 

Appendix D- IEEE Appendix Functions 91 

Fraction part: The fraction part or significand function, not in the Standard, is 
nonetheless tested by an IEEE test vector. 

real*8 function signifd ( x 
real*8 x, logbd, scalbd, s 
s = scalbd(x,-logbd(x)) 
if ((abs(s) .gt. O.OdO ) .and. (abs(s) .lt. l.OdO)) then 

s = s + s 
if (abs(s) .lt. l.OdO) goto 1 

endif 
signifd = s 
end 

Nextafter: 

real*8 function nextd ( x, y) 
real*8 x, y, t, minnorm, maxnorm 
integer i(2) 
equivalence (i,t) 
parameter ( minnorm 
parameter ( maxnorm 

2.225073858507201383d-308) 
1.7976931348623157d+308) 

if ((y .ne. y) .or. (x .ne. x)) then 
c handle nans; convert signalling nans 

nextd = x + y 
return 

end if 

t = X 

if ( x .lt. y) then 
if (x .lt. 0) then 

i(2) = i(2) - 1 
if (i (2) .eq. -1) i (1) i (1) - 1 

else if (x .gt. 0) then 
i(2) = i(2) + 1 
if ( i ( 2 ) . eq . 0 ) i ( 1 ) i ( 1) + 1 

else if (x .eq. 0) then 
i (2) 1 

i(1) = 0 
endif 

else if ( x .gt. y) then 
if (x .lt. 0) then 

i(2) = i(2) + 1 
if (i (2) .eq. 0) i (1) i (1) + 1 

else if (x .gt. 0) then 
i(2) = i(2) - 1 
if (i (2) .eq. -1) i (1) i (1) - 1 

else if (x .eq. 0) then 
i(2) = 1 
i(1) = 0 
t = -t 

Revision A of 19 September 1986 



92 Floating-Point Programmer's Guide 

end if 
end if 

c It would have been preferable to use the following statements to 
c generate underflow and overflow signals, but optimization with -0 

c eliminates the statements as dead code. 
c if (x .ne. t) then 
c if (abs(t) .lt. minnorm) then 
c signal underflow without changing t 
c z = minnorm * O.ldO 
c else if (abs(t) .gt. maxnorm) then 
c signal overflow without changing t 
c z = maxnorm * 2.0d0 
c end if 

c The following code accomplishes the same thing with more trouble, 
c but fails with -f68881 -0 because of extended register allocation. 
c if (x .ne. t) then 
c if (abs(t) .lt. minnorm) then 
c signal underflow without changing t 
c t = copyd(min(abs(t),4.0d0 * (minnorm/3.0d0)),t) 
c else if (abs(t) .gt. maxnorm) then 
c signal overflow without changing t 
c t = copyd(max(abs(t),maxnorm + maxnorm),t) 
c 

c 

c 

end if 

if (x .ne. t) then 
if (abs(t) .lt. minnorm) then 

signal underflow without changing t 
call dummyd(minnorm * minnorm) 

else if (abs(t) .gt. maxnorm) then 
signal overflow without changing t 

end if 
end if 
nextd t 
end 

call dummyd(maxnorm * maxnorm) 

subroutine dummyd( x ) 
real*B x 
end 

Revision A of 19 September 1986 

~~ 
\,,_~c/) 



E 
SPICE Input Files 

SPICE Input Files....................................................................................................................... 95 

E.l. tdo ....................................................................................................................................... 95 

E.2. mosamp2 .......................................................................................................................... 96 



0 



E 
SPICE Input Files 

E.l. tdo The following input file models a tunnel diode oscillator; the transient analysis 
output calculation is extremely ill-conditioned, as discussed under "Different 
Numerical Results" in Chapter 2: 

TDO - TUNNEL DIODE OSCILLATOR 
.WIDTH IN=72 

VBIAS 0 2 -120MV 
LS 2 1 2.5UH 
CS 1 0 100PF 
GTD 1 0 POLY(1) 1 0 
+ -3.95510115972848E-17 
+ +4.12669748472374E+01 
+ -3.73459336478768E+04 
+ +5.34093436084762E+OS 

.DC VBIAS 0 -600MV -SMV 

. PLOT DC I (VBIAS) ( 0, SMA) 

.TRAN SNS 500NS 0 SNS 

.PLOT TRAN V(1) 

+1.80727308405845E-01 
-6.09649516869413E+02 
+1.44146702315112E+05 
-4.56234076434067E+05 

.OPT ACCT LIST NODE LVLCOD=2 

.END 

sun 95 
microsystems 

-2.93646217292003E+OO 
+6.08207899870511E+03 
-3.53021176453665E+05 
+1.68527934888894E+05 

Revision A of 19 September 1986 



96 Floating-Point Programmer's Guide 

E.2. mosamp2 
The following input file models an MOS amplifier, and is used to obtain the 
benchmark results discussed under "Performance Benchmarks" in Chapter 4: 

mosamp2 - mos amplifier - transient 
.WIDTH OUT=80 
.OPTIONS ACCT ABSTOL=10N VNTOL=10N 
.TRAN 0.1US 10US 

M1 15 15 1 32M W=88.9U L=25.4U 
M2 1 1 232M W=12.7U L=266.7U 
M3 2 2 30 32M W=88.9U L=25.4U 
M4 15 5 4 32M W=12.7U L=106.7U 
MS 4 4 30 32M W=88.9U L=12.7U 
M6 15 15 5 32 M W=44.5U L=25.4U 
M7 5 20 8 32M W=482.6U L=12.7U 
M8 8 2 30 32M W=88.9U L=25.4U 
M9 15 15 6 32 M W=44.5U L=25.4U 
M10 6 21 8 32M W=482.6U L=12.7U 
M11 15 6 7 32M W=12.7U L=106.7U 
M12 7 4 30 32M W=88.9U L=12.7U 
M13 15 10 9 32M W=139.7U L=12.7U 
M14 9 11 30 32M W=139.7U L=12.7U 
M15 15 15 12 32M W=12.7U L=207.8U 
M16 12 12 11 32M W=54.1U L=12.7U 
M17 11 11 30 32M W=54.1U L=12.7U 
M18 15 15 10 32M W=12.7U L=45.2U 
M19 10 12 13 32M W=270.5U L=12.7U 
M20 13 7 30 32M W=270.5U L=12.7U 
M21 15 10 14 32 M W=254U L=12.7U 
M22 14 11 30 32M W=241.3U L=12.7U 
M23 15 20 16 32 M W=19U L=38.1U 
M24 16 14 30 32M W=406.4U L=12.7U 
M25 15 15 20 32M W=38.1U L=42.7U 
M26 20 16 30 32 M W=381U L=25.4U 
M27 20 15 66 32M W=22.9U L=7.6U 
CC 7 9 40PF 
CL 66 0 70PF 
VIN 21 0 PULSE(O 5 1NS 1NS 1NS SUS 10US) 
VCCP 15 0 DC +15 
VDDN 30 0 DC -15 
VB 32 0 DC -20 

.MODEL M NMOS(NSUB=2.2E15 U0=575 UCRIT=49K UEXP=O.L TOX=0.11U XJ=2.95U 
+ LEVEL=2 CGS0=1.5N CGD0=1.5N CBD=4.5F CBS=4.5F LD=2.4485U NSS=3.2E10 
+ KP=2E-5 PHI=0.6 ) 

.PRINT TRAN V(20) V(66) 

.PLOT TRAN V(20) V(66) 

.END 

Revision A of 19 September 1986 



F 
MC68881 Mask Differences 

MC68881 Mask Differences................................................................................................ 99 

fmove [ sd] fpm, <ea> ................................................................................... 99 

fmovex fpm, <ea> ............................................................................................. 99 

flognt, flog2t, floglOt ................................................................... 100 

fsqrtx fp~, fpn (m<>n) ......................................................................... 100 

fsqrtp <ea>,fpn .............................................................................................. 100 

Binary-to-Decimal Conversion............................................................................. 100 

Decimal-to-Binary Conversion ............................................................................. 101 

c 



0 

0 
\ ! ""'/ 



fmove[sd] fpm,<ea> 

fmovex fpm,<ea> 

F 
MC68881 Mask Differences 

This appendix describes differences between the MC68881 's A79J and later 
A93N masks. The A93N mask reflects the MC68881 described in Motorola's 
definitive MC68881 Floating-Point Coprocessor User's Manual. 

You can run mc68 881 version (8) on a Sun-3 to determine the installed 
MC68881 's mask and approximate clock rate. 

Some of the problems listed below are worked around in software in Sun's 
Release 3.0 and later, sometimes at a cost in accuracy and performance, relative 
to A93N hardware and software without workarounds. Since one of the problems 
described below has no workaround, and future releases of Sun software may 
have other workarounds removed to improve accuracy and performance, it is a 
good idea for you to upgrade to the A93N-version MC68881 when it is available. 

fmove [ sd] fpm, <ea> to single- or double-precision destinations produces 
an incorrect result when the result underflows but rounds back up to the smallest 
normalized number. The result returned is zero instead of the smallest normal
ized number. 

This problem might occasionally confound programs that depend on monotoni
city: there are single- and double-precision x > 0 such that the computed result 
of x/ 2 is 0 but the computed result of x/ 4 is> 0. There is no software wor
karound for this problem, which may, but probably does not, adversely affect any 
program in which underflow occurs. Underflow can be detected by enabling the 
underflow bit in the MC68881 Exception Enable Byte. 

fmovex fpm, <ea> to an extended-precision destination produces an 
incorrect result when the source operand is an extended-precision denormalized 
number. The result returned is zero, an incorrect denormalized number, or 
an incorrect, tiny normalized number. 

The problem can be demonstrated by constructing an appropriate sequence of 
operations on double-precision operands but it is unlikely to be encountered 
unintentionally. There is no software workaround for this problem, but it is 
unlikely to affect any Sun-supplied software since the extended data type is not 
directly supported by Sun's compilers. 

99 Revision A of 19 September 1986 



100 Floating-Point Programmer's Guide 

flognt, flog2t, 
floglOt 

fsqrtx fpm, fpn (m<>n) 

fsqrtp <ea>,fpn 

Binary-to-Decimal Conversion 

The flognt, flog2t, and floglOt instruction produces an excessive 
amount of error in the results for operands l±E. As E approaches 0, the results 
become totally dominated by error. 

Sun's software releases 3.0 and later contain workarounds that avoid this prob
lem for programs written in higher-levellanguages, as the assembly language 
entry Mlogd illustrates: 

fmoved sp@,fpO lsp@ contains the argument x. 
fcmps /#OrO.S,fpO 
fjule 1f !Branch if x<=O.S or xis Nan. 
fsubl #l,fpO 
flognplx fpO,fpO !This is more accurate for x>O.S. 
bras 2f 

1: 
flognx fpO,fpO !This is more accurate for x<O.S. 

2: 
fmoved fpO,sp@ lsp@ receives the computed logn. 

fsqrtx fpm, fpn (m<>n) can produce an incorrect result; the failure is 
dependent upon the contents of fpn before the fsqrtx executes. There
fore, this problem can be avoided in software by preceding the fsqrtx with an 
instruction which loads fpn with an innocuous value such as 2.0: precede the 
fsqrtx with fmoveb #2, fpn or an equivalent instruction. 

fsqrtp <ea>, fpn may cause the same problem, and may be avoided in the 
same way. Note that this problem can't occur for either register-to-register 
fsqrtx fpm,fpmormemory-to-register fsqrt [sdxbwl] <ea>,fpn. 

Sun's software releases 3.0 and later contain workarounds that avoid this prob
lem for programs written in higher-levellanguages. 

a. When the result is an exact power of 10, the packed BCD mantissa is 
$C.OOO .... OOO instead of $1.000 ... 000 (note non-BCD digit). 

b. The result will have the incorrect exponent sign when the decimal 
exponent is greater than +999. 

c. When the "K" parameter is in the range 0 thru 17, the OPERR (lOP) 
exception is incorrectly signalled. 

d. When the magnitude ofthe decimal exponent is greater than 999, the 
OVFL exception is incorrectly signalled (OPERR should be signalled). 

e. When the source operand is an extended-precision denormalized 
number, the numeric value of the result is correct but the decimal round
ing boundary is incorrect. 

f. The inexact exception is set even when conversion is exact. 

g. Conversions with a "K" parameter of 0 do not function as specified, 
the result is the same as K=+ 1. 

Revision A of 19 September 1986 

0 



Decimal-to-Binary Conversion 

c\ 

Appendix F-MC68881 Mask Differences 101 

Sun's releases 3.0 and later use the MC68881 's binary-to-ASCII conversion 
instructions only in the adb and dbx debuggers. These problems are worked 
around there. 

fopp <ea>, fpm of some exact powers often contains an error of 1 bit. 

These instructions are not used in Sun's releases 3.0 and later. 

Revision A of 19 September 1986 



0 

~~ 
'"'-- J 



G 
Assembly-Level In-line Expansion 

Assembly-Level In-line Expansion ................................................................................ 105 

G.1. Introduction ....................................................................................................................... 105 

Language-Specific Constructs ............................................................................... 105 

Access to Special Instructions ............................................................................... 105 

Special Instructions, Access to.............................................................................. 105 

Register Allocation ...................................................................................................... 105 

G.2. User Interface .................................................................................................................... 106 

Implementation .............................................................................................................. 106 

G.3. In-line Expansion Pass ................................................................................................ 108 

G.4. Peephole Optimizations .............................................................................................. 110 

G.5. Using Sun's Predefined . il Files ..................................................................... 112 

Faster Execution ............................................................................................................ 112 

Smaller Executable Files .......................................................................................... 112 



~~ 
\.._ .. ) 



G.l. Introduction 

Language-Specific Constructs 

Access. to Special Instructions 
Special Instructions, Access to 

Register Allocation 

G 
Assembly-Level In-line Expansion 

A simple in-line expansion facility lets you integrate assembly routines into 
higher-level routines written in C, Pascal, or FOR1RAN. 

The peephole optimizer e2 has been modified to optimize code sequences con
taining inline-expanded routines. In many cases, the resulting code is compar
able in quality to that compiled for·constructs directly supported in the common 
code generator. 

In-line expansion of procedure calls is an important optimization strategy, pri
marily because it exposes opportunities for other optimizations. It is also useful 
as a "software Swiss Anny knife" in applications that depend on routines written 
in assembly language, either for performance reasons or for access to machine 
instructions not otherwise available in high-level languages. Several such appli
cations are described in the following sections. 

The constructs of a given language frequently cannot be supported in a.common 
backend with a reasonably small operator set in multilingual environments based 
on a common code generator. For example, Pascal sets and strings, and FOR-
1RAN complex numbers are not naturally supported in a compiler system based 
on the Portable C Compiler (pee), which includes none of these types. Attempts 
to support all such language-specific constructs in a single code generator typi
cally result in large, unwieldy code generators containing large amounts of code 
intended only for a specific language. In-line expansion of language-specific 
library routines presents an attractive alternative. 

A programmer frequently requires access in system software to instructions not 
nonnally produced by the code generator. The usual technique is to call a hand
coded assembly routine which uses the desired instruction. Unfortunately, the 
procedure call and return overhead may be unacceptable if this occurs in a region 
of high execution frequency. 

As noted earlier, in-line expansion is an important optimization strategy, pri
marily becauses it exposes opportunities for improved register allocation and 
other optimizations. This is important in the Sun Workstation environment, for 
several reasons. 

First, the Sun MC68000 family calling sequence requires that all argument 
values be passed on the stack. This incurs memory traffic that becomes unneces
sary when the body of a called procedure is integrated into the caller's text 

105 Revision A of 19 September 1986 



106 Floating-Point Programmer's Guide 

('\ 
Second, the calling sequence requires that all function results be returned in the \.._,) 

G .2. User Interface 

Implementation 

main processor registers dO and dl. This is particularly annoying for functions 
returning floating-point values, since the calling routine cannot normally assume 
that the called routine uses a specific floating-point processor. Consequently, the 
calling sequence typically incurs a significant amount of traffic between the main 
processor registers and the floating-point processor registers. For simple opera-
tions, the cost of moving data in and out of external registers can easily exceed 
the cost of the operation itself. Experience shows that such operations are used 
frequently. 

In the C, FORTRAN, and Pascal compilers, filenames ending with the suffix 
". il" are assumed to contain inline-expandable assembly routines. In addition, 
the Pascal compiler uses the same mechanism to expand standard procedures and 
functions. 

In-line expansion is divided into two tasks. The expansion itself is a straightfor
ward text substitution, with little knowledge of the details of the assembly 
language. Most of the work of reducing calling sequence overhead is done by 
the peephole optimizer c2. This partitioning of tasks is convenient, since most 
of the information required is already present in the program representation built 
by c 2 for other optimizations. 

For illustrative purposes, consider the FORTRAN function cexp() or complex 
exponential. Assuming the real functions sin(), cos(), and exp() as primi
tives, the cexp() function may be implemented by the following C routine: 

typedef struct { 
double real,imag; 

} dcomplex; 

void c_exp(r, z) 
dcomplex *r, *z; 

register double expx; 
double exp(), cos(), sin(); 
expx = exp(z->real); 
r->real expx * cos(z->imag); 
r->imag = expx * sin(z->imag); 

Straightforward compilation with MC68881 code generation (- f 6 8 8 81) 
enabled produces the following translation: 

.text 
l'ii'PROC'it 04 

.glob! _c_exp 
_c_exp: 

sun 
microsystems 

link 
add! 
moveml 
fmovem 

a6,'it0 
'it-LF12,sp 
'itLS12,sp@ 
'itLSS12,a6@(-LFF12) 

Revision A of 19 September 1986 

0 



Appendix G- Assembly-Level In-line Expansion 107 

movl a6@(0xc),a0 
movl a0@(0x4),sp@-
movl aO@,sp@-
jbsr _exp 
addqw #Ox8,sp 
movl dl,sp@-
movl dO,sp@-
fmoved sp@+,fp7 
movl a6@(0xc),a0 
movl aO@(Oxc),sp@-
movl a0@(0x8),sp@-
jbsr cos 
addqw #Ox8,sp 
movl dl,sp@-
movl dO,sp@-
fmoved sp@+,fpO 
fmulx fp7,fp0 
movl a6@(0x8),a0 
fmoved fpO,aO@ 
movl a6@(0xc),a0 
movl a0@(0xc),sp@-
movl a0@(0x8),sp@-
jbsr sin 
addqw #Ox8,sp 
movr dl,sp@-
movl dO,sp@-
fmoved sp@+,fpO 
fmulx fp7,fp0 
movl a6@(0x8),a0 
fmoved fpO,a0@(0x8) 

LE12: 
fmovem a6@ (-Oxc), #Oxl 
unlk a6 
rts 
LF12 0 
LS12 OxO 
LFF12 = 12 
LSS12 = Oxl 
LP12 = OxlO 
.data 

Note that most of this code is occupied with passing arguments on the stack, and 
moving function results from dO I dl to fpO. Even the latter involves stack 
traffic, since the MC68881 does not support direct moves between floating-point 
registers and register pairs on the main processor. Additional overhead (not 
shown) exists for similar reasons in the called library routines. In-line expansion 
can do much to alleviate such problems, as will be shown in the following sec
tions. 

sun 
microsystems 

Revision A of 19 September 1986 



108 Floating-Point Programmer's Guide 

G.3. In-line Expansion Pass Inline, the program that actually does in-line expansion, is little more than a 
glorified sed script. It knows nothing about the syntax or semantics of the target 
machine assembly language, other than the form of a call instruction. Inline 
is invoked by the cc, pc, and £7 7 compilers as 

/usr/ lib/ inline [sourceftle] [ -o outputftle] [ -i inlineftle] 

In line expands call instructions in sourcefile using routine definitions from 
one or more inlinefiles. If no sourcefile is specified, the default source is 
stdin. lfno outputfile is specified, the default output is stdout. If no 
inlinefile is specified, inline behaves essentially like /bin/cat. Note that 
nested expansions are not supported, but may be implemented using pipes. 

Each inlinefile contains one or more labeled assembly language routines of the 
form: 

. in line name,argsize 

instructions 

.end 

where the instructions constitute an in-line expansion of the named routine, and 
argsize is the number of bytes of arguments expected. The routine must observe Q 
the following restrictions: ~ 

[1] Registers a0-al/d0-dl/fp0-fpl/fpa0-fpa3 maybe used freely. 

[2] Other registers must be saved on entry and restored on exit. 

[3] Results are returned in dO or dO I dl. 

[4] Arguments must be explicitly deleted from the stack. In general, this should 
be done using autoincrement addressing. 

The optimizations performed in c2 assume that in-line routines are coded in a 
way that makes the lifetimes of stack temporaries explicit. On the MC68000 
family of processors, this can be done by using autoincrement addressing to pop 
incoming arguments from the stack. For the preceding example, on the 

MC68881 you could code double-precision versions of sin(), cos(), and 
expO as follows: 

.inline _cos,B 
fcosd sp@+,fpO 
fmoved fpO,sp@-
movl sp@+,dO 
movl sp@+,dl 
.end 

.inline _sin,B 
fsind sp@+,fpO 
fmoved fpO,sp@-

Revision A of 19 September 1986 



c 
• 

Appendix G- Assembly-Level In-line Expansion 109 

movl sp@+,dO 
movl sp@+,dl 
.end 

.inline _exp,8 
fetoxd sp@+,fpO 
fmoved fpO,sp@-
movl sp@+,dO 
movl sp@+,dl 
.end 

When in line is run on the preceding compiled code using these routines, the 
result is: 

.text 

.globl _c_exp 
_c_exp: 

link a6,#0 
addl #-LF12,sp 
moveml #LS12,sp@ 
fmovem #LSS12,a6@(-LFF12) 
movl a6@(0xc),a0 
movl a0@(0x4),sp@-
movl aO@,sp@-
fetoxd sp@+,fpO 
fmoved fpO,sp@-
movl sp@+,dO 
movl sp@+,dl 
subql #8,sp 
addqw #Ox8,sp 
movl dl,sp@-
movl dO,sp@-
fmoved sp@+,fp7 
movl a6@(0xc),a0 
movl a0@(0xc),sp@-
movl a0@(0x8),sp@-
fcosd sp@+,fpO 
fmoved fpO,sp@-
movl sp@+,dO 
movl sp@+,dl 
subql #8,sp 
addqw #Ox8,sp 
movl dl,sp@-
movl dO,sp@-
fmoved sp@+,fpO 
fmulx fp7,fp0 
movl a6@(0x8),a0 
fmoved fpO,aO@ 
movl a6@(0xc),a0 
movl a0@(0xc),sp@-
movl a0@(0x8),sp@-
fsind sp@+,fpO 

sun Revision A of 19 September 1986 
microsystems 



110 Floating-Point Programmer's Guide 

G.4. Peephole 
Optimizations 

fmoved fpO,sp@-
movl sp@+,dO 
movl sp@+,d1 
subql :lt8,sp 
addqw :lt0x8,sp 
movl d1,sp@-
movl dO,sp@-
fmoved sp@+,fpO 
fmulx fp7,fp0 
movl a6@(0x8),a0 
fmoved fpO,a0@(0x8) 

LE12: 
fmovem a6@(-0xc),:lt0x1 
unlk a6 
rts 

This code looks terrible, but it has several desirable attributes. 

1. It will execute correctly in its present form, and may even be slightly faster 
than the original code, although it is considerably larger. 

2. All stack traffic is explicit, rather than being hidden in the semantics of the 
procedure call. 

3. The patterns of stack overhead are regular and may be readily optimized by 

,_....,, 
I \, 
\_,j 

local transformations. In particular, no elaborate analysis is necessary to /'-\ 
determine lifetimes of stack temporaries. \_) 

The symmetric use of autoincrement and autodecrement addressing is taken by 
c2 to indicate the lifetime of the stack copy of an argument. In particular, if 
there are no other uses of the stack copy, the copy need not be created, and the 
argument may instead be loaded into a register or used directly in the source field 
of an instruction in the expanded routine. This is typical of a class of optimiza-
tions in c2 which are similar to copy propagation, and generally attempt to 
reduce the height of the runtime stack. These optimizations depend on a program 
representation in which uses, definitions, and lifetimes of registers are explicit. 
For example, consider the following code pattern: 

[ 
(1) move x,sp@- ] (2) <op> sp@+, ... 

If possible, this pattern is rewritten as 

[ 
(1) (deleted) 

] (2) <op> x, ... 

This optimization is feasible only if xis not modified between (1) and (2). Other 
requirements include: side effects of (1) (including condition codes) must not be 
used, the value on the top of the stack must not be used, and the stack pointer 

Revision A of 19 September 1986 



Appendix G-Assembly-Level In-line Expansion 111 

itself must not be used or set. If any of these restrictions are not met, the code is 
left unchanged. 

Another similar pattern is the following: 

[ 
(1) move x,sp@-

(2) move sp@+,rn 

If possible, this pattern is rewritten as 

[ 
(1) move x,rn 

(2) (deleted) 

This optimization requires that the register rn be neither used nor set in the 
interim. Care must also be taken to leave the code unchanged if the condition 
codes are live after either instruction (1) or instruction (2). 

Applying these and other c2 optimizations to the example of the previous sec
tion yields the following: 

.text 

.globl _c_exp 
_c_exp: 

link a6,4t-12 
fmovex fp7,a6@(-12) 
movl a6@(12),a0 
fetoxd a0@,fp7 
fcosd a0@(8),fp0 
fmulx fp7,fp0 
movl a6@(8),a0 
fmoved fpO,aO@ 
movl a6@(12),a0 
fsind a0@(8),fp0 
fmulx fp7,fp0 
movl a6@(8),a0 
fmoved fp0,a0@(8) 
fmovex a6@(-12),fp7 
unlk a6 
rts 

Although this code is not optimal, the improvement over the initial version is 
substantial. In addition, the final code is smaller than that which would be 
obtained by optimizing the original unexpanded code. Thus a gain in speed is 
obtained without incurring an increase in code size. 

] 

] 

Revision A of 19 September 1986 



112 Floating-Point Programmer's Guide 

G.S. Using Sun's 
Predefined . i 1 Files 

Faster Execution 

Smaller Executable Files 

Starting with Release 3.1, Sun provides five inline expansion template files: 

/usr/lib/fswitch.il 

/usr/lib/fsoft.il 

/usr/lib/fsky.il 

/usr/lib/f68881.il 

/usr/lib/ffpa.il 

These files may be optionally used to replace calls to procedures in libF77. a 
and libm. a with code that will either execute faster or provide smaller execut
able files. 

The procedure is simple; replace a command like 

( f77 -0 -ffpa -c cx.f 

with 

( f77 -0 -ffpa -c cx.f /usr/lib/ffpa.il 

Then any code generated to call routines redefined in /usr/lib/ffpa. il 
will be appropriately expanded inline. More than one . i 1 file can be specified; 
in that case, the first definition encountered of an inline-expanded procedure will 
supersede any following definitions of the same procedure. 

None of Sun's compilers use the f*. il files from /usr I lib except when 
specifically requested. pc always automatically uses another file pc2. il 
which doesn't affect floating-point subroutines. 

) 

) 

The /usr I lib/ f*. il files' primary application is to accelerate calculations 
involving the complex and doublecomplex: data types in FORTRAN. For 
-ffpa, -£68881, and -fsky, intensive complex arithmetic maybe twice as 
fast with inline expansion. 

Although inline expansion normally increases an executable file's size, it can 
decrease executable size by avoiding the need to link in all or most of switched 
floating-point support. 

With f77,using x**y, mod, atan2, cabs, nint,andcomplexordoub
lecomplex arithmetic, can all provoke linking-in switched floating point even 
when -fsky, -£68881, or -ffpa is specified. Using fsky. il, 
f 6 8 8 81 . i 1, or f f pa . i 1 causes these calls to switched floating point to be 
replaced by inline code or calls to appropriate unswitched routines. 

With cc, use of almost any of the functions defined in <math. h> invokes 
switched floating point, but the appropriate . il file undoes the damage. With 
SPICE 3A . 7, for instance, the version compiled with 

( -0 -ffpa /usr/lib/ffpa.il ) 

Revision A of 19 September 1986 



Appendix G- Assembly-Level In-line Expansion 113 

was 40,000 bytes smaller than the version compiled just with 

( -0 -ffpa 

Using the . il file also avoids certain overheads required for System V compa
tibility. 

J 

Revision A of 19 September 1986 





~~ 
\. 

H 
System V Interface Compliance 

System V Interface Compliance ....................................................................................... 117 

H.1. SVID History .................................................................................................................... 117 

H.2. IEEE History ..................................................................................................................... 118 

H.3. SVID Future Directions .............................................................................................. 118 

H.4. Sun Implementation ...................................................................................................... 118 

SIGNAL Notes ............................................................................................................... 119 

libm. a Notes ..................................... ·:....................................................................... 119 



0 



H.l. SVID History 

H 
System V Interface Compliance 

A joint goal of Sun and AT&T is to develop a version of UNIX that incorporates 
the best features of Berkeley BSD 4.2 and System V. Accordingly, Sun's 
Software Release 3.2 mathematical library 1 ibm. a and related files have been 
modified so that C programs compiled with the - f soft floating point option or 
compiled with -fswi tch and running without floating-point hardware better 
comply with the System V Interface Definition (SVID). Fortran and Pascal pro
grams, and C programs running with floating-point hardware, are usually not 
affected. The differences primarily involve exception handling. 

To understand the differences between exception handling according to SVID 
and the point of view represented by the IEEE Standard, it is necessary to review 
the circumstances under which both developed. Many of the ideas in SVID trace 
their origins to the early days of Unix, when it was first implemented on PDP-
11 's and then ported to VAXes and IBM and Honeywell mainframe computers. 
These. various environments have in common that rational floating-point opera
tions +, -, *and I are atomic machine instructions, while sqrt, conversion 
to integral value in floating-point format, and elementary transcendental func
tions are subroutines composed of many atomic machine instructions. 

Because these environments treat floating-point exceptions in varied ways, uni
formity could only be imposed by checking arguments and results in software 
before and after each atomic floating-point instruction. Since this would have too 
great an impact on performance, SVID does not specify the effect of floating
point exceptions such as division by zero or overflow. 

Operations implemented by subroutines are slow compared to single atomic 
floating-point instructions; extra error checking of arguments and results has little 
performance impact; so such checking is required by the·SVID. When excep~ 
tions are detected, default results are specified, errno is set to EDOM for 
improper operands, or ERANGE for results that overflow or underflow, and the 
function mat herr () is called with a record containing details of the excep
tion. This costs little on the machines for which Unix was originally developed, 
but the value is correspondingly small since the far more common exceptions in 
thebasic operations +, -, *and I are completely unspecified. 

117 Revision A of 19 September 1986 



118 Floating-Point Programmer's Guide 

H.2. IEEE History 

H.3. SVID Future 
Directions 

H.4. Sun Implementation 

The IEEE Standard explicitly states that compatibility with previous implemen
tations was not a goal. Instead, an exception handling scheme was developed 
with efficiency and users' requirements in mind. '!'his scheme is uniform across 
the simple rational operations ( +, -, * and /),and more complicated opera
tions such as remainder, square root, and conversion between formats. Although 
the Standard does notspecify transcendental functions, the framers of the Stan
dard anticipated that the same exception handling scheme would be applied to 
elementary transcendental functions in conforming systems. 

Elements ofiEEE exception handling include suitable default results and interr
uption of computation only when requested in advance. High performance con
forming processors such as the MC68881 compute the common elementary tran
scendental functions in single instructions that look, from a programmer's 
viewpoint, just like the instructions for +, -, * and I. 

The current SVID identifies certain directions for future development. One of 
these is compatibility with the IEEE Standard. In particular a future version of 
the SVID will replace references to HUGE, intended to be a large finite number, 
with HUGE_ VAL, which would be infinity on IEEE systems. HUGE_ VAL 

would, for instance, be returned as the result of floating-point overflows. In this 
respect, Sun's implementation has already arrived at SVID's future direction, 
since the constant HUGE in /usr/include/math .his defined to be a con
stant that compiles into IEEE infinity. 

In Release 3.2, the following C language libc and libm functions provide 
operand or result checking corresponding to SVID, when called from C programs 
compiled with -fsoft, or compiled with -fswitch and run without 
floating-point hardware: 

D exp 

D log and loglO 

D pow 

D sqrt 

D hypot 

D cabs 

D sinh and cosh 

D sin, cos and tan 

D asin, acos, a tan and atan2 

When exceptional conditions are detected, the SVID function mat herr () is 
invoked. The default mat herr () in libm returns a default result value and, 
for EDOM errors, prints an error message prior to continuing. Because SVID 
encompasses machines without infinities or NaNs, the default results specified 
are finite values and therefore sometimes misleading. Users may provide their 
own mat herr () function to obtain alternative processing. 

For efficiency, programs compiled with inline hardware floating-point or with 
-fswitch and run with floating-point hardware do not do the extra checking 

Revision A of 19 September 1986 

/~ 
\""- ./ 



SIGNAL Notes 

libm. a Notes 

Appendix H- System V Interface Compliance 119 

required to set EDOM or ERANGE or call mat herr () . Usually NaN is 
returned for the function value in situations where EDOM might otherwise be set, 
and Infinity is returned for the function value where ERANGE might be set to 
indicate overflow. Where ERANGE might be set to indicate underflow, these 
functions return subnormal numbers or zero. 

Note that if inline expansion files are used to expand libm functions, the SVID 
exception handling may be bypassed, even for - f soft. 

The SVID defines SIGFPE as "floating-point exception". On Suns, SIGFPE is 
also generated by MC68010 and MC68020 integer division by zero, CHK and 
TRAPV instructions, and by FP A-related non-numerical exceptions. 

SVID specifies two floating-point exceptions, "PLOSS" (partial loss of 
significance) and "TLOSS" (total loss of significance). Unlike sqrt ( -1), 
these have no inherent mathematical meaning, and unlike e xp ( + -1 0 0 0 0 ) , 
these do not reflect inherent limitations of a floating-point storage format. 
PLOSS and TLOSS reflect instead limitations of particular algorithms for fmod 
and for trigonometric functions that suffer abrupt declines in accuracy at definite 
boundaries. Like most IEEE implementations, the Sun algorithms used with 
-fsoft, -f68881, and -ffpa do not suffer such abrupt declines, and so do 
not signal PLOSS or TLOSS, nor do the Bessel functions which call the tri
gonometric functions. 

Instead, Sun's sin, cos, and tan treat the essential singularity at infinity 
like other essential singularities by returning a NaN and setting EDOM for 
infinite arguments. The Bessel functions of the first kind, j o~ j 1, and j n, 
return zero for infinite arguments, while the Bessel functions of the second kind, 
yO, y1, and yn, return zero for positive infinite arguments, and return NaN and 
set EDOM for negative arguments. 

Likewise SVID specifies that fmod (x, y) should be zero if x/y would 
overflow, but Sun's fmod, derived from the IEEE remainder function, does not 
compute x/ y explicitly and hence always delivers a correctly rounded result. 

~~sun 
• microsystems 

Revision A of 19 September 1986 



0 



-

Index 

A' 
ASCII-to-Binary Conversion, 31 
Assembler Syntax, FPA, 75 

B 
Benchmark, 51, 53 
Benchmarking Hazards, 54 

c 
Cache, MC68020, 54 
Code Generation 

Floating-Point Default, 5 
Floating-Point Options, 5 

Comparisons 
Ordered, 32 

Compiler Options, 3 tMu 6 
-f68881, 5 
-ffpa, 5 
-fsingle,9 
-fsingle2, 9 
-fsky, 5 
-fstore, 7 
-0,4 
-P, 4 

Condition Code, 34 
Constant Expressions, 9 
Conversion, ASCII-to-Binary, 31 

D 
Debuggers and Floating Point, 21 
Decimal Digits, Precision, 17 
Differing Numerical Results, 13 
Disassembly, MC68881, 22 
Double Precision, 17 

E 
Elefunt Test Programs, 47 
Entry Points, 37 
Exceptions, 25, 31, 34 

Inexact, 25 
Expansion Inline, 4 
Expression Evaluation 

FORTRAN Style, 7 
Greatest Available Precision Style, 7 
Options, 7 

Extended Precision, 17 

-121-

F 
-f68881, 46 
FCVS Tests, 17 
-ffpa, 46 
File Size 

Executable Files, 6 
Libraries, 6 

Floating Point 
Debuggers, 21 

Floating-Point 
Default, 5 
From FORTRAN, 33 
Instructions, 83tMu 86 
Performance, 26 
Performance Benchmarks, 51 
Registers, Modifying, 23 
Signals, 20 

Floating-Point and Signal Handlers, 19 
Floating-Point Options, 3, 5 
Floating-Point Programs, 15tMu 16 
Formats, Numeric, 31 
Four-Operand Instructions, 78 
FPA 

Assembler Syntax, 75 
Recomputation, 24 
Register Use, 72 
Registers, Printing, 23 
Test Vector, 45 

_fpmode_ from C, 34 
_fpstatus_ from C, 34 
-fsingle, 9 
-fsingle2, 9 
-fsky, 47 
-fstore, 7 

H 
Hardware 

I 
IEEE Appendix Functions, 
IEEE Standard 

Features, 31 
History, 118 
Special Features, 32 
Support, 31 
Test Vectors, 43 



Index- Continued 

.il Files, 112 
Ill Condition, Detecting, 14 
Inexact Exceptions, 25 
Inline Expansion, 4, 108 

Assembly Language, 56 
Assembly-Level, 105 
Source Level, 57 

Inline Files, 112 
Instability, Detecting, 14 
Instruction Syntax, 75 
Instructions 

Four-Operand, 78 
Three-Operand, 77 
Two-Operand, 76 

L 
Libraries and Executable File Sizes, 6 
Linpack Benchmark, 51 
Liu, Test Programs, 49 

M 
Mask Differences, MC68881, 99 
MC68020 Cache, 54 
MC68881 

Disassembly, 22 
Mask Differences, 99 
Test Vector, 44 

Monotonicity, 50 
mosamp2, 96 

N 
Numeric Formats, 31 
Numerical Results, 31 

0 
-0 - cc option, 4 
Operand Types, 76 
Optimization 

Partial, 4 
Peephole, 110 
Side Effects, 4 

Optimization, Floating-Point, 58 
Options 

Compiler Code Generation, 3 
Expression Evaluation, 7 
Floating-Point, 3, 5 
Hardware Floating-Point, 3 

Ordered Comparisons, 32 

p 
-P - cc option, 4 
Paranoia Test Program, 45 
Partial Optimization, 4 
Performance, Floating-Point, 26, 58 
Precision in Decimal Digits, 17 
Printing 

Double-Precision, 23 
Extended-Precision, 23 
FPA Registers, 23 
Single-Precision, 23 

-122-

Programs, Floating-Point, 15 thru 16 

Q 
Quotient Status, 34 

R 
Recomputation, FPA, 24 
Register 

Allocation, 105 
Syntax, 76 

Register Use 
FPA, 72 

Results, ~umerical, 31 
Rounding 

Errors, 13 
MC68881, 32 
Modes, 25, 33 
Precision Mode, 32 

Rounding Direction Modes, 31 

s 
setjmp/longjmp, 20 
SIGEMT, 20 
SIGFPE, 20 
Signal Handlers 

and Floating-Point, 19 
Signalling NaNs, 34 
Signals, 20, 21 
Single Precision, 17 
Software Test Vector, 44 
Source Coding, Floating-Point, 58 
SPICE, 53, 95 thru 96 

tdo, 14 
SVID History, 117 
System V Interface Compliance, 117 

T 
tdo File, 95 
Test Vector 

IEEE, 43 
MC68881, 44 
SFPA, 45 
Sky, 44 
Software, 44 

Trap Enabling, 33 
Traps, 26, 31 

/ 


	Title Page
	Contents
	Tables
	Preface
	1. Sun Floating-Point Options
	2. Floating-Point Numerics
	3. IEEE-Standard Conformance
	4. Benchmarks
	A. adb Changes
	B. dbx and dbxtool Changes
	C. FPA Assembler Syntax
	D. IEEE Appendix Functions
	E. SPICE Input Files
	F. MC68881 Mask Differences
	G. Assembly-Level In-line Expansion
	H. System V Inferface Compliance
	Index

